1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This transformation analyzes and transforms the induction variables (and
10 // computations derived from them) into forms suitable for efficient execution
11 // on the target.
12 //
13 // This pass performs a strength reduction on array references inside loops that
14 // have as one or more of their components the loop induction variable, it
15 // rewrites expressions to take advantage of scaled-index addressing modes
16 // available on the target, and it performs a variety of other optimizations
17 // related to loop induction variables.
18 //
19 // Terminology note: this code has a lot of handling for "post-increment" or
20 // "post-inc" users. This is not talking about post-increment addressing modes;
21 // it is instead talking about code like this:
22 //
23 //   %i = phi [ 0, %entry ], [ %i.next, %latch ]
24 //   ...
25 //   %i.next = add %i, 1
26 //   %c = icmp eq %i.next, %n
27 //
28 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
29 // it's useful to think about these as the same register, with some uses using
30 // the value of the register before the add and some using it after. In this
31 // example, the icmp is a post-increment user, since it uses %i.next, which is
32 // the value of the induction variable after the increment. The other common
33 // case of post-increment users is users outside the loop.
34 //
35 // TODO: More sophistication in the way Formulae are generated and filtered.
36 //
37 // TODO: Handle multiple loops at a time.
38 //
39 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead
40 //       of a GlobalValue?
41 //
42 // TODO: When truncation is free, truncate ICmp users' operands to make it a
43 //       smaller encoding (on x86 at least).
44 //
45 // TODO: When a negated register is used by an add (such as in a list of
46 //       multiple base registers, or as the increment expression in an addrec),
47 //       we may not actually need both reg and (-1 * reg) in registers; the
48 //       negation can be implemented by using a sub instead of an add. The
49 //       lack of support for taking this into consideration when making
50 //       register pressure decisions is partly worked around by the "Special"
51 //       use kind.
52 //
53 //===----------------------------------------------------------------------===//
54 
55 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h"
56 #include "llvm/ADT/APInt.h"
57 #include "llvm/ADT/DenseMap.h"
58 #include "llvm/ADT/DenseSet.h"
59 #include "llvm/ADT/Hashing.h"
60 #include "llvm/ADT/PointerIntPair.h"
61 #include "llvm/ADT/STLExtras.h"
62 #include "llvm/ADT/SetVector.h"
63 #include "llvm/ADT/SmallBitVector.h"
64 #include "llvm/ADT/SmallPtrSet.h"
65 #include "llvm/ADT/SmallSet.h"
66 #include "llvm/ADT/SmallVector.h"
67 #include "llvm/ADT/iterator_range.h"
68 #include "llvm/Analysis/IVUsers.h"
69 #include "llvm/Analysis/LoopAnalysisManager.h"
70 #include "llvm/Analysis/LoopInfo.h"
71 #include "llvm/Analysis/LoopPass.h"
72 #include "llvm/Analysis/MemorySSA.h"
73 #include "llvm/Analysis/MemorySSAUpdater.h"
74 #include "llvm/Analysis/ScalarEvolution.h"
75 #include "llvm/Analysis/ScalarEvolutionExpander.h"
76 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
77 #include "llvm/Analysis/ScalarEvolutionNormalization.h"
78 #include "llvm/Analysis/TargetTransformInfo.h"
79 #include "llvm/Config/llvm-config.h"
80 #include "llvm/IR/BasicBlock.h"
81 #include "llvm/IR/Constant.h"
82 #include "llvm/IR/Constants.h"
83 #include "llvm/IR/DerivedTypes.h"
84 #include "llvm/IR/Dominators.h"
85 #include "llvm/IR/GlobalValue.h"
86 #include "llvm/IR/IRBuilder.h"
87 #include "llvm/IR/InstrTypes.h"
88 #include "llvm/IR/Instruction.h"
89 #include "llvm/IR/Instructions.h"
90 #include "llvm/IR/IntrinsicInst.h"
91 #include "llvm/IR/Intrinsics.h"
92 #include "llvm/IR/Module.h"
93 #include "llvm/IR/OperandTraits.h"
94 #include "llvm/IR/Operator.h"
95 #include "llvm/IR/PassManager.h"
96 #include "llvm/IR/Type.h"
97 #include "llvm/IR/Use.h"
98 #include "llvm/IR/User.h"
99 #include "llvm/IR/Value.h"
100 #include "llvm/IR/ValueHandle.h"
101 #include "llvm/InitializePasses.h"
102 #include "llvm/Pass.h"
103 #include "llvm/Support/Casting.h"
104 #include "llvm/Support/CommandLine.h"
105 #include "llvm/Support/Compiler.h"
106 #include "llvm/Support/Debug.h"
107 #include "llvm/Support/ErrorHandling.h"
108 #include "llvm/Support/MathExtras.h"
109 #include "llvm/Support/raw_ostream.h"
110 #include "llvm/Transforms/Scalar.h"
111 #include "llvm/Transforms/Utils.h"
112 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
113 #include "llvm/Transforms/Utils/Local.h"
114 #include <algorithm>
115 #include <cassert>
116 #include <cstddef>
117 #include <cstdint>
118 #include <cstdlib>
119 #include <iterator>
120 #include <limits>
121 #include <map>
122 #include <numeric>
123 #include <utility>
124 
125 using namespace llvm;
126 
127 #define DEBUG_TYPE "loop-reduce"
128 
129 /// MaxIVUsers is an arbitrary threshold that provides an early opportunity for
130 /// bail out. This threshold is far beyond the number of users that LSR can
131 /// conceivably solve, so it should not affect generated code, but catches the
132 /// worst cases before LSR burns too much compile time and stack space.
133 static const unsigned MaxIVUsers = 200;
134 
135 // Temporary flag to cleanup congruent phis after LSR phi expansion.
136 // It's currently disabled until we can determine whether it's truly useful or
137 // not. The flag should be removed after the v3.0 release.
138 // This is now needed for ivchains.
139 static cl::opt<bool> EnablePhiElim(
140   "enable-lsr-phielim", cl::Hidden, cl::init(true),
141   cl::desc("Enable LSR phi elimination"));
142 
143 // The flag adds instruction count to solutions cost comparision.
144 static cl::opt<bool> InsnsCost(
145   "lsr-insns-cost", cl::Hidden, cl::init(true),
146   cl::desc("Add instruction count to a LSR cost model"));
147 
148 // Flag to choose how to narrow complex lsr solution
149 static cl::opt<bool> LSRExpNarrow(
150   "lsr-exp-narrow", cl::Hidden, cl::init(false),
151   cl::desc("Narrow LSR complex solution using"
152            " expectation of registers number"));
153 
154 // Flag to narrow search space by filtering non-optimal formulae with
155 // the same ScaledReg and Scale.
156 static cl::opt<bool> FilterSameScaledReg(
157     "lsr-filter-same-scaled-reg", cl::Hidden, cl::init(true),
158     cl::desc("Narrow LSR search space by filtering non-optimal formulae"
159              " with the same ScaledReg and Scale"));
160 
161 static cl::opt<bool> EnableBackedgeIndexing(
162   "lsr-backedge-indexing", cl::Hidden, cl::init(true),
163   cl::desc("Enable the generation of cross iteration indexed memops"));
164 
165 static cl::opt<unsigned> ComplexityLimit(
166   "lsr-complexity-limit", cl::Hidden,
167   cl::init(std::numeric_limits<uint16_t>::max()),
168   cl::desc("LSR search space complexity limit"));
169 
170 static cl::opt<unsigned> SetupCostDepthLimit(
171     "lsr-setupcost-depth-limit", cl::Hidden, cl::init(7),
172     cl::desc("The limit on recursion depth for LSRs setup cost"));
173 
174 #ifndef NDEBUG
175 // Stress test IV chain generation.
176 static cl::opt<bool> StressIVChain(
177   "stress-ivchain", cl::Hidden, cl::init(false),
178   cl::desc("Stress test LSR IV chains"));
179 #else
180 static bool StressIVChain = false;
181 #endif
182 
183 namespace {
184 
185 struct MemAccessTy {
186   /// Used in situations where the accessed memory type is unknown.
187   static const unsigned UnknownAddressSpace =
188       std::numeric_limits<unsigned>::max();
189 
190   Type *MemTy = nullptr;
191   unsigned AddrSpace = UnknownAddressSpace;
192 
193   MemAccessTy() = default;
194   MemAccessTy(Type *Ty, unsigned AS) : MemTy(Ty), AddrSpace(AS) {}
195 
196   bool operator==(MemAccessTy Other) const {
197     return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace;
198   }
199 
200   bool operator!=(MemAccessTy Other) const { return !(*this == Other); }
201 
202   static MemAccessTy getUnknown(LLVMContext &Ctx,
203                                 unsigned AS = UnknownAddressSpace) {
204     return MemAccessTy(Type::getVoidTy(Ctx), AS);
205   }
206 
207   Type *getType() { return MemTy; }
208 };
209 
210 /// This class holds data which is used to order reuse candidates.
211 class RegSortData {
212 public:
213   /// This represents the set of LSRUse indices which reference
214   /// a particular register.
215   SmallBitVector UsedByIndices;
216 
217   void print(raw_ostream &OS) const;
218   void dump() const;
219 };
220 
221 } // end anonymous namespace
222 
223 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
224 void RegSortData::print(raw_ostream &OS) const {
225   OS << "[NumUses=" << UsedByIndices.count() << ']';
226 }
227 
228 LLVM_DUMP_METHOD void RegSortData::dump() const {
229   print(errs()); errs() << '\n';
230 }
231 #endif
232 
233 namespace {
234 
235 /// Map register candidates to information about how they are used.
236 class RegUseTracker {
237   using RegUsesTy = DenseMap<const SCEV *, RegSortData>;
238 
239   RegUsesTy RegUsesMap;
240   SmallVector<const SCEV *, 16> RegSequence;
241 
242 public:
243   void countRegister(const SCEV *Reg, size_t LUIdx);
244   void dropRegister(const SCEV *Reg, size_t LUIdx);
245   void swapAndDropUse(size_t LUIdx, size_t LastLUIdx);
246 
247   bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
248 
249   const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
250 
251   void clear();
252 
253   using iterator = SmallVectorImpl<const SCEV *>::iterator;
254   using const_iterator = SmallVectorImpl<const SCEV *>::const_iterator;
255 
256   iterator begin() { return RegSequence.begin(); }
257   iterator end()   { return RegSequence.end(); }
258   const_iterator begin() const { return RegSequence.begin(); }
259   const_iterator end() const   { return RegSequence.end(); }
260 };
261 
262 } // end anonymous namespace
263 
264 void
265 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) {
266   std::pair<RegUsesTy::iterator, bool> Pair =
267     RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
268   RegSortData &RSD = Pair.first->second;
269   if (Pair.second)
270     RegSequence.push_back(Reg);
271   RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
272   RSD.UsedByIndices.set(LUIdx);
273 }
274 
275 void
276 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) {
277   RegUsesTy::iterator It = RegUsesMap.find(Reg);
278   assert(It != RegUsesMap.end());
279   RegSortData &RSD = It->second;
280   assert(RSD.UsedByIndices.size() > LUIdx);
281   RSD.UsedByIndices.reset(LUIdx);
282 }
283 
284 void
285 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) {
286   assert(LUIdx <= LastLUIdx);
287 
288   // Update RegUses. The data structure is not optimized for this purpose;
289   // we must iterate through it and update each of the bit vectors.
290   for (auto &Pair : RegUsesMap) {
291     SmallBitVector &UsedByIndices = Pair.second.UsedByIndices;
292     if (LUIdx < UsedByIndices.size())
293       UsedByIndices[LUIdx] =
294         LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false;
295     UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx));
296   }
297 }
298 
299 bool
300 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
301   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
302   if (I == RegUsesMap.end())
303     return false;
304   const SmallBitVector &UsedByIndices = I->second.UsedByIndices;
305   int i = UsedByIndices.find_first();
306   if (i == -1) return false;
307   if ((size_t)i != LUIdx) return true;
308   return UsedByIndices.find_next(i) != -1;
309 }
310 
311 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
312   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
313   assert(I != RegUsesMap.end() && "Unknown register!");
314   return I->second.UsedByIndices;
315 }
316 
317 void RegUseTracker::clear() {
318   RegUsesMap.clear();
319   RegSequence.clear();
320 }
321 
322 namespace {
323 
324 /// This class holds information that describes a formula for computing
325 /// satisfying a use. It may include broken-out immediates and scaled registers.
326 struct Formula {
327   /// Global base address used for complex addressing.
328   GlobalValue *BaseGV = nullptr;
329 
330   /// Base offset for complex addressing.
331   int64_t BaseOffset = 0;
332 
333   /// Whether any complex addressing has a base register.
334   bool HasBaseReg = false;
335 
336   /// The scale of any complex addressing.
337   int64_t Scale = 0;
338 
339   /// The list of "base" registers for this use. When this is non-empty. The
340   /// canonical representation of a formula is
341   /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and
342   /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty().
343   /// 3. The reg containing recurrent expr related with currect loop in the
344   /// formula should be put in the ScaledReg.
345   /// #1 enforces that the scaled register is always used when at least two
346   /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2.
347   /// #2 enforces that 1 * reg is reg.
348   /// #3 ensures invariant regs with respect to current loop can be combined
349   /// together in LSR codegen.
350   /// This invariant can be temporarily broken while building a formula.
351   /// However, every formula inserted into the LSRInstance must be in canonical
352   /// form.
353   SmallVector<const SCEV *, 4> BaseRegs;
354 
355   /// The 'scaled' register for this use. This should be non-null when Scale is
356   /// not zero.
357   const SCEV *ScaledReg = nullptr;
358 
359   /// An additional constant offset which added near the use. This requires a
360   /// temporary register, but the offset itself can live in an add immediate
361   /// field rather than a register.
362   int64_t UnfoldedOffset = 0;
363 
364   Formula() = default;
365 
366   void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE);
367 
368   bool isCanonical(const Loop &L) const;
369 
370   void canonicalize(const Loop &L);
371 
372   bool unscale();
373 
374   bool hasZeroEnd() const;
375 
376   size_t getNumRegs() const;
377   Type *getType() const;
378 
379   void deleteBaseReg(const SCEV *&S);
380 
381   bool referencesReg(const SCEV *S) const;
382   bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
383                                   const RegUseTracker &RegUses) const;
384 
385   void print(raw_ostream &OS) const;
386   void dump() const;
387 };
388 
389 } // end anonymous namespace
390 
391 /// Recursion helper for initialMatch.
392 static void DoInitialMatch(const SCEV *S, Loop *L,
393                            SmallVectorImpl<const SCEV *> &Good,
394                            SmallVectorImpl<const SCEV *> &Bad,
395                            ScalarEvolution &SE) {
396   // Collect expressions which properly dominate the loop header.
397   if (SE.properlyDominates(S, L->getHeader())) {
398     Good.push_back(S);
399     return;
400   }
401 
402   // Look at add operands.
403   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
404     for (const SCEV *S : Add->operands())
405       DoInitialMatch(S, L, Good, Bad, SE);
406     return;
407   }
408 
409   // Look at addrec operands.
410   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
411     if (!AR->getStart()->isZero() && AR->isAffine()) {
412       DoInitialMatch(AR->getStart(), L, Good, Bad, SE);
413       DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
414                                       AR->getStepRecurrence(SE),
415                                       // FIXME: AR->getNoWrapFlags()
416                                       AR->getLoop(), SCEV::FlagAnyWrap),
417                      L, Good, Bad, SE);
418       return;
419     }
420 
421   // Handle a multiplication by -1 (negation) if it didn't fold.
422   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
423     if (Mul->getOperand(0)->isAllOnesValue()) {
424       SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end());
425       const SCEV *NewMul = SE.getMulExpr(Ops);
426 
427       SmallVector<const SCEV *, 4> MyGood;
428       SmallVector<const SCEV *, 4> MyBad;
429       DoInitialMatch(NewMul, L, MyGood, MyBad, SE);
430       const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
431         SE.getEffectiveSCEVType(NewMul->getType())));
432       for (const SCEV *S : MyGood)
433         Good.push_back(SE.getMulExpr(NegOne, S));
434       for (const SCEV *S : MyBad)
435         Bad.push_back(SE.getMulExpr(NegOne, S));
436       return;
437     }
438 
439   // Ok, we can't do anything interesting. Just stuff the whole thing into a
440   // register and hope for the best.
441   Bad.push_back(S);
442 }
443 
444 /// Incorporate loop-variant parts of S into this Formula, attempting to keep
445 /// all loop-invariant and loop-computable values in a single base register.
446 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) {
447   SmallVector<const SCEV *, 4> Good;
448   SmallVector<const SCEV *, 4> Bad;
449   DoInitialMatch(S, L, Good, Bad, SE);
450   if (!Good.empty()) {
451     const SCEV *Sum = SE.getAddExpr(Good);
452     if (!Sum->isZero())
453       BaseRegs.push_back(Sum);
454     HasBaseReg = true;
455   }
456   if (!Bad.empty()) {
457     const SCEV *Sum = SE.getAddExpr(Bad);
458     if (!Sum->isZero())
459       BaseRegs.push_back(Sum);
460     HasBaseReg = true;
461   }
462   canonicalize(*L);
463 }
464 
465 /// Check whether or not this formula satisfies the canonical
466 /// representation.
467 /// \see Formula::BaseRegs.
468 bool Formula::isCanonical(const Loop &L) const {
469   if (!ScaledReg)
470     return BaseRegs.size() <= 1;
471 
472   if (Scale != 1)
473     return true;
474 
475   if (Scale == 1 && BaseRegs.empty())
476     return false;
477 
478   const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg);
479   if (SAR && SAR->getLoop() == &L)
480     return true;
481 
482   // If ScaledReg is not a recurrent expr, or it is but its loop is not current
483   // loop, meanwhile BaseRegs contains a recurrent expr reg related with current
484   // loop, we want to swap the reg in BaseRegs with ScaledReg.
485   auto I =
486       find_if(make_range(BaseRegs.begin(), BaseRegs.end()), [&](const SCEV *S) {
487         return isa<const SCEVAddRecExpr>(S) &&
488                (cast<SCEVAddRecExpr>(S)->getLoop() == &L);
489       });
490   return I == BaseRegs.end();
491 }
492 
493 /// Helper method to morph a formula into its canonical representation.
494 /// \see Formula::BaseRegs.
495 /// Every formula having more than one base register, must use the ScaledReg
496 /// field. Otherwise, we would have to do special cases everywhere in LSR
497 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ...
498 /// On the other hand, 1*reg should be canonicalized into reg.
499 void Formula::canonicalize(const Loop &L) {
500   if (isCanonical(L))
501     return;
502   // So far we did not need this case. This is easy to implement but it is
503   // useless to maintain dead code. Beside it could hurt compile time.
504   assert(!BaseRegs.empty() && "1*reg => reg, should not be needed.");
505 
506   // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg.
507   if (!ScaledReg) {
508     ScaledReg = BaseRegs.back();
509     BaseRegs.pop_back();
510     Scale = 1;
511   }
512 
513   // If ScaledReg is an invariant with respect to L, find the reg from
514   // BaseRegs containing the recurrent expr related with Loop L. Swap the
515   // reg with ScaledReg.
516   const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg);
517   if (!SAR || SAR->getLoop() != &L) {
518     auto I = find_if(make_range(BaseRegs.begin(), BaseRegs.end()),
519                      [&](const SCEV *S) {
520                        return isa<const SCEVAddRecExpr>(S) &&
521                               (cast<SCEVAddRecExpr>(S)->getLoop() == &L);
522                      });
523     if (I != BaseRegs.end())
524       std::swap(ScaledReg, *I);
525   }
526 }
527 
528 /// Get rid of the scale in the formula.
529 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2.
530 /// \return true if it was possible to get rid of the scale, false otherwise.
531 /// \note After this operation the formula may not be in the canonical form.
532 bool Formula::unscale() {
533   if (Scale != 1)
534     return false;
535   Scale = 0;
536   BaseRegs.push_back(ScaledReg);
537   ScaledReg = nullptr;
538   return true;
539 }
540 
541 bool Formula::hasZeroEnd() const {
542   if (UnfoldedOffset || BaseOffset)
543     return false;
544   if (BaseRegs.size() != 1 || ScaledReg)
545     return false;
546   return true;
547 }
548 
549 /// Return the total number of register operands used by this formula. This does
550 /// not include register uses implied by non-constant addrec strides.
551 size_t Formula::getNumRegs() const {
552   return !!ScaledReg + BaseRegs.size();
553 }
554 
555 /// Return the type of this formula, if it has one, or null otherwise. This type
556 /// is meaningless except for the bit size.
557 Type *Formula::getType() const {
558   return !BaseRegs.empty() ? BaseRegs.front()->getType() :
559          ScaledReg ? ScaledReg->getType() :
560          BaseGV ? BaseGV->getType() :
561          nullptr;
562 }
563 
564 /// Delete the given base reg from the BaseRegs list.
565 void Formula::deleteBaseReg(const SCEV *&S) {
566   if (&S != &BaseRegs.back())
567     std::swap(S, BaseRegs.back());
568   BaseRegs.pop_back();
569 }
570 
571 /// Test if this formula references the given register.
572 bool Formula::referencesReg(const SCEV *S) const {
573   return S == ScaledReg || is_contained(BaseRegs, S);
574 }
575 
576 /// Test whether this formula uses registers which are used by uses other than
577 /// the use with the given index.
578 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
579                                          const RegUseTracker &RegUses) const {
580   if (ScaledReg)
581     if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
582       return true;
583   for (const SCEV *BaseReg : BaseRegs)
584     if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx))
585       return true;
586   return false;
587 }
588 
589 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
590 void Formula::print(raw_ostream &OS) const {
591   bool First = true;
592   if (BaseGV) {
593     if (!First) OS << " + "; else First = false;
594     BaseGV->printAsOperand(OS, /*PrintType=*/false);
595   }
596   if (BaseOffset != 0) {
597     if (!First) OS << " + "; else First = false;
598     OS << BaseOffset;
599   }
600   for (const SCEV *BaseReg : BaseRegs) {
601     if (!First) OS << " + "; else First = false;
602     OS << "reg(" << *BaseReg << ')';
603   }
604   if (HasBaseReg && BaseRegs.empty()) {
605     if (!First) OS << " + "; else First = false;
606     OS << "**error: HasBaseReg**";
607   } else if (!HasBaseReg && !BaseRegs.empty()) {
608     if (!First) OS << " + "; else First = false;
609     OS << "**error: !HasBaseReg**";
610   }
611   if (Scale != 0) {
612     if (!First) OS << " + "; else First = false;
613     OS << Scale << "*reg(";
614     if (ScaledReg)
615       OS << *ScaledReg;
616     else
617       OS << "<unknown>";
618     OS << ')';
619   }
620   if (UnfoldedOffset != 0) {
621     if (!First) OS << " + ";
622     OS << "imm(" << UnfoldedOffset << ')';
623   }
624 }
625 
626 LLVM_DUMP_METHOD void Formula::dump() const {
627   print(errs()); errs() << '\n';
628 }
629 #endif
630 
631 /// Return true if the given addrec can be sign-extended without changing its
632 /// value.
633 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
634   Type *WideTy =
635     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
636   return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
637 }
638 
639 /// Return true if the given add can be sign-extended without changing its
640 /// value.
641 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
642   Type *WideTy =
643     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
644   return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
645 }
646 
647 /// Return true if the given mul can be sign-extended without changing its
648 /// value.
649 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) {
650   Type *WideTy =
651     IntegerType::get(SE.getContext(),
652                      SE.getTypeSizeInBits(M->getType()) * M->getNumOperands());
653   return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy));
654 }
655 
656 /// Return an expression for LHS /s RHS, if it can be determined and if the
657 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits
658 /// is true, expressions like (X * Y) /s Y are simplified to Y, ignoring that
659 /// the multiplication may overflow, which is useful when the result will be
660 /// used in a context where the most significant bits are ignored.
661 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
662                                 ScalarEvolution &SE,
663                                 bool IgnoreSignificantBits = false) {
664   // Handle the trivial case, which works for any SCEV type.
665   if (LHS == RHS)
666     return SE.getConstant(LHS->getType(), 1);
667 
668   // Handle a few RHS special cases.
669   const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
670   if (RC) {
671     const APInt &RA = RC->getAPInt();
672     // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
673     // some folding.
674     if (RA.isAllOnesValue())
675       return SE.getMulExpr(LHS, RC);
676     // Handle x /s 1 as x.
677     if (RA == 1)
678       return LHS;
679   }
680 
681   // Check for a division of a constant by a constant.
682   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
683     if (!RC)
684       return nullptr;
685     const APInt &LA = C->getAPInt();
686     const APInt &RA = RC->getAPInt();
687     if (LA.srem(RA) != 0)
688       return nullptr;
689     return SE.getConstant(LA.sdiv(RA));
690   }
691 
692   // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
693   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
694     if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) {
695       const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
696                                       IgnoreSignificantBits);
697       if (!Step) return nullptr;
698       const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
699                                        IgnoreSignificantBits);
700       if (!Start) return nullptr;
701       // FlagNW is independent of the start value, step direction, and is
702       // preserved with smaller magnitude steps.
703       // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
704       return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap);
705     }
706     return nullptr;
707   }
708 
709   // Distribute the sdiv over add operands, if the add doesn't overflow.
710   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
711     if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
712       SmallVector<const SCEV *, 8> Ops;
713       for (const SCEV *S : Add->operands()) {
714         const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits);
715         if (!Op) return nullptr;
716         Ops.push_back(Op);
717       }
718       return SE.getAddExpr(Ops);
719     }
720     return nullptr;
721   }
722 
723   // Check for a multiply operand that we can pull RHS out of.
724   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) {
725     if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
726       SmallVector<const SCEV *, 4> Ops;
727       bool Found = false;
728       for (const SCEV *S : Mul->operands()) {
729         if (!Found)
730           if (const SCEV *Q = getExactSDiv(S, RHS, SE,
731                                            IgnoreSignificantBits)) {
732             S = Q;
733             Found = true;
734           }
735         Ops.push_back(S);
736       }
737       return Found ? SE.getMulExpr(Ops) : nullptr;
738     }
739     return nullptr;
740   }
741 
742   // Otherwise we don't know.
743   return nullptr;
744 }
745 
746 /// If S involves the addition of a constant integer value, return that integer
747 /// value, and mutate S to point to a new SCEV with that value excluded.
748 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
749   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
750     if (C->getAPInt().getMinSignedBits() <= 64) {
751       S = SE.getConstant(C->getType(), 0);
752       return C->getValue()->getSExtValue();
753     }
754   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
755     SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
756     int64_t Result = ExtractImmediate(NewOps.front(), SE);
757     if (Result != 0)
758       S = SE.getAddExpr(NewOps);
759     return Result;
760   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
761     SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
762     int64_t Result = ExtractImmediate(NewOps.front(), SE);
763     if (Result != 0)
764       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
765                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
766                            SCEV::FlagAnyWrap);
767     return Result;
768   }
769   return 0;
770 }
771 
772 /// If S involves the addition of a GlobalValue address, return that symbol, and
773 /// mutate S to point to a new SCEV with that value excluded.
