1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This transformation analyzes and transforms the induction variables (and 11 // computations derived from them) into forms suitable for efficient execution 12 // on the target. 13 // 14 // This pass performs a strength reduction on array references inside loops that 15 // have as one or more of their components the loop induction variable, it 16 // rewrites expressions to take advantage of scaled-index addressing modes 17 // available on the target, and it performs a variety of other optimizations 18 // related to loop induction variables. 19 // 20 // Terminology note: this code has a lot of handling for "post-increment" or 21 // "post-inc" users. This is not talking about post-increment addressing modes; 22 // it is instead talking about code like this: 23 // 24 // %i = phi [ 0, %entry ], [ %i.next, %latch ] 25 // ... 26 // %i.next = add %i, 1 27 // %c = icmp eq %i.next, %n 28 // 29 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however 30 // it's useful to think about these as the same register, with some uses using 31 // the value of the register before the add and some using it after. In this 32 // example, the icmp is a post-increment user, since it uses %i.next, which is 33 // the value of the induction variable after the increment. The other common 34 // case of post-increment users is users outside the loop. 35 // 36 // TODO: More sophistication in the way Formulae are generated and filtered. 37 // 38 // TODO: Handle multiple loops at a time. 39 // 40 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead 41 // of a GlobalValue? 42 // 43 // TODO: When truncation is free, truncate ICmp users' operands to make it a 44 // smaller encoding (on x86 at least). 45 // 46 // TODO: When a negated register is used by an add (such as in a list of 47 // multiple base registers, or as the increment expression in an addrec), 48 // we may not actually need both reg and (-1 * reg) in registers; the 49 // negation can be implemented by using a sub instead of an add. The 50 // lack of support for taking this into consideration when making 51 // register pressure decisions is partly worked around by the "Special" 52 // use kind. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h" 57 #include "llvm/ADT/APInt.h" 58 #include "llvm/ADT/DenseMap.h" 59 #include "llvm/ADT/DenseSet.h" 60 #include "llvm/ADT/Hashing.h" 61 #include "llvm/ADT/PointerIntPair.h" 62 #include "llvm/ADT/STLExtras.h" 63 #include "llvm/ADT/SetVector.h" 64 #include "llvm/ADT/SmallBitVector.h" 65 #include "llvm/ADT/SmallPtrSet.h" 66 #include "llvm/ADT/SmallSet.h" 67 #include "llvm/ADT/SmallVector.h" 68 #include "llvm/ADT/iterator_range.h" 69 #include "llvm/Analysis/IVUsers.h" 70 #include "llvm/Analysis/LoopAnalysisManager.h" 71 #include "llvm/Analysis/LoopInfo.h" 72 #include "llvm/Analysis/LoopPass.h" 73 #include "llvm/Analysis/ScalarEvolution.h" 74 #include "llvm/Analysis/ScalarEvolutionExpander.h" 75 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 76 #include "llvm/Analysis/ScalarEvolutionNormalization.h" 77 #include "llvm/Analysis/TargetTransformInfo.h" 78 #include "llvm/IR/BasicBlock.h" 79 #include "llvm/IR/Constant.h" 80 #include "llvm/IR/Constants.h" 81 #include "llvm/IR/DerivedTypes.h" 82 #include "llvm/IR/Dominators.h" 83 #include "llvm/IR/GlobalValue.h" 84 #include "llvm/IR/IRBuilder.h" 85 #include "llvm/IR/InstrTypes.h" 86 #include "llvm/IR/Instruction.h" 87 #include "llvm/IR/Instructions.h" 88 #include "llvm/IR/IntrinsicInst.h" 89 #include "llvm/IR/Intrinsics.h" 90 #include "llvm/IR/Module.h" 91 #include "llvm/IR/OperandTraits.h" 92 #include "llvm/IR/Operator.h" 93 #include "llvm/IR/PassManager.h" 94 #include "llvm/IR/Type.h" 95 #include "llvm/IR/Use.h" 96 #include "llvm/IR/User.h" 97 #include "llvm/IR/Value.h" 98 #include "llvm/IR/ValueHandle.h" 99 #include "llvm/Pass.h" 100 #include "llvm/Support/Casting.h" 101 #include "llvm/Support/CommandLine.h" 102 #include "llvm/Support/Compiler.h" 103 #include "llvm/Support/Debug.h" 104 #include "llvm/Support/ErrorHandling.h" 105 #include "llvm/Support/MathExtras.h" 106 #include "llvm/Support/raw_ostream.h" 107 #include "llvm/Transforms/Scalar.h" 108 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 109 #include "llvm/Transforms/Utils/Local.h" 110 #include <algorithm> 111 #include <cassert> 112 #include <cstddef> 113 #include <cstdint> 114 #include <cstdlib> 115 #include <iterator> 116 #include <limits> 117 #include <map> 118 #include <utility> 119 120 using namespace llvm; 121 122 #define DEBUG_TYPE "loop-reduce" 123 124 /// MaxIVUsers is an arbitrary threshold that provides an early opportunitiy for 125 /// bail out. This threshold is far beyond the number of users that LSR can 126 /// conceivably solve, so it should not affect generated code, but catches the 127 /// worst cases before LSR burns too much compile time and stack space. 128 static const unsigned MaxIVUsers = 200; 129 130 // Temporary flag to cleanup congruent phis after LSR phi expansion. 131 // It's currently disabled until we can determine whether it's truly useful or 132 // not. The flag should be removed after the v3.0 release. 133 // This is now needed for ivchains. 134 static cl::opt<bool> EnablePhiElim( 135 "enable-lsr-phielim", cl::Hidden, cl::init(true), 136 cl::desc("Enable LSR phi elimination")); 137 138 // The flag adds instruction count to solutions cost comparision. 139 static cl::opt<bool> InsnsCost( 140 "lsr-insns-cost", cl::Hidden, cl::init(true), 141 cl::desc("Add instruction count to a LSR cost model")); 142 143 // Flag to choose how to narrow complex lsr solution 144 static cl::opt<bool> LSRExpNarrow( 145 "lsr-exp-narrow", cl::Hidden, cl::init(false), 146 cl::desc("Narrow LSR complex solution using" 147 " expectation of registers number")); 148 149 // Flag to narrow search space by filtering non-optimal formulae with 150 // the same ScaledReg and Scale. 151 static cl::opt<bool> FilterSameScaledReg( 152 "lsr-filter-same-scaled-reg", cl::Hidden, cl::init(true), 153 cl::desc("Narrow LSR search space by filtering non-optimal formulae" 154 " with the same ScaledReg and Scale")); 155 156 #ifndef NDEBUG 157 // Stress test IV chain generation. 158 static cl::opt<bool> StressIVChain( 159 "stress-ivchain", cl::Hidden, cl::init(false), 160 cl::desc("Stress test LSR IV chains")); 161 #else 162 static bool StressIVChain = false; 163 #endif 164 165 namespace { 166 167 struct MemAccessTy { 168 /// Used in situations where the accessed memory type is unknown. 169 static const unsigned UnknownAddressSpace = 170 std::numeric_limits<unsigned>::max(); 171 172 Type *MemTy = nullptr; 173 unsigned AddrSpace = UnknownAddressSpace; 174 175 MemAccessTy() = default; 176 MemAccessTy(Type *Ty, unsigned AS) : MemTy(Ty), AddrSpace(AS) {} 177 178 bool operator==(MemAccessTy Other) const { 179 return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace; 180 } 181 182 bool operator!=(MemAccessTy Other) const { return !(*this == Other); } 183 184 static MemAccessTy getUnknown(LLVMContext &Ctx, 185 unsigned AS = UnknownAddressSpace) { 186 return MemAccessTy(Type::getVoidTy(Ctx), AS); 187 } 188 }; 189 190 /// This class holds data which is used to order reuse candidates. 191 class RegSortData { 192 public: 193 /// This represents the set of LSRUse indices which reference 194 /// a particular register. 195 SmallBitVector UsedByIndices; 196 197 void print(raw_ostream &OS) const; 198 void dump() const; 199 }; 200 201 } // end anonymous namespace 202 203 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 204 void RegSortData::print(raw_ostream &OS) const { 205 OS << "[NumUses=" << UsedByIndices.count() << ']'; 206 } 207 208 LLVM_DUMP_METHOD void RegSortData::dump() const { 209 print(errs()); errs() << '\n'; 210 } 211 #endif 212 213 namespace { 214 215 /// Map register candidates to information about how they are used. 216 class RegUseTracker { 217 using RegUsesTy = DenseMap<const SCEV *, RegSortData>; 218 219 RegUsesTy RegUsesMap; 220 SmallVector<const SCEV *, 16> RegSequence; 221 222 public: 223 void countRegister(const SCEV *Reg, size_t LUIdx); 224 void dropRegister(const SCEV *Reg, size_t LUIdx); 225 void swapAndDropUse(size_t LUIdx, size_t LastLUIdx); 226 227 bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const; 228 229 const SmallBitVector &getUsedByIndices(const SCEV *Reg) const; 230 231 void clear(); 232 233 using iterator = SmallVectorImpl<const SCEV *>::iterator; 234 using const_iterator = SmallVectorImpl<const SCEV *>::const_iterator; 235 236 iterator begin() { return RegSequence.begin(); } 237 iterator end() { return RegSequence.end(); } 238 const_iterator begin() const { return RegSequence.begin(); } 239 const_iterator end() const { return RegSequence.end(); } 240 }; 241 242 } // end anonymous namespace 243 244 void 245 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) { 246 std::pair<RegUsesTy::iterator, bool> Pair = 247 RegUsesMap.insert(std::make_pair(Reg, RegSortData())); 248 RegSortData &RSD = Pair.first->second; 249 if (Pair.second) 250 RegSequence.push_back(Reg); 251 RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1)); 252 RSD.UsedByIndices.set(LUIdx); 253 } 254 255 void 256 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) { 257 RegUsesTy::iterator It = RegUsesMap.find(Reg); 258 assert(It != RegUsesMap.end()); 259 RegSortData &RSD = It->second; 260 assert(RSD.UsedByIndices.size() > LUIdx); 261 RSD.UsedByIndices.reset(LUIdx); 262 } 263 264 void 265 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) { 266 assert(LUIdx <= LastLUIdx); 267 268 // Update RegUses. The data structure is not optimized for this purpose; 269 // we must iterate through it and update each of the bit vectors. 270 for (auto &Pair : RegUsesMap) { 271 SmallBitVector &UsedByIndices = Pair.second.UsedByIndices; 272 if (LUIdx < UsedByIndices.size()) 273 UsedByIndices[LUIdx] = 274 LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false; 275 UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx)); 276 } 277 } 278 279 bool 280 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const { 281 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 282 if (I == RegUsesMap.end()) 283 return false; 284 const SmallBitVector &UsedByIndices = I->second.UsedByIndices; 285 int i = UsedByIndices.find_first(); 286 if (i == -1) return false; 287 if ((size_t)i != LUIdx) return true; 288 return UsedByIndices.find_next(i) != -1; 289 } 290 291 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const { 292 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 293 assert(I != RegUsesMap.end() && "Unknown register!"); 294 return I->second.UsedByIndices; 295 } 296 297 void RegUseTracker::clear() { 298 RegUsesMap.clear(); 299 RegSequence.clear(); 300 } 301 302 namespace { 303 304 /// This class holds information that describes a formula for computing 305 /// satisfying a use. It may include broken-out immediates and scaled registers. 306 struct Formula { 307 /// Global base address used for complex addressing. 308 GlobalValue *BaseGV = nullptr; 309 310 /// Base offset for complex addressing. 311 int64_t BaseOffset = 0; 312 313 /// Whether any complex addressing has a base register. 314 bool HasBaseReg = false; 315 316 /// The scale of any complex addressing. 317 int64_t Scale = 0; 318 319 /// The list of "base" registers for this use. When this is non-empty. The 320 /// canonical representation of a formula is 321 /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and 322 /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty(). 323 /// 3. The reg containing recurrent expr related with currect loop in the 324 /// formula should be put in the ScaledReg. 325 /// #1 enforces that the scaled register is always used when at least two 326 /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2. 327 /// #2 enforces that 1 * reg is reg. 328 /// #3 ensures invariant regs with respect to current loop can be combined 329 /// together in LSR codegen. 330 /// This invariant can be temporarly broken while building a formula. 331 /// However, every formula inserted into the LSRInstance must be in canonical 332 /// form. 333 SmallVector<const SCEV *, 4> BaseRegs; 334 335 /// The 'scaled' register for this use. This should be non-null when Scale is 336 /// not zero. 337 const SCEV *ScaledReg = nullptr; 338 339 /// An additional constant offset which added near the use. This requires a 340 /// temporary register, but the offset itself can live in an add immediate 341 /// field rather than a register. 342 int64_t UnfoldedOffset = 0; 343 344 Formula() = default; 345 346 void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE); 347 348 bool isCanonical(const Loop &L) const; 349 350 void canonicalize(const Loop &L); 351 352 bool unscale(); 353 354 bool hasZeroEnd() const; 355 356 size_t getNumRegs() const; 357 Type *getType() const; 358 359 void deleteBaseReg(const SCEV *&S); 360 361 bool referencesReg(const SCEV *S) const; 362 bool hasRegsUsedByUsesOtherThan(size_t LUIdx, 363 const RegUseTracker &RegUses) const; 364 365 void print(raw_ostream &OS) const; 366 void dump() const; 367 }; 368 369 } // end anonymous namespace 370 371 /// Recursion helper for initialMatch. 372 static void DoInitialMatch(const SCEV *S, Loop *L, 373 SmallVectorImpl<const SCEV *> &Good, 374 SmallVectorImpl<const SCEV *> &Bad, 375 ScalarEvolution &SE) { 376 // Collect expressions which properly dominate the loop header. 377 if (SE.properlyDominates(S, L->getHeader())) { 378 Good.push_back(S); 379 return; 380 } 381 382 // Look at add operands. 383 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 384 for (const SCEV *S : Add->operands()) 385 DoInitialMatch(S, L, Good, Bad, SE); 386 return; 387 } 388 389 // Look at addrec operands. 390 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 391 if (!AR->getStart()->isZero() && AR->isAffine()) { 392 DoInitialMatch(AR->getStart(), L, Good, Bad, SE); 393 DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0), 394 AR->getStepRecurrence(SE), 395 // FIXME: AR->getNoWrapFlags() 396 AR->getLoop(), SCEV::FlagAnyWrap), 397 L, Good, Bad, SE); 398 return; 399 } 400 401 // Handle a multiplication by -1 (negation) if it didn't fold. 402 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) 403 if (Mul->getOperand(0)->isAllOnesValue()) { 404 SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end()); 405 const SCEV *NewMul = SE.getMulExpr(Ops); 406 407 SmallVector<const SCEV *, 4> MyGood; 408 SmallVector<const SCEV *, 4> MyBad; 409 DoInitialMatch(NewMul, L, MyGood, MyBad, SE); 410 const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue( 411 SE.getEffectiveSCEVType(NewMul->getType()))); 412 for (const SCEV *S : MyGood) 413 Good.push_back(SE.getMulExpr(NegOne, S)); 414 for (const SCEV *S : MyBad) 415 Bad.push_back(SE.getMulExpr(NegOne, S)); 416 return; 417 } 418 419 // Ok, we can't do anything interesting. Just stuff the whole thing into a 420 // register and hope for the best. 421 Bad.push_back(S); 422 } 423 424 /// Incorporate loop-variant parts of S into this Formula, attempting to keep 425 /// all loop-invariant and loop-computable values in a single base register. 426 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) { 427 SmallVector<const SCEV *, 4> Good; 428 SmallVector<const SCEV *, 4> Bad; 429 DoInitialMatch(S, L, Good, Bad, SE); 430 if (!Good.empty()) { 431 const SCEV *Sum = SE.getAddExpr(Good); 432 if (!Sum->isZero()) 433 BaseRegs.push_back(Sum); 434 HasBaseReg = true; 435 } 436 if (!Bad.empty()) { 437 const SCEV *Sum = SE.getAddExpr(Bad); 438 if (!Sum->isZero()) 439 BaseRegs.push_back(Sum); 440 HasBaseReg = true; 441 } 442 canonicalize(*L); 443 } 444 445 /// \brief Check whether or not this formula satisfies the canonical 446 /// representation. 447 /// \see Formula::BaseRegs. 448 bool Formula::isCanonical(const Loop &L) const { 449 if (!ScaledReg) 450 return BaseRegs.size() <= 1; 451 452 if (Scale != 1) 453 return true; 454 455 if (Scale == 1 && BaseRegs.empty()) 456 return false; 457 458 const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg); 459 if (SAR && SAR->getLoop() == &L) 460 return true; 461 462 // If ScaledReg is not a recurrent expr, or it is but its loop is not current 463 // loop, meanwhile BaseRegs contains a recurrent expr reg related with current 464 // loop, we want to swap the reg in BaseRegs with ScaledReg. 465 auto I = 466 find_if(make_range(BaseRegs.begin(), BaseRegs.end()), [&](const SCEV *S) { 467 return isa<const SCEVAddRecExpr>(S) && 468 (cast<SCEVAddRecExpr>(S)->getLoop() == &L); 469 }); 470 return I == BaseRegs.end(); 471 } 472 473 /// \brief Helper method to morph a formula into its canonical representation. 474 /// \see Formula::BaseRegs. 475 /// Every formula having more than one base register, must use the ScaledReg 476 /// field. Otherwise, we would have to do special cases everywhere in LSR 477 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ... 478 /// On the other hand, 1*reg should be canonicalized into reg. 479 void Formula::canonicalize(const Loop &L) { 480 if (isCanonical(L)) 481 return; 482 // So far we did not need this case. This is easy to implement but it is 483 // useless to maintain dead code. Beside it could hurt compile time. 484 assert(!BaseRegs.empty() && "1*reg => reg, should not be needed."); 485 486 // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg. 487 if (!ScaledReg) { 488 ScaledReg = BaseRegs.back(); 489 BaseRegs.pop_back(); 490 Scale = 1; 491 } 492 493 // If ScaledReg is an invariant with respect to L, find the reg from 494 // BaseRegs containing the recurrent expr related with Loop L. Swap the 495 // reg with ScaledReg. 496 const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg); 497 if (!SAR || SAR->getLoop() != &L) { 498 auto I = find_if(make_range(BaseRegs.begin(), BaseRegs.end()), 499 [&](const SCEV *S) { 500 return isa<const SCEVAddRecExpr>(S) && 501 (cast<SCEVAddRecExpr>(S)->getLoop() == &L); 502 }); 503 if (I != BaseRegs.end()) 504 std::swap(ScaledReg, *I); 505 } 506 } 507 508 /// \brief Get rid of the scale in the formula. 509 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2. 510 /// \return true if it was possible to get rid of the scale, false otherwise. 511 /// \note After this operation the formula may not be in the canonical form. 512 bool Formula::unscale() { 513 if (Scale != 1) 514 return false; 515 Scale = 0; 516 BaseRegs.push_back(ScaledReg); 517 ScaledReg = nullptr; 518 return true; 519 } 520 521 bool Formula::hasZeroEnd() const { 522 if (UnfoldedOffset || BaseOffset) 523 return false; 524 if (BaseRegs.size() != 1 || ScaledReg) 525 return false; 526 return true; 527 } 528 529 /// Return the total number of register operands used by this formula. This does 530 /// not include register uses implied by non-constant addrec strides. 531 size_t Formula::getNumRegs() const { 532 return !!ScaledReg + BaseRegs.size(); 533 } 534 535 /// Return the type of this formula, if it has one, or null otherwise. This type 536 /// is meaningless except for the bit size. 537 Type *Formula::getType() const { 538 return !BaseRegs.empty() ? BaseRegs.front()->getType() : 539 ScaledReg ? ScaledReg->getType() : 540 BaseGV ? BaseGV->getType() : 541 nullptr; 542 } 543 544 /// Delete the given base reg from the BaseRegs list. 545 void Formula::deleteBaseReg(const SCEV *&S) { 546 if (&S != &BaseRegs.back()) 547 std::swap(S, BaseRegs.back()); 548 BaseRegs.pop_back(); 549 } 550 551 /// Test if this formula references the given register. 552 bool Formula::referencesReg(const SCEV *S) const { 553 return S == ScaledReg || is_contained(BaseRegs, S); 554 } 555 556 /// Test whether this formula uses registers which are used by uses other than 557 /// the use with the given index. 558 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx, 559 const RegUseTracker &RegUses) const { 560 if (ScaledReg) 561 if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx)) 562 return true; 563 for (const SCEV *BaseReg : BaseRegs) 564 if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx)) 565 return true; 566 return false; 567 } 568 569 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 570 void Formula::print(raw_ostream &OS) const { 571 bool First = true; 572 if (BaseGV) { 573 if (!First) OS << " + "; else First = false; 574 BaseGV->printAsOperand(OS, /*PrintType=*/false); 575 } 576 if (BaseOffset != 0) { 577 if (!First) OS << " + "; else First = false; 578 OS << BaseOffset; 579 } 580 for (const SCEV *BaseReg : BaseRegs) { 581 if (!First) OS << " + "; else First = false; 582 OS << "reg(" << *BaseReg << ')'; 583 } 584 if (HasBaseReg && BaseRegs.empty()) { 585 if (!First) OS << " + "; else First = false; 586 OS << "**error: HasBaseReg**"; 587 } else if (!HasBaseReg && !BaseRegs.empty()) { 588 if (!First) OS << " + "; else First = false; 589 OS << "**error: !HasBaseReg**"; 590 } 591 if (Scale != 0) { 592 if (!First) OS << " + "; else First = false; 593 OS << Scale << "*reg("; 594 if (ScaledReg) 595 OS << *ScaledReg; 596 else 597 OS << "<unknown>"; 598 OS << ')'; 599 } 600 if (UnfoldedOffset != 0) { 601 if (!First) OS << " + "; 602 OS << "imm(" << UnfoldedOffset << ')'; 603 } 604 } 605 606 LLVM_DUMP_METHOD void Formula::dump() const { 607 print(errs()); errs() << '\n'; 608 } 609 #endif 610 611 /// Return true if the given addrec can be sign-extended without changing its 612 /// value. 613 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 614 Type *WideTy = 615 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1); 616 return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy)); 617 } 618 619 /// Return true if the given add can be sign-extended without changing its 620 /// value. 621 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) { 622 Type *WideTy = 623 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1); 624 return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy)); 625 } 626 627 /// Return true if the given mul can be sign-extended without changing its 628 /// value. 629 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) { 630 Type *WideTy = 631 IntegerType::get(SE.getContext(), 632 SE.getTypeSizeInBits(M->getType()) * M->getNumOperands()); 633 return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy)); 634 } 635 636 /// Return an expression for LHS /s RHS, if it can be determined and if the 637 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits 638 /// is true, expressions like (X * Y) /s Y are simplified to Y, ignoring that 639 /// the multiplication may overflow, which is useful when the result will be 640 /// used in a context where the most significant bits are ignored. 641 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS, 642 ScalarEvolution &SE, 643 bool IgnoreSignificantBits = false) { 644 // Handle the trivial case, which works for any SCEV type. 645 if (LHS == RHS) 646 return SE.getConstant(LHS->getType(), 1); 647 648 // Handle a few RHS special cases. 649 const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS); 650 if (RC) { 651 const APInt &RA = RC->getAPInt(); 652 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do 653 // some folding. 654 if (RA.isAllOnesValue()) 655 return SE.getMulExpr(LHS, RC); 656 // Handle x /s 1 as x. 657 if (RA == 1) 658 return LHS; 659 } 660 661 // Check for a division of a constant by a constant. 662 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) { 663 if (!RC) 664 return nullptr; 665 const APInt &LA = C->getAPInt(); 666 const APInt &RA = RC->getAPInt(); 667 if (LA.srem(RA) != 0) 668 return nullptr; 669 return SE.getConstant(LA.sdiv(RA)); 670 } 671 672 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow. 673 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) { 674 if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) { 675 const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE, 676 IgnoreSignificantBits); 677 if (!Step) return nullptr; 678 const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE, 679 IgnoreSignificantBits); 680 if (!Start) return nullptr; 681 // FlagNW is independent of the start value, step direction, and is 682 // preserved with smaller magnitude steps. 683 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 684 return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap); 685 } 686 return nullptr; 687 } 688 689 // Distribute the sdiv over add operands, if the add doesn't overflow. 690 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) { 691 if (IgnoreSignificantBits || isAddSExtable(Add, SE)) { 692 SmallVector<const SCEV *, 8> Ops; 693 for (const SCEV *S : Add->operands()) { 694 const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits); 695 if (!Op) return nullptr; 696 Ops.push_back(Op); 697 } 698 return SE.getAddExpr(Ops); 699 } 700 return nullptr; 701 } 702 703 // Check for a multiply operand that we can pull RHS out of. 704 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) { 705 if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) { 706 SmallVector<const SCEV *, 4> Ops; 707 bool Found = false; 708 for (const SCEV *S : Mul->operands()) { 709 if (!Found) 710 if (const SCEV *Q = getExactSDiv(S, RHS, SE, 711 IgnoreSignificantBits)) { 712 S = Q; 713 Found = true; 714 } 715 Ops.push_back(S); 716 } 717 return Found ? SE.getMulExpr(Ops) : nullptr; 718 } 719 return nullptr; 720 } 721 722 // Otherwise we don't know. 723 return nullptr; 724 } 725 726 /// If S involves the addition of a constant integer value, return that integer 727 /// value, and mutate S to point to a new SCEV with that value excluded. 