1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This transformation analyzes and transforms the induction variables (and 11 // computations derived from them) into forms suitable for efficient execution 12 // on the target. 13 // 14 // This pass performs a strength reduction on array references inside loops that 15 // have as one or more of their components the loop induction variable, it 16 // rewrites expressions to take advantage of scaled-index addressing modes 17 // available on the target, and it performs a variety of other optimizations 18 // related to loop induction variables. 19 // 20 // Terminology note: this code has a lot of handling for "post-increment" or 21 // "post-inc" users. This is not talking about post-increment addressing modes; 22 // it is instead talking about code like this: 23 // 24 // %i = phi [ 0, %entry ], [ %i.next, %latch ] 25 // ... 26 // %i.next = add %i, 1 27 // %c = icmp eq %i.next, %n 28 // 29 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however 30 // it's useful to think about these as the same register, with some uses using 31 // the value of the register before the add and some using it after. In this 32 // example, the icmp is a post-increment user, since it uses %i.next, which is 33 // the value of the induction variable after the increment. The other common 34 // case of post-increment users is users outside the loop. 35 // 36 // TODO: More sophistication in the way Formulae are generated and filtered. 37 // 38 // TODO: Handle multiple loops at a time. 39 // 40 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead 41 // of a GlobalValue? 42 // 43 // TODO: When truncation is free, truncate ICmp users' operands to make it a 44 // smaller encoding (on x86 at least). 45 // 46 // TODO: When a negated register is used by an add (such as in a list of 47 // multiple base registers, or as the increment expression in an addrec), 48 // we may not actually need both reg and (-1 * reg) in registers; the 49 // negation can be implemented by using a sub instead of an add. The 50 // lack of support for taking this into consideration when making 51 // register pressure decisions is partly worked around by the "Special" 52 // use kind. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h" 57 #include "llvm/ADT/DenseSet.h" 58 #include "llvm/ADT/Hashing.h" 59 #include "llvm/ADT/STLExtras.h" 60 #include "llvm/ADT/SetVector.h" 61 #include "llvm/ADT/SmallBitVector.h" 62 #include "llvm/Analysis/IVUsers.h" 63 #include "llvm/Analysis/LoopPass.h" 64 #include "llvm/Analysis/LoopPassManager.h" 65 #include "llvm/Analysis/ScalarEvolutionExpander.h" 66 #include "llvm/Analysis/TargetTransformInfo.h" 67 #include "llvm/IR/Constants.h" 68 #include "llvm/IR/DerivedTypes.h" 69 #include "llvm/IR/Dominators.h" 70 #include "llvm/IR/Instructions.h" 71 #include "llvm/IR/IntrinsicInst.h" 72 #include "llvm/IR/Module.h" 73 #include "llvm/IR/ValueHandle.h" 74 #include "llvm/Support/CommandLine.h" 75 #include "llvm/Support/Debug.h" 76 #include "llvm/Support/raw_ostream.h" 77 #include "llvm/Transforms/Scalar.h" 78 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 79 #include "llvm/Transforms/Utils/Local.h" 80 #include <algorithm> 81 using namespace llvm; 82 83 #define DEBUG_TYPE "loop-reduce" 84 85 /// MaxIVUsers is an arbitrary threshold that provides an early opportunitiy for 86 /// bail out. This threshold is far beyond the number of users that LSR can 87 /// conceivably solve, so it should not affect generated code, but catches the 88 /// worst cases before LSR burns too much compile time and stack space. 89 static const unsigned MaxIVUsers = 200; 90 91 // Temporary flag to cleanup congruent phis after LSR phi expansion. 92 // It's currently disabled until we can determine whether it's truly useful or 93 // not. The flag should be removed after the v3.0 release. 94 // This is now needed for ivchains. 95 static cl::opt<bool> EnablePhiElim( 96 "enable-lsr-phielim", cl::Hidden, cl::init(true), 97 cl::desc("Enable LSR phi elimination")); 98 99 #ifndef NDEBUG 100 // Stress test IV chain generation. 101 static cl::opt<bool> StressIVChain( 102 "stress-ivchain", cl::Hidden, cl::init(false), 103 cl::desc("Stress test LSR IV chains")); 104 #else 105 static bool StressIVChain = false; 106 #endif 107 108 namespace { 109 110 struct MemAccessTy { 111 /// Used in situations where the accessed memory type is unknown. 112 static const unsigned UnknownAddressSpace = ~0u; 113 114 Type *MemTy; 115 unsigned AddrSpace; 116 117 MemAccessTy() : MemTy(nullptr), AddrSpace(UnknownAddressSpace) {} 118 119 MemAccessTy(Type *Ty, unsigned AS) : 120 MemTy(Ty), AddrSpace(AS) {} 121 122 bool operator==(MemAccessTy Other) const { 123 return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace; 124 } 125 126 bool operator!=(MemAccessTy Other) const { return !(*this == Other); } 127 128 static MemAccessTy getUnknown(LLVMContext &Ctx) { 129 return MemAccessTy(Type::getVoidTy(Ctx), UnknownAddressSpace); 130 } 131 }; 132 133 /// This class holds data which is used to order reuse candidates. 134 class RegSortData { 135 public: 136 /// This represents the set of LSRUse indices which reference 137 /// a particular register. 138 SmallBitVector UsedByIndices; 139 140 void print(raw_ostream &OS) const; 141 void dump() const; 142 }; 143 144 } 145 146 void RegSortData::print(raw_ostream &OS) const { 147 OS << "[NumUses=" << UsedByIndices.count() << ']'; 148 } 149 150 LLVM_DUMP_METHOD 151 void RegSortData::dump() const { 152 print(errs()); errs() << '\n'; 153 } 154 155 namespace { 156 157 /// Map register candidates to information about how they are used. 158 class RegUseTracker { 159 typedef DenseMap<const SCEV *, RegSortData> RegUsesTy; 160 161 RegUsesTy RegUsesMap; 162 SmallVector<const SCEV *, 16> RegSequence; 163 164 public: 165 void countRegister(const SCEV *Reg, size_t LUIdx); 166 void dropRegister(const SCEV *Reg, size_t LUIdx); 167 void swapAndDropUse(size_t LUIdx, size_t LastLUIdx); 168 169 bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const; 170 171 const SmallBitVector &getUsedByIndices(const SCEV *Reg) const; 172 173 void clear(); 174 175 typedef SmallVectorImpl<const SCEV *>::iterator iterator; 176 typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator; 177 iterator begin() { return RegSequence.begin(); } 178 iterator end() { return RegSequence.end(); } 179 const_iterator begin() const { return RegSequence.begin(); } 180 const_iterator end() const { return RegSequence.end(); } 181 }; 182 183 } 184 185 void 186 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) { 187 std::pair<RegUsesTy::iterator, bool> Pair = 188 RegUsesMap.insert(std::make_pair(Reg, RegSortData())); 189 RegSortData &RSD = Pair.first->second; 190 if (Pair.second) 191 RegSequence.push_back(Reg); 192 RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1)); 193 RSD.UsedByIndices.set(LUIdx); 194 } 195 196 void 197 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) { 198 RegUsesTy::iterator It = RegUsesMap.find(Reg); 199 assert(It != RegUsesMap.end()); 200 RegSortData &RSD = It->second; 201 assert(RSD.UsedByIndices.size() > LUIdx); 202 RSD.UsedByIndices.reset(LUIdx); 203 } 204 205 void 206 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) { 207 assert(LUIdx <= LastLUIdx); 208 209 // Update RegUses. The data structure is not optimized for this purpose; 210 // we must iterate through it and update each of the bit vectors. 211 for (auto &Pair : RegUsesMap) { 212 SmallBitVector &UsedByIndices = Pair.second.UsedByIndices; 213 if (LUIdx < UsedByIndices.size()) 214 UsedByIndices[LUIdx] = 215 LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : 0; 216 UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx)); 217 } 218 } 219 220 bool 221 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const { 222 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 223 if (I == RegUsesMap.end()) 224 return false; 225 const SmallBitVector &UsedByIndices = I->second.UsedByIndices; 226 int i = UsedByIndices.find_first(); 227 if (i == -1) return false; 228 if ((size_t)i != LUIdx) return true; 229 return UsedByIndices.find_next(i) != -1; 230 } 231 232 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const { 233 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 234 assert(I != RegUsesMap.end() && "Unknown register!"); 235 return I->second.UsedByIndices; 236 } 237 238 void RegUseTracker::clear() { 239 RegUsesMap.clear(); 240 RegSequence.clear(); 241 } 242 243 namespace { 244 245 /// This class holds information that describes a formula for computing 246 /// satisfying a use. It may include broken-out immediates and scaled registers. 247 struct Formula { 248 /// Global base address used for complex addressing. 249 GlobalValue *BaseGV; 250 251 /// Base offset for complex addressing. 252 int64_t BaseOffset; 253 254 /// Whether any complex addressing has a base register. 255 bool HasBaseReg; 256 257 /// The scale of any complex addressing. 258 int64_t Scale; 259 260 /// The list of "base" registers for this use. When this is non-empty. The 261 /// canonical representation of a formula is 262 /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and 263 /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty(). 264 /// #1 enforces that the scaled register is always used when at least two 265 /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2. 266 /// #2 enforces that 1 * reg is reg. 267 /// This invariant can be temporarly broken while building a formula. 268 /// However, every formula inserted into the LSRInstance must be in canonical 269 /// form. 270 SmallVector<const SCEV *, 4> BaseRegs; 271 272 /// The 'scaled' register for this use. This should be non-null when Scale is 273 /// not zero. 274 const SCEV *ScaledReg; 275 276 /// An additional constant offset which added near the use. This requires a 277 /// temporary register, but the offset itself can live in an add immediate 278 /// field rather than a register. 279 int64_t UnfoldedOffset; 280 281 Formula() 282 : BaseGV(nullptr), BaseOffset(0), HasBaseReg(false), Scale(0), 283 ScaledReg(nullptr), UnfoldedOffset(0) {} 284 285 void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE); 286 287 bool isCanonical() const; 288 289 void canonicalize(); 290 291 bool unscale(); 292 293 size_t getNumRegs() const; 294 Type *getType() const; 295 296 void deleteBaseReg(const SCEV *&S); 297 298 bool referencesReg(const SCEV *S) const; 299 bool hasRegsUsedByUsesOtherThan(size_t LUIdx, 300 const RegUseTracker &RegUses) const; 301 302 void print(raw_ostream &OS) const; 303 void dump() const; 304 }; 305 306 } 307 308 /// Recursion helper for initialMatch. 309 static void DoInitialMatch(const SCEV *S, Loop *L, 310 SmallVectorImpl<const SCEV *> &Good, 311 SmallVectorImpl<const SCEV *> &Bad, 312 ScalarEvolution &SE) { 313 // Collect expressions which properly dominate the loop header. 314 if (SE.properlyDominates(S, L->getHeader())) { 315 Good.push_back(S); 316 return; 317 } 318 319 // Look at add operands. 320 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 321 for (const SCEV *S : Add->operands()) 322 DoInitialMatch(S, L, Good, Bad, SE); 323 return; 324 } 325 326 // Look at addrec operands. 327 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 328 if (!AR->getStart()->isZero()) { 329 DoInitialMatch(AR->getStart(), L, Good, Bad, SE); 330 DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0), 331 AR->getStepRecurrence(SE), 332 // FIXME: AR->getNoWrapFlags() 333 AR->getLoop(), SCEV::FlagAnyWrap), 334 L, Good, Bad, SE); 335 return; 336 } 337 338 // Handle a multiplication by -1 (negation) if it didn't fold. 339 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) 340 if (Mul->getOperand(0)->isAllOnesValue()) { 341 SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end()); 342 const SCEV *NewMul = SE.getMulExpr(Ops); 343 344 SmallVector<const SCEV *, 4> MyGood; 345 SmallVector<const SCEV *, 4> MyBad; 346 DoInitialMatch(NewMul, L, MyGood, MyBad, SE); 347 const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue( 348 SE.getEffectiveSCEVType(NewMul->getType()))); 349 for (const SCEV *S : MyGood) 350 Good.push_back(SE.getMulExpr(NegOne, S)); 351 for (const SCEV *S : MyBad) 352 Bad.push_back(SE.getMulExpr(NegOne, S)); 353 return; 354 } 355 356 // Ok, we can't do anything interesting. Just stuff the whole thing into a 357 // register and hope for the best. 358 Bad.push_back(S); 359 } 360 361 /// Incorporate loop-variant parts of S into this Formula, attempting to keep 362 /// all loop-invariant and loop-computable values in a single base register. 363 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) { 364 SmallVector<const SCEV *, 4> Good; 365 SmallVector<const SCEV *, 4> Bad; 366 DoInitialMatch(S, L, Good, Bad, SE); 367 if (!Good.empty()) { 368 const SCEV *Sum = SE.getAddExpr(Good); 369 if (!Sum->isZero()) 370 BaseRegs.push_back(Sum); 371 HasBaseReg = true; 372 } 373 if (!Bad.empty()) { 374 const SCEV *Sum = SE.getAddExpr(Bad); 375 if (!Sum->isZero()) 376 BaseRegs.push_back(Sum); 377 HasBaseReg = true; 378 } 379 canonicalize(); 380 } 381 382 /// \brief Check whether or not this formula statisfies the canonical 383 /// representation. 384 /// \see Formula::BaseRegs. 385 bool Formula::isCanonical() const { 386 if (ScaledReg) 387 return Scale != 1 || !BaseRegs.empty(); 388 return BaseRegs.size() <= 1; 389 } 390 391 /// \brief Helper method to morph a formula into its canonical representation. 392 /// \see Formula::BaseRegs. 393 /// Every formula having more than one base register, must use the ScaledReg 394 /// field. Otherwise, we would have to do special cases everywhere in LSR 395 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ... 396 /// On the other hand, 1*reg should be canonicalized into reg. 397 void Formula::canonicalize() { 398 if (isCanonical()) 399 return; 400 // So far we did not need this case. This is easy to implement but it is 401 // useless to maintain dead code. Beside it could hurt compile time. 402 assert(!BaseRegs.empty() && "1*reg => reg, should not be needed."); 403 // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg. 404 ScaledReg = BaseRegs.back(); 405 BaseRegs.pop_back(); 406 Scale = 1; 407 size_t BaseRegsSize = BaseRegs.size(); 408 size_t Try = 0; 409 // If ScaledReg is an invariant, try to find a variant expression. 410 while (Try < BaseRegsSize && !isa<SCEVAddRecExpr>(ScaledReg)) 411 std::swap(ScaledReg, BaseRegs[Try++]); 412 } 413 414 /// \brief Get rid of the scale in the formula. 415 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2. 416 /// \return true if it was possible to get rid of the scale, false otherwise. 417 /// \note After this operation the formula may not be in the canonical form. 418 bool Formula::unscale() { 419 if (Scale != 1) 420 return false; 421 Scale = 0; 422 BaseRegs.push_back(ScaledReg); 423 ScaledReg = nullptr; 424 return true; 425 } 426 427 /// Return the total number of register operands used by this formula. This does 428 /// not include register uses implied by non-constant addrec strides. 429 size_t Formula::getNumRegs() const { 430 return !!ScaledReg + BaseRegs.size(); 431 } 432 433 /// Return the type of this formula, if it has one, or null otherwise. This type 434 /// is meaningless except for the bit size. 435 Type *Formula::getType() const { 436 return !BaseRegs.empty() ? BaseRegs.front()->getType() : 437 ScaledReg ? ScaledReg->getType() : 438 BaseGV ? BaseGV->getType() : 439 nullptr; 440 } 441 442 /// Delete the given base reg from the BaseRegs list. 443 void Formula::deleteBaseReg(const SCEV *&S) { 444 if (&S != &BaseRegs.back()) 445 std::swap(S, BaseRegs.back()); 446 BaseRegs.pop_back(); 447 } 448 449 /// Test if this formula references the given register. 450 bool Formula::referencesReg(const SCEV *S) const { 451 return S == ScaledReg || 452 std::find(BaseRegs.begin(), BaseRegs.end(), S) != BaseRegs.end(); 453 } 454 455 /// Test whether this formula uses registers which are used by uses other than 456 /// the use with the given index. 457 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx, 458 const RegUseTracker &RegUses) const { 459 if (ScaledReg) 460 if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx)) 461 return true; 462 for (const SCEV *BaseReg : BaseRegs) 463 if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx)) 464 return true; 465 return false; 466 } 467 468 void Formula::print(raw_ostream &OS) const { 469 bool First = true; 470 if (BaseGV) { 471 if (!First) OS << " + "; else First = false; 472 BaseGV->printAsOperand(OS, /*PrintType=*/false); 473 } 474 if (BaseOffset != 0) { 475 if (!First) OS << " + "; else First = false; 476 OS << BaseOffset; 477 } 478 for (const SCEV *BaseReg : BaseRegs) { 479 if (!First) OS << " + "; else First = false; 480 OS << "reg(" << *BaseReg << ')'; 481 } 482 if (HasBaseReg && BaseRegs.empty()) { 483 if (!First) OS << " + "; else First = false; 484 OS << "**error: HasBaseReg**"; 485 } else if (!HasBaseReg && !BaseRegs.empty()) { 486 if (!First) OS << " + "; else First = false; 487 OS << "**error: !HasBaseReg**"; 488 } 489 if (Scale != 0) { 490 if (!First) OS << " + "; else First = false; 491 OS << Scale << "*reg("; 492 if (ScaledReg) 493 OS << *ScaledReg; 494 else 495 OS << "<unknown>"; 496 OS << ')'; 497 } 498 if (UnfoldedOffset != 0) { 499 if (!First) OS << " + "; 500 OS << "imm(" << UnfoldedOffset << ')'; 501 } 502 } 503 504 LLVM_DUMP_METHOD 505 void Formula::dump() const { 506 print(errs()); errs() << '\n'; 507 } 508 509 /// Return true if the given addrec can be sign-extended without changing its 510 /// value. 511 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 512 Type *WideTy = 513 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1); 514 return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy)); 515 } 516 517 /// Return true if the given add can be sign-extended without changing its 518 /// value. 519 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) { 520 Type *WideTy = 521 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1); 522 return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy)); 523 } 524 525 /// Return true if the given mul can be sign-extended without changing its 526 /// value. 527 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) { 528 Type *WideTy = 529 IntegerType::get(SE.getContext(), 530 SE.getTypeSizeInBits(M->getType()) * M->getNumOperands()); 531 return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy)); 532 } 533 534 /// Return an expression for LHS /s RHS, if it can be determined and if the 535 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits 536 /// is true, expressions like (X * Y) /s Y are simplified to Y, ignoring that 537 /// the multiplication may overflow, which is useful when the result will be 538 /// used in a context where the most significant bits are ignored. 539 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS, 540 ScalarEvolution &SE, 541 bool IgnoreSignificantBits = false) { 542 // Handle the trivial case, which works for any SCEV type. 543 if (LHS == RHS) 544 return SE.getConstant(LHS->getType(), 1); 545 546 // Handle a few RHS special cases. 547 const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS); 548 if (RC) { 549 const APInt &RA = RC->getAPInt(); 550 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do 551 // some folding. 552 if (RA.isAllOnesValue()) 553 return SE.getMulExpr(LHS, RC); 554 // Handle x /s 1 as x. 555 if (RA == 1) 556 return LHS; 557 } 558 559 // Check for a division of a constant by a constant. 560 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) { 561 if (!RC) 562 return nullptr; 563 const APInt &LA = C->getAPInt(); 564 const APInt &RA = RC->getAPInt(); 565 if (LA.srem(RA) != 0) 566 return nullptr; 567 return SE.getConstant(LA.sdiv(RA)); 568 } 569 570 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow. 571 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) { 572 if (IgnoreSignificantBits || isAddRecSExtable(AR, SE)) { 573 const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE, 574 IgnoreSignificantBits); 575 if (!Step) return nullptr; 576 const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE, 577 IgnoreSignificantBits); 578 if (!Start) return nullptr; 579 // FlagNW is independent of the start value, step direction, and is 580 // preserved with smaller magnitude steps. 581 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 582 return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap); 583 } 584 return nullptr; 585 } 586 587 // Distribute the sdiv over add operands, if the add doesn't overflow. 588 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) { 589 if (IgnoreSignificantBits || isAddSExtable(Add, SE)) { 590 SmallVector<const SCEV *, 8> Ops; 591 for (const SCEV *S : Add->operands()) { 592 const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits); 593 if (!Op) return nullptr; 594 Ops.push_back(Op); 595 } 596 return SE.getAddExpr(Ops); 597 } 598 return nullptr; 599 } 600 601 // Check for a multiply operand that we can pull RHS out of. 602 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) { 603 if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) { 604 SmallVector<const SCEV *, 4> Ops; 605 bool Found = false; 606 for (const SCEV *S : Mul->operands()) { 607 if (!Found) 608 if (const SCEV *Q = getExactSDiv(S, RHS, SE, 609 IgnoreSignificantBits)) { 610 S = Q; 611 Found = true; 612 } 613 Ops.push_back(S); 614 } 615 return Found ? SE.getMulExpr(Ops) : nullptr; 616 } 617 return nullptr; 618 } 619 620 // Otherwise we don't know. 621 return nullptr; 622 } 623 624 /// If S involves the addition of a constant integer value, return that integer 625 /// value, and mutate S to point to a new SCEV with that value excluded. 626 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) { 627 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 628 if (C->getAPInt().getMinSignedBits() <= 64) { 629 S = SE.getConstant(C->getType(), 0); 630 return C->getValue()->getSExtValue(); 631 } 632 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 633 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 634 int64_t Result = ExtractImmediate(NewOps.front(), SE); 635 if (Result != 0) 636 S = SE.getAddExpr(NewOps); 637 return Result; 638 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 639 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 640 int64_t Result = ExtractImmediate(NewOps.front(), SE); 641 if (Result != 0) 642 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 643 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 644 SCEV::FlagAnyWrap); 645 return Result; 646 } 647 return 0; 648 } 649 650 /// If S involves the addition of a GlobalValue address, return that symbol, and 651 /// mutate S to point to a new SCEV with that value excluded. 