1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This transformation analyzes and transforms the induction variables (and
11 // computations derived from them) into forms suitable for efficient execution
12 // on the target.
13 //
14 // This pass performs a strength reduction on array references inside loops that
15 // have as one or more of their components the loop induction variable, it
16 // rewrites expressions to take advantage of scaled-index addressing modes
17 // available on the target, and it performs a variety of other optimizations
18 // related to loop induction variables.
19 //
20 // Terminology note: this code has a lot of handling for "post-increment" or
21 // "post-inc" users. This is not talking about post-increment addressing modes;
22 // it is instead talking about code like this:
23 //
24 //   %i = phi [ 0, %entry ], [ %i.next, %latch ]
25 //   ...
26 //   %i.next = add %i, 1
27 //   %c = icmp eq %i.next, %n
28 //
29 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
30 // it's useful to think about these as the same register, with some uses using
31 // the value of the register before the add and some using it after. In this
32 // example, the icmp is a post-increment user, since it uses %i.next, which is
33 // the value of the induction variable after the increment. The other common
34 // case of post-increment users is users outside the loop.
35 //
36 // TODO: More sophistication in the way Formulae are generated and filtered.
37 //
38 // TODO: Handle multiple loops at a time.
39 //
40 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead
41 //       of a GlobalValue?
42 //
43 // TODO: When truncation is free, truncate ICmp users' operands to make it a
44 //       smaller encoding (on x86 at least).
45 //
46 // TODO: When a negated register is used by an add (such as in a list of
47 //       multiple base registers, or as the increment expression in an addrec),
48 //       we may not actually need both reg and (-1 * reg) in registers; the
49 //       negation can be implemented by using a sub instead of an add. The
50 //       lack of support for taking this into consideration when making
51 //       register pressure decisions is partly worked around by the "Special"
52 //       use kind.
53 //
54 //===----------------------------------------------------------------------===//
55 
56 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h"
57 #include "llvm/ADT/APInt.h"
58 #include "llvm/ADT/DenseMap.h"
59 #include "llvm/ADT/DenseSet.h"
60 #include "llvm/ADT/Hashing.h"
61 #include "llvm/ADT/PointerIntPair.h"
62 #include "llvm/ADT/STLExtras.h"
63 #include "llvm/ADT/SetVector.h"
64 #include "llvm/ADT/SmallBitVector.h"
65 #include "llvm/ADT/SmallPtrSet.h"
66 #include "llvm/ADT/SmallSet.h"
67 #include "llvm/ADT/SmallVector.h"
68 #include "llvm/ADT/iterator_range.h"
69 #include "llvm/Analysis/IVUsers.h"
70 #include "llvm/Analysis/LoopAnalysisManager.h"
71 #include "llvm/Analysis/LoopInfo.h"
72 #include "llvm/Analysis/LoopPass.h"
73 #include "llvm/Analysis/ScalarEvolution.h"
74 #include "llvm/Analysis/ScalarEvolutionExpander.h"
75 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
76 #include "llvm/Analysis/ScalarEvolutionNormalization.h"
77 #include "llvm/Analysis/TargetTransformInfo.h"
78 #include "llvm/IR/BasicBlock.h"
79 #include "llvm/IR/Constant.h"
80 #include "llvm/IR/Constants.h"
81 #include "llvm/IR/DerivedTypes.h"
82 #include "llvm/IR/Dominators.h"
83 #include "llvm/IR/GlobalValue.h"
84 #include "llvm/IR/IRBuilder.h"
85 #include "llvm/IR/InstrTypes.h"
86 #include "llvm/IR/Instruction.h"
87 #include "llvm/IR/Instructions.h"
88 #include "llvm/IR/IntrinsicInst.h"
89 #include "llvm/IR/Intrinsics.h"
90 #include "llvm/IR/Module.h"
91 #include "llvm/IR/OperandTraits.h"
92 #include "llvm/IR/Operator.h"
93 #include "llvm/IR/PassManager.h"
94 #include "llvm/IR/Type.h"
95 #include "llvm/IR/Use.h"
96 #include "llvm/IR/User.h"
97 #include "llvm/IR/Value.h"
98 #include "llvm/IR/ValueHandle.h"
99 #include "llvm/Pass.h"
100 #include "llvm/Support/Casting.h"
101 #include "llvm/Support/CommandLine.h"
102 #include "llvm/Support/Compiler.h"
103 #include "llvm/Support/Debug.h"
104 #include "llvm/Support/ErrorHandling.h"
105 #include "llvm/Support/MathExtras.h"
106 #include "llvm/Support/raw_ostream.h"
107 #include "llvm/Transforms/Scalar.h"
108 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
109 #include "llvm/Transforms/Utils/Local.h"
110 #include <algorithm>
111 #include <cassert>
112 #include <cstddef>
113 #include <cstdint>
114 #include <cstdlib>
115 #include <iterator>
116 #include <limits>
117 #include <map>
118 #include <utility>
119 
120 using namespace llvm;
121 
122 #define DEBUG_TYPE "loop-reduce"
123 
124 /// MaxIVUsers is an arbitrary threshold that provides an early opportunitiy for
125 /// bail out. This threshold is far beyond the number of users that LSR can
126 /// conceivably solve, so it should not affect generated code, but catches the
127 /// worst cases before LSR burns too much compile time and stack space.
128 static const unsigned MaxIVUsers = 200;
129 
130 // Temporary flag to cleanup congruent phis after LSR phi expansion.
131 // It's currently disabled until we can determine whether it's truly useful or
132 // not. The flag should be removed after the v3.0 release.
133 // This is now needed for ivchains.
134 static cl::opt<bool> EnablePhiElim(
135   "enable-lsr-phielim", cl::Hidden, cl::init(true),
136   cl::desc("Enable LSR phi elimination"));
137 
138 // The flag adds instruction count to solutions cost comparision.
139 static cl::opt<bool> InsnsCost(
140   "lsr-insns-cost", cl::Hidden, cl::init(true),
141   cl::desc("Add instruction count to a LSR cost model"));
142 
143 // Flag to choose how to narrow complex lsr solution
144 static cl::opt<bool> LSRExpNarrow(
145   "lsr-exp-narrow", cl::Hidden, cl::init(false),
146   cl::desc("Narrow LSR complex solution using"
147            " expectation of registers number"));
148 
149 // Flag to narrow search space by filtering non-optimal formulae with
150 // the same ScaledReg and Scale.
151 static cl::opt<bool> FilterSameScaledReg(
152     "lsr-filter-same-scaled-reg", cl::Hidden, cl::init(true),
153     cl::desc("Narrow LSR search space by filtering non-optimal formulae"
154              " with the same ScaledReg and Scale"));
155 
156 #ifndef NDEBUG
157 // Stress test IV chain generation.
158 static cl::opt<bool> StressIVChain(
159   "stress-ivchain", cl::Hidden, cl::init(false),
160   cl::desc("Stress test LSR IV chains"));
161 #else
162 static bool StressIVChain = false;
163 #endif
164 
165 namespace {
166 
167 struct MemAccessTy {
168   /// Used in situations where the accessed memory type is unknown.
169   static const unsigned UnknownAddressSpace =
170       std::numeric_limits<unsigned>::max();
171 
172   Type *MemTy = nullptr;
173   unsigned AddrSpace = UnknownAddressSpace;
174 
175   MemAccessTy() = default;
176   MemAccessTy(Type *Ty, unsigned AS) : MemTy(Ty), AddrSpace(AS) {}
177 
178   bool operator==(MemAccessTy Other) const {
179     return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace;
180   }
181 
182   bool operator!=(MemAccessTy Other) const { return !(*this == Other); }
183 
184   static MemAccessTy getUnknown(LLVMContext &Ctx,
185                                 unsigned AS = UnknownAddressSpace) {
186     return MemAccessTy(Type::getVoidTy(Ctx), AS);
187   }
188 };
189 
190 /// This class holds data which is used to order reuse candidates.
191 class RegSortData {
192 public:
193   /// This represents the set of LSRUse indices which reference
194   /// a particular register.
195   SmallBitVector UsedByIndices;
196 
197   void print(raw_ostream &OS) const;
198   void dump() const;
199 };
200 
201 } // end anonymous namespace
202 
203 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
204 void RegSortData::print(raw_ostream &OS) const {
205   OS << "[NumUses=" << UsedByIndices.count() << ']';
206 }
207 
208 LLVM_DUMP_METHOD void RegSortData::dump() const {
209   print(errs()); errs() << '\n';
210 }
211 #endif
212 
213 namespace {
214 
215 /// Map register candidates to information about how they are used.
216 class RegUseTracker {
217   using RegUsesTy = DenseMap<const SCEV *, RegSortData>;
218 
219   RegUsesTy RegUsesMap;
220   SmallVector<const SCEV *, 16> RegSequence;
221 
222 public:
223   void countRegister(const SCEV *Reg, size_t LUIdx);
224   void dropRegister(const SCEV *Reg, size_t LUIdx);
225   void swapAndDropUse(size_t LUIdx, size_t LastLUIdx);
226 
227   bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
228 
229   const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
230 
231   void clear();
232 
233   using iterator = SmallVectorImpl<const SCEV *>::iterator;
234   using const_iterator = SmallVectorImpl<const SCEV *>::const_iterator;
235 
236   iterator begin() { return RegSequence.begin(); }
237   iterator end()   { return RegSequence.end(); }
238   const_iterator begin() const { return RegSequence.begin(); }
239   const_iterator end() const   { return RegSequence.end(); }
240 };
241 
242 } // end anonymous namespace
243 
244 void
245 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) {
246   std::pair<RegUsesTy::iterator, bool> Pair =
247     RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
248   RegSortData &RSD = Pair.first->second;
249   if (Pair.second)
250     RegSequence.push_back(Reg);
251   RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
252   RSD.UsedByIndices.set(LUIdx);
253 }
254 
255 void
256 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) {
257   RegUsesTy::iterator It = RegUsesMap.find(Reg);
258   assert(It != RegUsesMap.end());
259   RegSortData &RSD = It->second;
260   assert(RSD.UsedByIndices.size() > LUIdx);
261   RSD.UsedByIndices.reset(LUIdx);
262 }
263 
264 void
265 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) {
266   assert(LUIdx <= LastLUIdx);
267 
268   // Update RegUses. The data structure is not optimized for this purpose;
269   // we must iterate through it and update each of the bit vectors.
270   for (auto &Pair : RegUsesMap) {
271     SmallBitVector &UsedByIndices = Pair.second.UsedByIndices;
272     if (LUIdx < UsedByIndices.size())
273       UsedByIndices[LUIdx] =
274         LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false;
275     UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx));
276   }
277 }
278 
279 bool
280 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
281   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
282   if (I == RegUsesMap.end())
283     return false;
284   const SmallBitVector &UsedByIndices = I->second.UsedByIndices;
285   int i = UsedByIndices.find_first();
286   if (i == -1) return false;
287   if ((size_t)i != LUIdx) return true;
288   return UsedByIndices.find_next(i) != -1;
289 }
290 
291 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
292   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
293   assert(I != RegUsesMap.end() && "Unknown register!");
294   return I->second.UsedByIndices;
295 }
296 
297 void RegUseTracker::clear() {
298   RegUsesMap.clear();
299   RegSequence.clear();
300 }
301 
302 namespace {
303 
304 /// This class holds information that describes a formula for computing
305 /// satisfying a use. It may include broken-out immediates and scaled registers.