774 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
775   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
776     if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
777       S = SE.getConstant(GV->getType(), 0);
778       return GV;
779     }
780   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
781     SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
782     GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
783     if (Result)
784       S = SE.getAddExpr(NewOps);
785     return Result;
786   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
787     SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
788     GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
789     if (Result)
790       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
791                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
792                            SCEV::FlagAnyWrap);
793     return Result;
794   }
795   return nullptr;
796 }
797 
798 /// Returns true if the specified instruction is using the specified value as an
799 /// address.
800 static bool isAddressUse(const TargetTransformInfo &TTI,
801                          Instruction *Inst, Value *OperandVal) {
802   bool isAddress = isa<LoadInst>(Inst);
803   if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
804     if (SI->getPointerOperand() == OperandVal)
805       isAddress = true;
806   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
807     // Addressing modes can also be folded into prefetches and a variety
808     // of intrinsics.
809     switch (II->getIntrinsicID()) {
810     case Intrinsic::memset:
811     case Intrinsic::prefetch:
812     case Intrinsic::masked_load:
813       if (II->getArgOperand(0) == OperandVal)
814         isAddress = true;
815       break;
816     case Intrinsic::masked_store:
817       if (II->getArgOperand(1) == OperandVal)
818         isAddress = true;
819       break;
820     case Intrinsic::memmove:
821     case Intrinsic::memcpy:
822       if (II->getArgOperand(0) == OperandVal ||
823           II->getArgOperand(1) == OperandVal)
824         isAddress = true;
825       break;
826     default: {
827       MemIntrinsicInfo IntrInfo;
828       if (TTI.getTgtMemIntrinsic(II, IntrInfo)) {
829         if (IntrInfo.PtrVal == OperandVal)
830           isAddress = true;
831       }
832     }
833     }
834   } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
835     if (RMW->getPointerOperand() == OperandVal)
836       isAddress = true;
837   } else if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
838     if (CmpX->getPointerOperand() == OperandVal)
839       isAddress = true;
840   }
841   return isAddress;
842 }
843 
844 /// Return the type of the memory being accessed.
845 static MemAccessTy getAccessType(const TargetTransformInfo &TTI,
846                                  Instruction *Inst, Value *OperandVal) {
847   MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace);
848   if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
849     AccessTy.MemTy = SI->getOperand(0)->getType();
850     AccessTy.AddrSpace = SI->getPointerAddressSpace();
851   } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
852     AccessTy.AddrSpace = LI->getPointerAddressSpace();
853   } else if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
854     AccessTy.AddrSpace = RMW->getPointerAddressSpace();
855   } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
856     AccessTy.AddrSpace = CmpX->getPointerAddressSpace();
857   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
858     switch (II->getIntrinsicID()) {
859     case Intrinsic::prefetch:
860     case Intrinsic::memset:
861       AccessTy.AddrSpace = II->getArgOperand(0)->getType()->getPointerAddressSpace();
862       AccessTy.MemTy = OperandVal->getType();
863       break;
864     case Intrinsic::memmove:
865     case Intrinsic::memcpy:
866       AccessTy.AddrSpace = OperandVal->getType()->getPointerAddressSpace();
867       AccessTy.MemTy = OperandVal->getType();
868       break;
869     case Intrinsic::masked_load:
870       AccessTy.AddrSpace =
871           II->getArgOperand(0)->getType()->getPointerAddressSpace();
872       break;
873     case Intrinsic::masked_store:
874       AccessTy.MemTy = II->getOperand(0)->getType();
875       AccessTy.AddrSpace =
876           II->getArgOperand(1)->getType()->getPointerAddressSpace();
877       break;
878     default: {
879       MemIntrinsicInfo IntrInfo;
880       if (TTI.getTgtMemIntrinsic(II, IntrInfo) && IntrInfo.PtrVal) {
881         AccessTy.AddrSpace
882           = IntrInfo.PtrVal->getType()->getPointerAddressSpace();
883       }
884 
885       break;
886     }
887     }
888   }
889 
890   // All pointers have the same requirements, so canonicalize them to an
891   // arbitrary pointer type to minimize variation.
892   if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy))
893     AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
894                                       PTy->getAddressSpace());
895 
896   return AccessTy;
897 }
898 
899 /// Return true if this AddRec is already a phi in its loop.
900 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
901   for (PHINode &PN : AR->getLoop()->getHeader()->phis()) {
902     if (SE.isSCEVable(PN.getType()) &&
903         (SE.getEffectiveSCEVType(PN.getType()) ==
904          SE.getEffectiveSCEVType(AR->getType())) &&
905         SE.getSCEV(&PN) == AR)
906       return true;
907   }
908   return false;
909 }
910 
911 /// Check if expanding this expression is likely to incur significant cost. This
912 /// is tricky because SCEV doesn't track which expressions are actually computed
913 /// by the current IR.
914 ///
915 /// We currently allow expansion of IV increments that involve adds,
916 /// multiplication by constants, and AddRecs from existing phis.
917 ///
918 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an
919 /// obvious multiple of the UDivExpr.
920 static bool isHighCostExpansion(const SCEV *S,
921                                 SmallPtrSetImpl<const SCEV*> &Processed,
922                                 ScalarEvolution &SE) {
923   // Zero/One operand expressions
924   switch (S->getSCEVType()) {
925   case scUnknown:
926   case scConstant:
927     return false;
928   case scTruncate:
929     return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(),
930                                Processed, SE);
931   case scZeroExtend:
932     return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(),
933                                Processed, SE);
934   case scSignExtend:
935     return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(),
936                                Processed, SE);
937   }
938 
939   if (!Processed.insert(S).second)
940     return false;
941 
942   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
943     for (const SCEV *S : Add->operands()) {
944       if (isHighCostExpansion(S, Processed, SE))
945         return true;
946     }
947     return false;
948   }
949 
950   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
951     if (Mul->getNumOperands() == 2) {
952       // Multiplication by a constant is ok
953       if (isa<SCEVConstant>(Mul->getOperand(0)))
954         return isHighCostExpansion(Mul->getOperand(1), Processed, SE);
955 
956       // If we have the value of one operand, check if an existing
957       // multiplication already generates this expression.
958       if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) {
959         Value *UVal = U->getValue();
960         for (User *UR : UVal->users()) {
961           // If U is a constant, it may be used by a ConstantExpr.
962           Instruction *UI = dyn_cast<Instruction>(UR);
963           if (UI && UI->getOpcode() == Instruction::Mul &&
964               SE.isSCEVable(UI->getType())) {
965             return SE.getSCEV(UI) == Mul;
966           }
967         }
968       }
969     }
970   }
971 
972   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
973     if (isExistingPhi(AR, SE))
974       return false;
975   }
976 
977   // Fow now, consider any other type of expression (div/mul/min/max) high cost.
978   return true;
979 }
980 
981 namespace {
982 
983 class LSRUse;
984 
985 } // end anonymous namespace
986 
987 /// Check if the addressing mode defined by \p F is completely
988 /// folded in \p LU at isel time.
989 /// This includes address-mode folding and special icmp tricks.
990 /// This function returns true if \p LU can accommodate what \p F
991 /// defines and up to 1 base + 1 scaled + offset.
992 /// In other words, if \p F has several base registers, this function may
993 /// still return true. Therefore, users still need to account for
994 /// additional base registers and/or unfolded offsets to derive an
995 /// accurate cost model.
996 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
997                                  const LSRUse &LU, const Formula &F);
998 
999 // Get the cost of the scaling factor used in F for LU.
1000 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
1001                                      const LSRUse &LU, const Formula &F,
1002                                      const Loop &L);
1003 
1004 namespace {
1005 
1006 /// This class is used to measure and compare candidate formulae.
1007 class Cost {
1008   const Loop *L = nullptr;
1009   ScalarEvolution *SE = nullptr;
1010   const TargetTransformInfo *TTI = nullptr;
1011   TargetTransformInfo::LSRCost C;
1012 
1013 public:
1014   Cost() = delete;
1015   Cost(const Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI) :
1016     L(L), SE(&SE), TTI(&TTI) {
1017     C.Insns = 0;
1018     C.NumRegs = 0;
1019     C.AddRecCost = 0;
1020     C.NumIVMuls = 0;
1021     C.NumBaseAdds = 0;
1022     C.ImmCost = 0;
1023     C.SetupCost = 0;
1024     C.ScaleCost = 0;
1025   }
1026 
1027   bool isLess(Cost &Other);
1028 
1029   void Lose();
1030 
1031 #ifndef NDEBUG
1032   // Once any of the metrics loses, they must all remain losers.
1033   bool isValid() {
1034     return ((C.Insns | C.NumRegs | C.AddRecCost | C.NumIVMuls | C.NumBaseAdds
1035              | C.ImmCost | C.SetupCost | C.ScaleCost) != ~0u)
1036       || ((C.Insns & C.NumRegs & C.AddRecCost & C.NumIVMuls & C.NumBaseAdds
1037            & C.ImmCost & C.SetupCost & C.ScaleCost) == ~0u);
1038   }
1039 #endif
1040 
1041   bool isLoser() {
1042     assert(isValid() && "invalid cost");
1043     return C.NumRegs == ~0u;
1044   }
1045 
1046   void RateFormula(const Formula &F,
1047                    SmallPtrSetImpl<const SCEV *> &Regs,
1048                    const DenseSet<const SCEV *> &VisitedRegs,
1049                    const LSRUse &LU,
1050                    SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr);
1051 
1052   void print(raw_ostream &OS) const;
1053   void dump() const;
1054 
1055 private:
1056   void RateRegister(const Formula &F, const SCEV *Reg,
1057                     SmallPtrSetImpl<const SCEV *> &Regs);
1058   void RatePrimaryRegister(const Formula &F, const SCEV *Reg,
1059                            SmallPtrSetImpl<const SCEV *> &Regs,
1060                            SmallPtrSetImpl<const SCEV *> *LoserRegs);
1061 };
1062 
1063 /// An operand value in an instruction which is to be replaced with some
1064 /// equivalent, possibly strength-reduced, replacement.
1065 struct LSRFixup {
1066   /// The instruction which will be updated.
1067   Instruction *UserInst = nullptr;
1068 
1069   /// The operand of the instruction which will be replaced. The operand may be
1070   /// used more than once; every instance will be replaced.
1071   Value *OperandValToReplace = nullptr;
1072 
1073   /// If this user is to use the post-incremented value of an induction
1074   /// variable, this set is non-empty and holds the loops associated with the
1075   /// induction variable.
1076   PostIncLoopSet PostIncLoops;
1077 
1078   /// A constant offset to be added to the LSRUse expression.  This allows
1079   /// multiple fixups to share the same LSRUse with different offsets, for
1080   /// example in an unrolled loop.
1081   int64_t Offset = 0;
1082 
1083   LSRFixup() = default;
1084 
1085   bool isUseFullyOutsideLoop(const Loop *L) const;
1086 
1087   void print(raw_ostream &OS) const;
1088   void dump() const;
1089 };
1090 
1091 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted
1092 /// SmallVectors of const SCEV*.
1093 struct UniquifierDenseMapInfo {
1094   static SmallVector<const SCEV *, 4> getEmptyKey() {
1095     SmallVector<const SCEV *, 4>  V;
1096     V.push_back(reinterpret_cast<const SCEV *>(-1));
1097     return V;
1098   }
1099 
1100   static SmallVector<const SCEV *, 4> getTombstoneKey() {
1101     SmallVector<const SCEV *, 4> V;
1102     V.push_back(reinterpret_cast<const SCEV *>(-2));
1103     return V;
1104   }
1105 
1106   static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) {
1107     return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
1108   }
1109 
1110   static bool isEqual(const SmallVector<const SCEV *, 4> &LHS,
1111                       const SmallVector<const SCEV *, 4> &RHS) {
1112     return LHS == RHS;
1113   }
1114 };
1115 
1116 /// This class holds the state that LSR keeps for each use in IVUsers, as well
1117 /// as uses invented by LSR itself. It includes information about what kinds of
1118 /// things can be folded into the user, information about the user itself, and
1119 /// information about how the use may be satisfied.  TODO: Represent multiple
1120 /// users of the same expression in common?
1121 class LSRUse {
1122   DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier;
1123 
1124 public:
1125   /// An enum for a kind of use, indicating what types of scaled and immediate
1126   /// operands it might support.
1127   enum KindType {
1128     Basic,   ///< A normal use, with no folding.
1129     Special, ///< A special case of basic, allowing -1 scales.
1130     Address, ///< An address use; folding according to TargetLowering
1131     ICmpZero ///< An equality icmp with both operands folded into one.
1132     // TODO: Add a generic icmp too?
1133   };
1134 
1135   using SCEVUseKindPair = PointerIntPair<const SCEV *, 2, KindType>;
1136 
1137   KindType Kind;
1138   MemAccessTy AccessTy;
1139 
1140   /// The list of operands which are to be replaced.
1141   SmallVector<LSRFixup, 8> Fixups;
1142 
1143   /// Keep track of the min and max offsets of the fixups.
1144   int64_t MinOffset = std::numeric_limits<int64_t>::max();
1145   int64_t MaxOffset = std::numeric_limits<int64_t>::min();
1146 
1147   /// This records whether all of the fixups using this LSRUse are outside of
1148   /// the loop, in which case some special-case heuristics may be used.
1149   bool AllFixupsOutsideLoop = true;
1150 
1151   /// RigidFormula is set to true to guarantee that this use will be associated
1152   /// with a single formula--the one that initially matched. Some SCEV
1153   /// expressions cannot be expanded. This allows LSR to consider the registers
1154   /// used by those expressions without the need to expand them later after
1155   /// changing the formula.
1156   bool RigidFormula = false;
1157 
1158   /// This records the widest use type for any fixup using this
1159   /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max
1160   /// fixup widths to be equivalent, because the narrower one may be relying on
1161   /// the implicit truncation to truncate away bogus bits.
1162   Type *WidestFixupType = nullptr;
1163 
1164   /// A list of ways to build a value that can satisfy this user.  After the
1165   /// list is populated, one of these is selected heuristically and used to
1166   /// formulate a replacement for OperandValToReplace in UserInst.
1167   SmallVector<Formula, 12> Formulae;
1168 
1169   /// The set of register candidates used by all formulae in this LSRUse.
1170   SmallPtrSet<const SCEV *, 4> Regs;
1171 
1172   LSRUse(KindType K, MemAccessTy AT) : Kind(K), AccessTy(AT) {}
1173 
1174   LSRFixup &getNewFixup() {
1175     Fixups.push_back(LSRFixup());
1176     return Fixups.back();
1177   }
1178 
1179   void pushFixup(LSRFixup &f) {
1180     Fixups.push_back(f);
1181     if (f.Offset > MaxOffset)
1182       MaxOffset = f.Offset;
1183     if (f.Offset < MinOffset)
1184       MinOffset = f.Offset;
1185   }
1186 
1187   bool HasFormulaWithSameRegs(const Formula &F) const;
1188   float getNotSelectedProbability(const SCEV *Reg) const;
1189   bool InsertFormula(const Formula &F, const Loop &L);
1190   void DeleteFormula(Formula &F);
1191   void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
1192 
1193   void print(raw_ostream &OS) const;
1194   void dump() const;
1195 };
1196 
1197 } // end anonymous namespace
1198 
1199 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1200                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1201                                  GlobalValue *BaseGV, int64_t BaseOffset,
1202                                  bool HasBaseReg, int64_t Scale,
1203                                  Instruction *Fixup = nullptr);
1204 
1205 static unsigned getSetupCost(const SCEV *Reg, unsigned Depth) {
1206   if (isa<SCEVUnknown>(Reg) || isa<SCEVConstant>(Reg))
1207     return 1;
1208   if (Depth == 0)
1209     return 0;
1210   if (const auto *S = dyn_cast<SCEVAddRecExpr>(Reg))
1211     return getSetupCost(S->getStart(), Depth - 1);
1212   if (auto S = dyn_cast<SCEVCastExpr>(Reg))
1213     return getSetupCost(S->getOperand(), Depth - 1);
1214   if (auto S = dyn_cast<SCEVNAryExpr>(Reg))
1215     return std::accumulate(S->op_begin(), S->op_end(), 0,
1216                            [&](unsigned i, const SCEV *Reg) {
1217                              return i + getSetupCost(Reg, Depth - 1);
1218                            });
1219   if (auto S = dyn_cast<SCEVUDivExpr>(Reg))
1220     return getSetupCost(S->getLHS(), Depth - 1) +
1221            getSetupCost(S->getRHS(), Depth - 1);
1222   return 0;
1223 }
1224 
1225 /// Tally up interesting quantities from the given register.
1226 void Cost::RateRegister(const Formula &F, const SCEV *Reg,
1227                         SmallPtrSetImpl<const SCEV *> &Regs) {
1228   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
1229     // If this is an addrec for another loop, it should be an invariant
1230     // with respect to L since L is the innermost loop (at least
1231     // for now LSR only handles innermost loops).
1232     if (AR->getLoop() != L) {
1233       // If the AddRec exists, consider it's register free and leave it alone.
1234       if (isExistingPhi(AR, *SE))
1235         return;
1236 
1237       // It is bad to allow LSR for current loop to add induction variables
1238       // for its sibling loops.
1239       if (!AR->getLoop()->contains(L)) {
1240         Lose();
1241         return;
1242       }
1243 
1244       // Otherwise, it will be an invariant with respect to Loop L.
1245       ++C.NumRegs;
1246       return;
1247     }
1248 
1249     unsigned LoopCost = 1;
1250     if (TTI->isIndexedLoadLegal(TTI->MIM_PostInc, AR->getType()) ||
1251         TTI->isIndexedStoreLegal(TTI->MIM_PostInc, AR->getType())) {
1252 
1253       // If the step size matches the base offset, we could use pre-indexed
1254       // addressing.
1255       if (TTI->shouldFavorBackedgeIndex(L)) {
1256         if (auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)))
1257           if (Step->getAPInt() == F.BaseOffset)
1258             LoopCost = 0;
1259       }
1260 
1261       if (TTI->shouldFavorPostInc()) {
1262         const SCEV *LoopStep = AR->getStepRecurrence(*SE);
1263         if (isa<SCEVConstant>(LoopStep)) {
1264           const SCEV *LoopStart = AR->getStart();
1265           if (!isa<SCEVConstant>(LoopStart) &&
1266               SE->isLoopInvariant(LoopStart, L))
1267             LoopCost = 0;
1268         }
1269       }
1270     }
1271     C.AddRecCost += LoopCost;
1272 
1273     // Add the step value register, if it needs one.
1274     // TODO: The non-affine case isn't precisely modeled here.
1275     if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) {
1276       if (!Regs.count(AR->getOperand(1))) {
1277         RateRegister(F, AR->getOperand(1), Regs);
1278         if (isLoser())
1279           return;
1280       }
1281     }
1282   }
1283   ++C.NumRegs;
1284 
1285   // Rough heuristic; favor registers which don't require extra setup
1286   // instructions in the preheader.
1287   C.SetupCost += getSetupCost(Reg, SetupCostDepthLimit);
1288   // Ensure we don't, even with the recusion limit, produce invalid costs.
1289   C.SetupCost = std::min<unsigned>(C.SetupCost, 1 << 16);
1290 
1291   C.NumIVMuls += isa<SCEVMulExpr>(Reg) &&
1292                SE->hasComputableLoopEvolution(Reg, L);
1293 }
1294 
1295 /// Record this register in the set. If we haven't seen it before, rate
1296 /// it. Optional LoserRegs provides a way to declare any formula that refers to
1297 /// one of those regs an instant loser.
1298 void Cost::RatePrimaryRegister(const Formula &F, const SCEV *Reg,
1299                                SmallPtrSetImpl<const SCEV *> &Regs,
1300                                SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1301   if (LoserRegs && LoserRegs->count(Reg)) {
1302     Lose();
1303     return;
1304   }
1305   if (Regs.insert(Reg).second) {
1306     RateRegister(F, Reg, Regs);
1307     if (LoserRegs && isLoser())
1308       LoserRegs->insert(Reg);
1309   }
1310 }
1311 
1312 void Cost::RateFormula(const Formula &F,
1313                        SmallPtrSetImpl<const SCEV *> &Regs,
1314                        const DenseSet<const SCEV *> &VisitedRegs,
1315                        const LSRUse &LU,
1316                        SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1317   assert(F.isCanonical(*L) && "Cost is accurate only for canonical formula");
1318   // Tally up the registers.
1319   unsigned PrevAddRecCost = C.AddRecCost;
1320   unsigned PrevNumRegs = C.NumRegs;
1321   unsigned PrevNumBaseAdds = C.NumBaseAdds;
1322   if (const SCEV *ScaledReg = F.ScaledReg) {
1323     if (VisitedRegs.count(ScaledReg)) {
1324       Lose();
1325       return;
1326     }
1327     RatePrimaryRegister(F, ScaledReg, Regs, LoserRegs);
1328     if (isLoser())
1329       return;
1330   }
1331   for (const SCEV *BaseReg : F.BaseRegs) {
1332     if (VisitedRegs.count(BaseReg)) {
1333       Lose();
1334       return;
1335     }
1336     RatePrimaryRegister(F, BaseReg, Regs, LoserRegs);
1337     if (isLoser())
1338       return;
1339   }
1340 
1341   // Determine how many (unfolded) adds we'll need inside the loop.
1342   size_t NumBaseParts = F.getNumRegs();
1343   if (NumBaseParts > 1)
1344     // Do not count the base and a possible second register if the target
1345     // allows to fold 2 registers.
1346     C.NumBaseAdds +=
1347         NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(*TTI, LU, F)));
1348   C.NumBaseAdds += (F.UnfoldedOffset != 0);
1349 
1350   // Accumulate non-free scaling amounts.
1351   C.ScaleCost += getScalingFactorCost(*TTI, LU, F, *L);
1352 
1353   // Tally up the non-zero immediates.
1354   for (const LSRFixup &Fixup : LU.Fixups) {
1355     int64_t O = Fixup.Offset;
1356     int64_t Offset = (uint64_t)O + F.BaseOffset;
1357     if (F.BaseGV)
1358       C.ImmCost += 64; // Handle symbolic values conservatively.
1359                      // TODO: This should probably be the pointer size.
1360     else if (Offset != 0)
1361       C.ImmCost += APInt(64, Offset, true).getMinSignedBits();
1362 
1363     // Check with target if this offset with this instruction is
1364     // specifically not supported.
1365     if (LU.Kind == LSRUse::Address && Offset != 0 &&
1366         !isAMCompletelyFolded(*TTI, LSRUse::Address, LU.AccessTy, F.BaseGV,
1367                               Offset, F.HasBaseReg, F.Scale, Fixup.UserInst))
1368       C.NumBaseAdds++;
1369   }
1370 
1371   // If we don't count instruction cost exit here.
1372   if (!InsnsCost) {
1373     assert(isValid() && "invalid cost");
1374     return;
1375   }
1376 
1377   // Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as
1378   // additional instruction (at least fill).
1379   // TODO: Need distinguish register class?
1380   unsigned TTIRegNum = TTI->getNumberOfRegisters(
1381                        TTI->getRegisterClassForType(false, F.getType())) - 1;
1382   if (C.NumRegs > TTIRegNum) {
1383     // Cost already exceeded TTIRegNum, then only newly added register can add
1384     // new instructions.
1385     if (PrevNumRegs > TTIRegNum)
1386       C.Insns += (C.NumRegs - PrevNumRegs);
1387     else
1388       C.Insns += (C.NumRegs - TTIRegNum);
1389   }
1390 
1391   // If ICmpZero formula ends with not 0, it could not be replaced by
1392   // just add or sub. We'll need to compare final result of AddRec.
1393   // That means we'll need an additional instruction. But if the target can
1394   // macro-fuse a compare with a branch, don't count this extra instruction.
1395   // For -10 + {0, +, 1}:
1396   // i = i + 1;
1397   // cmp i, 10
1398   //
1399   // For {-10, +, 1}:
1400   // i = i + 1;
1401   if (LU.Kind == LSRUse::ICmpZero && !F.hasZeroEnd() &&
1402       !TTI->canMacroFuseCmp())
1403     C.Insns++;
1404   // Each new AddRec adds 1 instruction to calculation.
1405   C.Insns += (C.AddRecCost - PrevAddRecCost);
1406 
1407   // BaseAdds adds instructions for unfolded registers.
1408   if (LU.Kind != LSRUse::ICmpZero)
1409     C.Insns += C.NumBaseAdds - PrevNumBaseAdds;
1410   assert(isValid() && "invalid cost");
1411 }
1412 
1413 /// Set this cost to a losing value.
1414 void Cost::Lose() {
1415   C.Insns = std::numeric_limits<unsigned>::max();
1416   C.NumRegs = std::numeric_limits<unsigned>::max();
1417   C.AddRecCost = std::numeric_limits<unsigned>::max();
1418   C.NumIVMuls = std::numeric_limits<unsigned>::max();
1419   C.NumBaseAdds = std::numeric_limits<unsigned>::max();
1420   C.ImmCost = std::numeric_limits<unsigned>::max();
1421   C.SetupCost = std::numeric_limits<unsigned>::max();
1422   C.ScaleCost = std::numeric_limits<unsigned>::max();
1423 }
1424 
1425 /// Choose the lower cost.
1426 bool Cost::isLess(Cost &Other) {
1427   if (InsnsCost.getNumOccurrences() > 0 && InsnsCost &&
1428       C.Insns != Other.C.Insns)
1429     return C.Insns < Other.C.Insns;
1430   return TTI->isLSRCostLess(C, Other.C);
1431 }
1432 
1433 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1434 void Cost::print(raw_ostream &OS) const {
1435   if (InsnsCost)
1436     OS << C.Insns << " instruction" << (C.Insns == 1 ? " " : "s ");
1437   OS << C.NumRegs << " reg" << (C.NumRegs == 1 ? "" : "s");
1438   if (C.AddRecCost != 0)
1439     OS << ", with addrec cost " << C.AddRecCost;
1440   if (C.NumIVMuls != 0)
1441     OS << ", plus " << C.NumIVMuls << " IV mul"
1442        << (C.NumIVMuls == 1 ? "" : "s");
1443   if (C.NumBaseAdds != 0)
1444     OS << ", plus " << C.NumBaseAdds << " base add"
1445        << (C.NumBaseAdds == 1 ? "" : "s");
1446   if (C.ScaleCost != 0)
1447     OS << ", plus " << C.ScaleCost << " scale cost";
1448   if (C.ImmCost != 0)
1449     OS << ", plus " << C.ImmCost << " imm cost";
1450   if (C.SetupCost != 0)
1451     OS << ", plus " << C.SetupCost << " setup cost";
1452 }
1453 
1454 LLVM_DUMP_METHOD void Cost::dump() const {
1455   print(errs()); errs() << '\n';
1456 }
1457 #endif
1458 
1459 /// Test whether this fixup always uses its value outside of the given loop.
1460 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
1461   // PHI nodes use their value in their incoming blocks.
1462   if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
1463     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1464       if (PN->getIncomingValue(i) == OperandValToReplace &&
1465           L->contains(PN->getIncomingBlock(i)))
1466         return false;
1467     return true;
1468   }
1469 
1470   return !L->contains(UserInst);
1471 }
1472 
1473 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1474 void LSRFixup::print(raw_ostream &OS) const {
1475   OS << "UserInst=";
1476   // Store is common and interesting enough to be worth special-casing.
