1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This transformation analyzes and transforms the induction variables (and 11 // computations derived from them) into forms suitable for efficient execution 12 // on the target. 13 // 14 // This pass performs a strength reduction on array references inside loops that 15 // have as one or more of their components the loop induction variable, it 16 // rewrites expressions to take advantage of scaled-index addressing modes 17 // available on the target, and it performs a variety of other optimizations 18 // related to loop induction variables. 19 // 20 // Terminology note: this code has a lot of handling for "post-increment" or 21 // "post-inc" users. This is not talking about post-increment addressing modes; 22 // it is instead talking about code like this: 23 // 24 // %i = phi [ 0, %entry ], [ %i.next, %latch ] 25 // ... 26 // %i.next = add %i, 1 27 // %c = icmp eq %i.next, %n 28 // 29 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however 30 // it's useful to think about these as the same register, with some uses using 31 // the value of the register before the add and some using it after. In this 32 // example, the icmp is a post-increment user, since it uses %i.next, which is 33 // the value of the induction variable after the increment. The other common 34 // case of post-increment users is users outside the loop. 35 // 36 // TODO: More sophistication in the way Formulae are generated and filtered. 37 // 38 // TODO: Handle multiple loops at a time. 39 // 40 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead 41 // of a GlobalValue? 42 // 43 // TODO: When truncation is free, truncate ICmp users' operands to make it a 44 // smaller encoding (on x86 at least). 45 // 46 // TODO: When a negated register is used by an add (such as in a list of 47 // multiple base registers, or as the increment expression in an addrec), 48 // we may not actually need both reg and (-1 * reg) in registers; the 49 // negation can be implemented by using a sub instead of an add. The 50 // lack of support for taking this into consideration when making 51 // register pressure decisions is partly worked around by the "Special" 52 // use kind. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Scalar.h" 57 #include "llvm/ADT/DenseSet.h" 58 #include "llvm/ADT/Hashing.h" 59 #include "llvm/ADT/STLExtras.h" 60 #include "llvm/ADT/SetVector.h" 61 #include "llvm/ADT/SmallBitVector.h" 62 #include "llvm/Analysis/IVUsers.h" 63 #include "llvm/Analysis/LoopPass.h" 64 #include "llvm/Analysis/ScalarEvolutionExpander.h" 65 #include "llvm/Analysis/TargetTransformInfo.h" 66 #include "llvm/IR/Constants.h" 67 #include "llvm/IR/DerivedTypes.h" 68 #include "llvm/IR/Dominators.h" 69 #include "llvm/IR/Instructions.h" 70 #include "llvm/IR/IntrinsicInst.h" 71 #include "llvm/IR/Module.h" 72 #include "llvm/IR/ValueHandle.h" 73 #include "llvm/Support/CommandLine.h" 74 #include "llvm/Support/Debug.h" 75 #include "llvm/Support/raw_ostream.h" 76 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 77 #include "llvm/Transforms/Utils/Local.h" 78 #include <algorithm> 79 using namespace llvm; 80 81 #define DEBUG_TYPE "loop-reduce" 82 83 /// MaxIVUsers is an arbitrary threshold that provides an early opportunitiy for 84 /// bail out. This threshold is far beyond the number of users that LSR can 85 /// conceivably solve, so it should not affect generated code, but catches the 86 /// worst cases before LSR burns too much compile time and stack space. 87 static const unsigned MaxIVUsers = 200; 88 89 // Temporary flag to cleanup congruent phis after LSR phi expansion. 90 // It's currently disabled until we can determine whether it's truly useful or 91 // not. The flag should be removed after the v3.0 release. 92 // This is now needed for ivchains. 93 static cl::opt<bool> EnablePhiElim( 94 "enable-lsr-phielim", cl::Hidden, cl::init(true), 95 cl::desc("Enable LSR phi elimination")); 96 97 #ifndef NDEBUG 98 // Stress test IV chain generation. 99 static cl::opt<bool> StressIVChain( 100 "stress-ivchain", cl::Hidden, cl::init(false), 101 cl::desc("Stress test LSR IV chains")); 102 #else 103 static bool StressIVChain = false; 104 #endif 105 106 namespace { 107 108 struct MemAccessTy { 109 /// Used in situations where the accessed memory type is unknown. 110 static const unsigned UnknownAddressSpace = ~0u; 111 112 Type *MemTy; 113 unsigned AddrSpace; 114 115 MemAccessTy() : MemTy(nullptr), AddrSpace(UnknownAddressSpace) {} 116 117 MemAccessTy(Type *Ty, unsigned AS) : 118 MemTy(Ty), AddrSpace(AS) {} 119 120 bool operator==(MemAccessTy Other) const { 121 return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace; 122 } 123 124 bool operator!=(MemAccessTy Other) const { return !(*this == Other); } 125 126 static MemAccessTy getUnknown(LLVMContext &Ctx) { 127 return MemAccessTy(Type::getVoidTy(Ctx), UnknownAddressSpace); 128 } 129 }; 130 131 /// This class holds data which is used to order reuse candidates. 132 class RegSortData { 133 public: 134 /// This represents the set of LSRUse indices which reference 135 /// a particular register. 136 SmallBitVector UsedByIndices; 137 138 void print(raw_ostream &OS) const; 139 void dump() const; 140 }; 141 142 } 143 144 void RegSortData::print(raw_ostream &OS) const { 145 OS << "[NumUses=" << UsedByIndices.count() << ']'; 146 } 147 148 LLVM_DUMP_METHOD 149 void RegSortData::dump() const { 150 print(errs()); errs() << '\n'; 151 } 152 153 namespace { 154 155 /// Map register candidates to information about how they are used. 156 class RegUseTracker { 157 typedef DenseMap<const SCEV *, RegSortData> RegUsesTy; 158 159 RegUsesTy RegUsesMap; 160 SmallVector<const SCEV *, 16> RegSequence; 161 162 public: 163 void countRegister(const SCEV *Reg, size_t LUIdx); 164 void dropRegister(const SCEV *Reg, size_t LUIdx); 165 void swapAndDropUse(size_t LUIdx, size_t LastLUIdx); 166 167 bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const; 168 169 const SmallBitVector &getUsedByIndices(const SCEV *Reg) const; 170 171 void clear(); 172 173 typedef SmallVectorImpl<const SCEV *>::iterator iterator; 174 typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator; 175 iterator begin() { return RegSequence.begin(); } 176 iterator end() { return RegSequence.end(); } 177 const_iterator begin() const { return RegSequence.begin(); } 178 const_iterator end() const { return RegSequence.end(); } 179 }; 180 181 } 182 183 void 184 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) { 185 std::pair<RegUsesTy::iterator, bool> Pair = 186 RegUsesMap.insert(std::make_pair(Reg, RegSortData())); 187 RegSortData &RSD = Pair.first->second; 188 if (Pair.second) 189 RegSequence.push_back(Reg); 190 RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1)); 191 RSD.UsedByIndices.set(LUIdx); 192 } 193 194 void 195 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) { 196 RegUsesTy::iterator It = RegUsesMap.find(Reg); 197 assert(It != RegUsesMap.end()); 198 RegSortData &RSD = It->second; 199 assert(RSD.UsedByIndices.size() > LUIdx); 200 RSD.UsedByIndices.reset(LUIdx); 201 } 202 203 void 204 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) { 205 assert(LUIdx <= LastLUIdx); 206 207 // Update RegUses. The data structure is not optimized for this purpose; 208 // we must iterate through it and update each of the bit vectors. 209 for (auto &Pair : RegUsesMap) { 210 SmallBitVector &UsedByIndices = Pair.second.UsedByIndices; 211 if (LUIdx < UsedByIndices.size()) 212 UsedByIndices[LUIdx] = 213 LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : 0; 214 UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx)); 215 } 216 } 217 218 bool 219 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const { 220 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 221 if (I == RegUsesMap.end()) 222 return false; 223 const SmallBitVector &UsedByIndices = I->second.UsedByIndices; 224 int i = UsedByIndices.find_first(); 225 if (i == -1) return false; 226 if ((size_t)i != LUIdx) return true; 227 return UsedByIndices.find_next(i) != -1; 228 } 229 230 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const { 231 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 232 assert(I != RegUsesMap.end() && "Unknown register!"); 233 return I->second.UsedByIndices; 234 } 235 236 void RegUseTracker::clear() { 237 RegUsesMap.clear(); 238 RegSequence.clear(); 239 } 240 241 namespace { 242 243 /// This class holds information that describes a formula for computing 244 /// satisfying a use. It may include broken-out immediates and scaled registers. 245 struct Formula { 246 /// Global base address used for complex addressing. 247 GlobalValue *BaseGV; 248 249 /// Base offset for complex addressing. 250 int64_t BaseOffset; 251 252 /// Whether any complex addressing has a base register. 253 bool HasBaseReg; 254 255 /// The scale of any complex addressing. 256 int64_t Scale; 257 258 /// The list of "base" registers for this use. When this is non-empty. The 259 /// canonical representation of a formula is 260 /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and 261 /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty(). 262 /// #1 enforces that the scaled register is always used when at least two 263 /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2. 264 /// #2 enforces that 1 * reg is reg. 265 /// This invariant can be temporarly broken while building a formula. 266 /// However, every formula inserted into the LSRInstance must be in canonical 267 /// form. 268 SmallVector<const SCEV *, 4> BaseRegs; 269 270 /// The 'scaled' register for this use. This should be non-null when Scale is 271 /// not zero. 272 const SCEV *ScaledReg; 273 274 /// An additional constant offset which added near the use. This requires a 275 /// temporary register, but the offset itself can live in an add immediate 276 /// field rather than a register. 277 int64_t UnfoldedOffset; 278 279 Formula() 280 : BaseGV(nullptr), BaseOffset(0), HasBaseReg(false), Scale(0), 281 ScaledReg(nullptr), UnfoldedOffset(0) {} 282 283 void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE); 284 285 bool isCanonical() const; 286 287 void canonicalize(); 288 289 bool unscale(); 290 291 size_t getNumRegs() const; 292 Type *getType() const; 293 294 void deleteBaseReg(const SCEV *&S); 295 296 bool referencesReg(const SCEV *S) const; 297 bool hasRegsUsedByUsesOtherThan(size_t LUIdx, 298 const RegUseTracker &RegUses) const; 299 300 void print(raw_ostream &OS) const; 301 void dump() const; 302 }; 303 304 } 305 306 /// Recursion helper for initialMatch. 307 static void DoInitialMatch(const SCEV *S, Loop *L, 308 SmallVectorImpl<const SCEV *> &Good, 309 SmallVectorImpl<const SCEV *> &Bad, 310 ScalarEvolution &SE) { 311 // Collect expressions which properly dominate the loop header. 312 if (SE.properlyDominates(S, L->getHeader())) { 313 Good.push_back(S); 314 return; 315 } 316 317 // Look at add operands. 318 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 319 for (const SCEV *S : Add->operands()) 320 DoInitialMatch(S, L, Good, Bad, SE); 321 return; 322 } 323 324 // Look at addrec operands. 325 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 326 if (!AR->getStart()->isZero()) { 327 DoInitialMatch(AR->getStart(), L, Good, Bad, SE); 328 DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0), 329 AR->getStepRecurrence(SE), 330 // FIXME: AR->getNoWrapFlags() 331 AR->getLoop(), SCEV::FlagAnyWrap), 332 L, Good, Bad, SE); 333 return; 334 } 335 336 // Handle a multiplication by -1 (negation) if it didn't fold. 337 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) 338 if (Mul->getOperand(0)->isAllOnesValue()) { 339 SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end()); 340 const SCEV *NewMul = SE.getMulExpr(Ops); 341 342 SmallVector<const SCEV *, 4> MyGood; 343 SmallVector<const SCEV *, 4> MyBad; 344 DoInitialMatch(NewMul, L, MyGood, MyBad, SE); 345 const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue( 346 SE.getEffectiveSCEVType(NewMul->getType()))); 347 for (const SCEV *S : MyGood) 348 Good.push_back(SE.getMulExpr(NegOne, S)); 349 for (const SCEV *S : MyBad) 350 Bad.push_back(SE.getMulExpr(NegOne, S)); 351 return; 352 } 353 354 // Ok, we can't do anything interesting. Just stuff the whole thing into a 355 // register and hope for the best. 356 Bad.push_back(S); 357 } 358 359 /// Incorporate loop-variant parts of S into this Formula, attempting to keep 360 /// all loop-invariant and loop-computable values in a single base register. 361 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) { 362 SmallVector<const SCEV *, 4> Good; 363 SmallVector<const SCEV *, 4> Bad; 364 DoInitialMatch(S, L, Good, Bad, SE); 365 if (!Good.empty()) { 366 const SCEV *Sum = SE.getAddExpr(Good); 367 if (!Sum->isZero()) 368 BaseRegs.push_back(Sum); 369 HasBaseReg = true; 370 } 371 if (!Bad.empty()) { 372 const SCEV *Sum = SE.getAddExpr(Bad); 373 if (!Sum->isZero()) 374 BaseRegs.push_back(Sum); 375 HasBaseReg = true; 376 } 377 canonicalize(); 378 } 379 380 /// \brief Check whether or not this formula statisfies the canonical 381 /// representation. 382 /// \see Formula::BaseRegs. 383 bool Formula::isCanonical() const { 384 if (ScaledReg) 385 return Scale != 1 || !BaseRegs.empty(); 386 return BaseRegs.size() <= 1; 387 } 388 389 /// \brief Helper method to morph a formula into its canonical representation. 390 /// \see Formula::BaseRegs. 391 /// Every formula having more than one base register, must use the ScaledReg 392 /// field. Otherwise, we would have to do special cases everywhere in LSR 393 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ... 394 /// On the other hand, 1*reg should be canonicalized into reg. 395 void Formula::canonicalize() { 396 if (isCanonical()) 397 return; 398 // So far we did not need this case. This is easy to implement but it is 399 // useless to maintain dead code. Beside it could hurt compile time. 400 assert(!BaseRegs.empty() && "1*reg => reg, should not be needed."); 401 // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg. 402 ScaledReg = BaseRegs.back(); 403 BaseRegs.pop_back(); 404 Scale = 1; 405 size_t BaseRegsSize = BaseRegs.size(); 406 size_t Try = 0; 407 // If ScaledReg is an invariant, try to find a variant expression. 408 while (Try < BaseRegsSize && !isa<SCEVAddRecExpr>(ScaledReg)) 409 std::swap(ScaledReg, BaseRegs[Try++]); 410 } 411 412 /// \brief Get rid of the scale in the formula. 413 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2. 414 /// \return true if it was possible to get rid of the scale, false otherwise. 415 /// \note After this operation the formula may not be in the canonical form. 416 bool Formula::unscale() { 417 if (Scale != 1) 418 return false; 419 Scale = 0; 420 BaseRegs.push_back(ScaledReg); 421 ScaledReg = nullptr; 422 return true; 423 } 424 425 /// Return the total number of register operands used by this formula. This does 426 /// not include register uses implied by non-constant addrec strides. 427 size_t Formula::getNumRegs() const { 428 return !!ScaledReg + BaseRegs.size(); 429 } 430 431 /// Return the type of this formula, if it has one, or null otherwise. This type 432 /// is meaningless except for the bit size. 433 Type *Formula::getType() const { 434 return !BaseRegs.empty() ? BaseRegs.front()->getType() : 435 ScaledReg ? ScaledReg->getType() : 436 BaseGV ? BaseGV->getType() : 437 nullptr; 438 } 439 440 /// Delete the given base reg from the BaseRegs list. 441 void Formula::deleteBaseReg(const SCEV *&S) { 442 if (&S != &BaseRegs.back()) 443 std::swap(S, BaseRegs.back()); 444 BaseRegs.pop_back(); 445 } 446 447 /// Test if this formula references the given register. 448 bool Formula::referencesReg(const SCEV *S) const { 449 return S == ScaledReg || 450 std::find(BaseRegs.begin(), BaseRegs.end(), S) != BaseRegs.end(); 451 } 452 453 /// Test whether this formula uses registers which are used by uses other than 454 /// the use with the given index. 455 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx, 456 const RegUseTracker &RegUses) const { 457 if (ScaledReg) 458 if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx)) 459 return true; 460 for (const SCEV *BaseReg : BaseRegs) 461 if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx)) 462 return true; 463 return false; 464 } 465 466 void Formula::print(raw_ostream &OS) const { 467 bool First = true; 468 if (BaseGV) { 469 if (!First) OS << " + "; else First = false; 470 BaseGV->printAsOperand(OS, /*PrintType=*/false); 471 } 472 if (BaseOffset != 0) { 473 if (!First) OS << " + "; else First = false; 474 OS << BaseOffset; 475 } 476 for (const SCEV *BaseReg : BaseRegs) { 477 if (!First) OS << " + "; else First = false; 478 OS << "reg(" << *BaseReg << ')'; 479 } 480 if (HasBaseReg && BaseRegs.empty()) { 481 if (!First) OS << " + "; else First = false; 482 OS << "**error: HasBaseReg**"; 483 } else if (!HasBaseReg && !BaseRegs.empty()) { 484 if (!First) OS << " + "; else First = false; 485 OS << "**error: !HasBaseReg**"; 486 } 487 if (Scale != 0) { 488 if (!First) OS << " + "; else First = false; 489 OS << Scale << "*reg("; 490 if (ScaledReg) 491 OS << *ScaledReg; 492 else 493 OS << "<unknown>"; 494 OS << ')'; 495 } 496 if (UnfoldedOffset != 0) { 497 if (!First) OS << " + "; 498 OS << "imm(" << UnfoldedOffset << ')'; 499 } 500 } 501 502 LLVM_DUMP_METHOD 503 void Formula::dump() const { 504 print(errs()); errs() << '\n'; 505 } 506 507 /// Return true if the given addrec can be sign-extended without changing its 508 /// value. 509 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 510 Type *WideTy = 511 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1); 512 return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy)); 513 } 514 515 /// Return true if the given add can be sign-extended without changing its 516 /// value. 517 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) { 518 Type *WideTy = 519 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1); 520 return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy)); 521 } 522 523 /// Return true if the given mul can be sign-extended without changing its 524 /// value. 525 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) { 526 Type *WideTy = 527 IntegerType::get(SE.getContext(), 528 SE.getTypeSizeInBits(M->getType()) * M->getNumOperands()); 529 return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy)); 530 } 531 532 /// Return an expression for LHS /s RHS, if it can be determined and if the 533 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits 534 /// is true, expressions like (X * Y) /s Y are simplified to Y, ignoring that 535 /// the multiplication may overflow, which is useful when the result will be 536 /// used in a context where the most significant bits are ignored. 537 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS, 538 ScalarEvolution &SE, 539 bool IgnoreSignificantBits = false) { 540 // Handle the trivial case, which works for any SCEV type. 541 if (LHS == RHS) 542 return SE.getConstant(LHS->getType(), 1); 543 544 // Handle a few RHS special cases. 545 const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS); 546 if (RC) { 547 const APInt &RA = RC->getAPInt(); 548 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do 549 // some folding. 550 if (RA.isAllOnesValue()) 551 return SE.getMulExpr(LHS, RC); 552 // Handle x /s 1 as x. 553 if (RA == 1) 554 return LHS; 555 } 556 557 // Check for a division of a constant by a constant. 558 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) { 559 if (!RC) 560 return nullptr; 561 const APInt &LA = C->getAPInt(); 562 const APInt &RA = RC->getAPInt(); 563 if (LA.srem(RA) != 0) 564 return nullptr; 565 return SE.getConstant(LA.sdiv(RA)); 566 } 567 568 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow. 569 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) { 570 if (IgnoreSignificantBits || isAddRecSExtable(AR, SE)) { 571 const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE, 572 IgnoreSignificantBits); 573 if (!Step) return nullptr; 574 const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE, 575 IgnoreSignificantBits); 576 if (!Start) return nullptr; 577 // FlagNW is independent of the start value, step direction, and is 578 // preserved with smaller magnitude steps. 579 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 580 return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap); 581 } 582 return nullptr; 583 } 584 585 // Distribute the sdiv over add operands, if the add doesn't overflow. 586 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) { 587 if (IgnoreSignificantBits || isAddSExtable(Add, SE)) { 588 SmallVector<const SCEV *, 8> Ops; 589 for (const SCEV *S : Add->operands()) { 590 const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits); 591 if (!Op) return nullptr; 592 Ops.push_back(Op); 593 } 594 return SE.getAddExpr(Ops); 595 } 596 return nullptr; 597 } 598 599 // Check for a multiply operand that we can pull RHS out of. 600 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) { 601 if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) { 602 SmallVector<const SCEV *, 4> Ops; 603 bool Found = false; 604 for (const SCEV *S : Mul->operands()) { 605 if (!Found) 606 if (const SCEV *Q = getExactSDiv(S, RHS, SE, 607 IgnoreSignificantBits)) { 608 S = Q; 609 Found = true; 610 } 611 Ops.push_back(S); 612 } 613 return Found ? SE.getMulExpr(Ops) : nullptr; 614 } 615 return nullptr; 616 } 617 618 // Otherwise we don't know. 619 return nullptr; 620 } 621 622 /// If S involves the addition of a constant integer value, return that integer 623 /// value, and mutate S to point to a new SCEV with that value excluded. 624 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) { 625 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 626 if (C->getAPInt().getMinSignedBits() <= 64) { 627 S = SE.getConstant(C->getType(), 0); 628 return C->getValue()->getSExtValue(); 629 } 630 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 631 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 632 int64_t Result = ExtractImmediate(NewOps.front(), SE); 633 if (Result != 0) 634 S = SE.getAddExpr(NewOps); 635 return Result; 636 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 637 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 638 int64_t Result = ExtractImmediate(NewOps.front(), SE); 639 if (Result != 0) 640 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 641 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 642 SCEV::FlagAnyWrap); 643 return Result; 644 } 645 return 0; 646 } 647 648 /// If S involves the addition of a GlobalValue address, return that symbol, and 649 /// mutate S to point to a new SCEV with that value excluded. 