1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This transformation analyzes and transforms the induction variables (and
11 // computations derived from them) into forms suitable for efficient execution
12 // on the target.
13 //
14 // This pass performs a strength reduction on array references inside loops that
15 // have as one or more of their components the loop induction variable, it
16 // rewrites expressions to take advantage of scaled-index addressing modes
17 // available on the target, and it performs a variety of other optimizations
18 // related to loop induction variables.
19 //
20 // Terminology note: this code has a lot of handling for "post-increment" or
21 // "post-inc" users. This is not talking about post-increment addressing modes;
22 // it is instead talking about code like this:
23 //
24 //   %i = phi [ 0, %entry ], [ %i.next, %latch ]
25 //   ...
26 //   %i.next = add %i, 1
27 //   %c = icmp eq %i.next, %n
28 //
29 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
30 // it's useful to think about these as the same register, with some uses using
31 // the value of the register before the add and some using it after. In this
32 // example, the icmp is a post-increment user, since it uses %i.next, which is
33 // the value of the induction variable after the increment. The other common
34 // case of post-increment users is users outside the loop.
35 //
36 // TODO: More sophistication in the way Formulae are generated and filtered.
37 //
38 // TODO: Handle multiple loops at a time.
39 //
40 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead
41 //       of a GlobalValue?
42 //
43 // TODO: When truncation is free, truncate ICmp users' operands to make it a
44 //       smaller encoding (on x86 at least).
45 //
46 // TODO: When a negated register is used by an add (such as in a list of
47 //       multiple base registers, or as the increment expression in an addrec),
48 //       we may not actually need both reg and (-1 * reg) in registers; the
49 //       negation can be implemented by using a sub instead of an add. The
50 //       lack of support for taking this into consideration when making
51 //       register pressure decisions is partly worked around by the "Special"
52 //       use kind.
53 //
54 //===----------------------------------------------------------------------===//
55 
56 #include "llvm/Transforms/Scalar.h"
57 #include "llvm/ADT/DenseSet.h"
58 #include "llvm/ADT/Hashing.h"
59 #include "llvm/ADT/STLExtras.h"
60 #include "llvm/ADT/SetVector.h"
61 #include "llvm/ADT/SmallBitVector.h"
62 #include "llvm/Analysis/IVUsers.h"
63 #include "llvm/Analysis/LoopPass.h"
64 #include "llvm/Analysis/ScalarEvolutionExpander.h"
65 #include "llvm/Analysis/TargetTransformInfo.h"
66 #include "llvm/IR/Constants.h"
67 #include "llvm/IR/DerivedTypes.h"
68 #include "llvm/IR/Dominators.h"
69 #include "llvm/IR/Instructions.h"
70 #include "llvm/IR/IntrinsicInst.h"
71 #include "llvm/IR/Module.h"
72 #include "llvm/IR/ValueHandle.h"
73 #include "llvm/Support/CommandLine.h"
74 #include "llvm/Support/Debug.h"
75 #include "llvm/Support/raw_ostream.h"
76 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
77 #include "llvm/Transforms/Utils/Local.h"
78 #include <algorithm>
79 using namespace llvm;
80 
81 #define DEBUG_TYPE "loop-reduce"
82 
83 /// MaxIVUsers is an arbitrary threshold that provides an early opportunitiy for
84 /// bail out. This threshold is far beyond the number of users that LSR can
85 /// conceivably solve, so it should not affect generated code, but catches the
86 /// worst cases before LSR burns too much compile time and stack space.
87 static const unsigned MaxIVUsers = 200;
88 
89 // Temporary flag to cleanup congruent phis after LSR phi expansion.
90 // It's currently disabled until we can determine whether it's truly useful or
91 // not. The flag should be removed after the v3.0 release.
92 // This is now needed for ivchains.
93 static cl::opt<bool> EnablePhiElim(
94   "enable-lsr-phielim", cl::Hidden, cl::init(true),
95   cl::desc("Enable LSR phi elimination"));
96 
97 #ifndef NDEBUG
98 // Stress test IV chain generation.
99 static cl::opt<bool> StressIVChain(
100   "stress-ivchain", cl::Hidden, cl::init(false),
101   cl::desc("Stress test LSR IV chains"));
102 #else
103 static bool StressIVChain = false;
104 #endif
105 
106 namespace {
107 
108 struct MemAccessTy {
109   /// Used in situations where the accessed memory type is unknown.
110   static const unsigned UnknownAddressSpace = ~0u;
111 
112   Type *MemTy;
113   unsigned AddrSpace;
114 
115   MemAccessTy() : MemTy(nullptr), AddrSpace(UnknownAddressSpace) {}
116 
117   MemAccessTy(Type *Ty, unsigned AS) :
118     MemTy(Ty), AddrSpace(AS) {}
119 
120   bool operator==(MemAccessTy Other) const {
121     return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace;
122   }
123 
124   bool operator!=(MemAccessTy Other) const { return !(*this == Other); }
125 
126   static MemAccessTy getUnknown(LLVMContext &Ctx) {
127     return MemAccessTy(Type::getVoidTy(Ctx), UnknownAddressSpace);
128   }
129 };
130 
131 /// This class holds data which is used to order reuse candidates.
132 class RegSortData {
133 public:
134   /// This represents the set of LSRUse indices which reference
135   /// a particular register.
136   SmallBitVector UsedByIndices;
137 
138   void print(raw_ostream &OS) const;
139   void dump() const;
140 };
141 
142 }
143 
144 void RegSortData::print(raw_ostream &OS) const {
145   OS << "[NumUses=" << UsedByIndices.count() << ']';
146 }
147 
148 LLVM_DUMP_METHOD
149 void RegSortData::dump() const {
150   print(errs()); errs() << '\n';
151 }
152 
153 namespace {
154 
155 /// Map register candidates to information about how they are used.
156 class RegUseTracker {
157   typedef DenseMap<const SCEV *, RegSortData> RegUsesTy;
158 
159   RegUsesTy RegUsesMap;
160   SmallVector<const SCEV *, 16> RegSequence;
161 
162 public:
163   void countRegister(const SCEV *Reg, size_t LUIdx);
164   void dropRegister(const SCEV *Reg, size_t LUIdx);
165   void swapAndDropUse(size_t LUIdx, size_t LastLUIdx);
166 
167   bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
168 
169   const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
170 
171   void clear();
172 
173   typedef SmallVectorImpl<const SCEV *>::iterator iterator;
174   typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator;
175   iterator begin() { return RegSequence.begin(); }
176   iterator end()   { return RegSequence.end(); }
177   const_iterator begin() const { return RegSequence.begin(); }
178   const_iterator end() const   { return RegSequence.end(); }
179 };
180 
181 }
182 
183 void
184 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) {
185   std::pair<RegUsesTy::iterator, bool> Pair =
186     RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
187   RegSortData &RSD = Pair.first->second;
188   if (Pair.second)
189     RegSequence.push_back(Reg);
190   RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
191   RSD.UsedByIndices.set(LUIdx);
192 }
193 
194 void
195 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) {
196   RegUsesTy::iterator It = RegUsesMap.find(Reg);
197   assert(It != RegUsesMap.end());
198   RegSortData &RSD = It->second;
199   assert(RSD.UsedByIndices.size() > LUIdx);
200   RSD.UsedByIndices.reset(LUIdx);
201 }
202 
203 void
204 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) {
205   assert(LUIdx <= LastLUIdx);
206 
207   // Update RegUses. The data structure is not optimized for this purpose;
208   // we must iterate through it and update each of the bit vectors.
209   for (auto &Pair : RegUsesMap) {
210     SmallBitVector &UsedByIndices = Pair.second.UsedByIndices;
211     if (LUIdx < UsedByIndices.size())
212       UsedByIndices[LUIdx] =
213         LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : 0;
214     UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx));
215   }
216 }
217 
218 bool
219 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
220   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
221   if (I == RegUsesMap.end())
222     return false;
223   const SmallBitVector &UsedByIndices = I->second.UsedByIndices;
224   int i = UsedByIndices.find_first();
225   if (i == -1) return false;
226   if ((size_t)i != LUIdx) return true;
227   return UsedByIndices.find_next(i) != -1;
228 }
229 
230 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
231   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
232   assert(I != RegUsesMap.end() && "Unknown register!");
233   return I->second.UsedByIndices;
234 }
235 
236 void RegUseTracker::clear() {
237   RegUsesMap.clear();
238   RegSequence.clear();
239 }
240 
241 namespace {
242 
243 /// This class holds information that describes a formula for computing
244 /// satisfying a use. It may include broken-out immediates and scaled registers.
245 struct Formula {
246   /// Global base address used for complex addressing.
247   GlobalValue *BaseGV;
248 
249   /// Base offset for complex addressing.
250   int64_t BaseOffset;
251 
252   /// Whether any complex addressing has a base register.
253   bool HasBaseReg;
254 
255   /// The scale of any complex addressing.
256   int64_t Scale;
257 
258   /// The list of "base" registers for this use. When this is non-empty. The
259   /// canonical representation of a formula is
260   /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and
261   /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty().
262   /// #1 enforces that the scaled register is always used when at least two
263   /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2.
264   /// #2 enforces that 1 * reg is reg.
265   /// This invariant can be temporarly broken while building a formula.
266   /// However, every formula inserted into the LSRInstance must be in canonical
267   /// form.
268   SmallVector<const SCEV *, 4> BaseRegs;
269 
270   /// The 'scaled' register for this use. This should be non-null when Scale is
271   /// not zero.
272   const SCEV *ScaledReg;
273 
274   /// An additional constant offset which added near the use. This requires a
275   /// temporary register, but the offset itself can live in an add immediate
276   /// field rather than a register.
277   int64_t UnfoldedOffset;
278 
279   Formula()
280       : BaseGV(nullptr), BaseOffset(0), HasBaseReg(false), Scale(0),
281         ScaledReg(nullptr), UnfoldedOffset(0) {}
282 
283   void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE);
284 
285   bool isCanonical() const;
286 
287   void canonicalize();
288 
289   bool unscale();
290 
291   size_t getNumRegs() const;
292   Type *getType() const;
293 
294   void deleteBaseReg(const SCEV *&S);
295 
296   bool referencesReg(const SCEV *S) const;
297   bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
298                                   const RegUseTracker &RegUses) const;
299 
300   void print(raw_ostream &OS) const;
301   void dump() const;
302 };
303 
304 }
305 
306 /// Recursion helper for initialMatch.
307 static void DoInitialMatch(const SCEV *S, Loop *L,
308                            SmallVectorImpl<const SCEV *> &Good,
309                            SmallVectorImpl<const SCEV *> &Bad,
310                            ScalarEvolution &SE) {
311   // Collect expressions which properly dominate the loop header.
312   if (SE.properlyDominates(S, L->getHeader())) {
313     Good.push_back(S);
314     return;
315   }
316 
317   // Look at add operands.
318   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
319     for (const SCEV *S : Add->operands())
320       DoInitialMatch(S, L, Good, Bad, SE);
321     return;
322   }
323 
324   // Look at addrec operands.
325   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
326     if (!AR->getStart()->isZero()) {
327       DoInitialMatch(AR->getStart(), L, Good, Bad, SE);
328       DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
329                                       AR->getStepRecurrence(SE),
330                                       // FIXME: AR->getNoWrapFlags()
331                                       AR->getLoop(), SCEV::FlagAnyWrap),
332                      L, Good, Bad, SE);
333       return;
334     }
335 
336   // Handle a multiplication by -1 (negation) if it didn't fold.
337   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
338     if (Mul->getOperand(0)->isAllOnesValue()) {
339       SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end());
340       const SCEV *NewMul = SE.getMulExpr(Ops);
341 
342       SmallVector<const SCEV *, 4> MyGood;
343       SmallVector<const SCEV *, 4> MyBad;
344       DoInitialMatch(NewMul, L, MyGood, MyBad, SE);
345       const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
346         SE.getEffectiveSCEVType(NewMul->getType())));
347       for (const SCEV *S : MyGood)
348         Good.push_back(SE.getMulExpr(NegOne, S));
349       for (const SCEV *S : MyBad)
350         Bad.push_back(SE.getMulExpr(NegOne, S));
351       return;
352     }
353 
354   // Ok, we can't do anything interesting. Just stuff the whole thing into a
355   // register and hope for the best.
356   Bad.push_back(S);
357 }
358 
359 /// Incorporate loop-variant parts of S into this Formula, attempting to keep
360 /// all loop-invariant and loop-computable values in a single base register.
361 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) {
362   SmallVector<const SCEV *, 4> Good;
363   SmallVector<const SCEV *, 4> Bad;
364   DoInitialMatch(S, L, Good, Bad, SE);
365   if (!Good.empty()) {
366     const SCEV *Sum = SE.getAddExpr(Good);
367     if (!Sum->isZero())
368       BaseRegs.push_back(Sum);
369     HasBaseReg = true;
370   }
371   if (!Bad.empty()) {
372     const SCEV *Sum = SE.getAddExpr(Bad);
373     if (!Sum->isZero())
374       BaseRegs.push_back(Sum);
375     HasBaseReg = true;
376   }
377   canonicalize();
378 }
379 
380 /// \brief Check whether or not this formula statisfies the canonical
381 /// representation.
382 /// \see Formula::BaseRegs.
383 bool Formula::isCanonical() const {
384   if (ScaledReg)
385     return Scale != 1 || !BaseRegs.empty();
386   return BaseRegs.size() <= 1;
387 }
388 
389 /// \brief Helper method to morph a formula into its canonical representation.
390 /// \see Formula::BaseRegs.
391 /// Every formula having more than one base register, must use the ScaledReg
392 /// field. Otherwise, we would have to do special cases everywhere in LSR
393 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ...
394 /// On the other hand, 1*reg should be canonicalized into reg.
395 void Formula::canonicalize() {
396   if (isCanonical())
397     return;
398   // So far we did not need this case. This is easy to implement but it is
399   // useless to maintain dead code. Beside it could hurt compile time.
400   assert(!BaseRegs.empty() && "1*reg => reg, should not be needed.");
401   // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg.
402   ScaledReg = BaseRegs.back();
403   BaseRegs.pop_back();
404   Scale = 1;
405   size_t BaseRegsSize = BaseRegs.size();
406   size_t Try = 0;
407   // If ScaledReg is an invariant, try to find a variant expression.
408   while (Try < BaseRegsSize && !isa<SCEVAddRecExpr>(ScaledReg))
409     std::swap(ScaledReg, BaseRegs[Try++]);
410 }
411 
412 /// \brief Get rid of the scale in the formula.
413 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2.
414 /// \return true if it was possible to get rid of the scale, false otherwise.
415 /// \note After this operation the formula may not be in the canonical form.
416 bool Formula::unscale() {
417   if (Scale != 1)
418     return false;
419   Scale = 0;
420   BaseRegs.push_back(ScaledReg);
421   ScaledReg = nullptr;
422   return true;
423 }
424 
425 /// Return the total number of register operands used by this formula. This does
426 /// not include register uses implied by non-constant addrec strides.
427 size_t Formula::getNumRegs() const {
428   return !!ScaledReg + BaseRegs.size();
429 }
430 
431 /// Return the type of this formula, if it has one, or null otherwise. This type
432 /// is meaningless except for the bit size.
433 Type *Formula::getType() const {
434   return !BaseRegs.empty() ? BaseRegs.front()->getType() :
435          ScaledReg ? ScaledReg->getType() :
436          BaseGV ? BaseGV->getType() :
437          nullptr;
438 }
439 
440 /// Delete the given base reg from the BaseRegs list.
441 void Formula::deleteBaseReg(const SCEV *&S) {
442   if (&S != &BaseRegs.back())
443     std::swap(S, BaseRegs.back());
444   BaseRegs.pop_back();
445 }
446 
447 /// Test if this formula references the given register.
448 bool Formula::referencesReg(const SCEV *S) const {
449   return S == ScaledReg ||
450          std::find(BaseRegs.begin(), BaseRegs.end(), S) != BaseRegs.end();
451 }
452 
453 /// Test whether this formula uses registers which are used by uses other than
454 /// the use with the given index.
455 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
456                                          const RegUseTracker &RegUses) const {
457   if (ScaledReg)
458     if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
459       return true;
460   for (const SCEV *BaseReg : BaseRegs)
461     if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx))
462       return true;
463   return false;
464 }
465 
466 void Formula::print(raw_ostream &OS) const {
467   bool First = true;
468   if (BaseGV) {
469     if (!First) OS << " + "; else First = false;
470     BaseGV->printAsOperand(OS, /*PrintType=*/false);
471   }
472   if (BaseOffset != 0) {
473     if (!First) OS << " + "; else First = false;
474     OS << BaseOffset;
475   }
476   for (const SCEV *BaseReg : BaseRegs) {
477     if (!First) OS << " + "; else First = false;
478     OS << "reg(" << *BaseReg << ')';
479   }
480   if (HasBaseReg && BaseRegs.empty()) {
481     if (!First) OS << " + "; else First = false;
482     OS << "**error: HasBaseReg**";
483   } else if (!HasBaseReg && !BaseRegs.empty()) {
484     if (!First) OS << " + "; else First = false;
485     OS << "**error: !HasBaseReg**";
486   }
487   if (Scale != 0) {
488     if (!First) OS << " + "; else First = false;
489     OS << Scale << "*reg(";
490     if (ScaledReg)
491       OS << *ScaledReg;
492     else
493       OS << "<unknown>";
494     OS << ')';
495   }
496   if (UnfoldedOffset != 0) {
497     if (!First) OS << " + ";
498     OS << "imm(" << UnfoldedOffset << ')';
499   }
500 }
501 
502 LLVM_DUMP_METHOD
503 void Formula::dump() const {
504   print(errs()); errs() << '\n';
505 }
506 
507 /// Return true if the given addrec can be sign-extended without changing its
508 /// value.
509 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
510   Type *WideTy =
511     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
512   return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
513 }
514 
515 /// Return true if the given add can be sign-extended without changing its
516 /// value.
517 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
518   Type *WideTy =
519     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
520   return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
521 }
522 
523 /// Return true if the given mul can be sign-extended without changing its
524 /// value.
525 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) {
526   Type *WideTy =
527     IntegerType::get(SE.getContext(),
528                      SE.getTypeSizeInBits(M->getType()) * M->getNumOperands());
529   return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy));
530 }
531 
532 /// Return an expression for LHS /s RHS, if it can be determined and if the
533 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits
534 /// is true, expressions like (X * Y) /s Y are simplified to Y, ignoring that
535 /// the multiplication may overflow, which is useful when the result will be
536 /// used in a context where the most significant bits are ignored.
537 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
538                                 ScalarEvolution &SE,
539                                 bool IgnoreSignificantBits = false) {
540   // Handle the trivial case, which works for any SCEV type.
541   if (LHS == RHS)
542     return SE.getConstant(LHS->getType(), 1);
543 
544   // Handle a few RHS special cases.
545   const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
546   if (RC) {
547     const APInt &RA = RC->getAPInt();
548     // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
549     // some folding.
550     if (RA.isAllOnesValue())
551       return SE.getMulExpr(LHS, RC);
552     // Handle x /s 1 as x.
553     if (RA == 1)
554       return LHS;
555   }
556 
557   // Check for a division of a constant by a constant.
558   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
559     if (!RC)
560       return nullptr;
561     const APInt &LA = C->getAPInt();
562     const APInt &RA = RC->getAPInt();
563     if (LA.srem(RA) != 0)
564       return nullptr;
565     return SE.getConstant(LA.sdiv(RA));
566   }
567 
568   // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
569   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
570     if (IgnoreSignificantBits || isAddRecSExtable(AR, SE)) {
571       const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
572                                       IgnoreSignificantBits);
573       if (!Step) return nullptr;
574       const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
575                                        IgnoreSignificantBits);
576       if (!Start) return nullptr;
577       // FlagNW is independent of the start value, step direction, and is
578       // preserved with smaller magnitude steps.
579       // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
580       return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap);
581     }
582     return nullptr;
583   }
584 
585   // Distribute the sdiv over add operands, if the add doesn't overflow.
586   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
587     if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
588       SmallVector<const SCEV *, 8> Ops;
589       for (const SCEV *S : Add->operands()) {
590         const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits);
591         if (!Op) return nullptr;
592         Ops.push_back(Op);
593       }
594       return SE.getAddExpr(Ops);
595     }
596     return nullptr;
597   }
598 
599   // Check for a multiply operand that we can pull RHS out of.
600   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) {
601     if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
602       SmallVector<const SCEV *, 4> Ops;
603       bool Found = false;
604       for (const SCEV *S : Mul->operands()) {
605         if (!Found)
606           if (const SCEV *Q = getExactSDiv(S, RHS, SE,
607                                            IgnoreSignificantBits)) {
608             S = Q;
609             Found = true;
610           }
611         Ops.push_back(S);
612       }
613       return Found ? SE.getMulExpr(Ops) : nullptr;
614     }
615     return nullptr;
616   }
617 
618   // Otherwise we don't know.
619   return nullptr;
620 }
621 
622 /// If S involves the addition of a constant integer value, return that integer
623 /// value, and mutate S to point to a new SCEV with that value excluded.
624 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
625   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
626     if (C->getAPInt().getMinSignedBits() <= 64) {
627       S = SE.getConstant(C->getType(), 0);
628       return C->getValue()->getSExtValue();
629     }
630   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
631     SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
632     int64_t Result = ExtractImmediate(NewOps.front(), SE);
633     if (Result != 0)
634       S = SE.getAddExpr(NewOps);
635     return Result;
636   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
637     SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
638     int64_t Result = ExtractImmediate(NewOps.front(), SE);
639     if (Result != 0)
640       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
641                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
642                            SCEV::FlagAnyWrap);
643     return Result;
644   }
645   return 0;
646 }
647 
648 /// If S involves the addition of a GlobalValue address, return that symbol, and
649 /// mutate S to point to a new SCEV with that value excluded.
650 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
651   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
652     if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
653       S = SE.getConstant(GV->getType(), 0);
654       return GV;
655     }
656   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
657     SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
658     GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
659     if (Result)
660       S = SE.getAddExpr(NewOps);
661     return Result;
662   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
663     SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
664     GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
665     if (Result)
666       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
667                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
668                            SCEV::FlagAnyWrap);
669     return Result;
670   }
671   return nullptr;
672 }
673 
674 /// Returns true if the specified instruction is using the specified value as an
675 /// address.
676 static bool isAddressUse(Instruction *Inst, Value *OperandVal) {
677   bool isAddress = isa<LoadInst>(Inst);
678   if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
679     if (SI->getOperand(1) == OperandVal)
680       isAddress = true;
681   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
682     // Addressing modes can also be folded into prefetches and a variety
683     // of intrinsics.
684     switch (II->getIntrinsicID()) {
685       default: break;
686       case Intrinsic::prefetch:
687       case Intrinsic::x86_sse_storeu_ps:
688       case Intrinsic::x86_sse2_storeu_pd:
689       case Intrinsic::x86_sse2_storeu_dq:
690       case Intrinsic::x86_avx_storeu_ps_256:
691       case Intrinsic::x86_avx_storeu_pd_256:
692       case Intrinsic::x86_avx_storeu_dq_256:
693         if (II->getArgOperand(0) == OperandVal)
694           isAddress = true;
695         break;
696     }
697   }
698   return isAddress;
699 }
700 
701 /// Return the type of the memory being accessed.
