1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This transformation analyzes and transforms the induction variables (and 11 // computations derived from them) into forms suitable for efficient execution 12 // on the target. 13 // 14 // This pass performs a strength reduction on array references inside loops that 15 // have as one or more of their components the loop induction variable, it 16 // rewrites expressions to take advantage of scaled-index addressing modes 17 // available on the target, and it performs a variety of other optimizations 18 // related to loop induction variables. 19 // 20 // Terminology note: this code has a lot of handling for "post-increment" or 21 // "post-inc" users. This is not talking about post-increment addressing modes; 22 // it is instead talking about code like this: 23 // 24 // %i = phi [ 0, %entry ], [ %i.next, %latch ] 25 // ... 26 // %i.next = add %i, 1 27 // %c = icmp eq %i.next, %n 28 // 29 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however 30 // it's useful to think about these as the same register, with some uses using 31 // the value of the register before the add and some using // it after. In this 32 // example, the icmp is a post-increment user, since it uses %i.next, which is 33 // the value of the induction variable after the increment. The other common 34 // case of post-increment users is users outside the loop. 35 // 36 // TODO: More sophistication in the way Formulae are generated and filtered. 37 // 38 // TODO: Handle multiple loops at a time. 39 // 40 // TODO: Should TargetLowering::AddrMode::BaseGV be changed to a ConstantExpr 41 // instead of a GlobalValue? 42 // 43 // TODO: When truncation is free, truncate ICmp users' operands to make it a 44 // smaller encoding (on x86 at least). 45 // 46 // TODO: When a negated register is used by an add (such as in a list of 47 // multiple base registers, or as the increment expression in an addrec), 48 // we may not actually need both reg and (-1 * reg) in registers; the 49 // negation can be implemented by using a sub instead of an add. The 50 // lack of support for taking this into consideration when making 51 // register pressure decisions is partly worked around by the "Special" 52 // use kind. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #define DEBUG_TYPE "loop-reduce" 57 #include "llvm/Transforms/Scalar.h" 58 #include "llvm/Constants.h" 59 #include "llvm/Instructions.h" 60 #include "llvm/IntrinsicInst.h" 61 #include "llvm/DerivedTypes.h" 62 #include "llvm/Analysis/IVUsers.h" 63 #include "llvm/Analysis/Dominators.h" 64 #include "llvm/Analysis/LoopPass.h" 65 #include "llvm/Analysis/ScalarEvolutionExpander.h" 66 #include "llvm/Assembly/Writer.h" 67 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 68 #include "llvm/Transforms/Utils/Local.h" 69 #include "llvm/ADT/SmallBitVector.h" 70 #include "llvm/ADT/SetVector.h" 71 #include "llvm/ADT/DenseSet.h" 72 #include "llvm/Support/Debug.h" 73 #include "llvm/Support/CommandLine.h" 74 #include "llvm/Support/ValueHandle.h" 75 #include "llvm/Support/raw_ostream.h" 76 #include "llvm/Target/TargetLowering.h" 77 #include <algorithm> 78 using namespace llvm; 79 80 static cl::opt<bool> EnableNested( 81 "enable-lsr-nested", cl::Hidden, cl::desc("Enable LSR on nested loops")); 82 83 static cl::opt<bool> EnableRetry( 84 "enable-lsr-retry", cl::Hidden, cl::desc("Enable LSR retry")); 85 86 // Temporary flag to cleanup congruent phis after LSR phi expansion. 87 // It's currently disabled until we can determine whether it's truly useful or 88 // not. The flag should be removed after the v3.0 release. 89 // This is now needed for ivchains. 90 static cl::opt<bool> EnablePhiElim( 91 "enable-lsr-phielim", cl::Hidden, cl::init(true), 92 cl::desc("Enable LSR phi elimination")); 93 94 #ifndef NDEBUG 95 // Stress test IV chain generation. 96 static cl::opt<bool> StressIVChain( 97 "stress-ivchain", cl::Hidden, cl::init(false), 98 cl::desc("Stress test LSR IV chains")); 99 #else 100 static bool StressIVChain = false; 101 #endif 102 103 namespace { 104 105 /// RegSortData - This class holds data which is used to order reuse candidates. 106 class RegSortData { 107 public: 108 /// UsedByIndices - This represents the set of LSRUse indices which reference 109 /// a particular register. 110 SmallBitVector UsedByIndices; 111 112 RegSortData() {} 113 114 void print(raw_ostream &OS) const; 115 void dump() const; 116 }; 117 118 } 119 120 void RegSortData::print(raw_ostream &OS) const { 121 OS << "[NumUses=" << UsedByIndices.count() << ']'; 122 } 123 124 void RegSortData::dump() const { 125 print(errs()); errs() << '\n'; 126 } 127 128 namespace { 129 130 /// RegUseTracker - Map register candidates to information about how they are 131 /// used. 132 class RegUseTracker { 133 typedef DenseMap<const SCEV *, RegSortData> RegUsesTy; 134 135 RegUsesTy RegUsesMap; 136 SmallVector<const SCEV *, 16> RegSequence; 137 138 public: 139 void CountRegister(const SCEV *Reg, size_t LUIdx); 140 void DropRegister(const SCEV *Reg, size_t LUIdx); 141 void SwapAndDropUse(size_t LUIdx, size_t LastLUIdx); 142 143 bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const; 144 145 const SmallBitVector &getUsedByIndices(const SCEV *Reg) const; 146 147 void clear(); 148 149 typedef SmallVectorImpl<const SCEV *>::iterator iterator; 150 typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator; 151 iterator begin() { return RegSequence.begin(); } 152 iterator end() { return RegSequence.end(); } 153 const_iterator begin() const { return RegSequence.begin(); } 154 const_iterator end() const { return RegSequence.end(); } 155 }; 156 157 } 158 159 void 160 RegUseTracker::CountRegister(const SCEV *Reg, size_t LUIdx) { 161 std::pair<RegUsesTy::iterator, bool> Pair = 162 RegUsesMap.insert(std::make_pair(Reg, RegSortData())); 163 RegSortData &RSD = Pair.first->second; 164 if (Pair.second) 165 RegSequence.push_back(Reg); 166 RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1)); 167 RSD.UsedByIndices.set(LUIdx); 168 } 169 170 void 171 RegUseTracker::DropRegister(const SCEV *Reg, size_t LUIdx) { 172 RegUsesTy::iterator It = RegUsesMap.find(Reg); 173 assert(It != RegUsesMap.end()); 174 RegSortData &RSD = It->second; 175 assert(RSD.UsedByIndices.size() > LUIdx); 176 RSD.UsedByIndices.reset(LUIdx); 177 } 178 179 void 180 RegUseTracker::SwapAndDropUse(size_t LUIdx, size_t LastLUIdx) { 181 assert(LUIdx <= LastLUIdx); 182 183 // Update RegUses. The data structure is not optimized for this purpose; 184 // we must iterate through it and update each of the bit vectors. 185 for (RegUsesTy::iterator I = RegUsesMap.begin(), E = RegUsesMap.end(); 186 I != E; ++I) { 187 SmallBitVector &UsedByIndices = I->second.UsedByIndices; 188 if (LUIdx < UsedByIndices.size()) 189 UsedByIndices[LUIdx] = 190 LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : 0; 191 UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx)); 192 } 193 } 194 195 bool 196 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const { 197 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 198 if (I == RegUsesMap.end()) 199 return false; 200 const SmallBitVector &UsedByIndices = I->second.UsedByIndices; 201 int i = UsedByIndices.find_first(); 202 if (i == -1) return false; 203 if ((size_t)i != LUIdx) return true; 204 return UsedByIndices.find_next(i) != -1; 205 } 206 207 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const { 208 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 209 assert(I != RegUsesMap.end() && "Unknown register!"); 210 return I->second.UsedByIndices; 211 } 212 213 void RegUseTracker::clear() { 214 RegUsesMap.clear(); 215 RegSequence.clear(); 216 } 217 218 namespace { 219 220 /// Formula - This class holds information that describes a formula for 221 /// computing satisfying a use. It may include broken-out immediates and scaled 222 /// registers. 223 struct Formula { 224 /// AM - This is used to represent complex addressing, as well as other kinds 225 /// of interesting uses. 226 TargetLowering::AddrMode AM; 227 228 /// BaseRegs - The list of "base" registers for this use. When this is 229 /// non-empty, AM.HasBaseReg should be set to true. 230 SmallVector<const SCEV *, 2> BaseRegs; 231 232 /// ScaledReg - The 'scaled' register for this use. This should be non-null 233 /// when AM.Scale is not zero. 234 const SCEV *ScaledReg; 235 236 /// UnfoldedOffset - An additional constant offset which added near the 237 /// use. This requires a temporary register, but the offset itself can 238 /// live in an add immediate field rather than a register. 239 int64_t UnfoldedOffset; 240 241 Formula() : ScaledReg(0), UnfoldedOffset(0) {} 242 243 void InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE); 244 245 unsigned getNumRegs() const; 246 Type *getType() const; 247 248 void DeleteBaseReg(const SCEV *&S); 249 250 bool referencesReg(const SCEV *S) const; 251 bool hasRegsUsedByUsesOtherThan(size_t LUIdx, 252 const RegUseTracker &RegUses) const; 253 254 void print(raw_ostream &OS) const; 255 void dump() const; 256 }; 257 258 } 259 260 /// DoInitialMatch - Recursion helper for InitialMatch. 261 static void DoInitialMatch(const SCEV *S, Loop *L, 262 SmallVectorImpl<const SCEV *> &Good, 263 SmallVectorImpl<const SCEV *> &Bad, 264 ScalarEvolution &SE) { 265 // Collect expressions which properly dominate the loop header. 266 if (SE.properlyDominates(S, L->getHeader())) { 267 Good.push_back(S); 268 return; 269 } 270 271 // Look at add operands. 272 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 273 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); 274 I != E; ++I) 275 DoInitialMatch(*I, L, Good, Bad, SE); 276 return; 277 } 278 279 // Look at addrec operands. 280 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 281 if (!AR->getStart()->isZero()) { 282 DoInitialMatch(AR->getStart(), L, Good, Bad, SE); 283 DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0), 284 AR->getStepRecurrence(SE), 285 // FIXME: AR->getNoWrapFlags() 286 AR->getLoop(), SCEV::FlagAnyWrap), 287 L, Good, Bad, SE); 288 return; 289 } 290 291 // Handle a multiplication by -1 (negation) if it didn't fold. 292 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) 293 if (Mul->getOperand(0)->isAllOnesValue()) { 294 SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end()); 295 const SCEV *NewMul = SE.getMulExpr(Ops); 296 297 SmallVector<const SCEV *, 4> MyGood; 298 SmallVector<const SCEV *, 4> MyBad; 299 DoInitialMatch(NewMul, L, MyGood, MyBad, SE); 300 const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue( 301 SE.getEffectiveSCEVType(NewMul->getType()))); 302 for (SmallVectorImpl<const SCEV *>::const_iterator I = MyGood.begin(), 303 E = MyGood.end(); I != E; ++I) 304 Good.push_back(SE.getMulExpr(NegOne, *I)); 305 for (SmallVectorImpl<const SCEV *>::const_iterator I = MyBad.begin(), 306 E = MyBad.end(); I != E; ++I) 307 Bad.push_back(SE.getMulExpr(NegOne, *I)); 308 return; 309 } 310 311 // Ok, we can't do anything interesting. Just stuff the whole thing into a 312 // register and hope for the best. 313 Bad.push_back(S); 314 } 315 316 /// InitialMatch - Incorporate loop-variant parts of S into this Formula, 317 /// attempting to keep all loop-invariant and loop-computable values in a 318 /// single base register. 319 void Formula::InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) { 320 SmallVector<const SCEV *, 4> Good; 321 SmallVector<const SCEV *, 4> Bad; 322 DoInitialMatch(S, L, Good, Bad, SE); 323 if (!Good.empty()) { 324 const SCEV *Sum = SE.getAddExpr(Good); 325 if (!Sum->isZero()) 326 BaseRegs.push_back(Sum); 327 AM.HasBaseReg = true; 328 } 329 if (!Bad.empty()) { 330 const SCEV *Sum = SE.getAddExpr(Bad); 331 if (!Sum->isZero()) 332 BaseRegs.push_back(Sum); 333 AM.HasBaseReg = true; 334 } 335 } 336 337 /// getNumRegs - Return the total number of register operands used by this 338 /// formula. This does not include register uses implied by non-constant 339 /// addrec strides. 340 unsigned Formula::getNumRegs() const { 341 return !!ScaledReg + BaseRegs.size(); 342 } 343 344 /// getType - Return the type of this formula, if it has one, or null 345 /// otherwise. This type is meaningless except for the bit size. 346 Type *Formula::getType() const { 347 return !BaseRegs.empty() ? BaseRegs.front()->getType() : 348 ScaledReg ? ScaledReg->getType() : 349 AM.BaseGV ? AM.BaseGV->getType() : 350 0; 351 } 352 353 /// DeleteBaseReg - Delete the given base reg from the BaseRegs list. 354 void Formula::DeleteBaseReg(const SCEV *&S) { 355 if (&S != &BaseRegs.back()) 356 std::swap(S, BaseRegs.back()); 357 BaseRegs.pop_back(); 358 } 359 360 /// referencesReg - Test if this formula references the given register. 361 bool Formula::referencesReg(const SCEV *S) const { 362 return S == ScaledReg || 363 std::find(BaseRegs.begin(), BaseRegs.end(), S) != BaseRegs.end(); 364 } 365 366 /// hasRegsUsedByUsesOtherThan - Test whether this formula uses registers 367 /// which are used by uses other than the use with the given index. 368 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx, 369 const RegUseTracker &RegUses) const { 370 if (ScaledReg) 371 if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx)) 372 return true; 373 for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(), 374 E = BaseRegs.end(); I != E; ++I) 375 if (RegUses.isRegUsedByUsesOtherThan(*I, LUIdx)) 376 return true; 377 return false; 378 } 379 380 void Formula::print(raw_ostream &OS) const { 381 bool First = true; 382 if (AM.BaseGV) { 383 if (!First) OS << " + "; else First = false; 384 WriteAsOperand(OS, AM.BaseGV, /*PrintType=*/false); 385 } 386 if (AM.BaseOffs != 0) { 387 if (!First) OS << " + "; else First = false; 388 OS << AM.BaseOffs; 389 } 390 for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(), 391 E = BaseRegs.end(); I != E; ++I) { 392 if (!First) OS << " + "; else First = false; 393 OS << "reg(" << **I << ')'; 394 } 395 if (AM.HasBaseReg && BaseRegs.empty()) { 396 if (!First) OS << " + "; else First = false; 397 OS << "**error: HasBaseReg**"; 398 } else if (!AM.HasBaseReg && !BaseRegs.empty()) { 399 if (!First) OS << " + "; else First = false; 400 OS << "**error: !HasBaseReg**"; 401 } 402 if (AM.Scale != 0) { 403 if (!First) OS << " + "; else First = false; 404 OS << AM.Scale << "*reg("; 405 if (ScaledReg) 406 OS << *ScaledReg; 407 else 408 OS << "<unknown>"; 409 OS << ')'; 410 } 411 if (UnfoldedOffset != 0) { 412 if (!First) OS << " + "; else First = false; 413 OS << "imm(" << UnfoldedOffset << ')'; 414 } 415 } 416 417 void Formula::dump() const { 418 print(errs()); errs() << '\n'; 419 } 420 421 /// isAddRecSExtable - Return true if the given addrec can be sign-extended 422 /// without changing its value. 423 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 424 Type *WideTy = 425 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1); 426 return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy)); 427 } 428 429 /// isAddSExtable - Return true if the given add can be sign-extended 430 /// without changing its value. 431 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) { 432 Type *WideTy = 433 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1); 434 return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy)); 435 } 436 437 /// isMulSExtable - Return true if the given mul can be sign-extended 438 /// without changing its value. 439 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) { 440 Type *WideTy = 441 IntegerType::get(SE.getContext(), 442 SE.getTypeSizeInBits(M->getType()) * M->getNumOperands()); 443 return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy)); 444 } 445 446 /// getExactSDiv - Return an expression for LHS /s RHS, if it can be determined 447 /// and if the remainder is known to be zero, or null otherwise. If 448 /// IgnoreSignificantBits is true, expressions like (X * Y) /s Y are simplified 449 /// to Y, ignoring that the multiplication may overflow, which is useful when 450 /// the result will be used in a context where the most significant bits are 451 /// ignored. 452 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS, 453 ScalarEvolution &SE, 454 bool IgnoreSignificantBits = false) { 455 // Handle the trivial case, which works for any SCEV type. 456 if (LHS == RHS) 457 return SE.getConstant(LHS->getType(), 1); 458 459 // Handle a few RHS special cases. 460 const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS); 461 if (RC) { 462 const APInt &RA = RC->getValue()->getValue(); 463 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do 464 // some folding. 465 if (RA.isAllOnesValue()) 466 return SE.getMulExpr(LHS, RC); 467 // Handle x /s 1 as x. 468 if (RA == 1) 469 return LHS; 470 } 471 472 // Check for a division of a constant by a constant. 473 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) { 474 if (!RC) 475 return 0; 476 const APInt &LA = C->getValue()->getValue(); 477 const APInt &RA = RC->getValue()->getValue(); 478 if (LA.srem(RA) != 0) 479 return 0; 480 return SE.getConstant(LA.sdiv(RA)); 481 } 482 483 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow. 484 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) { 485 if (IgnoreSignificantBits || isAddRecSExtable(AR, SE)) { 486 const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE, 487 IgnoreSignificantBits); 488 if (!Step) return 0; 489 const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE, 490 IgnoreSignificantBits); 491 if (!Start) return 0; 492 // FlagNW is independent of the start value, step direction, and is 493 // preserved with smaller magnitude steps. 494 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 495 return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap); 496 } 497 return 0; 498 } 499 500 // Distribute the sdiv over add operands, if the add doesn't overflow. 501 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) { 502 if (IgnoreSignificantBits || isAddSExtable(Add, SE)) { 503 SmallVector<const SCEV *, 8> Ops; 504 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); 505 I != E; ++I) { 506 const SCEV *Op = getExactSDiv(*I, RHS, SE, 507 IgnoreSignificantBits); 508 if (!Op) return 0; 509 Ops.push_back(Op); 510 } 511 return SE.getAddExpr(Ops); 512 } 513 return 0; 514 } 515 516 // Check for a multiply operand that we can pull RHS out of. 517 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) { 518 if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) { 519 SmallVector<const SCEV *, 4> Ops; 520 bool Found = false; 521 for (SCEVMulExpr::op_iterator I = Mul->op_begin(), E = Mul->op_end(); 522 I != E; ++I) { 523 const SCEV *S = *I; 524 if (!Found) 525 if (const SCEV *Q = getExactSDiv(S, RHS, SE, 526 IgnoreSignificantBits)) { 527 S = Q; 528 Found = true; 529 } 530 Ops.push_back(S); 531 } 532 return Found ? SE.getMulExpr(Ops) : 0; 533 } 534 return 0; 535 } 536 537 // Otherwise we don't know. 538 return 0; 539 } 540 541 /// ExtractImmediate - If S involves the addition of a constant integer value, 542 /// return that integer value, and mutate S to point to a new SCEV with that 543 /// value excluded. 544 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) { 545 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 546 if (C->getValue()->getValue().getMinSignedBits() <= 64) { 547 S = SE.getConstant(C->getType(), 0); 548 return C->getValue()->getSExtValue(); 549 } 550 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 551 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 552 int64_t Result = ExtractImmediate(NewOps.front(), SE); 553 if (Result != 0) 554 S = SE.getAddExpr(NewOps); 555 return Result; 556 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 557 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 558 int64_t Result = ExtractImmediate(NewOps.front(), SE); 559 if (Result != 0) 560 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 561 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 562 SCEV::FlagAnyWrap); 563 return Result; 564 } 565 return 0; 566 } 567 568 /// ExtractSymbol - If S involves the addition of a GlobalValue address, 569 /// return that symbol, and mutate S to point to a new SCEV with that 570 /// value excluded. 571 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) { 572 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 573 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) { 574 S = SE.getConstant(GV->getType(), 0); 575 return GV; 576 } 577 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 578 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 579 GlobalValue *Result = ExtractSymbol(NewOps.back(), SE); 580 if (Result) 581 S = SE.getAddExpr(NewOps); 582 return Result; 583 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 584 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 585 GlobalValue *Result = ExtractSymbol(NewOps.front(), SE); 586 if (Result) 587 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 588 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 589 SCEV::FlagAnyWrap); 590 return Result; 591 } 592 return 0; 593 } 594 595 /// isAddressUse - Returns true if the specified instruction is using the 596 /// specified value as an address. 597 static bool isAddressUse(Instruction *Inst, Value *OperandVal) { 598 bool isAddress = isa<LoadInst>(Inst); 599 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 600 if (SI->getOperand(1) == OperandVal) 601 isAddress = true; 602 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 603 // Addressing modes can also be folded into prefetches and a variety 604 // of intrinsics. 