652 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) { 653 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 654 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) { 655 S = SE.getConstant(GV->getType(), 0); 656 return GV; 657 } 658 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 659 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 660 GlobalValue *Result = ExtractSymbol(NewOps.back(), SE); 661 if (Result) 662 S = SE.getAddExpr(NewOps); 663 return Result; 664 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 665 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 666 GlobalValue *Result = ExtractSymbol(NewOps.front(), SE); 667 if (Result) 668 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 669 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 670 SCEV::FlagAnyWrap); 671 return Result; 672 } 673 return nullptr; 674 } 675 676 /// Returns true if the specified instruction is using the specified value as an 677 /// address. 678 static bool isAddressUse(Instruction *Inst, Value *OperandVal) { 679 bool isAddress = isa<LoadInst>(Inst); 680 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 681 if (SI->getOperand(1) == OperandVal) 682 isAddress = true; 683 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 684 // Addressing modes can also be folded into prefetches and a variety 685 // of intrinsics. 686 switch (II->getIntrinsicID()) { 687 default: break; 688 case Intrinsic::prefetch: 689 if (II->getArgOperand(0) == OperandVal) 690 isAddress = true; 691 break; 692 } 693 } 694 return isAddress; 695 } 696 697 /// Return the type of the memory being accessed. 698 static MemAccessTy getAccessType(const Instruction *Inst) { 699 MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace); 700 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 701 AccessTy.MemTy = SI->getOperand(0)->getType(); 702 AccessTy.AddrSpace = SI->getPointerAddressSpace(); 703 } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 704 AccessTy.AddrSpace = LI->getPointerAddressSpace(); 705 } 706 707 // All pointers have the same requirements, so canonicalize them to an 708 // arbitrary pointer type to minimize variation. 709 if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy)) 710 AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1), 711 PTy->getAddressSpace()); 712 713 return AccessTy; 714 } 715 716 /// Return true if this AddRec is already a phi in its loop. 717 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 718 for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin(); 719 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 720 if (SE.isSCEVable(PN->getType()) && 721 (SE.getEffectiveSCEVType(PN->getType()) == 722 SE.getEffectiveSCEVType(AR->getType())) && 723 SE.getSCEV(PN) == AR) 724 return true; 725 } 726 return false; 727 } 728 729 /// Check if expanding this expression is likely to incur significant cost. This 730 /// is tricky because SCEV doesn't track which expressions are actually computed 731 /// by the current IR. 732 /// 733 /// We currently allow expansion of IV increments that involve adds, 734 /// multiplication by constants, and AddRecs from existing phis. 735 /// 736 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an 737 /// obvious multiple of the UDivExpr. 738 static bool isHighCostExpansion(const SCEV *S, 739 SmallPtrSetImpl<const SCEV*> &Processed, 740 ScalarEvolution &SE) { 741 // Zero/One operand expressions 742 switch (S->getSCEVType()) { 743 case scUnknown: 744 case scConstant: 745 return false; 746 case scTruncate: 747 return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(), 748 Processed, SE); 749 case scZeroExtend: 750 return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(), 751 Processed, SE); 752 case scSignExtend: 753 return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(), 754 Processed, SE); 755 } 756 757 if (!Processed.insert(S).second) 758 return false; 759 760 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 761 for (const SCEV *S : Add->operands()) { 762 if (isHighCostExpansion(S, Processed, SE)) 763 return true; 764 } 765 return false; 766 } 767 768 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 769 if (Mul->getNumOperands() == 2) { 770 // Multiplication by a constant is ok 771 if (isa<SCEVConstant>(Mul->getOperand(0))) 772 return isHighCostExpansion(Mul->getOperand(1), Processed, SE); 773 774 // If we have the value of one operand, check if an existing 775 // multiplication already generates this expression. 776 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) { 777 Value *UVal = U->getValue(); 778 for (User *UR : UVal->users()) { 779 // If U is a constant, it may be used by a ConstantExpr. 780 Instruction *UI = dyn_cast<Instruction>(UR); 781 if (UI && UI->getOpcode() == Instruction::Mul && 782 SE.isSCEVable(UI->getType())) { 783 return SE.getSCEV(UI) == Mul; 784 } 785 } 786 } 787 } 788 } 789 790 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 791 if (isExistingPhi(AR, SE)) 792 return false; 793 } 794 795 // Fow now, consider any other type of expression (div/mul/min/max) high cost. 796 return true; 797 } 798 799 /// If any of the instructions is the specified set are trivially dead, delete 800 /// them and see if this makes any of their operands subsequently dead. 801 static bool 802 DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) { 803 bool Changed = false; 804 805 while (!DeadInsts.empty()) { 806 Value *V = DeadInsts.pop_back_val(); 807 Instruction *I = dyn_cast_or_null<Instruction>(V); 808 809 if (!I || !isInstructionTriviallyDead(I)) 810 continue; 811 812 for (Use &O : I->operands()) 813 if (Instruction *U = dyn_cast<Instruction>(O)) { 814 O = nullptr; 815 if (U->use_empty()) 816 DeadInsts.emplace_back(U); 817 } 818 819 I->eraseFromParent(); 820 Changed = true; 821 } 822 823 return Changed; 824 } 825 826 namespace { 827 class LSRUse; 828 } 829 830 /// \brief Check if the addressing mode defined by \p F is completely 831 /// folded in \p LU at isel time. 832 /// This includes address-mode folding and special icmp tricks. 833 /// This function returns true if \p LU can accommodate what \p F 834 /// defines and up to 1 base + 1 scaled + offset. 835 /// In other words, if \p F has several base registers, this function may 836 /// still return true. Therefore, users still need to account for 837 /// additional base registers and/or unfolded offsets to derive an 838 /// accurate cost model. 839 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 840 const LSRUse &LU, const Formula &F); 841 // Get the cost of the scaling factor used in F for LU. 842 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, 843 const LSRUse &LU, const Formula &F); 844 845 namespace { 846 847 /// This class is used to measure and compare candidate formulae. 848 class Cost { 849 /// TODO: Some of these could be merged. Also, a lexical ordering 850 /// isn't always optimal. 851 unsigned NumRegs; 852 unsigned AddRecCost; 853 unsigned NumIVMuls; 854 unsigned NumBaseAdds; 855 unsigned ImmCost; 856 unsigned SetupCost; 857 unsigned ScaleCost; 858 859 public: 860 Cost() 861 : NumRegs(0), AddRecCost(0), NumIVMuls(0), NumBaseAdds(0), ImmCost(0), 862 SetupCost(0), ScaleCost(0) {} 863 864 bool operator<(const Cost &Other) const; 865 866 void Lose(); 867 868 #ifndef NDEBUG 869 // Once any of the metrics loses, they must all remain losers. 870 bool isValid() { 871 return ((NumRegs | AddRecCost | NumIVMuls | NumBaseAdds 872 | ImmCost | SetupCost | ScaleCost) != ~0u) 873 || ((NumRegs & AddRecCost & NumIVMuls & NumBaseAdds 874 & ImmCost & SetupCost & ScaleCost) == ~0u); 875 } 876 #endif 877 878 bool isLoser() { 879 assert(isValid() && "invalid cost"); 880 return NumRegs == ~0u; 881 } 882 883 void RateFormula(const TargetTransformInfo &TTI, 884 const Formula &F, 885 SmallPtrSetImpl<const SCEV *> &Regs, 886 const DenseSet<const SCEV *> &VisitedRegs, 887 const Loop *L, 888 const SmallVectorImpl<int64_t> &Offsets, 889 ScalarEvolution &SE, DominatorTree &DT, 890 const LSRUse &LU, 891 SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr); 892 893 void print(raw_ostream &OS) const; 894 void dump() const; 895 896 private: 897 void RateRegister(const SCEV *Reg, 898 SmallPtrSetImpl<const SCEV *> &Regs, 899 const Loop *L, 900 ScalarEvolution &SE, DominatorTree &DT); 901 void RatePrimaryRegister(const SCEV *Reg, 902 SmallPtrSetImpl<const SCEV *> &Regs, 903 const Loop *L, 904 ScalarEvolution &SE, DominatorTree &DT, 905 SmallPtrSetImpl<const SCEV *> *LoserRegs); 906 }; 907 908 } 909 910 /// Tally up interesting quantities from the given register. 911 void Cost::RateRegister(const SCEV *Reg, 912 SmallPtrSetImpl<const SCEV *> &Regs, 913 const Loop *L, 914 ScalarEvolution &SE, DominatorTree &DT) { 915 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) { 916 // If this is an addrec for another loop, don't second-guess its addrec phi 917 // nodes. LSR isn't currently smart enough to reason about more than one 918 // loop at a time. LSR has already run on inner loops, will not run on outer 919 // loops, and cannot be expected to change sibling loops. 920 if (AR->getLoop() != L) { 921 // If the AddRec exists, consider it's register free and leave it alone. 922 if (isExistingPhi(AR, SE)) 923 return; 924 925 // Otherwise, do not consider this formula at all. 926 Lose(); 927 return; 928 } 929 AddRecCost += 1; /// TODO: This should be a function of the stride. 930 931 // Add the step value register, if it needs one. 932 // TODO: The non-affine case isn't precisely modeled here. 933 if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) { 934 if (!Regs.count(AR->getOperand(1))) { 935 RateRegister(AR->getOperand(1), Regs, L, SE, DT); 936 if (isLoser()) 937 return; 938 } 939 } 940 } 941 ++NumRegs; 942 943 // Rough heuristic; favor registers which don't require extra setup 944 // instructions in the preheader. 945 if (!isa<SCEVUnknown>(Reg) && 946 !isa<SCEVConstant>(Reg) && 947 !(isa<SCEVAddRecExpr>(Reg) && 948 (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) || 949 isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart())))) 950 ++SetupCost; 951 952 NumIVMuls += isa<SCEVMulExpr>(Reg) && 953 SE.hasComputableLoopEvolution(Reg, L); 954 } 955 956 /// Record this register in the set. If we haven't seen it before, rate 957 /// it. Optional LoserRegs provides a way to declare any formula that refers to 958 /// one of those regs an instant loser. 959 void Cost::RatePrimaryRegister(const SCEV *Reg, 960 SmallPtrSetImpl<const SCEV *> &Regs, 961 const Loop *L, 962 ScalarEvolution &SE, DominatorTree &DT, 963 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 964 if (LoserRegs && LoserRegs->count(Reg)) { 965 Lose(); 966 return; 967 } 968 if (Regs.insert(Reg).second) { 969 RateRegister(Reg, Regs, L, SE, DT); 970 if (LoserRegs && isLoser()) 971 LoserRegs->insert(Reg); 972 } 973 } 974 975 void Cost::RateFormula(const TargetTransformInfo &TTI, 976 const Formula &F, 977 SmallPtrSetImpl<const SCEV *> &Regs, 978 const DenseSet<const SCEV *> &VisitedRegs, 979 const Loop *L, 980 const SmallVectorImpl<int64_t> &Offsets, 981 ScalarEvolution &SE, DominatorTree &DT, 982 const LSRUse &LU, 983 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 984 assert(F.isCanonical() && "Cost is accurate only for canonical formula"); 985 // Tally up the registers. 986 if (const SCEV *ScaledReg = F.ScaledReg) { 987 if (VisitedRegs.count(ScaledReg)) { 988 Lose(); 989 return; 990 } 991 RatePrimaryRegister(ScaledReg, Regs, L, SE, DT, LoserRegs); 992 if (isLoser()) 993 return; 994 } 995 for (const SCEV *BaseReg : F.BaseRegs) { 996 if (VisitedRegs.count(BaseReg)) { 997 Lose(); 998 return; 999 } 1000 RatePrimaryRegister(BaseReg, Regs, L, SE, DT, LoserRegs); 1001 if (isLoser()) 1002 return; 1003 } 1004 1005 // Determine how many (unfolded) adds we'll need inside the loop. 1006 size_t NumBaseParts = F.getNumRegs(); 1007 if (NumBaseParts > 1) 1008 // Do not count the base and a possible second register if the target 1009 // allows to fold 2 registers. 1010 NumBaseAdds += 1011 NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(TTI, LU, F))); 1012 NumBaseAdds += (F.UnfoldedOffset != 0); 1013 1014 // Accumulate non-free scaling amounts. 1015 ScaleCost += getScalingFactorCost(TTI, LU, F); 1016 1017 // Tally up the non-zero immediates. 1018 for (int64_t O : Offsets) { 1019 int64_t Offset = (uint64_t)O + F.BaseOffset; 1020 if (F.BaseGV) 1021 ImmCost += 64; // Handle symbolic values conservatively. 1022 // TODO: This should probably be the pointer size. 1023 else if (Offset != 0) 1024 ImmCost += APInt(64, Offset, true).getMinSignedBits(); 1025 } 1026 assert(isValid() && "invalid cost"); 1027 } 1028 1029 /// Set this cost to a losing value. 1030 void Cost::Lose() { 1031 NumRegs = ~0u; 1032 AddRecCost = ~0u; 1033 NumIVMuls = ~0u; 1034 NumBaseAdds = ~0u; 1035 ImmCost = ~0u; 1036 SetupCost = ~0u; 1037 ScaleCost = ~0u; 1038 } 1039 1040 /// Choose the lower cost. 1041 bool Cost::operator<(const Cost &Other) const { 1042 return std::tie(NumRegs, AddRecCost, NumIVMuls, NumBaseAdds, ScaleCost, 1043 ImmCost, SetupCost) < 1044 std::tie(Other.NumRegs, Other.AddRecCost, Other.NumIVMuls, 1045 Other.NumBaseAdds, Other.ScaleCost, Other.ImmCost, 1046 Other.SetupCost); 1047 } 1048 1049 void Cost::print(raw_ostream &OS) const { 1050 OS << NumRegs << " reg" << (NumRegs == 1 ? "" : "s"); 1051 if (AddRecCost != 0) 1052 OS << ", with addrec cost " << AddRecCost; 1053 if (NumIVMuls != 0) 1054 OS << ", plus " << NumIVMuls << " IV mul" << (NumIVMuls == 1 ? "" : "s"); 1055 if (NumBaseAdds != 0) 1056 OS << ", plus " << NumBaseAdds << " base add" 1057 << (NumBaseAdds == 1 ? "" : "s"); 1058 if (ScaleCost != 0) 1059 OS << ", plus " << ScaleCost << " scale cost"; 1060 if (ImmCost != 0) 1061 OS << ", plus " << ImmCost << " imm cost"; 1062 if (SetupCost != 0) 1063 OS << ", plus " << SetupCost << " setup cost"; 1064 } 1065 1066 LLVM_DUMP_METHOD 1067 void Cost::dump() const { 1068 print(errs()); errs() << '\n'; 1069 } 1070 1071 namespace { 1072 1073 /// An operand value in an instruction which is to be replaced with some 1074 /// equivalent, possibly strength-reduced, replacement. 1075 struct LSRFixup { 1076 /// The instruction which will be updated. 1077 Instruction *UserInst; 1078 1079 /// The operand of the instruction which will be replaced. The operand may be 1080 /// used more than once; every instance will be replaced. 1081 Value *OperandValToReplace; 1082 1083 /// If this user is to use the post-incremented value of an induction 1084 /// variable, this variable is non-null and holds the loop associated with the 1085 /// induction variable. 1086 PostIncLoopSet PostIncLoops; 1087 1088 /// The index of the LSRUse describing the expression which this fixup needs, 1089 /// minus an offset (below). 1090 size_t LUIdx; 1091 1092 /// A constant offset to be added to the LSRUse expression. This allows 1093 /// multiple fixups to share the same LSRUse with different offsets, for 1094 /// example in an unrolled loop. 1095 int64_t Offset; 1096 1097 bool isUseFullyOutsideLoop(const Loop *L) const; 1098 1099 LSRFixup(); 1100 1101 void print(raw_ostream &OS) const; 1102 void dump() const; 1103 }; 1104 1105 } 1106 1107 LSRFixup::LSRFixup() 1108 : UserInst(nullptr), OperandValToReplace(nullptr), LUIdx(~size_t(0)), 1109 Offset(0) {} 1110 1111 /// Test whether this fixup always uses its value outside of the given loop. 1112 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const { 1113 // PHI nodes use their value in their incoming blocks. 1114 if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) { 1115 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1116 if (PN->getIncomingValue(i) == OperandValToReplace && 1117 L->contains(PN->getIncomingBlock(i))) 1118 return false; 1119 return true; 1120 } 1121 1122 return !L->contains(UserInst); 1123 } 1124 1125 void LSRFixup::print(raw_ostream &OS) const { 1126 OS << "UserInst="; 1127 // Store is common and interesting enough to be worth special-casing. 1128 if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) { 1129 OS << "store "; 1130 Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false); 1131 } else if (UserInst->getType()->isVoidTy()) 1132 OS << UserInst->getOpcodeName(); 1133 else 1134 UserInst->printAsOperand(OS, /*PrintType=*/false); 1135 1136 OS << ", OperandValToReplace="; 1137 OperandValToReplace->printAsOperand(OS, /*PrintType=*/false); 1138 1139 for (const Loop *PIL : PostIncLoops) { 1140 OS << ", PostIncLoop="; 1141 PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 1142 } 1143 1144 if (LUIdx != ~size_t(0)) 1145 OS << ", LUIdx=" << LUIdx; 1146 1147 if (Offset != 0) 1148 OS << ", Offset=" << Offset; 1149 } 1150 1151 LLVM_DUMP_METHOD 1152 void LSRFixup::dump() const { 1153 print(errs()); errs() << '\n'; 1154 } 1155 1156 namespace { 1157 1158 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted 1159 /// SmallVectors of const SCEV*. 1160 struct UniquifierDenseMapInfo { 1161 static SmallVector<const SCEV *, 4> getEmptyKey() { 1162 SmallVector<const SCEV *, 4> V; 1163 V.push_back(reinterpret_cast<const SCEV *>(-1)); 1164 return V; 1165 } 1166 1167 static SmallVector<const SCEV *, 4> getTombstoneKey() { 1168 SmallVector<const SCEV *, 4> V; 1169 V.push_back(reinterpret_cast<const SCEV *>(-2)); 1170 return V; 1171 } 1172 1173 static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) { 1174 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 1175 } 1176 1177 static bool isEqual(const SmallVector<const SCEV *, 4> &LHS, 1178 const SmallVector<const SCEV *, 4> &RHS) { 1179 return LHS == RHS; 1180 } 1181 }; 1182 1183 /// This class holds the state that LSR keeps for each use in IVUsers, as well 1184 /// as uses invented by LSR itself. It includes information about what kinds of 1185 /// things can be folded into the user, information about the user itself, and 1186 /// information about how the use may be satisfied. TODO: Represent multiple 1187 /// users of the same expression in common? 1188 class LSRUse { 1189 DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier; 1190 1191 public: 1192 /// An enum for a kind of use, indicating what types of scaled and immediate 1193 /// operands it might support. 1194 enum KindType { 1195 Basic, ///< A normal use, with no folding. 1196 Special, ///< A special case of basic, allowing -1 scales. 1197 Address, ///< An address use; folding according to TargetLowering 1198 ICmpZero ///< An equality icmp with both operands folded into one. 1199 // TODO: Add a generic icmp too? 1200 }; 1201 1202 typedef PointerIntPair<const SCEV *, 2, KindType> SCEVUseKindPair; 1203 1204 KindType Kind; 1205 MemAccessTy AccessTy; 1206 1207 SmallVector<int64_t, 8> Offsets; 1208 int64_t MinOffset; 1209 int64_t MaxOffset; 1210 1211 /// This records whether all of the fixups using this LSRUse are outside of 1212 /// the loop, in which case some special-case heuristics may be used. 1213 bool AllFixupsOutsideLoop; 1214 1215 /// RigidFormula is set to true to guarantee that this use will be associated 1216 /// with a single formula--the one that initially matched. Some SCEV 1217 /// expressions cannot be expanded. This allows LSR to consider the registers 1218 /// used by those expressions without the need to expand them later after 1219 /// changing the formula. 1220 bool RigidFormula; 1221 1222 /// This records the widest use type for any fixup using this 1223 /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max 1224 /// fixup widths to be equivalent, because the narrower one may be relying on 1225 /// the implicit truncation to truncate away bogus bits. 1226 Type *WidestFixupType; 1227 1228 /// A list of ways to build a value that can satisfy this user. After the 1229 /// list is populated, one of these is selected heuristically and used to 1230 /// formulate a replacement for OperandValToReplace in UserInst. 1231 SmallVector<Formula, 12> Formulae; 1232 1233 /// The set of register candidates used by all formulae in this LSRUse. 1234 SmallPtrSet<const SCEV *, 4> Regs; 1235 1236 LSRUse(KindType K, MemAccessTy AT) 1237 : Kind(K), AccessTy(AT), MinOffset(INT64_MAX), MaxOffset(INT64_MIN), 1238 AllFixupsOutsideLoop(true), RigidFormula(false), 1239 WidestFixupType(nullptr) {} 1240 1241 bool HasFormulaWithSameRegs(const Formula &F) const; 1242 bool InsertFormula(const Formula &F); 1243 void DeleteFormula(Formula &F); 1244 void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses); 1245 1246 void print(raw_ostream &OS) const; 1247 void dump() const; 1248 }; 1249 1250 } 1251 1252 /// Test whether this use as a formula which has the same registers as the given 1253 /// formula. 1254 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const { 1255 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1256 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1257 // Unstable sort by host order ok, because this is only used for uniquifying. 1258 std::sort(Key.begin(), Key.end()); 1259 return Uniquifier.count(Key); 1260 } 1261 1262 /// If the given formula has not yet been inserted, add it to the list, and 1263 /// return true. Return false otherwise. The formula must be in canonical form. 1264 bool LSRUse::InsertFormula(const Formula &F) { 1265 assert(F.isCanonical() && "Invalid canonical representation"); 1266 1267 if (!Formulae.empty() && RigidFormula) 1268 return false; 1269 1270 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1271 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1272 // Unstable sort by host order ok, because this is only used for uniquifying. 1273 std::sort(Key.begin(), Key.end()); 1274 1275 if (!Uniquifier.insert(Key).second) 1276 return false; 1277 1278 // Using a register to hold the value of 0 is not profitable. 1279 assert((!F.ScaledReg || !F.ScaledReg->isZero()) && 1280 "Zero allocated in a scaled register!"); 1281 #ifndef NDEBUG 1282 for (const SCEV *BaseReg : F.BaseRegs) 1283 assert(!BaseReg->isZero() && "Zero allocated in a base register!"); 1284 #endif 1285 1286 // Add the formula to the list. 1287 Formulae.push_back(F); 1288 1289 // Record registers now being used by this use. 1290 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1291 if (F.ScaledReg) 1292 Regs.insert(F.ScaledReg); 1293 1294 return true; 1295 } 1296 1297 /// Remove the given formula from this use's list. 1298 void LSRUse::DeleteFormula(Formula &F) { 1299 if (&F != &Formulae.back()) 1300 std::swap(F, Formulae.back()); 1301 Formulae.pop_back(); 1302 } 1303 1304 /// Recompute the Regs field, and update RegUses. 1305 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) { 1306 // Now that we've filtered out some formulae, recompute the Regs set. 1307 SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs); 1308 Regs.clear(); 1309 for (const Formula &F : Formulae) { 1310 if (F.ScaledReg) Regs.insert(F.ScaledReg); 1311 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1312 } 1313 1314 // Update the RegTracker. 