306 struct Formula {
307   /// Global base address used for complex addressing.
308   GlobalValue *BaseGV = nullptr;
309 
310   /// Base offset for complex addressing.
311   int64_t BaseOffset = 0;
312 
313   /// Whether any complex addressing has a base register.
314   bool HasBaseReg = false;
315 
316   /// The scale of any complex addressing.
317   int64_t Scale = 0;
318 
319   /// The list of "base" registers for this use. When this is non-empty. The
320   /// canonical representation of a formula is
321   /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and
322   /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty().
323   /// 3. The reg containing recurrent expr related with currect loop in the
324   /// formula should be put in the ScaledReg.
325   /// #1 enforces that the scaled register is always used when at least two
326   /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2.
327   /// #2 enforces that 1 * reg is reg.
328   /// #3 ensures invariant regs with respect to current loop can be combined
329   /// together in LSR codegen.
330   /// This invariant can be temporarly broken while building a formula.
331   /// However, every formula inserted into the LSRInstance must be in canonical
332   /// form.
333   SmallVector<const SCEV *, 4> BaseRegs;
334 
335   /// The 'scaled' register for this use. This should be non-null when Scale is
336   /// not zero.
337   const SCEV *ScaledReg = nullptr;
338 
339   /// An additional constant offset which added near the use. This requires a
340   /// temporary register, but the offset itself can live in an add immediate
341   /// field rather than a register.
342   int64_t UnfoldedOffset = 0;
343 
344   Formula() = default;
345 
346   void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE);
347 
348   bool isCanonical(const Loop &L) const;
349 
350   void canonicalize(const Loop &L);
351 
352   bool unscale();
353 
354   bool hasZeroEnd() const;
355 
356   size_t getNumRegs() const;
357   Type *getType() const;
358 
359   void deleteBaseReg(const SCEV *&S);
360 
361   bool referencesReg(const SCEV *S) const;
362   bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
363                                   const RegUseTracker &RegUses) const;
364 
365   void print(raw_ostream &OS) const;
366   void dump() const;
367 };
368 
369 } // end anonymous namespace
370 
371 /// Recursion helper for initialMatch.
372 static void DoInitialMatch(const SCEV *S, Loop *L,
373                            SmallVectorImpl<const SCEV *> &Good,
374                            SmallVectorImpl<const SCEV *> &Bad,
375                            ScalarEvolution &SE) {
376   // Collect expressions which properly dominate the loop header.
377   if (SE.properlyDominates(S, L->getHeader())) {
378     Good.push_back(S);
379     return;
380   }
381 
382   // Look at add operands.
383   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
384     for (const SCEV *S : Add->operands())
385       DoInitialMatch(S, L, Good, Bad, SE);
386     return;
387   }
388 
389   // Look at addrec operands.
390   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
391     if (!AR->getStart()->isZero() && AR->isAffine()) {
392       DoInitialMatch(AR->getStart(), L, Good, Bad, SE);
393       DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
394                                       AR->getStepRecurrence(SE),
395                                       // FIXME: AR->getNoWrapFlags()
396                                       AR->getLoop(), SCEV::FlagAnyWrap),
397                      L, Good, Bad, SE);
398       return;
399     }
400 
401   // Handle a multiplication by -1 (negation) if it didn't fold.
402   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
403     if (Mul->getOperand(0)->isAllOnesValue()) {
404       SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end());
405       const SCEV *NewMul = SE.getMulExpr(Ops);
406 
407       SmallVector<const SCEV *, 4> MyGood;
408       SmallVector<const SCEV *, 4> MyBad;
409       DoInitialMatch(NewMul, L, MyGood, MyBad, SE);
410       const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
411         SE.getEffectiveSCEVType(NewMul->getType())));
412       for (const SCEV *S : MyGood)
413         Good.push_back(SE.getMulExpr(NegOne, S));
414       for (const SCEV *S : MyBad)
415         Bad.push_back(SE.getMulExpr(NegOne, S));
416       return;
417     }
418 
419   // Ok, we can't do anything interesting. Just stuff the whole thing into a
420   // register and hope for the best.
421   Bad.push_back(S);
422 }
423 
424 /// Incorporate loop-variant parts of S into this Formula, attempting to keep
425 /// all loop-invariant and loop-computable values in a single base register.
426 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) {
427   SmallVector<const SCEV *, 4> Good;
428   SmallVector<const SCEV *, 4> Bad;
429   DoInitialMatch(S, L, Good, Bad, SE);
430   if (!Good.empty()) {
431     const SCEV *Sum = SE.getAddExpr(Good);
432     if (!Sum->isZero())
433       BaseRegs.push_back(Sum);
434     HasBaseReg = true;
435   }
436   if (!Bad.empty()) {
437     const SCEV *Sum = SE.getAddExpr(Bad);
438     if (!Sum->isZero())
439       BaseRegs.push_back(Sum);
440     HasBaseReg = true;
441   }
442   canonicalize(*L);
443 }
444 
445 /// \brief Check whether or not this formula satisfies the canonical
446 /// representation.
447 /// \see Formula::BaseRegs.
448 bool Formula::isCanonical(const Loop &L) const {
449   if (!ScaledReg)
450     return BaseRegs.size() <= 1;
451 
452   if (Scale != 1)
453     return true;
454 
455   if (Scale == 1 && BaseRegs.empty())
456     return false;
457 
458   const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg);
459   if (SAR && SAR->getLoop() == &L)
460     return true;
461 
462   // If ScaledReg is not a recurrent expr, or it is but its loop is not current
463   // loop, meanwhile BaseRegs contains a recurrent expr reg related with current
464   // loop, we want to swap the reg in BaseRegs with ScaledReg.
465   auto I =
466       find_if(make_range(BaseRegs.begin(), BaseRegs.end()), [&](const SCEV *S) {
467         return isa<const SCEVAddRecExpr>(S) &&
468                (cast<SCEVAddRecExpr>(S)->getLoop() == &L);
469       });
470   return I == BaseRegs.end();
471 }
472 
473 /// \brief Helper method to morph a formula into its canonical representation.
474 /// \see Formula::BaseRegs.
475 /// Every formula having more than one base register, must use the ScaledReg
476 /// field. Otherwise, we would have to do special cases everywhere in LSR
477 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ...
478 /// On the other hand, 1*reg should be canonicalized into reg.
479 void Formula::canonicalize(const Loop &L) {
480   if (isCanonical(L))
481     return;
482   // So far we did not need this case. This is easy to implement but it is
483   // useless to maintain dead code. Beside it could hurt compile time.
484   assert(!BaseRegs.empty() && "1*reg => reg, should not be needed.");
485 
486   // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg.
487   if (!ScaledReg) {
488     ScaledReg = BaseRegs.back();
489     BaseRegs.pop_back();
490     Scale = 1;
491   }
492 
493   // If ScaledReg is an invariant with respect to L, find the reg from
494   // BaseRegs containing the recurrent expr related with Loop L. Swap the
495   // reg with ScaledReg.
496   const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg);
497   if (!SAR || SAR->getLoop() != &L) {
498     auto I = find_if(make_range(BaseRegs.begin(), BaseRegs.end()),
499                      [&](const SCEV *S) {
500                        return isa<const SCEVAddRecExpr>(S) &&
501                               (cast<SCEVAddRecExpr>(S)->getLoop() == &L);
502                      });
503     if (I != BaseRegs.end())
504       std::swap(ScaledReg, *I);
505   }
506 }
507 
508 /// \brief Get rid of the scale in the formula.
509 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2.
510 /// \return true if it was possible to get rid of the scale, false otherwise.
511 /// \note After this operation the formula may not be in the canonical form.
512 bool Formula::unscale() {
513   if (Scale != 1)
514     return false;
515   Scale = 0;
516   BaseRegs.push_back(ScaledReg);
517   ScaledReg = nullptr;
518   return true;
519 }
520 
521 bool Formula::hasZeroEnd() const {
522   if (UnfoldedOffset || BaseOffset)
523     return false;
524   if (BaseRegs.size() != 1 || ScaledReg)
525     return false;
526   return true;
527 }
528 
529 /// Return the total number of register operands used by this formula. This does
530 /// not include register uses implied by non-constant addrec strides.
531 size_t Formula::getNumRegs() const {
532   return !!ScaledReg + BaseRegs.size();
533 }
534 
535 /// Return the type of this formula, if it has one, or null otherwise. This type
536 /// is meaningless except for the bit size.
537 Type *Formula::getType() const {
538   return !BaseRegs.empty() ? BaseRegs.front()->getType() :
539          ScaledReg ? ScaledReg->getType() :
540          BaseGV ? BaseGV->getType() :
541          nullptr;
542 }
543 
544 /// Delete the given base reg from the BaseRegs list.
545 void Formula::deleteBaseReg(const SCEV *&S) {
546   if (&S != &BaseRegs.back())
547     std::swap(S, BaseRegs.back());
548   BaseRegs.pop_back();
549 }
550 
551 /// Test if this formula references the given register.
552 bool Formula::referencesReg(const SCEV *S) const {
553   return S == ScaledReg || is_contained(BaseRegs, S);
554 }
555 
556 /// Test whether this formula uses registers which are used by uses other than
557 /// the use with the given index.
558 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
559                                          const RegUseTracker &RegUses) const {
560   if (ScaledReg)
561     if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
562       return true;
563   for (const SCEV *BaseReg : BaseRegs)
564     if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx))
565       return true;
566   return false;
567 }
568 
569 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
570 void Formula::print(raw_ostream &OS) const {
571   bool First = true;
572   if (BaseGV) {
573     if (!First) OS << " + "; else First = false;
574     BaseGV->printAsOperand(OS, /*PrintType=*/false);
575   }
576   if (BaseOffset != 0) {
577     if (!First) OS << " + "; else First = false;
578     OS << BaseOffset;
579   }
580   for (const SCEV *BaseReg : BaseRegs) {
581     if (!First) OS << " + "; else First = false;
582     OS << "reg(" << *BaseReg << ')';
583   }
584   if (HasBaseReg && BaseRegs.empty()) {
585     if (!First) OS << " + "; else First = false;
586     OS << "**error: HasBaseReg**";
587   } else if (!HasBaseReg && !BaseRegs.empty()) {
588     if (!First) OS << " + "; else First = false;
589     OS << "**error: !HasBaseReg**";
590   }
591   if (Scale != 0) {
592     if (!First) OS << " + "; else First = false;
593     OS << Scale << "*reg(";
594     if (ScaledReg)
595       OS << *ScaledReg;
596     else
597       OS << "<unknown>";
598     OS << ')';
599   }
600   if (UnfoldedOffset != 0) {
601     if (!First) OS << " + ";
602     OS << "imm(" << UnfoldedOffset << ')';
603   }
604 }
605 
606 LLVM_DUMP_METHOD void Formula::dump() const {
607   print(errs()); errs() << '\n';
608 }
609 #endif
610 
611 /// Return true if the given addrec can be sign-extended without changing its
612 /// value.