650 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) { 651 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 652 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) { 653 S = SE.getConstant(GV->getType(), 0); 654 return GV; 655 } 656 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 657 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 658 GlobalValue *Result = ExtractSymbol(NewOps.back(), SE); 659 if (Result) 660 S = SE.getAddExpr(NewOps); 661 return Result; 662 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 663 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 664 GlobalValue *Result = ExtractSymbol(NewOps.front(), SE); 665 if (Result) 666 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 667 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 668 SCEV::FlagAnyWrap); 669 return Result; 670 } 671 return nullptr; 672 } 673 674 /// Returns true if the specified instruction is using the specified value as an 675 /// address. 676 static bool isAddressUse(Instruction *Inst, Value *OperandVal) { 677 bool isAddress = isa<LoadInst>(Inst); 678 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 679 if (SI->getOperand(1) == OperandVal) 680 isAddress = true; 681 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 682 // Addressing modes can also be folded into prefetches and a variety 683 // of intrinsics. 684 switch (II->getIntrinsicID()) { 685 default: break; 686 case Intrinsic::prefetch: 687 case Intrinsic::x86_sse_storeu_ps: 688 case Intrinsic::x86_sse2_storeu_pd: 689 case Intrinsic::x86_sse2_storeu_dq: 690 case Intrinsic::x86_avx_storeu_ps_256: 691 case Intrinsic::x86_avx_storeu_pd_256: 692 case Intrinsic::x86_avx_storeu_dq_256: 693 if (II->getArgOperand(0) == OperandVal) 694 isAddress = true; 695 break; 696 } 697 } 698 return isAddress; 699 } 700 701 /// Return the type of the memory being accessed. 702 static MemAccessTy getAccessType(const Instruction *Inst) { 703 MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace); 704 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 705 AccessTy.MemTy = SI->getOperand(0)->getType(); 706 AccessTy.AddrSpace = SI->getPointerAddressSpace(); 707 } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 708 AccessTy.AddrSpace = LI->getPointerAddressSpace(); 709 } else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 710 // Addressing modes can also be folded into prefetches and a variety 711 // of intrinsics. 712 switch (II->getIntrinsicID()) { 713 default: break; 714 case Intrinsic::x86_sse_storeu_ps: 715 case Intrinsic::x86_sse2_storeu_pd: 716 case Intrinsic::x86_sse2_storeu_dq: 717 case Intrinsic::x86_avx_storeu_ps_256: 718 case Intrinsic::x86_avx_storeu_pd_256: 719 case Intrinsic::x86_avx_storeu_dq_256: 720 AccessTy.MemTy = II->getArgOperand(0)->getType(); 721 break; 722 } 723 } 724 725 // All pointers have the same requirements, so canonicalize them to an 726 // arbitrary pointer type to minimize variation. 727 if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy)) 728 AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1), 729 PTy->getAddressSpace()); 730 731 return AccessTy; 732 } 733 734 /// Return true if this AddRec is already a phi in its loop. 735 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 736 for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin(); 737 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 738 if (SE.isSCEVable(PN->getType()) && 739 (SE.getEffectiveSCEVType(PN->getType()) == 740 SE.getEffectiveSCEVType(AR->getType())) && 741 SE.getSCEV(PN) == AR) 742 return true; 743 } 744 return false; 745 } 746 747 /// Check if expanding this expression is likely to incur significant cost. This 748 /// is tricky because SCEV doesn't track which expressions are actually computed 749 /// by the current IR. 750 /// 751 /// We currently allow expansion of IV increments that involve adds, 752 /// multiplication by constants, and AddRecs from existing phis. 753 /// 754 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an 755 /// obvious multiple of the UDivExpr. 756 static bool isHighCostExpansion(const SCEV *S, 757 SmallPtrSetImpl<const SCEV*> &Processed, 758 ScalarEvolution &SE) { 759 // Zero/One operand expressions 760 switch (S->getSCEVType()) { 761 case scUnknown: 762 case scConstant: 763 return false; 764 case scTruncate: 765 return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(), 766 Processed, SE); 767 case scZeroExtend: 768 return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(), 769 Processed, SE); 770 case scSignExtend: 771 return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(), 772 Processed, SE); 773 } 774 775 if (!Processed.insert(S).second) 776 return false; 777 778 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 779 for (const SCEV *S : Add->operands()) { 780 if (isHighCostExpansion(S, Processed, SE)) 781 return true; 782 } 783 return false; 784 } 785 786 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 787 if (Mul->getNumOperands() == 2) { 788 // Multiplication by a constant is ok 789 if (isa<SCEVConstant>(Mul->getOperand(0))) 790 return isHighCostExpansion(Mul->getOperand(1), Processed, SE); 791 792 // If we have the value of one operand, check if an existing 793 // multiplication already generates this expression. 794 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) { 795 Value *UVal = U->getValue(); 796 for (User *UR : UVal->users()) { 797 // If U is a constant, it may be used by a ConstantExpr. 798 Instruction *UI = dyn_cast<Instruction>(UR); 799 if (UI && UI->getOpcode() == Instruction::Mul && 800 SE.isSCEVable(UI->getType())) { 801 return SE.getSCEV(UI) == Mul; 802 } 803 } 804 } 805 } 806 } 807 808 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 809 if (isExistingPhi(AR, SE)) 810 return false; 811 } 812 813 // Fow now, consider any other type of expression (div/mul/min/max) high cost. 814 return true; 815 } 816 817 /// If any of the instructions is the specified set are trivially dead, delete 818 /// them and see if this makes any of their operands subsequently dead. 819 static bool 820 DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) { 821 bool Changed = false; 822 823 while (!DeadInsts.empty()) { 824 Value *V = DeadInsts.pop_back_val(); 825 Instruction *I = dyn_cast_or_null<Instruction>(V); 826 827 if (!I || !isInstructionTriviallyDead(I)) 828 continue; 829 830 for (Use &O : I->operands()) 831 if (Instruction *U = dyn_cast<Instruction>(O)) { 832 O = nullptr; 833 if (U->use_empty()) 834 DeadInsts.emplace_back(U); 835 } 836 837 I->eraseFromParent(); 838 Changed = true; 839 } 840 841 return Changed; 842 } 843 844 namespace { 845 class LSRUse; 846 } 847 848 /// \brief Check if the addressing mode defined by \p F is completely 849 /// folded in \p LU at isel time. 850 /// This includes address-mode folding and special icmp tricks. 851 /// This function returns true if \p LU can accommodate what \p F 852 /// defines and up to 1 base + 1 scaled + offset. 853 /// In other words, if \p F has several base registers, this function may 854 /// still return true. Therefore, users still need to account for 855 /// additional base registers and/or unfolded offsets to derive an 856 /// accurate cost model. 857 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 858 const LSRUse &LU, const Formula &F); 859 // Get the cost of the scaling factor used in F for LU. 860 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, 861 const LSRUse &LU, const Formula &F); 862 863 namespace { 864 865 /// This class is used to measure and compare candidate formulae. 866 class Cost { 867 /// TODO: Some of these could be merged. Also, a lexical ordering 868 /// isn't always optimal. 869 unsigned NumRegs; 870 unsigned AddRecCost; 871 unsigned NumIVMuls; 872 unsigned NumBaseAdds; 873 unsigned ImmCost; 874 unsigned SetupCost; 875 unsigned ScaleCost; 876 877 public: 878 Cost() 879 : NumRegs(0), AddRecCost(0), NumIVMuls(0), NumBaseAdds(0), ImmCost(0), 880 SetupCost(0), ScaleCost(0) {} 881 882 bool operator<(const Cost &Other) const; 883 884 void Lose(); 885 886 #ifndef NDEBUG 887 // Once any of the metrics loses, they must all remain losers. 888 bool isValid() { 889 return ((NumRegs | AddRecCost | NumIVMuls | NumBaseAdds 890 | ImmCost | SetupCost | ScaleCost) != ~0u) 891 || ((NumRegs & AddRecCost & NumIVMuls & NumBaseAdds 892 & ImmCost & SetupCost & ScaleCost) == ~0u); 893 } 894 #endif 895 896 bool isLoser() { 897 assert(isValid() && "invalid cost"); 898 return NumRegs == ~0u; 899 } 900 901 void RateFormula(const TargetTransformInfo &TTI, 902 const Formula &F, 903 SmallPtrSetImpl<const SCEV *> &Regs, 904 const DenseSet<const SCEV *> &VisitedRegs, 905 const Loop *L, 906 const SmallVectorImpl<int64_t> &Offsets, 907 ScalarEvolution &SE, DominatorTree &DT, 908 const LSRUse &LU, 909 SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr); 910 911 void print(raw_ostream &OS) const; 912 void dump() const; 913 914 private: 915 void RateRegister(const SCEV *Reg, 916 SmallPtrSetImpl<const SCEV *> &Regs, 917 const Loop *L, 918 ScalarEvolution &SE, DominatorTree &DT); 919 void RatePrimaryRegister(const SCEV *Reg, 920 SmallPtrSetImpl<const SCEV *> &Regs, 921 const Loop *L, 922 ScalarEvolution &SE, DominatorTree &DT, 923 SmallPtrSetImpl<const SCEV *> *LoserRegs); 924 }; 925 926 } 927 928 /// Tally up interesting quantities from the given register. 929 void Cost::RateRegister(const SCEV *Reg, 930 SmallPtrSetImpl<const SCEV *> &Regs, 931 const Loop *L, 932 ScalarEvolution &SE, DominatorTree &DT) { 933 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) { 934 // If this is an addrec for another loop, don't second-guess its addrec phi 935 // nodes. LSR isn't currently smart enough to reason about more than one 936 // loop at a time. LSR has already run on inner loops, will not run on outer 937 // loops, and cannot be expected to change sibling loops. 938 if (AR->getLoop() != L) { 939 // If the AddRec exists, consider it's register free and leave it alone. 940 if (isExistingPhi(AR, SE)) 941 return; 942 943 // Otherwise, do not consider this formula at all. 944 Lose(); 945 return; 946 } 947 AddRecCost += 1; /// TODO: This should be a function of the stride. 948 949 // Add the step value register, if it needs one. 950 // TODO: The non-affine case isn't precisely modeled here. 951 if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) { 952 if (!Regs.count(AR->getOperand(1))) { 953 RateRegister(AR->getOperand(1), Regs, L, SE, DT); 954 if (isLoser()) 955 return; 956 } 957 } 958 } 959 ++NumRegs; 960 961 // Rough heuristic; favor registers which don't require extra setup 962 // instructions in the preheader. 963 if (!isa<SCEVUnknown>(Reg) && 964 !isa<SCEVConstant>(Reg) && 965 !(isa<SCEVAddRecExpr>(Reg) && 966 (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) || 967 isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart())))) 968 ++SetupCost; 969 970 NumIVMuls += isa<SCEVMulExpr>(Reg) && 971 SE.hasComputableLoopEvolution(Reg, L); 972 } 973 974 /// Record this register in the set. If we haven't seen it before, rate 975 /// it. Optional LoserRegs provides a way to declare any formula that refers to 976 /// one of those regs an instant loser. 977 void Cost::RatePrimaryRegister(const SCEV *Reg, 978 SmallPtrSetImpl<const SCEV *> &Regs, 979 const Loop *L, 980 ScalarEvolution &SE, DominatorTree &DT, 981 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 982 if (LoserRegs && LoserRegs->count(Reg)) { 983 Lose(); 984 return; 985 } 986 if (Regs.insert(Reg).second) { 987 RateRegister(Reg, Regs, L, SE, DT); 988 if (LoserRegs && isLoser()) 989 LoserRegs->insert(Reg); 990 } 991 } 992 993 void Cost::RateFormula(const TargetTransformInfo &TTI, 994 const Formula &F, 995 SmallPtrSetImpl<const SCEV *> &Regs, 996 const DenseSet<const SCEV *> &VisitedRegs, 997 const Loop *L, 998 const SmallVectorImpl<int64_t> &Offsets, 999 ScalarEvolution &SE, DominatorTree &DT, 1000 const LSRUse &LU, 1001 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1002 assert(F.isCanonical() && "Cost is accurate only for canonical formula"); 1003 // Tally up the registers. 1004 if (const SCEV *ScaledReg = F.ScaledReg) { 1005 if (VisitedRegs.count(ScaledReg)) { 1006 Lose(); 1007 return; 1008 } 1009 RatePrimaryRegister(ScaledReg, Regs, L, SE, DT, LoserRegs); 1010 if (isLoser()) 1011 return; 1012 } 1013 for (const SCEV *BaseReg : F.BaseRegs) { 1014 if (VisitedRegs.count(BaseReg)) { 1015 Lose(); 1016 return; 1017 } 1018 RatePrimaryRegister(BaseReg, Regs, L, SE, DT, LoserRegs); 1019 if (isLoser()) 1020 return; 1021 } 1022 1023 // Determine how many (unfolded) adds we'll need inside the loop. 1024 size_t NumBaseParts = F.getNumRegs(); 1025 if (NumBaseParts > 1) 1026 // Do not count the base and a possible second register if the target 1027 // allows to fold 2 registers. 1028 NumBaseAdds += 1029 NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(TTI, LU, F))); 1030 NumBaseAdds += (F.UnfoldedOffset != 0); 1031 1032 // Accumulate non-free scaling amounts. 1033 ScaleCost += getScalingFactorCost(TTI, LU, F); 1034 1035 // Tally up the non-zero immediates. 1036 for (int64_t O : Offsets) { 1037 int64_t Offset = (uint64_t)O + F.BaseOffset; 1038 if (F.BaseGV) 1039 ImmCost += 64; // Handle symbolic values conservatively. 1040 // TODO: This should probably be the pointer size. 1041 else if (Offset != 0) 1042 ImmCost += APInt(64, Offset, true).getMinSignedBits(); 1043 } 1044 assert(isValid() && "invalid cost"); 1045 } 1046 1047 /// Set this cost to a losing value. 1048 void Cost::Lose() { 1049 NumRegs = ~0u; 1050 AddRecCost = ~0u; 1051 NumIVMuls = ~0u; 1052 NumBaseAdds = ~0u; 1053 ImmCost = ~0u; 1054 SetupCost = ~0u; 1055 ScaleCost = ~0u; 1056 } 1057 1058 /// Choose the lower cost. 1059 bool Cost::operator<(const Cost &Other) const { 1060 return std::tie(NumRegs, AddRecCost, NumIVMuls, NumBaseAdds, ScaleCost, 1061 ImmCost, SetupCost) < 1062 std::tie(Other.NumRegs, Other.AddRecCost, Other.NumIVMuls, 1063 Other.NumBaseAdds, Other.ScaleCost, Other.ImmCost, 1064 Other.SetupCost); 1065 } 1066 1067 void Cost::print(raw_ostream &OS) const { 1068 OS << NumRegs << " reg" << (NumRegs == 1 ? "" : "s"); 1069 if (AddRecCost != 0) 1070 OS << ", with addrec cost " << AddRecCost; 1071 if (NumIVMuls != 0) 1072 OS << ", plus " << NumIVMuls << " IV mul" << (NumIVMuls == 1 ? "" : "s"); 1073 if (NumBaseAdds != 0) 1074 OS << ", plus " << NumBaseAdds << " base add" 1075 << (NumBaseAdds == 1 ? "" : "s"); 1076 if (ScaleCost != 0) 1077 OS << ", plus " << ScaleCost << " scale cost"; 1078 if (ImmCost != 0) 1079 OS << ", plus " << ImmCost << " imm cost"; 1080 if (SetupCost != 0) 1081 OS << ", plus " << SetupCost << " setup cost"; 1082 } 1083 1084 LLVM_DUMP_METHOD 1085 void Cost::dump() const { 1086 print(errs()); errs() << '\n'; 1087 } 1088 1089 namespace { 1090 1091 /// An operand value in an instruction which is to be replaced with some 1092 /// equivalent, possibly strength-reduced, replacement. 1093 struct LSRFixup { 1094 /// The instruction which will be updated. 1095 Instruction *UserInst; 1096 1097 /// The operand of the instruction which will be replaced. The operand may be 1098 /// used more than once; every instance will be replaced. 1099 Value *OperandValToReplace; 1100 1101 /// If this user is to use the post-incremented value of an induction 1102 /// variable, this variable is non-null and holds the loop associated with the 1103 /// induction variable. 1104 PostIncLoopSet PostIncLoops; 1105 1106 /// The index of the LSRUse describing the expression which this fixup needs, 1107 /// minus an offset (below). 1108 size_t LUIdx; 1109 1110 /// A constant offset to be added to the LSRUse expression. This allows 1111 /// multiple fixups to share the same LSRUse with different offsets, for 1112 /// example in an unrolled loop. 1113 int64_t Offset; 1114 1115 bool isUseFullyOutsideLoop(const Loop *L) const; 1116 1117 LSRFixup(); 1118 1119 void print(raw_ostream &OS) const; 1120 void dump() const; 1121 }; 1122 1123 } 1124 1125 LSRFixup::LSRFixup() 1126 : UserInst(nullptr), OperandValToReplace(nullptr), LUIdx(~size_t(0)), 1127 Offset(0) {} 1128 1129 /// Test whether this fixup always uses its value outside of the given loop. 1130 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const { 1131 // PHI nodes use their value in their incoming blocks. 1132 if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) { 1133 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1134 if (PN->getIncomingValue(i) == OperandValToReplace && 1135 L->contains(PN->getIncomingBlock(i))) 1136 return false; 1137 return true; 1138 } 1139 1140 return !L->contains(UserInst); 1141 } 1142 1143 void LSRFixup::print(raw_ostream &OS) const { 1144 OS << "UserInst="; 1145 // Store is common and interesting enough to be worth special-casing. 1146 if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) { 1147 OS << "store "; 1148 Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false); 1149 } else if (UserInst->getType()->isVoidTy()) 1150 OS << UserInst->getOpcodeName(); 1151 else 1152 UserInst->printAsOperand(OS, /*PrintType=*/false); 1153 1154 OS << ", OperandValToReplace="; 1155 OperandValToReplace->printAsOperand(OS, /*PrintType=*/false); 1156 1157 for (const Loop *PIL : PostIncLoops) { 1158 OS << ", PostIncLoop="; 1159 PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 1160 } 1161 1162 if (LUIdx != ~size_t(0)) 1163 OS << ", LUIdx=" << LUIdx; 1164 1165 if (Offset != 0) 1166 OS << ", Offset=" << Offset; 1167 } 1168 1169 LLVM_DUMP_METHOD 1170 void LSRFixup::dump() const { 1171 print(errs()); errs() << '\n'; 1172 } 1173 1174 namespace { 1175 1176 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted 1177 /// SmallVectors of const SCEV*. 1178 struct UniquifierDenseMapInfo { 1179 static SmallVector<const SCEV *, 4> getEmptyKey() { 1180 SmallVector<const SCEV *, 4> V; 1181 V.push_back(reinterpret_cast<const SCEV *>(-1)); 1182 return V; 1183 } 1184 1185 static SmallVector<const SCEV *, 4> getTombstoneKey() { 1186 SmallVector<const SCEV *, 4> V; 1187 V.push_back(reinterpret_cast<const SCEV *>(-2)); 1188 return V; 1189 } 1190 1191 static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) { 1192 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 1193 } 1194 1195 static bool isEqual(const SmallVector<const SCEV *, 4> &LHS, 1196 const SmallVector<const SCEV *, 4> &RHS) { 1197 return LHS == RHS; 1198 } 1199 }; 1200 1201 /// This class holds the state that LSR keeps for each use in IVUsers, as well 1202 /// as uses invented by LSR itself. It includes information about what kinds of 1203 /// things can be folded into the user, information about the user itself, and 1204 /// information about how the use may be satisfied. TODO: Represent multiple 1205 /// users of the same expression in common? 1206 class LSRUse { 1207 DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier; 1208 1209 public: 1210 /// An enum for a kind of use, indicating what types of scaled and immediate 1211 /// operands it might support. 1212 enum KindType { 1213 Basic, ///< A normal use, with no folding. 1214 Special, ///< A special case of basic, allowing -1 scales. 1215 Address, ///< An address use; folding according to TargetLowering 1216 ICmpZero ///< An equality icmp with both operands folded into one. 1217 // TODO: Add a generic icmp too? 1218 }; 1219 1220 typedef PointerIntPair<const SCEV *, 2, KindType> SCEVUseKindPair; 1221 1222 KindType Kind; 1223 MemAccessTy AccessTy; 1224 1225 SmallVector<int64_t, 8> Offsets; 1226 int64_t MinOffset; 1227 int64_t MaxOffset; 1228 1229 /// This records whether all of the fixups using this LSRUse are outside of 1230 /// the loop, in which case some special-case heuristics may be used. 1231 bool AllFixupsOutsideLoop; 1232 1233 /// RigidFormula is set to true to guarantee that this use will be associated 1234 /// with a single formula--the one that initially matched. Some SCEV 1235 /// expressions cannot be expanded. This allows LSR to consider the registers 1236 /// used by those expressions without the need to expand them later after 1237 /// changing the formula. 1238 bool RigidFormula; 1239 1240 /// This records the widest use type for any fixup using this 1241 /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max 1242 /// fixup widths to be equivalent, because the narrower one may be relying on 1243 /// the implicit truncation to truncate away bogus bits. 1244 Type *WidestFixupType; 1245 1246 /// A list of ways to build a value that can satisfy this user. After the 1247 /// list is populated, one of these is selected heuristically and used to 1248 /// formulate a replacement for OperandValToReplace in UserInst. 1249 SmallVector<Formula, 12> Formulae; 1250 1251 /// The set of register candidates used by all formulae in this LSRUse. 1252 SmallPtrSet<const SCEV *, 4> Regs; 1253 1254 LSRUse(KindType K, MemAccessTy AT) 1255 : Kind(K), AccessTy(AT), MinOffset(INT64_MAX), MaxOffset(INT64_MIN), 1256 AllFixupsOutsideLoop(true), RigidFormula(false), 1257 WidestFixupType(nullptr) {} 1258 1259 bool HasFormulaWithSameRegs(const Formula &F) const; 1260 bool InsertFormula(const Formula &F); 1261 void DeleteFormula(Formula &F); 1262 void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses); 1263 1264 void print(raw_ostream &OS) const; 1265 void dump() const; 1266 }; 1267 1268 } 1269 1270 /// Test whether this use as a formula which has the same registers as the given 1271 /// formula. 1272 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const { 1273 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1274 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1275 // Unstable sort by host order ok, because this is only used for uniquifying. 1276 std::sort(Key.begin(), Key.end()); 1277 return Uniquifier.count(Key); 1278 } 1279 1280 /// If the given formula has not yet been inserted, add it to the list, and 1281 /// return true. Return false otherwise. The formula must be in canonical form. 1282 bool LSRUse::InsertFormula(const Formula &F) { 1283 assert(F.isCanonical() && "Invalid canonical representation"); 1284 1285 if (!Formulae.empty() && RigidFormula) 1286 return false; 1287 1288 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1289 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1290 // Unstable sort by host order ok, because this is only used for uniquifying. 1291 std::sort(Key.begin(), Key.end()); 1292 1293 if (!Uniquifier.insert(Key).second) 1294 return false; 1295 1296 // Using a register to hold the value of 0 is not profitable. 1297 assert((!F.ScaledReg || !F.ScaledReg->isZero()) && 1298 "Zero allocated in a scaled register!"); 1299 #ifndef NDEBUG 1300 for (const SCEV *BaseReg : F.BaseRegs) 1301 assert(!BaseReg->isZero() && "Zero allocated in a base register!"); 1302 #endif 1303 1304 // Add the formula to the list. 1305 Formulae.push_back(F); 1306 1307 // Record registers now being used by this use. 1308 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1309 if (F.ScaledReg) 1310 Regs.insert(F.ScaledReg); 1311 1312 return true; 1313 } 1314 1315 /// Remove the given formula from this use's list. 1316 void LSRUse::DeleteFormula(Formula &F) { 1317 if (&F != &Formulae.back()) 1318 std::swap(F, Formulae.back()); 1319 Formulae.pop_back(); 1320 } 1321 1322 /// Recompute the Regs field, and update RegUses. 