1315 for (const SCEV *S : OldRegs) 1316 if (!Regs.count(S)) 1317 RegUses.dropRegister(S, LUIdx); 1318 } 1319 1320 void LSRUse::print(raw_ostream &OS) const { 1321 OS << "LSR Use: Kind="; 1322 switch (Kind) { 1323 case Basic: OS << "Basic"; break; 1324 case Special: OS << "Special"; break; 1325 case ICmpZero: OS << "ICmpZero"; break; 1326 case Address: 1327 OS << "Address of "; 1328 if (AccessTy.MemTy->isPointerTy()) 1329 OS << "pointer"; // the full pointer type could be really verbose 1330 else { 1331 OS << *AccessTy.MemTy; 1332 } 1333 1334 OS << " in addrspace(" << AccessTy.AddrSpace << ')'; 1335 } 1336 1337 OS << ", Offsets={"; 1338 bool NeedComma = false; 1339 for (int64_t O : Offsets) { 1340 if (NeedComma) OS << ','; 1341 OS << O; 1342 NeedComma = true; 1343 } 1344 OS << '}'; 1345 1346 if (AllFixupsOutsideLoop) 1347 OS << ", all-fixups-outside-loop"; 1348 1349 if (WidestFixupType) 1350 OS << ", widest fixup type: " << *WidestFixupType; 1351 } 1352 1353 LLVM_DUMP_METHOD 1354 void LSRUse::dump() const { 1355 print(errs()); errs() << '\n'; 1356 } 1357 1358 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1359 LSRUse::KindType Kind, MemAccessTy AccessTy, 1360 GlobalValue *BaseGV, int64_t BaseOffset, 1361 bool HasBaseReg, int64_t Scale) { 1362 switch (Kind) { 1363 case LSRUse::Address: 1364 return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset, 1365 HasBaseReg, Scale, AccessTy.AddrSpace); 1366 1367 case LSRUse::ICmpZero: 1368 // There's not even a target hook for querying whether it would be legal to 1369 // fold a GV into an ICmp. 1370 if (BaseGV) 1371 return false; 1372 1373 // ICmp only has two operands; don't allow more than two non-trivial parts. 1374 if (Scale != 0 && HasBaseReg && BaseOffset != 0) 1375 return false; 1376 1377 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by 1378 // putting the scaled register in the other operand of the icmp. 1379 if (Scale != 0 && Scale != -1) 1380 return false; 1381 1382 // If we have low-level target information, ask the target if it can fold an 1383 // integer immediate on an icmp. 1384 if (BaseOffset != 0) { 1385 // We have one of: 1386 // ICmpZero BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset 1387 // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset 1388 // Offs is the ICmp immediate. 1389 if (Scale == 0) 1390 // The cast does the right thing with INT64_MIN. 1391 BaseOffset = -(uint64_t)BaseOffset; 1392 return TTI.isLegalICmpImmediate(BaseOffset); 1393 } 1394 1395 // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg 1396 return true; 1397 1398 case LSRUse::Basic: 1399 // Only handle single-register values. 1400 return !BaseGV && Scale == 0 && BaseOffset == 0; 1401 1402 case LSRUse::Special: 1403 // Special case Basic to handle -1 scales. 1404 return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0; 1405 } 1406 1407 llvm_unreachable("Invalid LSRUse Kind!"); 1408 } 1409 1410 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1411 int64_t MinOffset, int64_t MaxOffset, 1412 LSRUse::KindType Kind, MemAccessTy AccessTy, 1413 GlobalValue *BaseGV, int64_t BaseOffset, 1414 bool HasBaseReg, int64_t Scale) { 1415 // Check for overflow. 1416 if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) != 1417 (MinOffset > 0)) 1418 return false; 1419 MinOffset = (uint64_t)BaseOffset + MinOffset; 1420 if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) != 1421 (MaxOffset > 0)) 1422 return false; 1423 MaxOffset = (uint64_t)BaseOffset + MaxOffset; 1424 1425 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset, 1426 HasBaseReg, Scale) && 1427 isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset, 1428 HasBaseReg, Scale); 1429 } 1430 1431 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1432 int64_t MinOffset, int64_t MaxOffset, 1433 LSRUse::KindType Kind, MemAccessTy AccessTy, 1434 const Formula &F) { 1435 // For the purpose of isAMCompletelyFolded either having a canonical formula 1436 // or a scale not equal to zero is correct. 1437 // Problems may arise from non canonical formulae having a scale == 0. 1438 // Strictly speaking it would best to just rely on canonical formulae. 1439 // However, when we generate the scaled formulae, we first check that the 1440 // scaling factor is profitable before computing the actual ScaledReg for 1441 // compile time sake. 1442 assert((F.isCanonical() || F.Scale != 0)); 1443 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1444 F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale); 1445 } 1446 1447 /// Test whether we know how to expand the current formula. 1448 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1449 int64_t MaxOffset, LSRUse::KindType Kind, 1450 MemAccessTy AccessTy, GlobalValue *BaseGV, 1451 int64_t BaseOffset, bool HasBaseReg, int64_t Scale) { 1452 // We know how to expand completely foldable formulae. 1453 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1454 BaseOffset, HasBaseReg, Scale) || 1455 // Or formulae that use a base register produced by a sum of base 1456 // registers. 1457 (Scale == 1 && 1458 isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1459 BaseGV, BaseOffset, true, 0)); 1460 } 1461 1462 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1463 int64_t MaxOffset, LSRUse::KindType Kind, 1464 MemAccessTy AccessTy, const Formula &F) { 1465 return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV, 1466 F.BaseOffset, F.HasBaseReg, F.Scale); 1467 } 1468 1469 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1470 const LSRUse &LU, const Formula &F) { 1471 return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1472 LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg, 1473 F.Scale); 1474 } 1475 1476 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, 1477 const LSRUse &LU, const Formula &F) { 1478 if (!F.Scale) 1479 return 0; 1480 1481 // If the use is not completely folded in that instruction, we will have to 1482 // pay an extra cost only for scale != 1. 1483 if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1484 LU.AccessTy, F)) 1485 return F.Scale != 1; 1486 1487 switch (LU.Kind) { 1488 case LSRUse::Address: { 1489 // Check the scaling factor cost with both the min and max offsets. 1490 int ScaleCostMinOffset = TTI.getScalingFactorCost( 1491 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg, 1492 F.Scale, LU.AccessTy.AddrSpace); 1493 int ScaleCostMaxOffset = TTI.getScalingFactorCost( 1494 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg, 1495 F.Scale, LU.AccessTy.AddrSpace); 1496 1497 assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 && 1498 "Legal addressing mode has an illegal cost!"); 1499 return std::max(ScaleCostMinOffset, ScaleCostMaxOffset); 1500 } 1501 case LSRUse::ICmpZero: 1502 case LSRUse::Basic: 1503 case LSRUse::Special: 1504 // The use is completely folded, i.e., everything is folded into the 1505 // instruction. 1506 return 0; 1507 } 1508 1509 llvm_unreachable("Invalid LSRUse Kind!"); 1510 } 1511 1512 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1513 LSRUse::KindType Kind, MemAccessTy AccessTy, 1514 GlobalValue *BaseGV, int64_t BaseOffset, 1515 bool HasBaseReg) { 1516 // Fast-path: zero is always foldable. 1517 if (BaseOffset == 0 && !BaseGV) return true; 1518 1519 // Conservatively, create an address with an immediate and a 1520 // base and a scale. 1521 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1522 1523 // Canonicalize a scale of 1 to a base register if the formula doesn't 1524 // already have a base register. 1525 if (!HasBaseReg && Scale == 1) { 1526 Scale = 0; 1527 HasBaseReg = true; 1528 } 1529 1530 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset, 1531 HasBaseReg, Scale); 1532 } 1533 1534 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1535 ScalarEvolution &SE, int64_t MinOffset, 1536 int64_t MaxOffset, LSRUse::KindType Kind, 1537 MemAccessTy AccessTy, const SCEV *S, 1538 bool HasBaseReg) { 1539 // Fast-path: zero is always foldable. 1540 if (S->isZero()) return true; 1541 1542 // Conservatively, create an address with an immediate and a 1543 // base and a scale. 1544 int64_t BaseOffset = ExtractImmediate(S, SE); 1545 GlobalValue *BaseGV = ExtractSymbol(S, SE); 1546 1547 // If there's anything else involved, it's not foldable. 1548 if (!S->isZero()) return false; 1549 1550 // Fast-path: zero is always foldable. 1551 if (BaseOffset == 0 && !BaseGV) return true; 1552 1553 // Conservatively, create an address with an immediate and a 1554 // base and a scale. 1555 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1556 1557 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1558 BaseOffset, HasBaseReg, Scale); 1559 } 1560 1561 namespace { 1562 1563 /// An individual increment in a Chain of IV increments. Relate an IV user to 1564 /// an expression that computes the IV it uses from the IV used by the previous 1565 /// link in the Chain. 1566 /// 1567 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the 1568 /// original IVOperand. The head of the chain's IVOperand is only valid during 1569 /// chain collection, before LSR replaces IV users. During chain generation, 1570 /// IncExpr can be used to find the new IVOperand that computes the same 1571 /// expression. 1572 struct IVInc { 1573 Instruction *UserInst; 1574 Value* IVOperand; 1575 const SCEV *IncExpr; 1576 1577 IVInc(Instruction *U, Value *O, const SCEV *E): 1578 UserInst(U), IVOperand(O), IncExpr(E) {} 1579 }; 1580 1581 // The list of IV increments in program order. We typically add the head of a 1582 // chain without finding subsequent links. 1583 struct IVChain { 1584 SmallVector<IVInc,1> Incs; 1585 const SCEV *ExprBase; 1586 1587 IVChain() : ExprBase(nullptr) {} 1588 1589 IVChain(const IVInc &Head, const SCEV *Base) 1590 : Incs(1, Head), ExprBase(Base) {} 1591 1592 typedef SmallVectorImpl<IVInc>::const_iterator const_iterator; 1593 1594 // Return the first increment in the chain. 1595 const_iterator begin() const { 1596 assert(!Incs.empty()); 1597 return std::next(Incs.begin()); 1598 } 1599 const_iterator end() const { 1600 return Incs.end(); 1601 } 1602 1603 // Returns true if this chain contains any increments. 1604 bool hasIncs() const { return Incs.size() >= 2; } 1605 1606 // Add an IVInc to the end of this chain. 1607 void add(const IVInc &X) { Incs.push_back(X); } 1608 1609 // Returns the last UserInst in the chain. 1610 Instruction *tailUserInst() const { return Incs.back().UserInst; } 1611 1612 // Returns true if IncExpr can be profitably added to this chain. 1613 bool isProfitableIncrement(const SCEV *OperExpr, 1614 const SCEV *IncExpr, 1615 ScalarEvolution&); 1616 }; 1617 1618 /// Helper for CollectChains to track multiple IV increment uses. Distinguish 1619 /// between FarUsers that definitely cross IV increments and NearUsers that may 1620 /// be used between IV increments. 1621 struct ChainUsers { 1622 SmallPtrSet<Instruction*, 4> FarUsers; 1623 SmallPtrSet<Instruction*, 4> NearUsers; 1624 }; 1625 1626 /// This class holds state for the main loop strength reduction logic. 1627 class LSRInstance { 1628 IVUsers &IU; 1629 ScalarEvolution &SE; 1630 DominatorTree &DT; 1631 LoopInfo &LI; 1632 const TargetTransformInfo &TTI; 1633 Loop *const L; 1634 bool Changed; 1635 1636 /// This is the insert position that the current loop's induction variable 1637 /// increment should be placed. In simple loops, this is the latch block's 1638 /// terminator. But in more complicated cases, this is a position which will 1639 /// dominate all the in-loop post-increment users. 1640 Instruction *IVIncInsertPos; 1641 1642 /// Interesting factors between use strides. 1643 SmallSetVector<int64_t, 8> Factors; 1644 1645 /// Interesting use types, to facilitate truncation reuse. 1646 SmallSetVector<Type *, 4> Types; 1647 1648 /// The list of operands which are to be replaced. 1649 SmallVector<LSRFixup, 16> Fixups; 1650 1651 /// The list of interesting uses. 1652 SmallVector<LSRUse, 16> Uses; 1653 1654 /// Track which uses use which register candidates. 1655 RegUseTracker RegUses; 1656 1657 // Limit the number of chains to avoid quadratic behavior. We don't expect to 1658 // have more than a few IV increment chains in a loop. Missing a Chain falls 1659 // back to normal LSR behavior for those uses. 1660 static const unsigned MaxChains = 8; 1661 1662 /// IV users can form a chain of IV increments. 1663 SmallVector<IVChain, MaxChains> IVChainVec; 1664 1665 /// IV users that belong to profitable IVChains. 1666 SmallPtrSet<Use*, MaxChains> IVIncSet; 1667 1668 void OptimizeShadowIV(); 1669 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse); 1670 ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse); 1671 void OptimizeLoopTermCond(); 1672 1673 void ChainInstruction(Instruction *UserInst, Instruction *IVOper, 1674 SmallVectorImpl<ChainUsers> &ChainUsersVec); 1675 void FinalizeChain(IVChain &Chain); 1676 void CollectChains(); 1677 void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 1678 SmallVectorImpl<WeakVH> &DeadInsts); 1679 1680 void CollectInterestingTypesAndFactors(); 1681 void CollectFixupsAndInitialFormulae(); 1682 1683 LSRFixup &getNewFixup() { 1684 Fixups.push_back(LSRFixup()); 1685 return Fixups.back(); 1686 } 1687 1688 // Support for sharing of LSRUses between LSRFixups. 1689 typedef DenseMap<LSRUse::SCEVUseKindPair, size_t> UseMapTy; 1690 UseMapTy UseMap; 1691 1692 bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, 1693 LSRUse::KindType Kind, MemAccessTy AccessTy); 1694 1695 std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind, 1696 MemAccessTy AccessTy); 1697 1698 void DeleteUse(LSRUse &LU, size_t LUIdx); 1699 1700 LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU); 1701 1702 void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1703 void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1704 void CountRegisters(const Formula &F, size_t LUIdx); 1705 bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F); 1706 1707 void CollectLoopInvariantFixupsAndFormulae(); 1708 1709 void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base, 1710 unsigned Depth = 0); 1711 1712 void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 1713 const Formula &Base, unsigned Depth, 1714 size_t Idx, bool IsScaledReg = false); 1715 void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base); 1716 void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 1717 const Formula &Base, size_t Idx, 1718 bool IsScaledReg = false); 1719 void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1720 void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx, 1721 const Formula &Base, 1722 const SmallVectorImpl<int64_t> &Worklist, 1723 size_t Idx, bool IsScaledReg = false); 1724 void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1725 void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base); 1726 void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base); 1727 void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base); 1728 void GenerateCrossUseConstantOffsets(); 1729 void GenerateAllReuseFormulae(); 1730 1731 void FilterOutUndesirableDedicatedRegisters(); 1732 1733 size_t EstimateSearchSpaceComplexity() const; 1734 void NarrowSearchSpaceByDetectingSupersets(); 1735 void NarrowSearchSpaceByCollapsingUnrolledCode(); 1736 void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 1737 void NarrowSearchSpaceByPickingWinnerRegs(); 1738 void NarrowSearchSpaceUsingHeuristics(); 1739 1740 void SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 1741 Cost &SolutionCost, 1742 SmallVectorImpl<const Formula *> &Workspace, 1743 const Cost &CurCost, 1744 const SmallPtrSet<const SCEV *, 16> &CurRegs, 1745 DenseSet<const SCEV *> &VisitedRegs) const; 1746 void Solve(SmallVectorImpl<const Formula *> &Solution) const; 1747 1748 BasicBlock::iterator 1749 HoistInsertPosition(BasicBlock::iterator IP, 1750 const SmallVectorImpl<Instruction *> &Inputs) const; 1751 BasicBlock::iterator 1752 AdjustInsertPositionForExpand(BasicBlock::iterator IP, 1753 const LSRFixup &LF, 1754 const LSRUse &LU, 1755 SCEVExpander &Rewriter) const; 1756 1757 Value *Expand(const LSRFixup &LF, 1758 const Formula &F, 1759 BasicBlock::iterator IP, 1760 SCEVExpander &Rewriter, 1761 SmallVectorImpl<WeakVH> &DeadInsts) const; 1762 void RewriteForPHI(PHINode *PN, const LSRFixup &LF, 1763 const Formula &F, 1764 SCEVExpander &Rewriter, 1765 SmallVectorImpl<WeakVH> &DeadInsts) const; 1766 void Rewrite(const LSRFixup &LF, 1767 const Formula &F, 1768 SCEVExpander &Rewriter, 1769 SmallVectorImpl<WeakVH> &DeadInsts) const; 1770 void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution); 1771 1772 public: 1773 LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT, 1774 LoopInfo &LI, const TargetTransformInfo &TTI); 1775 1776 bool getChanged() const { return Changed; } 1777 1778 void print_factors_and_types(raw_ostream &OS) const; 1779 void print_fixups(raw_ostream &OS) const; 1780 void print_uses(raw_ostream &OS) const; 1781 void print(raw_ostream &OS) const; 1782 void dump() const; 1783 }; 1784 1785 } 1786 1787 /// If IV is used in a int-to-float cast inside the loop then try to eliminate 1788 /// the cast operation. 1789 void LSRInstance::OptimizeShadowIV() { 1790 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 1791 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 1792 return; 1793 1794 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); 1795 UI != E; /* empty */) { 1796 IVUsers::const_iterator CandidateUI = UI; 1797 ++UI; 1798 Instruction *ShadowUse = CandidateUI->getUser(); 1799 Type *DestTy = nullptr; 1800 bool IsSigned = false; 1801 1802 /* If shadow use is a int->float cast then insert a second IV 1803 to eliminate this cast. 1804 1805 for (unsigned i = 0; i < n; ++i) 1806 foo((double)i); 1807 1808 is transformed into 1809 1810 double d = 0.0; 1811 for (unsigned i = 0; i < n; ++i, ++d) 1812 foo(d); 1813 */ 1814 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) { 1815 IsSigned = false; 1816 DestTy = UCast->getDestTy(); 1817 } 1818 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) { 1819 IsSigned = true; 1820 DestTy = SCast->getDestTy(); 1821 } 1822 if (!DestTy) continue; 1823 1824 // If target does not support DestTy natively then do not apply 1825 // this transformation. 1826 if (!TTI.isTypeLegal(DestTy)) continue; 1827 1828 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0)); 1829 if (!PH) continue; 1830 if (PH->getNumIncomingValues() != 2) continue; 1831 1832 Type *SrcTy = PH->getType(); 1833 int Mantissa = DestTy->getFPMantissaWidth(); 1834 if (Mantissa == -1) continue; 1835 if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa) 1836 continue; 1837 1838 unsigned Entry, Latch; 1839 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) { 1840 Entry = 0; 1841 Latch = 1; 1842 } else { 1843 Entry = 1; 1844 Latch = 0; 1845 } 1846 1847 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry)); 1848 if (!Init) continue; 1849 Constant *NewInit = ConstantFP::get(DestTy, IsSigned ? 1850 (double)Init->getSExtValue() : 1851 (double)Init->getZExtValue()); 1852 1853 BinaryOperator *Incr = 1854 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch)); 1855 if (!Incr) continue; 1856 if (Incr->getOpcode() != Instruction::Add 1857 && Incr->getOpcode() != Instruction::Sub) 1858 continue; 1859 1860 /* Initialize new IV, double d = 0.0 in above example. */ 1861 ConstantInt *C = nullptr; 1862 if (Incr->getOperand(0) == PH) 1863 C = dyn_cast<ConstantInt>(Incr->getOperand(1)); 1864 else if (Incr->getOperand(1) == PH) 1865 C = dyn_cast<ConstantInt>(Incr->getOperand(0)); 1866 else 1867 continue; 1868 1869 if (!C) continue; 1870 1871 // Ignore negative constants, as the code below doesn't handle them 1872 // correctly. TODO: Remove this restriction. 1873 if (!C->getValue().isStrictlyPositive()) continue; 1874 1875 /* Add new PHINode. */ 1876 PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH); 1877 1878 /* create new increment. '++d' in above example. */ 1879 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue()); 1880 BinaryOperator *NewIncr = 1881 BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ? 1882 Instruction::FAdd : Instruction::FSub, 1883 NewPH, CFP, "IV.S.next.", Incr); 1884 1885 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry)); 1886 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch)); 1887 1888 /* Remove cast operation */ 1889 ShadowUse->replaceAllUsesWith(NewPH); 1890 ShadowUse->eraseFromParent(); 1891 Changed = true; 1892 break; 1893 } 1894 } 1895 1896 /// If Cond has an operand that is an expression of an IV, set the IV user and 1897 /// stride information and return true, otherwise return false. 1898 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) { 1899 for (IVStrideUse &U : IU) 1900 if (U.getUser() == Cond) { 1901 // NOTE: we could handle setcc instructions with multiple uses here, but 1902 // InstCombine does it as well for simple uses, it's not clear that it 1903 // occurs enough in real life to handle. 1904 CondUse = &U; 1905 return true; 1906 } 1907 return false; 1908 } 1909 1910 /// Rewrite the loop's terminating condition if it uses a max computation. 1911 /// 1912 /// This is a narrow solution to a specific, but acute, problem. For loops 1913 /// like this: 1914 /// 1915 /// i = 0; 1916 /// do { 1917 /// p[i] = 0.0; 1918 /// } while (++i < n); 1919 /// 1920 /// the trip count isn't just 'n', because 'n' might not be positive. And 1921 /// unfortunately this can come up even for loops where the user didn't use 1922 /// a C do-while loop. For example, seemingly well-behaved top-test loops 1923 /// will commonly be lowered like this: 1924 // 1925 /// if (n > 0) { 1926 /// i = 0; 1927 /// do { 1928 /// p[i] = 0.0; 1929 /// } while (++i < n); 1930 /// } 1931 /// 1932 /// and then it's possible for subsequent optimization to obscure the if 1933 /// test in such a way that indvars can't find it. 1934 /// 1935 /// When indvars can't find the if test in loops like this, it creates a 1936 /// max expression, which allows it to give the loop a canonical 1937 /// induction variable: 1938 /// 1939 /// i = 0; 1940 /// max = n < 1 ? 1 : n; 1941 /// do { 1942 /// p[i] = 0.0; 1943 /// } while (++i != max); 1944 /// 1945 /// Canonical induction variables are necessary because the loop passes 1946 /// are designed around them. The most obvious example of this is the 1947 /// LoopInfo analysis, which doesn't remember trip count values. It 1948 /// expects to be able to rediscover the trip count each time it is 1949 /// needed, and it does this using a simple analysis that only succeeds if 1950 /// the loop has a canonical induction variable. 1951 /// 1952 /// However, when it comes time to generate code, the maximum operation 1953 /// can be quite costly, especially if it's inside of an outer loop. 1954 /// 1955 /// This function solves this problem by detecting this type of loop and 1956 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting 1957 /// the instructions for the maximum computation. 