613 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
614   Type *WideTy =
615     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
616   return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
617 }
618 
619 /// Return true if the given add can be sign-extended without changing its
620 /// value.
621 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
622   Type *WideTy =
623     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
624   return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
625 }
626 
627 /// Return true if the given mul can be sign-extended without changing its
628 /// value.
629 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) {
630   Type *WideTy =
631     IntegerType::get(SE.getContext(),
632                      SE.getTypeSizeInBits(M->getType()) * M->getNumOperands());
633   return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy));
634 }
635 
636 /// Return an expression for LHS /s RHS, if it can be determined and if the
637 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits
638 /// is true, expressions like (X * Y) /s Y are simplified to Y, ignoring that
639 /// the multiplication may overflow, which is useful when the result will be
640 /// used in a context where the most significant bits are ignored.
641 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
642                                 ScalarEvolution &SE,
643                                 bool IgnoreSignificantBits = false) {
644   // Handle the trivial case, which works for any SCEV type.
645   if (LHS == RHS)
646     return SE.getConstant(LHS->getType(), 1);
647 
648   // Handle a few RHS special cases.
649   const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
650   if (RC) {
651     const APInt &RA = RC->getAPInt();
652     // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
653     // some folding.
654     if (RA.isAllOnesValue())
655       return SE.getMulExpr(LHS, RC);
656     // Handle x /s 1 as x.
657     if (RA == 1)
658       return LHS;
659   }
660 
661   // Check for a division of a constant by a constant.
662   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
663     if (!RC)
664       return nullptr;
665     const APInt &LA = C->getAPInt();
666     const APInt &RA = RC->getAPInt();
667     if (LA.srem(RA) != 0)
668       return nullptr;
669     return SE.getConstant(LA.sdiv(RA));
670   }
671 
672   // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
673   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
674     if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) {
675       const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
676                                       IgnoreSignificantBits);
677       if (!Step) return nullptr;
678       const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
679                                        IgnoreSignificantBits);
680       if (!Start) return nullptr;
681       // FlagNW is independent of the start value, step direction, and is
682       // preserved with smaller magnitude steps.
683       // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
684       return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap);
685     }
686     return nullptr;
687   }
688 
689   // Distribute the sdiv over add operands, if the add doesn't overflow.
690   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
691     if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
692       SmallVector<const SCEV *, 8> Ops;
693       for (const SCEV *S : Add->operands()) {
694         const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits);
695         if (!Op) return nullptr;
696         Ops.push_back(Op);
697       }
698       return SE.getAddExpr(Ops);
699     }
700     return nullptr;
701   }
702 
703   // Check for a multiply operand that we can pull RHS out of.
704   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) {
705     if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
706       SmallVector<const SCEV *, 4> Ops;
707       bool Found = false;
708       for (const SCEV *S : Mul->operands()) {
709         if (!Found)
710           if (const SCEV *Q = getExactSDiv(S, RHS, SE,
711                                            IgnoreSignificantBits)) {
712             S = Q;
713             Found = true;
714           }
715         Ops.push_back(S);
716       }
717       return Found ? SE.getMulExpr(Ops) : nullptr;
718     }
719     return nullptr;
720   }
721 
722   // Otherwise we don't know.
723   return nullptr;
724 }
725 
726 /// If S involves the addition of a constant integer value, return that integer
727 /// value, and mutate S to point to a new SCEV with that value excluded.
728 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
729   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
730     if (C->getAPInt().getMinSignedBits() <= 64) {
731       S = SE.getConstant(C->getType(), 0);
732       return C->getValue()->getSExtValue();
733     }
734   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
735     SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
736     int64_t Result = ExtractImmediate(NewOps.front(), SE);
737     if (Result != 0)
738       S = SE.getAddExpr(NewOps);
739     return Result;
740   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
741     SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
742     int64_t Result = ExtractImmediate(NewOps.front(), SE);
743     if (Result != 0)
744       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
745                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
746                            SCEV::FlagAnyWrap);
747     return Result;
748   }
749   return 0;
750 }
751 
752 /// If S involves the addition of a GlobalValue address, return that symbol, and
753 /// mutate S to point to a new SCEV with that value excluded.
754 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
755   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
756     if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
757       S = SE.getConstant(GV->getType(), 0);
758       return GV;
759     }
760   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
761     SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
762     GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
763     if (Result)
764       S = SE.getAddExpr(NewOps);
765     return Result;
766   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
767     SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
768     GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
769     if (Result)
770       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
771                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
772                            SCEV::FlagAnyWrap);
773     return Result;
774   }
775   return nullptr;
776 }
777 
778 /// Returns true if the specified instruction is using the specified value as an
779 /// address.
780 static bool isAddressUse(const TargetTransformInfo &TTI,
781                          Instruction *Inst, Value *OperandVal) {
782   bool isAddress = isa<LoadInst>(Inst);
783   if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
784     if (SI->getPointerOperand() == OperandVal)
785       isAddress = true;
786   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
787     // Addressing modes can also be folded into prefetches and a variety
788     // of intrinsics.
789     switch (II->getIntrinsicID()) {
790     case Intrinsic::memset:
791     case Intrinsic::prefetch:
792       if (II->getArgOperand(0) == OperandVal)
793         isAddress = true;
794       break;
795     case Intrinsic::memmove:
796     case Intrinsic::memcpy:
797       if (II->getArgOperand(0) == OperandVal ||
798           II->getArgOperand(1) == OperandVal)
799         isAddress = true;
800       break;
801     default: {
802       MemIntrinsicInfo IntrInfo;
803       if (TTI.getTgtMemIntrinsic(II, IntrInfo)) {
804         if (IntrInfo.PtrVal == OperandVal)
805           isAddress = true;
806       }
807     }
808     }
809   } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
810     if (RMW->getPointerOperand() == OperandVal)
811       isAddress = true;
812   } else if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
813     if (CmpX->getPointerOperand() == OperandVal)
814       isAddress = true;
815   }
816   return isAddress;
817 }
818 
819 /// Return the type of the memory being accessed.
820 static MemAccessTy getAccessType(const TargetTransformInfo &TTI,
821                                  Instruction *Inst) {
822   MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace);
823   if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
824     AccessTy.MemTy = SI->getOperand(0)->getType();
825     AccessTy.AddrSpace = SI->getPointerAddressSpace();
826   } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
827     AccessTy.AddrSpace = LI->getPointerAddressSpace();
828   } else if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
829     AccessTy.AddrSpace = RMW->getPointerAddressSpace();
830   } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
831     AccessTy.AddrSpace = CmpX->getPointerAddressSpace();
832   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
833     switch (II->getIntrinsicID()) {
834     case Intrinsic::prefetch:
835       AccessTy.AddrSpace = II->getArgOperand(0)->getType()->getPointerAddressSpace();
836       break;
837     default: {
838       MemIntrinsicInfo IntrInfo;
839       if (TTI.getTgtMemIntrinsic(II, IntrInfo) && IntrInfo.PtrVal) {
840         AccessTy.AddrSpace
841           = IntrInfo.PtrVal->getType()->getPointerAddressSpace();
842       }
843 
844       break;
845     }
846     }
847   }
848 
849   // All pointers have the same requirements, so canonicalize them to an
850   // arbitrary pointer type to minimize variation.
851   if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy))
852     AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
853                                       PTy->getAddressSpace());
854 
855   return AccessTy;
856 }
857 
858 /// Return true if this AddRec is already a phi in its loop.
859 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
860   for (PHINode &PN : AR->getLoop()->getHeader()->phis()) {
861     if (SE.isSCEVable(PN.getType()) &&
862         (SE.getEffectiveSCEVType(PN.getType()) ==
863          SE.getEffectiveSCEVType(AR->getType())) &&
864         SE.getSCEV(&PN) == AR)
865       return true;
866   }
867   return false;
868 }
869 
870 /// Check if expanding this expression is likely to incur significant cost. This
871 /// is tricky because SCEV doesn't track which expressions are actually computed
872 /// by the current IR.
873 ///
874 /// We currently allow expansion of IV increments that involve adds,
875 /// multiplication by constants, and AddRecs from existing phis.
876 ///
877 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an
878 /// obvious multiple of the UDivExpr.
879 static bool isHighCostExpansion(const SCEV *S,
880                                 SmallPtrSetImpl<const SCEV*> &Processed,
881                                 ScalarEvolution &SE) {
882   // Zero/One operand expressions
883   switch (S->getSCEVType()) {
884   case scUnknown:
885   case scConstant:
886     return false;
887   case scTruncate:
888     return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(),
889                                Processed, SE);
890   case scZeroExtend:
891     return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(),
892                                Processed, SE);
893   case scSignExtend:
894     return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(),
895                                Processed, SE);
896   }
897 
898   if (!Processed.insert(S).second)
899     return false;
900 
901   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
902     for (const SCEV *S : Add->operands()) {
903       if (isHighCostExpansion(S, Processed, SE))
904         return true;
905     }
906     return false;
907   }
908 
909   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
910     if (Mul->getNumOperands() == 2) {
911       // Multiplication by a constant is ok
912       if (isa<SCEVConstant>(Mul->getOperand(0)))
913         return isHighCostExpansion(Mul->getOperand(1), Processed, SE);
914 
915       // If we have the value of one operand, check if an existing
916       // multiplication already generates this expression.
917       if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) {
918         Value *UVal = U->getValue();
919         for (User *UR : UVal->users()) {
920           // If U is a constant, it may be used by a ConstantExpr.
921           Instruction *UI = dyn_cast<Instruction>(UR);
922           if (UI && UI->getOpcode() == Instruction::Mul &&
923               SE.isSCEVable(UI->getType())) {
924             return SE.getSCEV(UI) == Mul;
925           }
926         }
927       }
928     }
929   }
930 
931   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
932     if (isExistingPhi(AR, SE))
933       return false;
934   }
935 
936   // Fow now, consider any other type of expression (div/mul/min/max) high cost.
937   return true;
938 }
939 
940 /// If any of the instructions in the specified set are trivially dead, delete
941 /// them and see if this makes any of their operands subsequently dead.
942 static bool
943 DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
944   bool Changed = false;
945 
946   while (!DeadInsts.empty()) {
947     Value *V = DeadInsts.pop_back_val();
948     Instruction *I = dyn_cast_or_null<Instruction>(V);
949 
950     if (!I || !isInstructionTriviallyDead(I))
951       continue;
952 
953     for (Use &O : I->operands())
954       if (Instruction *U = dyn_cast<Instruction>(O)) {
955         O = nullptr;
956         if (U->use_empty())
957           DeadInsts.emplace_back(U);
958       }
959 
960     I->eraseFromParent();
961     Changed = true;
962   }
963 
964   return Changed;
965 }
966 
967 namespace {
968 
969 class LSRUse;
970 
971 } // end anonymous namespace
972 
973 /// \brief Check if the addressing mode defined by \p F is completely
974 /// folded in \p LU at isel time.