1477   if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
1478     OS << "store ";
1479     Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false);
1480   } else if (UserInst->getType()->isVoidTy())
1481     OS << UserInst->getOpcodeName();
1482   else
1483     UserInst->printAsOperand(OS, /*PrintType=*/false);
1484 
1485   OS << ", OperandValToReplace=";
1486   OperandValToReplace->printAsOperand(OS, /*PrintType=*/false);
1487 
1488   for (const Loop *PIL : PostIncLoops) {
1489     OS << ", PostIncLoop=";
1490     PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
1491   }
1492 
1493   if (Offset != 0)
1494     OS << ", Offset=" << Offset;
1495 }
1496 
1497 LLVM_DUMP_METHOD void LSRFixup::dump() const {
1498   print(errs()); errs() << '\n';
1499 }
1500 #endif
1501 
1502 /// Test whether this use as a formula which has the same registers as the given
1503 /// formula.
1504 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
1505   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1506   if (F.ScaledReg) Key.push_back(F.ScaledReg);
1507   // Unstable sort by host order ok, because this is only used for uniquifying.
1508   llvm::sort(Key);
1509   return Uniquifier.count(Key);
1510 }
1511 
1512 /// The function returns a probability of selecting formula without Reg.
1513 float LSRUse::getNotSelectedProbability(const SCEV *Reg) const {
1514   unsigned FNum = 0;
1515   for (const Formula &F : Formulae)
1516     if (F.referencesReg(Reg))
1517       FNum++;
1518   return ((float)(Formulae.size() - FNum)) / Formulae.size();
1519 }
1520 
1521 /// If the given formula has not yet been inserted, add it to the list, and
1522 /// return true. Return false otherwise.  The formula must be in canonical form.
1523 bool LSRUse::InsertFormula(const Formula &F, const Loop &L) {
1524   assert(F.isCanonical(L) && "Invalid canonical representation");
1525 
1526   if (!Formulae.empty() && RigidFormula)
1527     return false;
1528 
1529   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1530   if (F.ScaledReg) Key.push_back(F.ScaledReg);
1531   // Unstable sort by host order ok, because this is only used for uniquifying.
1532   llvm::sort(Key);
1533 
1534   if (!Uniquifier.insert(Key).second)
1535     return false;
1536 
1537   // Using a register to hold the value of 0 is not profitable.
1538   assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
1539          "Zero allocated in a scaled register!");
1540 #ifndef NDEBUG
1541   for (const SCEV *BaseReg : F.BaseRegs)
1542     assert(!BaseReg->isZero() && "Zero allocated in a base register!");
1543 #endif
1544 
1545   // Add the formula to the list.
1546   Formulae.push_back(F);
1547 
1548   // Record registers now being used by this use.
1549   Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1550   if (F.ScaledReg)
1551     Regs.insert(F.ScaledReg);
1552 
1553   return true;
1554 }
1555 
1556 /// Remove the given formula from this use's list.
1557 void LSRUse::DeleteFormula(Formula &F) {
1558   if (&F != &Formulae.back())
1559     std::swap(F, Formulae.back());
1560   Formulae.pop_back();
1561 }
1562 
1563 /// Recompute the Regs field, and update RegUses.
1564 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
1565   // Now that we've filtered out some formulae, recompute the Regs set.
1566   SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs);
1567   Regs.clear();
1568   for (const Formula &F : Formulae) {
1569     if (F.ScaledReg) Regs.insert(F.ScaledReg);
1570     Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1571   }
1572 
1573   // Update the RegTracker.
1574   for (const SCEV *S : OldRegs)
1575     if (!Regs.count(S))
1576       RegUses.dropRegister(S, LUIdx);
1577 }
1578 
1579 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1580 void LSRUse::print(raw_ostream &OS) const {
1581   OS << "LSR Use: Kind=";
1582   switch (Kind) {
1583   case Basic:    OS << "Basic"; break;
1584   case Special:  OS << "Special"; break;
1585   case ICmpZero: OS << "ICmpZero"; break;
1586   case Address:
1587     OS << "Address of ";
1588     if (AccessTy.MemTy->isPointerTy())
1589       OS << "pointer"; // the full pointer type could be really verbose
1590     else {
1591       OS << *AccessTy.MemTy;
1592     }
1593 
1594     OS << " in addrspace(" << AccessTy.AddrSpace << ')';
1595   }
1596 
1597   OS << ", Offsets={";
1598   bool NeedComma = false;
1599   for (const LSRFixup &Fixup : Fixups) {
1600     if (NeedComma) OS << ',';
1601     OS << Fixup.Offset;
1602     NeedComma = true;
1603   }
1604   OS << '}';
1605 
1606   if (AllFixupsOutsideLoop)
1607     OS << ", all-fixups-outside-loop";
1608 
1609   if (WidestFixupType)
1610     OS << ", widest fixup type: " << *WidestFixupType;
1611 }
1612 
1613 LLVM_DUMP_METHOD void LSRUse::dump() const {
1614   print(errs()); errs() << '\n';
1615 }
1616 #endif
1617 
1618 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1619                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1620                                  GlobalValue *BaseGV, int64_t BaseOffset,
1621                                  bool HasBaseReg, int64_t Scale,
1622                                  Instruction *Fixup/*= nullptr*/) {
1623   switch (Kind) {
1624   case LSRUse::Address:
1625     return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset,
1626                                      HasBaseReg, Scale, AccessTy.AddrSpace, Fixup);
1627 
1628   case LSRUse::ICmpZero:
1629     // There's not even a target hook for querying whether it would be legal to
1630     // fold a GV into an ICmp.
1631     if (BaseGV)
1632       return false;
1633 
1634     // ICmp only has two operands; don't allow more than two non-trivial parts.
1635     if (Scale != 0 && HasBaseReg && BaseOffset != 0)
1636       return false;
1637 
1638     // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
1639     // putting the scaled register in the other operand of the icmp.
1640     if (Scale != 0 && Scale != -1)
1641       return false;
1642 
1643     // If we have low-level target information, ask the target if it can fold an
1644     // integer immediate on an icmp.
1645     if (BaseOffset != 0) {
1646       // We have one of:
1647       // ICmpZero     BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset
1648       // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset
1649       // Offs is the ICmp immediate.
1650       if (Scale == 0)
1651         // The cast does the right thing with
1652         // std::numeric_limits<int64_t>::min().
1653         BaseOffset = -(uint64_t)BaseOffset;
1654       return TTI.isLegalICmpImmediate(BaseOffset);
1655     }
1656 
1657     // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg
1658     return true;
1659 
1660   case LSRUse::Basic:
1661     // Only handle single-register values.
1662     return !BaseGV && Scale == 0 && BaseOffset == 0;
1663 
1664   case LSRUse::Special:
1665     // Special case Basic to handle -1 scales.
1666     return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0;
1667   }
1668 
1669   llvm_unreachable("Invalid LSRUse Kind!");
1670 }
1671 
1672 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1673                                  int64_t MinOffset, int64_t MaxOffset,
1674                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1675                                  GlobalValue *BaseGV, int64_t BaseOffset,
1676                                  bool HasBaseReg, int64_t Scale) {
1677   // Check for overflow.
1678   if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) !=
1679       (MinOffset > 0))
1680     return false;
1681   MinOffset = (uint64_t)BaseOffset + MinOffset;
1682   if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) !=
1683       (MaxOffset > 0))
1684     return false;
1685   MaxOffset = (uint64_t)BaseOffset + MaxOffset;
1686 
1687   return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset,
1688                               HasBaseReg, Scale) &&
1689          isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset,
1690                               HasBaseReg, Scale);
1691 }
1692 
1693 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1694                                  int64_t MinOffset, int64_t MaxOffset,
1695                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1696                                  const Formula &F, const Loop &L) {
1697   // For the purpose of isAMCompletelyFolded either having a canonical formula
1698   // or a scale not equal to zero is correct.
1699   // Problems may arise from non canonical formulae having a scale == 0.
1700   // Strictly speaking it would best to just rely on canonical formulae.
1701   // However, when we generate the scaled formulae, we first check that the
1702   // scaling factor is profitable before computing the actual ScaledReg for
1703   // compile time sake.
1704   assert((F.isCanonical(L) || F.Scale != 0));
1705   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1706                               F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale);
1707 }
1708 
1709 /// Test whether we know how to expand the current formula.
1710 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1711                        int64_t MaxOffset, LSRUse::KindType Kind,
1712                        MemAccessTy AccessTy, GlobalValue *BaseGV,
1713                        int64_t BaseOffset, bool HasBaseReg, int64_t Scale) {
1714   // We know how to expand completely foldable formulae.
1715   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1716                               BaseOffset, HasBaseReg, Scale) ||
1717          // Or formulae that use a base register produced by a sum of base
1718          // registers.
1719          (Scale == 1 &&
1720           isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1721                                BaseGV, BaseOffset, true, 0));
1722 }
1723 
1724 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1725                        int64_t MaxOffset, LSRUse::KindType Kind,
1726                        MemAccessTy AccessTy, const Formula &F) {
1727   return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV,
1728                     F.BaseOffset, F.HasBaseReg, F.Scale);
1729 }
1730 
1731 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1732                                  const LSRUse &LU, const Formula &F) {
1733   // Target may want to look at the user instructions.
1734   if (LU.Kind == LSRUse::Address && TTI.LSRWithInstrQueries()) {
1735     for (const LSRFixup &Fixup : LU.Fixups)
1736       if (!isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV,
1737                                 (F.BaseOffset + Fixup.Offset), F.HasBaseReg,
1738                                 F.Scale, Fixup.UserInst))
1739         return false;
1740     return true;
1741   }
1742 
1743   return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1744                               LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg,
1745                               F.Scale);
1746 }
1747 
1748 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
1749                                      const LSRUse &LU, const Formula &F,
1750                                      const Loop &L) {
1751   if (!F.Scale)
1752     return 0;
1753 
1754   // If the use is not completely folded in that instruction, we will have to
1755   // pay an extra cost only for scale != 1.
1756   if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1757                             LU.AccessTy, F, L))
1758     return F.Scale != 1;
1759 
1760   switch (LU.Kind) {
1761   case LSRUse::Address: {
1762     // Check the scaling factor cost with both the min and max offsets.
1763     int ScaleCostMinOffset = TTI.getScalingFactorCost(
1764         LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg,
1765         F.Scale, LU.AccessTy.AddrSpace);
1766     int ScaleCostMaxOffset = TTI.getScalingFactorCost(
1767         LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg,
1768         F.Scale, LU.AccessTy.AddrSpace);
1769 
1770     assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 &&
1771            "Legal addressing mode has an illegal cost!");
1772     return std::max(ScaleCostMinOffset, ScaleCostMaxOffset);
1773   }
1774   case LSRUse::ICmpZero:
1775   case LSRUse::Basic:
1776   case LSRUse::Special:
1777     // The use is completely folded, i.e., everything is folded into the
1778     // instruction.
1779     return 0;
1780   }
1781 
1782   llvm_unreachable("Invalid LSRUse Kind!");
1783 }
1784 
1785 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1786                              LSRUse::KindType Kind, MemAccessTy AccessTy,
1787                              GlobalValue *BaseGV, int64_t BaseOffset,
1788                              bool HasBaseReg) {
1789   // Fast-path: zero is always foldable.
1790   if (BaseOffset == 0 && !BaseGV) return true;
1791 
1792   // Conservatively, create an address with an immediate and a
1793   // base and a scale.
1794   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1795 
1796   // Canonicalize a scale of 1 to a base register if the formula doesn't
1797   // already have a base register.
1798   if (!HasBaseReg && Scale == 1) {
1799     Scale = 0;
1800     HasBaseReg = true;
1801   }
1802 
1803   return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset,
1804                               HasBaseReg, Scale);
1805 }
1806 
1807 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1808                              ScalarEvolution &SE, int64_t MinOffset,
1809                              int64_t MaxOffset, LSRUse::KindType Kind,
1810                              MemAccessTy AccessTy, const SCEV *S,
1811                              bool HasBaseReg) {
1812   // Fast-path: zero is always foldable.
1813   if (S->isZero()) return true;
1814 
1815   // Conservatively, create an address with an immediate and a
1816   // base and a scale.
1817   int64_t BaseOffset = ExtractImmediate(S, SE);
1818   GlobalValue *BaseGV = ExtractSymbol(S, SE);
1819 
1820   // If there's anything else involved, it's not foldable.
1821   if (!S->isZero()) return false;
1822 
1823   // Fast-path: zero is always foldable.
1824   if (BaseOffset == 0 && !BaseGV) return true;
1825 
1826   // Conservatively, create an address with an immediate and a
1827   // base and a scale.
1828   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1829 
1830   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1831                               BaseOffset, HasBaseReg, Scale);
1832 }
1833 
1834 namespace {
1835 
1836 /// An individual increment in a Chain of IV increments.  Relate an IV user to
1837 /// an expression that computes the IV it uses from the IV used by the previous
1838 /// link in the Chain.
1839 ///
1840 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the
1841 /// original IVOperand. The head of the chain's IVOperand is only valid during
1842 /// chain collection, before LSR replaces IV users. During chain generation,
1843 /// IncExpr can be used to find the new IVOperand that computes the same
1844 /// expression.
1845 struct IVInc {
1846   Instruction *UserInst;
1847   Value* IVOperand;
1848   const SCEV *IncExpr;
1849 
1850   IVInc(Instruction *U, Value *O, const SCEV *E)
1851       : UserInst(U), IVOperand(O), IncExpr(E) {}
1852 };
1853 
1854 // The list of IV increments in program order.  We typically add the head of a
1855 // chain without finding subsequent links.
1856 struct IVChain {
1857   SmallVector<IVInc, 1> Incs;
1858   const SCEV *ExprBase = nullptr;
1859 
1860   IVChain() = default;
1861   IVChain(const IVInc &Head, const SCEV *Base)
1862       : Incs(1, Head), ExprBase(Base) {}
1863 
1864   using const_iterator = SmallVectorImpl<IVInc>::const_iterator;
1865 
1866   // Return the first increment in the chain.
1867   const_iterator begin() const {
1868     assert(!Incs.empty());
1869     return std::next(Incs.begin());
1870   }
1871   const_iterator end() const {
1872     return Incs.end();
1873   }
1874 
1875   // Returns true if this chain contains any increments.
1876   bool hasIncs() const { return Incs.size() >= 2; }
1877 
1878   // Add an IVInc to the end of this chain.
1879   void add(const IVInc &X) { Incs.push_back(X); }
1880 
1881   // Returns the last UserInst in the chain.
1882   Instruction *tailUserInst() const { return Incs.back().UserInst; }
1883 
1884   // Returns true if IncExpr can be profitably added to this chain.
1885   bool isProfitableIncrement(const SCEV *OperExpr,
1886                              const SCEV *IncExpr,
1887                              ScalarEvolution&);
1888 };
1889 
1890 /// Helper for CollectChains to track multiple IV increment uses.  Distinguish
1891 /// between FarUsers that definitely cross IV increments and NearUsers that may
1892 /// be used between IV increments.
1893 struct ChainUsers {
1894   SmallPtrSet<Instruction*, 4> FarUsers;
1895   SmallPtrSet<Instruction*, 4> NearUsers;
1896 };
1897 
1898 /// This class holds state for the main loop strength reduction logic.
1899 class LSRInstance {
1900   IVUsers &IU;
1901   ScalarEvolution &SE;
1902   DominatorTree &DT;
1903   LoopInfo &LI;
1904   AssumptionCache &AC;
1905   TargetLibraryInfo &TLI;
1906   const TargetTransformInfo &TTI;
1907   Loop *const L;
1908   MemorySSAUpdater *MSSAU;
1909   bool FavorBackedgeIndex = false;
1910   bool Changed = false;
1911 
1912   /// This is the insert position that the current loop's induction variable
1913   /// increment should be placed. In simple loops, this is the latch block's
1914   /// terminator. But in more complicated cases, this is a position which will
1915   /// dominate all the in-loop post-increment users.
1916   Instruction *IVIncInsertPos = nullptr;
1917 
1918   /// Interesting factors between use strides.
1919   ///
1920   /// We explicitly use a SetVector which contains a SmallSet, instead of the
1921   /// default, a SmallDenseSet, because we need to use the full range of
1922   /// int64_ts, and there's currently no good way of doing that with
1923   /// SmallDenseSet.
1924   SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors;
1925 
1926   /// Interesting use types, to facilitate truncation reuse.
1927   SmallSetVector<Type *, 4> Types;
1928 
1929   /// The list of interesting uses.
1930   mutable SmallVector<LSRUse, 16> Uses;
1931 
1932   /// Track which uses use which register candidates.
1933   RegUseTracker RegUses;
1934 
1935   // Limit the number of chains to avoid quadratic behavior. We don't expect to
1936   // have more than a few IV increment chains in a loop. Missing a Chain falls
1937   // back to normal LSR behavior for those uses.
1938   static const unsigned MaxChains = 8;
1939 
1940   /// IV users can form a chain of IV increments.
1941   SmallVector<IVChain, MaxChains> IVChainVec;
1942 
1943   /// IV users that belong to profitable IVChains.
1944   SmallPtrSet<Use*, MaxChains> IVIncSet;
1945 
1946   void OptimizeShadowIV();
1947   bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
1948   ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
1949   void OptimizeLoopTermCond();
1950 
1951   void ChainInstruction(Instruction *UserInst, Instruction *IVOper,
1952                         SmallVectorImpl<ChainUsers> &ChainUsersVec);
1953   void FinalizeChain(IVChain &Chain);
1954   void CollectChains();
1955   void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
1956                        SmallVectorImpl<WeakTrackingVH> &DeadInsts);
1957 
1958   void CollectInterestingTypesAndFactors();
1959   void CollectFixupsAndInitialFormulae();
1960 
1961   // Support for sharing of LSRUses between LSRFixups.
1962   using UseMapTy = DenseMap<LSRUse::SCEVUseKindPair, size_t>;
1963   UseMapTy UseMap;
1964 
1965   bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
1966                           LSRUse::KindType Kind, MemAccessTy AccessTy);
1967 
1968   std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind,
1969                                     MemAccessTy AccessTy);
1970 
1971   void DeleteUse(LSRUse &LU, size_t LUIdx);
1972 
1973   LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
1974 
1975   void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1976   void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1977   void CountRegisters(const Formula &F, size_t LUIdx);
1978   bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
1979 
1980   void CollectLoopInvariantFixupsAndFormulae();
1981 
1982   void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
1983                               unsigned Depth = 0);
1984 
1985   void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
1986                                   const Formula &Base, unsigned Depth,
1987                                   size_t Idx, bool IsScaledReg = false);
1988   void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
1989   void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
1990                                    const Formula &Base, size_t Idx,
1991                                    bool IsScaledReg = false);
1992   void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1993   void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx,
1994                                    const Formula &Base,
1995                                    const SmallVectorImpl<int64_t> &Worklist,
1996                                    size_t Idx, bool IsScaledReg = false);
1997   void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1998   void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1999   void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
2000   void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
2001   void GenerateCrossUseConstantOffsets();
2002   void GenerateAllReuseFormulae();
2003 
2004   void FilterOutUndesirableDedicatedRegisters();
2005 
2006   size_t EstimateSearchSpaceComplexity() const;
2007   void NarrowSearchSpaceByDetectingSupersets();
2008   void NarrowSearchSpaceByCollapsingUnrolledCode();
2009   void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
2010   void NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
2011   void NarrowSearchSpaceByDeletingCostlyFormulas();
2012   void NarrowSearchSpaceByPickingWinnerRegs();
2013   void NarrowSearchSpaceUsingHeuristics();
2014 
2015   void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
2016                     Cost &SolutionCost,
2017                     SmallVectorImpl<const Formula *> &Workspace,
2018                     const Cost &CurCost,
2019                     const SmallPtrSet<const SCEV *, 16> &CurRegs,
2020                     DenseSet<const SCEV *> &VisitedRegs) const;
2021   void Solve(SmallVectorImpl<const Formula *> &Solution) const;
2022 
2023   BasicBlock::iterator
2024     HoistInsertPosition(BasicBlock::iterator IP,
2025                         const SmallVectorImpl<Instruction *> &Inputs) const;
2026   BasicBlock::iterator
2027     AdjustInsertPositionForExpand(BasicBlock::iterator IP,
2028                                   const LSRFixup &LF,
2029                                   const LSRUse &LU,
2030                                   SCEVExpander &Rewriter) const;
2031 
2032   Value *Expand(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
2033                 BasicBlock::iterator IP, SCEVExpander &Rewriter,
2034                 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2035   void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF,
2036                      const Formula &F, SCEVExpander &Rewriter,
2037                      SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2038   void Rewrite(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
2039                SCEVExpander &Rewriter,
2040                SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2041   void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution);
2042 
2043 public:
2044   LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT,
2045               LoopInfo &LI, const TargetTransformInfo &TTI, AssumptionCache &AC,
2046               TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU);
2047 
2048   bool getChanged() const { return Changed; }
2049 
2050   void print_factors_and_types(raw_ostream &OS) const;
2051   void print_fixups(raw_ostream &OS) const;
2052   void print_uses(raw_ostream &OS) const;
2053   void print(raw_ostream &OS) const;
2054   void dump() const;
2055 };
2056 
2057 } // end anonymous namespace
2058 
2059 /// If IV is used in a int-to-float cast inside the loop then try to eliminate
2060 /// the cast operation.
2061 void LSRInstance::OptimizeShadowIV() {
2062   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
2063   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2064     return;
2065 
2066   for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
2067        UI != E; /* empty */) {
2068     IVUsers::const_iterator CandidateUI = UI;
2069     ++UI;
2070     Instruction *ShadowUse = CandidateUI->getUser();
2071     Type *DestTy = nullptr;
2072     bool IsSigned = false;
2073 
2074     /* If shadow use is a int->float cast then insert a second IV
2075        to eliminate this cast.
2076 
2077          for (unsigned i = 0; i < n; ++i)
2078            foo((double)i);
2079 
2080        is transformed into
2081 
2082          double d = 0.0;
2083          for (unsigned i = 0; i < n; ++i, ++d)
2084            foo(d);
2085     */
2086     if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) {
2087       IsSigned = false;
2088       DestTy = UCast->getDestTy();
2089     }
2090     else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) {
2091       IsSigned = true;
2092       DestTy = SCast->getDestTy();
2093     }
2094     if (!DestTy) continue;
2095 
2096     // If target does not support DestTy natively then do not apply
2097     // this transformation.
2098     if (!TTI.isTypeLegal(DestTy)) continue;
2099 
2100     PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
2101     if (!PH) continue;
2102     if (PH->getNumIncomingValues() != 2) continue;
2103 
2104     // If the calculation in integers overflows, the result in FP type will
2105     // differ. So we only can do this transformation if we are guaranteed to not
2106     // deal with overflowing values
2107     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PH));
2108     if (!AR) continue;
2109     if (IsSigned && !AR->hasNoSignedWrap()) continue;
2110     if (!IsSigned && !AR->hasNoUnsignedWrap()) continue;
2111 
2112     Type *SrcTy = PH->getType();
2113     int Mantissa = DestTy->getFPMantissaWidth();
2114     if (Mantissa == -1) continue;
2115     if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
2116       continue;
2117 
2118     unsigned Entry, Latch;
2119     if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
2120       Entry = 0;
2121       Latch = 1;
2122     } else {
2123       Entry = 1;
2124       Latch = 0;
2125     }
2126 
2127     ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
2128     if (!Init) continue;
2129     Constant *NewInit = ConstantFP::get(DestTy, IsSigned ?
2130                                         (double)Init->getSExtValue() :
2131                                         (double)Init->getZExtValue());
2132 
2133     BinaryOperator *Incr =
2134       dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
2135     if (!Incr) continue;
2136     if (Incr->getOpcode() != Instruction::Add
2137         && Incr->getOpcode() != Instruction::Sub)
2138       continue;
2139 
2140     /* Initialize new IV, double d = 0.0 in above example. */
2141     ConstantInt *C = nullptr;
2142     if (Incr->getOperand(0) == PH)
2143       C = dyn_cast<ConstantInt>(Incr->getOperand(1));
2144     else if (Incr->getOperand(1) == PH)
2145       C = dyn_cast<ConstantInt>(Incr->getOperand(0));
2146     else
2147       continue;
2148 
2149     if (!C) continue;
2150 
2151     // Ignore negative constants, as the code below doesn't handle them
2152     // correctly. TODO: Remove this restriction.
2153     if (!C->getValue().isStrictlyPositive()) continue;
2154 
2155     /* Add new PHINode. */
2156     PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH);
2157 
2158     /* create new increment. '++d' in above example. */
2159     Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
2160     BinaryOperator *NewIncr =
2161       BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
2162                                Instruction::FAdd : Instruction::FSub,
2163                              NewPH, CFP, "IV.S.next.", Incr);
2164 
2165     NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
2166     NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
2167 
2168     /* Remove cast operation */
2169     ShadowUse->replaceAllUsesWith(NewPH);
2170     ShadowUse->eraseFromParent();
2171     Changed = true;
2172     break;
2173   }
2174 }
2175 
2176 /// If Cond has an operand that is an expression of an IV, set the IV user and
2177 /// stride information and return true, otherwise return false.
2178 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
2179   for (IVStrideUse &U : IU)
2180     if (U.getUser() == Cond) {
2181       // NOTE: we could handle setcc instructions with multiple uses here, but
2182       // InstCombine does it as well for simple uses, it's not clear that it
2183       // occurs enough in real life to handle.
2184       CondUse = &U;
2185       return true;
2186     }
2187   return false;
2188 }
2189 
2190 /// Rewrite the loop's terminating condition if it uses a max computation.
2191 ///
2192 /// This is a narrow solution to a specific, but acute, problem. For loops
2193 /// like this:
2194 ///
2195 ///   i = 0;
2196 ///   do {
2197 ///     p[i] = 0.0;
2198 ///   } while (++i < n);
2199 ///
2200 /// the trip count isn't just 'n', because 'n' might not be positive. And
2201 /// unfortunately this can come up even for loops where the user didn't use
2202 /// a C do-while loop. For example, seemingly well-behaved top-test loops
2203 /// will commonly be lowered like this:
2204 ///
2205 ///   if (n > 0) {
2206 ///     i = 0;
2207 ///     do {
2208 ///       p[i] = 0.0;
2209 ///     } while (++i < n);
2210 ///   }
2211 ///
2212 /// and then it's possible for subsequent optimization to obscure the if
2213 /// test in such a way that indvars can't find it.
2214 ///
2215 /// When indvars can't find the if test in loops like this, it creates a
2216 /// max expression, which allows it to give the loop a canonical
2217 /// induction variable:
2218 ///
2219 ///   i = 0;
2220 ///   max = n < 1 ? 1 : n;
2221 ///   do {
2222 ///     p[i] = 0.0;
2223 ///   } while (++i != max);
2224 ///
2225 /// Canonical induction variables are necessary because the loop passes
2226 /// are designed around them. The most obvious example of this is the
2227 /// LoopInfo analysis, which doesn't remember trip count values. It
2228 /// expects to be able to rediscover the trip count each time it is
2229 /// needed, and it does this using a simple analysis that only succeeds if
2230 /// the loop has a canonical induction variable.