1958 /// 1959 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) { 1960 // Check that the loop matches the pattern we're looking for. 1961 if (Cond->getPredicate() != CmpInst::ICMP_EQ && 1962 Cond->getPredicate() != CmpInst::ICMP_NE) 1963 return Cond; 1964 1965 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1)); 1966 if (!Sel || !Sel->hasOneUse()) return Cond; 1967 1968 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 1969 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 1970 return Cond; 1971 const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1); 1972 1973 // Add one to the backedge-taken count to get the trip count. 1974 const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount); 1975 if (IterationCount != SE.getSCEV(Sel)) return Cond; 1976 1977 // Check for a max calculation that matches the pattern. There's no check 1978 // for ICMP_ULE here because the comparison would be with zero, which 1979 // isn't interesting. 1980 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1981 const SCEVNAryExpr *Max = nullptr; 1982 if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) { 1983 Pred = ICmpInst::ICMP_SLE; 1984 Max = S; 1985 } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) { 1986 Pred = ICmpInst::ICMP_SLT; 1987 Max = S; 1988 } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) { 1989 Pred = ICmpInst::ICMP_ULT; 1990 Max = U; 1991 } else { 1992 // No match; bail. 1993 return Cond; 1994 } 1995 1996 // To handle a max with more than two operands, this optimization would 1997 // require additional checking and setup. 1998 if (Max->getNumOperands() != 2) 1999 return Cond; 2000 2001 const SCEV *MaxLHS = Max->getOperand(0); 2002 const SCEV *MaxRHS = Max->getOperand(1); 2003 2004 // ScalarEvolution canonicalizes constants to the left. For < and >, look 2005 // for a comparison with 1. For <= and >=, a comparison with zero. 2006 if (!MaxLHS || 2007 (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One))) 2008 return Cond; 2009 2010 // Check the relevant induction variable for conformance to 2011 // the pattern. 2012 const SCEV *IV = SE.getSCEV(Cond->getOperand(0)); 2013 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV); 2014 if (!AR || !AR->isAffine() || 2015 AR->getStart() != One || 2016 AR->getStepRecurrence(SE) != One) 2017 return Cond; 2018 2019 assert(AR->getLoop() == L && 2020 "Loop condition operand is an addrec in a different loop!"); 2021 2022 // Check the right operand of the select, and remember it, as it will 2023 // be used in the new comparison instruction. 2024 Value *NewRHS = nullptr; 2025 if (ICmpInst::isTrueWhenEqual(Pred)) { 2026 // Look for n+1, and grab n. 2027 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1))) 2028 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2029 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2030 NewRHS = BO->getOperand(0); 2031 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2))) 2032 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2033 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2034 NewRHS = BO->getOperand(0); 2035 if (!NewRHS) 2036 return Cond; 2037 } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS) 2038 NewRHS = Sel->getOperand(1); 2039 else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS) 2040 NewRHS = Sel->getOperand(2); 2041 else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS)) 2042 NewRHS = SU->getValue(); 2043 else 2044 // Max doesn't match expected pattern. 2045 return Cond; 2046 2047 // Determine the new comparison opcode. It may be signed or unsigned, 2048 // and the original comparison may be either equality or inequality. 2049 if (Cond->getPredicate() == CmpInst::ICMP_EQ) 2050 Pred = CmpInst::getInversePredicate(Pred); 2051 2052 // Ok, everything looks ok to change the condition into an SLT or SGE and 2053 // delete the max calculation. 2054 ICmpInst *NewCond = 2055 new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp"); 2056 2057 // Delete the max calculation instructions. 2058 Cond->replaceAllUsesWith(NewCond); 2059 CondUse->setUser(NewCond); 2060 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0)); 2061 Cond->eraseFromParent(); 2062 Sel->eraseFromParent(); 2063 if (Cmp->use_empty()) 2064 Cmp->eraseFromParent(); 2065 return NewCond; 2066 } 2067 2068 /// Change loop terminating condition to use the postinc iv when possible. 2069 void 2070 LSRInstance::OptimizeLoopTermCond() { 2071 SmallPtrSet<Instruction *, 4> PostIncs; 2072 2073 BasicBlock *LatchBlock = L->getLoopLatch(); 2074 SmallVector<BasicBlock*, 8> ExitingBlocks; 2075 L->getExitingBlocks(ExitingBlocks); 2076 2077 for (BasicBlock *ExitingBlock : ExitingBlocks) { 2078 2079 // Get the terminating condition for the loop if possible. If we 2080 // can, we want to change it to use a post-incremented version of its 2081 // induction variable, to allow coalescing the live ranges for the IV into 2082 // one register value. 2083 2084 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 2085 if (!TermBr) 2086 continue; 2087 // FIXME: Overly conservative, termination condition could be an 'or' etc.. 2088 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition())) 2089 continue; 2090 2091 // Search IVUsesByStride to find Cond's IVUse if there is one. 2092 IVStrideUse *CondUse = nullptr; 2093 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition()); 2094 if (!FindIVUserForCond(Cond, CondUse)) 2095 continue; 2096 2097 // If the trip count is computed in terms of a max (due to ScalarEvolution 2098 // being unable to find a sufficient guard, for example), change the loop 2099 // comparison to use SLT or ULT instead of NE. 2100 // One consequence of doing this now is that it disrupts the count-down 2101 // optimization. That's not always a bad thing though, because in such 2102 // cases it may still be worthwhile to avoid a max. 2103 Cond = OptimizeMax(Cond, CondUse); 2104 2105 // If this exiting block dominates the latch block, it may also use 2106 // the post-inc value if it won't be shared with other uses. 2107 // Check for dominance. 2108 if (!DT.dominates(ExitingBlock, LatchBlock)) 2109 continue; 2110 2111 // Conservatively avoid trying to use the post-inc value in non-latch 2112 // exits if there may be pre-inc users in intervening blocks. 2113 if (LatchBlock != ExitingBlock) 2114 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) 2115 // Test if the use is reachable from the exiting block. This dominator 2116 // query is a conservative approximation of reachability. 2117 if (&*UI != CondUse && 2118 !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) { 2119 // Conservatively assume there may be reuse if the quotient of their 2120 // strides could be a legal scale. 2121 const SCEV *A = IU.getStride(*CondUse, L); 2122 const SCEV *B = IU.getStride(*UI, L); 2123 if (!A || !B) continue; 2124 if (SE.getTypeSizeInBits(A->getType()) != 2125 SE.getTypeSizeInBits(B->getType())) { 2126 if (SE.getTypeSizeInBits(A->getType()) > 2127 SE.getTypeSizeInBits(B->getType())) 2128 B = SE.getSignExtendExpr(B, A->getType()); 2129 else 2130 A = SE.getSignExtendExpr(A, B->getType()); 2131 } 2132 if (const SCEVConstant *D = 2133 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) { 2134 const ConstantInt *C = D->getValue(); 2135 // Stride of one or negative one can have reuse with non-addresses. 2136 if (C->isOne() || C->isAllOnesValue()) 2137 goto decline_post_inc; 2138 // Avoid weird situations. 2139 if (C->getValue().getMinSignedBits() >= 64 || 2140 C->getValue().isMinSignedValue()) 2141 goto decline_post_inc; 2142 // Check for possible scaled-address reuse. 2143 MemAccessTy AccessTy = getAccessType(UI->getUser()); 2144 int64_t Scale = C->getSExtValue(); 2145 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2146 /*BaseOffset=*/0, 2147 /*HasBaseReg=*/false, Scale, 2148 AccessTy.AddrSpace)) 2149 goto decline_post_inc; 2150 Scale = -Scale; 2151 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2152 /*BaseOffset=*/0, 2153 /*HasBaseReg=*/false, Scale, 2154 AccessTy.AddrSpace)) 2155 goto decline_post_inc; 2156 } 2157 } 2158 2159 DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: " 2160 << *Cond << '\n'); 2161 2162 // It's possible for the setcc instruction to be anywhere in the loop, and 2163 // possible for it to have multiple users. If it is not immediately before 2164 // the exiting block branch, move it. 2165 if (&*++BasicBlock::iterator(Cond) != TermBr) { 2166 if (Cond->hasOneUse()) { 2167 Cond->moveBefore(TermBr); 2168 } else { 2169 // Clone the terminating condition and insert into the loopend. 2170 ICmpInst *OldCond = Cond; 2171 Cond = cast<ICmpInst>(Cond->clone()); 2172 Cond->setName(L->getHeader()->getName() + ".termcond"); 2173 ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond); 2174 2175 // Clone the IVUse, as the old use still exists! 2176 CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace()); 2177 TermBr->replaceUsesOfWith(OldCond, Cond); 2178 } 2179 } 2180 2181 // If we get to here, we know that we can transform the setcc instruction to 2182 // use the post-incremented version of the IV, allowing us to coalesce the 2183 // live ranges for the IV correctly. 2184 CondUse->transformToPostInc(L); 2185 Changed = true; 2186 2187 PostIncs.insert(Cond); 2188 decline_post_inc:; 2189 } 2190 2191 // Determine an insertion point for the loop induction variable increment. It 2192 // must dominate all the post-inc comparisons we just set up, and it must 2193 // dominate the loop latch edge. 2194 IVIncInsertPos = L->getLoopLatch()->getTerminator(); 2195 for (Instruction *Inst : PostIncs) { 2196 BasicBlock *BB = 2197 DT.findNearestCommonDominator(IVIncInsertPos->getParent(), 2198 Inst->getParent()); 2199 if (BB == Inst->getParent()) 2200 IVIncInsertPos = Inst; 2201 else if (BB != IVIncInsertPos->getParent()) 2202 IVIncInsertPos = BB->getTerminator(); 2203 } 2204 } 2205 2206 /// Determine if the given use can accommodate a fixup at the given offset and 2207 /// other details. If so, update the use and return true. 2208 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, 2209 bool HasBaseReg, LSRUse::KindType Kind, 2210 MemAccessTy AccessTy) { 2211 int64_t NewMinOffset = LU.MinOffset; 2212 int64_t NewMaxOffset = LU.MaxOffset; 2213 MemAccessTy NewAccessTy = AccessTy; 2214 2215 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to 2216 // something conservative, however this can pessimize in the case that one of 2217 // the uses will have all its uses outside the loop, for example. 2218 if (LU.Kind != Kind) 2219 return false; 2220 2221 // Check for a mismatched access type, and fall back conservatively as needed. 2222 // TODO: Be less conservative when the type is similar and can use the same 2223 // addressing modes. 2224 if (Kind == LSRUse::Address) { 2225 if (AccessTy != LU.AccessTy) 2226 NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext()); 2227 } 2228 2229 // Conservatively assume HasBaseReg is true for now. 2230 if (NewOffset < LU.MinOffset) { 2231 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2232 LU.MaxOffset - NewOffset, HasBaseReg)) 2233 return false; 2234 NewMinOffset = NewOffset; 2235 } else if (NewOffset > LU.MaxOffset) { 2236 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2237 NewOffset - LU.MinOffset, HasBaseReg)) 2238 return false; 2239 NewMaxOffset = NewOffset; 2240 } 2241 2242 // Update the use. 2243 LU.MinOffset = NewMinOffset; 2244 LU.MaxOffset = NewMaxOffset; 2245 LU.AccessTy = NewAccessTy; 2246 if (NewOffset != LU.Offsets.back()) 2247 LU.Offsets.push_back(NewOffset); 2248 return true; 2249 } 2250 2251 /// Return an LSRUse index and an offset value for a fixup which needs the given 2252 /// expression, with the given kind and optional access type. Either reuse an 2253 /// existing use or create a new one, as needed. 2254 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr, 2255 LSRUse::KindType Kind, 2256 MemAccessTy AccessTy) { 2257 const SCEV *Copy = Expr; 2258 int64_t Offset = ExtractImmediate(Expr, SE); 2259 2260 // Basic uses can't accept any offset, for example. 2261 if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr, 2262 Offset, /*HasBaseReg=*/ true)) { 2263 Expr = Copy; 2264 Offset = 0; 2265 } 2266 2267 std::pair<UseMapTy::iterator, bool> P = 2268 UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0)); 2269 if (!P.second) { 2270 // A use already existed with this base. 2271 size_t LUIdx = P.first->second; 2272 LSRUse &LU = Uses[LUIdx]; 2273 if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy)) 2274 // Reuse this use. 2275 return std::make_pair(LUIdx, Offset); 2276 } 2277 2278 // Create a new use. 2279 size_t LUIdx = Uses.size(); 2280 P.first->second = LUIdx; 2281 Uses.push_back(LSRUse(Kind, AccessTy)); 2282 LSRUse &LU = Uses[LUIdx]; 2283 2284 // We don't need to track redundant offsets, but we don't need to go out 2285 // of our way here to avoid them. 2286 if (LU.Offsets.empty() || Offset != LU.Offsets.back()) 2287 LU.Offsets.push_back(Offset); 2288 2289 LU.MinOffset = Offset; 2290 LU.MaxOffset = Offset; 2291 return std::make_pair(LUIdx, Offset); 2292 } 2293 2294 /// Delete the given use from the Uses list. 2295 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) { 2296 if (&LU != &Uses.back()) 2297 std::swap(LU, Uses.back()); 2298 Uses.pop_back(); 2299 2300 // Update RegUses. 2301 RegUses.swapAndDropUse(LUIdx, Uses.size()); 2302 } 2303 2304 /// Look for a use distinct from OrigLU which is has a formula that has the same 2305 /// registers as the given formula. 2306 LSRUse * 2307 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF, 2308 const LSRUse &OrigLU) { 2309 // Search all uses for the formula. This could be more clever. 2310 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 2311 LSRUse &LU = Uses[LUIdx]; 2312 // Check whether this use is close enough to OrigLU, to see whether it's 2313 // worthwhile looking through its formulae. 2314 // Ignore ICmpZero uses because they may contain formulae generated by 2315 // GenerateICmpZeroScales, in which case adding fixup offsets may 2316 // be invalid. 2317 if (&LU != &OrigLU && 2318 LU.Kind != LSRUse::ICmpZero && 2319 LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy && 2320 LU.WidestFixupType == OrigLU.WidestFixupType && 2321 LU.HasFormulaWithSameRegs(OrigF)) { 2322 // Scan through this use's formulae. 2323 for (const Formula &F : LU.Formulae) { 2324 // Check to see if this formula has the same registers and symbols 2325 // as OrigF. 2326 if (F.BaseRegs == OrigF.BaseRegs && 2327 F.ScaledReg == OrigF.ScaledReg && 2328 F.BaseGV == OrigF.BaseGV && 2329 F.Scale == OrigF.Scale && 2330 F.UnfoldedOffset == OrigF.UnfoldedOffset) { 2331 if (F.BaseOffset == 0) 2332 return &LU; 2333 // This is the formula where all the registers and symbols matched; 2334 // there aren't going to be any others. Since we declined it, we 2335 // can skip the rest of the formulae and proceed to the next LSRUse. 2336 break; 2337 } 2338 } 2339 } 2340 } 2341 2342 // Nothing looked good. 2343 return nullptr; 2344 } 2345 2346 void LSRInstance::CollectInterestingTypesAndFactors() { 2347 SmallSetVector<const SCEV *, 4> Strides; 2348 2349 // Collect interesting types and strides. 2350 SmallVector<const SCEV *, 4> Worklist; 2351 for (const IVStrideUse &U : IU) { 2352 const SCEV *Expr = IU.getExpr(U); 2353 2354 // Collect interesting types. 2355 Types.insert(SE.getEffectiveSCEVType(Expr->getType())); 2356 2357 // Add strides for mentioned loops. 2358 Worklist.push_back(Expr); 2359 do { 2360 const SCEV *S = Worklist.pop_back_val(); 2361 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2362 if (AR->getLoop() == L) 2363 Strides.insert(AR->getStepRecurrence(SE)); 2364 Worklist.push_back(AR->getStart()); 2365 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2366 Worklist.append(Add->op_begin(), Add->op_end()); 2367 } 2368 } while (!Worklist.empty()); 2369 } 2370 2371 // Compute interesting factors from the set of interesting strides. 2372 for (SmallSetVector<const SCEV *, 4>::const_iterator 2373 I = Strides.begin(), E = Strides.end(); I != E; ++I) 2374 for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter = 2375 std::next(I); NewStrideIter != E; ++NewStrideIter) { 2376 const SCEV *OldStride = *I; 2377 const SCEV *NewStride = *NewStrideIter; 2378 2379 if (SE.getTypeSizeInBits(OldStride->getType()) != 2380 SE.getTypeSizeInBits(NewStride->getType())) { 2381 if (SE.getTypeSizeInBits(OldStride->getType()) > 2382 SE.getTypeSizeInBits(NewStride->getType())) 2383 NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType()); 2384 else 2385 OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType()); 2386 } 2387 if (const SCEVConstant *Factor = 2388 dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride, 2389 SE, true))) { 2390 if (Factor->getAPInt().getMinSignedBits() <= 64) 2391 Factors.insert(Factor->getAPInt().getSExtValue()); 2392 } else if (const SCEVConstant *Factor = 2393 dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride, 2394 NewStride, 2395 SE, true))) { 2396 if (Factor->getAPInt().getMinSignedBits() <= 64) 2397 Factors.insert(Factor->getAPInt().getSExtValue()); 2398 } 2399 } 2400 2401 // If all uses use the same type, don't bother looking for truncation-based 2402 // reuse. 2403 if (Types.size() == 1) 2404 Types.clear(); 2405 2406 DEBUG(print_factors_and_types(dbgs())); 2407 } 2408 2409 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in 2410 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to 2411 /// IVStrideUses, we could partially skip this. 2412 static User::op_iterator 2413 findIVOperand(User::op_iterator OI, User::op_iterator OE, 2414 Loop *L, ScalarEvolution &SE) { 2415 for(; OI != OE; ++OI) { 2416 if (Instruction *Oper = dyn_cast<Instruction>(*OI)) { 2417 if (!SE.isSCEVable(Oper->getType())) 2418 continue; 2419 2420 if (const SCEVAddRecExpr *AR = 2421 dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) { 2422 if (AR->getLoop() == L) 2423 break; 2424 } 2425 } 2426 } 2427 return OI; 2428 } 2429 2430 /// IVChain logic must consistenctly peek base TruncInst operands, so wrap it in 2431 /// a convenient helper. 2432 static Value *getWideOperand(Value *Oper) { 2433 if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper)) 2434 return Trunc->getOperand(0); 2435 return Oper; 2436 } 2437 2438 /// Return true if we allow an IV chain to include both types. 2439 static bool isCompatibleIVType(Value *LVal, Value *RVal) { 2440 Type *LType = LVal->getType(); 2441 Type *RType = RVal->getType(); 2442 return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy()); 2443 } 2444 2445 /// Return an approximation of this SCEV expression's "base", or NULL for any 2446 /// constant. Returning the expression itself is conservative. Returning a 2447 /// deeper subexpression is more precise and valid as long as it isn't less 2448 /// complex than another subexpression. For expressions involving multiple 2449 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids 2450 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i], 2451 /// IVInc==b-a. 2452 /// 2453 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost 2454 /// SCEVUnknown, we simply return the rightmost SCEV operand. 2455 static const SCEV *getExprBase(const SCEV *S) { 2456 switch (S->getSCEVType()) { 2457 default: // uncluding scUnknown. 2458 return S; 2459 case scConstant: 2460 return nullptr; 2461 case scTruncate: 2462 return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand()); 2463 case scZeroExtend: 2464 return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand()); 2465 case scSignExtend: 2466 return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand()); 2467 case scAddExpr: { 2468 // Skip over scaled operands (scMulExpr) to follow add operands as long as 2469 // there's nothing more complex. 2470 // FIXME: not sure if we want to recognize negation. 2471 const SCEVAddExpr *Add = cast<SCEVAddExpr>(S); 2472 for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()), 2473 E(Add->op_begin()); I != E; ++I) { 2474 const SCEV *SubExpr = *I; 2475 if (SubExpr->getSCEVType() == scAddExpr) 2476 return getExprBase(SubExpr); 2477 2478 if (SubExpr->getSCEVType() != scMulExpr) 2479 return SubExpr; 2480 } 2481 return S; // all operands are scaled, be conservative. 2482 } 2483 case scAddRecExpr: 2484 return getExprBase(cast<SCEVAddRecExpr>(S)->getStart()); 2485 } 2486 } 2487 2488 /// Return true if the chain increment is profitable to expand into a loop 2489 /// invariant value, which may require its own register. A profitable chain 2490 /// increment will be an offset relative to the same base. We allow such offsets 2491 /// to potentially be used as chain increment as long as it's not obviously 2492 /// expensive to expand using real instructions. 2493 bool IVChain::isProfitableIncrement(const SCEV *OperExpr, 2494 const SCEV *IncExpr, 2495 ScalarEvolution &SE) { 2496 // Aggressively form chains when -stress-ivchain. 2497 if (StressIVChain) 2498 return true; 2499 2500 // Do not replace a constant offset from IV head with a nonconstant IV 2501 // increment. 2502 if (!isa<SCEVConstant>(IncExpr)) { 2503 const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand)); 2504 if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr))) 2505 return 0; 2506 } 2507 2508 SmallPtrSet<const SCEV*, 8> Processed; 2509 return !isHighCostExpansion(IncExpr, Processed, SE); 2510 } 2511 2512 /// Return true if the number of registers needed for the chain is estimated to 2513 /// be less than the number required for the individual IV users. First prohibit 2514 /// any IV users that keep the IV live across increments (the Users set should 2515 /// be empty). Next count the number and type of increments in the chain. 2516 /// 2517 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't 2518 /// effectively use postinc addressing modes. Only consider it profitable it the 2519 /// increments can be computed in fewer registers when chained. 2520 /// 2521 /// TODO: Consider IVInc free if it's already used in another chains. 2522 static bool 2523 isProfitableChain(IVChain &Chain, SmallPtrSetImpl<Instruction*> &Users, 2524 ScalarEvolution &SE, const TargetTransformInfo &TTI) { 2525 if (StressIVChain) 2526 return true; 2527 2528 if (!Chain.hasIncs()) 2529 return false; 2530 2531 if (!Users.empty()) { 2532 DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n"; 2533 for (Instruction *Inst : Users) { 2534 dbgs() << " " << *Inst << "\n"; 2535 }); 2536 return false; 2537 } 2538 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 2539 2540 // The chain itself may require a register, so intialize cost to 1. 2541 int cost = 1; 2542 2543 // A complete chain likely eliminates the need for keeping the original IV in 2544 // a register. LSR does not currently know how to form a complete chain unless 2545 // the header phi already exists. 2546 if (isa<PHINode>(Chain.tailUserInst()) 2547 && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) { 2548 --cost; 2549 } 2550 const SCEV *LastIncExpr = nullptr; 2551 unsigned NumConstIncrements = 0; 2552 unsigned NumVarIncrements = 0; 2553 unsigned NumReusedIncrements = 0; 2554 for (const IVInc &Inc : Chain) { 2555 if (Inc.IncExpr->isZero()) 2556 continue; 2557 2558 // Incrementing by zero or some constant is neutral. We assume constants can 2559 // be folded into an addressing mode or an add's immediate operand. 