975 /// This includes address-mode folding and special icmp tricks.
976 /// This function returns true if \p LU can accommodate what \p F
977 /// defines and up to 1 base + 1 scaled + offset.
978 /// In other words, if \p F has several base registers, this function may
979 /// still return true. Therefore, users still need to account for
980 /// additional base registers and/or unfolded offsets to derive an
981 /// accurate cost model.
982 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
983                                  const LSRUse &LU, const Formula &F);
984 
985 // Get the cost of the scaling factor used in F for LU.
986 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
987                                      const LSRUse &LU, const Formula &F,
988                                      const Loop &L);
989 
990 namespace {
991 
992 /// This class is used to measure and compare candidate formulae.
993 class Cost {
994   TargetTransformInfo::LSRCost C;
995 
996 public:
997   Cost() {
998     C.Insns = 0;
999     C.NumRegs = 0;
1000     C.AddRecCost = 0;
1001     C.NumIVMuls = 0;
1002     C.NumBaseAdds = 0;
1003     C.ImmCost = 0;
1004     C.SetupCost = 0;
1005     C.ScaleCost = 0;
1006   }
1007 
1008   bool isLess(Cost &Other, const TargetTransformInfo &TTI);
1009 
1010   void Lose();
1011 
1012 #ifndef NDEBUG
1013   // Once any of the metrics loses, they must all remain losers.
1014   bool isValid() {
1015     return ((C.Insns | C.NumRegs | C.AddRecCost | C.NumIVMuls | C.NumBaseAdds
1016              | C.ImmCost | C.SetupCost | C.ScaleCost) != ~0u)
1017       || ((C.Insns & C.NumRegs & C.AddRecCost & C.NumIVMuls & C.NumBaseAdds
1018            & C.ImmCost & C.SetupCost & C.ScaleCost) == ~0u);
1019   }
1020 #endif
1021 
1022   bool isLoser() {
1023     assert(isValid() && "invalid cost");
1024     return C.NumRegs == ~0u;
1025   }
1026 
1027   void RateFormula(const TargetTransformInfo &TTI,
1028                    const Formula &F,
1029                    SmallPtrSetImpl<const SCEV *> &Regs,
1030                    const DenseSet<const SCEV *> &VisitedRegs,
1031                    const Loop *L,
1032                    ScalarEvolution &SE, DominatorTree &DT,
1033                    const LSRUse &LU,
1034                    SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr);
1035 
1036   void print(raw_ostream &OS) const;
1037   void dump() const;
1038 
1039 private:
1040   void RateRegister(const SCEV *Reg,
1041                     SmallPtrSetImpl<const SCEV *> &Regs,
1042                     const Loop *L,
1043                     ScalarEvolution &SE, DominatorTree &DT);
1044   void RatePrimaryRegister(const SCEV *Reg,
1045                            SmallPtrSetImpl<const SCEV *> &Regs,
1046                            const Loop *L,
1047                            ScalarEvolution &SE, DominatorTree &DT,
1048                            SmallPtrSetImpl<const SCEV *> *LoserRegs);
1049 };
1050 
1051 /// An operand value in an instruction which is to be replaced with some
1052 /// equivalent, possibly strength-reduced, replacement.
1053 struct LSRFixup {
1054   /// The instruction which will be updated.
1055   Instruction *UserInst = nullptr;
1056 
1057   /// The operand of the instruction which will be replaced. The operand may be
1058   /// used more than once; every instance will be replaced.
1059   Value *OperandValToReplace = nullptr;
1060 
1061   /// If this user is to use the post-incremented value of an induction
1062   /// variable, this set is non-empty and holds the loops associated with the
1063   /// induction variable.
1064   PostIncLoopSet PostIncLoops;
1065 
1066   /// A constant offset to be added to the LSRUse expression.  This allows
1067   /// multiple fixups to share the same LSRUse with different offsets, for
1068   /// example in an unrolled loop.
1069   int64_t Offset = 0;
1070 
1071   LSRFixup() = default;
1072 
1073   bool isUseFullyOutsideLoop(const Loop *L) const;
1074 
1075   void print(raw_ostream &OS) const;
1076   void dump() const;
1077 };
1078 
1079 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted
1080 /// SmallVectors of const SCEV*.
1081 struct UniquifierDenseMapInfo {
1082   static SmallVector<const SCEV *, 4> getEmptyKey() {
1083     SmallVector<const SCEV *, 4>  V;
1084     V.push_back(reinterpret_cast<const SCEV *>(-1));
1085     return V;
1086   }
1087 
1088   static SmallVector<const SCEV *, 4> getTombstoneKey() {
1089     SmallVector<const SCEV *, 4> V;
1090     V.push_back(reinterpret_cast<const SCEV *>(-2));
1091     return V;
1092   }
1093 
1094   static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) {
1095     return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
1096   }
1097 
1098   static bool isEqual(const SmallVector<const SCEV *, 4> &LHS,
1099                       const SmallVector<const SCEV *, 4> &RHS) {
1100     return LHS == RHS;
1101   }
1102 };
1103 
1104 /// This class holds the state that LSR keeps for each use in IVUsers, as well
1105 /// as uses invented by LSR itself. It includes information about what kinds of
1106 /// things can be folded into the user, information about the user itself, and
1107 /// information about how the use may be satisfied.  TODO: Represent multiple
1108 /// users of the same expression in common?
1109 class LSRUse {
1110   DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier;
1111 
1112 public:
1113   /// An enum for a kind of use, indicating what types of scaled and immediate
1114   /// operands it might support.
1115   enum KindType {
1116     Basic,   ///< A normal use, with no folding.
1117     Special, ///< A special case of basic, allowing -1 scales.
1118     Address, ///< An address use; folding according to TargetLowering
1119     ICmpZero ///< An equality icmp with both operands folded into one.
1120     // TODO: Add a generic icmp too?
1121   };
1122 
1123   using SCEVUseKindPair = PointerIntPair<const SCEV *, 2, KindType>;
1124 
1125   KindType Kind;
1126   MemAccessTy AccessTy;
1127 
1128   /// The list of operands which are to be replaced.
1129   SmallVector<LSRFixup, 8> Fixups;
1130 
1131   /// Keep track of the min and max offsets of the fixups.
1132   int64_t MinOffset = std::numeric_limits<int64_t>::max();
1133   int64_t MaxOffset = std::numeric_limits<int64_t>::min();
1134 
1135   /// This records whether all of the fixups using this LSRUse are outside of
1136   /// the loop, in which case some special-case heuristics may be used.
1137   bool AllFixupsOutsideLoop = true;
1138 
1139   /// RigidFormula is set to true to guarantee that this use will be associated
1140   /// with a single formula--the one that initially matched. Some SCEV
1141   /// expressions cannot be expanded. This allows LSR to consider the registers
1142   /// used by those expressions without the need to expand them later after
1143   /// changing the formula.
1144   bool RigidFormula = false;
1145 
1146   /// This records the widest use type for any fixup using this
1147   /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max
1148   /// fixup widths to be equivalent, because the narrower one may be relying on
1149   /// the implicit truncation to truncate away bogus bits.
1150   Type *WidestFixupType = nullptr;
1151 
1152   /// A list of ways to build a value that can satisfy this user.  After the
1153   /// list is populated, one of these is selected heuristically and used to
1154   /// formulate a replacement for OperandValToReplace in UserInst.
1155   SmallVector<Formula, 12> Formulae;
1156 
1157   /// The set of register candidates used by all formulae in this LSRUse.
1158   SmallPtrSet<const SCEV *, 4> Regs;
1159 
1160   LSRUse(KindType K, MemAccessTy AT) : Kind(K), AccessTy(AT) {}
1161 
1162   LSRFixup &getNewFixup() {
1163     Fixups.push_back(LSRFixup());
1164     return Fixups.back();
1165   }
1166 
1167   void pushFixup(LSRFixup &f) {
1168     Fixups.push_back(f);
1169     if (f.Offset > MaxOffset)
1170       MaxOffset = f.Offset;
1171     if (f.Offset < MinOffset)
1172       MinOffset = f.Offset;
1173   }
1174 
1175   bool HasFormulaWithSameRegs(const Formula &F) const;
1176   float getNotSelectedProbability(const SCEV *Reg) const;
1177   bool InsertFormula(const Formula &F, const Loop &L);
1178   void DeleteFormula(Formula &F);
1179   void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
1180 
1181   void print(raw_ostream &OS) const;
1182   void dump() const;
1183 };
1184 
1185 } // end anonymous namespace
1186 
1187 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1188                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1189                                  GlobalValue *BaseGV, int64_t BaseOffset,
1190                                  bool HasBaseReg, int64_t Scale,
1191                                  Instruction *Fixup = nullptr);
1192 
1193 /// Tally up interesting quantities from the given register.
1194 void Cost::RateRegister(const SCEV *Reg,
1195                         SmallPtrSetImpl<const SCEV *> &Regs,
1196                         const Loop *L,
1197                         ScalarEvolution &SE, DominatorTree &DT) {
1198   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
1199     // If this is an addrec for another loop, it should be an invariant
1200     // with respect to L since L is the innermost loop (at least
1201     // for now LSR only handles innermost loops).
1202     if (AR->getLoop() != L) {
1203       // If the AddRec exists, consider it's register free and leave it alone.
1204       if (isExistingPhi(AR, SE))
1205         return;
1206 
1207       // It is bad to allow LSR for current loop to add induction variables
1208       // for its sibling loops.
1209       if (!AR->getLoop()->contains(L)) {
1210         Lose();
1211         return;
1212       }
1213 
1214       // Otherwise, it will be an invariant with respect to Loop L.
1215       ++C.NumRegs;
1216       return;
1217     }
1218     C.AddRecCost += 1; /// TODO: This should be a function of the stride.
1219 
1220     // Add the step value register, if it needs one.
1221     // TODO: The non-affine case isn't precisely modeled here.
1222     if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) {
1223       if (!Regs.count(AR->getOperand(1))) {
1224         RateRegister(AR->getOperand(1), Regs, L, SE, DT);
1225         if (isLoser())
1226           return;
1227       }
1228     }
1229   }
1230   ++C.NumRegs;
1231 
1232   // Rough heuristic; favor registers which don't require extra setup
1233   // instructions in the preheader.
1234   if (!isa<SCEVUnknown>(Reg) &&
1235       !isa<SCEVConstant>(Reg) &&
1236       !(isa<SCEVAddRecExpr>(Reg) &&
1237         (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) ||
1238          isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart()))))
1239     ++C.SetupCost;
1240 
1241   C.NumIVMuls += isa<SCEVMulExpr>(Reg) &&
1242                SE.hasComputableLoopEvolution(Reg, L);
1243 }
1244 
1245 /// Record this register in the set. If we haven't seen it before, rate
1246 /// it. Optional LoserRegs provides a way to declare any formula that refers to
1247 /// one of those regs an instant loser.