702 static MemAccessTy getAccessType(const Instruction *Inst) {
703   MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace);
704   if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
705     AccessTy.MemTy = SI->getOperand(0)->getType();
706     AccessTy.AddrSpace = SI->getPointerAddressSpace();
707   } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
708     AccessTy.AddrSpace = LI->getPointerAddressSpace();
709   } else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
710     // Addressing modes can also be folded into prefetches and a variety
711     // of intrinsics.
712     switch (II->getIntrinsicID()) {
713     default: break;
714     case Intrinsic::x86_sse_storeu_ps:
715     case Intrinsic::x86_sse2_storeu_pd:
716     case Intrinsic::x86_sse2_storeu_dq:
717     case Intrinsic::x86_avx_storeu_ps_256:
718     case Intrinsic::x86_avx_storeu_pd_256:
719     case Intrinsic::x86_avx_storeu_dq_256:
720       AccessTy.MemTy = II->getArgOperand(0)->getType();
721       break;
722     }
723   }
724 
725   // All pointers have the same requirements, so canonicalize them to an
726   // arbitrary pointer type to minimize variation.
727   if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy))
728     AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
729                                       PTy->getAddressSpace());
730 
731   return AccessTy;
732 }
733 
734 /// Return true if this AddRec is already a phi in its loop.
735 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
736   for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin();
737        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
738     if (SE.isSCEVable(PN->getType()) &&
739         (SE.getEffectiveSCEVType(PN->getType()) ==
740          SE.getEffectiveSCEVType(AR->getType())) &&
741         SE.getSCEV(PN) == AR)
742       return true;
743   }
744   return false;
745 }
746 
747 /// Check if expanding this expression is likely to incur significant cost. This
748 /// is tricky because SCEV doesn't track which expressions are actually computed
749 /// by the current IR.
750 ///
751 /// We currently allow expansion of IV increments that involve adds,
752 /// multiplication by constants, and AddRecs from existing phis.
753 ///
754 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an
755 /// obvious multiple of the UDivExpr.
756 static bool isHighCostExpansion(const SCEV *S,
757                                 SmallPtrSetImpl<const SCEV*> &Processed,
758                                 ScalarEvolution &SE) {
759   // Zero/One operand expressions
760   switch (S->getSCEVType()) {
761   case scUnknown:
762   case scConstant:
763     return false;
764   case scTruncate:
765     return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(),
766                                Processed, SE);
767   case scZeroExtend:
768     return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(),
769                                Processed, SE);
770   case scSignExtend:
771     return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(),
772                                Processed, SE);
773   }
774 
775   if (!Processed.insert(S).second)
776     return false;
777 
778   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
779     for (const SCEV *S : Add->operands()) {
780       if (isHighCostExpansion(S, Processed, SE))
781         return true;
782     }
783     return false;
784   }
785 
786   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
787     if (Mul->getNumOperands() == 2) {
788       // Multiplication by a constant is ok
789       if (isa<SCEVConstant>(Mul->getOperand(0)))
790         return isHighCostExpansion(Mul->getOperand(1), Processed, SE);
791 
792       // If we have the value of one operand, check if an existing
793       // multiplication already generates this expression.
794       if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) {
795         Value *UVal = U->getValue();
796         for (User *UR : UVal->users()) {
797           // If U is a constant, it may be used by a ConstantExpr.
798           Instruction *UI = dyn_cast<Instruction>(UR);
799           if (UI && UI->getOpcode() == Instruction::Mul &&
800               SE.isSCEVable(UI->getType())) {
801             return SE.getSCEV(UI) == Mul;
802           }
803         }
804       }
805     }
806   }
807 
808   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
809     if (isExistingPhi(AR, SE))
810       return false;
811   }
812 
813   // Fow now, consider any other type of expression (div/mul/min/max) high cost.
814   return true;
815 }
816 
817 /// If any of the instructions is the specified set are trivially dead, delete
818 /// them and see if this makes any of their operands subsequently dead.
819 static bool
820 DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) {
821   bool Changed = false;
822 
823   while (!DeadInsts.empty()) {
824     Value *V = DeadInsts.pop_back_val();
825     Instruction *I = dyn_cast_or_null<Instruction>(V);
826 
827     if (!I || !isInstructionTriviallyDead(I))
828       continue;
829 
830     for (Use &O : I->operands())
831       if (Instruction *U = dyn_cast<Instruction>(O)) {
832         O = nullptr;
833         if (U->use_empty())
834           DeadInsts.emplace_back(U);
835       }
836 
837     I->eraseFromParent();
838     Changed = true;
839   }
840 
841   return Changed;
842 }
843 
844 namespace {
845 class LSRUse;
846 }
847 
848 /// \brief Check if the addressing mode defined by \p F is completely
849 /// folded in \p LU at isel time.
850 /// This includes address-mode folding and special icmp tricks.
851 /// This function returns true if \p LU can accommodate what \p F
852 /// defines and up to 1 base + 1 scaled + offset.
853 /// In other words, if \p F has several base registers, this function may
854 /// still return true. Therefore, users still need to account for
855 /// additional base registers and/or unfolded offsets to derive an
856 /// accurate cost model.
857 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
858                                  const LSRUse &LU, const Formula &F);
859 // Get the cost of the scaling factor used in F for LU.
860 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
861                                      const LSRUse &LU, const Formula &F);
862 
863 namespace {
864 
865 /// This class is used to measure and compare candidate formulae.
866 class Cost {
867   /// TODO: Some of these could be merged. Also, a lexical ordering
868   /// isn't always optimal.
869   unsigned NumRegs;
870   unsigned AddRecCost;
871   unsigned NumIVMuls;
872   unsigned NumBaseAdds;
873   unsigned ImmCost;
874   unsigned SetupCost;
875   unsigned ScaleCost;
876 
877 public:
878   Cost()
879     : NumRegs(0), AddRecCost(0), NumIVMuls(0), NumBaseAdds(0), ImmCost(0),
880       SetupCost(0), ScaleCost(0) {}
881 
882   bool operator<(const Cost &Other) const;
883 
884   void Lose();
885 
886 #ifndef NDEBUG
887   // Once any of the metrics loses, they must all remain losers.
888   bool isValid() {
889     return ((NumRegs | AddRecCost | NumIVMuls | NumBaseAdds
890              | ImmCost | SetupCost | ScaleCost) != ~0u)
891       || ((NumRegs & AddRecCost & NumIVMuls & NumBaseAdds
892            & ImmCost & SetupCost & ScaleCost) == ~0u);
893   }
894 #endif
895 
896   bool isLoser() {
897     assert(isValid() && "invalid cost");
898     return NumRegs == ~0u;
899   }
900 
901   void RateFormula(const TargetTransformInfo &TTI,
902                    const Formula &F,
903                    SmallPtrSetImpl<const SCEV *> &Regs,
904                    const DenseSet<const SCEV *> &VisitedRegs,
905                    const Loop *L,
906                    const SmallVectorImpl<int64_t> &Offsets,
907                    ScalarEvolution &SE, DominatorTree &DT,
908                    const LSRUse &LU,
909                    SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr);
910 
911   void print(raw_ostream &OS) const;
912   void dump() const;
913 
914 private:
915   void RateRegister(const SCEV *Reg,
916                     SmallPtrSetImpl<const SCEV *> &Regs,
917                     const Loop *L,
918                     ScalarEvolution &SE, DominatorTree &DT);
919   void RatePrimaryRegister(const SCEV *Reg,
920                            SmallPtrSetImpl<const SCEV *> &Regs,
921                            const Loop *L,
922                            ScalarEvolution &SE, DominatorTree &DT,
923                            SmallPtrSetImpl<const SCEV *> *LoserRegs);
924 };
925 
926 }
927 
928 /// Tally up interesting quantities from the given register.
929 void Cost::RateRegister(const SCEV *Reg,
930                         SmallPtrSetImpl<const SCEV *> &Regs,
931                         const Loop *L,
932                         ScalarEvolution &SE, DominatorTree &DT) {
933   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
934     // If this is an addrec for another loop, don't second-guess its addrec phi
935     // nodes. LSR isn't currently smart enough to reason about more than one
936     // loop at a time. LSR has already run on inner loops, will not run on outer
937     // loops, and cannot be expected to change sibling loops.
938     if (AR->getLoop() != L) {
939       // If the AddRec exists, consider it's register free and leave it alone.
940       if (isExistingPhi(AR, SE))
941         return;
942 
943       // Otherwise, do not consider this formula at all.
944       Lose();
945       return;
946     }
947     AddRecCost += 1; /// TODO: This should be a function of the stride.
948 
949     // Add the step value register, if it needs one.
950     // TODO: The non-affine case isn't precisely modeled here.
951     if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) {
952       if (!Regs.count(AR->getOperand(1))) {
953         RateRegister(AR->getOperand(1), Regs, L, SE, DT);
954         if (isLoser())
955           return;
956       }
957     }
958   }
959   ++NumRegs;
960 
961   // Rough heuristic; favor registers which don't require extra setup
962   // instructions in the preheader.
963   if (!isa<SCEVUnknown>(Reg) &&
964       !isa<SCEVConstant>(Reg) &&
965       !(isa<SCEVAddRecExpr>(Reg) &&
966         (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) ||
967          isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart()))))
968     ++SetupCost;
969 
970     NumIVMuls += isa<SCEVMulExpr>(Reg) &&
971                  SE.hasComputableLoopEvolution(Reg, L);
972 }
973 
974 /// Record this register in the set. If we haven't seen it before, rate
975 /// it. Optional LoserRegs provides a way to declare any formula that refers to
976 /// one of those regs an instant loser.
977 void Cost::RatePrimaryRegister(const SCEV *Reg,
978                                SmallPtrSetImpl<const SCEV *> &Regs,
979                                const Loop *L,
980                                ScalarEvolution &SE, DominatorTree &DT,
981                                SmallPtrSetImpl<const SCEV *> *LoserRegs) {
982   if (LoserRegs && LoserRegs->count(Reg)) {
983     Lose();
984     return;
985   }
986   if (Regs.insert(Reg).second) {
987     RateRegister(Reg, Regs, L, SE, DT);
988     if (LoserRegs && isLoser())
989       LoserRegs->insert(Reg);
990   }
991 }
992 
993 void Cost::RateFormula(const TargetTransformInfo &TTI,
994                        const Formula &F,
995                        SmallPtrSetImpl<const SCEV *> &Regs,
996                        const DenseSet<const SCEV *> &VisitedRegs,
997                        const Loop *L,
998                        const SmallVectorImpl<int64_t> &Offsets,
999                        ScalarEvolution &SE, DominatorTree &DT,
1000                        const LSRUse &LU,
1001                        SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1002   assert(F.isCanonical() && "Cost is accurate only for canonical formula");
1003   // Tally up the registers.
1004   if (const SCEV *ScaledReg = F.ScaledReg) {
1005     if (VisitedRegs.count(ScaledReg)) {
1006       Lose();
1007       return;
1008     }
1009     RatePrimaryRegister(ScaledReg, Regs, L, SE, DT, LoserRegs);
1010     if (isLoser())
1011       return;
1012   }
1013   for (const SCEV *BaseReg : F.BaseRegs) {
1014     if (VisitedRegs.count(BaseReg)) {
1015       Lose();
1016       return;
1017     }
1018     RatePrimaryRegister(BaseReg, Regs, L, SE, DT, LoserRegs);
1019     if (isLoser())
1020       return;
1021   }
1022 
1023   // Determine how many (unfolded) adds we'll need inside the loop.
1024   size_t NumBaseParts = F.getNumRegs();
1025   if (NumBaseParts > 1)
1026     // Do not count the base and a possible second register if the target
1027     // allows to fold 2 registers.
1028     NumBaseAdds +=
1029         NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(TTI, LU, F)));
1030   NumBaseAdds += (F.UnfoldedOffset != 0);
1031 
1032   // Accumulate non-free scaling amounts.
1033   ScaleCost += getScalingFactorCost(TTI, LU, F);
1034 
1035   // Tally up the non-zero immediates.
1036   for (int64_t O : Offsets) {
1037     int64_t Offset = (uint64_t)O + F.BaseOffset;
1038     if (F.BaseGV)
1039       ImmCost += 64; // Handle symbolic values conservatively.
1040                      // TODO: This should probably be the pointer size.
1041     else if (Offset != 0)
1042       ImmCost += APInt(64, Offset, true).getMinSignedBits();
1043   }
1044   assert(isValid() && "invalid cost");
1045 }
1046 
1047 /// Set this cost to a losing value.
1048 void Cost::Lose() {
1049   NumRegs = ~0u;
1050   AddRecCost = ~0u;
1051   NumIVMuls = ~0u;
1052   NumBaseAdds = ~0u;
1053   ImmCost = ~0u;
1054   SetupCost = ~0u;
1055   ScaleCost = ~0u;
1056 }
1057 
1058 /// Choose the lower cost.
1059 bool Cost::operator<(const Cost &Other) const {
1060   return std::tie(NumRegs, AddRecCost, NumIVMuls, NumBaseAdds, ScaleCost,
1061                   ImmCost, SetupCost) <
1062          std::tie(Other.NumRegs, Other.AddRecCost, Other.NumIVMuls,
1063                   Other.NumBaseAdds, Other.ScaleCost, Other.ImmCost,
1064                   Other.SetupCost);
1065 }
1066 
1067 void Cost::print(raw_ostream &OS) const {
1068   OS << NumRegs << " reg" << (NumRegs == 1 ? "" : "s");
1069   if (AddRecCost != 0)
1070     OS << ", with addrec cost " << AddRecCost;
1071   if (NumIVMuls != 0)
1072     OS << ", plus " << NumIVMuls << " IV mul" << (NumIVMuls == 1 ? "" : "s");
1073   if (NumBaseAdds != 0)
1074     OS << ", plus " << NumBaseAdds << " base add"
1075        << (NumBaseAdds == 1 ? "" : "s");
1076   if (ScaleCost != 0)
1077     OS << ", plus " << ScaleCost << " scale cost";
1078   if (ImmCost != 0)
1079     OS << ", plus " << ImmCost << " imm cost";
1080   if (SetupCost != 0)
1081     OS << ", plus " << SetupCost << " setup cost";
1082 }
1083 
1084 LLVM_DUMP_METHOD
1085 void Cost::dump() const {
1086   print(errs()); errs() << '\n';
1087 }
1088 
1089 namespace {
1090 
1091 /// An operand value in an instruction which is to be replaced with some
1092 /// equivalent, possibly strength-reduced, replacement.
1093 struct LSRFixup {
1094   /// The instruction which will be updated.
1095   Instruction *UserInst;
1096 
1097   /// The operand of the instruction which will be replaced. The operand may be
1098   /// used more than once; every instance will be replaced.
1099   Value *OperandValToReplace;
1100 
1101   /// If this user is to use the post-incremented value of an induction
1102   /// variable, this variable is non-null and holds the loop associated with the
1103   /// induction variable.
1104   PostIncLoopSet PostIncLoops;
1105 
1106   /// The index of the LSRUse describing the expression which this fixup needs,
1107   /// minus an offset (below).
1108   size_t LUIdx;
1109 
1110   /// A constant offset to be added to the LSRUse expression.  This allows
1111   /// multiple fixups to share the same LSRUse with different offsets, for
1112   /// example in an unrolled loop.
1113   int64_t Offset;
1114 
1115   bool isUseFullyOutsideLoop(const Loop *L) const;
1116 
1117   LSRFixup();
1118 
1119   void print(raw_ostream &OS) const;
1120   void dump() const;
1121 };
1122 
1123 }
1124 
1125 LSRFixup::LSRFixup()
1126   : UserInst(nullptr), OperandValToReplace(nullptr), LUIdx(~size_t(0)),
1127     Offset(0) {}
1128 
1129 /// Test whether this fixup always uses its value outside of the given loop.
1130 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
1131   // PHI nodes use their value in their incoming blocks.
1132   if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
1133     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1134       if (PN->getIncomingValue(i) == OperandValToReplace &&
1135           L->contains(PN->getIncomingBlock(i)))
1136         return false;
1137     return true;
1138   }
1139 
1140   return !L->contains(UserInst);
1141 }
1142 
1143 void LSRFixup::print(raw_ostream &OS) const {
1144   OS << "UserInst=";
1145   // Store is common and interesting enough to be worth special-casing.
1146   if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
1147     OS << "store ";
1148     Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false);
1149   } else if (UserInst->getType()->isVoidTy())
1150     OS << UserInst->getOpcodeName();
1151   else
1152     UserInst->printAsOperand(OS, /*PrintType=*/false);
1153 
1154   OS << ", OperandValToReplace=";
1155   OperandValToReplace->printAsOperand(OS, /*PrintType=*/false);
1156 
1157   for (const Loop *PIL : PostIncLoops) {
1158     OS << ", PostIncLoop=";
1159     PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
1160   }
1161 
1162   if (LUIdx != ~size_t(0))
1163     OS << ", LUIdx=" << LUIdx;
1164 
1165   if (Offset != 0)
1166     OS << ", Offset=" << Offset;
1167 }
1168 
1169 LLVM_DUMP_METHOD
1170 void LSRFixup::dump() const {
1171   print(errs()); errs() << '\n';
1172 }
1173 
1174 namespace {
1175 
1176 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted
1177 /// SmallVectors of const SCEV*.
1178 struct UniquifierDenseMapInfo {
1179   static SmallVector<const SCEV *, 4> getEmptyKey() {
1180     SmallVector<const SCEV *, 4>  V;
1181     V.push_back(reinterpret_cast<const SCEV *>(-1));
1182     return V;
1183   }
1184 
1185   static SmallVector<const SCEV *, 4> getTombstoneKey() {
1186     SmallVector<const SCEV *, 4> V;
1187     V.push_back(reinterpret_cast<const SCEV *>(-2));
1188     return V;
1189   }
1190 
1191   static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) {
1192     return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
1193   }
1194 
1195   static bool isEqual(const SmallVector<const SCEV *, 4> &LHS,
1196                       const SmallVector<const SCEV *, 4> &RHS) {
1197     return LHS == RHS;
1198   }
1199 };
1200 
1201 /// This class holds the state that LSR keeps for each use in IVUsers, as well
1202 /// as uses invented by LSR itself. It includes information about what kinds of
1203 /// things can be folded into the user, information about the user itself, and
1204 /// information about how the use may be satisfied.  TODO: Represent multiple
1205 /// users of the same expression in common?
1206 class LSRUse {
1207   DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier;
1208 
1209 public:
1210   /// An enum for a kind of use, indicating what types of scaled and immediate
1211   /// operands it might support.
1212   enum KindType {
1213     Basic,   ///< A normal use, with no folding.
1214     Special, ///< A special case of basic, allowing -1 scales.
1215     Address, ///< An address use; folding according to TargetLowering
1216     ICmpZero ///< An equality icmp with both operands folded into one.
1217     // TODO: Add a generic icmp too?
1218   };
1219 
1220   typedef PointerIntPair<const SCEV *, 2, KindType> SCEVUseKindPair;
1221 
1222   KindType Kind;
1223   MemAccessTy AccessTy;
1224 
1225   SmallVector<int64_t, 8> Offsets;
1226   int64_t MinOffset;
1227   int64_t MaxOffset;
1228 
1229   /// This records whether all of the fixups using this LSRUse are outside of
1230   /// the loop, in which case some special-case heuristics may be used.
1231   bool AllFixupsOutsideLoop;
1232 
1233   /// RigidFormula is set to true to guarantee that this use will be associated
1234   /// with a single formula--the one that initially matched. Some SCEV
1235   /// expressions cannot be expanded. This allows LSR to consider the registers
1236   /// used by those expressions without the need to expand them later after
1237   /// changing the formula.
1238   bool RigidFormula;
1239 
1240   /// This records the widest use type for any fixup using this
1241   /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max
1242   /// fixup widths to be equivalent, because the narrower one may be relying on
1243   /// the implicit truncation to truncate away bogus bits.
1244   Type *WidestFixupType;
1245 
1246   /// A list of ways to build a value that can satisfy this user.  After the
1247   /// list is populated, one of these is selected heuristically and used to
1248   /// formulate a replacement for OperandValToReplace in UserInst.
1249   SmallVector<Formula, 12> Formulae;
1250 
1251   /// The set of register candidates used by all formulae in this LSRUse.
1252   SmallPtrSet<const SCEV *, 4> Regs;
1253 
1254   LSRUse(KindType K, MemAccessTy AT)
1255       : Kind(K), AccessTy(AT), MinOffset(INT64_MAX), MaxOffset(INT64_MIN),
1256         AllFixupsOutsideLoop(true), RigidFormula(false),
1257         WidestFixupType(nullptr) {}
1258 
1259   bool HasFormulaWithSameRegs(const Formula &F) const;
1260   bool InsertFormula(const Formula &F);
1261   void DeleteFormula(Formula &F);
1262   void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
1263 
1264   void print(raw_ostream &OS) const;
1265   void dump() const;
1266 };
1267 
1268 }
1269 
1270 /// Test whether this use as a formula which has the same registers as the given
1271 /// formula.
1272 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
1273   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1274   if (F.ScaledReg) Key.push_back(F.ScaledReg);
1275   // Unstable sort by host order ok, because this is only used for uniquifying.
1276   std::sort(Key.begin(), Key.end());
1277   return Uniquifier.count(Key);
1278 }
1279 
1280 /// If the given formula has not yet been inserted, add it to the list, and
1281 /// return true. Return false otherwise.  The formula must be in canonical form.
1282 bool LSRUse::InsertFormula(const Formula &F) {
1283   assert(F.isCanonical() && "Invalid canonical representation");
1284 
1285   if (!Formulae.empty() && RigidFormula)
1286     return false;
1287 
1288   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1289   if (F.ScaledReg) Key.push_back(F.ScaledReg);
1290   // Unstable sort by host order ok, because this is only used for uniquifying.
1291   std::sort(Key.begin(), Key.end());
1292 
1293   if (!Uniquifier.insert(Key).second)
1294     return false;
1295 
1296   // Using a register to hold the value of 0 is not profitable.
1297   assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
1298          "Zero allocated in a scaled register!");
1299 #ifndef NDEBUG
1300   for (const SCEV *BaseReg : F.BaseRegs)
1301     assert(!BaseReg->isZero() && "Zero allocated in a base register!");
1302 #endif
1303 
1304   // Add the formula to the list.
1305   Formulae.push_back(F);
1306 
1307   // Record registers now being used by this use.
1308   Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1309   if (F.ScaledReg)
1310     Regs.insert(F.ScaledReg);
1311 
1312   return true;
1313 }
1314 
1315 /// Remove the given formula from this use's list.
1316 void LSRUse::DeleteFormula(Formula &F) {
1317   if (&F != &Formulae.back())
1318     std::swap(F, Formulae.back());
1319   Formulae.pop_back();
1320 }
1321 
1322 /// Recompute the Regs field, and update RegUses.