2560 if (isa<SCEVConstant>(Inc.IncExpr)) { 2561 ++NumConstIncrements; 2562 continue; 2563 } 2564 2565 if (Inc.IncExpr == LastIncExpr) 2566 ++NumReusedIncrements; 2567 else 2568 ++NumVarIncrements; 2569 2570 LastIncExpr = Inc.IncExpr; 2571 } 2572 // An IV chain with a single increment is handled by LSR's postinc 2573 // uses. However, a chain with multiple increments requires keeping the IV's 2574 // value live longer than it needs to be if chained. 2575 if (NumConstIncrements > 1) 2576 --cost; 2577 2578 // Materializing increment expressions in the preheader that didn't exist in 2579 // the original code may cost a register. For example, sign-extended array 2580 // indices can produce ridiculous increments like this: 2581 // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64))) 2582 cost += NumVarIncrements; 2583 2584 // Reusing variable increments likely saves a register to hold the multiple of 2585 // the stride. 2586 cost -= NumReusedIncrements; 2587 2588 DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost 2589 << "\n"); 2590 2591 return cost < 0; 2592 } 2593 2594 /// Add this IV user to an existing chain or make it the head of a new chain. 2595 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper, 2596 SmallVectorImpl<ChainUsers> &ChainUsersVec) { 2597 // When IVs are used as types of varying widths, they are generally converted 2598 // to a wider type with some uses remaining narrow under a (free) trunc. 2599 Value *const NextIV = getWideOperand(IVOper); 2600 const SCEV *const OperExpr = SE.getSCEV(NextIV); 2601 const SCEV *const OperExprBase = getExprBase(OperExpr); 2602 2603 // Visit all existing chains. Check if its IVOper can be computed as a 2604 // profitable loop invariant increment from the last link in the Chain. 2605 unsigned ChainIdx = 0, NChains = IVChainVec.size(); 2606 const SCEV *LastIncExpr = nullptr; 2607 for (; ChainIdx < NChains; ++ChainIdx) { 2608 IVChain &Chain = IVChainVec[ChainIdx]; 2609 2610 // Prune the solution space aggressively by checking that both IV operands 2611 // are expressions that operate on the same unscaled SCEVUnknown. This 2612 // "base" will be canceled by the subsequent getMinusSCEV call. Checking 2613 // first avoids creating extra SCEV expressions. 2614 if (!StressIVChain && Chain.ExprBase != OperExprBase) 2615 continue; 2616 2617 Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand); 2618 if (!isCompatibleIVType(PrevIV, NextIV)) 2619 continue; 2620 2621 // A phi node terminates a chain. 2622 if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst())) 2623 continue; 2624 2625 // The increment must be loop-invariant so it can be kept in a register. 2626 const SCEV *PrevExpr = SE.getSCEV(PrevIV); 2627 const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr); 2628 if (!SE.isLoopInvariant(IncExpr, L)) 2629 continue; 2630 2631 if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) { 2632 LastIncExpr = IncExpr; 2633 break; 2634 } 2635 } 2636 // If we haven't found a chain, create a new one, unless we hit the max. Don't 2637 // bother for phi nodes, because they must be last in the chain. 2638 if (ChainIdx == NChains) { 2639 if (isa<PHINode>(UserInst)) 2640 return; 2641 if (NChains >= MaxChains && !StressIVChain) { 2642 DEBUG(dbgs() << "IV Chain Limit\n"); 2643 return; 2644 } 2645 LastIncExpr = OperExpr; 2646 // IVUsers may have skipped over sign/zero extensions. We don't currently 2647 // attempt to form chains involving extensions unless they can be hoisted 2648 // into this loop's AddRec. 2649 if (!isa<SCEVAddRecExpr>(LastIncExpr)) 2650 return; 2651 ++NChains; 2652 IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr), 2653 OperExprBase)); 2654 ChainUsersVec.resize(NChains); 2655 DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst 2656 << ") IV=" << *LastIncExpr << "\n"); 2657 } else { 2658 DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Inc: (" << *UserInst 2659 << ") IV+" << *LastIncExpr << "\n"); 2660 // Add this IV user to the end of the chain. 2661 IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr)); 2662 } 2663 IVChain &Chain = IVChainVec[ChainIdx]; 2664 2665 SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers; 2666 // This chain's NearUsers become FarUsers. 2667 if (!LastIncExpr->isZero()) { 2668 ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(), 2669 NearUsers.end()); 2670 NearUsers.clear(); 2671 } 2672 2673 // All other uses of IVOperand become near uses of the chain. 2674 // We currently ignore intermediate values within SCEV expressions, assuming 2675 // they will eventually be used be the current chain, or can be computed 2676 // from one of the chain increments. To be more precise we could 2677 // transitively follow its user and only add leaf IV users to the set. 2678 for (User *U : IVOper->users()) { 2679 Instruction *OtherUse = dyn_cast<Instruction>(U); 2680 if (!OtherUse) 2681 continue; 2682 // Uses in the chain will no longer be uses if the chain is formed. 2683 // Include the head of the chain in this iteration (not Chain.begin()). 2684 IVChain::const_iterator IncIter = Chain.Incs.begin(); 2685 IVChain::const_iterator IncEnd = Chain.Incs.end(); 2686 for( ; IncIter != IncEnd; ++IncIter) { 2687 if (IncIter->UserInst == OtherUse) 2688 break; 2689 } 2690 if (IncIter != IncEnd) 2691 continue; 2692 2693 if (SE.isSCEVable(OtherUse->getType()) 2694 && !isa<SCEVUnknown>(SE.getSCEV(OtherUse)) 2695 && IU.isIVUserOrOperand(OtherUse)) { 2696 continue; 2697 } 2698 NearUsers.insert(OtherUse); 2699 } 2700 2701 // Since this user is part of the chain, it's no longer considered a use 2702 // of the chain. 2703 ChainUsersVec[ChainIdx].FarUsers.erase(UserInst); 2704 } 2705 2706 /// Populate the vector of Chains. 2707 /// 2708 /// This decreases ILP at the architecture level. Targets with ample registers, 2709 /// multiple memory ports, and no register renaming probably don't want 2710 /// this. However, such targets should probably disable LSR altogether. 2711 /// 2712 /// The job of LSR is to make a reasonable choice of induction variables across 2713 /// the loop. Subsequent passes can easily "unchain" computation exposing more 2714 /// ILP *within the loop* if the target wants it. 2715 /// 2716 /// Finding the best IV chain is potentially a scheduling problem. Since LSR 2717 /// will not reorder memory operations, it will recognize this as a chain, but 2718 /// will generate redundant IV increments. Ideally this would be corrected later 2719 /// by a smart scheduler: 2720 /// = A[i] 2721 /// = A[i+x] 2722 /// A[i] = 2723 /// A[i+x] = 2724 /// 2725 /// TODO: Walk the entire domtree within this loop, not just the path to the 2726 /// loop latch. This will discover chains on side paths, but requires 2727 /// maintaining multiple copies of the Chains state. 2728 void LSRInstance::CollectChains() { 2729 DEBUG(dbgs() << "Collecting IV Chains.\n"); 2730 SmallVector<ChainUsers, 8> ChainUsersVec; 2731 2732 SmallVector<BasicBlock *,8> LatchPath; 2733 BasicBlock *LoopHeader = L->getHeader(); 2734 for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch()); 2735 Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) { 2736 LatchPath.push_back(Rung->getBlock()); 2737 } 2738 LatchPath.push_back(LoopHeader); 2739 2740 // Walk the instruction stream from the loop header to the loop latch. 2741 for (BasicBlock *BB : reverse(LatchPath)) { 2742 for (Instruction &I : *BB) { 2743 // Skip instructions that weren't seen by IVUsers analysis. 2744 if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I)) 2745 continue; 2746 2747 // Ignore users that are part of a SCEV expression. This way we only 2748 // consider leaf IV Users. This effectively rediscovers a portion of 2749 // IVUsers analysis but in program order this time. 2750 if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I))) 2751 continue; 2752 2753 // Remove this instruction from any NearUsers set it may be in. 2754 for (unsigned ChainIdx = 0, NChains = IVChainVec.size(); 2755 ChainIdx < NChains; ++ChainIdx) { 2756 ChainUsersVec[ChainIdx].NearUsers.erase(&I); 2757 } 2758 // Search for operands that can be chained. 2759 SmallPtrSet<Instruction*, 4> UniqueOperands; 2760 User::op_iterator IVOpEnd = I.op_end(); 2761 User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE); 2762 while (IVOpIter != IVOpEnd) { 2763 Instruction *IVOpInst = cast<Instruction>(*IVOpIter); 2764 if (UniqueOperands.insert(IVOpInst).second) 2765 ChainInstruction(&I, IVOpInst, ChainUsersVec); 2766 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 2767 } 2768 } // Continue walking down the instructions. 2769 } // Continue walking down the domtree. 2770 // Visit phi backedges to determine if the chain can generate the IV postinc. 2771 for (BasicBlock::iterator I = L->getHeader()->begin(); 2772 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 2773 if (!SE.isSCEVable(PN->getType())) 2774 continue; 2775 2776 Instruction *IncV = 2777 dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch())); 2778 if (IncV) 2779 ChainInstruction(PN, IncV, ChainUsersVec); 2780 } 2781 // Remove any unprofitable chains. 2782 unsigned ChainIdx = 0; 2783 for (unsigned UsersIdx = 0, NChains = IVChainVec.size(); 2784 UsersIdx < NChains; ++UsersIdx) { 2785 if (!isProfitableChain(IVChainVec[UsersIdx], 2786 ChainUsersVec[UsersIdx].FarUsers, SE, TTI)) 2787 continue; 2788 // Preserve the chain at UsesIdx. 2789 if (ChainIdx != UsersIdx) 2790 IVChainVec[ChainIdx] = IVChainVec[UsersIdx]; 2791 FinalizeChain(IVChainVec[ChainIdx]); 2792 ++ChainIdx; 2793 } 2794 IVChainVec.resize(ChainIdx); 2795 } 2796 2797 void LSRInstance::FinalizeChain(IVChain &Chain) { 2798 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 2799 DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n"); 2800 2801 for (const IVInc &Inc : Chain) { 2802 DEBUG(dbgs() << " Inc: " << Inc.UserInst << "\n"); 2803 auto UseI = std::find(Inc.UserInst->op_begin(), Inc.UserInst->op_end(), 2804 Inc.IVOperand); 2805 assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand"); 2806 IVIncSet.insert(UseI); 2807 } 2808 } 2809 2810 /// Return true if the IVInc can be folded into an addressing mode. 2811 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst, 2812 Value *Operand, const TargetTransformInfo &TTI) { 2813 const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr); 2814 if (!IncConst || !isAddressUse(UserInst, Operand)) 2815 return false; 2816 2817 if (IncConst->getAPInt().getMinSignedBits() > 64) 2818 return false; 2819 2820 MemAccessTy AccessTy = getAccessType(UserInst); 2821 int64_t IncOffset = IncConst->getValue()->getSExtValue(); 2822 if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr, 2823 IncOffset, /*HaseBaseReg=*/false)) 2824 return false; 2825 2826 return true; 2827 } 2828 2829 /// Generate an add or subtract for each IVInc in a chain to materialize the IV 2830 /// user's operand from the previous IV user's operand. 2831 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 2832 SmallVectorImpl<WeakVH> &DeadInsts) { 2833 // Find the new IVOperand for the head of the chain. It may have been replaced 2834 // by LSR. 2835 const IVInc &Head = Chain.Incs[0]; 2836 User::op_iterator IVOpEnd = Head.UserInst->op_end(); 2837 // findIVOperand returns IVOpEnd if it can no longer find a valid IV user. 2838 User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(), 2839 IVOpEnd, L, SE); 2840 Value *IVSrc = nullptr; 2841 while (IVOpIter != IVOpEnd) { 2842 IVSrc = getWideOperand(*IVOpIter); 2843 2844 // If this operand computes the expression that the chain needs, we may use 2845 // it. (Check this after setting IVSrc which is used below.) 2846 // 2847 // Note that if Head.IncExpr is wider than IVSrc, then this phi is too 2848 // narrow for the chain, so we can no longer use it. We do allow using a 2849 // wider phi, assuming the LSR checked for free truncation. In that case we 2850 // should already have a truncate on this operand such that 2851 // getSCEV(IVSrc) == IncExpr. 2852 if (SE.getSCEV(*IVOpIter) == Head.IncExpr 2853 || SE.getSCEV(IVSrc) == Head.IncExpr) { 2854 break; 2855 } 2856 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 2857 } 2858 if (IVOpIter == IVOpEnd) { 2859 // Gracefully give up on this chain. 2860 DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n"); 2861 return; 2862 } 2863 2864 DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n"); 2865 Type *IVTy = IVSrc->getType(); 2866 Type *IntTy = SE.getEffectiveSCEVType(IVTy); 2867 const SCEV *LeftOverExpr = nullptr; 2868 for (const IVInc &Inc : Chain) { 2869 Instruction *InsertPt = Inc.UserInst; 2870 if (isa<PHINode>(InsertPt)) 2871 InsertPt = L->getLoopLatch()->getTerminator(); 2872 2873 // IVOper will replace the current IV User's operand. IVSrc is the IV 2874 // value currently held in a register. 2875 Value *IVOper = IVSrc; 2876 if (!Inc.IncExpr->isZero()) { 2877 // IncExpr was the result of subtraction of two narrow values, so must 2878 // be signed. 2879 const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy); 2880 LeftOverExpr = LeftOverExpr ? 2881 SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr; 2882 } 2883 if (LeftOverExpr && !LeftOverExpr->isZero()) { 2884 // Expand the IV increment. 2885 Rewriter.clearPostInc(); 2886 Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt); 2887 const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc), 2888 SE.getUnknown(IncV)); 2889 IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt); 2890 2891 // If an IV increment can't be folded, use it as the next IV value. 2892 if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) { 2893 assert(IVTy == IVOper->getType() && "inconsistent IV increment type"); 2894 IVSrc = IVOper; 2895 LeftOverExpr = nullptr; 2896 } 2897 } 2898 Type *OperTy = Inc.IVOperand->getType(); 2899 if (IVTy != OperTy) { 2900 assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) && 2901 "cannot extend a chained IV"); 2902 IRBuilder<> Builder(InsertPt); 2903 IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain"); 2904 } 2905 Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper); 2906 DeadInsts.emplace_back(Inc.IVOperand); 2907 } 2908 // If LSR created a new, wider phi, we may also replace its postinc. We only 2909 // do this if we also found a wide value for the head of the chain. 2910 if (isa<PHINode>(Chain.tailUserInst())) { 2911 for (BasicBlock::iterator I = L->getHeader()->begin(); 2912 PHINode *Phi = dyn_cast<PHINode>(I); ++I) { 2913 if (!isCompatibleIVType(Phi, IVSrc)) 2914 continue; 2915 Instruction *PostIncV = dyn_cast<Instruction>( 2916 Phi->getIncomingValueForBlock(L->getLoopLatch())); 2917 if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc))) 2918 continue; 2919 Value *IVOper = IVSrc; 2920 Type *PostIncTy = PostIncV->getType(); 2921 if (IVTy != PostIncTy) { 2922 assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types"); 2923 IRBuilder<> Builder(L->getLoopLatch()->getTerminator()); 2924 Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc()); 2925 IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain"); 2926 } 2927 Phi->replaceUsesOfWith(PostIncV, IVOper); 2928 DeadInsts.emplace_back(PostIncV); 2929 } 2930 } 2931 } 2932 2933 void LSRInstance::CollectFixupsAndInitialFormulae() { 2934 for (const IVStrideUse &U : IU) { 2935 Instruction *UserInst = U.getUser(); 2936 // Skip IV users that are part of profitable IV Chains. 2937 User::op_iterator UseI = std::find(UserInst->op_begin(), UserInst->op_end(), 2938 U.getOperandValToReplace()); 2939 assert(UseI != UserInst->op_end() && "cannot find IV operand"); 2940 if (IVIncSet.count(UseI)) 2941 continue; 2942 2943 // Record the uses. 2944 LSRFixup &LF = getNewFixup(); 2945 LF.UserInst = UserInst; 2946 LF.OperandValToReplace = U.getOperandValToReplace(); 2947 LF.PostIncLoops = U.getPostIncLoops(); 2948 2949 LSRUse::KindType Kind = LSRUse::Basic; 2950 MemAccessTy AccessTy; 2951 if (isAddressUse(LF.UserInst, LF.OperandValToReplace)) { 2952 Kind = LSRUse::Address; 2953 AccessTy = getAccessType(LF.UserInst); 2954 } 2955 2956 const SCEV *S = IU.getExpr(U); 2957 2958 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as 2959 // (N - i == 0), and this allows (N - i) to be the expression that we work 2960 // with rather than just N or i, so we can consider the register 2961 // requirements for both N and i at the same time. Limiting this code to 2962 // equality icmps is not a problem because all interesting loops use 2963 // equality icmps, thanks to IndVarSimplify. 2964 if (ICmpInst *CI = dyn_cast<ICmpInst>(LF.UserInst)) 2965 if (CI->isEquality()) { 2966 // Swap the operands if needed to put the OperandValToReplace on the 2967 // left, for consistency. 2968 Value *NV = CI->getOperand(1); 2969 if (NV == LF.OperandValToReplace) { 2970 CI->setOperand(1, CI->getOperand(0)); 2971 CI->setOperand(0, NV); 2972 NV = CI->getOperand(1); 2973 Changed = true; 2974 } 2975 2976 // x == y --> x - y == 0 2977 const SCEV *N = SE.getSCEV(NV); 2978 if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) { 2979 // S is normalized, so normalize N before folding it into S 2980 // to keep the result normalized. 2981 N = TransformForPostIncUse(Normalize, N, CI, nullptr, 2982 LF.PostIncLoops, SE, DT); 2983 Kind = LSRUse::ICmpZero; 2984 S = SE.getMinusSCEV(N, S); 2985 } 2986 2987 // -1 and the negations of all interesting strides (except the negation 2988 // of -1) are now also interesting. 2989 for (size_t i = 0, e = Factors.size(); i != e; ++i) 2990 if (Factors[i] != -1) 2991 Factors.insert(-(uint64_t)Factors[i]); 2992 Factors.insert(-1); 2993 } 2994 2995 // Set up the initial formula for this use. 2996 std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy); 2997 LF.LUIdx = P.first; 2998 LF.Offset = P.second; 2999 LSRUse &LU = Uses[LF.LUIdx]; 3000 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3001 if (!LU.WidestFixupType || 3002 SE.getTypeSizeInBits(LU.WidestFixupType) < 3003 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3004 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3005 3006 // If this is the first use of this LSRUse, give it a formula. 3007 if (LU.Formulae.empty()) { 3008 InsertInitialFormula(S, LU, LF.LUIdx); 3009 CountRegisters(LU.Formulae.back(), LF.LUIdx); 3010 } 3011 } 3012 3013 DEBUG(print_fixups(dbgs())); 3014 } 3015 3016 /// Insert a formula for the given expression into the given use, separating out 3017 /// loop-variant portions from loop-invariant and loop-computable portions. 3018 void 3019 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) { 3020 // Mark uses whose expressions cannot be expanded. 3021 if (!isSafeToExpand(S, SE)) 3022 LU.RigidFormula = true; 3023 3024 Formula F; 3025 F.initialMatch(S, L, SE); 3026 bool Inserted = InsertFormula(LU, LUIdx, F); 3027 assert(Inserted && "Initial formula already exists!"); (void)Inserted; 3028 } 3029 3030 /// Insert a simple single-register formula for the given expression into the 3031 /// given use. 3032 void 3033 LSRInstance::InsertSupplementalFormula(const SCEV *S, 3034 LSRUse &LU, size_t LUIdx) { 3035 Formula F; 3036 F.BaseRegs.push_back(S); 3037 F.HasBaseReg = true; 3038 bool Inserted = InsertFormula(LU, LUIdx, F); 3039 assert(Inserted && "Supplemental formula already exists!"); (void)Inserted; 3040 } 3041 3042 /// Note which registers are used by the given formula, updating RegUses. 3043 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) { 3044 if (F.ScaledReg) 3045 RegUses.countRegister(F.ScaledReg, LUIdx); 3046 for (const SCEV *BaseReg : F.BaseRegs) 3047 RegUses.countRegister(BaseReg, LUIdx); 3048 } 3049 3050 /// If the given formula has not yet been inserted, add it to the list, and 3051 /// return true. Return false otherwise. 3052 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) { 3053 // Do not insert formula that we will not be able to expand. 3054 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) && 3055 "Formula is illegal"); 3056 if (!LU.InsertFormula(F)) 3057 return false; 3058 3059 CountRegisters(F, LUIdx); 3060 return true; 3061 } 3062 3063 /// Check for other uses of loop-invariant values which we're tracking. These 3064 /// other uses will pin these values in registers, making them less profitable 3065 /// for elimination. 3066 /// TODO: This currently misses non-constant addrec step registers. 3067 /// TODO: Should this give more weight to users inside the loop? 3068 void 3069 LSRInstance::CollectLoopInvariantFixupsAndFormulae() { 3070 SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end()); 3071 SmallPtrSet<const SCEV *, 32> Visited; 3072 3073 while (!Worklist.empty()) { 3074 const SCEV *S = Worklist.pop_back_val(); 3075 3076 // Don't process the same SCEV twice 3077 if (!Visited.insert(S).second) 3078 continue; 3079 3080 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) 3081 Worklist.append(N->op_begin(), N->op_end()); 3082 else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) 3083 Worklist.push_back(C->getOperand()); 3084 else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 3085 Worklist.push_back(D->getLHS()); 3086 Worklist.push_back(D->getRHS()); 3087 } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) { 3088 const Value *V = US->getValue(); 3089 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 3090 // Look for instructions defined outside the loop. 3091 if (L->contains(Inst)) continue; 3092 } else if (isa<UndefValue>(V)) 3093 // Undef doesn't have a live range, so it doesn't matter. 3094 continue; 3095 for (const Use &U : V->uses()) { 3096 const Instruction *UserInst = dyn_cast<Instruction>(U.getUser()); 3097 // Ignore non-instructions. 3098 if (!UserInst) 3099 continue; 3100 // Ignore instructions in other functions (as can happen with 3101 // Constants). 3102 if (UserInst->getParent()->getParent() != L->getHeader()->getParent()) 3103 continue; 3104 // Ignore instructions not dominated by the loop. 3105 const BasicBlock *UseBB = !isa<PHINode>(UserInst) ? 3106 UserInst->getParent() : 3107 cast<PHINode>(UserInst)->getIncomingBlock( 3108 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 3109 if (!DT.dominates(L->getHeader(), UseBB)) 3110 continue; 3111 // Don't bother if the instruction is in a BB which ends in an EHPad. 3112 if (UseBB->getTerminator()->isEHPad()) 3113 continue; 3114 // Ignore uses which are part of other SCEV expressions, to avoid 3115 // analyzing them multiple times. 3116 if (SE.isSCEVable(UserInst->getType())) { 3117 const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst)); 3118 // If the user is a no-op, look through to its uses. 3119 if (!isa<SCEVUnknown>(UserS)) 3120 continue; 3121 if (UserS == US) { 3122 Worklist.push_back( 3123 SE.getUnknown(const_cast<Instruction *>(UserInst))); 3124 continue; 3125 } 3126 } 3127 // Ignore icmp instructions which are already being analyzed. 