728 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) { 729 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 730 if (C->getAPInt().getMinSignedBits() <= 64) { 731 S = SE.getConstant(C->getType(), 0); 732 return C->getValue()->getSExtValue(); 733 } 734 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 735 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 736 int64_t Result = ExtractImmediate(NewOps.front(), SE); 737 if (Result != 0) 738 S = SE.getAddExpr(NewOps); 739 return Result; 740 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 741 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 742 int64_t Result = ExtractImmediate(NewOps.front(), SE); 743 if (Result != 0) 744 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 745 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 746 SCEV::FlagAnyWrap); 747 return Result; 748 } 749 return 0; 750 } 751 752 /// If S involves the addition of a GlobalValue address, return that symbol, and 753 /// mutate S to point to a new SCEV with that value excluded. 754 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) { 755 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 756 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) { 757 S = SE.getConstant(GV->getType(), 0); 758 return GV; 759 } 760 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 761 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 762 GlobalValue *Result = ExtractSymbol(NewOps.back(), SE); 763 if (Result) 764 S = SE.getAddExpr(NewOps); 765 return Result; 766 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 767 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 768 GlobalValue *Result = ExtractSymbol(NewOps.front(), SE); 769 if (Result) 770 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 771 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 772 SCEV::FlagAnyWrap); 773 return Result; 774 } 775 return nullptr; 776 } 777 778 /// Returns true if the specified instruction is using the specified value as an 779 /// address. 780 static bool isAddressUse(const TargetTransformInfo &TTI, 781 Instruction *Inst, Value *OperandVal) { 782 bool isAddress = isa<LoadInst>(Inst); 783 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 784 if (SI->getPointerOperand() == OperandVal) 785 isAddress = true; 786 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 787 // Addressing modes can also be folded into prefetches and a variety 788 // of intrinsics. 789 switch (II->getIntrinsicID()) { 790 case Intrinsic::memset: 791 case Intrinsic::prefetch: 792 if (II->getArgOperand(0) == OperandVal) 793 isAddress = true; 794 break; 795 case Intrinsic::memmove: 796 case Intrinsic::memcpy: 797 if (II->getArgOperand(0) == OperandVal || 798 II->getArgOperand(1) == OperandVal) 799 isAddress = true; 800 break; 801 default: { 802 MemIntrinsicInfo IntrInfo; 803 if (TTI.getTgtMemIntrinsic(II, IntrInfo)) { 804 if (IntrInfo.PtrVal == OperandVal) 805 isAddress = true; 806 } 807 } 808 } 809 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) { 810 if (RMW->getPointerOperand() == OperandVal) 811 isAddress = true; 812 } else if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 813 if (CmpX->getPointerOperand() == OperandVal) 814 isAddress = true; 815 } 816 return isAddress; 817 } 818 819 /// Return the type of the memory being accessed. 820 static MemAccessTy getAccessType(const TargetTransformInfo &TTI, 821 Instruction *Inst) { 822 MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace); 823 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 824 AccessTy.MemTy = SI->getOperand(0)->getType(); 825 AccessTy.AddrSpace = SI->getPointerAddressSpace(); 826 } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 827 AccessTy.AddrSpace = LI->getPointerAddressSpace(); 828 } else if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) { 829 AccessTy.AddrSpace = RMW->getPointerAddressSpace(); 830 } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 831 AccessTy.AddrSpace = CmpX->getPointerAddressSpace(); 832 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 833 switch (II->getIntrinsicID()) { 834 case Intrinsic::prefetch: 835 AccessTy.AddrSpace = II->getArgOperand(0)->getType()->getPointerAddressSpace(); 836 break; 837 default: { 838 MemIntrinsicInfo IntrInfo; 839 if (TTI.getTgtMemIntrinsic(II, IntrInfo) && IntrInfo.PtrVal) { 840 AccessTy.AddrSpace 841 = IntrInfo.PtrVal->getType()->getPointerAddressSpace(); 842 } 843 844 break; 845 } 846 } 847 } 848 849 // All pointers have the same requirements, so canonicalize them to an 850 // arbitrary pointer type to minimize variation. 851 if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy)) 852 AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1), 853 PTy->getAddressSpace()); 854 855 return AccessTy; 856 } 857 858 /// Return true if this AddRec is already a phi in its loop. 859 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 860 for (PHINode &PN : AR->getLoop()->getHeader()->phis()) { 861 if (SE.isSCEVable(PN.getType()) && 862 (SE.getEffectiveSCEVType(PN.getType()) == 863 SE.getEffectiveSCEVType(AR->getType())) && 864 SE.getSCEV(&PN) == AR) 865 return true; 866 } 867 return false; 868 } 869 870 /// Check if expanding this expression is likely to incur significant cost. This 871 /// is tricky because SCEV doesn't track which expressions are actually computed 872 /// by the current IR. 873 /// 874 /// We currently allow expansion of IV increments that involve adds, 875 /// multiplication by constants, and AddRecs from existing phis. 876 /// 877 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an 878 /// obvious multiple of the UDivExpr. 879 static bool isHighCostExpansion(const SCEV *S, 880 SmallPtrSetImpl<const SCEV*> &Processed, 881 ScalarEvolution &SE) { 882 // Zero/One operand expressions 883 switch (S->getSCEVType()) { 884 case scUnknown: 885 case scConstant: 886 return false; 887 case scTruncate: 888 return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(), 889 Processed, SE); 890 case scZeroExtend: 891 return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(), 892 Processed, SE); 893 case scSignExtend: 894 return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(), 895 Processed, SE); 896 } 897 898 if (!Processed.insert(S).second) 899 return false; 900 901 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 902 for (const SCEV *S : Add->operands()) { 903 if (isHighCostExpansion(S, Processed, SE)) 904 return true; 905 } 906 return false; 907 } 908 909 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 910 if (Mul->getNumOperands() == 2) { 911 // Multiplication by a constant is ok 912 if (isa<SCEVConstant>(Mul->getOperand(0))) 913 return isHighCostExpansion(Mul->getOperand(1), Processed, SE); 914 915 // If we have the value of one operand, check if an existing 916 // multiplication already generates this expression. 917 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) { 918 Value *UVal = U->getValue(); 919 for (User *UR : UVal->users()) { 920 // If U is a constant, it may be used by a ConstantExpr. 921 Instruction *UI = dyn_cast<Instruction>(UR); 922 if (UI && UI->getOpcode() == Instruction::Mul && 923 SE.isSCEVable(UI->getType())) { 924 return SE.getSCEV(UI) == Mul; 925 } 926 } 927 } 928 } 929 } 930 931 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 932 if (isExistingPhi(AR, SE)) 933 return false; 934 } 935 936 // Fow now, consider any other type of expression (div/mul/min/max) high cost. 937 return true; 938 } 939 940 /// If any of the instructions in the specified set are trivially dead, delete 941 /// them and see if this makes any of their operands subsequently dead. 942 static bool 943 DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 944 bool Changed = false; 945 946 while (!DeadInsts.empty()) { 947 Value *V = DeadInsts.pop_back_val(); 948 Instruction *I = dyn_cast_or_null<Instruction>(V); 949 950 if (!I || !isInstructionTriviallyDead(I)) 951 continue; 952 953 for (Use &O : I->operands()) 954 if (Instruction *U = dyn_cast<Instruction>(O)) { 955 O = nullptr; 956 if (U->use_empty()) 957 DeadInsts.emplace_back(U); 958 } 959 960 I->eraseFromParent(); 961 Changed = true; 962 } 963 964 return Changed; 965 } 966 967 namespace { 968 969 class LSRUse; 970 971 } // end anonymous namespace 972 973 /// \brief Check if the addressing mode defined by \p F is completely 974 /// folded in \p LU at isel time. 975 /// This includes address-mode folding and special icmp tricks. 976 /// This function returns true if \p LU can accommodate what \p F 977 /// defines and up to 1 base + 1 scaled + offset. 978 /// In other words, if \p F has several base registers, this function may 979 /// still return true. Therefore, users still need to account for 980 /// additional base registers and/or unfolded offsets to derive an 981 /// accurate cost model. 982 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 983 const LSRUse &LU, const Formula &F); 984 985 // Get the cost of the scaling factor used in F for LU. 986 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, 987 const LSRUse &LU, const Formula &F, 988 const Loop &L); 989 990 namespace { 991 992 /// This class is used to measure and compare candidate formulae. 993 class Cost { 994 TargetTransformInfo::LSRCost C; 995 996 public: 997 Cost() { 998 C.Insns = 0; 999 C.NumRegs = 0; 1000 C.AddRecCost = 0; 1001 C.NumIVMuls = 0; 1002 C.NumBaseAdds = 0; 1003 C.ImmCost = 0; 1004 C.SetupCost = 0; 1005 C.ScaleCost = 0; 1006 } 1007 1008 bool isLess(Cost &Other, const TargetTransformInfo &TTI); 1009 1010 void Lose(); 1011 1012 #ifndef NDEBUG 1013 // Once any of the metrics loses, they must all remain losers. 1014 bool isValid() { 1015 return ((C.Insns | C.NumRegs | C.AddRecCost | C.NumIVMuls | C.NumBaseAdds 1016 | C.ImmCost | C.SetupCost | C.ScaleCost) != ~0u) 1017 || ((C.Insns & C.NumRegs & C.AddRecCost & C.NumIVMuls & C.NumBaseAdds 1018 & C.ImmCost & C.SetupCost & C.ScaleCost) == ~0u); 1019 } 1020 #endif 1021 1022 bool isLoser() { 1023 assert(isValid() && "invalid cost"); 1024 return C.NumRegs == ~0u; 1025 } 1026 1027 void RateFormula(const TargetTransformInfo &TTI, 1028 const Formula &F, 1029 SmallPtrSetImpl<const SCEV *> &Regs, 1030 const DenseSet<const SCEV *> &VisitedRegs, 1031 const Loop *L, 1032 ScalarEvolution &SE, DominatorTree &DT, 1033 const LSRUse &LU, 1034 SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr); 1035 1036 void print(raw_ostream &OS) const; 1037 void dump() const; 1038 1039 private: 1040 void RateRegister(const SCEV *Reg, 1041 SmallPtrSetImpl<const SCEV *> &Regs, 1042 const Loop *L, 1043 ScalarEvolution &SE, DominatorTree &DT); 1044 void RatePrimaryRegister(const SCEV *Reg, 1045 SmallPtrSetImpl<const SCEV *> &Regs, 1046 const Loop *L, 1047 ScalarEvolution &SE, DominatorTree &DT, 1048 SmallPtrSetImpl<const SCEV *> *LoserRegs); 1049 }; 1050 1051 /// An operand value in an instruction which is to be replaced with some 1052 /// equivalent, possibly strength-reduced, replacement. 1053 struct LSRFixup { 1054 /// The instruction which will be updated. 1055 Instruction *UserInst = nullptr; 1056 1057 /// The operand of the instruction which will be replaced. The operand may be 1058 /// used more than once; every instance will be replaced. 1059 Value *OperandValToReplace = nullptr; 1060 1061 /// If this user is to use the post-incremented value of an induction 1062 /// variable, this set is non-empty and holds the loops associated with the 1063 /// induction variable. 1064 PostIncLoopSet PostIncLoops; 1065 1066 /// A constant offset to be added to the LSRUse expression. This allows 1067 /// multiple fixups to share the same LSRUse with different offsets, for 1068 /// example in an unrolled loop. 1069 int64_t Offset = 0; 1070 1071 LSRFixup() = default; 1072 1073 bool isUseFullyOutsideLoop(const Loop *L) const; 1074 1075 void print(raw_ostream &OS) const; 1076 void dump() const; 1077 }; 1078 1079 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted 1080 /// SmallVectors of const SCEV*. 1081 struct UniquifierDenseMapInfo { 1082 static SmallVector<const SCEV *, 4> getEmptyKey() { 1083 SmallVector<const SCEV *, 4> V; 1084 V.push_back(reinterpret_cast<const SCEV *>(-1)); 1085 return V; 1086 } 1087 1088 static SmallVector<const SCEV *, 4> getTombstoneKey() { 1089 SmallVector<const SCEV *, 4> V; 1090 V.push_back(reinterpret_cast<const SCEV *>(-2)); 1091 return V; 1092 } 1093 1094 static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) { 1095 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 1096 } 1097 1098 static bool isEqual(const SmallVector<const SCEV *, 4> &LHS, 1099 const SmallVector<const SCEV *, 4> &RHS) { 1100 return LHS == RHS; 1101 } 1102 }; 1103 1104 /// This class holds the state that LSR keeps for each use in IVUsers, as well 1105 /// as uses invented by LSR itself. It includes information about what kinds of 1106 /// things can be folded into the user, information about the user itself, and 1107 /// information about how the use may be satisfied. TODO: Represent multiple 1108 /// users of the same expression in common? 1109 class LSRUse { 1110 DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier; 1111 1112 public: 1113 /// An enum for a kind of use, indicating what types of scaled and immediate 1114 /// operands it might support. 1115 enum KindType { 1116 Basic, ///< A normal use, with no folding. 1117 Special, ///< A special case of basic, allowing -1 scales. 1118 Address, ///< An address use; folding according to TargetLowering 1119 ICmpZero ///< An equality icmp with both operands folded into one. 1120 // TODO: Add a generic icmp too? 1121 }; 1122 1123 using SCEVUseKindPair = PointerIntPair<const SCEV *, 2, KindType>; 1124 1125 KindType Kind; 1126 MemAccessTy AccessTy; 1127 1128 /// The list of operands which are to be replaced. 1129 SmallVector<LSRFixup, 8> Fixups; 1130 1131 /// Keep track of the min and max offsets of the fixups. 1132 int64_t MinOffset = std::numeric_limits<int64_t>::max(); 1133 int64_t MaxOffset = std::numeric_limits<int64_t>::min(); 1134 1135 /// This records whether all of the fixups using this LSRUse are outside of 1136 /// the loop, in which case some special-case heuristics may be used. 1137 bool AllFixupsOutsideLoop = true; 1138 1139 /// RigidFormula is set to true to guarantee that this use will be associated 1140 /// with a single formula--the one that initially matched. Some SCEV 1141 /// expressions cannot be expanded. This allows LSR to consider the registers 1142 /// used by those expressions without the need to expand them later after 1143 /// changing the formula. 1144 bool RigidFormula = false; 1145 1146 /// This records the widest use type for any fixup using this 1147 /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max 1148 /// fixup widths to be equivalent, because the narrower one may be relying on 1149 /// the implicit truncation to truncate away bogus bits. 1150 Type *WidestFixupType = nullptr; 1151 1152 /// A list of ways to build a value that can satisfy this user. After the 1153 /// list is populated, one of these is selected heuristically and used to 1154 /// formulate a replacement for OperandValToReplace in UserInst. 1155 SmallVector<Formula, 12> Formulae; 1156 1157 /// The set of register candidates used by all formulae in this LSRUse. 1158 SmallPtrSet<const SCEV *, 4> Regs; 1159 1160 LSRUse(KindType K, MemAccessTy AT) : Kind(K), AccessTy(AT) {} 1161 1162 LSRFixup &getNewFixup() { 1163 Fixups.push_back(LSRFixup()); 1164 return Fixups.back(); 1165 } 1166 1167 void pushFixup(LSRFixup &f) { 1168 Fixups.push_back(f); 1169 if (f.Offset > MaxOffset) 1170 MaxOffset = f.Offset; 1171 if (f.Offset < MinOffset) 1172 MinOffset = f.Offset; 1173 } 1174 1175 bool HasFormulaWithSameRegs(const Formula &F) const; 1176 float getNotSelectedProbability(const SCEV *Reg) const; 1177 bool InsertFormula(const Formula &F, const Loop &L); 1178 void DeleteFormula(Formula &F); 1179 void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses); 1180 1181 void print(raw_ostream &OS) const; 1182 void dump() const; 1183 }; 1184 1185 } // end anonymous namespace 1186 1187 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1188 LSRUse::KindType Kind, MemAccessTy AccessTy, 1189 GlobalValue *BaseGV, int64_t BaseOffset, 1190 bool HasBaseReg, int64_t Scale, 1191 Instruction *Fixup = nullptr); 1192 1193 /// Tally up interesting quantities from the given register. 1194 void Cost::RateRegister(const SCEV *Reg, 1195 SmallPtrSetImpl<const SCEV *> &Regs, 1196 const Loop *L, 1197 ScalarEvolution &SE, DominatorTree &DT) { 1198 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) { 1199 // If this is an addrec for another loop, it should be an invariant 1200 // with respect to L since L is the innermost loop (at least 1201 // for now LSR only handles innermost loops). 1202 if (AR->getLoop() != L) { 1203 // If the AddRec exists, consider it's register free and leave it alone. 1204 if (isExistingPhi(AR, SE)) 1205 return; 1206 1207 // It is bad to allow LSR for current loop to add induction variables 1208 // for its sibling loops. 1209 if (!AR->getLoop()->contains(L)) { 1210 Lose(); 1211 return; 1212 } 1213 1214 // Otherwise, it will be an invariant with respect to Loop L. 1215 ++C.NumRegs; 1216 return; 1217 } 1218 C.AddRecCost += 1; /// TODO: This should be a function of the stride. 1219 1220 // Add the step value register, if it needs one. 1221 // TODO: The non-affine case isn't precisely modeled here. 1222 if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) { 1223 if (!Regs.count(AR->getOperand(1))) { 1224 RateRegister(AR->getOperand(1), Regs, L, SE, DT); 1225 if (isLoser()) 1226 return; 1227 } 1228 } 1229 } 1230 ++C.NumRegs; 1231 1232 // Rough heuristic; favor registers which don't require extra setup 1233 // instructions in the preheader. 1234 if (!isa<SCEVUnknown>(Reg) && 1235 !isa<SCEVConstant>(Reg) && 1236 !(isa<SCEVAddRecExpr>(Reg) && 1237 (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) || 1238 isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart())))) 1239 ++C.SetupCost; 1240 1241 C.NumIVMuls += isa<SCEVMulExpr>(Reg) && 1242 SE.hasComputableLoopEvolution(Reg, L); 1243 } 1244 1245 /// Record this register in the set. If we haven't seen it before, rate 1246 /// it. Optional LoserRegs provides a way to declare any formula that refers to 1247 /// one of those regs an instant loser. 1248 void Cost::RatePrimaryRegister(const SCEV *Reg, 1249 SmallPtrSetImpl<const SCEV *> &Regs, 1250 const Loop *L, 1251 ScalarEvolution &SE, DominatorTree &DT, 1252 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1253 if (LoserRegs && LoserRegs->count(Reg)) { 1254 Lose(); 1255 return; 1256 } 1257 if (Regs.insert(Reg).second) { 1258 RateRegister(Reg, Regs, L, SE, DT); 1259 if (LoserRegs && isLoser()) 1260 LoserRegs->insert(Reg); 1261 } 1262 } 1263 1264 void Cost::RateFormula(const TargetTransformInfo &TTI, 1265 const Formula &F, 1266 SmallPtrSetImpl<const SCEV *> &Regs, 1267 const DenseSet<const SCEV *> &VisitedRegs, 1268 const Loop *L, 1269 ScalarEvolution &SE, DominatorTree &DT, 1270 const LSRUse &LU, 1271 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1272 assert(F.isCanonical(*L) && "Cost is accurate only for canonical formula"); 1273 // Tally up the registers. 1274 unsigned PrevAddRecCost = C.AddRecCost; 1275 unsigned PrevNumRegs = C.NumRegs; 1276 unsigned PrevNumBaseAdds = C.NumBaseAdds; 1277 if (const SCEV *ScaledReg = F.ScaledReg) { 1278 if (VisitedRegs.count(ScaledReg)) { 1279 Lose(); 1280 return; 1281 } 1282 RatePrimaryRegister(ScaledReg, Regs, L, SE, DT, LoserRegs); 1283 if (isLoser()) 1284 return; 1285 } 1286 for (const SCEV *BaseReg : F.BaseRegs) { 1287 if (VisitedRegs.count(BaseReg)) { 1288 Lose(); 1289 return; 1290 } 1291 RatePrimaryRegister(BaseReg, Regs, L, SE, DT, LoserRegs); 1292 if (isLoser()) 1293 return; 1294 } 1295 1296 // Determine how many (unfolded) adds we'll need inside the loop. 1297 size_t NumBaseParts = F.getNumRegs(); 1298 if (NumBaseParts > 1) 1299 // Do not count the base and a possible second register if the target 1300 // allows to fold 2 registers. 1301 C.NumBaseAdds += 1302 NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(TTI, LU, F))); 1303 C.NumBaseAdds += (F.UnfoldedOffset != 0); 1304 1305 // Accumulate non-free scaling amounts. 1306 C.ScaleCost += getScalingFactorCost(TTI, LU, F, *L); 1307 1308 // Tally up the non-zero immediates. 1309 for (const LSRFixup &Fixup : LU.Fixups) { 1310 int64_t O = Fixup.Offset; 1311 int64_t Offset = (uint64_t)O + F.BaseOffset; 1312 if (F.BaseGV) 1313 C.ImmCost += 64; // Handle symbolic values conservatively. 1314 // TODO: This should probably be the pointer size. 1315 else if (Offset != 0) 1316 C.ImmCost += APInt(64, Offset, true).getMinSignedBits(); 1317 1318 // Check with target if this offset with this instruction is 1319 // specifically not supported. 1320 if (LU.Kind == LSRUse::Address && Offset != 0 && 1321 !isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV, 1322 Offset, F.HasBaseReg, F.Scale, Fixup.UserInst)) 1323 C.NumBaseAdds++; 1324 } 1325 1326 // If we don't count instruction cost exit here. 1327 if (!InsnsCost) { 1328 assert(isValid() && "invalid cost"); 1329 return; 1330 } 1331 1332 // Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as 1333 // additional instruction (at least fill). 1334 unsigned TTIRegNum = TTI.getNumberOfRegisters(false) - 1; 1335 if (C.NumRegs > TTIRegNum) { 1336 // Cost already exceeded TTIRegNum, then only newly added register can add 1337 // new instructions. 1338 if (PrevNumRegs > TTIRegNum) 1339 C.Insns += (C.NumRegs - PrevNumRegs); 1340 else 1341 C.Insns += (C.NumRegs - TTIRegNum); 1342 } 1343 1344 // If ICmpZero formula ends with not 0, it could not be replaced by 1345 // just add or sub. We'll need to compare final result of AddRec. 1346 // That means we'll need an additional instruction. But if the target can 1347 // macro-fuse a compare with a branch, don't count this extra instruction. 1348 // For -10 + {0, +, 1}: 1349 // i = i + 1; 1350 // cmp i, 10 1351 // 1352 // For {-10, +, 1}: 1353 // i = i + 1; 1354 if (LU.Kind == LSRUse::ICmpZero && !F.hasZeroEnd() && !TTI.canMacroFuseCmp()) 1355 C.Insns++; 1356 // Each new AddRec adds 1 instruction to calculation. 1357 C.Insns += (C.AddRecCost - PrevAddRecCost); 1358 1359 // BaseAdds adds instructions for unfolded registers. 1360 if (LU.Kind != LSRUse::ICmpZero) 1361 C.Insns += C.NumBaseAdds - PrevNumBaseAdds; 1362 assert(isValid() && "invalid cost"); 1363 } 1364 1365 /// Set this cost to a losing value. 1366 void Cost::Lose() { 1367 C.Insns = std::numeric_limits<unsigned>::max(); 1368 C.NumRegs = std::numeric_limits<unsigned>::max(); 1369 C.AddRecCost = std::numeric_limits<unsigned>::max(); 1370 C.NumIVMuls = std::numeric_limits<unsigned>::max(); 1371 C.NumBaseAdds = std::numeric_limits<unsigned>::max(); 1372 C.ImmCost = std::numeric_limits<unsigned>::max(); 1373 C.SetupCost = std::numeric_limits<unsigned>::max(); 1374 C.ScaleCost = std::numeric_limits<unsigned>::max(); 1375 } 1376 1377 /// Choose the lower cost. 1378 bool Cost::isLess(Cost &Other, const TargetTransformInfo &TTI) { 1379 if (InsnsCost.getNumOccurrences() > 0 && InsnsCost && 1380 C.Insns != Other.C.Insns) 1381 return C.Insns < Other.C.Insns; 1382 return TTI.isLSRCostLess(C, Other.C); 1383 } 1384 1385 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1386 void Cost::print(raw_ostream &OS) const { 1387 if (InsnsCost) 1388 OS << C.Insns << " instruction" << (C.Insns == 1 ? " " : "s "); 1389 OS << C.NumRegs << " reg" << (C.NumRegs == 1 ? "" : "s"); 1390 if (C.AddRecCost != 0) 1391 OS << ", with addrec cost " << C.AddRecCost; 1392 if (C.NumIVMuls != 0) 1393 OS << ", plus " << C.NumIVMuls << " IV mul" 1394 << (C.NumIVMuls == 1 ? "" : "s"); 1395 if (C.NumBaseAdds != 0) 1396 OS << ", plus " << C.NumBaseAdds << " base add" 1397 << (C.NumBaseAdds == 1 ? "" : "s"); 1398 if (C.ScaleCost != 0) 1399 OS << ", plus " << C.ScaleCost << " scale cost"; 1400 if (C.ImmCost != 0) 1401 OS << ", plus " << C.ImmCost << " imm cost"; 1402 if (C.SetupCost != 0) 1403 OS << ", plus " << C.SetupCost << " setup cost"; 1404 } 1405 1406 LLVM_DUMP_METHOD void Cost::dump() const { 1407 print(errs()); errs() << '\n'; 1408 } 1409 #endif 1410 1411 /// Test whether this fixup always uses its value outside of the given loop. 1412 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const { 1413 // PHI nodes use their value in their incoming blocks. 1414 if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) { 1415 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1416 if (PN->getIncomingValue(i) == OperandValToReplace && 1417 L->contains(PN->getIncomingBlock(i))) 1418 return false; 1419 return true; 1420 } 1421 1422 return !L->contains(UserInst); 1423 } 1424 1425 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1426 void LSRFixup::print(raw_ostream &OS) const { 1427 OS << "UserInst="; 1428 // Store is common and interesting enough to be worth special-casing. 