605 switch (II->getIntrinsicID()) { 606 default: break; 607 case Intrinsic::prefetch: 608 case Intrinsic::x86_sse_storeu_ps: 609 case Intrinsic::x86_sse2_storeu_pd: 610 case Intrinsic::x86_sse2_storeu_dq: 611 case Intrinsic::x86_sse2_storel_dq: 612 if (II->getArgOperand(0) == OperandVal) 613 isAddress = true; 614 break; 615 } 616 } 617 return isAddress; 618 } 619 620 /// getAccessType - Return the type of the memory being accessed. 621 static Type *getAccessType(const Instruction *Inst) { 622 Type *AccessTy = Inst->getType(); 623 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) 624 AccessTy = SI->getOperand(0)->getType(); 625 else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 626 // Addressing modes can also be folded into prefetches and a variety 627 // of intrinsics. 628 switch (II->getIntrinsicID()) { 629 default: break; 630 case Intrinsic::x86_sse_storeu_ps: 631 case Intrinsic::x86_sse2_storeu_pd: 632 case Intrinsic::x86_sse2_storeu_dq: 633 case Intrinsic::x86_sse2_storel_dq: 634 AccessTy = II->getArgOperand(0)->getType(); 635 break; 636 } 637 } 638 639 // All pointers have the same requirements, so canonicalize them to an 640 // arbitrary pointer type to minimize variation. 641 if (PointerType *PTy = dyn_cast<PointerType>(AccessTy)) 642 AccessTy = PointerType::get(IntegerType::get(PTy->getContext(), 1), 643 PTy->getAddressSpace()); 644 645 return AccessTy; 646 } 647 648 /// isExistingPhi - Return true if this AddRec is already a phi in its loop. 649 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 650 for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin(); 651 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 652 if (SE.isSCEVable(PN->getType()) && 653 (SE.getEffectiveSCEVType(PN->getType()) == 654 SE.getEffectiveSCEVType(AR->getType())) && 655 SE.getSCEV(PN) == AR) 656 return true; 657 } 658 return false; 659 } 660 661 /// Check if expanding this expression is likely to incur significant cost. This 662 /// is tricky because SCEV doesn't track which expressions are actually computed 663 /// by the current IR. 664 /// 665 /// We currently allow expansion of IV increments that involve adds, 666 /// multiplication by constants, and AddRecs from existing phis. 667 /// 668 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an 669 /// obvious multiple of the UDivExpr. 670 static bool isHighCostExpansion(const SCEV *S, 671 SmallPtrSet<const SCEV*, 8> &Processed, 672 ScalarEvolution &SE) { 673 // Zero/One operand expressions 674 switch (S->getSCEVType()) { 675 case scUnknown: 676 case scConstant: 677 return false; 678 case scTruncate: 679 return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(), 680 Processed, SE); 681 case scZeroExtend: 682 return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(), 683 Processed, SE); 684 case scSignExtend: 685 return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(), 686 Processed, SE); 687 } 688 689 if (!Processed.insert(S)) 690 return false; 691 692 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 693 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); 694 I != E; ++I) { 695 if (isHighCostExpansion(*I, Processed, SE)) 696 return true; 697 } 698 return false; 699 } 700 701 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 702 if (Mul->getNumOperands() == 2) { 703 // Multiplication by a constant is ok 704 if (isa<SCEVConstant>(Mul->getOperand(0))) 705 return isHighCostExpansion(Mul->getOperand(1), Processed, SE); 706 707 // If we have the value of one operand, check if an existing 708 // multiplication already generates this expression. 709 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) { 710 Value *UVal = U->getValue(); 711 for (Value::use_iterator UI = UVal->use_begin(), UE = UVal->use_end(); 712 UI != UE; ++UI) { 713 Instruction *User = cast<Instruction>(*UI); 714 if (User->getOpcode() == Instruction::Mul 715 && SE.isSCEVable(User->getType())) { 716 return SE.getSCEV(User) == Mul; 717 } 718 } 719 } 720 } 721 } 722 723 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 724 if (isExistingPhi(AR, SE)) 725 return false; 726 } 727 728 // Fow now, consider any other type of expression (div/mul/min/max) high cost. 729 return true; 730 } 731 732 /// DeleteTriviallyDeadInstructions - If any of the instructions is the 733 /// specified set are trivially dead, delete them and see if this makes any of 734 /// their operands subsequently dead. 735 static bool 736 DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) { 737 bool Changed = false; 738 739 while (!DeadInsts.empty()) { 740 Instruction *I = dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()); 741 742 if (I == 0 || !isInstructionTriviallyDead(I)) 743 continue; 744 745 for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) 746 if (Instruction *U = dyn_cast<Instruction>(*OI)) { 747 *OI = 0; 748 if (U->use_empty()) 749 DeadInsts.push_back(U); 750 } 751 752 I->eraseFromParent(); 753 Changed = true; 754 } 755 756 return Changed; 757 } 758 759 namespace { 760 761 /// Cost - This class is used to measure and compare candidate formulae. 762 class Cost { 763 /// TODO: Some of these could be merged. Also, a lexical ordering 764 /// isn't always optimal. 765 unsigned NumRegs; 766 unsigned AddRecCost; 767 unsigned NumIVMuls; 768 unsigned NumBaseAdds; 769 unsigned ImmCost; 770 unsigned SetupCost; 771 772 public: 773 Cost() 774 : NumRegs(0), AddRecCost(0), NumIVMuls(0), NumBaseAdds(0), ImmCost(0), 775 SetupCost(0) {} 776 777 bool operator<(const Cost &Other) const; 778 779 void Loose(); 780 781 #ifndef NDEBUG 782 // Once any of the metrics loses, they must all remain losers. 783 bool isValid() { 784 return ((NumRegs | AddRecCost | NumIVMuls | NumBaseAdds 785 | ImmCost | SetupCost) != ~0u) 786 || ((NumRegs & AddRecCost & NumIVMuls & NumBaseAdds 787 & ImmCost & SetupCost) == ~0u); 788 } 789 #endif 790 791 bool isLoser() { 792 assert(isValid() && "invalid cost"); 793 return NumRegs == ~0u; 794 } 795 796 void RateFormula(const Formula &F, 797 SmallPtrSet<const SCEV *, 16> &Regs, 798 const DenseSet<const SCEV *> &VisitedRegs, 799 const Loop *L, 800 const SmallVectorImpl<int64_t> &Offsets, 801 ScalarEvolution &SE, DominatorTree &DT, 802 SmallPtrSet<const SCEV *, 16> *LoserRegs = 0); 803 804 void print(raw_ostream &OS) const; 805 void dump() const; 806 807 private: 808 void RateRegister(const SCEV *Reg, 809 SmallPtrSet<const SCEV *, 16> &Regs, 810 const Loop *L, 811 ScalarEvolution &SE, DominatorTree &DT); 812 void RatePrimaryRegister(const SCEV *Reg, 813 SmallPtrSet<const SCEV *, 16> &Regs, 814 const Loop *L, 815 ScalarEvolution &SE, DominatorTree &DT, 816 SmallPtrSet<const SCEV *, 16> *LoserRegs); 817 }; 818 819 } 820 821 /// RateRegister - Tally up interesting quantities from the given register. 822 void Cost::RateRegister(const SCEV *Reg, 823 SmallPtrSet<const SCEV *, 16> &Regs, 824 const Loop *L, 825 ScalarEvolution &SE, DominatorTree &DT) { 826 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) { 827 if (AR->getLoop() == L) 828 AddRecCost += 1; /// TODO: This should be a function of the stride. 829 830 // If this is an addrec for another loop, don't second-guess its addrec phi 831 // nodes. LSR isn't currently smart enough to reason about more than one 832 // loop at a time. LSR has either already run on inner loops, will not run 833 // on other loops, and cannot be expected to change sibling loops. If the 834 // AddRec exists, consider it's register free and leave it alone. Otherwise, 835 // do not consider this formula at all. 836 else if (!EnableNested || L->contains(AR->getLoop()) || 837 (!AR->getLoop()->contains(L) && 838 DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))) { 839 if (isExistingPhi(AR, SE)) 840 return; 841 842 // For !EnableNested, never rewrite IVs in other loops. 843 if (!EnableNested) { 844 Loose(); 845 return; 846 } 847 // If this isn't one of the addrecs that the loop already has, it 848 // would require a costly new phi and add. TODO: This isn't 849 // precisely modeled right now. 850 ++NumBaseAdds; 851 if (!Regs.count(AR->getStart())) { 852 RateRegister(AR->getStart(), Regs, L, SE, DT); 853 if (isLoser()) 854 return; 855 } 856 } 857 858 // Add the step value register, if it needs one. 859 // TODO: The non-affine case isn't precisely modeled here. 860 if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) { 861 if (!Regs.count(AR->getOperand(1))) { 862 RateRegister(AR->getOperand(1), Regs, L, SE, DT); 863 if (isLoser()) 864 return; 865 } 866 } 867 } 868 ++NumRegs; 869 870 // Rough heuristic; favor registers which don't require extra setup 871 // instructions in the preheader. 872 if (!isa<SCEVUnknown>(Reg) && 873 !isa<SCEVConstant>(Reg) && 874 !(isa<SCEVAddRecExpr>(Reg) && 875 (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) || 876 isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart())))) 877 ++SetupCost; 878 879 NumIVMuls += isa<SCEVMulExpr>(Reg) && 880 SE.hasComputableLoopEvolution(Reg, L); 881 } 882 883 /// RatePrimaryRegister - Record this register in the set. If we haven't seen it 884 /// before, rate it. Optional LoserRegs provides a way to declare any formula 885 /// that refers to one of those regs an instant loser. 886 void Cost::RatePrimaryRegister(const SCEV *Reg, 887 SmallPtrSet<const SCEV *, 16> &Regs, 888 const Loop *L, 889 ScalarEvolution &SE, DominatorTree &DT, 890 SmallPtrSet<const SCEV *, 16> *LoserRegs) { 891 if (LoserRegs && LoserRegs->count(Reg)) { 892 Loose(); 893 return; 894 } 895 if (Regs.insert(Reg)) { 896 RateRegister(Reg, Regs, L, SE, DT); 897 if (isLoser()) 898 LoserRegs->insert(Reg); 899 } 900 } 901 902 void Cost::RateFormula(const Formula &F, 903 SmallPtrSet<const SCEV *, 16> &Regs, 904 const DenseSet<const SCEV *> &VisitedRegs, 905 const Loop *L, 906 const SmallVectorImpl<int64_t> &Offsets, 907 ScalarEvolution &SE, DominatorTree &DT, 908 SmallPtrSet<const SCEV *, 16> *LoserRegs) { 909 // Tally up the registers. 910 if (const SCEV *ScaledReg = F.ScaledReg) { 911 if (VisitedRegs.count(ScaledReg)) { 912 Loose(); 913 return; 914 } 915 RatePrimaryRegister(ScaledReg, Regs, L, SE, DT, LoserRegs); 916 if (isLoser()) 917 return; 918 } 919 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(), 920 E = F.BaseRegs.end(); I != E; ++I) { 921 const SCEV *BaseReg = *I; 922 if (VisitedRegs.count(BaseReg)) { 923 Loose(); 924 return; 925 } 926 RatePrimaryRegister(BaseReg, Regs, L, SE, DT, LoserRegs); 927 if (isLoser()) 928 return; 929 } 930 931 // Determine how many (unfolded) adds we'll need inside the loop. 932 size_t NumBaseParts = F.BaseRegs.size() + (F.UnfoldedOffset != 0); 933 if (NumBaseParts > 1) 934 NumBaseAdds += NumBaseParts - 1; 935 936 // Tally up the non-zero immediates. 937 for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(), 938 E = Offsets.end(); I != E; ++I) { 939 int64_t Offset = (uint64_t)*I + F.AM.BaseOffs; 940 if (F.AM.BaseGV) 941 ImmCost += 64; // Handle symbolic values conservatively. 942 // TODO: This should probably be the pointer size. 943 else if (Offset != 0) 944 ImmCost += APInt(64, Offset, true).getMinSignedBits(); 945 } 946 assert(isValid() && "invalid cost"); 947 } 948 949 /// Loose - Set this cost to a losing value. 950 void Cost::Loose() { 951 NumRegs = ~0u; 952 AddRecCost = ~0u; 953 NumIVMuls = ~0u; 954 NumBaseAdds = ~0u; 955 ImmCost = ~0u; 956 SetupCost = ~0u; 957 } 958 959 /// operator< - Choose the lower cost. 960 bool Cost::operator<(const Cost &Other) const { 961 if (NumRegs != Other.NumRegs) 962 return NumRegs < Other.NumRegs; 963 if (AddRecCost != Other.AddRecCost) 964 return AddRecCost < Other.AddRecCost; 965 if (NumIVMuls != Other.NumIVMuls) 966 return NumIVMuls < Other.NumIVMuls; 967 if (NumBaseAdds != Other.NumBaseAdds) 968 return NumBaseAdds < Other.NumBaseAdds; 969 if (ImmCost != Other.ImmCost) 970 return ImmCost < Other.ImmCost; 971 if (SetupCost != Other.SetupCost) 972 return SetupCost < Other.SetupCost; 973 return false; 974 } 975 976 void Cost::print(raw_ostream &OS) const { 977 OS << NumRegs << " reg" << (NumRegs == 1 ? "" : "s"); 978 if (AddRecCost != 0) 979 OS << ", with addrec cost " << AddRecCost; 980 if (NumIVMuls != 0) 981 OS << ", plus " << NumIVMuls << " IV mul" << (NumIVMuls == 1 ? "" : "s"); 982 if (NumBaseAdds != 0) 983 OS << ", plus " << NumBaseAdds << " base add" 984 << (NumBaseAdds == 1 ? "" : "s"); 985 if (ImmCost != 0) 986 OS << ", plus " << ImmCost << " imm cost"; 987 if (SetupCost != 0) 988 OS << ", plus " << SetupCost << " setup cost"; 989 } 990 991 void Cost::dump() const { 992 print(errs()); errs() << '\n'; 993 } 994 995 namespace { 996 997 /// LSRFixup - An operand value in an instruction which is to be replaced 998 /// with some equivalent, possibly strength-reduced, replacement. 999 struct LSRFixup { 1000 /// UserInst - The instruction which will be updated. 1001 Instruction *UserInst; 1002 1003 /// OperandValToReplace - The operand of the instruction which will 1004 /// be replaced. The operand may be used more than once; every instance 1005 /// will be replaced. 1006 Value *OperandValToReplace; 1007 1008 /// PostIncLoops - If this user is to use the post-incremented value of an 1009 /// induction variable, this variable is non-null and holds the loop 1010 /// associated with the induction variable. 1011 PostIncLoopSet PostIncLoops; 1012 1013 /// LUIdx - The index of the LSRUse describing the expression which 1014 /// this fixup needs, minus an offset (below). 1015 size_t LUIdx; 1016 1017 /// Offset - A constant offset to be added to the LSRUse expression. 1018 /// This allows multiple fixups to share the same LSRUse with different 1019 /// offsets, for example in an unrolled loop. 1020 int64_t Offset; 1021 1022 bool isUseFullyOutsideLoop(const Loop *L) const; 1023 1024 LSRFixup(); 1025 1026 void print(raw_ostream &OS) const; 1027 void dump() const; 1028 }; 1029 1030 } 1031 1032 LSRFixup::LSRFixup() 1033 : UserInst(0), OperandValToReplace(0), LUIdx(~size_t(0)), Offset(0) {} 1034 1035 /// isUseFullyOutsideLoop - Test whether this fixup always uses its 1036 /// value outside of the given loop. 1037 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const { 1038 // PHI nodes use their value in their incoming blocks. 1039 if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) { 1040 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1041 if (PN->getIncomingValue(i) == OperandValToReplace && 1042 L->contains(PN->getIncomingBlock(i))) 1043 return false; 1044 return true; 1045 } 1046 1047 return !L->contains(UserInst); 1048 } 1049 1050 void LSRFixup::print(raw_ostream &OS) const { 1051 OS << "UserInst="; 1052 // Store is common and interesting enough to be worth special-casing. 1053 if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) { 1054 OS << "store "; 1055 WriteAsOperand(OS, Store->getOperand(0), /*PrintType=*/false); 1056 } else if (UserInst->getType()->isVoidTy()) 1057 OS << UserInst->getOpcodeName(); 1058 else 1059 WriteAsOperand(OS, UserInst, /*PrintType=*/false); 1060 1061 OS << ", OperandValToReplace="; 1062 WriteAsOperand(OS, OperandValToReplace, /*PrintType=*/false); 1063 1064 for (PostIncLoopSet::const_iterator I = PostIncLoops.begin(), 1065 E = PostIncLoops.end(); I != E; ++I) { 1066 OS << ", PostIncLoop="; 1067 WriteAsOperand(OS, (*I)->getHeader(), /*PrintType=*/false); 1068 } 1069 1070 if (LUIdx != ~size_t(0)) 1071 OS << ", LUIdx=" << LUIdx; 1072 1073 if (Offset != 0) 1074 OS << ", Offset=" << Offset; 1075 } 1076 1077 void LSRFixup::dump() const { 1078 print(errs()); errs() << '\n'; 1079 } 1080 1081 namespace { 1082 1083 /// UniquifierDenseMapInfo - A DenseMapInfo implementation for holding 1084 /// DenseMaps and DenseSets of sorted SmallVectors of const SCEV*. 1085 struct UniquifierDenseMapInfo { 1086 static SmallVector<const SCEV *, 2> getEmptyKey() { 1087 SmallVector<const SCEV *, 2> V; 1088 V.push_back(reinterpret_cast<const SCEV *>(-1)); 1089 return V; 1090 } 1091 1092 static SmallVector<const SCEV *, 2> getTombstoneKey() { 1093 SmallVector<const SCEV *, 2> V; 1094 V.push_back(reinterpret_cast<const SCEV *>(-2)); 1095 return V; 1096 } 1097 1098 static unsigned getHashValue(const SmallVector<const SCEV *, 2> &V) { 1099 unsigned Result = 0; 1100 for (SmallVectorImpl<const SCEV *>::const_iterator I = V.begin(), 1101 E = V.end(); I != E; ++I) 1102 Result ^= DenseMapInfo<const SCEV *>::getHashValue(*I); 1103 return Result; 1104 } 1105 1106 static bool isEqual(const SmallVector<const SCEV *, 2> &LHS, 1107 const SmallVector<const SCEV *, 2> &RHS) { 1108 return LHS == RHS; 1109 } 1110 }; 1111 1112 /// LSRUse - This class holds the state that LSR keeps for each use in 1113 /// IVUsers, as well as uses invented by LSR itself. It includes information 1114 /// about what kinds of things can be folded into the user, information about 1115 /// the user itself, and information about how the use may be satisfied. 1116 /// TODO: Represent multiple users of the same expression in common? 1117 class LSRUse { 1118 DenseSet<SmallVector<const SCEV *, 2>, UniquifierDenseMapInfo> Uniquifier; 1119 1120 public: 1121 /// KindType - An enum for a kind of use, indicating what types of 1122 /// scaled and immediate operands it might support. 1123 enum KindType { 1124 Basic, ///< A normal use, with no folding. 1125 Special, ///< A special case of basic, allowing -1 scales. 1126 Address, ///< An address use; folding according to TargetLowering 1127 ICmpZero ///< An equality icmp with both operands folded into one. 1128 // TODO: Add a generic icmp too? 1129 }; 1130 1131 KindType Kind; 1132 Type *AccessTy; 1133 1134 SmallVector<int64_t, 8> Offsets; 1135 int64_t MinOffset; 1136 int64_t MaxOffset; 1137 1138 /// AllFixupsOutsideLoop - This records whether all of the fixups using this 1139 /// LSRUse are outside of the loop, in which case some special-case heuristics 1140 /// may be used. 1141 bool AllFixupsOutsideLoop; 1142 1143 /// WidestFixupType - This records the widest use type for any fixup using 1144 /// this LSRUse. FindUseWithSimilarFormula can't consider uses with different 1145 /// max fixup widths to be equivalent, because the narrower one may be relying 1146 /// on the implicit truncation to truncate away bogus bits. 1147 Type *WidestFixupType; 1148 1149 /// Formulae - A list of ways to build a value that can satisfy this user. 1150 /// After the list is populated, one of these is selected heuristically and 1151 /// used to formulate a replacement for OperandValToReplace in UserInst. 1152 SmallVector<Formula, 12> Formulae; 1153 1154 /// Regs - The set of register candidates used by all formulae in this LSRUse. 1155 SmallPtrSet<const SCEV *, 4> Regs; 1156 1157 LSRUse(KindType K, Type *T) : Kind(K), AccessTy(T), 1158 MinOffset(INT64_MAX), 1159 MaxOffset(INT64_MIN), 1160 AllFixupsOutsideLoop(true), 1161 WidestFixupType(0) {} 1162 1163 bool HasFormulaWithSameRegs(const Formula &F) const; 1164 bool InsertFormula(const Formula &F); 1165 void DeleteFormula(Formula &F); 1166 void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses); 1167 1168 void print(raw_ostream &OS) const; 1169 void dump() const; 1170 }; 1171 1172 } 1173 1174 /// HasFormula - Test whether this use as a formula which has the same 1175 /// registers as the given formula. 1176 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const { 1177 SmallVector<const SCEV *, 2> Key = F.BaseRegs; 1178 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1179 // Unstable sort by host order ok, because this is only used for uniquifying. 1180 std::sort(Key.begin(), Key.end()); 1181 return Uniquifier.count(Key); 1182 } 1183 1184 /// InsertFormula - If the given formula has not yet been inserted, add it to 1185 /// the list, and return true. Return false otherwise. 1186 bool LSRUse::InsertFormula(const Formula &F) { 1187 SmallVector<const SCEV *, 2> Key = F.BaseRegs; 1188 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1189 // Unstable sort by host order ok, because this is only used for uniquifying. 1190 std::sort(Key.begin(), Key.end()); 1191 1192 if (!Uniquifier.insert(Key).second) 1193 return false; 1194 1195 // Using a register to hold the value of 0 is not profitable. 1196 assert((!F.ScaledReg || !F.ScaledReg->isZero()) && 1197 "Zero allocated in a scaled register!"); 1198 #ifndef NDEBUG 1199 for (SmallVectorImpl<const SCEV *>::const_iterator I = 1200 F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) 1201 assert(!(*I)->isZero() && "Zero allocated in a base register!"); 1202 #endif 1203 1204 // Add the formula to the list. 1205 Formulae.push_back(F); 1206 1207 // Record registers now being used by this use. 1208 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1209 1210 return true; 1211 } 1212 1213 /// DeleteFormula - Remove the given formula from this use's list. 1214 void LSRUse::DeleteFormula(Formula &F) { 1215 if (&F != &Formulae.back()) 1216 std::swap(F, Formulae.back()); 1217 Formulae.pop_back(); 1218 } 1219 1220 /// RecomputeRegs - Recompute the Regs field, and update RegUses. 1221 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) { 1222 // Now that we've filtered out some formulae, recompute the Regs set. 1223 SmallPtrSet<const SCEV *, 4> OldRegs = Regs; 1224 Regs.clear(); 1225 for (SmallVectorImpl<Formula>::const_iterator I = Formulae.begin(), 1226 E = Formulae.end(); I != E; ++I) { 1227 const Formula &F = *I; 1228 if (F.ScaledReg) Regs.insert(F.ScaledReg); 1229 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1230 } 1231 1232 // Update the RegTracker. 