1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This transformation analyzes and transforms the induction variables (and
11 // computations derived from them) into forms suitable for efficient execution
12 // on the target.
13 //
14 // This pass performs a strength reduction on array references inside loops that
15 // have as one or more of their components the loop induction variable, it
16 // rewrites expressions to take advantage of scaled-index addressing modes
17 // available on the target, and it performs a variety of other optimizations
18 // related to loop induction variables.
19 //
20 // Terminology note: this code has a lot of handling for "post-increment" or
21 // "post-inc" users. This is not talking about post-increment addressing modes;
22 // it is instead talking about code like this:
23 //
24 //   %i = phi [ 0, %entry ], [ %i.next, %latch ]
25 //   ...
26 //   %i.next = add %i, 1
27 //   %c = icmp eq %i.next, %n
28 //
29 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
30 // it's useful to think about these as the same register, with some uses using
31 // the value of the register before the add and some using it after. In this
32 // example, the icmp is a post-increment user, since it uses %i.next, which is
33 // the value of the induction variable after the increment. The other common
34 // case of post-increment users is users outside the loop.
35 //
36 // TODO: More sophistication in the way Formulae are generated and filtered.
37 //
38 // TODO: Handle multiple loops at a time.
39 //
40 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead
41 //       of a GlobalValue?
42 //
43 // TODO: When truncation is free, truncate ICmp users' operands to make it a
44 //       smaller encoding (on x86 at least).
45 //
46 // TODO: When a negated register is used by an add (such as in a list of
47 //       multiple base registers, or as the increment expression in an addrec),
48 //       we may not actually need both reg and (-1 * reg) in registers; the
49 //       negation can be implemented by using a sub instead of an add. The
50 //       lack of support for taking this into consideration when making
51 //       register pressure decisions is partly worked around by the "Special"
52 //       use kind.
53 //
54 //===----------------------------------------------------------------------===//
55 
56 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h"
57 #include "llvm/ADT/APInt.h"
58 #include "llvm/ADT/DenseMap.h"
59 #include "llvm/ADT/DenseSet.h"
60 #include "llvm/ADT/Hashing.h"
61 #include "llvm/ADT/PointerIntPair.h"
62 #include "llvm/ADT/STLExtras.h"
63 #include "llvm/ADT/SetVector.h"
64 #include "llvm/ADT/SmallBitVector.h"
65 #include "llvm/ADT/SmallPtrSet.h"
66 #include "llvm/ADT/SmallSet.h"
67 #include "llvm/ADT/SmallVector.h"
68 #include "llvm/Analysis/IVUsers.h"
69 #include "llvm/Analysis/LoopInfo.h"
70 #include "llvm/Analysis/LoopPass.h"
71 #include "llvm/Analysis/ScalarEvolution.h"
72 #include "llvm/Analysis/ScalarEvolutionExpander.h"
73 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
74 #include "llvm/Analysis/ScalarEvolutionNormalization.h"
75 #include "llvm/Analysis/TargetTransformInfo.h"
76 #include "llvm/IR/BasicBlock.h"
77 #include "llvm/IR/Constant.h"
78 #include "llvm/IR/Constants.h"
79 #include "llvm/IR/DerivedTypes.h"
80 #include "llvm/IR/Dominators.h"
81 #include "llvm/IR/GlobalValue.h"
82 #include "llvm/IR/IRBuilder.h"
83 #include "llvm/IR/Instruction.h"
84 #include "llvm/IR/Instructions.h"
85 #include "llvm/IR/IntrinsicInst.h"
86 #include "llvm/IR/Module.h"
87 #include "llvm/IR/OperandTraits.h"
88 #include "llvm/IR/Operator.h"
89 #include "llvm/IR/Type.h"
90 #include "llvm/IR/Value.h"
91 #include "llvm/IR/ValueHandle.h"
92 #include "llvm/Pass.h"
93 #include "llvm/Support/Casting.h"
94 #include "llvm/Support/CommandLine.h"
95 #include "llvm/Support/Compiler.h"
96 #include "llvm/Support/Debug.h"
97 #include "llvm/Support/ErrorHandling.h"
98 #include "llvm/Support/MathExtras.h"
99 #include "llvm/Support/raw_ostream.h"
100 #include "llvm/Transforms/Scalar.h"
101 #include "llvm/Transforms/Scalar/LoopPassManager.h"
102 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
103 #include "llvm/Transforms/Utils/Local.h"
104 #include <algorithm>
105 #include <cassert>
106 #include <cstddef>
107 #include <cstdint>
108 #include <cstdlib>
109 #include <iterator>
110 #include <map>
111 #include <tuple>
112 #include <utility>
113 
114 using namespace llvm;
115 
116 #define DEBUG_TYPE "loop-reduce"
117 
118 /// MaxIVUsers is an arbitrary threshold that provides an early opportunitiy for
119 /// bail out. This threshold is far beyond the number of users that LSR can
120 /// conceivably solve, so it should not affect generated code, but catches the
121 /// worst cases before LSR burns too much compile time and stack space.
122 static const unsigned MaxIVUsers = 200;
123 
124 // Temporary flag to cleanup congruent phis after LSR phi expansion.
125 // It's currently disabled until we can determine whether it's truly useful or
126 // not. The flag should be removed after the v3.0 release.
127 // This is now needed for ivchains.
128 static cl::opt<bool> EnablePhiElim(
129   "enable-lsr-phielim", cl::Hidden, cl::init(true),
130   cl::desc("Enable LSR phi elimination"));
131 
132 // The flag adds instruction count to solutions cost comparision.
133 static cl::opt<bool> InsnsCost(
134   "lsr-insns-cost", cl::Hidden, cl::init(false),
135   cl::desc("Add instruction count to a LSR cost model"));
136 
137 // Flag to choose how to narrow complex lsr solution
138 static cl::opt<bool> LSRExpNarrow(
139   "lsr-exp-narrow", cl::Hidden, cl::init(false),
140   cl::desc("Narrow LSR complex solution using"
141            " expectation of registers number"));
142 
143 #ifndef NDEBUG
144 // Stress test IV chain generation.
145 static cl::opt<bool> StressIVChain(
146   "stress-ivchain", cl::Hidden, cl::init(false),
147   cl::desc("Stress test LSR IV chains"));
148 #else
149 static bool StressIVChain = false;
150 #endif
151 
152 namespace {
153 
154 struct MemAccessTy {
155   /// Used in situations where the accessed memory type is unknown.
156   static const unsigned UnknownAddressSpace = ~0u;
157 
158   Type *MemTy;
159   unsigned AddrSpace;
160 
161   MemAccessTy() : MemTy(nullptr), AddrSpace(UnknownAddressSpace) {}
162 
163   MemAccessTy(Type *Ty, unsigned AS) :
164     MemTy(Ty), AddrSpace(AS) {}
165 
166   bool operator==(MemAccessTy Other) const {
167     return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace;
168   }
169 
170   bool operator!=(MemAccessTy Other) const { return !(*this == Other); }
171 
172   static MemAccessTy getUnknown(LLVMContext &Ctx,
173                                 unsigned AS = UnknownAddressSpace) {
174     return MemAccessTy(Type::getVoidTy(Ctx), AS);
175   }
176 };
177 
178 /// This class holds data which is used to order reuse candidates.
179 class RegSortData {
180 public:
181   /// This represents the set of LSRUse indices which reference
182   /// a particular register.
183   SmallBitVector UsedByIndices;
184 
185   void print(raw_ostream &OS) const;
186   void dump() const;
187 };
188 
189 } // end anonymous namespace
190 
191 void RegSortData::print(raw_ostream &OS) const {
192   OS << "[NumUses=" << UsedByIndices.count() << ']';
193 }
194 
195 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
196 LLVM_DUMP_METHOD void RegSortData::dump() const {
197   print(errs()); errs() << '\n';
198 }
199 #endif
200 
201 namespace {
202 
203 /// Map register candidates to information about how they are used.
204 class RegUseTracker {
205   typedef DenseMap<const SCEV *, RegSortData> RegUsesTy;
206 
207   RegUsesTy RegUsesMap;
208   SmallVector<const SCEV *, 16> RegSequence;
209 
210 public:
211   void countRegister(const SCEV *Reg, size_t LUIdx);
212   void dropRegister(const SCEV *Reg, size_t LUIdx);
213   void swapAndDropUse(size_t LUIdx, size_t LastLUIdx);
214 
215   bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
216 
217   const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
218 
219   void clear();
220 
221   typedef SmallVectorImpl<const SCEV *>::iterator iterator;
222   typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator;
223   iterator begin() { return RegSequence.begin(); }
224   iterator end()   { return RegSequence.end(); }
225   const_iterator begin() const { return RegSequence.begin(); }
226   const_iterator end() const   { return RegSequence.end(); }
227 };
228 
229 } // end anonymous namespace
230 
231 void
232 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) {
233   std::pair<RegUsesTy::iterator, bool> Pair =
234     RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
235   RegSortData &RSD = Pair.first->second;
236   if (Pair.second)
237     RegSequence.push_back(Reg);
238   RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
239   RSD.UsedByIndices.set(LUIdx);
240 }
241 
242 void
243 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) {
244   RegUsesTy::iterator It = RegUsesMap.find(Reg);
245   assert(It != RegUsesMap.end());
246   RegSortData &RSD = It->second;
247   assert(RSD.UsedByIndices.size() > LUIdx);
248   RSD.UsedByIndices.reset(LUIdx);
249 }
250 
251 void
252 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) {
253   assert(LUIdx <= LastLUIdx);
254 
255   // Update RegUses. The data structure is not optimized for this purpose;
256   // we must iterate through it and update each of the bit vectors.
257   for (auto &Pair : RegUsesMap) {
258     SmallBitVector &UsedByIndices = Pair.second.UsedByIndices;
259     if (LUIdx < UsedByIndices.size())
260       UsedByIndices[LUIdx] =
261         LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false;
262     UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx));
263   }
264 }
265 
266 bool
267 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
268   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
269   if (I == RegUsesMap.end())
270     return false;
271   const SmallBitVector &UsedByIndices = I->second.UsedByIndices;
272   int i = UsedByIndices.find_first();
273   if (i == -1) return false;
274   if ((size_t)i != LUIdx) return true;
275   return UsedByIndices.find_next(i) != -1;
276 }
277 
278 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
279   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
280   assert(I != RegUsesMap.end() && "Unknown register!");
281   return I->second.UsedByIndices;
282 }
283 
284 void RegUseTracker::clear() {
285   RegUsesMap.clear();
286   RegSequence.clear();
287 }
288 
289 namespace {
290 
291 /// This class holds information that describes a formula for computing
292 /// satisfying a use. It may include broken-out immediates and scaled registers.
293 struct Formula {
294   /// Global base address used for complex addressing.
295   GlobalValue *BaseGV;
296 
297   /// Base offset for complex addressing.
298   int64_t BaseOffset;
299 
300   /// Whether any complex addressing has a base register.
301   bool HasBaseReg;
302 
303   /// The scale of any complex addressing.
304   int64_t Scale;
305 
306   /// The list of "base" registers for this use. When this is non-empty. The
307   /// canonical representation of a formula is
308   /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and
309   /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty().
310   /// 3. The reg containing recurrent expr related with currect loop in the
311   /// formula should be put in the ScaledReg.
312   /// #1 enforces that the scaled register is always used when at least two
313   /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2.
314   /// #2 enforces that 1 * reg is reg.
315   /// #3 ensures invariant regs with respect to current loop can be combined
316   /// together in LSR codegen.
317   /// This invariant can be temporarly broken while building a formula.
318   /// However, every formula inserted into the LSRInstance must be in canonical
319   /// form.
320   SmallVector<const SCEV *, 4> BaseRegs;
321 
322   /// The 'scaled' register for this use. This should be non-null when Scale is
323   /// not zero.
324   const SCEV *ScaledReg;
325 
326   /// An additional constant offset which added near the use. This requires a
327   /// temporary register, but the offset itself can live in an add immediate
328   /// field rather than a register.
329   int64_t UnfoldedOffset;
330 
331   Formula()
332       : BaseGV(nullptr), BaseOffset(0), HasBaseReg(false), Scale(0),
333         ScaledReg(nullptr), UnfoldedOffset(0) {}
334 
335   void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE);
336 
337   bool isCanonical(const Loop &L) const;
338 
339   void canonicalize(const Loop &L);
340 
341   bool unscale();
342 
343   bool hasZeroEnd() const;
344 
345   size_t getNumRegs() const;
346   Type *getType() const;
347 
348   void deleteBaseReg(const SCEV *&S);
349 
350   bool referencesReg(const SCEV *S) const;
351   bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
352                                   const RegUseTracker &RegUses) const;
353 
354   void print(raw_ostream &OS) const;
355   void dump() const;
356 };
357 
358 } // end anonymous namespace
359 
360 /// Recursion helper for initialMatch.
361 static void DoInitialMatch(const SCEV *S, Loop *L,
362                            SmallVectorImpl<const SCEV *> &Good,
363                            SmallVectorImpl<const SCEV *> &Bad,
364                            ScalarEvolution &SE) {
365   // Collect expressions which properly dominate the loop header.
366   if (SE.properlyDominates(S, L->getHeader())) {
367     Good.push_back(S);
368     return;
369   }
370 
371   // Look at add operands.
372   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
373     for (const SCEV *S : Add->operands())
374       DoInitialMatch(S, L, Good, Bad, SE);
375     return;
376   }
377 
378   // Look at addrec operands.
379   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
380     if (!AR->getStart()->isZero() && AR->isAffine()) {
381       DoInitialMatch(AR->getStart(), L, Good, Bad, SE);
382       DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
383                                       AR->getStepRecurrence(SE),
384                                       // FIXME: AR->getNoWrapFlags()
385                                       AR->getLoop(), SCEV::FlagAnyWrap),
386                      L, Good, Bad, SE);
387       return;
388     }
389 
390   // Handle a multiplication by -1 (negation) if it didn't fold.
391   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
392     if (Mul->getOperand(0)->isAllOnesValue()) {
393       SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end());
394       const SCEV *NewMul = SE.getMulExpr(Ops);
395 
396       SmallVector<const SCEV *, 4> MyGood;
397       SmallVector<const SCEV *, 4> MyBad;
398       DoInitialMatch(NewMul, L, MyGood, MyBad, SE);
399       const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
400         SE.getEffectiveSCEVType(NewMul->getType())));
401       for (const SCEV *S : MyGood)
402         Good.push_back(SE.getMulExpr(NegOne, S));
403       for (const SCEV *S : MyBad)
404         Bad.push_back(SE.getMulExpr(NegOne, S));
405       return;
406     }
407 
408   // Ok, we can't do anything interesting. Just stuff the whole thing into a
409   // register and hope for the best.
410   Bad.push_back(S);
411 }
412 
413 /// Incorporate loop-variant parts of S into this Formula, attempting to keep
414 /// all loop-invariant and loop-computable values in a single base register.
415 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) {
416   SmallVector<const SCEV *, 4> Good;
417   SmallVector<const SCEV *, 4> Bad;
418   DoInitialMatch(S, L, Good, Bad, SE);
419   if (!Good.empty()) {
420     const SCEV *Sum = SE.getAddExpr(Good);
421     if (!Sum->isZero())
422       BaseRegs.push_back(Sum);
423     HasBaseReg = true;
424   }
425   if (!Bad.empty()) {
426     const SCEV *Sum = SE.getAddExpr(Bad);
427     if (!Sum->isZero())
428       BaseRegs.push_back(Sum);
429     HasBaseReg = true;
430   }
431   canonicalize(*L);
432 }
433 
434 /// \brief Check whether or not this formula statisfies the canonical
435 /// representation.
436 /// \see Formula::BaseRegs.
437 bool Formula::isCanonical(const Loop &L) const {
438   if (!ScaledReg)
439     return BaseRegs.size() <= 1;
440 
441   if (Scale != 1)
442     return true;
443 
444   if (Scale == 1 && BaseRegs.empty())
445     return false;
446 
447   const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg);
448   if (SAR && SAR->getLoop() == &L)
449     return true;
450 
451   // If ScaledReg is not a recurrent expr, or it is but its loop is not current
452   // loop, meanwhile BaseRegs contains a recurrent expr reg related with current
453   // loop, we want to swap the reg in BaseRegs with ScaledReg.
454   auto I =
455       find_if(make_range(BaseRegs.begin(), BaseRegs.end()), [&](const SCEV *S) {
456         return isa<const SCEVAddRecExpr>(S) &&
457                (cast<SCEVAddRecExpr>(S)->getLoop() == &L);
458       });
459   return I == BaseRegs.end();
460 }
461 
462 /// \brief Helper method to morph a formula into its canonical representation.
463 /// \see Formula::BaseRegs.
464 /// Every formula having more than one base register, must use the ScaledReg
465 /// field. Otherwise, we would have to do special cases everywhere in LSR
466 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ...
467 /// On the other hand, 1*reg should be canonicalized into reg.
468 void Formula::canonicalize(const Loop &L) {
469   if (isCanonical(L))
470     return;
471   // So far we did not need this case. This is easy to implement but it is
472   // useless to maintain dead code. Beside it could hurt compile time.
473   assert(!BaseRegs.empty() && "1*reg => reg, should not be needed.");
474 
475   // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg.
476   if (!ScaledReg) {
477     ScaledReg = BaseRegs.back();
478     BaseRegs.pop_back();
479     Scale = 1;
480   }
481 
482   // If ScaledReg is an invariant with respect to L, find the reg from
483   // BaseRegs containing the recurrent expr related with Loop L. Swap the
484   // reg with ScaledReg.
485   const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg);
486   if (!SAR || SAR->getLoop() != &L) {
487     auto I = find_if(make_range(BaseRegs.begin(), BaseRegs.end()),
488                      [&](const SCEV *S) {
489                        return isa<const SCEVAddRecExpr>(S) &&
490                               (cast<SCEVAddRecExpr>(S)->getLoop() == &L);
491                      });
492     if (I != BaseRegs.end())
493       std::swap(ScaledReg, *I);
494   }
495 }
496 
497 /// \brief Get rid of the scale in the formula.
498 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2.
499 /// \return true if it was possible to get rid of the scale, false otherwise.
500 /// \note After this operation the formula may not be in the canonical form.
501 bool Formula::unscale() {
502   if (Scale != 1)
503     return false;
504   Scale = 0;
505   BaseRegs.push_back(ScaledReg);
506   ScaledReg = nullptr;
507   return true;
508 }
509 
510 bool Formula::hasZeroEnd() const {
511   if (UnfoldedOffset || BaseOffset)
512     return false;
513   if (BaseRegs.size() != 1 || ScaledReg)
514     return false;
515   return true;
516 }
517 
518 /// Return the total number of register operands used by this formula. This does
519 /// not include register uses implied by non-constant addrec strides.
520 size_t Formula::getNumRegs() const {
521   return !!ScaledReg + BaseRegs.size();
522 }
523 
524 /// Return the type of this formula, if it has one, or null otherwise. This type
525 /// is meaningless except for the bit size.
526 Type *Formula::getType() const {
527   return !BaseRegs.empty() ? BaseRegs.front()->getType() :
528          ScaledReg ? ScaledReg->getType() :
529          BaseGV ? BaseGV->getType() :
530          nullptr;
531 }
532 
533 /// Delete the given base reg from the BaseRegs list.
534 void Formula::deleteBaseReg(const SCEV *&S) {
535   if (&S != &BaseRegs.back())
536     std::swap(S, BaseRegs.back());
537   BaseRegs.pop_back();
538 }
539 
540 /// Test if this formula references the given register.
541 bool Formula::referencesReg(const SCEV *S) const {
542   return S == ScaledReg || is_contained(BaseRegs, S);
543 }
544 
545 /// Test whether this formula uses registers which are used by uses other than
546 /// the use with the given index.
547 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
548                                          const RegUseTracker &RegUses) const {
549   if (ScaledReg)
550     if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
551       return true;
552   for (const SCEV *BaseReg : BaseRegs)
553     if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx))
554       return true;
555   return false;
556 }
557 
558 void Formula::print(raw_ostream &OS) const {
559   bool First = true;
560   if (BaseGV) {
561     if (!First) OS << " + "; else First = false;
562     BaseGV->printAsOperand(OS, /*PrintType=*/false);
563   }
564   if (BaseOffset != 0) {
565     if (!First) OS << " + "; else First = false;
566     OS << BaseOffset;
567   }
568   for (const SCEV *BaseReg : BaseRegs) {
569     if (!First) OS << " + "; else First = false;
570     OS << "reg(" << *BaseReg << ')';
571   }
572   if (HasBaseReg && BaseRegs.empty()) {
573     if (!First) OS << " + "; else First = false;
574     OS << "**error: HasBaseReg**";
575   } else if (!HasBaseReg && !BaseRegs.empty()) {
576     if (!First) OS << " + "; else First = false;
577     OS << "**error: !HasBaseReg**";
578   }
579   if (Scale != 0) {
580     if (!First) OS << " + "; else First = false;
581     OS << Scale << "*reg(";
582     if (ScaledReg)
583       OS << *ScaledReg;
584     else
585       OS << "<unknown>";
586     OS << ')';
587   }
588   if (UnfoldedOffset != 0) {
589     if (!First) OS << " + ";
590     OS << "imm(" << UnfoldedOffset << ')';
591   }
592 }
593 
594 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
595 LLVM_DUMP_METHOD void Formula::dump() const {
596   print(errs()); errs() << '\n';
597 }
598 #endif
599 
600 /// Return true if the given addrec can be sign-extended without changing its
601 /// value.
602 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
603   Type *WideTy =
604     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
605   return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
606 }
607 
608 /// Return true if the given add can be sign-extended without changing its
609 /// value.
610 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
611   Type *WideTy =
612     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
613   return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
614 }
615 
616 /// Return true if the given mul can be sign-extended without changing its
617 /// value.
618 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) {
619   Type *WideTy =
620     IntegerType::get(SE.getContext(),
621                      SE.getTypeSizeInBits(M->getType()) * M->getNumOperands());
622   return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy));
623 }
624 
625 /// Return an expression for LHS /s RHS, if it can be determined and if the
626 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits
627 /// is true, expressions like (X * Y) /s Y are simplified to Y, ignoring that
628 /// the multiplication may overflow, which is useful when the result will be
629 /// used in a context where the most significant bits are ignored.
630 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
631                                 ScalarEvolution &SE,
632                                 bool IgnoreSignificantBits = false) {
633   // Handle the trivial case, which works for any SCEV type.
634   if (LHS == RHS)
635     return SE.getConstant(LHS->getType(), 1);
636 
637   // Handle a few RHS special cases.
638   const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
639   if (RC) {
640     const APInt &RA = RC->getAPInt();
641     // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
642     // some folding.
643     if (RA.isAllOnesValue())
644       return SE.getMulExpr(LHS, RC);
645     // Handle x /s 1 as x.
646     if (RA == 1)
647       return LHS;
648   }
649 
650   // Check for a division of a constant by a constant.
651   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
652     if (!RC)
653       return nullptr;
654     const APInt &LA = C->getAPInt();
655     const APInt &RA = RC->getAPInt();
656     if (LA.srem(RA) != 0)
657       return nullptr;
658     return SE.getConstant(LA.sdiv(RA));
659   }
660 
661   // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
662   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
663     if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) {
664       const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
665                                       IgnoreSignificantBits);
666       if (!Step) return nullptr;
667       const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
668                                        IgnoreSignificantBits);
669       if (!Start) return nullptr;
670       // FlagNW is independent of the start value, step direction, and is
671       // preserved with smaller magnitude steps.
672       // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
673       return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap);
674     }
675     return nullptr;
676   }
677 
678   // Distribute the sdiv over add operands, if the add doesn't overflow.
679   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
680     if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
681       SmallVector<const SCEV *, 8> Ops;
682       for (const SCEV *S : Add->operands()) {
683         const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits);
684         if (!Op) return nullptr;
685         Ops.push_back(Op);
686       }
687       return SE.getAddExpr(Ops);
688     }
689     return nullptr;
690   }
691 
692   // Check for a multiply operand that we can pull RHS out of.
693   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) {
694     if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
695       SmallVector<const SCEV *, 4> Ops;
696       bool Found = false;
697       for (const SCEV *S : Mul->operands()) {
698         if (!Found)
699           if (const SCEV *Q = getExactSDiv(S, RHS, SE,
700                                            IgnoreSignificantBits)) {
701             S = Q;
702             Found = true;
703           }
704         Ops.push_back(S);
705       }
706       return Found ? SE.getMulExpr(Ops) : nullptr;
707     }
708     return nullptr;
709   }
710 
711   // Otherwise we don't know.