1429 if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) { 1430 OS << "store "; 1431 Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false); 1432 } else if (UserInst->getType()->isVoidTy()) 1433 OS << UserInst->getOpcodeName(); 1434 else 1435 UserInst->printAsOperand(OS, /*PrintType=*/false); 1436 1437 OS << ", OperandValToReplace="; 1438 OperandValToReplace->printAsOperand(OS, /*PrintType=*/false); 1439 1440 for (const Loop *PIL : PostIncLoops) { 1441 OS << ", PostIncLoop="; 1442 PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 1443 } 1444 1445 if (Offset != 0) 1446 OS << ", Offset=" << Offset; 1447 } 1448 1449 LLVM_DUMP_METHOD void LSRFixup::dump() const { 1450 print(errs()); errs() << '\n'; 1451 } 1452 #endif 1453 1454 /// Test whether this use as a formula which has the same registers as the given 1455 /// formula. 1456 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const { 1457 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1458 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1459 // Unstable sort by host order ok, because this is only used for uniquifying. 1460 std::sort(Key.begin(), Key.end()); 1461 return Uniquifier.count(Key); 1462 } 1463 1464 /// The function returns a probability of selecting formula without Reg. 1465 float LSRUse::getNotSelectedProbability(const SCEV *Reg) const { 1466 unsigned FNum = 0; 1467 for (const Formula &F : Formulae) 1468 if (F.referencesReg(Reg)) 1469 FNum++; 1470 return ((float)(Formulae.size() - FNum)) / Formulae.size(); 1471 } 1472 1473 /// If the given formula has not yet been inserted, add it to the list, and 1474 /// return true. Return false otherwise. The formula must be in canonical form. 1475 bool LSRUse::InsertFormula(const Formula &F, const Loop &L) { 1476 assert(F.isCanonical(L) && "Invalid canonical representation"); 1477 1478 if (!Formulae.empty() && RigidFormula) 1479 return false; 1480 1481 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1482 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1483 // Unstable sort by host order ok, because this is only used for uniquifying. 1484 std::sort(Key.begin(), Key.end()); 1485 1486 if (!Uniquifier.insert(Key).second) 1487 return false; 1488 1489 // Using a register to hold the value of 0 is not profitable. 1490 assert((!F.ScaledReg || !F.ScaledReg->isZero()) && 1491 "Zero allocated in a scaled register!"); 1492 #ifndef NDEBUG 1493 for (const SCEV *BaseReg : F.BaseRegs) 1494 assert(!BaseReg->isZero() && "Zero allocated in a base register!"); 1495 #endif 1496 1497 // Add the formula to the list. 1498 Formulae.push_back(F); 1499 1500 // Record registers now being used by this use. 1501 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1502 if (F.ScaledReg) 1503 Regs.insert(F.ScaledReg); 1504 1505 return true; 1506 } 1507 1508 /// Remove the given formula from this use's list. 1509 void LSRUse::DeleteFormula(Formula &F) { 1510 if (&F != &Formulae.back()) 1511 std::swap(F, Formulae.back()); 1512 Formulae.pop_back(); 1513 } 1514 1515 /// Recompute the Regs field, and update RegUses. 1516 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) { 1517 // Now that we've filtered out some formulae, recompute the Regs set. 1518 SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs); 1519 Regs.clear(); 1520 for (const Formula &F : Formulae) { 1521 if (F.ScaledReg) Regs.insert(F.ScaledReg); 1522 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1523 } 1524 1525 // Update the RegTracker. 1526 for (const SCEV *S : OldRegs) 1527 if (!Regs.count(S)) 1528 RegUses.dropRegister(S, LUIdx); 1529 } 1530 1531 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1532 void LSRUse::print(raw_ostream &OS) const { 1533 OS << "LSR Use: Kind="; 1534 switch (Kind) { 1535 case Basic: OS << "Basic"; break; 1536 case Special: OS << "Special"; break; 1537 case ICmpZero: OS << "ICmpZero"; break; 1538 case Address: 1539 OS << "Address of "; 1540 if (AccessTy.MemTy->isPointerTy()) 1541 OS << "pointer"; // the full pointer type could be really verbose 1542 else { 1543 OS << *AccessTy.MemTy; 1544 } 1545 1546 OS << " in addrspace(" << AccessTy.AddrSpace << ')'; 1547 } 1548 1549 OS << ", Offsets={"; 1550 bool NeedComma = false; 1551 for (const LSRFixup &Fixup : Fixups) { 1552 if (NeedComma) OS << ','; 1553 OS << Fixup.Offset; 1554 NeedComma = true; 1555 } 1556 OS << '}'; 1557 1558 if (AllFixupsOutsideLoop) 1559 OS << ", all-fixups-outside-loop"; 1560 1561 if (WidestFixupType) 1562 OS << ", widest fixup type: " << *WidestFixupType; 1563 } 1564 1565 LLVM_DUMP_METHOD void LSRUse::dump() const { 1566 print(errs()); errs() << '\n'; 1567 } 1568 #endif 1569 1570 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1571 LSRUse::KindType Kind, MemAccessTy AccessTy, 1572 GlobalValue *BaseGV, int64_t BaseOffset, 1573 bool HasBaseReg, int64_t Scale, 1574 Instruction *Fixup/*= nullptr*/) { 1575 switch (Kind) { 1576 case LSRUse::Address: 1577 return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset, 1578 HasBaseReg, Scale, AccessTy.AddrSpace, Fixup); 1579 1580 case LSRUse::ICmpZero: 1581 // There's not even a target hook for querying whether it would be legal to 1582 // fold a GV into an ICmp. 1583 if (BaseGV) 1584 return false; 1585 1586 // ICmp only has two operands; don't allow more than two non-trivial parts. 1587 if (Scale != 0 && HasBaseReg && BaseOffset != 0) 1588 return false; 1589 1590 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by 1591 // putting the scaled register in the other operand of the icmp. 1592 if (Scale != 0 && Scale != -1) 1593 return false; 1594 1595 // If we have low-level target information, ask the target if it can fold an 1596 // integer immediate on an icmp. 1597 if (BaseOffset != 0) { 1598 // We have one of: 1599 // ICmpZero BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset 1600 // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset 1601 // Offs is the ICmp immediate. 1602 if (Scale == 0) 1603 // The cast does the right thing with 1604 // std::numeric_limits<int64_t>::min(). 1605 BaseOffset = -(uint64_t)BaseOffset; 1606 return TTI.isLegalICmpImmediate(BaseOffset); 1607 } 1608 1609 // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg 1610 return true; 1611 1612 case LSRUse::Basic: 1613 // Only handle single-register values. 1614 return !BaseGV && Scale == 0 && BaseOffset == 0; 1615 1616 case LSRUse::Special: 1617 // Special case Basic to handle -1 scales. 1618 return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0; 1619 } 1620 1621 llvm_unreachable("Invalid LSRUse Kind!"); 1622 } 1623 1624 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1625 int64_t MinOffset, int64_t MaxOffset, 1626 LSRUse::KindType Kind, MemAccessTy AccessTy, 1627 GlobalValue *BaseGV, int64_t BaseOffset, 1628 bool HasBaseReg, int64_t Scale) { 1629 // Check for overflow. 1630 if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) != 1631 (MinOffset > 0)) 1632 return false; 1633 MinOffset = (uint64_t)BaseOffset + MinOffset; 1634 if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) != 1635 (MaxOffset > 0)) 1636 return false; 1637 MaxOffset = (uint64_t)BaseOffset + MaxOffset; 1638 1639 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset, 1640 HasBaseReg, Scale) && 1641 isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset, 1642 HasBaseReg, Scale); 1643 } 1644 1645 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1646 int64_t MinOffset, int64_t MaxOffset, 1647 LSRUse::KindType Kind, MemAccessTy AccessTy, 1648 const Formula &F, const Loop &L) { 1649 // For the purpose of isAMCompletelyFolded either having a canonical formula 1650 // or a scale not equal to zero is correct. 1651 // Problems may arise from non canonical formulae having a scale == 0. 1652 // Strictly speaking it would best to just rely on canonical formulae. 1653 // However, when we generate the scaled formulae, we first check that the 1654 // scaling factor is profitable before computing the actual ScaledReg for 1655 // compile time sake. 1656 assert((F.isCanonical(L) || F.Scale != 0)); 1657 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1658 F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale); 1659 } 1660 1661 /// Test whether we know how to expand the current formula. 1662 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1663 int64_t MaxOffset, LSRUse::KindType Kind, 1664 MemAccessTy AccessTy, GlobalValue *BaseGV, 1665 int64_t BaseOffset, bool HasBaseReg, int64_t Scale) { 1666 // We know how to expand completely foldable formulae. 1667 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1668 BaseOffset, HasBaseReg, Scale) || 1669 // Or formulae that use a base register produced by a sum of base 1670 // registers. 1671 (Scale == 1 && 1672 isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1673 BaseGV, BaseOffset, true, 0)); 1674 } 1675 1676 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1677 int64_t MaxOffset, LSRUse::KindType Kind, 1678 MemAccessTy AccessTy, const Formula &F) { 1679 return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV, 1680 F.BaseOffset, F.HasBaseReg, F.Scale); 1681 } 1682 1683 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1684 const LSRUse &LU, const Formula &F) { 1685 // Target may want to look at the user instructions. 1686 if (LU.Kind == LSRUse::Address && TTI.LSRWithInstrQueries()) { 1687 for (const LSRFixup &Fixup : LU.Fixups) 1688 if (!isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV, 1689 (F.BaseOffset + Fixup.Offset), F.HasBaseReg, 1690 F.Scale, Fixup.UserInst)) 1691 return false; 1692 return true; 1693 } 1694 1695 return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1696 LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg, 1697 F.Scale); 1698 } 1699 1700 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, 1701 const LSRUse &LU, const Formula &F, 1702 const Loop &L) { 1703 if (!F.Scale) 1704 return 0; 1705 1706 // If the use is not completely folded in that instruction, we will have to 1707 // pay an extra cost only for scale != 1. 1708 if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1709 LU.AccessTy, F, L)) 1710 return F.Scale != 1; 1711 1712 switch (LU.Kind) { 1713 case LSRUse::Address: { 1714 // Check the scaling factor cost with both the min and max offsets. 1715 int ScaleCostMinOffset = TTI.getScalingFactorCost( 1716 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg, 1717 F.Scale, LU.AccessTy.AddrSpace); 1718 int ScaleCostMaxOffset = TTI.getScalingFactorCost( 1719 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg, 1720 F.Scale, LU.AccessTy.AddrSpace); 1721 1722 assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 && 1723 "Legal addressing mode has an illegal cost!"); 1724 return std::max(ScaleCostMinOffset, ScaleCostMaxOffset); 1725 } 1726 case LSRUse::ICmpZero: 1727 case LSRUse::Basic: 1728 case LSRUse::Special: 1729 // The use is completely folded, i.e., everything is folded into the 1730 // instruction. 1731 return 0; 1732 } 1733 1734 llvm_unreachable("Invalid LSRUse Kind!"); 1735 } 1736 1737 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1738 LSRUse::KindType Kind, MemAccessTy AccessTy, 1739 GlobalValue *BaseGV, int64_t BaseOffset, 1740 bool HasBaseReg) { 1741 // Fast-path: zero is always foldable. 1742 if (BaseOffset == 0 && !BaseGV) return true; 1743 1744 // Conservatively, create an address with an immediate and a 1745 // base and a scale. 1746 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1747 1748 // Canonicalize a scale of 1 to a base register if the formula doesn't 1749 // already have a base register. 1750 if (!HasBaseReg && Scale == 1) { 1751 Scale = 0; 1752 HasBaseReg = true; 1753 } 1754 1755 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset, 1756 HasBaseReg, Scale); 1757 } 1758 1759 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1760 ScalarEvolution &SE, int64_t MinOffset, 1761 int64_t MaxOffset, LSRUse::KindType Kind, 1762 MemAccessTy AccessTy, const SCEV *S, 1763 bool HasBaseReg) { 1764 // Fast-path: zero is always foldable. 1765 if (S->isZero()) return true; 1766 1767 // Conservatively, create an address with an immediate and a 1768 // base and a scale. 1769 int64_t BaseOffset = ExtractImmediate(S, SE); 1770 GlobalValue *BaseGV = ExtractSymbol(S, SE); 1771 1772 // If there's anything else involved, it's not foldable. 1773 if (!S->isZero()) return false; 1774 1775 // Fast-path: zero is always foldable. 1776 if (BaseOffset == 0 && !BaseGV) return true; 1777 1778 // Conservatively, create an address with an immediate and a 1779 // base and a scale. 1780 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1781 1782 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1783 BaseOffset, HasBaseReg, Scale); 1784 } 1785 1786 namespace { 1787 1788 /// An individual increment in a Chain of IV increments. Relate an IV user to 1789 /// an expression that computes the IV it uses from the IV used by the previous 1790 /// link in the Chain. 1791 /// 1792 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the 1793 /// original IVOperand. The head of the chain's IVOperand is only valid during 1794 /// chain collection, before LSR replaces IV users. During chain generation, 1795 /// IncExpr can be used to find the new IVOperand that computes the same 1796 /// expression. 1797 struct IVInc { 1798 Instruction *UserInst; 1799 Value* IVOperand; 1800 const SCEV *IncExpr; 1801 1802 IVInc(Instruction *U, Value *O, const SCEV *E) 1803 : UserInst(U), IVOperand(O), IncExpr(E) {} 1804 }; 1805 1806 // The list of IV increments in program order. We typically add the head of a 1807 // chain without finding subsequent links. 1808 struct IVChain { 1809 SmallVector<IVInc, 1> Incs; 1810 const SCEV *ExprBase = nullptr; 1811 1812 IVChain() = default; 1813 IVChain(const IVInc &Head, const SCEV *Base) 1814 : Incs(1, Head), ExprBase(Base) {} 1815 1816 using const_iterator = SmallVectorImpl<IVInc>::const_iterator; 1817 1818 // Return the first increment in the chain. 1819 const_iterator begin() const { 1820 assert(!Incs.empty()); 1821 return std::next(Incs.begin()); 1822 } 1823 const_iterator end() const { 1824 return Incs.end(); 1825 } 1826 1827 // Returns true if this chain contains any increments. 1828 bool hasIncs() const { return Incs.size() >= 2; } 1829 1830 // Add an IVInc to the end of this chain. 1831 void add(const IVInc &X) { Incs.push_back(X); } 1832 1833 // Returns the last UserInst in the chain. 1834 Instruction *tailUserInst() const { return Incs.back().UserInst; } 1835 1836 // Returns true if IncExpr can be profitably added to this chain. 1837 bool isProfitableIncrement(const SCEV *OperExpr, 1838 const SCEV *IncExpr, 1839 ScalarEvolution&); 1840 }; 1841 1842 /// Helper for CollectChains to track multiple IV increment uses. Distinguish 1843 /// between FarUsers that definitely cross IV increments and NearUsers that may 1844 /// be used between IV increments. 1845 struct ChainUsers { 1846 SmallPtrSet<Instruction*, 4> FarUsers; 1847 SmallPtrSet<Instruction*, 4> NearUsers; 1848 }; 1849 1850 /// This class holds state for the main loop strength reduction logic. 1851 class LSRInstance { 1852 IVUsers &IU; 1853 ScalarEvolution &SE; 1854 DominatorTree &DT; 1855 LoopInfo &LI; 1856 const TargetTransformInfo &TTI; 1857 Loop *const L; 1858 bool Changed = false; 1859 1860 /// This is the insert position that the current loop's induction variable 1861 /// increment should be placed. In simple loops, this is the latch block's 1862 /// terminator. But in more complicated cases, this is a position which will 1863 /// dominate all the in-loop post-increment users. 1864 Instruction *IVIncInsertPos = nullptr; 1865 1866 /// Interesting factors between use strides. 1867 /// 1868 /// We explicitly use a SetVector which contains a SmallSet, instead of the 1869 /// default, a SmallDenseSet, because we need to use the full range of 1870 /// int64_ts, and there's currently no good way of doing that with 1871 /// SmallDenseSet. 1872 SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors; 1873 1874 /// Interesting use types, to facilitate truncation reuse. 1875 SmallSetVector<Type *, 4> Types; 1876 1877 /// The list of interesting uses. 1878 SmallVector<LSRUse, 16> Uses; 1879 1880 /// Track which uses use which register candidates. 1881 RegUseTracker RegUses; 1882 1883 // Limit the number of chains to avoid quadratic behavior. We don't expect to 1884 // have more than a few IV increment chains in a loop. Missing a Chain falls 1885 // back to normal LSR behavior for those uses. 1886 static const unsigned MaxChains = 8; 1887 1888 /// IV users can form a chain of IV increments. 1889 SmallVector<IVChain, MaxChains> IVChainVec; 1890 1891 /// IV users that belong to profitable IVChains. 1892 SmallPtrSet<Use*, MaxChains> IVIncSet; 1893 1894 void OptimizeShadowIV(); 1895 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse); 1896 ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse); 1897 void OptimizeLoopTermCond(); 1898 1899 void ChainInstruction(Instruction *UserInst, Instruction *IVOper, 1900 SmallVectorImpl<ChainUsers> &ChainUsersVec); 1901 void FinalizeChain(IVChain &Chain); 1902 void CollectChains(); 1903 void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 1904 SmallVectorImpl<WeakTrackingVH> &DeadInsts); 1905 1906 void CollectInterestingTypesAndFactors(); 1907 void CollectFixupsAndInitialFormulae(); 1908 1909 // Support for sharing of LSRUses between LSRFixups. 1910 using UseMapTy = DenseMap<LSRUse::SCEVUseKindPair, size_t>; 1911 UseMapTy UseMap; 1912 1913 bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, 1914 LSRUse::KindType Kind, MemAccessTy AccessTy); 1915 1916 std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind, 1917 MemAccessTy AccessTy); 1918 1919 void DeleteUse(LSRUse &LU, size_t LUIdx); 1920 1921 LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU); 1922 1923 void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1924 void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1925 void CountRegisters(const Formula &F, size_t LUIdx); 1926 bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F); 1927 1928 void CollectLoopInvariantFixupsAndFormulae(); 1929 1930 void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base, 1931 unsigned Depth = 0); 1932 1933 void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 1934 const Formula &Base, unsigned Depth, 1935 size_t Idx, bool IsScaledReg = false); 1936 void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base); 1937 void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 1938 const Formula &Base, size_t Idx, 1939 bool IsScaledReg = false); 1940 void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1941 void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx, 1942 const Formula &Base, 1943 const SmallVectorImpl<int64_t> &Worklist, 1944 size_t Idx, bool IsScaledReg = false); 1945 void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1946 void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base); 1947 void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base); 1948 void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base); 1949 void GenerateCrossUseConstantOffsets(); 1950 void GenerateAllReuseFormulae(); 1951 1952 void FilterOutUndesirableDedicatedRegisters(); 1953 1954 size_t EstimateSearchSpaceComplexity() const; 1955 void NarrowSearchSpaceByDetectingSupersets(); 1956 void NarrowSearchSpaceByCollapsingUnrolledCode(); 1957 void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 1958 void NarrowSearchSpaceByFilterFormulaWithSameScaledReg(); 1959 void NarrowSearchSpaceByDeletingCostlyFormulas(); 1960 void NarrowSearchSpaceByPickingWinnerRegs(); 1961 void NarrowSearchSpaceUsingHeuristics(); 1962 1963 void SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 1964 Cost &SolutionCost, 1965 SmallVectorImpl<const Formula *> &Workspace, 1966 const Cost &CurCost, 1967 const SmallPtrSet<const SCEV *, 16> &CurRegs, 1968 DenseSet<const SCEV *> &VisitedRegs) const; 1969 void Solve(SmallVectorImpl<const Formula *> &Solution) const; 1970 1971 BasicBlock::iterator 1972 HoistInsertPosition(BasicBlock::iterator IP, 1973 const SmallVectorImpl<Instruction *> &Inputs) const; 1974 BasicBlock::iterator 1975 AdjustInsertPositionForExpand(BasicBlock::iterator IP, 1976 const LSRFixup &LF, 1977 const LSRUse &LU, 1978 SCEVExpander &Rewriter) const; 1979 1980 Value *Expand(const LSRUse &LU, const LSRFixup &LF, const Formula &F, 1981 BasicBlock::iterator IP, SCEVExpander &Rewriter, 1982 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 1983 void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF, 1984 const Formula &F, SCEVExpander &Rewriter, 1985 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 1986 void Rewrite(const LSRUse &LU, const LSRFixup &LF, const Formula &F, 1987 SCEVExpander &Rewriter, 1988 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 1989 void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution); 1990 1991 public: 1992 LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT, 1993 LoopInfo &LI, const TargetTransformInfo &TTI); 1994 1995 bool getChanged() const { return Changed; } 1996 1997 void print_factors_and_types(raw_ostream &OS) const; 1998 void print_fixups(raw_ostream &OS) const; 1999 void print_uses(raw_ostream &OS) const; 2000 void print(raw_ostream &OS) const; 2001 void dump() const; 2002 }; 2003 2004 } // end anonymous namespace 2005 2006 /// If IV is used in a int-to-float cast inside the loop then try to eliminate 2007 /// the cast operation. 2008 void LSRInstance::OptimizeShadowIV() { 2009 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 2010 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2011 return; 2012 2013 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); 2014 UI != E; /* empty */) { 2015 IVUsers::const_iterator CandidateUI = UI; 2016 ++UI; 2017 Instruction *ShadowUse = CandidateUI->getUser(); 2018 Type *DestTy = nullptr; 2019 bool IsSigned = false; 2020 2021 /* If shadow use is a int->float cast then insert a second IV 2022 to eliminate this cast. 2023 2024 for (unsigned i = 0; i < n; ++i) 2025 foo((double)i); 2026 2027 is transformed into 2028 2029 double d = 0.0; 2030 for (unsigned i = 0; i < n; ++i, ++d) 2031 foo(d); 2032 */ 2033 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) { 2034 IsSigned = false; 2035 DestTy = UCast->getDestTy(); 2036 } 2037 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) { 2038 IsSigned = true; 2039 DestTy = SCast->getDestTy(); 2040 } 2041 if (!DestTy) continue; 2042 2043 // If target does not support DestTy natively then do not apply 2044 // this transformation. 2045 if (!TTI.isTypeLegal(DestTy)) continue; 2046 2047 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0)); 2048 if (!PH) continue; 2049 if (PH->getNumIncomingValues() != 2) continue; 2050 2051 // If the calculation in integers overflows, the result in FP type will 2052 // differ. So we only can do this transformation if we are guaranteed to not 2053 // deal with overflowing values 2054 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PH)); 2055 if (!AR) continue; 2056 if (IsSigned && !AR->hasNoSignedWrap()) continue; 2057 if (!IsSigned && !AR->hasNoUnsignedWrap()) continue; 2058 2059 Type *SrcTy = PH->getType(); 2060 int Mantissa = DestTy->getFPMantissaWidth(); 2061 if (Mantissa == -1) continue; 2062 if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa) 2063 continue; 2064 2065 unsigned Entry, Latch; 2066 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) { 2067 Entry = 0; 2068 Latch = 1; 2069 } else { 2070 Entry = 1; 2071 Latch = 0; 2072 } 2073 2074 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry)); 2075 if (!Init) continue; 2076 Constant *NewInit = ConstantFP::get(DestTy, IsSigned ? 2077 (double)Init->getSExtValue() : 2078 (double)Init->getZExtValue()); 2079 2080 BinaryOperator *Incr = 2081 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch)); 2082 if (!Incr) continue; 2083 if (Incr->getOpcode() != Instruction::Add 2084 && Incr->getOpcode() != Instruction::Sub) 2085 continue; 2086 2087 /* Initialize new IV, double d = 0.0 in above example. */ 2088 ConstantInt *C = nullptr; 2089 if (Incr->getOperand(0) == PH) 2090 C = dyn_cast<ConstantInt>(Incr->getOperand(1)); 2091 else if (Incr->getOperand(1) == PH) 2092 C = dyn_cast<ConstantInt>(Incr->getOperand(0)); 2093 else 2094 continue; 2095 2096 if (!C) continue; 2097 2098 // Ignore negative constants, as the code below doesn't handle them 2099 // correctly. TODO: Remove this restriction. 2100 if (!C->getValue().isStrictlyPositive()) continue; 2101 2102 /* Add new PHINode. */ 2103 PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH); 2104 2105 /* create new increment. '++d' in above example. */ 2106 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue()); 2107 BinaryOperator *NewIncr = 2108 BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ? 2109 Instruction::FAdd : Instruction::FSub, 2110 NewPH, CFP, "IV.S.next.", Incr); 2111 2112 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry)); 2113 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch)); 2114 2115 /* Remove cast operation */ 2116 ShadowUse->replaceAllUsesWith(NewPH); 2117 ShadowUse->eraseFromParent(); 2118 Changed = true; 2119 break; 2120 } 2121 } 2122 2123 /// If Cond has an operand that is an expression of an IV, set the IV user and 2124 /// stride information and return true, otherwise return false. 2125 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) { 2126 for (IVStrideUse &U : IU) 2127 if (U.getUser() == Cond) { 2128 // NOTE: we could handle setcc instructions with multiple uses here, but 2129 // InstCombine does it as well for simple uses, it's not clear that it 2130 // occurs enough in real life to handle. 2131 CondUse = &U; 2132 return true; 2133 } 2134 return false; 2135 } 2136 2137 /// Rewrite the loop's terminating condition if it uses a max computation. 