1248 void Cost::RatePrimaryRegister(const SCEV *Reg,
1249                                SmallPtrSetImpl<const SCEV *> &Regs,
1250                                const Loop *L,
1251                                ScalarEvolution &SE, DominatorTree &DT,
1252                                SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1253   if (LoserRegs && LoserRegs->count(Reg)) {
1254     Lose();
1255     return;
1256   }
1257   if (Regs.insert(Reg).second) {
1258     RateRegister(Reg, Regs, L, SE, DT);
1259     if (LoserRegs && isLoser())
1260       LoserRegs->insert(Reg);
1261   }
1262 }
1263 
1264 void Cost::RateFormula(const TargetTransformInfo &TTI,
1265                        const Formula &F,
1266                        SmallPtrSetImpl<const SCEV *> &Regs,
1267                        const DenseSet<const SCEV *> &VisitedRegs,
1268                        const Loop *L,
1269                        ScalarEvolution &SE, DominatorTree &DT,
1270                        const LSRUse &LU,
1271                        SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1272   assert(F.isCanonical(*L) && "Cost is accurate only for canonical formula");
1273   // Tally up the registers.
1274   unsigned PrevAddRecCost = C.AddRecCost;
1275   unsigned PrevNumRegs = C.NumRegs;
1276   unsigned PrevNumBaseAdds = C.NumBaseAdds;
1277   if (const SCEV *ScaledReg = F.ScaledReg) {
1278     if (VisitedRegs.count(ScaledReg)) {
1279       Lose();
1280       return;
1281     }
1282     RatePrimaryRegister(ScaledReg, Regs, L, SE, DT, LoserRegs);
1283     if (isLoser())
1284       return;
1285   }
1286   for (const SCEV *BaseReg : F.BaseRegs) {
1287     if (VisitedRegs.count(BaseReg)) {
1288       Lose();
1289       return;
1290     }
1291     RatePrimaryRegister(BaseReg, Regs, L, SE, DT, LoserRegs);
1292     if (isLoser())
1293       return;
1294   }
1295 
1296   // Determine how many (unfolded) adds we'll need inside the loop.
1297   size_t NumBaseParts = F.getNumRegs();
1298   if (NumBaseParts > 1)
1299     // Do not count the base and a possible second register if the target
1300     // allows to fold 2 registers.
1301     C.NumBaseAdds +=
1302         NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(TTI, LU, F)));
1303   C.NumBaseAdds += (F.UnfoldedOffset != 0);
1304 
1305   // Accumulate non-free scaling amounts.
1306   C.ScaleCost += getScalingFactorCost(TTI, LU, F, *L);
1307 
1308   // Tally up the non-zero immediates.
1309   for (const LSRFixup &Fixup : LU.Fixups) {
1310     int64_t O = Fixup.Offset;
1311     int64_t Offset = (uint64_t)O + F.BaseOffset;
1312     if (F.BaseGV)
1313       C.ImmCost += 64; // Handle symbolic values conservatively.
1314                      // TODO: This should probably be the pointer size.
1315     else if (Offset != 0)
1316       C.ImmCost += APInt(64, Offset, true).getMinSignedBits();
1317 
1318     // Check with target if this offset with this instruction is
1319     // specifically not supported.
1320     if (LU.Kind == LSRUse::Address && Offset != 0 &&
1321         !isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV,
1322                               Offset, F.HasBaseReg, F.Scale, Fixup.UserInst))
1323       C.NumBaseAdds++;
1324   }
1325 
1326   // If we don't count instruction cost exit here.
1327   if (!InsnsCost) {
1328     assert(isValid() && "invalid cost");
1329     return;
1330   }
1331 
1332   // Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as
1333   // additional instruction (at least fill).
1334   unsigned TTIRegNum = TTI.getNumberOfRegisters(false) - 1;
1335   if (C.NumRegs > TTIRegNum) {
1336     // Cost already exceeded TTIRegNum, then only newly added register can add
1337     // new instructions.
1338     if (PrevNumRegs > TTIRegNum)
1339       C.Insns += (C.NumRegs - PrevNumRegs);
1340     else
1341       C.Insns += (C.NumRegs - TTIRegNum);
1342   }
1343 
1344   // If ICmpZero formula ends with not 0, it could not be replaced by
1345   // just add or sub. We'll need to compare final result of AddRec.
1346   // That means we'll need an additional instruction. But if the target can
1347   // macro-fuse a compare with a branch, don't count this extra instruction.
1348   // For -10 + {0, +, 1}:
1349   // i = i + 1;
1350   // cmp i, 10
1351   //
1352   // For {-10, +, 1}:
1353   // i = i + 1;
1354   if (LU.Kind == LSRUse::ICmpZero && !F.hasZeroEnd() && !TTI.canMacroFuseCmp())
1355     C.Insns++;
1356   // Each new AddRec adds 1 instruction to calculation.
1357   C.Insns += (C.AddRecCost - PrevAddRecCost);
1358 
1359   // BaseAdds adds instructions for unfolded registers.
1360   if (LU.Kind != LSRUse::ICmpZero)
1361     C.Insns += C.NumBaseAdds - PrevNumBaseAdds;
1362   assert(isValid() && "invalid cost");
1363 }
1364 
1365 /// Set this cost to a losing value.
1366 void Cost::Lose() {
1367   C.Insns = std::numeric_limits<unsigned>::max();
1368   C.NumRegs = std::numeric_limits<unsigned>::max();
1369   C.AddRecCost = std::numeric_limits<unsigned>::max();
1370   C.NumIVMuls = std::numeric_limits<unsigned>::max();
1371   C.NumBaseAdds = std::numeric_limits<unsigned>::max();
1372   C.ImmCost = std::numeric_limits<unsigned>::max();
1373   C.SetupCost = std::numeric_limits<unsigned>::max();
1374   C.ScaleCost = std::numeric_limits<unsigned>::max();
1375 }
1376 
1377 /// Choose the lower cost.
1378 bool Cost::isLess(Cost &Other, const TargetTransformInfo &TTI) {
1379   if (InsnsCost.getNumOccurrences() > 0 && InsnsCost &&
1380       C.Insns != Other.C.Insns)
1381     return C.Insns < Other.C.Insns;
1382   return TTI.isLSRCostLess(C, Other.C);
1383 }
1384 
1385 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1386 void Cost::print(raw_ostream &OS) const {
1387   if (InsnsCost)
1388     OS << C.Insns << " instruction" << (C.Insns == 1 ? " " : "s ");
1389   OS << C.NumRegs << " reg" << (C.NumRegs == 1 ? "" : "s");
1390   if (C.AddRecCost != 0)
1391     OS << ", with addrec cost " << C.AddRecCost;
1392   if (C.NumIVMuls != 0)
1393     OS << ", plus " << C.NumIVMuls << " IV mul"
1394        << (C.NumIVMuls == 1 ? "" : "s");
1395   if (C.NumBaseAdds != 0)
1396     OS << ", plus " << C.NumBaseAdds << " base add"
1397        << (C.NumBaseAdds == 1 ? "" : "s");
1398   if (C.ScaleCost != 0)
1399     OS << ", plus " << C.ScaleCost << " scale cost";
1400   if (C.ImmCost != 0)
1401     OS << ", plus " << C.ImmCost << " imm cost";
1402   if (C.SetupCost != 0)
1403     OS << ", plus " << C.SetupCost << " setup cost";
1404 }
1405 
1406 LLVM_DUMP_METHOD void Cost::dump() const {
1407   print(errs()); errs() << '\n';
1408 }
1409 #endif
1410 
1411 /// Test whether this fixup always uses its value outside of the given loop.
1412 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
1413   // PHI nodes use their value in their incoming blocks.
1414   if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
1415     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1416       if (PN->getIncomingValue(i) == OperandValToReplace &&
1417           L->contains(PN->getIncomingBlock(i)))
1418         return false;
1419     return true;
1420   }
1421 
1422   return !L->contains(UserInst);
1423 }
1424 
1425 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1426 void LSRFixup::print(raw_ostream &OS) const {
1427   OS << "UserInst=";
1428   // Store is common and interesting enough to be worth special-casing.
1429   if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
1430     OS << "store ";
1431     Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false);
1432   } else if (UserInst->getType()->isVoidTy())
1433     OS << UserInst->getOpcodeName();
1434   else
1435     UserInst->printAsOperand(OS, /*PrintType=*/false);
1436 
1437   OS << ", OperandValToReplace=";
1438   OperandValToReplace->printAsOperand(OS, /*PrintType=*/false);
1439 
1440   for (const Loop *PIL : PostIncLoops) {
1441     OS << ", PostIncLoop=";
1442     PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
1443   }
1444 
1445   if (Offset != 0)
1446     OS << ", Offset=" << Offset;
1447 }
1448 
1449 LLVM_DUMP_METHOD void LSRFixup::dump() const {
1450   print(errs()); errs() << '\n';
1451 }
1452 #endif
1453 
1454 /// Test whether this use as a formula which has the same registers as the given
1455 /// formula.
1456 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
1457   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1458   if (F.ScaledReg) Key.push_back(F.ScaledReg);
1459   // Unstable sort by host order ok, because this is only used for uniquifying.
1460   std::sort(Key.begin(), Key.end());
1461   return Uniquifier.count(Key);
1462 }
1463 
1464 /// The function returns a probability of selecting formula without Reg.
1465 float LSRUse::getNotSelectedProbability(const SCEV *Reg) const {
1466   unsigned FNum = 0;
1467   for (const Formula &F : Formulae)
1468     if (F.referencesReg(Reg))
1469       FNum++;
1470   return ((float)(Formulae.size() - FNum)) / Formulae.size();
1471 }
1472 
1473 /// If the given formula has not yet been inserted, add it to the list, and
1474 /// return true. Return false otherwise.  The formula must be in canonical form.
1475 bool LSRUse::InsertFormula(const Formula &F, const Loop &L) {
1476   assert(F.isCanonical(L) && "Invalid canonical representation");
1477 
1478   if (!Formulae.empty() && RigidFormula)
1479     return false;
1480 
1481   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1482   if (F.ScaledReg) Key.push_back(F.ScaledReg);
1483   // Unstable sort by host order ok, because this is only used for uniquifying.
1484   std::sort(Key.begin(), Key.end());
1485 
1486   if (!Uniquifier.insert(Key).second)
1487     return false;
1488 
1489   // Using a register to hold the value of 0 is not profitable.
1490   assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
1491          "Zero allocated in a scaled register!");
1492 #ifndef NDEBUG
1493   for (const SCEV *BaseReg : F.BaseRegs)
1494     assert(!BaseReg->isZero() && "Zero allocated in a base register!");
1495 #endif
1496 
1497   // Add the formula to the list.
1498   Formulae.push_back(F);
1499 
1500   // Record registers now being used by this use.
1501   Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1502   if (F.ScaledReg)
1503     Regs.insert(F.ScaledReg);
1504 
1505   return true;
1506 }
1507 
1508 /// Remove the given formula from this use's list.