712   return nullptr;
713 }
714 
715 /// If S involves the addition of a constant integer value, return that integer
716 /// value, and mutate S to point to a new SCEV with that value excluded.
717 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
718   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
719     if (C->getAPInt().getMinSignedBits() <= 64) {
720       S = SE.getConstant(C->getType(), 0);
721       return C->getValue()->getSExtValue();
722     }
723   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
724     SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
725     int64_t Result = ExtractImmediate(NewOps.front(), SE);
726     if (Result != 0)
727       S = SE.getAddExpr(NewOps);
728     return Result;
729   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
730     SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
731     int64_t Result = ExtractImmediate(NewOps.front(), SE);
732     if (Result != 0)
733       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
734                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
735                            SCEV::FlagAnyWrap);
736     return Result;
737   }
738   return 0;
739 }
740 
741 /// If S involves the addition of a GlobalValue address, return that symbol, and
742 /// mutate S to point to a new SCEV with that value excluded.
743 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
744   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
745     if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
746       S = SE.getConstant(GV->getType(), 0);
747       return GV;
748     }
749   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
750     SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
751     GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
752     if (Result)
753       S = SE.getAddExpr(NewOps);
754     return Result;
755   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
756     SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
757     GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
758     if (Result)
759       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
760                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
761                            SCEV::FlagAnyWrap);
762     return Result;
763   }
764   return nullptr;
765 }
766 
767 /// Returns true if the specified instruction is using the specified value as an
768 /// address.
769 static bool isAddressUse(Instruction *Inst, Value *OperandVal) {
770   bool isAddress = isa<LoadInst>(Inst);
771   if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
772     if (SI->getPointerOperand() == OperandVal)
773       isAddress = true;
774   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
775     // Addressing modes can also be folded into prefetches and a variety
776     // of intrinsics.
777     switch (II->getIntrinsicID()) {
778       default: break;
779       case Intrinsic::prefetch:
780         if (II->getArgOperand(0) == OperandVal)
781           isAddress = true;
782         break;
783     }
784   } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
785     if (RMW->getPointerOperand() == OperandVal)
786       isAddress = true;
787   } else if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
788     if (CmpX->getPointerOperand() == OperandVal)
789       isAddress = true;
790   }
791   return isAddress;
792 }
793 
794 /// Return the type of the memory being accessed.
795 static MemAccessTy getAccessType(const Instruction *Inst) {
796   MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace);
797   if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
798     AccessTy.MemTy = SI->getOperand(0)->getType();
799     AccessTy.AddrSpace = SI->getPointerAddressSpace();
800   } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
801     AccessTy.AddrSpace = LI->getPointerAddressSpace();
802   } else if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
803     AccessTy.AddrSpace = RMW->getPointerAddressSpace();
804   } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
805     AccessTy.AddrSpace = CmpX->getPointerAddressSpace();
806   }
807 
808   // All pointers have the same requirements, so canonicalize them to an
809   // arbitrary pointer type to minimize variation.
810   if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy))
811     AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
812                                       PTy->getAddressSpace());
813 
814   return AccessTy;
815 }
816 
817 /// Return true if this AddRec is already a phi in its loop.
818 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
819   for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin();
820        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
821     if (SE.isSCEVable(PN->getType()) &&
822         (SE.getEffectiveSCEVType(PN->getType()) ==
823          SE.getEffectiveSCEVType(AR->getType())) &&
824         SE.getSCEV(PN) == AR)
825       return true;
826   }
827   return false;
828 }
829 
830 /// Check if expanding this expression is likely to incur significant cost. This
831 /// is tricky because SCEV doesn't track which expressions are actually computed
832 /// by the current IR.
833 ///
834 /// We currently allow expansion of IV increments that involve adds,
835 /// multiplication by constants, and AddRecs from existing phis.
836 ///
837 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an
838 /// obvious multiple of the UDivExpr.
839 static bool isHighCostExpansion(const SCEV *S,
840                                 SmallPtrSetImpl<const SCEV*> &Processed,
841                                 ScalarEvolution &SE) {
842   // Zero/One operand expressions
843   switch (S->getSCEVType()) {
844   case scUnknown:
845   case scConstant:
846     return false;
847   case scTruncate:
848     return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(),
849                                Processed, SE);
850   case scZeroExtend:
851     return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(),
852                                Processed, SE);
853   case scSignExtend:
854     return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(),
855                                Processed, SE);
856   }
857 
858   if (!Processed.insert(S).second)
859     return false;
860 
861   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
862     for (const SCEV *S : Add->operands()) {
863       if (isHighCostExpansion(S, Processed, SE))
864         return true;
865     }
866     return false;
867   }
868 
869   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
870     if (Mul->getNumOperands() == 2) {
871       // Multiplication by a constant is ok
872       if (isa<SCEVConstant>(Mul->getOperand(0)))
873         return isHighCostExpansion(Mul->getOperand(1), Processed, SE);
874 
875       // If we have the value of one operand, check if an existing
876       // multiplication already generates this expression.
877       if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) {
878         Value *UVal = U->getValue();
879         for (User *UR : UVal->users()) {
880           // If U is a constant, it may be used by a ConstantExpr.
881           Instruction *UI = dyn_cast<Instruction>(UR);
882           if (UI && UI->getOpcode() == Instruction::Mul &&
883               SE.isSCEVable(UI->getType())) {
884             return SE.getSCEV(UI) == Mul;
885           }
886         }
887       }
888     }
889   }
890 
891   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
892     if (isExistingPhi(AR, SE))
893       return false;
894   }
895 
896   // Fow now, consider any other type of expression (div/mul/min/max) high cost.
897   return true;
898 }
899 
900 /// If any of the instructions is the specified set are trivially dead, delete
901 /// them and see if this makes any of their operands subsequently dead.
902 static bool
903 DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
904   bool Changed = false;
905 
906   while (!DeadInsts.empty()) {
907     Value *V = DeadInsts.pop_back_val();
908     Instruction *I = dyn_cast_or_null<Instruction>(V);
909 
910     if (!I || !isInstructionTriviallyDead(I))
911       continue;
912 
913     for (Use &O : I->operands())
914       if (Instruction *U = dyn_cast<Instruction>(O)) {
915         O = nullptr;
916         if (U->use_empty())
917           DeadInsts.emplace_back(U);
918       }
919 
920     I->eraseFromParent();
921     Changed = true;
922   }
923 
924   return Changed;
925 }
926 
927 namespace {
928 
929 class LSRUse;
930 
931 } // end anonymous namespace
932 
933 /// \brief Check if the addressing mode defined by \p F is completely
934 /// folded in \p LU at isel time.
935 /// This includes address-mode folding and special icmp tricks.
936 /// This function returns true if \p LU can accommodate what \p F
937 /// defines and up to 1 base + 1 scaled + offset.
938 /// In other words, if \p F has several base registers, this function may
939 /// still return true. Therefore, users still need to account for
940 /// additional base registers and/or unfolded offsets to derive an
941 /// accurate cost model.
942 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
943                                  const LSRUse &LU, const Formula &F);
944 // Get the cost of the scaling factor used in F for LU.
945 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
946                                      const LSRUse &LU, const Formula &F,
947                                      const Loop &L);
948 
949 namespace {
950 
951 /// This class is used to measure and compare candidate formulae.
952 class Cost {
953   /// TODO: Some of these could be merged. Also, a lexical ordering
954   /// isn't always optimal.
955   unsigned Insns;
956   unsigned NumRegs;
957   unsigned AddRecCost;
958   unsigned NumIVMuls;
959   unsigned NumBaseAdds;
960   unsigned ImmCost;
961   unsigned SetupCost;
962   unsigned ScaleCost;
963 
964 public:
965   Cost()
966     : Insns(0), NumRegs(0), AddRecCost(0), NumIVMuls(0), NumBaseAdds(0),
967       ImmCost(0), SetupCost(0), ScaleCost(0) {}
968 
969   bool operator<(const Cost &Other) const;
970 
971   void Lose();
972 
973 #ifndef NDEBUG
974   // Once any of the metrics loses, they must all remain losers.
975   bool isValid() {
976     return ((Insns | NumRegs | AddRecCost | NumIVMuls | NumBaseAdds
977              | ImmCost | SetupCost | ScaleCost) != ~0u)
978       || ((Insns & NumRegs & AddRecCost & NumIVMuls & NumBaseAdds
979            & ImmCost & SetupCost & ScaleCost) == ~0u);
980   }
981 #endif
982 
983   bool isLoser() {
984     assert(isValid() && "invalid cost");
985     return NumRegs == ~0u;
986   }
987 
988   void RateFormula(const TargetTransformInfo &TTI,
989                    const Formula &F,
990                    SmallPtrSetImpl<const SCEV *> &Regs,
991                    const DenseSet<const SCEV *> &VisitedRegs,
992                    const Loop *L,
993                    ScalarEvolution &SE, DominatorTree &DT,
994                    const LSRUse &LU,
995                    SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr);
996 
997   void print(raw_ostream &OS) const;
998   void dump() const;
999 
1000 private:
1001   void RateRegister(const SCEV *Reg,
1002                     SmallPtrSetImpl<const SCEV *> &Regs,
1003                     const Loop *L,
1004                     ScalarEvolution &SE, DominatorTree &DT);
1005   void RatePrimaryRegister(const SCEV *Reg,
1006                            SmallPtrSetImpl<const SCEV *> &Regs,
1007                            const Loop *L,
1008                            ScalarEvolution &SE, DominatorTree &DT,
1009                            SmallPtrSetImpl<const SCEV *> *LoserRegs);
1010 };
1011 
1012 /// An operand value in an instruction which is to be replaced with some
1013 /// equivalent, possibly strength-reduced, replacement.
1014 struct LSRFixup {
1015   /// The instruction which will be updated.
1016   Instruction *UserInst;
1017 
1018   /// The operand of the instruction which will be replaced. The operand may be
1019   /// used more than once; every instance will be replaced.
1020   Value *OperandValToReplace;
1021 
1022   /// If this user is to use the post-incremented value of an induction
1023   /// variable, this variable is non-null and holds the loop associated with the
1024   /// induction variable.
1025   PostIncLoopSet PostIncLoops;
1026 
1027   /// A constant offset to be added to the LSRUse expression.  This allows
1028   /// multiple fixups to share the same LSRUse with different offsets, for
1029   /// example in an unrolled loop.
1030   int64_t Offset;
1031 
1032   bool isUseFullyOutsideLoop(const Loop *L) const;
1033 
1034   LSRFixup();
1035 
1036   void print(raw_ostream &OS) const;
1037   void dump() const;
1038 };
1039 
1040 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted
1041 /// SmallVectors of const SCEV*.
1042 struct UniquifierDenseMapInfo {
1043   static SmallVector<const SCEV *, 4> getEmptyKey() {
1044     SmallVector<const SCEV *, 4>  V;
1045     V.push_back(reinterpret_cast<const SCEV *>(-1));
1046     return V;
1047   }
1048 
1049   static SmallVector<const SCEV *, 4> getTombstoneKey() {
1050     SmallVector<const SCEV *, 4> V;
1051     V.push_back(reinterpret_cast<const SCEV *>(-2));
1052     return V;
1053   }
1054 
1055   static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) {
1056     return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
1057   }
1058 
1059   static bool isEqual(const SmallVector<const SCEV *, 4> &LHS,
1060                       const SmallVector<const SCEV *, 4> &RHS) {
1061     return LHS == RHS;
1062   }
1063 };
1064 
1065 /// This class holds the state that LSR keeps for each use in IVUsers, as well
1066 /// as uses invented by LSR itself. It includes information about what kinds of
1067 /// things can be folded into the user, information about the user itself, and
1068 /// information about how the use may be satisfied.  TODO: Represent multiple
1069 /// users of the same expression in common?
1070 class LSRUse {
1071   DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier;
1072 
1073 public:
1074   /// An enum for a kind of use, indicating what types of scaled and immediate
1075   /// operands it might support.
1076   enum KindType {
1077     Basic,   ///< A normal use, with no folding.
1078     Special, ///< A special case of basic, allowing -1 scales.
1079     Address, ///< An address use; folding according to TargetLowering
1080     ICmpZero ///< An equality icmp with both operands folded into one.
1081     // TODO: Add a generic icmp too?
1082   };
1083 
1084   typedef PointerIntPair<const SCEV *, 2, KindType> SCEVUseKindPair;
1085 
1086   KindType Kind;
1087   MemAccessTy AccessTy;
1088 
1089   /// The list of operands which are to be replaced.
1090   SmallVector<LSRFixup, 8> Fixups;
1091 
1092   /// Keep track of the min and max offsets of the fixups.
1093   int64_t MinOffset;
1094   int64_t MaxOffset;
1095 
1096   /// This records whether all of the fixups using this LSRUse are outside of
1097   /// the loop, in which case some special-case heuristics may be used.
1098   bool AllFixupsOutsideLoop;
1099 
1100   /// RigidFormula is set to true to guarantee that this use will be associated
1101   /// with a single formula--the one that initially matched. Some SCEV
1102   /// expressions cannot be expanded. This allows LSR to consider the registers
1103   /// used by those expressions without the need to expand them later after
1104   /// changing the formula.
1105   bool RigidFormula;
1106 
1107   /// This records the widest use type for any fixup using this
1108   /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max
1109   /// fixup widths to be equivalent, because the narrower one may be relying on
1110   /// the implicit truncation to truncate away bogus bits.
1111   Type *WidestFixupType;
1112 
1113   /// A list of ways to build a value that can satisfy this user.  After the
1114   /// list is populated, one of these is selected heuristically and used to
1115   /// formulate a replacement for OperandValToReplace in UserInst.
1116   SmallVector<Formula, 12> Formulae;
1117 
1118   /// The set of register candidates used by all formulae in this LSRUse.
1119   SmallPtrSet<const SCEV *, 4> Regs;
1120 
1121   LSRUse(KindType K, MemAccessTy AT)
1122       : Kind(K), AccessTy(AT), MinOffset(INT64_MAX), MaxOffset(INT64_MIN),
1123         AllFixupsOutsideLoop(true), RigidFormula(false),
1124         WidestFixupType(nullptr) {}
1125 
1126   LSRFixup &getNewFixup() {
1127     Fixups.push_back(LSRFixup());
1128     return Fixups.back();
1129   }
1130 
1131   void pushFixup(LSRFixup &f) {
1132     Fixups.push_back(f);
1133     if (f.Offset > MaxOffset)
1134       MaxOffset = f.Offset;
1135     if (f.Offset < MinOffset)
1136       MinOffset = f.Offset;
1137   }
1138 
1139   bool HasFormulaWithSameRegs(const Formula &F) const;
1140   float getNotSelectedProbability(const SCEV *Reg) const;
1141   bool InsertFormula(const Formula &F, const Loop &L);
1142   void DeleteFormula(Formula &F);
1143   void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
1144 
1145   void print(raw_ostream &OS) const;
1146   void dump() const;
1147 };
1148 
1149 } // end anonymous namespace
1150 
1151 /// Tally up interesting quantities from the given register.
1152 void Cost::RateRegister(const SCEV *Reg,
1153                         SmallPtrSetImpl<const SCEV *> &Regs,
1154                         const Loop *L,
1155                         ScalarEvolution &SE, DominatorTree &DT) {
1156   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
1157     // If this is an addrec for another loop, it should be an invariant
1158     // with respect to L since L is the innermost loop (at least
1159     // for now LSR only handles innermost loops).
1160     if (AR->getLoop() != L) {
1161       // If the AddRec exists, consider it's register free and leave it alone.
1162       if (isExistingPhi(AR, SE))
1163         return;
1164 
1165       // It is bad to allow LSR for current loop to add induction variables
1166       // for its sibling loops.
1167       if (!AR->getLoop()->contains(L)) {
1168         Lose();
1169         return;
1170       }
1171 
1172       // Otherwise, it will be an invariant with respect to Loop L.
1173       ++NumRegs;
1174       return;
1175     }
1176     AddRecCost += 1; /// TODO: This should be a function of the stride.
1177 
1178     // Add the step value register, if it needs one.
1179     // TODO: The non-affine case isn't precisely modeled here.
1180     if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) {
1181       if (!Regs.count(AR->getOperand(1))) {
1182         RateRegister(AR->getOperand(1), Regs, L, SE, DT);
1183         if (isLoser())
1184           return;
1185       }
1186     }
1187   }
1188   ++NumRegs;
1189 
1190   // Rough heuristic; favor registers which don't require extra setup
1191   // instructions in the preheader.
1192   if (!isa<SCEVUnknown>(Reg) &&
1193       !isa<SCEVConstant>(Reg) &&
1194       !(isa<SCEVAddRecExpr>(Reg) &&
1195         (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) ||
1196          isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart()))))
1197     ++SetupCost;
1198 
1199   NumIVMuls += isa<SCEVMulExpr>(Reg) &&
1200                SE.hasComputableLoopEvolution(Reg, L);
1201 }
1202 
1203 /// Record this register in the set. If we haven't seen it before, rate
1204 /// it. Optional LoserRegs provides a way to declare any formula that refers to
1205 /// one of those regs an instant loser.
1206 void Cost::RatePrimaryRegister(const SCEV *Reg,
1207                                SmallPtrSetImpl<const SCEV *> &Regs,
1208                                const Loop *L,
1209                                ScalarEvolution &SE, DominatorTree &DT,
1210                                SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1211   if (LoserRegs && LoserRegs->count(Reg)) {
1212     Lose();
1213     return;
1214   }
1215   if (Regs.insert(Reg).second) {
1216     RateRegister(Reg, Regs, L, SE, DT);
1217     if (LoserRegs && isLoser())
1218       LoserRegs->insert(Reg);
1219   }
1220 }
1221 
1222 void Cost::RateFormula(const TargetTransformInfo &TTI,
1223                        const Formula &F,
1224                        SmallPtrSetImpl<const SCEV *> &Regs,
1225                        const DenseSet<const SCEV *> &VisitedRegs,
1226                        const Loop *L,
1227                        ScalarEvolution &SE, DominatorTree &DT,
1228                        const LSRUse &LU,
1229                        SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1230   assert(F.isCanonical(*L) && "Cost is accurate only for canonical formula");
1231   // Tally up the registers.
1232   unsigned PrevAddRecCost = AddRecCost;
1233   unsigned PrevNumRegs = NumRegs;
1234   unsigned PrevNumBaseAdds = NumBaseAdds;
1235   if (const SCEV *ScaledReg = F.ScaledReg) {
1236     if (VisitedRegs.count(ScaledReg)) {
1237       Lose();
1238       return;
1239     }
1240     RatePrimaryRegister(ScaledReg, Regs, L, SE, DT, LoserRegs);
1241     if (isLoser())
1242       return;
1243   }
1244   for (const SCEV *BaseReg : F.BaseRegs) {
1245     if (VisitedRegs.count(BaseReg)) {
1246       Lose();
1247       return;
1248     }
1249     RatePrimaryRegister(BaseReg, Regs, L, SE, DT, LoserRegs);
1250     if (isLoser())
1251       return;
1252   }
1253 
1254   // Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as
1255   // additional instruction (at least fill).
1256   unsigned TTIRegNum = TTI.getNumberOfRegisters(false) - 1;
1257   if (NumRegs > TTIRegNum) {
1258     // Cost already exceeded TTIRegNum, then only newly added register can add
1259     // new instructions.
1260     if (PrevNumRegs > TTIRegNum)
1261       Insns += (NumRegs - PrevNumRegs);
1262     else
1263       Insns += (NumRegs - TTIRegNum);
1264   }
1265 
1266   // Determine how many (unfolded) adds we'll need inside the loop.
1267   size_t NumBaseParts = F.getNumRegs();
1268   if (NumBaseParts > 1)
1269     // Do not count the base and a possible second register if the target
1270     // allows to fold 2 registers.
1271     NumBaseAdds +=
1272         NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(TTI, LU, F)));
1273   NumBaseAdds += (F.UnfoldedOffset != 0);
1274 
1275   // Accumulate non-free scaling amounts.
1276   ScaleCost += getScalingFactorCost(TTI, LU, F, *L);
1277 
1278   // Tally up the non-zero immediates.
1279   for (const LSRFixup &Fixup : LU.Fixups) {
1280     int64_t O = Fixup.Offset;
1281     int64_t Offset = (uint64_t)O + F.BaseOffset;
1282     if (F.BaseGV)
1283       ImmCost += 64; // Handle symbolic values conservatively.
1284                      // TODO: This should probably be the pointer size.
1285     else if (Offset != 0)
1286       ImmCost += APInt(64, Offset, true).getMinSignedBits();
1287 
1288     // Check with target if this offset with this instruction is
1289     // specifically not supported.
1290     if ((isa<LoadInst>(Fixup.UserInst) || isa<StoreInst>(Fixup.UserInst)) &&
1291         !TTI.isFoldableMemAccessOffset(Fixup.UserInst, Offset))
1292       NumBaseAdds++;
1293   }
1294 
1295   // If ICmpZero formula ends with not 0, it could not be replaced by
1296   // just add or sub. We'll need to compare final result of AddRec.
1297   // That means we'll need an additional instruction.
1298   // For -10 + {0, +, 1}:
1299   // i = i + 1;
1300   // cmp i, 10
1301   //
1302   // For {-10, +, 1}:
1303   // i = i + 1;
1304   if (LU.Kind == LSRUse::ICmpZero && !F.hasZeroEnd())
1305     Insns++;
1306   // Each new AddRec adds 1 instruction to calculation.
1307   Insns += (AddRecCost - PrevAddRecCost);
1308 
1309   // BaseAdds adds instructions for unfolded registers.
1310   if (LU.Kind != LSRUse::ICmpZero)
1311     Insns += NumBaseAdds - PrevNumBaseAdds;
1312   assert(isValid() && "invalid cost");
1313 }
1314 
1315 /// Set this cost to a losing value.
1316 void Cost::Lose() {
1317   Insns = ~0u;
1318   NumRegs = ~0u;
1319   AddRecCost = ~0u;
1320   NumIVMuls = ~0u;
1321   NumBaseAdds = ~0u;
1322   ImmCost = ~0u;
1323   SetupCost = ~0u;
1324   ScaleCost = ~0u;
1325 }
1326 
1327 /// Choose the lower cost.
1328 bool Cost::operator<(const Cost &Other) const {
1329   if (InsnsCost && Insns != Other.Insns)
1330     return Insns < Other.Insns;
1331   return std::tie(NumRegs, AddRecCost, NumIVMuls, NumBaseAdds, ScaleCost,
1332                   ImmCost, SetupCost) <
1333          std::tie(Other.NumRegs, Other.AddRecCost, Other.NumIVMuls,
1334                   Other.NumBaseAdds, Other.ScaleCost, Other.ImmCost,
1335                   Other.SetupCost);
1336 }
1337 
1338 void Cost::print(raw_ostream &OS) const {
1339   OS << Insns << " instruction" << (Insns == 1 ? " " : "s ");
1340   OS << NumRegs << " reg" << (NumRegs == 1 ? "" : "s");
1341   if (AddRecCost != 0)
1342     OS << ", with addrec cost " << AddRecCost;
1343   if (NumIVMuls != 0)
1344     OS << ", plus " << NumIVMuls << " IV mul" << (NumIVMuls == 1 ? "" : "s");
1345   if (NumBaseAdds != 0)
1346     OS << ", plus " << NumBaseAdds << " base add"
1347        << (NumBaseAdds == 1 ? "" : "s");
1348   if (ScaleCost != 0)
1349     OS << ", plus " << ScaleCost << " scale cost";
1350   if (ImmCost != 0)
1351     OS << ", plus " << ImmCost << " imm cost";
1352   if (SetupCost != 0)
1353     OS << ", plus " << SetupCost << " setup cost";
1354 }
1355 
1356 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1357 LLVM_DUMP_METHOD void Cost::dump() const {
1358   print(errs()); errs() << '\n';
1359 }
1360 #endif
1361 
1362 LSRFixup::LSRFixup()
1363   : UserInst(nullptr), OperandValToReplace(nullptr),
1364     Offset(0) {}
1365 
1366 /// Test whether this fixup always uses its value outside of the given loop.
1367 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
1368   // PHI nodes use their value in their incoming blocks.
1369   if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
1370     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1371       if (PN->getIncomingValue(i) == OperandValToReplace &&
1372           L->contains(PN->getIncomingBlock(i)))
1373         return false;
1374     return true;
1375   }
1376 
1377   return !L->contains(UserInst);
1378 }
1379 
1380 void LSRFixup::print(raw_ostream &OS) const {
1381   OS << "UserInst=";
1382   // Store is common and interesting enough to be worth special-casing.