2138 /// 2139 /// This is a narrow solution to a specific, but acute, problem. For loops 2140 /// like this: 2141 /// 2142 /// i = 0; 2143 /// do { 2144 /// p[i] = 0.0; 2145 /// } while (++i < n); 2146 /// 2147 /// the trip count isn't just 'n', because 'n' might not be positive. And 2148 /// unfortunately this can come up even for loops where the user didn't use 2149 /// a C do-while loop. For example, seemingly well-behaved top-test loops 2150 /// will commonly be lowered like this: 2151 /// 2152 /// if (n > 0) { 2153 /// i = 0; 2154 /// do { 2155 /// p[i] = 0.0; 2156 /// } while (++i < n); 2157 /// } 2158 /// 2159 /// and then it's possible for subsequent optimization to obscure the if 2160 /// test in such a way that indvars can't find it. 2161 /// 2162 /// When indvars can't find the if test in loops like this, it creates a 2163 /// max expression, which allows it to give the loop a canonical 2164 /// induction variable: 2165 /// 2166 /// i = 0; 2167 /// max = n < 1 ? 1 : n; 2168 /// do { 2169 /// p[i] = 0.0; 2170 /// } while (++i != max); 2171 /// 2172 /// Canonical induction variables are necessary because the loop passes 2173 /// are designed around them. The most obvious example of this is the 2174 /// LoopInfo analysis, which doesn't remember trip count values. It 2175 /// expects to be able to rediscover the trip count each time it is 2176 /// needed, and it does this using a simple analysis that only succeeds if 2177 /// the loop has a canonical induction variable. 2178 /// 2179 /// However, when it comes time to generate code, the maximum operation 2180 /// can be quite costly, especially if it's inside of an outer loop. 2181 /// 2182 /// This function solves this problem by detecting this type of loop and 2183 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting 2184 /// the instructions for the maximum computation. 2185 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) { 2186 // Check that the loop matches the pattern we're looking for. 2187 if (Cond->getPredicate() != CmpInst::ICMP_EQ && 2188 Cond->getPredicate() != CmpInst::ICMP_NE) 2189 return Cond; 2190 2191 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1)); 2192 if (!Sel || !Sel->hasOneUse()) return Cond; 2193 2194 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 2195 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2196 return Cond; 2197 const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1); 2198 2199 // Add one to the backedge-taken count to get the trip count. 2200 const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount); 2201 if (IterationCount != SE.getSCEV(Sel)) return Cond; 2202 2203 // Check for a max calculation that matches the pattern. There's no check 2204 // for ICMP_ULE here because the comparison would be with zero, which 2205 // isn't interesting. 2206 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 2207 const SCEVNAryExpr *Max = nullptr; 2208 if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) { 2209 Pred = ICmpInst::ICMP_SLE; 2210 Max = S; 2211 } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) { 2212 Pred = ICmpInst::ICMP_SLT; 2213 Max = S; 2214 } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) { 2215 Pred = ICmpInst::ICMP_ULT; 2216 Max = U; 2217 } else { 2218 // No match; bail. 2219 return Cond; 2220 } 2221 2222 // To handle a max with more than two operands, this optimization would 2223 // require additional checking and setup. 2224 if (Max->getNumOperands() != 2) 2225 return Cond; 2226 2227 const SCEV *MaxLHS = Max->getOperand(0); 2228 const SCEV *MaxRHS = Max->getOperand(1); 2229 2230 // ScalarEvolution canonicalizes constants to the left. For < and >, look 2231 // for a comparison with 1. For <= and >=, a comparison with zero. 2232 if (!MaxLHS || 2233 (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One))) 2234 return Cond; 2235 2236 // Check the relevant induction variable for conformance to 2237 // the pattern. 2238 const SCEV *IV = SE.getSCEV(Cond->getOperand(0)); 2239 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV); 2240 if (!AR || !AR->isAffine() || 2241 AR->getStart() != One || 2242 AR->getStepRecurrence(SE) != One) 2243 return Cond; 2244 2245 assert(AR->getLoop() == L && 2246 "Loop condition operand is an addrec in a different loop!"); 2247 2248 // Check the right operand of the select, and remember it, as it will 2249 // be used in the new comparison instruction. 2250 Value *NewRHS = nullptr; 2251 if (ICmpInst::isTrueWhenEqual(Pred)) { 2252 // Look for n+1, and grab n. 2253 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1))) 2254 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2255 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2256 NewRHS = BO->getOperand(0); 2257 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2))) 2258 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2259 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2260 NewRHS = BO->getOperand(0); 2261 if (!NewRHS) 2262 return Cond; 2263 } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS) 2264 NewRHS = Sel->getOperand(1); 2265 else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS) 2266 NewRHS = Sel->getOperand(2); 2267 else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS)) 2268 NewRHS = SU->getValue(); 2269 else 2270 // Max doesn't match expected pattern. 2271 return Cond; 2272 2273 // Determine the new comparison opcode. It may be signed or unsigned, 2274 // and the original comparison may be either equality or inequality. 2275 if (Cond->getPredicate() == CmpInst::ICMP_EQ) 2276 Pred = CmpInst::getInversePredicate(Pred); 2277 2278 // Ok, everything looks ok to change the condition into an SLT or SGE and 2279 // delete the max calculation. 2280 ICmpInst *NewCond = 2281 new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp"); 2282 2283 // Delete the max calculation instructions. 2284 Cond->replaceAllUsesWith(NewCond); 2285 CondUse->setUser(NewCond); 2286 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0)); 2287 Cond->eraseFromParent(); 2288 Sel->eraseFromParent(); 2289 if (Cmp->use_empty()) 2290 Cmp->eraseFromParent(); 2291 return NewCond; 2292 } 2293 2294 /// Change loop terminating condition to use the postinc iv when possible. 2295 void 2296 LSRInstance::OptimizeLoopTermCond() { 2297 SmallPtrSet<Instruction *, 4> PostIncs; 2298 2299 // We need a different set of heuristics for rotated and non-rotated loops. 2300 // If a loop is rotated then the latch is also the backedge, so inserting 2301 // post-inc expressions just before the latch is ideal. To reduce live ranges 2302 // it also makes sense to rewrite terminating conditions to use post-inc 2303 // expressions. 2304 // 2305 // If the loop is not rotated then the latch is not a backedge; the latch 2306 // check is done in the loop head. Adding post-inc expressions before the 2307 // latch will cause overlapping live-ranges of pre-inc and post-inc expressions 2308 // in the loop body. In this case we do *not* want to use post-inc expressions 2309 // in the latch check, and we want to insert post-inc expressions before 2310 // the backedge. 2311 BasicBlock *LatchBlock = L->getLoopLatch(); 2312 SmallVector<BasicBlock*, 8> ExitingBlocks; 2313 L->getExitingBlocks(ExitingBlocks); 2314 if (llvm::all_of(ExitingBlocks, [&LatchBlock](const BasicBlock *BB) { 2315 return LatchBlock != BB; 2316 })) { 2317 // The backedge doesn't exit the loop; treat this as a head-tested loop. 2318 IVIncInsertPos = LatchBlock->getTerminator(); 2319 return; 2320 } 2321 2322 // Otherwise treat this as a rotated loop. 2323 for (BasicBlock *ExitingBlock : ExitingBlocks) { 2324 // Get the terminating condition for the loop if possible. If we 2325 // can, we want to change it to use a post-incremented version of its 2326 // induction variable, to allow coalescing the live ranges for the IV into 2327 // one register value. 2328 2329 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 2330 if (!TermBr) 2331 continue; 2332 // FIXME: Overly conservative, termination condition could be an 'or' etc.. 2333 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition())) 2334 continue; 2335 2336 // Search IVUsesByStride to find Cond's IVUse if there is one. 2337 IVStrideUse *CondUse = nullptr; 2338 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition()); 2339 if (!FindIVUserForCond(Cond, CondUse)) 2340 continue; 2341 2342 // If the trip count is computed in terms of a max (due to ScalarEvolution 2343 // being unable to find a sufficient guard, for example), change the loop 2344 // comparison to use SLT or ULT instead of NE. 2345 // One consequence of doing this now is that it disrupts the count-down 2346 // optimization. That's not always a bad thing though, because in such 2347 // cases it may still be worthwhile to avoid a max. 2348 Cond = OptimizeMax(Cond, CondUse); 2349 2350 // If this exiting block dominates the latch block, it may also use 2351 // the post-inc value if it won't be shared with other uses. 2352 // Check for dominance. 2353 if (!DT.dominates(ExitingBlock, LatchBlock)) 2354 continue; 2355 2356 // Conservatively avoid trying to use the post-inc value in non-latch 2357 // exits if there may be pre-inc users in intervening blocks. 2358 if (LatchBlock != ExitingBlock) 2359 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) 2360 // Test if the use is reachable from the exiting block. This dominator 2361 // query is a conservative approximation of reachability. 2362 if (&*UI != CondUse && 2363 !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) { 2364 // Conservatively assume there may be reuse if the quotient of their 2365 // strides could be a legal scale. 2366 const SCEV *A = IU.getStride(*CondUse, L); 2367 const SCEV *B = IU.getStride(*UI, L); 2368 if (!A || !B) continue; 2369 if (SE.getTypeSizeInBits(A->getType()) != 2370 SE.getTypeSizeInBits(B->getType())) { 2371 if (SE.getTypeSizeInBits(A->getType()) > 2372 SE.getTypeSizeInBits(B->getType())) 2373 B = SE.getSignExtendExpr(B, A->getType()); 2374 else 2375 A = SE.getSignExtendExpr(A, B->getType()); 2376 } 2377 if (const SCEVConstant *D = 2378 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) { 2379 const ConstantInt *C = D->getValue(); 2380 // Stride of one or negative one can have reuse with non-addresses. 2381 if (C->isOne() || C->isMinusOne()) 2382 goto decline_post_inc; 2383 // Avoid weird situations. 2384 if (C->getValue().getMinSignedBits() >= 64 || 2385 C->getValue().isMinSignedValue()) 2386 goto decline_post_inc; 2387 // Check for possible scaled-address reuse. 2388 MemAccessTy AccessTy = getAccessType(TTI, UI->getUser()); 2389 int64_t Scale = C->getSExtValue(); 2390 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2391 /*BaseOffset=*/0, 2392 /*HasBaseReg=*/false, Scale, 2393 AccessTy.AddrSpace)) 2394 goto decline_post_inc; 2395 Scale = -Scale; 2396 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2397 /*BaseOffset=*/0, 2398 /*HasBaseReg=*/false, Scale, 2399 AccessTy.AddrSpace)) 2400 goto decline_post_inc; 2401 } 2402 } 2403 2404 DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: " 2405 << *Cond << '\n'); 2406 2407 // It's possible for the setcc instruction to be anywhere in the loop, and 2408 // possible for it to have multiple users. If it is not immediately before 2409 // the exiting block branch, move it. 2410 if (&*++BasicBlock::iterator(Cond) != TermBr) { 2411 if (Cond->hasOneUse()) { 2412 Cond->moveBefore(TermBr); 2413 } else { 2414 // Clone the terminating condition and insert into the loopend. 2415 ICmpInst *OldCond = Cond; 2416 Cond = cast<ICmpInst>(Cond->clone()); 2417 Cond->setName(L->getHeader()->getName() + ".termcond"); 2418 ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond); 2419 2420 // Clone the IVUse, as the old use still exists! 2421 CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace()); 2422 TermBr->replaceUsesOfWith(OldCond, Cond); 2423 } 2424 } 2425 2426 // If we get to here, we know that we can transform the setcc instruction to 2427 // use the post-incremented version of the IV, allowing us to coalesce the 2428 // live ranges for the IV correctly. 2429 CondUse->transformToPostInc(L); 2430 Changed = true; 2431 2432 PostIncs.insert(Cond); 2433 decline_post_inc:; 2434 } 2435 2436 // Determine an insertion point for the loop induction variable increment. It 2437 // must dominate all the post-inc comparisons we just set up, and it must 2438 // dominate the loop latch edge. 2439 IVIncInsertPos = L->getLoopLatch()->getTerminator(); 2440 for (Instruction *Inst : PostIncs) { 2441 BasicBlock *BB = 2442 DT.findNearestCommonDominator(IVIncInsertPos->getParent(), 2443 Inst->getParent()); 2444 if (BB == Inst->getParent()) 2445 IVIncInsertPos = Inst; 2446 else if (BB != IVIncInsertPos->getParent()) 2447 IVIncInsertPos = BB->getTerminator(); 2448 } 2449 } 2450 2451 /// Determine if the given use can accommodate a fixup at the given offset and 2452 /// other details. If so, update the use and return true. 2453 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, 2454 bool HasBaseReg, LSRUse::KindType Kind, 2455 MemAccessTy AccessTy) { 2456 int64_t NewMinOffset = LU.MinOffset; 2457 int64_t NewMaxOffset = LU.MaxOffset; 2458 MemAccessTy NewAccessTy = AccessTy; 2459 2460 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to 2461 // something conservative, however this can pessimize in the case that one of 2462 // the uses will have all its uses outside the loop, for example. 2463 if (LU.Kind != Kind) 2464 return false; 2465 2466 // Check for a mismatched access type, and fall back conservatively as needed. 2467 // TODO: Be less conservative when the type is similar and can use the same 2468 // addressing modes. 2469 if (Kind == LSRUse::Address) { 2470 if (AccessTy.MemTy != LU.AccessTy.MemTy) { 2471 NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(), 2472 AccessTy.AddrSpace); 2473 } 2474 } 2475 2476 // Conservatively assume HasBaseReg is true for now. 2477 if (NewOffset < LU.MinOffset) { 2478 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2479 LU.MaxOffset - NewOffset, HasBaseReg)) 2480 return false; 2481 NewMinOffset = NewOffset; 2482 } else if (NewOffset > LU.MaxOffset) { 2483 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2484 NewOffset - LU.MinOffset, HasBaseReg)) 2485 return false; 2486 NewMaxOffset = NewOffset; 2487 } 2488 2489 // Update the use. 2490 LU.MinOffset = NewMinOffset; 2491 LU.MaxOffset = NewMaxOffset; 2492 LU.AccessTy = NewAccessTy; 2493 return true; 2494 } 2495 2496 /// Return an LSRUse index and an offset value for a fixup which needs the given 2497 /// expression, with the given kind and optional access type. Either reuse an 2498 /// existing use or create a new one, as needed. 2499 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr, 2500 LSRUse::KindType Kind, 2501 MemAccessTy AccessTy) { 2502 const SCEV *Copy = Expr; 2503 int64_t Offset = ExtractImmediate(Expr, SE); 2504 2505 // Basic uses can't accept any offset, for example. 2506 if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr, 2507 Offset, /*HasBaseReg=*/ true)) { 2508 Expr = Copy; 2509 Offset = 0; 2510 } 2511 2512 std::pair<UseMapTy::iterator, bool> P = 2513 UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0)); 2514 if (!P.second) { 2515 // A use already existed with this base. 2516 size_t LUIdx = P.first->second; 2517 LSRUse &LU = Uses[LUIdx]; 2518 if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy)) 2519 // Reuse this use. 2520 return std::make_pair(LUIdx, Offset); 2521 } 2522 2523 // Create a new use. 2524 size_t LUIdx = Uses.size(); 2525 P.first->second = LUIdx; 2526 Uses.push_back(LSRUse(Kind, AccessTy)); 2527 LSRUse &LU = Uses[LUIdx]; 2528 2529 LU.MinOffset = Offset; 2530 LU.MaxOffset = Offset; 2531 return std::make_pair(LUIdx, Offset); 2532 } 2533 2534 /// Delete the given use from the Uses list. 2535 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) { 2536 if (&LU != &Uses.back()) 2537 std::swap(LU, Uses.back()); 2538 Uses.pop_back(); 2539 2540 // Update RegUses. 2541 RegUses.swapAndDropUse(LUIdx, Uses.size()); 2542 } 2543 2544 /// Look for a use distinct from OrigLU which is has a formula that has the same 2545 /// registers as the given formula. 2546 LSRUse * 2547 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF, 2548 const LSRUse &OrigLU) { 2549 // Search all uses for the formula. This could be more clever. 2550 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 2551 LSRUse &LU = Uses[LUIdx]; 2552 // Check whether this use is close enough to OrigLU, to see whether it's 2553 // worthwhile looking through its formulae. 2554 // Ignore ICmpZero uses because they may contain formulae generated by 2555 // GenerateICmpZeroScales, in which case adding fixup offsets may 2556 // be invalid. 2557 if (&LU != &OrigLU && 2558 LU.Kind != LSRUse::ICmpZero && 2559 LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy && 2560 LU.WidestFixupType == OrigLU.WidestFixupType && 2561 LU.HasFormulaWithSameRegs(OrigF)) { 2562 // Scan through this use's formulae. 2563 for (const Formula &F : LU.Formulae) { 2564 // Check to see if this formula has the same registers and symbols 2565 // as OrigF. 2566 if (F.BaseRegs == OrigF.BaseRegs && 2567 F.ScaledReg == OrigF.ScaledReg && 2568 F.BaseGV == OrigF.BaseGV && 2569 F.Scale == OrigF.Scale && 2570 F.UnfoldedOffset == OrigF.UnfoldedOffset) { 2571 if (F.BaseOffset == 0) 2572 return &LU; 2573 // This is the formula where all the registers and symbols matched; 2574 // there aren't going to be any others. Since we declined it, we 2575 // can skip the rest of the formulae and proceed to the next LSRUse. 2576 break; 2577 } 2578 } 2579 } 2580 } 2581 2582 // Nothing looked good. 2583 return nullptr; 2584 } 2585 2586 void LSRInstance::CollectInterestingTypesAndFactors() { 2587 SmallSetVector<const SCEV *, 4> Strides; 2588 2589 // Collect interesting types and strides. 2590 SmallVector<const SCEV *, 4> Worklist; 2591 for (const IVStrideUse &U : IU) { 2592 const SCEV *Expr = IU.getExpr(U); 2593 2594 // Collect interesting types. 2595 Types.insert(SE.getEffectiveSCEVType(Expr->getType())); 2596 2597 // Add strides for mentioned loops. 2598 Worklist.push_back(Expr); 2599 do { 2600 const SCEV *S = Worklist.pop_back_val(); 2601 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2602 if (AR->getLoop() == L) 2603 Strides.insert(AR->getStepRecurrence(SE)); 2604 Worklist.push_back(AR->getStart()); 2605 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2606 Worklist.append(Add->op_begin(), Add->op_end()); 2607 } 2608 } while (!Worklist.empty()); 2609 } 2610 2611 // Compute interesting factors from the set of interesting strides. 2612 for (SmallSetVector<const SCEV *, 4>::const_iterator 2613 I = Strides.begin(), E = Strides.end(); I != E; ++I) 2614 for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter = 2615 std::next(I); NewStrideIter != E; ++NewStrideIter) { 2616 const SCEV *OldStride = *I; 2617 const SCEV *NewStride = *NewStrideIter; 2618 2619 if (SE.getTypeSizeInBits(OldStride->getType()) != 2620 SE.getTypeSizeInBits(NewStride->getType())) { 2621 if (SE.getTypeSizeInBits(OldStride->getType()) > 2622 SE.getTypeSizeInBits(NewStride->getType())) 2623 NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType()); 2624 else 2625 OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType()); 2626 } 2627 if (const SCEVConstant *Factor = 2628 dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride, 2629 SE, true))) { 2630 if (Factor->getAPInt().getMinSignedBits() <= 64) 2631 Factors.insert(Factor->getAPInt().getSExtValue()); 2632 } else if (const SCEVConstant *Factor = 2633 dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride, 2634 NewStride, 2635 SE, true))) { 2636 if (Factor->getAPInt().getMinSignedBits() <= 64) 2637 Factors.insert(Factor->getAPInt().getSExtValue()); 2638 } 2639 } 2640 2641 // If all uses use the same type, don't bother looking for truncation-based 2642 // reuse. 2643 if (Types.size() == 1) 2644 Types.clear(); 2645 2646 DEBUG(print_factors_and_types(dbgs())); 2647 } 2648 2649 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in 2650 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to 2651 /// IVStrideUses, we could partially skip this. 2652 static User::op_iterator 2653 findIVOperand(User::op_iterator OI, User::op_iterator OE, 2654 Loop *L, ScalarEvolution &SE) { 2655 for(; OI != OE; ++OI) { 2656 if (Instruction *Oper = dyn_cast<Instruction>(*OI)) { 2657 if (!SE.isSCEVable(Oper->getType())) 2658 continue; 2659 2660 if (const SCEVAddRecExpr *AR = 2661 dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) { 2662 if (AR->getLoop() == L) 2663 break; 2664 } 2665 } 2666 } 2667 return OI; 2668 } 2669 2670 /// IVChain logic must consistenctly peek base TruncInst operands, so wrap it in 2671 /// a convenient helper. 2672 static Value *getWideOperand(Value *Oper) { 2673 if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper)) 2674 return Trunc->getOperand(0); 2675 return Oper; 2676 } 2677 2678 /// Return true if we allow an IV chain to include both types. 2679 static bool isCompatibleIVType(Value *LVal, Value *RVal) { 2680 Type *LType = LVal->getType(); 2681 Type *RType = RVal->getType(); 2682 return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy() && 2683 // Different address spaces means (possibly) 2684 // different types of the pointer implementation, 2685 // e.g. i16 vs i32 so disallow that. 2686 (LType->getPointerAddressSpace() == 2687 RType->getPointerAddressSpace())); 2688 } 2689 2690 /// Return an approximation of this SCEV expression's "base", or NULL for any 2691 /// constant. Returning the expression itself is conservative. Returning a 2692 /// deeper subexpression is more precise and valid as long as it isn't less 2693 /// complex than another subexpression. For expressions involving multiple 2694 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids 2695 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i], 2696 /// IVInc==b-a. 2697 /// 2698 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost 2699 /// SCEVUnknown, we simply return the rightmost SCEV operand. 2700 static const SCEV *getExprBase(const SCEV *S) { 2701 switch (S->getSCEVType()) { 2702 default: // uncluding scUnknown. 2703 return S; 2704 case scConstant: 2705 return nullptr; 2706 case scTruncate: 2707 return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand()); 2708 case scZeroExtend: 2709 return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand()); 2710 case scSignExtend: 2711 return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand()); 2712 case scAddExpr: { 2713 // Skip over scaled operands (scMulExpr) to follow add operands as long as 2714 // there's nothing more complex. 2715 // FIXME: not sure if we want to recognize negation. 2716 const SCEVAddExpr *Add = cast<SCEVAddExpr>(S); 2717 for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()), 2718 E(Add->op_begin()); I != E; ++I) { 2719 const SCEV *SubExpr = *I; 2720 if (SubExpr->getSCEVType() == scAddExpr) 2721 return getExprBase(SubExpr); 2722 2723 if (SubExpr->getSCEVType() != scMulExpr) 2724 return SubExpr; 2725 } 2726 return S; // all operands are scaled, be conservative. 2727 } 2728 case scAddRecExpr: 2729 return getExprBase(cast<SCEVAddRecExpr>(S)->getStart()); 2730 } 2731 } 2732 2733 /// Return true if the chain increment is profitable to expand into a loop 2734 /// invariant value, which may require its own register. A profitable chain 2735 /// increment will be an offset relative to the same base. We allow such offsets 2736 /// to potentially be used as chain increment as long as it's not obviously 2737 /// expensive to expand using real instructions. 2738 bool IVChain::isProfitableIncrement(const SCEV *OperExpr, 2739 const SCEV *IncExpr, 2740 ScalarEvolution &SE) { 2741 // Aggressively form chains when -stress-ivchain. 2742 if (StressIVChain) 2743 return true; 2744 2745 // Do not replace a constant offset from IV head with a nonconstant IV 2746 // increment. 2747 if (!isa<SCEVConstant>(IncExpr)) { 2748 const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand)); 2749 if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr))) 2750 return false; 2751 } 2752 2753 SmallPtrSet<const SCEV*, 8> Processed; 2754 return !isHighCostExpansion(IncExpr, Processed, SE); 2755 } 2756 2757 /// Return true if the number of registers needed for the chain is estimated to 2758 /// be less than the number required for the individual IV users. First prohibit 2759 /// any IV users that keep the IV live across increments (the Users set should 2760 /// be empty). Next count the number and type of increments in the chain. 2761 /// 2762 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't 2763 /// effectively use postinc addressing modes. Only consider it profitable it the 2764 /// increments can be computed in fewer registers when chained. 2765 /// 2766 /// TODO: Consider IVInc free if it's already used in another chains. 2767 static bool 2768 isProfitableChain(IVChain &Chain, SmallPtrSetImpl<Instruction*> &Users, 2769 ScalarEvolution &SE, const TargetTransformInfo &TTI) { 2770 if (StressIVChain) 2771 return true; 2772 2773 if (!Chain.hasIncs()) 2774 return false; 2775 2776 if (!Users.empty()) { 2777 DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n"; 2778 for (Instruction *Inst : Users) { 2779 dbgs() << " " << *Inst << "\n"; 2780 }); 2781 return false; 2782 } 2783 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 2784 2785 // The chain itself may require a register, so intialize cost to 1. 