2231 ///
2232 /// However, when it comes time to generate code, the maximum operation
2233 /// can be quite costly, especially if it's inside of an outer loop.
2234 ///
2235 /// This function solves this problem by detecting this type of loop and
2236 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
2237 /// the instructions for the maximum computation.
2238 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
2239   // Check that the loop matches the pattern we're looking for.
2240   if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
2241       Cond->getPredicate() != CmpInst::ICMP_NE)
2242     return Cond;
2243 
2244   SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
2245   if (!Sel || !Sel->hasOneUse()) return Cond;
2246 
2247   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
2248   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2249     return Cond;
2250   const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
2251 
2252   // Add one to the backedge-taken count to get the trip count.
2253   const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount);
2254   if (IterationCount != SE.getSCEV(Sel)) return Cond;
2255 
2256   // Check for a max calculation that matches the pattern. There's no check
2257   // for ICMP_ULE here because the comparison would be with zero, which
2258   // isn't interesting.
2259   CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
2260   const SCEVNAryExpr *Max = nullptr;
2261   if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
2262     Pred = ICmpInst::ICMP_SLE;
2263     Max = S;
2264   } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
2265     Pred = ICmpInst::ICMP_SLT;
2266     Max = S;
2267   } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
2268     Pred = ICmpInst::ICMP_ULT;
2269     Max = U;
2270   } else {
2271     // No match; bail.
2272     return Cond;
2273   }
2274 
2275   // To handle a max with more than two operands, this optimization would
2276   // require additional checking and setup.
2277   if (Max->getNumOperands() != 2)
2278     return Cond;
2279 
2280   const SCEV *MaxLHS = Max->getOperand(0);
2281   const SCEV *MaxRHS = Max->getOperand(1);
2282 
2283   // ScalarEvolution canonicalizes constants to the left. For < and >, look
2284   // for a comparison with 1. For <= and >=, a comparison with zero.
2285   if (!MaxLHS ||
2286       (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
2287     return Cond;
2288 
2289   // Check the relevant induction variable for conformance to
2290   // the pattern.
2291   const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
2292   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
2293   if (!AR || !AR->isAffine() ||
2294       AR->getStart() != One ||
2295       AR->getStepRecurrence(SE) != One)
2296     return Cond;
2297 
2298   assert(AR->getLoop() == L &&
2299          "Loop condition operand is an addrec in a different loop!");
2300 
2301   // Check the right operand of the select, and remember it, as it will
2302   // be used in the new comparison instruction.
2303   Value *NewRHS = nullptr;
2304   if (ICmpInst::isTrueWhenEqual(Pred)) {
2305     // Look for n+1, and grab n.
2306     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
2307       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2308          if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2309            NewRHS = BO->getOperand(0);
2310     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
2311       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2312         if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2313           NewRHS = BO->getOperand(0);
2314     if (!NewRHS)
2315       return Cond;
2316   } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
2317     NewRHS = Sel->getOperand(1);
2318   else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
2319     NewRHS = Sel->getOperand(2);
2320   else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS))
2321     NewRHS = SU->getValue();
2322   else
2323     // Max doesn't match expected pattern.
2324     return Cond;
2325 
2326   // Determine the new comparison opcode. It may be signed or unsigned,
2327   // and the original comparison may be either equality or inequality.
2328   if (Cond->getPredicate() == CmpInst::ICMP_EQ)
2329     Pred = CmpInst::getInversePredicate(Pred);
2330 
2331   // Ok, everything looks ok to change the condition into an SLT or SGE and
2332   // delete the max calculation.
2333   ICmpInst *NewCond =
2334     new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
2335 
2336   // Delete the max calculation instructions.
2337   Cond->replaceAllUsesWith(NewCond);
2338   CondUse->setUser(NewCond);
2339   Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
2340   Cond->eraseFromParent();
2341   Sel->eraseFromParent();
2342   if (Cmp->use_empty())
2343     Cmp->eraseFromParent();
2344   return NewCond;
2345 }
2346 
2347 /// Change loop terminating condition to use the postinc iv when possible.
2348 void
2349 LSRInstance::OptimizeLoopTermCond() {
2350   SmallPtrSet<Instruction *, 4> PostIncs;
2351 
2352   // We need a different set of heuristics for rotated and non-rotated loops.
2353   // If a loop is rotated then the latch is also the backedge, so inserting
2354   // post-inc expressions just before the latch is ideal. To reduce live ranges
2355   // it also makes sense to rewrite terminating conditions to use post-inc
2356   // expressions.
2357   //
2358   // If the loop is not rotated then the latch is not a backedge; the latch
2359   // check is done in the loop head. Adding post-inc expressions before the
2360   // latch will cause overlapping live-ranges of pre-inc and post-inc expressions
2361   // in the loop body. In this case we do *not* want to use post-inc expressions
2362   // in the latch check, and we want to insert post-inc expressions before
2363   // the backedge.
2364   BasicBlock *LatchBlock = L->getLoopLatch();
2365   SmallVector<BasicBlock*, 8> ExitingBlocks;
2366   L->getExitingBlocks(ExitingBlocks);
2367   if (llvm::all_of(ExitingBlocks, [&LatchBlock](const BasicBlock *BB) {
2368         return LatchBlock != BB;
2369       })) {
2370     // The backedge doesn't exit the loop; treat this as a head-tested loop.
2371     IVIncInsertPos = LatchBlock->getTerminator();
2372     return;
2373   }
2374 
2375   // Otherwise treat this as a rotated loop.
2376   for (BasicBlock *ExitingBlock : ExitingBlocks) {
2377     // Get the terminating condition for the loop if possible.  If we
2378     // can, we want to change it to use a post-incremented version of its
2379     // induction variable, to allow coalescing the live ranges for the IV into
2380     // one register value.
2381 
2382     BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
2383     if (!TermBr)
2384       continue;
2385     // FIXME: Overly conservative, termination condition could be an 'or' etc..
2386     if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
2387       continue;
2388 
2389     // Search IVUsesByStride to find Cond's IVUse if there is one.
2390     IVStrideUse *CondUse = nullptr;
2391     ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
2392     if (!FindIVUserForCond(Cond, CondUse))
2393       continue;
2394 
2395     // If the trip count is computed in terms of a max (due to ScalarEvolution
2396     // being unable to find a sufficient guard, for example), change the loop
2397     // comparison to use SLT or ULT instead of NE.
2398     // One consequence of doing this now is that it disrupts the count-down
2399     // optimization. That's not always a bad thing though, because in such
2400     // cases it may still be worthwhile to avoid a max.
2401     Cond = OptimizeMax(Cond, CondUse);
2402 
2403     // If this exiting block dominates the latch block, it may also use
2404     // the post-inc value if it won't be shared with other uses.
2405     // Check for dominance.
2406     if (!DT.dominates(ExitingBlock, LatchBlock))
2407       continue;
2408 
2409     // Conservatively avoid trying to use the post-inc value in non-latch
2410     // exits if there may be pre-inc users in intervening blocks.
2411     if (LatchBlock != ExitingBlock)
2412       for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
2413         // Test if the use is reachable from the exiting block. This dominator
2414         // query is a conservative approximation of reachability.
2415         if (&*UI != CondUse &&
2416             !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
2417           // Conservatively assume there may be reuse if the quotient of their
2418           // strides could be a legal scale.
2419           const SCEV *A = IU.getStride(*CondUse, L);
2420           const SCEV *B = IU.getStride(*UI, L);
2421           if (!A || !B) continue;
2422           if (SE.getTypeSizeInBits(A->getType()) !=
2423               SE.getTypeSizeInBits(B->getType())) {
2424             if (SE.getTypeSizeInBits(A->getType()) >
2425                 SE.getTypeSizeInBits(B->getType()))
2426               B = SE.getSignExtendExpr(B, A->getType());
2427             else
2428               A = SE.getSignExtendExpr(A, B->getType());
2429           }
2430           if (const SCEVConstant *D =
2431                 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
2432             const ConstantInt *C = D->getValue();
2433             // Stride of one or negative one can have reuse with non-addresses.
2434             if (C->isOne() || C->isMinusOne())
2435               goto decline_post_inc;
2436             // Avoid weird situations.
2437             if (C->getValue().getMinSignedBits() >= 64 ||
2438                 C->getValue().isMinSignedValue())
2439               goto decline_post_inc;
2440             // Check for possible scaled-address reuse.
2441             if (isAddressUse(TTI, UI->getUser(), UI->getOperandValToReplace())) {
2442               MemAccessTy AccessTy = getAccessType(
2443                   TTI, UI->getUser(), UI->getOperandValToReplace());
2444               int64_t Scale = C->getSExtValue();
2445               if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2446                                             /*BaseOffset=*/0,
2447                                             /*HasBaseReg=*/false, Scale,
2448                                             AccessTy.AddrSpace))
2449                 goto decline_post_inc;
2450               Scale = -Scale;
2451               if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2452                                             /*BaseOffset=*/0,
2453                                             /*HasBaseReg=*/false, Scale,
2454                                             AccessTy.AddrSpace))
2455                 goto decline_post_inc;
2456             }
2457           }
2458         }
2459 
2460     LLVM_DEBUG(dbgs() << "  Change loop exiting icmp to use postinc iv: "
2461                       << *Cond << '\n');
2462 
2463     // It's possible for the setcc instruction to be anywhere in the loop, and
2464     // possible for it to have multiple users.  If it is not immediately before
2465     // the exiting block branch, move it.
2466     if (&*++BasicBlock::iterator(Cond) != TermBr) {
2467       if (Cond->hasOneUse()) {
2468         Cond->moveBefore(TermBr);
2469       } else {
2470         // Clone the terminating condition and insert into the loopend.
2471         ICmpInst *OldCond = Cond;
2472         Cond = cast<ICmpInst>(Cond->clone());
2473         Cond->setName(L->getHeader()->getName() + ".termcond");
2474         ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond);
2475 
2476         // Clone the IVUse, as the old use still exists!
2477         CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
2478         TermBr->replaceUsesOfWith(OldCond, Cond);
2479       }
2480     }
2481 
2482     // If we get to here, we know that we can transform the setcc instruction to
2483     // use the post-incremented version of the IV, allowing us to coalesce the
2484     // live ranges for the IV correctly.
2485     CondUse->transformToPostInc(L);
2486     Changed = true;
2487 
2488     PostIncs.insert(Cond);
2489   decline_post_inc:;
2490   }
2491 
2492   // Determine an insertion point for the loop induction variable increment. It
2493   // must dominate all the post-inc comparisons we just set up, and it must
2494   // dominate the loop latch edge.
2495   IVIncInsertPos = L->getLoopLatch()->getTerminator();
2496   for (Instruction *Inst : PostIncs) {
2497     BasicBlock *BB =
2498       DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
2499                                     Inst->getParent());
2500     if (BB == Inst->getParent())
2501       IVIncInsertPos = Inst;
2502     else if (BB != IVIncInsertPos->getParent())
2503       IVIncInsertPos = BB->getTerminator();
2504   }
2505 }
2506 
2507 /// Determine if the given use can accommodate a fixup at the given offset and
2508 /// other details. If so, update the use and return true.
2509 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset,
2510                                      bool HasBaseReg, LSRUse::KindType Kind,
2511                                      MemAccessTy AccessTy) {
2512   int64_t NewMinOffset = LU.MinOffset;
2513   int64_t NewMaxOffset = LU.MaxOffset;
2514   MemAccessTy NewAccessTy = AccessTy;
2515 
2516   // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
2517   // something conservative, however this can pessimize in the case that one of
2518   // the uses will have all its uses outside the loop, for example.
2519   if (LU.Kind != Kind)
2520     return false;
2521 
2522   // Check for a mismatched access type, and fall back conservatively as needed.
2523   // TODO: Be less conservative when the type is similar and can use the same
2524   // addressing modes.
2525   if (Kind == LSRUse::Address) {
2526     if (AccessTy.MemTy != LU.AccessTy.MemTy) {
2527       NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(),
2528                                             AccessTy.AddrSpace);
2529     }
2530   }
2531 
2532   // Conservatively assume HasBaseReg is true for now.
2533   if (NewOffset < LU.MinOffset) {
2534     if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2535                           LU.MaxOffset - NewOffset, HasBaseReg))
2536       return false;
2537     NewMinOffset = NewOffset;
2538   } else if (NewOffset > LU.MaxOffset) {
2539     if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2540                           NewOffset - LU.MinOffset, HasBaseReg))
2541       return false;
2542     NewMaxOffset = NewOffset;
2543   }
2544 
2545   // Update the use.
2546   LU.MinOffset = NewMinOffset;
2547   LU.MaxOffset = NewMaxOffset;
2548   LU.AccessTy = NewAccessTy;
2549   return true;
2550 }
2551 
2552 /// Return an LSRUse index and an offset value for a fixup which needs the given
2553 /// expression, with the given kind and optional access type.  Either reuse an
2554 /// existing use or create a new one, as needed.
2555 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr,
2556                                                LSRUse::KindType Kind,
2557                                                MemAccessTy AccessTy) {
2558   const SCEV *Copy = Expr;
2559   int64_t Offset = ExtractImmediate(Expr, SE);
2560 
2561   // Basic uses can't accept any offset, for example.
2562   if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr,
2563                         Offset, /*HasBaseReg=*/ true)) {
2564     Expr = Copy;
2565     Offset = 0;
2566   }
2567 
2568   std::pair<UseMapTy::iterator, bool> P =
2569     UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0));
2570   if (!P.second) {
2571     // A use already existed with this base.
2572     size_t LUIdx = P.first->second;
2573     LSRUse &LU = Uses[LUIdx];
2574     if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
2575       // Reuse this use.
2576       return std::make_pair(LUIdx, Offset);
2577   }
2578 
2579   // Create a new use.
2580   size_t LUIdx = Uses.size();
2581   P.first->second = LUIdx;
2582   Uses.push_back(LSRUse(Kind, AccessTy));
2583   LSRUse &LU = Uses[LUIdx];
2584 
2585   LU.MinOffset = Offset;
2586   LU.MaxOffset = Offset;
2587   return std::make_pair(LUIdx, Offset);
2588 }
2589 
2590 /// Delete the given use from the Uses list.
2591 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) {
2592   if (&LU != &Uses.back())
2593     std::swap(LU, Uses.back());
2594   Uses.pop_back();
2595 
2596   // Update RegUses.
2597   RegUses.swapAndDropUse(LUIdx, Uses.size());
2598 }
2599 
2600 /// Look for a use distinct from OrigLU which is has a formula that has the same
2601 /// registers as the given formula.
2602 LSRUse *
2603 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
2604                                        const LSRUse &OrigLU) {
2605   // Search all uses for the formula. This could be more clever.
2606   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2607     LSRUse &LU = Uses[LUIdx];
2608     // Check whether this use is close enough to OrigLU, to see whether it's
2609     // worthwhile looking through its formulae.
2610     // Ignore ICmpZero uses because they may contain formulae generated by
2611     // GenerateICmpZeroScales, in which case adding fixup offsets may
2612     // be invalid.
2613     if (&LU != &OrigLU &&
2614         LU.Kind != LSRUse::ICmpZero &&
2615         LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
2616         LU.WidestFixupType == OrigLU.WidestFixupType &&
2617         LU.HasFormulaWithSameRegs(OrigF)) {
2618       // Scan through this use's formulae.
2619       for (const Formula &F : LU.Formulae) {
2620         // Check to see if this formula has the same registers and symbols
2621         // as OrigF.
2622         if (F.BaseRegs == OrigF.BaseRegs &&
2623             F.ScaledReg == OrigF.ScaledReg &&
2624             F.BaseGV == OrigF.BaseGV &&
2625             F.Scale == OrigF.Scale &&
2626             F.UnfoldedOffset == OrigF.UnfoldedOffset) {
2627           if (F.BaseOffset == 0)
2628             return &LU;
2629           // This is the formula where all the registers and symbols matched;
2630           // there aren't going to be any others. Since we declined it, we
2631           // can skip the rest of the formulae and proceed to the next LSRUse.
2632           break;
2633         }
2634       }
2635     }
2636   }
2637 
2638   // Nothing looked good.
2639   return nullptr;
2640 }
2641 
2642 void LSRInstance::CollectInterestingTypesAndFactors() {
2643   SmallSetVector<const SCEV *, 4> Strides;
2644 
2645   // Collect interesting types and strides.
2646   SmallVector<const SCEV *, 4> Worklist;
2647   for (const IVStrideUse &U : IU) {
2648     const SCEV *Expr = IU.getExpr(U);
2649 
2650     // Collect interesting types.
2651     Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
2652 
2653     // Add strides for mentioned loops.
2654     Worklist.push_back(Expr);
2655     do {
2656       const SCEV *S = Worklist.pop_back_val();
2657       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2658         if (AR->getLoop() == L)
2659           Strides.insert(AR->getStepRecurrence(SE));
2660         Worklist.push_back(AR->getStart());
2661       } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2662         Worklist.append(Add->op_begin(), Add->op_end());
2663       }
2664     } while (!Worklist.empty());
2665   }
2666 
2667   // Compute interesting factors from the set of interesting strides.
2668   for (SmallSetVector<const SCEV *, 4>::const_iterator
2669        I = Strides.begin(), E = Strides.end(); I != E; ++I)
2670     for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
2671          std::next(I); NewStrideIter != E; ++NewStrideIter) {
2672       const SCEV *OldStride = *I;
2673       const SCEV *NewStride = *NewStrideIter;
2674 
2675       if (SE.getTypeSizeInBits(OldStride->getType()) !=
2676           SE.getTypeSizeInBits(NewStride->getType())) {
2677         if (SE.getTypeSizeInBits(OldStride->getType()) >
2678             SE.getTypeSizeInBits(NewStride->getType()))
2679           NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
2680         else
2681           OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
2682       }
2683       if (const SCEVConstant *Factor =
2684             dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
2685                                                         SE, true))) {
2686         if (Factor->getAPInt().getMinSignedBits() <= 64)
2687           Factors.insert(Factor->getAPInt().getSExtValue());
2688       } else if (const SCEVConstant *Factor =
2689                    dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
2690                                                                NewStride,
2691                                                                SE, true))) {
2692         if (Factor->getAPInt().getMinSignedBits() <= 64)
2693           Factors.insert(Factor->getAPInt().getSExtValue());
2694       }
2695     }
2696 
2697   // If all uses use the same type, don't bother looking for truncation-based
2698   // reuse.
2699   if (Types.size() == 1)
2700     Types.clear();
2701 
2702   LLVM_DEBUG(print_factors_and_types(dbgs()));
2703 }
2704 
2705 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in
2706 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to
2707 /// IVStrideUses, we could partially skip this.
2708 static User::op_iterator
2709 findIVOperand(User::op_iterator OI, User::op_iterator OE,
2710               Loop *L, ScalarEvolution &SE) {
2711   for(; OI != OE; ++OI) {
2712     if (Instruction *Oper = dyn_cast<Instruction>(*OI)) {
2713       if (!SE.isSCEVable(Oper->getType()))
2714         continue;
2715 
2716       if (const SCEVAddRecExpr *AR =
2717           dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) {
2718         if (AR->getLoop() == L)
2719           break;
2720       }
2721     }
2722   }
2723   return OI;
2724 }
2725 
2726 /// IVChain logic must consistently peek base TruncInst operands, so wrap it in
2727 /// a convenient helper.
2728 static Value *getWideOperand(Value *Oper) {
2729   if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper))
2730     return Trunc->getOperand(0);
2731   return Oper;
2732 }
2733 
2734 /// Return true if we allow an IV chain to include both types.
2735 static bool isCompatibleIVType(Value *LVal, Value *RVal) {
2736   Type *LType = LVal->getType();
2737   Type *RType = RVal->getType();
2738   return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy() &&
2739                               // Different address spaces means (possibly)
2740                               // different types of the pointer implementation,
2741                               // e.g. i16 vs i32 so disallow that.
2742                               (LType->getPointerAddressSpace() ==
2743                                RType->getPointerAddressSpace()));
2744 }
2745 
2746 /// Return an approximation of this SCEV expression's "base", or NULL for any
2747 /// constant. Returning the expression itself is conservative. Returning a
2748 /// deeper subexpression is more precise and valid as long as it isn't less
2749 /// complex than another subexpression. For expressions involving multiple
2750 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids
2751 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i],
2752 /// IVInc==b-a.
2753 ///
2754 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost
2755 /// SCEVUnknown, we simply return the rightmost SCEV operand.
2756 static const SCEV *getExprBase(const SCEV *S) {
2757   switch (S->getSCEVType()) {
2758   default: // uncluding scUnknown.
2759     return S;
2760   case scConstant:
2761     return nullptr;
2762   case scTruncate:
2763     return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand());
2764   case scZeroExtend:
2765     return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand());
2766   case scSignExtend:
2767     return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand());
2768   case scAddExpr: {
2769     // Skip over scaled operands (scMulExpr) to follow add operands as long as
2770     // there's nothing more complex.
2771     // FIXME: not sure if we want to recognize negation.
2772     const SCEVAddExpr *Add = cast<SCEVAddExpr>(S);
2773     for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()),
2774            E(Add->op_begin()); I != E; ++I) {
2775       const SCEV *SubExpr = *I;
2776       if (SubExpr->getSCEVType() == scAddExpr)
2777         return getExprBase(SubExpr);
2778 
2779       if (SubExpr->getSCEVType() != scMulExpr)
2780         return SubExpr;
2781     }
2782     return S; // all operands are scaled, be conservative.
2783   }
2784   case scAddRecExpr:
2785     return getExprBase(cast<SCEVAddRecExpr>(S)->getStart());
2786   }
2787 }
2788 
2789 /// Return true if the chain increment is profitable to expand into a loop
2790 /// invariant value, which may require its own register. A profitable chain
2791 /// increment will be an offset relative to the same base. We allow such offsets
2792 /// to potentially be used as chain increment as long as it's not obviously
2793 /// expensive to expand using real instructions.
2794 bool IVChain::isProfitableIncrement(const SCEV *OperExpr,
2795                                     const SCEV *IncExpr,
2796                                     ScalarEvolution &SE) {
2797   // Aggressively form chains when -stress-ivchain.
2798   if (StressIVChain)
2799     return true;
2800 
2801   // Do not replace a constant offset from IV head with a nonconstant IV
2802   // increment.
2803   if (!isa<SCEVConstant>(IncExpr)) {
2804     const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand));
2805     if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr)))
2806       return false;
2807   }
2808 
2809   SmallPtrSet<const SCEV*, 8> Processed;
2810   return !isHighCostExpansion(IncExpr, Processed, SE);
2811 }
2812 
2813 /// Return true if the number of registers needed for the chain is estimated to
2814 /// be less than the number required for the individual IV users. First prohibit
2815 /// any IV users that keep the IV live across increments (the Users set should
2816 /// be empty). Next count the number and type of increments in the chain.
2817 ///
2818 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't
2819 /// effectively use postinc addressing modes. Only consider it profitable it the
2820 /// increments can be computed in fewer registers when chained.
2821 ///
2822 /// TODO: Consider IVInc free if it's already used in another chains.
2823 static bool
2824 isProfitableChain(IVChain &Chain, SmallPtrSetImpl<Instruction*> &Users,
2825                   ScalarEvolution &SE) {
2826   if (StressIVChain)
2827     return true;
2828 
2829   if (!Chain.hasIncs())
2830     return false;
2831 
2832   if (!Users.empty()) {
2833     LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n";
2834                for (Instruction *Inst
2835                     : Users) { dbgs() << "  " << *Inst << "\n"; });
2836     return false;
2837   }
2838   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
2839 
2840   // The chain itself may require a register, so intialize cost to 1.
2841   int cost = 1;
2842 
2843   // A complete chain likely eliminates the need for keeping the original IV in
2844   // a register. LSR does not currently know how to form a complete chain unless
2845   // the header phi already exists.
2846   if (isa<PHINode>(Chain.tailUserInst())
2847       && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) {
2848     --cost;
2849   }
2850   const SCEV *LastIncExpr = nullptr;
2851   unsigned NumConstIncrements = 0;
2852   unsigned NumVarIncrements = 0;
2853   unsigned NumReusedIncrements = 0;
2854   for (const IVInc &Inc : Chain) {
2855     if (Inc.IncExpr->isZero())
2856       continue;
2857 
2858     // Incrementing by zero or some constant is neutral. We assume constants can
2859     // be folded into an addressing mode or an add's immediate operand.
2860     if (isa<SCEVConstant>(Inc.IncExpr)) {
2861       ++NumConstIncrements;
2862       continue;
2863     }
2864 
2865     if (Inc.IncExpr == LastIncExpr)
2866       ++NumReusedIncrements;
2867     else
2868       ++NumVarIncrements;
2869 
2870     LastIncExpr = Inc.IncExpr;
2871   }
2872   // An IV chain with a single increment is handled by LSR's postinc
2873   // uses. However, a chain with multiple increments requires keeping the IV's
2874   // value live longer than it needs to be if chained.
2875   if (NumConstIncrements > 1)
2876     --cost;
2877 
2878   // Materializing increment expressions in the preheader that didn't exist in
2879   // the original code may cost a register. For example, sign-extended array
2880   // indices can produce ridiculous increments like this:
2881   // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64)))
2882   cost += NumVarIncrements;
2883 
2884   // Reusing variable increments likely saves a register to hold the multiple of
2885   // the stride.
2886   cost -= NumReusedIncrements;
2887 
2888   LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost
2889                     << "\n");
2890 
2891   return cost < 0;
2892 }
2893 
2894 /// Add this IV user to an existing chain or make it the head of a new chain.
2895 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper,
2896                                    SmallVectorImpl<ChainUsers> &ChainUsersVec) {
2897   // When IVs are used as types of varying widths, they are generally converted
2898   // to a wider type with some uses remaining narrow under a (free) trunc.
2899   Value *const NextIV = getWideOperand(IVOper);
2900   const SCEV *const OperExpr = SE.getSCEV(NextIV);
2901   const SCEV *const OperExprBase = getExprBase(OperExpr);
2902 
2903   // Visit all existing chains. Check if its IVOper can be computed as a
2904   // profitable loop invariant increment from the last link in the Chain.
2905   unsigned ChainIdx = 0, NChains = IVChainVec.size();
2906   const SCEV *LastIncExpr = nullptr;
2907   for (; ChainIdx < NChains; ++ChainIdx) {
2908     IVChain &Chain = IVChainVec[ChainIdx];
2909 
2910     // Prune the solution space aggressively by checking that both IV operands
2911     // are expressions that operate on the same unscaled SCEVUnknown. This
2912     // "base" will be canceled by the subsequent getMinusSCEV call. Checking
2913     // first avoids creating extra SCEV expressions.
2914     if (!StressIVChain && Chain.ExprBase != OperExprBase)
2915       continue;
2916 
2917     Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand);
2918     if (!isCompatibleIVType(PrevIV, NextIV))
2919       continue;
2920 
2921     // A phi node terminates a chain.