1383   if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
1384     OS << "store ";
1385     Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false);
1386   } else if (UserInst->getType()->isVoidTy())
1387     OS << UserInst->getOpcodeName();
1388   else
1389     UserInst->printAsOperand(OS, /*PrintType=*/false);
1390 
1391   OS << ", OperandValToReplace=";
1392   OperandValToReplace->printAsOperand(OS, /*PrintType=*/false);
1393 
1394   for (const Loop *PIL : PostIncLoops) {
1395     OS << ", PostIncLoop=";
1396     PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
1397   }
1398 
1399   if (Offset != 0)
1400     OS << ", Offset=" << Offset;
1401 }
1402 
1403 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1404 LLVM_DUMP_METHOD void LSRFixup::dump() const {
1405   print(errs()); errs() << '\n';
1406 }
1407 #endif
1408 
1409 /// Test whether this use as a formula which has the same registers as the given
1410 /// formula.
1411 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
1412   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1413   if (F.ScaledReg) Key.push_back(F.ScaledReg);
1414   // Unstable sort by host order ok, because this is only used for uniquifying.
1415   std::sort(Key.begin(), Key.end());
1416   return Uniquifier.count(Key);
1417 }
1418 
1419 /// The function returns a probability of selecting formula without Reg.
1420 float LSRUse::getNotSelectedProbability(const SCEV *Reg) const {
1421   unsigned FNum = 0;
1422   for (const Formula &F : Formulae)
1423     if (F.referencesReg(Reg))
1424       FNum++;
1425   return ((float)(Formulae.size() - FNum)) / Formulae.size();
1426 }
1427 
1428 /// If the given formula has not yet been inserted, add it to the list, and
1429 /// return true. Return false otherwise.  The formula must be in canonical form.
1430 bool LSRUse::InsertFormula(const Formula &F, const Loop &L) {
1431   assert(F.isCanonical(L) && "Invalid canonical representation");
1432 
1433   if (!Formulae.empty() && RigidFormula)
1434     return false;
1435 
1436   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1437   if (F.ScaledReg) Key.push_back(F.ScaledReg);
1438   // Unstable sort by host order ok, because this is only used for uniquifying.
1439   std::sort(Key.begin(), Key.end());
1440 
1441   if (!Uniquifier.insert(Key).second)
1442     return false;
1443 
1444   // Using a register to hold the value of 0 is not profitable.
1445   assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
1446          "Zero allocated in a scaled register!");
1447 #ifndef NDEBUG
1448   for (const SCEV *BaseReg : F.BaseRegs)
1449     assert(!BaseReg->isZero() && "Zero allocated in a base register!");
1450 #endif
1451 
1452   // Add the formula to the list.
1453   Formulae.push_back(F);
1454 
1455   // Record registers now being used by this use.
1456   Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1457   if (F.ScaledReg)
1458     Regs.insert(F.ScaledReg);
1459 
1460   return true;
1461 }
1462 
1463 /// Remove the given formula from this use's list.
1464 void LSRUse::DeleteFormula(Formula &F) {
1465   if (&F != &Formulae.back())
1466     std::swap(F, Formulae.back());
1467   Formulae.pop_back();
1468 }
1469 
1470 /// Recompute the Regs field, and update RegUses.
1471 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
1472   // Now that we've filtered out some formulae, recompute the Regs set.
1473   SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs);
1474   Regs.clear();
1475   for (const Formula &F : Formulae) {
1476     if (F.ScaledReg) Regs.insert(F.ScaledReg);
1477     Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1478   }
1479 
1480   // Update the RegTracker.
1481   for (const SCEV *S : OldRegs)
1482     if (!Regs.count(S))
1483       RegUses.dropRegister(S, LUIdx);
1484 }
1485 
1486 void LSRUse::print(raw_ostream &OS) const {
1487   OS << "LSR Use: Kind=";
1488   switch (Kind) {
1489   case Basic:    OS << "Basic"; break;
1490   case Special:  OS << "Special"; break;
1491   case ICmpZero: OS << "ICmpZero"; break;
1492   case Address:
1493     OS << "Address of ";
1494     if (AccessTy.MemTy->isPointerTy())
1495       OS << "pointer"; // the full pointer type could be really verbose
1496     else {
1497       OS << *AccessTy.MemTy;
1498     }
1499 
1500     OS << " in addrspace(" << AccessTy.AddrSpace << ')';
1501   }
1502 
1503   OS << ", Offsets={";
1504   bool NeedComma = false;
1505   for (const LSRFixup &Fixup : Fixups) {
1506     if (NeedComma) OS << ',';
1507     OS << Fixup.Offset;
1508     NeedComma = true;
1509   }
1510   OS << '}';
1511 
1512   if (AllFixupsOutsideLoop)
1513     OS << ", all-fixups-outside-loop";
1514 
1515   if (WidestFixupType)
1516     OS << ", widest fixup type: " << *WidestFixupType;
1517 }
1518 
1519 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1520 LLVM_DUMP_METHOD void LSRUse::dump() const {
1521   print(errs()); errs() << '\n';
1522 }
1523 #endif
1524 
1525 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1526                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1527                                  GlobalValue *BaseGV, int64_t BaseOffset,
1528                                  bool HasBaseReg, int64_t Scale) {
1529   switch (Kind) {
1530   case LSRUse::Address:
1531     return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset,
1532                                      HasBaseReg, Scale, AccessTy.AddrSpace);
1533 
1534   case LSRUse::ICmpZero:
1535     // There's not even a target hook for querying whether it would be legal to
1536     // fold a GV into an ICmp.
1537     if (BaseGV)
1538       return false;
1539 
1540     // ICmp only has two operands; don't allow more than two non-trivial parts.
1541     if (Scale != 0 && HasBaseReg && BaseOffset != 0)
1542       return false;
1543 
1544     // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
1545     // putting the scaled register in the other operand of the icmp.
1546     if (Scale != 0 && Scale != -1)
1547       return false;
1548 
1549     // If we have low-level target information, ask the target if it can fold an
1550     // integer immediate on an icmp.
1551     if (BaseOffset != 0) {
1552       // We have one of:
1553       // ICmpZero     BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset
1554       // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset
1555       // Offs is the ICmp immediate.
1556       if (Scale == 0)
1557         // The cast does the right thing with INT64_MIN.
1558         BaseOffset = -(uint64_t)BaseOffset;
1559       return TTI.isLegalICmpImmediate(BaseOffset);
1560     }
1561 
1562     // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg
1563     return true;
1564 
1565   case LSRUse::Basic:
1566     // Only handle single-register values.
1567     return !BaseGV && Scale == 0 && BaseOffset == 0;
1568 
1569   case LSRUse::Special:
1570     // Special case Basic to handle -1 scales.
1571     return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0;
1572   }
1573 
1574   llvm_unreachable("Invalid LSRUse Kind!");
1575 }
1576 
1577 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1578                                  int64_t MinOffset, int64_t MaxOffset,
1579                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1580                                  GlobalValue *BaseGV, int64_t BaseOffset,
1581                                  bool HasBaseReg, int64_t Scale) {
1582   // Check for overflow.
1583   if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) !=
1584       (MinOffset > 0))
1585     return false;
1586   MinOffset = (uint64_t)BaseOffset + MinOffset;
1587   if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) !=
1588       (MaxOffset > 0))
1589     return false;
1590   MaxOffset = (uint64_t)BaseOffset + MaxOffset;
1591 
1592   return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset,
1593                               HasBaseReg, Scale) &&
1594          isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset,
1595                               HasBaseReg, Scale);
1596 }
1597 
1598 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1599                                  int64_t MinOffset, int64_t MaxOffset,
1600                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1601                                  const Formula &F, const Loop &L) {
1602   // For the purpose of isAMCompletelyFolded either having a canonical formula
1603   // or a scale not equal to zero is correct.
1604   // Problems may arise from non canonical formulae having a scale == 0.
1605   // Strictly speaking it would best to just rely on canonical formulae.
1606   // However, when we generate the scaled formulae, we first check that the
1607   // scaling factor is profitable before computing the actual ScaledReg for
1608   // compile time sake.
1609   assert((F.isCanonical(L) || F.Scale != 0));
1610   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1611                               F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale);
1612 }
1613 
1614 /// Test whether we know how to expand the current formula.
1615 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1616                        int64_t MaxOffset, LSRUse::KindType Kind,
1617                        MemAccessTy AccessTy, GlobalValue *BaseGV,
1618                        int64_t BaseOffset, bool HasBaseReg, int64_t Scale) {
1619   // We know how to expand completely foldable formulae.
1620   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1621                               BaseOffset, HasBaseReg, Scale) ||
1622          // Or formulae that use a base register produced by a sum of base
1623          // registers.
1624          (Scale == 1 &&
1625           isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1626                                BaseGV, BaseOffset, true, 0));
1627 }
1628 
1629 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1630                        int64_t MaxOffset, LSRUse::KindType Kind,
1631                        MemAccessTy AccessTy, const Formula &F) {
1632   return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV,
1633                     F.BaseOffset, F.HasBaseReg, F.Scale);
1634 }
1635 
1636 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1637                                  const LSRUse &LU, const Formula &F) {
1638   return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1639                               LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg,
1640                               F.Scale);
1641 }
1642 
1643 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
1644                                      const LSRUse &LU, const Formula &F,
1645                                      const Loop &L) {
1646   if (!F.Scale)
1647     return 0;
1648 
1649   // If the use is not completely folded in that instruction, we will have to
1650   // pay an extra cost only for scale != 1.
1651   if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1652                             LU.AccessTy, F, L))
1653     return F.Scale != 1;
1654 
1655   switch (LU.Kind) {
1656   case LSRUse::Address: {
1657     // Check the scaling factor cost with both the min and max offsets.
1658     int ScaleCostMinOffset = TTI.getScalingFactorCost(
1659         LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg,
1660         F.Scale, LU.AccessTy.AddrSpace);
1661     int ScaleCostMaxOffset = TTI.getScalingFactorCost(
1662         LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg,
1663         F.Scale, LU.AccessTy.AddrSpace);
1664 
1665     assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 &&
1666            "Legal addressing mode has an illegal cost!");
1667     return std::max(ScaleCostMinOffset, ScaleCostMaxOffset);
1668   }
1669   case LSRUse::ICmpZero:
1670   case LSRUse::Basic:
1671   case LSRUse::Special:
1672     // The use is completely folded, i.e., everything is folded into the
1673     // instruction.
1674     return 0;
1675   }
1676 
1677   llvm_unreachable("Invalid LSRUse Kind!");
1678 }
1679 
1680 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1681                              LSRUse::KindType Kind, MemAccessTy AccessTy,
1682                              GlobalValue *BaseGV, int64_t BaseOffset,
1683                              bool HasBaseReg) {
1684   // Fast-path: zero is always foldable.
1685   if (BaseOffset == 0 && !BaseGV) return true;
1686 
1687   // Conservatively, create an address with an immediate and a
1688   // base and a scale.
1689   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1690 
1691   // Canonicalize a scale of 1 to a base register if the formula doesn't
1692   // already have a base register.
1693   if (!HasBaseReg && Scale == 1) {
1694     Scale = 0;
1695     HasBaseReg = true;
1696   }
1697 
1698   return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset,
1699                               HasBaseReg, Scale);
1700 }
1701 
1702 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1703                              ScalarEvolution &SE, int64_t MinOffset,
1704                              int64_t MaxOffset, LSRUse::KindType Kind,
1705                              MemAccessTy AccessTy, const SCEV *S,
1706                              bool HasBaseReg) {
1707   // Fast-path: zero is always foldable.
1708   if (S->isZero()) return true;
1709 
1710   // Conservatively, create an address with an immediate and a
1711   // base and a scale.
1712   int64_t BaseOffset = ExtractImmediate(S, SE);
1713   GlobalValue *BaseGV = ExtractSymbol(S, SE);
1714 
1715   // If there's anything else involved, it's not foldable.
1716   if (!S->isZero()) return false;
1717 
1718   // Fast-path: zero is always foldable.
1719   if (BaseOffset == 0 && !BaseGV) return true;
1720 
1721   // Conservatively, create an address with an immediate and a
1722   // base and a scale.
1723   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1724 
1725   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1726                               BaseOffset, HasBaseReg, Scale);
1727 }
1728 
1729 namespace {
1730 
1731 /// An individual increment in a Chain of IV increments.  Relate an IV user to
1732 /// an expression that computes the IV it uses from the IV used by the previous
1733 /// link in the Chain.
1734 ///
1735 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the
1736 /// original IVOperand. The head of the chain's IVOperand is only valid during
1737 /// chain collection, before LSR replaces IV users. During chain generation,
1738 /// IncExpr can be used to find the new IVOperand that computes the same
1739 /// expression.
1740 struct IVInc {
1741   Instruction *UserInst;
1742   Value* IVOperand;
1743   const SCEV *IncExpr;
1744 
1745   IVInc(Instruction *U, Value *O, const SCEV *E):
1746     UserInst(U), IVOperand(O), IncExpr(E) {}
1747 };
1748 
1749 // The list of IV increments in program order.  We typically add the head of a
1750 // chain without finding subsequent links.
1751 struct IVChain {
1752   SmallVector<IVInc,1> Incs;
1753   const SCEV *ExprBase;
1754 
1755   IVChain() : ExprBase(nullptr) {}
1756 
1757   IVChain(const IVInc &Head, const SCEV *Base)
1758     : Incs(1, Head), ExprBase(Base) {}
1759 
1760   typedef SmallVectorImpl<IVInc>::const_iterator const_iterator;
1761 
1762   // Return the first increment in the chain.
1763   const_iterator begin() const {
1764     assert(!Incs.empty());
1765     return std::next(Incs.begin());
1766   }
1767   const_iterator end() const {
1768     return Incs.end();
1769   }
1770 
1771   // Returns true if this chain contains any increments.
1772   bool hasIncs() const { return Incs.size() >= 2; }
1773 
1774   // Add an IVInc to the end of this chain.
1775   void add(const IVInc &X) { Incs.push_back(X); }
1776 
1777   // Returns the last UserInst in the chain.
1778   Instruction *tailUserInst() const { return Incs.back().UserInst; }
1779 
1780   // Returns true if IncExpr can be profitably added to this chain.
1781   bool isProfitableIncrement(const SCEV *OperExpr,
1782                              const SCEV *IncExpr,
1783                              ScalarEvolution&);
1784 };
1785 
1786 /// Helper for CollectChains to track multiple IV increment uses.  Distinguish
1787 /// between FarUsers that definitely cross IV increments and NearUsers that may
1788 /// be used between IV increments.
1789 struct ChainUsers {
1790   SmallPtrSet<Instruction*, 4> FarUsers;
1791   SmallPtrSet<Instruction*, 4> NearUsers;
1792 };
1793 
1794 /// This class holds state for the main loop strength reduction logic.
1795 class LSRInstance {
1796   IVUsers &IU;
1797   ScalarEvolution &SE;
1798   DominatorTree &DT;
1799   LoopInfo &LI;
1800   const TargetTransformInfo &TTI;
1801   Loop *const L;
1802   bool Changed;
1803 
1804   /// This is the insert position that the current loop's induction variable
1805   /// increment should be placed. In simple loops, this is the latch block's
1806   /// terminator. But in more complicated cases, this is a position which will
1807   /// dominate all the in-loop post-increment users.
1808   Instruction *IVIncInsertPos;
1809 
1810   /// Interesting factors between use strides.
1811   ///
1812   /// We explicitly use a SetVector which contains a SmallSet, instead of the
1813   /// default, a SmallDenseSet, because we need to use the full range of
1814   /// int64_ts, and there's currently no good way of doing that with
1815   /// SmallDenseSet.
1816   SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors;
1817 
1818   /// Interesting use types, to facilitate truncation reuse.
1819   SmallSetVector<Type *, 4> Types;
1820 
1821   /// The list of interesting uses.
1822   SmallVector<LSRUse, 16> Uses;
1823 
1824   /// Track which uses use which register candidates.
1825   RegUseTracker RegUses;
1826 
1827   // Limit the number of chains to avoid quadratic behavior. We don't expect to
1828   // have more than a few IV increment chains in a loop. Missing a Chain falls
1829   // back to normal LSR behavior for those uses.
1830   static const unsigned MaxChains = 8;
1831 
1832   /// IV users can form a chain of IV increments.
1833   SmallVector<IVChain, MaxChains> IVChainVec;
1834 
1835   /// IV users that belong to profitable IVChains.
1836   SmallPtrSet<Use*, MaxChains> IVIncSet;
1837 
1838   void OptimizeShadowIV();
1839   bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
1840   ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
1841   void OptimizeLoopTermCond();
1842 
1843   void ChainInstruction(Instruction *UserInst, Instruction *IVOper,
1844                         SmallVectorImpl<ChainUsers> &ChainUsersVec);
1845   void FinalizeChain(IVChain &Chain);
1846   void CollectChains();
1847   void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
1848                        SmallVectorImpl<WeakTrackingVH> &DeadInsts);
1849 
1850   void CollectInterestingTypesAndFactors();
1851   void CollectFixupsAndInitialFormulae();
1852 
1853   // Support for sharing of LSRUses between LSRFixups.
1854   typedef DenseMap<LSRUse::SCEVUseKindPair, size_t> UseMapTy;
1855   UseMapTy UseMap;
1856 
1857   bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
1858                           LSRUse::KindType Kind, MemAccessTy AccessTy);
1859 
1860   std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind,
1861                                     MemAccessTy AccessTy);
1862 
1863   void DeleteUse(LSRUse &LU, size_t LUIdx);
1864 
1865   LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
1866 
1867   void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1868   void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1869   void CountRegisters(const Formula &F, size_t LUIdx);
1870   bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
1871 
1872   void CollectLoopInvariantFixupsAndFormulae();
1873 
1874   void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
1875                               unsigned Depth = 0);
1876 
1877   void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
1878                                   const Formula &Base, unsigned Depth,
1879                                   size_t Idx, bool IsScaledReg = false);
1880   void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
1881   void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
1882                                    const Formula &Base, size_t Idx,
1883                                    bool IsScaledReg = false);
1884   void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1885   void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx,
1886                                    const Formula &Base,
1887                                    const SmallVectorImpl<int64_t> &Worklist,
1888                                    size_t Idx, bool IsScaledReg = false);
1889   void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1890   void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1891   void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1892   void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
1893   void GenerateCrossUseConstantOffsets();
1894   void GenerateAllReuseFormulae();
1895 
1896   void FilterOutUndesirableDedicatedRegisters();
1897 
1898   size_t EstimateSearchSpaceComplexity() const;
1899   void NarrowSearchSpaceByDetectingSupersets();
1900   void NarrowSearchSpaceByCollapsingUnrolledCode();
1901   void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
1902   void NarrowSearchSpaceByDeletingCostlyFormulas();
1903   void NarrowSearchSpaceByPickingWinnerRegs();
1904   void NarrowSearchSpaceUsingHeuristics();
1905 
1906   void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
1907                     Cost &SolutionCost,
1908                     SmallVectorImpl<const Formula *> &Workspace,
1909                     const Cost &CurCost,
1910                     const SmallPtrSet<const SCEV *, 16> &CurRegs,
1911                     DenseSet<const SCEV *> &VisitedRegs) const;
1912   void Solve(SmallVectorImpl<const Formula *> &Solution) const;
1913 
1914   BasicBlock::iterator
1915     HoistInsertPosition(BasicBlock::iterator IP,
1916                         const SmallVectorImpl<Instruction *> &Inputs) const;
1917   BasicBlock::iterator
1918     AdjustInsertPositionForExpand(BasicBlock::iterator IP,
1919                                   const LSRFixup &LF,
1920                                   const LSRUse &LU,
1921                                   SCEVExpander &Rewriter) const;
1922 
1923   Value *Expand(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
1924                 BasicBlock::iterator IP, SCEVExpander &Rewriter,
1925                 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
1926   void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF,
1927                      const Formula &F, SCEVExpander &Rewriter,
1928                      SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
1929   void Rewrite(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
1930                SCEVExpander &Rewriter,
1931                SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
1932   void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution);
1933 
1934 public:
1935   LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT,
1936               LoopInfo &LI, const TargetTransformInfo &TTI);
1937 
1938   bool getChanged() const { return Changed; }
1939 
1940   void print_factors_and_types(raw_ostream &OS) const;
1941   void print_fixups(raw_ostream &OS) const;
1942   void print_uses(raw_ostream &OS) const;
1943   void print(raw_ostream &OS) const;
1944   void dump() const;
1945 };
1946 
1947 } // end anonymous namespace
1948 
1949 /// If IV is used in a int-to-float cast inside the loop then try to eliminate
1950 /// the cast operation.
1951 void LSRInstance::OptimizeShadowIV() {
1952   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
1953   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1954     return;
1955 
1956   for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
1957        UI != E; /* empty */) {
1958     IVUsers::const_iterator CandidateUI = UI;
1959     ++UI;
1960     Instruction *ShadowUse = CandidateUI->getUser();
1961     Type *DestTy = nullptr;
1962     bool IsSigned = false;
1963 
1964     /* If shadow use is a int->float cast then insert a second IV
1965        to eliminate this cast.
1966 
1967          for (unsigned i = 0; i < n; ++i)
1968            foo((double)i);
1969 
1970        is transformed into
1971 
1972          double d = 0.0;
1973          for (unsigned i = 0; i < n; ++i, ++d)
1974            foo(d);
1975     */
1976     if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) {
1977       IsSigned = false;
1978       DestTy = UCast->getDestTy();
1979     }
1980     else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) {
1981       IsSigned = true;
1982       DestTy = SCast->getDestTy();
1983     }
1984     if (!DestTy) continue;
1985 
1986     // If target does not support DestTy natively then do not apply
1987     // this transformation.
1988     if (!TTI.isTypeLegal(DestTy)) continue;
1989 
1990     PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
1991     if (!PH) continue;
1992     if (PH->getNumIncomingValues() != 2) continue;
1993 
1994     Type *SrcTy = PH->getType();
1995     int Mantissa = DestTy->getFPMantissaWidth();
1996     if (Mantissa == -1) continue;
1997     if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
1998       continue;
1999 
2000     unsigned Entry, Latch;
2001     if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
2002       Entry = 0;
2003       Latch = 1;
2004     } else {
2005       Entry = 1;
2006       Latch = 0;
2007     }
2008 
2009     ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
2010     if (!Init) continue;
2011     Constant *NewInit = ConstantFP::get(DestTy, IsSigned ?
2012                                         (double)Init->getSExtValue() :
2013                                         (double)Init->getZExtValue());
2014 
2015     BinaryOperator *Incr =
2016       dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
2017     if (!Incr) continue;
2018     if (Incr->getOpcode() != Instruction::Add
2019         && Incr->getOpcode() != Instruction::Sub)
2020       continue;
2021 
2022     /* Initialize new IV, double d = 0.0 in above example. */
2023     ConstantInt *C = nullptr;
2024     if (Incr->getOperand(0) == PH)
2025       C = dyn_cast<ConstantInt>(Incr->getOperand(1));
2026     else if (Incr->getOperand(1) == PH)
2027       C = dyn_cast<ConstantInt>(Incr->getOperand(0));
2028     else
2029       continue;
2030 
2031     if (!C) continue;
2032 
2033     // Ignore negative constants, as the code below doesn't handle them
2034     // correctly. TODO: Remove this restriction.
2035     if (!C->getValue().isStrictlyPositive()) continue;
2036 
2037     /* Add new PHINode. */
2038     PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH);
2039 
2040     /* create new increment. '++d' in above example. */
2041     Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
2042     BinaryOperator *NewIncr =
2043       BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
2044                                Instruction::FAdd : Instruction::FSub,
2045                              NewPH, CFP, "IV.S.next.", Incr);
2046 
2047     NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
2048     NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
2049 
2050     /* Remove cast operation */
2051     ShadowUse->replaceAllUsesWith(NewPH);
2052     ShadowUse->eraseFromParent();
2053     Changed = true;
2054     break;
2055   }
2056 }
2057 
2058 /// If Cond has an operand that is an expression of an IV, set the IV user and
2059 /// stride information and return true, otherwise return false.
2060 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
2061   for (IVStrideUse &U : IU)
2062     if (U.getUser() == Cond) {
2063       // NOTE: we could handle setcc instructions with multiple uses here, but
2064       // InstCombine does it as well for simple uses, it's not clear that it
2065       // occurs enough in real life to handle.
2066       CondUse = &U;
2067       return true;
2068     }
2069   return false;
2070 }
2071 
2072 /// Rewrite the loop's terminating condition if it uses a max computation.