1323 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) { 1324 // Now that we've filtered out some formulae, recompute the Regs set. 1325 SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs); 1326 Regs.clear(); 1327 for (const Formula &F : Formulae) { 1328 if (F.ScaledReg) Regs.insert(F.ScaledReg); 1329 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1330 } 1331 1332 // Update the RegTracker. 1333 for (const SCEV *S : OldRegs) 1334 if (!Regs.count(S)) 1335 RegUses.dropRegister(S, LUIdx); 1336 } 1337 1338 void LSRUse::print(raw_ostream &OS) const { 1339 OS << "LSR Use: Kind="; 1340 switch (Kind) { 1341 case Basic: OS << "Basic"; break; 1342 case Special: OS << "Special"; break; 1343 case ICmpZero: OS << "ICmpZero"; break; 1344 case Address: 1345 OS << "Address of "; 1346 if (AccessTy.MemTy->isPointerTy()) 1347 OS << "pointer"; // the full pointer type could be really verbose 1348 else { 1349 OS << *AccessTy.MemTy; 1350 } 1351 1352 OS << " in addrspace(" << AccessTy.AddrSpace << ')'; 1353 } 1354 1355 OS << ", Offsets={"; 1356 bool NeedComma = false; 1357 for (int64_t O : Offsets) { 1358 if (NeedComma) OS << ','; 1359 OS << O; 1360 NeedComma = true; 1361 } 1362 OS << '}'; 1363 1364 if (AllFixupsOutsideLoop) 1365 OS << ", all-fixups-outside-loop"; 1366 1367 if (WidestFixupType) 1368 OS << ", widest fixup type: " << *WidestFixupType; 1369 } 1370 1371 LLVM_DUMP_METHOD 1372 void LSRUse::dump() const { 1373 print(errs()); errs() << '\n'; 1374 } 1375 1376 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1377 LSRUse::KindType Kind, MemAccessTy AccessTy, 1378 GlobalValue *BaseGV, int64_t BaseOffset, 1379 bool HasBaseReg, int64_t Scale) { 1380 switch (Kind) { 1381 case LSRUse::Address: 1382 return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset, 1383 HasBaseReg, Scale, AccessTy.AddrSpace); 1384 1385 case LSRUse::ICmpZero: 1386 // There's not even a target hook for querying whether it would be legal to 1387 // fold a GV into an ICmp. 1388 if (BaseGV) 1389 return false; 1390 1391 // ICmp only has two operands; don't allow more than two non-trivial parts. 1392 if (Scale != 0 && HasBaseReg && BaseOffset != 0) 1393 return false; 1394 1395 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by 1396 // putting the scaled register in the other operand of the icmp. 1397 if (Scale != 0 && Scale != -1) 1398 return false; 1399 1400 // If we have low-level target information, ask the target if it can fold an 1401 // integer immediate on an icmp. 1402 if (BaseOffset != 0) { 1403 // We have one of: 1404 // ICmpZero BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset 1405 // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset 1406 // Offs is the ICmp immediate. 1407 if (Scale == 0) 1408 // The cast does the right thing with INT64_MIN. 1409 BaseOffset = -(uint64_t)BaseOffset; 1410 return TTI.isLegalICmpImmediate(BaseOffset); 1411 } 1412 1413 // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg 1414 return true; 1415 1416 case LSRUse::Basic: 1417 // Only handle single-register values. 1418 return !BaseGV && Scale == 0 && BaseOffset == 0; 1419 1420 case LSRUse::Special: 1421 // Special case Basic to handle -1 scales. 1422 return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0; 1423 } 1424 1425 llvm_unreachable("Invalid LSRUse Kind!"); 1426 } 1427 1428 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1429 int64_t MinOffset, int64_t MaxOffset, 1430 LSRUse::KindType Kind, MemAccessTy AccessTy, 1431 GlobalValue *BaseGV, int64_t BaseOffset, 1432 bool HasBaseReg, int64_t Scale) { 1433 // Check for overflow. 1434 if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) != 1435 (MinOffset > 0)) 1436 return false; 1437 MinOffset = (uint64_t)BaseOffset + MinOffset; 1438 if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) != 1439 (MaxOffset > 0)) 1440 return false; 1441 MaxOffset = (uint64_t)BaseOffset + MaxOffset; 1442 1443 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset, 1444 HasBaseReg, Scale) && 1445 isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset, 1446 HasBaseReg, Scale); 1447 } 1448 1449 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1450 int64_t MinOffset, int64_t MaxOffset, 1451 LSRUse::KindType Kind, MemAccessTy AccessTy, 1452 const Formula &F) { 1453 // For the purpose of isAMCompletelyFolded either having a canonical formula 1454 // or a scale not equal to zero is correct. 1455 // Problems may arise from non canonical formulae having a scale == 0. 1456 // Strictly speaking it would best to just rely on canonical formulae. 1457 // However, when we generate the scaled formulae, we first check that the 1458 // scaling factor is profitable before computing the actual ScaledReg for 1459 // compile time sake. 1460 assert((F.isCanonical() || F.Scale != 0)); 1461 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1462 F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale); 1463 } 1464 1465 /// Test whether we know how to expand the current formula. 1466 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1467 int64_t MaxOffset, LSRUse::KindType Kind, 1468 MemAccessTy AccessTy, GlobalValue *BaseGV, 1469 int64_t BaseOffset, bool HasBaseReg, int64_t Scale) { 1470 // We know how to expand completely foldable formulae. 1471 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1472 BaseOffset, HasBaseReg, Scale) || 1473 // Or formulae that use a base register produced by a sum of base 1474 // registers. 1475 (Scale == 1 && 1476 isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1477 BaseGV, BaseOffset, true, 0)); 1478 } 1479 1480 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1481 int64_t MaxOffset, LSRUse::KindType Kind, 1482 MemAccessTy AccessTy, const Formula &F) { 1483 return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV, 1484 F.BaseOffset, F.HasBaseReg, F.Scale); 1485 } 1486 1487 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1488 const LSRUse &LU, const Formula &F) { 1489 return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1490 LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg, 1491 F.Scale); 1492 } 1493 1494 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, 1495 const LSRUse &LU, const Formula &F) { 1496 if (!F.Scale) 1497 return 0; 1498 1499 // If the use is not completely folded in that instruction, we will have to 1500 // pay an extra cost only for scale != 1. 1501 if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1502 LU.AccessTy, F)) 1503 return F.Scale != 1; 1504 1505 switch (LU.Kind) { 1506 case LSRUse::Address: { 1507 // Check the scaling factor cost with both the min and max offsets. 1508 int ScaleCostMinOffset = TTI.getScalingFactorCost( 1509 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg, 1510 F.Scale, LU.AccessTy.AddrSpace); 1511 int ScaleCostMaxOffset = TTI.getScalingFactorCost( 1512 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg, 1513 F.Scale, LU.AccessTy.AddrSpace); 1514 1515 assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 && 1516 "Legal addressing mode has an illegal cost!"); 1517 return std::max(ScaleCostMinOffset, ScaleCostMaxOffset); 1518 } 1519 case LSRUse::ICmpZero: 1520 case LSRUse::Basic: 1521 case LSRUse::Special: 1522 // The use is completely folded, i.e., everything is folded into the 1523 // instruction. 1524 return 0; 1525 } 1526 1527 llvm_unreachable("Invalid LSRUse Kind!"); 1528 } 1529 1530 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1531 LSRUse::KindType Kind, MemAccessTy AccessTy, 1532 GlobalValue *BaseGV, int64_t BaseOffset, 1533 bool HasBaseReg) { 1534 // Fast-path: zero is always foldable. 1535 if (BaseOffset == 0 && !BaseGV) return true; 1536 1537 // Conservatively, create an address with an immediate and a 1538 // base and a scale. 1539 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1540 1541 // Canonicalize a scale of 1 to a base register if the formula doesn't 1542 // already have a base register. 1543 if (!HasBaseReg && Scale == 1) { 1544 Scale = 0; 1545 HasBaseReg = true; 1546 } 1547 1548 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset, 1549 HasBaseReg, Scale); 1550 } 1551 1552 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1553 ScalarEvolution &SE, int64_t MinOffset, 1554 int64_t MaxOffset, LSRUse::KindType Kind, 1555 MemAccessTy AccessTy, const SCEV *S, 1556 bool HasBaseReg) { 1557 // Fast-path: zero is always foldable. 1558 if (S->isZero()) return true; 1559 1560 // Conservatively, create an address with an immediate and a 1561 // base and a scale. 1562 int64_t BaseOffset = ExtractImmediate(S, SE); 1563 GlobalValue *BaseGV = ExtractSymbol(S, SE); 1564 1565 // If there's anything else involved, it's not foldable. 1566 if (!S->isZero()) return false; 1567 1568 // Fast-path: zero is always foldable. 1569 if (BaseOffset == 0 && !BaseGV) return true; 1570 1571 // Conservatively, create an address with an immediate and a 1572 // base and a scale. 1573 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1574 1575 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1576 BaseOffset, HasBaseReg, Scale); 1577 } 1578 1579 namespace { 1580 1581 /// An individual increment in a Chain of IV increments. Relate an IV user to 1582 /// an expression that computes the IV it uses from the IV used by the previous 1583 /// link in the Chain. 1584 /// 1585 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the 1586 /// original IVOperand. The head of the chain's IVOperand is only valid during 1587 /// chain collection, before LSR replaces IV users. During chain generation, 1588 /// IncExpr can be used to find the new IVOperand that computes the same 1589 /// expression. 1590 struct IVInc { 1591 Instruction *UserInst; 1592 Value* IVOperand; 1593 const SCEV *IncExpr; 1594 1595 IVInc(Instruction *U, Value *O, const SCEV *E): 1596 UserInst(U), IVOperand(O), IncExpr(E) {} 1597 }; 1598 1599 // The list of IV increments in program order. We typically add the head of a 1600 // chain without finding subsequent links. 1601 struct IVChain { 1602 SmallVector<IVInc,1> Incs; 1603 const SCEV *ExprBase; 1604 1605 IVChain() : ExprBase(nullptr) {} 1606 1607 IVChain(const IVInc &Head, const SCEV *Base) 1608 : Incs(1, Head), ExprBase(Base) {} 1609 1610 typedef SmallVectorImpl<IVInc>::const_iterator const_iterator; 1611 1612 // Return the first increment in the chain. 1613 const_iterator begin() const { 1614 assert(!Incs.empty()); 1615 return std::next(Incs.begin()); 1616 } 1617 const_iterator end() const { 1618 return Incs.end(); 1619 } 1620 1621 // Returns true if this chain contains any increments. 1622 bool hasIncs() const { return Incs.size() >= 2; } 1623 1624 // Add an IVInc to the end of this chain. 1625 void add(const IVInc &X) { Incs.push_back(X); } 1626 1627 // Returns the last UserInst in the chain. 1628 Instruction *tailUserInst() const { return Incs.back().UserInst; } 1629 1630 // Returns true if IncExpr can be profitably added to this chain. 1631 bool isProfitableIncrement(const SCEV *OperExpr, 1632 const SCEV *IncExpr, 1633 ScalarEvolution&); 1634 }; 1635 1636 /// Helper for CollectChains to track multiple IV increment uses. Distinguish 1637 /// between FarUsers that definitely cross IV increments and NearUsers that may 1638 /// be used between IV increments. 1639 struct ChainUsers { 1640 SmallPtrSet<Instruction*, 4> FarUsers; 1641 SmallPtrSet<Instruction*, 4> NearUsers; 1642 }; 1643 1644 /// This class holds state for the main loop strength reduction logic. 1645 class LSRInstance { 1646 IVUsers &IU; 1647 ScalarEvolution &SE; 1648 DominatorTree &DT; 1649 LoopInfo &LI; 1650 const TargetTransformInfo &TTI; 1651 Loop *const L; 1652 bool Changed; 1653 1654 /// This is the insert position that the current loop's induction variable 1655 /// increment should be placed. In simple loops, this is the latch block's 1656 /// terminator. But in more complicated cases, this is a position which will 1657 /// dominate all the in-loop post-increment users. 1658 Instruction *IVIncInsertPos; 1659 1660 /// Interesting factors between use strides. 1661 SmallSetVector<int64_t, 8> Factors; 1662 1663 /// Interesting use types, to facilitate truncation reuse. 1664 SmallSetVector<Type *, 4> Types; 1665 1666 /// The list of operands which are to be replaced. 1667 SmallVector<LSRFixup, 16> Fixups; 1668 1669 /// The list of interesting uses. 1670 SmallVector<LSRUse, 16> Uses; 1671 1672 /// Track which uses use which register candidates. 1673 RegUseTracker RegUses; 1674 1675 // Limit the number of chains to avoid quadratic behavior. We don't expect to 1676 // have more than a few IV increment chains in a loop. Missing a Chain falls 1677 // back to normal LSR behavior for those uses. 1678 static const unsigned MaxChains = 8; 1679 1680 /// IV users can form a chain of IV increments. 1681 SmallVector<IVChain, MaxChains> IVChainVec; 1682 1683 /// IV users that belong to profitable IVChains. 1684 SmallPtrSet<Use*, MaxChains> IVIncSet; 1685 1686 void OptimizeShadowIV(); 1687 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse); 1688 ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse); 1689 void OptimizeLoopTermCond(); 1690 1691 void ChainInstruction(Instruction *UserInst, Instruction *IVOper, 1692 SmallVectorImpl<ChainUsers> &ChainUsersVec); 1693 void FinalizeChain(IVChain &Chain); 1694 void CollectChains(); 1695 void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 1696 SmallVectorImpl<WeakVH> &DeadInsts); 1697 1698 void CollectInterestingTypesAndFactors(); 1699 void CollectFixupsAndInitialFormulae(); 1700 1701 LSRFixup &getNewFixup() { 1702 Fixups.push_back(LSRFixup()); 1703 return Fixups.back(); 1704 } 1705 1706 // Support for sharing of LSRUses between LSRFixups. 1707 typedef DenseMap<LSRUse::SCEVUseKindPair, size_t> UseMapTy; 1708 UseMapTy UseMap; 1709 1710 bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, 1711 LSRUse::KindType Kind, MemAccessTy AccessTy); 1712 1713 std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind, 1714 MemAccessTy AccessTy); 1715 1716 void DeleteUse(LSRUse &LU, size_t LUIdx); 1717 1718 LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU); 1719 1720 void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1721 void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1722 void CountRegisters(const Formula &F, size_t LUIdx); 1723 bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F); 1724 1725 void CollectLoopInvariantFixupsAndFormulae(); 1726 1727 void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base, 1728 unsigned Depth = 0); 1729 1730 void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 1731 const Formula &Base, unsigned Depth, 1732 size_t Idx, bool IsScaledReg = false); 1733 void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base); 1734 void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 1735 const Formula &Base, size_t Idx, 1736 bool IsScaledReg = false); 1737 void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1738 void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx, 1739 const Formula &Base, 1740 const SmallVectorImpl<int64_t> &Worklist, 1741 size_t Idx, bool IsScaledReg = false); 1742 void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1743 void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base); 1744 void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base); 1745 void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base); 1746 void GenerateCrossUseConstantOffsets(); 1747 void GenerateAllReuseFormulae(); 1748 1749 void FilterOutUndesirableDedicatedRegisters(); 1750 1751 size_t EstimateSearchSpaceComplexity() const; 1752 void NarrowSearchSpaceByDetectingSupersets(); 1753 void NarrowSearchSpaceByCollapsingUnrolledCode(); 1754 void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 1755 void NarrowSearchSpaceByPickingWinnerRegs(); 1756 void NarrowSearchSpaceUsingHeuristics(); 1757 1758 void SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 1759 Cost &SolutionCost, 1760 SmallVectorImpl<const Formula *> &Workspace, 1761 const Cost &CurCost, 1762 const SmallPtrSet<const SCEV *, 16> &CurRegs, 1763 DenseSet<const SCEV *> &VisitedRegs) const; 1764 void Solve(SmallVectorImpl<const Formula *> &Solution) const; 1765 1766 BasicBlock::iterator 1767 HoistInsertPosition(BasicBlock::iterator IP, 1768 const SmallVectorImpl<Instruction *> &Inputs) const; 1769 BasicBlock::iterator 1770 AdjustInsertPositionForExpand(BasicBlock::iterator IP, 1771 const LSRFixup &LF, 1772 const LSRUse &LU, 1773 SCEVExpander &Rewriter) const; 1774 1775 Value *Expand(const LSRFixup &LF, 1776 const Formula &F, 1777 BasicBlock::iterator IP, 1778 SCEVExpander &Rewriter, 1779 SmallVectorImpl<WeakVH> &DeadInsts) const; 1780 void RewriteForPHI(PHINode *PN, const LSRFixup &LF, 1781 const Formula &F, 1782 SCEVExpander &Rewriter, 1783 SmallVectorImpl<WeakVH> &DeadInsts) const; 1784 void Rewrite(const LSRFixup &LF, 1785 const Formula &F, 1786 SCEVExpander &Rewriter, 1787 SmallVectorImpl<WeakVH> &DeadInsts) const; 1788 void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution); 1789 1790 public: 1791 LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT, 1792 LoopInfo &LI, const TargetTransformInfo &TTI); 1793 1794 bool getChanged() const { return Changed; } 1795 1796 void print_factors_and_types(raw_ostream &OS) const; 1797 void print_fixups(raw_ostream &OS) const; 1798 void print_uses(raw_ostream &OS) const; 1799 void print(raw_ostream &OS) const; 1800 void dump() const; 1801 }; 1802 1803 } 1804 1805 /// If IV is used in a int-to-float cast inside the loop then try to eliminate 1806 /// the cast operation. 1807 void LSRInstance::OptimizeShadowIV() { 1808 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 1809 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 1810 return; 1811 1812 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); 1813 UI != E; /* empty */) { 1814 IVUsers::const_iterator CandidateUI = UI; 1815 ++UI; 1816 Instruction *ShadowUse = CandidateUI->getUser(); 1817 Type *DestTy = nullptr; 1818 bool IsSigned = false; 1819 1820 /* If shadow use is a int->float cast then insert a second IV 1821 to eliminate this cast. 1822 1823 for (unsigned i = 0; i < n; ++i) 1824 foo((double)i); 1825 1826 is transformed into 1827 1828 double d = 0.0; 1829 for (unsigned i = 0; i < n; ++i, ++d) 1830 foo(d); 1831 */ 1832 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) { 1833 IsSigned = false; 1834 DestTy = UCast->getDestTy(); 1835 } 1836 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) { 1837 IsSigned = true; 1838 DestTy = SCast->getDestTy(); 1839 } 1840 if (!DestTy) continue; 1841 1842 // If target does not support DestTy natively then do not apply 1843 // this transformation. 1844 if (!TTI.isTypeLegal(DestTy)) continue; 1845 1846 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0)); 1847 if (!PH) continue; 1848 if (PH->getNumIncomingValues() != 2) continue; 1849 1850 Type *SrcTy = PH->getType(); 1851 int Mantissa = DestTy->getFPMantissaWidth(); 1852 if (Mantissa == -1) continue; 1853 if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa) 1854 continue; 1855 1856 unsigned Entry, Latch; 1857 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) { 1858 Entry = 0; 1859 Latch = 1; 1860 } else { 1861 Entry = 1; 1862 Latch = 0; 1863 } 1864 1865 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry)); 1866 if (!Init) continue; 1867 Constant *NewInit = ConstantFP::get(DestTy, IsSigned ? 1868 (double)Init->getSExtValue() : 1869 (double)Init->getZExtValue()); 1870 1871 BinaryOperator *Incr = 1872 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch)); 1873 if (!Incr) continue; 1874 if (Incr->getOpcode() != Instruction::Add 1875 && Incr->getOpcode() != Instruction::Sub) 1876 continue; 1877 1878 /* Initialize new IV, double d = 0.0 in above example. */ 1879 ConstantInt *C = nullptr; 1880 if (Incr->getOperand(0) == PH) 1881 C = dyn_cast<ConstantInt>(Incr->getOperand(1)); 1882 else if (Incr->getOperand(1) == PH) 1883 C = dyn_cast<ConstantInt>(Incr->getOperand(0)); 1884 else 1885 continue; 1886 1887 if (!C) continue; 1888 1889 // Ignore negative constants, as the code below doesn't handle them 1890 // correctly. TODO: Remove this restriction. 1891 if (!C->getValue().isStrictlyPositive()) continue; 1892 1893 /* Add new PHINode. */ 1894 PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH); 1895 1896 /* create new increment. '++d' in above example. */ 1897 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue()); 1898 BinaryOperator *NewIncr = 1899 BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ? 1900 Instruction::FAdd : Instruction::FSub, 1901 NewPH, CFP, "IV.S.next.", Incr); 1902 1903 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry)); 1904 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch)); 1905 1906 /* Remove cast operation */ 1907 ShadowUse->replaceAllUsesWith(NewPH); 1908 ShadowUse->eraseFromParent(); 1909 Changed = true; 1910 break; 1911 } 1912 } 1913 1914 /// If Cond has an operand that is an expression of an IV, set the IV user and 1915 /// stride information and return true, otherwise return false. 1916 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) { 1917 for (IVStrideUse &U : IU) 1918 if (U.getUser() == Cond) { 1919 // NOTE: we could handle setcc instructions with multiple uses here, but 1920 // InstCombine does it as well for simple uses, it's not clear that it 1921 // occurs enough in real life to handle. 1922 CondUse = &U; 1923 return true; 1924 } 1925 return false; 1926 } 1927 1928 /// Rewrite the loop's terminating condition if it uses a max computation. 1929 /// 1930 /// This is a narrow solution to a specific, but acute, problem. For loops 1931 /// like this: 1932 /// 1933 /// i = 0; 1934 /// do { 1935 /// p[i] = 0.0; 1936 /// } while (++i < n); 1937 /// 1938 /// the trip count isn't just 'n', because 'n' might not be positive. And 1939 /// unfortunately this can come up even for loops where the user didn't use 1940 /// a C do-while loop. For example, seemingly well-behaved top-test loops 1941 /// will commonly be lowered like this: 1942 // 1943 /// if (n > 0) { 1944 /// i = 0; 1945 /// do { 1946 /// p[i] = 0.0; 1947 /// } while (++i < n); 1948 /// } 1949 /// 1950 /// and then it's possible for subsequent optimization to obscure the if 1951 /// test in such a way that indvars can't find it. 1952 /// 1953 /// When indvars can't find the if test in loops like this, it creates a 1954 /// max expression, which allows it to give the loop a canonical 1955 /// induction variable: 1956 /// 1957 /// i = 0; 1958 /// max = n < 1 ? 1 : n; 1959 /// do { 1960 /// p[i] = 0.0; 1961 /// } while (++i != max); 1962 /// 1963 /// Canonical induction variables are necessary because the loop passes 1964 /// are designed around them. The most obvious example of this is the 1965 /// LoopInfo analysis, which doesn't remember trip count values. It 1966 /// expects to be able to rediscover the trip count each time it is 1967 /// needed, and it does this using a simple analysis that only succeeds if 1968 /// the loop has a canonical induction variable. 