2922     if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst()))
2923       continue;
2924 
2925     // The increment must be loop-invariant so it can be kept in a register.
2926     const SCEV *PrevExpr = SE.getSCEV(PrevIV);
2927     const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr);
2928     if (!SE.isLoopInvariant(IncExpr, L))
2929       continue;
2930 
2931     if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) {
2932       LastIncExpr = IncExpr;
2933       break;
2934     }
2935   }
2936   // If we haven't found a chain, create a new one, unless we hit the max. Don't
2937   // bother for phi nodes, because they must be last in the chain.
2938   if (ChainIdx == NChains) {
2939     if (isa<PHINode>(UserInst))
2940       return;
2941     if (NChains >= MaxChains && !StressIVChain) {
2942       LLVM_DEBUG(dbgs() << "IV Chain Limit\n");
2943       return;
2944     }
2945     LastIncExpr = OperExpr;
2946     // IVUsers may have skipped over sign/zero extensions. We don't currently
2947     // attempt to form chains involving extensions unless they can be hoisted
2948     // into this loop's AddRec.
2949     if (!isa<SCEVAddRecExpr>(LastIncExpr))
2950       return;
2951     ++NChains;
2952     IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr),
2953                                  OperExprBase));
2954     ChainUsersVec.resize(NChains);
2955     LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst
2956                       << ") IV=" << *LastIncExpr << "\n");
2957   } else {
2958     LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << "  Inc: (" << *UserInst
2959                       << ") IV+" << *LastIncExpr << "\n");
2960     // Add this IV user to the end of the chain.
2961     IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr));
2962   }
2963   IVChain &Chain = IVChainVec[ChainIdx];
2964 
2965   SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers;
2966   // This chain's NearUsers become FarUsers.
2967   if (!LastIncExpr->isZero()) {
2968     ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(),
2969                                             NearUsers.end());
2970     NearUsers.clear();
2971   }
2972 
2973   // All other uses of IVOperand become near uses of the chain.
2974   // We currently ignore intermediate values within SCEV expressions, assuming
2975   // they will eventually be used be the current chain, or can be computed
2976   // from one of the chain increments. To be more precise we could
2977   // transitively follow its user and only add leaf IV users to the set.
2978   for (User *U : IVOper->users()) {
2979     Instruction *OtherUse = dyn_cast<Instruction>(U);
2980     if (!OtherUse)
2981       continue;
2982     // Uses in the chain will no longer be uses if the chain is formed.
2983     // Include the head of the chain in this iteration (not Chain.begin()).
2984     IVChain::const_iterator IncIter = Chain.Incs.begin();
2985     IVChain::const_iterator IncEnd = Chain.Incs.end();
2986     for( ; IncIter != IncEnd; ++IncIter) {
2987       if (IncIter->UserInst == OtherUse)
2988         break;
2989     }
2990     if (IncIter != IncEnd)
2991       continue;
2992 
2993     if (SE.isSCEVable(OtherUse->getType())
2994         && !isa<SCEVUnknown>(SE.getSCEV(OtherUse))
2995         && IU.isIVUserOrOperand(OtherUse)) {
2996       continue;
2997     }
2998     NearUsers.insert(OtherUse);
2999   }
3000 
3001   // Since this user is part of the chain, it's no longer considered a use
3002   // of the chain.
3003   ChainUsersVec[ChainIdx].FarUsers.erase(UserInst);
3004 }
3005 
3006 /// Populate the vector of Chains.
3007 ///
3008 /// This decreases ILP at the architecture level. Targets with ample registers,
3009 /// multiple memory ports, and no register renaming probably don't want
3010 /// this. However, such targets should probably disable LSR altogether.
3011 ///
3012 /// The job of LSR is to make a reasonable choice of induction variables across
3013 /// the loop. Subsequent passes can easily "unchain" computation exposing more
3014 /// ILP *within the loop* if the target wants it.
3015 ///
3016 /// Finding the best IV chain is potentially a scheduling problem. Since LSR
3017 /// will not reorder memory operations, it will recognize this as a chain, but
3018 /// will generate redundant IV increments. Ideally this would be corrected later
3019 /// by a smart scheduler:
3020 ///        = A[i]
3021 ///        = A[i+x]
3022 /// A[i]   =
3023 /// A[i+x] =
3024 ///
3025 /// TODO: Walk the entire domtree within this loop, not just the path to the
3026 /// loop latch. This will discover chains on side paths, but requires
3027 /// maintaining multiple copies of the Chains state.
3028 void LSRInstance::CollectChains() {
3029   LLVM_DEBUG(dbgs() << "Collecting IV Chains.\n");
3030   SmallVector<ChainUsers, 8> ChainUsersVec;
3031 
3032   SmallVector<BasicBlock *,8> LatchPath;
3033   BasicBlock *LoopHeader = L->getHeader();
3034   for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch());
3035        Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) {
3036     LatchPath.push_back(Rung->getBlock());
3037   }
3038   LatchPath.push_back(LoopHeader);
3039 
3040   // Walk the instruction stream from the loop header to the loop latch.
3041   for (BasicBlock *BB : reverse(LatchPath)) {
3042     for (Instruction &I : *BB) {
3043       // Skip instructions that weren't seen by IVUsers analysis.
3044       if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I))
3045         continue;
3046 
3047       // Ignore users that are part of a SCEV expression. This way we only
3048       // consider leaf IV Users. This effectively rediscovers a portion of
3049       // IVUsers analysis but in program order this time.
3050       if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I)))
3051           continue;
3052 
3053       // Remove this instruction from any NearUsers set it may be in.
3054       for (unsigned ChainIdx = 0, NChains = IVChainVec.size();
3055            ChainIdx < NChains; ++ChainIdx) {
3056         ChainUsersVec[ChainIdx].NearUsers.erase(&I);
3057       }
3058       // Search for operands that can be chained.
3059       SmallPtrSet<Instruction*, 4> UniqueOperands;
3060       User::op_iterator IVOpEnd = I.op_end();
3061       User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE);
3062       while (IVOpIter != IVOpEnd) {
3063         Instruction *IVOpInst = cast<Instruction>(*IVOpIter);
3064         if (UniqueOperands.insert(IVOpInst).second)
3065           ChainInstruction(&I, IVOpInst, ChainUsersVec);
3066         IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
3067       }
3068     } // Continue walking down the instructions.
3069   } // Continue walking down the domtree.
3070   // Visit phi backedges to determine if the chain can generate the IV postinc.
3071   for (PHINode &PN : L->getHeader()->phis()) {
3072     if (!SE.isSCEVable(PN.getType()))
3073       continue;
3074 
3075     Instruction *IncV =
3076         dyn_cast<Instruction>(PN.getIncomingValueForBlock(L->getLoopLatch()));
3077     if (IncV)
3078       ChainInstruction(&PN, IncV, ChainUsersVec);
3079   }
3080   // Remove any unprofitable chains.
3081   unsigned ChainIdx = 0;
3082   for (unsigned UsersIdx = 0, NChains = IVChainVec.size();
3083        UsersIdx < NChains; ++UsersIdx) {
3084     if (!isProfitableChain(IVChainVec[UsersIdx],
3085                            ChainUsersVec[UsersIdx].FarUsers, SE))
3086       continue;
3087     // Preserve the chain at UsesIdx.
3088     if (ChainIdx != UsersIdx)
3089       IVChainVec[ChainIdx] = IVChainVec[UsersIdx];
3090     FinalizeChain(IVChainVec[ChainIdx]);
3091     ++ChainIdx;
3092   }
3093   IVChainVec.resize(ChainIdx);
3094 }
3095 
3096 void LSRInstance::FinalizeChain(IVChain &Chain) {
3097   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
3098   LLVM_DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n");
3099 
3100   for (const IVInc &Inc : Chain) {
3101     LLVM_DEBUG(dbgs() << "        Inc: " << *Inc.UserInst << "\n");
3102     auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand);
3103     assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand");
3104     IVIncSet.insert(UseI);
3105   }
3106 }
3107 
3108 /// Return true if the IVInc can be folded into an addressing mode.
3109 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst,
3110                              Value *Operand, const TargetTransformInfo &TTI) {
3111   const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr);
3112   if (!IncConst || !isAddressUse(TTI, UserInst, Operand))
3113     return false;
3114 
3115   if (IncConst->getAPInt().getMinSignedBits() > 64)
3116     return false;
3117 
3118   MemAccessTy AccessTy = getAccessType(TTI, UserInst, Operand);
3119   int64_t IncOffset = IncConst->getValue()->getSExtValue();
3120   if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr,
3121                         IncOffset, /*HasBaseReg=*/false))
3122     return false;
3123 
3124   return true;
3125 }
3126 
3127 /// Generate an add or subtract for each IVInc in a chain to materialize the IV
3128 /// user's operand from the previous IV user's operand.
3129 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
3130                                   SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
3131   // Find the new IVOperand for the head of the chain. It may have been replaced
3132   // by LSR.
3133   const IVInc &Head = Chain.Incs[0];
3134   User::op_iterator IVOpEnd = Head.UserInst->op_end();
3135   // findIVOperand returns IVOpEnd if it can no longer find a valid IV user.
3136   User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(),
3137                                              IVOpEnd, L, SE);
3138   Value *IVSrc = nullptr;
3139   while (IVOpIter != IVOpEnd) {
3140     IVSrc = getWideOperand(*IVOpIter);
3141 
3142     // If this operand computes the expression that the chain needs, we may use
3143     // it. (Check this after setting IVSrc which is used below.)
3144     //
3145     // Note that if Head.IncExpr is wider than IVSrc, then this phi is too
3146     // narrow for the chain, so we can no longer use it. We do allow using a
3147     // wider phi, assuming the LSR checked for free truncation. In that case we
3148     // should already have a truncate on this operand such that
3149     // getSCEV(IVSrc) == IncExpr.
3150     if (SE.getSCEV(*IVOpIter) == Head.IncExpr
3151         || SE.getSCEV(IVSrc) == Head.IncExpr) {
3152       break;
3153     }
3154     IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
3155   }
3156   if (IVOpIter == IVOpEnd) {
3157     // Gracefully give up on this chain.
3158     LLVM_DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n");
3159     return;
3160   }
3161   assert(IVSrc && "Failed to find IV chain source");
3162 
3163   LLVM_DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n");
3164   Type *IVTy = IVSrc->getType();
3165   Type *IntTy = SE.getEffectiveSCEVType(IVTy);
3166   const SCEV *LeftOverExpr = nullptr;
3167   for (const IVInc &Inc : Chain) {
3168     Instruction *InsertPt = Inc.UserInst;
3169     if (isa<PHINode>(InsertPt))
3170       InsertPt = L->getLoopLatch()->getTerminator();
3171 
3172     // IVOper will replace the current IV User's operand. IVSrc is the IV
3173     // value currently held in a register.
3174     Value *IVOper = IVSrc;
3175     if (!Inc.IncExpr->isZero()) {
3176       // IncExpr was the result of subtraction of two narrow values, so must
3177       // be signed.
3178       const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy);
3179       LeftOverExpr = LeftOverExpr ?
3180         SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr;
3181     }
3182     if (LeftOverExpr && !LeftOverExpr->isZero()) {
3183       // Expand the IV increment.
3184       Rewriter.clearPostInc();
3185       Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt);
3186       const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc),
3187                                              SE.getUnknown(IncV));
3188       IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt);
3189 
3190       // If an IV increment can't be folded, use it as the next IV value.
3191       if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) {
3192         assert(IVTy == IVOper->getType() && "inconsistent IV increment type");
3193         IVSrc = IVOper;
3194         LeftOverExpr = nullptr;
3195       }
3196     }
3197     Type *OperTy = Inc.IVOperand->getType();
3198     if (IVTy != OperTy) {
3199       assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) &&
3200              "cannot extend a chained IV");
3201       IRBuilder<> Builder(InsertPt);
3202       IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain");
3203     }
3204     Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper);
3205     if (auto *OperandIsInstr = dyn_cast<Instruction>(Inc.IVOperand))
3206       DeadInsts.emplace_back(OperandIsInstr);
3207   }
3208   // If LSR created a new, wider phi, we may also replace its postinc. We only
3209   // do this if we also found a wide value for the head of the chain.
3210   if (isa<PHINode>(Chain.tailUserInst())) {
3211     for (PHINode &Phi : L->getHeader()->phis()) {
3212       if (!isCompatibleIVType(&Phi, IVSrc))
3213         continue;
3214       Instruction *PostIncV = dyn_cast<Instruction>(
3215           Phi.getIncomingValueForBlock(L->getLoopLatch()));
3216       if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc)))
3217         continue;
3218       Value *IVOper = IVSrc;
3219       Type *PostIncTy = PostIncV->getType();
3220       if (IVTy != PostIncTy) {
3221         assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types");
3222         IRBuilder<> Builder(L->getLoopLatch()->getTerminator());
3223         Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc());
3224         IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain");
3225       }
3226       Phi.replaceUsesOfWith(PostIncV, IVOper);
3227       DeadInsts.emplace_back(PostIncV);
3228     }
3229   }
3230 }
3231 
3232 void LSRInstance::CollectFixupsAndInitialFormulae() {
3233   BranchInst *ExitBranch = nullptr;
3234   bool SaveCmp = TTI.canSaveCmp(L, &ExitBranch, &SE, &LI, &DT, &AC, &TLI);
3235 
3236   for (const IVStrideUse &U : IU) {
3237     Instruction *UserInst = U.getUser();
3238     // Skip IV users that are part of profitable IV Chains.
3239     User::op_iterator UseI =
3240         find(UserInst->operands(), U.getOperandValToReplace());
3241     assert(UseI != UserInst->op_end() && "cannot find IV operand");
3242     if (IVIncSet.count(UseI)) {
3243       LLVM_DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n');
3244       continue;
3245     }
3246 
3247     LSRUse::KindType Kind = LSRUse::Basic;
3248     MemAccessTy AccessTy;
3249     if (isAddressUse(TTI, UserInst, U.getOperandValToReplace())) {
3250       Kind = LSRUse::Address;
3251       AccessTy = getAccessType(TTI, UserInst, U.getOperandValToReplace());
3252     }
3253 
3254     const SCEV *S = IU.getExpr(U);
3255     PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops();
3256 
3257     // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
3258     // (N - i == 0), and this allows (N - i) to be the expression that we work
3259     // with rather than just N or i, so we can consider the register
3260     // requirements for both N and i at the same time. Limiting this code to
3261     // equality icmps is not a problem because all interesting loops use
3262     // equality icmps, thanks to IndVarSimplify.
3263     if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst)) {
3264       // If CI can be saved in some target, like replaced inside hardware loop
3265       // in PowerPC, no need to generate initial formulae for it.
3266       if (SaveCmp && CI == dyn_cast<ICmpInst>(ExitBranch->getCondition()))
3267         continue;
3268       if (CI->isEquality()) {
3269         // Swap the operands if needed to put the OperandValToReplace on the
3270         // left, for consistency.
3271         Value *NV = CI->getOperand(1);
3272         if (NV == U.getOperandValToReplace()) {
3273           CI->setOperand(1, CI->getOperand(0));
3274           CI->setOperand(0, NV);
3275           NV = CI->getOperand(1);
3276           Changed = true;
3277         }
3278 
3279         // x == y  -->  x - y == 0
3280         const SCEV *N = SE.getSCEV(NV);
3281         if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) {
3282           // S is normalized, so normalize N before folding it into S
3283           // to keep the result normalized.
3284           N = normalizeForPostIncUse(N, TmpPostIncLoops, SE);
3285           Kind = LSRUse::ICmpZero;
3286           S = SE.getMinusSCEV(N, S);
3287         }
3288 
3289         // -1 and the negations of all interesting strides (except the negation
3290         // of -1) are now also interesting.
3291         for (size_t i = 0, e = Factors.size(); i != e; ++i)
3292           if (Factors[i] != -1)
3293             Factors.insert(-(uint64_t)Factors[i]);
3294         Factors.insert(-1);
3295       }
3296     }
3297 
3298     // Get or create an LSRUse.
3299     std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
3300     size_t LUIdx = P.first;
3301     int64_t Offset = P.second;
3302     LSRUse &LU = Uses[LUIdx];
3303 
3304     // Record the fixup.
3305     LSRFixup &LF = LU.getNewFixup();
3306     LF.UserInst = UserInst;
3307     LF.OperandValToReplace = U.getOperandValToReplace();
3308     LF.PostIncLoops = TmpPostIncLoops;
3309     LF.Offset = Offset;
3310     LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3311 
3312     if (!LU.WidestFixupType ||
3313         SE.getTypeSizeInBits(LU.WidestFixupType) <
3314         SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3315       LU.WidestFixupType = LF.OperandValToReplace->getType();
3316 
3317     // If this is the first use of this LSRUse, give it a formula.
3318     if (LU.Formulae.empty()) {
3319       InsertInitialFormula(S, LU, LUIdx);
3320       CountRegisters(LU.Formulae.back(), LUIdx);
3321     }
3322   }
3323 
3324   LLVM_DEBUG(print_fixups(dbgs()));
3325 }
3326 
3327 /// Insert a formula for the given expression into the given use, separating out
3328 /// loop-variant portions from loop-invariant and loop-computable portions.
3329 void
3330 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
3331   // Mark uses whose expressions cannot be expanded.
3332   if (!isSafeToExpand(S, SE))
3333     LU.RigidFormula = true;
3334 
3335   Formula F;
3336   F.initialMatch(S, L, SE);
3337   bool Inserted = InsertFormula(LU, LUIdx, F);
3338   assert(Inserted && "Initial formula already exists!"); (void)Inserted;
3339 }
3340 
3341 /// Insert a simple single-register formula for the given expression into the
3342 /// given use.
3343 void
3344 LSRInstance::InsertSupplementalFormula(const SCEV *S,
3345                                        LSRUse &LU, size_t LUIdx) {
3346   Formula F;
3347   F.BaseRegs.push_back(S);
3348   F.HasBaseReg = true;
3349   bool Inserted = InsertFormula(LU, LUIdx, F);
3350   assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
3351 }
3352 
3353 /// Note which registers are used by the given formula, updating RegUses.
3354 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
3355   if (F.ScaledReg)
3356     RegUses.countRegister(F.ScaledReg, LUIdx);
3357   for (const SCEV *BaseReg : F.BaseRegs)
3358     RegUses.countRegister(BaseReg, LUIdx);
3359 }
3360 
3361 /// If the given formula has not yet been inserted, add it to the list, and
3362 /// return true. Return false otherwise.
3363 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
3364   // Do not insert formula that we will not be able to expand.
3365   assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) &&
3366          "Formula is illegal");
3367 
3368   if (!LU.InsertFormula(F, *L))
3369     return false;
3370 
3371   CountRegisters(F, LUIdx);
3372   return true;
3373 }
3374 
3375 /// Check for other uses of loop-invariant values which we're tracking. These
3376 /// other uses will pin these values in registers, making them less profitable
3377 /// for elimination.
3378 /// TODO: This currently misses non-constant addrec step registers.
3379 /// TODO: Should this give more weight to users inside the loop?
3380 void
3381 LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
3382   SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
3383   SmallPtrSet<const SCEV *, 32> Visited;
3384 
3385   while (!Worklist.empty()) {
3386     const SCEV *S = Worklist.pop_back_val();
3387 
3388     // Don't process the same SCEV twice
3389     if (!Visited.insert(S).second)
3390       continue;
3391 
3392     if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
3393       Worklist.append(N->op_begin(), N->op_end());
3394     else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
3395       Worklist.push_back(C->getOperand());
3396     else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
3397       Worklist.push_back(D->getLHS());
3398       Worklist.push_back(D->getRHS());
3399     } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) {
3400       const Value *V = US->getValue();
3401       if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
3402         // Look for instructions defined outside the loop.
3403         if (L->contains(Inst)) continue;
3404       } else if (isa<UndefValue>(V))
3405         // Undef doesn't have a live range, so it doesn't matter.
3406         continue;
3407       for (const Use &U : V->uses()) {
3408         const Instruction *UserInst = dyn_cast<Instruction>(U.getUser());
3409         // Ignore non-instructions.
3410         if (!UserInst)
3411           continue;
3412         // Ignore instructions in other functions (as can happen with
3413         // Constants).
3414         if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
3415           continue;
3416         // Ignore instructions not dominated by the loop.
3417         const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
3418           UserInst->getParent() :
3419           cast<PHINode>(UserInst)->getIncomingBlock(
3420             PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
3421         if (!DT.dominates(L->getHeader(), UseBB))
3422           continue;
3423         // Don't bother if the instruction is in a BB which ends in an EHPad.
3424         if (UseBB->getTerminator()->isEHPad())
3425           continue;
3426         // Don't bother rewriting PHIs in catchswitch blocks.
3427         if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator()))
3428           continue;
3429         // Ignore uses which are part of other SCEV expressions, to avoid
3430         // analyzing them multiple times.
3431         if (SE.isSCEVable(UserInst->getType())) {
3432           const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
3433           // If the user is a no-op, look through to its uses.
3434           if (!isa<SCEVUnknown>(UserS))
3435             continue;
3436           if (UserS == US) {
3437             Worklist.push_back(
3438               SE.getUnknown(const_cast<Instruction *>(UserInst)));
3439             continue;
3440           }
3441         }
3442         // Ignore icmp instructions which are already being analyzed.
3443         if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
3444           unsigned OtherIdx = !U.getOperandNo();
3445           Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
3446           if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L))
3447             continue;
3448         }
3449 
3450         std::pair<size_t, int64_t> P = getUse(
3451             S, LSRUse::Basic, MemAccessTy());
3452         size_t LUIdx = P.first;
3453         int64_t Offset = P.second;
3454         LSRUse &LU = Uses[LUIdx];
3455         LSRFixup &LF = LU.getNewFixup();
3456         LF.UserInst = const_cast<Instruction *>(UserInst);
3457         LF.OperandValToReplace = U;
3458         LF.Offset = Offset;
3459         LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3460         if (!LU.WidestFixupType ||
3461             SE.getTypeSizeInBits(LU.WidestFixupType) <
3462             SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3463           LU.WidestFixupType = LF.OperandValToReplace->getType();
3464         InsertSupplementalFormula(US, LU, LUIdx);
3465         CountRegisters(LU.Formulae.back(), Uses.size() - 1);
3466         break;
3467       }
3468     }
3469   }
3470 }
3471 
3472 /// Split S into subexpressions which can be pulled out into separate
3473 /// registers. If C is non-null, multiply each subexpression by C.
3474 ///
3475 /// Return remainder expression after factoring the subexpressions captured by
3476 /// Ops. If Ops is complete, return NULL.
3477 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C,
3478                                    SmallVectorImpl<const SCEV *> &Ops,
3479                                    const Loop *L,
3480                                    ScalarEvolution &SE,
3481                                    unsigned Depth = 0) {
3482   // Arbitrarily cap recursion to protect compile time.
3483   if (Depth >= 3)
3484     return S;
3485 
3486   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3487     // Break out add operands.
3488     for (const SCEV *S : Add->operands()) {
3489       const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1);
3490       if (Remainder)
3491         Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3492     }
3493     return nullptr;
3494   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
3495     // Split a non-zero base out of an addrec.
3496     if (AR->getStart()->isZero() || !AR->isAffine())
3497       return S;
3498 
3499     const SCEV *Remainder = CollectSubexprs(AR->getStart(),
3500                                             C, Ops, L, SE, Depth+1);
3501     // Split the non-zero AddRec unless it is part of a nested recurrence that
3502     // does not pertain to this loop.
3503     if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) {
3504       Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3505       Remainder = nullptr;
3506     }
3507     if (Remainder != AR->getStart()) {
3508       if (!Remainder)
3509         Remainder = SE.getConstant(AR->getType(), 0);
3510       return SE.getAddRecExpr(Remainder,
3511                               AR->getStepRecurrence(SE),
3512                               AR->getLoop(),
3513                               //FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
3514                               SCEV::FlagAnyWrap);
3515     }
3516   } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3517     // Break (C * (a + b + c)) into C*a + C*b + C*c.
3518     if (Mul->getNumOperands() != 2)
3519       return S;
3520     if (const SCEVConstant *Op0 =
3521         dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3522       C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0;
3523       const SCEV *Remainder =
3524         CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1);
3525       if (Remainder)
3526         Ops.push_back(SE.getMulExpr(C, Remainder));
3527       return nullptr;
3528     }
3529   }
3530   return S;
3531 }
3532 
3533 /// Return true if the SCEV represents a value that may end up as a
3534 /// post-increment operation.
3535 static bool mayUsePostIncMode(const TargetTransformInfo &TTI,
3536                               LSRUse &LU, const SCEV *S, const Loop *L,
3537                               ScalarEvolution &SE) {
3538   if (LU.Kind != LSRUse::Address ||
3539       !LU.AccessTy.getType()->isIntOrIntVectorTy())
3540     return false;
3541   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S);
3542   if (!AR)
3543     return false;
3544   const SCEV *LoopStep = AR->getStepRecurrence(SE);
3545   if (!isa<SCEVConstant>(LoopStep))
3546     return false;
3547   // Check if a post-indexed load/store can be used.
3548   if (TTI.isIndexedLoadLegal(TTI.MIM_PostInc, AR->getType()) ||
3549       TTI.isIndexedStoreLegal(TTI.MIM_PostInc, AR->getType())) {
3550     const SCEV *LoopStart = AR->getStart();
3551     if (!isa<SCEVConstant>(LoopStart) && SE.isLoopInvariant(LoopStart, L))
3552       return true;
3553   }
3554   return false;
3555 }
3556 
3557 /// Helper function for LSRInstance::GenerateReassociations.
3558 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
3559                                              const Formula &Base,
3560                                              unsigned Depth, size_t Idx,
3561                                              bool IsScaledReg) {
3562   const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3563   // Don't generate reassociations for the base register of a value that
3564   // may generate a post-increment operator. The reason is that the
3565   // reassociations cause extra base+register formula to be created,
3566   // and possibly chosen, but the post-increment is more efficient.
3567   if (TTI.shouldFavorPostInc() && mayUsePostIncMode(TTI, LU, BaseReg, L, SE))
3568     return;
3569   SmallVector<const SCEV *, 8> AddOps;
3570   const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE);
3571   if (Remainder)
3572     AddOps.push_back(Remainder);
3573 
3574   if (AddOps.size() == 1)
3575     return;
3576 
3577   for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
3578                                                      JE = AddOps.end();
3579        J != JE; ++J) {
3580     // Loop-variant "unknown" values are uninteresting; we won't be able to
3581     // do anything meaningful with them.
3582     if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L))
3583       continue;
3584 
3585     // Don't pull a constant into a register if the constant could be folded
3586     // into an immediate field.
3587     if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3588                          LU.AccessTy, *J, Base.getNumRegs() > 1))
3589       continue;
3590 
3591     // Collect all operands except *J.
3592     SmallVector<const SCEV *, 8> InnerAddOps(
3593         ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J);
3594     InnerAddOps.append(std::next(J),
3595                        ((const SmallVector<const SCEV *, 8> &)AddOps).end());
3596 
3597     // Don't leave just a constant behind in a register if the constant could
3598     // be folded into an immediate field.