2073 ///
2074 /// This is a narrow solution to a specific, but acute, problem. For loops
2075 /// like this:
2076 ///
2077 ///   i = 0;
2078 ///   do {
2079 ///     p[i] = 0.0;
2080 ///   } while (++i < n);
2081 ///
2082 /// the trip count isn't just 'n', because 'n' might not be positive. And
2083 /// unfortunately this can come up even for loops where the user didn't use
2084 /// a C do-while loop. For example, seemingly well-behaved top-test loops
2085 /// will commonly be lowered like this:
2086 //
2087 ///   if (n > 0) {
2088 ///     i = 0;
2089 ///     do {
2090 ///       p[i] = 0.0;
2091 ///     } while (++i < n);
2092 ///   }
2093 ///
2094 /// and then it's possible for subsequent optimization to obscure the if
2095 /// test in such a way that indvars can't find it.
2096 ///
2097 /// When indvars can't find the if test in loops like this, it creates a
2098 /// max expression, which allows it to give the loop a canonical
2099 /// induction variable:
2100 ///
2101 ///   i = 0;
2102 ///   max = n < 1 ? 1 : n;
2103 ///   do {
2104 ///     p[i] = 0.0;
2105 ///   } while (++i != max);
2106 ///
2107 /// Canonical induction variables are necessary because the loop passes
2108 /// are designed around them. The most obvious example of this is the
2109 /// LoopInfo analysis, which doesn't remember trip count values. It
2110 /// expects to be able to rediscover the trip count each time it is
2111 /// needed, and it does this using a simple analysis that only succeeds if
2112 /// the loop has a canonical induction variable.
2113 ///
2114 /// However, when it comes time to generate code, the maximum operation
2115 /// can be quite costly, especially if it's inside of an outer loop.
2116 ///
2117 /// This function solves this problem by detecting this type of loop and
2118 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
2119 /// the instructions for the maximum computation.
2120 ///
2121 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
2122   // Check that the loop matches the pattern we're looking for.
2123   if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
2124       Cond->getPredicate() != CmpInst::ICMP_NE)
2125     return Cond;
2126 
2127   SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
2128   if (!Sel || !Sel->hasOneUse()) return Cond;
2129 
2130   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
2131   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2132     return Cond;
2133   const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
2134 
2135   // Add one to the backedge-taken count to get the trip count.
2136   const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount);
2137   if (IterationCount != SE.getSCEV(Sel)) return Cond;
2138 
2139   // Check for a max calculation that matches the pattern. There's no check
2140   // for ICMP_ULE here because the comparison would be with zero, which
2141   // isn't interesting.
2142   CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
2143   const SCEVNAryExpr *Max = nullptr;
2144   if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
2145     Pred = ICmpInst::ICMP_SLE;
2146     Max = S;
2147   } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
2148     Pred = ICmpInst::ICMP_SLT;
2149     Max = S;
2150   } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
2151     Pred = ICmpInst::ICMP_ULT;
2152     Max = U;
2153   } else {
2154     // No match; bail.
2155     return Cond;
2156   }
2157 
2158   // To handle a max with more than two operands, this optimization would
2159   // require additional checking and setup.
2160   if (Max->getNumOperands() != 2)
2161     return Cond;
2162 
2163   const SCEV *MaxLHS = Max->getOperand(0);
2164   const SCEV *MaxRHS = Max->getOperand(1);
2165 
2166   // ScalarEvolution canonicalizes constants to the left. For < and >, look
2167   // for a comparison with 1. For <= and >=, a comparison with zero.
2168   if (!MaxLHS ||
2169       (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
2170     return Cond;
2171 
2172   // Check the relevant induction variable for conformance to
2173   // the pattern.
2174   const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
2175   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
2176   if (!AR || !AR->isAffine() ||
2177       AR->getStart() != One ||
2178       AR->getStepRecurrence(SE) != One)
2179     return Cond;
2180 
2181   assert(AR->getLoop() == L &&
2182          "Loop condition operand is an addrec in a different loop!");
2183 
2184   // Check the right operand of the select, and remember it, as it will
2185   // be used in the new comparison instruction.
2186   Value *NewRHS = nullptr;
2187   if (ICmpInst::isTrueWhenEqual(Pred)) {
2188     // Look for n+1, and grab n.
2189     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
2190       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2191          if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2192            NewRHS = BO->getOperand(0);
2193     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
2194       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2195         if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2196           NewRHS = BO->getOperand(0);
2197     if (!NewRHS)
2198       return Cond;
2199   } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
2200     NewRHS = Sel->getOperand(1);
2201   else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
2202     NewRHS = Sel->getOperand(2);
2203   else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS))
2204     NewRHS = SU->getValue();
2205   else
2206     // Max doesn't match expected pattern.
2207     return Cond;
2208 
2209   // Determine the new comparison opcode. It may be signed or unsigned,
2210   // and the original comparison may be either equality or inequality.
2211   if (Cond->getPredicate() == CmpInst::ICMP_EQ)
2212     Pred = CmpInst::getInversePredicate(Pred);
2213 
2214   // Ok, everything looks ok to change the condition into an SLT or SGE and
2215   // delete the max calculation.
2216   ICmpInst *NewCond =
2217     new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
2218 
2219   // Delete the max calculation instructions.
2220   Cond->replaceAllUsesWith(NewCond);
2221   CondUse->setUser(NewCond);
2222   Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
2223   Cond->eraseFromParent();
2224   Sel->eraseFromParent();
2225   if (Cmp->use_empty())
2226     Cmp->eraseFromParent();
2227   return NewCond;
2228 }
2229 
2230 /// Change loop terminating condition to use the postinc iv when possible.
2231 void
2232 LSRInstance::OptimizeLoopTermCond() {
2233   SmallPtrSet<Instruction *, 4> PostIncs;
2234 
2235   // We need a different set of heuristics for rotated and non-rotated loops.
2236   // If a loop is rotated then the latch is also the backedge, so inserting
2237   // post-inc expressions just before the latch is ideal. To reduce live ranges
2238   // it also makes sense to rewrite terminating conditions to use post-inc
2239   // expressions.
2240   //
2241   // If the loop is not rotated then the latch is not a backedge; the latch
2242   // check is done in the loop head. Adding post-inc expressions before the
2243   // latch will cause overlapping live-ranges of pre-inc and post-inc expressions
2244   // in the loop body. In this case we do *not* want to use post-inc expressions
2245   // in the latch check, and we want to insert post-inc expressions before
2246   // the backedge.
2247   BasicBlock *LatchBlock = L->getLoopLatch();
2248   SmallVector<BasicBlock*, 8> ExitingBlocks;
2249   L->getExitingBlocks(ExitingBlocks);
2250   if (llvm::all_of(ExitingBlocks, [&LatchBlock](const BasicBlock *BB) {
2251         return LatchBlock != BB;
2252       })) {
2253     // The backedge doesn't exit the loop; treat this as a head-tested loop.
2254     IVIncInsertPos = LatchBlock->getTerminator();
2255     return;
2256   }
2257 
2258   // Otherwise treat this as a rotated loop.
2259   for (BasicBlock *ExitingBlock : ExitingBlocks) {
2260 
2261     // Get the terminating condition for the loop if possible.  If we
2262     // can, we want to change it to use a post-incremented version of its
2263     // induction variable, to allow coalescing the live ranges for the IV into
2264     // one register value.
2265 
2266     BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
2267     if (!TermBr)
2268       continue;
2269     // FIXME: Overly conservative, termination condition could be an 'or' etc..
2270     if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
2271       continue;
2272 
2273     // Search IVUsesByStride to find Cond's IVUse if there is one.
2274     IVStrideUse *CondUse = nullptr;
2275     ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
2276     if (!FindIVUserForCond(Cond, CondUse))
2277       continue;
2278 
2279     // If the trip count is computed in terms of a max (due to ScalarEvolution
2280     // being unable to find a sufficient guard, for example), change the loop
2281     // comparison to use SLT or ULT instead of NE.
2282     // One consequence of doing this now is that it disrupts the count-down
2283     // optimization. That's not always a bad thing though, because in such
2284     // cases it may still be worthwhile to avoid a max.
2285     Cond = OptimizeMax(Cond, CondUse);
2286 
2287     // If this exiting block dominates the latch block, it may also use
2288     // the post-inc value if it won't be shared with other uses.
2289     // Check for dominance.
2290     if (!DT.dominates(ExitingBlock, LatchBlock))
2291       continue;
2292 
2293     // Conservatively avoid trying to use the post-inc value in non-latch
2294     // exits if there may be pre-inc users in intervening blocks.
2295     if (LatchBlock != ExitingBlock)
2296       for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
2297         // Test if the use is reachable from the exiting block. This dominator
2298         // query is a conservative approximation of reachability.
2299         if (&*UI != CondUse &&
2300             !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
2301           // Conservatively assume there may be reuse if the quotient of their
2302           // strides could be a legal scale.
2303           const SCEV *A = IU.getStride(*CondUse, L);
2304           const SCEV *B = IU.getStride(*UI, L);
2305           if (!A || !B) continue;
2306           if (SE.getTypeSizeInBits(A->getType()) !=
2307               SE.getTypeSizeInBits(B->getType())) {
2308             if (SE.getTypeSizeInBits(A->getType()) >
2309                 SE.getTypeSizeInBits(B->getType()))
2310               B = SE.getSignExtendExpr(B, A->getType());
2311             else
2312               A = SE.getSignExtendExpr(A, B->getType());
2313           }
2314           if (const SCEVConstant *D =
2315                 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
2316             const ConstantInt *C = D->getValue();
2317             // Stride of one or negative one can have reuse with non-addresses.
2318             if (C->isOne() || C->isAllOnesValue())
2319               goto decline_post_inc;
2320             // Avoid weird situations.
2321             if (C->getValue().getMinSignedBits() >= 64 ||
2322                 C->getValue().isMinSignedValue())
2323               goto decline_post_inc;
2324             // Check for possible scaled-address reuse.
2325             MemAccessTy AccessTy = getAccessType(UI->getUser());
2326             int64_t Scale = C->getSExtValue();
2327             if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2328                                           /*BaseOffset=*/0,
2329                                           /*HasBaseReg=*/false, Scale,
2330                                           AccessTy.AddrSpace))
2331               goto decline_post_inc;
2332             Scale = -Scale;
2333             if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2334                                           /*BaseOffset=*/0,
2335                                           /*HasBaseReg=*/false, Scale,
2336                                           AccessTy.AddrSpace))
2337               goto decline_post_inc;
2338           }
2339         }
2340 
2341     DEBUG(dbgs() << "  Change loop exiting icmp to use postinc iv: "
2342                  << *Cond << '\n');
2343 
2344     // It's possible for the setcc instruction to be anywhere in the loop, and
2345     // possible for it to have multiple users.  If it is not immediately before
2346     // the exiting block branch, move it.
2347     if (&*++BasicBlock::iterator(Cond) != TermBr) {
2348       if (Cond->hasOneUse()) {
2349         Cond->moveBefore(TermBr);
2350       } else {
2351         // Clone the terminating condition and insert into the loopend.
2352         ICmpInst *OldCond = Cond;
2353         Cond = cast<ICmpInst>(Cond->clone());
2354         Cond->setName(L->getHeader()->getName() + ".termcond");
2355         ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond);
2356 
2357         // Clone the IVUse, as the old use still exists!
2358         CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
2359         TermBr->replaceUsesOfWith(OldCond, Cond);
2360       }
2361     }
2362 
2363     // If we get to here, we know that we can transform the setcc instruction to
2364     // use the post-incremented version of the IV, allowing us to coalesce the
2365     // live ranges for the IV correctly.
2366     CondUse->transformToPostInc(L);
2367     Changed = true;
2368 
2369     PostIncs.insert(Cond);
2370   decline_post_inc:;
2371   }
2372 
2373   // Determine an insertion point for the loop induction variable increment. It
2374   // must dominate all the post-inc comparisons we just set up, and it must
2375   // dominate the loop latch edge.
2376   IVIncInsertPos = L->getLoopLatch()->getTerminator();
2377   for (Instruction *Inst : PostIncs) {
2378     BasicBlock *BB =
2379       DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
2380                                     Inst->getParent());
2381     if (BB == Inst->getParent())
2382       IVIncInsertPos = Inst;
2383     else if (BB != IVIncInsertPos->getParent())
2384       IVIncInsertPos = BB->getTerminator();
2385   }
2386 }
2387 
2388 /// Determine if the given use can accommodate a fixup at the given offset and
2389 /// other details. If so, update the use and return true.
2390 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset,
2391                                      bool HasBaseReg, LSRUse::KindType Kind,
2392                                      MemAccessTy AccessTy) {
2393   int64_t NewMinOffset = LU.MinOffset;
2394   int64_t NewMaxOffset = LU.MaxOffset;
2395   MemAccessTy NewAccessTy = AccessTy;
2396 
2397   // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
2398   // something conservative, however this can pessimize in the case that one of
2399   // the uses will have all its uses outside the loop, for example.
2400   if (LU.Kind != Kind)
2401     return false;
2402 
2403   // Check for a mismatched access type, and fall back conservatively as needed.
2404   // TODO: Be less conservative when the type is similar and can use the same
2405   // addressing modes.
2406   if (Kind == LSRUse::Address) {
2407     if (AccessTy.MemTy != LU.AccessTy.MemTy) {
2408       NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(),
2409                                             AccessTy.AddrSpace);
2410     }
2411   }
2412 
2413   // Conservatively assume HasBaseReg is true for now.
2414   if (NewOffset < LU.MinOffset) {
2415     if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2416                           LU.MaxOffset - NewOffset, HasBaseReg))
2417       return false;
2418     NewMinOffset = NewOffset;
2419   } else if (NewOffset > LU.MaxOffset) {
2420     if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2421                           NewOffset - LU.MinOffset, HasBaseReg))
2422       return false;
2423     NewMaxOffset = NewOffset;
2424   }
2425 
2426   // Update the use.
2427   LU.MinOffset = NewMinOffset;
2428   LU.MaxOffset = NewMaxOffset;
2429   LU.AccessTy = NewAccessTy;
2430   return true;
2431 }
2432 
2433 /// Return an LSRUse index and an offset value for a fixup which needs the given
2434 /// expression, with the given kind and optional access type.  Either reuse an
2435 /// existing use or create a new one, as needed.
2436 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr,
2437                                                LSRUse::KindType Kind,
2438                                                MemAccessTy AccessTy) {
2439   const SCEV *Copy = Expr;
2440   int64_t Offset = ExtractImmediate(Expr, SE);
2441 
2442   // Basic uses can't accept any offset, for example.
2443   if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr,
2444                         Offset, /*HasBaseReg=*/ true)) {
2445     Expr = Copy;
2446     Offset = 0;
2447   }
2448 
2449   std::pair<UseMapTy::iterator, bool> P =
2450     UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0));
2451   if (!P.second) {
2452     // A use already existed with this base.
2453     size_t LUIdx = P.first->second;
2454     LSRUse &LU = Uses[LUIdx];
2455     if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
2456       // Reuse this use.
2457       return std::make_pair(LUIdx, Offset);
2458   }
2459 
2460   // Create a new use.
2461   size_t LUIdx = Uses.size();
2462   P.first->second = LUIdx;
2463   Uses.push_back(LSRUse(Kind, AccessTy));
2464   LSRUse &LU = Uses[LUIdx];
2465 
2466   LU.MinOffset = Offset;
2467   LU.MaxOffset = Offset;
2468   return std::make_pair(LUIdx, Offset);
2469 }
2470 
2471 /// Delete the given use from the Uses list.
2472 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) {
2473   if (&LU != &Uses.back())
2474     std::swap(LU, Uses.back());
2475   Uses.pop_back();
2476 
2477   // Update RegUses.
2478   RegUses.swapAndDropUse(LUIdx, Uses.size());
2479 }
2480 
2481 /// Look for a use distinct from OrigLU which is has a formula that has the same
2482 /// registers as the given formula.
2483 LSRUse *
2484 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
2485                                        const LSRUse &OrigLU) {
2486   // Search all uses for the formula. This could be more clever.
2487   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2488     LSRUse &LU = Uses[LUIdx];
2489     // Check whether this use is close enough to OrigLU, to see whether it's
2490     // worthwhile looking through its formulae.
2491     // Ignore ICmpZero uses because they may contain formulae generated by
2492     // GenerateICmpZeroScales, in which case adding fixup offsets may
2493     // be invalid.
2494     if (&LU != &OrigLU &&
2495         LU.Kind != LSRUse::ICmpZero &&
2496         LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
2497         LU.WidestFixupType == OrigLU.WidestFixupType &&
2498         LU.HasFormulaWithSameRegs(OrigF)) {
2499       // Scan through this use's formulae.
2500       for (const Formula &F : LU.Formulae) {
2501         // Check to see if this formula has the same registers and symbols
2502         // as OrigF.
2503         if (F.BaseRegs == OrigF.BaseRegs &&
2504             F.ScaledReg == OrigF.ScaledReg &&
2505             F.BaseGV == OrigF.BaseGV &&
2506             F.Scale == OrigF.Scale &&
2507             F.UnfoldedOffset == OrigF.UnfoldedOffset) {
2508           if (F.BaseOffset == 0)
2509             return &LU;
2510           // This is the formula where all the registers and symbols matched;
2511           // there aren't going to be any others. Since we declined it, we
2512           // can skip the rest of the formulae and proceed to the next LSRUse.
2513           break;
2514         }
2515       }
2516     }
2517   }
2518 
2519   // Nothing looked good.
2520   return nullptr;
2521 }
2522 
2523 void LSRInstance::CollectInterestingTypesAndFactors() {
2524   SmallSetVector<const SCEV *, 4> Strides;
2525 
2526   // Collect interesting types and strides.
2527   SmallVector<const SCEV *, 4> Worklist;
2528   for (const IVStrideUse &U : IU) {
2529     const SCEV *Expr = IU.getExpr(U);
2530 
2531     // Collect interesting types.
2532     Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
2533 
2534     // Add strides for mentioned loops.
2535     Worklist.push_back(Expr);
2536     do {
2537       const SCEV *S = Worklist.pop_back_val();
2538       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2539         if (AR->getLoop() == L)
2540           Strides.insert(AR->getStepRecurrence(SE));
2541         Worklist.push_back(AR->getStart());
2542       } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2543         Worklist.append(Add->op_begin(), Add->op_end());
2544       }
2545     } while (!Worklist.empty());
2546   }
2547 
2548   // Compute interesting factors from the set of interesting strides.
2549   for (SmallSetVector<const SCEV *, 4>::const_iterator
2550        I = Strides.begin(), E = Strides.end(); I != E; ++I)
2551     for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
2552          std::next(I); NewStrideIter != E; ++NewStrideIter) {
2553       const SCEV *OldStride = *I;
2554       const SCEV *NewStride = *NewStrideIter;
2555 
2556       if (SE.getTypeSizeInBits(OldStride->getType()) !=
2557           SE.getTypeSizeInBits(NewStride->getType())) {
2558         if (SE.getTypeSizeInBits(OldStride->getType()) >
2559             SE.getTypeSizeInBits(NewStride->getType()))
2560           NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
2561         else
2562           OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
2563       }
2564       if (const SCEVConstant *Factor =
2565             dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
2566                                                         SE, true))) {
2567         if (Factor->getAPInt().getMinSignedBits() <= 64)
2568           Factors.insert(Factor->getAPInt().getSExtValue());
2569       } else if (const SCEVConstant *Factor =
2570                    dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
2571                                                                NewStride,
2572                                                                SE, true))) {
2573         if (Factor->getAPInt().getMinSignedBits() <= 64)
2574           Factors.insert(Factor->getAPInt().getSExtValue());
2575       }
2576     }
2577 
2578   // If all uses use the same type, don't bother looking for truncation-based
2579   // reuse.
2580   if (Types.size() == 1)
2581     Types.clear();
2582 
2583   DEBUG(print_factors_and_types(dbgs()));
2584 }
2585 
2586 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in
2587 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to
2588 /// IVStrideUses, we could partially skip this.
2589 static User::op_iterator
2590 findIVOperand(User::op_iterator OI, User::op_iterator OE,
2591               Loop *L, ScalarEvolution &SE) {
2592   for(; OI != OE; ++OI) {
2593     if (Instruction *Oper = dyn_cast<Instruction>(*OI)) {
2594       if (!SE.isSCEVable(Oper->getType()))
2595         continue;
2596 
2597       if (const SCEVAddRecExpr *AR =
2598           dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) {
2599         if (AR->getLoop() == L)
2600           break;
2601       }
2602     }
2603   }
2604   return OI;
2605 }
2606 
2607 /// IVChain logic must consistenctly peek base TruncInst operands, so wrap it in
2608 /// a convenient helper.
2609 static Value *getWideOperand(Value *Oper) {
2610   if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper))
2611     return Trunc->getOperand(0);
2612   return Oper;
2613 }
2614 
2615 /// Return true if we allow an IV chain to include both types.
2616 static bool isCompatibleIVType(Value *LVal, Value *RVal) {
2617   Type *LType = LVal->getType();
2618   Type *RType = RVal->getType();
2619   return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy() &&
2620                               // Different address spaces means (possibly)
2621                               // different types of the pointer implementation,
2622                               // e.g. i16 vs i32 so disallow that.
2623                               (LType->getPointerAddressSpace() ==
2624                                RType->getPointerAddressSpace()));
2625 }
2626 
2627 /// Return an approximation of this SCEV expression's "base", or NULL for any
2628 /// constant. Returning the expression itself is conservative. Returning a
2629 /// deeper subexpression is more precise and valid as long as it isn't less
2630 /// complex than another subexpression. For expressions involving multiple
2631 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids
2632 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i],
2633 /// IVInc==b-a.
2634 ///
2635 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost
2636 /// SCEVUnknown, we simply return the rightmost SCEV operand.
2637 static const SCEV *getExprBase(const SCEV *S) {
2638   switch (S->getSCEVType()) {
2639   default: // uncluding scUnknown.
2640     return S;
2641   case scConstant:
2642     return nullptr;
2643   case scTruncate:
2644     return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand());
2645   case scZeroExtend:
2646     return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand());
2647   case scSignExtend:
2648     return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand());
2649   case scAddExpr: {
2650     // Skip over scaled operands (scMulExpr) to follow add operands as long as
2651     // there's nothing more complex.
2652     // FIXME: not sure if we want to recognize negation.
2653     const SCEVAddExpr *Add = cast<SCEVAddExpr>(S);
2654     for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()),
2655            E(Add->op_begin()); I != E; ++I) {
2656       const SCEV *SubExpr = *I;
2657       if (SubExpr->getSCEVType() == scAddExpr)
2658         return getExprBase(SubExpr);
2659 
2660       if (SubExpr->getSCEVType() != scMulExpr)
2661         return SubExpr;
2662     }
2663     return S; // all operands are scaled, be conservative.
2664   }
2665   case scAddRecExpr:
2666     return getExprBase(cast<SCEVAddRecExpr>(S)->getStart());
2667   }
2668 }
2669 
2670 /// Return true if the chain increment is profitable to expand into a loop
2671 /// invariant value, which may require its own register. A profitable chain
2672 /// increment will be an offset relative to the same base. We allow such offsets
2673 /// to potentially be used as chain increment as long as it's not obviously
2674 /// expensive to expand using real instructions.
2675 bool IVChain::isProfitableIncrement(const SCEV *OperExpr,
2676                                     const SCEV *IncExpr,
2677                                     ScalarEvolution &SE) {
2678   // Aggressively form chains when -stress-ivchain.
2679   if (StressIVChain)
2680     return true;
2681 
2682   // Do not replace a constant offset from IV head with a nonconstant IV
2683   // increment.
2684   if (!isa<SCEVConstant>(IncExpr)) {
2685     const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand));
2686     if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr)))
2687       return false;
2688   }
2689 
2690   SmallPtrSet<const SCEV*, 8> Processed;
2691   return !isHighCostExpansion(IncExpr, Processed, SE);
2692 }
2693 
2694 /// Return true if the number of registers needed for the chain is estimated to
2695 /// be less than the number required for the individual IV users. First prohibit
2696 /// any IV users that keep the IV live across increments (the Users set should
2697 /// be empty). Next count the number and type of increments in the chain.
2698 ///
2699 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't
2700 /// effectively use postinc addressing modes. Only consider it profitable it the
2701 /// increments can be computed in fewer registers when chained.
2702 ///
2703 /// TODO: Consider IVInc free if it's already used in another chains.