2786 int cost = 1; 2787 2788 // A complete chain likely eliminates the need for keeping the original IV in 2789 // a register. LSR does not currently know how to form a complete chain unless 2790 // the header phi already exists. 2791 if (isa<PHINode>(Chain.tailUserInst()) 2792 && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) { 2793 --cost; 2794 } 2795 const SCEV *LastIncExpr = nullptr; 2796 unsigned NumConstIncrements = 0; 2797 unsigned NumVarIncrements = 0; 2798 unsigned NumReusedIncrements = 0; 2799 for (const IVInc &Inc : Chain) { 2800 if (Inc.IncExpr->isZero()) 2801 continue; 2802 2803 // Incrementing by zero or some constant is neutral. We assume constants can 2804 // be folded into an addressing mode or an add's immediate operand. 2805 if (isa<SCEVConstant>(Inc.IncExpr)) { 2806 ++NumConstIncrements; 2807 continue; 2808 } 2809 2810 if (Inc.IncExpr == LastIncExpr) 2811 ++NumReusedIncrements; 2812 else 2813 ++NumVarIncrements; 2814 2815 LastIncExpr = Inc.IncExpr; 2816 } 2817 // An IV chain with a single increment is handled by LSR's postinc 2818 // uses. However, a chain with multiple increments requires keeping the IV's 2819 // value live longer than it needs to be if chained. 2820 if (NumConstIncrements > 1) 2821 --cost; 2822 2823 // Materializing increment expressions in the preheader that didn't exist in 2824 // the original code may cost a register. For example, sign-extended array 2825 // indices can produce ridiculous increments like this: 2826 // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64))) 2827 cost += NumVarIncrements; 2828 2829 // Reusing variable increments likely saves a register to hold the multiple of 2830 // the stride. 2831 cost -= NumReusedIncrements; 2832 2833 DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost 2834 << "\n"); 2835 2836 return cost < 0; 2837 } 2838 2839 /// Add this IV user to an existing chain or make it the head of a new chain. 2840 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper, 2841 SmallVectorImpl<ChainUsers> &ChainUsersVec) { 2842 // When IVs are used as types of varying widths, they are generally converted 2843 // to a wider type with some uses remaining narrow under a (free) trunc. 2844 Value *const NextIV = getWideOperand(IVOper); 2845 const SCEV *const OperExpr = SE.getSCEV(NextIV); 2846 const SCEV *const OperExprBase = getExprBase(OperExpr); 2847 2848 // Visit all existing chains. Check if its IVOper can be computed as a 2849 // profitable loop invariant increment from the last link in the Chain. 2850 unsigned ChainIdx = 0, NChains = IVChainVec.size(); 2851 const SCEV *LastIncExpr = nullptr; 2852 for (; ChainIdx < NChains; ++ChainIdx) { 2853 IVChain &Chain = IVChainVec[ChainIdx]; 2854 2855 // Prune the solution space aggressively by checking that both IV operands 2856 // are expressions that operate on the same unscaled SCEVUnknown. This 2857 // "base" will be canceled by the subsequent getMinusSCEV call. Checking 2858 // first avoids creating extra SCEV expressions. 2859 if (!StressIVChain && Chain.ExprBase != OperExprBase) 2860 continue; 2861 2862 Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand); 2863 if (!isCompatibleIVType(PrevIV, NextIV)) 2864 continue; 2865 2866 // A phi node terminates a chain. 2867 if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst())) 2868 continue; 2869 2870 // The increment must be loop-invariant so it can be kept in a register. 2871 const SCEV *PrevExpr = SE.getSCEV(PrevIV); 2872 const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr); 2873 if (!SE.isLoopInvariant(IncExpr, L)) 2874 continue; 2875 2876 if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) { 2877 LastIncExpr = IncExpr; 2878 break; 2879 } 2880 } 2881 // If we haven't found a chain, create a new one, unless we hit the max. Don't 2882 // bother for phi nodes, because they must be last in the chain. 2883 if (ChainIdx == NChains) { 2884 if (isa<PHINode>(UserInst)) 2885 return; 2886 if (NChains >= MaxChains && !StressIVChain) { 2887 DEBUG(dbgs() << "IV Chain Limit\n"); 2888 return; 2889 } 2890 LastIncExpr = OperExpr; 2891 // IVUsers may have skipped over sign/zero extensions. We don't currently 2892 // attempt to form chains involving extensions unless they can be hoisted 2893 // into this loop's AddRec. 2894 if (!isa<SCEVAddRecExpr>(LastIncExpr)) 2895 return; 2896 ++NChains; 2897 IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr), 2898 OperExprBase)); 2899 ChainUsersVec.resize(NChains); 2900 DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst 2901 << ") IV=" << *LastIncExpr << "\n"); 2902 } else { 2903 DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Inc: (" << *UserInst 2904 << ") IV+" << *LastIncExpr << "\n"); 2905 // Add this IV user to the end of the chain. 2906 IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr)); 2907 } 2908 IVChain &Chain = IVChainVec[ChainIdx]; 2909 2910 SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers; 2911 // This chain's NearUsers become FarUsers. 2912 if (!LastIncExpr->isZero()) { 2913 ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(), 2914 NearUsers.end()); 2915 NearUsers.clear(); 2916 } 2917 2918 // All other uses of IVOperand become near uses of the chain. 2919 // We currently ignore intermediate values within SCEV expressions, assuming 2920 // they will eventually be used be the current chain, or can be computed 2921 // from one of the chain increments. To be more precise we could 2922 // transitively follow its user and only add leaf IV users to the set. 2923 for (User *U : IVOper->users()) { 2924 Instruction *OtherUse = dyn_cast<Instruction>(U); 2925 if (!OtherUse) 2926 continue; 2927 // Uses in the chain will no longer be uses if the chain is formed. 2928 // Include the head of the chain in this iteration (not Chain.begin()). 2929 IVChain::const_iterator IncIter = Chain.Incs.begin(); 2930 IVChain::const_iterator IncEnd = Chain.Incs.end(); 2931 for( ; IncIter != IncEnd; ++IncIter) { 2932 if (IncIter->UserInst == OtherUse) 2933 break; 2934 } 2935 if (IncIter != IncEnd) 2936 continue; 2937 2938 if (SE.isSCEVable(OtherUse->getType()) 2939 && !isa<SCEVUnknown>(SE.getSCEV(OtherUse)) 2940 && IU.isIVUserOrOperand(OtherUse)) { 2941 continue; 2942 } 2943 NearUsers.insert(OtherUse); 2944 } 2945 2946 // Since this user is part of the chain, it's no longer considered a use 2947 // of the chain. 2948 ChainUsersVec[ChainIdx].FarUsers.erase(UserInst); 2949 } 2950 2951 /// Populate the vector of Chains. 2952 /// 2953 /// This decreases ILP at the architecture level. Targets with ample registers, 2954 /// multiple memory ports, and no register renaming probably don't want 2955 /// this. However, such targets should probably disable LSR altogether. 2956 /// 2957 /// The job of LSR is to make a reasonable choice of induction variables across 2958 /// the loop. Subsequent passes can easily "unchain" computation exposing more 2959 /// ILP *within the loop* if the target wants it. 2960 /// 2961 /// Finding the best IV chain is potentially a scheduling problem. Since LSR 2962 /// will not reorder memory operations, it will recognize this as a chain, but 2963 /// will generate redundant IV increments. Ideally this would be corrected later 2964 /// by a smart scheduler: 2965 /// = A[i] 2966 /// = A[i+x] 2967 /// A[i] = 2968 /// A[i+x] = 2969 /// 2970 /// TODO: Walk the entire domtree within this loop, not just the path to the 2971 /// loop latch. This will discover chains on side paths, but requires 2972 /// maintaining multiple copies of the Chains state. 2973 void LSRInstance::CollectChains() { 2974 DEBUG(dbgs() << "Collecting IV Chains.\n"); 2975 SmallVector<ChainUsers, 8> ChainUsersVec; 2976 2977 SmallVector<BasicBlock *,8> LatchPath; 2978 BasicBlock *LoopHeader = L->getHeader(); 2979 for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch()); 2980 Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) { 2981 LatchPath.push_back(Rung->getBlock()); 2982 } 2983 LatchPath.push_back(LoopHeader); 2984 2985 // Walk the instruction stream from the loop header to the loop latch. 2986 for (BasicBlock *BB : reverse(LatchPath)) { 2987 for (Instruction &I : *BB) { 2988 // Skip instructions that weren't seen by IVUsers analysis. 2989 if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I)) 2990 continue; 2991 2992 // Ignore users that are part of a SCEV expression. This way we only 2993 // consider leaf IV Users. This effectively rediscovers a portion of 2994 // IVUsers analysis but in program order this time. 2995 if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I))) 2996 continue; 2997 2998 // Remove this instruction from any NearUsers set it may be in. 2999 for (unsigned ChainIdx = 0, NChains = IVChainVec.size(); 3000 ChainIdx < NChains; ++ChainIdx) { 3001 ChainUsersVec[ChainIdx].NearUsers.erase(&I); 3002 } 3003 // Search for operands that can be chained. 3004 SmallPtrSet<Instruction*, 4> UniqueOperands; 3005 User::op_iterator IVOpEnd = I.op_end(); 3006 User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE); 3007 while (IVOpIter != IVOpEnd) { 3008 Instruction *IVOpInst = cast<Instruction>(*IVOpIter); 3009 if (UniqueOperands.insert(IVOpInst).second) 3010 ChainInstruction(&I, IVOpInst, ChainUsersVec); 3011 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 3012 } 3013 } // Continue walking down the instructions. 3014 } // Continue walking down the domtree. 3015 // Visit phi backedges to determine if the chain can generate the IV postinc. 3016 for (PHINode &PN : L->getHeader()->phis()) { 3017 if (!SE.isSCEVable(PN.getType())) 3018 continue; 3019 3020 Instruction *IncV = 3021 dyn_cast<Instruction>(PN.getIncomingValueForBlock(L->getLoopLatch())); 3022 if (IncV) 3023 ChainInstruction(&PN, IncV, ChainUsersVec); 3024 } 3025 // Remove any unprofitable chains. 3026 unsigned ChainIdx = 0; 3027 for (unsigned UsersIdx = 0, NChains = IVChainVec.size(); 3028 UsersIdx < NChains; ++UsersIdx) { 3029 if (!isProfitableChain(IVChainVec[UsersIdx], 3030 ChainUsersVec[UsersIdx].FarUsers, SE, TTI)) 3031 continue; 3032 // Preserve the chain at UsesIdx. 3033 if (ChainIdx != UsersIdx) 3034 IVChainVec[ChainIdx] = IVChainVec[UsersIdx]; 3035 FinalizeChain(IVChainVec[ChainIdx]); 3036 ++ChainIdx; 3037 } 3038 IVChainVec.resize(ChainIdx); 3039 } 3040 3041 void LSRInstance::FinalizeChain(IVChain &Chain) { 3042 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 3043 DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n"); 3044 3045 for (const IVInc &Inc : Chain) { 3046 DEBUG(dbgs() << " Inc: " << *Inc.UserInst << "\n"); 3047 auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand); 3048 assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand"); 3049 IVIncSet.insert(UseI); 3050 } 3051 } 3052 3053 /// Return true if the IVInc can be folded into an addressing mode. 3054 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst, 3055 Value *Operand, const TargetTransformInfo &TTI) { 3056 const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr); 3057 if (!IncConst || !isAddressUse(TTI, UserInst, Operand)) 3058 return false; 3059 3060 if (IncConst->getAPInt().getMinSignedBits() > 64) 3061 return false; 3062 3063 MemAccessTy AccessTy = getAccessType(TTI, UserInst); 3064 int64_t IncOffset = IncConst->getValue()->getSExtValue(); 3065 if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr, 3066 IncOffset, /*HaseBaseReg=*/false)) 3067 return false; 3068 3069 return true; 3070 } 3071 3072 /// Generate an add or subtract for each IVInc in a chain to materialize the IV 3073 /// user's operand from the previous IV user's operand. 3074 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 3075 SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 3076 // Find the new IVOperand for the head of the chain. It may have been replaced 3077 // by LSR. 3078 const IVInc &Head = Chain.Incs[0]; 3079 User::op_iterator IVOpEnd = Head.UserInst->op_end(); 3080 // findIVOperand returns IVOpEnd if it can no longer find a valid IV user. 3081 User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(), 3082 IVOpEnd, L, SE); 3083 Value *IVSrc = nullptr; 3084 while (IVOpIter != IVOpEnd) { 3085 IVSrc = getWideOperand(*IVOpIter); 3086 3087 // If this operand computes the expression that the chain needs, we may use 3088 // it. (Check this after setting IVSrc which is used below.) 3089 // 3090 // Note that if Head.IncExpr is wider than IVSrc, then this phi is too 3091 // narrow for the chain, so we can no longer use it. We do allow using a 3092 // wider phi, assuming the LSR checked for free truncation. In that case we 3093 // should already have a truncate on this operand such that 3094 // getSCEV(IVSrc) == IncExpr. 3095 if (SE.getSCEV(*IVOpIter) == Head.IncExpr 3096 || SE.getSCEV(IVSrc) == Head.IncExpr) { 3097 break; 3098 } 3099 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 3100 } 3101 if (IVOpIter == IVOpEnd) { 3102 // Gracefully give up on this chain. 3103 DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n"); 3104 return; 3105 } 3106 3107 DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n"); 3108 Type *IVTy = IVSrc->getType(); 3109 Type *IntTy = SE.getEffectiveSCEVType(IVTy); 3110 const SCEV *LeftOverExpr = nullptr; 3111 for (const IVInc &Inc : Chain) { 3112 Instruction *InsertPt = Inc.UserInst; 3113 if (isa<PHINode>(InsertPt)) 3114 InsertPt = L->getLoopLatch()->getTerminator(); 3115 3116 // IVOper will replace the current IV User's operand. IVSrc is the IV 3117 // value currently held in a register. 3118 Value *IVOper = IVSrc; 3119 if (!Inc.IncExpr->isZero()) { 3120 // IncExpr was the result of subtraction of two narrow values, so must 3121 // be signed. 3122 const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy); 3123 LeftOverExpr = LeftOverExpr ? 3124 SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr; 3125 } 3126 if (LeftOverExpr && !LeftOverExpr->isZero()) { 3127 // Expand the IV increment. 3128 Rewriter.clearPostInc(); 3129 Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt); 3130 const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc), 3131 SE.getUnknown(IncV)); 3132 IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt); 3133 3134 // If an IV increment can't be folded, use it as the next IV value. 3135 if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) { 3136 assert(IVTy == IVOper->getType() && "inconsistent IV increment type"); 3137 IVSrc = IVOper; 3138 LeftOverExpr = nullptr; 3139 } 3140 } 3141 Type *OperTy = Inc.IVOperand->getType(); 3142 if (IVTy != OperTy) { 3143 assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) && 3144 "cannot extend a chained IV"); 3145 IRBuilder<> Builder(InsertPt); 3146 IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain"); 3147 } 3148 Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper); 3149 DeadInsts.emplace_back(Inc.IVOperand); 3150 } 3151 // If LSR created a new, wider phi, we may also replace its postinc. We only 3152 // do this if we also found a wide value for the head of the chain. 3153 if (isa<PHINode>(Chain.tailUserInst())) { 3154 for (PHINode &Phi : L->getHeader()->phis()) { 3155 if (!isCompatibleIVType(&Phi, IVSrc)) 3156 continue; 3157 Instruction *PostIncV = dyn_cast<Instruction>( 3158 Phi.getIncomingValueForBlock(L->getLoopLatch())); 3159 if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc))) 3160 continue; 3161 Value *IVOper = IVSrc; 3162 Type *PostIncTy = PostIncV->getType(); 3163 if (IVTy != PostIncTy) { 3164 assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types"); 3165 IRBuilder<> Builder(L->getLoopLatch()->getTerminator()); 3166 Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc()); 3167 IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain"); 3168 } 3169 Phi.replaceUsesOfWith(PostIncV, IVOper); 3170 DeadInsts.emplace_back(PostIncV); 3171 } 3172 } 3173 } 3174 3175 void LSRInstance::CollectFixupsAndInitialFormulae() { 3176 for (const IVStrideUse &U : IU) { 3177 Instruction *UserInst = U.getUser(); 3178 // Skip IV users that are part of profitable IV Chains. 3179 User::op_iterator UseI = 3180 find(UserInst->operands(), U.getOperandValToReplace()); 3181 assert(UseI != UserInst->op_end() && "cannot find IV operand"); 3182 if (IVIncSet.count(UseI)) { 3183 DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n'); 3184 continue; 3185 } 3186 3187 LSRUse::KindType Kind = LSRUse::Basic; 3188 MemAccessTy AccessTy; 3189 if (isAddressUse(TTI, UserInst, U.getOperandValToReplace())) { 3190 Kind = LSRUse::Address; 3191 AccessTy = getAccessType(TTI, UserInst); 3192 } 3193 3194 const SCEV *S = IU.getExpr(U); 3195 PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops(); 3196 3197 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as 3198 // (N - i == 0), and this allows (N - i) to be the expression that we work 3199 // with rather than just N or i, so we can consider the register 3200 // requirements for both N and i at the same time. Limiting this code to 3201 // equality icmps is not a problem because all interesting loops use 3202 // equality icmps, thanks to IndVarSimplify. 3203 if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst)) 3204 if (CI->isEquality()) { 3205 // Swap the operands if needed to put the OperandValToReplace on the 3206 // left, for consistency. 3207 Value *NV = CI->getOperand(1); 3208 if (NV == U.getOperandValToReplace()) { 3209 CI->setOperand(1, CI->getOperand(0)); 3210 CI->setOperand(0, NV); 3211 NV = CI->getOperand(1); 3212 Changed = true; 3213 } 3214 3215 // x == y --> x - y == 0 3216 const SCEV *N = SE.getSCEV(NV); 3217 if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) { 3218 // S is normalized, so normalize N before folding it into S 3219 // to keep the result normalized. 3220 N = normalizeForPostIncUse(N, TmpPostIncLoops, SE); 3221 Kind = LSRUse::ICmpZero; 3222 S = SE.getMinusSCEV(N, S); 3223 } 3224 3225 // -1 and the negations of all interesting strides (except the negation 3226 // of -1) are now also interesting. 3227 for (size_t i = 0, e = Factors.size(); i != e; ++i) 3228 if (Factors[i] != -1) 3229 Factors.insert(-(uint64_t)Factors[i]); 3230 Factors.insert(-1); 3231 } 3232 3233 // Get or create an LSRUse. 3234 std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy); 3235 size_t LUIdx = P.first; 3236 int64_t Offset = P.second; 3237 LSRUse &LU = Uses[LUIdx]; 3238 3239 // Record the fixup. 3240 LSRFixup &LF = LU.getNewFixup(); 3241 LF.UserInst = UserInst; 3242 LF.OperandValToReplace = U.getOperandValToReplace(); 3243 LF.PostIncLoops = TmpPostIncLoops; 3244 LF.Offset = Offset; 3245 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3246 3247 if (!LU.WidestFixupType || 3248 SE.getTypeSizeInBits(LU.WidestFixupType) < 3249 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3250 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3251 3252 // If this is the first use of this LSRUse, give it a formula. 3253 if (LU.Formulae.empty()) { 3254 InsertInitialFormula(S, LU, LUIdx); 3255 CountRegisters(LU.Formulae.back(), LUIdx); 3256 } 3257 } 3258 3259 DEBUG(print_fixups(dbgs())); 3260 } 3261 3262 /// Insert a formula for the given expression into the given use, separating out 3263 /// loop-variant portions from loop-invariant and loop-computable portions. 3264 void 3265 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) { 3266 // Mark uses whose expressions cannot be expanded. 3267 if (!isSafeToExpand(S, SE)) 3268 LU.RigidFormula = true; 3269 3270 Formula F; 3271 F.initialMatch(S, L, SE); 3272 bool Inserted = InsertFormula(LU, LUIdx, F); 3273 assert(Inserted && "Initial formula already exists!"); (void)Inserted; 3274 } 3275 3276 /// Insert a simple single-register formula for the given expression into the 3277 /// given use. 3278 void 3279 LSRInstance::InsertSupplementalFormula(const SCEV *S, 3280 LSRUse &LU, size_t LUIdx) { 3281 Formula F; 3282 F.BaseRegs.push_back(S); 3283 F.HasBaseReg = true; 3284 bool Inserted = InsertFormula(LU, LUIdx, F); 3285 assert(Inserted && "Supplemental formula already exists!"); (void)Inserted; 3286 } 3287 3288 /// Note which registers are used by the given formula, updating RegUses. 3289 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) { 3290 if (F.ScaledReg) 3291 RegUses.countRegister(F.ScaledReg, LUIdx); 3292 for (const SCEV *BaseReg : F.BaseRegs) 3293 RegUses.countRegister(BaseReg, LUIdx); 3294 } 3295 3296 /// If the given formula has not yet been inserted, add it to the list, and 3297 /// return true. Return false otherwise. 3298 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) { 3299 // Do not insert formula that we will not be able to expand. 3300 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) && 3301 "Formula is illegal"); 3302 3303 if (!LU.InsertFormula(F, *L)) 3304 return false; 3305 3306 CountRegisters(F, LUIdx); 3307 return true; 3308 } 3309 3310 /// Check for other uses of loop-invariant values which we're tracking. These 3311 /// other uses will pin these values in registers, making them less profitable 3312 /// for elimination. 3313 /// TODO: This currently misses non-constant addrec step registers. 3314 /// TODO: Should this give more weight to users inside the loop? 3315 void 3316 LSRInstance::CollectLoopInvariantFixupsAndFormulae() { 3317 SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end()); 3318 SmallPtrSet<const SCEV *, 32> Visited; 3319 3320 while (!Worklist.empty()) { 3321 const SCEV *S = Worklist.pop_back_val(); 3322 3323 // Don't process the same SCEV twice 3324 if (!Visited.insert(S).second) 3325 continue; 3326 3327 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) 3328 Worklist.append(N->op_begin(), N->op_end()); 3329 else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) 3330 Worklist.push_back(C->getOperand()); 3331 else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 3332 Worklist.push_back(D->getLHS()); 3333 Worklist.push_back(D->getRHS()); 3334 } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) { 3335 const Value *V = US->getValue(); 3336 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 3337 // Look for instructions defined outside the loop. 3338 if (L->contains(Inst)) continue; 3339 } else if (isa<UndefValue>(V)) 3340 // Undef doesn't have a live range, so it doesn't matter. 3341 continue; 3342 for (const Use &U : V->uses()) { 3343 const Instruction *UserInst = dyn_cast<Instruction>(U.getUser()); 3344 // Ignore non-instructions. 3345 if (!UserInst) 3346 continue; 3347 // Ignore instructions in other functions (as can happen with 3348 // Constants). 3349 if (UserInst->getParent()->getParent() != L->getHeader()->getParent()) 3350 continue; 3351 // Ignore instructions not dominated by the loop. 3352 const BasicBlock *UseBB = !isa<PHINode>(UserInst) ? 3353 UserInst->getParent() : 3354 cast<PHINode>(UserInst)->getIncomingBlock( 3355 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 3356 if (!DT.dominates(L->getHeader(), UseBB)) 3357 continue; 3358 // Don't bother if the instruction is in a BB which ends in an EHPad. 3359 if (UseBB->getTerminator()->isEHPad()) 3360 continue; 3361 // Don't bother rewriting PHIs in catchswitch blocks. 3362 if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator())) 3363 continue; 3364 // Ignore uses which are part of other SCEV expressions, to avoid 3365 // analyzing them multiple times. 3366 if (SE.isSCEVable(UserInst->getType())) { 3367 const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst)); 3368 // If the user is a no-op, look through to its uses. 3369 if (!isa<SCEVUnknown>(UserS)) 3370 continue; 3371 if (UserS == US) { 3372 Worklist.push_back( 3373 SE.getUnknown(const_cast<Instruction *>(UserInst))); 3374 continue; 3375 } 3376 } 3377 // Ignore icmp instructions which are already being analyzed. 3378 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) { 3379 unsigned OtherIdx = !U.getOperandNo(); 3380 Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx)); 3381 if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L)) 3382 continue; 3383 } 3384 3385 std::pair<size_t, int64_t> P = getUse( 3386 S, LSRUse::Basic, MemAccessTy()); 3387 size_t LUIdx = P.first; 3388 int64_t Offset = P.second; 3389 LSRUse &LU = Uses[LUIdx]; 3390 LSRFixup &LF = LU.getNewFixup(); 3391 LF.UserInst = const_cast<Instruction *>(UserInst); 3392 LF.OperandValToReplace = U; 3393 LF.Offset = Offset; 3394 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3395 if (!LU.WidestFixupType || 3396 SE.getTypeSizeInBits(LU.WidestFixupType) < 3397 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3398 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3399 InsertSupplementalFormula(US, LU, LUIdx); 3400 CountRegisters(LU.Formulae.back(), Uses.size() - 1); 3401 break; 3402 } 3403 } 3404 } 3405 } 3406 3407 /// Split S into subexpressions which can be pulled out into separate 3408 /// registers. If C is non-null, multiply each subexpression by C. 3409 /// 3410 /// Return remainder expression after factoring the subexpressions captured by 3411 /// Ops. If Ops is complete, return NULL. 3412 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C, 3413 SmallVectorImpl<const SCEV *> &Ops, 3414 const Loop *L, 3415 ScalarEvolution &SE, 3416 unsigned Depth = 0) { 3417 // Arbitrarily cap recursion to protect compile time. 3418 if (Depth >= 3) 3419 return S; 3420 3421 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3422 // Break out add operands. 