3128 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) { 3129 unsigned OtherIdx = !U.getOperandNo(); 3130 Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx)); 3131 if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L)) 3132 continue; 3133 } 3134 3135 LSRFixup &LF = getNewFixup(); 3136 LF.UserInst = const_cast<Instruction *>(UserInst); 3137 LF.OperandValToReplace = U; 3138 std::pair<size_t, int64_t> P = getUse( 3139 S, LSRUse::Basic, MemAccessTy()); 3140 LF.LUIdx = P.first; 3141 LF.Offset = P.second; 3142 LSRUse &LU = Uses[LF.LUIdx]; 3143 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3144 if (!LU.WidestFixupType || 3145 SE.getTypeSizeInBits(LU.WidestFixupType) < 3146 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3147 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3148 InsertSupplementalFormula(US, LU, LF.LUIdx); 3149 CountRegisters(LU.Formulae.back(), Uses.size() - 1); 3150 break; 3151 } 3152 } 3153 } 3154 } 3155 3156 /// Split S into subexpressions which can be pulled out into separate 3157 /// registers. If C is non-null, multiply each subexpression by C. 3158 /// 3159 /// Return remainder expression after factoring the subexpressions captured by 3160 /// Ops. If Ops is complete, return NULL. 3161 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C, 3162 SmallVectorImpl<const SCEV *> &Ops, 3163 const Loop *L, 3164 ScalarEvolution &SE, 3165 unsigned Depth = 0) { 3166 // Arbitrarily cap recursion to protect compile time. 3167 if (Depth >= 3) 3168 return S; 3169 3170 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3171 // Break out add operands. 3172 for (const SCEV *S : Add->operands()) { 3173 const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1); 3174 if (Remainder) 3175 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3176 } 3177 return nullptr; 3178 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 3179 // Split a non-zero base out of an addrec. 3180 if (AR->getStart()->isZero()) 3181 return S; 3182 3183 const SCEV *Remainder = CollectSubexprs(AR->getStart(), 3184 C, Ops, L, SE, Depth+1); 3185 // Split the non-zero AddRec unless it is part of a nested recurrence that 3186 // does not pertain to this loop. 3187 if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) { 3188 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3189 Remainder = nullptr; 3190 } 3191 if (Remainder != AR->getStart()) { 3192 if (!Remainder) 3193 Remainder = SE.getConstant(AR->getType(), 0); 3194 return SE.getAddRecExpr(Remainder, 3195 AR->getStepRecurrence(SE), 3196 AR->getLoop(), 3197 //FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 3198 SCEV::FlagAnyWrap); 3199 } 3200 } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3201 // Break (C * (a + b + c)) into C*a + C*b + C*c. 3202 if (Mul->getNumOperands() != 2) 3203 return S; 3204 if (const SCEVConstant *Op0 = 3205 dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3206 C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0; 3207 const SCEV *Remainder = 3208 CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1); 3209 if (Remainder) 3210 Ops.push_back(SE.getMulExpr(C, Remainder)); 3211 return nullptr; 3212 } 3213 } 3214 return S; 3215 } 3216 3217 /// \brief Helper function for LSRInstance::GenerateReassociations. 3218 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 3219 const Formula &Base, 3220 unsigned Depth, size_t Idx, 3221 bool IsScaledReg) { 3222 const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3223 SmallVector<const SCEV *, 8> AddOps; 3224 const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE); 3225 if (Remainder) 3226 AddOps.push_back(Remainder); 3227 3228 if (AddOps.size() == 1) 3229 return; 3230 3231 for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(), 3232 JE = AddOps.end(); 3233 J != JE; ++J) { 3234 3235 // Loop-variant "unknown" values are uninteresting; we won't be able to 3236 // do anything meaningful with them. 3237 if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L)) 3238 continue; 3239 3240 // Don't pull a constant into a register if the constant could be folded 3241 // into an immediate field. 3242 if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3243 LU.AccessTy, *J, Base.getNumRegs() > 1)) 3244 continue; 3245 3246 // Collect all operands except *J. 3247 SmallVector<const SCEV *, 8> InnerAddOps( 3248 ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J); 3249 InnerAddOps.append(std::next(J), 3250 ((const SmallVector<const SCEV *, 8> &)AddOps).end()); 3251 3252 // Don't leave just a constant behind in a register if the constant could 3253 // be folded into an immediate field. 3254 if (InnerAddOps.size() == 1 && 3255 isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3256 LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1)) 3257 continue; 3258 3259 const SCEV *InnerSum = SE.getAddExpr(InnerAddOps); 3260 if (InnerSum->isZero()) 3261 continue; 3262 Formula F = Base; 3263 3264 // Add the remaining pieces of the add back into the new formula. 3265 const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum); 3266 if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 && 3267 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3268 InnerSumSC->getValue()->getZExtValue())) { 3269 F.UnfoldedOffset = 3270 (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue(); 3271 if (IsScaledReg) 3272 F.ScaledReg = nullptr; 3273 else 3274 F.BaseRegs.erase(F.BaseRegs.begin() + Idx); 3275 } else if (IsScaledReg) 3276 F.ScaledReg = InnerSum; 3277 else 3278 F.BaseRegs[Idx] = InnerSum; 3279 3280 // Add J as its own register, or an unfolded immediate. 3281 const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J); 3282 if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 && 3283 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3284 SC->getValue()->getZExtValue())) 3285 F.UnfoldedOffset = 3286 (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue(); 3287 else 3288 F.BaseRegs.push_back(*J); 3289 // We may have changed the number of register in base regs, adjust the 3290 // formula accordingly. 3291 F.canonicalize(); 3292 3293 if (InsertFormula(LU, LUIdx, F)) 3294 // If that formula hadn't been seen before, recurse to find more like 3295 // it. 3296 GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth + 1); 3297 } 3298 } 3299 3300 /// Split out subexpressions from adds and the bases of addrecs. 3301 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx, 3302 Formula Base, unsigned Depth) { 3303 assert(Base.isCanonical() && "Input must be in the canonical form"); 3304 // Arbitrarily cap recursion to protect compile time. 3305 if (Depth >= 3) 3306 return; 3307 3308 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3309 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i); 3310 3311 if (Base.Scale == 1) 3312 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, 3313 /* Idx */ -1, /* IsScaledReg */ true); 3314 } 3315 3316 /// Generate a formula consisting of all of the loop-dominating registers added 3317 /// into a single register. 3318 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx, 3319 Formula Base) { 3320 // This method is only interesting on a plurality of registers. 3321 if (Base.BaseRegs.size() + (Base.Scale == 1) <= 1) 3322 return; 3323 3324 // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before 3325 // processing the formula. 3326 Base.unscale(); 3327 Formula F = Base; 3328 F.BaseRegs.clear(); 3329 SmallVector<const SCEV *, 4> Ops; 3330 for (const SCEV *BaseReg : Base.BaseRegs) { 3331 if (SE.properlyDominates(BaseReg, L->getHeader()) && 3332 !SE.hasComputableLoopEvolution(BaseReg, L)) 3333 Ops.push_back(BaseReg); 3334 else 3335 F.BaseRegs.push_back(BaseReg); 3336 } 3337 if (Ops.size() > 1) { 3338 const SCEV *Sum = SE.getAddExpr(Ops); 3339 // TODO: If Sum is zero, it probably means ScalarEvolution missed an 3340 // opportunity to fold something. For now, just ignore such cases 3341 // rather than proceed with zero in a register. 3342 if (!Sum->isZero()) { 3343 F.BaseRegs.push_back(Sum); 3344 F.canonicalize(); 3345 (void)InsertFormula(LU, LUIdx, F); 3346 } 3347 } 3348 } 3349 3350 /// \brief Helper function for LSRInstance::GenerateSymbolicOffsets. 3351 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 3352 const Formula &Base, size_t Idx, 3353 bool IsScaledReg) { 3354 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3355 GlobalValue *GV = ExtractSymbol(G, SE); 3356 if (G->isZero() || !GV) 3357 return; 3358 Formula F = Base; 3359 F.BaseGV = GV; 3360 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3361 return; 3362 if (IsScaledReg) 3363 F.ScaledReg = G; 3364 else 3365 F.BaseRegs[Idx] = G; 3366 (void)InsertFormula(LU, LUIdx, F); 3367 } 3368 3369 /// Generate reuse formulae using symbolic offsets. 3370 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, 3371 Formula Base) { 3372 // We can't add a symbolic offset if the address already contains one. 3373 if (Base.BaseGV) return; 3374 3375 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3376 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i); 3377 if (Base.Scale == 1) 3378 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1, 3379 /* IsScaledReg */ true); 3380 } 3381 3382 /// \brief Helper function for LSRInstance::GenerateConstantOffsets. 3383 void LSRInstance::GenerateConstantOffsetsImpl( 3384 LSRUse &LU, unsigned LUIdx, const Formula &Base, 3385 const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) { 3386 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3387 for (int64_t Offset : Worklist) { 3388 Formula F = Base; 3389 F.BaseOffset = (uint64_t)Base.BaseOffset - Offset; 3390 if (isLegalUse(TTI, LU.MinOffset - Offset, LU.MaxOffset - Offset, LU.Kind, 3391 LU.AccessTy, F)) { 3392 // Add the offset to the base register. 3393 const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G); 3394 // If it cancelled out, drop the base register, otherwise update it. 3395 if (NewG->isZero()) { 3396 if (IsScaledReg) { 3397 F.Scale = 0; 3398 F.ScaledReg = nullptr; 3399 } else 3400 F.deleteBaseReg(F.BaseRegs[Idx]); 3401 F.canonicalize(); 3402 } else if (IsScaledReg) 3403 F.ScaledReg = NewG; 3404 else 3405 F.BaseRegs[Idx] = NewG; 3406 3407 (void)InsertFormula(LU, LUIdx, F); 3408 } 3409 } 3410 3411 int64_t Imm = ExtractImmediate(G, SE); 3412 if (G->isZero() || Imm == 0) 3413 return; 3414 Formula F = Base; 3415 F.BaseOffset = (uint64_t)F.BaseOffset + Imm; 3416 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3417 return; 3418 if (IsScaledReg) 3419 F.ScaledReg = G; 3420 else 3421 F.BaseRegs[Idx] = G; 3422 (void)InsertFormula(LU, LUIdx, F); 3423 } 3424 3425 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets. 3426 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, 3427 Formula Base) { 3428 // TODO: For now, just add the min and max offset, because it usually isn't 3429 // worthwhile looking at everything inbetween. 3430 SmallVector<int64_t, 2> Worklist; 3431 Worklist.push_back(LU.MinOffset); 3432 if (LU.MaxOffset != LU.MinOffset) 3433 Worklist.push_back(LU.MaxOffset); 3434 3435 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3436 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i); 3437 if (Base.Scale == 1) 3438 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1, 3439 /* IsScaledReg */ true); 3440 } 3441 3442 /// For ICmpZero, check to see if we can scale up the comparison. For example, x 3443 /// == y -> x*c == y*c. 3444 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, 3445 Formula Base) { 3446 if (LU.Kind != LSRUse::ICmpZero) return; 3447 3448 // Determine the integer type for the base formula. 3449 Type *IntTy = Base.getType(); 3450 if (!IntTy) return; 3451 if (SE.getTypeSizeInBits(IntTy) > 64) return; 3452 3453 // Don't do this if there is more than one offset. 3454 if (LU.MinOffset != LU.MaxOffset) return; 3455 3456 assert(!Base.BaseGV && "ICmpZero use is not legal!"); 3457 3458 // Check each interesting stride. 3459 for (int64_t Factor : Factors) { 3460 // Check that the multiplication doesn't overflow. 3461 if (Base.BaseOffset == INT64_MIN && Factor == -1) 3462 continue; 3463 int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor; 3464 if (NewBaseOffset / Factor != Base.BaseOffset) 3465 continue; 3466 // If the offset will be truncated at this use, check that it is in bounds. 3467 if (!IntTy->isPointerTy() && 3468 !ConstantInt::isValueValidForType(IntTy, NewBaseOffset)) 3469 continue; 3470 3471 // Check that multiplying with the use offset doesn't overflow. 3472 int64_t Offset = LU.MinOffset; 3473 if (Offset == INT64_MIN && Factor == -1) 3474 continue; 3475 Offset = (uint64_t)Offset * Factor; 3476 if (Offset / Factor != LU.MinOffset) 3477 continue; 3478 // If the offset will be truncated at this use, check that it is in bounds. 3479 if (!IntTy->isPointerTy() && 3480 !ConstantInt::isValueValidForType(IntTy, Offset)) 3481 continue; 3482 3483 Formula F = Base; 3484 F.BaseOffset = NewBaseOffset; 3485 3486 // Check that this scale is legal. 3487 if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F)) 3488 continue; 3489 3490 // Compensate for the use having MinOffset built into it. 3491 F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset; 3492 3493 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3494 3495 // Check that multiplying with each base register doesn't overflow. 3496 for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) { 3497 F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS); 3498 if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i]) 3499 goto next; 3500 } 3501 3502 // Check that multiplying with the scaled register doesn't overflow. 3503 if (F.ScaledReg) { 3504 F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS); 3505 if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg) 3506 continue; 3507 } 3508 3509 // Check that multiplying with the unfolded offset doesn't overflow. 3510 if (F.UnfoldedOffset != 0) { 3511 if (F.UnfoldedOffset == INT64_MIN && Factor == -1) 3512 continue; 3513 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor; 3514 if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset) 3515 continue; 3516 // If the offset will be truncated, check that it is in bounds. 3517 if (!IntTy->isPointerTy() && 3518 !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset)) 3519 continue; 3520 } 3521 3522 // If we make it here and it's legal, add it. 3523 (void)InsertFormula(LU, LUIdx, F); 3524 next:; 3525 } 3526 } 3527 3528 /// Generate stride factor reuse formulae by making use of scaled-offset address 3529 /// modes, for example. 3530 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) { 3531 // Determine the integer type for the base formula. 3532 Type *IntTy = Base.getType(); 3533 if (!IntTy) return; 3534 3535 // If this Formula already has a scaled register, we can't add another one. 3536 // Try to unscale the formula to generate a better scale. 3537 if (Base.Scale != 0 && !Base.unscale()) 3538 return; 3539 3540 assert(Base.Scale == 0 && "unscale did not did its job!"); 3541 3542 // Check each interesting stride. 3543 for (int64_t Factor : Factors) { 3544 Base.Scale = Factor; 3545 Base.HasBaseReg = Base.BaseRegs.size() > 1; 3546 // Check whether this scale is going to be legal. 3547 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 3548 Base)) { 3549 // As a special-case, handle special out-of-loop Basic users specially. 3550 // TODO: Reconsider this special case. 3551 if (LU.Kind == LSRUse::Basic && 3552 isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special, 3553 LU.AccessTy, Base) && 3554 LU.AllFixupsOutsideLoop) 3555 LU.Kind = LSRUse::Special; 3556 else 3557 continue; 3558 } 3559 // For an ICmpZero, negating a solitary base register won't lead to 3560 // new solutions. 3561 if (LU.Kind == LSRUse::ICmpZero && 3562 !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV) 3563 continue; 3564 // For each addrec base reg, apply the scale, if possible. 3565 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3566 if (const SCEVAddRecExpr *AR = 3567 dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i])) { 3568 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3569 if (FactorS->isZero()) 3570 continue; 3571 // Divide out the factor, ignoring high bits, since we'll be 3572 // scaling the value back up in the end. 3573 if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) { 3574 // TODO: This could be optimized to avoid all the copying. 3575 Formula F = Base; 3576 F.ScaledReg = Quotient; 3577 F.deleteBaseReg(F.BaseRegs[i]); 3578 // The canonical representation of 1*reg is reg, which is already in 3579 // Base. In that case, do not try to insert the formula, it will be 3580 // rejected anyway. 3581 if (F.Scale == 1 && F.BaseRegs.empty()) 3582 continue; 3583 (void)InsertFormula(LU, LUIdx, F); 3584 } 3585 } 3586 } 3587 } 3588 3589 /// Generate reuse formulae from different IV types. 3590 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) { 3591 // Don't bother truncating symbolic values. 3592 if (Base.BaseGV) return; 3593 3594 // Determine the integer type for the base formula. 3595 Type *DstTy = Base.getType(); 3596 if (!DstTy) return; 3597 DstTy = SE.getEffectiveSCEVType(DstTy); 3598 3599 for (Type *SrcTy : Types) { 3600 if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) { 3601 Formula F = Base; 3602 3603 if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy); 3604 for (const SCEV *&BaseReg : F.BaseRegs) 3605 BaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy); 3606 3607 // TODO: This assumes we've done basic processing on all uses and 3608 // have an idea what the register usage is. 3609 if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses)) 3610 continue; 3611 3612 (void)InsertFormula(LU, LUIdx, F); 3613 } 3614 } 3615 } 3616 3617 namespace { 3618 3619 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer 3620 /// modifications so that the search phase doesn't have to worry about the data 3621 /// structures moving underneath it. 3622 struct WorkItem { 3623 size_t LUIdx; 3624 int64_t Imm; 3625 const SCEV *OrigReg; 3626 3627 WorkItem(size_t LI, int64_t I, const SCEV *R) 3628 : LUIdx(LI), Imm(I), OrigReg(R) {} 3629 3630 void print(raw_ostream &OS) const; 3631 void dump() const; 3632 }; 3633 3634 } 3635 3636 void WorkItem::print(raw_ostream &OS) const { 3637 OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx 3638 << " , add offset " << Imm; 3639 } 3640 3641 LLVM_DUMP_METHOD 3642 void WorkItem::dump() const { 3643 print(errs()); errs() << '\n'; 3644 } 3645 3646 /// Look for registers which are a constant distance apart and try to form reuse 3647 /// opportunities between them. 3648 void LSRInstance::GenerateCrossUseConstantOffsets() { 3649 // Group the registers by their value without any added constant offset. 3650 typedef std::map<int64_t, const SCEV *> ImmMapTy; 3651 DenseMap<const SCEV *, ImmMapTy> Map; 3652 DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap; 3653 SmallVector<const SCEV *, 8> Sequence; 3654 for (const SCEV *Use : RegUses) { 3655 const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify. 3656 int64_t Imm = ExtractImmediate(Reg, SE); 3657 auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy())); 3658 if (Pair.second) 3659 Sequence.push_back(Reg); 3660 Pair.first->second.insert(std::make_pair(Imm, Use)); 3661 UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use); 3662 } 3663 3664 // Now examine each set of registers with the same base value. Build up 3665 // a list of work to do and do the work in a separate step so that we're 3666 // not adding formulae and register counts while we're searching. 3667 SmallVector<WorkItem, 32> WorkItems; 3668 SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems; 3669 for (const SCEV *Reg : Sequence) { 3670 const ImmMapTy &Imms = Map.find(Reg)->second; 3671 3672 // It's not worthwhile looking for reuse if there's only one offset. 3673 if (Imms.size() == 1) 3674 continue; 3675 3676 DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':'; 3677 for (const auto &Entry : Imms) 3678 dbgs() << ' ' << Entry.first; 3679 dbgs() << '\n'); 3680 3681 // Examine each offset. 3682 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); 3683 J != JE; ++J) { 3684 const SCEV *OrigReg = J->second; 3685 3686 int64_t JImm = J->first; 3687 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg); 3688 3689 if (!isa<SCEVConstant>(OrigReg) && 3690 UsedByIndicesMap[Reg].count() == 1) { 3691 DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n'); 3692 continue; 3693 } 3694 3695 // Conservatively examine offsets between this orig reg a few selected 3696 // other orig regs. 3697 ImmMapTy::const_iterator OtherImms[] = { 3698 Imms.begin(), std::prev(Imms.end()), 3699 Imms.lower_bound((Imms.begin()->first + std::prev(Imms.end())->first) / 3700 2) 3701 }; 3702 for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) { 3703 ImmMapTy::const_iterator M = OtherImms[i]; 3704 if (M == J || M == JE) continue; 3705 3706 // Compute the difference between the two. 3707 int64_t Imm = (uint64_t)JImm - M->first; 3708 for (int LUIdx = UsedByIndices.find_first(); LUIdx != -1; 3709 LUIdx = UsedByIndices.find_next(LUIdx)) 3710 // Make a memo of this use, offset, and register tuple. 3711 if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second) 3712 WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg)); 3713 } 3714 } 3715 } 3716 3717 Map.clear(); 3718 Sequence.clear(); 3719 UsedByIndicesMap.clear(); 3720 UniqueItems.clear(); 3721 3722 // Now iterate through the worklist and add new formulae. 3723 for (const WorkItem &WI : WorkItems) { 3724 size_t LUIdx = WI.LUIdx; 3725 LSRUse &LU = Uses[LUIdx]; 3726 int64_t Imm = WI.Imm; 3727 const SCEV *OrigReg = WI.OrigReg; 3728 3729 Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType()); 3730 const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm)); 3731 unsigned BitWidth = SE.getTypeSizeInBits(IntTy); 3732 3733 // TODO: Use a more targeted data structure. 3734 for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) { 3735 Formula F = LU.Formulae[L]; 3736 // FIXME: The code for the scaled and unscaled registers looks 3737 // very similar but slightly different. Investigate if they 3738 // could be merged. That way, we would not have to unscale the 3739 // Formula. 3740 F.unscale(); 3741 // Use the immediate in the scaled register. 3742 if (F.ScaledReg == OrigReg) { 3743 int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale; 3744 // Don't create 50 + reg(-50). 3745 if (F.referencesReg(SE.getSCEV( 3746 ConstantInt::get(IntTy, -(uint64_t)Offset)))) 3747 continue; 3748 Formula NewF = F; 3749 NewF.BaseOffset = Offset; 3750 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 3751 NewF)) 3752 continue; 3753 NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg); 3754 3755 // If the new scale is a constant in a register, and adding the constant 3756 // value to the immediate would produce a value closer to zero than the 3757 // immediate itself, then the formula isn't worthwhile. 