1969 /// 1970 /// However, when it comes time to generate code, the maximum operation 1971 /// can be quite costly, especially if it's inside of an outer loop. 1972 /// 1973 /// This function solves this problem by detecting this type of loop and 1974 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting 1975 /// the instructions for the maximum computation. 1976 /// 1977 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) { 1978 // Check that the loop matches the pattern we're looking for. 1979 if (Cond->getPredicate() != CmpInst::ICMP_EQ && 1980 Cond->getPredicate() != CmpInst::ICMP_NE) 1981 return Cond; 1982 1983 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1)); 1984 if (!Sel || !Sel->hasOneUse()) return Cond; 1985 1986 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 1987 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 1988 return Cond; 1989 const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1); 1990 1991 // Add one to the backedge-taken count to get the trip count. 1992 const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount); 1993 if (IterationCount != SE.getSCEV(Sel)) return Cond; 1994 1995 // Check for a max calculation that matches the pattern. There's no check 1996 // for ICMP_ULE here because the comparison would be with zero, which 1997 // isn't interesting. 1998 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1999 const SCEVNAryExpr *Max = nullptr; 2000 if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) { 2001 Pred = ICmpInst::ICMP_SLE; 2002 Max = S; 2003 } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) { 2004 Pred = ICmpInst::ICMP_SLT; 2005 Max = S; 2006 } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) { 2007 Pred = ICmpInst::ICMP_ULT; 2008 Max = U; 2009 } else { 2010 // No match; bail. 2011 return Cond; 2012 } 2013 2014 // To handle a max with more than two operands, this optimization would 2015 // require additional checking and setup. 2016 if (Max->getNumOperands() != 2) 2017 return Cond; 2018 2019 const SCEV *MaxLHS = Max->getOperand(0); 2020 const SCEV *MaxRHS = Max->getOperand(1); 2021 2022 // ScalarEvolution canonicalizes constants to the left. For < and >, look 2023 // for a comparison with 1. For <= and >=, a comparison with zero. 2024 if (!MaxLHS || 2025 (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One))) 2026 return Cond; 2027 2028 // Check the relevant induction variable for conformance to 2029 // the pattern. 2030 const SCEV *IV = SE.getSCEV(Cond->getOperand(0)); 2031 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV); 2032 if (!AR || !AR->isAffine() || 2033 AR->getStart() != One || 2034 AR->getStepRecurrence(SE) != One) 2035 return Cond; 2036 2037 assert(AR->getLoop() == L && 2038 "Loop condition operand is an addrec in a different loop!"); 2039 2040 // Check the right operand of the select, and remember it, as it will 2041 // be used in the new comparison instruction. 2042 Value *NewRHS = nullptr; 2043 if (ICmpInst::isTrueWhenEqual(Pred)) { 2044 // Look for n+1, and grab n. 2045 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1))) 2046 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2047 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2048 NewRHS = BO->getOperand(0); 2049 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2))) 2050 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2051 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2052 NewRHS = BO->getOperand(0); 2053 if (!NewRHS) 2054 return Cond; 2055 } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS) 2056 NewRHS = Sel->getOperand(1); 2057 else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS) 2058 NewRHS = Sel->getOperand(2); 2059 else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS)) 2060 NewRHS = SU->getValue(); 2061 else 2062 // Max doesn't match expected pattern. 2063 return Cond; 2064 2065 // Determine the new comparison opcode. It may be signed or unsigned, 2066 // and the original comparison may be either equality or inequality. 2067 if (Cond->getPredicate() == CmpInst::ICMP_EQ) 2068 Pred = CmpInst::getInversePredicate(Pred); 2069 2070 // Ok, everything looks ok to change the condition into an SLT or SGE and 2071 // delete the max calculation. 2072 ICmpInst *NewCond = 2073 new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp"); 2074 2075 // Delete the max calculation instructions. 2076 Cond->replaceAllUsesWith(NewCond); 2077 CondUse->setUser(NewCond); 2078 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0)); 2079 Cond->eraseFromParent(); 2080 Sel->eraseFromParent(); 2081 if (Cmp->use_empty()) 2082 Cmp->eraseFromParent(); 2083 return NewCond; 2084 } 2085 2086 /// Change loop terminating condition to use the postinc iv when possible. 2087 void 2088 LSRInstance::OptimizeLoopTermCond() { 2089 SmallPtrSet<Instruction *, 4> PostIncs; 2090 2091 BasicBlock *LatchBlock = L->getLoopLatch(); 2092 SmallVector<BasicBlock*, 8> ExitingBlocks; 2093 L->getExitingBlocks(ExitingBlocks); 2094 2095 for (BasicBlock *ExitingBlock : ExitingBlocks) { 2096 2097 // Get the terminating condition for the loop if possible. If we 2098 // can, we want to change it to use a post-incremented version of its 2099 // induction variable, to allow coalescing the live ranges for the IV into 2100 // one register value. 2101 2102 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 2103 if (!TermBr) 2104 continue; 2105 // FIXME: Overly conservative, termination condition could be an 'or' etc.. 2106 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition())) 2107 continue; 2108 2109 // Search IVUsesByStride to find Cond's IVUse if there is one. 2110 IVStrideUse *CondUse = nullptr; 2111 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition()); 2112 if (!FindIVUserForCond(Cond, CondUse)) 2113 continue; 2114 2115 // If the trip count is computed in terms of a max (due to ScalarEvolution 2116 // being unable to find a sufficient guard, for example), change the loop 2117 // comparison to use SLT or ULT instead of NE. 2118 // One consequence of doing this now is that it disrupts the count-down 2119 // optimization. That's not always a bad thing though, because in such 2120 // cases it may still be worthwhile to avoid a max. 2121 Cond = OptimizeMax(Cond, CondUse); 2122 2123 // If this exiting block dominates the latch block, it may also use 2124 // the post-inc value if it won't be shared with other uses. 2125 // Check for dominance. 2126 if (!DT.dominates(ExitingBlock, LatchBlock)) 2127 continue; 2128 2129 // Conservatively avoid trying to use the post-inc value in non-latch 2130 // exits if there may be pre-inc users in intervening blocks. 2131 if (LatchBlock != ExitingBlock) 2132 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) 2133 // Test if the use is reachable from the exiting block. This dominator 2134 // query is a conservative approximation of reachability. 2135 if (&*UI != CondUse && 2136 !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) { 2137 // Conservatively assume there may be reuse if the quotient of their 2138 // strides could be a legal scale. 2139 const SCEV *A = IU.getStride(*CondUse, L); 2140 const SCEV *B = IU.getStride(*UI, L); 2141 if (!A || !B) continue; 2142 if (SE.getTypeSizeInBits(A->getType()) != 2143 SE.getTypeSizeInBits(B->getType())) { 2144 if (SE.getTypeSizeInBits(A->getType()) > 2145 SE.getTypeSizeInBits(B->getType())) 2146 B = SE.getSignExtendExpr(B, A->getType()); 2147 else 2148 A = SE.getSignExtendExpr(A, B->getType()); 2149 } 2150 if (const SCEVConstant *D = 2151 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) { 2152 const ConstantInt *C = D->getValue(); 2153 // Stride of one or negative one can have reuse with non-addresses. 2154 if (C->isOne() || C->isAllOnesValue()) 2155 goto decline_post_inc; 2156 // Avoid weird situations. 2157 if (C->getValue().getMinSignedBits() >= 64 || 2158 C->getValue().isMinSignedValue()) 2159 goto decline_post_inc; 2160 // Check for possible scaled-address reuse. 2161 MemAccessTy AccessTy = getAccessType(UI->getUser()); 2162 int64_t Scale = C->getSExtValue(); 2163 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2164 /*BaseOffset=*/0, 2165 /*HasBaseReg=*/false, Scale, 2166 AccessTy.AddrSpace)) 2167 goto decline_post_inc; 2168 Scale = -Scale; 2169 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2170 /*BaseOffset=*/0, 2171 /*HasBaseReg=*/false, Scale, 2172 AccessTy.AddrSpace)) 2173 goto decline_post_inc; 2174 } 2175 } 2176 2177 DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: " 2178 << *Cond << '\n'); 2179 2180 // It's possible for the setcc instruction to be anywhere in the loop, and 2181 // possible for it to have multiple users. If it is not immediately before 2182 // the exiting block branch, move it. 2183 if (&*++BasicBlock::iterator(Cond) != TermBr) { 2184 if (Cond->hasOneUse()) { 2185 Cond->moveBefore(TermBr); 2186 } else { 2187 // Clone the terminating condition and insert into the loopend. 2188 ICmpInst *OldCond = Cond; 2189 Cond = cast<ICmpInst>(Cond->clone()); 2190 Cond->setName(L->getHeader()->getName() + ".termcond"); 2191 ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond); 2192 2193 // Clone the IVUse, as the old use still exists! 2194 CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace()); 2195 TermBr->replaceUsesOfWith(OldCond, Cond); 2196 } 2197 } 2198 2199 // If we get to here, we know that we can transform the setcc instruction to 2200 // use the post-incremented version of the IV, allowing us to coalesce the 2201 // live ranges for the IV correctly. 2202 CondUse->transformToPostInc(L); 2203 Changed = true; 2204 2205 PostIncs.insert(Cond); 2206 decline_post_inc:; 2207 } 2208 2209 // Determine an insertion point for the loop induction variable increment. It 2210 // must dominate all the post-inc comparisons we just set up, and it must 2211 // dominate the loop latch edge. 2212 IVIncInsertPos = L->getLoopLatch()->getTerminator(); 2213 for (Instruction *Inst : PostIncs) { 2214 BasicBlock *BB = 2215 DT.findNearestCommonDominator(IVIncInsertPos->getParent(), 2216 Inst->getParent()); 2217 if (BB == Inst->getParent()) 2218 IVIncInsertPos = Inst; 2219 else if (BB != IVIncInsertPos->getParent()) 2220 IVIncInsertPos = BB->getTerminator(); 2221 } 2222 } 2223 2224 /// Determine if the given use can accommodate a fixup at the given offset and 2225 /// other details. If so, update the use and return true. 2226 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, 2227 bool HasBaseReg, LSRUse::KindType Kind, 2228 MemAccessTy AccessTy) { 2229 int64_t NewMinOffset = LU.MinOffset; 2230 int64_t NewMaxOffset = LU.MaxOffset; 2231 MemAccessTy NewAccessTy = AccessTy; 2232 2233 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to 2234 // something conservative, however this can pessimize in the case that one of 2235 // the uses will have all its uses outside the loop, for example. 2236 if (LU.Kind != Kind) 2237 return false; 2238 2239 // Check for a mismatched access type, and fall back conservatively as needed. 2240 // TODO: Be less conservative when the type is similar and can use the same 2241 // addressing modes. 2242 if (Kind == LSRUse::Address) { 2243 if (AccessTy != LU.AccessTy) 2244 NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext()); 2245 } 2246 2247 // Conservatively assume HasBaseReg is true for now. 2248 if (NewOffset < LU.MinOffset) { 2249 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2250 LU.MaxOffset - NewOffset, HasBaseReg)) 2251 return false; 2252 NewMinOffset = NewOffset; 2253 } else if (NewOffset > LU.MaxOffset) { 2254 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2255 NewOffset - LU.MinOffset, HasBaseReg)) 2256 return false; 2257 NewMaxOffset = NewOffset; 2258 } 2259 2260 // Update the use. 2261 LU.MinOffset = NewMinOffset; 2262 LU.MaxOffset = NewMaxOffset; 2263 LU.AccessTy = NewAccessTy; 2264 if (NewOffset != LU.Offsets.back()) 2265 LU.Offsets.push_back(NewOffset); 2266 return true; 2267 } 2268 2269 /// Return an LSRUse index and an offset value for a fixup which needs the given 2270 /// expression, with the given kind and optional access type. Either reuse an 2271 /// existing use or create a new one, as needed. 2272 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr, 2273 LSRUse::KindType Kind, 2274 MemAccessTy AccessTy) { 2275 const SCEV *Copy = Expr; 2276 int64_t Offset = ExtractImmediate(Expr, SE); 2277 2278 // Basic uses can't accept any offset, for example. 2279 if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr, 2280 Offset, /*HasBaseReg=*/ true)) { 2281 Expr = Copy; 2282 Offset = 0; 2283 } 2284 2285 std::pair<UseMapTy::iterator, bool> P = 2286 UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0)); 2287 if (!P.second) { 2288 // A use already existed with this base. 2289 size_t LUIdx = P.first->second; 2290 LSRUse &LU = Uses[LUIdx]; 2291 if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy)) 2292 // Reuse this use. 2293 return std::make_pair(LUIdx, Offset); 2294 } 2295 2296 // Create a new use. 2297 size_t LUIdx = Uses.size(); 2298 P.first->second = LUIdx; 2299 Uses.push_back(LSRUse(Kind, AccessTy)); 2300 LSRUse &LU = Uses[LUIdx]; 2301 2302 // We don't need to track redundant offsets, but we don't need to go out 2303 // of our way here to avoid them. 2304 if (LU.Offsets.empty() || Offset != LU.Offsets.back()) 2305 LU.Offsets.push_back(Offset); 2306 2307 LU.MinOffset = Offset; 2308 LU.MaxOffset = Offset; 2309 return std::make_pair(LUIdx, Offset); 2310 } 2311 2312 /// Delete the given use from the Uses list. 2313 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) { 2314 if (&LU != &Uses.back()) 2315 std::swap(LU, Uses.back()); 2316 Uses.pop_back(); 2317 2318 // Update RegUses. 2319 RegUses.swapAndDropUse(LUIdx, Uses.size()); 2320 } 2321 2322 /// Look for a use distinct from OrigLU which is has a formula that has the same 2323 /// registers as the given formula. 2324 LSRUse * 2325 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF, 2326 const LSRUse &OrigLU) { 2327 // Search all uses for the formula. This could be more clever. 2328 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 2329 LSRUse &LU = Uses[LUIdx]; 2330 // Check whether this use is close enough to OrigLU, to see whether it's 2331 // worthwhile looking through its formulae. 2332 // Ignore ICmpZero uses because they may contain formulae generated by 2333 // GenerateICmpZeroScales, in which case adding fixup offsets may 2334 // be invalid. 2335 if (&LU != &OrigLU && 2336 LU.Kind != LSRUse::ICmpZero && 2337 LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy && 2338 LU.WidestFixupType == OrigLU.WidestFixupType && 2339 LU.HasFormulaWithSameRegs(OrigF)) { 2340 // Scan through this use's formulae. 2341 for (const Formula &F : LU.Formulae) { 2342 // Check to see if this formula has the same registers and symbols 2343 // as OrigF. 2344 if (F.BaseRegs == OrigF.BaseRegs && 2345 F.ScaledReg == OrigF.ScaledReg && 2346 F.BaseGV == OrigF.BaseGV && 2347 F.Scale == OrigF.Scale && 2348 F.UnfoldedOffset == OrigF.UnfoldedOffset) { 2349 if (F.BaseOffset == 0) 2350 return &LU; 2351 // This is the formula where all the registers and symbols matched; 2352 // there aren't going to be any others. Since we declined it, we 2353 // can skip the rest of the formulae and proceed to the next LSRUse. 2354 break; 2355 } 2356 } 2357 } 2358 } 2359 2360 // Nothing looked good. 2361 return nullptr; 2362 } 2363 2364 void LSRInstance::CollectInterestingTypesAndFactors() { 2365 SmallSetVector<const SCEV *, 4> Strides; 2366 2367 // Collect interesting types and strides. 2368 SmallVector<const SCEV *, 4> Worklist; 2369 for (const IVStrideUse &U : IU) { 2370 const SCEV *Expr = IU.getExpr(U); 2371 2372 // Collect interesting types. 2373 Types.insert(SE.getEffectiveSCEVType(Expr->getType())); 2374 2375 // Add strides for mentioned loops. 2376 Worklist.push_back(Expr); 2377 do { 2378 const SCEV *S = Worklist.pop_back_val(); 2379 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2380 if (AR->getLoop() == L) 2381 Strides.insert(AR->getStepRecurrence(SE)); 2382 Worklist.push_back(AR->getStart()); 2383 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2384 Worklist.append(Add->op_begin(), Add->op_end()); 2385 } 2386 } while (!Worklist.empty()); 2387 } 2388 2389 // Compute interesting factors from the set of interesting strides. 2390 for (SmallSetVector<const SCEV *, 4>::const_iterator 2391 I = Strides.begin(), E = Strides.end(); I != E; ++I) 2392 for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter = 2393 std::next(I); NewStrideIter != E; ++NewStrideIter) { 2394 const SCEV *OldStride = *I; 2395 const SCEV *NewStride = *NewStrideIter; 2396 2397 if (SE.getTypeSizeInBits(OldStride->getType()) != 2398 SE.getTypeSizeInBits(NewStride->getType())) { 2399 if (SE.getTypeSizeInBits(OldStride->getType()) > 2400 SE.getTypeSizeInBits(NewStride->getType())) 2401 NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType()); 2402 else 2403 OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType()); 2404 } 2405 if (const SCEVConstant *Factor = 2406 dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride, 2407 SE, true))) { 2408 if (Factor->getAPInt().getMinSignedBits() <= 64) 2409 Factors.insert(Factor->getAPInt().getSExtValue()); 2410 } else if (const SCEVConstant *Factor = 2411 dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride, 2412 NewStride, 2413 SE, true))) { 2414 if (Factor->getAPInt().getMinSignedBits() <= 64) 2415 Factors.insert(Factor->getAPInt().getSExtValue()); 2416 } 2417 } 2418 2419 // If all uses use the same type, don't bother looking for truncation-based 2420 // reuse. 2421 if (Types.size() == 1) 2422 Types.clear(); 2423 2424 DEBUG(print_factors_and_types(dbgs())); 2425 } 2426 2427 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in 2428 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to 2429 /// IVStrideUses, we could partially skip this. 2430 static User::op_iterator 2431 findIVOperand(User::op_iterator OI, User::op_iterator OE, 2432 Loop *L, ScalarEvolution &SE) { 2433 for(; OI != OE; ++OI) { 2434 if (Instruction *Oper = dyn_cast<Instruction>(*OI)) { 2435 if (!SE.isSCEVable(Oper->getType())) 2436 continue; 2437 2438 if (const SCEVAddRecExpr *AR = 2439 dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) { 2440 if (AR->getLoop() == L) 2441 break; 2442 } 2443 } 2444 } 2445 return OI; 2446 } 2447 2448 /// IVChain logic must consistenctly peek base TruncInst operands, so wrap it in 2449 /// a convenient helper. 2450 static Value *getWideOperand(Value *Oper) { 2451 if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper)) 2452 return Trunc->getOperand(0); 2453 return Oper; 2454 } 2455 2456 /// Return true if we allow an IV chain to include both types. 2457 static bool isCompatibleIVType(Value *LVal, Value *RVal) { 2458 Type *LType = LVal->getType(); 2459 Type *RType = RVal->getType(); 2460 return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy()); 2461 } 2462 2463 /// Return an approximation of this SCEV expression's "base", or NULL for any 2464 /// constant. Returning the expression itself is conservative. Returning a 2465 /// deeper subexpression is more precise and valid as long as it isn't less 2466 /// complex than another subexpression. For expressions involving multiple 2467 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids 2468 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i], 2469 /// IVInc==b-a. 2470 /// 2471 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost 2472 /// SCEVUnknown, we simply return the rightmost SCEV operand. 2473 static const SCEV *getExprBase(const SCEV *S) { 2474 switch (S->getSCEVType()) { 2475 default: // uncluding scUnknown. 2476 return S; 2477 case scConstant: 2478 return nullptr; 2479 case scTruncate: 2480 return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand()); 2481 case scZeroExtend: 2482 return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand()); 2483 case scSignExtend: 2484 return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand()); 2485 case scAddExpr: { 2486 // Skip over scaled operands (scMulExpr) to follow add operands as long as 2487 // there's nothing more complex. 2488 // FIXME: not sure if we want to recognize negation. 2489 const SCEVAddExpr *Add = cast<SCEVAddExpr>(S); 2490 for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()), 2491 E(Add->op_begin()); I != E; ++I) { 2492 const SCEV *SubExpr = *I; 2493 if (SubExpr->getSCEVType() == scAddExpr) 2494 return getExprBase(SubExpr); 2495 2496 if (SubExpr->getSCEVType() != scMulExpr) 2497 return SubExpr; 2498 } 2499 return S; // all operands are scaled, be conservative. 2500 } 2501 case scAddRecExpr: 2502 return getExprBase(cast<SCEVAddRecExpr>(S)->getStart()); 2503 } 2504 } 2505 2506 /// Return true if the chain increment is profitable to expand into a loop 2507 /// invariant value, which may require its own register. A profitable chain 2508 /// increment will be an offset relative to the same base. We allow such offsets 2509 /// to potentially be used as chain increment as long as it's not obviously 2510 /// expensive to expand using real instructions. 2511 bool IVChain::isProfitableIncrement(const SCEV *OperExpr, 2512 const SCEV *IncExpr, 2513 ScalarEvolution &SE) { 2514 // Aggressively form chains when -stress-ivchain. 2515 if (StressIVChain) 2516 return true; 2517 2518 // Do not replace a constant offset from IV head with a nonconstant IV 2519 // increment. 2520 if (!isa<SCEVConstant>(IncExpr)) { 2521 const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand)); 2522 if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr))) 2523 return 0; 2524 } 2525 2526 SmallPtrSet<const SCEV*, 8> Processed; 2527 return !isHighCostExpansion(IncExpr, Processed, SE); 2528 } 2529 2530 /// Return true if the number of registers needed for the chain is estimated to 2531 /// be less than the number required for the individual IV users. First prohibit 2532 /// any IV users that keep the IV live across increments (the Users set should 2533 /// be empty). Next count the number and type of increments in the chain. 2534 /// 2535 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't 2536 /// effectively use postinc addressing modes. Only consider it profitable it the 2537 /// increments can be computed in fewer registers when chained. 2538 /// 2539 /// TODO: Consider IVInc free if it's already used in another chains. 2540 static bool 2541 isProfitableChain(IVChain &Chain, SmallPtrSetImpl<Instruction*> &Users, 2542 ScalarEvolution &SE, const TargetTransformInfo &TTI) { 2543 if (StressIVChain) 2544 return true; 2545 2546 if (!Chain.hasIncs()) 2547 return false; 2548 2549 if (!Users.empty()) { 2550 DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n"; 2551 for (Instruction *Inst : Users) { 2552 dbgs() << " " << *Inst << "\n"; 2553 }); 2554 return false; 2555 } 2556 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 2557 2558 // The chain itself may require a register, so intialize cost to 1. 