3423 for (const SCEV *S : Add->operands()) { 3424 const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1); 3425 if (Remainder) 3426 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3427 } 3428 return nullptr; 3429 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 3430 // Split a non-zero base out of an addrec. 3431 if (AR->getStart()->isZero() || !AR->isAffine()) 3432 return S; 3433 3434 const SCEV *Remainder = CollectSubexprs(AR->getStart(), 3435 C, Ops, L, SE, Depth+1); 3436 // Split the non-zero AddRec unless it is part of a nested recurrence that 3437 // does not pertain to this loop. 3438 if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) { 3439 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3440 Remainder = nullptr; 3441 } 3442 if (Remainder != AR->getStart()) { 3443 if (!Remainder) 3444 Remainder = SE.getConstant(AR->getType(), 0); 3445 return SE.getAddRecExpr(Remainder, 3446 AR->getStepRecurrence(SE), 3447 AR->getLoop(), 3448 //FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 3449 SCEV::FlagAnyWrap); 3450 } 3451 } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3452 // Break (C * (a + b + c)) into C*a + C*b + C*c. 3453 if (Mul->getNumOperands() != 2) 3454 return S; 3455 if (const SCEVConstant *Op0 = 3456 dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3457 C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0; 3458 const SCEV *Remainder = 3459 CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1); 3460 if (Remainder) 3461 Ops.push_back(SE.getMulExpr(C, Remainder)); 3462 return nullptr; 3463 } 3464 } 3465 return S; 3466 } 3467 3468 /// \brief Helper function for LSRInstance::GenerateReassociations. 3469 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 3470 const Formula &Base, 3471 unsigned Depth, size_t Idx, 3472 bool IsScaledReg) { 3473 const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3474 SmallVector<const SCEV *, 8> AddOps; 3475 const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE); 3476 if (Remainder) 3477 AddOps.push_back(Remainder); 3478 3479 if (AddOps.size() == 1) 3480 return; 3481 3482 for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(), 3483 JE = AddOps.end(); 3484 J != JE; ++J) { 3485 // Loop-variant "unknown" values are uninteresting; we won't be able to 3486 // do anything meaningful with them. 3487 if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L)) 3488 continue; 3489 3490 // Don't pull a constant into a register if the constant could be folded 3491 // into an immediate field. 3492 if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3493 LU.AccessTy, *J, Base.getNumRegs() > 1)) 3494 continue; 3495 3496 // Collect all operands except *J. 3497 SmallVector<const SCEV *, 8> InnerAddOps( 3498 ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J); 3499 InnerAddOps.append(std::next(J), 3500 ((const SmallVector<const SCEV *, 8> &)AddOps).end()); 3501 3502 // Don't leave just a constant behind in a register if the constant could 3503 // be folded into an immediate field. 3504 if (InnerAddOps.size() == 1 && 3505 isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3506 LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1)) 3507 continue; 3508 3509 const SCEV *InnerSum = SE.getAddExpr(InnerAddOps); 3510 if (InnerSum->isZero()) 3511 continue; 3512 Formula F = Base; 3513 3514 // Add the remaining pieces of the add back into the new formula. 3515 const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum); 3516 if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 && 3517 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3518 InnerSumSC->getValue()->getZExtValue())) { 3519 F.UnfoldedOffset = 3520 (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue(); 3521 if (IsScaledReg) 3522 F.ScaledReg = nullptr; 3523 else 3524 F.BaseRegs.erase(F.BaseRegs.begin() + Idx); 3525 } else if (IsScaledReg) 3526 F.ScaledReg = InnerSum; 3527 else 3528 F.BaseRegs[Idx] = InnerSum; 3529 3530 // Add J as its own register, or an unfolded immediate. 3531 const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J); 3532 if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 && 3533 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3534 SC->getValue()->getZExtValue())) 3535 F.UnfoldedOffset = 3536 (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue(); 3537 else 3538 F.BaseRegs.push_back(*J); 3539 // We may have changed the number of register in base regs, adjust the 3540 // formula accordingly. 3541 F.canonicalize(*L); 3542 3543 if (InsertFormula(LU, LUIdx, F)) 3544 // If that formula hadn't been seen before, recurse to find more like 3545 // it. 3546 GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth + 1); 3547 } 3548 } 3549 3550 /// Split out subexpressions from adds and the bases of addrecs. 3551 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx, 3552 Formula Base, unsigned Depth) { 3553 assert(Base.isCanonical(*L) && "Input must be in the canonical form"); 3554 // Arbitrarily cap recursion to protect compile time. 3555 if (Depth >= 3) 3556 return; 3557 3558 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3559 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i); 3560 3561 if (Base.Scale == 1) 3562 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, 3563 /* Idx */ -1, /* IsScaledReg */ true); 3564 } 3565 3566 /// Generate a formula consisting of all of the loop-dominating registers added 3567 /// into a single register. 3568 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx, 3569 Formula Base) { 3570 // This method is only interesting on a plurality of registers. 3571 if (Base.BaseRegs.size() + (Base.Scale == 1) <= 1) 3572 return; 3573 3574 // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before 3575 // processing the formula. 3576 Base.unscale(); 3577 Formula F = Base; 3578 F.BaseRegs.clear(); 3579 SmallVector<const SCEV *, 4> Ops; 3580 for (const SCEV *BaseReg : Base.BaseRegs) { 3581 if (SE.properlyDominates(BaseReg, L->getHeader()) && 3582 !SE.hasComputableLoopEvolution(BaseReg, L)) 3583 Ops.push_back(BaseReg); 3584 else 3585 F.BaseRegs.push_back(BaseReg); 3586 } 3587 if (Ops.size() > 1) { 3588 const SCEV *Sum = SE.getAddExpr(Ops); 3589 // TODO: If Sum is zero, it probably means ScalarEvolution missed an 3590 // opportunity to fold something. For now, just ignore such cases 3591 // rather than proceed with zero in a register. 3592 if (!Sum->isZero()) { 3593 F.BaseRegs.push_back(Sum); 3594 F.canonicalize(*L); 3595 (void)InsertFormula(LU, LUIdx, F); 3596 } 3597 } 3598 } 3599 3600 /// \brief Helper function for LSRInstance::GenerateSymbolicOffsets. 3601 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 3602 const Formula &Base, size_t Idx, 3603 bool IsScaledReg) { 3604 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3605 GlobalValue *GV = ExtractSymbol(G, SE); 3606 if (G->isZero() || !GV) 3607 return; 3608 Formula F = Base; 3609 F.BaseGV = GV; 3610 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3611 return; 3612 if (IsScaledReg) 3613 F.ScaledReg = G; 3614 else 3615 F.BaseRegs[Idx] = G; 3616 (void)InsertFormula(LU, LUIdx, F); 3617 } 3618 3619 /// Generate reuse formulae using symbolic offsets. 3620 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, 3621 Formula Base) { 3622 // We can't add a symbolic offset if the address already contains one. 3623 if (Base.BaseGV) return; 3624 3625 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3626 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i); 3627 if (Base.Scale == 1) 3628 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1, 3629 /* IsScaledReg */ true); 3630 } 3631 3632 /// \brief Helper function for LSRInstance::GenerateConstantOffsets. 3633 void LSRInstance::GenerateConstantOffsetsImpl( 3634 LSRUse &LU, unsigned LUIdx, const Formula &Base, 3635 const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) { 3636 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3637 for (int64_t Offset : Worklist) { 3638 Formula F = Base; 3639 F.BaseOffset = (uint64_t)Base.BaseOffset - Offset; 3640 if (isLegalUse(TTI, LU.MinOffset - Offset, LU.MaxOffset - Offset, LU.Kind, 3641 LU.AccessTy, F)) { 3642 // Add the offset to the base register. 3643 const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G); 3644 // If it cancelled out, drop the base register, otherwise update it. 3645 if (NewG->isZero()) { 3646 if (IsScaledReg) { 3647 F.Scale = 0; 3648 F.ScaledReg = nullptr; 3649 } else 3650 F.deleteBaseReg(F.BaseRegs[Idx]); 3651 F.canonicalize(*L); 3652 } else if (IsScaledReg) 3653 F.ScaledReg = NewG; 3654 else 3655 F.BaseRegs[Idx] = NewG; 3656 3657 (void)InsertFormula(LU, LUIdx, F); 3658 } 3659 } 3660 3661 int64_t Imm = ExtractImmediate(G, SE); 3662 if (G->isZero() || Imm == 0) 3663 return; 3664 Formula F = Base; 3665 F.BaseOffset = (uint64_t)F.BaseOffset + Imm; 3666 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3667 return; 3668 if (IsScaledReg) 3669 F.ScaledReg = G; 3670 else 3671 F.BaseRegs[Idx] = G; 3672 (void)InsertFormula(LU, LUIdx, F); 3673 } 3674 3675 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets. 3676 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, 3677 Formula Base) { 3678 // TODO: For now, just add the min and max offset, because it usually isn't 3679 // worthwhile looking at everything inbetween. 3680 SmallVector<int64_t, 2> Worklist; 3681 Worklist.push_back(LU.MinOffset); 3682 if (LU.MaxOffset != LU.MinOffset) 3683 Worklist.push_back(LU.MaxOffset); 3684 3685 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3686 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i); 3687 if (Base.Scale == 1) 3688 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1, 3689 /* IsScaledReg */ true); 3690 } 3691 3692 /// For ICmpZero, check to see if we can scale up the comparison. For example, x 3693 /// == y -> x*c == y*c. 3694 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, 3695 Formula Base) { 3696 if (LU.Kind != LSRUse::ICmpZero) return; 3697 3698 // Determine the integer type for the base formula. 3699 Type *IntTy = Base.getType(); 3700 if (!IntTy) return; 3701 if (SE.getTypeSizeInBits(IntTy) > 64) return; 3702 3703 // Don't do this if there is more than one offset. 3704 if (LU.MinOffset != LU.MaxOffset) return; 3705 3706 // Check if transformation is valid. It is illegal to multiply pointer. 3707 if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy()) 3708 return; 3709 for (const SCEV *BaseReg : Base.BaseRegs) 3710 if (BaseReg->getType()->isPointerTy()) 3711 return; 3712 assert(!Base.BaseGV && "ICmpZero use is not legal!"); 3713 3714 // Check each interesting stride. 3715 for (int64_t Factor : Factors) { 3716 // Check that the multiplication doesn't overflow. 3717 if (Base.BaseOffset == std::numeric_limits<int64_t>::min() && Factor == -1) 3718 continue; 3719 int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor; 3720 if (NewBaseOffset / Factor != Base.BaseOffset) 3721 continue; 3722 // If the offset will be truncated at this use, check that it is in bounds. 3723 if (!IntTy->isPointerTy() && 3724 !ConstantInt::isValueValidForType(IntTy, NewBaseOffset)) 3725 continue; 3726 3727 // Check that multiplying with the use offset doesn't overflow. 3728 int64_t Offset = LU.MinOffset; 3729 if (Offset == std::numeric_limits<int64_t>::min() && Factor == -1) 3730 continue; 3731 Offset = (uint64_t)Offset * Factor; 3732 if (Offset / Factor != LU.MinOffset) 3733 continue; 3734 // If the offset will be truncated at this use, check that it is in bounds. 3735 if (!IntTy->isPointerTy() && 3736 !ConstantInt::isValueValidForType(IntTy, Offset)) 3737 continue; 3738 3739 Formula F = Base; 3740 F.BaseOffset = NewBaseOffset; 3741 3742 // Check that this scale is legal. 3743 if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F)) 3744 continue; 3745 3746 // Compensate for the use having MinOffset built into it. 3747 F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset; 3748 3749 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3750 3751 // Check that multiplying with each base register doesn't overflow. 3752 for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) { 3753 F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS); 3754 if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i]) 3755 goto next; 3756 } 3757 3758 // Check that multiplying with the scaled register doesn't overflow. 3759 if (F.ScaledReg) { 3760 F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS); 3761 if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg) 3762 continue; 3763 } 3764 3765 // Check that multiplying with the unfolded offset doesn't overflow. 3766 if (F.UnfoldedOffset != 0) { 3767 if (F.UnfoldedOffset == std::numeric_limits<int64_t>::min() && 3768 Factor == -1) 3769 continue; 3770 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor; 3771 if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset) 3772 continue; 3773 // If the offset will be truncated, check that it is in bounds. 3774 if (!IntTy->isPointerTy() && 3775 !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset)) 3776 continue; 3777 } 3778 3779 // If we make it here and it's legal, add it. 3780 (void)InsertFormula(LU, LUIdx, F); 3781 next:; 3782 } 3783 } 3784 3785 /// Generate stride factor reuse formulae by making use of scaled-offset address 3786 /// modes, for example. 3787 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) { 3788 // Determine the integer type for the base formula. 3789 Type *IntTy = Base.getType(); 3790 if (!IntTy) return; 3791 3792 // If this Formula already has a scaled register, we can't add another one. 3793 // Try to unscale the formula to generate a better scale. 3794 if (Base.Scale != 0 && !Base.unscale()) 3795 return; 3796 3797 assert(Base.Scale == 0 && "unscale did not did its job!"); 3798 3799 // Check each interesting stride. 3800 for (int64_t Factor : Factors) { 3801 Base.Scale = Factor; 3802 Base.HasBaseReg = Base.BaseRegs.size() > 1; 3803 // Check whether this scale is going to be legal. 3804 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 3805 Base)) { 3806 // As a special-case, handle special out-of-loop Basic users specially. 3807 // TODO: Reconsider this special case. 3808 if (LU.Kind == LSRUse::Basic && 3809 isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special, 3810 LU.AccessTy, Base) && 3811 LU.AllFixupsOutsideLoop) 3812 LU.Kind = LSRUse::Special; 3813 else 3814 continue; 3815 } 3816 // For an ICmpZero, negating a solitary base register won't lead to 3817 // new solutions. 3818 if (LU.Kind == LSRUse::ICmpZero && 3819 !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV) 3820 continue; 3821 // For each addrec base reg, if its loop is current loop, apply the scale. 3822 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { 3823 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i]); 3824 if (AR && (AR->getLoop() == L || LU.AllFixupsOutsideLoop)) { 3825 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3826 if (FactorS->isZero()) 3827 continue; 3828 // Divide out the factor, ignoring high bits, since we'll be 3829 // scaling the value back up in the end. 3830 if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) { 3831 // TODO: This could be optimized to avoid all the copying. 3832 Formula F = Base; 3833 F.ScaledReg = Quotient; 3834 F.deleteBaseReg(F.BaseRegs[i]); 3835 // The canonical representation of 1*reg is reg, which is already in 3836 // Base. In that case, do not try to insert the formula, it will be 3837 // rejected anyway. 3838 if (F.Scale == 1 && (F.BaseRegs.empty() || 3839 (AR->getLoop() != L && LU.AllFixupsOutsideLoop))) 3840 continue; 3841 // If AllFixupsOutsideLoop is true and F.Scale is 1, we may generate 3842 // non canonical Formula with ScaledReg's loop not being L. 3843 if (F.Scale == 1 && LU.AllFixupsOutsideLoop) 3844 F.canonicalize(*L); 3845 (void)InsertFormula(LU, LUIdx, F); 3846 } 3847 } 3848 } 3849 } 3850 } 3851 3852 /// Generate reuse formulae from different IV types. 3853 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) { 3854 // Don't bother truncating symbolic values. 3855 if (Base.BaseGV) return; 3856 3857 // Determine the integer type for the base formula. 3858 Type *DstTy = Base.getType(); 3859 if (!DstTy) return; 3860 DstTy = SE.getEffectiveSCEVType(DstTy); 3861 3862 for (Type *SrcTy : Types) { 3863 if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) { 3864 Formula F = Base; 3865 3866 if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy); 3867 for (const SCEV *&BaseReg : F.BaseRegs) 3868 BaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy); 3869 3870 // TODO: This assumes we've done basic processing on all uses and 3871 // have an idea what the register usage is. 3872 if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses)) 3873 continue; 3874 3875 F.canonicalize(*L); 3876 (void)InsertFormula(LU, LUIdx, F); 3877 } 3878 } 3879 } 3880 3881 namespace { 3882 3883 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer 3884 /// modifications so that the search phase doesn't have to worry about the data 3885 /// structures moving underneath it. 3886 struct WorkItem { 3887 size_t LUIdx; 3888 int64_t Imm; 3889 const SCEV *OrigReg; 3890 3891 WorkItem(size_t LI, int64_t I, const SCEV *R) 3892 : LUIdx(LI), Imm(I), OrigReg(R) {} 3893 3894 void print(raw_ostream &OS) const; 3895 void dump() const; 3896 }; 3897 3898 } // end anonymous namespace 3899 3900 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 3901 void WorkItem::print(raw_ostream &OS) const { 3902 OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx 3903 << " , add offset " << Imm; 3904 } 3905 3906 LLVM_DUMP_METHOD void WorkItem::dump() const { 3907 print(errs()); errs() << '\n'; 3908 } 3909 #endif 3910 3911 /// Look for registers which are a constant distance apart and try to form reuse 3912 /// opportunities between them. 3913 void LSRInstance::GenerateCrossUseConstantOffsets() { 3914 // Group the registers by their value without any added constant offset. 3915 using ImmMapTy = std::map<int64_t, const SCEV *>; 3916 3917 DenseMap<const SCEV *, ImmMapTy> Map; 3918 DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap; 3919 SmallVector<const SCEV *, 8> Sequence; 3920 for (const SCEV *Use : RegUses) { 3921 const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify. 3922 int64_t Imm = ExtractImmediate(Reg, SE); 3923 auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy())); 3924 if (Pair.second) 3925 Sequence.push_back(Reg); 3926 Pair.first->second.insert(std::make_pair(Imm, Use)); 3927 UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use); 3928 } 3929 3930 // Now examine each set of registers with the same base value. Build up 3931 // a list of work to do and do the work in a separate step so that we're 3932 // not adding formulae and register counts while we're searching. 3933 SmallVector<WorkItem, 32> WorkItems; 3934 SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems; 3935 for (const SCEV *Reg : Sequence) { 3936 const ImmMapTy &Imms = Map.find(Reg)->second; 3937 3938 // It's not worthwhile looking for reuse if there's only one offset. 3939 if (Imms.size() == 1) 3940 continue; 3941 3942 DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':'; 3943 for (const auto &Entry : Imms) 3944 dbgs() << ' ' << Entry.first; 3945 dbgs() << '\n'); 3946 3947 // Examine each offset. 3948 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); 3949 J != JE; ++J) { 3950 const SCEV *OrigReg = J->second; 3951 3952 int64_t JImm = J->first; 3953 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg); 3954 3955 if (!isa<SCEVConstant>(OrigReg) && 3956 UsedByIndicesMap[Reg].count() == 1) { 3957 DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n'); 3958 continue; 3959 } 3960 3961 // Conservatively examine offsets between this orig reg a few selected 3962 // other orig regs. 3963 ImmMapTy::const_iterator OtherImms[] = { 3964 Imms.begin(), std::prev(Imms.end()), 3965 Imms.lower_bound((Imms.begin()->first + std::prev(Imms.end())->first) / 3966 2) 3967 }; 3968 for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) { 3969 ImmMapTy::const_iterator M = OtherImms[i]; 3970 if (M == J || M == JE) continue; 3971 3972 // Compute the difference between the two. 3973 int64_t Imm = (uint64_t)JImm - M->first; 3974 for (unsigned LUIdx : UsedByIndices.set_bits()) 3975 // Make a memo of this use, offset, and register tuple. 3976 if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second) 3977 WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg)); 3978 } 3979 } 3980 } 3981 3982 Map.clear(); 3983 Sequence.clear(); 3984 UsedByIndicesMap.clear(); 3985 UniqueItems.clear(); 3986 3987 // Now iterate through the worklist and add new formulae. 3988 for (const WorkItem &WI : WorkItems) { 3989 size_t LUIdx = WI.LUIdx; 3990 LSRUse &LU = Uses[LUIdx]; 3991 int64_t Imm = WI.Imm; 3992 const SCEV *OrigReg = WI.OrigReg; 3993 3994 Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType()); 3995 const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm)); 3996 unsigned BitWidth = SE.getTypeSizeInBits(IntTy); 3997 3998 // TODO: Use a more targeted data structure. 3999 for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) { 4000 Formula F = LU.Formulae[L]; 4001 // FIXME: The code for the scaled and unscaled registers looks 4002 // very similar but slightly different. Investigate if they 4003 // could be merged. That way, we would not have to unscale the 4004 // Formula. 4005 F.unscale(); 4006 // Use the immediate in the scaled register. 4007 if (F.ScaledReg == OrigReg) { 4008 int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale; 4009 // Don't create 50 + reg(-50). 4010 if (F.referencesReg(SE.getSCEV( 4011 ConstantInt::get(IntTy, -(uint64_t)Offset)))) 4012 continue; 4013 Formula NewF = F; 4014 NewF.BaseOffset = Offset; 4015 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 4016 NewF)) 4017 continue; 4018 NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg); 4019 4020 // If the new scale is a constant in a register, and adding the constant 4021 // value to the immediate would produce a value closer to zero than the 4022 // immediate itself, then the formula isn't worthwhile. 4023 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg)) 4024 if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) && 4025 (C->getAPInt().abs() * APInt(BitWidth, F.Scale)) 4026 .ule(std::abs(NewF.BaseOffset))) 4027 continue; 4028 4029 // OK, looks good. 4030 NewF.canonicalize(*this->L); 4031 (void)InsertFormula(LU, LUIdx, NewF); 4032 } else { 4033 // Use the immediate in a base register. 4034 for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) { 4035 const SCEV *BaseReg = F.BaseRegs[N]; 4036 if (BaseReg != OrigReg) 4037 continue; 4038 Formula NewF = F; 4039 NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm; 4040 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, 4041 LU.Kind, LU.AccessTy, NewF)) { 4042 if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm)) 4043 continue; 4044 NewF = F; 4045 NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm; 4046 } 4047 NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg); 4048 4049 // If the new formula has a constant in a register, and adding the 4050 // constant value to the immediate would produce a value closer to 4051 // zero than the immediate itself, then the formula isn't worthwhile. 4052 for (const SCEV *NewReg : NewF.BaseRegs) 4053 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg)) 4054 if ((C->getAPInt() + NewF.BaseOffset) 4055 .abs() 4056 .slt(std::abs(NewF.BaseOffset)) && 4057 (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >= 4058 countTrailingZeros<uint64_t>(NewF.BaseOffset)) 4059 goto skip_formula; 4060 4061 // Ok, looks good. 4062 NewF.canonicalize(*this->L); 4063 (void)InsertFormula(LU, LUIdx, NewF); 4064 break; 4065 skip_formula:; 4066 } 4067 } 4068 } 4069 } 4070 } 4071 4072 /// Generate formulae for each use. 4073 void 4074 LSRInstance::GenerateAllReuseFormulae() { 4075 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan 4076 // queries are more precise. 4077 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4078 LSRUse &LU = Uses[LUIdx]; 4079 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4080 GenerateReassociations(LU, LUIdx, LU.Formulae[i]); 4081 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4082 GenerateCombinations(LU, LUIdx, LU.Formulae[i]); 4083 } 4084 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4085 LSRUse &LU = Uses[LUIdx]; 4086 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4087 GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]); 4088 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4089 GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]); 4090 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4091 GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]); 4092 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4093 GenerateScales(LU, LUIdx, LU.Formulae[i]); 4094 } 4095 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4096 LSRUse &LU = Uses[LUIdx]; 4097 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4098 GenerateTruncates(LU, LUIdx, LU.Formulae[i]); 4099 } 4100 4101 GenerateCrossUseConstantOffsets(); 4102 4103 DEBUG(dbgs() << "\n" 4104 "After generating reuse formulae:\n"; 4105 print_uses(dbgs())); 4106 } 4107 4108 /// If there are multiple formulae with the same set of registers used 4109 /// by other uses, pick the best one and delete the others. 