1233 for (SmallPtrSet<const SCEV *, 4>::iterator I = OldRegs.begin(), 1234 E = OldRegs.end(); I != E; ++I) 1235 if (!Regs.count(*I)) 1236 RegUses.DropRegister(*I, LUIdx); 1237 } 1238 1239 void LSRUse::print(raw_ostream &OS) const { 1240 OS << "LSR Use: Kind="; 1241 switch (Kind) { 1242 case Basic: OS << "Basic"; break; 1243 case Special: OS << "Special"; break; 1244 case ICmpZero: OS << "ICmpZero"; break; 1245 case Address: 1246 OS << "Address of "; 1247 if (AccessTy->isPointerTy()) 1248 OS << "pointer"; // the full pointer type could be really verbose 1249 else 1250 OS << *AccessTy; 1251 } 1252 1253 OS << ", Offsets={"; 1254 for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(), 1255 E = Offsets.end(); I != E; ++I) { 1256 OS << *I; 1257 if (llvm::next(I) != E) 1258 OS << ','; 1259 } 1260 OS << '}'; 1261 1262 if (AllFixupsOutsideLoop) 1263 OS << ", all-fixups-outside-loop"; 1264 1265 if (WidestFixupType) 1266 OS << ", widest fixup type: " << *WidestFixupType; 1267 } 1268 1269 void LSRUse::dump() const { 1270 print(errs()); errs() << '\n'; 1271 } 1272 1273 /// isLegalUse - Test whether the use described by AM is "legal", meaning it can 1274 /// be completely folded into the user instruction at isel time. This includes 1275 /// address-mode folding and special icmp tricks. 1276 static bool isLegalUse(const TargetLowering::AddrMode &AM, 1277 LSRUse::KindType Kind, Type *AccessTy, 1278 const TargetLowering *TLI) { 1279 switch (Kind) { 1280 case LSRUse::Address: 1281 // If we have low-level target information, ask the target if it can 1282 // completely fold this address. 1283 if (TLI) return TLI->isLegalAddressingMode(AM, AccessTy); 1284 1285 // Otherwise, just guess that reg+reg addressing is legal. 1286 return !AM.BaseGV && AM.BaseOffs == 0 && AM.Scale <= 1; 1287 1288 case LSRUse::ICmpZero: 1289 // There's not even a target hook for querying whether it would be legal to 1290 // fold a GV into an ICmp. 1291 if (AM.BaseGV) 1292 return false; 1293 1294 // ICmp only has two operands; don't allow more than two non-trivial parts. 1295 if (AM.Scale != 0 && AM.HasBaseReg && AM.BaseOffs != 0) 1296 return false; 1297 1298 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by 1299 // putting the scaled register in the other operand of the icmp. 1300 if (AM.Scale != 0 && AM.Scale != -1) 1301 return false; 1302 1303 // If we have low-level target information, ask the target if it can fold an 1304 // integer immediate on an icmp. 1305 if (AM.BaseOffs != 0) { 1306 if (TLI) return TLI->isLegalICmpImmediate(-(uint64_t)AM.BaseOffs); 1307 return false; 1308 } 1309 1310 return true; 1311 1312 case LSRUse::Basic: 1313 // Only handle single-register values. 1314 return !AM.BaseGV && AM.Scale == 0 && AM.BaseOffs == 0; 1315 1316 case LSRUse::Special: 1317 // Only handle -1 scales, or no scale. 1318 return AM.Scale == 0 || AM.Scale == -1; 1319 } 1320 1321 return false; 1322 } 1323 1324 static bool isLegalUse(TargetLowering::AddrMode AM, 1325 int64_t MinOffset, int64_t MaxOffset, 1326 LSRUse::KindType Kind, Type *AccessTy, 1327 const TargetLowering *TLI) { 1328 // Check for overflow. 1329 if (((int64_t)((uint64_t)AM.BaseOffs + MinOffset) > AM.BaseOffs) != 1330 (MinOffset > 0)) 1331 return false; 1332 AM.BaseOffs = (uint64_t)AM.BaseOffs + MinOffset; 1333 if (isLegalUse(AM, Kind, AccessTy, TLI)) { 1334 AM.BaseOffs = (uint64_t)AM.BaseOffs - MinOffset; 1335 // Check for overflow. 1336 if (((int64_t)((uint64_t)AM.BaseOffs + MaxOffset) > AM.BaseOffs) != 1337 (MaxOffset > 0)) 1338 return false; 1339 AM.BaseOffs = (uint64_t)AM.BaseOffs + MaxOffset; 1340 return isLegalUse(AM, Kind, AccessTy, TLI); 1341 } 1342 return false; 1343 } 1344 1345 static bool isAlwaysFoldable(int64_t BaseOffs, 1346 GlobalValue *BaseGV, 1347 bool HasBaseReg, 1348 LSRUse::KindType Kind, Type *AccessTy, 1349 const TargetLowering *TLI) { 1350 // Fast-path: zero is always foldable. 1351 if (BaseOffs == 0 && !BaseGV) return true; 1352 1353 // Conservatively, create an address with an immediate and a 1354 // base and a scale. 1355 TargetLowering::AddrMode AM; 1356 AM.BaseOffs = BaseOffs; 1357 AM.BaseGV = BaseGV; 1358 AM.HasBaseReg = HasBaseReg; 1359 AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1360 1361 // Canonicalize a scale of 1 to a base register if the formula doesn't 1362 // already have a base register. 1363 if (!AM.HasBaseReg && AM.Scale == 1) { 1364 AM.Scale = 0; 1365 AM.HasBaseReg = true; 1366 } 1367 1368 return isLegalUse(AM, Kind, AccessTy, TLI); 1369 } 1370 1371 static bool isAlwaysFoldable(const SCEV *S, 1372 int64_t MinOffset, int64_t MaxOffset, 1373 bool HasBaseReg, 1374 LSRUse::KindType Kind, Type *AccessTy, 1375 const TargetLowering *TLI, 1376 ScalarEvolution &SE) { 1377 // Fast-path: zero is always foldable. 1378 if (S->isZero()) return true; 1379 1380 // Conservatively, create an address with an immediate and a 1381 // base and a scale. 1382 int64_t BaseOffs = ExtractImmediate(S, SE); 1383 GlobalValue *BaseGV = ExtractSymbol(S, SE); 1384 1385 // If there's anything else involved, it's not foldable. 1386 if (!S->isZero()) return false; 1387 1388 // Fast-path: zero is always foldable. 1389 if (BaseOffs == 0 && !BaseGV) return true; 1390 1391 // Conservatively, create an address with an immediate and a 1392 // base and a scale. 1393 TargetLowering::AddrMode AM; 1394 AM.BaseOffs = BaseOffs; 1395 AM.BaseGV = BaseGV; 1396 AM.HasBaseReg = HasBaseReg; 1397 AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1398 1399 return isLegalUse(AM, MinOffset, MaxOffset, Kind, AccessTy, TLI); 1400 } 1401 1402 namespace { 1403 1404 /// UseMapDenseMapInfo - A DenseMapInfo implementation for holding 1405 /// DenseMaps and DenseSets of pairs of const SCEV* and LSRUse::Kind. 1406 struct UseMapDenseMapInfo { 1407 static std::pair<const SCEV *, LSRUse::KindType> getEmptyKey() { 1408 return std::make_pair(reinterpret_cast<const SCEV *>(-1), LSRUse::Basic); 1409 } 1410 1411 static std::pair<const SCEV *, LSRUse::KindType> getTombstoneKey() { 1412 return std::make_pair(reinterpret_cast<const SCEV *>(-2), LSRUse::Basic); 1413 } 1414 1415 static unsigned 1416 getHashValue(const std::pair<const SCEV *, LSRUse::KindType> &V) { 1417 unsigned Result = DenseMapInfo<const SCEV *>::getHashValue(V.first); 1418 Result ^= DenseMapInfo<unsigned>::getHashValue(unsigned(V.second)); 1419 return Result; 1420 } 1421 1422 static bool isEqual(const std::pair<const SCEV *, LSRUse::KindType> &LHS, 1423 const std::pair<const SCEV *, LSRUse::KindType> &RHS) { 1424 return LHS == RHS; 1425 } 1426 }; 1427 1428 /// IVInc - An individual increment in a Chain of IV increments. 1429 /// Relate an IV user to an expression that computes the IV it uses from the IV 1430 /// used by the previous link in the Chain. 1431 /// 1432 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the 1433 /// original IVOperand. The head of the chain's IVOperand is only valid during 1434 /// chain collection, before LSR replaces IV users. During chain generation, 1435 /// IncExpr can be used to find the new IVOperand that computes the same 1436 /// expression. 1437 struct IVInc { 1438 Instruction *UserInst; 1439 Value* IVOperand; 1440 const SCEV *IncExpr; 1441 1442 IVInc(Instruction *U, Value *O, const SCEV *E): 1443 UserInst(U), IVOperand(O), IncExpr(E) {} 1444 }; 1445 1446 // IVChain - The list of IV increments in program order. 1447 // We typically add the head of a chain without finding subsequent links. 1448 typedef SmallVector<IVInc,1> IVChain; 1449 1450 /// ChainUsers - Helper for CollectChains to track multiple IV increment uses. 1451 /// Distinguish between FarUsers that definitely cross IV increments and 1452 /// NearUsers that may be used between IV increments. 1453 struct ChainUsers { 1454 SmallPtrSet<Instruction*, 4> FarUsers; 1455 SmallPtrSet<Instruction*, 4> NearUsers; 1456 }; 1457 1458 /// LSRInstance - This class holds state for the main loop strength reduction 1459 /// logic. 1460 class LSRInstance { 1461 IVUsers &IU; 1462 ScalarEvolution &SE; 1463 DominatorTree &DT; 1464 LoopInfo &LI; 1465 const TargetLowering *const TLI; 1466 Loop *const L; 1467 bool Changed; 1468 1469 /// IVIncInsertPos - This is the insert position that the current loop's 1470 /// induction variable increment should be placed. In simple loops, this is 1471 /// the latch block's terminator. But in more complicated cases, this is a 1472 /// position which will dominate all the in-loop post-increment users. 1473 Instruction *IVIncInsertPos; 1474 1475 /// Factors - Interesting factors between use strides. 1476 SmallSetVector<int64_t, 8> Factors; 1477 1478 /// Types - Interesting use types, to facilitate truncation reuse. 1479 SmallSetVector<Type *, 4> Types; 1480 1481 /// Fixups - The list of operands which are to be replaced. 1482 SmallVector<LSRFixup, 16> Fixups; 1483 1484 /// Uses - The list of interesting uses. 1485 SmallVector<LSRUse, 16> Uses; 1486 1487 /// RegUses - Track which uses use which register candidates. 1488 RegUseTracker RegUses; 1489 1490 // Limit the number of chains to avoid quadratic behavior. We don't expect to 1491 // have more than a few IV increment chains in a loop. Missing a Chain falls 1492 // back to normal LSR behavior for those uses. 1493 static const unsigned MaxChains = 8; 1494 1495 /// IVChainVec - IV users can form a chain of IV increments. 1496 SmallVector<IVChain, MaxChains> IVChainVec; 1497 1498 /// IVIncSet - IV users that belong to profitable IVChains. 1499 SmallPtrSet<Use*, MaxChains> IVIncSet; 1500 1501 void OptimizeShadowIV(); 1502 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse); 1503 ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse); 1504 void OptimizeLoopTermCond(); 1505 1506 void ChainInstruction(Instruction *UserInst, Instruction *IVOper, 1507 SmallVectorImpl<ChainUsers> &ChainUsersVec); 1508 void FinalizeChain(IVChain &Chain); 1509 void CollectChains(); 1510 void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 1511 SmallVectorImpl<WeakVH> &DeadInsts); 1512 1513 void CollectInterestingTypesAndFactors(); 1514 void CollectFixupsAndInitialFormulae(); 1515 1516 LSRFixup &getNewFixup() { 1517 Fixups.push_back(LSRFixup()); 1518 return Fixups.back(); 1519 } 1520 1521 // Support for sharing of LSRUses between LSRFixups. 1522 typedef DenseMap<std::pair<const SCEV *, LSRUse::KindType>, 1523 size_t, 1524 UseMapDenseMapInfo> UseMapTy; 1525 UseMapTy UseMap; 1526 1527 bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, 1528 LSRUse::KindType Kind, Type *AccessTy); 1529 1530 std::pair<size_t, int64_t> getUse(const SCEV *&Expr, 1531 LSRUse::KindType Kind, 1532 Type *AccessTy); 1533 1534 void DeleteUse(LSRUse &LU, size_t LUIdx); 1535 1536 LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU); 1537 1538 void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1539 void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1540 void CountRegisters(const Formula &F, size_t LUIdx); 1541 bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F); 1542 1543 void CollectLoopInvariantFixupsAndFormulae(); 1544 1545 void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base, 1546 unsigned Depth = 0); 1547 void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base); 1548 void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1549 void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1550 void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base); 1551 void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base); 1552 void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base); 1553 void GenerateCrossUseConstantOffsets(); 1554 void GenerateAllReuseFormulae(); 1555 1556 void FilterOutUndesirableDedicatedRegisters(); 1557 1558 size_t EstimateSearchSpaceComplexity() const; 1559 void NarrowSearchSpaceByDetectingSupersets(); 1560 void NarrowSearchSpaceByCollapsingUnrolledCode(); 1561 void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 1562 void NarrowSearchSpaceByPickingWinnerRegs(); 1563 void NarrowSearchSpaceUsingHeuristics(); 1564 1565 void SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 1566 Cost &SolutionCost, 1567 SmallVectorImpl<const Formula *> &Workspace, 1568 const Cost &CurCost, 1569 const SmallPtrSet<const SCEV *, 16> &CurRegs, 1570 DenseSet<const SCEV *> &VisitedRegs) const; 1571 void Solve(SmallVectorImpl<const Formula *> &Solution) const; 1572 1573 BasicBlock::iterator 1574 HoistInsertPosition(BasicBlock::iterator IP, 1575 const SmallVectorImpl<Instruction *> &Inputs) const; 1576 BasicBlock::iterator AdjustInsertPositionForExpand(BasicBlock::iterator IP, 1577 const LSRFixup &LF, 1578 const LSRUse &LU) const; 1579 1580 Value *Expand(const LSRFixup &LF, 1581 const Formula &F, 1582 BasicBlock::iterator IP, 1583 SCEVExpander &Rewriter, 1584 SmallVectorImpl<WeakVH> &DeadInsts) const; 1585 void RewriteForPHI(PHINode *PN, const LSRFixup &LF, 1586 const Formula &F, 1587 SCEVExpander &Rewriter, 1588 SmallVectorImpl<WeakVH> &DeadInsts, 1589 Pass *P) const; 1590 void Rewrite(const LSRFixup &LF, 1591 const Formula &F, 1592 SCEVExpander &Rewriter, 1593 SmallVectorImpl<WeakVH> &DeadInsts, 1594 Pass *P) const; 1595 void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution, 1596 Pass *P); 1597 1598 public: 1599 LSRInstance(const TargetLowering *tli, Loop *l, Pass *P); 1600 1601 bool getChanged() const { return Changed; } 1602 1603 void print_factors_and_types(raw_ostream &OS) const; 1604 void print_fixups(raw_ostream &OS) const; 1605 void print_uses(raw_ostream &OS) const; 1606 void print(raw_ostream &OS) const; 1607 void dump() const; 1608 }; 1609 1610 } 1611 1612 /// OptimizeShadowIV - If IV is used in a int-to-float cast 1613 /// inside the loop then try to eliminate the cast operation. 1614 void LSRInstance::OptimizeShadowIV() { 1615 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 1616 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 1617 return; 1618 1619 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); 1620 UI != E; /* empty */) { 1621 IVUsers::const_iterator CandidateUI = UI; 1622 ++UI; 1623 Instruction *ShadowUse = CandidateUI->getUser(); 1624 Type *DestTy = NULL; 1625 bool IsSigned = false; 1626 1627 /* If shadow use is a int->float cast then insert a second IV 1628 to eliminate this cast. 1629 1630 for (unsigned i = 0; i < n; ++i) 1631 foo((double)i); 1632 1633 is transformed into 1634 1635 double d = 0.0; 1636 for (unsigned i = 0; i < n; ++i, ++d) 1637 foo(d); 1638 */ 1639 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) { 1640 IsSigned = false; 1641 DestTy = UCast->getDestTy(); 1642 } 1643 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) { 1644 IsSigned = true; 1645 DestTy = SCast->getDestTy(); 1646 } 1647 if (!DestTy) continue; 1648 1649 if (TLI) { 1650 // If target does not support DestTy natively then do not apply 1651 // this transformation. 1652 EVT DVT = TLI->getValueType(DestTy); 1653 if (!TLI->isTypeLegal(DVT)) continue; 1654 } 1655 1656 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0)); 1657 if (!PH) continue; 1658 if (PH->getNumIncomingValues() != 2) continue; 1659 1660 Type *SrcTy = PH->getType(); 1661 int Mantissa = DestTy->getFPMantissaWidth(); 1662 if (Mantissa == -1) continue; 1663 if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa) 1664 continue; 1665 1666 unsigned Entry, Latch; 1667 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) { 1668 Entry = 0; 1669 Latch = 1; 1670 } else { 1671 Entry = 1; 1672 Latch = 0; 1673 } 1674 1675 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry)); 1676 if (!Init) continue; 1677 Constant *NewInit = ConstantFP::get(DestTy, IsSigned ? 1678 (double)Init->getSExtValue() : 1679 (double)Init->getZExtValue()); 1680 1681 BinaryOperator *Incr = 1682 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch)); 1683 if (!Incr) continue; 1684 if (Incr->getOpcode() != Instruction::Add 1685 && Incr->getOpcode() != Instruction::Sub) 1686 continue; 1687 1688 /* Initialize new IV, double d = 0.0 in above example. */ 1689 ConstantInt *C = NULL; 1690 if (Incr->getOperand(0) == PH) 1691 C = dyn_cast<ConstantInt>(Incr->getOperand(1)); 1692 else if (Incr->getOperand(1) == PH) 1693 C = dyn_cast<ConstantInt>(Incr->getOperand(0)); 1694 else 1695 continue; 1696 1697 if (!C) continue; 1698 1699 // Ignore negative constants, as the code below doesn't handle them 1700 // correctly. TODO: Remove this restriction. 1701 if (!C->getValue().isStrictlyPositive()) continue; 1702 1703 /* Add new PHINode. */ 1704 PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH); 1705 1706 /* create new increment. '++d' in above example. */ 1707 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue()); 1708 BinaryOperator *NewIncr = 1709 BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ? 1710 Instruction::FAdd : Instruction::FSub, 1711 NewPH, CFP, "IV.S.next.", Incr); 1712 1713 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry)); 1714 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch)); 1715 1716 /* Remove cast operation */ 1717 ShadowUse->replaceAllUsesWith(NewPH); 1718 ShadowUse->eraseFromParent(); 1719 Changed = true; 1720 break; 1721 } 1722 } 1723 1724 /// FindIVUserForCond - If Cond has an operand that is an expression of an IV, 1725 /// set the IV user and stride information and return true, otherwise return 1726 /// false. 1727 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) { 1728 for (IVUsers::iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) 1729 if (UI->getUser() == Cond) { 1730 // NOTE: we could handle setcc instructions with multiple uses here, but 1731 // InstCombine does it as well for simple uses, it's not clear that it 1732 // occurs enough in real life to handle. 1733 CondUse = UI; 1734 return true; 1735 } 1736 return false; 1737 } 1738 1739 /// OptimizeMax - Rewrite the loop's terminating condition if it uses 1740 /// a max computation. 1741 /// 1742 /// This is a narrow solution to a specific, but acute, problem. For loops 1743 /// like this: 1744 /// 1745 /// i = 0; 1746 /// do { 1747 /// p[i] = 0.0; 1748 /// } while (++i < n); 1749 /// 1750 /// the trip count isn't just 'n', because 'n' might not be positive. And 1751 /// unfortunately this can come up even for loops where the user didn't use 1752 /// a C do-while loop. For example, seemingly well-behaved top-test loops 1753 /// will commonly be lowered like this: 1754 // 1755 /// if (n > 0) { 1756 /// i = 0; 1757 /// do { 1758 /// p[i] = 0.0; 1759 /// } while (++i < n); 1760 /// } 1761 /// 1762 /// and then it's possible for subsequent optimization to obscure the if 1763 /// test in such a way that indvars can't find it. 1764 /// 1765 /// When indvars can't find the if test in loops like this, it creates a 1766 /// max expression, which allows it to give the loop a canonical 1767 /// induction variable: 1768 /// 1769 /// i = 0; 1770 /// max = n < 1 ? 1 : n; 1771 /// do { 1772 /// p[i] = 0.0; 1773 /// } while (++i != max); 1774 /// 1775 /// Canonical induction variables are necessary because the loop passes 1776 /// are designed around them. The most obvious example of this is the 1777 /// LoopInfo analysis, which doesn't remember trip count values. It 1778 /// expects to be able to rediscover the trip count each time it is 1779 /// needed, and it does this using a simple analysis that only succeeds if 1780 /// the loop has a canonical induction variable. 1781 /// 1782 /// However, when it comes time to generate code, the maximum operation 1783 /// can be quite costly, especially if it's inside of an outer loop. 1784 /// 1785 /// This function solves this problem by detecting this type of loop and 1786 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting 1787 /// the instructions for the maximum computation. 1788 /// 1789 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) { 1790 // Check that the loop matches the pattern we're looking for. 1791 if (Cond->getPredicate() != CmpInst::ICMP_EQ && 1792 Cond->getPredicate() != CmpInst::ICMP_NE) 1793 return Cond; 1794 1795 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1)); 1796 if (!Sel || !Sel->hasOneUse()) return Cond; 1797 1798 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 1799 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 1800 return Cond; 1801 const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1); 1802 1803 // Add one to the backedge-taken count to get the trip count. 1804 const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount); 1805 if (IterationCount != SE.getSCEV(Sel)) return Cond; 1806 1807 // Check for a max calculation that matches the pattern. There's no check 1808 // for ICMP_ULE here because the comparison would be with zero, which 1809 // isn't interesting. 1810 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1811 const SCEVNAryExpr *Max = 0; 1812 if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) { 1813 Pred = ICmpInst::ICMP_SLE; 1814 Max = S; 1815 } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) { 1816 Pred = ICmpInst::ICMP_SLT; 1817 Max = S; 1818 } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) { 1819 Pred = ICmpInst::ICMP_ULT; 1820 Max = U; 1821 } else { 1822 // No match; bail. 1823 return Cond; 1824 } 1825 1826 // To handle a max with more than two operands, this optimization would 1827 // require additional checking and setup. 1828 if (Max->getNumOperands() != 2) 1829 return Cond; 1830 1831 const SCEV *MaxLHS = Max->getOperand(0); 1832 const SCEV *MaxRHS = Max->getOperand(1); 1833 1834 // ScalarEvolution canonicalizes constants to the left. For < and >, look 1835 // for a comparison with 1. For <= and >=, a comparison with zero. 1836 if (!MaxLHS || 1837 (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One))) 1838 return Cond; 1839 1840 // Check the relevant induction variable for conformance to 1841 // the pattern. 1842 const SCEV *IV = SE.getSCEV(Cond->getOperand(0)); 1843 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV); 1844 if (!AR || !AR->isAffine() || 1845 AR->getStart() != One || 1846 AR->getStepRecurrence(SE) != One) 1847 return Cond; 1848 1849 assert(AR->getLoop() == L && 1850 "Loop condition operand is an addrec in a different loop!"); 1851 1852 // Check the right operand of the select, and remember it, as it will 1853 // be used in the new comparison instruction. 