2559 int cost = 1; 2560 2561 // A complete chain likely eliminates the need for keeping the original IV in 2562 // a register. LSR does not currently know how to form a complete chain unless 2563 // the header phi already exists. 2564 if (isa<PHINode>(Chain.tailUserInst()) 2565 && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) { 2566 --cost; 2567 } 2568 const SCEV *LastIncExpr = nullptr; 2569 unsigned NumConstIncrements = 0; 2570 unsigned NumVarIncrements = 0; 2571 unsigned NumReusedIncrements = 0; 2572 for (const IVInc &Inc : Chain) { 2573 if (Inc.IncExpr->isZero()) 2574 continue; 2575 2576 // Incrementing by zero or some constant is neutral. We assume constants can 2577 // be folded into an addressing mode or an add's immediate operand. 2578 if (isa<SCEVConstant>(Inc.IncExpr)) { 2579 ++NumConstIncrements; 2580 continue; 2581 } 2582 2583 if (Inc.IncExpr == LastIncExpr) 2584 ++NumReusedIncrements; 2585 else 2586 ++NumVarIncrements; 2587 2588 LastIncExpr = Inc.IncExpr; 2589 } 2590 // An IV chain with a single increment is handled by LSR's postinc 2591 // uses. However, a chain with multiple increments requires keeping the IV's 2592 // value live longer than it needs to be if chained. 2593 if (NumConstIncrements > 1) 2594 --cost; 2595 2596 // Materializing increment expressions in the preheader that didn't exist in 2597 // the original code may cost a register. For example, sign-extended array 2598 // indices can produce ridiculous increments like this: 2599 // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64))) 2600 cost += NumVarIncrements; 2601 2602 // Reusing variable increments likely saves a register to hold the multiple of 2603 // the stride. 2604 cost -= NumReusedIncrements; 2605 2606 DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost 2607 << "\n"); 2608 2609 return cost < 0; 2610 } 2611 2612 /// Add this IV user to an existing chain or make it the head of a new chain. 2613 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper, 2614 SmallVectorImpl<ChainUsers> &ChainUsersVec) { 2615 // When IVs are used as types of varying widths, they are generally converted 2616 // to a wider type with some uses remaining narrow under a (free) trunc. 2617 Value *const NextIV = getWideOperand(IVOper); 2618 const SCEV *const OperExpr = SE.getSCEV(NextIV); 2619 const SCEV *const OperExprBase = getExprBase(OperExpr); 2620 2621 // Visit all existing chains. Check if its IVOper can be computed as a 2622 // profitable loop invariant increment from the last link in the Chain. 2623 unsigned ChainIdx = 0, NChains = IVChainVec.size(); 2624 const SCEV *LastIncExpr = nullptr; 2625 for (; ChainIdx < NChains; ++ChainIdx) { 2626 IVChain &Chain = IVChainVec[ChainIdx]; 2627 2628 // Prune the solution space aggressively by checking that both IV operands 2629 // are expressions that operate on the same unscaled SCEVUnknown. This 2630 // "base" will be canceled by the subsequent getMinusSCEV call. Checking 2631 // first avoids creating extra SCEV expressions. 2632 if (!StressIVChain && Chain.ExprBase != OperExprBase) 2633 continue; 2634 2635 Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand); 2636 if (!isCompatibleIVType(PrevIV, NextIV)) 2637 continue; 2638 2639 // A phi node terminates a chain. 2640 if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst())) 2641 continue; 2642 2643 // The increment must be loop-invariant so it can be kept in a register. 2644 const SCEV *PrevExpr = SE.getSCEV(PrevIV); 2645 const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr); 2646 if (!SE.isLoopInvariant(IncExpr, L)) 2647 continue; 2648 2649 if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) { 2650 LastIncExpr = IncExpr; 2651 break; 2652 } 2653 } 2654 // If we haven't found a chain, create a new one, unless we hit the max. Don't 2655 // bother for phi nodes, because they must be last in the chain. 2656 if (ChainIdx == NChains) { 2657 if (isa<PHINode>(UserInst)) 2658 return; 2659 if (NChains >= MaxChains && !StressIVChain) { 2660 DEBUG(dbgs() << "IV Chain Limit\n"); 2661 return; 2662 } 2663 LastIncExpr = OperExpr; 2664 // IVUsers may have skipped over sign/zero extensions. We don't currently 2665 // attempt to form chains involving extensions unless they can be hoisted 2666 // into this loop's AddRec. 2667 if (!isa<SCEVAddRecExpr>(LastIncExpr)) 2668 return; 2669 ++NChains; 2670 IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr), 2671 OperExprBase)); 2672 ChainUsersVec.resize(NChains); 2673 DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst 2674 << ") IV=" << *LastIncExpr << "\n"); 2675 } else { 2676 DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Inc: (" << *UserInst 2677 << ") IV+" << *LastIncExpr << "\n"); 2678 // Add this IV user to the end of the chain. 2679 IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr)); 2680 } 2681 IVChain &Chain = IVChainVec[ChainIdx]; 2682 2683 SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers; 2684 // This chain's NearUsers become FarUsers. 2685 if (!LastIncExpr->isZero()) { 2686 ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(), 2687 NearUsers.end()); 2688 NearUsers.clear(); 2689 } 2690 2691 // All other uses of IVOperand become near uses of the chain. 2692 // We currently ignore intermediate values within SCEV expressions, assuming 2693 // they will eventually be used be the current chain, or can be computed 2694 // from one of the chain increments. To be more precise we could 2695 // transitively follow its user and only add leaf IV users to the set. 2696 for (User *U : IVOper->users()) { 2697 Instruction *OtherUse = dyn_cast<Instruction>(U); 2698 if (!OtherUse) 2699 continue; 2700 // Uses in the chain will no longer be uses if the chain is formed. 2701 // Include the head of the chain in this iteration (not Chain.begin()). 2702 IVChain::const_iterator IncIter = Chain.Incs.begin(); 2703 IVChain::const_iterator IncEnd = Chain.Incs.end(); 2704 for( ; IncIter != IncEnd; ++IncIter) { 2705 if (IncIter->UserInst == OtherUse) 2706 break; 2707 } 2708 if (IncIter != IncEnd) 2709 continue; 2710 2711 if (SE.isSCEVable(OtherUse->getType()) 2712 && !isa<SCEVUnknown>(SE.getSCEV(OtherUse)) 2713 && IU.isIVUserOrOperand(OtherUse)) { 2714 continue; 2715 } 2716 NearUsers.insert(OtherUse); 2717 } 2718 2719 // Since this user is part of the chain, it's no longer considered a use 2720 // of the chain. 2721 ChainUsersVec[ChainIdx].FarUsers.erase(UserInst); 2722 } 2723 2724 /// Populate the vector of Chains. 2725 /// 2726 /// This decreases ILP at the architecture level. Targets with ample registers, 2727 /// multiple memory ports, and no register renaming probably don't want 2728 /// this. However, such targets should probably disable LSR altogether. 2729 /// 2730 /// The job of LSR is to make a reasonable choice of induction variables across 2731 /// the loop. Subsequent passes can easily "unchain" computation exposing more 2732 /// ILP *within the loop* if the target wants it. 2733 /// 2734 /// Finding the best IV chain is potentially a scheduling problem. Since LSR 2735 /// will not reorder memory operations, it will recognize this as a chain, but 2736 /// will generate redundant IV increments. Ideally this would be corrected later 2737 /// by a smart scheduler: 2738 /// = A[i] 2739 /// = A[i+x] 2740 /// A[i] = 2741 /// A[i+x] = 2742 /// 2743 /// TODO: Walk the entire domtree within this loop, not just the path to the 2744 /// loop latch. This will discover chains on side paths, but requires 2745 /// maintaining multiple copies of the Chains state. 2746 void LSRInstance::CollectChains() { 2747 DEBUG(dbgs() << "Collecting IV Chains.\n"); 2748 SmallVector<ChainUsers, 8> ChainUsersVec; 2749 2750 SmallVector<BasicBlock *,8> LatchPath; 2751 BasicBlock *LoopHeader = L->getHeader(); 2752 for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch()); 2753 Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) { 2754 LatchPath.push_back(Rung->getBlock()); 2755 } 2756 LatchPath.push_back(LoopHeader); 2757 2758 // Walk the instruction stream from the loop header to the loop latch. 2759 for (SmallVectorImpl<BasicBlock *>::reverse_iterator 2760 BBIter = LatchPath.rbegin(), BBEnd = LatchPath.rend(); 2761 BBIter != BBEnd; ++BBIter) { 2762 for (BasicBlock::iterator I = (*BBIter)->begin(), E = (*BBIter)->end(); 2763 I != E; ++I) { 2764 // Skip instructions that weren't seen by IVUsers analysis. 2765 if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&*I)) 2766 continue; 2767 2768 // Ignore users that are part of a SCEV expression. This way we only 2769 // consider leaf IV Users. This effectively rediscovers a portion of 2770 // IVUsers analysis but in program order this time. 2771 if (SE.isSCEVable(I->getType()) && !isa<SCEVUnknown>(SE.getSCEV(&*I))) 2772 continue; 2773 2774 // Remove this instruction from any NearUsers set it may be in. 2775 for (unsigned ChainIdx = 0, NChains = IVChainVec.size(); 2776 ChainIdx < NChains; ++ChainIdx) { 2777 ChainUsersVec[ChainIdx].NearUsers.erase(&*I); 2778 } 2779 // Search for operands that can be chained. 2780 SmallPtrSet<Instruction*, 4> UniqueOperands; 2781 User::op_iterator IVOpEnd = I->op_end(); 2782 User::op_iterator IVOpIter = findIVOperand(I->op_begin(), IVOpEnd, L, SE); 2783 while (IVOpIter != IVOpEnd) { 2784 Instruction *IVOpInst = cast<Instruction>(*IVOpIter); 2785 if (UniqueOperands.insert(IVOpInst).second) 2786 ChainInstruction(&*I, IVOpInst, ChainUsersVec); 2787 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 2788 } 2789 } // Continue walking down the instructions. 2790 } // Continue walking down the domtree. 2791 // Visit phi backedges to determine if the chain can generate the IV postinc. 2792 for (BasicBlock::iterator I = L->getHeader()->begin(); 2793 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 2794 if (!SE.isSCEVable(PN->getType())) 2795 continue; 2796 2797 Instruction *IncV = 2798 dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch())); 2799 if (IncV) 2800 ChainInstruction(PN, IncV, ChainUsersVec); 2801 } 2802 // Remove any unprofitable chains. 2803 unsigned ChainIdx = 0; 2804 for (unsigned UsersIdx = 0, NChains = IVChainVec.size(); 2805 UsersIdx < NChains; ++UsersIdx) { 2806 if (!isProfitableChain(IVChainVec[UsersIdx], 2807 ChainUsersVec[UsersIdx].FarUsers, SE, TTI)) 2808 continue; 2809 // Preserve the chain at UsesIdx. 2810 if (ChainIdx != UsersIdx) 2811 IVChainVec[ChainIdx] = IVChainVec[UsersIdx]; 2812 FinalizeChain(IVChainVec[ChainIdx]); 2813 ++ChainIdx; 2814 } 2815 IVChainVec.resize(ChainIdx); 2816 } 2817 2818 void LSRInstance::FinalizeChain(IVChain &Chain) { 2819 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 2820 DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n"); 2821 2822 for (const IVInc &Inc : Chain) { 2823 DEBUG(dbgs() << " Inc: " << Inc.UserInst << "\n"); 2824 auto UseI = std::find(Inc.UserInst->op_begin(), Inc.UserInst->op_end(), 2825 Inc.IVOperand); 2826 assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand"); 2827 IVIncSet.insert(UseI); 2828 } 2829 } 2830 2831 /// Return true if the IVInc can be folded into an addressing mode. 2832 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst, 2833 Value *Operand, const TargetTransformInfo &TTI) { 2834 const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr); 2835 if (!IncConst || !isAddressUse(UserInst, Operand)) 2836 return false; 2837 2838 if (IncConst->getAPInt().getMinSignedBits() > 64) 2839 return false; 2840 2841 MemAccessTy AccessTy = getAccessType(UserInst); 2842 int64_t IncOffset = IncConst->getValue()->getSExtValue(); 2843 if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr, 2844 IncOffset, /*HaseBaseReg=*/false)) 2845 return false; 2846 2847 return true; 2848 } 2849 2850 /// Generate an add or subtract for each IVInc in a chain to materialize the IV 2851 /// user's operand from the previous IV user's operand. 2852 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 2853 SmallVectorImpl<WeakVH> &DeadInsts) { 2854 // Find the new IVOperand for the head of the chain. It may have been replaced 2855 // by LSR. 2856 const IVInc &Head = Chain.Incs[0]; 2857 User::op_iterator IVOpEnd = Head.UserInst->op_end(); 2858 // findIVOperand returns IVOpEnd if it can no longer find a valid IV user. 2859 User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(), 2860 IVOpEnd, L, SE); 2861 Value *IVSrc = nullptr; 2862 while (IVOpIter != IVOpEnd) { 2863 IVSrc = getWideOperand(*IVOpIter); 2864 2865 // If this operand computes the expression that the chain needs, we may use 2866 // it. (Check this after setting IVSrc which is used below.) 2867 // 2868 // Note that if Head.IncExpr is wider than IVSrc, then this phi is too 2869 // narrow for the chain, so we can no longer use it. We do allow using a 2870 // wider phi, assuming the LSR checked for free truncation. In that case we 2871 // should already have a truncate on this operand such that 2872 // getSCEV(IVSrc) == IncExpr. 2873 if (SE.getSCEV(*IVOpIter) == Head.IncExpr 2874 || SE.getSCEV(IVSrc) == Head.IncExpr) { 2875 break; 2876 } 2877 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 2878 } 2879 if (IVOpIter == IVOpEnd) { 2880 // Gracefully give up on this chain. 2881 DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n"); 2882 return; 2883 } 2884 2885 DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n"); 2886 Type *IVTy = IVSrc->getType(); 2887 Type *IntTy = SE.getEffectiveSCEVType(IVTy); 2888 const SCEV *LeftOverExpr = nullptr; 2889 for (const IVInc &Inc : Chain) { 2890 Instruction *InsertPt = Inc.UserInst; 2891 if (isa<PHINode>(InsertPt)) 2892 InsertPt = L->getLoopLatch()->getTerminator(); 2893 2894 // IVOper will replace the current IV User's operand. IVSrc is the IV 2895 // value currently held in a register. 2896 Value *IVOper = IVSrc; 2897 if (!Inc.IncExpr->isZero()) { 2898 // IncExpr was the result of subtraction of two narrow values, so must 2899 // be signed. 2900 const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy); 2901 LeftOverExpr = LeftOverExpr ? 2902 SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr; 2903 } 2904 if (LeftOverExpr && !LeftOverExpr->isZero()) { 2905 // Expand the IV increment. 2906 Rewriter.clearPostInc(); 2907 Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt); 2908 const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc), 2909 SE.getUnknown(IncV)); 2910 IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt); 2911 2912 // If an IV increment can't be folded, use it as the next IV value. 2913 if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) { 2914 assert(IVTy == IVOper->getType() && "inconsistent IV increment type"); 2915 IVSrc = IVOper; 2916 LeftOverExpr = nullptr; 2917 } 2918 } 2919 Type *OperTy = Inc.IVOperand->getType(); 2920 if (IVTy != OperTy) { 2921 assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) && 2922 "cannot extend a chained IV"); 2923 IRBuilder<> Builder(InsertPt); 2924 IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain"); 2925 } 2926 Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper); 2927 DeadInsts.emplace_back(Inc.IVOperand); 2928 } 2929 // If LSR created a new, wider phi, we may also replace its postinc. We only 2930 // do this if we also found a wide value for the head of the chain. 2931 if (isa<PHINode>(Chain.tailUserInst())) { 2932 for (BasicBlock::iterator I = L->getHeader()->begin(); 2933 PHINode *Phi = dyn_cast<PHINode>(I); ++I) { 2934 if (!isCompatibleIVType(Phi, IVSrc)) 2935 continue; 2936 Instruction *PostIncV = dyn_cast<Instruction>( 2937 Phi->getIncomingValueForBlock(L->getLoopLatch())); 2938 if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc))) 2939 continue; 2940 Value *IVOper = IVSrc; 2941 Type *PostIncTy = PostIncV->getType(); 2942 if (IVTy != PostIncTy) { 2943 assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types"); 2944 IRBuilder<> Builder(L->getLoopLatch()->getTerminator()); 2945 Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc()); 2946 IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain"); 2947 } 2948 Phi->replaceUsesOfWith(PostIncV, IVOper); 2949 DeadInsts.emplace_back(PostIncV); 2950 } 2951 } 2952 } 2953 2954 void LSRInstance::CollectFixupsAndInitialFormulae() { 2955 for (const IVStrideUse &U : IU) { 2956 Instruction *UserInst = U.getUser(); 2957 // Skip IV users that are part of profitable IV Chains. 2958 User::op_iterator UseI = std::find(UserInst->op_begin(), UserInst->op_end(), 2959 U.getOperandValToReplace()); 2960 assert(UseI != UserInst->op_end() && "cannot find IV operand"); 2961 if (IVIncSet.count(UseI)) 2962 continue; 2963 2964 // Record the uses. 2965 LSRFixup &LF = getNewFixup(); 2966 LF.UserInst = UserInst; 2967 LF.OperandValToReplace = U.getOperandValToReplace(); 2968 LF.PostIncLoops = U.getPostIncLoops(); 2969 2970 LSRUse::KindType Kind = LSRUse::Basic; 2971 MemAccessTy AccessTy; 2972 if (isAddressUse(LF.UserInst, LF.OperandValToReplace)) { 2973 Kind = LSRUse::Address; 2974 AccessTy = getAccessType(LF.UserInst); 2975 } 2976 2977 const SCEV *S = IU.getExpr(U); 2978 2979 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as 2980 // (N - i == 0), and this allows (N - i) to be the expression that we work 2981 // with rather than just N or i, so we can consider the register 2982 // requirements for both N and i at the same time. Limiting this code to 2983 // equality icmps is not a problem because all interesting loops use 2984 // equality icmps, thanks to IndVarSimplify. 2985 if (ICmpInst *CI = dyn_cast<ICmpInst>(LF.UserInst)) 2986 if (CI->isEquality()) { 2987 // Swap the operands if needed to put the OperandValToReplace on the 2988 // left, for consistency. 2989 Value *NV = CI->getOperand(1); 2990 if (NV == LF.OperandValToReplace) { 2991 CI->setOperand(1, CI->getOperand(0)); 2992 CI->setOperand(0, NV); 2993 NV = CI->getOperand(1); 2994 Changed = true; 2995 } 2996 2997 // x == y --> x - y == 0 2998 const SCEV *N = SE.getSCEV(NV); 2999 if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) { 3000 // S is normalized, so normalize N before folding it into S 3001 // to keep the result normalized. 3002 N = TransformForPostIncUse(Normalize, N, CI, nullptr, 3003 LF.PostIncLoops, SE, DT); 3004 Kind = LSRUse::ICmpZero; 3005 S = SE.getMinusSCEV(N, S); 3006 } 3007 3008 // -1 and the negations of all interesting strides (except the negation 3009 // of -1) are now also interesting. 3010 for (size_t i = 0, e = Factors.size(); i != e; ++i) 3011 if (Factors[i] != -1) 3012 Factors.insert(-(uint64_t)Factors[i]); 3013 Factors.insert(-1); 3014 } 3015 3016 // Set up the initial formula for this use. 3017 std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy); 3018 LF.LUIdx = P.first; 3019 LF.Offset = P.second; 3020 LSRUse &LU = Uses[LF.LUIdx]; 3021 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3022 if (!LU.WidestFixupType || 3023 SE.getTypeSizeInBits(LU.WidestFixupType) < 3024 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3025 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3026 3027 // If this is the first use of this LSRUse, give it a formula. 3028 if (LU.Formulae.empty()) { 3029 InsertInitialFormula(S, LU, LF.LUIdx); 3030 CountRegisters(LU.Formulae.back(), LF.LUIdx); 3031 } 3032 } 3033 3034 DEBUG(print_fixups(dbgs())); 3035 } 3036 3037 /// Insert a formula for the given expression into the given use, separating out 3038 /// loop-variant portions from loop-invariant and loop-computable portions. 3039 void 3040 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) { 3041 // Mark uses whose expressions cannot be expanded. 3042 if (!isSafeToExpand(S, SE)) 3043 LU.RigidFormula = true; 3044 3045 Formula F; 3046 F.initialMatch(S, L, SE); 3047 bool Inserted = InsertFormula(LU, LUIdx, F); 3048 assert(Inserted && "Initial formula already exists!"); (void)Inserted; 3049 } 3050 3051 /// Insert a simple single-register formula for the given expression into the 3052 /// given use. 3053 void 3054 LSRInstance::InsertSupplementalFormula(const SCEV *S, 3055 LSRUse &LU, size_t LUIdx) { 3056 Formula F; 3057 F.BaseRegs.push_back(S); 3058 F.HasBaseReg = true; 3059 bool Inserted = InsertFormula(LU, LUIdx, F); 3060 assert(Inserted && "Supplemental formula already exists!"); (void)Inserted; 3061 } 3062 3063 /// Note which registers are used by the given formula, updating RegUses. 3064 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) { 3065 if (F.ScaledReg) 3066 RegUses.countRegister(F.ScaledReg, LUIdx); 3067 for (const SCEV *BaseReg : F.BaseRegs) 3068 RegUses.countRegister(BaseReg, LUIdx); 3069 } 3070 3071 /// If the given formula has not yet been inserted, add it to the list, and 3072 /// return true. Return false otherwise. 3073 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) { 3074 // Do not insert formula that we will not be able to expand. 3075 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) && 3076 "Formula is illegal"); 3077 if (!LU.InsertFormula(F)) 3078 return false; 3079 3080 CountRegisters(F, LUIdx); 3081 return true; 3082 } 3083 3084 /// Check for other uses of loop-invariant values which we're tracking. These 3085 /// other uses will pin these values in registers, making them less profitable 3086 /// for elimination. 3087 /// TODO: This currently misses non-constant addrec step registers. 3088 /// TODO: Should this give more weight to users inside the loop? 3089 void 3090 LSRInstance::CollectLoopInvariantFixupsAndFormulae() { 3091 SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end()); 3092 SmallPtrSet<const SCEV *, 32> Visited; 3093 3094 while (!Worklist.empty()) { 3095 const SCEV *S = Worklist.pop_back_val(); 3096 3097 // Don't process the same SCEV twice 3098 if (!Visited.insert(S).second) 3099 continue; 3100 3101 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) 3102 Worklist.append(N->op_begin(), N->op_end()); 3103 else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) 3104 Worklist.push_back(C->getOperand()); 3105 else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 3106 Worklist.push_back(D->getLHS()); 3107 Worklist.push_back(D->getRHS()); 3108 } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) { 3109 const Value *V = US->getValue(); 3110 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 3111 // Look for instructions defined outside the loop. 3112 if (L->contains(Inst)) continue; 3113 } else if (isa<UndefValue>(V)) 3114 // Undef doesn't have a live range, so it doesn't matter. 3115 continue; 3116 for (const Use &U : V->uses()) { 3117 const Instruction *UserInst = dyn_cast<Instruction>(U.getUser()); 3118 // Ignore non-instructions. 3119 if (!UserInst) 3120 continue; 3121 // Ignore instructions in other functions (as can happen with 3122 // Constants). 3123 if (UserInst->getParent()->getParent() != L->getHeader()->getParent()) 3124 continue; 3125 // Ignore instructions not dominated by the loop. 3126 const BasicBlock *UseBB = !isa<PHINode>(UserInst) ? 