3758 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg)) 3759 if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) && 3760 (C->getAPInt().abs() * APInt(BitWidth, F.Scale)) 3761 .ule(std::abs(NewF.BaseOffset))) 3762 continue; 3763 3764 // OK, looks good. 3765 NewF.canonicalize(); 3766 (void)InsertFormula(LU, LUIdx, NewF); 3767 } else { 3768 // Use the immediate in a base register. 3769 for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) { 3770 const SCEV *BaseReg = F.BaseRegs[N]; 3771 if (BaseReg != OrigReg) 3772 continue; 3773 Formula NewF = F; 3774 NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm; 3775 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, 3776 LU.Kind, LU.AccessTy, NewF)) { 3777 if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm)) 3778 continue; 3779 NewF = F; 3780 NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm; 3781 } 3782 NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg); 3783 3784 // If the new formula has a constant in a register, and adding the 3785 // constant value to the immediate would produce a value closer to 3786 // zero than the immediate itself, then the formula isn't worthwhile. 3787 for (const SCEV *NewReg : NewF.BaseRegs) 3788 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg)) 3789 if ((C->getAPInt() + NewF.BaseOffset) 3790 .abs() 3791 .slt(std::abs(NewF.BaseOffset)) && 3792 (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >= 3793 countTrailingZeros<uint64_t>(NewF.BaseOffset)) 3794 goto skip_formula; 3795 3796 // Ok, looks good. 3797 NewF.canonicalize(); 3798 (void)InsertFormula(LU, LUIdx, NewF); 3799 break; 3800 skip_formula:; 3801 } 3802 } 3803 } 3804 } 3805 } 3806 3807 /// Generate formulae for each use. 3808 void 3809 LSRInstance::GenerateAllReuseFormulae() { 3810 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan 3811 // queries are more precise. 3812 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3813 LSRUse &LU = Uses[LUIdx]; 3814 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3815 GenerateReassociations(LU, LUIdx, LU.Formulae[i]); 3816 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3817 GenerateCombinations(LU, LUIdx, LU.Formulae[i]); 3818 } 3819 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3820 LSRUse &LU = Uses[LUIdx]; 3821 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3822 GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]); 3823 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3824 GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]); 3825 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3826 GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]); 3827 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3828 GenerateScales(LU, LUIdx, LU.Formulae[i]); 3829 } 3830 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3831 LSRUse &LU = Uses[LUIdx]; 3832 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3833 GenerateTruncates(LU, LUIdx, LU.Formulae[i]); 3834 } 3835 3836 GenerateCrossUseConstantOffsets(); 3837 3838 DEBUG(dbgs() << "\n" 3839 "After generating reuse formulae:\n"; 3840 print_uses(dbgs())); 3841 } 3842 3843 /// If there are multiple formulae with the same set of registers used 3844 /// by other uses, pick the best one and delete the others. 3845 void LSRInstance::FilterOutUndesirableDedicatedRegisters() { 3846 DenseSet<const SCEV *> VisitedRegs; 3847 SmallPtrSet<const SCEV *, 16> Regs; 3848 SmallPtrSet<const SCEV *, 16> LoserRegs; 3849 #ifndef NDEBUG 3850 bool ChangedFormulae = false; 3851 #endif 3852 3853 // Collect the best formula for each unique set of shared registers. This 3854 // is reset for each use. 3855 typedef DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo> 3856 BestFormulaeTy; 3857 BestFormulaeTy BestFormulae; 3858 3859 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3860 LSRUse &LU = Uses[LUIdx]; 3861 DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n'); 3862 3863 bool Any = false; 3864 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); 3865 FIdx != NumForms; ++FIdx) { 3866 Formula &F = LU.Formulae[FIdx]; 3867 3868 // Some formulas are instant losers. For example, they may depend on 3869 // nonexistent AddRecs from other loops. These need to be filtered 3870 // immediately, otherwise heuristics could choose them over others leading 3871 // to an unsatisfactory solution. Passing LoserRegs into RateFormula here 3872 // avoids the need to recompute this information across formulae using the 3873 // same bad AddRec. Passing LoserRegs is also essential unless we remove 3874 // the corresponding bad register from the Regs set. 3875 Cost CostF; 3876 Regs.clear(); 3877 CostF.RateFormula(TTI, F, Regs, VisitedRegs, L, LU.Offsets, SE, DT, LU, 3878 &LoserRegs); 3879 if (CostF.isLoser()) { 3880 // During initial formula generation, undesirable formulae are generated 3881 // by uses within other loops that have some non-trivial address mode or 3882 // use the postinc form of the IV. LSR needs to provide these formulae 3883 // as the basis of rediscovering the desired formula that uses an AddRec 3884 // corresponding to the existing phi. Once all formulae have been 3885 // generated, these initial losers may be pruned. 3886 DEBUG(dbgs() << " Filtering loser "; F.print(dbgs()); 3887 dbgs() << "\n"); 3888 } 3889 else { 3890 SmallVector<const SCEV *, 4> Key; 3891 for (const SCEV *Reg : F.BaseRegs) { 3892 if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx)) 3893 Key.push_back(Reg); 3894 } 3895 if (F.ScaledReg && 3896 RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx)) 3897 Key.push_back(F.ScaledReg); 3898 // Unstable sort by host order ok, because this is only used for 3899 // uniquifying. 3900 std::sort(Key.begin(), Key.end()); 3901 3902 std::pair<BestFormulaeTy::const_iterator, bool> P = 3903 BestFormulae.insert(std::make_pair(Key, FIdx)); 3904 if (P.second) 3905 continue; 3906 3907 Formula &Best = LU.Formulae[P.first->second]; 3908 3909 Cost CostBest; 3910 Regs.clear(); 3911 CostBest.RateFormula(TTI, Best, Regs, VisitedRegs, L, LU.Offsets, SE, 3912 DT, LU); 3913 if (CostF < CostBest) 3914 std::swap(F, Best); 3915 DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 3916 dbgs() << "\n" 3917 " in favor of formula "; Best.print(dbgs()); 3918 dbgs() << '\n'); 3919 } 3920 #ifndef NDEBUG 3921 ChangedFormulae = true; 3922 #endif 3923 LU.DeleteFormula(F); 3924 --FIdx; 3925 --NumForms; 3926 Any = true; 3927 } 3928 3929 // Now that we've filtered out some formulae, recompute the Regs set. 3930 if (Any) 3931 LU.RecomputeRegs(LUIdx, RegUses); 3932 3933 // Reset this to prepare for the next use. 3934 BestFormulae.clear(); 3935 } 3936 3937 DEBUG(if (ChangedFormulae) { 3938 dbgs() << "\n" 3939 "After filtering out undesirable candidates:\n"; 3940 print_uses(dbgs()); 3941 }); 3942 } 3943 3944 // This is a rough guess that seems to work fairly well. 3945 static const size_t ComplexityLimit = UINT16_MAX; 3946 3947 /// Estimate the worst-case number of solutions the solver might have to 3948 /// consider. It almost never considers this many solutions because it prune the 3949 /// search space, but the pruning isn't always sufficient. 3950 size_t LSRInstance::EstimateSearchSpaceComplexity() const { 3951 size_t Power = 1; 3952 for (const LSRUse &LU : Uses) { 3953 size_t FSize = LU.Formulae.size(); 3954 if (FSize >= ComplexityLimit) { 3955 Power = ComplexityLimit; 3956 break; 3957 } 3958 Power *= FSize; 3959 if (Power >= ComplexityLimit) 3960 break; 3961 } 3962 return Power; 3963 } 3964 3965 /// When one formula uses a superset of the registers of another formula, it 3966 /// won't help reduce register pressure (though it may not necessarily hurt 3967 /// register pressure); remove it to simplify the system. 3968 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() { 3969 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 3970 DEBUG(dbgs() << "The search space is too complex.\n"); 3971 3972 DEBUG(dbgs() << "Narrowing the search space by eliminating formulae " 3973 "which use a superset of registers used by other " 3974 "formulae.\n"); 3975 3976 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3977 LSRUse &LU = Uses[LUIdx]; 3978 bool Any = false; 3979 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 3980 Formula &F = LU.Formulae[i]; 3981 // Look for a formula with a constant or GV in a register. If the use 3982 // also has a formula with that same value in an immediate field, 3983 // delete the one that uses a register. 3984 for (SmallVectorImpl<const SCEV *>::const_iterator 3985 I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) { 3986 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) { 3987 Formula NewF = F; 3988 NewF.BaseOffset += C->getValue()->getSExtValue(); 3989 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 3990 (I - F.BaseRegs.begin())); 3991 if (LU.HasFormulaWithSameRegs(NewF)) { 3992 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 3993 LU.DeleteFormula(F); 3994 --i; 3995 --e; 3996 Any = true; 3997 break; 3998 } 3999 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) { 4000 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) 4001 if (!F.BaseGV) { 4002 Formula NewF = F; 4003 NewF.BaseGV = GV; 4004 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4005 (I - F.BaseRegs.begin())); 4006 if (LU.HasFormulaWithSameRegs(NewF)) { 4007 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4008 dbgs() << '\n'); 4009 LU.DeleteFormula(F); 4010 --i; 4011 --e; 4012 Any = true; 4013 break; 4014 } 4015 } 4016 } 4017 } 4018 } 4019 if (Any) 4020 LU.RecomputeRegs(LUIdx, RegUses); 4021 } 4022 4023 DEBUG(dbgs() << "After pre-selection:\n"; 4024 print_uses(dbgs())); 4025 } 4026 } 4027 4028 /// When there are many registers for expressions like A, A+1, A+2, etc., 4029 /// allocate a single register for them. 4030 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() { 4031 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4032 return; 4033 4034 DEBUG(dbgs() << "The search space is too complex.\n" 4035 "Narrowing the search space by assuming that uses separated " 4036 "by a constant offset will use the same registers.\n"); 4037 4038 // This is especially useful for unrolled loops. 4039 4040 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4041 LSRUse &LU = Uses[LUIdx]; 4042 for (const Formula &F : LU.Formulae) { 4043 if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1)) 4044 continue; 4045 4046 LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU); 4047 if (!LUThatHas) 4048 continue; 4049 4050 if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false, 4051 LU.Kind, LU.AccessTy)) 4052 continue; 4053 4054 DEBUG(dbgs() << " Deleting use "; LU.print(dbgs()); dbgs() << '\n'); 4055 4056 LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop; 4057 4058 // Update the relocs to reference the new use. 4059 for (LSRFixup &Fixup : Fixups) { 4060 if (Fixup.LUIdx == LUIdx) { 4061 Fixup.LUIdx = LUThatHas - &Uses.front(); 4062 Fixup.Offset += F.BaseOffset; 4063 // Add the new offset to LUThatHas' offset list. 4064 if (LUThatHas->Offsets.back() != Fixup.Offset) { 4065 LUThatHas->Offsets.push_back(Fixup.Offset); 4066 if (Fixup.Offset > LUThatHas->MaxOffset) 4067 LUThatHas->MaxOffset = Fixup.Offset; 4068 if (Fixup.Offset < LUThatHas->MinOffset) 4069 LUThatHas->MinOffset = Fixup.Offset; 4070 } 4071 DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n'); 4072 } 4073 if (Fixup.LUIdx == NumUses-1) 4074 Fixup.LUIdx = LUIdx; 4075 } 4076 4077 // Delete formulae from the new use which are no longer legal. 4078 bool Any = false; 4079 for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) { 4080 Formula &F = LUThatHas->Formulae[i]; 4081 if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset, 4082 LUThatHas->Kind, LUThatHas->AccessTy, F)) { 4083 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4084 dbgs() << '\n'); 4085 LUThatHas->DeleteFormula(F); 4086 --i; 4087 --e; 4088 Any = true; 4089 } 4090 } 4091 4092 if (Any) 4093 LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses); 4094 4095 // Delete the old use. 4096 DeleteUse(LU, LUIdx); 4097 --LUIdx; 4098 --NumUses; 4099 break; 4100 } 4101 } 4102 4103 DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4104 } 4105 4106 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that 4107 /// we've done more filtering, as it may be able to find more formulae to 4108 /// eliminate. 4109 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){ 4110 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4111 DEBUG(dbgs() << "The search space is too complex.\n"); 4112 4113 DEBUG(dbgs() << "Narrowing the search space by re-filtering out " 4114 "undesirable dedicated registers.\n"); 4115 4116 FilterOutUndesirableDedicatedRegisters(); 4117 4118 DEBUG(dbgs() << "After pre-selection:\n"; 4119 print_uses(dbgs())); 4120 } 4121 } 4122 4123 /// Pick a register which seems likely to be profitable, and then in any use 4124 /// which has any reference to that register, delete all formulae which do not 4125 /// reference that register. 4126 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() { 4127 // With all other options exhausted, loop until the system is simple 4128 // enough to handle. 4129 SmallPtrSet<const SCEV *, 4> Taken; 4130 while (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4131 // Ok, we have too many of formulae on our hands to conveniently handle. 4132 // Use a rough heuristic to thin out the list. 4133 DEBUG(dbgs() << "The search space is too complex.\n"); 4134 4135 // Pick the register which is used by the most LSRUses, which is likely 4136 // to be a good reuse register candidate. 4137 const SCEV *Best = nullptr; 4138 unsigned BestNum = 0; 4139 for (const SCEV *Reg : RegUses) { 4140 if (Taken.count(Reg)) 4141 continue; 4142 if (!Best) 4143 Best = Reg; 4144 else { 4145 unsigned Count = RegUses.getUsedByIndices(Reg).count(); 4146 if (Count > BestNum) { 4147 Best = Reg; 4148 BestNum = Count; 4149 } 4150 } 4151 } 4152 4153 DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best 4154 << " will yield profitable reuse.\n"); 4155 Taken.insert(Best); 4156 4157 // In any use with formulae which references this register, delete formulae 4158 // which don't reference it. 4159 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4160 LSRUse &LU = Uses[LUIdx]; 4161 if (!LU.Regs.count(Best)) continue; 4162 4163 bool Any = false; 4164 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4165 Formula &F = LU.Formulae[i]; 4166 if (!F.referencesReg(Best)) { 4167 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4168 LU.DeleteFormula(F); 4169 --e; 4170 --i; 4171 Any = true; 4172 assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?"); 4173 continue; 4174 } 4175 } 4176 4177 if (Any) 4178 LU.RecomputeRegs(LUIdx, RegUses); 4179 } 4180 4181 DEBUG(dbgs() << "After pre-selection:\n"; 4182 print_uses(dbgs())); 4183 } 4184 } 4185 4186 /// If there are an extraordinary number of formulae to choose from, use some 4187 /// rough heuristics to prune down the number of formulae. This keeps the main 4188 /// solver from taking an extraordinary amount of time in some worst-case 4189 /// scenarios. 4190 void LSRInstance::NarrowSearchSpaceUsingHeuristics() { 4191 NarrowSearchSpaceByDetectingSupersets(); 4192 NarrowSearchSpaceByCollapsingUnrolledCode(); 4193 NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 4194 NarrowSearchSpaceByPickingWinnerRegs(); 4195 } 4196 4197 /// This is the recursive solver. 4198 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 4199 Cost &SolutionCost, 4200 SmallVectorImpl<const Formula *> &Workspace, 4201 const Cost &CurCost, 4202 const SmallPtrSet<const SCEV *, 16> &CurRegs, 4203 DenseSet<const SCEV *> &VisitedRegs) const { 4204 // Some ideas: 4205 // - prune more: 4206 // - use more aggressive filtering 4207 // - sort the formula so that the most profitable solutions are found first 4208 // - sort the uses too 4209 // - search faster: 4210 // - don't compute a cost, and then compare. compare while computing a cost 4211 // and bail early. 4212 // - track register sets with SmallBitVector 4213 4214 const LSRUse &LU = Uses[Workspace.size()]; 4215 4216 // If this use references any register that's already a part of the 4217 // in-progress solution, consider it a requirement that a formula must 4218 // reference that register in order to be considered. This prunes out 4219 // unprofitable searching. 4220 SmallSetVector<const SCEV *, 4> ReqRegs; 4221 for (const SCEV *S : CurRegs) 4222 if (LU.Regs.count(S)) 4223 ReqRegs.insert(S); 4224 4225 SmallPtrSet<const SCEV *, 16> NewRegs; 4226 Cost NewCost; 4227 for (const Formula &F : LU.Formulae) { 4228 // Ignore formulae which may not be ideal in terms of register reuse of 4229 // ReqRegs. The formula should use all required registers before 4230 // introducing new ones. 4231 int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size()); 4232 for (const SCEV *Reg : ReqRegs) { 4233 if ((F.ScaledReg && F.ScaledReg == Reg) || 4234 std::find(F.BaseRegs.begin(), F.BaseRegs.end(), Reg) != 4235 F.BaseRegs.end()) { 4236 --NumReqRegsToFind; 4237 if (NumReqRegsToFind == 0) 4238 break; 4239 } 4240 } 4241 if (NumReqRegsToFind != 0) { 4242 // If none of the formulae satisfied the required registers, then we could 4243 // clear ReqRegs and try again. Currently, we simply give up in this case. 4244 continue; 4245 } 4246 4247 // Evaluate the cost of the current formula. If it's already worse than 4248 // the current best, prune the search at that point. 4249 NewCost = CurCost; 4250 NewRegs = CurRegs; 4251 NewCost.RateFormula(TTI, F, NewRegs, VisitedRegs, L, LU.Offsets, SE, DT, 4252 LU); 4253 if (NewCost < SolutionCost) { 4254 Workspace.push_back(&F); 4255 if (Workspace.size() != Uses.size()) { 4256 SolveRecurse(Solution, SolutionCost, Workspace, NewCost, 4257 NewRegs, VisitedRegs); 4258 if (F.getNumRegs() == 1 && Workspace.size() == 1) 4259 VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]); 4260 } else { 4261 DEBUG(dbgs() << "New best at "; NewCost.print(dbgs()); 4262 dbgs() << ".\n Regs:"; 4263 for (const SCEV *S : NewRegs) 4264 dbgs() << ' ' << *S; 4265 dbgs() << '\n'); 4266 4267 SolutionCost = NewCost; 4268 Solution = Workspace; 4269 } 4270 Workspace.pop_back(); 4271 } 4272 } 4273 } 4274 4275 /// Choose one formula from each use. Return the results in the given Solution 4276 /// vector. 4277 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const { 4278 SmallVector<const Formula *, 8> Workspace; 4279 Cost SolutionCost; 4280 SolutionCost.Lose(); 4281 Cost CurCost; 4282 SmallPtrSet<const SCEV *, 16> CurRegs; 4283 DenseSet<const SCEV *> VisitedRegs; 4284 Workspace.reserve(Uses.size()); 4285 4286 // SolveRecurse does all the work. 4287 SolveRecurse(Solution, SolutionCost, Workspace, CurCost, 4288 CurRegs, VisitedRegs); 4289 if (Solution.empty()) { 4290 DEBUG(dbgs() << "\nNo Satisfactory Solution\n"); 4291 return; 4292 } 4293 4294 // Ok, we've now made all our decisions. 4295 DEBUG(dbgs() << "\n" 4296 "The chosen solution requires "; SolutionCost.print(dbgs()); 4297 dbgs() << ":\n"; 4298 for (size_t i = 0, e = Uses.size(); i != e; ++i) { 4299 dbgs() << " "; 4300 Uses[i].print(dbgs()); 4301 dbgs() << "\n" 4302 " "; 4303 Solution[i]->print(dbgs()); 4304 dbgs() << '\n'; 4305 }); 4306 4307 assert(Solution.size() == Uses.size() && "Malformed solution!"); 4308 } 4309 4310 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as 4311 /// we can go while still being dominated by the input positions. This helps 4312 /// canonicalize the insert position, which encourages sharing. 4313 BasicBlock::iterator 4314 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP, 4315 const SmallVectorImpl<Instruction *> &Inputs) 4316 const { 4317 Instruction *Tentative = &*IP; 4318 for (;;) { 4319 bool AllDominate = true; 4320 Instruction *BetterPos = nullptr; 4321 // Don't bother attempting to insert before a catchswitch, their basic block 4322 // cannot have other non-PHI instructions. 4323 if (isa<CatchSwitchInst>(Tentative)) 4324 return IP; 4325 4326 for (Instruction *Inst : Inputs) { 4327 if (Inst == Tentative || !DT.dominates(Inst, Tentative)) { 4328 AllDominate = false; 4329 break; 4330 } 4331 // Attempt to find an insert position in the middle of the block, 4332 // instead of at the end, so that it can be used for other expansions. 4333 if (Tentative->getParent() == Inst->getParent() && 4334 (!BetterPos || !DT.dominates(Inst, BetterPos))) 4335 BetterPos = &*std::next(BasicBlock::iterator(Inst)); 4336 } 4337 if (!AllDominate) 4338 break; 4339 if (BetterPos) 4340 IP = BetterPos->getIterator(); 4341 else 4342 IP = Tentative->getIterator(); 4343 4344 const Loop *IPLoop = LI.getLoopFor(IP->getParent()); 4345 unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0; 4346 4347 BasicBlock *IDom; 4348 for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) { 4349 if (!Rung) return IP; 4350 Rung = Rung->getIDom(); 4351 if (!Rung) return IP; 4352 IDom = Rung->getBlock(); 4353 4354 // Don't climb into a loop though. 4355 const Loop *IDomLoop = LI.getLoopFor(IDom); 4356 unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0; 4357 if (IDomDepth <= IPLoopDepth && 4358 (IDomDepth != IPLoopDepth || IDomLoop == IPLoop)) 4359 break; 4360 } 4361 4362 Tentative = IDom->getTerminator(); 4363 } 4364 4365 return IP; 4366 } 4367 4368 /// Determine an input position which will be dominated by the operands and 4369 /// which will dominate the result. 4370 BasicBlock::iterator 4371 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP, 4372 const LSRFixup &LF, 4373 const LSRUse &LU, 4374 SCEVExpander &Rewriter) const { 4375 // Collect some instructions which must be dominated by the 4376 // expanding replacement. These must be dominated by any operands that 4377 // will be required in the expansion. 4378 SmallVector<Instruction *, 4> Inputs; 4379 if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace)) 4380 Inputs.push_back(I); 4381 if (LU.Kind == LSRUse::ICmpZero) 4382 if (Instruction *I = 4383 dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1))) 4384 Inputs.push_back(I); 4385 if (LF.PostIncLoops.count(L)) { 4386 if (LF.isUseFullyOutsideLoop(L)) 4387 Inputs.push_back(L->getLoopLatch()->getTerminator()); 4388 else 4389 Inputs.push_back(IVIncInsertPos); 4390 } 4391 // The expansion must also be dominated by the increment positions of any 4392 // loops it for which it is using post-inc mode. 4393 for (const Loop *PIL : LF.PostIncLoops) { 4394 if (PIL == L) continue; 4395 4396 // Be dominated by the loop exit. 4397 SmallVector<BasicBlock *, 4> ExitingBlocks; 4398 PIL->getExitingBlocks(ExitingBlocks); 4399 if (!ExitingBlocks.empty()) { 4400 BasicBlock *BB = ExitingBlocks[0]; 4401 for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i) 4402 BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]); 4403 Inputs.push_back(BB->getTerminator()); 4404 } 4405 } 4406 4407 assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad() 4408 && !isa<DbgInfoIntrinsic>(LowestIP) && 4409 "Insertion point must be a normal instruction"); 4410 4411 // Then, climb up the immediate dominator tree as far as we can go while 4412 // still being dominated by the input positions. 