1854 Value *NewRHS = 0; 1855 if (ICmpInst::isTrueWhenEqual(Pred)) { 1856 // Look for n+1, and grab n. 1857 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1))) 1858 if (isa<ConstantInt>(BO->getOperand(1)) && 1859 cast<ConstantInt>(BO->getOperand(1))->isOne() && 1860 SE.getSCEV(BO->getOperand(0)) == MaxRHS) 1861 NewRHS = BO->getOperand(0); 1862 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2))) 1863 if (isa<ConstantInt>(BO->getOperand(1)) && 1864 cast<ConstantInt>(BO->getOperand(1))->isOne() && 1865 SE.getSCEV(BO->getOperand(0)) == MaxRHS) 1866 NewRHS = BO->getOperand(0); 1867 if (!NewRHS) 1868 return Cond; 1869 } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS) 1870 NewRHS = Sel->getOperand(1); 1871 else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS) 1872 NewRHS = Sel->getOperand(2); 1873 else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS)) 1874 NewRHS = SU->getValue(); 1875 else 1876 // Max doesn't match expected pattern. 1877 return Cond; 1878 1879 // Determine the new comparison opcode. It may be signed or unsigned, 1880 // and the original comparison may be either equality or inequality. 1881 if (Cond->getPredicate() == CmpInst::ICMP_EQ) 1882 Pred = CmpInst::getInversePredicate(Pred); 1883 1884 // Ok, everything looks ok to change the condition into an SLT or SGE and 1885 // delete the max calculation. 1886 ICmpInst *NewCond = 1887 new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp"); 1888 1889 // Delete the max calculation instructions. 1890 Cond->replaceAllUsesWith(NewCond); 1891 CondUse->setUser(NewCond); 1892 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0)); 1893 Cond->eraseFromParent(); 1894 Sel->eraseFromParent(); 1895 if (Cmp->use_empty()) 1896 Cmp->eraseFromParent(); 1897 return NewCond; 1898 } 1899 1900 /// OptimizeLoopTermCond - Change loop terminating condition to use the 1901 /// postinc iv when possible. 1902 void 1903 LSRInstance::OptimizeLoopTermCond() { 1904 SmallPtrSet<Instruction *, 4> PostIncs; 1905 1906 BasicBlock *LatchBlock = L->getLoopLatch(); 1907 SmallVector<BasicBlock*, 8> ExitingBlocks; 1908 L->getExitingBlocks(ExitingBlocks); 1909 1910 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 1911 BasicBlock *ExitingBlock = ExitingBlocks[i]; 1912 1913 // Get the terminating condition for the loop if possible. If we 1914 // can, we want to change it to use a post-incremented version of its 1915 // induction variable, to allow coalescing the live ranges for the IV into 1916 // one register value. 1917 1918 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 1919 if (!TermBr) 1920 continue; 1921 // FIXME: Overly conservative, termination condition could be an 'or' etc.. 1922 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition())) 1923 continue; 1924 1925 // Search IVUsesByStride to find Cond's IVUse if there is one. 1926 IVStrideUse *CondUse = 0; 1927 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition()); 1928 if (!FindIVUserForCond(Cond, CondUse)) 1929 continue; 1930 1931 // If the trip count is computed in terms of a max (due to ScalarEvolution 1932 // being unable to find a sufficient guard, for example), change the loop 1933 // comparison to use SLT or ULT instead of NE. 1934 // One consequence of doing this now is that it disrupts the count-down 1935 // optimization. That's not always a bad thing though, because in such 1936 // cases it may still be worthwhile to avoid a max. 1937 Cond = OptimizeMax(Cond, CondUse); 1938 1939 // If this exiting block dominates the latch block, it may also use 1940 // the post-inc value if it won't be shared with other uses. 1941 // Check for dominance. 1942 if (!DT.dominates(ExitingBlock, LatchBlock)) 1943 continue; 1944 1945 // Conservatively avoid trying to use the post-inc value in non-latch 1946 // exits if there may be pre-inc users in intervening blocks. 1947 if (LatchBlock != ExitingBlock) 1948 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) 1949 // Test if the use is reachable from the exiting block. This dominator 1950 // query is a conservative approximation of reachability. 1951 if (&*UI != CondUse && 1952 !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) { 1953 // Conservatively assume there may be reuse if the quotient of their 1954 // strides could be a legal scale. 1955 const SCEV *A = IU.getStride(*CondUse, L); 1956 const SCEV *B = IU.getStride(*UI, L); 1957 if (!A || !B) continue; 1958 if (SE.getTypeSizeInBits(A->getType()) != 1959 SE.getTypeSizeInBits(B->getType())) { 1960 if (SE.getTypeSizeInBits(A->getType()) > 1961 SE.getTypeSizeInBits(B->getType())) 1962 B = SE.getSignExtendExpr(B, A->getType()); 1963 else 1964 A = SE.getSignExtendExpr(A, B->getType()); 1965 } 1966 if (const SCEVConstant *D = 1967 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) { 1968 const ConstantInt *C = D->getValue(); 1969 // Stride of one or negative one can have reuse with non-addresses. 1970 if (C->isOne() || C->isAllOnesValue()) 1971 goto decline_post_inc; 1972 // Avoid weird situations. 1973 if (C->getValue().getMinSignedBits() >= 64 || 1974 C->getValue().isMinSignedValue()) 1975 goto decline_post_inc; 1976 // Without TLI, assume that any stride might be valid, and so any 1977 // use might be shared. 1978 if (!TLI) 1979 goto decline_post_inc; 1980 // Check for possible scaled-address reuse. 1981 Type *AccessTy = getAccessType(UI->getUser()); 1982 TargetLowering::AddrMode AM; 1983 AM.Scale = C->getSExtValue(); 1984 if (TLI->isLegalAddressingMode(AM, AccessTy)) 1985 goto decline_post_inc; 1986 AM.Scale = -AM.Scale; 1987 if (TLI->isLegalAddressingMode(AM, AccessTy)) 1988 goto decline_post_inc; 1989 } 1990 } 1991 1992 DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: " 1993 << *Cond << '\n'); 1994 1995 // It's possible for the setcc instruction to be anywhere in the loop, and 1996 // possible for it to have multiple users. If it is not immediately before 1997 // the exiting block branch, move it. 1998 if (&*++BasicBlock::iterator(Cond) != TermBr) { 1999 if (Cond->hasOneUse()) { 2000 Cond->moveBefore(TermBr); 2001 } else { 2002 // Clone the terminating condition and insert into the loopend. 2003 ICmpInst *OldCond = Cond; 2004 Cond = cast<ICmpInst>(Cond->clone()); 2005 Cond->setName(L->getHeader()->getName() + ".termcond"); 2006 ExitingBlock->getInstList().insert(TermBr, Cond); 2007 2008 // Clone the IVUse, as the old use still exists! 2009 CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace()); 2010 TermBr->replaceUsesOfWith(OldCond, Cond); 2011 } 2012 } 2013 2014 // If we get to here, we know that we can transform the setcc instruction to 2015 // use the post-incremented version of the IV, allowing us to coalesce the 2016 // live ranges for the IV correctly. 2017 CondUse->transformToPostInc(L); 2018 Changed = true; 2019 2020 PostIncs.insert(Cond); 2021 decline_post_inc:; 2022 } 2023 2024 // Determine an insertion point for the loop induction variable increment. It 2025 // must dominate all the post-inc comparisons we just set up, and it must 2026 // dominate the loop latch edge. 2027 IVIncInsertPos = L->getLoopLatch()->getTerminator(); 2028 for (SmallPtrSet<Instruction *, 4>::const_iterator I = PostIncs.begin(), 2029 E = PostIncs.end(); I != E; ++I) { 2030 BasicBlock *BB = 2031 DT.findNearestCommonDominator(IVIncInsertPos->getParent(), 2032 (*I)->getParent()); 2033 if (BB == (*I)->getParent()) 2034 IVIncInsertPos = *I; 2035 else if (BB != IVIncInsertPos->getParent()) 2036 IVIncInsertPos = BB->getTerminator(); 2037 } 2038 } 2039 2040 /// reconcileNewOffset - Determine if the given use can accommodate a fixup 2041 /// at the given offset and other details. If so, update the use and 2042 /// return true. 2043 bool 2044 LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, 2045 LSRUse::KindType Kind, Type *AccessTy) { 2046 int64_t NewMinOffset = LU.MinOffset; 2047 int64_t NewMaxOffset = LU.MaxOffset; 2048 Type *NewAccessTy = AccessTy; 2049 2050 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to 2051 // something conservative, however this can pessimize in the case that one of 2052 // the uses will have all its uses outside the loop, for example. 2053 if (LU.Kind != Kind) 2054 return false; 2055 // Conservatively assume HasBaseReg is true for now. 2056 if (NewOffset < LU.MinOffset) { 2057 if (!isAlwaysFoldable(LU.MaxOffset - NewOffset, 0, HasBaseReg, 2058 Kind, AccessTy, TLI)) 2059 return false; 2060 NewMinOffset = NewOffset; 2061 } else if (NewOffset > LU.MaxOffset) { 2062 if (!isAlwaysFoldable(NewOffset - LU.MinOffset, 0, HasBaseReg, 2063 Kind, AccessTy, TLI)) 2064 return false; 2065 NewMaxOffset = NewOffset; 2066 } 2067 // Check for a mismatched access type, and fall back conservatively as needed. 2068 // TODO: Be less conservative when the type is similar and can use the same 2069 // addressing modes. 2070 if (Kind == LSRUse::Address && AccessTy != LU.AccessTy) 2071 NewAccessTy = Type::getVoidTy(AccessTy->getContext()); 2072 2073 // Update the use. 2074 LU.MinOffset = NewMinOffset; 2075 LU.MaxOffset = NewMaxOffset; 2076 LU.AccessTy = NewAccessTy; 2077 if (NewOffset != LU.Offsets.back()) 2078 LU.Offsets.push_back(NewOffset); 2079 return true; 2080 } 2081 2082 /// getUse - Return an LSRUse index and an offset value for a fixup which 2083 /// needs the given expression, with the given kind and optional access type. 2084 /// Either reuse an existing use or create a new one, as needed. 2085 std::pair<size_t, int64_t> 2086 LSRInstance::getUse(const SCEV *&Expr, 2087 LSRUse::KindType Kind, Type *AccessTy) { 2088 const SCEV *Copy = Expr; 2089 int64_t Offset = ExtractImmediate(Expr, SE); 2090 2091 // Basic uses can't accept any offset, for example. 2092 if (!isAlwaysFoldable(Offset, 0, /*HasBaseReg=*/true, Kind, AccessTy, TLI)) { 2093 Expr = Copy; 2094 Offset = 0; 2095 } 2096 2097 std::pair<UseMapTy::iterator, bool> P = 2098 UseMap.insert(std::make_pair(std::make_pair(Expr, Kind), 0)); 2099 if (!P.second) { 2100 // A use already existed with this base. 2101 size_t LUIdx = P.first->second; 2102 LSRUse &LU = Uses[LUIdx]; 2103 if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy)) 2104 // Reuse this use. 2105 return std::make_pair(LUIdx, Offset); 2106 } 2107 2108 // Create a new use. 2109 size_t LUIdx = Uses.size(); 2110 P.first->second = LUIdx; 2111 Uses.push_back(LSRUse(Kind, AccessTy)); 2112 LSRUse &LU = Uses[LUIdx]; 2113 2114 // We don't need to track redundant offsets, but we don't need to go out 2115 // of our way here to avoid them. 2116 if (LU.Offsets.empty() || Offset != LU.Offsets.back()) 2117 LU.Offsets.push_back(Offset); 2118 2119 LU.MinOffset = Offset; 2120 LU.MaxOffset = Offset; 2121 return std::make_pair(LUIdx, Offset); 2122 } 2123 2124 /// DeleteUse - Delete the given use from the Uses list. 2125 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) { 2126 if (&LU != &Uses.back()) 2127 std::swap(LU, Uses.back()); 2128 Uses.pop_back(); 2129 2130 // Update RegUses. 2131 RegUses.SwapAndDropUse(LUIdx, Uses.size()); 2132 } 2133 2134 /// FindUseWithFormula - Look for a use distinct from OrigLU which is has 2135 /// a formula that has the same registers as the given formula. 2136 LSRUse * 2137 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF, 2138 const LSRUse &OrigLU) { 2139 // Search all uses for the formula. This could be more clever. 2140 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 2141 LSRUse &LU = Uses[LUIdx]; 2142 // Check whether this use is close enough to OrigLU, to see whether it's 2143 // worthwhile looking through its formulae. 2144 // Ignore ICmpZero uses because they may contain formulae generated by 2145 // GenerateICmpZeroScales, in which case adding fixup offsets may 2146 // be invalid. 2147 if (&LU != &OrigLU && 2148 LU.Kind != LSRUse::ICmpZero && 2149 LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy && 2150 LU.WidestFixupType == OrigLU.WidestFixupType && 2151 LU.HasFormulaWithSameRegs(OrigF)) { 2152 // Scan through this use's formulae. 2153 for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(), 2154 E = LU.Formulae.end(); I != E; ++I) { 2155 const Formula &F = *I; 2156 // Check to see if this formula has the same registers and symbols 2157 // as OrigF. 2158 if (F.BaseRegs == OrigF.BaseRegs && 2159 F.ScaledReg == OrigF.ScaledReg && 2160 F.AM.BaseGV == OrigF.AM.BaseGV && 2161 F.AM.Scale == OrigF.AM.Scale && 2162 F.UnfoldedOffset == OrigF.UnfoldedOffset) { 2163 if (F.AM.BaseOffs == 0) 2164 return &LU; 2165 // This is the formula where all the registers and symbols matched; 2166 // there aren't going to be any others. Since we declined it, we 2167 // can skip the rest of the formulae and procede to the next LSRUse. 2168 break; 2169 } 2170 } 2171 } 2172 } 2173 2174 // Nothing looked good. 2175 return 0; 2176 } 2177 2178 void LSRInstance::CollectInterestingTypesAndFactors() { 2179 SmallSetVector<const SCEV *, 4> Strides; 2180 2181 // Collect interesting types and strides. 2182 SmallVector<const SCEV *, 4> Worklist; 2183 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) { 2184 const SCEV *Expr = IU.getExpr(*UI); 2185 2186 // Collect interesting types. 2187 Types.insert(SE.getEffectiveSCEVType(Expr->getType())); 2188 2189 // Add strides for mentioned loops. 2190 Worklist.push_back(Expr); 2191 do { 2192 const SCEV *S = Worklist.pop_back_val(); 2193 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2194 if (EnableNested || AR->getLoop() == L) 2195 Strides.insert(AR->getStepRecurrence(SE)); 2196 Worklist.push_back(AR->getStart()); 2197 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2198 Worklist.append(Add->op_begin(), Add->op_end()); 2199 } 2200 } while (!Worklist.empty()); 2201 } 2202 2203 // Compute interesting factors from the set of interesting strides. 2204 for (SmallSetVector<const SCEV *, 4>::const_iterator 2205 I = Strides.begin(), E = Strides.end(); I != E; ++I) 2206 for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter = 2207 llvm::next(I); NewStrideIter != E; ++NewStrideIter) { 2208 const SCEV *OldStride = *I; 2209 const SCEV *NewStride = *NewStrideIter; 2210 2211 if (SE.getTypeSizeInBits(OldStride->getType()) != 2212 SE.getTypeSizeInBits(NewStride->getType())) { 2213 if (SE.getTypeSizeInBits(OldStride->getType()) > 2214 SE.getTypeSizeInBits(NewStride->getType())) 2215 NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType()); 2216 else 2217 OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType()); 2218 } 2219 if (const SCEVConstant *Factor = 2220 dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride, 2221 SE, true))) { 2222 if (Factor->getValue()->getValue().getMinSignedBits() <= 64) 2223 Factors.insert(Factor->getValue()->getValue().getSExtValue()); 2224 } else if (const SCEVConstant *Factor = 2225 dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride, 2226 NewStride, 2227 SE, true))) { 2228 if (Factor->getValue()->getValue().getMinSignedBits() <= 64) 2229 Factors.insert(Factor->getValue()->getValue().getSExtValue()); 2230 } 2231 } 2232 2233 // If all uses use the same type, don't bother looking for truncation-based 2234 // reuse. 2235 if (Types.size() == 1) 2236 Types.clear(); 2237 2238 DEBUG(print_factors_and_types(dbgs())); 2239 } 2240 2241 /// findIVOperand - Helper for CollectChains that finds an IV operand (computed 2242 /// by an AddRec in this loop) within [OI,OE) or returns OE. If IVUsers mapped 2243 /// Instructions to IVStrideUses, we could partially skip this. 2244 static User::op_iterator 2245 findIVOperand(User::op_iterator OI, User::op_iterator OE, 2246 Loop *L, ScalarEvolution &SE) { 2247 for(; OI != OE; ++OI) { 2248 if (Instruction *Oper = dyn_cast<Instruction>(*OI)) { 2249 if (!SE.isSCEVable(Oper->getType())) 2250 continue; 2251 2252 if (const SCEVAddRecExpr *AR = 2253 dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) { 2254 if (AR->getLoop() == L) 2255 break; 2256 } 2257 } 2258 } 2259 return OI; 2260 } 2261 2262 /// getWideOperand - IVChain logic must consistenctly peek base TruncInst 2263 /// operands, so wrap it in a convenient helper. 2264 static Value *getWideOperand(Value *Oper) { 2265 if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper)) 2266 return Trunc->getOperand(0); 2267 return Oper; 2268 } 2269 2270 /// isCompatibleIVType - Return true if we allow an IV chain to include both 2271 /// types. 2272 static bool isCompatibleIVType(Value *LVal, Value *RVal) { 2273 Type *LType = LVal->getType(); 2274 Type *RType = RVal->getType(); 2275 return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy()); 2276 } 2277 2278 /// getExprBase - Return an approximation of this SCEV expression's "base", or 2279 /// NULL for any constant. Returning the expression itself is 2280 /// conservative. Returning a deeper subexpression is more precise and valid as 2281 /// long as it isn't less complex than another subexpression. For expressions 2282 /// involving multiple unscaled values, we need to return the pointer-type 2283 /// SCEVUnknown. This avoids forming chains across objects, such as: 2284 /// PrevOper==a[i], IVOper==b[i], IVInc==b-a. 2285 /// 2286 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost 2287 /// SCEVUnknown, we simply return the rightmost SCEV operand. 2288 static const SCEV *getExprBase(const SCEV *S) { 2289 switch (S->getSCEVType()) { 2290 default: // uncluding scUnknown. 2291 return S; 2292 case scConstant: 2293 return 0; 2294 case scTruncate: 2295 return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand()); 2296 case scZeroExtend: 2297 return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand()); 2298 case scSignExtend: 2299 return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand()); 2300 case scAddExpr: { 2301 // Skip over scaled operands (scMulExpr) to follow add operands as long as 2302 // there's nothing more complex. 2303 // FIXME: not sure if we want to recognize negation. 2304 const SCEVAddExpr *Add = cast<SCEVAddExpr>(S); 2305 for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()), 2306 E(Add->op_begin()); I != E; ++I) { 2307 const SCEV *SubExpr = *I; 2308 if (SubExpr->getSCEVType() == scAddExpr) 2309 return getExprBase(SubExpr); 2310 2311 if (SubExpr->getSCEVType() != scMulExpr) 2312 return SubExpr; 2313 } 2314 return S; // all operands are scaled, be conservative. 2315 } 2316 case scAddRecExpr: 2317 return getExprBase(cast<SCEVAddRecExpr>(S)->getStart()); 2318 } 2319 } 2320 2321 /// Return true if the chain increment is profitable to expand into a loop 2322 /// invariant value, which may require its own register. A profitable chain 2323 /// increment will be an offset relative to the same base. We allow such offsets 2324 /// to potentially be used as chain increment as long as it's not obviously 2325 /// expensive to expand using real instructions. 2326 static const SCEV * 2327 getProfitableChainIncrement(Value *NextIV, Value *PrevIV, 2328 const IVChain &Chain, Loop *L, 2329 ScalarEvolution &SE, const TargetLowering *TLI) { 2330 // Prune the solution space aggressively by checking that both IV operands 2331 // are expressions that operate on the same unscaled SCEVUnknown. This 2332 // "base" will be canceled by the subsequent getMinusSCEV call. Checking first 2333 // avoids creating extra SCEV expressions. 2334 const SCEV *OperExpr = SE.getSCEV(NextIV); 2335 const SCEV *PrevExpr = SE.getSCEV(PrevIV); 2336 if (getExprBase(OperExpr) != getExprBase(PrevExpr) && !StressIVChain) 2337 return 0; 2338 2339 const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr); 2340 if (!SE.isLoopInvariant(IncExpr, L)) 2341 return 0; 2342 2343 // We are not able to expand an increment unless it is loop invariant, 2344 // however, the following checks are purely for profitability. 2345 if (StressIVChain) 2346 return IncExpr; 2347 2348 // Do not replace a constant offset from IV head with a nonconstant IV 2349 // increment. 2350 if (!isa<SCEVConstant>(IncExpr)) { 2351 const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Chain[0].IVOperand)); 2352 if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr))) 2353 return 0; 2354 } 2355 2356 SmallPtrSet<const SCEV*, 8> Processed; 2357 if (isHighCostExpansion(IncExpr, Processed, SE)) 2358 return 0; 2359 2360 return IncExpr; 2361 } 2362 2363 /// Return true if the number of registers needed for the chain is estimated to 2364 /// be less than the number required for the individual IV users. First prohibit 2365 /// any IV users that keep the IV live across increments (the Users set should 2366 /// be empty). Next count the number and type of increments in the chain. 2367 /// 2368 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't 2369 /// effectively use postinc addressing modes. Only consider it profitable it the 2370 /// increments can be computed in fewer registers when chained. 2371 /// 2372 /// TODO: Consider IVInc free if it's already used in another chains. 2373 static bool 2374 isProfitableChain(IVChain &Chain, SmallPtrSet<Instruction*, 4> &Users, 2375 ScalarEvolution &SE, const TargetLowering *TLI) { 2376 if (StressIVChain) 2377 return true; 2378 2379 if (Chain.size() <= 2) 2380 return false; 2381 2382 if (!Users.empty()) { 2383 DEBUG(dbgs() << "Chain: " << *Chain[0].UserInst << " users:\n"; 2384 for (SmallPtrSet<Instruction*, 4>::const_iterator I = Users.begin(), 2385 E = Users.end(); I != E; ++I) { 2386 dbgs() << " " << **I << "\n"; 2387 }); 2388 return false; 2389 } 2390 assert(!Chain.empty() && "empty IV chains are not allowed"); 2391 2392 // The chain itself may require a register, so intialize cost to 1. 2393 int cost = 1; 2394 2395 // A complete chain likely eliminates the need for keeping the original IV in 2396 // a register. LSR does not currently know how to form a complete chain unless 2397 // the header phi already exists. 