3599     if (InnerAddOps.size() == 1 &&
3600         isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3601                          LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1))
3602       continue;
3603 
3604     const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
3605     if (InnerSum->isZero())
3606       continue;
3607     Formula F = Base;
3608 
3609     // Add the remaining pieces of the add back into the new formula.
3610     const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum);
3611     if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 &&
3612         TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3613                                 InnerSumSC->getValue()->getZExtValue())) {
3614       F.UnfoldedOffset =
3615           (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue();
3616       if (IsScaledReg)
3617         F.ScaledReg = nullptr;
3618       else
3619         F.BaseRegs.erase(F.BaseRegs.begin() + Idx);
3620     } else if (IsScaledReg)
3621       F.ScaledReg = InnerSum;
3622     else
3623       F.BaseRegs[Idx] = InnerSum;
3624 
3625     // Add J as its own register, or an unfolded immediate.
3626     const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J);
3627     if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 &&
3628         TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3629                                 SC->getValue()->getZExtValue()))
3630       F.UnfoldedOffset =
3631           (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue();
3632     else
3633       F.BaseRegs.push_back(*J);
3634     // We may have changed the number of register in base regs, adjust the
3635     // formula accordingly.
3636     F.canonicalize(*L);
3637 
3638     if (InsertFormula(LU, LUIdx, F))
3639       // If that formula hadn't been seen before, recurse to find more like
3640       // it.
3641       // Add check on Log16(AddOps.size()) - same as Log2_32(AddOps.size()) >> 2)
3642       // Because just Depth is not enough to bound compile time.
3643       // This means that every time AddOps.size() is greater 16^x we will add
3644       // x to Depth.
3645       GenerateReassociations(LU, LUIdx, LU.Formulae.back(),
3646                              Depth + 1 + (Log2_32(AddOps.size()) >> 2));
3647   }
3648 }
3649 
3650 /// Split out subexpressions from adds and the bases of addrecs.
3651 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
3652                                          Formula Base, unsigned Depth) {
3653   assert(Base.isCanonical(*L) && "Input must be in the canonical form");
3654   // Arbitrarily cap recursion to protect compile time.
3655   if (Depth >= 3)
3656     return;
3657 
3658   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3659     GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i);
3660 
3661   if (Base.Scale == 1)
3662     GenerateReassociationsImpl(LU, LUIdx, Base, Depth,
3663                                /* Idx */ -1, /* IsScaledReg */ true);
3664 }
3665 
3666 ///  Generate a formula consisting of all of the loop-dominating registers added
3667 /// into a single register.
3668 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
3669                                        Formula Base) {
3670   // This method is only interesting on a plurality of registers.
3671   if (Base.BaseRegs.size() + (Base.Scale == 1) +
3672       (Base.UnfoldedOffset != 0) <= 1)
3673     return;
3674 
3675   // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before
3676   // processing the formula.
3677   Base.unscale();
3678   SmallVector<const SCEV *, 4> Ops;
3679   Formula NewBase = Base;
3680   NewBase.BaseRegs.clear();
3681   Type *CombinedIntegerType = nullptr;
3682   for (const SCEV *BaseReg : Base.BaseRegs) {
3683     if (SE.properlyDominates(BaseReg, L->getHeader()) &&
3684         !SE.hasComputableLoopEvolution(BaseReg, L)) {
3685       if (!CombinedIntegerType)
3686         CombinedIntegerType = SE.getEffectiveSCEVType(BaseReg->getType());
3687       Ops.push_back(BaseReg);
3688     }
3689     else
3690       NewBase.BaseRegs.push_back(BaseReg);
3691   }
3692 
3693   // If no register is relevant, we're done.
3694   if (Ops.size() == 0)
3695     return;
3696 
3697   // Utility function for generating the required variants of the combined
3698   // registers.
3699   auto GenerateFormula = [&](const SCEV *Sum) {
3700     Formula F = NewBase;
3701 
3702     // TODO: If Sum is zero, it probably means ScalarEvolution missed an
3703     // opportunity to fold something. For now, just ignore such cases
3704     // rather than proceed with zero in a register.
3705     if (Sum->isZero())
3706       return;
3707 
3708     F.BaseRegs.push_back(Sum);
3709     F.canonicalize(*L);
3710     (void)InsertFormula(LU, LUIdx, F);
3711   };
3712 
3713   // If we collected at least two registers, generate a formula combining them.
3714   if (Ops.size() > 1) {
3715     SmallVector<const SCEV *, 4> OpsCopy(Ops); // Don't let SE modify Ops.
3716     GenerateFormula(SE.getAddExpr(OpsCopy));
3717   }
3718 
3719   // If we have an unfolded offset, generate a formula combining it with the
3720   // registers collected.
3721   if (NewBase.UnfoldedOffset) {
3722     assert(CombinedIntegerType && "Missing a type for the unfolded offset");
3723     Ops.push_back(SE.getConstant(CombinedIntegerType, NewBase.UnfoldedOffset,
3724                                  true));
3725     NewBase.UnfoldedOffset = 0;
3726     GenerateFormula(SE.getAddExpr(Ops));
3727   }
3728 }
3729 
3730 /// Helper function for LSRInstance::GenerateSymbolicOffsets.
3731 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
3732                                               const Formula &Base, size_t Idx,
3733                                               bool IsScaledReg) {
3734   const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3735   GlobalValue *GV = ExtractSymbol(G, SE);
3736   if (G->isZero() || !GV)
3737     return;
3738   Formula F = Base;
3739   F.BaseGV = GV;
3740   if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3741     return;
3742   if (IsScaledReg)
3743     F.ScaledReg = G;
3744   else
3745     F.BaseRegs[Idx] = G;
3746   (void)InsertFormula(LU, LUIdx, F);
3747 }
3748 
3749 /// Generate reuse formulae using symbolic offsets.
3750 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
3751                                           Formula Base) {
3752   // We can't add a symbolic offset if the address already contains one.
3753   if (Base.BaseGV) return;
3754 
3755   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3756     GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i);
3757   if (Base.Scale == 1)
3758     GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1,
3759                                 /* IsScaledReg */ true);
3760 }
3761 
3762 /// Helper function for LSRInstance::GenerateConstantOffsets.
3763 void LSRInstance::GenerateConstantOffsetsImpl(
3764     LSRUse &LU, unsigned LUIdx, const Formula &Base,
3765     const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) {
3766 
3767   auto GenerateOffset = [&](const SCEV *G, int64_t Offset) {
3768     Formula F = Base;
3769     F.BaseOffset = (uint64_t)Base.BaseOffset - Offset;
3770 
3771     if (isLegalUse(TTI, LU.MinOffset - Offset, LU.MaxOffset - Offset, LU.Kind,
3772                    LU.AccessTy, F)) {
3773       // Add the offset to the base register.
3774       const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G);
3775       // If it cancelled out, drop the base register, otherwise update it.
3776       if (NewG->isZero()) {
3777         if (IsScaledReg) {
3778           F.Scale = 0;
3779           F.ScaledReg = nullptr;
3780         } else
3781           F.deleteBaseReg(F.BaseRegs[Idx]);
3782         F.canonicalize(*L);
3783       } else if (IsScaledReg)
3784         F.ScaledReg = NewG;
3785       else
3786         F.BaseRegs[Idx] = NewG;
3787 
3788       (void)InsertFormula(LU, LUIdx, F);
3789     }
3790   };
3791 
3792   const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3793 
3794   // With constant offsets and constant steps, we can generate pre-inc
3795   // accesses by having the offset equal the step. So, for access #0 with a
3796   // step of 8, we generate a G - 8 base which would require the first access
3797   // to be ((G - 8) + 8),+,8. The pre-indexed access then updates the pointer
3798   // for itself and hopefully becomes the base for other accesses. This means
3799   // means that a single pre-indexed access can be generated to become the new
3800   // base pointer for each iteration of the loop, resulting in no extra add/sub
3801   // instructions for pointer updating.
3802   if (FavorBackedgeIndex && LU.Kind == LSRUse::Address) {
3803     if (auto *GAR = dyn_cast<SCEVAddRecExpr>(G)) {
3804       if (auto *StepRec =
3805           dyn_cast<SCEVConstant>(GAR->getStepRecurrence(SE))) {
3806         const APInt &StepInt = StepRec->getAPInt();
3807         int64_t Step = StepInt.isNegative() ?
3808           StepInt.getSExtValue() : StepInt.getZExtValue();
3809 
3810         for (int64_t Offset : Worklist) {
3811           Offset -= Step;
3812           GenerateOffset(G, Offset);
3813         }
3814       }
3815     }
3816   }
3817   for (int64_t Offset : Worklist)
3818     GenerateOffset(G, Offset);
3819 
3820   int64_t Imm = ExtractImmediate(G, SE);
3821   if (G->isZero() || Imm == 0)
3822     return;
3823   Formula F = Base;
3824   F.BaseOffset = (uint64_t)F.BaseOffset + Imm;
3825   if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3826     return;
3827   if (IsScaledReg)
3828     F.ScaledReg = G;
3829   else
3830     F.BaseRegs[Idx] = G;
3831   (void)InsertFormula(LU, LUIdx, F);
3832 }
3833 
3834 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
3835 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
3836                                           Formula Base) {
3837   // TODO: For now, just add the min and max offset, because it usually isn't
3838   // worthwhile looking at everything inbetween.
3839   SmallVector<int64_t, 2> Worklist;
3840   Worklist.push_back(LU.MinOffset);
3841   if (LU.MaxOffset != LU.MinOffset)
3842     Worklist.push_back(LU.MaxOffset);
3843 
3844   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3845     GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i);
3846   if (Base.Scale == 1)
3847     GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1,
3848                                 /* IsScaledReg */ true);
3849 }
3850 
3851 /// For ICmpZero, check to see if we can scale up the comparison. For example, x
3852 /// == y -> x*c == y*c.
3853 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
3854                                          Formula Base) {
3855   if (LU.Kind != LSRUse::ICmpZero) return;
3856 
3857   // Determine the integer type for the base formula.
3858   Type *IntTy = Base.getType();
3859   if (!IntTy) return;
3860   if (SE.getTypeSizeInBits(IntTy) > 64) return;
3861 
3862   // Don't do this if there is more than one offset.
3863   if (LU.MinOffset != LU.MaxOffset) return;
3864 
3865   // Check if transformation is valid. It is illegal to multiply pointer.
3866   if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy())
3867     return;
3868   for (const SCEV *BaseReg : Base.BaseRegs)
3869     if (BaseReg->getType()->isPointerTy())
3870       return;
3871   assert(!Base.BaseGV && "ICmpZero use is not legal!");
3872 
3873   // Check each interesting stride.
3874   for (int64_t Factor : Factors) {
3875     // Check that the multiplication doesn't overflow.
3876     if (Base.BaseOffset == std::numeric_limits<int64_t>::min() && Factor == -1)
3877       continue;
3878     int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor;
3879     if (NewBaseOffset / Factor != Base.BaseOffset)
3880       continue;
3881     // If the offset will be truncated at this use, check that it is in bounds.
3882     if (!IntTy->isPointerTy() &&
3883         !ConstantInt::isValueValidForType(IntTy, NewBaseOffset))
3884       continue;
3885 
3886     // Check that multiplying with the use offset doesn't overflow.
3887     int64_t Offset = LU.MinOffset;
3888     if (Offset == std::numeric_limits<int64_t>::min() && Factor == -1)
3889       continue;
3890     Offset = (uint64_t)Offset * Factor;
3891     if (Offset / Factor != LU.MinOffset)
3892       continue;
3893     // If the offset will be truncated at this use, check that it is in bounds.
3894     if (!IntTy->isPointerTy() &&
3895         !ConstantInt::isValueValidForType(IntTy, Offset))
3896       continue;
3897 
3898     Formula F = Base;
3899     F.BaseOffset = NewBaseOffset;
3900 
3901     // Check that this scale is legal.
3902     if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F))
3903       continue;
3904 
3905     // Compensate for the use having MinOffset built into it.
3906     F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset;
3907 
3908     const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3909 
3910     // Check that multiplying with each base register doesn't overflow.
3911     for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
3912       F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
3913       if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
3914         goto next;
3915     }
3916 
3917     // Check that multiplying with the scaled register doesn't overflow.
3918     if (F.ScaledReg) {
3919       F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
3920       if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
3921         continue;
3922     }
3923 
3924     // Check that multiplying with the unfolded offset doesn't overflow.
3925     if (F.UnfoldedOffset != 0) {
3926       if (F.UnfoldedOffset == std::numeric_limits<int64_t>::min() &&
3927           Factor == -1)
3928         continue;
3929       F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor;
3930       if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset)
3931         continue;
3932       // If the offset will be truncated, check that it is in bounds.
3933       if (!IntTy->isPointerTy() &&
3934           !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset))
3935         continue;
3936     }
3937 
3938     // If we make it here and it's legal, add it.
3939     (void)InsertFormula(LU, LUIdx, F);
3940   next:;
3941   }
3942 }
3943 
3944 /// Generate stride factor reuse formulae by making use of scaled-offset address
3945 /// modes, for example.
3946 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
3947   // Determine the integer type for the base formula.
3948   Type *IntTy = Base.getType();
3949   if (!IntTy) return;
3950 
3951   // If this Formula already has a scaled register, we can't add another one.
3952   // Try to unscale the formula to generate a better scale.
3953   if (Base.Scale != 0 && !Base.unscale())
3954     return;
3955 
3956   assert(Base.Scale == 0 && "unscale did not did its job!");
3957 
3958   // Check each interesting stride.
3959   for (int64_t Factor : Factors) {
3960     Base.Scale = Factor;
3961     Base.HasBaseReg = Base.BaseRegs.size() > 1;
3962     // Check whether this scale is going to be legal.
3963     if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
3964                     Base)) {
3965       // As a special-case, handle special out-of-loop Basic users specially.
3966       // TODO: Reconsider this special case.
3967       if (LU.Kind == LSRUse::Basic &&
3968           isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special,
3969                      LU.AccessTy, Base) &&
3970           LU.AllFixupsOutsideLoop)
3971         LU.Kind = LSRUse::Special;
3972       else
3973         continue;
3974     }
3975     // For an ICmpZero, negating a solitary base register won't lead to
3976     // new solutions.
3977     if (LU.Kind == LSRUse::ICmpZero &&
3978         !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV)
3979       continue;
3980     // For each addrec base reg, if its loop is current loop, apply the scale.
3981     for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
3982       const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i]);
3983       if (AR && (AR->getLoop() == L || LU.AllFixupsOutsideLoop)) {
3984         const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3985         if (FactorS->isZero())
3986           continue;
3987         // Divide out the factor, ignoring high bits, since we'll be
3988         // scaling the value back up in the end.
3989         if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) {
3990           // TODO: This could be optimized to avoid all the copying.
3991           Formula F = Base;
3992           F.ScaledReg = Quotient;
3993           F.deleteBaseReg(F.BaseRegs[i]);
3994           // The canonical representation of 1*reg is reg, which is already in
3995           // Base. In that case, do not try to insert the formula, it will be
3996           // rejected anyway.
3997           if (F.Scale == 1 && (F.BaseRegs.empty() ||
3998                                (AR->getLoop() != L && LU.AllFixupsOutsideLoop)))
3999             continue;
4000           // If AllFixupsOutsideLoop is true and F.Scale is 1, we may generate
4001           // non canonical Formula with ScaledReg's loop not being L.
4002           if (F.Scale == 1 && LU.AllFixupsOutsideLoop)
4003             F.canonicalize(*L);
4004           (void)InsertFormula(LU, LUIdx, F);
4005         }
4006       }
4007     }
4008   }
4009 }
4010 
4011 /// Generate reuse formulae from different IV types.
4012 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
4013   // Don't bother truncating symbolic values.
4014   if (Base.BaseGV) return;
4015 
4016   // Determine the integer type for the base formula.
4017   Type *DstTy = Base.getType();
4018   if (!DstTy) return;
4019   DstTy = SE.getEffectiveSCEVType(DstTy);
4020 
4021   for (Type *SrcTy : Types) {
4022     if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) {
4023       Formula F = Base;
4024 
4025       // Sometimes SCEV is able to prove zero during ext transform. It may
4026       // happen if SCEV did not do all possible transforms while creating the
4027       // initial node (maybe due to depth limitations), but it can do them while
4028       // taking ext.
4029       if (F.ScaledReg) {
4030         const SCEV *NewScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy);
4031         if (NewScaledReg->isZero())
4032          continue;
4033         F.ScaledReg = NewScaledReg;
4034       }
4035       bool HasZeroBaseReg = false;
4036       for (const SCEV *&BaseReg : F.BaseRegs) {
4037         const SCEV *NewBaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy);
4038         if (NewBaseReg->isZero()) {
4039           HasZeroBaseReg = true;
4040           break;
4041         }
4042         BaseReg = NewBaseReg;
4043       }
4044       if (HasZeroBaseReg)
4045         continue;
4046 
4047       // TODO: This assumes we've done basic processing on all uses and
4048       // have an idea what the register usage is.
4049       if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
4050         continue;
4051 
4052       F.canonicalize(*L);
4053       (void)InsertFormula(LU, LUIdx, F);
4054     }
4055   }
4056 }
4057 
4058 namespace {
4059 
4060 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer
4061 /// modifications so that the search phase doesn't have to worry about the data
4062 /// structures moving underneath it.
4063 struct WorkItem {
4064   size_t LUIdx;
4065   int64_t Imm;
4066   const SCEV *OrigReg;
4067 
4068   WorkItem(size_t LI, int64_t I, const SCEV *R)
4069       : LUIdx(LI), Imm(I), OrigReg(R) {}
4070 
4071   void print(raw_ostream &OS) const;
4072   void dump() const;
4073 };
4074 
4075 } // end anonymous namespace
4076 
4077 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4078 void WorkItem::print(raw_ostream &OS) const {
4079   OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
4080      << " , add offset " << Imm;
4081 }
4082 
4083 LLVM_DUMP_METHOD void WorkItem::dump() const {
4084   print(errs()); errs() << '\n';
4085 }
4086 #endif
4087 
4088 /// Look for registers which are a constant distance apart and try to form reuse
4089 /// opportunities between them.
4090 void LSRInstance::GenerateCrossUseConstantOffsets() {
4091   // Group the registers by their value without any added constant offset.
4092   using ImmMapTy = std::map<int64_t, const SCEV *>;
4093 
4094   DenseMap<const SCEV *, ImmMapTy> Map;
4095   DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
4096   SmallVector<const SCEV *, 8> Sequence;
4097   for (const SCEV *Use : RegUses) {
4098     const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify.
4099     int64_t Imm = ExtractImmediate(Reg, SE);
4100     auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy()));
4101     if (Pair.second)
4102       Sequence.push_back(Reg);
4103     Pair.first->second.insert(std::make_pair(Imm, Use));
4104     UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use);
4105   }
4106 
4107   // Now examine each set of registers with the same base value. Build up
4108   // a list of work to do and do the work in a separate step so that we're
4109   // not adding formulae and register counts while we're searching.
4110   SmallVector<WorkItem, 32> WorkItems;
4111   SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
4112   for (const SCEV *Reg : Sequence) {
4113     const ImmMapTy &Imms = Map.find(Reg)->second;
4114 
4115     // It's not worthwhile looking for reuse if there's only one offset.
4116     if (Imms.size() == 1)
4117       continue;
4118 
4119     LLVM_DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
4120                for (const auto &Entry
4121                     : Imms) dbgs()
4122                << ' ' << Entry.first;
4123                dbgs() << '\n');
4124 
4125     // Examine each offset.
4126     for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
4127          J != JE; ++J) {
4128       const SCEV *OrigReg = J->second;
4129 
4130       int64_t JImm = J->first;
4131       const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
4132 
4133       if (!isa<SCEVConstant>(OrigReg) &&
4134           UsedByIndicesMap[Reg].count() == 1) {
4135         LLVM_DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg
4136                           << '\n');
4137         continue;
4138       }
4139 
4140       // Conservatively examine offsets between this orig reg a few selected
4141       // other orig regs.
4142       int64_t First = Imms.begin()->first;
4143       int64_t Last = std::prev(Imms.end())->first;
4144       // Compute (First + Last)  / 2 without overflow using the fact that
4145       // First + Last = 2 * (First + Last) + (First ^ Last).
4146       int64_t Avg = (First & Last) + ((First ^ Last) >> 1);
4147       // If the result is negative and First is odd and Last even (or vice versa),
4148       // we rounded towards -inf. Add 1 in that case, to round towards 0.
4149       Avg = Avg + ((First ^ Last) & ((uint64_t)Avg >> 63));
4150       ImmMapTy::const_iterator OtherImms[] = {
4151           Imms.begin(), std::prev(Imms.end()),
4152          Imms.lower_bound(Avg)};
4153       for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
4154         ImmMapTy::const_iterator M = OtherImms[i];
4155         if (M == J || M == JE) continue;
4156 
4157         // Compute the difference between the two.
4158         int64_t Imm = (uint64_t)JImm - M->first;
4159         for (unsigned LUIdx : UsedByIndices.set_bits())
4160           // Make a memo of this use, offset, and register tuple.
4161           if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second)
4162             WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
4163       }
4164     }
4165   }
4166 
4167   Map.clear();
4168   Sequence.clear();
4169   UsedByIndicesMap.clear();
4170   UniqueItems.clear();
4171 
4172   // Now iterate through the worklist and add new formulae.
4173   for (const WorkItem &WI : WorkItems) {
4174     size_t LUIdx = WI.LUIdx;
4175     LSRUse &LU = Uses[LUIdx];
4176     int64_t Imm = WI.Imm;
4177     const SCEV *OrigReg = WI.OrigReg;
4178 
4179     Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
4180     const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
4181     unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
4182 
4183     // TODO: Use a more targeted data structure.
4184     for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
4185       Formula F = LU.Formulae[L];
4186       // FIXME: The code for the scaled and unscaled registers looks
4187       // very similar but slightly different. Investigate if they
4188       // could be merged. That way, we would not have to unscale the
4189       // Formula.
4190       F.unscale();
4191       // Use the immediate in the scaled register.
4192       if (F.ScaledReg == OrigReg) {
4193         int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale;
4194         // Don't create 50 + reg(-50).
4195         if (F.referencesReg(SE.getSCEV(
4196                    ConstantInt::get(IntTy, -(uint64_t)Offset))))
4197           continue;
4198         Formula NewF = F;
4199         NewF.BaseOffset = Offset;
4200         if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
4201                         NewF))
4202           continue;
4203         NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
4204 
4205         // If the new scale is a constant in a register, and adding the constant
4206         // value to the immediate would produce a value closer to zero than the
4207         // immediate itself, then the formula isn't worthwhile.
4208         if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
4209           if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) &&
4210               (C->getAPInt().abs() * APInt(BitWidth, F.Scale))
4211                   .ule(std::abs(NewF.BaseOffset)))
4212             continue;
4213 
4214         // OK, looks good.
4215         NewF.canonicalize(*this->L);
4216         (void)InsertFormula(LU, LUIdx, NewF);
4217       } else {
4218         // Use the immediate in a base register.
4219         for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
4220           const SCEV *BaseReg = F.BaseRegs[N];
4221           if (BaseReg != OrigReg)
4222             continue;
4223           Formula NewF = F;
4224           NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm;
4225           if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset,
4226                           LU.Kind, LU.AccessTy, NewF)) {
4227             if (TTI.shouldFavorPostInc() &&
4228                 mayUsePostIncMode(TTI, LU, OrigReg, this->L, SE))
4229               continue;
4230             if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm))
4231               continue;
4232             NewF = F;
4233             NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm;
4234           }
4235           NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
4236 
4237           // If the new formula has a constant in a register, and adding the
4238           // constant value to the immediate would produce a value closer to
4239           // zero than the immediate itself, then the formula isn't worthwhile.
4240           for (const SCEV *NewReg : NewF.BaseRegs)
4241             if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg))
4242               if ((C->getAPInt() + NewF.BaseOffset)
4243                       .abs()
4244                       .slt(std::abs(NewF.BaseOffset)) &&
4245                   (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >=
4246                       countTrailingZeros<uint64_t>(NewF.BaseOffset))
4247                 goto skip_formula;
4248 
4249           // Ok, looks good.
4250           NewF.canonicalize(*this->L);
4251           (void)InsertFormula(LU, LUIdx, NewF);
4252           break;
4253         skip_formula:;
4254         }
4255       }
4256     }
4257   }
4258 }
4259 
4260 /// Generate formulae for each use.
4261 void
4262 LSRInstance::GenerateAllReuseFormulae() {
4263   // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
4264   // queries are more precise.
4265   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4266     LSRUse &LU = Uses[LUIdx];
4267     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4268       GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
4269     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4270       GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
4271   }
4272   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4273     LSRUse &LU = Uses[LUIdx];
4274     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4275       GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
4276     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4277       GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
4278     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4279       GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
4280     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4281       GenerateScales(LU, LUIdx, LU.Formulae[i]);
4282   }
4283   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4284     LSRUse &LU = Uses[LUIdx];
4285     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4286       GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
4287   }
4288 
4289   GenerateCrossUseConstantOffsets();
4290 
4291   LLVM_DEBUG(dbgs() << "\n"
4292                        "After generating reuse formulae:\n";
4293              print_uses(dbgs()));
4294 }
4295 
4296 /// If there are multiple formulae with the same set of registers used
4297 /// by other uses, pick the best one and delete the others.
4298 void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
4299   DenseSet<const SCEV *> VisitedRegs;
4300   SmallPtrSet<const SCEV *, 16> Regs;
4301   SmallPtrSet<const SCEV *, 16> LoserRegs;
4302 #ifndef NDEBUG
4303   bool ChangedFormulae = false;
4304 #endif
4305 
4306   // Collect the best formula for each unique set of shared registers. This
4307   // is reset for each use.
4308   using BestFormulaeTy =
4309       DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>;
4310 
4311   BestFormulaeTy BestFormulae;
4312 
4313   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4314     LSRUse &LU = Uses[LUIdx];
4315     LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs());
4316                dbgs() << '\n');
4317 
4318     bool Any = false;
4319     for (size_t FIdx = 0, NumForms = LU.Formulae.size();
4320          FIdx != NumForms; ++FIdx) {
4321       Formula &F = LU.Formulae[FIdx];
4322 
4323       // Some formulas are instant losers. For example, they may depend on
4324       // nonexistent AddRecs from other loops. These need to be filtered
4325       // immediately, otherwise heuristics could choose them over others leading
4326       // to an unsatisfactory solution. Passing LoserRegs into RateFormula here
4327       // avoids the need to recompute this information across formulae using the
4328       // same bad AddRec. Passing LoserRegs is also essential unless we remove
4329       // the corresponding bad register from the Regs set.
4330       Cost CostF(L, SE, TTI);
4331       Regs.clear();
4332       CostF.RateFormula(F, Regs, VisitedRegs, LU, &LoserRegs);
4333       if (CostF.isLoser()) {
4334         // During initial formula generation, undesirable formulae are generated
4335         // by uses within other loops that have some non-trivial address mode or
4336         // use the postinc form of the IV. LSR needs to provide these formulae
4337         // as the basis of rediscovering the desired formula that uses an AddRec
4338         // corresponding to the existing phi. Once all formulae have been
4339         // generated, these initial losers may be pruned.