4110 void LSRInstance::FilterOutUndesirableDedicatedRegisters() { 4111 DenseSet<const SCEV *> VisitedRegs; 4112 SmallPtrSet<const SCEV *, 16> Regs; 4113 SmallPtrSet<const SCEV *, 16> LoserRegs; 4114 #ifndef NDEBUG 4115 bool ChangedFormulae = false; 4116 #endif 4117 4118 // Collect the best formula for each unique set of shared registers. This 4119 // is reset for each use. 4120 using BestFormulaeTy = 4121 DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>; 4122 4123 BestFormulaeTy BestFormulae; 4124 4125 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4126 LSRUse &LU = Uses[LUIdx]; 4127 DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n'); 4128 4129 bool Any = false; 4130 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); 4131 FIdx != NumForms; ++FIdx) { 4132 Formula &F = LU.Formulae[FIdx]; 4133 4134 // Some formulas are instant losers. For example, they may depend on 4135 // nonexistent AddRecs from other loops. These need to be filtered 4136 // immediately, otherwise heuristics could choose them over others leading 4137 // to an unsatisfactory solution. Passing LoserRegs into RateFormula here 4138 // avoids the need to recompute this information across formulae using the 4139 // same bad AddRec. Passing LoserRegs is also essential unless we remove 4140 // the corresponding bad register from the Regs set. 4141 Cost CostF; 4142 Regs.clear(); 4143 CostF.RateFormula(TTI, F, Regs, VisitedRegs, L, SE, DT, LU, &LoserRegs); 4144 if (CostF.isLoser()) { 4145 // During initial formula generation, undesirable formulae are generated 4146 // by uses within other loops that have some non-trivial address mode or 4147 // use the postinc form of the IV. LSR needs to provide these formulae 4148 // as the basis of rediscovering the desired formula that uses an AddRec 4149 // corresponding to the existing phi. Once all formulae have been 4150 // generated, these initial losers may be pruned. 4151 DEBUG(dbgs() << " Filtering loser "; F.print(dbgs()); 4152 dbgs() << "\n"); 4153 } 4154 else { 4155 SmallVector<const SCEV *, 4> Key; 4156 for (const SCEV *Reg : F.BaseRegs) { 4157 if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx)) 4158 Key.push_back(Reg); 4159 } 4160 if (F.ScaledReg && 4161 RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx)) 4162 Key.push_back(F.ScaledReg); 4163 // Unstable sort by host order ok, because this is only used for 4164 // uniquifying. 4165 std::sort(Key.begin(), Key.end()); 4166 4167 std::pair<BestFormulaeTy::const_iterator, bool> P = 4168 BestFormulae.insert(std::make_pair(Key, FIdx)); 4169 if (P.second) 4170 continue; 4171 4172 Formula &Best = LU.Formulae[P.first->second]; 4173 4174 Cost CostBest; 4175 Regs.clear(); 4176 CostBest.RateFormula(TTI, Best, Regs, VisitedRegs, L, SE, DT, LU); 4177 if (CostF.isLess(CostBest, TTI)) 4178 std::swap(F, Best); 4179 DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 4180 dbgs() << "\n" 4181 " in favor of formula "; Best.print(dbgs()); 4182 dbgs() << '\n'); 4183 } 4184 #ifndef NDEBUG 4185 ChangedFormulae = true; 4186 #endif 4187 LU.DeleteFormula(F); 4188 --FIdx; 4189 --NumForms; 4190 Any = true; 4191 } 4192 4193 // Now that we've filtered out some formulae, recompute the Regs set. 4194 if (Any) 4195 LU.RecomputeRegs(LUIdx, RegUses); 4196 4197 // Reset this to prepare for the next use. 4198 BestFormulae.clear(); 4199 } 4200 4201 DEBUG(if (ChangedFormulae) { 4202 dbgs() << "\n" 4203 "After filtering out undesirable candidates:\n"; 4204 print_uses(dbgs()); 4205 }); 4206 } 4207 4208 // This is a rough guess that seems to work fairly well. 4209 static const size_t ComplexityLimit = std::numeric_limits<uint16_t>::max(); 4210 4211 /// Estimate the worst-case number of solutions the solver might have to 4212 /// consider. It almost never considers this many solutions because it prune the 4213 /// search space, but the pruning isn't always sufficient. 4214 size_t LSRInstance::EstimateSearchSpaceComplexity() const { 4215 size_t Power = 1; 4216 for (const LSRUse &LU : Uses) { 4217 size_t FSize = LU.Formulae.size(); 4218 if (FSize >= ComplexityLimit) { 4219 Power = ComplexityLimit; 4220 break; 4221 } 4222 Power *= FSize; 4223 if (Power >= ComplexityLimit) 4224 break; 4225 } 4226 return Power; 4227 } 4228 4229 /// When one formula uses a superset of the registers of another formula, it 4230 /// won't help reduce register pressure (though it may not necessarily hurt 4231 /// register pressure); remove it to simplify the system. 4232 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() { 4233 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4234 DEBUG(dbgs() << "The search space is too complex.\n"); 4235 4236 DEBUG(dbgs() << "Narrowing the search space by eliminating formulae " 4237 "which use a superset of registers used by other " 4238 "formulae.\n"); 4239 4240 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4241 LSRUse &LU = Uses[LUIdx]; 4242 bool Any = false; 4243 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4244 Formula &F = LU.Formulae[i]; 4245 // Look for a formula with a constant or GV in a register. If the use 4246 // also has a formula with that same value in an immediate field, 4247 // delete the one that uses a register. 4248 for (SmallVectorImpl<const SCEV *>::const_iterator 4249 I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) { 4250 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) { 4251 Formula NewF = F; 4252 NewF.BaseOffset += C->getValue()->getSExtValue(); 4253 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4254 (I - F.BaseRegs.begin())); 4255 if (LU.HasFormulaWithSameRegs(NewF)) { 4256 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4257 LU.DeleteFormula(F); 4258 --i; 4259 --e; 4260 Any = true; 4261 break; 4262 } 4263 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) { 4264 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) 4265 if (!F.BaseGV) { 4266 Formula NewF = F; 4267 NewF.BaseGV = GV; 4268 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4269 (I - F.BaseRegs.begin())); 4270 if (LU.HasFormulaWithSameRegs(NewF)) { 4271 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4272 dbgs() << '\n'); 4273 LU.DeleteFormula(F); 4274 --i; 4275 --e; 4276 Any = true; 4277 break; 4278 } 4279 } 4280 } 4281 } 4282 } 4283 if (Any) 4284 LU.RecomputeRegs(LUIdx, RegUses); 4285 } 4286 4287 DEBUG(dbgs() << "After pre-selection:\n"; 4288 print_uses(dbgs())); 4289 } 4290 } 4291 4292 /// When there are many registers for expressions like A, A+1, A+2, etc., 4293 /// allocate a single register for them. 4294 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() { 4295 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4296 return; 4297 4298 DEBUG(dbgs() << "The search space is too complex.\n" 4299 "Narrowing the search space by assuming that uses separated " 4300 "by a constant offset will use the same registers.\n"); 4301 4302 // This is especially useful for unrolled loops. 4303 4304 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4305 LSRUse &LU = Uses[LUIdx]; 4306 for (const Formula &F : LU.Formulae) { 4307 if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1)) 4308 continue; 4309 4310 LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU); 4311 if (!LUThatHas) 4312 continue; 4313 4314 if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false, 4315 LU.Kind, LU.AccessTy)) 4316 continue; 4317 4318 DEBUG(dbgs() << " Deleting use "; LU.print(dbgs()); dbgs() << '\n'); 4319 4320 LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop; 4321 4322 // Transfer the fixups of LU to LUThatHas. 4323 for (LSRFixup &Fixup : LU.Fixups) { 4324 Fixup.Offset += F.BaseOffset; 4325 LUThatHas->pushFixup(Fixup); 4326 DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n'); 4327 } 4328 4329 // Delete formulae from the new use which are no longer legal. 4330 bool Any = false; 4331 for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) { 4332 Formula &F = LUThatHas->Formulae[i]; 4333 if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset, 4334 LUThatHas->Kind, LUThatHas->AccessTy, F)) { 4335 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4336 dbgs() << '\n'); 4337 LUThatHas->DeleteFormula(F); 4338 --i; 4339 --e; 4340 Any = true; 4341 } 4342 } 4343 4344 if (Any) 4345 LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses); 4346 4347 // Delete the old use. 4348 DeleteUse(LU, LUIdx); 4349 --LUIdx; 4350 --NumUses; 4351 break; 4352 } 4353 } 4354 4355 DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4356 } 4357 4358 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that 4359 /// we've done more filtering, as it may be able to find more formulae to 4360 /// eliminate. 4361 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){ 4362 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4363 DEBUG(dbgs() << "The search space is too complex.\n"); 4364 4365 DEBUG(dbgs() << "Narrowing the search space by re-filtering out " 4366 "undesirable dedicated registers.\n"); 4367 4368 FilterOutUndesirableDedicatedRegisters(); 4369 4370 DEBUG(dbgs() << "After pre-selection:\n"; 4371 print_uses(dbgs())); 4372 } 4373 } 4374 4375 /// If a LSRUse has multiple formulae with the same ScaledReg and Scale. 4376 /// Pick the best one and delete the others. 4377 /// This narrowing heuristic is to keep as many formulae with different 4378 /// Scale and ScaledReg pair as possible while narrowing the search space. 4379 /// The benefit is that it is more likely to find out a better solution 4380 /// from a formulae set with more Scale and ScaledReg variations than 4381 /// a formulae set with the same Scale and ScaledReg. The picking winner 4382 /// reg heurstic will often keep the formulae with the same Scale and 4383 /// ScaledReg and filter others, and we want to avoid that if possible. 4384 void LSRInstance::NarrowSearchSpaceByFilterFormulaWithSameScaledReg() { 4385 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4386 return; 4387 4388 DEBUG(dbgs() << "The search space is too complex.\n" 4389 "Narrowing the search space by choosing the best Formula " 4390 "from the Formulae with the same Scale and ScaledReg.\n"); 4391 4392 // Map the "Scale * ScaledReg" pair to the best formula of current LSRUse. 4393 using BestFormulaeTy = DenseMap<std::pair<const SCEV *, int64_t>, size_t>; 4394 4395 BestFormulaeTy BestFormulae; 4396 #ifndef NDEBUG 4397 bool ChangedFormulae = false; 4398 #endif 4399 DenseSet<const SCEV *> VisitedRegs; 4400 SmallPtrSet<const SCEV *, 16> Regs; 4401 4402 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4403 LSRUse &LU = Uses[LUIdx]; 4404 DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n'); 4405 4406 // Return true if Formula FA is better than Formula FB. 4407 auto IsBetterThan = [&](Formula &FA, Formula &FB) { 4408 // First we will try to choose the Formula with fewer new registers. 4409 // For a register used by current Formula, the more the register is 4410 // shared among LSRUses, the less we increase the register number 4411 // counter of the formula. 4412 size_t FARegNum = 0; 4413 for (const SCEV *Reg : FA.BaseRegs) { 4414 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg); 4415 FARegNum += (NumUses - UsedByIndices.count() + 1); 4416 } 4417 size_t FBRegNum = 0; 4418 for (const SCEV *Reg : FB.BaseRegs) { 4419 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg); 4420 FBRegNum += (NumUses - UsedByIndices.count() + 1); 4421 } 4422 if (FARegNum != FBRegNum) 4423 return FARegNum < FBRegNum; 4424 4425 // If the new register numbers are the same, choose the Formula with 4426 // less Cost. 4427 Cost CostFA, CostFB; 4428 Regs.clear(); 4429 CostFA.RateFormula(TTI, FA, Regs, VisitedRegs, L, SE, DT, LU); 4430 Regs.clear(); 4431 CostFB.RateFormula(TTI, FB, Regs, VisitedRegs, L, SE, DT, LU); 4432 return CostFA.isLess(CostFB, TTI); 4433 }; 4434 4435 bool Any = false; 4436 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms; 4437 ++FIdx) { 4438 Formula &F = LU.Formulae[FIdx]; 4439 if (!F.ScaledReg) 4440 continue; 4441 auto P = BestFormulae.insert({{F.ScaledReg, F.Scale}, FIdx}); 4442 if (P.second) 4443 continue; 4444 4445 Formula &Best = LU.Formulae[P.first->second]; 4446 if (IsBetterThan(F, Best)) 4447 std::swap(F, Best); 4448 DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 4449 dbgs() << "\n" 4450 " in favor of formula "; 4451 Best.print(dbgs()); dbgs() << '\n'); 4452 #ifndef NDEBUG 4453 ChangedFormulae = true; 4454 #endif 4455 LU.DeleteFormula(F); 4456 --FIdx; 4457 --NumForms; 4458 Any = true; 4459 } 4460 if (Any) 4461 LU.RecomputeRegs(LUIdx, RegUses); 4462 4463 // Reset this to prepare for the next use. 4464 BestFormulae.clear(); 4465 } 4466 4467 DEBUG(if (ChangedFormulae) { 4468 dbgs() << "\n" 4469 "After filtering out undesirable candidates:\n"; 4470 print_uses(dbgs()); 4471 }); 4472 } 4473 4474 /// The function delete formulas with high registers number expectation. 4475 /// Assuming we don't know the value of each formula (already delete 4476 /// all inefficient), generate probability of not selecting for each 4477 /// register. 4478 /// For example, 4479 /// Use1: 4480 /// reg(a) + reg({0,+,1}) 4481 /// reg(a) + reg({-1,+,1}) + 1 4482 /// reg({a,+,1}) 4483 /// Use2: 4484 /// reg(b) + reg({0,+,1}) 4485 /// reg(b) + reg({-1,+,1}) + 1 4486 /// reg({b,+,1}) 4487 /// Use3: 4488 /// reg(c) + reg(b) + reg({0,+,1}) 4489 /// reg(c) + reg({b,+,1}) 4490 /// 4491 /// Probability of not selecting 4492 /// Use1 Use2 Use3 4493 /// reg(a) (1/3) * 1 * 1 4494 /// reg(b) 1 * (1/3) * (1/2) 4495 /// reg({0,+,1}) (2/3) * (2/3) * (1/2) 4496 /// reg({-1,+,1}) (2/3) * (2/3) * 1 4497 /// reg({a,+,1}) (2/3) * 1 * 1 4498 /// reg({b,+,1}) 1 * (2/3) * (2/3) 4499 /// reg(c) 1 * 1 * 0 4500 /// 4501 /// Now count registers number mathematical expectation for each formula: 4502 /// Note that for each use we exclude probability if not selecting for the use. 4503 /// For example for Use1 probability for reg(a) would be just 1 * 1 (excluding 4504 /// probabilty 1/3 of not selecting for Use1). 4505 /// Use1: 4506 /// reg(a) + reg({0,+,1}) 1 + 1/3 -- to be deleted 4507 /// reg(a) + reg({-1,+,1}) + 1 1 + 4/9 -- to be deleted 4508 /// reg({a,+,1}) 1 4509 /// Use2: 4510 /// reg(b) + reg({0,+,1}) 1/2 + 1/3 -- to be deleted 4511 /// reg(b) + reg({-1,+,1}) + 1 1/2 + 2/3 -- to be deleted 4512 /// reg({b,+,1}) 2/3 4513 /// Use3: 4514 /// reg(c) + reg(b) + reg({0,+,1}) 1 + 1/3 + 4/9 -- to be deleted 4515 /// reg(c) + reg({b,+,1}) 1 + 2/3 4516 void LSRInstance::NarrowSearchSpaceByDeletingCostlyFormulas() { 4517 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4518 return; 4519 // Ok, we have too many of formulae on our hands to conveniently handle. 4520 // Use a rough heuristic to thin out the list. 4521 4522 // Set of Regs wich will be 100% used in final solution. 4523 // Used in each formula of a solution (in example above this is reg(c)). 4524 // We can skip them in calculations. 4525 SmallPtrSet<const SCEV *, 4> UniqRegs; 4526 DEBUG(dbgs() << "The search space is too complex.\n"); 4527 4528 // Map each register to probability of not selecting 4529 DenseMap <const SCEV *, float> RegNumMap; 4530 for (const SCEV *Reg : RegUses) { 4531 if (UniqRegs.count(Reg)) 4532 continue; 4533 float PNotSel = 1; 4534 for (const LSRUse &LU : Uses) { 4535 if (!LU.Regs.count(Reg)) 4536 continue; 4537 float P = LU.getNotSelectedProbability(Reg); 4538 if (P != 0.0) 4539 PNotSel *= P; 4540 else 4541 UniqRegs.insert(Reg); 4542 } 4543 RegNumMap.insert(std::make_pair(Reg, PNotSel)); 4544 } 4545 4546 DEBUG(dbgs() << "Narrowing the search space by deleting costly formulas\n"); 4547 4548 // Delete formulas where registers number expectation is high. 4549 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4550 LSRUse &LU = Uses[LUIdx]; 4551 // If nothing to delete - continue. 4552 if (LU.Formulae.size() < 2) 4553 continue; 4554 // This is temporary solution to test performance. Float should be 4555 // replaced with round independent type (based on integers) to avoid 4556 // different results for different target builds. 4557 float FMinRegNum = LU.Formulae[0].getNumRegs(); 4558 float FMinARegNum = LU.Formulae[0].getNumRegs(); 4559 size_t MinIdx = 0; 4560 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4561 Formula &F = LU.Formulae[i]; 4562 float FRegNum = 0; 4563 float FARegNum = 0; 4564 for (const SCEV *BaseReg : F.BaseRegs) { 4565 if (UniqRegs.count(BaseReg)) 4566 continue; 4567 FRegNum += RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg); 4568 if (isa<SCEVAddRecExpr>(BaseReg)) 4569 FARegNum += 4570 RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg); 4571 } 4572 if (const SCEV *ScaledReg = F.ScaledReg) { 4573 if (!UniqRegs.count(ScaledReg)) { 4574 FRegNum += 4575 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg); 4576 if (isa<SCEVAddRecExpr>(ScaledReg)) 4577 FARegNum += 4578 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg); 4579 } 4580 } 4581 if (FMinRegNum > FRegNum || 4582 (FMinRegNum == FRegNum && FMinARegNum > FARegNum)) { 4583 FMinRegNum = FRegNum; 4584 FMinARegNum = FARegNum; 4585 MinIdx = i; 4586 } 4587 } 4588 DEBUG(dbgs() << " The formula "; LU.Formulae[MinIdx].print(dbgs()); 4589 dbgs() << " with min reg num " << FMinRegNum << '\n'); 4590 if (MinIdx != 0) 4591 std::swap(LU.Formulae[MinIdx], LU.Formulae[0]); 4592 while (LU.Formulae.size() != 1) { 4593 DEBUG(dbgs() << " Deleting "; LU.Formulae.back().print(dbgs()); 4594 dbgs() << '\n'); 4595 LU.Formulae.pop_back(); 4596 } 4597 LU.RecomputeRegs(LUIdx, RegUses); 4598 assert(LU.Formulae.size() == 1 && "Should be exactly 1 min regs formula"); 4599 Formula &F = LU.Formulae[0]; 4600 DEBUG(dbgs() << " Leaving only "; F.print(dbgs()); dbgs() << '\n'); 4601 // When we choose the formula, the regs become unique. 4602 UniqRegs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 4603 if (F.ScaledReg) 4604 UniqRegs.insert(F.ScaledReg); 4605 } 4606 DEBUG(dbgs() << "After pre-selection:\n"; 4607 print_uses(dbgs())); 4608 } 4609 4610 /// Pick a register which seems likely to be profitable, and then in any use 4611 /// which has any reference to that register, delete all formulae which do not 4612 /// reference that register. 4613 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() { 4614 // With all other options exhausted, loop until the system is simple 4615 // enough to handle. 4616 SmallPtrSet<const SCEV *, 4> Taken; 4617 while (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4618 // Ok, we have too many of formulae on our hands to conveniently handle. 4619 // Use a rough heuristic to thin out the list. 4620 DEBUG(dbgs() << "The search space is too complex.\n"); 4621 4622 // Pick the register which is used by the most LSRUses, which is likely 4623 // to be a good reuse register candidate. 4624 const SCEV *Best = nullptr; 4625 unsigned BestNum = 0; 4626 for (const SCEV *Reg : RegUses) { 4627 if (Taken.count(Reg)) 4628 continue; 4629 if (!Best) { 4630 Best = Reg; 4631 BestNum = RegUses.getUsedByIndices(Reg).count(); 4632 } else { 4633 unsigned Count = RegUses.getUsedByIndices(Reg).count(); 4634 if (Count > BestNum) { 4635 Best = Reg; 4636 BestNum = Count; 4637 } 4638 } 4639 } 4640 4641 DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best 4642 << " will yield profitable reuse.\n"); 4643 Taken.insert(Best); 4644 4645 // In any use with formulae which references this register, delete formulae 4646 // which don't reference it. 4647 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4648 LSRUse &LU = Uses[LUIdx]; 4649 if (!LU.Regs.count(Best)) continue; 4650 4651 bool Any = false; 4652 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4653 Formula &F = LU.Formulae[i]; 4654 if (!F.referencesReg(Best)) { 4655 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4656 LU.DeleteFormula(F); 4657 --e; 4658 --i; 4659 Any = true; 4660 assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?"); 4661 continue; 4662 } 4663 } 4664 4665 if (Any) 4666 LU.RecomputeRegs(LUIdx, RegUses); 4667 } 4668 4669 DEBUG(dbgs() << "After pre-selection:\n"; 4670 print_uses(dbgs())); 4671 } 4672 } 4673 4674 /// If there are an extraordinary number of formulae to choose from, use some 4675 /// rough heuristics to prune down the number of formulae. This keeps the main 4676 /// solver from taking an extraordinary amount of time in some worst-case 4677 /// scenarios. 4678 void LSRInstance::NarrowSearchSpaceUsingHeuristics() { 4679 NarrowSearchSpaceByDetectingSupersets(); 4680 NarrowSearchSpaceByCollapsingUnrolledCode(); 4681 NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 4682 if (FilterSameScaledReg) 4683 NarrowSearchSpaceByFilterFormulaWithSameScaledReg(); 4684 if (LSRExpNarrow) 4685 NarrowSearchSpaceByDeletingCostlyFormulas(); 4686 else 4687 NarrowSearchSpaceByPickingWinnerRegs(); 4688 } 4689 4690 /// This is the recursive solver. 4691 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 4692 Cost &SolutionCost, 4693 SmallVectorImpl<const Formula *> &Workspace, 4694 const Cost &CurCost, 4695 const SmallPtrSet<const SCEV *, 16> &CurRegs, 4696 DenseSet<const SCEV *> &VisitedRegs) const { 4697 // Some ideas: 4698 // - prune more: 4699 // - use more aggressive filtering 4700 // - sort the formula so that the most profitable solutions are found first 4701 // - sort the uses too 4702 // - search faster: 4703 // - don't compute a cost, and then compare. compare while computing a cost 4704 // and bail early. 4705 // - track register sets with SmallBitVector 4706 4707 const LSRUse &LU = Uses[Workspace.size()]; 4708 4709 // If this use references any register that's already a part of the 4710 // in-progress solution, consider it a requirement that a formula must 4711 // reference that register in order to be considered. This prunes out 4712 // unprofitable searching. 4713 SmallSetVector<const SCEV *, 4> ReqRegs; 4714 for (const SCEV *S : CurRegs) 4715 if (LU.Regs.count(S)) 4716 ReqRegs.insert(S); 4717 4718 SmallPtrSet<const SCEV *, 16> NewRegs; 4719 Cost NewCost; 4720 for (const Formula &F : LU.Formulae) { 4721 // Ignore formulae which may not be ideal in terms of register reuse of 4722 // ReqRegs. The formula should use all required registers before 4723 // introducing new ones. 4724 int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size()); 4725 for (const SCEV *Reg : ReqRegs) { 4726 if ((F.ScaledReg && F.ScaledReg == Reg) || 4727 is_contained(F.BaseRegs, Reg)) { 4728 --NumReqRegsToFind; 4729 if (NumReqRegsToFind == 0) 4730 break; 4731 } 4732 } 4733 if (NumReqRegsToFind != 0) { 4734 // If none of the formulae satisfied the required registers, then we could 4735 // clear ReqRegs and try again. Currently, we simply give up in this case. 4736 continue; 4737 } 4738 4739 // Evaluate the cost of the current formula. If it's already worse than 4740 // the current best, prune the search at that point. 4741 NewCost = CurCost; 4742 NewRegs = CurRegs; 4743 NewCost.RateFormula(TTI, F, NewRegs, VisitedRegs, L, SE, DT, LU); 4744 if (NewCost.isLess(SolutionCost, TTI)) { 4745 Workspace.push_back(&F); 4746 if (Workspace.size() != Uses.size()) { 4747 SolveRecurse(Solution, SolutionCost, Workspace, NewCost, 4748 NewRegs, VisitedRegs); 4749 if (F.getNumRegs() == 1 && Workspace.size() == 1) 4750 VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]); 4751 } else { 4752 DEBUG(dbgs() << "New best at "; NewCost.print(dbgs()); 4753 dbgs() << ".\n Regs:"; 4754 for (const SCEV *S : NewRegs) 4755 dbgs() << ' ' << *S; 4756 dbgs() << '\n'); 4757 4758 SolutionCost = NewCost; 4759 Solution = Workspace; 4760 } 4761 Workspace.pop_back(); 4762 } 4763 } 4764 } 4765 4766 /// Choose one formula from each use. Return the results in the given Solution 4767 /// vector. 4768 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const { 4769 SmallVector<const Formula *, 8> Workspace; 4770 Cost SolutionCost; 4771 SolutionCost.Lose(); 4772 Cost CurCost; 4773 SmallPtrSet<const SCEV *, 16> CurRegs; 4774 DenseSet<const SCEV *> VisitedRegs; 4775 Workspace.reserve(Uses.size()); 4776 4777 // SolveRecurse does all the work. 4778 SolveRecurse(Solution, SolutionCost, Workspace, CurCost, 4779 CurRegs, VisitedRegs); 4780 if (Solution.empty()) { 4781 DEBUG(dbgs() << "\nNo Satisfactory Solution\n"); 4782 return; 4783 } 4784 4785 // Ok, we've now made all our decisions. 4786 DEBUG(dbgs() << "\n" 4787 "The chosen solution requires "; SolutionCost.print(dbgs()); 4788 dbgs() << ":\n"; 4789 for (size_t i = 0, e = Uses.size(); i != e; ++i) { 4790 dbgs() << " "; 4791 Uses[i].print(dbgs()); 4792 dbgs() << "\n" 4793 " "; 4794 Solution[i]->print(dbgs()); 4795 dbgs() << '\n'; 4796 }); 4797 4798 assert(Solution.size() == Uses.size() && "Malformed solution!"); 4799 } 4800 4801 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as 4802 /// we can go while still being dominated by the input positions. This helps 4803 /// canonicalize the insert position, which encourages sharing. 4804 BasicBlock::iterator 4805 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP, 4806 const SmallVectorImpl<Instruction *> &Inputs) 4807 const { 4808 Instruction *Tentative = &*IP; 4809 while (true) { 4810 bool AllDominate = true; 4811 Instruction *BetterPos = nullptr; 4812 // Don't bother attempting to insert before a catchswitch, their basic block 4813 // cannot have other non-PHI instructions. 4814 if (isa<CatchSwitchInst>(Tentative)) 4815 return IP; 4816 4817 for (Instruction *Inst : Inputs) { 4818 if (Inst == Tentative || !DT.dominates(Inst, Tentative)) { 4819 AllDominate = false; 4820 break; 4821 } 4822 // Attempt to find an insert position in the middle of the block, 4823 // instead of at the end, so that it can be used for other expansions. 