2398 if (isa<PHINode>(Chain.back().UserInst) 2399 && SE.getSCEV(Chain.back().UserInst) == Chain[0].IncExpr) { 2400 --cost; 2401 } 2402 const SCEV *LastIncExpr = 0; 2403 unsigned NumConstIncrements = 0; 2404 unsigned NumVarIncrements = 0; 2405 unsigned NumReusedIncrements = 0; 2406 for (IVChain::const_iterator I = llvm::next(Chain.begin()), E = Chain.end(); 2407 I != E; ++I) { 2408 2409 if (I->IncExpr->isZero()) 2410 continue; 2411 2412 // Incrementing by zero or some constant is neutral. We assume constants can 2413 // be folded into an addressing mode or an add's immediate operand. 2414 if (isa<SCEVConstant>(I->IncExpr)) { 2415 ++NumConstIncrements; 2416 continue; 2417 } 2418 2419 if (I->IncExpr == LastIncExpr) 2420 ++NumReusedIncrements; 2421 else 2422 ++NumVarIncrements; 2423 2424 LastIncExpr = I->IncExpr; 2425 } 2426 // An IV chain with a single increment is handled by LSR's postinc 2427 // uses. However, a chain with multiple increments requires keeping the IV's 2428 // value live longer than it needs to be if chained. 2429 if (NumConstIncrements > 1) 2430 --cost; 2431 2432 // Materializing increment expressions in the preheader that didn't exist in 2433 // the original code may cost a register. For example, sign-extended array 2434 // indices can produce ridiculous increments like this: 2435 // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64))) 2436 cost += NumVarIncrements; 2437 2438 // Reusing variable increments likely saves a register to hold the multiple of 2439 // the stride. 2440 cost -= NumReusedIncrements; 2441 2442 DEBUG(dbgs() << "Chain: " << *Chain[0].UserInst << " Cost: " << cost << "\n"); 2443 2444 return cost < 0; 2445 } 2446 2447 /// ChainInstruction - Add this IV user to an existing chain or make it the head 2448 /// of a new chain. 2449 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper, 2450 SmallVectorImpl<ChainUsers> &ChainUsersVec) { 2451 // When IVs are used as types of varying widths, they are generally converted 2452 // to a wider type with some uses remaining narrow under a (free) trunc. 2453 Value *NextIV = getWideOperand(IVOper); 2454 2455 // Visit all existing chains. Check if its IVOper can be computed as a 2456 // profitable loop invariant increment from the last link in the Chain. 2457 unsigned ChainIdx = 0, NChains = IVChainVec.size(); 2458 const SCEV *LastIncExpr = 0; 2459 for (; ChainIdx < NChains; ++ChainIdx) { 2460 Value *PrevIV = getWideOperand(IVChainVec[ChainIdx].back().IVOperand); 2461 if (!isCompatibleIVType(PrevIV, NextIV)) 2462 continue; 2463 2464 // A phi nodes terminates a chain. 2465 if (isa<PHINode>(UserInst) 2466 && isa<PHINode>(IVChainVec[ChainIdx].back().UserInst)) 2467 continue; 2468 2469 if (const SCEV *IncExpr = 2470 getProfitableChainIncrement(NextIV, PrevIV, IVChainVec[ChainIdx], 2471 L, SE, TLI)) { 2472 LastIncExpr = IncExpr; 2473 break; 2474 } 2475 } 2476 // If we haven't found a chain, create a new one, unless we hit the max. Don't 2477 // bother for phi nodes, because they must be last in the chain. 2478 if (ChainIdx == NChains) { 2479 if (isa<PHINode>(UserInst)) 2480 return; 2481 if (NChains >= MaxChains && !StressIVChain) { 2482 DEBUG(dbgs() << "IV Chain Limit\n"); 2483 return; 2484 } 2485 ++NChains; 2486 IVChainVec.resize(NChains); 2487 ChainUsersVec.resize(NChains); 2488 LastIncExpr = SE.getSCEV(NextIV); 2489 assert(isa<SCEVAddRecExpr>(LastIncExpr) && "expect recurrence at IV user"); 2490 DEBUG(dbgs() << "IV Head: (" << *UserInst << ") IV=" << *LastIncExpr 2491 << "\n"); 2492 } 2493 else 2494 DEBUG(dbgs() << "IV Inc: (" << *UserInst << ") IV+" << *LastIncExpr 2495 << "\n"); 2496 2497 // Add this IV user to the end of the chain. 2498 IVChainVec[ChainIdx].push_back(IVInc(UserInst, IVOper, LastIncExpr)); 2499 2500 SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers; 2501 // This chain's NearUsers become FarUsers. 2502 if (!LastIncExpr->isZero()) { 2503 ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(), 2504 NearUsers.end()); 2505 NearUsers.clear(); 2506 } 2507 2508 // All other uses of IVOperand become near uses of the chain. 2509 // We currently ignore intermediate values within SCEV expressions, assuming 2510 // they will eventually be used be the current chain, or can be computed 2511 // from one of the chain increments. To be more precise we could 2512 // transitively follow its user and only add leaf IV users to the set. 2513 for (Value::use_iterator UseIter = IVOper->use_begin(), 2514 UseEnd = IVOper->use_end(); UseIter != UseEnd; ++UseIter) { 2515 Instruction *OtherUse = dyn_cast<Instruction>(*UseIter); 2516 if (SE.isSCEVable(OtherUse->getType()) 2517 && !isa<SCEVUnknown>(SE.getSCEV(OtherUse)) 2518 && IU.isIVUserOrOperand(OtherUse)) { 2519 continue; 2520 } 2521 if (OtherUse && OtherUse != UserInst) 2522 NearUsers.insert(OtherUse); 2523 } 2524 2525 // Since this user is part of the chain, it's no longer considered a use 2526 // of the chain. 2527 ChainUsersVec[ChainIdx].FarUsers.erase(UserInst); 2528 } 2529 2530 /// CollectChains - Populate the vector of Chains. 2531 /// 2532 /// This decreases ILP at the architecture level. Targets with ample registers, 2533 /// multiple memory ports, and no register renaming probably don't want 2534 /// this. However, such targets should probably disable LSR altogether. 2535 /// 2536 /// The job of LSR is to make a reasonable choice of induction variables across 2537 /// the loop. Subsequent passes can easily "unchain" computation exposing more 2538 /// ILP *within the loop* if the target wants it. 2539 /// 2540 /// Finding the best IV chain is potentially a scheduling problem. Since LSR 2541 /// will not reorder memory operations, it will recognize this as a chain, but 2542 /// will generate redundant IV increments. Ideally this would be corrected later 2543 /// by a smart scheduler: 2544 /// = A[i] 2545 /// = A[i+x] 2546 /// A[i] = 2547 /// A[i+x] = 2548 /// 2549 /// TODO: Walk the entire domtree within this loop, not just the path to the 2550 /// loop latch. This will discover chains on side paths, but requires 2551 /// maintaining multiple copies of the Chains state. 2552 void LSRInstance::CollectChains() { 2553 SmallVector<ChainUsers, 8> ChainUsersVec; 2554 2555 SmallVector<BasicBlock *,8> LatchPath; 2556 BasicBlock *LoopHeader = L->getHeader(); 2557 for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch()); 2558 Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) { 2559 LatchPath.push_back(Rung->getBlock()); 2560 } 2561 LatchPath.push_back(LoopHeader); 2562 2563 // Walk the instruction stream from the loop header to the loop latch. 2564 for (SmallVectorImpl<BasicBlock *>::reverse_iterator 2565 BBIter = LatchPath.rbegin(), BBEnd = LatchPath.rend(); 2566 BBIter != BBEnd; ++BBIter) { 2567 for (BasicBlock::iterator I = (*BBIter)->begin(), E = (*BBIter)->end(); 2568 I != E; ++I) { 2569 // Skip instructions that weren't seen by IVUsers analysis. 2570 if (isa<PHINode>(I) || !IU.isIVUserOrOperand(I)) 2571 continue; 2572 2573 // Ignore users that are part of a SCEV expression. This way we only 2574 // consider leaf IV Users. This effectively rediscovers a portion of 2575 // IVUsers analysis but in program order this time. 2576 if (SE.isSCEVable(I->getType()) && !isa<SCEVUnknown>(SE.getSCEV(I))) 2577 continue; 2578 2579 // Remove this instruction from any NearUsers set it may be in. 2580 for (unsigned ChainIdx = 0, NChains = IVChainVec.size(); 2581 ChainIdx < NChains; ++ChainIdx) { 2582 ChainUsersVec[ChainIdx].NearUsers.erase(I); 2583 } 2584 // Search for operands that can be chained. 2585 SmallPtrSet<Instruction*, 4> UniqueOperands; 2586 User::op_iterator IVOpEnd = I->op_end(); 2587 User::op_iterator IVOpIter = findIVOperand(I->op_begin(), IVOpEnd, L, SE); 2588 while (IVOpIter != IVOpEnd) { 2589 Instruction *IVOpInst = cast<Instruction>(*IVOpIter); 2590 if (UniqueOperands.insert(IVOpInst)) 2591 ChainInstruction(I, IVOpInst, ChainUsersVec); 2592 IVOpIter = findIVOperand(llvm::next(IVOpIter), IVOpEnd, L, SE); 2593 } 2594 } // Continue walking down the instructions. 2595 } // Continue walking down the domtree. 2596 // Visit phi backedges to determine if the chain can generate the IV postinc. 2597 for (BasicBlock::iterator I = L->getHeader()->begin(); 2598 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 2599 if (!SE.isSCEVable(PN->getType())) 2600 continue; 2601 2602 Instruction *IncV = 2603 dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch())); 2604 if (IncV) 2605 ChainInstruction(PN, IncV, ChainUsersVec); 2606 } 2607 // Remove any unprofitable chains. 2608 unsigned ChainIdx = 0; 2609 for (unsigned UsersIdx = 0, NChains = IVChainVec.size(); 2610 UsersIdx < NChains; ++UsersIdx) { 2611 if (!isProfitableChain(IVChainVec[UsersIdx], 2612 ChainUsersVec[UsersIdx].FarUsers, SE, TLI)) 2613 continue; 2614 // Preserve the chain at UsesIdx. 2615 if (ChainIdx != UsersIdx) 2616 IVChainVec[ChainIdx] = IVChainVec[UsersIdx]; 2617 FinalizeChain(IVChainVec[ChainIdx]); 2618 ++ChainIdx; 2619 } 2620 IVChainVec.resize(ChainIdx); 2621 } 2622 2623 void LSRInstance::FinalizeChain(IVChain &Chain) { 2624 assert(!Chain.empty() && "empty IV chains are not allowed"); 2625 DEBUG(dbgs() << "Final Chain: " << *Chain[0].UserInst << "\n"); 2626 2627 for (IVChain::const_iterator I = llvm::next(Chain.begin()), E = Chain.end(); 2628 I != E; ++I) { 2629 DEBUG(dbgs() << " Inc: " << *I->UserInst << "\n"); 2630 User::op_iterator UseI = 2631 std::find(I->UserInst->op_begin(), I->UserInst->op_end(), I->IVOperand); 2632 assert(UseI != I->UserInst->op_end() && "cannot find IV operand"); 2633 IVIncSet.insert(UseI); 2634 } 2635 } 2636 2637 /// Return true if the IVInc can be folded into an addressing mode. 2638 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst, 2639 Value *Operand, const TargetLowering *TLI) { 2640 const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr); 2641 if (!IncConst || !isAddressUse(UserInst, Operand)) 2642 return false; 2643 2644 if (IncConst->getValue()->getValue().getMinSignedBits() > 64) 2645 return false; 2646 2647 int64_t IncOffset = IncConst->getValue()->getSExtValue(); 2648 if (!isAlwaysFoldable(IncOffset, /*BaseGV=*/0, /*HaseBaseReg=*/false, 2649 LSRUse::Address, getAccessType(UserInst), TLI)) 2650 return false; 2651 2652 return true; 2653 } 2654 2655 /// GenerateIVChains - Generate an add or subtract for each IVInc in a chain to 2656 /// materialize the IV user's operand from the previous IV user's operand. 2657 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 2658 SmallVectorImpl<WeakVH> &DeadInsts) { 2659 // Find the new IVOperand for the head of the chain. It may have been replaced 2660 // by LSR. 2661 const IVInc &Head = Chain[0]; 2662 User::op_iterator IVOpEnd = Head.UserInst->op_end(); 2663 User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(), 2664 IVOpEnd, L, SE); 2665 Value *IVSrc = 0; 2666 while (IVOpIter != IVOpEnd) { 2667 IVSrc = getWideOperand(*IVOpIter); 2668 2669 // If this operand computes the expression that the chain needs, we may use 2670 // it. (Check this after setting IVSrc which is used below.) 2671 // 2672 // Note that if Head.IncExpr is wider than IVSrc, then this phi is too 2673 // narrow for the chain, so we can no longer use it. We do allow using a 2674 // wider phi, assuming the LSR checked for free truncation. In that case we 2675 // should already have a truncate on this operand such that 2676 // getSCEV(IVSrc) == IncExpr. 2677 if (SE.getSCEV(*IVOpIter) == Head.IncExpr 2678 || SE.getSCEV(IVSrc) == Head.IncExpr) { 2679 break; 2680 } 2681 IVOpIter = findIVOperand(llvm::next(IVOpIter), IVOpEnd, L, SE); 2682 } 2683 if (IVOpIter == IVOpEnd) { 2684 // Gracefully give up on this chain. 2685 DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n"); 2686 return; 2687 } 2688 2689 DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n"); 2690 Type *IVTy = IVSrc->getType(); 2691 Type *IntTy = SE.getEffectiveSCEVType(IVTy); 2692 const SCEV *LeftOverExpr = 0; 2693 for (IVChain::const_iterator IncI = llvm::next(Chain.begin()), 2694 IncE = Chain.end(); IncI != IncE; ++IncI) { 2695 2696 Instruction *InsertPt = IncI->UserInst; 2697 if (isa<PHINode>(InsertPt)) 2698 InsertPt = L->getLoopLatch()->getTerminator(); 2699 2700 // IVOper will replace the current IV User's operand. IVSrc is the IV 2701 // value currently held in a register. 2702 Value *IVOper = IVSrc; 2703 if (!IncI->IncExpr->isZero()) { 2704 // IncExpr was the result of subtraction of two narrow values, so must 2705 // be signed. 2706 const SCEV *IncExpr = SE.getNoopOrSignExtend(IncI->IncExpr, IntTy); 2707 LeftOverExpr = LeftOverExpr ? 2708 SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr; 2709 } 2710 if (LeftOverExpr && !LeftOverExpr->isZero()) { 2711 // Expand the IV increment. 2712 Rewriter.clearPostInc(); 2713 Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt); 2714 const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc), 2715 SE.getUnknown(IncV)); 2716 IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt); 2717 2718 // If an IV increment can't be folded, use it as the next IV value. 2719 if (!canFoldIVIncExpr(LeftOverExpr, IncI->UserInst, IncI->IVOperand, 2720 TLI)) { 2721 assert(IVTy == IVOper->getType() && "inconsistent IV increment type"); 2722 IVSrc = IVOper; 2723 LeftOverExpr = 0; 2724 } 2725 } 2726 Type *OperTy = IncI->IVOperand->getType(); 2727 if (IVTy != OperTy) { 2728 assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) && 2729 "cannot extend a chained IV"); 2730 IRBuilder<> Builder(InsertPt); 2731 IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain"); 2732 } 2733 IncI->UserInst->replaceUsesOfWith(IncI->IVOperand, IVOper); 2734 DeadInsts.push_back(IncI->IVOperand); 2735 } 2736 // If LSR created a new, wider phi, we may also replace its postinc. We only 2737 // do this if we also found a wide value for the head of the chain. 2738 if (isa<PHINode>(Chain.back().UserInst)) { 2739 for (BasicBlock::iterator I = L->getHeader()->begin(); 2740 PHINode *Phi = dyn_cast<PHINode>(I); ++I) { 2741 if (!isCompatibleIVType(Phi, IVSrc)) 2742 continue; 2743 Instruction *PostIncV = dyn_cast<Instruction>( 2744 Phi->getIncomingValueForBlock(L->getLoopLatch())); 2745 if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc))) 2746 continue; 2747 Value *IVOper = IVSrc; 2748 Type *PostIncTy = PostIncV->getType(); 2749 if (IVTy != PostIncTy) { 2750 assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types"); 2751 IRBuilder<> Builder(L->getLoopLatch()->getTerminator()); 2752 Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc()); 2753 IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain"); 2754 } 2755 Phi->replaceUsesOfWith(PostIncV, IVOper); 2756 DeadInsts.push_back(PostIncV); 2757 } 2758 } 2759 } 2760 2761 void LSRInstance::CollectFixupsAndInitialFormulae() { 2762 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) { 2763 Instruction *UserInst = UI->getUser(); 2764 // Skip IV users that are part of profitable IV Chains. 2765 User::op_iterator UseI = std::find(UserInst->op_begin(), UserInst->op_end(), 2766 UI->getOperandValToReplace()); 2767 assert(UseI != UserInst->op_end() && "cannot find IV operand"); 2768 if (IVIncSet.count(UseI)) 2769 continue; 2770 2771 // Record the uses. 2772 LSRFixup &LF = getNewFixup(); 2773 LF.UserInst = UserInst; 2774 LF.OperandValToReplace = UI->getOperandValToReplace(); 2775 LF.PostIncLoops = UI->getPostIncLoops(); 2776 2777 LSRUse::KindType Kind = LSRUse::Basic; 2778 Type *AccessTy = 0; 2779 if (isAddressUse(LF.UserInst, LF.OperandValToReplace)) { 2780 Kind = LSRUse::Address; 2781 AccessTy = getAccessType(LF.UserInst); 2782 } 2783 2784 const SCEV *S = IU.getExpr(*UI); 2785 2786 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as 2787 // (N - i == 0), and this allows (N - i) to be the expression that we work 2788 // with rather than just N or i, so we can consider the register 2789 // requirements for both N and i at the same time. Limiting this code to 2790 // equality icmps is not a problem because all interesting loops use 2791 // equality icmps, thanks to IndVarSimplify. 2792 if (ICmpInst *CI = dyn_cast<ICmpInst>(LF.UserInst)) 2793 if (CI->isEquality()) { 2794 // Swap the operands if needed to put the OperandValToReplace on the 2795 // left, for consistency. 2796 Value *NV = CI->getOperand(1); 2797 if (NV == LF.OperandValToReplace) { 2798 CI->setOperand(1, CI->getOperand(0)); 2799 CI->setOperand(0, NV); 2800 NV = CI->getOperand(1); 2801 Changed = true; 2802 } 2803 2804 // x == y --> x - y == 0 2805 const SCEV *N = SE.getSCEV(NV); 2806 if (SE.isLoopInvariant(N, L)) { 2807 // S is normalized, so normalize N before folding it into S 2808 // to keep the result normalized. 2809 N = TransformForPostIncUse(Normalize, N, CI, 0, 2810 LF.PostIncLoops, SE, DT); 2811 Kind = LSRUse::ICmpZero; 2812 S = SE.getMinusSCEV(N, S); 2813 } 2814 2815 // -1 and the negations of all interesting strides (except the negation 2816 // of -1) are now also interesting. 2817 for (size_t i = 0, e = Factors.size(); i != e; ++i) 2818 if (Factors[i] != -1) 2819 Factors.insert(-(uint64_t)Factors[i]); 2820 Factors.insert(-1); 2821 } 2822 2823 // Set up the initial formula for this use. 2824 std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy); 2825 LF.LUIdx = P.first; 2826 LF.Offset = P.second; 2827 LSRUse &LU = Uses[LF.LUIdx]; 2828 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 2829 if (!LU.WidestFixupType || 2830 SE.getTypeSizeInBits(LU.WidestFixupType) < 2831 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 2832 LU.WidestFixupType = LF.OperandValToReplace->getType(); 2833 2834 // If this is the first use of this LSRUse, give it a formula. 2835 if (LU.Formulae.empty()) { 2836 InsertInitialFormula(S, LU, LF.LUIdx); 2837 CountRegisters(LU.Formulae.back(), LF.LUIdx); 2838 } 2839 } 2840 2841 DEBUG(print_fixups(dbgs())); 2842 } 2843 2844 /// InsertInitialFormula - Insert a formula for the given expression into 2845 /// the given use, separating out loop-variant portions from loop-invariant 2846 /// and loop-computable portions. 2847 void 2848 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) { 2849 Formula F; 2850 F.InitialMatch(S, L, SE); 2851 bool Inserted = InsertFormula(LU, LUIdx, F); 2852 assert(Inserted && "Initial formula already exists!"); (void)Inserted; 2853 } 2854 2855 /// InsertSupplementalFormula - Insert a simple single-register formula for 2856 /// the given expression into the given use. 2857 void 2858 LSRInstance::InsertSupplementalFormula(const SCEV *S, 2859 LSRUse &LU, size_t LUIdx) { 2860 Formula F; 2861 F.BaseRegs.push_back(S); 2862 F.AM.HasBaseReg = true; 2863 bool Inserted = InsertFormula(LU, LUIdx, F); 2864 assert(Inserted && "Supplemental formula already exists!"); (void)Inserted; 2865 } 2866 2867 /// CountRegisters - Note which registers are used by the given formula, 2868 /// updating RegUses. 2869 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) { 2870 if (F.ScaledReg) 2871 RegUses.CountRegister(F.ScaledReg, LUIdx); 2872 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(), 2873 E = F.BaseRegs.end(); I != E; ++I) 2874 RegUses.CountRegister(*I, LUIdx); 2875 } 2876 2877 /// InsertFormula - If the given formula has not yet been inserted, add it to 2878 /// the list, and return true. Return false otherwise. 2879 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) { 2880 if (!LU.InsertFormula(F)) 2881 return false; 2882 2883 CountRegisters(F, LUIdx); 2884 return true; 2885 } 2886 2887 /// CollectLoopInvariantFixupsAndFormulae - Check for other uses of 2888 /// loop-invariant values which we're tracking. These other uses will pin these 2889 /// values in registers, making them less profitable for elimination. 2890 /// TODO: This currently misses non-constant addrec step registers. 2891 /// TODO: Should this give more weight to users inside the loop? 2892 void 2893 LSRInstance::CollectLoopInvariantFixupsAndFormulae() { 2894 SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end()); 2895 SmallPtrSet<const SCEV *, 8> Inserted; 2896 2897 while (!Worklist.empty()) { 2898 const SCEV *S = Worklist.pop_back_val(); 2899 2900 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) 2901 Worklist.append(N->op_begin(), N->op_end()); 2902 else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) 2903 Worklist.push_back(C->getOperand()); 2904 else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 2905 Worklist.push_back(D->getLHS()); 2906 Worklist.push_back(D->getRHS()); 2907 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 2908 if (!Inserted.insert(U)) continue; 2909 const Value *V = U->getValue(); 2910 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 2911 // Look for instructions defined outside the loop. 2912 if (L->contains(Inst)) continue; 2913 } else if (isa<UndefValue>(V)) 2914 // Undef doesn't have a live range, so it doesn't matter. 2915 continue; 2916 for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end(); 2917 UI != UE; ++UI) { 2918 const Instruction *UserInst = dyn_cast<Instruction>(*UI); 2919 // Ignore non-instructions. 2920 if (!UserInst) 2921 continue; 2922 // Ignore instructions in other functions (as can happen with 2923 // Constants). 2924 if (UserInst->getParent()->getParent() != L->getHeader()->getParent()) 2925 continue; 2926 // Ignore instructions not dominated by the loop. 2927 const BasicBlock *UseBB = !isa<PHINode>(UserInst) ? 2928 UserInst->getParent() : 2929 cast<PHINode>(UserInst)->getIncomingBlock( 2930 PHINode::getIncomingValueNumForOperand(UI.getOperandNo())); 2931 if (!DT.dominates(L->getHeader(), UseBB)) 2932 continue; 2933 // Ignore uses which are part of other SCEV expressions, to avoid 2934 // analyzing them multiple times. 