1323 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
1324   // Now that we've filtered out some formulae, recompute the Regs set.
1325   SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs);
1326   Regs.clear();
1327   for (const Formula &F : Formulae) {
1328     if (F.ScaledReg) Regs.insert(F.ScaledReg);
1329     Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1330   }
1331 
1332   // Update the RegTracker.
1333   for (const SCEV *S : OldRegs)
1334     if (!Regs.count(S))
1335       RegUses.dropRegister(S, LUIdx);
1336 }
1337 
1338 void LSRUse::print(raw_ostream &OS) const {
1339   OS << "LSR Use: Kind=";
1340   switch (Kind) {
1341   case Basic:    OS << "Basic"; break;
1342   case Special:  OS << "Special"; break;
1343   case ICmpZero: OS << "ICmpZero"; break;
1344   case Address:
1345     OS << "Address of ";
1346     if (AccessTy.MemTy->isPointerTy())
1347       OS << "pointer"; // the full pointer type could be really verbose
1348     else {
1349       OS << *AccessTy.MemTy;
1350     }
1351 
1352     OS << " in addrspace(" << AccessTy.AddrSpace << ')';
1353   }
1354 
1355   OS << ", Offsets={";
1356   bool NeedComma = false;
1357   for (int64_t O : Offsets) {
1358     if (NeedComma) OS << ',';
1359     OS << O;
1360     NeedComma = true;
1361   }
1362   OS << '}';
1363 
1364   if (AllFixupsOutsideLoop)
1365     OS << ", all-fixups-outside-loop";
1366 
1367   if (WidestFixupType)
1368     OS << ", widest fixup type: " << *WidestFixupType;
1369 }
1370 
1371 LLVM_DUMP_METHOD
1372 void LSRUse::dump() const {
1373   print(errs()); errs() << '\n';
1374 }
1375 
1376 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1377                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1378                                  GlobalValue *BaseGV, int64_t BaseOffset,
1379                                  bool HasBaseReg, int64_t Scale) {
1380   switch (Kind) {
1381   case LSRUse::Address:
1382     return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset,
1383                                      HasBaseReg, Scale, AccessTy.AddrSpace);
1384 
1385   case LSRUse::ICmpZero:
1386     // There's not even a target hook for querying whether it would be legal to
1387     // fold a GV into an ICmp.
1388     if (BaseGV)
1389       return false;
1390 
1391     // ICmp only has two operands; don't allow more than two non-trivial parts.
1392     if (Scale != 0 && HasBaseReg && BaseOffset != 0)
1393       return false;
1394 
1395     // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
1396     // putting the scaled register in the other operand of the icmp.
1397     if (Scale != 0 && Scale != -1)
1398       return false;
1399 
1400     // If we have low-level target information, ask the target if it can fold an
1401     // integer immediate on an icmp.
1402     if (BaseOffset != 0) {
1403       // We have one of:
1404       // ICmpZero     BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset
1405       // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset
1406       // Offs is the ICmp immediate.
1407       if (Scale == 0)
1408         // The cast does the right thing with INT64_MIN.
1409         BaseOffset = -(uint64_t)BaseOffset;
1410       return TTI.isLegalICmpImmediate(BaseOffset);
1411     }
1412 
1413     // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg
1414     return true;
1415 
1416   case LSRUse::Basic:
1417     // Only handle single-register values.
1418     return !BaseGV && Scale == 0 && BaseOffset == 0;
1419 
1420   case LSRUse::Special:
1421     // Special case Basic to handle -1 scales.
1422     return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0;
1423   }
1424 
1425   llvm_unreachable("Invalid LSRUse Kind!");
1426 }
1427 
1428 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1429                                  int64_t MinOffset, int64_t MaxOffset,
1430                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1431                                  GlobalValue *BaseGV, int64_t BaseOffset,
1432                                  bool HasBaseReg, int64_t Scale) {
1433   // Check for overflow.
1434   if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) !=
1435       (MinOffset > 0))
1436     return false;
1437   MinOffset = (uint64_t)BaseOffset + MinOffset;
1438   if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) !=
1439       (MaxOffset > 0))
1440     return false;
1441   MaxOffset = (uint64_t)BaseOffset + MaxOffset;
1442 
1443   return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset,
1444                               HasBaseReg, Scale) &&
1445          isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset,
1446                               HasBaseReg, Scale);
1447 }
1448 
1449 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1450                                  int64_t MinOffset, int64_t MaxOffset,
1451                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1452                                  const Formula &F) {
1453   // For the purpose of isAMCompletelyFolded either having a canonical formula
1454   // or a scale not equal to zero is correct.
1455   // Problems may arise from non canonical formulae having a scale == 0.
1456   // Strictly speaking it would best to just rely on canonical formulae.
1457   // However, when we generate the scaled formulae, we first check that the
1458   // scaling factor is profitable before computing the actual ScaledReg for
1459   // compile time sake.
1460   assert((F.isCanonical() || F.Scale != 0));
1461   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1462                               F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale);
1463 }
1464 
1465 /// Test whether we know how to expand the current formula.
1466 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1467                        int64_t MaxOffset, LSRUse::KindType Kind,
1468                        MemAccessTy AccessTy, GlobalValue *BaseGV,
1469                        int64_t BaseOffset, bool HasBaseReg, int64_t Scale) {
1470   // We know how to expand completely foldable formulae.
1471   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1472                               BaseOffset, HasBaseReg, Scale) ||
1473          // Or formulae that use a base register produced by a sum of base
1474          // registers.
1475          (Scale == 1 &&
1476           isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1477                                BaseGV, BaseOffset, true, 0));
1478 }
1479 
1480 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1481                        int64_t MaxOffset, LSRUse::KindType Kind,
1482                        MemAccessTy AccessTy, const Formula &F) {
1483   return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV,
1484                     F.BaseOffset, F.HasBaseReg, F.Scale);
1485 }
1486 
1487 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1488                                  const LSRUse &LU, const Formula &F) {
1489   return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1490                               LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg,
1491                               F.Scale);
1492 }
1493 
1494 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
1495                                      const LSRUse &LU, const Formula &F) {
1496   if (!F.Scale)
1497     return 0;
1498 
1499   // If the use is not completely folded in that instruction, we will have to
1500   // pay an extra cost only for scale != 1.
1501   if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1502                             LU.AccessTy, F))
1503     return F.Scale != 1;
1504 
1505   switch (LU.Kind) {
1506   case LSRUse::Address: {
1507     // Check the scaling factor cost with both the min and max offsets.
1508     int ScaleCostMinOffset = TTI.getScalingFactorCost(
1509         LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg,
1510         F.Scale, LU.AccessTy.AddrSpace);
1511     int ScaleCostMaxOffset = TTI.getScalingFactorCost(
1512         LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg,
1513         F.Scale, LU.AccessTy.AddrSpace);
1514 
1515     assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 &&
1516            "Legal addressing mode has an illegal cost!");
1517     return std::max(ScaleCostMinOffset, ScaleCostMaxOffset);
1518   }
1519   case LSRUse::ICmpZero:
1520   case LSRUse::Basic:
1521   case LSRUse::Special:
1522     // The use is completely folded, i.e., everything is folded into the
1523     // instruction.
1524     return 0;
1525   }
1526 
1527   llvm_unreachable("Invalid LSRUse Kind!");
1528 }
1529 
1530 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1531                              LSRUse::KindType Kind, MemAccessTy AccessTy,
1532                              GlobalValue *BaseGV, int64_t BaseOffset,
1533                              bool HasBaseReg) {
1534   // Fast-path: zero is always foldable.
1535   if (BaseOffset == 0 && !BaseGV) return true;
1536 
1537   // Conservatively, create an address with an immediate and a
1538   // base and a scale.
1539   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1540 
1541   // Canonicalize a scale of 1 to a base register if the formula doesn't
1542   // already have a base register.
1543   if (!HasBaseReg && Scale == 1) {
1544     Scale = 0;
1545     HasBaseReg = true;
1546   }
1547 
1548   return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset,
1549                               HasBaseReg, Scale);
1550 }
1551 
1552 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1553                              ScalarEvolution &SE, int64_t MinOffset,
1554                              int64_t MaxOffset, LSRUse::KindType Kind,
1555                              MemAccessTy AccessTy, const SCEV *S,
1556                              bool HasBaseReg) {
1557   // Fast-path: zero is always foldable.
1558   if (S->isZero()) return true;
1559 
1560   // Conservatively, create an address with an immediate and a
1561   // base and a scale.
1562   int64_t BaseOffset = ExtractImmediate(S, SE);
1563   GlobalValue *BaseGV = ExtractSymbol(S, SE);
1564 
1565   // If there's anything else involved, it's not foldable.
1566   if (!S->isZero()) return false;
1567 
1568   // Fast-path: zero is always foldable.
1569   if (BaseOffset == 0 && !BaseGV) return true;
1570 
1571   // Conservatively, create an address with an immediate and a
1572   // base and a scale.
1573   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1574 
1575   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1576                               BaseOffset, HasBaseReg, Scale);
1577 }
1578 
1579 namespace {
1580 
1581 /// An individual increment in a Chain of IV increments.  Relate an IV user to
1582 /// an expression that computes the IV it uses from the IV used by the previous
1583 /// link in the Chain.
1584 ///
1585 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the
1586 /// original IVOperand. The head of the chain's IVOperand is only valid during
1587 /// chain collection, before LSR replaces IV users. During chain generation,
1588 /// IncExpr can be used to find the new IVOperand that computes the same
1589 /// expression.
1590 struct IVInc {
1591   Instruction *UserInst;
1592   Value* IVOperand;
1593   const SCEV *IncExpr;
1594 
1595   IVInc(Instruction *U, Value *O, const SCEV *E):
1596     UserInst(U), IVOperand(O), IncExpr(E) {}
1597 };
1598 
1599 // The list of IV increments in program order.  We typically add the head of a
1600 // chain without finding subsequent links.
1601 struct IVChain {
1602   SmallVector<IVInc,1> Incs;
1603   const SCEV *ExprBase;
1604 
1605   IVChain() : ExprBase(nullptr) {}
1606 
1607   IVChain(const IVInc &Head, const SCEV *Base)
1608     : Incs(1, Head), ExprBase(Base) {}
1609 
1610   typedef SmallVectorImpl<IVInc>::const_iterator const_iterator;
1611 
1612   // Return the first increment in the chain.
1613   const_iterator begin() const {
1614     assert(!Incs.empty());
1615     return std::next(Incs.begin());
1616   }
1617   const_iterator end() const {
1618     return Incs.end();
1619   }
1620 
1621   // Returns true if this chain contains any increments.
1622   bool hasIncs() const { return Incs.size() >= 2; }
1623 
1624   // Add an IVInc to the end of this chain.
1625   void add(const IVInc &X) { Incs.push_back(X); }
1626 
1627   // Returns the last UserInst in the chain.
1628   Instruction *tailUserInst() const { return Incs.back().UserInst; }
1629 
1630   // Returns true if IncExpr can be profitably added to this chain.
1631   bool isProfitableIncrement(const SCEV *OperExpr,
1632                              const SCEV *IncExpr,
1633                              ScalarEvolution&);
1634 };
1635 
1636 /// Helper for CollectChains to track multiple IV increment uses.  Distinguish
1637 /// between FarUsers that definitely cross IV increments and NearUsers that may
1638 /// be used between IV increments.
1639 struct ChainUsers {
1640   SmallPtrSet<Instruction*, 4> FarUsers;
1641   SmallPtrSet<Instruction*, 4> NearUsers;
1642 };
1643 
1644 /// This class holds state for the main loop strength reduction logic.
1645 class LSRInstance {
1646   IVUsers &IU;
1647   ScalarEvolution &SE;
1648   DominatorTree &DT;
1649   LoopInfo &LI;
1650   const TargetTransformInfo &TTI;
1651   Loop *const L;
1652   bool Changed;
1653 
1654   /// This is the insert position that the current loop's induction variable
1655   /// increment should be placed. In simple loops, this is the latch block's
1656   /// terminator. But in more complicated cases, this is a position which will
1657   /// dominate all the in-loop post-increment users.
1658   Instruction *IVIncInsertPos;
1659 
1660   /// Interesting factors between use strides.
1661   SmallSetVector<int64_t, 8> Factors;
1662 
1663   /// Interesting use types, to facilitate truncation reuse.
1664   SmallSetVector<Type *, 4> Types;
1665 
1666   /// The list of operands which are to be replaced.
1667   SmallVector<LSRFixup, 16> Fixups;
1668 
1669   /// The list of interesting uses.
1670   SmallVector<LSRUse, 16> Uses;
1671 
1672   /// Track which uses use which register candidates.
1673   RegUseTracker RegUses;
1674 
1675   // Limit the number of chains to avoid quadratic behavior. We don't expect to
1676   // have more than a few IV increment chains in a loop. Missing a Chain falls
1677   // back to normal LSR behavior for those uses.
1678   static const unsigned MaxChains = 8;
1679 
1680   /// IV users can form a chain of IV increments.
1681   SmallVector<IVChain, MaxChains> IVChainVec;
1682 
1683   /// IV users that belong to profitable IVChains.
1684   SmallPtrSet<Use*, MaxChains> IVIncSet;
1685 
1686   void OptimizeShadowIV();
1687   bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
1688   ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
1689   void OptimizeLoopTermCond();
1690 
1691   void ChainInstruction(Instruction *UserInst, Instruction *IVOper,
1692                         SmallVectorImpl<ChainUsers> &ChainUsersVec);
1693   void FinalizeChain(IVChain &Chain);
1694   void CollectChains();
1695   void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
1696                        SmallVectorImpl<WeakVH> &DeadInsts);
1697 
1698   void CollectInterestingTypesAndFactors();
1699   void CollectFixupsAndInitialFormulae();
1700 
1701   LSRFixup &getNewFixup() {
1702     Fixups.push_back(LSRFixup());
1703     return Fixups.back();
1704   }
1705 
1706   // Support for sharing of LSRUses between LSRFixups.
1707   typedef DenseMap<LSRUse::SCEVUseKindPair, size_t> UseMapTy;
1708   UseMapTy UseMap;
1709 
1710   bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
1711                           LSRUse::KindType Kind, MemAccessTy AccessTy);
1712 
1713   std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind,
1714                                     MemAccessTy AccessTy);
1715 
1716   void DeleteUse(LSRUse &LU, size_t LUIdx);
1717 
1718   LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
1719 
1720   void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1721   void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1722   void CountRegisters(const Formula &F, size_t LUIdx);
1723   bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
1724 
1725   void CollectLoopInvariantFixupsAndFormulae();
1726 
1727   void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
1728                               unsigned Depth = 0);
1729 
1730   void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
1731                                   const Formula &Base, unsigned Depth,
1732                                   size_t Idx, bool IsScaledReg = false);
1733   void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
1734   void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
1735                                    const Formula &Base, size_t Idx,
1736                                    bool IsScaledReg = false);
1737   void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1738   void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx,
1739                                    const Formula &Base,
1740                                    const SmallVectorImpl<int64_t> &Worklist,
1741                                    size_t Idx, bool IsScaledReg = false);
1742   void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1743   void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1744   void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1745   void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
1746   void GenerateCrossUseConstantOffsets();
1747   void GenerateAllReuseFormulae();
1748 
1749   void FilterOutUndesirableDedicatedRegisters();
1750 
1751   size_t EstimateSearchSpaceComplexity() const;
1752   void NarrowSearchSpaceByDetectingSupersets();
1753   void NarrowSearchSpaceByCollapsingUnrolledCode();
1754   void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
1755   void NarrowSearchSpaceByPickingWinnerRegs();
1756   void NarrowSearchSpaceUsingHeuristics();
1757 
1758   void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
1759                     Cost &SolutionCost,
1760                     SmallVectorImpl<const Formula *> &Workspace,
1761                     const Cost &CurCost,
1762                     const SmallPtrSet<const SCEV *, 16> &CurRegs,
1763                     DenseSet<const SCEV *> &VisitedRegs) const;
1764   void Solve(SmallVectorImpl<const Formula *> &Solution) const;
1765 
1766   BasicBlock::iterator
1767     HoistInsertPosition(BasicBlock::iterator IP,
1768                         const SmallVectorImpl<Instruction *> &Inputs) const;
1769   BasicBlock::iterator
1770     AdjustInsertPositionForExpand(BasicBlock::iterator IP,
1771                                   const LSRFixup &LF,
1772                                   const LSRUse &LU,
1773                                   SCEVExpander &Rewriter) const;
1774 
1775   Value *Expand(const LSRFixup &LF,
1776                 const Formula &F,
1777                 BasicBlock::iterator IP,
1778                 SCEVExpander &Rewriter,
1779                 SmallVectorImpl<WeakVH> &DeadInsts) const;
1780   void RewriteForPHI(PHINode *PN, const LSRFixup &LF,
1781                      const Formula &F,
1782                      SCEVExpander &Rewriter,
1783                      SmallVectorImpl<WeakVH> &DeadInsts) const;
1784   void Rewrite(const LSRFixup &LF,
1785                const Formula &F,
1786                SCEVExpander &Rewriter,
1787                SmallVectorImpl<WeakVH> &DeadInsts) const;
1788   void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution);
1789 
1790 public:
1791   LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT,
1792               LoopInfo &LI, const TargetTransformInfo &TTI);
1793 
1794   bool getChanged() const { return Changed; }
1795 
1796   void print_factors_and_types(raw_ostream &OS) const;
1797   void print_fixups(raw_ostream &OS) const;
1798   void print_uses(raw_ostream &OS) const;
1799   void print(raw_ostream &OS) const;
1800   void dump() const;
1801 };
1802 
1803 }
1804 
1805 /// If IV is used in a int-to-float cast inside the loop then try to eliminate
1806 /// the cast operation.
1807 void LSRInstance::OptimizeShadowIV() {
1808   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
1809   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1810     return;
1811 
1812   for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
1813        UI != E; /* empty */) {
1814     IVUsers::const_iterator CandidateUI = UI;
1815     ++UI;
1816     Instruction *ShadowUse = CandidateUI->getUser();
1817     Type *DestTy = nullptr;
1818     bool IsSigned = false;
1819 
1820     /* If shadow use is a int->float cast then insert a second IV
1821        to eliminate this cast.
1822 
1823          for (unsigned i = 0; i < n; ++i)
1824            foo((double)i);
1825 
1826        is transformed into
1827 
1828          double d = 0.0;
1829          for (unsigned i = 0; i < n; ++i, ++d)
1830            foo(d);
1831     */
1832     if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) {
1833       IsSigned = false;
1834       DestTy = UCast->getDestTy();
1835     }
1836     else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) {
1837       IsSigned = true;
1838       DestTy = SCast->getDestTy();
1839     }
1840     if (!DestTy) continue;
1841 
1842     // If target does not support DestTy natively then do not apply
1843     // this transformation.
1844     if (!TTI.isTypeLegal(DestTy)) continue;
1845 
1846     PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
1847     if (!PH) continue;
1848     if (PH->getNumIncomingValues() != 2) continue;
1849 
1850     Type *SrcTy = PH->getType();
1851     int Mantissa = DestTy->getFPMantissaWidth();
1852     if (Mantissa == -1) continue;
1853     if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
1854       continue;
1855 
1856     unsigned Entry, Latch;
1857     if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
1858       Entry = 0;
1859       Latch = 1;
1860     } else {
1861       Entry = 1;
1862       Latch = 0;
1863     }
1864 
1865     ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
1866     if (!Init) continue;
1867     Constant *NewInit = ConstantFP::get(DestTy, IsSigned ?
1868                                         (double)Init->getSExtValue() :
1869                                         (double)Init->getZExtValue());
1870 
1871     BinaryOperator *Incr =
1872       dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
1873     if (!Incr) continue;
1874     if (Incr->getOpcode() != Instruction::Add
1875         && Incr->getOpcode() != Instruction::Sub)
1876       continue;
1877 
1878     /* Initialize new IV, double d = 0.0 in above example. */
1879     ConstantInt *C = nullptr;
1880     if (Incr->getOperand(0) == PH)
1881       C = dyn_cast<ConstantInt>(Incr->getOperand(1));
1882     else if (Incr->getOperand(1) == PH)
1883       C = dyn_cast<ConstantInt>(Incr->getOperand(0));
1884     else
1885       continue;
1886 
1887     if (!C) continue;
1888 
1889     // Ignore negative constants, as the code below doesn't handle them
1890     // correctly. TODO: Remove this restriction.
1891     if (!C->getValue().isStrictlyPositive()) continue;
1892 
1893     /* Add new PHINode. */
1894     PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH);
1895 
1896     /* create new increment. '++d' in above example. */
1897     Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
1898     BinaryOperator *NewIncr =
1899       BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
1900                                Instruction::FAdd : Instruction::FSub,
1901                              NewPH, CFP, "IV.S.next.", Incr);
1902 
1903     NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
1904     NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
1905 
1906     /* Remove cast operation */
1907     ShadowUse->replaceAllUsesWith(NewPH);
1908     ShadowUse->eraseFromParent();
1909     Changed = true;
1910     break;
1911   }
1912 }
1913 
1914 /// If Cond has an operand that is an expression of an IV, set the IV user and
1915 /// stride information and return true, otherwise return false.
1916 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
1917   for (IVStrideUse &U : IU)
1918     if (U.getUser() == Cond) {
1919       // NOTE: we could handle setcc instructions with multiple uses here, but
1920       // InstCombine does it as well for simple uses, it's not clear that it
1921       // occurs enough in real life to handle.
1922       CondUse = &U;
1923       return true;
1924     }
1925   return false;
1926 }
1927 
1928 /// Rewrite the loop's terminating condition if it uses a max computation.
1929 ///
1930 /// This is a narrow solution to a specific, but acute, problem. For loops
1931 /// like this:
1932 ///
1933 ///   i = 0;
1934 ///   do {
1935 ///     p[i] = 0.0;
1936 ///   } while (++i < n);
1937 ///
1938 /// the trip count isn't just 'n', because 'n' might not be positive. And
1939 /// unfortunately this can come up even for loops where the user didn't use
1940 /// a C do-while loop. For example, seemingly well-behaved top-test loops
1941 /// will commonly be lowered like this:
1942 //
1943 ///   if (n > 0) {
1944 ///     i = 0;
1945 ///     do {
1946 ///       p[i] = 0.0;
1947 ///     } while (++i < n);
1948 ///   }
1949 ///
1950 /// and then it's possible for subsequent optimization to obscure the if
1951 /// test in such a way that indvars can't find it.
1952 ///
1953 /// When indvars can't find the if test in loops like this, it creates a
1954 /// max expression, which allows it to give the loop a canonical
1955 /// induction variable:
1956 ///
1957 ///   i = 0;
1958 ///   max = n < 1 ? 1 : n;
1959 ///   do {
1960 ///     p[i] = 0.0;
1961 ///   } while (++i != max);
1962 ///
1963 /// Canonical induction variables are necessary because the loop passes
1964 /// are designed around them. The most obvious example of this is the
1965 /// LoopInfo analysis, which doesn't remember trip count values. It
1966 /// expects to be able to rediscover the trip count each time it is
1967 /// needed, and it does this using a simple analysis that only succeeds if
1968 /// the loop has a canonical induction variable.