4824 if (Tentative->getParent() == Inst->getParent() && 4825 (!BetterPos || !DT.dominates(Inst, BetterPos))) 4826 BetterPos = &*std::next(BasicBlock::iterator(Inst)); 4827 } 4828 if (!AllDominate) 4829 break; 4830 if (BetterPos) 4831 IP = BetterPos->getIterator(); 4832 else 4833 IP = Tentative->getIterator(); 4834 4835 const Loop *IPLoop = LI.getLoopFor(IP->getParent()); 4836 unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0; 4837 4838 BasicBlock *IDom; 4839 for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) { 4840 if (!Rung) return IP; 4841 Rung = Rung->getIDom(); 4842 if (!Rung) return IP; 4843 IDom = Rung->getBlock(); 4844 4845 // Don't climb into a loop though. 4846 const Loop *IDomLoop = LI.getLoopFor(IDom); 4847 unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0; 4848 if (IDomDepth <= IPLoopDepth && 4849 (IDomDepth != IPLoopDepth || IDomLoop == IPLoop)) 4850 break; 4851 } 4852 4853 Tentative = IDom->getTerminator(); 4854 } 4855 4856 return IP; 4857 } 4858 4859 /// Determine an input position which will be dominated by the operands and 4860 /// which will dominate the result. 4861 BasicBlock::iterator 4862 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP, 4863 const LSRFixup &LF, 4864 const LSRUse &LU, 4865 SCEVExpander &Rewriter) const { 4866 // Collect some instructions which must be dominated by the 4867 // expanding replacement. These must be dominated by any operands that 4868 // will be required in the expansion. 4869 SmallVector<Instruction *, 4> Inputs; 4870 if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace)) 4871 Inputs.push_back(I); 4872 if (LU.Kind == LSRUse::ICmpZero) 4873 if (Instruction *I = 4874 dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1))) 4875 Inputs.push_back(I); 4876 if (LF.PostIncLoops.count(L)) { 4877 if (LF.isUseFullyOutsideLoop(L)) 4878 Inputs.push_back(L->getLoopLatch()->getTerminator()); 4879 else 4880 Inputs.push_back(IVIncInsertPos); 4881 } 4882 // The expansion must also be dominated by the increment positions of any 4883 // loops it for which it is using post-inc mode. 4884 for (const Loop *PIL : LF.PostIncLoops) { 4885 if (PIL == L) continue; 4886 4887 // Be dominated by the loop exit. 4888 SmallVector<BasicBlock *, 4> ExitingBlocks; 4889 PIL->getExitingBlocks(ExitingBlocks); 4890 if (!ExitingBlocks.empty()) { 4891 BasicBlock *BB = ExitingBlocks[0]; 4892 for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i) 4893 BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]); 4894 Inputs.push_back(BB->getTerminator()); 4895 } 4896 } 4897 4898 assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad() 4899 && !isa<DbgInfoIntrinsic>(LowestIP) && 4900 "Insertion point must be a normal instruction"); 4901 4902 // Then, climb up the immediate dominator tree as far as we can go while 4903 // still being dominated by the input positions. 4904 BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs); 4905 4906 // Don't insert instructions before PHI nodes. 4907 while (isa<PHINode>(IP)) ++IP; 4908 4909 // Ignore landingpad instructions. 4910 while (IP->isEHPad()) ++IP; 4911 4912 // Ignore debug intrinsics. 4913 while (isa<DbgInfoIntrinsic>(IP)) ++IP; 4914 4915 // Set IP below instructions recently inserted by SCEVExpander. This keeps the 4916 // IP consistent across expansions and allows the previously inserted 4917 // instructions to be reused by subsequent expansion. 4918 while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP) 4919 ++IP; 4920 4921 return IP; 4922 } 4923 4924 /// Emit instructions for the leading candidate expression for this LSRUse (this 4925 /// is called "expanding"). 4926 Value *LSRInstance::Expand(const LSRUse &LU, const LSRFixup &LF, 4927 const Formula &F, BasicBlock::iterator IP, 4928 SCEVExpander &Rewriter, 4929 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 4930 if (LU.RigidFormula) 4931 return LF.OperandValToReplace; 4932 4933 // Determine an input position which will be dominated by the operands and 4934 // which will dominate the result. 4935 IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter); 4936 Rewriter.setInsertPoint(&*IP); 4937 4938 // Inform the Rewriter if we have a post-increment use, so that it can 4939 // perform an advantageous expansion. 4940 Rewriter.setPostInc(LF.PostIncLoops); 4941 4942 // This is the type that the user actually needs. 4943 Type *OpTy = LF.OperandValToReplace->getType(); 4944 // This will be the type that we'll initially expand to. 4945 Type *Ty = F.getType(); 4946 if (!Ty) 4947 // No type known; just expand directly to the ultimate type. 4948 Ty = OpTy; 4949 else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy)) 4950 // Expand directly to the ultimate type if it's the right size. 4951 Ty = OpTy; 4952 // This is the type to do integer arithmetic in. 4953 Type *IntTy = SE.getEffectiveSCEVType(Ty); 4954 4955 // Build up a list of operands to add together to form the full base. 4956 SmallVector<const SCEV *, 8> Ops; 4957 4958 // Expand the BaseRegs portion. 4959 for (const SCEV *Reg : F.BaseRegs) { 4960 assert(!Reg->isZero() && "Zero allocated in a base register!"); 4961 4962 // If we're expanding for a post-inc user, make the post-inc adjustment. 4963 Reg = denormalizeForPostIncUse(Reg, LF.PostIncLoops, SE); 4964 Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr))); 4965 } 4966 4967 // Expand the ScaledReg portion. 4968 Value *ICmpScaledV = nullptr; 4969 if (F.Scale != 0) { 4970 const SCEV *ScaledS = F.ScaledReg; 4971 4972 // If we're expanding for a post-inc user, make the post-inc adjustment. 4973 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 4974 ScaledS = denormalizeForPostIncUse(ScaledS, Loops, SE); 4975 4976 if (LU.Kind == LSRUse::ICmpZero) { 4977 // Expand ScaleReg as if it was part of the base regs. 4978 if (F.Scale == 1) 4979 Ops.push_back( 4980 SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr))); 4981 else { 4982 // An interesting way of "folding" with an icmp is to use a negated 4983 // scale, which we'll implement by inserting it into the other operand 4984 // of the icmp. 4985 assert(F.Scale == -1 && 4986 "The only scale supported by ICmpZero uses is -1!"); 4987 ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr); 4988 } 4989 } else { 4990 // Otherwise just expand the scaled register and an explicit scale, 4991 // which is expected to be matched as part of the address. 4992 4993 // Flush the operand list to suppress SCEVExpander hoisting address modes. 4994 // Unless the addressing mode will not be folded. 4995 if (!Ops.empty() && LU.Kind == LSRUse::Address && 4996 isAMCompletelyFolded(TTI, LU, F)) { 4997 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), nullptr); 4998 Ops.clear(); 4999 Ops.push_back(SE.getUnknown(FullV)); 5000 } 5001 ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)); 5002 if (F.Scale != 1) 5003 ScaledS = 5004 SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale)); 5005 Ops.push_back(ScaledS); 5006 } 5007 } 5008 5009 // Expand the GV portion. 5010 if (F.BaseGV) { 5011 // Flush the operand list to suppress SCEVExpander hoisting. 5012 if (!Ops.empty()) { 5013 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 5014 Ops.clear(); 5015 Ops.push_back(SE.getUnknown(FullV)); 5016 } 5017 Ops.push_back(SE.getUnknown(F.BaseGV)); 5018 } 5019 5020 // Flush the operand list to suppress SCEVExpander hoisting of both folded and 5021 // unfolded offsets. LSR assumes they both live next to their uses. 5022 if (!Ops.empty()) { 5023 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 5024 Ops.clear(); 5025 Ops.push_back(SE.getUnknown(FullV)); 5026 } 5027 5028 // Expand the immediate portion. 5029 int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset; 5030 if (Offset != 0) { 5031 if (LU.Kind == LSRUse::ICmpZero) { 5032 // The other interesting way of "folding" with an ICmpZero is to use a 5033 // negated immediate. 5034 if (!ICmpScaledV) 5035 ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset); 5036 else { 5037 Ops.push_back(SE.getUnknown(ICmpScaledV)); 5038 ICmpScaledV = ConstantInt::get(IntTy, Offset); 5039 } 5040 } else { 5041 // Just add the immediate values. These again are expected to be matched 5042 // as part of the address. 5043 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset))); 5044 } 5045 } 5046 5047 // Expand the unfolded offset portion. 5048 int64_t UnfoldedOffset = F.UnfoldedOffset; 5049 if (UnfoldedOffset != 0) { 5050 // Just add the immediate values. 5051 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, 5052 UnfoldedOffset))); 5053 } 5054 5055 // Emit instructions summing all the operands. 5056 const SCEV *FullS = Ops.empty() ? 5057 SE.getConstant(IntTy, 0) : 5058 SE.getAddExpr(Ops); 5059 Value *FullV = Rewriter.expandCodeFor(FullS, Ty); 5060 5061 // We're done expanding now, so reset the rewriter. 5062 Rewriter.clearPostInc(); 5063 5064 // An ICmpZero Formula represents an ICmp which we're handling as a 5065 // comparison against zero. Now that we've expanded an expression for that 5066 // form, update the ICmp's other operand. 5067 if (LU.Kind == LSRUse::ICmpZero) { 5068 ICmpInst *CI = cast<ICmpInst>(LF.UserInst); 5069 DeadInsts.emplace_back(CI->getOperand(1)); 5070 assert(!F.BaseGV && "ICmp does not support folding a global value and " 5071 "a scale at the same time!"); 5072 if (F.Scale == -1) { 5073 if (ICmpScaledV->getType() != OpTy) { 5074 Instruction *Cast = 5075 CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false, 5076 OpTy, false), 5077 ICmpScaledV, OpTy, "tmp", CI); 5078 ICmpScaledV = Cast; 5079 } 5080 CI->setOperand(1, ICmpScaledV); 5081 } else { 5082 // A scale of 1 means that the scale has been expanded as part of the 5083 // base regs. 5084 assert((F.Scale == 0 || F.Scale == 1) && 5085 "ICmp does not support folding a global value and " 5086 "a scale at the same time!"); 5087 Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy), 5088 -(uint64_t)Offset); 5089 if (C->getType() != OpTy) 5090 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 5091 OpTy, false), 5092 C, OpTy); 5093 5094 CI->setOperand(1, C); 5095 } 5096 } 5097 5098 return FullV; 5099 } 5100 5101 /// Helper for Rewrite. PHI nodes are special because the use of their operands 5102 /// effectively happens in their predecessor blocks, so the expression may need 5103 /// to be expanded in multiple places. 5104 void LSRInstance::RewriteForPHI( 5105 PHINode *PN, const LSRUse &LU, const LSRFixup &LF, const Formula &F, 5106 SCEVExpander &Rewriter, SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5107 DenseMap<BasicBlock *, Value *> Inserted; 5108 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 5109 if (PN->getIncomingValue(i) == LF.OperandValToReplace) { 5110 BasicBlock *BB = PN->getIncomingBlock(i); 5111 5112 // If this is a critical edge, split the edge so that we do not insert 5113 // the code on all predecessor/successor paths. We do this unless this 5114 // is the canonical backedge for this loop, which complicates post-inc 5115 // users. 5116 if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 && 5117 !isa<IndirectBrInst>(BB->getTerminator()) && 5118 !isa<CatchSwitchInst>(BB->getTerminator())) { 5119 BasicBlock *Parent = PN->getParent(); 5120 Loop *PNLoop = LI.getLoopFor(Parent); 5121 if (!PNLoop || Parent != PNLoop->getHeader()) { 5122 // Split the critical edge. 5123 BasicBlock *NewBB = nullptr; 5124 if (!Parent->isLandingPad()) { 5125 NewBB = SplitCriticalEdge(BB, Parent, 5126 CriticalEdgeSplittingOptions(&DT, &LI) 5127 .setMergeIdenticalEdges() 5128 .setDontDeleteUselessPHIs()); 5129 } else { 5130 SmallVector<BasicBlock*, 2> NewBBs; 5131 SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI); 5132 NewBB = NewBBs[0]; 5133 } 5134 // If NewBB==NULL, then SplitCriticalEdge refused to split because all 5135 // phi predecessors are identical. The simple thing to do is skip 5136 // splitting in this case rather than complicate the API. 5137 if (NewBB) { 5138 // If PN is outside of the loop and BB is in the loop, we want to 5139 // move the block to be immediately before the PHI block, not 5140 // immediately after BB. 5141 if (L->contains(BB) && !L->contains(PN)) 5142 NewBB->moveBefore(PN->getParent()); 5143 5144 // Splitting the edge can reduce the number of PHI entries we have. 5145 e = PN->getNumIncomingValues(); 5146 BB = NewBB; 5147 i = PN->getBasicBlockIndex(BB); 5148 } 5149 } 5150 } 5151 5152 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair = 5153 Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr))); 5154 if (!Pair.second) 5155 PN->setIncomingValue(i, Pair.first->second); 5156 else { 5157 Value *FullV = Expand(LU, LF, F, BB->getTerminator()->getIterator(), 5158 Rewriter, DeadInsts); 5159 5160 // If this is reuse-by-noop-cast, insert the noop cast. 5161 Type *OpTy = LF.OperandValToReplace->getType(); 5162 if (FullV->getType() != OpTy) 5163 FullV = 5164 CastInst::Create(CastInst::getCastOpcode(FullV, false, 5165 OpTy, false), 5166 FullV, LF.OperandValToReplace->getType(), 5167 "tmp", BB->getTerminator()); 5168 5169 PN->setIncomingValue(i, FullV); 5170 Pair.first->second = FullV; 5171 } 5172 } 5173 } 5174 5175 /// Emit instructions for the leading candidate expression for this LSRUse (this 5176 /// is called "expanding"), and update the UserInst to reference the newly 5177 /// expanded value. 5178 void LSRInstance::Rewrite(const LSRUse &LU, const LSRFixup &LF, 5179 const Formula &F, SCEVExpander &Rewriter, 5180 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5181 // First, find an insertion point that dominates UserInst. For PHI nodes, 5182 // find the nearest block which dominates all the relevant uses. 5183 if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) { 5184 RewriteForPHI(PN, LU, LF, F, Rewriter, DeadInsts); 5185 } else { 5186 Value *FullV = 5187 Expand(LU, LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts); 5188 5189 // If this is reuse-by-noop-cast, insert the noop cast. 5190 Type *OpTy = LF.OperandValToReplace->getType(); 5191 if (FullV->getType() != OpTy) { 5192 Instruction *Cast = 5193 CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false), 5194 FullV, OpTy, "tmp", LF.UserInst); 5195 FullV = Cast; 5196 } 5197 5198 // Update the user. ICmpZero is handled specially here (for now) because 5199 // Expand may have updated one of the operands of the icmp already, and 5200 // its new value may happen to be equal to LF.OperandValToReplace, in 5201 // which case doing replaceUsesOfWith leads to replacing both operands 5202 // with the same value. TODO: Reorganize this. 5203 if (LU.Kind == LSRUse::ICmpZero) 5204 LF.UserInst->setOperand(0, FullV); 5205 else 5206 LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV); 5207 } 5208 5209 DeadInsts.emplace_back(LF.OperandValToReplace); 5210 } 5211 5212 /// Rewrite all the fixup locations with new values, following the chosen 5213 /// solution. 5214 void LSRInstance::ImplementSolution( 5215 const SmallVectorImpl<const Formula *> &Solution) { 5216 // Keep track of instructions we may have made dead, so that 5217 // we can remove them after we are done working. 5218 SmallVector<WeakTrackingVH, 16> DeadInsts; 5219 5220 SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(), 5221 "lsr"); 5222 #ifndef NDEBUG 5223 Rewriter.setDebugType(DEBUG_TYPE); 5224 #endif 5225 Rewriter.disableCanonicalMode(); 5226 Rewriter.enableLSRMode(); 5227 Rewriter.setIVIncInsertPos(L, IVIncInsertPos); 5228 5229 // Mark phi nodes that terminate chains so the expander tries to reuse them. 5230 for (const IVChain &Chain : IVChainVec) { 5231 if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst())) 5232 Rewriter.setChainedPhi(PN); 5233 } 5234 5235 // Expand the new value definitions and update the users. 5236 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) 5237 for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) { 5238 Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], Rewriter, DeadInsts); 5239 Changed = true; 5240 } 5241 5242 for (const IVChain &Chain : IVChainVec) { 5243 GenerateIVChain(Chain, Rewriter, DeadInsts); 5244 Changed = true; 5245 } 5246 // Clean up after ourselves. This must be done before deleting any 5247 // instructions. 5248 Rewriter.clear(); 5249 5250 Changed |= DeleteTriviallyDeadInstructions(DeadInsts); 5251 } 5252 5253 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, 5254 DominatorTree &DT, LoopInfo &LI, 5255 const TargetTransformInfo &TTI) 5256 : IU(IU), SE(SE), DT(DT), LI(LI), TTI(TTI), L(L) { 5257 // If LoopSimplify form is not available, stay out of trouble. 5258 if (!L->isLoopSimplifyForm()) 5259 return; 5260 5261 // If there's no interesting work to be done, bail early. 5262 if (IU.empty()) return; 5263 5264 // If there's too much analysis to be done, bail early. We won't be able to 5265 // model the problem anyway. 5266 unsigned NumUsers = 0; 5267 for (const IVStrideUse &U : IU) { 5268 if (++NumUsers > MaxIVUsers) { 5269 (void)U; 5270 DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U << "\n"); 5271 return; 5272 } 5273 // Bail out if we have a PHI on an EHPad that gets a value from a 5274 // CatchSwitchInst. Because the CatchSwitchInst cannot be split, there is 5275 // no good place to stick any instructions. 5276 if (auto *PN = dyn_cast<PHINode>(U.getUser())) { 5277 auto *FirstNonPHI = PN->getParent()->getFirstNonPHI(); 5278 if (isa<FuncletPadInst>(FirstNonPHI) || 5279 isa<CatchSwitchInst>(FirstNonPHI)) 5280 for (BasicBlock *PredBB : PN->blocks()) 5281 if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI())) 5282 return; 5283 } 5284 } 5285 5286 #ifndef NDEBUG 5287 // All dominating loops must have preheaders, or SCEVExpander may not be able 5288 // to materialize an AddRecExpr whose Start is an outer AddRecExpr. 5289 // 5290 // IVUsers analysis should only create users that are dominated by simple loop 5291 // headers. Since this loop should dominate all of its users, its user list 5292 // should be empty if this loop itself is not within a simple loop nest. 5293 for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader()); 5294 Rung; Rung = Rung->getIDom()) { 5295 BasicBlock *BB = Rung->getBlock(); 5296 const Loop *DomLoop = LI.getLoopFor(BB); 5297 if (DomLoop && DomLoop->getHeader() == BB) { 5298 assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest"); 5299 } 5300 } 5301 #endif // DEBUG 5302 5303 DEBUG(dbgs() << "\nLSR on loop "; 5304 L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false); 5305 dbgs() << ":\n"); 5306 5307 // First, perform some low-level loop optimizations. 5308 OptimizeShadowIV(); 5309 OptimizeLoopTermCond(); 5310 5311 // If loop preparation eliminates all interesting IV users, bail. 5312 if (IU.empty()) return; 5313 5314 // Skip nested loops until we can model them better with formulae. 5315 if (!L->empty()) { 5316 DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n"); 5317 return; 5318 } 5319 5320 // Start collecting data and preparing for the solver. 5321 CollectChains(); 5322 CollectInterestingTypesAndFactors(); 5323 CollectFixupsAndInitialFormulae(); 5324 CollectLoopInvariantFixupsAndFormulae(); 5325 5326 assert(!Uses.empty() && "IVUsers reported at least one use"); 5327 DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n"; 5328 print_uses(dbgs())); 5329 5330 // Now use the reuse data to generate a bunch of interesting ways 5331 // to formulate the values needed for the uses. 5332 GenerateAllReuseFormulae(); 5333 5334 FilterOutUndesirableDedicatedRegisters(); 5335 NarrowSearchSpaceUsingHeuristics(); 5336 5337 SmallVector<const Formula *, 8> Solution; 5338 Solve(Solution); 5339 5340 // Release memory that is no longer needed. 5341 Factors.clear(); 5342 Types.clear(); 5343 RegUses.clear(); 5344 5345 if (Solution.empty()) 5346 return; 5347 5348 #ifndef NDEBUG 5349 // Formulae should be legal. 5350 for (const LSRUse &LU : Uses) { 5351 for (const Formula &F : LU.Formulae) 5352 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 5353 F) && "Illegal formula generated!"); 5354 }; 5355 #endif 5356 5357 // Now that we've decided what we want, make it so. 5358 ImplementSolution(Solution); 5359 } 5360 5361 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 5362 void LSRInstance::print_factors_and_types(raw_ostream &OS) const { 5363 if (Factors.empty() && Types.empty()) return; 5364 5365 OS << "LSR has identified the following interesting factors and types: "; 5366 bool First = true; 5367 5368 for (int64_t Factor : Factors) { 5369 if (!First) OS << ", "; 5370 First = false; 5371 OS << '*' << Factor; 5372 } 5373 5374 for (Type *Ty : Types) { 5375 if (!First) OS << ", "; 5376 First = false; 5377 OS << '(' << *Ty << ')'; 5378 } 5379 OS << '\n'; 5380 } 5381 5382 void LSRInstance::print_fixups(raw_ostream &OS) const { 5383 OS << "LSR is examining the following fixup sites:\n"; 5384 for (const LSRUse &LU : Uses) 5385 for (const LSRFixup &LF : LU.Fixups) { 5386 dbgs() << " "; 5387 LF.print(OS); 5388 OS << '\n'; 5389 } 5390 } 5391 5392 void LSRInstance::print_uses(raw_ostream &OS) const { 5393 OS << "LSR is examining the following uses:\n"; 5394 for (const LSRUse &LU : Uses) { 5395 dbgs() << " "; 5396 LU.print(OS); 5397 OS << '\n'; 5398 for (const Formula &F : LU.Formulae) { 5399 OS << " "; 5400 F.print(OS); 5401 OS << '\n'; 5402 } 5403 } 5404 } 5405 5406 void LSRInstance::print(raw_ostream &OS) const { 5407 print_factors_and_types(OS); 5408 print_fixups(OS); 5409 print_uses(OS); 5410 } 5411 5412 LLVM_DUMP_METHOD void LSRInstance::dump() const { 5413 print(errs()); errs() << '\n'; 5414 } 5415 #endif 5416 5417 namespace { 5418 5419 class LoopStrengthReduce : public LoopPass { 5420 public: 5421 static char ID; // Pass ID, replacement for typeid 5422 5423 LoopStrengthReduce(); 5424 5425 private: 5426 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 5427 void getAnalysisUsage(AnalysisUsage &AU) const override; 5428 }; 5429 5430 } // end anonymous namespace 5431 5432 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) { 5433 initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry()); 5434 } 5435 5436 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const { 5437 // We split critical edges, so we change the CFG. However, we do update 5438 // many analyses if they are around. 5439 AU.addPreservedID(LoopSimplifyID); 5440 5441 AU.addRequired<LoopInfoWrapperPass>(); 5442 AU.addPreserved<LoopInfoWrapperPass>(); 5443 AU.addRequiredID(LoopSimplifyID); 5444 AU.addRequired<DominatorTreeWrapperPass>(); 5445 AU.addPreserved<DominatorTreeWrapperPass>(); 5446 AU.addRequired<ScalarEvolutionWrapperPass>(); 5447 AU.addPreserved<ScalarEvolutionWrapperPass>(); 5448 // Requiring LoopSimplify a second time here prevents IVUsers from running 5449 // twice, since LoopSimplify was invalidated by running ScalarEvolution. 5450 AU.addRequiredID(LoopSimplifyID); 5451 AU.addRequired<IVUsersWrapperPass>(); 5452 AU.addPreserved<IVUsersWrapperPass>(); 5453 AU.addRequired<TargetTransformInfoWrapperPass>(); 5454 } 5455 5456 static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE, 5457 DominatorTree &DT, LoopInfo &LI, 5458 const TargetTransformInfo &TTI) { 5459 bool Changed = false; 5460 5461 // Run the main LSR transformation. 5462 Changed |= LSRInstance(L, IU, SE, DT, LI, TTI).getChanged(); 5463 5464 // Remove any extra phis created by processing inner loops. 5465 Changed |= DeleteDeadPHIs(L->getHeader()); 5466 if (EnablePhiElim && L->isLoopSimplifyForm()) { 5467 SmallVector<WeakTrackingVH, 16> DeadInsts; 5468 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 5469 SCEVExpander Rewriter(SE, DL, "lsr"); 5470 #ifndef NDEBUG 5471 Rewriter.setDebugType(DEBUG_TYPE); 5472 #endif 5473 unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI); 5474 if (numFolded) { 5475 Changed = true; 5476 DeleteTriviallyDeadInstructions(DeadInsts); 5477 DeleteDeadPHIs(L->getHeader()); 5478 } 5479 } 5480 return Changed; 5481 } 5482 5483 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) { 5484 if (skipLoop(L)) 5485 return false; 5486 5487 auto &IU = getAnalysis<IVUsersWrapperPass>().getIU(); 5488 auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 5489 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 5490 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 5491 const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI( 5492 *L->getHeader()->getParent()); 5493 return ReduceLoopStrength(L, IU, SE, DT, LI, TTI); 5494 } 5495 5496 PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM, 5497 LoopStandardAnalysisResults &AR, 5498 LPMUpdater &) { 5499 if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE, 5500 AR.DT, AR.LI, AR.TTI)) 5501 return PreservedAnalyses::all(); 5502 5503 return getLoopPassPreservedAnalyses(); 5504 } 5505 5506 char LoopStrengthReduce::ID = 0; 5507 5508 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce", 5509 "Loop Strength Reduction", false, false) 5510 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 5511 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 5512 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 5513 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass) 5514 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 5515 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 5516 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce", 5517 "Loop Strength Reduction", false, false) 5518 5519 Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); } 5520