2704 static bool
2705 isProfitableChain(IVChain &Chain, SmallPtrSetImpl<Instruction*> &Users,
2706                   ScalarEvolution &SE, const TargetTransformInfo &TTI) {
2707   if (StressIVChain)
2708     return true;
2709 
2710   if (!Chain.hasIncs())
2711     return false;
2712 
2713   if (!Users.empty()) {
2714     DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n";
2715           for (Instruction *Inst : Users) {
2716             dbgs() << "  " << *Inst << "\n";
2717           });
2718     return false;
2719   }
2720   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
2721 
2722   // The chain itself may require a register, so intialize cost to 1.
2723   int cost = 1;
2724 
2725   // A complete chain likely eliminates the need for keeping the original IV in
2726   // a register. LSR does not currently know how to form a complete chain unless
2727   // the header phi already exists.
2728   if (isa<PHINode>(Chain.tailUserInst())
2729       && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) {
2730     --cost;
2731   }
2732   const SCEV *LastIncExpr = nullptr;
2733   unsigned NumConstIncrements = 0;
2734   unsigned NumVarIncrements = 0;
2735   unsigned NumReusedIncrements = 0;
2736   for (const IVInc &Inc : Chain) {
2737     if (Inc.IncExpr->isZero())
2738       continue;
2739 
2740     // Incrementing by zero or some constant is neutral. We assume constants can
2741     // be folded into an addressing mode or an add's immediate operand.
2742     if (isa<SCEVConstant>(Inc.IncExpr)) {
2743       ++NumConstIncrements;
2744       continue;
2745     }
2746 
2747     if (Inc.IncExpr == LastIncExpr)
2748       ++NumReusedIncrements;
2749     else
2750       ++NumVarIncrements;
2751 
2752     LastIncExpr = Inc.IncExpr;
2753   }
2754   // An IV chain with a single increment is handled by LSR's postinc
2755   // uses. However, a chain with multiple increments requires keeping the IV's
2756   // value live longer than it needs to be if chained.
2757   if (NumConstIncrements > 1)
2758     --cost;
2759 
2760   // Materializing increment expressions in the preheader that didn't exist in
2761   // the original code may cost a register. For example, sign-extended array
2762   // indices can produce ridiculous increments like this:
2763   // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64)))
2764   cost += NumVarIncrements;
2765 
2766   // Reusing variable increments likely saves a register to hold the multiple of
2767   // the stride.
2768   cost -= NumReusedIncrements;
2769 
2770   DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost
2771                << "\n");
2772 
2773   return cost < 0;
2774 }
2775 
2776 /// Add this IV user to an existing chain or make it the head of a new chain.
2777 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper,
2778                                    SmallVectorImpl<ChainUsers> &ChainUsersVec) {
2779   // When IVs are used as types of varying widths, they are generally converted
2780   // to a wider type with some uses remaining narrow under a (free) trunc.
2781   Value *const NextIV = getWideOperand(IVOper);
2782   const SCEV *const OperExpr = SE.getSCEV(NextIV);
2783   const SCEV *const OperExprBase = getExprBase(OperExpr);
2784 
2785   // Visit all existing chains. Check if its IVOper can be computed as a
2786   // profitable loop invariant increment from the last link in the Chain.
2787   unsigned ChainIdx = 0, NChains = IVChainVec.size();
2788   const SCEV *LastIncExpr = nullptr;
2789   for (; ChainIdx < NChains; ++ChainIdx) {
2790     IVChain &Chain = IVChainVec[ChainIdx];
2791 
2792     // Prune the solution space aggressively by checking that both IV operands
2793     // are expressions that operate on the same unscaled SCEVUnknown. This
2794     // "base" will be canceled by the subsequent getMinusSCEV call. Checking
2795     // first avoids creating extra SCEV expressions.
2796     if (!StressIVChain && Chain.ExprBase != OperExprBase)
2797       continue;
2798 
2799     Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand);
2800     if (!isCompatibleIVType(PrevIV, NextIV))
2801       continue;
2802 
2803     // A phi node terminates a chain.
2804     if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst()))
2805       continue;
2806 
2807     // The increment must be loop-invariant so it can be kept in a register.
2808     const SCEV *PrevExpr = SE.getSCEV(PrevIV);
2809     const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr);
2810     if (!SE.isLoopInvariant(IncExpr, L))
2811       continue;
2812 
2813     if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) {
2814       LastIncExpr = IncExpr;
2815       break;
2816     }
2817   }
2818   // If we haven't found a chain, create a new one, unless we hit the max. Don't
2819   // bother for phi nodes, because they must be last in the chain.
2820   if (ChainIdx == NChains) {
2821     if (isa<PHINode>(UserInst))
2822       return;
2823     if (NChains >= MaxChains && !StressIVChain) {
2824       DEBUG(dbgs() << "IV Chain Limit\n");
2825       return;
2826     }
2827     LastIncExpr = OperExpr;
2828     // IVUsers may have skipped over sign/zero extensions. We don't currently
2829     // attempt to form chains involving extensions unless they can be hoisted
2830     // into this loop's AddRec.
2831     if (!isa<SCEVAddRecExpr>(LastIncExpr))
2832       return;
2833     ++NChains;
2834     IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr),
2835                                  OperExprBase));
2836     ChainUsersVec.resize(NChains);
2837     DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst
2838                  << ") IV=" << *LastIncExpr << "\n");
2839   } else {
2840     DEBUG(dbgs() << "IV Chain#" << ChainIdx << "  Inc: (" << *UserInst
2841                  << ") IV+" << *LastIncExpr << "\n");
2842     // Add this IV user to the end of the chain.
2843     IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr));
2844   }
2845   IVChain &Chain = IVChainVec[ChainIdx];
2846 
2847   SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers;
2848   // This chain's NearUsers become FarUsers.
2849   if (!LastIncExpr->isZero()) {
2850     ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(),
2851                                             NearUsers.end());
2852     NearUsers.clear();
2853   }
2854 
2855   // All other uses of IVOperand become near uses of the chain.
2856   // We currently ignore intermediate values within SCEV expressions, assuming
2857   // they will eventually be used be the current chain, or can be computed
2858   // from one of the chain increments. To be more precise we could
2859   // transitively follow its user and only add leaf IV users to the set.
2860   for (User *U : IVOper->users()) {
2861     Instruction *OtherUse = dyn_cast<Instruction>(U);
2862     if (!OtherUse)
2863       continue;
2864     // Uses in the chain will no longer be uses if the chain is formed.
2865     // Include the head of the chain in this iteration (not Chain.begin()).
2866     IVChain::const_iterator IncIter = Chain.Incs.begin();
2867     IVChain::const_iterator IncEnd = Chain.Incs.end();
2868     for( ; IncIter != IncEnd; ++IncIter) {
2869       if (IncIter->UserInst == OtherUse)
2870         break;
2871     }
2872     if (IncIter != IncEnd)
2873       continue;
2874 
2875     if (SE.isSCEVable(OtherUse->getType())
2876         && !isa<SCEVUnknown>(SE.getSCEV(OtherUse))
2877         && IU.isIVUserOrOperand(OtherUse)) {
2878       continue;
2879     }
2880     NearUsers.insert(OtherUse);
2881   }
2882 
2883   // Since this user is part of the chain, it's no longer considered a use
2884   // of the chain.
2885   ChainUsersVec[ChainIdx].FarUsers.erase(UserInst);
2886 }
2887 
2888 /// Populate the vector of Chains.
2889 ///
2890 /// This decreases ILP at the architecture level. Targets with ample registers,
2891 /// multiple memory ports, and no register renaming probably don't want
2892 /// this. However, such targets should probably disable LSR altogether.
2893 ///
2894 /// The job of LSR is to make a reasonable choice of induction variables across
2895 /// the loop. Subsequent passes can easily "unchain" computation exposing more
2896 /// ILP *within the loop* if the target wants it.
2897 ///
2898 /// Finding the best IV chain is potentially a scheduling problem. Since LSR
2899 /// will not reorder memory operations, it will recognize this as a chain, but
2900 /// will generate redundant IV increments. Ideally this would be corrected later
2901 /// by a smart scheduler:
2902 ///        = A[i]
2903 ///        = A[i+x]
2904 /// A[i]   =
2905 /// A[i+x] =
2906 ///
2907 /// TODO: Walk the entire domtree within this loop, not just the path to the
2908 /// loop latch. This will discover chains on side paths, but requires
2909 /// maintaining multiple copies of the Chains state.
2910 void LSRInstance::CollectChains() {
2911   DEBUG(dbgs() << "Collecting IV Chains.\n");
2912   SmallVector<ChainUsers, 8> ChainUsersVec;
2913 
2914   SmallVector<BasicBlock *,8> LatchPath;
2915   BasicBlock *LoopHeader = L->getHeader();
2916   for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch());
2917        Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) {
2918     LatchPath.push_back(Rung->getBlock());
2919   }
2920   LatchPath.push_back(LoopHeader);
2921 
2922   // Walk the instruction stream from the loop header to the loop latch.
2923   for (BasicBlock *BB : reverse(LatchPath)) {
2924     for (Instruction &I : *BB) {
2925       // Skip instructions that weren't seen by IVUsers analysis.
2926       if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I))
2927         continue;
2928 
2929       // Ignore users that are part of a SCEV expression. This way we only
2930       // consider leaf IV Users. This effectively rediscovers a portion of
2931       // IVUsers analysis but in program order this time.
2932       if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I)))
2933         continue;
2934 
2935       // Remove this instruction from any NearUsers set it may be in.
2936       for (unsigned ChainIdx = 0, NChains = IVChainVec.size();
2937            ChainIdx < NChains; ++ChainIdx) {
2938         ChainUsersVec[ChainIdx].NearUsers.erase(&I);
2939       }
2940       // Search for operands that can be chained.
2941       SmallPtrSet<Instruction*, 4> UniqueOperands;
2942       User::op_iterator IVOpEnd = I.op_end();
2943       User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE);
2944       while (IVOpIter != IVOpEnd) {
2945         Instruction *IVOpInst = cast<Instruction>(*IVOpIter);
2946         if (UniqueOperands.insert(IVOpInst).second)
2947           ChainInstruction(&I, IVOpInst, ChainUsersVec);
2948         IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
2949       }
2950     } // Continue walking down the instructions.
2951   } // Continue walking down the domtree.
2952   // Visit phi backedges to determine if the chain can generate the IV postinc.
2953   for (BasicBlock::iterator I = L->getHeader()->begin();
2954        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
2955     if (!SE.isSCEVable(PN->getType()))
2956       continue;
2957 
2958     Instruction *IncV =
2959       dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch()));
2960     if (IncV)
2961       ChainInstruction(PN, IncV, ChainUsersVec);
2962   }
2963   // Remove any unprofitable chains.
2964   unsigned ChainIdx = 0;
2965   for (unsigned UsersIdx = 0, NChains = IVChainVec.size();
2966        UsersIdx < NChains; ++UsersIdx) {
2967     if (!isProfitableChain(IVChainVec[UsersIdx],
2968                            ChainUsersVec[UsersIdx].FarUsers, SE, TTI))
2969       continue;
2970     // Preserve the chain at UsesIdx.
2971     if (ChainIdx != UsersIdx)
2972       IVChainVec[ChainIdx] = IVChainVec[UsersIdx];
2973     FinalizeChain(IVChainVec[ChainIdx]);
2974     ++ChainIdx;
2975   }
2976   IVChainVec.resize(ChainIdx);
2977 }
2978 
2979 void LSRInstance::FinalizeChain(IVChain &Chain) {
2980   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
2981   DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n");
2982 
2983   for (const IVInc &Inc : Chain) {
2984     DEBUG(dbgs() << "        Inc: " << *Inc.UserInst << "\n");
2985     auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand);
2986     assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand");
2987     IVIncSet.insert(UseI);
2988   }
2989 }
2990 
2991 /// Return true if the IVInc can be folded into an addressing mode.
2992 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst,
2993                              Value *Operand, const TargetTransformInfo &TTI) {
2994   const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr);
2995   if (!IncConst || !isAddressUse(UserInst, Operand))
2996     return false;
2997 
2998   if (IncConst->getAPInt().getMinSignedBits() > 64)
2999     return false;
3000 
3001   MemAccessTy AccessTy = getAccessType(UserInst);
3002   int64_t IncOffset = IncConst->getValue()->getSExtValue();
3003   if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr,
3004                         IncOffset, /*HaseBaseReg=*/false))
3005     return false;
3006 
3007   return true;
3008 }
3009 
3010 /// Generate an add or subtract for each IVInc in a chain to materialize the IV
3011 /// user's operand from the previous IV user's operand.
3012 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
3013                                   SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
3014   // Find the new IVOperand for the head of the chain. It may have been replaced
3015   // by LSR.
3016   const IVInc &Head = Chain.Incs[0];
3017   User::op_iterator IVOpEnd = Head.UserInst->op_end();
3018   // findIVOperand returns IVOpEnd if it can no longer find a valid IV user.
3019   User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(),
3020                                              IVOpEnd, L, SE);
3021   Value *IVSrc = nullptr;
3022   while (IVOpIter != IVOpEnd) {
3023     IVSrc = getWideOperand(*IVOpIter);
3024 
3025     // If this operand computes the expression that the chain needs, we may use
3026     // it. (Check this after setting IVSrc which is used below.)
3027     //
3028     // Note that if Head.IncExpr is wider than IVSrc, then this phi is too
3029     // narrow for the chain, so we can no longer use it. We do allow using a
3030     // wider phi, assuming the LSR checked for free truncation. In that case we
3031     // should already have a truncate on this operand such that
3032     // getSCEV(IVSrc) == IncExpr.
3033     if (SE.getSCEV(*IVOpIter) == Head.IncExpr
3034         || SE.getSCEV(IVSrc) == Head.IncExpr) {
3035       break;
3036     }
3037     IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
3038   }
3039   if (IVOpIter == IVOpEnd) {
3040     // Gracefully give up on this chain.
3041     DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n");
3042     return;
3043   }
3044 
3045   DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n");
3046   Type *IVTy = IVSrc->getType();
3047   Type *IntTy = SE.getEffectiveSCEVType(IVTy);
3048   const SCEV *LeftOverExpr = nullptr;
3049   for (const IVInc &Inc : Chain) {
3050     Instruction *InsertPt = Inc.UserInst;
3051     if (isa<PHINode>(InsertPt))
3052       InsertPt = L->getLoopLatch()->getTerminator();
3053 
3054     // IVOper will replace the current IV User's operand. IVSrc is the IV
3055     // value currently held in a register.
3056     Value *IVOper = IVSrc;
3057     if (!Inc.IncExpr->isZero()) {
3058       // IncExpr was the result of subtraction of two narrow values, so must
3059       // be signed.
3060       const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy);
3061       LeftOverExpr = LeftOverExpr ?
3062         SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr;
3063     }
3064     if (LeftOverExpr && !LeftOverExpr->isZero()) {
3065       // Expand the IV increment.
3066       Rewriter.clearPostInc();
3067       Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt);
3068       const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc),
3069                                              SE.getUnknown(IncV));
3070       IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt);
3071 
3072       // If an IV increment can't be folded, use it as the next IV value.
3073       if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) {
3074         assert(IVTy == IVOper->getType() && "inconsistent IV increment type");
3075         IVSrc = IVOper;
3076         LeftOverExpr = nullptr;
3077       }
3078     }
3079     Type *OperTy = Inc.IVOperand->getType();
3080     if (IVTy != OperTy) {
3081       assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) &&
3082              "cannot extend a chained IV");
3083       IRBuilder<> Builder(InsertPt);
3084       IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain");
3085     }
3086     Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper);
3087     DeadInsts.emplace_back(Inc.IVOperand);
3088   }
3089   // If LSR created a new, wider phi, we may also replace its postinc. We only
3090   // do this if we also found a wide value for the head of the chain.
3091   if (isa<PHINode>(Chain.tailUserInst())) {
3092     for (BasicBlock::iterator I = L->getHeader()->begin();
3093          PHINode *Phi = dyn_cast<PHINode>(I); ++I) {
3094       if (!isCompatibleIVType(Phi, IVSrc))
3095         continue;
3096       Instruction *PostIncV = dyn_cast<Instruction>(
3097         Phi->getIncomingValueForBlock(L->getLoopLatch()));
3098       if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc)))
3099         continue;
3100       Value *IVOper = IVSrc;
3101       Type *PostIncTy = PostIncV->getType();
3102       if (IVTy != PostIncTy) {
3103         assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types");
3104         IRBuilder<> Builder(L->getLoopLatch()->getTerminator());
3105         Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc());
3106         IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain");
3107       }
3108       Phi->replaceUsesOfWith(PostIncV, IVOper);
3109       DeadInsts.emplace_back(PostIncV);
3110     }
3111   }
3112 }
3113 
3114 void LSRInstance::CollectFixupsAndInitialFormulae() {
3115   for (const IVStrideUse &U : IU) {
3116     Instruction *UserInst = U.getUser();
3117     // Skip IV users that are part of profitable IV Chains.
3118     User::op_iterator UseI =
3119         find(UserInst->operands(), U.getOperandValToReplace());
3120     assert(UseI != UserInst->op_end() && "cannot find IV operand");
3121     if (IVIncSet.count(UseI)) {
3122       DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n');
3123       continue;
3124     }
3125 
3126     LSRUse::KindType Kind = LSRUse::Basic;
3127     MemAccessTy AccessTy;
3128     if (isAddressUse(UserInst, U.getOperandValToReplace())) {
3129       Kind = LSRUse::Address;
3130       AccessTy = getAccessType(UserInst);
3131     }
3132 
3133     const SCEV *S = IU.getExpr(U);
3134     PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops();
3135 
3136     // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
3137     // (N - i == 0), and this allows (N - i) to be the expression that we work
3138     // with rather than just N or i, so we can consider the register
3139     // requirements for both N and i at the same time. Limiting this code to
3140     // equality icmps is not a problem because all interesting loops use
3141     // equality icmps, thanks to IndVarSimplify.
3142     if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst))
3143       if (CI->isEquality()) {
3144         // Swap the operands if needed to put the OperandValToReplace on the
3145         // left, for consistency.
3146         Value *NV = CI->getOperand(1);
3147         if (NV == U.getOperandValToReplace()) {
3148           CI->setOperand(1, CI->getOperand(0));
3149           CI->setOperand(0, NV);
3150           NV = CI->getOperand(1);
3151           Changed = true;
3152         }
3153 
3154         // x == y  -->  x - y == 0
3155         const SCEV *N = SE.getSCEV(NV);
3156         if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) {
3157           // S is normalized, so normalize N before folding it into S
3158           // to keep the result normalized.
3159           N = normalizeForPostIncUse(N, TmpPostIncLoops, SE);
3160           Kind = LSRUse::ICmpZero;
3161           S = SE.getMinusSCEV(N, S);
3162         }
3163 
3164         // -1 and the negations of all interesting strides (except the negation
3165         // of -1) are now also interesting.
3166         for (size_t i = 0, e = Factors.size(); i != e; ++i)
3167           if (Factors[i] != -1)
3168             Factors.insert(-(uint64_t)Factors[i]);
3169         Factors.insert(-1);
3170       }
3171 
3172     // Get or create an LSRUse.
3173     std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
3174     size_t LUIdx = P.first;
3175     int64_t Offset = P.second;
3176     LSRUse &LU = Uses[LUIdx];
3177 
3178     // Record the fixup.
3179     LSRFixup &LF = LU.getNewFixup();
3180     LF.UserInst = UserInst;
3181     LF.OperandValToReplace = U.getOperandValToReplace();
3182     LF.PostIncLoops = TmpPostIncLoops;
3183     LF.Offset = Offset;
3184     LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3185 
3186     if (!LU.WidestFixupType ||
3187         SE.getTypeSizeInBits(LU.WidestFixupType) <
3188         SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3189       LU.WidestFixupType = LF.OperandValToReplace->getType();
3190 
3191     // If this is the first use of this LSRUse, give it a formula.
3192     if (LU.Formulae.empty()) {
3193       InsertInitialFormula(S, LU, LUIdx);
3194       CountRegisters(LU.Formulae.back(), LUIdx);
3195     }
3196   }
3197 
3198   DEBUG(print_fixups(dbgs()));
3199 }
3200 
3201 /// Insert a formula for the given expression into the given use, separating out
3202 /// loop-variant portions from loop-invariant and loop-computable portions.
3203 void
3204 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
3205   // Mark uses whose expressions cannot be expanded.
3206   if (!isSafeToExpand(S, SE))
3207     LU.RigidFormula = true;
3208 
3209   Formula F;
3210   F.initialMatch(S, L, SE);
3211   bool Inserted = InsertFormula(LU, LUIdx, F);
3212   assert(Inserted && "Initial formula already exists!"); (void)Inserted;
3213 }
3214 
3215 /// Insert a simple single-register formula for the given expression into the
3216 /// given use.
3217 void
3218 LSRInstance::InsertSupplementalFormula(const SCEV *S,
3219                                        LSRUse &LU, size_t LUIdx) {
3220   Formula F;
3221   F.BaseRegs.push_back(S);
3222   F.HasBaseReg = true;
3223   bool Inserted = InsertFormula(LU, LUIdx, F);
3224   assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
3225 }
3226 
3227 /// Note which registers are used by the given formula, updating RegUses.
3228 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
3229   if (F.ScaledReg)
3230     RegUses.countRegister(F.ScaledReg, LUIdx);
3231   for (const SCEV *BaseReg : F.BaseRegs)
3232     RegUses.countRegister(BaseReg, LUIdx);
3233 }
3234 
3235 /// If the given formula has not yet been inserted, add it to the list, and
3236 /// return true. Return false otherwise.
3237 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
3238   // Do not insert formula that we will not be able to expand.
3239   assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) &&
3240          "Formula is illegal");
3241 
3242   if (!LU.InsertFormula(F, *L))
3243     return false;
3244 
3245   CountRegisters(F, LUIdx);
3246   return true;
3247 }
3248 
3249 /// Check for other uses of loop-invariant values which we're tracking. These
3250 /// other uses will pin these values in registers, making them less profitable
3251 /// for elimination.
3252 /// TODO: This currently misses non-constant addrec step registers.
3253 /// TODO: Should this give more weight to users inside the loop?
3254 void
3255 LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
3256   SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
3257   SmallPtrSet<const SCEV *, 32> Visited;
3258 
3259   while (!Worklist.empty()) {
3260     const SCEV *S = Worklist.pop_back_val();
3261 
3262     // Don't process the same SCEV twice
3263     if (!Visited.insert(S).second)
3264       continue;
3265 
3266     if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
3267       Worklist.append(N->op_begin(), N->op_end());
3268     else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
3269       Worklist.push_back(C->getOperand());
3270     else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
3271       Worklist.push_back(D->getLHS());
3272       Worklist.push_back(D->getRHS());
3273     } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) {
3274       const Value *V = US->getValue();
3275       if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
3276         // Look for instructions defined outside the loop.
3277         if (L->contains(Inst)) continue;
3278       } else if (isa<UndefValue>(V))
3279         // Undef doesn't have a live range, so it doesn't matter.
3280         continue;
3281       for (const Use &U : V->uses()) {
3282         const Instruction *UserInst = dyn_cast<Instruction>(U.getUser());
3283         // Ignore non-instructions.
3284         if (!UserInst)
3285           continue;
3286         // Ignore instructions in other functions (as can happen with
3287         // Constants).
3288         if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
3289           continue;
3290         // Ignore instructions not dominated by the loop.
3291         const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
3292           UserInst->getParent() :
3293           cast<PHINode>(UserInst)->getIncomingBlock(
3294             PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
3295         if (!DT.dominates(L->getHeader(), UseBB))
3296           continue;
3297         // Don't bother if the instruction is in a BB which ends in an EHPad.
3298         if (UseBB->getTerminator()->isEHPad())
3299           continue;
3300         // Don't bother rewriting PHIs in catchswitch blocks.
3301         if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator()))
3302           continue;
3303         // Ignore uses which are part of other SCEV expressions, to avoid
3304         // analyzing them multiple times.
3305         if (SE.isSCEVable(UserInst->getType())) {
3306           const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
3307           // If the user is a no-op, look through to its uses.
3308           if (!isa<SCEVUnknown>(UserS))
3309             continue;
3310           if (UserS == US) {
3311             Worklist.push_back(
3312               SE.getUnknown(const_cast<Instruction *>(UserInst)));
3313             continue;
3314           }
3315         }
3316         // Ignore icmp instructions which are already being analyzed.