4413 BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs); 4414 4415 // Don't insert instructions before PHI nodes. 4416 while (isa<PHINode>(IP)) ++IP; 4417 4418 // Ignore landingpad instructions. 4419 while (IP->isEHPad()) ++IP; 4420 4421 // Ignore debug intrinsics. 4422 while (isa<DbgInfoIntrinsic>(IP)) ++IP; 4423 4424 // Set IP below instructions recently inserted by SCEVExpander. This keeps the 4425 // IP consistent across expansions and allows the previously inserted 4426 // instructions to be reused by subsequent expansion. 4427 while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP) 4428 ++IP; 4429 4430 return IP; 4431 } 4432 4433 /// Emit instructions for the leading candidate expression for this LSRUse (this 4434 /// is called "expanding"). 4435 Value *LSRInstance::Expand(const LSRFixup &LF, 4436 const Formula &F, 4437 BasicBlock::iterator IP, 4438 SCEVExpander &Rewriter, 4439 SmallVectorImpl<WeakVH> &DeadInsts) const { 4440 const LSRUse &LU = Uses[LF.LUIdx]; 4441 if (LU.RigidFormula) 4442 return LF.OperandValToReplace; 4443 4444 // Determine an input position which will be dominated by the operands and 4445 // which will dominate the result. 4446 IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter); 4447 4448 // Inform the Rewriter if we have a post-increment use, so that it can 4449 // perform an advantageous expansion. 4450 Rewriter.setPostInc(LF.PostIncLoops); 4451 4452 // This is the type that the user actually needs. 4453 Type *OpTy = LF.OperandValToReplace->getType(); 4454 // This will be the type that we'll initially expand to. 4455 Type *Ty = F.getType(); 4456 if (!Ty) 4457 // No type known; just expand directly to the ultimate type. 4458 Ty = OpTy; 4459 else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy)) 4460 // Expand directly to the ultimate type if it's the right size. 4461 Ty = OpTy; 4462 // This is the type to do integer arithmetic in. 4463 Type *IntTy = SE.getEffectiveSCEVType(Ty); 4464 4465 // Build up a list of operands to add together to form the full base. 4466 SmallVector<const SCEV *, 8> Ops; 4467 4468 // Expand the BaseRegs portion. 4469 for (const SCEV *Reg : F.BaseRegs) { 4470 assert(!Reg->isZero() && "Zero allocated in a base register!"); 4471 4472 // If we're expanding for a post-inc user, make the post-inc adjustment. 4473 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 4474 Reg = TransformForPostIncUse(Denormalize, Reg, 4475 LF.UserInst, LF.OperandValToReplace, 4476 Loops, SE, DT); 4477 4478 Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr, &*IP))); 4479 } 4480 4481 // Expand the ScaledReg portion. 4482 Value *ICmpScaledV = nullptr; 4483 if (F.Scale != 0) { 4484 const SCEV *ScaledS = F.ScaledReg; 4485 4486 // If we're expanding for a post-inc user, make the post-inc adjustment. 4487 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 4488 ScaledS = TransformForPostIncUse(Denormalize, ScaledS, 4489 LF.UserInst, LF.OperandValToReplace, 4490 Loops, SE, DT); 4491 4492 if (LU.Kind == LSRUse::ICmpZero) { 4493 // Expand ScaleReg as if it was part of the base regs. 4494 if (F.Scale == 1) 4495 Ops.push_back( 4496 SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr, &*IP))); 4497 else { 4498 // An interesting way of "folding" with an icmp is to use a negated 4499 // scale, which we'll implement by inserting it into the other operand 4500 // of the icmp. 4501 assert(F.Scale == -1 && 4502 "The only scale supported by ICmpZero uses is -1!"); 4503 ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr, &*IP); 4504 } 4505 } else { 4506 // Otherwise just expand the scaled register and an explicit scale, 4507 // which is expected to be matched as part of the address. 4508 4509 // Flush the operand list to suppress SCEVExpander hoisting address modes. 4510 // Unless the addressing mode will not be folded. 4511 if (!Ops.empty() && LU.Kind == LSRUse::Address && 4512 isAMCompletelyFolded(TTI, LU, F)) { 4513 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, &*IP); 4514 Ops.clear(); 4515 Ops.push_back(SE.getUnknown(FullV)); 4516 } 4517 ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr, &*IP)); 4518 if (F.Scale != 1) 4519 ScaledS = 4520 SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale)); 4521 Ops.push_back(ScaledS); 4522 } 4523 } 4524 4525 // Expand the GV portion. 4526 if (F.BaseGV) { 4527 // Flush the operand list to suppress SCEVExpander hoisting. 4528 if (!Ops.empty()) { 4529 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, &*IP); 4530 Ops.clear(); 4531 Ops.push_back(SE.getUnknown(FullV)); 4532 } 4533 Ops.push_back(SE.getUnknown(F.BaseGV)); 4534 } 4535 4536 // Flush the operand list to suppress SCEVExpander hoisting of both folded and 4537 // unfolded offsets. LSR assumes they both live next to their uses. 4538 if (!Ops.empty()) { 4539 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, &*IP); 4540 Ops.clear(); 4541 Ops.push_back(SE.getUnknown(FullV)); 4542 } 4543 4544 // Expand the immediate portion. 4545 int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset; 4546 if (Offset != 0) { 4547 if (LU.Kind == LSRUse::ICmpZero) { 4548 // The other interesting way of "folding" with an ICmpZero is to use a 4549 // negated immediate. 4550 if (!ICmpScaledV) 4551 ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset); 4552 else { 4553 Ops.push_back(SE.getUnknown(ICmpScaledV)); 4554 ICmpScaledV = ConstantInt::get(IntTy, Offset); 4555 } 4556 } else { 4557 // Just add the immediate values. These again are expected to be matched 4558 // as part of the address. 4559 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset))); 4560 } 4561 } 4562 4563 // Expand the unfolded offset portion. 4564 int64_t UnfoldedOffset = F.UnfoldedOffset; 4565 if (UnfoldedOffset != 0) { 4566 // Just add the immediate values. 4567 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, 4568 UnfoldedOffset))); 4569 } 4570 4571 // Emit instructions summing all the operands. 4572 const SCEV *FullS = Ops.empty() ? 4573 SE.getConstant(IntTy, 0) : 4574 SE.getAddExpr(Ops); 4575 Value *FullV = Rewriter.expandCodeFor(FullS, Ty, &*IP); 4576 4577 // We're done expanding now, so reset the rewriter. 4578 Rewriter.clearPostInc(); 4579 4580 // An ICmpZero Formula represents an ICmp which we're handling as a 4581 // comparison against zero. Now that we've expanded an expression for that 4582 // form, update the ICmp's other operand. 4583 if (LU.Kind == LSRUse::ICmpZero) { 4584 ICmpInst *CI = cast<ICmpInst>(LF.UserInst); 4585 DeadInsts.emplace_back(CI->getOperand(1)); 4586 assert(!F.BaseGV && "ICmp does not support folding a global value and " 4587 "a scale at the same time!"); 4588 if (F.Scale == -1) { 4589 if (ICmpScaledV->getType() != OpTy) { 4590 Instruction *Cast = 4591 CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false, 4592 OpTy, false), 4593 ICmpScaledV, OpTy, "tmp", CI); 4594 ICmpScaledV = Cast; 4595 } 4596 CI->setOperand(1, ICmpScaledV); 4597 } else { 4598 // A scale of 1 means that the scale has been expanded as part of the 4599 // base regs. 4600 assert((F.Scale == 0 || F.Scale == 1) && 4601 "ICmp does not support folding a global value and " 4602 "a scale at the same time!"); 4603 Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy), 4604 -(uint64_t)Offset); 4605 if (C->getType() != OpTy) 4606 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 4607 OpTy, false), 4608 C, OpTy); 4609 4610 CI->setOperand(1, C); 4611 } 4612 } 4613 4614 return FullV; 4615 } 4616 4617 /// Helper for Rewrite. PHI nodes are special because the use of their operands 4618 /// effectively happens in their predecessor blocks, so the expression may need 4619 /// to be expanded in multiple places. 4620 void LSRInstance::RewriteForPHI(PHINode *PN, 4621 const LSRFixup &LF, 4622 const Formula &F, 4623 SCEVExpander &Rewriter, 4624 SmallVectorImpl<WeakVH> &DeadInsts) const { 4625 DenseMap<BasicBlock *, Value *> Inserted; 4626 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 4627 if (PN->getIncomingValue(i) == LF.OperandValToReplace) { 4628 BasicBlock *BB = PN->getIncomingBlock(i); 4629 4630 // If this is a critical edge, split the edge so that we do not insert 4631 // the code on all predecessor/successor paths. We do this unless this 4632 // is the canonical backedge for this loop, which complicates post-inc 4633 // users. 4634 if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 && 4635 !isa<IndirectBrInst>(BB->getTerminator())) { 4636 BasicBlock *Parent = PN->getParent(); 4637 Loop *PNLoop = LI.getLoopFor(Parent); 4638 if (!PNLoop || Parent != PNLoop->getHeader()) { 4639 // Split the critical edge. 4640 BasicBlock *NewBB = nullptr; 4641 if (!Parent->isLandingPad()) { 4642 NewBB = SplitCriticalEdge(BB, Parent, 4643 CriticalEdgeSplittingOptions(&DT, &LI) 4644 .setMergeIdenticalEdges() 4645 .setDontDeleteUselessPHIs()); 4646 } else { 4647 SmallVector<BasicBlock*, 2> NewBBs; 4648 SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI); 4649 NewBB = NewBBs[0]; 4650 } 4651 // If NewBB==NULL, then SplitCriticalEdge refused to split because all 4652 // phi predecessors are identical. The simple thing to do is skip 4653 // splitting in this case rather than complicate the API. 4654 if (NewBB) { 4655 // If PN is outside of the loop and BB is in the loop, we want to 4656 // move the block to be immediately before the PHI block, not 4657 // immediately after BB. 4658 if (L->contains(BB) && !L->contains(PN)) 4659 NewBB->moveBefore(PN->getParent()); 4660 4661 // Splitting the edge can reduce the number of PHI entries we have. 4662 e = PN->getNumIncomingValues(); 4663 BB = NewBB; 4664 i = PN->getBasicBlockIndex(BB); 4665 } 4666 } 4667 } 4668 4669 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair = 4670 Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr))); 4671 if (!Pair.second) 4672 PN->setIncomingValue(i, Pair.first->second); 4673 else { 4674 Value *FullV = Expand(LF, F, BB->getTerminator()->getIterator(), 4675 Rewriter, DeadInsts); 4676 4677 // If this is reuse-by-noop-cast, insert the noop cast. 4678 Type *OpTy = LF.OperandValToReplace->getType(); 4679 if (FullV->getType() != OpTy) 4680 FullV = 4681 CastInst::Create(CastInst::getCastOpcode(FullV, false, 4682 OpTy, false), 4683 FullV, LF.OperandValToReplace->getType(), 4684 "tmp", BB->getTerminator()); 4685 4686 PN->setIncomingValue(i, FullV); 4687 Pair.first->second = FullV; 4688 } 4689 } 4690 } 4691 4692 /// Emit instructions for the leading candidate expression for this LSRUse (this 4693 /// is called "expanding"), and update the UserInst to reference the newly 4694 /// expanded value. 4695 void LSRInstance::Rewrite(const LSRFixup &LF, 4696 const Formula &F, 4697 SCEVExpander &Rewriter, 4698 SmallVectorImpl<WeakVH> &DeadInsts) const { 4699 // First, find an insertion point that dominates UserInst. For PHI nodes, 4700 // find the nearest block which dominates all the relevant uses. 4701 if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) { 4702 RewriteForPHI(PN, LF, F, Rewriter, DeadInsts); 4703 } else { 4704 Value *FullV = 4705 Expand(LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts); 4706 4707 // If this is reuse-by-noop-cast, insert the noop cast. 4708 Type *OpTy = LF.OperandValToReplace->getType(); 4709 if (FullV->getType() != OpTy) { 4710 Instruction *Cast = 4711 CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false), 4712 FullV, OpTy, "tmp", LF.UserInst); 4713 FullV = Cast; 4714 } 4715 4716 // Update the user. ICmpZero is handled specially here (for now) because 4717 // Expand may have updated one of the operands of the icmp already, and 4718 // its new value may happen to be equal to LF.OperandValToReplace, in 4719 // which case doing replaceUsesOfWith leads to replacing both operands 4720 // with the same value. TODO: Reorganize this. 4721 if (Uses[LF.LUIdx].Kind == LSRUse::ICmpZero) 4722 LF.UserInst->setOperand(0, FullV); 4723 else 4724 LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV); 4725 } 4726 4727 DeadInsts.emplace_back(LF.OperandValToReplace); 4728 } 4729 4730 /// Rewrite all the fixup locations with new values, following the chosen 4731 /// solution. 4732 void LSRInstance::ImplementSolution( 4733 const SmallVectorImpl<const Formula *> &Solution) { 4734 // Keep track of instructions we may have made dead, so that 4735 // we can remove them after we are done working. 4736 SmallVector<WeakVH, 16> DeadInsts; 4737 4738 SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(), 4739 "lsr"); 4740 #ifndef NDEBUG 4741 Rewriter.setDebugType(DEBUG_TYPE); 4742 #endif 4743 Rewriter.disableCanonicalMode(); 4744 Rewriter.enableLSRMode(); 4745 Rewriter.setIVIncInsertPos(L, IVIncInsertPos); 4746 4747 // Mark phi nodes that terminate chains so the expander tries to reuse them. 4748 for (const IVChain &Chain : IVChainVec) { 4749 if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst())) 4750 Rewriter.setChainedPhi(PN); 4751 } 4752 4753 // Expand the new value definitions and update the users. 4754 for (const LSRFixup &Fixup : Fixups) { 4755 Rewrite(Fixup, *Solution[Fixup.LUIdx], Rewriter, DeadInsts); 4756 4757 Changed = true; 4758 } 4759 4760 for (const IVChain &Chain : IVChainVec) { 4761 GenerateIVChain(Chain, Rewriter, DeadInsts); 4762 Changed = true; 4763 } 4764 // Clean up after ourselves. This must be done before deleting any 4765 // instructions. 4766 Rewriter.clear(); 4767 4768 Changed |= DeleteTriviallyDeadInstructions(DeadInsts); 4769 } 4770 4771 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, 4772 DominatorTree &DT, LoopInfo &LI, 4773 const TargetTransformInfo &TTI) 4774 : IU(IU), SE(SE), DT(DT), LI(LI), TTI(TTI), L(L), Changed(false), 4775 IVIncInsertPos(nullptr) { 4776 // If LoopSimplify form is not available, stay out of trouble. 4777 if (!L->isLoopSimplifyForm()) 4778 return; 4779 4780 // If there's no interesting work to be done, bail early. 4781 if (IU.empty()) return; 4782 4783 // If there's too much analysis to be done, bail early. We won't be able to 4784 // model the problem anyway. 4785 unsigned NumUsers = 0; 4786 for (const IVStrideUse &U : IU) { 4787 if (++NumUsers > MaxIVUsers) { 4788 (void)U; 4789 DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U << "\n"); 4790 return; 4791 } 4792 // Bail out if we have a PHI on an EHPad that gets a value from a 4793 // CatchSwitchInst. Because the CatchSwitchInst cannot be split, there is 4794 // no good place to stick any instructions. 4795 if (auto *PN = dyn_cast<PHINode>(U.getUser())) { 4796 auto *FirstNonPHI = PN->getParent()->getFirstNonPHI(); 4797 if (isa<FuncletPadInst>(FirstNonPHI) || 4798 isa<CatchSwitchInst>(FirstNonPHI)) 4799 for (BasicBlock *PredBB : PN->blocks()) 4800 if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI())) 4801 return; 4802 } 4803 } 4804 4805 #ifndef NDEBUG 4806 // All dominating loops must have preheaders, or SCEVExpander may not be able 4807 // to materialize an AddRecExpr whose Start is an outer AddRecExpr. 4808 // 4809 // IVUsers analysis should only create users that are dominated by simple loop 4810 // headers. Since this loop should dominate all of its users, its user list 4811 // should be empty if this loop itself is not within a simple loop nest. 4812 for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader()); 4813 Rung; Rung = Rung->getIDom()) { 4814 BasicBlock *BB = Rung->getBlock(); 4815 const Loop *DomLoop = LI.getLoopFor(BB); 4816 if (DomLoop && DomLoop->getHeader() == BB) { 4817 assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest"); 4818 } 4819 } 4820 #endif // DEBUG 4821 4822 DEBUG(dbgs() << "\nLSR on loop "; 4823 L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false); 4824 dbgs() << ":\n"); 4825 4826 // First, perform some low-level loop optimizations. 4827 OptimizeShadowIV(); 4828 OptimizeLoopTermCond(); 4829 4830 // If loop preparation eliminates all interesting IV users, bail. 4831 if (IU.empty()) return; 4832 4833 // Skip nested loops until we can model them better with formulae. 4834 if (!L->empty()) { 4835 DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n"); 4836 return; 4837 } 4838 4839 // Start collecting data and preparing for the solver. 4840 CollectChains(); 4841 CollectInterestingTypesAndFactors(); 4842 CollectFixupsAndInitialFormulae(); 4843 CollectLoopInvariantFixupsAndFormulae(); 4844 4845 assert(!Uses.empty() && "IVUsers reported at least one use"); 4846 DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n"; 4847 print_uses(dbgs())); 4848 4849 // Now use the reuse data to generate a bunch of interesting ways 4850 // to formulate the values needed for the uses. 4851 GenerateAllReuseFormulae(); 4852 4853 FilterOutUndesirableDedicatedRegisters(); 4854 NarrowSearchSpaceUsingHeuristics(); 4855 4856 SmallVector<const Formula *, 8> Solution; 4857 Solve(Solution); 4858 4859 // Release memory that is no longer needed. 4860 Factors.clear(); 4861 Types.clear(); 4862 RegUses.clear(); 4863 4864 if (Solution.empty()) 4865 return; 4866 4867 #ifndef NDEBUG 4868 // Formulae should be legal. 4869 for (const LSRUse &LU : Uses) { 4870 for (const Formula &F : LU.Formulae) 4871 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 4872 F) && "Illegal formula generated!"); 4873 }; 4874 #endif 4875 4876 // Now that we've decided what we want, make it so. 4877 ImplementSolution(Solution); 4878 } 4879 4880 void LSRInstance::print_factors_and_types(raw_ostream &OS) const { 4881 if (Factors.empty() && Types.empty()) return; 4882 4883 OS << "LSR has identified the following interesting factors and types: "; 4884 bool First = true; 4885 4886 for (int64_t Factor : Factors) { 4887 if (!First) OS << ", "; 4888 First = false; 4889 OS << '*' << Factor; 4890 } 4891 4892 for (Type *Ty : Types) { 4893 if (!First) OS << ", "; 4894 First = false; 4895 OS << '(' << *Ty << ')'; 4896 } 4897 OS << '\n'; 4898 } 4899 4900 void LSRInstance::print_fixups(raw_ostream &OS) const { 4901 OS << "LSR is examining the following fixup sites:\n"; 4902 for (const LSRFixup &LF : Fixups) { 4903 dbgs() << " "; 4904 LF.print(OS); 4905 OS << '\n'; 4906 } 4907 } 4908 4909 void LSRInstance::print_uses(raw_ostream &OS) const { 4910 OS << "LSR is examining the following uses:\n"; 4911 for (const LSRUse &LU : Uses) { 4912 dbgs() << " "; 4913 LU.print(OS); 4914 OS << '\n'; 4915 for (const Formula &F : LU.Formulae) { 4916 OS << " "; 4917 F.print(OS); 4918 OS << '\n'; 4919 } 4920 } 4921 } 4922 4923 void LSRInstance::print(raw_ostream &OS) const { 4924 print_factors_and_types(OS); 4925 print_fixups(OS); 4926 print_uses(OS); 4927 } 4928 4929 LLVM_DUMP_METHOD 4930 void LSRInstance::dump() const { 4931 print(errs()); errs() << '\n'; 4932 } 4933 4934 namespace { 4935 4936 class LoopStrengthReduce : public LoopPass { 4937 public: 4938 static char ID; // Pass ID, replacement for typeid 4939 LoopStrengthReduce(); 4940 4941 private: 4942 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 4943 void getAnalysisUsage(AnalysisUsage &AU) const override; 4944 }; 4945 } 4946 4947 char LoopStrengthReduce::ID = 0; 4948 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce", 4949 "Loop Strength Reduction", false, false) 4950 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 4951 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 4952 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 4953 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass) 4954 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 4955 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 4956 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce", 4957 "Loop Strength Reduction", false, false) 4958 4959 Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); } 4960 4961 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) { 4962 initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry()); 4963 } 4964 4965 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const { 4966 // We split critical edges, so we change the CFG. However, we do update 4967 // many analyses if they are around. 4968 AU.addPreservedID(LoopSimplifyID); 4969 4970 AU.addRequired<LoopInfoWrapperPass>(); 4971 AU.addPreserved<LoopInfoWrapperPass>(); 4972 AU.addRequiredID(LoopSimplifyID); 4973 AU.addRequired<DominatorTreeWrapperPass>(); 4974 AU.addPreserved<DominatorTreeWrapperPass>(); 4975 AU.addRequired<ScalarEvolutionWrapperPass>(); 4976 AU.addPreserved<ScalarEvolutionWrapperPass>(); 4977 // Requiring LoopSimplify a second time here prevents IVUsers from running 4978 // twice, since LoopSimplify was invalidated by running ScalarEvolution. 4979 AU.addRequiredID(LoopSimplifyID); 4980 AU.addRequired<IVUsersWrapperPass>(); 4981 AU.addPreserved<IVUsersWrapperPass>(); 4982 AU.addRequired<TargetTransformInfoWrapperPass>(); 4983 } 4984 4985 static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE, 4986 DominatorTree &DT, LoopInfo &LI, 4987 const TargetTransformInfo &TTI) { 4988 bool Changed = false; 4989 4990 // Run the main LSR transformation. 4991 Changed |= LSRInstance(L, IU, SE, DT, LI, TTI).getChanged(); 4992 4993 // Remove any extra phis created by processing inner loops. 4994 Changed |= DeleteDeadPHIs(L->getHeader()); 4995 if (EnablePhiElim && L->isLoopSimplifyForm()) { 4996 SmallVector<WeakVH, 16> DeadInsts; 4997 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 4998 SCEVExpander Rewriter(SE, DL, "lsr"); 4999 #ifndef NDEBUG 5000 Rewriter.setDebugType(DEBUG_TYPE); 5001 #endif 5002 unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI); 5003 if (numFolded) { 5004 Changed = true; 5005 DeleteTriviallyDeadInstructions(DeadInsts); 5006 DeleteDeadPHIs(L->getHeader()); 5007 } 5008 } 5009 return Changed; 5010 } 5011 5012 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) { 5013 if (skipLoop(L)) 5014 return false; 5015 5016 auto &IU = getAnalysis<IVUsersWrapperPass>().getIU(); 5017 auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 5018 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 5019 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 5020 const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI( 5021 *L->getHeader()->getParent()); 5022 return ReduceLoopStrength(L, IU, SE, DT, LI, TTI); 5023 } 5024 5025 PreservedAnalyses LoopStrengthReducePass::run(Loop &L, 5026 AnalysisManager<Loop> &AM) { 5027 const auto &FAM = 5028 AM.getResult<FunctionAnalysisManagerLoopProxy>(L).getManager(); 5029 Function *F = L.getHeader()->getParent(); 5030 5031 auto &IU = AM.getResult<IVUsersAnalysis>(L); 5032 auto *SE = FAM.getCachedResult<ScalarEvolutionAnalysis>(*F); 5033 auto *DT = FAM.getCachedResult<DominatorTreeAnalysis>(*F); 5034 auto *LI = FAM.getCachedResult<LoopAnalysis>(*F); 5035 auto *TTI = FAM.getCachedResult<TargetIRAnalysis>(*F); 5036 assert((SE && DT && LI && TTI) && 5037 "Analyses for Loop Strength Reduce not available"); 5038 5039 if (!ReduceLoopStrength(&L, IU, *SE, *DT, *LI, *TTI)) 5040 return PreservedAnalyses::all(); 5041 5042 return getLoopPassPreservedAnalyses(); 5043 } 5044