1969 ///
1970 /// However, when it comes time to generate code, the maximum operation
1971 /// can be quite costly, especially if it's inside of an outer loop.
1972 ///
1973 /// This function solves this problem by detecting this type of loop and
1974 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
1975 /// the instructions for the maximum computation.
1976 ///
1977 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
1978   // Check that the loop matches the pattern we're looking for.
1979   if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
1980       Cond->getPredicate() != CmpInst::ICMP_NE)
1981     return Cond;
1982 
1983   SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
1984   if (!Sel || !Sel->hasOneUse()) return Cond;
1985 
1986   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
1987   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1988     return Cond;
1989   const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
1990 
1991   // Add one to the backedge-taken count to get the trip count.
1992   const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount);
1993   if (IterationCount != SE.getSCEV(Sel)) return Cond;
1994 
1995   // Check for a max calculation that matches the pattern. There's no check
1996   // for ICMP_ULE here because the comparison would be with zero, which
1997   // isn't interesting.
1998   CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1999   const SCEVNAryExpr *Max = nullptr;
2000   if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
2001     Pred = ICmpInst::ICMP_SLE;
2002     Max = S;
2003   } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
2004     Pred = ICmpInst::ICMP_SLT;
2005     Max = S;
2006   } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
2007     Pred = ICmpInst::ICMP_ULT;
2008     Max = U;
2009   } else {
2010     // No match; bail.
2011     return Cond;
2012   }
2013 
2014   // To handle a max with more than two operands, this optimization would
2015   // require additional checking and setup.
2016   if (Max->getNumOperands() != 2)
2017     return Cond;
2018 
2019   const SCEV *MaxLHS = Max->getOperand(0);
2020   const SCEV *MaxRHS = Max->getOperand(1);
2021 
2022   // ScalarEvolution canonicalizes constants to the left. For < and >, look
2023   // for a comparison with 1. For <= and >=, a comparison with zero.
2024   if (!MaxLHS ||
2025       (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
2026     return Cond;
2027 
2028   // Check the relevant induction variable for conformance to
2029   // the pattern.
2030   const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
2031   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
2032   if (!AR || !AR->isAffine() ||
2033       AR->getStart() != One ||
2034       AR->getStepRecurrence(SE) != One)
2035     return Cond;
2036 
2037   assert(AR->getLoop() == L &&
2038          "Loop condition operand is an addrec in a different loop!");
2039 
2040   // Check the right operand of the select, and remember it, as it will
2041   // be used in the new comparison instruction.
2042   Value *NewRHS = nullptr;
2043   if (ICmpInst::isTrueWhenEqual(Pred)) {
2044     // Look for n+1, and grab n.
2045     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
2046       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2047          if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2048            NewRHS = BO->getOperand(0);
2049     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
2050       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2051         if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2052           NewRHS = BO->getOperand(0);
2053     if (!NewRHS)
2054       return Cond;
2055   } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
2056     NewRHS = Sel->getOperand(1);
2057   else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
2058     NewRHS = Sel->getOperand(2);
2059   else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS))
2060     NewRHS = SU->getValue();
2061   else
2062     // Max doesn't match expected pattern.
2063     return Cond;
2064 
2065   // Determine the new comparison opcode. It may be signed or unsigned,
2066   // and the original comparison may be either equality or inequality.
2067   if (Cond->getPredicate() == CmpInst::ICMP_EQ)
2068     Pred = CmpInst::getInversePredicate(Pred);
2069 
2070   // Ok, everything looks ok to change the condition into an SLT or SGE and
2071   // delete the max calculation.
2072   ICmpInst *NewCond =
2073     new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
2074 
2075   // Delete the max calculation instructions.
2076   Cond->replaceAllUsesWith(NewCond);
2077   CondUse->setUser(NewCond);
2078   Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
2079   Cond->eraseFromParent();
2080   Sel->eraseFromParent();
2081   if (Cmp->use_empty())
2082     Cmp->eraseFromParent();
2083   return NewCond;
2084 }
2085 
2086 /// Change loop terminating condition to use the postinc iv when possible.
2087 void
2088 LSRInstance::OptimizeLoopTermCond() {
2089   SmallPtrSet<Instruction *, 4> PostIncs;
2090 
2091   BasicBlock *LatchBlock = L->getLoopLatch();
2092   SmallVector<BasicBlock*, 8> ExitingBlocks;
2093   L->getExitingBlocks(ExitingBlocks);
2094 
2095   for (BasicBlock *ExitingBlock : ExitingBlocks) {
2096 
2097     // Get the terminating condition for the loop if possible.  If we
2098     // can, we want to change it to use a post-incremented version of its
2099     // induction variable, to allow coalescing the live ranges for the IV into
2100     // one register value.
2101 
2102     BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
2103     if (!TermBr)
2104       continue;
2105     // FIXME: Overly conservative, termination condition could be an 'or' etc..
2106     if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
2107       continue;
2108 
2109     // Search IVUsesByStride to find Cond's IVUse if there is one.
2110     IVStrideUse *CondUse = nullptr;
2111     ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
2112     if (!FindIVUserForCond(Cond, CondUse))
2113       continue;
2114 
2115     // If the trip count is computed in terms of a max (due to ScalarEvolution
2116     // being unable to find a sufficient guard, for example), change the loop
2117     // comparison to use SLT or ULT instead of NE.
2118     // One consequence of doing this now is that it disrupts the count-down
2119     // optimization. That's not always a bad thing though, because in such
2120     // cases it may still be worthwhile to avoid a max.
2121     Cond = OptimizeMax(Cond, CondUse);
2122 
2123     // If this exiting block dominates the latch block, it may also use
2124     // the post-inc value if it won't be shared with other uses.
2125     // Check for dominance.
2126     if (!DT.dominates(ExitingBlock, LatchBlock))
2127       continue;
2128 
2129     // Conservatively avoid trying to use the post-inc value in non-latch
2130     // exits if there may be pre-inc users in intervening blocks.
2131     if (LatchBlock != ExitingBlock)
2132       for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
2133         // Test if the use is reachable from the exiting block. This dominator
2134         // query is a conservative approximation of reachability.
2135         if (&*UI != CondUse &&
2136             !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
2137           // Conservatively assume there may be reuse if the quotient of their
2138           // strides could be a legal scale.
2139           const SCEV *A = IU.getStride(*CondUse, L);
2140           const SCEV *B = IU.getStride(*UI, L);
2141           if (!A || !B) continue;
2142           if (SE.getTypeSizeInBits(A->getType()) !=
2143               SE.getTypeSizeInBits(B->getType())) {
2144             if (SE.getTypeSizeInBits(A->getType()) >
2145                 SE.getTypeSizeInBits(B->getType()))
2146               B = SE.getSignExtendExpr(B, A->getType());
2147             else
2148               A = SE.getSignExtendExpr(A, B->getType());
2149           }
2150           if (const SCEVConstant *D =
2151                 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
2152             const ConstantInt *C = D->getValue();
2153             // Stride of one or negative one can have reuse with non-addresses.
2154             if (C->isOne() || C->isAllOnesValue())
2155               goto decline_post_inc;
2156             // Avoid weird situations.
2157             if (C->getValue().getMinSignedBits() >= 64 ||
2158                 C->getValue().isMinSignedValue())
2159               goto decline_post_inc;
2160             // Check for possible scaled-address reuse.
2161             MemAccessTy AccessTy = getAccessType(UI->getUser());
2162             int64_t Scale = C->getSExtValue();
2163             if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2164                                           /*BaseOffset=*/0,
2165                                           /*HasBaseReg=*/false, Scale,
2166                                           AccessTy.AddrSpace))
2167               goto decline_post_inc;
2168             Scale = -Scale;
2169             if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2170                                           /*BaseOffset=*/0,
2171                                           /*HasBaseReg=*/false, Scale,
2172                                           AccessTy.AddrSpace))
2173               goto decline_post_inc;
2174           }
2175         }
2176 
2177     DEBUG(dbgs() << "  Change loop exiting icmp to use postinc iv: "
2178                  << *Cond << '\n');
2179 
2180     // It's possible for the setcc instruction to be anywhere in the loop, and
2181     // possible for it to have multiple users.  If it is not immediately before
2182     // the exiting block branch, move it.
2183     if (&*++BasicBlock::iterator(Cond) != TermBr) {
2184       if (Cond->hasOneUse()) {
2185         Cond->moveBefore(TermBr);
2186       } else {
2187         // Clone the terminating condition and insert into the loopend.
2188         ICmpInst *OldCond = Cond;
2189         Cond = cast<ICmpInst>(Cond->clone());
2190         Cond->setName(L->getHeader()->getName() + ".termcond");
2191         ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond);
2192 
2193         // Clone the IVUse, as the old use still exists!
2194         CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
2195         TermBr->replaceUsesOfWith(OldCond, Cond);
2196       }
2197     }
2198 
2199     // If we get to here, we know that we can transform the setcc instruction to
2200     // use the post-incremented version of the IV, allowing us to coalesce the
2201     // live ranges for the IV correctly.
2202     CondUse->transformToPostInc(L);
2203     Changed = true;
2204 
2205     PostIncs.insert(Cond);
2206   decline_post_inc:;
2207   }
2208 
2209   // Determine an insertion point for the loop induction variable increment. It
2210   // must dominate all the post-inc comparisons we just set up, and it must
2211   // dominate the loop latch edge.
2212   IVIncInsertPos = L->getLoopLatch()->getTerminator();
2213   for (Instruction *Inst : PostIncs) {
2214     BasicBlock *BB =
2215       DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
2216                                     Inst->getParent());
2217     if (BB == Inst->getParent())
2218       IVIncInsertPos = Inst;
2219     else if (BB != IVIncInsertPos->getParent())
2220       IVIncInsertPos = BB->getTerminator();
2221   }
2222 }
2223 
2224 /// Determine if the given use can accommodate a fixup at the given offset and
2225 /// other details. If so, update the use and return true.
2226 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset,
2227                                      bool HasBaseReg, LSRUse::KindType Kind,
2228                                      MemAccessTy AccessTy) {
2229   int64_t NewMinOffset = LU.MinOffset;
2230   int64_t NewMaxOffset = LU.MaxOffset;
2231   MemAccessTy NewAccessTy = AccessTy;
2232 
2233   // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
2234   // something conservative, however this can pessimize in the case that one of
2235   // the uses will have all its uses outside the loop, for example.
2236   if (LU.Kind != Kind)
2237     return false;
2238 
2239   // Check for a mismatched access type, and fall back conservatively as needed.
2240   // TODO: Be less conservative when the type is similar and can use the same
2241   // addressing modes.
2242   if (Kind == LSRUse::Address) {
2243     if (AccessTy != LU.AccessTy)
2244       NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext());
2245   }
2246 
2247   // Conservatively assume HasBaseReg is true for now.
2248   if (NewOffset < LU.MinOffset) {
2249     if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2250                           LU.MaxOffset - NewOffset, HasBaseReg))
2251       return false;
2252     NewMinOffset = NewOffset;
2253   } else if (NewOffset > LU.MaxOffset) {
2254     if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2255                           NewOffset - LU.MinOffset, HasBaseReg))
2256       return false;
2257     NewMaxOffset = NewOffset;
2258   }
2259 
2260   // Update the use.
2261   LU.MinOffset = NewMinOffset;
2262   LU.MaxOffset = NewMaxOffset;
2263   LU.AccessTy = NewAccessTy;
2264   if (NewOffset != LU.Offsets.back())
2265     LU.Offsets.push_back(NewOffset);
2266   return true;
2267 }
2268 
2269 /// Return an LSRUse index and an offset value for a fixup which needs the given
2270 /// expression, with the given kind and optional access type.  Either reuse an
2271 /// existing use or create a new one, as needed.
2272 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr,
2273                                                LSRUse::KindType Kind,
2274                                                MemAccessTy AccessTy) {
2275   const SCEV *Copy = Expr;
2276   int64_t Offset = ExtractImmediate(Expr, SE);
2277 
2278   // Basic uses can't accept any offset, for example.
2279   if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr,
2280                         Offset, /*HasBaseReg=*/ true)) {
2281     Expr = Copy;
2282     Offset = 0;
2283   }
2284 
2285   std::pair<UseMapTy::iterator, bool> P =
2286     UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0));
2287   if (!P.second) {
2288     // A use already existed with this base.
2289     size_t LUIdx = P.first->second;
2290     LSRUse &LU = Uses[LUIdx];
2291     if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
2292       // Reuse this use.
2293       return std::make_pair(LUIdx, Offset);
2294   }
2295 
2296   // Create a new use.
2297   size_t LUIdx = Uses.size();
2298   P.first->second = LUIdx;
2299   Uses.push_back(LSRUse(Kind, AccessTy));
2300   LSRUse &LU = Uses[LUIdx];
2301 
2302   // We don't need to track redundant offsets, but we don't need to go out
2303   // of our way here to avoid them.
2304   if (LU.Offsets.empty() || Offset != LU.Offsets.back())
2305     LU.Offsets.push_back(Offset);
2306 
2307   LU.MinOffset = Offset;
2308   LU.MaxOffset = Offset;
2309   return std::make_pair(LUIdx, Offset);
2310 }
2311 
2312 /// Delete the given use from the Uses list.
2313 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) {
2314   if (&LU != &Uses.back())
2315     std::swap(LU, Uses.back());
2316   Uses.pop_back();
2317 
2318   // Update RegUses.
2319   RegUses.swapAndDropUse(LUIdx, Uses.size());
2320 }
2321 
2322 /// Look for a use distinct from OrigLU which is has a formula that has the same
2323 /// registers as the given formula.
2324 LSRUse *
2325 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
2326                                        const LSRUse &OrigLU) {
2327   // Search all uses for the formula. This could be more clever.
2328   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2329     LSRUse &LU = Uses[LUIdx];
2330     // Check whether this use is close enough to OrigLU, to see whether it's
2331     // worthwhile looking through its formulae.
2332     // Ignore ICmpZero uses because they may contain formulae generated by
2333     // GenerateICmpZeroScales, in which case adding fixup offsets may
2334     // be invalid.
2335     if (&LU != &OrigLU &&
2336         LU.Kind != LSRUse::ICmpZero &&
2337         LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
2338         LU.WidestFixupType == OrigLU.WidestFixupType &&
2339         LU.HasFormulaWithSameRegs(OrigF)) {
2340       // Scan through this use's formulae.
2341       for (const Formula &F : LU.Formulae) {
2342         // Check to see if this formula has the same registers and symbols
2343         // as OrigF.
2344         if (F.BaseRegs == OrigF.BaseRegs &&
2345             F.ScaledReg == OrigF.ScaledReg &&
2346             F.BaseGV == OrigF.BaseGV &&
2347             F.Scale == OrigF.Scale &&
2348             F.UnfoldedOffset == OrigF.UnfoldedOffset) {
2349           if (F.BaseOffset == 0)
2350             return &LU;
2351           // This is the formula where all the registers and symbols matched;
2352           // there aren't going to be any others. Since we declined it, we
2353           // can skip the rest of the formulae and proceed to the next LSRUse.
2354           break;
2355         }
2356       }
2357     }
2358   }
2359 
2360   // Nothing looked good.
2361   return nullptr;
2362 }
2363 
2364 void LSRInstance::CollectInterestingTypesAndFactors() {
2365   SmallSetVector<const SCEV *, 4> Strides;
2366 
2367   // Collect interesting types and strides.
2368   SmallVector<const SCEV *, 4> Worklist;
2369   for (const IVStrideUse &U : IU) {
2370     const SCEV *Expr = IU.getExpr(U);
2371 
2372     // Collect interesting types.
2373     Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
2374 
2375     // Add strides for mentioned loops.
2376     Worklist.push_back(Expr);
2377     do {
2378       const SCEV *S = Worklist.pop_back_val();
2379       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2380         if (AR->getLoop() == L)
2381           Strides.insert(AR->getStepRecurrence(SE));
2382         Worklist.push_back(AR->getStart());
2383       } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2384         Worklist.append(Add->op_begin(), Add->op_end());
2385       }
2386     } while (!Worklist.empty());
2387   }
2388 
2389   // Compute interesting factors from the set of interesting strides.
2390   for (SmallSetVector<const SCEV *, 4>::const_iterator
2391        I = Strides.begin(), E = Strides.end(); I != E; ++I)
2392     for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
2393          std::next(I); NewStrideIter != E; ++NewStrideIter) {
2394       const SCEV *OldStride = *I;
2395       const SCEV *NewStride = *NewStrideIter;
2396 
2397       if (SE.getTypeSizeInBits(OldStride->getType()) !=
2398           SE.getTypeSizeInBits(NewStride->getType())) {
2399         if (SE.getTypeSizeInBits(OldStride->getType()) >
2400             SE.getTypeSizeInBits(NewStride->getType()))
2401           NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
2402         else
2403           OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
2404       }
2405       if (const SCEVConstant *Factor =
2406             dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
2407                                                         SE, true))) {
2408         if (Factor->getAPInt().getMinSignedBits() <= 64)
2409           Factors.insert(Factor->getAPInt().getSExtValue());
2410       } else if (const SCEVConstant *Factor =
2411                    dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
2412                                                                NewStride,
2413                                                                SE, true))) {
2414         if (Factor->getAPInt().getMinSignedBits() <= 64)
2415           Factors.insert(Factor->getAPInt().getSExtValue());
2416       }
2417     }
2418 
2419   // If all uses use the same type, don't bother looking for truncation-based
2420   // reuse.
2421   if (Types.size() == 1)
2422     Types.clear();
2423 
2424   DEBUG(print_factors_and_types(dbgs()));
2425 }
2426 
2427 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in
2428 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to
2429 /// IVStrideUses, we could partially skip this.
2430 static User::op_iterator
2431 findIVOperand(User::op_iterator OI, User::op_iterator OE,
2432               Loop *L, ScalarEvolution &SE) {
2433   for(; OI != OE; ++OI) {
2434     if (Instruction *Oper = dyn_cast<Instruction>(*OI)) {
2435       if (!SE.isSCEVable(Oper->getType()))
2436         continue;
2437 
2438       if (const SCEVAddRecExpr *AR =
2439           dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) {
2440         if (AR->getLoop() == L)
2441           break;
2442       }
2443     }
2444   }
2445   return OI;
2446 }
2447 
2448 /// IVChain logic must consistenctly peek base TruncInst operands, so wrap it in
2449 /// a convenient helper.
2450 static Value *getWideOperand(Value *Oper) {
2451   if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper))
2452     return Trunc->getOperand(0);
2453   return Oper;
2454 }
2455 
2456 /// Return true if we allow an IV chain to include both types.
2457 static bool isCompatibleIVType(Value *LVal, Value *RVal) {
2458   Type *LType = LVal->getType();
2459   Type *RType = RVal->getType();
2460   return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy());
2461 }
2462 
2463 /// Return an approximation of this SCEV expression's "base", or NULL for any
2464 /// constant. Returning the expression itself is conservative. Returning a
2465 /// deeper subexpression is more precise and valid as long as it isn't less
2466 /// complex than another subexpression. For expressions involving multiple
2467 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids
2468 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i],
2469 /// IVInc==b-a.
2470 ///
2471 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost
2472 /// SCEVUnknown, we simply return the rightmost SCEV operand.
2473 static const SCEV *getExprBase(const SCEV *S) {
2474   switch (S->getSCEVType()) {
2475   default: // uncluding scUnknown.
2476     return S;
2477   case scConstant:
2478     return nullptr;
2479   case scTruncate:
2480     return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand());
2481   case scZeroExtend:
2482     return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand());
2483   case scSignExtend:
2484     return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand());
2485   case scAddExpr: {
2486     // Skip over scaled operands (scMulExpr) to follow add operands as long as
2487     // there's nothing more complex.
2488     // FIXME: not sure if we want to recognize negation.
2489     const SCEVAddExpr *Add = cast<SCEVAddExpr>(S);
2490     for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()),
2491            E(Add->op_begin()); I != E; ++I) {
2492       const SCEV *SubExpr = *I;
2493       if (SubExpr->getSCEVType() == scAddExpr)
2494         return getExprBase(SubExpr);
2495 
2496       if (SubExpr->getSCEVType() != scMulExpr)
2497         return SubExpr;
2498     }
2499     return S; // all operands are scaled, be conservative.
2500   }
2501   case scAddRecExpr:
2502     return getExprBase(cast<SCEVAddRecExpr>(S)->getStart());
2503   }
2504 }
2505 
2506 /// Return true if the chain increment is profitable to expand into a loop
2507 /// invariant value, which may require its own register. A profitable chain
2508 /// increment will be an offset relative to the same base. We allow such offsets
2509 /// to potentially be used as chain increment as long as it's not obviously
2510 /// expensive to expand using real instructions.
2511 bool IVChain::isProfitableIncrement(const SCEV *OperExpr,
2512                                     const SCEV *IncExpr,
2513                                     ScalarEvolution &SE) {
2514   // Aggressively form chains when -stress-ivchain.
2515   if (StressIVChain)
2516     return true;
2517 
2518   // Do not replace a constant offset from IV head with a nonconstant IV
2519   // increment.
2520   if (!isa<SCEVConstant>(IncExpr)) {
2521     const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand));
2522     if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr)))
2523       return 0;
2524   }
2525 
2526   SmallPtrSet<const SCEV*, 8> Processed;
2527   return !isHighCostExpansion(IncExpr, Processed, SE);
2528 }
2529 
2530 /// Return true if the number of registers needed for the chain is estimated to
2531 /// be less than the number required for the individual IV users. First prohibit
2532 /// any IV users that keep the IV live across increments (the Users set should
2533 /// be empty). Next count the number and type of increments in the chain.
2534 ///
2535 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't
2536 /// effectively use postinc addressing modes. Only consider it profitable it the
2537 /// increments can be computed in fewer registers when chained.
2538 ///
2539 /// TODO: Consider IVInc free if it's already used in another chains.
2540 static bool
2541 isProfitableChain(IVChain &Chain, SmallPtrSetImpl<Instruction*> &Users,
2542                   ScalarEvolution &SE, const TargetTransformInfo &TTI) {
2543   if (StressIVChain)
2544     return true;
2545 
2546   if (!Chain.hasIncs())
2547     return false;
2548 
2549   if (!Users.empty()) {
2550     DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n";
2551           for (Instruction *Inst : Users) {
2552             dbgs() << "  " << *Inst << "\n";
2553           });
2554     return false;
2555   }
2556   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
2557 
2558   // The chain itself may require a register, so intialize cost to 1.
2559   int cost = 1;
2560 
2561   // A complete chain likely eliminates the need for keeping the original IV in
2562   // a register. LSR does not currently know how to form a complete chain unless
2563   // the header phi already exists.