3127 UserInst->getParent() : 3128 cast<PHINode>(UserInst)->getIncomingBlock( 3129 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 3130 if (!DT.dominates(L->getHeader(), UseBB)) 3131 continue; 3132 // Don't bother if the instruction is in a BB which ends in an EHPad. 3133 if (UseBB->getTerminator()->isEHPad()) 3134 continue; 3135 // Ignore uses which are part of other SCEV expressions, to avoid 3136 // analyzing them multiple times. 3137 if (SE.isSCEVable(UserInst->getType())) { 3138 const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst)); 3139 // If the user is a no-op, look through to its uses. 3140 if (!isa<SCEVUnknown>(UserS)) 3141 continue; 3142 if (UserS == US) { 3143 Worklist.push_back( 3144 SE.getUnknown(const_cast<Instruction *>(UserInst))); 3145 continue; 3146 } 3147 } 3148 // Ignore icmp instructions which are already being analyzed. 3149 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) { 3150 unsigned OtherIdx = !U.getOperandNo(); 3151 Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx)); 3152 if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L)) 3153 continue; 3154 } 3155 3156 LSRFixup &LF = getNewFixup(); 3157 LF.UserInst = const_cast<Instruction *>(UserInst); 3158 LF.OperandValToReplace = U; 3159 std::pair<size_t, int64_t> P = getUse( 3160 S, LSRUse::Basic, MemAccessTy()); 3161 LF.LUIdx = P.first; 3162 LF.Offset = P.second; 3163 LSRUse &LU = Uses[LF.LUIdx]; 3164 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3165 if (!LU.WidestFixupType || 3166 SE.getTypeSizeInBits(LU.WidestFixupType) < 3167 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3168 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3169 InsertSupplementalFormula(US, LU, LF.LUIdx); 3170 CountRegisters(LU.Formulae.back(), Uses.size() - 1); 3171 break; 3172 } 3173 } 3174 } 3175 } 3176 3177 /// Split S into subexpressions which can be pulled out into separate 3178 /// registers. If C is non-null, multiply each subexpression by C. 3179 /// 3180 /// Return remainder expression after factoring the subexpressions captured by 3181 /// Ops. If Ops is complete, return NULL. 3182 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C, 3183 SmallVectorImpl<const SCEV *> &Ops, 3184 const Loop *L, 3185 ScalarEvolution &SE, 3186 unsigned Depth = 0) { 3187 // Arbitrarily cap recursion to protect compile time. 3188 if (Depth >= 3) 3189 return S; 3190 3191 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3192 // Break out add operands. 3193 for (const SCEV *S : Add->operands()) { 3194 const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1); 3195 if (Remainder) 3196 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3197 } 3198 return nullptr; 3199 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 3200 // Split a non-zero base out of an addrec. 3201 if (AR->getStart()->isZero()) 3202 return S; 3203 3204 const SCEV *Remainder = CollectSubexprs(AR->getStart(), 3205 C, Ops, L, SE, Depth+1); 3206 // Split the non-zero AddRec unless it is part of a nested recurrence that 3207 // does not pertain to this loop. 3208 if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) { 3209 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3210 Remainder = nullptr; 3211 } 3212 if (Remainder != AR->getStart()) { 3213 if (!Remainder) 3214 Remainder = SE.getConstant(AR->getType(), 0); 3215 return SE.getAddRecExpr(Remainder, 3216 AR->getStepRecurrence(SE), 3217 AR->getLoop(), 3218 //FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 3219 SCEV::FlagAnyWrap); 3220 } 3221 } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3222 // Break (C * (a + b + c)) into C*a + C*b + C*c. 3223 if (Mul->getNumOperands() != 2) 3224 return S; 3225 if (const SCEVConstant *Op0 = 3226 dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3227 C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0; 3228 const SCEV *Remainder = 3229 CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1); 3230 if (Remainder) 3231 Ops.push_back(SE.getMulExpr(C, Remainder)); 3232 return nullptr; 3233 } 3234 } 3235 return S; 3236 } 3237 3238 /// \brief Helper function for LSRInstance::GenerateReassociations. 3239 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 3240 const Formula &Base, 3241 unsigned Depth, size_t Idx, 3242 bool IsScaledReg) { 3243 const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3244 SmallVector<const SCEV *, 8> AddOps; 3245 const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE); 3246 if (Remainder) 3247 AddOps.push_back(Remainder); 3248 3249 if (AddOps.size() == 1) 3250 return; 3251 3252 for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(), 3253 JE = AddOps.end(); 3254 J != JE; ++J) { 3255 3256 // Loop-variant "unknown" values are uninteresting; we won't be able to 3257 // do anything meaningful with them. 3258 if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L)) 3259 continue; 3260 3261 // Don't pull a constant into a register if the constant could be folded 3262 // into an immediate field. 3263 if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3264 LU.AccessTy, *J, Base.getNumRegs() > 1)) 3265 continue; 3266 3267 // Collect all operands except *J. 3268 SmallVector<const SCEV *, 8> InnerAddOps( 3269 ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J); 3270 InnerAddOps.append(std::next(J), 3271 ((const SmallVector<const SCEV *, 8> &)AddOps).end()); 3272 3273 // Don't leave just a constant behind in a register if the constant could 3274 // be folded into an immediate field. 3275 if (InnerAddOps.size() == 1 && 3276 isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3277 LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1)) 3278 continue; 3279 3280 const SCEV *InnerSum = SE.getAddExpr(InnerAddOps); 3281 if (InnerSum->isZero()) 3282 continue; 3283 Formula F = Base; 3284 3285 // Add the remaining pieces of the add back into the new formula. 3286 const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum); 3287 if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 && 3288 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3289 InnerSumSC->getValue()->getZExtValue())) { 3290 F.UnfoldedOffset = 3291 (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue(); 3292 if (IsScaledReg) 3293 F.ScaledReg = nullptr; 3294 else 3295 F.BaseRegs.erase(F.BaseRegs.begin() + Idx); 3296 } else if (IsScaledReg) 3297 F.ScaledReg = InnerSum; 3298 else 3299 F.BaseRegs[Idx] = InnerSum; 3300 3301 // Add J as its own register, or an unfolded immediate. 3302 const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J); 3303 if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 && 3304 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3305 SC->getValue()->getZExtValue())) 3306 F.UnfoldedOffset = 3307 (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue(); 3308 else 3309 F.BaseRegs.push_back(*J); 3310 // We may have changed the number of register in base regs, adjust the 3311 // formula accordingly. 3312 F.canonicalize(); 3313 3314 if (InsertFormula(LU, LUIdx, F)) 3315 // If that formula hadn't been seen before, recurse to find more like 3316 // it. 3317 GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth + 1); 3318 } 3319 } 3320 3321 /// Split out subexpressions from adds and the bases of addrecs. 3322 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx, 3323 Formula Base, unsigned Depth) { 3324 assert(Base.isCanonical() && "Input must be in the canonical form"); 3325 // Arbitrarily cap recursion to protect compile time. 3326 if (Depth >= 3) 3327 return; 3328 3329 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3330 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i); 3331 3332 if (Base.Scale == 1) 3333 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, 3334 /* Idx */ -1, /* IsScaledReg */ true); 3335 } 3336 3337 /// Generate a formula consisting of all of the loop-dominating registers added 3338 /// into a single register. 3339 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx, 3340 Formula Base) { 3341 // This method is only interesting on a plurality of registers. 3342 if (Base.BaseRegs.size() + (Base.Scale == 1) <= 1) 3343 return; 3344 3345 // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before 3346 // processing the formula. 3347 Base.unscale(); 3348 Formula F = Base; 3349 F.BaseRegs.clear(); 3350 SmallVector<const SCEV *, 4> Ops; 3351 for (const SCEV *BaseReg : Base.BaseRegs) { 3352 if (SE.properlyDominates(BaseReg, L->getHeader()) && 3353 !SE.hasComputableLoopEvolution(BaseReg, L)) 3354 Ops.push_back(BaseReg); 3355 else 3356 F.BaseRegs.push_back(BaseReg); 3357 } 3358 if (Ops.size() > 1) { 3359 const SCEV *Sum = SE.getAddExpr(Ops); 3360 // TODO: If Sum is zero, it probably means ScalarEvolution missed an 3361 // opportunity to fold something. For now, just ignore such cases 3362 // rather than proceed with zero in a register. 3363 if (!Sum->isZero()) { 3364 F.BaseRegs.push_back(Sum); 3365 F.canonicalize(); 3366 (void)InsertFormula(LU, LUIdx, F); 3367 } 3368 } 3369 } 3370 3371 /// \brief Helper function for LSRInstance::GenerateSymbolicOffsets. 3372 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 3373 const Formula &Base, size_t Idx, 3374 bool IsScaledReg) { 3375 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3376 GlobalValue *GV = ExtractSymbol(G, SE); 3377 if (G->isZero() || !GV) 3378 return; 3379 Formula F = Base; 3380 F.BaseGV = GV; 3381 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3382 return; 3383 if (IsScaledReg) 3384 F.ScaledReg = G; 3385 else 3386 F.BaseRegs[Idx] = G; 3387 (void)InsertFormula(LU, LUIdx, F); 3388 } 3389 3390 /// Generate reuse formulae using symbolic offsets. 3391 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, 3392 Formula Base) { 3393 // We can't add a symbolic offset if the address already contains one. 3394 if (Base.BaseGV) return; 3395 3396 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3397 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i); 3398 if (Base.Scale == 1) 3399 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1, 3400 /* IsScaledReg */ true); 3401 } 3402 3403 /// \brief Helper function for LSRInstance::GenerateConstantOffsets. 3404 void LSRInstance::GenerateConstantOffsetsImpl( 3405 LSRUse &LU, unsigned LUIdx, const Formula &Base, 3406 const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) { 3407 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3408 for (int64_t Offset : Worklist) { 3409 Formula F = Base; 3410 F.BaseOffset = (uint64_t)Base.BaseOffset - Offset; 3411 if (isLegalUse(TTI, LU.MinOffset - Offset, LU.MaxOffset - Offset, LU.Kind, 3412 LU.AccessTy, F)) { 3413 // Add the offset to the base register. 3414 const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G); 3415 // If it cancelled out, drop the base register, otherwise update it. 3416 if (NewG->isZero()) { 3417 if (IsScaledReg) { 3418 F.Scale = 0; 3419 F.ScaledReg = nullptr; 3420 } else 3421 F.deleteBaseReg(F.BaseRegs[Idx]); 3422 F.canonicalize(); 3423 } else if (IsScaledReg) 3424 F.ScaledReg = NewG; 3425 else 3426 F.BaseRegs[Idx] = NewG; 3427 3428 (void)InsertFormula(LU, LUIdx, F); 3429 } 3430 } 3431 3432 int64_t Imm = ExtractImmediate(G, SE); 3433 if (G->isZero() || Imm == 0) 3434 return; 3435 Formula F = Base; 3436 F.BaseOffset = (uint64_t)F.BaseOffset + Imm; 3437 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3438 return; 3439 if (IsScaledReg) 3440 F.ScaledReg = G; 3441 else 3442 F.BaseRegs[Idx] = G; 3443 (void)InsertFormula(LU, LUIdx, F); 3444 } 3445 3446 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets. 3447 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, 3448 Formula Base) { 3449 // TODO: For now, just add the min and max offset, because it usually isn't 3450 // worthwhile looking at everything inbetween. 3451 SmallVector<int64_t, 2> Worklist; 3452 Worklist.push_back(LU.MinOffset); 3453 if (LU.MaxOffset != LU.MinOffset) 3454 Worklist.push_back(LU.MaxOffset); 3455 3456 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3457 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i); 3458 if (Base.Scale == 1) 3459 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1, 3460 /* IsScaledReg */ true); 3461 } 3462 3463 /// For ICmpZero, check to see if we can scale up the comparison. For example, x 3464 /// == y -> x*c == y*c. 3465 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, 3466 Formula Base) { 3467 if (LU.Kind != LSRUse::ICmpZero) return; 3468 3469 // Determine the integer type for the base formula. 3470 Type *IntTy = Base.getType(); 3471 if (!IntTy) return; 3472 if (SE.getTypeSizeInBits(IntTy) > 64) return; 3473 3474 // Don't do this if there is more than one offset. 3475 if (LU.MinOffset != LU.MaxOffset) return; 3476 3477 assert(!Base.BaseGV && "ICmpZero use is not legal!"); 3478 3479 // Check each interesting stride. 3480 for (int64_t Factor : Factors) { 3481 // Check that the multiplication doesn't overflow. 3482 if (Base.BaseOffset == INT64_MIN && Factor == -1) 3483 continue; 3484 int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor; 3485 if (NewBaseOffset / Factor != Base.BaseOffset) 3486 continue; 3487 // If the offset will be truncated at this use, check that it is in bounds. 3488 if (!IntTy->isPointerTy() && 3489 !ConstantInt::isValueValidForType(IntTy, NewBaseOffset)) 3490 continue; 3491 3492 // Check that multiplying with the use offset doesn't overflow. 3493 int64_t Offset = LU.MinOffset; 3494 if (Offset == INT64_MIN && Factor == -1) 3495 continue; 3496 Offset = (uint64_t)Offset * Factor; 3497 if (Offset / Factor != LU.MinOffset) 3498 continue; 3499 // If the offset will be truncated at this use, check that it is in bounds. 3500 if (!IntTy->isPointerTy() && 3501 !ConstantInt::isValueValidForType(IntTy, Offset)) 3502 continue; 3503 3504 Formula F = Base; 3505 F.BaseOffset = NewBaseOffset; 3506 3507 // Check that this scale is legal. 3508 if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F)) 3509 continue; 3510 3511 // Compensate for the use having MinOffset built into it. 3512 F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset; 3513 3514 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3515 3516 // Check that multiplying with each base register doesn't overflow. 3517 for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) { 3518 F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS); 3519 if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i]) 3520 goto next; 3521 } 3522 3523 // Check that multiplying with the scaled register doesn't overflow. 3524 if (F.ScaledReg) { 3525 F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS); 3526 if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg) 3527 continue; 3528 } 3529 3530 // Check that multiplying with the unfolded offset doesn't overflow. 3531 if (F.UnfoldedOffset != 0) { 3532 if (F.UnfoldedOffset == INT64_MIN && Factor == -1) 3533 continue; 3534 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor; 3535 if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset) 3536 continue; 3537 // If the offset will be truncated, check that it is in bounds. 3538 if (!IntTy->isPointerTy() && 3539 !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset)) 3540 continue; 3541 } 3542 3543 // If we make it here and it's legal, add it. 3544 (void)InsertFormula(LU, LUIdx, F); 3545 next:; 3546 } 3547 } 3548 3549 /// Generate stride factor reuse formulae by making use of scaled-offset address 3550 /// modes, for example. 3551 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) { 3552 // Determine the integer type for the base formula. 3553 Type *IntTy = Base.getType(); 3554 if (!IntTy) return; 3555 3556 // If this Formula already has a scaled register, we can't add another one. 3557 // Try to unscale the formula to generate a better scale. 3558 if (Base.Scale != 0 && !Base.unscale()) 3559 return; 3560 3561 assert(Base.Scale == 0 && "unscale did not did its job!"); 3562 3563 // Check each interesting stride. 3564 for (int64_t Factor : Factors) { 3565 Base.Scale = Factor; 3566 Base.HasBaseReg = Base.BaseRegs.size() > 1; 3567 // Check whether this scale is going to be legal. 3568 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 3569 Base)) { 3570 // As a special-case, handle special out-of-loop Basic users specially. 3571 // TODO: Reconsider this special case. 3572 if (LU.Kind == LSRUse::Basic && 3573 isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special, 3574 LU.AccessTy, Base) && 3575 LU.AllFixupsOutsideLoop) 3576 LU.Kind = LSRUse::Special; 3577 else 3578 continue; 3579 } 3580 // For an ICmpZero, negating a solitary base register won't lead to 3581 // new solutions. 3582 if (LU.Kind == LSRUse::ICmpZero && 3583 !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV) 3584 continue; 3585 // For each addrec base reg, apply the scale, if possible. 3586 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3587 if (const SCEVAddRecExpr *AR = 3588 dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i])) { 3589 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3590 if (FactorS->isZero()) 3591 continue; 3592 // Divide out the factor, ignoring high bits, since we'll be 3593 // scaling the value back up in the end. 3594 if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) { 3595 // TODO: This could be optimized to avoid all the copying. 3596 Formula F = Base; 3597 F.ScaledReg = Quotient; 3598 F.deleteBaseReg(F.BaseRegs[i]); 3599 // The canonical representation of 1*reg is reg, which is already in 3600 // Base. In that case, do not try to insert the formula, it will be 3601 // rejected anyway. 3602 if (F.Scale == 1 && F.BaseRegs.empty()) 3603 continue; 3604 (void)InsertFormula(LU, LUIdx, F); 3605 } 3606 } 3607 } 3608 } 3609 3610 /// Generate reuse formulae from different IV types. 3611 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) { 3612 // Don't bother truncating symbolic values. 3613 if (Base.BaseGV) return; 3614 3615 // Determine the integer type for the base formula. 3616 Type *DstTy = Base.getType(); 3617 if (!DstTy) return; 3618 DstTy = SE.getEffectiveSCEVType(DstTy); 3619 3620 for (Type *SrcTy : Types) { 3621 if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) { 3622 Formula F = Base; 3623 3624 if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy); 3625 for (const SCEV *&BaseReg : F.BaseRegs) 3626 BaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy); 3627 3628 // TODO: This assumes we've done basic processing on all uses and 3629 // have an idea what the register usage is. 3630 if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses)) 3631 continue; 3632 3633 (void)InsertFormula(LU, LUIdx, F); 3634 } 3635 } 3636 } 3637 3638 namespace { 3639 3640 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer 3641 /// modifications so that the search phase doesn't have to worry about the data 3642 /// structures moving underneath it. 3643 struct WorkItem { 3644 size_t LUIdx; 3645 int64_t Imm; 3646 const SCEV *OrigReg; 3647 3648 WorkItem(size_t LI, int64_t I, const SCEV *R) 3649 : LUIdx(LI), Imm(I), OrigReg(R) {} 3650 3651 void print(raw_ostream &OS) const; 3652 void dump() const; 3653 }; 3654 3655 } 3656 3657 void WorkItem::print(raw_ostream &OS) const { 3658 OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx 3659 << " , add offset " << Imm; 3660 } 3661 3662 LLVM_DUMP_METHOD 3663 void WorkItem::dump() const { 3664 print(errs()); errs() << '\n'; 3665 } 3666 3667 /// Look for registers which are a constant distance apart and try to form reuse 3668 /// opportunities between them. 3669 void LSRInstance::GenerateCrossUseConstantOffsets() { 3670 // Group the registers by their value without any added constant offset. 3671 typedef std::map<int64_t, const SCEV *> ImmMapTy; 3672 DenseMap<const SCEV *, ImmMapTy> Map; 3673 DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap; 3674 SmallVector<const SCEV *, 8> Sequence; 3675 for (const SCEV *Use : RegUses) { 3676 const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify. 3677 int64_t Imm = ExtractImmediate(Reg, SE); 3678 auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy())); 3679 if (Pair.second) 3680 Sequence.push_back(Reg); 3681 Pair.first->second.insert(std::make_pair(Imm, Use)); 3682 UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use); 3683 } 3684 3685 // Now examine each set of registers with the same base value. Build up 3686 // a list of work to do and do the work in a separate step so that we're 3687 // not adding formulae and register counts while we're searching. 3688 SmallVector<WorkItem, 32> WorkItems; 3689 SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems; 3690 for (const SCEV *Reg : Sequence) { 3691 const ImmMapTy &Imms = Map.find(Reg)->second; 3692 3693 // It's not worthwhile looking for reuse if there's only one offset. 3694 if (Imms.size() == 1) 3695 continue; 3696 3697 DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':'; 3698 for (const auto &Entry : Imms) 3699 dbgs() << ' ' << Entry.first; 3700 dbgs() << '\n'); 3701 3702 // Examine each offset. 3703 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); 3704 J != JE; ++J) { 3705 const SCEV *OrigReg = J->second; 3706 3707 int64_t JImm = J->first; 3708 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg); 3709 3710 if (!isa<SCEVConstant>(OrigReg) && 3711 UsedByIndicesMap[Reg].count() == 1) { 3712 DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n'); 3713 continue; 3714 } 3715 3716 // Conservatively examine offsets between this orig reg a few selected 3717 // other orig regs. 3718 ImmMapTy::const_iterator OtherImms[] = { 3719 Imms.begin(), std::prev(Imms.end()), 3720 Imms.lower_bound((Imms.begin()->first + std::prev(Imms.end())->first) / 3721 2) 3722 }; 3723 for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) { 3724 ImmMapTy::const_iterator M = OtherImms[i]; 3725 if (M == J || M == JE) continue; 3726 3727 // Compute the difference between the two. 3728 int64_t Imm = (uint64_t)JImm - M->first; 3729 for (int LUIdx = UsedByIndices.find_first(); LUIdx != -1; 3730 LUIdx = UsedByIndices.find_next(LUIdx)) 3731 // Make a memo of this use, offset, and register tuple. 3732 if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second) 3733 WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg)); 3734 } 3735 } 3736 } 3737 3738 Map.clear(); 3739 Sequence.clear(); 3740 UsedByIndicesMap.clear(); 3741 UniqueItems.clear(); 3742 3743 // Now iterate through the worklist and add new formulae. 3744 for (const WorkItem &WI : WorkItems) { 3745 size_t LUIdx = WI.LUIdx; 3746 LSRUse &LU = Uses[LUIdx]; 3747 int64_t Imm = WI.Imm; 3748 const SCEV *OrigReg = WI.OrigReg; 3749 3750 Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType()); 3751 const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm)); 3752 unsigned BitWidth = SE.getTypeSizeInBits(IntTy); 3753 3754 // TODO: Use a more targeted data structure. 3755 for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) { 3756 Formula F = LU.Formulae[L]; 3757 // FIXME: The code for the scaled and unscaled registers looks 3758 // very similar but slightly different. Investigate if they 3759 // could be merged. That way, we would not have to unscale the 3760 // Formula. 