3317         if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
3318           unsigned OtherIdx = !U.getOperandNo();
3319           Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
3320           if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L))
3321             continue;
3322         }
3323 
3324         std::pair<size_t, int64_t> P = getUse(
3325             S, LSRUse::Basic, MemAccessTy());
3326         size_t LUIdx = P.first;
3327         int64_t Offset = P.second;
3328         LSRUse &LU = Uses[LUIdx];
3329         LSRFixup &LF = LU.getNewFixup();
3330         LF.UserInst = const_cast<Instruction *>(UserInst);
3331         LF.OperandValToReplace = U;
3332         LF.Offset = Offset;
3333         LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3334         if (!LU.WidestFixupType ||
3335             SE.getTypeSizeInBits(LU.WidestFixupType) <
3336             SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3337           LU.WidestFixupType = LF.OperandValToReplace->getType();
3338         InsertSupplementalFormula(US, LU, LUIdx);
3339         CountRegisters(LU.Formulae.back(), Uses.size() - 1);
3340         break;
3341       }
3342     }
3343   }
3344 }
3345 
3346 /// Split S into subexpressions which can be pulled out into separate
3347 /// registers. If C is non-null, multiply each subexpression by C.
3348 ///
3349 /// Return remainder expression after factoring the subexpressions captured by
3350 /// Ops. If Ops is complete, return NULL.
3351 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C,
3352                                    SmallVectorImpl<const SCEV *> &Ops,
3353                                    const Loop *L,
3354                                    ScalarEvolution &SE,
3355                                    unsigned Depth = 0) {
3356   // Arbitrarily cap recursion to protect compile time.
3357   if (Depth >= 3)
3358     return S;
3359 
3360   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3361     // Break out add operands.
3362     for (const SCEV *S : Add->operands()) {
3363       const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1);
3364       if (Remainder)
3365         Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3366     }
3367     return nullptr;
3368   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
3369     // Split a non-zero base out of an addrec.
3370     if (AR->getStart()->isZero() || !AR->isAffine())
3371       return S;
3372 
3373     const SCEV *Remainder = CollectSubexprs(AR->getStart(),
3374                                             C, Ops, L, SE, Depth+1);
3375     // Split the non-zero AddRec unless it is part of a nested recurrence that
3376     // does not pertain to this loop.
3377     if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) {
3378       Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3379       Remainder = nullptr;
3380     }
3381     if (Remainder != AR->getStart()) {
3382       if (!Remainder)
3383         Remainder = SE.getConstant(AR->getType(), 0);
3384       return SE.getAddRecExpr(Remainder,
3385                               AR->getStepRecurrence(SE),
3386                               AR->getLoop(),
3387                               //FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
3388                               SCEV::FlagAnyWrap);
3389     }
3390   } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3391     // Break (C * (a + b + c)) into C*a + C*b + C*c.
3392     if (Mul->getNumOperands() != 2)
3393       return S;
3394     if (const SCEVConstant *Op0 =
3395         dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3396       C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0;
3397       const SCEV *Remainder =
3398         CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1);
3399       if (Remainder)
3400         Ops.push_back(SE.getMulExpr(C, Remainder));
3401       return nullptr;
3402     }
3403   }
3404   return S;
3405 }
3406 
3407 /// \brief Helper function for LSRInstance::GenerateReassociations.
3408 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
3409                                              const Formula &Base,
3410                                              unsigned Depth, size_t Idx,
3411                                              bool IsScaledReg) {
3412   const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3413   SmallVector<const SCEV *, 8> AddOps;
3414   const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE);
3415   if (Remainder)
3416     AddOps.push_back(Remainder);
3417 
3418   if (AddOps.size() == 1)
3419     return;
3420 
3421   for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
3422                                                      JE = AddOps.end();
3423        J != JE; ++J) {
3424 
3425     // Loop-variant "unknown" values are uninteresting; we won't be able to
3426     // do anything meaningful with them.
3427     if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L))
3428       continue;
3429 
3430     // Don't pull a constant into a register if the constant could be folded
3431     // into an immediate field.
3432     if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3433                          LU.AccessTy, *J, Base.getNumRegs() > 1))
3434       continue;
3435 
3436     // Collect all operands except *J.
3437     SmallVector<const SCEV *, 8> InnerAddOps(
3438         ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J);
3439     InnerAddOps.append(std::next(J),
3440                        ((const SmallVector<const SCEV *, 8> &)AddOps).end());
3441 
3442     // Don't leave just a constant behind in a register if the constant could
3443     // be folded into an immediate field.
3444     if (InnerAddOps.size() == 1 &&
3445         isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3446                          LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1))
3447       continue;
3448 
3449     const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
3450     if (InnerSum->isZero())
3451       continue;
3452     Formula F = Base;
3453 
3454     // Add the remaining pieces of the add back into the new formula.
3455     const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum);
3456     if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 &&
3457         TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3458                                 InnerSumSC->getValue()->getZExtValue())) {
3459       F.UnfoldedOffset =
3460           (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue();
3461       if (IsScaledReg)
3462         F.ScaledReg = nullptr;
3463       else
3464         F.BaseRegs.erase(F.BaseRegs.begin() + Idx);
3465     } else if (IsScaledReg)
3466       F.ScaledReg = InnerSum;
3467     else
3468       F.BaseRegs[Idx] = InnerSum;
3469 
3470     // Add J as its own register, or an unfolded immediate.
3471     const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J);
3472     if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 &&
3473         TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3474                                 SC->getValue()->getZExtValue()))
3475       F.UnfoldedOffset =
3476           (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue();
3477     else
3478       F.BaseRegs.push_back(*J);
3479     // We may have changed the number of register in base regs, adjust the
3480     // formula accordingly.
3481     F.canonicalize(*L);
3482 
3483     if (InsertFormula(LU, LUIdx, F))
3484       // If that formula hadn't been seen before, recurse to find more like
3485       // it.
3486       GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth + 1);
3487   }
3488 }
3489 
3490 /// Split out subexpressions from adds and the bases of addrecs.
3491 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
3492                                          Formula Base, unsigned Depth) {
3493   assert(Base.isCanonical(*L) && "Input must be in the canonical form");
3494   // Arbitrarily cap recursion to protect compile time.
3495   if (Depth >= 3)
3496     return;
3497 
3498   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3499     GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i);
3500 
3501   if (Base.Scale == 1)
3502     GenerateReassociationsImpl(LU, LUIdx, Base, Depth,
3503                                /* Idx */ -1, /* IsScaledReg */ true);
3504 }
3505 
3506 ///  Generate a formula consisting of all of the loop-dominating registers added
3507 /// into a single register.
3508 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
3509                                        Formula Base) {
3510   // This method is only interesting on a plurality of registers.
3511   if (Base.BaseRegs.size() + (Base.Scale == 1) <= 1)
3512     return;
3513 
3514   // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before
3515   // processing the formula.
3516   Base.unscale();
3517   Formula F = Base;
3518   F.BaseRegs.clear();
3519   SmallVector<const SCEV *, 4> Ops;
3520   for (const SCEV *BaseReg : Base.BaseRegs) {
3521     if (SE.properlyDominates(BaseReg, L->getHeader()) &&
3522         !SE.hasComputableLoopEvolution(BaseReg, L))
3523       Ops.push_back(BaseReg);
3524     else
3525       F.BaseRegs.push_back(BaseReg);
3526   }
3527   if (Ops.size() > 1) {
3528     const SCEV *Sum = SE.getAddExpr(Ops);
3529     // TODO: If Sum is zero, it probably means ScalarEvolution missed an
3530     // opportunity to fold something. For now, just ignore such cases
3531     // rather than proceed with zero in a register.
3532     if (!Sum->isZero()) {
3533       F.BaseRegs.push_back(Sum);
3534       F.canonicalize(*L);
3535       (void)InsertFormula(LU, LUIdx, F);
3536     }
3537   }
3538 }
3539 
3540 /// \brief Helper function for LSRInstance::GenerateSymbolicOffsets.
3541 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
3542                                               const Formula &Base, size_t Idx,
3543                                               bool IsScaledReg) {
3544   const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3545   GlobalValue *GV = ExtractSymbol(G, SE);
3546   if (G->isZero() || !GV)
3547     return;
3548   Formula F = Base;
3549   F.BaseGV = GV;
3550   if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3551     return;
3552   if (IsScaledReg)
3553     F.ScaledReg = G;
3554   else
3555     F.BaseRegs[Idx] = G;
3556   (void)InsertFormula(LU, LUIdx, F);
3557 }
3558 
3559 /// Generate reuse formulae using symbolic offsets.
3560 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
3561                                           Formula Base) {
3562   // We can't add a symbolic offset if the address already contains one.
3563   if (Base.BaseGV) return;
3564 
3565   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3566     GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i);
3567   if (Base.Scale == 1)
3568     GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1,
3569                                 /* IsScaledReg */ true);
3570 }
3571 
3572 /// \brief Helper function for LSRInstance::GenerateConstantOffsets.
3573 void LSRInstance::GenerateConstantOffsetsImpl(
3574     LSRUse &LU, unsigned LUIdx, const Formula &Base,
3575     const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) {
3576   const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3577   for (int64_t Offset : Worklist) {
3578     Formula F = Base;
3579     F.BaseOffset = (uint64_t)Base.BaseOffset - Offset;
3580     if (isLegalUse(TTI, LU.MinOffset - Offset, LU.MaxOffset - Offset, LU.Kind,
3581                    LU.AccessTy, F)) {
3582       // Add the offset to the base register.
3583       const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G);
3584       // If it cancelled out, drop the base register, otherwise update it.
3585       if (NewG->isZero()) {
3586         if (IsScaledReg) {
3587           F.Scale = 0;
3588           F.ScaledReg = nullptr;
3589         } else
3590           F.deleteBaseReg(F.BaseRegs[Idx]);
3591         F.canonicalize(*L);
3592       } else if (IsScaledReg)
3593         F.ScaledReg = NewG;
3594       else
3595         F.BaseRegs[Idx] = NewG;
3596 
3597       (void)InsertFormula(LU, LUIdx, F);
3598     }
3599   }
3600 
3601   int64_t Imm = ExtractImmediate(G, SE);
3602   if (G->isZero() || Imm == 0)
3603     return;
3604   Formula F = Base;
3605   F.BaseOffset = (uint64_t)F.BaseOffset + Imm;
3606   if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3607     return;
3608   if (IsScaledReg)
3609     F.ScaledReg = G;
3610   else
3611     F.BaseRegs[Idx] = G;
3612   (void)InsertFormula(LU, LUIdx, F);
3613 }
3614 
3615 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
3616 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
3617                                           Formula Base) {
3618   // TODO: For now, just add the min and max offset, because it usually isn't
3619   // worthwhile looking at everything inbetween.
3620   SmallVector<int64_t, 2> Worklist;
3621   Worklist.push_back(LU.MinOffset);
3622   if (LU.MaxOffset != LU.MinOffset)
3623     Worklist.push_back(LU.MaxOffset);
3624 
3625   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3626     GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i);
3627   if (Base.Scale == 1)
3628     GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1,
3629                                 /* IsScaledReg */ true);
3630 }
3631 
3632 /// For ICmpZero, check to see if we can scale up the comparison. For example, x
3633 /// == y -> x*c == y*c.
3634 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
3635                                          Formula Base) {
3636   if (LU.Kind != LSRUse::ICmpZero) return;
3637 
3638   // Determine the integer type for the base formula.
3639   Type *IntTy = Base.getType();
3640   if (!IntTy) return;
3641   if (SE.getTypeSizeInBits(IntTy) > 64) return;
3642 
3643   // Don't do this if there is more than one offset.
3644   if (LU.MinOffset != LU.MaxOffset) return;
3645 
3646   assert(!Base.BaseGV && "ICmpZero use is not legal!");
3647 
3648   // Check each interesting stride.
3649   for (int64_t Factor : Factors) {
3650     // Check that the multiplication doesn't overflow.
3651     if (Base.BaseOffset == INT64_MIN && Factor == -1)
3652       continue;
3653     int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor;
3654     if (NewBaseOffset / Factor != Base.BaseOffset)
3655       continue;
3656     // If the offset will be truncated at this use, check that it is in bounds.
3657     if (!IntTy->isPointerTy() &&
3658         !ConstantInt::isValueValidForType(IntTy, NewBaseOffset))
3659       continue;
3660 
3661     // Check that multiplying with the use offset doesn't overflow.
3662     int64_t Offset = LU.MinOffset;
3663     if (Offset == INT64_MIN && Factor == -1)
3664       continue;
3665     Offset = (uint64_t)Offset * Factor;
3666     if (Offset / Factor != LU.MinOffset)
3667       continue;
3668     // If the offset will be truncated at this use, check that it is in bounds.
3669     if (!IntTy->isPointerTy() &&
3670         !ConstantInt::isValueValidForType(IntTy, Offset))
3671       continue;
3672 
3673     Formula F = Base;
3674     F.BaseOffset = NewBaseOffset;
3675 
3676     // Check that this scale is legal.
3677     if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F))
3678       continue;
3679 
3680     // Compensate for the use having MinOffset built into it.
3681     F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset;
3682 
3683     const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3684 
3685     // Check that multiplying with each base register doesn't overflow.
3686     for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
3687       F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
3688       if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
3689         goto next;
3690     }
3691 
3692     // Check that multiplying with the scaled register doesn't overflow.
3693     if (F.ScaledReg) {
3694       F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
3695       if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
3696         continue;
3697     }
3698 
3699     // Check that multiplying with the unfolded offset doesn't overflow.
3700     if (F.UnfoldedOffset != 0) {
3701       if (F.UnfoldedOffset == INT64_MIN && Factor == -1)
3702         continue;
3703       F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor;
3704       if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset)
3705         continue;
3706       // If the offset will be truncated, check that it is in bounds.
3707       if (!IntTy->isPointerTy() &&
3708           !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset))
3709         continue;
3710     }
3711 
3712     // If we make it here and it's legal, add it.
3713     (void)InsertFormula(LU, LUIdx, F);
3714   next:;
3715   }
3716 }
3717 
3718 /// Generate stride factor reuse formulae by making use of scaled-offset address
3719 /// modes, for example.
3720 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
3721   // Determine the integer type for the base formula.
3722   Type *IntTy = Base.getType();
3723   if (!IntTy) return;
3724 
3725   // If this Formula already has a scaled register, we can't add another one.
3726   // Try to unscale the formula to generate a better scale.
3727   if (Base.Scale != 0 && !Base.unscale())
3728     return;
3729 
3730   assert(Base.Scale == 0 && "unscale did not did its job!");
3731 
3732   // Check each interesting stride.
3733   for (int64_t Factor : Factors) {
3734     Base.Scale = Factor;
3735     Base.HasBaseReg = Base.BaseRegs.size() > 1;
3736     // Check whether this scale is going to be legal.
3737     if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
3738                     Base)) {
3739       // As a special-case, handle special out-of-loop Basic users specially.
3740       // TODO: Reconsider this special case.
3741       if (LU.Kind == LSRUse::Basic &&
3742           isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special,
3743                      LU.AccessTy, Base) &&
3744           LU.AllFixupsOutsideLoop)
3745         LU.Kind = LSRUse::Special;
3746       else
3747         continue;
3748     }
3749     // For an ICmpZero, negating a solitary base register won't lead to
3750     // new solutions.
3751     if (LU.Kind == LSRUse::ICmpZero &&
3752         !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV)
3753       continue;
3754     // For each addrec base reg, if its loop is current loop, apply the scale.
3755     for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
3756       const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i]);
3757       if (AR && (AR->getLoop() == L || LU.AllFixupsOutsideLoop)) {
3758         const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3759         if (FactorS->isZero())
3760           continue;
3761         // Divide out the factor, ignoring high bits, since we'll be
3762         // scaling the value back up in the end.
3763         if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) {
3764           // TODO: This could be optimized to avoid all the copying.
3765           Formula F = Base;
3766           F.ScaledReg = Quotient;
3767           F.deleteBaseReg(F.BaseRegs[i]);
3768           // The canonical representation of 1*reg is reg, which is already in
3769           // Base. In that case, do not try to insert the formula, it will be
3770           // rejected anyway.
3771           if (F.Scale == 1 && (F.BaseRegs.empty() ||
3772                                (AR->getLoop() != L && LU.AllFixupsOutsideLoop)))
3773             continue;
3774           // If AllFixupsOutsideLoop is true and F.Scale is 1, we may generate
3775           // non canonical Formula with ScaledReg's loop not being L.
3776           if (F.Scale == 1 && LU.AllFixupsOutsideLoop)
3777             F.canonicalize(*L);
3778           (void)InsertFormula(LU, LUIdx, F);
3779         }
3780       }
3781     }
3782   }
3783 }
3784 
3785 /// Generate reuse formulae from different IV types.
3786 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
3787   // Don't bother truncating symbolic values.
3788   if (Base.BaseGV) return;
3789 
3790   // Determine the integer type for the base formula.
3791   Type *DstTy = Base.getType();
3792   if (!DstTy) return;
3793   DstTy = SE.getEffectiveSCEVType(DstTy);
3794 
3795   for (Type *SrcTy : Types) {
3796     if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) {
3797       Formula F = Base;
3798 
3799       if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy);
3800       for (const SCEV *&BaseReg : F.BaseRegs)
3801         BaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy);
3802 
3803       // TODO: This assumes we've done basic processing on all uses and
3804       // have an idea what the register usage is.
3805       if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
3806         continue;
3807 
3808       (void)InsertFormula(LU, LUIdx, F);
3809     }
3810   }
3811 }
3812 
3813 namespace {
3814 
3815 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer
3816 /// modifications so that the search phase doesn't have to worry about the data
3817 /// structures moving underneath it.
3818 struct WorkItem {
3819   size_t LUIdx;
3820   int64_t Imm;
3821   const SCEV *OrigReg;
3822 
3823   WorkItem(size_t LI, int64_t I, const SCEV *R)
3824     : LUIdx(LI), Imm(I), OrigReg(R) {}
3825 
3826   void print(raw_ostream &OS) const;
3827   void dump() const;
3828 };
3829 
3830 } // end anonymous namespace
3831 
3832 void WorkItem::print(raw_ostream &OS) const {
3833   OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
3834      << " , add offset " << Imm;
3835 }
3836 
3837 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3838 LLVM_DUMP_METHOD void WorkItem::dump() const {
3839   print(errs()); errs() << '\n';
3840 }
3841 #endif
3842 
3843 /// Look for registers which are a constant distance apart and try to form reuse
3844 /// opportunities between them.
3845 void LSRInstance::GenerateCrossUseConstantOffsets() {
3846   // Group the registers by their value without any added constant offset.
3847   typedef std::map<int64_t, const SCEV *> ImmMapTy;
3848   DenseMap<const SCEV *, ImmMapTy> Map;
3849   DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
3850   SmallVector<const SCEV *, 8> Sequence;
3851   for (const SCEV *Use : RegUses) {
3852     const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify.
3853     int64_t Imm = ExtractImmediate(Reg, SE);
3854     auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy()));
3855     if (Pair.second)
3856       Sequence.push_back(Reg);
3857     Pair.first->second.insert(std::make_pair(Imm, Use));
3858     UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use);
3859   }
3860 
3861   // Now examine each set of registers with the same base value. Build up
3862   // a list of work to do and do the work in a separate step so that we're
3863   // not adding formulae and register counts while we're searching.
3864   SmallVector<WorkItem, 32> WorkItems;
3865   SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
3866   for (const SCEV *Reg : Sequence) {
3867     const ImmMapTy &Imms = Map.find(Reg)->second;
3868 
3869     // It's not worthwhile looking for reuse if there's only one offset.
3870     if (Imms.size() == 1)
3871       continue;
3872 
3873     DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
3874           for (const auto &Entry : Imms)
3875             dbgs() << ' ' << Entry.first;
3876           dbgs() << '\n');
3877 
3878     // Examine each offset.
3879     for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
3880          J != JE; ++J) {
3881       const SCEV *OrigReg = J->second;
3882 
3883       int64_t JImm = J->first;
3884       const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
3885 
3886       if (!isa<SCEVConstant>(OrigReg) &&
3887           UsedByIndicesMap[Reg].count() == 1) {
3888         DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n');
3889         continue;
3890       }
3891 
3892       // Conservatively examine offsets between this orig reg a few selected
3893       // other orig regs.
3894       ImmMapTy::const_iterator OtherImms[] = {
3895         Imms.begin(), std::prev(Imms.end()),
3896         Imms.lower_bound((Imms.begin()->first + std::prev(Imms.end())->first) /
3897                          2)
3898       };
3899       for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
3900         ImmMapTy::const_iterator M = OtherImms[i];
3901         if (M == J || M == JE) continue;
3902 
3903         // Compute the difference between the two.
3904         int64_t Imm = (uint64_t)JImm - M->first;
3905         for (int LUIdx = UsedByIndices.find_first(); LUIdx != -1;
3906              LUIdx = UsedByIndices.find_next(LUIdx))
3907           // Make a memo of this use, offset, and register tuple.
3908           if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second)
3909             WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
3910       }
3911     }
3912   }
3913 
3914   Map.clear();
3915   Sequence.clear();
3916   UsedByIndicesMap.clear();
3917   UniqueItems.clear();
3918 
3919   // Now iterate through the worklist and add new formulae.
3920   for (const WorkItem &WI : WorkItems) {
3921     size_t LUIdx = WI.LUIdx;
3922     LSRUse &LU = Uses[LUIdx];
3923     int64_t Imm = WI.Imm;
3924     const SCEV *OrigReg = WI.OrigReg;
3925 
3926     Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
3927     const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
3928     unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
3929 
3930     // TODO: Use a more targeted data structure.
3931     for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
3932       Formula F = LU.Formulae[L];
3933       // FIXME: The code for the scaled and unscaled registers looks
3934       // very similar but slightly different. Investigate if they
3935       // could be merged. That way, we would not have to unscale the
3936       // Formula.
3937       F.unscale();
3938       // Use the immediate in the scaled register.
3939       if (F.ScaledReg == OrigReg) {
3940         int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale;
3941         // Don't create 50 + reg(-50).
3942         if (F.referencesReg(SE.getSCEV(
3943                    ConstantInt::get(IntTy, -(uint64_t)Offset))))
3944           continue;
3945         Formula NewF = F;
3946         NewF.BaseOffset = Offset;
3947         if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
3948                         NewF))
3949           continue;
3950         NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
3951 
3952         // If the new scale is a constant in a register, and adding the constant
3953         // value to the immediate would produce a value closer to zero than the
3954         // immediate itself, then the formula isn't worthwhile.
3955         if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
3956           if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) &&
3957               (C->getAPInt().abs() * APInt(BitWidth, F.Scale))
3958                   .ule(std::abs(NewF.BaseOffset)))
3959             continue;
3960 
3961         // OK, looks good.
3962         NewF.canonicalize(*this->L);
3963         (void)InsertFormula(LU, LUIdx, NewF);
3964       } else {
3965         // Use the immediate in a base register.
3966         for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
3967           const SCEV *BaseReg = F.BaseRegs[N];
3968           if (BaseReg != OrigReg)
3969             continue;
3970           Formula NewF = F;
3971           NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm;
3972           if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset,
3973                           LU.Kind, LU.AccessTy, NewF)) {
3974             if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm))
3975               continue;
3976             NewF = F;
3977             NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm;
3978           }
3979           NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
3980 
3981           // If the new formula has a constant in a register, and adding the
3982           // constant value to the immediate would produce a value closer to
3983           // zero than the immediate itself, then the formula isn't worthwhile.
3984           for (const SCEV *NewReg : NewF.BaseRegs)
3985             if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg))
3986               if ((C->getAPInt() + NewF.BaseOffset)
3987                       .abs()
3988                       .slt(std::abs(NewF.BaseOffset)) &&
3989                   (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >=
3990                       countTrailingZeros<uint64_t>(NewF.BaseOffset))
3991                 goto skip_formula;
3992 
3993           // Ok, looks good.
3994           NewF.canonicalize(*this->L);
3995           (void)InsertFormula(LU, LUIdx, NewF);
3996           break;
3997         skip_formula:;
3998         }
3999       }
4000     }
4001   }
4002 }
4003 
4004 /// Generate formulae for each use.
4005 void
4006 LSRInstance::GenerateAllReuseFormulae() {
4007   // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
4008   // queries are more precise.
4009   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4010     LSRUse &LU = Uses[LUIdx];
4011     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4012       GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
4013     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4014       GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
4015   }
4016   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4017     LSRUse &LU = Uses[LUIdx];
4018     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4019       GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
4020     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4021       GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
4022     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4023       GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
4024     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4025       GenerateScales(LU, LUIdx, LU.Formulae[i]);
4026   }
4027   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4028     LSRUse &LU = Uses[LUIdx];
4029     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4030       GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
4031   }
4032 
4033   GenerateCrossUseConstantOffsets();
4034 
4035   DEBUG(dbgs() << "\n"
4036                   "After generating reuse formulae:\n";
4037         print_uses(dbgs()));
4038 }
4039 
4040 /// If there are multiple formulae with the same set of registers used
4041 /// by other uses, pick the best one and delete the others.