1509 void LSRUse::DeleteFormula(Formula &F) {
1510   if (&F != &Formulae.back())
1511     std::swap(F, Formulae.back());
1512   Formulae.pop_back();
1513 }
1514 
1515 /// Recompute the Regs field, and update RegUses.
1516 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
1517   // Now that we've filtered out some formulae, recompute the Regs set.
1518   SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs);
1519   Regs.clear();
1520   for (const Formula &F : Formulae) {
1521     if (F.ScaledReg) Regs.insert(F.ScaledReg);
1522     Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1523   }
1524 
1525   // Update the RegTracker.
1526   for (const SCEV *S : OldRegs)
1527     if (!Regs.count(S))
1528       RegUses.dropRegister(S, LUIdx);
1529 }
1530 
1531 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1532 void LSRUse::print(raw_ostream &OS) const {
1533   OS << "LSR Use: Kind=";
1534   switch (Kind) {
1535   case Basic:    OS << "Basic"; break;
1536   case Special:  OS << "Special"; break;
1537   case ICmpZero: OS << "ICmpZero"; break;
1538   case Address:
1539     OS << "Address of ";
1540     if (AccessTy.MemTy->isPointerTy())
1541       OS << "pointer"; // the full pointer type could be really verbose
1542     else {
1543       OS << *AccessTy.MemTy;
1544     }
1545 
1546     OS << " in addrspace(" << AccessTy.AddrSpace << ')';
1547   }
1548 
1549   OS << ", Offsets={";
1550   bool NeedComma = false;
1551   for (const LSRFixup &Fixup : Fixups) {
1552     if (NeedComma) OS << ',';
1553     OS << Fixup.Offset;
1554     NeedComma = true;
1555   }
1556   OS << '}';
1557 
1558   if (AllFixupsOutsideLoop)
1559     OS << ", all-fixups-outside-loop";
1560 
1561   if (WidestFixupType)
1562     OS << ", widest fixup type: " << *WidestFixupType;
1563 }
1564 
1565 LLVM_DUMP_METHOD void LSRUse::dump() const {
1566   print(errs()); errs() << '\n';
1567 }
1568 #endif
1569 
1570 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1571                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1572                                  GlobalValue *BaseGV, int64_t BaseOffset,
1573                                  bool HasBaseReg, int64_t Scale,
1574                                  Instruction *Fixup/*= nullptr*/) {
1575   switch (Kind) {
1576   case LSRUse::Address:
1577     return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset,
1578                                      HasBaseReg, Scale, AccessTy.AddrSpace, Fixup);
1579 
1580   case LSRUse::ICmpZero:
1581     // There's not even a target hook for querying whether it would be legal to
1582     // fold a GV into an ICmp.
1583     if (BaseGV)
1584       return false;
1585 
1586     // ICmp only has two operands; don't allow more than two non-trivial parts.
1587     if (Scale != 0 && HasBaseReg && BaseOffset != 0)
1588       return false;
1589 
1590     // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
1591     // putting the scaled register in the other operand of the icmp.
1592     if (Scale != 0 && Scale != -1)
1593       return false;
1594 
1595     // If we have low-level target information, ask the target if it can fold an
1596     // integer immediate on an icmp.
1597     if (BaseOffset != 0) {
1598       // We have one of:
1599       // ICmpZero     BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset
1600       // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset
1601       // Offs is the ICmp immediate.
1602       if (Scale == 0)
1603         // The cast does the right thing with
1604         // std::numeric_limits<int64_t>::min().
1605         BaseOffset = -(uint64_t)BaseOffset;
1606       return TTI.isLegalICmpImmediate(BaseOffset);
1607     }
1608 
1609     // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg
1610     return true;
1611 
1612   case LSRUse::Basic:
1613     // Only handle single-register values.
1614     return !BaseGV && Scale == 0 && BaseOffset == 0;
1615 
1616   case LSRUse::Special:
1617     // Special case Basic to handle -1 scales.
1618     return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0;
1619   }
1620 
1621   llvm_unreachable("Invalid LSRUse Kind!");
1622 }
1623 
1624 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1625                                  int64_t MinOffset, int64_t MaxOffset,
1626                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1627                                  GlobalValue *BaseGV, int64_t BaseOffset,
1628                                  bool HasBaseReg, int64_t Scale) {
1629   // Check for overflow.
1630   if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) !=
1631       (MinOffset > 0))
1632     return false;
1633   MinOffset = (uint64_t)BaseOffset + MinOffset;
1634   if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) !=
1635       (MaxOffset > 0))
1636     return false;
1637   MaxOffset = (uint64_t)BaseOffset + MaxOffset;
1638 
1639   return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset,
1640                               HasBaseReg, Scale) &&
1641          isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset,
1642                               HasBaseReg, Scale);
1643 }
1644 
1645 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1646                                  int64_t MinOffset, int64_t MaxOffset,
1647                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1648                                  const Formula &F, const Loop &L) {
1649   // For the purpose of isAMCompletelyFolded either having a canonical formula
1650   // or a scale not equal to zero is correct.
1651   // Problems may arise from non canonical formulae having a scale == 0.
1652   // Strictly speaking it would best to just rely on canonical formulae.
1653   // However, when we generate the scaled formulae, we first check that the
1654   // scaling factor is profitable before computing the actual ScaledReg for
1655   // compile time sake.
1656   assert((F.isCanonical(L) || F.Scale != 0));
1657   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1658                               F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale);
1659 }
1660 
1661 /// Test whether we know how to expand the current formula.
1662 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1663                        int64_t MaxOffset, LSRUse::KindType Kind,
1664                        MemAccessTy AccessTy, GlobalValue *BaseGV,
1665                        int64_t BaseOffset, bool HasBaseReg, int64_t Scale) {
1666   // We know how to expand completely foldable formulae.
1667   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1668                               BaseOffset, HasBaseReg, Scale) ||
1669          // Or formulae that use a base register produced by a sum of base
1670          // registers.
1671          (Scale == 1 &&
1672           isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1673                                BaseGV, BaseOffset, true, 0));
1674 }
1675 
1676 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1677                        int64_t MaxOffset, LSRUse::KindType Kind,
1678                        MemAccessTy AccessTy, const Formula &F) {
1679   return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV,
1680                     F.BaseOffset, F.HasBaseReg, F.Scale);
1681 }
1682 
1683 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1684                                  const LSRUse &LU, const Formula &F) {
1685   // Target may want to look at the user instructions.
1686   if (LU.Kind == LSRUse::Address && TTI.LSRWithInstrQueries()) {
1687     for (const LSRFixup &Fixup : LU.Fixups)
1688       if (!isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV,
1689                                 (F.BaseOffset + Fixup.Offset), F.HasBaseReg,
1690                                 F.Scale, Fixup.UserInst))
1691         return false;
1692     return true;
1693   }
1694 
1695   return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1696                               LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg,
1697                               F.Scale);
1698 }
1699 
1700 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
1701                                      const LSRUse &LU, const Formula &F,
1702                                      const Loop &L) {
1703   if (!F.Scale)
1704     return 0;
1705 
1706   // If the use is not completely folded in that instruction, we will have to
1707   // pay an extra cost only for scale != 1.
1708   if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1709                             LU.AccessTy, F, L))
1710     return F.Scale != 1;
1711 
1712   switch (LU.Kind) {
1713   case LSRUse::Address: {
1714     // Check the scaling factor cost with both the min and max offsets.
1715     int ScaleCostMinOffset = TTI.getScalingFactorCost(
1716         LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg,
1717         F.Scale, LU.AccessTy.AddrSpace);
1718     int ScaleCostMaxOffset = TTI.getScalingFactorCost(
1719         LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg,
1720         F.Scale, LU.AccessTy.AddrSpace);
1721 
1722     assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 &&
1723            "Legal addressing mode has an illegal cost!");
1724     return std::max(ScaleCostMinOffset, ScaleCostMaxOffset);
1725   }
1726   case LSRUse::ICmpZero:
1727   case LSRUse::Basic:
1728   case LSRUse::Special:
1729     // The use is completely folded, i.e., everything is folded into the
1730     // instruction.
1731     return 0;
1732   }
1733 
1734   llvm_unreachable("Invalid LSRUse Kind!");
1735 }
1736 
1737 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1738                              LSRUse::KindType Kind, MemAccessTy AccessTy,
1739                              GlobalValue *BaseGV, int64_t BaseOffset,
1740                              bool HasBaseReg) {
1741   // Fast-path: zero is always foldable.
1742   if (BaseOffset == 0 && !BaseGV) return true;
1743 
1744   // Conservatively, create an address with an immediate and a
1745   // base and a scale.
1746   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1747 
1748   // Canonicalize a scale of 1 to a base register if the formula doesn't
1749   // already have a base register.
1750   if (!HasBaseReg && Scale == 1) {
1751     Scale = 0;
1752     HasBaseReg = true;
1753   }
1754 
1755   return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset,
1756                               HasBaseReg, Scale);
1757 }
1758 
1759 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1760                              ScalarEvolution &SE, int64_t MinOffset,
1761                              int64_t MaxOffset, LSRUse::KindType Kind,
1762                              MemAccessTy AccessTy, const SCEV *S,
1763                              bool HasBaseReg) {
1764   // Fast-path: zero is always foldable.
1765   if (S->isZero()) return true;
1766 
1767   // Conservatively, create an address with an immediate and a
1768   // base and a scale.
1769   int64_t BaseOffset = ExtractImmediate(S, SE);
1770   GlobalValue *BaseGV = ExtractSymbol(S, SE);
1771 
1772   // If there's anything else involved, it's not foldable.
1773   if (!S->isZero()) return false;
1774 
1775   // Fast-path: zero is always foldable.
1776   if (BaseOffset == 0 && !BaseGV) return true;
1777 
1778   // Conservatively, create an address with an immediate and a
1779   // base and a scale.
1780   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1781 
1782   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1783                               BaseOffset, HasBaseReg, Scale);
1784 }
1785 
1786 namespace {
1787 
1788 /// An individual increment in a Chain of IV increments.  Relate an IV user to
1789 /// an expression that computes the IV it uses from the IV used by the previous
1790 /// link in the Chain.
1791 ///
1792 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the
1793 /// original IVOperand. The head of the chain's IVOperand is only valid during
1794 /// chain collection, before LSR replaces IV users. During chain generation,
1795 /// IncExpr can be used to find the new IVOperand that computes the same
1796 /// expression.
1797 struct IVInc {
1798   Instruction *UserInst;
1799   Value* IVOperand;
1800   const SCEV *IncExpr;
1801 
1802   IVInc(Instruction *U, Value *O, const SCEV *E)
1803       : UserInst(U), IVOperand(O), IncExpr(E) {}
1804 };
1805 
1806 // The list of IV increments in program order.  We typically add the head of a
1807 // chain without finding subsequent links.
1808 struct IVChain {
1809   SmallVector<IVInc, 1> Incs;
1810   const SCEV *ExprBase = nullptr;
1811 
1812   IVChain() = default;
1813   IVChain(const IVInc &Head, const SCEV *Base)
1814       : Incs(1, Head), ExprBase(Base) {}
1815 
1816   using const_iterator = SmallVectorImpl<IVInc>::const_iterator;
1817 
1818   // Return the first increment in the chain.