3761 F.unscale(); 3762 // Use the immediate in the scaled register. 3763 if (F.ScaledReg == OrigReg) { 3764 int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale; 3765 // Don't create 50 + reg(-50). 3766 if (F.referencesReg(SE.getSCEV( 3767 ConstantInt::get(IntTy, -(uint64_t)Offset)))) 3768 continue; 3769 Formula NewF = F; 3770 NewF.BaseOffset = Offset; 3771 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 3772 NewF)) 3773 continue; 3774 NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg); 3775 3776 // If the new scale is a constant in a register, and adding the constant 3777 // value to the immediate would produce a value closer to zero than the 3778 // immediate itself, then the formula isn't worthwhile. 3779 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg)) 3780 if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) && 3781 (C->getAPInt().abs() * APInt(BitWidth, F.Scale)) 3782 .ule(std::abs(NewF.BaseOffset))) 3783 continue; 3784 3785 // OK, looks good. 3786 NewF.canonicalize(); 3787 (void)InsertFormula(LU, LUIdx, NewF); 3788 } else { 3789 // Use the immediate in a base register. 3790 for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) { 3791 const SCEV *BaseReg = F.BaseRegs[N]; 3792 if (BaseReg != OrigReg) 3793 continue; 3794 Formula NewF = F; 3795 NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm; 3796 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, 3797 LU.Kind, LU.AccessTy, NewF)) { 3798 if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm)) 3799 continue; 3800 NewF = F; 3801 NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm; 3802 } 3803 NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg); 3804 3805 // If the new formula has a constant in a register, and adding the 3806 // constant value to the immediate would produce a value closer to 3807 // zero than the immediate itself, then the formula isn't worthwhile. 3808 for (const SCEV *NewReg : NewF.BaseRegs) 3809 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg)) 3810 if ((C->getAPInt() + NewF.BaseOffset) 3811 .abs() 3812 .slt(std::abs(NewF.BaseOffset)) && 3813 (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >= 3814 countTrailingZeros<uint64_t>(NewF.BaseOffset)) 3815 goto skip_formula; 3816 3817 // Ok, looks good. 3818 NewF.canonicalize(); 3819 (void)InsertFormula(LU, LUIdx, NewF); 3820 break; 3821 skip_formula:; 3822 } 3823 } 3824 } 3825 } 3826 } 3827 3828 /// Generate formulae for each use. 3829 void 3830 LSRInstance::GenerateAllReuseFormulae() { 3831 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan 3832 // queries are more precise. 3833 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3834 LSRUse &LU = Uses[LUIdx]; 3835 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3836 GenerateReassociations(LU, LUIdx, LU.Formulae[i]); 3837 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3838 GenerateCombinations(LU, LUIdx, LU.Formulae[i]); 3839 } 3840 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3841 LSRUse &LU = Uses[LUIdx]; 3842 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3843 GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]); 3844 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3845 GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]); 3846 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3847 GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]); 3848 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3849 GenerateScales(LU, LUIdx, LU.Formulae[i]); 3850 } 3851 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3852 LSRUse &LU = Uses[LUIdx]; 3853 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3854 GenerateTruncates(LU, LUIdx, LU.Formulae[i]); 3855 } 3856 3857 GenerateCrossUseConstantOffsets(); 3858 3859 DEBUG(dbgs() << "\n" 3860 "After generating reuse formulae:\n"; 3861 print_uses(dbgs())); 3862 } 3863 3864 /// If there are multiple formulae with the same set of registers used 3865 /// by other uses, pick the best one and delete the others. 3866 void LSRInstance::FilterOutUndesirableDedicatedRegisters() { 3867 DenseSet<const SCEV *> VisitedRegs; 3868 SmallPtrSet<const SCEV *, 16> Regs; 3869 SmallPtrSet<const SCEV *, 16> LoserRegs; 3870 #ifndef NDEBUG 3871 bool ChangedFormulae = false; 3872 #endif 3873 3874 // Collect the best formula for each unique set of shared registers. This 3875 // is reset for each use. 3876 typedef DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo> 3877 BestFormulaeTy; 3878 BestFormulaeTy BestFormulae; 3879 3880 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3881 LSRUse &LU = Uses[LUIdx]; 3882 DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n'); 3883 3884 bool Any = false; 3885 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); 3886 FIdx != NumForms; ++FIdx) { 3887 Formula &F = LU.Formulae[FIdx]; 3888 3889 // Some formulas are instant losers. For example, they may depend on 3890 // nonexistent AddRecs from other loops. These need to be filtered 3891 // immediately, otherwise heuristics could choose them over others leading 3892 // to an unsatisfactory solution. Passing LoserRegs into RateFormula here 3893 // avoids the need to recompute this information across formulae using the 3894 // same bad AddRec. Passing LoserRegs is also essential unless we remove 3895 // the corresponding bad register from the Regs set. 3896 Cost CostF; 3897 Regs.clear(); 3898 CostF.RateFormula(TTI, F, Regs, VisitedRegs, L, LU.Offsets, SE, DT, LU, 3899 &LoserRegs); 3900 if (CostF.isLoser()) { 3901 // During initial formula generation, undesirable formulae are generated 3902 // by uses within other loops that have some non-trivial address mode or 3903 // use the postinc form of the IV. LSR needs to provide these formulae 3904 // as the basis of rediscovering the desired formula that uses an AddRec 3905 // corresponding to the existing phi. Once all formulae have been 3906 // generated, these initial losers may be pruned. 3907 DEBUG(dbgs() << " Filtering loser "; F.print(dbgs()); 3908 dbgs() << "\n"); 3909 } 3910 else { 3911 SmallVector<const SCEV *, 4> Key; 3912 for (const SCEV *Reg : F.BaseRegs) { 3913 if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx)) 3914 Key.push_back(Reg); 3915 } 3916 if (F.ScaledReg && 3917 RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx)) 3918 Key.push_back(F.ScaledReg); 3919 // Unstable sort by host order ok, because this is only used for 3920 // uniquifying. 3921 std::sort(Key.begin(), Key.end()); 3922 3923 std::pair<BestFormulaeTy::const_iterator, bool> P = 3924 BestFormulae.insert(std::make_pair(Key, FIdx)); 3925 if (P.second) 3926 continue; 3927 3928 Formula &Best = LU.Formulae[P.first->second]; 3929 3930 Cost CostBest; 3931 Regs.clear(); 3932 CostBest.RateFormula(TTI, Best, Regs, VisitedRegs, L, LU.Offsets, SE, 3933 DT, LU); 3934 if (CostF < CostBest) 3935 std::swap(F, Best); 3936 DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 3937 dbgs() << "\n" 3938 " in favor of formula "; Best.print(dbgs()); 3939 dbgs() << '\n'); 3940 } 3941 #ifndef NDEBUG 3942 ChangedFormulae = true; 3943 #endif 3944 LU.DeleteFormula(F); 3945 --FIdx; 3946 --NumForms; 3947 Any = true; 3948 } 3949 3950 // Now that we've filtered out some formulae, recompute the Regs set. 3951 if (Any) 3952 LU.RecomputeRegs(LUIdx, RegUses); 3953 3954 // Reset this to prepare for the next use. 3955 BestFormulae.clear(); 3956 } 3957 3958 DEBUG(if (ChangedFormulae) { 3959 dbgs() << "\n" 3960 "After filtering out undesirable candidates:\n"; 3961 print_uses(dbgs()); 3962 }); 3963 } 3964 3965 // This is a rough guess that seems to work fairly well. 3966 static const size_t ComplexityLimit = UINT16_MAX; 3967 3968 /// Estimate the worst-case number of solutions the solver might have to 3969 /// consider. It almost never considers this many solutions because it prune the 3970 /// search space, but the pruning isn't always sufficient. 3971 size_t LSRInstance::EstimateSearchSpaceComplexity() const { 3972 size_t Power = 1; 3973 for (const LSRUse &LU : Uses) { 3974 size_t FSize = LU.Formulae.size(); 3975 if (FSize >= ComplexityLimit) { 3976 Power = ComplexityLimit; 3977 break; 3978 } 3979 Power *= FSize; 3980 if (Power >= ComplexityLimit) 3981 break; 3982 } 3983 return Power; 3984 } 3985 3986 /// When one formula uses a superset of the registers of another formula, it 3987 /// won't help reduce register pressure (though it may not necessarily hurt 3988 /// register pressure); remove it to simplify the system. 3989 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() { 3990 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 3991 DEBUG(dbgs() << "The search space is too complex.\n"); 3992 3993 DEBUG(dbgs() << "Narrowing the search space by eliminating formulae " 3994 "which use a superset of registers used by other " 3995 "formulae.\n"); 3996 3997 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3998 LSRUse &LU = Uses[LUIdx]; 3999 bool Any = false; 4000 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4001 Formula &F = LU.Formulae[i]; 4002 // Look for a formula with a constant or GV in a register. If the use 4003 // also has a formula with that same value in an immediate field, 4004 // delete the one that uses a register. 4005 for (SmallVectorImpl<const SCEV *>::const_iterator 4006 I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) { 4007 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) { 4008 Formula NewF = F; 4009 NewF.BaseOffset += C->getValue()->getSExtValue(); 4010 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4011 (I - F.BaseRegs.begin())); 4012 if (LU.HasFormulaWithSameRegs(NewF)) { 4013 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4014 LU.DeleteFormula(F); 4015 --i; 4016 --e; 4017 Any = true; 4018 break; 4019 } 4020 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) { 4021 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) 4022 if (!F.BaseGV) { 4023 Formula NewF = F; 4024 NewF.BaseGV = GV; 4025 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4026 (I - F.BaseRegs.begin())); 4027 if (LU.HasFormulaWithSameRegs(NewF)) { 4028 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4029 dbgs() << '\n'); 4030 LU.DeleteFormula(F); 4031 --i; 4032 --e; 4033 Any = true; 4034 break; 4035 } 4036 } 4037 } 4038 } 4039 } 4040 if (Any) 4041 LU.RecomputeRegs(LUIdx, RegUses); 4042 } 4043 4044 DEBUG(dbgs() << "After pre-selection:\n"; 4045 print_uses(dbgs())); 4046 } 4047 } 4048 4049 /// When there are many registers for expressions like A, A+1, A+2, etc., 4050 /// allocate a single register for them. 4051 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() { 4052 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4053 return; 4054 4055 DEBUG(dbgs() << "The search space is too complex.\n" 4056 "Narrowing the search space by assuming that uses separated " 4057 "by a constant offset will use the same registers.\n"); 4058 4059 // This is especially useful for unrolled loops. 4060 4061 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4062 LSRUse &LU = Uses[LUIdx]; 4063 for (const Formula &F : LU.Formulae) { 4064 if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1)) 4065 continue; 4066 4067 LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU); 4068 if (!LUThatHas) 4069 continue; 4070 4071 if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false, 4072 LU.Kind, LU.AccessTy)) 4073 continue; 4074 4075 DEBUG(dbgs() << " Deleting use "; LU.print(dbgs()); dbgs() << '\n'); 4076 4077 LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop; 4078 4079 // Update the relocs to reference the new use. 4080 for (LSRFixup &Fixup : Fixups) { 4081 if (Fixup.LUIdx == LUIdx) { 4082 Fixup.LUIdx = LUThatHas - &Uses.front(); 4083 Fixup.Offset += F.BaseOffset; 4084 // Add the new offset to LUThatHas' offset list. 4085 if (LUThatHas->Offsets.back() != Fixup.Offset) { 4086 LUThatHas->Offsets.push_back(Fixup.Offset); 4087 if (Fixup.Offset > LUThatHas->MaxOffset) 4088 LUThatHas->MaxOffset = Fixup.Offset; 4089 if (Fixup.Offset < LUThatHas->MinOffset) 4090 LUThatHas->MinOffset = Fixup.Offset; 4091 } 4092 DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n'); 4093 } 4094 if (Fixup.LUIdx == NumUses-1) 4095 Fixup.LUIdx = LUIdx; 4096 } 4097 4098 // Delete formulae from the new use which are no longer legal. 4099 bool Any = false; 4100 for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) { 4101 Formula &F = LUThatHas->Formulae[i]; 4102 if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset, 4103 LUThatHas->Kind, LUThatHas->AccessTy, F)) { 4104 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4105 dbgs() << '\n'); 4106 LUThatHas->DeleteFormula(F); 4107 --i; 4108 --e; 4109 Any = true; 4110 } 4111 } 4112 4113 if (Any) 4114 LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses); 4115 4116 // Delete the old use. 4117 DeleteUse(LU, LUIdx); 4118 --LUIdx; 4119 --NumUses; 4120 break; 4121 } 4122 } 4123 4124 DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4125 } 4126 4127 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that 4128 /// we've done more filtering, as it may be able to find more formulae to 4129 /// eliminate. 4130 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){ 4131 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4132 DEBUG(dbgs() << "The search space is too complex.\n"); 4133 4134 DEBUG(dbgs() << "Narrowing the search space by re-filtering out " 4135 "undesirable dedicated registers.\n"); 4136 4137 FilterOutUndesirableDedicatedRegisters(); 4138 4139 DEBUG(dbgs() << "After pre-selection:\n"; 4140 print_uses(dbgs())); 4141 } 4142 } 4143 4144 /// Pick a register which seems likely to be profitable, and then in any use 4145 /// which has any reference to that register, delete all formulae which do not 4146 /// reference that register. 4147 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() { 4148 // With all other options exhausted, loop until the system is simple 4149 // enough to handle. 4150 SmallPtrSet<const SCEV *, 4> Taken; 4151 while (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4152 // Ok, we have too many of formulae on our hands to conveniently handle. 4153 // Use a rough heuristic to thin out the list. 4154 DEBUG(dbgs() << "The search space is too complex.\n"); 4155 4156 // Pick the register which is used by the most LSRUses, which is likely 4157 // to be a good reuse register candidate. 4158 const SCEV *Best = nullptr; 4159 unsigned BestNum = 0; 4160 for (const SCEV *Reg : RegUses) { 4161 if (Taken.count(Reg)) 4162 continue; 4163 if (!Best) 4164 Best = Reg; 4165 else { 4166 unsigned Count = RegUses.getUsedByIndices(Reg).count(); 4167 if (Count > BestNum) { 4168 Best = Reg; 4169 BestNum = Count; 4170 } 4171 } 4172 } 4173 4174 DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best 4175 << " will yield profitable reuse.\n"); 4176 Taken.insert(Best); 4177 4178 // In any use with formulae which references this register, delete formulae 4179 // which don't reference it. 4180 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4181 LSRUse &LU = Uses[LUIdx]; 4182 if (!LU.Regs.count(Best)) continue; 4183 4184 bool Any = false; 4185 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4186 Formula &F = LU.Formulae[i]; 4187 if (!F.referencesReg(Best)) { 4188 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4189 LU.DeleteFormula(F); 4190 --e; 4191 --i; 4192 Any = true; 4193 assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?"); 4194 continue; 4195 } 4196 } 4197 4198 if (Any) 4199 LU.RecomputeRegs(LUIdx, RegUses); 4200 } 4201 4202 DEBUG(dbgs() << "After pre-selection:\n"; 4203 print_uses(dbgs())); 4204 } 4205 } 4206 4207 /// If there are an extraordinary number of formulae to choose from, use some 4208 /// rough heuristics to prune down the number of formulae. This keeps the main 4209 /// solver from taking an extraordinary amount of time in some worst-case 4210 /// scenarios. 4211 void LSRInstance::NarrowSearchSpaceUsingHeuristics() { 4212 NarrowSearchSpaceByDetectingSupersets(); 4213 NarrowSearchSpaceByCollapsingUnrolledCode(); 4214 NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 4215 NarrowSearchSpaceByPickingWinnerRegs(); 4216 } 4217 4218 /// This is the recursive solver. 4219 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 4220 Cost &SolutionCost, 4221 SmallVectorImpl<const Formula *> &Workspace, 4222 const Cost &CurCost, 4223 const SmallPtrSet<const SCEV *, 16> &CurRegs, 4224 DenseSet<const SCEV *> &VisitedRegs) const { 4225 // Some ideas: 4226 // - prune more: 4227 // - use more aggressive filtering 4228 // - sort the formula so that the most profitable solutions are found first 4229 // - sort the uses too 4230 // - search faster: 4231 // - don't compute a cost, and then compare. compare while computing a cost 4232 // and bail early. 4233 // - track register sets with SmallBitVector 4234 4235 const LSRUse &LU = Uses[Workspace.size()]; 4236 4237 // If this use references any register that's already a part of the 4238 // in-progress solution, consider it a requirement that a formula must 4239 // reference that register in order to be considered. This prunes out 4240 // unprofitable searching. 4241 SmallSetVector<const SCEV *, 4> ReqRegs; 4242 for (const SCEV *S : CurRegs) 4243 if (LU.Regs.count(S)) 4244 ReqRegs.insert(S); 4245 4246 SmallPtrSet<const SCEV *, 16> NewRegs; 4247 Cost NewCost; 4248 for (const Formula &F : LU.Formulae) { 4249 // Ignore formulae which may not be ideal in terms of register reuse of 4250 // ReqRegs. The formula should use all required registers before 4251 // introducing new ones. 4252 int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size()); 4253 for (const SCEV *Reg : ReqRegs) { 4254 if ((F.ScaledReg && F.ScaledReg == Reg) || 4255 std::find(F.BaseRegs.begin(), F.BaseRegs.end(), Reg) != 4256 F.BaseRegs.end()) { 4257 --NumReqRegsToFind; 4258 if (NumReqRegsToFind == 0) 4259 break; 4260 } 4261 } 4262 if (NumReqRegsToFind != 0) { 4263 // If none of the formulae satisfied the required registers, then we could 4264 // clear ReqRegs and try again. Currently, we simply give up in this case. 4265 continue; 4266 } 4267 4268 // Evaluate the cost of the current formula. If it's already worse than 4269 // the current best, prune the search at that point. 4270 NewCost = CurCost; 4271 NewRegs = CurRegs; 4272 NewCost.RateFormula(TTI, F, NewRegs, VisitedRegs, L, LU.Offsets, SE, DT, 4273 LU); 4274 if (NewCost < SolutionCost) { 4275 Workspace.push_back(&F); 4276 if (Workspace.size() != Uses.size()) { 4277 SolveRecurse(Solution, SolutionCost, Workspace, NewCost, 4278 NewRegs, VisitedRegs); 4279 if (F.getNumRegs() == 1 && Workspace.size() == 1) 4280 VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]); 4281 } else { 4282 DEBUG(dbgs() << "New best at "; NewCost.print(dbgs()); 4283 dbgs() << ".\n Regs:"; 4284 for (const SCEV *S : NewRegs) 4285 dbgs() << ' ' << *S; 4286 dbgs() << '\n'); 4287 4288 SolutionCost = NewCost; 4289 Solution = Workspace; 4290 } 4291 Workspace.pop_back(); 4292 } 4293 } 4294 } 4295 4296 /// Choose one formula from each use. Return the results in the given Solution 4297 /// vector. 4298 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const { 4299 SmallVector<const Formula *, 8> Workspace; 4300 Cost SolutionCost; 4301 SolutionCost.Lose(); 4302 Cost CurCost; 4303 SmallPtrSet<const SCEV *, 16> CurRegs; 4304 DenseSet<const SCEV *> VisitedRegs; 4305 Workspace.reserve(Uses.size()); 4306 4307 // SolveRecurse does all the work. 4308 SolveRecurse(Solution, SolutionCost, Workspace, CurCost, 4309 CurRegs, VisitedRegs); 4310 if (Solution.empty()) { 4311 DEBUG(dbgs() << "\nNo Satisfactory Solution\n"); 4312 return; 4313 } 4314 4315 // Ok, we've now made all our decisions. 4316 DEBUG(dbgs() << "\n" 4317 "The chosen solution requires "; SolutionCost.print(dbgs()); 4318 dbgs() << ":\n"; 4319 for (size_t i = 0, e = Uses.size(); i != e; ++i) { 4320 dbgs() << " "; 4321 Uses[i].print(dbgs()); 4322 dbgs() << "\n" 4323 " "; 4324 Solution[i]->print(dbgs()); 4325 dbgs() << '\n'; 4326 }); 4327 4328 assert(Solution.size() == Uses.size() && "Malformed solution!"); 4329 } 4330 4331 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as 4332 /// we can go while still being dominated by the input positions. This helps 4333 /// canonicalize the insert position, which encourages sharing. 4334 BasicBlock::iterator 4335 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP, 4336 const SmallVectorImpl<Instruction *> &Inputs) 4337 const { 4338 for (;;) { 4339 const Loop *IPLoop = LI.getLoopFor(IP->getParent()); 4340 unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0; 4341 4342 BasicBlock *IDom; 4343 for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) { 4344 if (!Rung) return IP; 4345 Rung = Rung->getIDom(); 4346 if (!Rung) return IP; 4347 IDom = Rung->getBlock(); 4348 4349 // Don't climb into a loop though. 4350 const Loop *IDomLoop = LI.getLoopFor(IDom); 4351 unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0; 4352 if (IDomDepth <= IPLoopDepth && 4353 (IDomDepth != IPLoopDepth || IDomLoop == IPLoop)) 4354 break; 4355 } 4356 4357 bool AllDominate = true; 4358 Instruction *BetterPos = nullptr; 4359 Instruction *Tentative = IDom->getTerminator(); 4360 // Don't bother attempting to insert before a catchswitch, their basic block 4361 // cannot have other non-PHI instructions. 4362 if (isa<CatchSwitchInst>(Tentative)) 4363 return IP; 4364 4365 for (Instruction *Inst : Inputs) { 4366 if (Inst == Tentative || !DT.dominates(Inst, Tentative)) { 4367 AllDominate = false; 4368 break; 4369 } 4370 // Attempt to find an insert position in the middle of the block, 4371 // instead of at the end, so that it can be used for other expansions. 4372 if (IDom == Inst->getParent() && 4373 (!BetterPos || !DT.dominates(Inst, BetterPos))) 4374 BetterPos = &*std::next(BasicBlock::iterator(Inst)); 4375 } 4376 if (!AllDominate) 4377 break; 4378 if (BetterPos) 4379 IP = BetterPos->getIterator(); 4380 else 4381 IP = Tentative->getIterator(); 4382 } 4383 4384 return IP; 4385 } 4386 4387 /// Determine an input position which will be dominated by the operands and 4388 /// which will dominate the result. 4389 BasicBlock::iterator 4390 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP, 4391 const LSRFixup &LF, 4392 const LSRUse &LU, 4393 SCEVExpander &Rewriter) const { 4394 // Collect some instructions which must be dominated by the 4395 // expanding replacement. These must be dominated by any operands that 4396 // will be required in the expansion. 