4042 void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
4043   DenseSet<const SCEV *> VisitedRegs;
4044   SmallPtrSet<const SCEV *, 16> Regs;
4045   SmallPtrSet<const SCEV *, 16> LoserRegs;
4046 #ifndef NDEBUG
4047   bool ChangedFormulae = false;
4048 #endif
4049 
4050   // Collect the best formula for each unique set of shared registers. This
4051   // is reset for each use.
4052   typedef DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>
4053     BestFormulaeTy;
4054   BestFormulaeTy BestFormulae;
4055 
4056   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4057     LSRUse &LU = Uses[LUIdx];
4058     DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n');
4059 
4060     bool Any = false;
4061     for (size_t FIdx = 0, NumForms = LU.Formulae.size();
4062          FIdx != NumForms; ++FIdx) {
4063       Formula &F = LU.Formulae[FIdx];
4064 
4065       // Some formulas are instant losers. For example, they may depend on
4066       // nonexistent AddRecs from other loops. These need to be filtered
4067       // immediately, otherwise heuristics could choose them over others leading
4068       // to an unsatisfactory solution. Passing LoserRegs into RateFormula here
4069       // avoids the need to recompute this information across formulae using the
4070       // same bad AddRec. Passing LoserRegs is also essential unless we remove
4071       // the corresponding bad register from the Regs set.
4072       Cost CostF;
4073       Regs.clear();
4074       CostF.RateFormula(TTI, F, Regs, VisitedRegs, L, SE, DT, LU, &LoserRegs);
4075       if (CostF.isLoser()) {
4076         // During initial formula generation, undesirable formulae are generated
4077         // by uses within other loops that have some non-trivial address mode or
4078         // use the postinc form of the IV. LSR needs to provide these formulae
4079         // as the basis of rediscovering the desired formula that uses an AddRec
4080         // corresponding to the existing phi. Once all formulae have been
4081         // generated, these initial losers may be pruned.
4082         DEBUG(dbgs() << "  Filtering loser "; F.print(dbgs());
4083               dbgs() << "\n");
4084       }
4085       else {
4086         SmallVector<const SCEV *, 4> Key;
4087         for (const SCEV *Reg : F.BaseRegs) {
4088           if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
4089             Key.push_back(Reg);
4090         }
4091         if (F.ScaledReg &&
4092             RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
4093           Key.push_back(F.ScaledReg);
4094         // Unstable sort by host order ok, because this is only used for
4095         // uniquifying.
4096         std::sort(Key.begin(), Key.end());
4097 
4098         std::pair<BestFormulaeTy::const_iterator, bool> P =
4099           BestFormulae.insert(std::make_pair(Key, FIdx));
4100         if (P.second)
4101           continue;
4102 
4103         Formula &Best = LU.Formulae[P.first->second];
4104 
4105         Cost CostBest;
4106         Regs.clear();
4107         CostBest.RateFormula(TTI, Best, Regs, VisitedRegs, L, SE, DT, LU);
4108         if (CostF < CostBest)
4109           std::swap(F, Best);
4110         DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
4111               dbgs() << "\n"
4112                         "    in favor of formula "; Best.print(dbgs());
4113               dbgs() << '\n');
4114       }
4115 #ifndef NDEBUG
4116       ChangedFormulae = true;
4117 #endif
4118       LU.DeleteFormula(F);
4119       --FIdx;
4120       --NumForms;
4121       Any = true;
4122     }
4123 
4124     // Now that we've filtered out some formulae, recompute the Regs set.
4125     if (Any)
4126       LU.RecomputeRegs(LUIdx, RegUses);
4127 
4128     // Reset this to prepare for the next use.
4129     BestFormulae.clear();
4130   }
4131 
4132   DEBUG(if (ChangedFormulae) {
4133           dbgs() << "\n"
4134                     "After filtering out undesirable candidates:\n";
4135           print_uses(dbgs());
4136         });
4137 }
4138 
4139 // This is a rough guess that seems to work fairly well.
4140 static const size_t ComplexityLimit = UINT16_MAX;
4141 
4142 /// Estimate the worst-case number of solutions the solver might have to
4143 /// consider. It almost never considers this many solutions because it prune the
4144 /// search space, but the pruning isn't always sufficient.
4145 size_t LSRInstance::EstimateSearchSpaceComplexity() const {
4146   size_t Power = 1;
4147   for (const LSRUse &LU : Uses) {
4148     size_t FSize = LU.Formulae.size();
4149     if (FSize >= ComplexityLimit) {
4150       Power = ComplexityLimit;
4151       break;
4152     }
4153     Power *= FSize;
4154     if (Power >= ComplexityLimit)
4155       break;
4156   }
4157   return Power;
4158 }
4159 
4160 /// When one formula uses a superset of the registers of another formula, it
4161 /// won't help reduce register pressure (though it may not necessarily hurt
4162 /// register pressure); remove it to simplify the system.
4163 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
4164   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4165     DEBUG(dbgs() << "The search space is too complex.\n");
4166 
4167     DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
4168                     "which use a superset of registers used by other "
4169                     "formulae.\n");
4170 
4171     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4172       LSRUse &LU = Uses[LUIdx];
4173       bool Any = false;
4174       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4175         Formula &F = LU.Formulae[i];
4176         // Look for a formula with a constant or GV in a register. If the use
4177         // also has a formula with that same value in an immediate field,
4178         // delete the one that uses a register.
4179         for (SmallVectorImpl<const SCEV *>::const_iterator
4180              I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
4181           if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
4182             Formula NewF = F;
4183             NewF.BaseOffset += C->getValue()->getSExtValue();
4184             NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4185                                 (I - F.BaseRegs.begin()));
4186             if (LU.HasFormulaWithSameRegs(NewF)) {
4187               DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
4188               LU.DeleteFormula(F);
4189               --i;
4190               --e;
4191               Any = true;
4192               break;
4193             }
4194           } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
4195             if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
4196               if (!F.BaseGV) {
4197                 Formula NewF = F;
4198                 NewF.BaseGV = GV;
4199                 NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4200                                     (I - F.BaseRegs.begin()));
4201                 if (LU.HasFormulaWithSameRegs(NewF)) {
4202                   DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4203                         dbgs() << '\n');
4204                   LU.DeleteFormula(F);
4205                   --i;
4206                   --e;
4207                   Any = true;
4208                   break;
4209                 }
4210               }
4211           }
4212         }
4213       }
4214       if (Any)
4215         LU.RecomputeRegs(LUIdx, RegUses);
4216     }
4217 
4218     DEBUG(dbgs() << "After pre-selection:\n";
4219           print_uses(dbgs()));
4220   }
4221 }
4222 
4223 /// When there are many registers for expressions like A, A+1, A+2, etc.,
4224 /// allocate a single register for them.
4225 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
4226   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4227     return;
4228 
4229   DEBUG(dbgs() << "The search space is too complex.\n"
4230                   "Narrowing the search space by assuming that uses separated "
4231                   "by a constant offset will use the same registers.\n");
4232 
4233   // This is especially useful for unrolled loops.
4234 
4235   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4236     LSRUse &LU = Uses[LUIdx];
4237     for (const Formula &F : LU.Formulae) {
4238       if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1))
4239         continue;
4240 
4241       LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU);
4242       if (!LUThatHas)
4243         continue;
4244 
4245       if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false,
4246                               LU.Kind, LU.AccessTy))
4247         continue;
4248 
4249       DEBUG(dbgs() << "  Deleting use "; LU.print(dbgs()); dbgs() << '\n');
4250 
4251       LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
4252 
4253       // Transfer the fixups of LU to LUThatHas.
4254       for (LSRFixup &Fixup : LU.Fixups) {
4255         Fixup.Offset += F.BaseOffset;
4256         LUThatHas->pushFixup(Fixup);
4257         DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n');
4258       }
4259 
4260       // Delete formulae from the new use which are no longer legal.
4261       bool Any = false;
4262       for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
4263         Formula &F = LUThatHas->Formulae[i];
4264         if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset,
4265                         LUThatHas->Kind, LUThatHas->AccessTy, F)) {
4266           DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4267                 dbgs() << '\n');
4268           LUThatHas->DeleteFormula(F);
4269           --i;
4270           --e;
4271           Any = true;
4272         }
4273       }
4274 
4275       if (Any)
4276         LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
4277 
4278       // Delete the old use.
4279       DeleteUse(LU, LUIdx);
4280       --LUIdx;
4281       --NumUses;
4282       break;
4283     }
4284   }
4285 
4286   DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4287 }
4288 
4289 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that
4290 /// we've done more filtering, as it may be able to find more formulae to
4291 /// eliminate.
4292 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){
4293   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4294     DEBUG(dbgs() << "The search space is too complex.\n");
4295 
4296     DEBUG(dbgs() << "Narrowing the search space by re-filtering out "
4297                     "undesirable dedicated registers.\n");
4298 
4299     FilterOutUndesirableDedicatedRegisters();
4300 
4301     DEBUG(dbgs() << "After pre-selection:\n";
4302           print_uses(dbgs()));
4303   }
4304 }
4305 
4306 /// The function delete formulas with high registers number expectation.
4307 /// Assuming we don't know the value of each formula (already delete
4308 /// all inefficient), generate probability of not selecting for each
4309 /// register.
4310 /// For example,
4311 /// Use1:
4312 ///  reg(a) + reg({0,+,1})
4313 ///  reg(a) + reg({-1,+,1}) + 1
4314 ///  reg({a,+,1})
4315 /// Use2:
4316 ///  reg(b) + reg({0,+,1})
4317 ///  reg(b) + reg({-1,+,1}) + 1
4318 ///  reg({b,+,1})
4319 /// Use3:
4320 ///  reg(c) + reg(b) + reg({0,+,1})
4321 ///  reg(c) + reg({b,+,1})
4322 ///
4323 /// Probability of not selecting
4324 ///                 Use1   Use2    Use3
4325 /// reg(a)         (1/3) *   1   *   1
4326 /// reg(b)           1   * (1/3) * (1/2)
4327 /// reg({0,+,1})   (2/3) * (2/3) * (1/2)
4328 /// reg({-1,+,1})  (2/3) * (2/3) *   1
4329 /// reg({a,+,1})   (2/3) *   1   *   1
4330 /// reg({b,+,1})     1   * (2/3) * (2/3)
4331 /// reg(c)           1   *   1   *   0
4332 ///
4333 /// Now count registers number mathematical expectation for each formula:
4334 /// Note that for each use we exclude probability if not selecting for the use.
4335 /// For example for Use1 probability for reg(a) would be just 1 * 1 (excluding
4336 /// probabilty 1/3 of not selecting for Use1).
4337 /// Use1:
4338 ///  reg(a) + reg({0,+,1})          1 + 1/3       -- to be deleted
4339 ///  reg(a) + reg({-1,+,1}) + 1     1 + 4/9       -- to be deleted
4340 ///  reg({a,+,1})                   1
4341 /// Use2:
4342 ///  reg(b) + reg({0,+,1})          1/2 + 1/3     -- to be deleted
4343 ///  reg(b) + reg({-1,+,1}) + 1     1/2 + 2/3     -- to be deleted
4344 ///  reg({b,+,1})                   2/3
4345 /// Use3:
4346 ///  reg(c) + reg(b) + reg({0,+,1}) 1 + 1/3 + 4/9 -- to be deleted
4347 ///  reg(c) + reg({b,+,1})          1 + 2/3
4348 
4349 void LSRInstance::NarrowSearchSpaceByDeletingCostlyFormulas() {
4350   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4351     return;
4352   // Ok, we have too many of formulae on our hands to conveniently handle.
4353   // Use a rough heuristic to thin out the list.
4354 
4355   // Set of Regs wich will be 100% used in final solution.
4356   // Used in each formula of a solution (in example above this is reg(c)).
4357   // We can skip them in calculations.
4358   SmallPtrSet<const SCEV *, 4> UniqRegs;
4359   DEBUG(dbgs() << "The search space is too complex.\n");
4360 
4361   // Map each register to probability of not selecting
4362   DenseMap <const SCEV *, float> RegNumMap;
4363   for (const SCEV *Reg : RegUses) {
4364     if (UniqRegs.count(Reg))
4365       continue;
4366     float PNotSel = 1;
4367     for (const LSRUse &LU : Uses) {
4368       if (!LU.Regs.count(Reg))
4369         continue;
4370       float P = LU.getNotSelectedProbability(Reg);
4371       if (P != 0.0)
4372         PNotSel *= P;
4373       else
4374         UniqRegs.insert(Reg);
4375     }
4376     RegNumMap.insert(std::make_pair(Reg, PNotSel));
4377   }
4378 
4379   DEBUG(dbgs() << "Narrowing the search space by deleting costly formulas\n");
4380 
4381   // Delete formulas where registers number expectation is high.
4382   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4383     LSRUse &LU = Uses[LUIdx];
4384     // If nothing to delete - continue.
4385     if (LU.Formulae.size() < 2)
4386       continue;
4387     // This is temporary solution to test performance. Float should be
4388     // replaced with round independent type (based on integers) to avoid
4389     // different results for different target builds.
4390     float FMinRegNum = LU.Formulae[0].getNumRegs();
4391     float FMinARegNum = LU.Formulae[0].getNumRegs();
4392     size_t MinIdx = 0;
4393     for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4394       Formula &F = LU.Formulae[i];
4395       float FRegNum = 0;
4396       float FARegNum = 0;
4397       for (const SCEV *BaseReg : F.BaseRegs) {
4398         if (UniqRegs.count(BaseReg))
4399           continue;
4400         FRegNum += RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg);
4401         if (isa<SCEVAddRecExpr>(BaseReg))
4402           FARegNum +=
4403               RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg);
4404       }
4405       if (const SCEV *ScaledReg = F.ScaledReg) {
4406         if (!UniqRegs.count(ScaledReg)) {
4407           FRegNum +=
4408               RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg);
4409           if (isa<SCEVAddRecExpr>(ScaledReg))
4410             FARegNum +=
4411                 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg);
4412         }
4413       }
4414       if (FMinRegNum > FRegNum ||
4415           (FMinRegNum == FRegNum && FMinARegNum > FARegNum)) {
4416         FMinRegNum = FRegNum;
4417         FMinARegNum = FARegNum;
4418         MinIdx = i;
4419       }
4420     }
4421     DEBUG(dbgs() << "  The formula "; LU.Formulae[MinIdx].print(dbgs());
4422           dbgs() << " with min reg num " << FMinRegNum << '\n');
4423     if (MinIdx != 0)
4424       std::swap(LU.Formulae[MinIdx], LU.Formulae[0]);
4425     while (LU.Formulae.size() != 1) {
4426       DEBUG(dbgs() << "  Deleting "; LU.Formulae.back().print(dbgs());
4427             dbgs() << '\n');
4428       LU.Formulae.pop_back();
4429     }
4430     LU.RecomputeRegs(LUIdx, RegUses);
4431     assert(LU.Formulae.size() == 1 && "Should be exactly 1 min regs formula");
4432     Formula &F = LU.Formulae[0];
4433     DEBUG(dbgs() << "  Leaving only "; F.print(dbgs()); dbgs() << '\n');
4434     // When we choose the formula, the regs become unique.
4435     UniqRegs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
4436     if (F.ScaledReg)
4437       UniqRegs.insert(F.ScaledReg);
4438   }
4439   DEBUG(dbgs() << "After pre-selection:\n";
4440   print_uses(dbgs()));
4441 }
4442 
4443 
4444 /// Pick a register which seems likely to be profitable, and then in any use
4445 /// which has any reference to that register, delete all formulae which do not
4446 /// reference that register.
4447 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() {
4448   // With all other options exhausted, loop until the system is simple
4449   // enough to handle.
4450   SmallPtrSet<const SCEV *, 4> Taken;
4451   while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4452     // Ok, we have too many of formulae on our hands to conveniently handle.
4453     // Use a rough heuristic to thin out the list.
4454     DEBUG(dbgs() << "The search space is too complex.\n");
4455 
4456     // Pick the register which is used by the most LSRUses, which is likely
4457     // to be a good reuse register candidate.
4458     const SCEV *Best = nullptr;
4459     unsigned BestNum = 0;
4460     for (const SCEV *Reg : RegUses) {
4461       if (Taken.count(Reg))
4462         continue;
4463       if (!Best) {
4464         Best = Reg;
4465         BestNum = RegUses.getUsedByIndices(Reg).count();
4466       } else {
4467         unsigned Count = RegUses.getUsedByIndices(Reg).count();
4468         if (Count > BestNum) {
4469           Best = Reg;
4470           BestNum = Count;
4471         }
4472       }
4473     }
4474 
4475     DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
4476                  << " will yield profitable reuse.\n");
4477     Taken.insert(Best);
4478 
4479     // In any use with formulae which references this register, delete formulae
4480     // which don't reference it.
4481     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4482       LSRUse &LU = Uses[LUIdx];
4483       if (!LU.Regs.count(Best)) continue;
4484 
4485       bool Any = false;
4486       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4487         Formula &F = LU.Formulae[i];
4488         if (!F.referencesReg(Best)) {
4489           DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
4490           LU.DeleteFormula(F);
4491           --e;
4492           --i;
4493           Any = true;
4494           assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
4495           continue;
4496         }
4497       }
4498 
4499       if (Any)
4500         LU.RecomputeRegs(LUIdx, RegUses);
4501     }
4502 
4503     DEBUG(dbgs() << "After pre-selection:\n";
4504           print_uses(dbgs()));
4505   }
4506 }
4507 
4508 /// If there are an extraordinary number of formulae to choose from, use some
4509 /// rough heuristics to prune down the number of formulae. This keeps the main
4510 /// solver from taking an extraordinary amount of time in some worst-case
4511 /// scenarios.
4512 void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
4513   NarrowSearchSpaceByDetectingSupersets();
4514   NarrowSearchSpaceByCollapsingUnrolledCode();
4515   NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
4516   if (LSRExpNarrow)
4517     NarrowSearchSpaceByDeletingCostlyFormulas();
4518   else
4519     NarrowSearchSpaceByPickingWinnerRegs();
4520 }
4521 
4522 /// This is the recursive solver.
4523 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
4524                                Cost &SolutionCost,
4525                                SmallVectorImpl<const Formula *> &Workspace,
4526                                const Cost &CurCost,
4527                                const SmallPtrSet<const SCEV *, 16> &CurRegs,
4528                                DenseSet<const SCEV *> &VisitedRegs) const {
4529   // Some ideas:
4530   //  - prune more:
4531   //    - use more aggressive filtering
4532   //    - sort the formula so that the most profitable solutions are found first
4533   //    - sort the uses too
4534   //  - search faster:
4535   //    - don't compute a cost, and then compare. compare while computing a cost
4536   //      and bail early.
4537   //    - track register sets with SmallBitVector
4538 
4539   const LSRUse &LU = Uses[Workspace.size()];
4540 
4541   // If this use references any register that's already a part of the
4542   // in-progress solution, consider it a requirement that a formula must
4543   // reference that register in order to be considered. This prunes out
4544   // unprofitable searching.
4545   SmallSetVector<const SCEV *, 4> ReqRegs;
4546   for (const SCEV *S : CurRegs)
4547     if (LU.Regs.count(S))
4548       ReqRegs.insert(S);
4549 
4550   SmallPtrSet<const SCEV *, 16> NewRegs;
4551   Cost NewCost;
4552   for (const Formula &F : LU.Formulae) {
4553     // Ignore formulae which may not be ideal in terms of register reuse of
4554     // ReqRegs.  The formula should use all required registers before
4555     // introducing new ones.
4556     int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size());
4557     for (const SCEV *Reg : ReqRegs) {
4558       if ((F.ScaledReg && F.ScaledReg == Reg) ||
4559           is_contained(F.BaseRegs, Reg)) {
4560         --NumReqRegsToFind;
4561         if (NumReqRegsToFind == 0)
4562           break;
4563       }
4564     }
4565     if (NumReqRegsToFind != 0) {
4566       // If none of the formulae satisfied the required registers, then we could
4567       // clear ReqRegs and try again. Currently, we simply give up in this case.
4568       continue;
4569     }
4570 
4571     // Evaluate the cost of the current formula. If it's already worse than
4572     // the current best, prune the search at that point.
4573     NewCost = CurCost;
4574     NewRegs = CurRegs;
4575     NewCost.RateFormula(TTI, F, NewRegs, VisitedRegs, L, SE, DT, LU);
4576     if (NewCost < SolutionCost) {
4577       Workspace.push_back(&F);
4578       if (Workspace.size() != Uses.size()) {
4579         SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
4580                      NewRegs, VisitedRegs);
4581         if (F.getNumRegs() == 1 && Workspace.size() == 1)
4582           VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
4583       } else {
4584         DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
4585               dbgs() << ".\n Regs:";
4586               for (const SCEV *S : NewRegs)
4587                 dbgs() << ' ' << *S;
4588               dbgs() << '\n');
4589 
4590         SolutionCost = NewCost;
4591         Solution = Workspace;
4592       }
4593       Workspace.pop_back();
4594     }
4595   }
4596 }
4597 
4598 /// Choose one formula from each use. Return the results in the given Solution
4599 /// vector.
4600 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
4601   SmallVector<const Formula *, 8> Workspace;
4602   Cost SolutionCost;
4603   SolutionCost.Lose();
4604   Cost CurCost;
4605   SmallPtrSet<const SCEV *, 16> CurRegs;
4606   DenseSet<const SCEV *> VisitedRegs;
4607   Workspace.reserve(Uses.size());
4608 
4609   // SolveRecurse does all the work.
4610   SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
4611                CurRegs, VisitedRegs);
4612   if (Solution.empty()) {
4613     DEBUG(dbgs() << "\nNo Satisfactory Solution\n");
4614     return;
4615   }
4616 
4617   // Ok, we've now made all our decisions.
4618   DEBUG(dbgs() << "\n"
4619                   "The chosen solution requires "; SolutionCost.print(dbgs());
4620         dbgs() << ":\n";
4621         for (size_t i = 0, e = Uses.size(); i != e; ++i) {
4622           dbgs() << "  ";
4623           Uses[i].print(dbgs());
4624           dbgs() << "\n"
4625                     "    ";
4626           Solution[i]->print(dbgs());
4627           dbgs() << '\n';
4628         });
4629 
4630   assert(Solution.size() == Uses.size() && "Malformed solution!");
4631 }
4632 
4633 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as
4634 /// we can go while still being dominated by the input positions. This helps
4635 /// canonicalize the insert position, which encourages sharing.
4636 BasicBlock::iterator
4637 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
4638                                  const SmallVectorImpl<Instruction *> &Inputs)
4639                                                                          const {
4640   Instruction *Tentative = &*IP;
4641   while (true) {
4642     bool AllDominate = true;
4643     Instruction *BetterPos = nullptr;
4644     // Don't bother attempting to insert before a catchswitch, their basic block
4645     // cannot have other non-PHI instructions.
4646     if (isa<CatchSwitchInst>(Tentative))
4647       return IP;
4648 
4649     for (Instruction *Inst : Inputs) {
4650       if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
4651         AllDominate = false;
4652         break;
4653       }
4654       // Attempt to find an insert position in the middle of the block,
4655       // instead of at the end, so that it can be used for other expansions.
4656       if (Tentative->getParent() == Inst->getParent() &&
4657           (!BetterPos || !DT.dominates(Inst, BetterPos)))
4658         BetterPos = &*std::next(BasicBlock::iterator(Inst));
4659     }
4660     if (!AllDominate)
4661       break;
4662     if (BetterPos)
4663       IP = BetterPos->getIterator();
4664     else
4665       IP = Tentative->getIterator();
4666 
4667     const Loop *IPLoop = LI.getLoopFor(IP->getParent());
4668     unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
4669 
4670     BasicBlock *IDom;
4671     for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) {
4672       if (!Rung) return IP;
4673       Rung = Rung->getIDom();
4674       if (!Rung) return IP;
4675       IDom = Rung->getBlock();
4676 
4677       // Don't climb into a loop though.
4678       const Loop *IDomLoop = LI.getLoopFor(IDom);
4679       unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
4680       if (IDomDepth <= IPLoopDepth &&
4681           (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
4682         break;
4683     }
4684 
4685     Tentative = IDom->getTerminator();
4686   }
4687 
4688   return IP;
4689 }
4690 
4691 /// Determine an input position which will be dominated by the operands and
4692 /// which will dominate the result.
4693 BasicBlock::iterator
4694 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP,
4695                                            const LSRFixup &LF,
4696                                            const LSRUse &LU,
4697                                            SCEVExpander &Rewriter) const {
4698   // Collect some instructions which must be dominated by the
4699   // expanding replacement. These must be dominated by any operands that
4700   // will be required in the expansion.