1819   const_iterator begin() const {
1820     assert(!Incs.empty());
1821     return std::next(Incs.begin());
1822   }
1823   const_iterator end() const {
1824     return Incs.end();
1825   }
1826 
1827   // Returns true if this chain contains any increments.
1828   bool hasIncs() const { return Incs.size() >= 2; }
1829 
1830   // Add an IVInc to the end of this chain.
1831   void add(const IVInc &X) { Incs.push_back(X); }
1832 
1833   // Returns the last UserInst in the chain.
1834   Instruction *tailUserInst() const { return Incs.back().UserInst; }
1835 
1836   // Returns true if IncExpr can be profitably added to this chain.
1837   bool isProfitableIncrement(const SCEV *OperExpr,
1838                              const SCEV *IncExpr,
1839                              ScalarEvolution&);
1840 };
1841 
1842 /// Helper for CollectChains to track multiple IV increment uses.  Distinguish
1843 /// between FarUsers that definitely cross IV increments and NearUsers that may
1844 /// be used between IV increments.
1845 struct ChainUsers {
1846   SmallPtrSet<Instruction*, 4> FarUsers;
1847   SmallPtrSet<Instruction*, 4> NearUsers;
1848 };
1849 
1850 /// This class holds state for the main loop strength reduction logic.
1851 class LSRInstance {
1852   IVUsers &IU;
1853   ScalarEvolution &SE;
1854   DominatorTree &DT;
1855   LoopInfo &LI;
1856   const TargetTransformInfo &TTI;
1857   Loop *const L;
1858   bool Changed = false;
1859 
1860   /// This is the insert position that the current loop's induction variable
1861   /// increment should be placed. In simple loops, this is the latch block's
1862   /// terminator. But in more complicated cases, this is a position which will
1863   /// dominate all the in-loop post-increment users.
1864   Instruction *IVIncInsertPos = nullptr;
1865 
1866   /// Interesting factors between use strides.
1867   ///
1868   /// We explicitly use a SetVector which contains a SmallSet, instead of the
1869   /// default, a SmallDenseSet, because we need to use the full range of
1870   /// int64_ts, and there's currently no good way of doing that with
1871   /// SmallDenseSet.
1872   SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors;
1873 
1874   /// Interesting use types, to facilitate truncation reuse.
1875   SmallSetVector<Type *, 4> Types;
1876 
1877   /// The list of interesting uses.
1878   SmallVector<LSRUse, 16> Uses;
1879 
1880   /// Track which uses use which register candidates.
1881   RegUseTracker RegUses;
1882 
1883   // Limit the number of chains to avoid quadratic behavior. We don't expect to
1884   // have more than a few IV increment chains in a loop. Missing a Chain falls
1885   // back to normal LSR behavior for those uses.
1886   static const unsigned MaxChains = 8;
1887 
1888   /// IV users can form a chain of IV increments.
1889   SmallVector<IVChain, MaxChains> IVChainVec;
1890 
1891   /// IV users that belong to profitable IVChains.
1892   SmallPtrSet<Use*, MaxChains> IVIncSet;
1893 
1894   void OptimizeShadowIV();
1895   bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
1896   ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
1897   void OptimizeLoopTermCond();
1898 
1899   void ChainInstruction(Instruction *UserInst, Instruction *IVOper,
1900                         SmallVectorImpl<ChainUsers> &ChainUsersVec);
1901   void FinalizeChain(IVChain &Chain);
1902   void CollectChains();
1903   void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
1904                        SmallVectorImpl<WeakTrackingVH> &DeadInsts);
1905 
1906   void CollectInterestingTypesAndFactors();
1907   void CollectFixupsAndInitialFormulae();
1908 
1909   // Support for sharing of LSRUses between LSRFixups.
1910   using UseMapTy = DenseMap<LSRUse::SCEVUseKindPair, size_t>;
1911   UseMapTy UseMap;
1912 
1913   bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
1914                           LSRUse::KindType Kind, MemAccessTy AccessTy);
1915 
1916   std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind,
1917                                     MemAccessTy AccessTy);
1918 
1919   void DeleteUse(LSRUse &LU, size_t LUIdx);
1920 
1921   LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
1922 
1923   void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1924   void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1925   void CountRegisters(const Formula &F, size_t LUIdx);
1926   bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
1927 
1928   void CollectLoopInvariantFixupsAndFormulae();
1929 
1930   void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
1931                               unsigned Depth = 0);
1932 
1933   void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
1934                                   const Formula &Base, unsigned Depth,
1935                                   size_t Idx, bool IsScaledReg = false);
1936   void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
1937   void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
1938                                    const Formula &Base, size_t Idx,
1939                                    bool IsScaledReg = false);
1940   void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1941   void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx,
1942                                    const Formula &Base,
1943                                    const SmallVectorImpl<int64_t> &Worklist,
1944                                    size_t Idx, bool IsScaledReg = false);
1945   void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1946   void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1947   void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1948   void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
1949   void GenerateCrossUseConstantOffsets();
1950   void GenerateAllReuseFormulae();
1951 
1952   void FilterOutUndesirableDedicatedRegisters();
1953 
1954   size_t EstimateSearchSpaceComplexity() const;
1955   void NarrowSearchSpaceByDetectingSupersets();
1956   void NarrowSearchSpaceByCollapsingUnrolledCode();
1957   void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
1958   void NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
1959   void NarrowSearchSpaceByDeletingCostlyFormulas();
1960   void NarrowSearchSpaceByPickingWinnerRegs();
1961   void NarrowSearchSpaceUsingHeuristics();
1962 
1963   void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
1964                     Cost &SolutionCost,
1965                     SmallVectorImpl<const Formula *> &Workspace,
1966                     const Cost &CurCost,
1967                     const SmallPtrSet<const SCEV *, 16> &CurRegs,
1968                     DenseSet<const SCEV *> &VisitedRegs) const;
1969   void Solve(SmallVectorImpl<const Formula *> &Solution) const;
1970 
1971   BasicBlock::iterator
1972     HoistInsertPosition(BasicBlock::iterator IP,
1973                         const SmallVectorImpl<Instruction *> &Inputs) const;
1974   BasicBlock::iterator
1975     AdjustInsertPositionForExpand(BasicBlock::iterator IP,
1976                                   const LSRFixup &LF,
1977                                   const LSRUse &LU,
1978                                   SCEVExpander &Rewriter) const;
1979 
1980   Value *Expand(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
1981                 BasicBlock::iterator IP, SCEVExpander &Rewriter,
1982                 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
1983   void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF,
1984                      const Formula &F, SCEVExpander &Rewriter,
1985                      SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
1986   void Rewrite(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
1987                SCEVExpander &Rewriter,
1988                SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
1989   void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution);
1990 
1991 public:
1992   LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT,
1993               LoopInfo &LI, const TargetTransformInfo &TTI);
1994 
1995   bool getChanged() const { return Changed; }
1996 
1997   void print_factors_and_types(raw_ostream &OS) const;
1998   void print_fixups(raw_ostream &OS) const;
1999   void print_uses(raw_ostream &OS) const;
2000   void print(raw_ostream &OS) const;
2001   void dump() const;
2002 };
2003 
2004 } // end anonymous namespace
2005 
2006 /// If IV is used in a int-to-float cast inside the loop then try to eliminate
2007 /// the cast operation.
2008 void LSRInstance::OptimizeShadowIV() {
2009   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
2010   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2011     return;
2012 
2013   for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
2014        UI != E; /* empty */) {
2015     IVUsers::const_iterator CandidateUI = UI;
2016     ++UI;
2017     Instruction *ShadowUse = CandidateUI->getUser();
2018     Type *DestTy = nullptr;
2019     bool IsSigned = false;
2020 
2021     /* If shadow use is a int->float cast then insert a second IV
2022        to eliminate this cast.
2023 
2024          for (unsigned i = 0; i < n; ++i)
2025            foo((double)i);
2026 
2027        is transformed into
2028 
2029          double d = 0.0;
2030          for (unsigned i = 0; i < n; ++i, ++d)
2031            foo(d);
2032     */
2033     if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) {
2034       IsSigned = false;
2035       DestTy = UCast->getDestTy();
2036     }
2037     else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) {
2038       IsSigned = true;
2039       DestTy = SCast->getDestTy();
2040     }
2041     if (!DestTy) continue;
2042 
2043     // If target does not support DestTy natively then do not apply
2044     // this transformation.
2045     if (!TTI.isTypeLegal(DestTy)) continue;
2046 
2047     PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
2048     if (!PH) continue;
2049     if (PH->getNumIncomingValues() != 2) continue;
2050 
2051     // If the calculation in integers overflows, the result in FP type will
2052     // differ. So we only can do this transformation if we are guaranteed to not
2053     // deal with overflowing values
2054     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PH));
2055     if (!AR) continue;
2056     if (IsSigned && !AR->hasNoSignedWrap()) continue;
2057     if (!IsSigned && !AR->hasNoUnsignedWrap()) continue;
2058 
2059     Type *SrcTy = PH->getType();
2060     int Mantissa = DestTy->getFPMantissaWidth();
2061     if (Mantissa == -1) continue;
2062     if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
2063       continue;
2064 
2065     unsigned Entry, Latch;
2066     if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
2067       Entry = 0;
2068       Latch = 1;
2069     } else {
2070       Entry = 1;
2071       Latch = 0;
2072     }
2073 
2074     ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
2075     if (!Init) continue;
2076     Constant *NewInit = ConstantFP::get(DestTy, IsSigned ?
2077                                         (double)Init->getSExtValue() :
2078                                         (double)Init->getZExtValue());
2079 
2080     BinaryOperator *Incr =
2081       dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
2082     if (!Incr) continue;
2083     if (Incr->getOpcode() != Instruction::Add
2084         && Incr->getOpcode() != Instruction::Sub)
2085       continue;
2086 
2087     /* Initialize new IV, double d = 0.0 in above example. */
2088     ConstantInt *C = nullptr;
2089     if (Incr->getOperand(0) == PH)
2090       C = dyn_cast<ConstantInt>(Incr->getOperand(1));
2091     else if (Incr->getOperand(1) == PH)
2092       C = dyn_cast<ConstantInt>(Incr->getOperand(0));
2093     else
2094       continue;
2095 
2096     if (!C) continue;
2097 
2098     // Ignore negative constants, as the code below doesn't handle them
2099     // correctly. TODO: Remove this restriction.
2100     if (!C->getValue().isStrictlyPositive()) continue;
2101 
2102     /* Add new PHINode. */
2103     PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH);
2104 
2105     /* create new increment. '++d' in above example. */
2106     Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
2107     BinaryOperator *NewIncr =
2108       BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
2109                                Instruction::FAdd : Instruction::FSub,
2110                              NewPH, CFP, "IV.S.next.", Incr);
2111 
2112     NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
2113     NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
2114 
2115     /* Remove cast operation */
2116     ShadowUse->replaceAllUsesWith(NewPH);
2117     ShadowUse->eraseFromParent();
2118     Changed = true;
2119     break;
2120   }
2121 }
2122 
2123 /// If Cond has an operand that is an expression of an IV, set the IV user and
2124 /// stride information and return true, otherwise return false.