4340         LLVM_DEBUG(dbgs() << "  Filtering loser "; F.print(dbgs());
4341                    dbgs() << "\n");
4342       }
4343       else {
4344         SmallVector<const SCEV *, 4> Key;
4345         for (const SCEV *Reg : F.BaseRegs) {
4346           if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
4347             Key.push_back(Reg);
4348         }
4349         if (F.ScaledReg &&
4350             RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
4351           Key.push_back(F.ScaledReg);
4352         // Unstable sort by host order ok, because this is only used for
4353         // uniquifying.
4354         llvm::sort(Key);
4355 
4356         std::pair<BestFormulaeTy::const_iterator, bool> P =
4357           BestFormulae.insert(std::make_pair(Key, FIdx));
4358         if (P.second)
4359           continue;
4360 
4361         Formula &Best = LU.Formulae[P.first->second];
4362 
4363         Cost CostBest(L, SE, TTI);
4364         Regs.clear();
4365         CostBest.RateFormula(Best, Regs, VisitedRegs, LU);
4366         if (CostF.isLess(CostBest))
4367           std::swap(F, Best);
4368         LLVM_DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
4369                    dbgs() << "\n"
4370                              "    in favor of formula ";
4371                    Best.print(dbgs()); dbgs() << '\n');
4372       }
4373 #ifndef NDEBUG
4374       ChangedFormulae = true;
4375 #endif
4376       LU.DeleteFormula(F);
4377       --FIdx;
4378       --NumForms;
4379       Any = true;
4380     }
4381 
4382     // Now that we've filtered out some formulae, recompute the Regs set.
4383     if (Any)
4384       LU.RecomputeRegs(LUIdx, RegUses);
4385 
4386     // Reset this to prepare for the next use.
4387     BestFormulae.clear();
4388   }
4389 
4390   LLVM_DEBUG(if (ChangedFormulae) {
4391     dbgs() << "\n"
4392               "After filtering out undesirable candidates:\n";
4393     print_uses(dbgs());
4394   });
4395 }
4396 
4397 /// Estimate the worst-case number of solutions the solver might have to
4398 /// consider. It almost never considers this many solutions because it prune the
4399 /// search space, but the pruning isn't always sufficient.
4400 size_t LSRInstance::EstimateSearchSpaceComplexity() const {
4401   size_t Power = 1;
4402   for (const LSRUse &LU : Uses) {
4403     size_t FSize = LU.Formulae.size();
4404     if (FSize >= ComplexityLimit) {
4405       Power = ComplexityLimit;
4406       break;
4407     }
4408     Power *= FSize;
4409     if (Power >= ComplexityLimit)
4410       break;
4411   }
4412   return Power;
4413 }
4414 
4415 /// When one formula uses a superset of the registers of another formula, it
4416 /// won't help reduce register pressure (though it may not necessarily hurt
4417 /// register pressure); remove it to simplify the system.
4418 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
4419   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4420     LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4421 
4422     LLVM_DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
4423                          "which use a superset of registers used by other "
4424                          "formulae.\n");
4425 
4426     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4427       LSRUse &LU = Uses[LUIdx];
4428       bool Any = false;
4429       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4430         Formula &F = LU.Formulae[i];
4431         // Look for a formula with a constant or GV in a register. If the use
4432         // also has a formula with that same value in an immediate field,
4433         // delete the one that uses a register.
4434         for (SmallVectorImpl<const SCEV *>::const_iterator
4435              I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
4436           if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
4437             Formula NewF = F;
4438             //FIXME: Formulas should store bitwidth to do wrapping properly.
4439             //       See PR41034.
4440             NewF.BaseOffset += (uint64_t)C->getValue()->getSExtValue();
4441             NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4442                                 (I - F.BaseRegs.begin()));
4443             if (LU.HasFormulaWithSameRegs(NewF)) {
4444               LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4445                          dbgs() << '\n');
4446               LU.DeleteFormula(F);
4447               --i;
4448               --e;
4449               Any = true;
4450               break;
4451             }
4452           } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
4453             if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
4454               if (!F.BaseGV) {
4455                 Formula NewF = F;
4456                 NewF.BaseGV = GV;
4457                 NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4458                                     (I - F.BaseRegs.begin()));
4459                 if (LU.HasFormulaWithSameRegs(NewF)) {
4460                   LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4461                              dbgs() << '\n');
4462                   LU.DeleteFormula(F);
4463                   --i;
4464                   --e;
4465                   Any = true;
4466                   break;
4467                 }
4468               }
4469           }
4470         }
4471       }
4472       if (Any)
4473         LU.RecomputeRegs(LUIdx, RegUses);
4474     }
4475 
4476     LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4477   }
4478 }
4479 
4480 /// When there are many registers for expressions like A, A+1, A+2, etc.,
4481 /// allocate a single register for them.
4482 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
4483   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4484     return;
4485 
4486   LLVM_DEBUG(
4487       dbgs() << "The search space is too complex.\n"
4488                 "Narrowing the search space by assuming that uses separated "
4489                 "by a constant offset will use the same registers.\n");
4490 
4491   // This is especially useful for unrolled loops.
4492 
4493   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4494     LSRUse &LU = Uses[LUIdx];
4495     for (const Formula &F : LU.Formulae) {
4496       if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1))
4497         continue;
4498 
4499       LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU);
4500       if (!LUThatHas)
4501         continue;
4502 
4503       if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false,
4504                               LU.Kind, LU.AccessTy))
4505         continue;
4506 
4507       LLVM_DEBUG(dbgs() << "  Deleting use "; LU.print(dbgs()); dbgs() << '\n');
4508 
4509       LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
4510 
4511       // Transfer the fixups of LU to LUThatHas.
4512       for (LSRFixup &Fixup : LU.Fixups) {
4513         Fixup.Offset += F.BaseOffset;
4514         LUThatHas->pushFixup(Fixup);
4515         LLVM_DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n');
4516       }
4517 
4518       // Delete formulae from the new use which are no longer legal.
4519       bool Any = false;
4520       for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
4521         Formula &F = LUThatHas->Formulae[i];
4522         if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset,
4523                         LUThatHas->Kind, LUThatHas->AccessTy, F)) {
4524           LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
4525           LUThatHas->DeleteFormula(F);
4526           --i;
4527           --e;
4528           Any = true;
4529         }
4530       }
4531 
4532       if (Any)
4533         LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
4534 
4535       // Delete the old use.
4536       DeleteUse(LU, LUIdx);
4537       --LUIdx;
4538       --NumUses;
4539       break;
4540     }
4541   }
4542 
4543   LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4544 }
4545 
4546 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that
4547 /// we've done more filtering, as it may be able to find more formulae to
4548 /// eliminate.
4549 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){
4550   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4551     LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4552 
4553     LLVM_DEBUG(dbgs() << "Narrowing the search space by re-filtering out "
4554                          "undesirable dedicated registers.\n");
4555 
4556     FilterOutUndesirableDedicatedRegisters();
4557 
4558     LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4559   }
4560 }
4561 
4562 /// If a LSRUse has multiple formulae with the same ScaledReg and Scale.
4563 /// Pick the best one and delete the others.
4564 /// This narrowing heuristic is to keep as many formulae with different
4565 /// Scale and ScaledReg pair as possible while narrowing the search space.
4566 /// The benefit is that it is more likely to find out a better solution
4567 /// from a formulae set with more Scale and ScaledReg variations than
4568 /// a formulae set with the same Scale and ScaledReg. The picking winner
4569 /// reg heuristic will often keep the formulae with the same Scale and
4570 /// ScaledReg and filter others, and we want to avoid that if possible.
4571 void LSRInstance::NarrowSearchSpaceByFilterFormulaWithSameScaledReg() {
4572   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4573     return;
4574 
4575   LLVM_DEBUG(
4576       dbgs() << "The search space is too complex.\n"
4577                 "Narrowing the search space by choosing the best Formula "
4578                 "from the Formulae with the same Scale and ScaledReg.\n");
4579 
4580   // Map the "Scale * ScaledReg" pair to the best formula of current LSRUse.
4581   using BestFormulaeTy = DenseMap<std::pair<const SCEV *, int64_t>, size_t>;
4582 
4583   BestFormulaeTy BestFormulae;
4584 #ifndef NDEBUG
4585   bool ChangedFormulae = false;
4586 #endif
4587   DenseSet<const SCEV *> VisitedRegs;
4588   SmallPtrSet<const SCEV *, 16> Regs;
4589 
4590   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4591     LSRUse &LU = Uses[LUIdx];
4592     LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs());
4593                dbgs() << '\n');
4594 
4595     // Return true if Formula FA is better than Formula FB.
4596     auto IsBetterThan = [&](Formula &FA, Formula &FB) {
4597       // First we will try to choose the Formula with fewer new registers.
4598       // For a register used by current Formula, the more the register is
4599       // shared among LSRUses, the less we increase the register number
4600       // counter of the formula.
4601       size_t FARegNum = 0;
4602       for (const SCEV *Reg : FA.BaseRegs) {
4603         const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg);
4604         FARegNum += (NumUses - UsedByIndices.count() + 1);
4605       }
4606       size_t FBRegNum = 0;
4607       for (const SCEV *Reg : FB.BaseRegs) {
4608         const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg);
4609         FBRegNum += (NumUses - UsedByIndices.count() + 1);
4610       }
4611       if (FARegNum != FBRegNum)
4612         return FARegNum < FBRegNum;
4613 
4614       // If the new register numbers are the same, choose the Formula with
4615       // less Cost.
4616       Cost CostFA(L, SE, TTI);
4617       Cost CostFB(L, SE, TTI);
4618       Regs.clear();
4619       CostFA.RateFormula(FA, Regs, VisitedRegs, LU);
4620       Regs.clear();
4621       CostFB.RateFormula(FB, Regs, VisitedRegs, LU);
4622       return CostFA.isLess(CostFB);
4623     };
4624 
4625     bool Any = false;
4626     for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms;
4627          ++FIdx) {
4628       Formula &F = LU.Formulae[FIdx];
4629       if (!F.ScaledReg)
4630         continue;
4631       auto P = BestFormulae.insert({{F.ScaledReg, F.Scale}, FIdx});
4632       if (P.second)
4633         continue;
4634 
4635       Formula &Best = LU.Formulae[P.first->second];
4636       if (IsBetterThan(F, Best))
4637         std::swap(F, Best);
4638       LLVM_DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
4639                  dbgs() << "\n"
4640                            "    in favor of formula ";
4641                  Best.print(dbgs()); dbgs() << '\n');
4642 #ifndef NDEBUG
4643       ChangedFormulae = true;
4644 #endif
4645       LU.DeleteFormula(F);
4646       --FIdx;
4647       --NumForms;
4648       Any = true;
4649     }
4650     if (Any)
4651       LU.RecomputeRegs(LUIdx, RegUses);
4652 
4653     // Reset this to prepare for the next use.
4654     BestFormulae.clear();
4655   }
4656 
4657   LLVM_DEBUG(if (ChangedFormulae) {
4658     dbgs() << "\n"
4659               "After filtering out undesirable candidates:\n";
4660     print_uses(dbgs());
4661   });
4662 }
4663 
4664 /// The function delete formulas with high registers number expectation.
4665 /// Assuming we don't know the value of each formula (already delete
4666 /// all inefficient), generate probability of not selecting for each
4667 /// register.
4668 /// For example,
4669 /// Use1:
4670 ///  reg(a) + reg({0,+,1})
4671 ///  reg(a) + reg({-1,+,1}) + 1
4672 ///  reg({a,+,1})
4673 /// Use2:
4674 ///  reg(b) + reg({0,+,1})
4675 ///  reg(b) + reg({-1,+,1}) + 1
4676 ///  reg({b,+,1})
4677 /// Use3:
4678 ///  reg(c) + reg(b) + reg({0,+,1})
4679 ///  reg(c) + reg({b,+,1})
4680 ///
4681 /// Probability of not selecting
4682 ///                 Use1   Use2    Use3
4683 /// reg(a)         (1/3) *   1   *   1
4684 /// reg(b)           1   * (1/3) * (1/2)
4685 /// reg({0,+,1})   (2/3) * (2/3) * (1/2)
4686 /// reg({-1,+,1})  (2/3) * (2/3) *   1
4687 /// reg({a,+,1})   (2/3) *   1   *   1
4688 /// reg({b,+,1})     1   * (2/3) * (2/3)
4689 /// reg(c)           1   *   1   *   0
4690 ///
4691 /// Now count registers number mathematical expectation for each formula:
4692 /// Note that for each use we exclude probability if not selecting for the use.
4693 /// For example for Use1 probability for reg(a) would be just 1 * 1 (excluding
4694 /// probabilty 1/3 of not selecting for Use1).
4695 /// Use1:
4696 ///  reg(a) + reg({0,+,1})          1 + 1/3       -- to be deleted
4697 ///  reg(a) + reg({-1,+,1}) + 1     1 + 4/9       -- to be deleted
4698 ///  reg({a,+,1})                   1
4699 /// Use2:
4700 ///  reg(b) + reg({0,+,1})          1/2 + 1/3     -- to be deleted
4701 ///  reg(b) + reg({-1,+,1}) + 1     1/2 + 2/3     -- to be deleted
4702 ///  reg({b,+,1})                   2/3
4703 /// Use3:
4704 ///  reg(c) + reg(b) + reg({0,+,1}) 1 + 1/3 + 4/9 -- to be deleted
4705 ///  reg(c) + reg({b,+,1})          1 + 2/3
4706 void LSRInstance::NarrowSearchSpaceByDeletingCostlyFormulas() {
4707   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4708     return;
4709   // Ok, we have too many of formulae on our hands to conveniently handle.
4710   // Use a rough heuristic to thin out the list.
4711 
4712   // Set of Regs wich will be 100% used in final solution.
4713   // Used in each formula of a solution (in example above this is reg(c)).
4714   // We can skip them in calculations.
4715   SmallPtrSet<const SCEV *, 4> UniqRegs;
4716   LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4717 
4718   // Map each register to probability of not selecting
4719   DenseMap <const SCEV *, float> RegNumMap;
4720   for (const SCEV *Reg : RegUses) {
4721     if (UniqRegs.count(Reg))
4722       continue;
4723     float PNotSel = 1;
4724     for (const LSRUse &LU : Uses) {
4725       if (!LU.Regs.count(Reg))
4726         continue;
4727       float P = LU.getNotSelectedProbability(Reg);
4728       if (P != 0.0)
4729         PNotSel *= P;
4730       else
4731         UniqRegs.insert(Reg);
4732     }
4733     RegNumMap.insert(std::make_pair(Reg, PNotSel));
4734   }
4735 
4736   LLVM_DEBUG(
4737       dbgs() << "Narrowing the search space by deleting costly formulas\n");
4738 
4739   // Delete formulas where registers number expectation is high.
4740   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4741     LSRUse &LU = Uses[LUIdx];
4742     // If nothing to delete - continue.
4743     if (LU.Formulae.size() < 2)
4744       continue;
4745     // This is temporary solution to test performance. Float should be
4746     // replaced with round independent type (based on integers) to avoid
4747     // different results for different target builds.
4748     float FMinRegNum = LU.Formulae[0].getNumRegs();
4749     float FMinARegNum = LU.Formulae[0].getNumRegs();
4750     size_t MinIdx = 0;
4751     for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4752       Formula &F = LU.Formulae[i];
4753       float FRegNum = 0;
4754       float FARegNum = 0;
4755       for (const SCEV *BaseReg : F.BaseRegs) {
4756         if (UniqRegs.count(BaseReg))
4757           continue;
4758         FRegNum += RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg);
4759         if (isa<SCEVAddRecExpr>(BaseReg))
4760           FARegNum +=
4761               RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg);
4762       }
4763       if (const SCEV *ScaledReg = F.ScaledReg) {
4764         if (!UniqRegs.count(ScaledReg)) {
4765           FRegNum +=
4766               RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg);
4767           if (isa<SCEVAddRecExpr>(ScaledReg))
4768             FARegNum +=
4769                 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg);
4770         }
4771       }
4772       if (FMinRegNum > FRegNum ||
4773           (FMinRegNum == FRegNum && FMinARegNum > FARegNum)) {
4774         FMinRegNum = FRegNum;
4775         FMinARegNum = FARegNum;
4776         MinIdx = i;
4777       }
4778     }
4779     LLVM_DEBUG(dbgs() << "  The formula "; LU.Formulae[MinIdx].print(dbgs());
4780                dbgs() << " with min reg num " << FMinRegNum << '\n');
4781     if (MinIdx != 0)
4782       std::swap(LU.Formulae[MinIdx], LU.Formulae[0]);
4783     while (LU.Formulae.size() != 1) {
4784       LLVM_DEBUG(dbgs() << "  Deleting "; LU.Formulae.back().print(dbgs());
4785                  dbgs() << '\n');
4786       LU.Formulae.pop_back();
4787     }
4788     LU.RecomputeRegs(LUIdx, RegUses);
4789     assert(LU.Formulae.size() == 1 && "Should be exactly 1 min regs formula");
4790     Formula &F = LU.Formulae[0];
4791     LLVM_DEBUG(dbgs() << "  Leaving only "; F.print(dbgs()); dbgs() << '\n');
4792     // When we choose the formula, the regs become unique.
4793     UniqRegs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
4794     if (F.ScaledReg)
4795       UniqRegs.insert(F.ScaledReg);
4796   }
4797   LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4798 }
4799 
4800 /// Pick a register which seems likely to be profitable, and then in any use
4801 /// which has any reference to that register, delete all formulae which do not
4802 /// reference that register.
4803 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() {
4804   // With all other options exhausted, loop until the system is simple
4805   // enough to handle.
4806   SmallPtrSet<const SCEV *, 4> Taken;
4807   while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4808     // Ok, we have too many of formulae on our hands to conveniently handle.
4809     // Use a rough heuristic to thin out the list.
4810     LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4811 
4812     // Pick the register which is used by the most LSRUses, which is likely
4813     // to be a good reuse register candidate.
4814     const SCEV *Best = nullptr;
4815     unsigned BestNum = 0;
4816     for (const SCEV *Reg : RegUses) {
4817       if (Taken.count(Reg))
4818         continue;
4819       if (!Best) {
4820         Best = Reg;
4821         BestNum = RegUses.getUsedByIndices(Reg).count();
4822       } else {
4823         unsigned Count = RegUses.getUsedByIndices(Reg).count();
4824         if (Count > BestNum) {
4825           Best = Reg;
4826           BestNum = Count;
4827         }
4828       }
4829     }
4830     assert(Best && "Failed to find best LSRUse candidate");
4831 
4832     LLVM_DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
4833                       << " will yield profitable reuse.\n");
4834     Taken.insert(Best);
4835 
4836     // In any use with formulae which references this register, delete formulae
4837     // which don't reference it.
4838     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4839       LSRUse &LU = Uses[LUIdx];
4840       if (!LU.Regs.count(Best)) continue;
4841 
4842       bool Any = false;
4843       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4844         Formula &F = LU.Formulae[i];
4845         if (!F.referencesReg(Best)) {
4846           LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
4847           LU.DeleteFormula(F);
4848           --e;
4849           --i;
4850           Any = true;
4851           assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
4852           continue;
4853         }
4854       }
4855 
4856       if (Any)
4857         LU.RecomputeRegs(LUIdx, RegUses);
4858     }
4859 
4860     LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4861   }
4862 }
4863 
4864 /// If there are an extraordinary number of formulae to choose from, use some
4865 /// rough heuristics to prune down the number of formulae. This keeps the main
4866 /// solver from taking an extraordinary amount of time in some worst-case
4867 /// scenarios.
4868 void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
4869   NarrowSearchSpaceByDetectingSupersets();
4870   NarrowSearchSpaceByCollapsingUnrolledCode();
4871   NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
4872   if (FilterSameScaledReg)
4873     NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
4874   if (LSRExpNarrow)
4875     NarrowSearchSpaceByDeletingCostlyFormulas();
4876   else
4877     NarrowSearchSpaceByPickingWinnerRegs();
4878 }
4879 
4880 /// This is the recursive solver.
4881 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
4882                                Cost &SolutionCost,
4883                                SmallVectorImpl<const Formula *> &Workspace,
4884                                const Cost &CurCost,
4885                                const SmallPtrSet<const SCEV *, 16> &CurRegs,
4886                                DenseSet<const SCEV *> &VisitedRegs) const {
4887   // Some ideas:
4888   //  - prune more:
4889   //    - use more aggressive filtering
4890   //    - sort the formula so that the most profitable solutions are found first
4891   //    - sort the uses too
4892   //  - search faster:
4893   //    - don't compute a cost, and then compare. compare while computing a cost
4894   //      and bail early.
4895   //    - track register sets with SmallBitVector
4896 
4897   const LSRUse &LU = Uses[Workspace.size()];
4898 
4899   // If this use references any register that's already a part of the
4900   // in-progress solution, consider it a requirement that a formula must
4901   // reference that register in order to be considered. This prunes out
4902   // unprofitable searching.
4903   SmallSetVector<const SCEV *, 4> ReqRegs;
4904   for (const SCEV *S : CurRegs)
4905     if (LU.Regs.count(S))
4906       ReqRegs.insert(S);
4907 
4908   SmallPtrSet<const SCEV *, 16> NewRegs;
4909   Cost NewCost(L, SE, TTI);
4910   for (const Formula &F : LU.Formulae) {
4911     // Ignore formulae which may not be ideal in terms of register reuse of
4912     // ReqRegs.  The formula should use all required registers before
4913     // introducing new ones.
4914     int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size());
4915     for (const SCEV *Reg : ReqRegs) {
4916       if ((F.ScaledReg && F.ScaledReg == Reg) ||
4917           is_contained(F.BaseRegs, Reg)) {
4918         --NumReqRegsToFind;
4919         if (NumReqRegsToFind == 0)
4920           break;
4921       }
4922     }
4923     if (NumReqRegsToFind != 0) {
4924       // If none of the formulae satisfied the required registers, then we could
4925       // clear ReqRegs and try again. Currently, we simply give up in this case.
4926       continue;
4927     }
4928 
4929     // Evaluate the cost of the current formula. If it's already worse than
4930     // the current best, prune the search at that point.
4931     NewCost = CurCost;
4932     NewRegs = CurRegs;
4933     NewCost.RateFormula(F, NewRegs, VisitedRegs, LU);
4934     if (NewCost.isLess(SolutionCost)) {
4935       Workspace.push_back(&F);
4936       if (Workspace.size() != Uses.size()) {
4937         SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
4938                      NewRegs, VisitedRegs);
4939         if (F.getNumRegs() == 1 && Workspace.size() == 1)
4940           VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
4941       } else {
4942         LLVM_DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
4943                    dbgs() << ".\nRegs:\n";
4944                    for (const SCEV *S : NewRegs) dbgs()
4945                       << "- " << *S << "\n";
4946                    dbgs() << '\n');
4947 
4948         SolutionCost = NewCost;
4949         Solution = Workspace;
4950       }
4951       Workspace.pop_back();
4952     }
4953   }
4954 }
4955 
4956 /// Choose one formula from each use. Return the results in the given Solution
4957 /// vector.
4958 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
4959   SmallVector<const Formula *, 8> Workspace;
4960   Cost SolutionCost(L, SE, TTI);
4961   SolutionCost.Lose();
4962   Cost CurCost(L, SE, TTI);
4963   SmallPtrSet<const SCEV *, 16> CurRegs;
4964   DenseSet<const SCEV *> VisitedRegs;
4965   Workspace.reserve(Uses.size());
4966 
4967   // SolveRecurse does all the work.
4968   SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
4969                CurRegs, VisitedRegs);
4970   if (Solution.empty()) {
4971     LLVM_DEBUG(dbgs() << "\nNo Satisfactory Solution\n");
4972     return;
4973   }
4974 
4975   // Ok, we've now made all our decisions.
4976   LLVM_DEBUG(dbgs() << "\n"
4977                        "The chosen solution requires ";
4978              SolutionCost.print(dbgs()); dbgs() << ":\n";
4979              for (size_t i = 0, e = Uses.size(); i != e; ++i) {
4980                dbgs() << "  ";
4981                Uses[i].print(dbgs());
4982                dbgs() << "\n"
4983                          "    ";
4984                Solution[i]->print(dbgs());
4985                dbgs() << '\n';
4986              });
4987 
4988   assert(Solution.size() == Uses.size() && "Malformed solution!");
4989 }
4990 
4991 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as
4992 /// we can go while still being dominated by the input positions. This helps
4993 /// canonicalize the insert position, which encourages sharing.
4994 BasicBlock::iterator
4995 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
4996                                  const SmallVectorImpl<Instruction *> &Inputs)
4997                                                                          const {
4998   Instruction *Tentative = &*IP;
4999   while (true) {
5000     bool AllDominate = true;
5001     Instruction *BetterPos = nullptr;
5002     // Don't bother attempting to insert before a catchswitch, their basic block
5003     // cannot have other non-PHI instructions.
5004     if (isa<CatchSwitchInst>(Tentative))
5005       return IP;
5006 
5007     for (Instruction *Inst : Inputs) {
5008       if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
5009         AllDominate = false;
5010         break;
5011       }
5012       // Attempt to find an insert position in the middle of the block,
5013       // instead of at the end, so that it can be used for other expansions.
5014       if (Tentative->getParent() == Inst->getParent() &&
5015           (!BetterPos || !DT.dominates(Inst, BetterPos)))
5016         BetterPos = &*std::next(BasicBlock::iterator(Inst));
5017     }
5018     if (!AllDominate)
5019       break;
5020     if (BetterPos)
5021       IP = BetterPos->getIterator();
5022     else
5023       IP = Tentative->getIterator();
5024 
5025     const Loop *IPLoop = LI.getLoopFor(IP->getParent());
5026     unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
5027 
5028     BasicBlock *IDom;
5029     for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) {
5030       if (!Rung) return IP;
5031       Rung = Rung->getIDom();
5032       if (!Rung) return IP;
5033       IDom = Rung->getBlock();
5034 
5035       // Don't climb into a loop though.
5036       const Loop *IDomLoop = LI.getLoopFor(IDom);
5037       unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
5038       if (IDomDepth <= IPLoopDepth &&
5039           (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
5040         break;
5041     }
5042 
5043     Tentative = IDom->getTerminator();
5044   }
5045 
5046   return IP;
5047 }
5048 
5049 /// Determine an input position which will be dominated by the operands and
5050 /// which will dominate the result.
5051 BasicBlock::iterator
5052 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP,
5053                                            const LSRFixup &LF,
5054                                            const LSRUse &LU,
5055                                            SCEVExpander &Rewriter) const {
5056   // Collect some instructions which must be dominated by the
5057   // expanding replacement. These must be dominated by any operands that
5058   // will be required in the expansion.
5059   SmallVector<Instruction *, 4> Inputs;
5060   if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
5061     Inputs.push_back(I);
5062   if (LU.Kind == LSRUse::ICmpZero)
5063     if (Instruction *I =
5064           dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
5065       Inputs.push_back(I);
5066   if (LF.PostIncLoops.count(L)) {
5067     if (LF.isUseFullyOutsideLoop(L))
5068       Inputs.push_back(L->getLoopLatch()->getTerminator());
5069     else
5070       Inputs.push_back(IVIncInsertPos);
5071   }
5072   // The expansion must also be dominated by the increment positions of any
5073   // loops it for which it is using post-inc mode.