2935 if (SE.isSCEVable(UserInst->getType())) { 2936 const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst)); 2937 // If the user is a no-op, look through to its uses. 2938 if (!isa<SCEVUnknown>(UserS)) 2939 continue; 2940 if (UserS == U) { 2941 Worklist.push_back( 2942 SE.getUnknown(const_cast<Instruction *>(UserInst))); 2943 continue; 2944 } 2945 } 2946 // Ignore icmp instructions which are already being analyzed. 2947 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) { 2948 unsigned OtherIdx = !UI.getOperandNo(); 2949 Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx)); 2950 if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L)) 2951 continue; 2952 } 2953 2954 LSRFixup &LF = getNewFixup(); 2955 LF.UserInst = const_cast<Instruction *>(UserInst); 2956 LF.OperandValToReplace = UI.getUse(); 2957 std::pair<size_t, int64_t> P = getUse(S, LSRUse::Basic, 0); 2958 LF.LUIdx = P.first; 2959 LF.Offset = P.second; 2960 LSRUse &LU = Uses[LF.LUIdx]; 2961 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 2962 if (!LU.WidestFixupType || 2963 SE.getTypeSizeInBits(LU.WidestFixupType) < 2964 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 2965 LU.WidestFixupType = LF.OperandValToReplace->getType(); 2966 InsertSupplementalFormula(U, LU, LF.LUIdx); 2967 CountRegisters(LU.Formulae.back(), Uses.size() - 1); 2968 break; 2969 } 2970 } 2971 } 2972 } 2973 2974 /// CollectSubexprs - Split S into subexpressions which can be pulled out into 2975 /// separate registers. If C is non-null, multiply each subexpression by C. 2976 static void CollectSubexprs(const SCEV *S, const SCEVConstant *C, 2977 SmallVectorImpl<const SCEV *> &Ops, 2978 const Loop *L, 2979 ScalarEvolution &SE) { 2980 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2981 // Break out add operands. 2982 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); 2983 I != E; ++I) 2984 CollectSubexprs(*I, C, Ops, L, SE); 2985 return; 2986 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2987 // Split a non-zero base out of an addrec. 2988 if (!AR->getStart()->isZero()) { 2989 CollectSubexprs(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0), 2990 AR->getStepRecurrence(SE), 2991 AR->getLoop(), 2992 //FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 2993 SCEV::FlagAnyWrap), 2994 C, Ops, L, SE); 2995 CollectSubexprs(AR->getStart(), C, Ops, L, SE); 2996 return; 2997 } 2998 } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 2999 // Break (C * (a + b + c)) into C*a + C*b + C*c. 3000 if (Mul->getNumOperands() == 2) 3001 if (const SCEVConstant *Op0 = 3002 dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3003 CollectSubexprs(Mul->getOperand(1), 3004 C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0, 3005 Ops, L, SE); 3006 return; 3007 } 3008 } 3009 3010 // Otherwise use the value itself, optionally with a scale applied. 3011 Ops.push_back(C ? SE.getMulExpr(C, S) : S); 3012 } 3013 3014 /// GenerateReassociations - Split out subexpressions from adds and the bases of 3015 /// addrecs. 3016 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx, 3017 Formula Base, 3018 unsigned Depth) { 3019 // Arbitrarily cap recursion to protect compile time. 3020 if (Depth >= 3) return; 3021 3022 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { 3023 const SCEV *BaseReg = Base.BaseRegs[i]; 3024 3025 SmallVector<const SCEV *, 8> AddOps; 3026 CollectSubexprs(BaseReg, 0, AddOps, L, SE); 3027 3028 if (AddOps.size() == 1) continue; 3029 3030 for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(), 3031 JE = AddOps.end(); J != JE; ++J) { 3032 3033 // Loop-variant "unknown" values are uninteresting; we won't be able to 3034 // do anything meaningful with them. 3035 if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L)) 3036 continue; 3037 3038 // Don't pull a constant into a register if the constant could be folded 3039 // into an immediate field. 3040 if (isAlwaysFoldable(*J, LU.MinOffset, LU.MaxOffset, 3041 Base.getNumRegs() > 1, 3042 LU.Kind, LU.AccessTy, TLI, SE)) 3043 continue; 3044 3045 // Collect all operands except *J. 3046 SmallVector<const SCEV *, 8> InnerAddOps 3047 (((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J); 3048 InnerAddOps.append 3049 (llvm::next(J), ((const SmallVector<const SCEV *, 8> &)AddOps).end()); 3050 3051 // Don't leave just a constant behind in a register if the constant could 3052 // be folded into an immediate field. 3053 if (InnerAddOps.size() == 1 && 3054 isAlwaysFoldable(InnerAddOps[0], LU.MinOffset, LU.MaxOffset, 3055 Base.getNumRegs() > 1, 3056 LU.Kind, LU.AccessTy, TLI, SE)) 3057 continue; 3058 3059 const SCEV *InnerSum = SE.getAddExpr(InnerAddOps); 3060 if (InnerSum->isZero()) 3061 continue; 3062 Formula F = Base; 3063 3064 // Add the remaining pieces of the add back into the new formula. 3065 const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum); 3066 if (TLI && InnerSumSC && 3067 SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 && 3068 TLI->isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3069 InnerSumSC->getValue()->getZExtValue())) { 3070 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset + 3071 InnerSumSC->getValue()->getZExtValue(); 3072 F.BaseRegs.erase(F.BaseRegs.begin() + i); 3073 } else 3074 F.BaseRegs[i] = InnerSum; 3075 3076 // Add J as its own register, or an unfolded immediate. 3077 const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J); 3078 if (TLI && SC && SE.getTypeSizeInBits(SC->getType()) <= 64 && 3079 TLI->isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3080 SC->getValue()->getZExtValue())) 3081 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset + 3082 SC->getValue()->getZExtValue(); 3083 else 3084 F.BaseRegs.push_back(*J); 3085 3086 if (InsertFormula(LU, LUIdx, F)) 3087 // If that formula hadn't been seen before, recurse to find more like 3088 // it. 3089 GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth+1); 3090 } 3091 } 3092 } 3093 3094 /// GenerateCombinations - Generate a formula consisting of all of the 3095 /// loop-dominating registers added into a single register. 3096 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx, 3097 Formula Base) { 3098 // This method is only interesting on a plurality of registers. 3099 if (Base.BaseRegs.size() <= 1) return; 3100 3101 Formula F = Base; 3102 F.BaseRegs.clear(); 3103 SmallVector<const SCEV *, 4> Ops; 3104 for (SmallVectorImpl<const SCEV *>::const_iterator 3105 I = Base.BaseRegs.begin(), E = Base.BaseRegs.end(); I != E; ++I) { 3106 const SCEV *BaseReg = *I; 3107 if (SE.properlyDominates(BaseReg, L->getHeader()) && 3108 !SE.hasComputableLoopEvolution(BaseReg, L)) 3109 Ops.push_back(BaseReg); 3110 else 3111 F.BaseRegs.push_back(BaseReg); 3112 } 3113 if (Ops.size() > 1) { 3114 const SCEV *Sum = SE.getAddExpr(Ops); 3115 // TODO: If Sum is zero, it probably means ScalarEvolution missed an 3116 // opportunity to fold something. For now, just ignore such cases 3117 // rather than proceed with zero in a register. 3118 if (!Sum->isZero()) { 3119 F.BaseRegs.push_back(Sum); 3120 (void)InsertFormula(LU, LUIdx, F); 3121 } 3122 } 3123 } 3124 3125 /// GenerateSymbolicOffsets - Generate reuse formulae using symbolic offsets. 3126 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, 3127 Formula Base) { 3128 // We can't add a symbolic offset if the address already contains one. 3129 if (Base.AM.BaseGV) return; 3130 3131 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { 3132 const SCEV *G = Base.BaseRegs[i]; 3133 GlobalValue *GV = ExtractSymbol(G, SE); 3134 if (G->isZero() || !GV) 3135 continue; 3136 Formula F = Base; 3137 F.AM.BaseGV = GV; 3138 if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset, 3139 LU.Kind, LU.AccessTy, TLI)) 3140 continue; 3141 F.BaseRegs[i] = G; 3142 (void)InsertFormula(LU, LUIdx, F); 3143 } 3144 } 3145 3146 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets. 3147 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, 3148 Formula Base) { 3149 // TODO: For now, just add the min and max offset, because it usually isn't 3150 // worthwhile looking at everything inbetween. 3151 SmallVector<int64_t, 2> Worklist; 3152 Worklist.push_back(LU.MinOffset); 3153 if (LU.MaxOffset != LU.MinOffset) 3154 Worklist.push_back(LU.MaxOffset); 3155 3156 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { 3157 const SCEV *G = Base.BaseRegs[i]; 3158 3159 for (SmallVectorImpl<int64_t>::const_iterator I = Worklist.begin(), 3160 E = Worklist.end(); I != E; ++I) { 3161 Formula F = Base; 3162 F.AM.BaseOffs = (uint64_t)Base.AM.BaseOffs - *I; 3163 if (isLegalUse(F.AM, LU.MinOffset - *I, LU.MaxOffset - *I, 3164 LU.Kind, LU.AccessTy, TLI)) { 3165 // Add the offset to the base register. 3166 const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), *I), G); 3167 // If it cancelled out, drop the base register, otherwise update it. 3168 if (NewG->isZero()) { 3169 std::swap(F.BaseRegs[i], F.BaseRegs.back()); 3170 F.BaseRegs.pop_back(); 3171 } else 3172 F.BaseRegs[i] = NewG; 3173 3174 (void)InsertFormula(LU, LUIdx, F); 3175 } 3176 } 3177 3178 int64_t Imm = ExtractImmediate(G, SE); 3179 if (G->isZero() || Imm == 0) 3180 continue; 3181 Formula F = Base; 3182 F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Imm; 3183 if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset, 3184 LU.Kind, LU.AccessTy, TLI)) 3185 continue; 3186 F.BaseRegs[i] = G; 3187 (void)InsertFormula(LU, LUIdx, F); 3188 } 3189 } 3190 3191 /// GenerateICmpZeroScales - For ICmpZero, check to see if we can scale up 3192 /// the comparison. For example, x == y -> x*c == y*c. 3193 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, 3194 Formula Base) { 3195 if (LU.Kind != LSRUse::ICmpZero) return; 3196 3197 // Determine the integer type for the base formula. 3198 Type *IntTy = Base.getType(); 3199 if (!IntTy) return; 3200 if (SE.getTypeSizeInBits(IntTy) > 64) return; 3201 3202 // Don't do this if there is more than one offset. 3203 if (LU.MinOffset != LU.MaxOffset) return; 3204 3205 assert(!Base.AM.BaseGV && "ICmpZero use is not legal!"); 3206 3207 // Check each interesting stride. 3208 for (SmallSetVector<int64_t, 8>::const_iterator 3209 I = Factors.begin(), E = Factors.end(); I != E; ++I) { 3210 int64_t Factor = *I; 3211 3212 // Check that the multiplication doesn't overflow. 3213 if (Base.AM.BaseOffs == INT64_MIN && Factor == -1) 3214 continue; 3215 int64_t NewBaseOffs = (uint64_t)Base.AM.BaseOffs * Factor; 3216 if (NewBaseOffs / Factor != Base.AM.BaseOffs) 3217 continue; 3218 3219 // Check that multiplying with the use offset doesn't overflow. 3220 int64_t Offset = LU.MinOffset; 3221 if (Offset == INT64_MIN && Factor == -1) 3222 continue; 3223 Offset = (uint64_t)Offset * Factor; 3224 if (Offset / Factor != LU.MinOffset) 3225 continue; 3226 3227 Formula F = Base; 3228 F.AM.BaseOffs = NewBaseOffs; 3229 3230 // Check that this scale is legal. 3231 if (!isLegalUse(F.AM, Offset, Offset, LU.Kind, LU.AccessTy, TLI)) 3232 continue; 3233 3234 // Compensate for the use having MinOffset built into it. 3235 F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Offset - LU.MinOffset; 3236 3237 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3238 3239 // Check that multiplying with each base register doesn't overflow. 3240 for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) { 3241 F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS); 3242 if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i]) 3243 goto next; 3244 } 3245 3246 // Check that multiplying with the scaled register doesn't overflow. 3247 if (F.ScaledReg) { 3248 F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS); 3249 if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg) 3250 continue; 3251 } 3252 3253 // Check that multiplying with the unfolded offset doesn't overflow. 3254 if (F.UnfoldedOffset != 0) { 3255 if (F.UnfoldedOffset == INT64_MIN && Factor == -1) 3256 continue; 3257 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor; 3258 if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset) 3259 continue; 3260 } 3261 3262 // If we make it here and it's legal, add it. 3263 (void)InsertFormula(LU, LUIdx, F); 3264 next:; 3265 } 3266 } 3267 3268 /// GenerateScales - Generate stride factor reuse formulae by making use of 3269 /// scaled-offset address modes, for example. 3270 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) { 3271 // Determine the integer type for the base formula. 3272 Type *IntTy = Base.getType(); 3273 if (!IntTy) return; 3274 3275 // If this Formula already has a scaled register, we can't add another one. 3276 if (Base.AM.Scale != 0) return; 3277 3278 // Check each interesting stride. 3279 for (SmallSetVector<int64_t, 8>::const_iterator 3280 I = Factors.begin(), E = Factors.end(); I != E; ++I) { 3281 int64_t Factor = *I; 3282 3283 Base.AM.Scale = Factor; 3284 Base.AM.HasBaseReg = Base.BaseRegs.size() > 1; 3285 // Check whether this scale is going to be legal. 3286 if (!isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset, 3287 LU.Kind, LU.AccessTy, TLI)) { 3288 // As a special-case, handle special out-of-loop Basic users specially. 3289 // TODO: Reconsider this special case. 3290 if (LU.Kind == LSRUse::Basic && 3291 isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset, 3292 LSRUse::Special, LU.AccessTy, TLI) && 3293 LU.AllFixupsOutsideLoop) 3294 LU.Kind = LSRUse::Special; 3295 else 3296 continue; 3297 } 3298 // For an ICmpZero, negating a solitary base register won't lead to 3299 // new solutions. 3300 if (LU.Kind == LSRUse::ICmpZero && 3301 !Base.AM.HasBaseReg && Base.AM.BaseOffs == 0 && !Base.AM.BaseGV) 3302 continue; 3303 // For each addrec base reg, apply the scale, if possible. 3304 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3305 if (const SCEVAddRecExpr *AR = 3306 dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i])) { 3307 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3308 if (FactorS->isZero()) 3309 continue; 3310 // Divide out the factor, ignoring high bits, since we'll be 3311 // scaling the value back up in the end. 3312 if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) { 3313 // TODO: This could be optimized to avoid all the copying. 3314 Formula F = Base; 3315 F.ScaledReg = Quotient; 3316 F.DeleteBaseReg(F.BaseRegs[i]); 3317 (void)InsertFormula(LU, LUIdx, F); 3318 } 3319 } 3320 } 3321 } 3322 3323 /// GenerateTruncates - Generate reuse formulae from different IV types. 3324 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) { 3325 // This requires TargetLowering to tell us which truncates are free. 3326 if (!TLI) return; 3327 3328 // Don't bother truncating symbolic values. 3329 if (Base.AM.BaseGV) return; 3330 3331 // Determine the integer type for the base formula. 3332 Type *DstTy = Base.getType(); 3333 if (!DstTy) return; 3334 DstTy = SE.getEffectiveSCEVType(DstTy); 3335 3336 for (SmallSetVector<Type *, 4>::const_iterator 3337 I = Types.begin(), E = Types.end(); I != E; ++I) { 3338 Type *SrcTy = *I; 3339 if (SrcTy != DstTy && TLI->isTruncateFree(SrcTy, DstTy)) { 3340 Formula F = Base; 3341 3342 if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, *I); 3343 for (SmallVectorImpl<const SCEV *>::iterator J = F.BaseRegs.begin(), 3344 JE = F.BaseRegs.end(); J != JE; ++J) 3345 *J = SE.getAnyExtendExpr(*J, SrcTy); 3346 3347 // TODO: This assumes we've done basic processing on all uses and 3348 // have an idea what the register usage is. 3349 if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses)) 3350 continue; 3351 3352 (void)InsertFormula(LU, LUIdx, F); 3353 } 3354 } 3355 } 3356 3357 namespace { 3358 3359 /// WorkItem - Helper class for GenerateCrossUseConstantOffsets. It's used to 3360 /// defer modifications so that the search phase doesn't have to worry about 3361 /// the data structures moving underneath it. 3362 struct WorkItem { 3363 size_t LUIdx; 3364 int64_t Imm; 3365 const SCEV *OrigReg; 3366 3367 WorkItem(size_t LI, int64_t I, const SCEV *R) 3368 : LUIdx(LI), Imm(I), OrigReg(R) {} 3369 3370 void print(raw_ostream &OS) const; 3371 void dump() const; 3372 }; 3373 3374 } 3375 3376 void WorkItem::print(raw_ostream &OS) const { 3377 OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx 3378 << " , add offset " << Imm; 3379 } 3380 3381 void WorkItem::dump() const { 3382 print(errs()); errs() << '\n'; 3383 } 3384 3385 /// GenerateCrossUseConstantOffsets - Look for registers which are a constant 3386 /// distance apart and try to form reuse opportunities between them. 3387 void LSRInstance::GenerateCrossUseConstantOffsets() { 3388 // Group the registers by their value without any added constant offset. 3389 typedef std::map<int64_t, const SCEV *> ImmMapTy; 3390 typedef DenseMap<const SCEV *, ImmMapTy> RegMapTy; 3391 RegMapTy Map; 3392 DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap; 3393 SmallVector<const SCEV *, 8> Sequence; 3394 for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end(); 3395 I != E; ++I) { 3396 const SCEV *Reg = *I; 3397 int64_t Imm = ExtractImmediate(Reg, SE); 3398 std::pair<RegMapTy::iterator, bool> Pair = 3399 Map.insert(std::make_pair(Reg, ImmMapTy())); 3400 if (Pair.second) 3401 Sequence.push_back(Reg); 3402 Pair.first->second.insert(std::make_pair(Imm, *I)); 3403 UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(*I); 3404 } 3405 3406 // Now examine each set of registers with the same base value. Build up 3407 // a list of work to do and do the work in a separate step so that we're 3408 // not adding formulae and register counts while we're searching. 3409 SmallVector<WorkItem, 32> WorkItems; 3410 SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems; 3411 for (SmallVectorImpl<const SCEV *>::const_iterator I = Sequence.begin(), 3412 E = Sequence.end(); I != E; ++I) { 3413 const SCEV *Reg = *I; 3414 const ImmMapTy &Imms = Map.find(Reg)->second; 3415 3416 // It's not worthwhile looking for reuse if there's only one offset. 3417 if (Imms.size() == 1) 3418 continue; 3419 3420 DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':'; 3421 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); 3422 J != JE; ++J) 3423 dbgs() << ' ' << J->first; 3424 dbgs() << '\n'); 3425 3426 // Examine each offset. 3427 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); 3428 J != JE; ++J) { 3429 const SCEV *OrigReg = J->second; 3430 3431 int64_t JImm = J->first; 3432 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg); 3433 3434 if (!isa<SCEVConstant>(OrigReg) && 3435 UsedByIndicesMap[Reg].count() == 1) { 3436 DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n'); 3437 continue; 3438 } 3439 3440 // Conservatively examine offsets between this orig reg a few selected 3441 // other orig regs. 3442 ImmMapTy::const_iterator OtherImms[] = { 3443 Imms.begin(), prior(Imms.end()), 3444 Imms.lower_bound((Imms.begin()->first + prior(Imms.end())->first) / 2) 3445 }; 3446 for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) { 3447 ImmMapTy::const_iterator M = OtherImms[i]; 3448 if (M == J || M == JE) continue; 3449 3450 // Compute the difference between the two. 3451 int64_t Imm = (uint64_t)JImm - M->first; 3452 for (int LUIdx = UsedByIndices.find_first(); LUIdx != -1; 3453 LUIdx = UsedByIndices.find_next(LUIdx)) 3454 // Make a memo of this use, offset, and register tuple. 3455 if (UniqueItems.insert(std::make_pair(LUIdx, Imm))) 3456 WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg)); 3457 } 3458 } 3459 } 3460 3461 Map.clear(); 3462 Sequence.clear(); 3463 UsedByIndicesMap.clear(); 3464 UniqueItems.clear(); 3465 3466 // Now iterate through the worklist and add new formulae. 3467 for (SmallVectorImpl<WorkItem>::const_iterator I = WorkItems.begin(), 3468 E = WorkItems.end(); I != E; ++I) { 3469 const WorkItem &WI = *I; 3470 size_t LUIdx = WI.LUIdx; 3471 LSRUse &LU = Uses[LUIdx]; 3472 int64_t Imm = WI.Imm; 3473 const SCEV *OrigReg = WI.OrigReg; 3474 3475 Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType()); 3476 const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm)); 3477 unsigned BitWidth = SE.getTypeSizeInBits(IntTy); 3478 3479 // TODO: Use a more targeted data structure. 3480 for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) { 3481 const Formula &F = LU.Formulae[L]; 3482 // Use the immediate in the scaled register. 3483 if (F.ScaledReg == OrigReg) { 3484 int64_t Offs = (uint64_t)F.AM.BaseOffs + 3485 Imm * (uint64_t)F.AM.Scale; 3486 // Don't create 50 + reg(-50). 3487 if (F.referencesReg(SE.getSCEV( 3488 ConstantInt::get(IntTy, -(uint64_t)Offs)))) 3489 continue; 3490 Formula NewF = F; 3491 NewF.AM.BaseOffs = Offs; 3492 if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset, 3493 LU.Kind, LU.AccessTy, TLI)) 3494 continue; 3495 NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg); 3496 3497 // If the new scale is a constant in a register, and adding the constant 3498 // value to the immediate would produce a value closer to zero than the 3499 // immediate itself, then the formula isn't worthwhile. 3500 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg)) 3501 if (C->getValue()->isNegative() != 3502 (NewF.AM.BaseOffs < 0) && 3503 (C->getValue()->getValue().abs() * APInt(BitWidth, F.AM.Scale)) 3504 .ule(abs64(NewF.AM.BaseOffs))) 3505 continue; 3506 3507 // OK, looks good. 3508 (void)InsertFormula(LU, LUIdx, NewF); 3509 } else { 3510 // Use the immediate in a base register. 