2564   if (isa<PHINode>(Chain.tailUserInst())
2565       && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) {
2566     --cost;
2567   }
2568   const SCEV *LastIncExpr = nullptr;
2569   unsigned NumConstIncrements = 0;
2570   unsigned NumVarIncrements = 0;
2571   unsigned NumReusedIncrements = 0;
2572   for (const IVInc &Inc : Chain) {
2573     if (Inc.IncExpr->isZero())
2574       continue;
2575 
2576     // Incrementing by zero or some constant is neutral. We assume constants can
2577     // be folded into an addressing mode or an add's immediate operand.
2578     if (isa<SCEVConstant>(Inc.IncExpr)) {
2579       ++NumConstIncrements;
2580       continue;
2581     }
2582 
2583     if (Inc.IncExpr == LastIncExpr)
2584       ++NumReusedIncrements;
2585     else
2586       ++NumVarIncrements;
2587 
2588     LastIncExpr = Inc.IncExpr;
2589   }
2590   // An IV chain with a single increment is handled by LSR's postinc
2591   // uses. However, a chain with multiple increments requires keeping the IV's
2592   // value live longer than it needs to be if chained.
2593   if (NumConstIncrements > 1)
2594     --cost;
2595 
2596   // Materializing increment expressions in the preheader that didn't exist in
2597   // the original code may cost a register. For example, sign-extended array
2598   // indices can produce ridiculous increments like this:
2599   // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64)))
2600   cost += NumVarIncrements;
2601 
2602   // Reusing variable increments likely saves a register to hold the multiple of
2603   // the stride.
2604   cost -= NumReusedIncrements;
2605 
2606   DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost
2607                << "\n");
2608 
2609   return cost < 0;
2610 }
2611 
2612 /// Add this IV user to an existing chain or make it the head of a new chain.
2613 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper,
2614                                    SmallVectorImpl<ChainUsers> &ChainUsersVec) {
2615   // When IVs are used as types of varying widths, they are generally converted
2616   // to a wider type with some uses remaining narrow under a (free) trunc.
2617   Value *const NextIV = getWideOperand(IVOper);
2618   const SCEV *const OperExpr = SE.getSCEV(NextIV);
2619   const SCEV *const OperExprBase = getExprBase(OperExpr);
2620 
2621   // Visit all existing chains. Check if its IVOper can be computed as a
2622   // profitable loop invariant increment from the last link in the Chain.
2623   unsigned ChainIdx = 0, NChains = IVChainVec.size();
2624   const SCEV *LastIncExpr = nullptr;
2625   for (; ChainIdx < NChains; ++ChainIdx) {
2626     IVChain &Chain = IVChainVec[ChainIdx];
2627 
2628     // Prune the solution space aggressively by checking that both IV operands
2629     // are expressions that operate on the same unscaled SCEVUnknown. This
2630     // "base" will be canceled by the subsequent getMinusSCEV call. Checking
2631     // first avoids creating extra SCEV expressions.
2632     if (!StressIVChain && Chain.ExprBase != OperExprBase)
2633       continue;
2634 
2635     Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand);
2636     if (!isCompatibleIVType(PrevIV, NextIV))
2637       continue;
2638 
2639     // A phi node terminates a chain.
2640     if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst()))
2641       continue;
2642 
2643     // The increment must be loop-invariant so it can be kept in a register.
2644     const SCEV *PrevExpr = SE.getSCEV(PrevIV);
2645     const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr);
2646     if (!SE.isLoopInvariant(IncExpr, L))
2647       continue;
2648 
2649     if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) {
2650       LastIncExpr = IncExpr;
2651       break;
2652     }
2653   }
2654   // If we haven't found a chain, create a new one, unless we hit the max. Don't
2655   // bother for phi nodes, because they must be last in the chain.
2656   if (ChainIdx == NChains) {
2657     if (isa<PHINode>(UserInst))
2658       return;
2659     if (NChains >= MaxChains && !StressIVChain) {
2660       DEBUG(dbgs() << "IV Chain Limit\n");
2661       return;
2662     }
2663     LastIncExpr = OperExpr;
2664     // IVUsers may have skipped over sign/zero extensions. We don't currently
2665     // attempt to form chains involving extensions unless they can be hoisted
2666     // into this loop's AddRec.
2667     if (!isa<SCEVAddRecExpr>(LastIncExpr))
2668       return;
2669     ++NChains;
2670     IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr),
2671                                  OperExprBase));
2672     ChainUsersVec.resize(NChains);
2673     DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst
2674                  << ") IV=" << *LastIncExpr << "\n");
2675   } else {
2676     DEBUG(dbgs() << "IV Chain#" << ChainIdx << "  Inc: (" << *UserInst
2677                  << ") IV+" << *LastIncExpr << "\n");
2678     // Add this IV user to the end of the chain.
2679     IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr));
2680   }
2681   IVChain &Chain = IVChainVec[ChainIdx];
2682 
2683   SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers;
2684   // This chain's NearUsers become FarUsers.
2685   if (!LastIncExpr->isZero()) {
2686     ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(),
2687                                             NearUsers.end());
2688     NearUsers.clear();
2689   }
2690 
2691   // All other uses of IVOperand become near uses of the chain.
2692   // We currently ignore intermediate values within SCEV expressions, assuming
2693   // they will eventually be used be the current chain, or can be computed
2694   // from one of the chain increments. To be more precise we could
2695   // transitively follow its user and only add leaf IV users to the set.
2696   for (User *U : IVOper->users()) {
2697     Instruction *OtherUse = dyn_cast<Instruction>(U);
2698     if (!OtherUse)
2699       continue;
2700     // Uses in the chain will no longer be uses if the chain is formed.
2701     // Include the head of the chain in this iteration (not Chain.begin()).
2702     IVChain::const_iterator IncIter = Chain.Incs.begin();
2703     IVChain::const_iterator IncEnd = Chain.Incs.end();
2704     for( ; IncIter != IncEnd; ++IncIter) {
2705       if (IncIter->UserInst == OtherUse)
2706         break;
2707     }
2708     if (IncIter != IncEnd)
2709       continue;
2710 
2711     if (SE.isSCEVable(OtherUse->getType())
2712         && !isa<SCEVUnknown>(SE.getSCEV(OtherUse))
2713         && IU.isIVUserOrOperand(OtherUse)) {
2714       continue;
2715     }
2716     NearUsers.insert(OtherUse);
2717   }
2718 
2719   // Since this user is part of the chain, it's no longer considered a use
2720   // of the chain.
2721   ChainUsersVec[ChainIdx].FarUsers.erase(UserInst);
2722 }
2723 
2724 /// Populate the vector of Chains.
2725 ///
2726 /// This decreases ILP at the architecture level. Targets with ample registers,
2727 /// multiple memory ports, and no register renaming probably don't want
2728 /// this. However, such targets should probably disable LSR altogether.
2729 ///
2730 /// The job of LSR is to make a reasonable choice of induction variables across
2731 /// the loop. Subsequent passes can easily "unchain" computation exposing more
2732 /// ILP *within the loop* if the target wants it.
2733 ///
2734 /// Finding the best IV chain is potentially a scheduling problem. Since LSR
2735 /// will not reorder memory operations, it will recognize this as a chain, but
2736 /// will generate redundant IV increments. Ideally this would be corrected later
2737 /// by a smart scheduler:
2738 ///        = A[i]
2739 ///        = A[i+x]
2740 /// A[i]   =
2741 /// A[i+x] =
2742 ///
2743 /// TODO: Walk the entire domtree within this loop, not just the path to the
2744 /// loop latch. This will discover chains on side paths, but requires
2745 /// maintaining multiple copies of the Chains state.
2746 void LSRInstance::CollectChains() {
2747   DEBUG(dbgs() << "Collecting IV Chains.\n");
2748   SmallVector<ChainUsers, 8> ChainUsersVec;
2749 
2750   SmallVector<BasicBlock *,8> LatchPath;
2751   BasicBlock *LoopHeader = L->getHeader();
2752   for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch());
2753        Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) {
2754     LatchPath.push_back(Rung->getBlock());
2755   }
2756   LatchPath.push_back(LoopHeader);
2757 
2758   // Walk the instruction stream from the loop header to the loop latch.
2759   for (SmallVectorImpl<BasicBlock *>::reverse_iterator
2760          BBIter = LatchPath.rbegin(), BBEnd = LatchPath.rend();
2761        BBIter != BBEnd; ++BBIter) {
2762     for (BasicBlock::iterator I = (*BBIter)->begin(), E = (*BBIter)->end();
2763          I != E; ++I) {
2764       // Skip instructions that weren't seen by IVUsers analysis.
2765       if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&*I))
2766         continue;
2767 
2768       // Ignore users that are part of a SCEV expression. This way we only
2769       // consider leaf IV Users. This effectively rediscovers a portion of
2770       // IVUsers analysis but in program order this time.
2771       if (SE.isSCEVable(I->getType()) && !isa<SCEVUnknown>(SE.getSCEV(&*I)))
2772         continue;
2773 
2774       // Remove this instruction from any NearUsers set it may be in.
2775       for (unsigned ChainIdx = 0, NChains = IVChainVec.size();
2776            ChainIdx < NChains; ++ChainIdx) {
2777         ChainUsersVec[ChainIdx].NearUsers.erase(&*I);
2778       }
2779       // Search for operands that can be chained.
2780       SmallPtrSet<Instruction*, 4> UniqueOperands;
2781       User::op_iterator IVOpEnd = I->op_end();
2782       User::op_iterator IVOpIter = findIVOperand(I->op_begin(), IVOpEnd, L, SE);
2783       while (IVOpIter != IVOpEnd) {
2784         Instruction *IVOpInst = cast<Instruction>(*IVOpIter);
2785         if (UniqueOperands.insert(IVOpInst).second)
2786           ChainInstruction(&*I, IVOpInst, ChainUsersVec);
2787         IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
2788       }
2789     } // Continue walking down the instructions.
2790   } // Continue walking down the domtree.
2791   // Visit phi backedges to determine if the chain can generate the IV postinc.
2792   for (BasicBlock::iterator I = L->getHeader()->begin();
2793        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
2794     if (!SE.isSCEVable(PN->getType()))
2795       continue;
2796 
2797     Instruction *IncV =
2798       dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch()));
2799     if (IncV)
2800       ChainInstruction(PN, IncV, ChainUsersVec);
2801   }
2802   // Remove any unprofitable chains.
2803   unsigned ChainIdx = 0;
2804   for (unsigned UsersIdx = 0, NChains = IVChainVec.size();
2805        UsersIdx < NChains; ++UsersIdx) {
2806     if (!isProfitableChain(IVChainVec[UsersIdx],
2807                            ChainUsersVec[UsersIdx].FarUsers, SE, TTI))
2808       continue;
2809     // Preserve the chain at UsesIdx.
2810     if (ChainIdx != UsersIdx)
2811       IVChainVec[ChainIdx] = IVChainVec[UsersIdx];
2812     FinalizeChain(IVChainVec[ChainIdx]);
2813     ++ChainIdx;
2814   }
2815   IVChainVec.resize(ChainIdx);
2816 }
2817 
2818 void LSRInstance::FinalizeChain(IVChain &Chain) {
2819   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
2820   DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n");
2821 
2822   for (const IVInc &Inc : Chain) {
2823     DEBUG(dbgs() << "        Inc: " << Inc.UserInst << "\n");
2824     auto UseI = std::find(Inc.UserInst->op_begin(), Inc.UserInst->op_end(),
2825                           Inc.IVOperand);
2826     assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand");
2827     IVIncSet.insert(UseI);
2828   }
2829 }
2830 
2831 /// Return true if the IVInc can be folded into an addressing mode.
2832 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst,
2833                              Value *Operand, const TargetTransformInfo &TTI) {
2834   const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr);
2835   if (!IncConst || !isAddressUse(UserInst, Operand))
2836     return false;
2837 
2838   if (IncConst->getAPInt().getMinSignedBits() > 64)
2839     return false;
2840 
2841   MemAccessTy AccessTy = getAccessType(UserInst);
2842   int64_t IncOffset = IncConst->getValue()->getSExtValue();
2843   if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr,
2844                         IncOffset, /*HaseBaseReg=*/false))
2845     return false;
2846 
2847   return true;
2848 }
2849 
2850 /// Generate an add or subtract for each IVInc in a chain to materialize the IV
2851 /// user's operand from the previous IV user's operand.
2852 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
2853                                   SmallVectorImpl<WeakVH> &DeadInsts) {
2854   // Find the new IVOperand for the head of the chain. It may have been replaced
2855   // by LSR.
2856   const IVInc &Head = Chain.Incs[0];
2857   User::op_iterator IVOpEnd = Head.UserInst->op_end();
2858   // findIVOperand returns IVOpEnd if it can no longer find a valid IV user.
2859   User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(),
2860                                              IVOpEnd, L, SE);
2861   Value *IVSrc = nullptr;
2862   while (IVOpIter != IVOpEnd) {
2863     IVSrc = getWideOperand(*IVOpIter);
2864 
2865     // If this operand computes the expression that the chain needs, we may use
2866     // it. (Check this after setting IVSrc which is used below.)
2867     //
2868     // Note that if Head.IncExpr is wider than IVSrc, then this phi is too
2869     // narrow for the chain, so we can no longer use it. We do allow using a
2870     // wider phi, assuming the LSR checked for free truncation. In that case we
2871     // should already have a truncate on this operand such that
2872     // getSCEV(IVSrc) == IncExpr.
2873     if (SE.getSCEV(*IVOpIter) == Head.IncExpr
2874         || SE.getSCEV(IVSrc) == Head.IncExpr) {
2875       break;
2876     }
2877     IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
2878   }
2879   if (IVOpIter == IVOpEnd) {
2880     // Gracefully give up on this chain.
2881     DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n");
2882     return;
2883   }
2884 
2885   DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n");
2886   Type *IVTy = IVSrc->getType();
2887   Type *IntTy = SE.getEffectiveSCEVType(IVTy);
2888   const SCEV *LeftOverExpr = nullptr;
2889   for (const IVInc &Inc : Chain) {
2890     Instruction *InsertPt = Inc.UserInst;
2891     if (isa<PHINode>(InsertPt))
2892       InsertPt = L->getLoopLatch()->getTerminator();
2893 
2894     // IVOper will replace the current IV User's operand. IVSrc is the IV
2895     // value currently held in a register.
2896     Value *IVOper = IVSrc;
2897     if (!Inc.IncExpr->isZero()) {
2898       // IncExpr was the result of subtraction of two narrow values, so must
2899       // be signed.
2900       const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy);
2901       LeftOverExpr = LeftOverExpr ?
2902         SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr;
2903     }
2904     if (LeftOverExpr && !LeftOverExpr->isZero()) {
2905       // Expand the IV increment.
2906       Rewriter.clearPostInc();
2907       Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt);
2908       const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc),
2909                                              SE.getUnknown(IncV));
2910       IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt);
2911 
2912       // If an IV increment can't be folded, use it as the next IV value.
2913       if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) {
2914         assert(IVTy == IVOper->getType() && "inconsistent IV increment type");
2915         IVSrc = IVOper;
2916         LeftOverExpr = nullptr;
2917       }
2918     }
2919     Type *OperTy = Inc.IVOperand->getType();
2920     if (IVTy != OperTy) {
2921       assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) &&
2922              "cannot extend a chained IV");
2923       IRBuilder<> Builder(InsertPt);
2924       IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain");
2925     }
2926     Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper);
2927     DeadInsts.emplace_back(Inc.IVOperand);
2928   }
2929   // If LSR created a new, wider phi, we may also replace its postinc. We only
2930   // do this if we also found a wide value for the head of the chain.
2931   if (isa<PHINode>(Chain.tailUserInst())) {
2932     for (BasicBlock::iterator I = L->getHeader()->begin();
2933          PHINode *Phi = dyn_cast<PHINode>(I); ++I) {
2934       if (!isCompatibleIVType(Phi, IVSrc))
2935         continue;
2936       Instruction *PostIncV = dyn_cast<Instruction>(
2937         Phi->getIncomingValueForBlock(L->getLoopLatch()));
2938       if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc)))
2939         continue;
2940       Value *IVOper = IVSrc;
2941       Type *PostIncTy = PostIncV->getType();
2942       if (IVTy != PostIncTy) {
2943         assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types");
2944         IRBuilder<> Builder(L->getLoopLatch()->getTerminator());
2945         Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc());
2946         IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain");
2947       }
2948       Phi->replaceUsesOfWith(PostIncV, IVOper);
2949       DeadInsts.emplace_back(PostIncV);
2950     }
2951   }
2952 }
2953 
2954 void LSRInstance::CollectFixupsAndInitialFormulae() {
2955   for (const IVStrideUse &U : IU) {
2956     Instruction *UserInst = U.getUser();
2957     // Skip IV users that are part of profitable IV Chains.
2958     User::op_iterator UseI = std::find(UserInst->op_begin(), UserInst->op_end(),
2959                                        U.getOperandValToReplace());
2960     assert(UseI != UserInst->op_end() && "cannot find IV operand");
2961     if (IVIncSet.count(UseI))
2962       continue;
2963 
2964     // Record the uses.
2965     LSRFixup &LF = getNewFixup();
2966     LF.UserInst = UserInst;
2967     LF.OperandValToReplace = U.getOperandValToReplace();
2968     LF.PostIncLoops = U.getPostIncLoops();
2969 
2970     LSRUse::KindType Kind = LSRUse::Basic;
2971     MemAccessTy AccessTy;
2972     if (isAddressUse(LF.UserInst, LF.OperandValToReplace)) {
2973       Kind = LSRUse::Address;
2974       AccessTy = getAccessType(LF.UserInst);
2975     }
2976 
2977     const SCEV *S = IU.getExpr(U);
2978 
2979     // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
2980     // (N - i == 0), and this allows (N - i) to be the expression that we work
2981     // with rather than just N or i, so we can consider the register
2982     // requirements for both N and i at the same time. Limiting this code to
2983     // equality icmps is not a problem because all interesting loops use
2984     // equality icmps, thanks to IndVarSimplify.
2985     if (ICmpInst *CI = dyn_cast<ICmpInst>(LF.UserInst))
2986       if (CI->isEquality()) {
2987         // Swap the operands if needed to put the OperandValToReplace on the
2988         // left, for consistency.
2989         Value *NV = CI->getOperand(1);
2990         if (NV == LF.OperandValToReplace) {
2991           CI->setOperand(1, CI->getOperand(0));
2992           CI->setOperand(0, NV);
2993           NV = CI->getOperand(1);
2994           Changed = true;
2995         }
2996 
2997         // x == y  -->  x - y == 0
2998         const SCEV *N = SE.getSCEV(NV);
2999         if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) {
3000           // S is normalized, so normalize N before folding it into S
3001           // to keep the result normalized.
3002           N = TransformForPostIncUse(Normalize, N, CI, nullptr,
3003                                      LF.PostIncLoops, SE, DT);
3004           Kind = LSRUse::ICmpZero;
3005           S = SE.getMinusSCEV(N, S);
3006         }
3007 
3008         // -1 and the negations of all interesting strides (except the negation
3009         // of -1) are now also interesting.
3010         for (size_t i = 0, e = Factors.size(); i != e; ++i)
3011           if (Factors[i] != -1)
3012             Factors.insert(-(uint64_t)Factors[i]);
3013         Factors.insert(-1);
3014       }
3015 
3016     // Set up the initial formula for this use.
3017     std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
3018     LF.LUIdx = P.first;
3019     LF.Offset = P.second;
3020     LSRUse &LU = Uses[LF.LUIdx];
3021     LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3022     if (!LU.WidestFixupType ||
3023         SE.getTypeSizeInBits(LU.WidestFixupType) <
3024         SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3025       LU.WidestFixupType = LF.OperandValToReplace->getType();
3026 
3027     // If this is the first use of this LSRUse, give it a formula.
3028     if (LU.Formulae.empty()) {
3029       InsertInitialFormula(S, LU, LF.LUIdx);
3030       CountRegisters(LU.Formulae.back(), LF.LUIdx);
3031     }
3032   }
3033 
3034   DEBUG(print_fixups(dbgs()));
3035 }
3036 
3037 /// Insert a formula for the given expression into the given use, separating out
3038 /// loop-variant portions from loop-invariant and loop-computable portions.
3039 void
3040 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
3041   // Mark uses whose expressions cannot be expanded.
3042   if (!isSafeToExpand(S, SE))
3043     LU.RigidFormula = true;
3044 
3045   Formula F;
3046   F.initialMatch(S, L, SE);
3047   bool Inserted = InsertFormula(LU, LUIdx, F);
3048   assert(Inserted && "Initial formula already exists!"); (void)Inserted;
3049 }
3050 
3051 /// Insert a simple single-register formula for the given expression into the
3052 /// given use.
3053 void
3054 LSRInstance::InsertSupplementalFormula(const SCEV *S,
3055                                        LSRUse &LU, size_t LUIdx) {
3056   Formula F;
3057   F.BaseRegs.push_back(S);
3058   F.HasBaseReg = true;
3059   bool Inserted = InsertFormula(LU, LUIdx, F);
3060   assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
3061 }
3062 
3063 /// Note which registers are used by the given formula, updating RegUses.
3064 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
3065   if (F.ScaledReg)
3066     RegUses.countRegister(F.ScaledReg, LUIdx);
3067   for (const SCEV *BaseReg : F.BaseRegs)
3068     RegUses.countRegister(BaseReg, LUIdx);
3069 }
3070 
3071 /// If the given formula has not yet been inserted, add it to the list, and
3072 /// return true. Return false otherwise.
3073 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
3074   // Do not insert formula that we will not be able to expand.
3075   assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) &&
3076          "Formula is illegal");
3077   if (!LU.InsertFormula(F))
3078     return false;
3079 
3080   CountRegisters(F, LUIdx);
3081   return true;
3082 }
3083 
3084 /// Check for other uses of loop-invariant values which we're tracking. These
3085 /// other uses will pin these values in registers, making them less profitable
3086 /// for elimination.
3087 /// TODO: This currently misses non-constant addrec step registers.
3088 /// TODO: Should this give more weight to users inside the loop?
3089 void
3090 LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
3091   SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
3092   SmallPtrSet<const SCEV *, 32> Visited;
3093 
3094   while (!Worklist.empty()) {
3095     const SCEV *S = Worklist.pop_back_val();
3096 
3097     // Don't process the same SCEV twice
3098     if (!Visited.insert(S).second)
3099       continue;
3100 
3101     if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
3102       Worklist.append(N->op_begin(), N->op_end());
3103     else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
3104       Worklist.push_back(C->getOperand());
3105     else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
3106       Worklist.push_back(D->getLHS());
3107       Worklist.push_back(D->getRHS());
3108     } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) {
3109       const Value *V = US->getValue();
3110       if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
3111         // Look for instructions defined outside the loop.
3112         if (L->contains(Inst)) continue;
3113       } else if (isa<UndefValue>(V))
3114         // Undef doesn't have a live range, so it doesn't matter.
3115         continue;
3116       for (const Use &U : V->uses()) {
3117         const Instruction *UserInst = dyn_cast<Instruction>(U.getUser());
3118         // Ignore non-instructions.
3119         if (!UserInst)
3120           continue;
3121         // Ignore instructions in other functions (as can happen with
3122         // Constants).