4397 SmallVector<Instruction *, 4> Inputs; 4398 if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace)) 4399 Inputs.push_back(I); 4400 if (LU.Kind == LSRUse::ICmpZero) 4401 if (Instruction *I = 4402 dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1))) 4403 Inputs.push_back(I); 4404 if (LF.PostIncLoops.count(L)) { 4405 if (LF.isUseFullyOutsideLoop(L)) 4406 Inputs.push_back(L->getLoopLatch()->getTerminator()); 4407 else 4408 Inputs.push_back(IVIncInsertPos); 4409 } 4410 // The expansion must also be dominated by the increment positions of any 4411 // loops it for which it is using post-inc mode. 4412 for (const Loop *PIL : LF.PostIncLoops) { 4413 if (PIL == L) continue; 4414 4415 // Be dominated by the loop exit. 4416 SmallVector<BasicBlock *, 4> ExitingBlocks; 4417 PIL->getExitingBlocks(ExitingBlocks); 4418 if (!ExitingBlocks.empty()) { 4419 BasicBlock *BB = ExitingBlocks[0]; 4420 for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i) 4421 BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]); 4422 Inputs.push_back(BB->getTerminator()); 4423 } 4424 } 4425 4426 assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad() 4427 && !isa<DbgInfoIntrinsic>(LowestIP) && 4428 "Insertion point must be a normal instruction"); 4429 4430 // Then, climb up the immediate dominator tree as far as we can go while 4431 // still being dominated by the input positions. 4432 BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs); 4433 4434 // Don't insert instructions before PHI nodes. 4435 while (isa<PHINode>(IP)) ++IP; 4436 4437 // Ignore landingpad instructions. 4438 while (IP->isEHPad()) ++IP; 4439 4440 // Ignore debug intrinsics. 4441 while (isa<DbgInfoIntrinsic>(IP)) ++IP; 4442 4443 // Set IP below instructions recently inserted by SCEVExpander. This keeps the 4444 // IP consistent across expansions and allows the previously inserted 4445 // instructions to be reused by subsequent expansion. 4446 while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP) 4447 ++IP; 4448 4449 return IP; 4450 } 4451 4452 /// Emit instructions for the leading candidate expression for this LSRUse (this 4453 /// is called "expanding"). 4454 Value *LSRInstance::Expand(const LSRFixup &LF, 4455 const Formula &F, 4456 BasicBlock::iterator IP, 4457 SCEVExpander &Rewriter, 4458 SmallVectorImpl<WeakVH> &DeadInsts) const { 4459 const LSRUse &LU = Uses[LF.LUIdx]; 4460 if (LU.RigidFormula) 4461 return LF.OperandValToReplace; 4462 4463 // Determine an input position which will be dominated by the operands and 4464 // which will dominate the result. 4465 IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter); 4466 4467 // Inform the Rewriter if we have a post-increment use, so that it can 4468 // perform an advantageous expansion. 4469 Rewriter.setPostInc(LF.PostIncLoops); 4470 4471 // This is the type that the user actually needs. 4472 Type *OpTy = LF.OperandValToReplace->getType(); 4473 // This will be the type that we'll initially expand to. 4474 Type *Ty = F.getType(); 4475 if (!Ty) 4476 // No type known; just expand directly to the ultimate type. 4477 Ty = OpTy; 4478 else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy)) 4479 // Expand directly to the ultimate type if it's the right size. 4480 Ty = OpTy; 4481 // This is the type to do integer arithmetic in. 4482 Type *IntTy = SE.getEffectiveSCEVType(Ty); 4483 4484 // Build up a list of operands to add together to form the full base. 4485 SmallVector<const SCEV *, 8> Ops; 4486 4487 // Expand the BaseRegs portion. 4488 for (const SCEV *Reg : F.BaseRegs) { 4489 assert(!Reg->isZero() && "Zero allocated in a base register!"); 4490 4491 // If we're expanding for a post-inc user, make the post-inc adjustment. 4492 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 4493 Reg = TransformForPostIncUse(Denormalize, Reg, 4494 LF.UserInst, LF.OperandValToReplace, 4495 Loops, SE, DT); 4496 4497 Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr, &*IP))); 4498 } 4499 4500 // Expand the ScaledReg portion. 4501 Value *ICmpScaledV = nullptr; 4502 if (F.Scale != 0) { 4503 const SCEV *ScaledS = F.ScaledReg; 4504 4505 // If we're expanding for a post-inc user, make the post-inc adjustment. 4506 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 4507 ScaledS = TransformForPostIncUse(Denormalize, ScaledS, 4508 LF.UserInst, LF.OperandValToReplace, 4509 Loops, SE, DT); 4510 4511 if (LU.Kind == LSRUse::ICmpZero) { 4512 // Expand ScaleReg as if it was part of the base regs. 4513 if (F.Scale == 1) 4514 Ops.push_back( 4515 SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr, &*IP))); 4516 else { 4517 // An interesting way of "folding" with an icmp is to use a negated 4518 // scale, which we'll implement by inserting it into the other operand 4519 // of the icmp. 4520 assert(F.Scale == -1 && 4521 "The only scale supported by ICmpZero uses is -1!"); 4522 ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr, &*IP); 4523 } 4524 } else { 4525 // Otherwise just expand the scaled register and an explicit scale, 4526 // which is expected to be matched as part of the address. 4527 4528 // Flush the operand list to suppress SCEVExpander hoisting address modes. 4529 // Unless the addressing mode will not be folded. 4530 if (!Ops.empty() && LU.Kind == LSRUse::Address && 4531 isAMCompletelyFolded(TTI, LU, F)) { 4532 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, &*IP); 4533 Ops.clear(); 4534 Ops.push_back(SE.getUnknown(FullV)); 4535 } 4536 ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr, &*IP)); 4537 if (F.Scale != 1) 4538 ScaledS = 4539 SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale)); 4540 Ops.push_back(ScaledS); 4541 } 4542 } 4543 4544 // Expand the GV portion. 4545 if (F.BaseGV) { 4546 // Flush the operand list to suppress SCEVExpander hoisting. 4547 if (!Ops.empty()) { 4548 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, &*IP); 4549 Ops.clear(); 4550 Ops.push_back(SE.getUnknown(FullV)); 4551 } 4552 Ops.push_back(SE.getUnknown(F.BaseGV)); 4553 } 4554 4555 // Flush the operand list to suppress SCEVExpander hoisting of both folded and 4556 // unfolded offsets. LSR assumes they both live next to their uses. 4557 if (!Ops.empty()) { 4558 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, &*IP); 4559 Ops.clear(); 4560 Ops.push_back(SE.getUnknown(FullV)); 4561 } 4562 4563 // Expand the immediate portion. 4564 int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset; 4565 if (Offset != 0) { 4566 if (LU.Kind == LSRUse::ICmpZero) { 4567 // The other interesting way of "folding" with an ICmpZero is to use a 4568 // negated immediate. 4569 if (!ICmpScaledV) 4570 ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset); 4571 else { 4572 Ops.push_back(SE.getUnknown(ICmpScaledV)); 4573 ICmpScaledV = ConstantInt::get(IntTy, Offset); 4574 } 4575 } else { 4576 // Just add the immediate values. These again are expected to be matched 4577 // as part of the address. 4578 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset))); 4579 } 4580 } 4581 4582 // Expand the unfolded offset portion. 4583 int64_t UnfoldedOffset = F.UnfoldedOffset; 4584 if (UnfoldedOffset != 0) { 4585 // Just add the immediate values. 4586 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, 4587 UnfoldedOffset))); 4588 } 4589 4590 // Emit instructions summing all the operands. 4591 const SCEV *FullS = Ops.empty() ? 4592 SE.getConstant(IntTy, 0) : 4593 SE.getAddExpr(Ops); 4594 Value *FullV = Rewriter.expandCodeFor(FullS, Ty, &*IP); 4595 4596 // We're done expanding now, so reset the rewriter. 4597 Rewriter.clearPostInc(); 4598 4599 // An ICmpZero Formula represents an ICmp which we're handling as a 4600 // comparison against zero. Now that we've expanded an expression for that 4601 // form, update the ICmp's other operand. 4602 if (LU.Kind == LSRUse::ICmpZero) { 4603 ICmpInst *CI = cast<ICmpInst>(LF.UserInst); 4604 DeadInsts.emplace_back(CI->getOperand(1)); 4605 assert(!F.BaseGV && "ICmp does not support folding a global value and " 4606 "a scale at the same time!"); 4607 if (F.Scale == -1) { 4608 if (ICmpScaledV->getType() != OpTy) { 4609 Instruction *Cast = 4610 CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false, 4611 OpTy, false), 4612 ICmpScaledV, OpTy, "tmp", CI); 4613 ICmpScaledV = Cast; 4614 } 4615 CI->setOperand(1, ICmpScaledV); 4616 } else { 4617 // A scale of 1 means that the scale has been expanded as part of the 4618 // base regs. 4619 assert((F.Scale == 0 || F.Scale == 1) && 4620 "ICmp does not support folding a global value and " 4621 "a scale at the same time!"); 4622 Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy), 4623 -(uint64_t)Offset); 4624 if (C->getType() != OpTy) 4625 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 4626 OpTy, false), 4627 C, OpTy); 4628 4629 CI->setOperand(1, C); 4630 } 4631 } 4632 4633 return FullV; 4634 } 4635 4636 /// Helper for Rewrite. PHI nodes are special because the use of their operands 4637 /// effectively happens in their predecessor blocks, so the expression may need 4638 /// to be expanded in multiple places. 4639 void LSRInstance::RewriteForPHI(PHINode *PN, 4640 const LSRFixup &LF, 4641 const Formula &F, 4642 SCEVExpander &Rewriter, 4643 SmallVectorImpl<WeakVH> &DeadInsts) const { 4644 DenseMap<BasicBlock *, Value *> Inserted; 4645 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 4646 if (PN->getIncomingValue(i) == LF.OperandValToReplace) { 4647 BasicBlock *BB = PN->getIncomingBlock(i); 4648 4649 // If this is a critical edge, split the edge so that we do not insert 4650 // the code on all predecessor/successor paths. We do this unless this 4651 // is the canonical backedge for this loop, which complicates post-inc 4652 // users. 4653 if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 && 4654 !isa<IndirectBrInst>(BB->getTerminator())) { 4655 BasicBlock *Parent = PN->getParent(); 4656 Loop *PNLoop = LI.getLoopFor(Parent); 4657 if (!PNLoop || Parent != PNLoop->getHeader()) { 4658 // Split the critical edge. 4659 BasicBlock *NewBB = nullptr; 4660 if (!Parent->isLandingPad()) { 4661 NewBB = SplitCriticalEdge(BB, Parent, 4662 CriticalEdgeSplittingOptions(&DT, &LI) 4663 .setMergeIdenticalEdges() 4664 .setDontDeleteUselessPHIs()); 4665 } else { 4666 SmallVector<BasicBlock*, 2> NewBBs; 4667 SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI); 4668 NewBB = NewBBs[0]; 4669 } 4670 // If NewBB==NULL, then SplitCriticalEdge refused to split because all 4671 // phi predecessors are identical. The simple thing to do is skip 4672 // splitting in this case rather than complicate the API. 4673 if (NewBB) { 4674 // If PN is outside of the loop and BB is in the loop, we want to 4675 // move the block to be immediately before the PHI block, not 4676 // immediately after BB. 4677 if (L->contains(BB) && !L->contains(PN)) 4678 NewBB->moveBefore(PN->getParent()); 4679 4680 // Splitting the edge can reduce the number of PHI entries we have. 4681 e = PN->getNumIncomingValues(); 4682 BB = NewBB; 4683 i = PN->getBasicBlockIndex(BB); 4684 } 4685 } 4686 } 4687 4688 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair = 4689 Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr))); 4690 if (!Pair.second) 4691 PN->setIncomingValue(i, Pair.first->second); 4692 else { 4693 Value *FullV = Expand(LF, F, BB->getTerminator()->getIterator(), 4694 Rewriter, DeadInsts); 4695 4696 // If this is reuse-by-noop-cast, insert the noop cast. 4697 Type *OpTy = LF.OperandValToReplace->getType(); 4698 if (FullV->getType() != OpTy) 4699 FullV = 4700 CastInst::Create(CastInst::getCastOpcode(FullV, false, 4701 OpTy, false), 4702 FullV, LF.OperandValToReplace->getType(), 4703 "tmp", BB->getTerminator()); 4704 4705 PN->setIncomingValue(i, FullV); 4706 Pair.first->second = FullV; 4707 } 4708 } 4709 } 4710 4711 /// Emit instructions for the leading candidate expression for this LSRUse (this 4712 /// is called "expanding"), and update the UserInst to reference the newly 4713 /// expanded value. 4714 void LSRInstance::Rewrite(const LSRFixup &LF, 4715 const Formula &F, 4716 SCEVExpander &Rewriter, 4717 SmallVectorImpl<WeakVH> &DeadInsts) const { 4718 // First, find an insertion point that dominates UserInst. For PHI nodes, 4719 // find the nearest block which dominates all the relevant uses. 4720 if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) { 4721 RewriteForPHI(PN, LF, F, Rewriter, DeadInsts); 4722 } else { 4723 Value *FullV = 4724 Expand(LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts); 4725 4726 // If this is reuse-by-noop-cast, insert the noop cast. 4727 Type *OpTy = LF.OperandValToReplace->getType(); 4728 if (FullV->getType() != OpTy) { 4729 Instruction *Cast = 4730 CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false), 4731 FullV, OpTy, "tmp", LF.UserInst); 4732 FullV = Cast; 4733 } 4734 4735 // Update the user. ICmpZero is handled specially here (for now) because 4736 // Expand may have updated one of the operands of the icmp already, and 4737 // its new value may happen to be equal to LF.OperandValToReplace, in 4738 // which case doing replaceUsesOfWith leads to replacing both operands 4739 // with the same value. TODO: Reorganize this. 4740 if (Uses[LF.LUIdx].Kind == LSRUse::ICmpZero) 4741 LF.UserInst->setOperand(0, FullV); 4742 else 4743 LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV); 4744 } 4745 4746 DeadInsts.emplace_back(LF.OperandValToReplace); 4747 } 4748 4749 /// Rewrite all the fixup locations with new values, following the chosen 4750 /// solution. 4751 void LSRInstance::ImplementSolution( 4752 const SmallVectorImpl<const Formula *> &Solution) { 4753 // Keep track of instructions we may have made dead, so that 4754 // we can remove them after we are done working. 4755 SmallVector<WeakVH, 16> DeadInsts; 4756 4757 SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(), 4758 "lsr"); 4759 #ifndef NDEBUG 4760 Rewriter.setDebugType(DEBUG_TYPE); 4761 #endif 4762 Rewriter.disableCanonicalMode(); 4763 Rewriter.enableLSRMode(); 4764 Rewriter.setIVIncInsertPos(L, IVIncInsertPos); 4765 4766 // Mark phi nodes that terminate chains so the expander tries to reuse them. 4767 for (const IVChain &Chain : IVChainVec) { 4768 if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst())) 4769 Rewriter.setChainedPhi(PN); 4770 } 4771 4772 // Expand the new value definitions and update the users. 4773 for (const LSRFixup &Fixup : Fixups) { 4774 Rewrite(Fixup, *Solution[Fixup.LUIdx], Rewriter, DeadInsts); 4775 4776 Changed = true; 4777 } 4778 4779 for (const IVChain &Chain : IVChainVec) { 4780 GenerateIVChain(Chain, Rewriter, DeadInsts); 4781 Changed = true; 4782 } 4783 // Clean up after ourselves. This must be done before deleting any 4784 // instructions. 4785 Rewriter.clear(); 4786 4787 Changed |= DeleteTriviallyDeadInstructions(DeadInsts); 4788 } 4789 4790 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, 4791 DominatorTree &DT, LoopInfo &LI, 4792 const TargetTransformInfo &TTI) 4793 : IU(IU), SE(SE), DT(DT), LI(LI), TTI(TTI), L(L), Changed(false), 4794 IVIncInsertPos(nullptr) { 4795 // If LoopSimplify form is not available, stay out of trouble. 4796 if (!L->isLoopSimplifyForm()) 4797 return; 4798 4799 // If there's no interesting work to be done, bail early. 4800 if (IU.empty()) return; 4801 4802 // If there's too much analysis to be done, bail early. We won't be able to 4803 // model the problem anyway. 4804 unsigned NumUsers = 0; 4805 for (const IVStrideUse &U : IU) { 4806 if (++NumUsers > MaxIVUsers) { 4807 (void)U; 4808 DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U << "\n"); 4809 return; 4810 } 4811 // Bail out if we have a PHI on an EHPad that gets a value from a 4812 // CatchSwitchInst. Because the CatchSwitchInst cannot be split, there is 4813 // no good place to stick any instructions. 4814 if (auto *PN = dyn_cast<PHINode>(U.getUser())) { 4815 auto *FirstNonPHI = PN->getParent()->getFirstNonPHI(); 4816 if (isa<FuncletPadInst>(FirstNonPHI) || 4817 isa<CatchSwitchInst>(FirstNonPHI)) 4818 for (BasicBlock *PredBB : PN->blocks()) 4819 if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI())) 4820 return; 4821 } 4822 } 4823 4824 #ifndef NDEBUG 4825 // All dominating loops must have preheaders, or SCEVExpander may not be able 4826 // to materialize an AddRecExpr whose Start is an outer AddRecExpr. 4827 // 4828 // IVUsers analysis should only create users that are dominated by simple loop 4829 // headers. Since this loop should dominate all of its users, its user list 4830 // should be empty if this loop itself is not within a simple loop nest. 4831 for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader()); 4832 Rung; Rung = Rung->getIDom()) { 4833 BasicBlock *BB = Rung->getBlock(); 4834 const Loop *DomLoop = LI.getLoopFor(BB); 4835 if (DomLoop && DomLoop->getHeader() == BB) { 4836 assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest"); 4837 } 4838 } 4839 #endif // DEBUG 4840 4841 DEBUG(dbgs() << "\nLSR on loop "; 4842 L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false); 4843 dbgs() << ":\n"); 4844 4845 // First, perform some low-level loop optimizations. 4846 OptimizeShadowIV(); 4847 OptimizeLoopTermCond(); 4848 4849 // If loop preparation eliminates all interesting IV users, bail. 4850 if (IU.empty()) return; 4851 4852 // Skip nested loops until we can model them better with formulae. 4853 if (!L->empty()) { 4854 DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n"); 4855 return; 4856 } 4857 4858 // Start collecting data and preparing for the solver. 4859 CollectChains(); 4860 CollectInterestingTypesAndFactors(); 4861 CollectFixupsAndInitialFormulae(); 4862 CollectLoopInvariantFixupsAndFormulae(); 4863 4864 assert(!Uses.empty() && "IVUsers reported at least one use"); 4865 DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n"; 4866 print_uses(dbgs())); 4867 4868 // Now use the reuse data to generate a bunch of interesting ways 4869 // to formulate the values needed for the uses. 4870 GenerateAllReuseFormulae(); 4871 4872 FilterOutUndesirableDedicatedRegisters(); 4873 NarrowSearchSpaceUsingHeuristics(); 4874 4875 SmallVector<const Formula *, 8> Solution; 4876 Solve(Solution); 4877 4878 // Release memory that is no longer needed. 4879 Factors.clear(); 4880 Types.clear(); 4881 RegUses.clear(); 4882 4883 if (Solution.empty()) 4884 return; 4885 4886 #ifndef NDEBUG 4887 // Formulae should be legal. 4888 for (const LSRUse &LU : Uses) { 4889 for (const Formula &F : LU.Formulae) 4890 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 4891 F) && "Illegal formula generated!"); 4892 }; 4893 #endif 4894 4895 // Now that we've decided what we want, make it so. 4896 ImplementSolution(Solution); 4897 } 4898 4899 void LSRInstance::print_factors_and_types(raw_ostream &OS) const { 4900 if (Factors.empty() && Types.empty()) return; 4901 4902 OS << "LSR has identified the following interesting factors and types: "; 4903 bool First = true; 4904 4905 for (int64_t Factor : Factors) { 4906 if (!First) OS << ", "; 4907 First = false; 4908 OS << '*' << Factor; 4909 } 4910 4911 for (Type *Ty : Types) { 4912 if (!First) OS << ", "; 4913 First = false; 4914 OS << '(' << *Ty << ')'; 4915 } 4916 OS << '\n'; 4917 } 4918 4919 void LSRInstance::print_fixups(raw_ostream &OS) const { 4920 OS << "LSR is examining the following fixup sites:\n"; 4921 for (const LSRFixup &LF : Fixups) { 4922 dbgs() << " "; 4923 LF.print(OS); 4924 OS << '\n'; 4925 } 4926 } 4927 4928 void LSRInstance::print_uses(raw_ostream &OS) const { 4929 OS << "LSR is examining the following uses:\n"; 4930 for (const LSRUse &LU : Uses) { 4931 dbgs() << " "; 4932 LU.print(OS); 4933 OS << '\n'; 4934 for (const Formula &F : LU.Formulae) { 4935 OS << " "; 4936 F.print(OS); 4937 OS << '\n'; 4938 } 4939 } 4940 } 4941 4942 void LSRInstance::print(raw_ostream &OS) const { 4943 print_factors_and_types(OS); 4944 print_fixups(OS); 4945 print_uses(OS); 4946 } 4947 4948 LLVM_DUMP_METHOD 4949 void LSRInstance::dump() const { 4950 print(errs()); errs() << '\n'; 4951 } 4952 4953 namespace { 4954 4955 class LoopStrengthReduce : public LoopPass { 4956 public: 4957 static char ID; // Pass ID, replacement for typeid 4958 LoopStrengthReduce(); 4959 4960 private: 4961 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 4962 void getAnalysisUsage(AnalysisUsage &AU) const override; 4963 }; 4964 4965 } 4966 4967 char LoopStrengthReduce::ID = 0; 4968 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce", 4969 "Loop Strength Reduction", false, false) 4970 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 4971 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 4972 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 4973 INITIALIZE_PASS_DEPENDENCY(IVUsers) 4974 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 4975 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 4976 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce", 4977 "Loop Strength Reduction", false, false) 4978 4979 4980 Pass *llvm::createLoopStrengthReducePass() { 4981 return new LoopStrengthReduce(); 4982 } 4983 4984 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) { 4985 initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry()); 4986 } 4987 4988 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const { 4989 // We split critical edges, so we change the CFG. However, we do update 4990 // many analyses if they are around. 4991 AU.addPreservedID(LoopSimplifyID); 4992 4993 AU.addRequired<LoopInfoWrapperPass>(); 4994 AU.addPreserved<LoopInfoWrapperPass>(); 4995 AU.addRequiredID(LoopSimplifyID); 4996 AU.addRequired<DominatorTreeWrapperPass>(); 4997 AU.addPreserved<DominatorTreeWrapperPass>(); 4998 AU.addRequired<ScalarEvolutionWrapperPass>(); 4999 AU.addPreserved<ScalarEvolutionWrapperPass>(); 5000 // Requiring LoopSimplify a second time here prevents IVUsers from running 5001 // twice, since LoopSimplify was invalidated by running ScalarEvolution. 5002 AU.addRequiredID(LoopSimplifyID); 5003 AU.addRequired<IVUsers>(); 5004 AU.addPreserved<IVUsers>(); 5005 AU.addRequired<TargetTransformInfoWrapperPass>(); 5006 } 5007 5008 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) { 5009 if (skipLoop(L)) 5010 return false; 5011 5012 auto &IU = getAnalysis<IVUsers>(); 5013 auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 5014 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 5015 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 5016 const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI( 5017 *L->getHeader()->getParent()); 5018 bool Changed = false; 5019 5020 // Run the main LSR transformation. 5021 Changed |= LSRInstance(L, IU, SE, DT, LI, TTI).getChanged(); 5022 5023 // Remove any extra phis created by processing inner loops. 5024 Changed |= DeleteDeadPHIs(L->getHeader()); 5025 if (EnablePhiElim && L->isLoopSimplifyForm()) { 5026 SmallVector<WeakVH, 16> DeadInsts; 5027 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 5028 SCEVExpander Rewriter(getAnalysis<ScalarEvolutionWrapperPass>().getSE(), DL, 5029 "lsr"); 5030 #ifndef NDEBUG 5031 Rewriter.setDebugType(DEBUG_TYPE); 5032 #endif 5033 unsigned numFolded = Rewriter.replaceCongruentIVs( 5034 L, &getAnalysis<DominatorTreeWrapperPass>().getDomTree(), DeadInsts, 5035 &getAnalysis<TargetTransformInfoWrapperPass>().getTTI( 5036 *L->getHeader()->getParent())); 5037 if (numFolded) { 5038 Changed = true; 5039 DeleteTriviallyDeadInstructions(DeadInsts); 5040 DeleteDeadPHIs(L->getHeader()); 5041 } 5042 } 5043 return Changed; 5044 } 5045