3511 for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) { 3512 const SCEV *BaseReg = F.BaseRegs[N]; 3513 if (BaseReg != OrigReg) 3514 continue; 3515 Formula NewF = F; 3516 NewF.AM.BaseOffs = (uint64_t)NewF.AM.BaseOffs + Imm; 3517 if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset, 3518 LU.Kind, LU.AccessTy, TLI)) { 3519 if (!TLI || 3520 !TLI->isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm)) 3521 continue; 3522 NewF = F; 3523 NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm; 3524 } 3525 NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg); 3526 3527 // If the new formula has a constant in a register, and adding the 3528 // constant value to the immediate would produce a value closer to 3529 // zero than the immediate itself, then the formula isn't worthwhile. 3530 for (SmallVectorImpl<const SCEV *>::const_iterator 3531 J = NewF.BaseRegs.begin(), JE = NewF.BaseRegs.end(); 3532 J != JE; ++J) 3533 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*J)) 3534 if ((C->getValue()->getValue() + NewF.AM.BaseOffs).abs().slt( 3535 abs64(NewF.AM.BaseOffs)) && 3536 (C->getValue()->getValue() + 3537 NewF.AM.BaseOffs).countTrailingZeros() >= 3538 CountTrailingZeros_64(NewF.AM.BaseOffs)) 3539 goto skip_formula; 3540 3541 // Ok, looks good. 3542 (void)InsertFormula(LU, LUIdx, NewF); 3543 break; 3544 skip_formula:; 3545 } 3546 } 3547 } 3548 } 3549 } 3550 3551 /// GenerateAllReuseFormulae - Generate formulae for each use. 3552 void 3553 LSRInstance::GenerateAllReuseFormulae() { 3554 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan 3555 // queries are more precise. 3556 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3557 LSRUse &LU = Uses[LUIdx]; 3558 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3559 GenerateReassociations(LU, LUIdx, LU.Formulae[i]); 3560 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3561 GenerateCombinations(LU, LUIdx, LU.Formulae[i]); 3562 } 3563 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3564 LSRUse &LU = Uses[LUIdx]; 3565 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3566 GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]); 3567 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3568 GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]); 3569 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3570 GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]); 3571 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3572 GenerateScales(LU, LUIdx, LU.Formulae[i]); 3573 } 3574 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3575 LSRUse &LU = Uses[LUIdx]; 3576 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3577 GenerateTruncates(LU, LUIdx, LU.Formulae[i]); 3578 } 3579 3580 GenerateCrossUseConstantOffsets(); 3581 3582 DEBUG(dbgs() << "\n" 3583 "After generating reuse formulae:\n"; 3584 print_uses(dbgs())); 3585 } 3586 3587 /// If there are multiple formulae with the same set of registers used 3588 /// by other uses, pick the best one and delete the others. 3589 void LSRInstance::FilterOutUndesirableDedicatedRegisters() { 3590 DenseSet<const SCEV *> VisitedRegs; 3591 SmallPtrSet<const SCEV *, 16> Regs; 3592 SmallPtrSet<const SCEV *, 16> LoserRegs; 3593 #ifndef NDEBUG 3594 bool ChangedFormulae = false; 3595 #endif 3596 3597 // Collect the best formula for each unique set of shared registers. This 3598 // is reset for each use. 3599 typedef DenseMap<SmallVector<const SCEV *, 2>, size_t, UniquifierDenseMapInfo> 3600 BestFormulaeTy; 3601 BestFormulaeTy BestFormulae; 3602 3603 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3604 LSRUse &LU = Uses[LUIdx]; 3605 DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n'); 3606 3607 bool Any = false; 3608 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); 3609 FIdx != NumForms; ++FIdx) { 3610 Formula &F = LU.Formulae[FIdx]; 3611 3612 // Some formulas are instant losers. For example, they may depend on 3613 // nonexistent AddRecs from other loops. These need to be filtered 3614 // immediately, otherwise heuristics could choose them over others leading 3615 // to an unsatisfactory solution. Passing LoserRegs into RateFormula here 3616 // avoids the need to recompute this information across formulae using the 3617 // same bad AddRec. Passing LoserRegs is also essential unless we remove 3618 // the corresponding bad register from the Regs set. 3619 Cost CostF; 3620 Regs.clear(); 3621 CostF.RateFormula(F, Regs, VisitedRegs, L, LU.Offsets, SE, DT, 3622 &LoserRegs); 3623 if (CostF.isLoser()) { 3624 // During initial formula generation, undesirable formulae are generated 3625 // by uses within other loops that have some non-trivial address mode or 3626 // use the postinc form of the IV. LSR needs to provide these formulae 3627 // as the basis of rediscovering the desired formula that uses an AddRec 3628 // corresponding to the existing phi. Once all formulae have been 3629 // generated, these initial losers may be pruned. 3630 DEBUG(dbgs() << " Filtering loser "; F.print(dbgs()); 3631 dbgs() << "\n"); 3632 } 3633 else { 3634 SmallVector<const SCEV *, 2> Key; 3635 for (SmallVectorImpl<const SCEV *>::const_iterator J = F.BaseRegs.begin(), 3636 JE = F.BaseRegs.end(); J != JE; ++J) { 3637 const SCEV *Reg = *J; 3638 if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx)) 3639 Key.push_back(Reg); 3640 } 3641 if (F.ScaledReg && 3642 RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx)) 3643 Key.push_back(F.ScaledReg); 3644 // Unstable sort by host order ok, because this is only used for 3645 // uniquifying. 3646 std::sort(Key.begin(), Key.end()); 3647 3648 std::pair<BestFormulaeTy::const_iterator, bool> P = 3649 BestFormulae.insert(std::make_pair(Key, FIdx)); 3650 if (P.second) 3651 continue; 3652 3653 Formula &Best = LU.Formulae[P.first->second]; 3654 3655 Cost CostBest; 3656 Regs.clear(); 3657 CostBest.RateFormula(Best, Regs, VisitedRegs, L, LU.Offsets, SE, DT); 3658 if (CostF < CostBest) 3659 std::swap(F, Best); 3660 DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 3661 dbgs() << "\n" 3662 " in favor of formula "; Best.print(dbgs()); 3663 dbgs() << '\n'); 3664 } 3665 #ifndef NDEBUG 3666 ChangedFormulae = true; 3667 #endif 3668 LU.DeleteFormula(F); 3669 --FIdx; 3670 --NumForms; 3671 Any = true; 3672 } 3673 3674 // Now that we've filtered out some formulae, recompute the Regs set. 3675 if (Any) 3676 LU.RecomputeRegs(LUIdx, RegUses); 3677 3678 // Reset this to prepare for the next use. 3679 BestFormulae.clear(); 3680 } 3681 3682 DEBUG(if (ChangedFormulae) { 3683 dbgs() << "\n" 3684 "After filtering out undesirable candidates:\n"; 3685 print_uses(dbgs()); 3686 }); 3687 } 3688 3689 // This is a rough guess that seems to work fairly well. 3690 static const size_t ComplexityLimit = UINT16_MAX; 3691 3692 /// EstimateSearchSpaceComplexity - Estimate the worst-case number of 3693 /// solutions the solver might have to consider. It almost never considers 3694 /// this many solutions because it prune the search space, but the pruning 3695 /// isn't always sufficient. 3696 size_t LSRInstance::EstimateSearchSpaceComplexity() const { 3697 size_t Power = 1; 3698 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(), 3699 E = Uses.end(); I != E; ++I) { 3700 size_t FSize = I->Formulae.size(); 3701 if (FSize >= ComplexityLimit) { 3702 Power = ComplexityLimit; 3703 break; 3704 } 3705 Power *= FSize; 3706 if (Power >= ComplexityLimit) 3707 break; 3708 } 3709 return Power; 3710 } 3711 3712 /// NarrowSearchSpaceByDetectingSupersets - When one formula uses a superset 3713 /// of the registers of another formula, it won't help reduce register 3714 /// pressure (though it may not necessarily hurt register pressure); remove 3715 /// it to simplify the system. 3716 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() { 3717 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 3718 DEBUG(dbgs() << "The search space is too complex.\n"); 3719 3720 DEBUG(dbgs() << "Narrowing the search space by eliminating formulae " 3721 "which use a superset of registers used by other " 3722 "formulae.\n"); 3723 3724 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3725 LSRUse &LU = Uses[LUIdx]; 3726 bool Any = false; 3727 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 3728 Formula &F = LU.Formulae[i]; 3729 // Look for a formula with a constant or GV in a register. If the use 3730 // also has a formula with that same value in an immediate field, 3731 // delete the one that uses a register. 3732 for (SmallVectorImpl<const SCEV *>::const_iterator 3733 I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) { 3734 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) { 3735 Formula NewF = F; 3736 NewF.AM.BaseOffs += C->getValue()->getSExtValue(); 3737 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 3738 (I - F.BaseRegs.begin())); 3739 if (LU.HasFormulaWithSameRegs(NewF)) { 3740 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 3741 LU.DeleteFormula(F); 3742 --i; 3743 --e; 3744 Any = true; 3745 break; 3746 } 3747 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) { 3748 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) 3749 if (!F.AM.BaseGV) { 3750 Formula NewF = F; 3751 NewF.AM.BaseGV = GV; 3752 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 3753 (I - F.BaseRegs.begin())); 3754 if (LU.HasFormulaWithSameRegs(NewF)) { 3755 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 3756 dbgs() << '\n'); 3757 LU.DeleteFormula(F); 3758 --i; 3759 --e; 3760 Any = true; 3761 break; 3762 } 3763 } 3764 } 3765 } 3766 } 3767 if (Any) 3768 LU.RecomputeRegs(LUIdx, RegUses); 3769 } 3770 3771 DEBUG(dbgs() << "After pre-selection:\n"; 3772 print_uses(dbgs())); 3773 } 3774 } 3775 3776 /// NarrowSearchSpaceByCollapsingUnrolledCode - When there are many registers 3777 /// for expressions like A, A+1, A+2, etc., allocate a single register for 3778 /// them. 3779 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() { 3780 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 3781 DEBUG(dbgs() << "The search space is too complex.\n"); 3782 3783 DEBUG(dbgs() << "Narrowing the search space by assuming that uses " 3784 "separated by a constant offset will use the same " 3785 "registers.\n"); 3786 3787 // This is especially useful for unrolled loops. 3788 3789 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3790 LSRUse &LU = Uses[LUIdx]; 3791 for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(), 3792 E = LU.Formulae.end(); I != E; ++I) { 3793 const Formula &F = *I; 3794 if (F.AM.BaseOffs != 0 && F.AM.Scale == 0) { 3795 if (LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU)) { 3796 if (reconcileNewOffset(*LUThatHas, F.AM.BaseOffs, 3797 /*HasBaseReg=*/false, 3798 LU.Kind, LU.AccessTy)) { 3799 DEBUG(dbgs() << " Deleting use "; LU.print(dbgs()); 3800 dbgs() << '\n'); 3801 3802 LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop; 3803 3804 // Update the relocs to reference the new use. 3805 for (SmallVectorImpl<LSRFixup>::iterator I = Fixups.begin(), 3806 E = Fixups.end(); I != E; ++I) { 3807 LSRFixup &Fixup = *I; 3808 if (Fixup.LUIdx == LUIdx) { 3809 Fixup.LUIdx = LUThatHas - &Uses.front(); 3810 Fixup.Offset += F.AM.BaseOffs; 3811 // Add the new offset to LUThatHas' offset list. 3812 if (LUThatHas->Offsets.back() != Fixup.Offset) { 3813 LUThatHas->Offsets.push_back(Fixup.Offset); 3814 if (Fixup.Offset > LUThatHas->MaxOffset) 3815 LUThatHas->MaxOffset = Fixup.Offset; 3816 if (Fixup.Offset < LUThatHas->MinOffset) 3817 LUThatHas->MinOffset = Fixup.Offset; 3818 } 3819 DEBUG(dbgs() << "New fixup has offset " 3820 << Fixup.Offset << '\n'); 3821 } 3822 if (Fixup.LUIdx == NumUses-1) 3823 Fixup.LUIdx = LUIdx; 3824 } 3825 3826 // Delete formulae from the new use which are no longer legal. 3827 bool Any = false; 3828 for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) { 3829 Formula &F = LUThatHas->Formulae[i]; 3830 if (!isLegalUse(F.AM, 3831 LUThatHas->MinOffset, LUThatHas->MaxOffset, 3832 LUThatHas->Kind, LUThatHas->AccessTy, TLI)) { 3833 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 3834 dbgs() << '\n'); 3835 LUThatHas->DeleteFormula(F); 3836 --i; 3837 --e; 3838 Any = true; 3839 } 3840 } 3841 if (Any) 3842 LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses); 3843 3844 // Delete the old use. 3845 DeleteUse(LU, LUIdx); 3846 --LUIdx; 3847 --NumUses; 3848 break; 3849 } 3850 } 3851 } 3852 } 3853 } 3854 3855 DEBUG(dbgs() << "After pre-selection:\n"; 3856 print_uses(dbgs())); 3857 } 3858 } 3859 3860 /// NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters - Call 3861 /// FilterOutUndesirableDedicatedRegisters again, if necessary, now that 3862 /// we've done more filtering, as it may be able to find more formulae to 3863 /// eliminate. 3864 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){ 3865 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 3866 DEBUG(dbgs() << "The search space is too complex.\n"); 3867 3868 DEBUG(dbgs() << "Narrowing the search space by re-filtering out " 3869 "undesirable dedicated registers.\n"); 3870 3871 FilterOutUndesirableDedicatedRegisters(); 3872 3873 DEBUG(dbgs() << "After pre-selection:\n"; 3874 print_uses(dbgs())); 3875 } 3876 } 3877 3878 /// NarrowSearchSpaceByPickingWinnerRegs - Pick a register which seems likely 3879 /// to be profitable, and then in any use which has any reference to that 3880 /// register, delete all formulae which do not reference that register. 3881 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() { 3882 // With all other options exhausted, loop until the system is simple 3883 // enough to handle. 3884 SmallPtrSet<const SCEV *, 4> Taken; 3885 while (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 3886 // Ok, we have too many of formulae on our hands to conveniently handle. 3887 // Use a rough heuristic to thin out the list. 3888 DEBUG(dbgs() << "The search space is too complex.\n"); 3889 3890 // Pick the register which is used by the most LSRUses, which is likely 3891 // to be a good reuse register candidate. 3892 const SCEV *Best = 0; 3893 unsigned BestNum = 0; 3894 for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end(); 3895 I != E; ++I) { 3896 const SCEV *Reg = *I; 3897 if (Taken.count(Reg)) 3898 continue; 3899 if (!Best) 3900 Best = Reg; 3901 else { 3902 unsigned Count = RegUses.getUsedByIndices(Reg).count(); 3903 if (Count > BestNum) { 3904 Best = Reg; 3905 BestNum = Count; 3906 } 3907 } 3908 } 3909 3910 DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best 3911 << " will yield profitable reuse.\n"); 3912 Taken.insert(Best); 3913 3914 // In any use with formulae which references this register, delete formulae 3915 // which don't reference it. 3916 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3917 LSRUse &LU = Uses[LUIdx]; 3918 if (!LU.Regs.count(Best)) continue; 3919 3920 bool Any = false; 3921 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 3922 Formula &F = LU.Formulae[i]; 3923 if (!F.referencesReg(Best)) { 3924 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 3925 LU.DeleteFormula(F); 3926 --e; 3927 --i; 3928 Any = true; 3929 assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?"); 3930 continue; 3931 } 3932 } 3933 3934 if (Any) 3935 LU.RecomputeRegs(LUIdx, RegUses); 3936 } 3937 3938 DEBUG(dbgs() << "After pre-selection:\n"; 3939 print_uses(dbgs())); 3940 } 3941 } 3942 3943 /// NarrowSearchSpaceUsingHeuristics - If there are an extraordinary number of 3944 /// formulae to choose from, use some rough heuristics to prune down the number 3945 /// of formulae. This keeps the main solver from taking an extraordinary amount 3946 /// of time in some worst-case scenarios. 3947 void LSRInstance::NarrowSearchSpaceUsingHeuristics() { 3948 NarrowSearchSpaceByDetectingSupersets(); 3949 NarrowSearchSpaceByCollapsingUnrolledCode(); 3950 NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 3951 NarrowSearchSpaceByPickingWinnerRegs(); 3952 } 3953 3954 /// SolveRecurse - This is the recursive solver. 3955 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 3956 Cost &SolutionCost, 3957 SmallVectorImpl<const Formula *> &Workspace, 3958 const Cost &CurCost, 3959 const SmallPtrSet<const SCEV *, 16> &CurRegs, 3960 DenseSet<const SCEV *> &VisitedRegs) const { 3961 // Some ideas: 3962 // - prune more: 3963 // - use more aggressive filtering 3964 // - sort the formula so that the most profitable solutions are found first 3965 // - sort the uses too 3966 // - search faster: 3967 // - don't compute a cost, and then compare. compare while computing a cost 3968 // and bail early. 3969 // - track register sets with SmallBitVector 3970 3971 const LSRUse &LU = Uses[Workspace.size()]; 3972 3973 // If this use references any register that's already a part of the 3974 // in-progress solution, consider it a requirement that a formula must 3975 // reference that register in order to be considered. This prunes out 3976 // unprofitable searching. 3977 SmallSetVector<const SCEV *, 4> ReqRegs; 3978 for (SmallPtrSet<const SCEV *, 16>::const_iterator I = CurRegs.begin(), 3979 E = CurRegs.end(); I != E; ++I) 3980 if (LU.Regs.count(*I)) 3981 ReqRegs.insert(*I); 3982 3983 bool AnySatisfiedReqRegs = false; 3984 SmallPtrSet<const SCEV *, 16> NewRegs; 3985 Cost NewCost; 3986 retry: 3987 for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(), 3988 E = LU.Formulae.end(); I != E; ++I) { 3989 const Formula &F = *I; 3990 3991 // Ignore formulae which do not use any of the required registers. 3992 for (SmallSetVector<const SCEV *, 4>::const_iterator J = ReqRegs.begin(), 3993 JE = ReqRegs.end(); J != JE; ++J) { 3994 const SCEV *Reg = *J; 3995 if ((!F.ScaledReg || F.ScaledReg != Reg) && 3996 std::find(F.BaseRegs.begin(), F.BaseRegs.end(), Reg) == 3997 F.BaseRegs.end()) 3998 goto skip; 3999 } 4000 AnySatisfiedReqRegs = true; 4001 4002 // Evaluate the cost of the current formula. If it's already worse than 4003 // the current best, prune the search at that point. 4004 NewCost = CurCost; 4005 NewRegs = CurRegs; 4006 NewCost.RateFormula(F, NewRegs, VisitedRegs, L, LU.Offsets, SE, DT); 4007 if (NewCost < SolutionCost) { 4008 Workspace.push_back(&F); 4009 if (Workspace.size() != Uses.size()) { 4010 SolveRecurse(Solution, SolutionCost, Workspace, NewCost, 4011 NewRegs, VisitedRegs); 4012 if (F.getNumRegs() == 1 && Workspace.size() == 1) 4013 VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]); 4014 } else { 4015 DEBUG(dbgs() << "New best at "; NewCost.print(dbgs()); 4016 dbgs() << ".\n Regs:"; 4017 for (SmallPtrSet<const SCEV *, 16>::const_iterator 4018 I = NewRegs.begin(), E = NewRegs.end(); I != E; ++I) 4019 dbgs() << ' ' << **I; 4020 dbgs() << '\n'); 4021 4022 SolutionCost = NewCost; 4023 Solution = Workspace; 4024 } 4025 Workspace.pop_back(); 4026 } 4027 skip:; 4028 } 4029 4030 if (!EnableRetry && !AnySatisfiedReqRegs) 4031 return; 4032 4033 // If none of the formulae had all of the required registers, relax the 4034 // constraint so that we don't exclude all formulae. 4035 if (!AnySatisfiedReqRegs) { 4036 assert(!ReqRegs.empty() && "Solver failed even without required registers"); 4037 ReqRegs.clear(); 4038 goto retry; 4039 } 4040 } 4041 4042 /// Solve - Choose one formula from each use. Return the results in the given 4043 /// Solution vector. 4044 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const { 4045 SmallVector<const Formula *, 8> Workspace; 4046 Cost SolutionCost; 4047 SolutionCost.Loose(); 4048 Cost CurCost; 4049 SmallPtrSet<const SCEV *, 16> CurRegs; 4050 DenseSet<const SCEV *> VisitedRegs; 4051 Workspace.reserve(Uses.size()); 4052 4053 // SolveRecurse does all the work. 4054 SolveRecurse(Solution, SolutionCost, Workspace, CurCost, 4055 CurRegs, VisitedRegs); 4056 if (Solution.empty()) { 4057 DEBUG(dbgs() << "\nNo Satisfactory Solution\n"); 4058 return; 4059 } 4060 4061 // Ok, we've now made all our decisions. 4062 DEBUG(dbgs() << "\n" 4063 "The chosen solution requires "; SolutionCost.print(dbgs()); 4064 dbgs() << ":\n"; 4065 for (size_t i = 0, e = Uses.size(); i != e; ++i) { 4066 dbgs() << " "; 4067 Uses[i].print(dbgs()); 4068 dbgs() << "\n" 4069 " "; 4070 Solution[i]->print(dbgs()); 4071 dbgs() << '\n'; 4072 }); 4073 4074 assert(Solution.size() == Uses.size() && "Malformed solution!"); 4075 } 4076 4077 /// HoistInsertPosition - Helper for AdjustInsertPositionForExpand. Climb up 4078 /// the dominator tree far as we can go while still being dominated by the 4079 /// input positions. This helps canonicalize the insert position, which 4080 /// encourages sharing. 4081 BasicBlock::iterator 4082 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP, 4083 const SmallVectorImpl<Instruction *> &Inputs) 4084 const { 4085 for (;;) { 4086 const Loop *IPLoop = LI.getLoopFor(IP->getParent()); 4087 unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0; 4088 4089 BasicBlock *IDom; 4090 for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) { 4091 if (!Rung) return IP; 4092 Rung = Rung->getIDom(); 4093 if (!Rung) return IP; 4094 IDom = Rung->getBlock(); 4095 4096 // Don't climb into a loop though. 4097 const Loop *IDomLoop = LI.getLoopFor(IDom); 4098 unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0; 4099 if (IDomDepth <= IPLoopDepth && 4100 (IDomDepth != IPLoopDepth || IDomLoop == IPLoop)) 4101 break; 4102 } 4103 4104 bool AllDominate = true; 4105 Instruction *BetterPos = 0; 4106 Instruction *Tentative = IDom->getTerminator(); 4107 for (SmallVectorImpl<Instruction *>::const_iterator I = Inputs.begin(), 4108 E = Inputs.end(); I != E; ++I) { 4109 Instruction *Inst = *I; 4110 if (Inst == Tentative || !DT.dominates(Inst, Tentative)) { 4111 AllDominate = false; 4112 break; 4113 } 4114 // Attempt to find an insert position in the middle of the block, 4115 // instead of at the end, so that it can be used for other expansions. 4116 if (IDom == Inst->getParent() && 4117 (!BetterPos || DT.dominates(BetterPos, Inst))) 4118 BetterPos = llvm::next(BasicBlock::iterator(Inst)); 4119 } 4120 if (!AllDominate) 4121 break; 4122 if (BetterPos) 4123 IP = BetterPos; 4124 else 4125 IP = Tentative; 4126 } 4127 4128 return IP; 4129 } 4130 4131 /// AdjustInsertPositionForExpand - Determine an input position which will be 4132 /// dominated by the operands and which will dominate the result. 