3123         if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
3124           continue;
3125         // Ignore instructions not dominated by the loop.
3126         const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
3127           UserInst->getParent() :
3128           cast<PHINode>(UserInst)->getIncomingBlock(
3129             PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
3130         if (!DT.dominates(L->getHeader(), UseBB))
3131           continue;
3132         // Don't bother if the instruction is in a BB which ends in an EHPad.
3133         if (UseBB->getTerminator()->isEHPad())
3134           continue;
3135         // Ignore uses which are part of other SCEV expressions, to avoid
3136         // analyzing them multiple times.
3137         if (SE.isSCEVable(UserInst->getType())) {
3138           const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
3139           // If the user is a no-op, look through to its uses.
3140           if (!isa<SCEVUnknown>(UserS))
3141             continue;
3142           if (UserS == US) {
3143             Worklist.push_back(
3144               SE.getUnknown(const_cast<Instruction *>(UserInst)));
3145             continue;
3146           }
3147         }
3148         // Ignore icmp instructions which are already being analyzed.
3149         if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
3150           unsigned OtherIdx = !U.getOperandNo();
3151           Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
3152           if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L))
3153             continue;
3154         }
3155 
3156         LSRFixup &LF = getNewFixup();
3157         LF.UserInst = const_cast<Instruction *>(UserInst);
3158         LF.OperandValToReplace = U;
3159         std::pair<size_t, int64_t> P = getUse(
3160             S, LSRUse::Basic, MemAccessTy());
3161         LF.LUIdx = P.first;
3162         LF.Offset = P.second;
3163         LSRUse &LU = Uses[LF.LUIdx];
3164         LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3165         if (!LU.WidestFixupType ||
3166             SE.getTypeSizeInBits(LU.WidestFixupType) <
3167             SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3168           LU.WidestFixupType = LF.OperandValToReplace->getType();
3169         InsertSupplementalFormula(US, LU, LF.LUIdx);
3170         CountRegisters(LU.Formulae.back(), Uses.size() - 1);
3171         break;
3172       }
3173     }
3174   }
3175 }
3176 
3177 /// Split S into subexpressions which can be pulled out into separate
3178 /// registers. If C is non-null, multiply each subexpression by C.
3179 ///
3180 /// Return remainder expression after factoring the subexpressions captured by
3181 /// Ops. If Ops is complete, return NULL.
3182 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C,
3183                                    SmallVectorImpl<const SCEV *> &Ops,
3184                                    const Loop *L,
3185                                    ScalarEvolution &SE,
3186                                    unsigned Depth = 0) {
3187   // Arbitrarily cap recursion to protect compile time.
3188   if (Depth >= 3)
3189     return S;
3190 
3191   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3192     // Break out add operands.
3193     for (const SCEV *S : Add->operands()) {
3194       const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1);
3195       if (Remainder)
3196         Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3197     }
3198     return nullptr;
3199   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
3200     // Split a non-zero base out of an addrec.
3201     if (AR->getStart()->isZero())
3202       return S;
3203 
3204     const SCEV *Remainder = CollectSubexprs(AR->getStart(),
3205                                             C, Ops, L, SE, Depth+1);
3206     // Split the non-zero AddRec unless it is part of a nested recurrence that
3207     // does not pertain to this loop.
3208     if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) {
3209       Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3210       Remainder = nullptr;
3211     }
3212     if (Remainder != AR->getStart()) {
3213       if (!Remainder)
3214         Remainder = SE.getConstant(AR->getType(), 0);
3215       return SE.getAddRecExpr(Remainder,
3216                               AR->getStepRecurrence(SE),
3217                               AR->getLoop(),
3218                               //FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
3219                               SCEV::FlagAnyWrap);
3220     }
3221   } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3222     // Break (C * (a + b + c)) into C*a + C*b + C*c.
3223     if (Mul->getNumOperands() != 2)
3224       return S;
3225     if (const SCEVConstant *Op0 =
3226         dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3227       C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0;
3228       const SCEV *Remainder =
3229         CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1);
3230       if (Remainder)
3231         Ops.push_back(SE.getMulExpr(C, Remainder));
3232       return nullptr;
3233     }
3234   }
3235   return S;
3236 }
3237 
3238 /// \brief Helper function for LSRInstance::GenerateReassociations.
3239 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
3240                                              const Formula &Base,
3241                                              unsigned Depth, size_t Idx,
3242                                              bool IsScaledReg) {
3243   const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3244   SmallVector<const SCEV *, 8> AddOps;
3245   const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE);
3246   if (Remainder)
3247     AddOps.push_back(Remainder);
3248 
3249   if (AddOps.size() == 1)
3250     return;
3251 
3252   for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
3253                                                      JE = AddOps.end();
3254        J != JE; ++J) {
3255 
3256     // Loop-variant "unknown" values are uninteresting; we won't be able to
3257     // do anything meaningful with them.
3258     if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L))
3259       continue;
3260 
3261     // Don't pull a constant into a register if the constant could be folded
3262     // into an immediate field.
3263     if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3264                          LU.AccessTy, *J, Base.getNumRegs() > 1))
3265       continue;
3266 
3267     // Collect all operands except *J.
3268     SmallVector<const SCEV *, 8> InnerAddOps(
3269         ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J);
3270     InnerAddOps.append(std::next(J),
3271                        ((const SmallVector<const SCEV *, 8> &)AddOps).end());
3272 
3273     // Don't leave just a constant behind in a register if the constant could
3274     // be folded into an immediate field.
3275     if (InnerAddOps.size() == 1 &&
3276         isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3277                          LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1))
3278       continue;
3279 
3280     const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
3281     if (InnerSum->isZero())
3282       continue;
3283     Formula F = Base;
3284 
3285     // Add the remaining pieces of the add back into the new formula.
3286     const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum);
3287     if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 &&
3288         TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3289                                 InnerSumSC->getValue()->getZExtValue())) {
3290       F.UnfoldedOffset =
3291           (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue();
3292       if (IsScaledReg)
3293         F.ScaledReg = nullptr;
3294       else
3295         F.BaseRegs.erase(F.BaseRegs.begin() + Idx);
3296     } else if (IsScaledReg)
3297       F.ScaledReg = InnerSum;
3298     else
3299       F.BaseRegs[Idx] = InnerSum;
3300 
3301     // Add J as its own register, or an unfolded immediate.
3302     const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J);
3303     if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 &&
3304         TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3305                                 SC->getValue()->getZExtValue()))
3306       F.UnfoldedOffset =
3307           (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue();
3308     else
3309       F.BaseRegs.push_back(*J);
3310     // We may have changed the number of register in base regs, adjust the
3311     // formula accordingly.
3312     F.canonicalize();
3313 
3314     if (InsertFormula(LU, LUIdx, F))
3315       // If that formula hadn't been seen before, recurse to find more like
3316       // it.
3317       GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth + 1);
3318   }
3319 }
3320 
3321 /// Split out subexpressions from adds and the bases of addrecs.
3322 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
3323                                          Formula Base, unsigned Depth) {
3324   assert(Base.isCanonical() && "Input must be in the canonical form");
3325   // Arbitrarily cap recursion to protect compile time.
3326   if (Depth >= 3)
3327     return;
3328 
3329   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3330     GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i);
3331 
3332   if (Base.Scale == 1)
3333     GenerateReassociationsImpl(LU, LUIdx, Base, Depth,
3334                                /* Idx */ -1, /* IsScaledReg */ true);
3335 }
3336 
3337 ///  Generate a formula consisting of all of the loop-dominating registers added
3338 /// into a single register.
3339 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
3340                                        Formula Base) {
3341   // This method is only interesting on a plurality of registers.
3342   if (Base.BaseRegs.size() + (Base.Scale == 1) <= 1)
3343     return;
3344 
3345   // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before
3346   // processing the formula.
3347   Base.unscale();
3348   Formula F = Base;
3349   F.BaseRegs.clear();
3350   SmallVector<const SCEV *, 4> Ops;
3351   for (const SCEV *BaseReg : Base.BaseRegs) {
3352     if (SE.properlyDominates(BaseReg, L->getHeader()) &&
3353         !SE.hasComputableLoopEvolution(BaseReg, L))
3354       Ops.push_back(BaseReg);
3355     else
3356       F.BaseRegs.push_back(BaseReg);
3357   }
3358   if (Ops.size() > 1) {
3359     const SCEV *Sum = SE.getAddExpr(Ops);
3360     // TODO: If Sum is zero, it probably means ScalarEvolution missed an
3361     // opportunity to fold something. For now, just ignore such cases
3362     // rather than proceed with zero in a register.
3363     if (!Sum->isZero()) {
3364       F.BaseRegs.push_back(Sum);
3365       F.canonicalize();
3366       (void)InsertFormula(LU, LUIdx, F);
3367     }
3368   }
3369 }
3370 
3371 /// \brief Helper function for LSRInstance::GenerateSymbolicOffsets.
3372 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
3373                                               const Formula &Base, size_t Idx,
3374                                               bool IsScaledReg) {
3375   const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3376   GlobalValue *GV = ExtractSymbol(G, SE);
3377   if (G->isZero() || !GV)
3378     return;
3379   Formula F = Base;
3380   F.BaseGV = GV;
3381   if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3382     return;
3383   if (IsScaledReg)
3384     F.ScaledReg = G;
3385   else
3386     F.BaseRegs[Idx] = G;
3387   (void)InsertFormula(LU, LUIdx, F);
3388 }
3389 
3390 /// Generate reuse formulae using symbolic offsets.
3391 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
3392                                           Formula Base) {
3393   // We can't add a symbolic offset if the address already contains one.
3394   if (Base.BaseGV) return;
3395 
3396   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3397     GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i);
3398   if (Base.Scale == 1)
3399     GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1,
3400                                 /* IsScaledReg */ true);
3401 }
3402 
3403 /// \brief Helper function for LSRInstance::GenerateConstantOffsets.
3404 void LSRInstance::GenerateConstantOffsetsImpl(
3405     LSRUse &LU, unsigned LUIdx, const Formula &Base,
3406     const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) {
3407   const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3408   for (int64_t Offset : Worklist) {
3409     Formula F = Base;
3410     F.BaseOffset = (uint64_t)Base.BaseOffset - Offset;
3411     if (isLegalUse(TTI, LU.MinOffset - Offset, LU.MaxOffset - Offset, LU.Kind,
3412                    LU.AccessTy, F)) {
3413       // Add the offset to the base register.
3414       const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G);
3415       // If it cancelled out, drop the base register, otherwise update it.
3416       if (NewG->isZero()) {
3417         if (IsScaledReg) {
3418           F.Scale = 0;
3419           F.ScaledReg = nullptr;
3420         } else
3421           F.deleteBaseReg(F.BaseRegs[Idx]);
3422         F.canonicalize();
3423       } else if (IsScaledReg)
3424         F.ScaledReg = NewG;
3425       else
3426         F.BaseRegs[Idx] = NewG;
3427 
3428       (void)InsertFormula(LU, LUIdx, F);
3429     }
3430   }
3431 
3432   int64_t Imm = ExtractImmediate(G, SE);
3433   if (G->isZero() || Imm == 0)
3434     return;
3435   Formula F = Base;
3436   F.BaseOffset = (uint64_t)F.BaseOffset + Imm;
3437   if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3438     return;
3439   if (IsScaledReg)
3440     F.ScaledReg = G;
3441   else
3442     F.BaseRegs[Idx] = G;
3443   (void)InsertFormula(LU, LUIdx, F);
3444 }
3445 
3446 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
3447 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
3448                                           Formula Base) {
3449   // TODO: For now, just add the min and max offset, because it usually isn't
3450   // worthwhile looking at everything inbetween.
3451   SmallVector<int64_t, 2> Worklist;
3452   Worklist.push_back(LU.MinOffset);
3453   if (LU.MaxOffset != LU.MinOffset)
3454     Worklist.push_back(LU.MaxOffset);
3455 
3456   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3457     GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i);
3458   if (Base.Scale == 1)
3459     GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1,
3460                                 /* IsScaledReg */ true);
3461 }
3462 
3463 /// For ICmpZero, check to see if we can scale up the comparison. For example, x
3464 /// == y -> x*c == y*c.
3465 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
3466                                          Formula Base) {
3467   if (LU.Kind != LSRUse::ICmpZero) return;
3468 
3469   // Determine the integer type for the base formula.
3470   Type *IntTy = Base.getType();
3471   if (!IntTy) return;
3472   if (SE.getTypeSizeInBits(IntTy) > 64) return;
3473 
3474   // Don't do this if there is more than one offset.
3475   if (LU.MinOffset != LU.MaxOffset) return;
3476 
3477   assert(!Base.BaseGV && "ICmpZero use is not legal!");
3478 
3479   // Check each interesting stride.
3480   for (int64_t Factor : Factors) {
3481     // Check that the multiplication doesn't overflow.
3482     if (Base.BaseOffset == INT64_MIN && Factor == -1)
3483       continue;
3484     int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor;
3485     if (NewBaseOffset / Factor != Base.BaseOffset)
3486       continue;
3487     // If the offset will be truncated at this use, check that it is in bounds.
3488     if (!IntTy->isPointerTy() &&
3489         !ConstantInt::isValueValidForType(IntTy, NewBaseOffset))
3490       continue;
3491 
3492     // Check that multiplying with the use offset doesn't overflow.
3493     int64_t Offset = LU.MinOffset;
3494     if (Offset == INT64_MIN && Factor == -1)
3495       continue;
3496     Offset = (uint64_t)Offset * Factor;
3497     if (Offset / Factor != LU.MinOffset)
3498       continue;
3499     // If the offset will be truncated at this use, check that it is in bounds.
3500     if (!IntTy->isPointerTy() &&
3501         !ConstantInt::isValueValidForType(IntTy, Offset))
3502       continue;
3503 
3504     Formula F = Base;
3505     F.BaseOffset = NewBaseOffset;
3506 
3507     // Check that this scale is legal.
3508     if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F))
3509       continue;
3510 
3511     // Compensate for the use having MinOffset built into it.
3512     F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset;
3513 
3514     const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3515 
3516     // Check that multiplying with each base register doesn't overflow.
3517     for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
3518       F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
3519       if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
3520         goto next;
3521     }
3522 
3523     // Check that multiplying with the scaled register doesn't overflow.
3524     if (F.ScaledReg) {
3525       F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
3526       if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
3527         continue;
3528     }
3529 
3530     // Check that multiplying with the unfolded offset doesn't overflow.
3531     if (F.UnfoldedOffset != 0) {
3532       if (F.UnfoldedOffset == INT64_MIN && Factor == -1)
3533         continue;
3534       F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor;
3535       if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset)
3536         continue;
3537       // If the offset will be truncated, check that it is in bounds.
3538       if (!IntTy->isPointerTy() &&
3539           !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset))
3540         continue;
3541     }
3542 
3543     // If we make it here and it's legal, add it.
3544     (void)InsertFormula(LU, LUIdx, F);
3545   next:;
3546   }
3547 }
3548 
3549 /// Generate stride factor reuse formulae by making use of scaled-offset address
3550 /// modes, for example.
3551 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
3552   // Determine the integer type for the base formula.
3553   Type *IntTy = Base.getType();
3554   if (!IntTy) return;
3555 
3556   // If this Formula already has a scaled register, we can't add another one.
3557   // Try to unscale the formula to generate a better scale.
3558   if (Base.Scale != 0 && !Base.unscale())
3559     return;
3560 
3561   assert(Base.Scale == 0 && "unscale did not did its job!");
3562 
3563   // Check each interesting stride.
3564   for (int64_t Factor : Factors) {
3565     Base.Scale = Factor;
3566     Base.HasBaseReg = Base.BaseRegs.size() > 1;
3567     // Check whether this scale is going to be legal.
3568     if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
3569                     Base)) {
3570       // As a special-case, handle special out-of-loop Basic users specially.
3571       // TODO: Reconsider this special case.
3572       if (LU.Kind == LSRUse::Basic &&
3573           isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special,
3574                      LU.AccessTy, Base) &&
3575           LU.AllFixupsOutsideLoop)
3576         LU.Kind = LSRUse::Special;
3577       else
3578         continue;
3579     }
3580     // For an ICmpZero, negating a solitary base register won't lead to
3581     // new solutions.
3582     if (LU.Kind == LSRUse::ICmpZero &&
3583         !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV)
3584       continue;
3585     // For each addrec base reg, apply the scale, if possible.
3586     for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3587       if (const SCEVAddRecExpr *AR =
3588             dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i])) {
3589         const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3590         if (FactorS->isZero())
3591           continue;
3592         // Divide out the factor, ignoring high bits, since we'll be
3593         // scaling the value back up in the end.
3594         if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) {
3595           // TODO: This could be optimized to avoid all the copying.
3596           Formula F = Base;
3597           F.ScaledReg = Quotient;
3598           F.deleteBaseReg(F.BaseRegs[i]);
3599           // The canonical representation of 1*reg is reg, which is already in
3600           // Base. In that case, do not try to insert the formula, it will be
3601           // rejected anyway.
3602           if (F.Scale == 1 && F.BaseRegs.empty())
3603             continue;
3604           (void)InsertFormula(LU, LUIdx, F);
3605         }
3606       }
3607   }
3608 }
3609 
3610 /// Generate reuse formulae from different IV types.
3611 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
3612   // Don't bother truncating symbolic values.
3613   if (Base.BaseGV) return;
3614 
3615   // Determine the integer type for the base formula.
3616   Type *DstTy = Base.getType();
3617   if (!DstTy) return;
3618   DstTy = SE.getEffectiveSCEVType(DstTy);
3619 
3620   for (Type *SrcTy : Types) {
3621     if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) {
3622       Formula F = Base;
3623 
3624       if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy);
3625       for (const SCEV *&BaseReg : F.BaseRegs)
3626         BaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy);
3627 
3628       // TODO: This assumes we've done basic processing on all uses and
3629       // have an idea what the register usage is.
3630       if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
3631         continue;
3632 
3633       (void)InsertFormula(LU, LUIdx, F);
3634     }
3635   }
3636 }
3637 
3638 namespace {
3639 
3640 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer
3641 /// modifications so that the search phase doesn't have to worry about the data
3642 /// structures moving underneath it.
3643 struct WorkItem {
3644   size_t LUIdx;
3645   int64_t Imm;
3646   const SCEV *OrigReg;
3647 
3648   WorkItem(size_t LI, int64_t I, const SCEV *R)
3649     : LUIdx(LI), Imm(I), OrigReg(R) {}
3650 
3651   void print(raw_ostream &OS) const;
3652   void dump() const;
3653 };
3654 
3655 }
3656 
3657 void WorkItem::print(raw_ostream &OS) const {
3658   OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
3659      << " , add offset " << Imm;
3660 }
3661 
3662 LLVM_DUMP_METHOD
3663 void WorkItem::dump() const {
3664   print(errs()); errs() << '\n';
3665 }
3666 
3667 /// Look for registers which are a constant distance apart and try to form reuse
3668 /// opportunities between them.
3669 void LSRInstance::GenerateCrossUseConstantOffsets() {
3670   // Group the registers by their value without any added constant offset.
3671   typedef std::map<int64_t, const SCEV *> ImmMapTy;
3672   DenseMap<const SCEV *, ImmMapTy> Map;
3673   DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
3674   SmallVector<const SCEV *, 8> Sequence;
3675   for (const SCEV *Use : RegUses) {
3676     const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify.
3677     int64_t Imm = ExtractImmediate(Reg, SE);
3678     auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy()));
3679     if (Pair.second)
3680       Sequence.push_back(Reg);
3681     Pair.first->second.insert(std::make_pair(Imm, Use));
3682     UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use);
3683   }
3684 
3685   // Now examine each set of registers with the same base value. Build up
3686   // a list of work to do and do the work in a separate step so that we're
3687   // not adding formulae and register counts while we're searching.
3688   SmallVector<WorkItem, 32> WorkItems;
3689   SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
3690   for (const SCEV *Reg : Sequence) {
3691     const ImmMapTy &Imms = Map.find(Reg)->second;
3692 
3693     // It's not worthwhile looking for reuse if there's only one offset.
3694     if (Imms.size() == 1)
3695       continue;
3696 
3697     DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
3698           for (const auto &Entry : Imms)
3699             dbgs() << ' ' << Entry.first;
3700           dbgs() << '\n');
3701 
3702     // Examine each offset.
3703     for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
3704          J != JE; ++J) {
3705       const SCEV *OrigReg = J->second;
3706 
3707       int64_t JImm = J->first;
3708       const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
3709 
3710       if (!isa<SCEVConstant>(OrigReg) &&
3711           UsedByIndicesMap[Reg].count() == 1) {
3712         DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n');
3713         continue;
3714       }
3715 
3716       // Conservatively examine offsets between this orig reg a few selected
3717       // other orig regs.
3718       ImmMapTy::const_iterator OtherImms[] = {
3719         Imms.begin(), std::prev(Imms.end()),
3720         Imms.lower_bound((Imms.begin()->first + std::prev(Imms.end())->first) /
3721                          2)
3722       };
3723       for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
3724         ImmMapTy::const_iterator M = OtherImms[i];
3725         if (M == J || M == JE) continue;
3726 
3727         // Compute the difference between the two.
3728         int64_t Imm = (uint64_t)JImm - M->first;
3729         for (int LUIdx = UsedByIndices.find_first(); LUIdx != -1;
3730              LUIdx = UsedByIndices.find_next(LUIdx))
3731           // Make a memo of this use, offset, and register tuple.
3732           if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second)
3733             WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
3734       }
3735     }
3736   }
3737 
3738   Map.clear();
3739   Sequence.clear();
3740   UsedByIndicesMap.clear();
3741   UniqueItems.clear();
3742 
3743   // Now iterate through the worklist and add new formulae.
3744   for (const WorkItem &WI : WorkItems) {
3745     size_t LUIdx = WI.LUIdx;
3746     LSRUse &LU = Uses[LUIdx];
3747     int64_t Imm = WI.Imm;
3748     const SCEV *OrigReg = WI.OrigReg;
3749 
3750     Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
3751     const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
3752     unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
3753 
3754     // TODO: Use a more targeted data structure.
3755     for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
3756       Formula F = LU.Formulae[L];
3757       // FIXME: The code for the scaled and unscaled registers looks
3758       // very similar but slightly different. Investigate if they
3759       // could be merged. That way, we would not have to unscale the
3760       // Formula.
3761       F.unscale();
3762       // Use the immediate in the scaled register.
3763       if (F.ScaledReg == OrigReg) {
3764         int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale;
3765         // Don't create 50 + reg(-50).
3766         if (F.referencesReg(SE.getSCEV(
3767                    ConstantInt::get(IntTy, -(uint64_t)Offset))))
3768           continue;
3769         Formula NewF = F;
3770         NewF.BaseOffset = Offset;
3771         if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
3772                         NewF))
3773           continue;
3774         NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
3775 
3776         // If the new scale is a constant in a register, and adding the constant
3777         // value to the immediate would produce a value closer to zero than the
3778         // immediate itself, then the formula isn't worthwhile.