4701   SmallVector<Instruction *, 4> Inputs;
4702   if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
4703     Inputs.push_back(I);
4704   if (LU.Kind == LSRUse::ICmpZero)
4705     if (Instruction *I =
4706           dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
4707       Inputs.push_back(I);
4708   if (LF.PostIncLoops.count(L)) {
4709     if (LF.isUseFullyOutsideLoop(L))
4710       Inputs.push_back(L->getLoopLatch()->getTerminator());
4711     else
4712       Inputs.push_back(IVIncInsertPos);
4713   }
4714   // The expansion must also be dominated by the increment positions of any
4715   // loops it for which it is using post-inc mode.
4716   for (const Loop *PIL : LF.PostIncLoops) {
4717     if (PIL == L) continue;
4718 
4719     // Be dominated by the loop exit.
4720     SmallVector<BasicBlock *, 4> ExitingBlocks;
4721     PIL->getExitingBlocks(ExitingBlocks);
4722     if (!ExitingBlocks.empty()) {
4723       BasicBlock *BB = ExitingBlocks[0];
4724       for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
4725         BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
4726       Inputs.push_back(BB->getTerminator());
4727     }
4728   }
4729 
4730   assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad()
4731          && !isa<DbgInfoIntrinsic>(LowestIP) &&
4732          "Insertion point must be a normal instruction");
4733 
4734   // Then, climb up the immediate dominator tree as far as we can go while
4735   // still being dominated by the input positions.
4736   BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs);
4737 
4738   // Don't insert instructions before PHI nodes.
4739   while (isa<PHINode>(IP)) ++IP;
4740 
4741   // Ignore landingpad instructions.
4742   while (IP->isEHPad()) ++IP;
4743 
4744   // Ignore debug intrinsics.
4745   while (isa<DbgInfoIntrinsic>(IP)) ++IP;
4746 
4747   // Set IP below instructions recently inserted by SCEVExpander. This keeps the
4748   // IP consistent across expansions and allows the previously inserted
4749   // instructions to be reused by subsequent expansion.
4750   while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP)
4751     ++IP;
4752 
4753   return IP;
4754 }
4755 
4756 /// Emit instructions for the leading candidate expression for this LSRUse (this
4757 /// is called "expanding").
4758 Value *LSRInstance::Expand(const LSRUse &LU, const LSRFixup &LF,
4759                            const Formula &F, BasicBlock::iterator IP,
4760                            SCEVExpander &Rewriter,
4761                            SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
4762   if (LU.RigidFormula)
4763     return LF.OperandValToReplace;
4764 
4765   // Determine an input position which will be dominated by the operands and
4766   // which will dominate the result.
4767   IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter);
4768   Rewriter.setInsertPoint(&*IP);
4769 
4770   // Inform the Rewriter if we have a post-increment use, so that it can
4771   // perform an advantageous expansion.
4772   Rewriter.setPostInc(LF.PostIncLoops);
4773 
4774   // This is the type that the user actually needs.
4775   Type *OpTy = LF.OperandValToReplace->getType();
4776   // This will be the type that we'll initially expand to.
4777   Type *Ty = F.getType();
4778   if (!Ty)
4779     // No type known; just expand directly to the ultimate type.
4780     Ty = OpTy;
4781   else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
4782     // Expand directly to the ultimate type if it's the right size.
4783     Ty = OpTy;
4784   // This is the type to do integer arithmetic in.
4785   Type *IntTy = SE.getEffectiveSCEVType(Ty);
4786 
4787   // Build up a list of operands to add together to form the full base.
4788   SmallVector<const SCEV *, 8> Ops;
4789 
4790   // Expand the BaseRegs portion.
4791   for (const SCEV *Reg : F.BaseRegs) {
4792     assert(!Reg->isZero() && "Zero allocated in a base register!");
4793 
4794     // If we're expanding for a post-inc user, make the post-inc adjustment.
4795     Reg = denormalizeForPostIncUse(Reg, LF.PostIncLoops, SE);
4796     Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr)));
4797   }
4798 
4799   // Expand the ScaledReg portion.
4800   Value *ICmpScaledV = nullptr;
4801   if (F.Scale != 0) {
4802     const SCEV *ScaledS = F.ScaledReg;
4803 
4804     // If we're expanding for a post-inc user, make the post-inc adjustment.
4805     PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
4806     ScaledS = denormalizeForPostIncUse(ScaledS, Loops, SE);
4807 
4808     if (LU.Kind == LSRUse::ICmpZero) {
4809       // Expand ScaleReg as if it was part of the base regs.
4810       if (F.Scale == 1)
4811         Ops.push_back(
4812             SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)));
4813       else {
4814         // An interesting way of "folding" with an icmp is to use a negated
4815         // scale, which we'll implement by inserting it into the other operand
4816         // of the icmp.
4817         assert(F.Scale == -1 &&
4818                "The only scale supported by ICmpZero uses is -1!");
4819         ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr);
4820       }
4821     } else {
4822       // Otherwise just expand the scaled register and an explicit scale,
4823       // which is expected to be matched as part of the address.
4824 
4825       // Flush the operand list to suppress SCEVExpander hoisting address modes.
4826       // Unless the addressing mode will not be folded.
4827       if (!Ops.empty() && LU.Kind == LSRUse::Address &&
4828           isAMCompletelyFolded(TTI, LU, F)) {
4829         Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
4830         Ops.clear();
4831         Ops.push_back(SE.getUnknown(FullV));
4832       }
4833       ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr));
4834       if (F.Scale != 1)
4835         ScaledS =
4836             SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale));
4837       Ops.push_back(ScaledS);
4838     }
4839   }
4840 
4841   // Expand the GV portion.
4842   if (F.BaseGV) {
4843     // Flush the operand list to suppress SCEVExpander hoisting.
4844     if (!Ops.empty()) {
4845       Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
4846       Ops.clear();
4847       Ops.push_back(SE.getUnknown(FullV));
4848     }
4849     Ops.push_back(SE.getUnknown(F.BaseGV));
4850   }
4851 
4852   // Flush the operand list to suppress SCEVExpander hoisting of both folded and
4853   // unfolded offsets. LSR assumes they both live next to their uses.
4854   if (!Ops.empty()) {
4855     Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
4856     Ops.clear();
4857     Ops.push_back(SE.getUnknown(FullV));
4858   }
4859 
4860   // Expand the immediate portion.
4861   int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset;
4862   if (Offset != 0) {
4863     if (LU.Kind == LSRUse::ICmpZero) {
4864       // The other interesting way of "folding" with an ICmpZero is to use a
4865       // negated immediate.
4866       if (!ICmpScaledV)
4867         ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset);
4868       else {
4869         Ops.push_back(SE.getUnknown(ICmpScaledV));
4870         ICmpScaledV = ConstantInt::get(IntTy, Offset);
4871       }
4872     } else {
4873       // Just add the immediate values. These again are expected to be matched
4874       // as part of the address.
4875       Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
4876     }
4877   }
4878 
4879   // Expand the unfolded offset portion.
4880   int64_t UnfoldedOffset = F.UnfoldedOffset;
4881   if (UnfoldedOffset != 0) {
4882     // Just add the immediate values.
4883     Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy,
4884                                                        UnfoldedOffset)));
4885   }
4886 
4887   // Emit instructions summing all the operands.
4888   const SCEV *FullS = Ops.empty() ?
4889                       SE.getConstant(IntTy, 0) :
4890                       SE.getAddExpr(Ops);
4891   Value *FullV = Rewriter.expandCodeFor(FullS, Ty);
4892 
4893   // We're done expanding now, so reset the rewriter.
4894   Rewriter.clearPostInc();
4895 
4896   // An ICmpZero Formula represents an ICmp which we're handling as a
4897   // comparison against zero. Now that we've expanded an expression for that
4898   // form, update the ICmp's other operand.
4899   if (LU.Kind == LSRUse::ICmpZero) {
4900     ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
4901     DeadInsts.emplace_back(CI->getOperand(1));
4902     assert(!F.BaseGV && "ICmp does not support folding a global value and "
4903                            "a scale at the same time!");
4904     if (F.Scale == -1) {
4905       if (ICmpScaledV->getType() != OpTy) {
4906         Instruction *Cast =
4907           CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
4908                                                    OpTy, false),
4909                            ICmpScaledV, OpTy, "tmp", CI);
4910         ICmpScaledV = Cast;
4911       }
4912       CI->setOperand(1, ICmpScaledV);
4913     } else {
4914       // A scale of 1 means that the scale has been expanded as part of the
4915       // base regs.
4916       assert((F.Scale == 0 || F.Scale == 1) &&
4917              "ICmp does not support folding a global value and "
4918              "a scale at the same time!");
4919       Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
4920                                            -(uint64_t)Offset);
4921       if (C->getType() != OpTy)
4922         C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4923                                                           OpTy, false),
4924                                   C, OpTy);
4925 
4926       CI->setOperand(1, C);
4927     }
4928   }
4929 
4930   return FullV;
4931 }
4932 
4933 /// Helper for Rewrite. PHI nodes are special because the use of their operands
4934 /// effectively happens in their predecessor blocks, so the expression may need
4935 /// to be expanded in multiple places.
4936 void LSRInstance::RewriteForPHI(
4937     PHINode *PN, const LSRUse &LU, const LSRFixup &LF, const Formula &F,
4938     SCEVExpander &Rewriter, SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
4939   DenseMap<BasicBlock *, Value *> Inserted;
4940   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
4941     if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
4942       BasicBlock *BB = PN->getIncomingBlock(i);
4943 
4944       // If this is a critical edge, split the edge so that we do not insert
4945       // the code on all predecessor/successor paths.  We do this unless this
4946       // is the canonical backedge for this loop, which complicates post-inc
4947       // users.
4948       if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
4949           !isa<IndirectBrInst>(BB->getTerminator()) &&
4950           !isa<CatchSwitchInst>(BB->getTerminator())) {
4951         BasicBlock *Parent = PN->getParent();
4952         Loop *PNLoop = LI.getLoopFor(Parent);
4953         if (!PNLoop || Parent != PNLoop->getHeader()) {
4954           // Split the critical edge.
4955           BasicBlock *NewBB = nullptr;
4956           if (!Parent->isLandingPad()) {
4957             NewBB = SplitCriticalEdge(BB, Parent,
4958                                       CriticalEdgeSplittingOptions(&DT, &LI)
4959                                           .setMergeIdenticalEdges()
4960                                           .setDontDeleteUselessPHIs());
4961           } else {
4962             SmallVector<BasicBlock*, 2> NewBBs;
4963             SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI);
4964             NewBB = NewBBs[0];
4965           }
4966           // If NewBB==NULL, then SplitCriticalEdge refused to split because all
4967           // phi predecessors are identical. The simple thing to do is skip
4968           // splitting in this case rather than complicate the API.
4969           if (NewBB) {
4970             // If PN is outside of the loop and BB is in the loop, we want to
4971             // move the block to be immediately before the PHI block, not
4972             // immediately after BB.
4973             if (L->contains(BB) && !L->contains(PN))
4974               NewBB->moveBefore(PN->getParent());
4975 
4976             // Splitting the edge can reduce the number of PHI entries we have.
4977             e = PN->getNumIncomingValues();
4978             BB = NewBB;
4979             i = PN->getBasicBlockIndex(BB);
4980           }
4981         }
4982       }
4983 
4984       std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
4985         Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr)));
4986       if (!Pair.second)
4987         PN->setIncomingValue(i, Pair.first->second);
4988       else {
4989         Value *FullV = Expand(LU, LF, F, BB->getTerminator()->getIterator(),
4990                               Rewriter, DeadInsts);
4991 
4992         // If this is reuse-by-noop-cast, insert the noop cast.
4993         Type *OpTy = LF.OperandValToReplace->getType();
4994         if (FullV->getType() != OpTy)
4995           FullV =
4996             CastInst::Create(CastInst::getCastOpcode(FullV, false,
4997                                                      OpTy, false),
4998                              FullV, LF.OperandValToReplace->getType(),
4999                              "tmp", BB->getTerminator());
5000 
5001         PN->setIncomingValue(i, FullV);
5002         Pair.first->second = FullV;
5003       }
5004     }
5005 }
5006 
5007 /// Emit instructions for the leading candidate expression for this LSRUse (this
5008 /// is called "expanding"), and update the UserInst to reference the newly
5009 /// expanded value.
5010 void LSRInstance::Rewrite(const LSRUse &LU, const LSRFixup &LF,
5011                           const Formula &F, SCEVExpander &Rewriter,
5012                           SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5013   // First, find an insertion point that dominates UserInst. For PHI nodes,
5014   // find the nearest block which dominates all the relevant uses.
5015   if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
5016     RewriteForPHI(PN, LU, LF, F, Rewriter, DeadInsts);
5017   } else {
5018     Value *FullV =
5019       Expand(LU, LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts);
5020 
5021     // If this is reuse-by-noop-cast, insert the noop cast.
5022     Type *OpTy = LF.OperandValToReplace->getType();
5023     if (FullV->getType() != OpTy) {
5024       Instruction *Cast =
5025         CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
5026                          FullV, OpTy, "tmp", LF.UserInst);
5027       FullV = Cast;
5028     }
5029 
5030     // Update the user. ICmpZero is handled specially here (for now) because
5031     // Expand may have updated one of the operands of the icmp already, and
5032     // its new value may happen to be equal to LF.OperandValToReplace, in
5033     // which case doing replaceUsesOfWith leads to replacing both operands
5034     // with the same value. TODO: Reorganize this.
5035     if (LU.Kind == LSRUse::ICmpZero)
5036       LF.UserInst->setOperand(0, FullV);
5037     else
5038       LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
5039   }
5040 
5041   DeadInsts.emplace_back(LF.OperandValToReplace);
5042 }
5043 
5044 /// Rewrite all the fixup locations with new values, following the chosen
5045 /// solution.
5046 void LSRInstance::ImplementSolution(
5047     const SmallVectorImpl<const Formula *> &Solution) {
5048   // Keep track of instructions we may have made dead, so that
5049   // we can remove them after we are done working.
5050   SmallVector<WeakTrackingVH, 16> DeadInsts;
5051 
5052   SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(),
5053                         "lsr");
5054 #ifndef NDEBUG
5055   Rewriter.setDebugType(DEBUG_TYPE);
5056 #endif
5057   Rewriter.disableCanonicalMode();
5058   Rewriter.enableLSRMode();
5059   Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
5060 
5061   // Mark phi nodes that terminate chains so the expander tries to reuse them.
5062   for (const IVChain &Chain : IVChainVec) {
5063     if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst()))
5064       Rewriter.setChainedPhi(PN);
5065   }
5066 
5067   // Expand the new value definitions and update the users.
5068   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx)
5069     for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) {
5070       Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], Rewriter, DeadInsts);
5071       Changed = true;
5072     }
5073 
5074   for (const IVChain &Chain : IVChainVec) {
5075     GenerateIVChain(Chain, Rewriter, DeadInsts);
5076     Changed = true;
5077   }
5078   // Clean up after ourselves. This must be done before deleting any
5079   // instructions.
5080   Rewriter.clear();
5081 
5082   Changed |= DeleteTriviallyDeadInstructions(DeadInsts);
5083 }
5084 
5085 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE,
5086                          DominatorTree &DT, LoopInfo &LI,
5087                          const TargetTransformInfo &TTI)
5088     : IU(IU), SE(SE), DT(DT), LI(LI), TTI(TTI), L(L), Changed(false),
5089       IVIncInsertPos(nullptr) {
5090   // If LoopSimplify form is not available, stay out of trouble.
5091   if (!L->isLoopSimplifyForm())
5092     return;
5093 
5094   // If there's no interesting work to be done, bail early.
5095   if (IU.empty()) return;
5096 
5097   // If there's too much analysis to be done, bail early. We won't be able to
5098   // model the problem anyway.
5099   unsigned NumUsers = 0;
5100   for (const IVStrideUse &U : IU) {
5101     if (++NumUsers > MaxIVUsers) {
5102       (void)U;
5103       DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U << "\n");
5104       return;
5105     }
5106     // Bail out if we have a PHI on an EHPad that gets a value from a
5107     // CatchSwitchInst.  Because the CatchSwitchInst cannot be split, there is
5108     // no good place to stick any instructions.
5109     if (auto *PN = dyn_cast<PHINode>(U.getUser())) {
5110        auto *FirstNonPHI = PN->getParent()->getFirstNonPHI();
5111        if (isa<FuncletPadInst>(FirstNonPHI) ||
5112            isa<CatchSwitchInst>(FirstNonPHI))
5113          for (BasicBlock *PredBB : PN->blocks())
5114            if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI()))
5115              return;
5116     }
5117   }
5118 
5119 #ifndef NDEBUG
5120   // All dominating loops must have preheaders, or SCEVExpander may not be able
5121   // to materialize an AddRecExpr whose Start is an outer AddRecExpr.
5122   //
5123   // IVUsers analysis should only create users that are dominated by simple loop
5124   // headers. Since this loop should dominate all of its users, its user list
5125   // should be empty if this loop itself is not within a simple loop nest.
5126   for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader());
5127        Rung; Rung = Rung->getIDom()) {
5128     BasicBlock *BB = Rung->getBlock();
5129     const Loop *DomLoop = LI.getLoopFor(BB);
5130     if (DomLoop && DomLoop->getHeader() == BB) {
5131       assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest");
5132     }
5133   }
5134 #endif // DEBUG
5135 
5136   DEBUG(dbgs() << "\nLSR on loop ";
5137         L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false);
5138         dbgs() << ":\n");
5139 
5140   // First, perform some low-level loop optimizations.
5141   OptimizeShadowIV();
5142   OptimizeLoopTermCond();
5143 
5144   // If loop preparation eliminates all interesting IV users, bail.
5145   if (IU.empty()) return;
5146 
5147   // Skip nested loops until we can model them better with formulae.
5148   if (!L->empty()) {
5149     DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n");
5150     return;
5151   }
5152 
5153   // Start collecting data and preparing for the solver.
5154   CollectChains();
5155   CollectInterestingTypesAndFactors();
5156   CollectFixupsAndInitialFormulae();
5157   CollectLoopInvariantFixupsAndFormulae();
5158 
5159   assert(!Uses.empty() && "IVUsers reported at least one use");
5160   DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
5161         print_uses(dbgs()));
5162 
5163   // Now use the reuse data to generate a bunch of interesting ways
5164   // to formulate the values needed for the uses.
5165   GenerateAllReuseFormulae();
5166 
5167   FilterOutUndesirableDedicatedRegisters();
5168   NarrowSearchSpaceUsingHeuristics();
5169 
5170   SmallVector<const Formula *, 8> Solution;
5171   Solve(Solution);
5172 
5173   // Release memory that is no longer needed.
5174   Factors.clear();
5175   Types.clear();
5176   RegUses.clear();
5177 
5178   if (Solution.empty())
5179     return;
5180 
5181 #ifndef NDEBUG
5182   // Formulae should be legal.
5183   for (const LSRUse &LU : Uses) {
5184     for (const Formula &F : LU.Formulae)
5185       assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
5186                         F) && "Illegal formula generated!");
5187   };
5188 #endif
5189 
5190   // Now that we've decided what we want, make it so.
5191   ImplementSolution(Solution);
5192 }
5193 
5194 void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
5195   if (Factors.empty() && Types.empty()) return;
5196 
5197   OS << "LSR has identified the following interesting factors and types: ";
5198   bool First = true;
5199 
5200   for (int64_t Factor : Factors) {
5201     if (!First) OS << ", ";
5202     First = false;
5203     OS << '*' << Factor;
5204   }
5205 
5206   for (Type *Ty : Types) {
5207     if (!First) OS << ", ";
5208     First = false;
5209     OS << '(' << *Ty << ')';
5210   }
5211   OS << '\n';
5212 }
5213 
5214 void LSRInstance::print_fixups(raw_ostream &OS) const {
5215   OS << "LSR is examining the following fixup sites:\n";
5216   for (const LSRUse &LU : Uses)
5217     for (const LSRFixup &LF : LU.Fixups) {
5218       dbgs() << "  ";
5219       LF.print(OS);
5220       OS << '\n';
5221     }
5222 }
5223 
5224 void LSRInstance::print_uses(raw_ostream &OS) const {
5225   OS << "LSR is examining the following uses:\n";
5226   for (const LSRUse &LU : Uses) {
5227     dbgs() << "  ";
5228     LU.print(OS);
5229     OS << '\n';
5230     for (const Formula &F : LU.Formulae) {
5231       OS << "    ";
5232       F.print(OS);
5233       OS << '\n';
5234     }
5235   }
5236 }
5237 
5238 void LSRInstance::print(raw_ostream &OS) const {
5239   print_factors_and_types(OS);
5240   print_fixups(OS);
5241   print_uses(OS);
5242 }
5243 
5244 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
5245 LLVM_DUMP_METHOD void LSRInstance::dump() const {
5246   print(errs()); errs() << '\n';
5247 }
5248 #endif
5249 
5250 namespace {
5251 
5252 class LoopStrengthReduce : public LoopPass {
5253 public:
5254   static char ID; // Pass ID, replacement for typeid
5255 
5256   LoopStrengthReduce();
5257 
5258 private:
5259   bool runOnLoop(Loop *L, LPPassManager &LPM) override;
5260   void getAnalysisUsage(AnalysisUsage &AU) const override;
5261 };
5262 
5263 } // end anonymous namespace
5264 
5265 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) {
5266   initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
5267 }
5268 
5269 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
5270   // We split critical edges, so we change the CFG.  However, we do update
5271   // many analyses if they are around.
5272   AU.addPreservedID(LoopSimplifyID);
5273 
5274   AU.addRequired<LoopInfoWrapperPass>();
5275   AU.addPreserved<LoopInfoWrapperPass>();
5276   AU.addRequiredID(LoopSimplifyID);
5277   AU.addRequired<DominatorTreeWrapperPass>();
5278   AU.addPreserved<DominatorTreeWrapperPass>();
5279   AU.addRequired<ScalarEvolutionWrapperPass>();
5280   AU.addPreserved<ScalarEvolutionWrapperPass>();
5281   // Requiring LoopSimplify a second time here prevents IVUsers from running
5282   // twice, since LoopSimplify was invalidated by running ScalarEvolution.
5283   AU.addRequiredID(LoopSimplifyID);
5284   AU.addRequired<IVUsersWrapperPass>();
5285   AU.addPreserved<IVUsersWrapperPass>();
5286   AU.addRequired<TargetTransformInfoWrapperPass>();
5287 }
5288 
5289 static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE,
5290                                DominatorTree &DT, LoopInfo &LI,
5291                                const TargetTransformInfo &TTI) {
5292   bool Changed = false;
5293 
5294   // Run the main LSR transformation.
5295   Changed |= LSRInstance(L, IU, SE, DT, LI, TTI).getChanged();
5296 
5297   // Remove any extra phis created by processing inner loops.
5298   Changed |= DeleteDeadPHIs(L->getHeader());
5299   if (EnablePhiElim && L->isLoopSimplifyForm()) {
5300     SmallVector<WeakTrackingVH, 16> DeadInsts;
5301     const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
5302     SCEVExpander Rewriter(SE, DL, "lsr");
5303 #ifndef NDEBUG
5304     Rewriter.setDebugType(DEBUG_TYPE);
5305 #endif
5306     unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI);
5307     if (numFolded) {
5308       Changed = true;
5309       DeleteTriviallyDeadInstructions(DeadInsts);
5310       DeleteDeadPHIs(L->getHeader());
5311     }
5312   }
5313   return Changed;
5314 }
5315 
5316 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
5317   if (skipLoop(L))
5318     return false;
5319 
5320   auto &IU = getAnalysis<IVUsersWrapperPass>().getIU();
5321   auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
5322   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
5323   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
5324   const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
5325       *L->getHeader()->getParent());
5326   return ReduceLoopStrength(L, IU, SE, DT, LI, TTI);
5327 }
5328 
5329 PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM,
5330                                               LoopStandardAnalysisResults &AR,
5331                                               LPMUpdater &) {
5332   if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE,
5333                           AR.DT, AR.LI, AR.TTI))
5334     return PreservedAnalyses::all();
5335 
5336   return getLoopPassPreservedAnalyses();
5337 }
5338 
5339 char LoopStrengthReduce::ID = 0;
5340 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce",
5341                       "Loop Strength Reduction", false, false)
5342 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
5343 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
5344 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
5345 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass)
5346 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
5347 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
5348 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce",
5349                     "Loop Strength Reduction", false, false)
5350 
5351 Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); }
5352