5074   for (const Loop *PIL : LF.PostIncLoops) {
5075     if (PIL == L) continue;
5076 
5077     // Be dominated by the loop exit.
5078     SmallVector<BasicBlock *, 4> ExitingBlocks;
5079     PIL->getExitingBlocks(ExitingBlocks);
5080     if (!ExitingBlocks.empty()) {
5081       BasicBlock *BB = ExitingBlocks[0];
5082       for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
5083         BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
5084       Inputs.push_back(BB->getTerminator());
5085     }
5086   }
5087 
5088   assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad()
5089          && !isa<DbgInfoIntrinsic>(LowestIP) &&
5090          "Insertion point must be a normal instruction");
5091 
5092   // Then, climb up the immediate dominator tree as far as we can go while
5093   // still being dominated by the input positions.
5094   BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs);
5095 
5096   // Don't insert instructions before PHI nodes.
5097   while (isa<PHINode>(IP)) ++IP;
5098 
5099   // Ignore landingpad instructions.
5100   while (IP->isEHPad()) ++IP;
5101 
5102   // Ignore debug intrinsics.
5103   while (isa<DbgInfoIntrinsic>(IP)) ++IP;
5104 
5105   // Set IP below instructions recently inserted by SCEVExpander. This keeps the
5106   // IP consistent across expansions and allows the previously inserted
5107   // instructions to be reused by subsequent expansion.
5108   while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP)
5109     ++IP;
5110 
5111   return IP;
5112 }
5113 
5114 /// Emit instructions for the leading candidate expression for this LSRUse (this
5115 /// is called "expanding").
5116 Value *LSRInstance::Expand(const LSRUse &LU, const LSRFixup &LF,
5117                            const Formula &F, BasicBlock::iterator IP,
5118                            SCEVExpander &Rewriter,
5119                            SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5120   if (LU.RigidFormula)
5121     return LF.OperandValToReplace;
5122 
5123   // Determine an input position which will be dominated by the operands and
5124   // which will dominate the result.
5125   IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter);
5126   Rewriter.setInsertPoint(&*IP);
5127 
5128   // Inform the Rewriter if we have a post-increment use, so that it can
5129   // perform an advantageous expansion.
5130   Rewriter.setPostInc(LF.PostIncLoops);
5131 
5132   // This is the type that the user actually needs.
5133   Type *OpTy = LF.OperandValToReplace->getType();
5134   // This will be the type that we'll initially expand to.
5135   Type *Ty = F.getType();
5136   if (!Ty)
5137     // No type known; just expand directly to the ultimate type.
5138     Ty = OpTy;
5139   else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
5140     // Expand directly to the ultimate type if it's the right size.
5141     Ty = OpTy;
5142   // This is the type to do integer arithmetic in.
5143   Type *IntTy = SE.getEffectiveSCEVType(Ty);
5144 
5145   // Build up a list of operands to add together to form the full base.
5146   SmallVector<const SCEV *, 8> Ops;
5147 
5148   // Expand the BaseRegs portion.
5149   for (const SCEV *Reg : F.BaseRegs) {
5150     assert(!Reg->isZero() && "Zero allocated in a base register!");
5151 
5152     // If we're expanding for a post-inc user, make the post-inc adjustment.
5153     Reg = denormalizeForPostIncUse(Reg, LF.PostIncLoops, SE);
5154     Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr)));
5155   }
5156 
5157   // Expand the ScaledReg portion.
5158   Value *ICmpScaledV = nullptr;
5159   if (F.Scale != 0) {
5160     const SCEV *ScaledS = F.ScaledReg;
5161 
5162     // If we're expanding for a post-inc user, make the post-inc adjustment.
5163     PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
5164     ScaledS = denormalizeForPostIncUse(ScaledS, Loops, SE);
5165 
5166     if (LU.Kind == LSRUse::ICmpZero) {
5167       // Expand ScaleReg as if it was part of the base regs.
5168       if (F.Scale == 1)
5169         Ops.push_back(
5170             SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)));
5171       else {
5172         // An interesting way of "folding" with an icmp is to use a negated
5173         // scale, which we'll implement by inserting it into the other operand
5174         // of the icmp.
5175         assert(F.Scale == -1 &&
5176                "The only scale supported by ICmpZero uses is -1!");
5177         ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr);
5178       }
5179     } else {
5180       // Otherwise just expand the scaled register and an explicit scale,
5181       // which is expected to be matched as part of the address.
5182 
5183       // Flush the operand list to suppress SCEVExpander hoisting address modes.
5184       // Unless the addressing mode will not be folded.
5185       if (!Ops.empty() && LU.Kind == LSRUse::Address &&
5186           isAMCompletelyFolded(TTI, LU, F)) {
5187         Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), nullptr);
5188         Ops.clear();
5189         Ops.push_back(SE.getUnknown(FullV));
5190       }
5191       ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr));
5192       if (F.Scale != 1)
5193         ScaledS =
5194             SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale));
5195       Ops.push_back(ScaledS);
5196     }
5197   }
5198 
5199   // Expand the GV portion.
5200   if (F.BaseGV) {
5201     // Flush the operand list to suppress SCEVExpander hoisting.
5202     if (!Ops.empty()) {
5203       Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
5204       Ops.clear();
5205       Ops.push_back(SE.getUnknown(FullV));
5206     }
5207     Ops.push_back(SE.getUnknown(F.BaseGV));
5208   }
5209 
5210   // Flush the operand list to suppress SCEVExpander hoisting of both folded and
5211   // unfolded offsets. LSR assumes they both live next to their uses.
5212   if (!Ops.empty()) {
5213     Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
5214     Ops.clear();
5215     Ops.push_back(SE.getUnknown(FullV));
5216   }
5217 
5218   // Expand the immediate portion.
5219   int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset;
5220   if (Offset != 0) {
5221     if (LU.Kind == LSRUse::ICmpZero) {
5222       // The other interesting way of "folding" with an ICmpZero is to use a
5223       // negated immediate.
5224       if (!ICmpScaledV)
5225         ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset);
5226       else {
5227         Ops.push_back(SE.getUnknown(ICmpScaledV));
5228         ICmpScaledV = ConstantInt::get(IntTy, Offset);
5229       }
5230     } else {
5231       // Just add the immediate values. These again are expected to be matched
5232       // as part of the address.
5233       Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
5234     }
5235   }
5236 
5237   // Expand the unfolded offset portion.
5238   int64_t UnfoldedOffset = F.UnfoldedOffset;
5239   if (UnfoldedOffset != 0) {
5240     // Just add the immediate values.
5241     Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy,
5242                                                        UnfoldedOffset)));
5243   }
5244 
5245   // Emit instructions summing all the operands.
5246   const SCEV *FullS = Ops.empty() ?
5247                       SE.getConstant(IntTy, 0) :
5248                       SE.getAddExpr(Ops);
5249   Value *FullV = Rewriter.expandCodeFor(FullS, Ty);
5250 
5251   // We're done expanding now, so reset the rewriter.
5252   Rewriter.clearPostInc();
5253 
5254   // An ICmpZero Formula represents an ICmp which we're handling as a
5255   // comparison against zero. Now that we've expanded an expression for that
5256   // form, update the ICmp's other operand.
5257   if (LU.Kind == LSRUse::ICmpZero) {
5258     ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
5259     if (auto *OperandIsInstr = dyn_cast<Instruction>(CI->getOperand(1)))
5260       DeadInsts.emplace_back(OperandIsInstr);
5261     assert(!F.BaseGV && "ICmp does not support folding a global value and "
5262                            "a scale at the same time!");
5263     if (F.Scale == -1) {
5264       if (ICmpScaledV->getType() != OpTy) {
5265         Instruction *Cast =
5266           CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
5267                                                    OpTy, false),
5268                            ICmpScaledV, OpTy, "tmp", CI);
5269         ICmpScaledV = Cast;
5270       }
5271       CI->setOperand(1, ICmpScaledV);
5272     } else {
5273       // A scale of 1 means that the scale has been expanded as part of the
5274       // base regs.
5275       assert((F.Scale == 0 || F.Scale == 1) &&
5276              "ICmp does not support folding a global value and "
5277              "a scale at the same time!");
5278       Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
5279                                            -(uint64_t)Offset);
5280       if (C->getType() != OpTy)
5281         C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
5282                                                           OpTy, false),
5283                                   C, OpTy);
5284 
5285       CI->setOperand(1, C);
5286     }
5287   }
5288 
5289   return FullV;
5290 }
5291 
5292 /// Helper for Rewrite. PHI nodes are special because the use of their operands
5293 /// effectively happens in their predecessor blocks, so the expression may need
5294 /// to be expanded in multiple places.
5295 void LSRInstance::RewriteForPHI(
5296     PHINode *PN, const LSRUse &LU, const LSRFixup &LF, const Formula &F,
5297     SCEVExpander &Rewriter, SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5298   DenseMap<BasicBlock *, Value *> Inserted;
5299   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
5300     if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
5301       bool needUpdateFixups = false;
5302       BasicBlock *BB = PN->getIncomingBlock(i);
5303 
5304       // If this is a critical edge, split the edge so that we do not insert
5305       // the code on all predecessor/successor paths.  We do this unless this
5306       // is the canonical backedge for this loop, which complicates post-inc
5307       // users.
5308       if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
5309           !isa<IndirectBrInst>(BB->getTerminator()) &&
5310           !isa<CatchSwitchInst>(BB->getTerminator())) {
5311         BasicBlock *Parent = PN->getParent();
5312         Loop *PNLoop = LI.getLoopFor(Parent);
5313         if (!PNLoop || Parent != PNLoop->getHeader()) {
5314           // Split the critical edge.
5315           BasicBlock *NewBB = nullptr;
5316           if (!Parent->isLandingPad()) {
5317             NewBB = SplitCriticalEdge(BB, Parent,
5318                                       CriticalEdgeSplittingOptions(&DT, &LI)
5319                                           .setMergeIdenticalEdges()
5320                                           .setKeepOneInputPHIs());
5321           } else {
5322             SmallVector<BasicBlock*, 2> NewBBs;
5323             SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI);
5324             NewBB = NewBBs[0];
5325           }
5326           // If NewBB==NULL, then SplitCriticalEdge refused to split because all
5327           // phi predecessors are identical. The simple thing to do is skip
5328           // splitting in this case rather than complicate the API.
5329           if (NewBB) {
5330             // If PN is outside of the loop and BB is in the loop, we want to
5331             // move the block to be immediately before the PHI block, not
5332             // immediately after BB.
5333             if (L->contains(BB) && !L->contains(PN))
5334               NewBB->moveBefore(PN->getParent());
5335 
5336             // Splitting the edge can reduce the number of PHI entries we have.
5337             e = PN->getNumIncomingValues();
5338             BB = NewBB;
5339             i = PN->getBasicBlockIndex(BB);
5340 
5341             needUpdateFixups = true;
5342           }
5343         }
5344       }
5345 
5346       std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
5347         Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr)));
5348       if (!Pair.second)
5349         PN->setIncomingValue(i, Pair.first->second);
5350       else {
5351         Value *FullV = Expand(LU, LF, F, BB->getTerminator()->getIterator(),
5352                               Rewriter, DeadInsts);
5353 
5354         // If this is reuse-by-noop-cast, insert the noop cast.
5355         Type *OpTy = LF.OperandValToReplace->getType();
5356         if (FullV->getType() != OpTy)
5357           FullV =
5358             CastInst::Create(CastInst::getCastOpcode(FullV, false,
5359                                                      OpTy, false),
5360                              FullV, LF.OperandValToReplace->getType(),
5361                              "tmp", BB->getTerminator());
5362 
5363         PN->setIncomingValue(i, FullV);
5364         Pair.first->second = FullV;
5365       }
5366 
5367       // If LSR splits critical edge and phi node has other pending
5368       // fixup operands, we need to update those pending fixups. Otherwise
5369       // formulae will not be implemented completely and some instructions
5370       // will not be eliminated.
5371       if (needUpdateFixups) {
5372         for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx)
5373           for (LSRFixup &Fixup : Uses[LUIdx].Fixups)
5374             // If fixup is supposed to rewrite some operand in the phi
5375             // that was just updated, it may be already moved to
5376             // another phi node. Such fixup requires update.
5377             if (Fixup.UserInst == PN) {
5378               // Check if the operand we try to replace still exists in the
5379               // original phi.
5380               bool foundInOriginalPHI = false;
5381               for (const auto &val : PN->incoming_values())
5382                 if (val == Fixup.OperandValToReplace) {
5383                   foundInOriginalPHI = true;
5384                   break;
5385                 }
5386 
5387               // If fixup operand found in original PHI - nothing to do.
5388               if (foundInOriginalPHI)
5389                 continue;
5390 
5391               // Otherwise it might be moved to another PHI and requires update.
5392               // If fixup operand not found in any of the incoming blocks that
5393               // means we have already rewritten it - nothing to do.
5394               for (const auto &Block : PN->blocks())
5395                 for (BasicBlock::iterator I = Block->begin(); isa<PHINode>(I);
5396                      ++I) {
5397                   PHINode *NewPN = cast<PHINode>(I);
5398                   for (const auto &val : NewPN->incoming_values())
5399                     if (val == Fixup.OperandValToReplace)
5400                       Fixup.UserInst = NewPN;
5401                 }
5402             }
5403       }
5404     }
5405 }
5406 
5407 /// Emit instructions for the leading candidate expression for this LSRUse (this
5408 /// is called "expanding"), and update the UserInst to reference the newly
5409 /// expanded value.
5410 void LSRInstance::Rewrite(const LSRUse &LU, const LSRFixup &LF,
5411                           const Formula &F, SCEVExpander &Rewriter,
5412                           SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5413   // First, find an insertion point that dominates UserInst. For PHI nodes,
5414   // find the nearest block which dominates all the relevant uses.
5415   if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
5416     RewriteForPHI(PN, LU, LF, F, Rewriter, DeadInsts);
5417   } else {
5418     Value *FullV =
5419       Expand(LU, LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts);
5420 
5421     // If this is reuse-by-noop-cast, insert the noop cast.
5422     Type *OpTy = LF.OperandValToReplace->getType();
5423     if (FullV->getType() != OpTy) {
5424       Instruction *Cast =
5425         CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
5426                          FullV, OpTy, "tmp", LF.UserInst);
5427       FullV = Cast;
5428     }
5429 
5430     // Update the user. ICmpZero is handled specially here (for now) because
5431     // Expand may have updated one of the operands of the icmp already, and
5432     // its new value may happen to be equal to LF.OperandValToReplace, in
5433     // which case doing replaceUsesOfWith leads to replacing both operands
5434     // with the same value. TODO: Reorganize this.
5435     if (LU.Kind == LSRUse::ICmpZero)
5436       LF.UserInst->setOperand(0, FullV);
5437     else
5438       LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
5439   }
5440 
5441   if (auto *OperandIsInstr = dyn_cast<Instruction>(LF.OperandValToReplace))
5442     DeadInsts.emplace_back(OperandIsInstr);
5443 }
5444 
5445 /// Rewrite all the fixup locations with new values, following the chosen
5446 /// solution.
5447 void LSRInstance::ImplementSolution(
5448     const SmallVectorImpl<const Formula *> &Solution) {
5449   // Keep track of instructions we may have made dead, so that
5450   // we can remove them after we are done working.
5451   SmallVector<WeakTrackingVH, 16> DeadInsts;
5452 
5453   SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(),
5454                         "lsr");
5455 #ifndef NDEBUG
5456   Rewriter.setDebugType(DEBUG_TYPE);
5457 #endif
5458   Rewriter.disableCanonicalMode();
5459   Rewriter.enableLSRMode();
5460   Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
5461 
5462   // Mark phi nodes that terminate chains so the expander tries to reuse them.
5463   for (const IVChain &Chain : IVChainVec) {
5464     if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst()))
5465       Rewriter.setChainedPhi(PN);
5466   }
5467 
5468   // Expand the new value definitions and update the users.
5469   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx)
5470     for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) {
5471       Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], Rewriter, DeadInsts);
5472       Changed = true;
5473     }
5474 
5475   for (const IVChain &Chain : IVChainVec) {
5476     GenerateIVChain(Chain, Rewriter, DeadInsts);
5477     Changed = true;
5478   }
5479   // Clean up after ourselves. This must be done before deleting any
5480   // instructions.
5481   Rewriter.clear();
5482 
5483   Changed |= RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts,
5484                                                                   &TLI, MSSAU);
5485 }
5486 
5487 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE,
5488                          DominatorTree &DT, LoopInfo &LI,
5489                          const TargetTransformInfo &TTI, AssumptionCache &AC,
5490                          TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU)
5491     : IU(IU), SE(SE), DT(DT), LI(LI), AC(AC), TLI(TLI), TTI(TTI), L(L),
5492       MSSAU(MSSAU), FavorBackedgeIndex(EnableBackedgeIndexing &&
5493                                        TTI.shouldFavorBackedgeIndex(L)) {
5494   // If LoopSimplify form is not available, stay out of trouble.
5495   if (!L->isLoopSimplifyForm())
5496     return;
5497 
5498   // If there's no interesting work to be done, bail early.
5499   if (IU.empty()) return;
5500 
5501   // If there's too much analysis to be done, bail early. We won't be able to
5502   // model the problem anyway.
5503   unsigned NumUsers = 0;
5504   for (const IVStrideUse &U : IU) {
5505     if (++NumUsers > MaxIVUsers) {
5506       (void)U;
5507       LLVM_DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U
5508                         << "\n");
5509       return;
5510     }
5511     // Bail out if we have a PHI on an EHPad that gets a value from a
5512     // CatchSwitchInst.  Because the CatchSwitchInst cannot be split, there is
5513     // no good place to stick any instructions.
5514     if (auto *PN = dyn_cast<PHINode>(U.getUser())) {
5515        auto *FirstNonPHI = PN->getParent()->getFirstNonPHI();
5516        if (isa<FuncletPadInst>(FirstNonPHI) ||
5517            isa<CatchSwitchInst>(FirstNonPHI))
5518          for (BasicBlock *PredBB : PN->blocks())
5519            if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI()))
5520              return;
5521     }
5522   }
5523 
5524 #ifndef NDEBUG
5525   // All dominating loops must have preheaders, or SCEVExpander may not be able
5526   // to materialize an AddRecExpr whose Start is an outer AddRecExpr.
5527   //
5528   // IVUsers analysis should only create users that are dominated by simple loop
5529   // headers. Since this loop should dominate all of its users, its user list
5530   // should be empty if this loop itself is not within a simple loop nest.
5531   for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader());
5532        Rung; Rung = Rung->getIDom()) {
5533     BasicBlock *BB = Rung->getBlock();
5534     const Loop *DomLoop = LI.getLoopFor(BB);
5535     if (DomLoop && DomLoop->getHeader() == BB) {
5536       assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest");
5537     }
5538   }
5539 #endif // DEBUG
5540 
5541   LLVM_DEBUG(dbgs() << "\nLSR on loop ";
5542              L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false);
5543              dbgs() << ":\n");
5544 
5545   // First, perform some low-level loop optimizations.
5546   OptimizeShadowIV();
5547   OptimizeLoopTermCond();
5548 
5549   // If loop preparation eliminates all interesting IV users, bail.
5550   if (IU.empty()) return;
5551 
5552   // Skip nested loops until we can model them better with formulae.
5553   if (!L->empty()) {
5554     LLVM_DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n");
5555     return;
5556   }
5557 
5558   // Start collecting data and preparing for the solver.
5559   CollectChains();
5560   CollectInterestingTypesAndFactors();
5561   CollectFixupsAndInitialFormulae();
5562   CollectLoopInvariantFixupsAndFormulae();
5563 
5564   if (Uses.empty())
5565     return;
5566 
5567   LLVM_DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
5568              print_uses(dbgs()));
5569 
5570   // Now use the reuse data to generate a bunch of interesting ways
5571   // to formulate the values needed for the uses.
5572   GenerateAllReuseFormulae();
5573 
5574   FilterOutUndesirableDedicatedRegisters();
5575   NarrowSearchSpaceUsingHeuristics();
5576 
5577   SmallVector<const Formula *, 8> Solution;
5578   Solve(Solution);
5579 
5580   // Release memory that is no longer needed.
5581   Factors.clear();
5582   Types.clear();
5583   RegUses.clear();
5584 
5585   if (Solution.empty())
5586     return;
5587 
5588 #ifndef NDEBUG
5589   // Formulae should be legal.
5590   for (const LSRUse &LU : Uses) {
5591     for (const Formula &F : LU.Formulae)
5592       assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
5593                         F) && "Illegal formula generated!");
5594   };
5595 #endif
5596 
5597   // Now that we've decided what we want, make it so.
5598   ImplementSolution(Solution);
5599 }
5600 
5601 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
5602 void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
5603   if (Factors.empty() && Types.empty()) return;
5604 
5605   OS << "LSR has identified the following interesting factors and types: ";
5606   bool First = true;
5607 
5608   for (int64_t Factor : Factors) {
5609     if (!First) OS << ", ";
5610     First = false;
5611     OS << '*' << Factor;
5612   }
5613 
5614   for (Type *Ty : Types) {
5615     if (!First) OS << ", ";
5616     First = false;
5617     OS << '(' << *Ty << ')';
5618   }
5619   OS << '\n';
5620 }
5621 
5622 void LSRInstance::print_fixups(raw_ostream &OS) const {
5623   OS << "LSR is examining the following fixup sites:\n";
5624   for (const LSRUse &LU : Uses)
5625     for (const LSRFixup &LF : LU.Fixups) {
5626       dbgs() << "  ";
5627       LF.print(OS);
5628       OS << '\n';
5629     }
5630 }
5631 
5632 void LSRInstance::print_uses(raw_ostream &OS) const {
5633   OS << "LSR is examining the following uses:\n";
5634   for (const LSRUse &LU : Uses) {
5635     dbgs() << "  ";
5636     LU.print(OS);
5637     OS << '\n';
5638     for (const Formula &F : LU.Formulae) {
5639       OS << "    ";
5640       F.print(OS);
5641       OS << '\n';
5642     }
5643   }
5644 }
5645 
5646 void LSRInstance::print(raw_ostream &OS) const {
5647   print_factors_and_types(OS);
5648   print_fixups(OS);
5649   print_uses(OS);
5650 }
5651 
5652 LLVM_DUMP_METHOD void LSRInstance::dump() const {
5653   print(errs()); errs() << '\n';
5654 }
5655 #endif
5656 
5657 namespace {
5658 
5659 class LoopStrengthReduce : public LoopPass {
5660 public:
5661   static char ID; // Pass ID, replacement for typeid
5662 
5663   LoopStrengthReduce();
5664 
5665 private:
5666   bool runOnLoop(Loop *L, LPPassManager &LPM) override;
5667   void getAnalysisUsage(AnalysisUsage &AU) const override;
5668 };
5669 
5670 } // end anonymous namespace
5671 
5672 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) {
5673   initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
5674 }
5675 
5676 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
5677   // We split critical edges, so we change the CFG.  However, we do update
5678   // many analyses if they are around.
5679   AU.addPreservedID(LoopSimplifyID);
5680 
5681   AU.addRequired<LoopInfoWrapperPass>();
5682   AU.addPreserved<LoopInfoWrapperPass>();
5683   AU.addRequiredID(LoopSimplifyID);
5684   AU.addRequired<DominatorTreeWrapperPass>();
5685   AU.addPreserved<DominatorTreeWrapperPass>();
5686   AU.addRequired<ScalarEvolutionWrapperPass>();
5687   AU.addPreserved<ScalarEvolutionWrapperPass>();
5688   AU.addRequired<AssumptionCacheTracker>();
5689   AU.addRequired<TargetLibraryInfoWrapperPass>();
5690   // Requiring LoopSimplify a second time here prevents IVUsers from running
5691   // twice, since LoopSimplify was invalidated by running ScalarEvolution.
5692   AU.addRequiredID(LoopSimplifyID);
5693   AU.addRequired<IVUsersWrapperPass>();
5694   AU.addPreserved<IVUsersWrapperPass>();
5695   AU.addRequired<TargetTransformInfoWrapperPass>();
5696   AU.addPreserved<MemorySSAWrapperPass>();
5697 }
5698 
5699 static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE,
5700                                DominatorTree &DT, LoopInfo &LI,
5701                                const TargetTransformInfo &TTI,
5702                                AssumptionCache &AC, TargetLibraryInfo &TLI,
5703                                MemorySSA *MSSA) {
5704 
5705   bool Changed = false;
5706   std::unique_ptr<MemorySSAUpdater> MSSAU;
5707   if (MSSA)
5708     MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
5709 
5710   // Run the main LSR transformation.
5711   Changed |=
5712       LSRInstance(L, IU, SE, DT, LI, TTI, AC, TLI, MSSAU.get()).getChanged();
5713 
5714   // Remove any extra phis created by processing inner loops.
5715   Changed |= DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get());
5716   if (EnablePhiElim && L->isLoopSimplifyForm()) {
5717     SmallVector<WeakTrackingVH, 16> DeadInsts;
5718     const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
5719     SCEVExpander Rewriter(SE, DL, "lsr");
5720 #ifndef NDEBUG
5721     Rewriter.setDebugType(DEBUG_TYPE);
5722 #endif
5723     unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI);
5724     if (numFolded) {
5725       Changed = true;
5726       RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts, &TLI,
5727                                                            MSSAU.get());
5728       DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get());
5729     }
5730   }
5731   return Changed;
5732 }
5733 
5734 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
5735   if (skipLoop(L))
5736     return false;
5737 
5738   auto &IU = getAnalysis<IVUsersWrapperPass>().getIU();
5739   auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
5740   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
5741   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
5742   const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
5743       *L->getHeader()->getParent());
5744   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
5745       *L->getHeader()->getParent());
5746   auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
5747       *L->getHeader()->getParent());
5748   auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>();
5749   MemorySSA *MSSA = nullptr;
5750   if (MSSAAnalysis)
5751     MSSA = &MSSAAnalysis->getMSSA();
5752   return ReduceLoopStrength(L, IU, SE, DT, LI, TTI, AC, TLI, MSSA);
5753 }
5754 
5755 PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM,
5756                                               LoopStandardAnalysisResults &AR,
5757                                               LPMUpdater &) {
5758   if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE,
5759                           AR.DT, AR.LI, AR.TTI, AR.AC, AR.TLI, AR.MSSA))
5760     return PreservedAnalyses::all();
5761 
5762   auto PA = getLoopPassPreservedAnalyses();
5763   if (AR.MSSA)
5764     PA.preserve<MemorySSAAnalysis>();
5765   return PA;
5766 }
5767 
5768 char LoopStrengthReduce::ID = 0;
5769 
5770 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce",
5771                       "Loop Strength Reduction", false, false)
5772 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
5773 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
5774 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
5775 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass)
5776 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
5777 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
5778 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce",
5779                     "Loop Strength Reduction", false, false)
5780 
5781 Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); }
5782