3779         if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
3780           if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) &&
3781               (C->getAPInt().abs() * APInt(BitWidth, F.Scale))
3782                   .ule(std::abs(NewF.BaseOffset)))
3783             continue;
3784 
3785         // OK, looks good.
3786         NewF.canonicalize();
3787         (void)InsertFormula(LU, LUIdx, NewF);
3788       } else {
3789         // Use the immediate in a base register.
3790         for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
3791           const SCEV *BaseReg = F.BaseRegs[N];
3792           if (BaseReg != OrigReg)
3793             continue;
3794           Formula NewF = F;
3795           NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm;
3796           if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset,
3797                           LU.Kind, LU.AccessTy, NewF)) {
3798             if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm))
3799               continue;
3800             NewF = F;
3801             NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm;
3802           }
3803           NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
3804 
3805           // If the new formula has a constant in a register, and adding the
3806           // constant value to the immediate would produce a value closer to
3807           // zero than the immediate itself, then the formula isn't worthwhile.
3808           for (const SCEV *NewReg : NewF.BaseRegs)
3809             if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg))
3810               if ((C->getAPInt() + NewF.BaseOffset)
3811                       .abs()
3812                       .slt(std::abs(NewF.BaseOffset)) &&
3813                   (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >=
3814                       countTrailingZeros<uint64_t>(NewF.BaseOffset))
3815                 goto skip_formula;
3816 
3817           // Ok, looks good.
3818           NewF.canonicalize();
3819           (void)InsertFormula(LU, LUIdx, NewF);
3820           break;
3821         skip_formula:;
3822         }
3823       }
3824     }
3825   }
3826 }
3827 
3828 /// Generate formulae for each use.
3829 void
3830 LSRInstance::GenerateAllReuseFormulae() {
3831   // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
3832   // queries are more precise.
3833   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3834     LSRUse &LU = Uses[LUIdx];
3835     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3836       GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
3837     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3838       GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
3839   }
3840   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3841     LSRUse &LU = Uses[LUIdx];
3842     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3843       GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
3844     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3845       GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
3846     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3847       GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
3848     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3849       GenerateScales(LU, LUIdx, LU.Formulae[i]);
3850   }
3851   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3852     LSRUse &LU = Uses[LUIdx];
3853     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3854       GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
3855   }
3856 
3857   GenerateCrossUseConstantOffsets();
3858 
3859   DEBUG(dbgs() << "\n"
3860                   "After generating reuse formulae:\n";
3861         print_uses(dbgs()));
3862 }
3863 
3864 /// If there are multiple formulae with the same set of registers used
3865 /// by other uses, pick the best one and delete the others.
3866 void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
3867   DenseSet<const SCEV *> VisitedRegs;
3868   SmallPtrSet<const SCEV *, 16> Regs;
3869   SmallPtrSet<const SCEV *, 16> LoserRegs;
3870 #ifndef NDEBUG
3871   bool ChangedFormulae = false;
3872 #endif
3873 
3874   // Collect the best formula for each unique set of shared registers. This
3875   // is reset for each use.
3876   typedef DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>
3877     BestFormulaeTy;
3878   BestFormulaeTy BestFormulae;
3879 
3880   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3881     LSRUse &LU = Uses[LUIdx];
3882     DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n');
3883 
3884     bool Any = false;
3885     for (size_t FIdx = 0, NumForms = LU.Formulae.size();
3886          FIdx != NumForms; ++FIdx) {
3887       Formula &F = LU.Formulae[FIdx];
3888 
3889       // Some formulas are instant losers. For example, they may depend on
3890       // nonexistent AddRecs from other loops. These need to be filtered
3891       // immediately, otherwise heuristics could choose them over others leading
3892       // to an unsatisfactory solution. Passing LoserRegs into RateFormula here
3893       // avoids the need to recompute this information across formulae using the
3894       // same bad AddRec. Passing LoserRegs is also essential unless we remove
3895       // the corresponding bad register from the Regs set.
3896       Cost CostF;
3897       Regs.clear();
3898       CostF.RateFormula(TTI, F, Regs, VisitedRegs, L, LU.Offsets, SE, DT, LU,
3899                         &LoserRegs);
3900       if (CostF.isLoser()) {
3901         // During initial formula generation, undesirable formulae are generated
3902         // by uses within other loops that have some non-trivial address mode or
3903         // use the postinc form of the IV. LSR needs to provide these formulae
3904         // as the basis of rediscovering the desired formula that uses an AddRec
3905         // corresponding to the existing phi. Once all formulae have been
3906         // generated, these initial losers may be pruned.
3907         DEBUG(dbgs() << "  Filtering loser "; F.print(dbgs());
3908               dbgs() << "\n");
3909       }
3910       else {
3911         SmallVector<const SCEV *, 4> Key;
3912         for (const SCEV *Reg : F.BaseRegs) {
3913           if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
3914             Key.push_back(Reg);
3915         }
3916         if (F.ScaledReg &&
3917             RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
3918           Key.push_back(F.ScaledReg);
3919         // Unstable sort by host order ok, because this is only used for
3920         // uniquifying.
3921         std::sort(Key.begin(), Key.end());
3922 
3923         std::pair<BestFormulaeTy::const_iterator, bool> P =
3924           BestFormulae.insert(std::make_pair(Key, FIdx));
3925         if (P.second)
3926           continue;
3927 
3928         Formula &Best = LU.Formulae[P.first->second];
3929 
3930         Cost CostBest;
3931         Regs.clear();
3932         CostBest.RateFormula(TTI, Best, Regs, VisitedRegs, L, LU.Offsets, SE,
3933                              DT, LU);
3934         if (CostF < CostBest)
3935           std::swap(F, Best);
3936         DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
3937               dbgs() << "\n"
3938                         "    in favor of formula "; Best.print(dbgs());
3939               dbgs() << '\n');
3940       }
3941 #ifndef NDEBUG
3942       ChangedFormulae = true;
3943 #endif
3944       LU.DeleteFormula(F);
3945       --FIdx;
3946       --NumForms;
3947       Any = true;
3948     }
3949 
3950     // Now that we've filtered out some formulae, recompute the Regs set.
3951     if (Any)
3952       LU.RecomputeRegs(LUIdx, RegUses);
3953 
3954     // Reset this to prepare for the next use.
3955     BestFormulae.clear();
3956   }
3957 
3958   DEBUG(if (ChangedFormulae) {
3959           dbgs() << "\n"
3960                     "After filtering out undesirable candidates:\n";
3961           print_uses(dbgs());
3962         });
3963 }
3964 
3965 // This is a rough guess that seems to work fairly well.
3966 static const size_t ComplexityLimit = UINT16_MAX;
3967 
3968 /// Estimate the worst-case number of solutions the solver might have to
3969 /// consider. It almost never considers this many solutions because it prune the
3970 /// search space, but the pruning isn't always sufficient.
3971 size_t LSRInstance::EstimateSearchSpaceComplexity() const {
3972   size_t Power = 1;
3973   for (const LSRUse &LU : Uses) {
3974     size_t FSize = LU.Formulae.size();
3975     if (FSize >= ComplexityLimit) {
3976       Power = ComplexityLimit;
3977       break;
3978     }
3979     Power *= FSize;
3980     if (Power >= ComplexityLimit)
3981       break;
3982   }
3983   return Power;
3984 }
3985 
3986 /// When one formula uses a superset of the registers of another formula, it
3987 /// won't help reduce register pressure (though it may not necessarily hurt
3988 /// register pressure); remove it to simplify the system.
3989 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
3990   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
3991     DEBUG(dbgs() << "The search space is too complex.\n");
3992 
3993     DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
3994                     "which use a superset of registers used by other "
3995                     "formulae.\n");
3996 
3997     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3998       LSRUse &LU = Uses[LUIdx];
3999       bool Any = false;
4000       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4001         Formula &F = LU.Formulae[i];
4002         // Look for a formula with a constant or GV in a register. If the use
4003         // also has a formula with that same value in an immediate field,
4004         // delete the one that uses a register.
4005         for (SmallVectorImpl<const SCEV *>::const_iterator
4006              I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
4007           if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
4008             Formula NewF = F;
4009             NewF.BaseOffset += C->getValue()->getSExtValue();
4010             NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4011                                 (I - F.BaseRegs.begin()));
4012             if (LU.HasFormulaWithSameRegs(NewF)) {
4013               DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
4014               LU.DeleteFormula(F);
4015               --i;
4016               --e;
4017               Any = true;
4018               break;
4019             }
4020           } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
4021             if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
4022               if (!F.BaseGV) {
4023                 Formula NewF = F;
4024                 NewF.BaseGV = GV;
4025                 NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4026                                     (I - F.BaseRegs.begin()));
4027                 if (LU.HasFormulaWithSameRegs(NewF)) {
4028                   DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4029                         dbgs() << '\n');
4030                   LU.DeleteFormula(F);
4031                   --i;
4032                   --e;
4033                   Any = true;
4034                   break;
4035                 }
4036               }
4037           }
4038         }
4039       }
4040       if (Any)
4041         LU.RecomputeRegs(LUIdx, RegUses);
4042     }
4043 
4044     DEBUG(dbgs() << "After pre-selection:\n";
4045           print_uses(dbgs()));
4046   }
4047 }
4048 
4049 /// When there are many registers for expressions like A, A+1, A+2, etc.,
4050 /// allocate a single register for them.
4051 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
4052   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4053     return;
4054 
4055   DEBUG(dbgs() << "The search space is too complex.\n"
4056                   "Narrowing the search space by assuming that uses separated "
4057                   "by a constant offset will use the same registers.\n");
4058 
4059   // This is especially useful for unrolled loops.
4060 
4061   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4062     LSRUse &LU = Uses[LUIdx];
4063     for (const Formula &F : LU.Formulae) {
4064       if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1))
4065         continue;
4066 
4067       LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU);
4068       if (!LUThatHas)
4069         continue;
4070 
4071       if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false,
4072                               LU.Kind, LU.AccessTy))
4073         continue;
4074 
4075       DEBUG(dbgs() << "  Deleting use "; LU.print(dbgs()); dbgs() << '\n');
4076 
4077       LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
4078 
4079       // Update the relocs to reference the new use.
4080       for (LSRFixup &Fixup : Fixups) {
4081         if (Fixup.LUIdx == LUIdx) {
4082           Fixup.LUIdx = LUThatHas - &Uses.front();
4083           Fixup.Offset += F.BaseOffset;
4084           // Add the new offset to LUThatHas' offset list.
4085           if (LUThatHas->Offsets.back() != Fixup.Offset) {
4086             LUThatHas->Offsets.push_back(Fixup.Offset);
4087             if (Fixup.Offset > LUThatHas->MaxOffset)
4088               LUThatHas->MaxOffset = Fixup.Offset;
4089             if (Fixup.Offset < LUThatHas->MinOffset)
4090               LUThatHas->MinOffset = Fixup.Offset;
4091           }
4092           DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n');
4093         }
4094         if (Fixup.LUIdx == NumUses-1)
4095           Fixup.LUIdx = LUIdx;
4096       }
4097 
4098       // Delete formulae from the new use which are no longer legal.
4099       bool Any = false;
4100       for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
4101         Formula &F = LUThatHas->Formulae[i];
4102         if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset,
4103                         LUThatHas->Kind, LUThatHas->AccessTy, F)) {
4104           DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4105                 dbgs() << '\n');
4106           LUThatHas->DeleteFormula(F);
4107           --i;
4108           --e;
4109           Any = true;
4110         }
4111       }
4112 
4113       if (Any)
4114         LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
4115 
4116       // Delete the old use.
4117       DeleteUse(LU, LUIdx);
4118       --LUIdx;
4119       --NumUses;
4120       break;
4121     }
4122   }
4123 
4124   DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4125 }
4126 
4127 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that
4128 /// we've done more filtering, as it may be able to find more formulae to
4129 /// eliminate.
4130 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){
4131   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4132     DEBUG(dbgs() << "The search space is too complex.\n");
4133 
4134     DEBUG(dbgs() << "Narrowing the search space by re-filtering out "
4135                     "undesirable dedicated registers.\n");
4136 
4137     FilterOutUndesirableDedicatedRegisters();
4138 
4139     DEBUG(dbgs() << "After pre-selection:\n";
4140           print_uses(dbgs()));
4141   }
4142 }
4143 
4144 /// Pick a register which seems likely to be profitable, and then in any use
4145 /// which has any reference to that register, delete all formulae which do not
4146 /// reference that register.
4147 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() {
4148   // With all other options exhausted, loop until the system is simple
4149   // enough to handle.
4150   SmallPtrSet<const SCEV *, 4> Taken;
4151   while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4152     // Ok, we have too many of formulae on our hands to conveniently handle.
4153     // Use a rough heuristic to thin out the list.
4154     DEBUG(dbgs() << "The search space is too complex.\n");
4155 
4156     // Pick the register which is used by the most LSRUses, which is likely
4157     // to be a good reuse register candidate.
4158     const SCEV *Best = nullptr;
4159     unsigned BestNum = 0;
4160     for (const SCEV *Reg : RegUses) {
4161       if (Taken.count(Reg))
4162         continue;
4163       if (!Best)
4164         Best = Reg;
4165       else {
4166         unsigned Count = RegUses.getUsedByIndices(Reg).count();
4167         if (Count > BestNum) {
4168           Best = Reg;
4169           BestNum = Count;
4170         }
4171       }
4172     }
4173 
4174     DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
4175                  << " will yield profitable reuse.\n");
4176     Taken.insert(Best);
4177 
4178     // In any use with formulae which references this register, delete formulae
4179     // which don't reference it.
4180     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4181       LSRUse &LU = Uses[LUIdx];
4182       if (!LU.Regs.count(Best)) continue;
4183 
4184       bool Any = false;
4185       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4186         Formula &F = LU.Formulae[i];
4187         if (!F.referencesReg(Best)) {
4188           DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
4189           LU.DeleteFormula(F);
4190           --e;
4191           --i;
4192           Any = true;
4193           assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
4194           continue;
4195         }
4196       }
4197 
4198       if (Any)
4199         LU.RecomputeRegs(LUIdx, RegUses);
4200     }
4201 
4202     DEBUG(dbgs() << "After pre-selection:\n";
4203           print_uses(dbgs()));
4204   }
4205 }
4206 
4207 /// If there are an extraordinary number of formulae to choose from, use some
4208 /// rough heuristics to prune down the number of formulae. This keeps the main
4209 /// solver from taking an extraordinary amount of time in some worst-case
4210 /// scenarios.
4211 void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
4212   NarrowSearchSpaceByDetectingSupersets();
4213   NarrowSearchSpaceByCollapsingUnrolledCode();
4214   NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
4215   NarrowSearchSpaceByPickingWinnerRegs();
4216 }
4217 
4218 /// This is the recursive solver.
4219 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
4220                                Cost &SolutionCost,
4221                                SmallVectorImpl<const Formula *> &Workspace,
4222                                const Cost &CurCost,
4223                                const SmallPtrSet<const SCEV *, 16> &CurRegs,
4224                                DenseSet<const SCEV *> &VisitedRegs) const {
4225   // Some ideas:
4226   //  - prune more:
4227   //    - use more aggressive filtering
4228   //    - sort the formula so that the most profitable solutions are found first
4229   //    - sort the uses too
4230   //  - search faster:
4231   //    - don't compute a cost, and then compare. compare while computing a cost
4232   //      and bail early.
4233   //    - track register sets with SmallBitVector
4234 
4235   const LSRUse &LU = Uses[Workspace.size()];
4236 
4237   // If this use references any register that's already a part of the
4238   // in-progress solution, consider it a requirement that a formula must
4239   // reference that register in order to be considered. This prunes out
4240   // unprofitable searching.
4241   SmallSetVector<const SCEV *, 4> ReqRegs;
4242   for (const SCEV *S : CurRegs)
4243     if (LU.Regs.count(S))
4244       ReqRegs.insert(S);
4245 
4246   SmallPtrSet<const SCEV *, 16> NewRegs;
4247   Cost NewCost;
4248   for (const Formula &F : LU.Formulae) {
4249     // Ignore formulae which may not be ideal in terms of register reuse of
4250     // ReqRegs.  The formula should use all required registers before
4251     // introducing new ones.
4252     int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size());
4253     for (const SCEV *Reg : ReqRegs) {
4254       if ((F.ScaledReg && F.ScaledReg == Reg) ||
4255           std::find(F.BaseRegs.begin(), F.BaseRegs.end(), Reg) !=
4256           F.BaseRegs.end()) {
4257         --NumReqRegsToFind;
4258         if (NumReqRegsToFind == 0)
4259           break;
4260       }
4261     }
4262     if (NumReqRegsToFind != 0) {
4263       // If none of the formulae satisfied the required registers, then we could
4264       // clear ReqRegs and try again. Currently, we simply give up in this case.
4265       continue;
4266     }
4267 
4268     // Evaluate the cost of the current formula. If it's already worse than
4269     // the current best, prune the search at that point.
4270     NewCost = CurCost;
4271     NewRegs = CurRegs;
4272     NewCost.RateFormula(TTI, F, NewRegs, VisitedRegs, L, LU.Offsets, SE, DT,
4273                         LU);
4274     if (NewCost < SolutionCost) {
4275       Workspace.push_back(&F);
4276       if (Workspace.size() != Uses.size()) {
4277         SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
4278                      NewRegs, VisitedRegs);
4279         if (F.getNumRegs() == 1 && Workspace.size() == 1)
4280           VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
4281       } else {
4282         DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
4283               dbgs() << ".\n Regs:";
4284               for (const SCEV *S : NewRegs)
4285                 dbgs() << ' ' << *S;
4286               dbgs() << '\n');
4287 
4288         SolutionCost = NewCost;
4289         Solution = Workspace;
4290       }
4291       Workspace.pop_back();
4292     }
4293   }
4294 }
4295 
4296 /// Choose one formula from each use. Return the results in the given Solution
4297 /// vector.
4298 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
4299   SmallVector<const Formula *, 8> Workspace;
4300   Cost SolutionCost;
4301   SolutionCost.Lose();
4302   Cost CurCost;
4303   SmallPtrSet<const SCEV *, 16> CurRegs;
4304   DenseSet<const SCEV *> VisitedRegs;
4305   Workspace.reserve(Uses.size());
4306 
4307   // SolveRecurse does all the work.
4308   SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
4309                CurRegs, VisitedRegs);
4310   if (Solution.empty()) {
4311     DEBUG(dbgs() << "\nNo Satisfactory Solution\n");
4312     return;
4313   }
4314 
4315   // Ok, we've now made all our decisions.
4316   DEBUG(dbgs() << "\n"
4317                   "The chosen solution requires "; SolutionCost.print(dbgs());
4318         dbgs() << ":\n";
4319         for (size_t i = 0, e = Uses.size(); i != e; ++i) {
4320           dbgs() << "  ";
4321           Uses[i].print(dbgs());
4322           dbgs() << "\n"
4323                     "    ";
4324           Solution[i]->print(dbgs());
4325           dbgs() << '\n';
4326         });
4327 
4328   assert(Solution.size() == Uses.size() && "Malformed solution!");
4329 }
4330 
4331 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as
4332 /// we can go while still being dominated by the input positions. This helps
4333 /// canonicalize the insert position, which encourages sharing.
4334 BasicBlock::iterator
4335 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
4336                                  const SmallVectorImpl<Instruction *> &Inputs)
4337                                                                          const {
4338   for (;;) {
4339     const Loop *IPLoop = LI.getLoopFor(IP->getParent());
4340     unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
4341 
4342     BasicBlock *IDom;
4343     for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) {
4344       if (!Rung) return IP;
4345       Rung = Rung->getIDom();
4346       if (!Rung) return IP;
4347       IDom = Rung->getBlock();
4348 
4349       // Don't climb into a loop though.
4350       const Loop *IDomLoop = LI.getLoopFor(IDom);
4351       unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
4352       if (IDomDepth <= IPLoopDepth &&
4353           (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
4354         break;
4355     }
4356 
4357     bool AllDominate = true;
4358     Instruction *BetterPos = nullptr;
4359     Instruction *Tentative = IDom->getTerminator();
4360     // Don't bother attempting to insert before a catchswitch, their basic block
4361     // cannot have other non-PHI instructions.
4362     if (isa<CatchSwitchInst>(Tentative))
4363       return IP;
4364 
4365     for (Instruction *Inst : Inputs) {
4366       if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
4367         AllDominate = false;
4368         break;
4369       }
4370       // Attempt to find an insert position in the middle of the block,
4371       // instead of at the end, so that it can be used for other expansions.
4372       if (IDom == Inst->getParent() &&
4373           (!BetterPos || !DT.dominates(Inst, BetterPos)))
4374         BetterPos = &*std::next(BasicBlock::iterator(Inst));
4375     }
4376     if (!AllDominate)
4377       break;
4378     if (BetterPos)
4379       IP = BetterPos->getIterator();
4380     else
4381       IP = Tentative->getIterator();
4382   }
4383 
4384   return IP;
4385 }
4386 
4387 /// Determine an input position which will be dominated by the operands and
4388 /// which will dominate the result.
4389 BasicBlock::iterator
4390 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP,
4391                                            const LSRFixup &LF,
4392                                            const LSRUse &LU,
4393                                            SCEVExpander &Rewriter) const {
4394   // Collect some instructions which must be dominated by the
4395   // expanding replacement. These must be dominated by any operands that
4396   // will be required in the expansion.
4397   SmallVector<Instruction *, 4> Inputs;
4398   if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
4399     Inputs.push_back(I);
4400   if (LU.Kind == LSRUse::ICmpZero)
4401     if (Instruction *I =
4402           dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
4403       Inputs.push_back(I);
4404   if (LF.PostIncLoops.count(L)) {
4405     if (LF.isUseFullyOutsideLoop(L))
4406       Inputs.push_back(L->getLoopLatch()->getTerminator());
4407     else
4408       Inputs.push_back(IVIncInsertPos);
4409   }
4410   // The expansion must also be dominated by the increment positions of any
4411   // loops it for which it is using post-inc mode.
4412   for (const Loop *PIL : LF.PostIncLoops) {
4413     if (PIL == L) continue;
4414 
4415     // Be dominated by the loop exit.
4416     SmallVector<BasicBlock *, 4> ExitingBlocks;
4417     PIL->getExitingBlocks(ExitingBlocks);
4418     if (!ExitingBlocks.empty()) {
4419       BasicBlock *BB = ExitingBlocks[0];
4420       for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
4421         BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
4422       Inputs.push_back(BB->getTerminator());
4423     }
4424   }
4425 
4426   assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad()
4427          && !isa<DbgInfoIntrinsic>(LowestIP) &&
4428          "Insertion point must be a normal instruction");
4429 
4430   // Then, climb up the immediate dominator tree as far as we can go while
4431   // still being dominated by the input positions.
4432   BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs);
4433 
4434   // Don't insert instructions before PHI nodes.
4435   while (isa<PHINode>(IP)) ++IP;
4436 
4437   // Ignore landingpad instructions.
4438   while (IP->isEHPad()) ++IP;
4439 
4440   // Ignore debug intrinsics.