4133 BasicBlock::iterator 4134 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator IP, 4135 const LSRFixup &LF, 4136 const LSRUse &LU) const { 4137 // Collect some instructions which must be dominated by the 4138 // expanding replacement. These must be dominated by any operands that 4139 // will be required in the expansion. 4140 SmallVector<Instruction *, 4> Inputs; 4141 if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace)) 4142 Inputs.push_back(I); 4143 if (LU.Kind == LSRUse::ICmpZero) 4144 if (Instruction *I = 4145 dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1))) 4146 Inputs.push_back(I); 4147 if (LF.PostIncLoops.count(L)) { 4148 if (LF.isUseFullyOutsideLoop(L)) 4149 Inputs.push_back(L->getLoopLatch()->getTerminator()); 4150 else 4151 Inputs.push_back(IVIncInsertPos); 4152 } 4153 // The expansion must also be dominated by the increment positions of any 4154 // loops it for which it is using post-inc mode. 4155 for (PostIncLoopSet::const_iterator I = LF.PostIncLoops.begin(), 4156 E = LF.PostIncLoops.end(); I != E; ++I) { 4157 const Loop *PIL = *I; 4158 if (PIL == L) continue; 4159 4160 // Be dominated by the loop exit. 4161 SmallVector<BasicBlock *, 4> ExitingBlocks; 4162 PIL->getExitingBlocks(ExitingBlocks); 4163 if (!ExitingBlocks.empty()) { 4164 BasicBlock *BB = ExitingBlocks[0]; 4165 for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i) 4166 BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]); 4167 Inputs.push_back(BB->getTerminator()); 4168 } 4169 } 4170 4171 // Then, climb up the immediate dominator tree as far as we can go while 4172 // still being dominated by the input positions. 4173 IP = HoistInsertPosition(IP, Inputs); 4174 4175 // Don't insert instructions before PHI nodes. 4176 while (isa<PHINode>(IP)) ++IP; 4177 4178 // Ignore landingpad instructions. 4179 while (isa<LandingPadInst>(IP)) ++IP; 4180 4181 // Ignore debug intrinsics. 4182 while (isa<DbgInfoIntrinsic>(IP)) ++IP; 4183 4184 return IP; 4185 } 4186 4187 /// Expand - Emit instructions for the leading candidate expression for this 4188 /// LSRUse (this is called "expanding"). 4189 Value *LSRInstance::Expand(const LSRFixup &LF, 4190 const Formula &F, 4191 BasicBlock::iterator IP, 4192 SCEVExpander &Rewriter, 4193 SmallVectorImpl<WeakVH> &DeadInsts) const { 4194 const LSRUse &LU = Uses[LF.LUIdx]; 4195 4196 // Determine an input position which will be dominated by the operands and 4197 // which will dominate the result. 4198 IP = AdjustInsertPositionForExpand(IP, LF, LU); 4199 4200 // Inform the Rewriter if we have a post-increment use, so that it can 4201 // perform an advantageous expansion. 4202 Rewriter.setPostInc(LF.PostIncLoops); 4203 4204 // This is the type that the user actually needs. 4205 Type *OpTy = LF.OperandValToReplace->getType(); 4206 // This will be the type that we'll initially expand to. 4207 Type *Ty = F.getType(); 4208 if (!Ty) 4209 // No type known; just expand directly to the ultimate type. 4210 Ty = OpTy; 4211 else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy)) 4212 // Expand directly to the ultimate type if it's the right size. 4213 Ty = OpTy; 4214 // This is the type to do integer arithmetic in. 4215 Type *IntTy = SE.getEffectiveSCEVType(Ty); 4216 4217 // Build up a list of operands to add together to form the full base. 4218 SmallVector<const SCEV *, 8> Ops; 4219 4220 // Expand the BaseRegs portion. 4221 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(), 4222 E = F.BaseRegs.end(); I != E; ++I) { 4223 const SCEV *Reg = *I; 4224 assert(!Reg->isZero() && "Zero allocated in a base register!"); 4225 4226 // If we're expanding for a post-inc user, make the post-inc adjustment. 4227 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 4228 Reg = TransformForPostIncUse(Denormalize, Reg, 4229 LF.UserInst, LF.OperandValToReplace, 4230 Loops, SE, DT); 4231 4232 Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, 0, IP))); 4233 } 4234 4235 // Flush the operand list to suppress SCEVExpander hoisting. 4236 if (!Ops.empty()) { 4237 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP); 4238 Ops.clear(); 4239 Ops.push_back(SE.getUnknown(FullV)); 4240 } 4241 4242 // Expand the ScaledReg portion. 4243 Value *ICmpScaledV = 0; 4244 if (F.AM.Scale != 0) { 4245 const SCEV *ScaledS = F.ScaledReg; 4246 4247 // If we're expanding for a post-inc user, make the post-inc adjustment. 4248 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 4249 ScaledS = TransformForPostIncUse(Denormalize, ScaledS, 4250 LF.UserInst, LF.OperandValToReplace, 4251 Loops, SE, DT); 4252 4253 if (LU.Kind == LSRUse::ICmpZero) { 4254 // An interesting way of "folding" with an icmp is to use a negated 4255 // scale, which we'll implement by inserting it into the other operand 4256 // of the icmp. 4257 assert(F.AM.Scale == -1 && 4258 "The only scale supported by ICmpZero uses is -1!"); 4259 ICmpScaledV = Rewriter.expandCodeFor(ScaledS, 0, IP); 4260 } else { 4261 // Otherwise just expand the scaled register and an explicit scale, 4262 // which is expected to be matched as part of the address. 4263 ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, 0, IP)); 4264 ScaledS = SE.getMulExpr(ScaledS, 4265 SE.getConstant(ScaledS->getType(), F.AM.Scale)); 4266 Ops.push_back(ScaledS); 4267 4268 // Flush the operand list to suppress SCEVExpander hoisting. 4269 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP); 4270 Ops.clear(); 4271 Ops.push_back(SE.getUnknown(FullV)); 4272 } 4273 } 4274 4275 // Expand the GV portion. 4276 if (F.AM.BaseGV) { 4277 Ops.push_back(SE.getUnknown(F.AM.BaseGV)); 4278 4279 // Flush the operand list to suppress SCEVExpander hoisting. 4280 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP); 4281 Ops.clear(); 4282 Ops.push_back(SE.getUnknown(FullV)); 4283 } 4284 4285 // Expand the immediate portion. 4286 int64_t Offset = (uint64_t)F.AM.BaseOffs + LF.Offset; 4287 if (Offset != 0) { 4288 if (LU.Kind == LSRUse::ICmpZero) { 4289 // The other interesting way of "folding" with an ICmpZero is to use a 4290 // negated immediate. 4291 if (!ICmpScaledV) 4292 ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset); 4293 else { 4294 Ops.push_back(SE.getUnknown(ICmpScaledV)); 4295 ICmpScaledV = ConstantInt::get(IntTy, Offset); 4296 } 4297 } else { 4298 // Just add the immediate values. These again are expected to be matched 4299 // as part of the address. 4300 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset))); 4301 } 4302 } 4303 4304 // Expand the unfolded offset portion. 4305 int64_t UnfoldedOffset = F.UnfoldedOffset; 4306 if (UnfoldedOffset != 0) { 4307 // Just add the immediate values. 4308 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, 4309 UnfoldedOffset))); 4310 } 4311 4312 // Emit instructions summing all the operands. 4313 const SCEV *FullS = Ops.empty() ? 4314 SE.getConstant(IntTy, 0) : 4315 SE.getAddExpr(Ops); 4316 Value *FullV = Rewriter.expandCodeFor(FullS, Ty, IP); 4317 4318 // We're done expanding now, so reset the rewriter. 4319 Rewriter.clearPostInc(); 4320 4321 // An ICmpZero Formula represents an ICmp which we're handling as a 4322 // comparison against zero. Now that we've expanded an expression for that 4323 // form, update the ICmp's other operand. 4324 if (LU.Kind == LSRUse::ICmpZero) { 4325 ICmpInst *CI = cast<ICmpInst>(LF.UserInst); 4326 DeadInsts.push_back(CI->getOperand(1)); 4327 assert(!F.AM.BaseGV && "ICmp does not support folding a global value and " 4328 "a scale at the same time!"); 4329 if (F.AM.Scale == -1) { 4330 if (ICmpScaledV->getType() != OpTy) { 4331 Instruction *Cast = 4332 CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false, 4333 OpTy, false), 4334 ICmpScaledV, OpTy, "tmp", CI); 4335 ICmpScaledV = Cast; 4336 } 4337 CI->setOperand(1, ICmpScaledV); 4338 } else { 4339 assert(F.AM.Scale == 0 && 4340 "ICmp does not support folding a global value and " 4341 "a scale at the same time!"); 4342 Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy), 4343 -(uint64_t)Offset); 4344 if (C->getType() != OpTy) 4345 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 4346 OpTy, false), 4347 C, OpTy); 4348 4349 CI->setOperand(1, C); 4350 } 4351 } 4352 4353 return FullV; 4354 } 4355 4356 /// RewriteForPHI - Helper for Rewrite. PHI nodes are special because the use 4357 /// of their operands effectively happens in their predecessor blocks, so the 4358 /// expression may need to be expanded in multiple places. 4359 void LSRInstance::RewriteForPHI(PHINode *PN, 4360 const LSRFixup &LF, 4361 const Formula &F, 4362 SCEVExpander &Rewriter, 4363 SmallVectorImpl<WeakVH> &DeadInsts, 4364 Pass *P) const { 4365 DenseMap<BasicBlock *, Value *> Inserted; 4366 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 4367 if (PN->getIncomingValue(i) == LF.OperandValToReplace) { 4368 BasicBlock *BB = PN->getIncomingBlock(i); 4369 4370 // If this is a critical edge, split the edge so that we do not insert 4371 // the code on all predecessor/successor paths. We do this unless this 4372 // is the canonical backedge for this loop, which complicates post-inc 4373 // users. 4374 if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 && 4375 !isa<IndirectBrInst>(BB->getTerminator())) { 4376 BasicBlock *Parent = PN->getParent(); 4377 Loop *PNLoop = LI.getLoopFor(Parent); 4378 if (!PNLoop || Parent != PNLoop->getHeader()) { 4379 // Split the critical edge. 4380 BasicBlock *NewBB = 0; 4381 if (!Parent->isLandingPad()) { 4382 NewBB = SplitCriticalEdge(BB, Parent, P, 4383 /*MergeIdenticalEdges=*/true, 4384 /*DontDeleteUselessPhis=*/true); 4385 } else { 4386 SmallVector<BasicBlock*, 2> NewBBs; 4387 SplitLandingPadPredecessors(Parent, BB, "", "", P, NewBBs); 4388 NewBB = NewBBs[0]; 4389 } 4390 4391 // If PN is outside of the loop and BB is in the loop, we want to 4392 // move the block to be immediately before the PHI block, not 4393 // immediately after BB. 4394 if (L->contains(BB) && !L->contains(PN)) 4395 NewBB->moveBefore(PN->getParent()); 4396 4397 // Splitting the edge can reduce the number of PHI entries we have. 4398 e = PN->getNumIncomingValues(); 4399 BB = NewBB; 4400 i = PN->getBasicBlockIndex(BB); 4401 } 4402 } 4403 4404 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair = 4405 Inserted.insert(std::make_pair(BB, static_cast<Value *>(0))); 4406 if (!Pair.second) 4407 PN->setIncomingValue(i, Pair.first->second); 4408 else { 4409 Value *FullV = Expand(LF, F, BB->getTerminator(), Rewriter, DeadInsts); 4410 4411 // If this is reuse-by-noop-cast, insert the noop cast. 4412 Type *OpTy = LF.OperandValToReplace->getType(); 4413 if (FullV->getType() != OpTy) 4414 FullV = 4415 CastInst::Create(CastInst::getCastOpcode(FullV, false, 4416 OpTy, false), 4417 FullV, LF.OperandValToReplace->getType(), 4418 "tmp", BB->getTerminator()); 4419 4420 PN->setIncomingValue(i, FullV); 4421 Pair.first->second = FullV; 4422 } 4423 } 4424 } 4425 4426 /// Rewrite - Emit instructions for the leading candidate expression for this 4427 /// LSRUse (this is called "expanding"), and update the UserInst to reference 4428 /// the newly expanded value. 4429 void LSRInstance::Rewrite(const LSRFixup &LF, 4430 const Formula &F, 4431 SCEVExpander &Rewriter, 4432 SmallVectorImpl<WeakVH> &DeadInsts, 4433 Pass *P) const { 4434 // First, find an insertion point that dominates UserInst. For PHI nodes, 4435 // find the nearest block which dominates all the relevant uses. 4436 if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) { 4437 RewriteForPHI(PN, LF, F, Rewriter, DeadInsts, P); 4438 } else { 4439 Value *FullV = Expand(LF, F, LF.UserInst, Rewriter, DeadInsts); 4440 4441 // If this is reuse-by-noop-cast, insert the noop cast. 4442 Type *OpTy = LF.OperandValToReplace->getType(); 4443 if (FullV->getType() != OpTy) { 4444 Instruction *Cast = 4445 CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false), 4446 FullV, OpTy, "tmp", LF.UserInst); 4447 FullV = Cast; 4448 } 4449 4450 // Update the user. ICmpZero is handled specially here (for now) because 4451 // Expand may have updated one of the operands of the icmp already, and 4452 // its new value may happen to be equal to LF.OperandValToReplace, in 4453 // which case doing replaceUsesOfWith leads to replacing both operands 4454 // with the same value. TODO: Reorganize this. 4455 if (Uses[LF.LUIdx].Kind == LSRUse::ICmpZero) 4456 LF.UserInst->setOperand(0, FullV); 4457 else 4458 LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV); 4459 } 4460 4461 DeadInsts.push_back(LF.OperandValToReplace); 4462 } 4463 4464 /// ImplementSolution - Rewrite all the fixup locations with new values, 4465 /// following the chosen solution. 4466 void 4467 LSRInstance::ImplementSolution(const SmallVectorImpl<const Formula *> &Solution, 4468 Pass *P) { 4469 // Keep track of instructions we may have made dead, so that 4470 // we can remove them after we are done working. 4471 SmallVector<WeakVH, 16> DeadInsts; 4472 4473 SCEVExpander Rewriter(SE, "lsr"); 4474 #ifndef NDEBUG 4475 Rewriter.setDebugType(DEBUG_TYPE); 4476 #endif 4477 Rewriter.disableCanonicalMode(); 4478 Rewriter.enableLSRMode(); 4479 Rewriter.setIVIncInsertPos(L, IVIncInsertPos); 4480 4481 // Mark phi nodes that terminate chains so the expander tries to reuse them. 4482 for (SmallVectorImpl<IVChain>::const_iterator ChainI = IVChainVec.begin(), 4483 ChainE = IVChainVec.end(); ChainI != ChainE; ++ChainI) { 4484 if (PHINode *PN = dyn_cast<PHINode>(ChainI->back().UserInst)) 4485 Rewriter.setChainedPhi(PN); 4486 } 4487 4488 // Expand the new value definitions and update the users. 4489 for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(), 4490 E = Fixups.end(); I != E; ++I) { 4491 const LSRFixup &Fixup = *I; 4492 4493 Rewrite(Fixup, *Solution[Fixup.LUIdx], Rewriter, DeadInsts, P); 4494 4495 Changed = true; 4496 } 4497 4498 for (SmallVectorImpl<IVChain>::const_iterator ChainI = IVChainVec.begin(), 4499 ChainE = IVChainVec.end(); ChainI != ChainE; ++ChainI) { 4500 GenerateIVChain(*ChainI, Rewriter, DeadInsts); 4501 Changed = true; 4502 } 4503 // Clean up after ourselves. This must be done before deleting any 4504 // instructions. 4505 Rewriter.clear(); 4506 4507 Changed |= DeleteTriviallyDeadInstructions(DeadInsts); 4508 } 4509 4510 LSRInstance::LSRInstance(const TargetLowering *tli, Loop *l, Pass *P) 4511 : IU(P->getAnalysis<IVUsers>()), 4512 SE(P->getAnalysis<ScalarEvolution>()), 4513 DT(P->getAnalysis<DominatorTree>()), 4514 LI(P->getAnalysis<LoopInfo>()), 4515 TLI(tli), L(l), Changed(false), IVIncInsertPos(0) { 4516 4517 // If LoopSimplify form is not available, stay out of trouble. 4518 if (!L->isLoopSimplifyForm()) 4519 return; 4520 4521 // All outer loops must have preheaders, or SCEVExpander may not be able to 4522 // materialize an AddRecExpr whose Start is an outer AddRecExpr. 4523 for (const Loop *OuterLoop = L; (OuterLoop = OuterLoop->getParentLoop());) { 4524 if (!OuterLoop->getLoopPreheader()) 4525 return; 4526 } 4527 // If there's no interesting work to be done, bail early. 4528 if (IU.empty()) return; 4529 4530 DEBUG(dbgs() << "\nLSR on loop "; 4531 WriteAsOperand(dbgs(), L->getHeader(), /*PrintType=*/false); 4532 dbgs() << ":\n"); 4533 4534 // First, perform some low-level loop optimizations. 4535 OptimizeShadowIV(); 4536 OptimizeLoopTermCond(); 4537 4538 // If loop preparation eliminates all interesting IV users, bail. 4539 if (IU.empty()) return; 4540 4541 // Skip nested loops until we can model them better with formulae. 4542 if (!EnableNested && !L->empty()) { 4543 DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n"); 4544 return; 4545 } 4546 4547 // Start collecting data and preparing for the solver. 4548 CollectChains(); 4549 CollectInterestingTypesAndFactors(); 4550 CollectFixupsAndInitialFormulae(); 4551 CollectLoopInvariantFixupsAndFormulae(); 4552 4553 assert(!Uses.empty() && "IVUsers reported at least one use"); 4554 DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n"; 4555 print_uses(dbgs())); 4556 4557 // Now use the reuse data to generate a bunch of interesting ways 4558 // to formulate the values needed for the uses. 4559 GenerateAllReuseFormulae(); 4560 4561 FilterOutUndesirableDedicatedRegisters(); 4562 NarrowSearchSpaceUsingHeuristics(); 4563 4564 SmallVector<const Formula *, 8> Solution; 4565 Solve(Solution); 4566 4567 // Release memory that is no longer needed. 4568 Factors.clear(); 4569 Types.clear(); 4570 RegUses.clear(); 4571 4572 if (Solution.empty()) 4573 return; 4574 4575 #ifndef NDEBUG 4576 // Formulae should be legal. 4577 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(), 4578 E = Uses.end(); I != E; ++I) { 4579 const LSRUse &LU = *I; 4580 for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(), 4581 JE = LU.Formulae.end(); J != JE; ++J) 4582 assert(isLegalUse(J->AM, LU.MinOffset, LU.MaxOffset, 4583 LU.Kind, LU.AccessTy, TLI) && 4584 "Illegal formula generated!"); 4585 }; 4586 #endif 4587 4588 // Now that we've decided what we want, make it so. 4589 ImplementSolution(Solution, P); 4590 } 4591 4592 void LSRInstance::print_factors_and_types(raw_ostream &OS) const { 4593 if (Factors.empty() && Types.empty()) return; 4594 4595 OS << "LSR has identified the following interesting factors and types: "; 4596 bool First = true; 4597 4598 for (SmallSetVector<int64_t, 8>::const_iterator 4599 I = Factors.begin(), E = Factors.end(); I != E; ++I) { 4600 if (!First) OS << ", "; 4601 First = false; 4602 OS << '*' << *I; 4603 } 4604 4605 for (SmallSetVector<Type *, 4>::const_iterator 4606 I = Types.begin(), E = Types.end(); I != E; ++I) { 4607 if (!First) OS << ", "; 4608 First = false; 4609 OS << '(' << **I << ')'; 4610 } 4611 OS << '\n'; 4612 } 4613 4614 void LSRInstance::print_fixups(raw_ostream &OS) const { 4615 OS << "LSR is examining the following fixup sites:\n"; 4616 for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(), 4617 E = Fixups.end(); I != E; ++I) { 4618 dbgs() << " "; 4619 I->print(OS); 4620 OS << '\n'; 4621 } 4622 } 4623 4624 void LSRInstance::print_uses(raw_ostream &OS) const { 4625 OS << "LSR is examining the following uses:\n"; 4626 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(), 4627 E = Uses.end(); I != E; ++I) { 4628 const LSRUse &LU = *I; 4629 dbgs() << " "; 4630 LU.print(OS); 4631 OS << '\n'; 4632 for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(), 4633 JE = LU.Formulae.end(); J != JE; ++J) { 4634 OS << " "; 4635 J->print(OS); 4636 OS << '\n'; 4637 } 4638 } 4639 } 4640 4641 void LSRInstance::print(raw_ostream &OS) const { 4642 print_factors_and_types(OS); 4643 print_fixups(OS); 4644 print_uses(OS); 4645 } 4646 4647 void LSRInstance::dump() const { 4648 print(errs()); errs() << '\n'; 4649 } 4650 4651 namespace { 4652 4653 class LoopStrengthReduce : public LoopPass { 4654 /// TLI - Keep a pointer of a TargetLowering to consult for determining 4655 /// transformation profitability. 4656 const TargetLowering *const TLI; 4657 4658 public: 4659 static char ID; // Pass ID, replacement for typeid 4660 explicit LoopStrengthReduce(const TargetLowering *tli = 0); 4661 4662 private: 4663 bool runOnLoop(Loop *L, LPPassManager &LPM); 4664 void getAnalysisUsage(AnalysisUsage &AU) const; 4665 }; 4666 4667 } 4668 4669 char LoopStrengthReduce::ID = 0; 4670 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce", 4671 "Loop Strength Reduction", false, false) 4672 INITIALIZE_PASS_DEPENDENCY(DominatorTree) 4673 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 4674 INITIALIZE_PASS_DEPENDENCY(IVUsers) 4675 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 4676 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 4677 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce", 4678 "Loop Strength Reduction", false, false) 4679 4680 4681 Pass *llvm::createLoopStrengthReducePass(const TargetLowering *TLI) { 4682 return new LoopStrengthReduce(TLI); 4683 } 4684 4685 LoopStrengthReduce::LoopStrengthReduce(const TargetLowering *tli) 4686 : LoopPass(ID), TLI(tli) { 4687 initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry()); 4688 } 4689 4690 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const { 4691 // We split critical edges, so we change the CFG. However, we do update 4692 // many analyses if they are around. 4693 AU.addPreservedID(LoopSimplifyID); 4694 4695 AU.addRequired<LoopInfo>(); 4696 AU.addPreserved<LoopInfo>(); 4697 AU.addRequiredID(LoopSimplifyID); 4698 AU.addRequired<DominatorTree>(); 4699 AU.addPreserved<DominatorTree>(); 4700 AU.addRequired<ScalarEvolution>(); 4701 AU.addPreserved<ScalarEvolution>(); 4702 // Requiring LoopSimplify a second time here prevents IVUsers from running 4703 // twice, since LoopSimplify was invalidated by running ScalarEvolution. 4704 AU.addRequiredID(LoopSimplifyID); 4705 AU.addRequired<IVUsers>(); 4706 AU.addPreserved<IVUsers>(); 4707 } 4708 4709 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) { 4710 bool Changed = false; 4711 4712 // Run the main LSR transformation. 4713 Changed |= LSRInstance(TLI, L, this).getChanged(); 4714 4715 // Remove any extra phis created by processing inner loops. 4716 Changed |= DeleteDeadPHIs(L->getHeader()); 4717 if (EnablePhiElim) { 4718 SmallVector<WeakVH, 16> DeadInsts; 4719 SCEVExpander Rewriter(getAnalysis<ScalarEvolution>(), "lsr"); 4720 #ifndef NDEBUG 4721 Rewriter.setDebugType(DEBUG_TYPE); 4722 #endif 4723 unsigned numFolded = Rewriter. 4724 replaceCongruentIVs(L, &getAnalysis<DominatorTree>(), DeadInsts, TLI); 4725 if (numFolded) { 4726 Changed = true; 4727 DeleteTriviallyDeadInstructions(DeadInsts); 4728 DeleteDeadPHIs(L->getHeader()); 4729 } 4730 } 4731 return Changed; 4732 } 4733