4441   while (isa<DbgInfoIntrinsic>(IP)) ++IP;
4442 
4443   // Set IP below instructions recently inserted by SCEVExpander. This keeps the
4444   // IP consistent across expansions and allows the previously inserted
4445   // instructions to be reused by subsequent expansion.
4446   while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP)
4447     ++IP;
4448 
4449   return IP;
4450 }
4451 
4452 /// Emit instructions for the leading candidate expression for this LSRUse (this
4453 /// is called "expanding").
4454 Value *LSRInstance::Expand(const LSRFixup &LF,
4455                            const Formula &F,
4456                            BasicBlock::iterator IP,
4457                            SCEVExpander &Rewriter,
4458                            SmallVectorImpl<WeakVH> &DeadInsts) const {
4459   const LSRUse &LU = Uses[LF.LUIdx];
4460   if (LU.RigidFormula)
4461     return LF.OperandValToReplace;
4462 
4463   // Determine an input position which will be dominated by the operands and
4464   // which will dominate the result.
4465   IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter);
4466 
4467   // Inform the Rewriter if we have a post-increment use, so that it can
4468   // perform an advantageous expansion.
4469   Rewriter.setPostInc(LF.PostIncLoops);
4470 
4471   // This is the type that the user actually needs.
4472   Type *OpTy = LF.OperandValToReplace->getType();
4473   // This will be the type that we'll initially expand to.
4474   Type *Ty = F.getType();
4475   if (!Ty)
4476     // No type known; just expand directly to the ultimate type.
4477     Ty = OpTy;
4478   else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
4479     // Expand directly to the ultimate type if it's the right size.
4480     Ty = OpTy;
4481   // This is the type to do integer arithmetic in.
4482   Type *IntTy = SE.getEffectiveSCEVType(Ty);
4483 
4484   // Build up a list of operands to add together to form the full base.
4485   SmallVector<const SCEV *, 8> Ops;
4486 
4487   // Expand the BaseRegs portion.
4488   for (const SCEV *Reg : F.BaseRegs) {
4489     assert(!Reg->isZero() && "Zero allocated in a base register!");
4490 
4491     // If we're expanding for a post-inc user, make the post-inc adjustment.
4492     PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
4493     Reg = TransformForPostIncUse(Denormalize, Reg,
4494                                  LF.UserInst, LF.OperandValToReplace,
4495                                  Loops, SE, DT);
4496 
4497     Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr, &*IP)));
4498   }
4499 
4500   // Expand the ScaledReg portion.
4501   Value *ICmpScaledV = nullptr;
4502   if (F.Scale != 0) {
4503     const SCEV *ScaledS = F.ScaledReg;
4504 
4505     // If we're expanding for a post-inc user, make the post-inc adjustment.
4506     PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
4507     ScaledS = TransformForPostIncUse(Denormalize, ScaledS,
4508                                      LF.UserInst, LF.OperandValToReplace,
4509                                      Loops, SE, DT);
4510 
4511     if (LU.Kind == LSRUse::ICmpZero) {
4512       // Expand ScaleReg as if it was part of the base regs.
4513       if (F.Scale == 1)
4514         Ops.push_back(
4515             SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr, &*IP)));
4516       else {
4517         // An interesting way of "folding" with an icmp is to use a negated
4518         // scale, which we'll implement by inserting it into the other operand
4519         // of the icmp.
4520         assert(F.Scale == -1 &&
4521                "The only scale supported by ICmpZero uses is -1!");
4522         ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr, &*IP);
4523       }
4524     } else {
4525       // Otherwise just expand the scaled register and an explicit scale,
4526       // which is expected to be matched as part of the address.
4527 
4528       // Flush the operand list to suppress SCEVExpander hoisting address modes.
4529       // Unless the addressing mode will not be folded.
4530       if (!Ops.empty() && LU.Kind == LSRUse::Address &&
4531           isAMCompletelyFolded(TTI, LU, F)) {
4532         Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, &*IP);
4533         Ops.clear();
4534         Ops.push_back(SE.getUnknown(FullV));
4535       }
4536       ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr, &*IP));
4537       if (F.Scale != 1)
4538         ScaledS =
4539             SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale));
4540       Ops.push_back(ScaledS);
4541     }
4542   }
4543 
4544   // Expand the GV portion.
4545   if (F.BaseGV) {
4546     // Flush the operand list to suppress SCEVExpander hoisting.
4547     if (!Ops.empty()) {
4548       Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, &*IP);
4549       Ops.clear();
4550       Ops.push_back(SE.getUnknown(FullV));
4551     }
4552     Ops.push_back(SE.getUnknown(F.BaseGV));
4553   }
4554 
4555   // Flush the operand list to suppress SCEVExpander hoisting of both folded and
4556   // unfolded offsets. LSR assumes they both live next to their uses.
4557   if (!Ops.empty()) {
4558     Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, &*IP);
4559     Ops.clear();
4560     Ops.push_back(SE.getUnknown(FullV));
4561   }
4562 
4563   // Expand the immediate portion.
4564   int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset;
4565   if (Offset != 0) {
4566     if (LU.Kind == LSRUse::ICmpZero) {
4567       // The other interesting way of "folding" with an ICmpZero is to use a
4568       // negated immediate.
4569       if (!ICmpScaledV)
4570         ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset);
4571       else {
4572         Ops.push_back(SE.getUnknown(ICmpScaledV));
4573         ICmpScaledV = ConstantInt::get(IntTy, Offset);
4574       }
4575     } else {
4576       // Just add the immediate values. These again are expected to be matched
4577       // as part of the address.
4578       Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
4579     }
4580   }
4581 
4582   // Expand the unfolded offset portion.
4583   int64_t UnfoldedOffset = F.UnfoldedOffset;
4584   if (UnfoldedOffset != 0) {
4585     // Just add the immediate values.
4586     Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy,
4587                                                        UnfoldedOffset)));
4588   }
4589 
4590   // Emit instructions summing all the operands.
4591   const SCEV *FullS = Ops.empty() ?
4592                       SE.getConstant(IntTy, 0) :
4593                       SE.getAddExpr(Ops);
4594   Value *FullV = Rewriter.expandCodeFor(FullS, Ty, &*IP);
4595 
4596   // We're done expanding now, so reset the rewriter.
4597   Rewriter.clearPostInc();
4598 
4599   // An ICmpZero Formula represents an ICmp which we're handling as a
4600   // comparison against zero. Now that we've expanded an expression for that
4601   // form, update the ICmp's other operand.
4602   if (LU.Kind == LSRUse::ICmpZero) {
4603     ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
4604     DeadInsts.emplace_back(CI->getOperand(1));
4605     assert(!F.BaseGV && "ICmp does not support folding a global value and "
4606                            "a scale at the same time!");
4607     if (F.Scale == -1) {
4608       if (ICmpScaledV->getType() != OpTy) {
4609         Instruction *Cast =
4610           CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
4611                                                    OpTy, false),
4612                            ICmpScaledV, OpTy, "tmp", CI);
4613         ICmpScaledV = Cast;
4614       }
4615       CI->setOperand(1, ICmpScaledV);
4616     } else {
4617       // A scale of 1 means that the scale has been expanded as part of the
4618       // base regs.
4619       assert((F.Scale == 0 || F.Scale == 1) &&
4620              "ICmp does not support folding a global value and "
4621              "a scale at the same time!");
4622       Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
4623                                            -(uint64_t)Offset);
4624       if (C->getType() != OpTy)
4625         C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4626                                                           OpTy, false),
4627                                   C, OpTy);
4628 
4629       CI->setOperand(1, C);
4630     }
4631   }
4632 
4633   return FullV;
4634 }
4635 
4636 /// Helper for Rewrite. PHI nodes are special because the use of their operands
4637 /// effectively happens in their predecessor blocks, so the expression may need
4638 /// to be expanded in multiple places.
4639 void LSRInstance::RewriteForPHI(PHINode *PN,
4640                                 const LSRFixup &LF,
4641                                 const Formula &F,
4642                                 SCEVExpander &Rewriter,
4643                                 SmallVectorImpl<WeakVH> &DeadInsts) const {
4644   DenseMap<BasicBlock *, Value *> Inserted;
4645   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
4646     if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
4647       BasicBlock *BB = PN->getIncomingBlock(i);
4648 
4649       // If this is a critical edge, split the edge so that we do not insert
4650       // the code on all predecessor/successor paths.  We do this unless this
4651       // is the canonical backedge for this loop, which complicates post-inc
4652       // users.
4653       if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
4654           !isa<IndirectBrInst>(BB->getTerminator())) {
4655         BasicBlock *Parent = PN->getParent();
4656         Loop *PNLoop = LI.getLoopFor(Parent);
4657         if (!PNLoop || Parent != PNLoop->getHeader()) {
4658           // Split the critical edge.
4659           BasicBlock *NewBB = nullptr;
4660           if (!Parent->isLandingPad()) {
4661             NewBB = SplitCriticalEdge(BB, Parent,
4662                                       CriticalEdgeSplittingOptions(&DT, &LI)
4663                                           .setMergeIdenticalEdges()
4664                                           .setDontDeleteUselessPHIs());
4665           } else {
4666             SmallVector<BasicBlock*, 2> NewBBs;
4667             SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI);
4668             NewBB = NewBBs[0];
4669           }
4670           // If NewBB==NULL, then SplitCriticalEdge refused to split because all
4671           // phi predecessors are identical. The simple thing to do is skip
4672           // splitting in this case rather than complicate the API.
4673           if (NewBB) {
4674             // If PN is outside of the loop and BB is in the loop, we want to
4675             // move the block to be immediately before the PHI block, not
4676             // immediately after BB.
4677             if (L->contains(BB) && !L->contains(PN))
4678               NewBB->moveBefore(PN->getParent());
4679 
4680             // Splitting the edge can reduce the number of PHI entries we have.
4681             e = PN->getNumIncomingValues();
4682             BB = NewBB;
4683             i = PN->getBasicBlockIndex(BB);
4684           }
4685         }
4686       }
4687 
4688       std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
4689         Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr)));
4690       if (!Pair.second)
4691         PN->setIncomingValue(i, Pair.first->second);
4692       else {
4693         Value *FullV = Expand(LF, F, BB->getTerminator()->getIterator(),
4694                               Rewriter, DeadInsts);
4695 
4696         // If this is reuse-by-noop-cast, insert the noop cast.
4697         Type *OpTy = LF.OperandValToReplace->getType();
4698         if (FullV->getType() != OpTy)
4699           FullV =
4700             CastInst::Create(CastInst::getCastOpcode(FullV, false,
4701                                                      OpTy, false),
4702                              FullV, LF.OperandValToReplace->getType(),
4703                              "tmp", BB->getTerminator());
4704 
4705         PN->setIncomingValue(i, FullV);
4706         Pair.first->second = FullV;
4707       }
4708     }
4709 }
4710 
4711 /// Emit instructions for the leading candidate expression for this LSRUse (this
4712 /// is called "expanding"), and update the UserInst to reference the newly
4713 /// expanded value.
4714 void LSRInstance::Rewrite(const LSRFixup &LF,
4715                           const Formula &F,
4716                           SCEVExpander &Rewriter,
4717                           SmallVectorImpl<WeakVH> &DeadInsts) const {
4718   // First, find an insertion point that dominates UserInst. For PHI nodes,
4719   // find the nearest block which dominates all the relevant uses.
4720   if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
4721     RewriteForPHI(PN, LF, F, Rewriter, DeadInsts);
4722   } else {
4723     Value *FullV =
4724         Expand(LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts);
4725 
4726     // If this is reuse-by-noop-cast, insert the noop cast.
4727     Type *OpTy = LF.OperandValToReplace->getType();
4728     if (FullV->getType() != OpTy) {
4729       Instruction *Cast =
4730         CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
4731                          FullV, OpTy, "tmp", LF.UserInst);
4732       FullV = Cast;
4733     }
4734 
4735     // Update the user. ICmpZero is handled specially here (for now) because
4736     // Expand may have updated one of the operands of the icmp already, and
4737     // its new value may happen to be equal to LF.OperandValToReplace, in
4738     // which case doing replaceUsesOfWith leads to replacing both operands
4739     // with the same value. TODO: Reorganize this.
4740     if (Uses[LF.LUIdx].Kind == LSRUse::ICmpZero)
4741       LF.UserInst->setOperand(0, FullV);
4742     else
4743       LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
4744   }
4745 
4746   DeadInsts.emplace_back(LF.OperandValToReplace);
4747 }
4748 
4749 /// Rewrite all the fixup locations with new values, following the chosen
4750 /// solution.
4751 void LSRInstance::ImplementSolution(
4752     const SmallVectorImpl<const Formula *> &Solution) {
4753   // Keep track of instructions we may have made dead, so that
4754   // we can remove them after we are done working.
4755   SmallVector<WeakVH, 16> DeadInsts;
4756 
4757   SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(),
4758                         "lsr");
4759 #ifndef NDEBUG
4760   Rewriter.setDebugType(DEBUG_TYPE);
4761 #endif
4762   Rewriter.disableCanonicalMode();
4763   Rewriter.enableLSRMode();
4764   Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
4765 
4766   // Mark phi nodes that terminate chains so the expander tries to reuse them.
4767   for (const IVChain &Chain : IVChainVec) {
4768     if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst()))
4769       Rewriter.setChainedPhi(PN);
4770   }
4771 
4772   // Expand the new value definitions and update the users.
4773   for (const LSRFixup &Fixup : Fixups) {
4774     Rewrite(Fixup, *Solution[Fixup.LUIdx], Rewriter, DeadInsts);
4775 
4776     Changed = true;
4777   }
4778 
4779   for (const IVChain &Chain : IVChainVec) {
4780     GenerateIVChain(Chain, Rewriter, DeadInsts);
4781     Changed = true;
4782   }
4783   // Clean up after ourselves. This must be done before deleting any
4784   // instructions.
4785   Rewriter.clear();
4786 
4787   Changed |= DeleteTriviallyDeadInstructions(DeadInsts);
4788 }
4789 
4790 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE,
4791                          DominatorTree &DT, LoopInfo &LI,
4792                          const TargetTransformInfo &TTI)
4793     : IU(IU), SE(SE), DT(DT), LI(LI), TTI(TTI), L(L), Changed(false),
4794       IVIncInsertPos(nullptr) {
4795   // If LoopSimplify form is not available, stay out of trouble.
4796   if (!L->isLoopSimplifyForm())
4797     return;
4798 
4799   // If there's no interesting work to be done, bail early.
4800   if (IU.empty()) return;
4801 
4802   // If there's too much analysis to be done, bail early. We won't be able to
4803   // model the problem anyway.
4804   unsigned NumUsers = 0;
4805   for (const IVStrideUse &U : IU) {
4806     if (++NumUsers > MaxIVUsers) {
4807       (void)U;
4808       DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U << "\n");
4809       return;
4810     }
4811     // Bail out if we have a PHI on an EHPad that gets a value from a
4812     // CatchSwitchInst.  Because the CatchSwitchInst cannot be split, there is
4813     // no good place to stick any instructions.
4814     if (auto *PN = dyn_cast<PHINode>(U.getUser())) {
4815        auto *FirstNonPHI = PN->getParent()->getFirstNonPHI();
4816        if (isa<FuncletPadInst>(FirstNonPHI) ||
4817            isa<CatchSwitchInst>(FirstNonPHI))
4818          for (BasicBlock *PredBB : PN->blocks())
4819            if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI()))
4820              return;
4821     }
4822   }
4823 
4824 #ifndef NDEBUG
4825   // All dominating loops must have preheaders, or SCEVExpander may not be able
4826   // to materialize an AddRecExpr whose Start is an outer AddRecExpr.
4827   //
4828   // IVUsers analysis should only create users that are dominated by simple loop
4829   // headers. Since this loop should dominate all of its users, its user list
4830   // should be empty if this loop itself is not within a simple loop nest.
4831   for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader());
4832        Rung; Rung = Rung->getIDom()) {
4833     BasicBlock *BB = Rung->getBlock();
4834     const Loop *DomLoop = LI.getLoopFor(BB);
4835     if (DomLoop && DomLoop->getHeader() == BB) {
4836       assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest");
4837     }
4838   }
4839 #endif // DEBUG
4840 
4841   DEBUG(dbgs() << "\nLSR on loop ";
4842         L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false);
4843         dbgs() << ":\n");
4844 
4845   // First, perform some low-level loop optimizations.
4846   OptimizeShadowIV();
4847   OptimizeLoopTermCond();
4848 
4849   // If loop preparation eliminates all interesting IV users, bail.
4850   if (IU.empty()) return;
4851 
4852   // Skip nested loops until we can model them better with formulae.
4853   if (!L->empty()) {
4854     DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n");
4855     return;
4856   }
4857 
4858   // Start collecting data and preparing for the solver.
4859   CollectChains();
4860   CollectInterestingTypesAndFactors();
4861   CollectFixupsAndInitialFormulae();
4862   CollectLoopInvariantFixupsAndFormulae();
4863 
4864   assert(!Uses.empty() && "IVUsers reported at least one use");
4865   DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
4866         print_uses(dbgs()));
4867 
4868   // Now use the reuse data to generate a bunch of interesting ways
4869   // to formulate the values needed for the uses.
4870   GenerateAllReuseFormulae();
4871 
4872   FilterOutUndesirableDedicatedRegisters();
4873   NarrowSearchSpaceUsingHeuristics();
4874 
4875   SmallVector<const Formula *, 8> Solution;
4876   Solve(Solution);
4877 
4878   // Release memory that is no longer needed.
4879   Factors.clear();
4880   Types.clear();
4881   RegUses.clear();
4882 
4883   if (Solution.empty())
4884     return;
4885 
4886 #ifndef NDEBUG
4887   // Formulae should be legal.
4888   for (const LSRUse &LU : Uses) {
4889     for (const Formula &F : LU.Formulae)
4890       assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
4891                         F) && "Illegal formula generated!");
4892   };
4893 #endif
4894 
4895   // Now that we've decided what we want, make it so.
4896   ImplementSolution(Solution);
4897 }
4898 
4899 void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
4900   if (Factors.empty() && Types.empty()) return;
4901 
4902   OS << "LSR has identified the following interesting factors and types: ";
4903   bool First = true;
4904 
4905   for (int64_t Factor : Factors) {
4906     if (!First) OS << ", ";
4907     First = false;
4908     OS << '*' << Factor;
4909   }
4910 
4911   for (Type *Ty : Types) {
4912     if (!First) OS << ", ";
4913     First = false;
4914     OS << '(' << *Ty << ')';
4915   }
4916   OS << '\n';
4917 }
4918 
4919 void LSRInstance::print_fixups(raw_ostream &OS) const {
4920   OS << "LSR is examining the following fixup sites:\n";
4921   for (const LSRFixup &LF : Fixups) {
4922     dbgs() << "  ";
4923     LF.print(OS);
4924     OS << '\n';
4925   }
4926 }
4927 
4928 void LSRInstance::print_uses(raw_ostream &OS) const {
4929   OS << "LSR is examining the following uses:\n";
4930   for (const LSRUse &LU : Uses) {
4931     dbgs() << "  ";
4932     LU.print(OS);
4933     OS << '\n';
4934     for (const Formula &F : LU.Formulae) {
4935       OS << "    ";
4936       F.print(OS);
4937       OS << '\n';
4938     }
4939   }
4940 }
4941 
4942 void LSRInstance::print(raw_ostream &OS) const {
4943   print_factors_and_types(OS);
4944   print_fixups(OS);
4945   print_uses(OS);
4946 }
4947 
4948 LLVM_DUMP_METHOD
4949 void LSRInstance::dump() const {
4950   print(errs()); errs() << '\n';
4951 }
4952 
4953 namespace {
4954 
4955 class LoopStrengthReduce : public LoopPass {
4956 public:
4957   static char ID; // Pass ID, replacement for typeid
4958   LoopStrengthReduce();
4959 
4960 private:
4961   bool runOnLoop(Loop *L, LPPassManager &LPM) override;
4962   void getAnalysisUsage(AnalysisUsage &AU) const override;
4963 };
4964 
4965 }
4966 
4967 char LoopStrengthReduce::ID = 0;
4968 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce",
4969                 "Loop Strength Reduction", false, false)
4970 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
4971 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
4972 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
4973 INITIALIZE_PASS_DEPENDENCY(IVUsers)
4974 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
4975 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
4976 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce",
4977                 "Loop Strength Reduction", false, false)
4978 
4979 
4980 Pass *llvm::createLoopStrengthReducePass() {
4981   return new LoopStrengthReduce();
4982 }
4983 
4984 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) {
4985   initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
4986 }
4987 
4988 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
4989   // We split critical edges, so we change the CFG.  However, we do update
4990   // many analyses if they are around.
4991   AU.addPreservedID(LoopSimplifyID);
4992 
4993   AU.addRequired<LoopInfoWrapperPass>();
4994   AU.addPreserved<LoopInfoWrapperPass>();
4995   AU.addRequiredID(LoopSimplifyID);
4996   AU.addRequired<DominatorTreeWrapperPass>();
4997   AU.addPreserved<DominatorTreeWrapperPass>();
4998   AU.addRequired<ScalarEvolutionWrapperPass>();
4999   AU.addPreserved<ScalarEvolutionWrapperPass>();
5000   // Requiring LoopSimplify a second time here prevents IVUsers from running
5001   // twice, since LoopSimplify was invalidated by running ScalarEvolution.
5002   AU.addRequiredID(LoopSimplifyID);
5003   AU.addRequired<IVUsers>();
5004   AU.addPreserved<IVUsers>();
5005   AU.addRequired<TargetTransformInfoWrapperPass>();
5006 }
5007 
5008 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
5009   if (skipLoop(L))
5010     return false;
5011 
5012   auto &IU = getAnalysis<IVUsers>();
5013   auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
5014   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
5015   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
5016   const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
5017       *L->getHeader()->getParent());
5018   bool Changed = false;
5019 
5020   // Run the main LSR transformation.
5021   Changed |= LSRInstance(L, IU, SE, DT, LI, TTI).getChanged();
5022 
5023   // Remove any extra phis created by processing inner loops.
5024   Changed |= DeleteDeadPHIs(L->getHeader());
5025   if (EnablePhiElim && L->isLoopSimplifyForm()) {
5026     SmallVector<WeakVH, 16> DeadInsts;
5027     const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
5028     SCEVExpander Rewriter(getAnalysis<ScalarEvolutionWrapperPass>().getSE(), DL,
5029                           "lsr");
5030 #ifndef NDEBUG
5031     Rewriter.setDebugType(DEBUG_TYPE);
5032 #endif
5033     unsigned numFolded = Rewriter.replaceCongruentIVs(
5034         L, &getAnalysis<DominatorTreeWrapperPass>().getDomTree(), DeadInsts,
5035         &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
5036             *L->getHeader()->getParent()));
5037     if (numFolded) {
5038       Changed = true;
5039       DeleteTriviallyDeadInstructions(DeadInsts);
5040       DeleteDeadPHIs(L->getHeader());
5041     }
5042   }
5043   return Changed;
5044 }
5045