2125 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
2126   for (IVStrideUse &U : IU)
2127     if (U.getUser() == Cond) {
2128       // NOTE: we could handle setcc instructions with multiple uses here, but
2129       // InstCombine does it as well for simple uses, it's not clear that it
2130       // occurs enough in real life to handle.
2131       CondUse = &U;
2132       return true;
2133     }
2134   return false;
2135 }
2136 
2137 /// Rewrite the loop's terminating condition if it uses a max computation.
2138 ///
2139 /// This is a narrow solution to a specific, but acute, problem. For loops
2140 /// like this:
2141 ///
2142 ///   i = 0;
2143 ///   do {
2144 ///     p[i] = 0.0;
2145 ///   } while (++i < n);
2146 ///
2147 /// the trip count isn't just 'n', because 'n' might not be positive. And
2148 /// unfortunately this can come up even for loops where the user didn't use
2149 /// a C do-while loop. For example, seemingly well-behaved top-test loops
2150 /// will commonly be lowered like this:
2151 ///
2152 ///   if (n > 0) {
2153 ///     i = 0;
2154 ///     do {
2155 ///       p[i] = 0.0;
2156 ///     } while (++i < n);
2157 ///   }
2158 ///
2159 /// and then it's possible for subsequent optimization to obscure the if
2160 /// test in such a way that indvars can't find it.
2161 ///
2162 /// When indvars can't find the if test in loops like this, it creates a
2163 /// max expression, which allows it to give the loop a canonical
2164 /// induction variable:
2165 ///
2166 ///   i = 0;
2167 ///   max = n < 1 ? 1 : n;
2168 ///   do {
2169 ///     p[i] = 0.0;
2170 ///   } while (++i != max);
2171 ///
2172 /// Canonical induction variables are necessary because the loop passes
2173 /// are designed around them. The most obvious example of this is the
2174 /// LoopInfo analysis, which doesn't remember trip count values. It
2175 /// expects to be able to rediscover the trip count each time it is
2176 /// needed, and it does this using a simple analysis that only succeeds if
2177 /// the loop has a canonical induction variable.
2178 ///
2179 /// However, when it comes time to generate code, the maximum operation
2180 /// can be quite costly, especially if it's inside of an outer loop.
2181 ///
2182 /// This function solves this problem by detecting this type of loop and
2183 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
2184 /// the instructions for the maximum computation.
2185 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
2186   // Check that the loop matches the pattern we're looking for.
2187   if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
2188       Cond->getPredicate() != CmpInst::ICMP_NE)
2189     return Cond;
2190 
2191   SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
2192   if (!Sel || !Sel->hasOneUse()) return Cond;
2193 
2194   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
2195   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2196     return Cond;
2197   const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
2198 
2199   // Add one to the backedge-taken count to get the trip count.
2200   const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount);
2201   if (IterationCount != SE.getSCEV(Sel)) return Cond;
2202 
2203   // Check for a max calculation that matches the pattern. There's no check
2204   // for ICMP_ULE here because the comparison would be with zero, which
2205   // isn't interesting.
2206   CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
2207   const SCEVNAryExpr *Max = nullptr;
2208   if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
2209     Pred = ICmpInst::ICMP_SLE;
2210     Max = S;
2211   } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
2212     Pred = ICmpInst::ICMP_SLT;
2213     Max = S;
2214   } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
2215     Pred = ICmpInst::ICMP_ULT;
2216     Max = U;
2217   } else {
2218     // No match; bail.
2219     return Cond;
2220   }
2221 
2222   // To handle a max with more than two operands, this optimization would
2223   // require additional checking and setup.
2224   if (Max->getNumOperands() != 2)
2225     return Cond;
2226 
2227   const SCEV *MaxLHS = Max->getOperand(0);
2228   const SCEV *MaxRHS = Max->getOperand(1);
2229 
2230   // ScalarEvolution canonicalizes constants to the left. For < and >, look
2231   // for a comparison with 1. For <= and >=, a comparison with zero.
2232   if (!MaxLHS ||
2233       (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
2234     return Cond;
2235 
2236   // Check the relevant induction variable for conformance to
2237   // the pattern.
2238   const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
2239   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
2240   if (!AR || !AR->isAffine() ||
2241       AR->getStart() != One ||
2242       AR->getStepRecurrence(SE) != One)
2243     return Cond;
2244 
2245   assert(AR->getLoop() == L &&
2246          "Loop condition operand is an addrec in a different loop!");
2247 
2248   // Check the right operand of the select, and remember it, as it will
2249   // be used in the new comparison instruction.
2250   Value *NewRHS = nullptr;
2251   if (ICmpInst::isTrueWhenEqual(Pred)) {
2252     // Look for n+1, and grab n.
2253     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
2254       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2255          if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2256            NewRHS = BO->getOperand(0);
2257     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
2258       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2259         if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2260           NewRHS = BO->getOperand(0);
2261     if (!NewRHS)
2262       return Cond;
2263   } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
2264     NewRHS = Sel->getOperand(1);
2265   else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
2266     NewRHS = Sel->getOperand(2);
2267   else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS))
2268     NewRHS = SU->getValue();
2269   else
2270     // Max doesn't match expected pattern.
2271     return Cond;
2272 
2273   // Determine the new comparison opcode. It may be signed or unsigned,
2274   // and the original comparison may be either equality or inequality.
2275   if (Cond->getPredicate() == CmpInst::ICMP_EQ)
2276     Pred = CmpInst::getInversePredicate(Pred);
2277 
2278   // Ok, everything looks ok to change the condition into an SLT or SGE and
2279   // delete the max calculation.
2280   ICmpInst *NewCond =
2281     new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
2282 
2283   // Delete the max calculation instructions.
2284   Cond->replaceAllUsesWith(NewCond);
2285   CondUse->setUser(NewCond);
2286   Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
2287   Cond->eraseFromParent();
2288   Sel->eraseFromParent();
2289   if (Cmp->use_empty())
2290     Cmp->eraseFromParent();
2291   return NewCond;
2292 }
2293 
2294 /// Change loop terminating condition to use the postinc iv when possible.
2295 void
2296 LSRInstance::OptimizeLoopTermCond() {
2297   SmallPtrSet<Instruction *, 4> PostIncs;
2298 
2299   // We need a different set of heuristics for rotated and non-rotated loops.
2300   // If a loop is rotated then the latch is also the backedge, so inserting
2301   // post-inc expressions just before the latch is ideal. To reduce live ranges
2302   // it also makes sense to rewrite terminating conditions to use post-inc
2303   // expressions.
2304   //
2305   // If the loop is not rotated then the latch is not a backedge; the latch
2306   // check is done in the loop head. Adding post-inc expressions before the
2307   // latch will cause overlapping live-ranges of pre-inc and post-inc expressions
2308   // in the loop body. In this case we do *not* want to use post-inc expressions
2309   // in the latch check, and we want to insert post-inc expressions before
2310   // the backedge.
2311   BasicBlock *LatchBlock = L->getLoopLatch();
2312   SmallVector<BasicBlock*, 8> ExitingBlocks;
2313   L->getExitingBlocks(ExitingBlocks);
2314   if (llvm::all_of(ExitingBlocks, [&LatchBlock](const BasicBlock *BB) {
2315         return LatchBlock != BB;
2316       })) {
2317     // The backedge doesn't exit the loop; treat this as a head-tested loop.
2318     IVIncInsertPos = LatchBlock->getTerminator();
2319     return;
2320   }
2321 
2322   // Otherwise treat this as a rotated loop.
2323   for (BasicBlock *ExitingBlock : ExitingBlocks) {
2324     // Get the terminating condition for the loop if possible.  If we
2325     // can, we want to change it to use a post-incremented version of its
2326     // induction variable, to allow coalescing the live ranges for the IV into
2327     // one register value.
2328 
2329     BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
2330     if (!TermBr)
2331       continue;
2332     // FIXME: Overly conservative, termination condition could be an 'or' etc..
2333     if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
2334       continue;
2335 
2336     // Search IVUsesByStride to find Cond's IVUse if there is one.
2337     IVStrideUse *CondUse = nullptr;
2338     ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
2339     if (!FindIVUserForCond(Cond, CondUse))
2340       continue;
2341 
2342     // If the trip count is computed in terms of a max (due to ScalarEvolution
2343     // being unable to find a sufficient guard, for example), change the loop
2344     // comparison to use SLT or ULT instead of NE.
2345     // One consequence of doing this now is that it disrupts the count-down
2346     // optimization. That's not always a bad thing though, because in such
2347     // cases it may still be worthwhile to avoid a max.
2348     Cond = OptimizeMax(Cond, CondUse);
2349 
2350     // If this exiting block dominates the latch block, it may also use
2351     // the post-inc value if it won't be shared with other uses.
2352     // Check for dominance.
2353     if (!DT.dominates(ExitingBlock, LatchBlock))
2354       continue;
2355 
2356     // Conservatively avoid trying to use the post-inc value in non-latch
2357     // exits if there may be pre-inc users in intervening blocks.
2358     if (LatchBlock != ExitingBlock)
2359       for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
2360         // Test if the use is reachable from the exiting block. This dominator
2361         // query is a conservative approximation of reachability.
2362         if (&*UI != CondUse &&
2363             !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
2364           // Conservatively assume there may be reuse if the quotient of their
2365           // strides could be a legal scale.
2366           const SCEV *A = IU.getStride(*CondUse, L);
2367           const SCEV *B = IU.getStride(*UI, L);
2368           if (!A || !B) continue;
2369           if (SE.getTypeSizeInBits(A->getType()) !=
2370               SE.getTypeSizeInBits(B->getType())) {
2371             if (SE.getTypeSizeInBits(A->getType()) >
2372                 SE.getTypeSizeInBits(B->getType()))
2373               B = SE.getSignExtendExpr(B, A->getType());
2374             else
2375               A = SE.getSignExtendExpr(A, B->getType());
2376           }
2377           if (const SCEVConstant *D =
2378                 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
2379             const ConstantInt *C = D->getValue();
2380             // Stride of one or negative one can have reuse with non-addresses.
2381             if (C->isOne() || C->isMinusOne())
2382               goto decline_post_inc;
2383             // Avoid weird situations.
2384             if (C->getValue().getMinSignedBits() >= 64 ||
2385                 C->getValue().isMinSignedValue())
2386               goto decline_post_inc;
2387             // Check for possible scaled-address reuse.
2388             MemAccessTy AccessTy = getAccessType(TTI, UI->getUser());
2389             int64_t Scale = C->getSExtValue();
2390             if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2391                                           /*BaseOffset=*/0,
2392                                           /*HasBaseReg=*/false, Scale,
2393                                           AccessTy.AddrSpace))
2394               goto decline_post_inc;
2395             Scale = -Scale;
2396             if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2397                                           /*BaseOffset=*/0,
2398                                           /*HasBaseReg=*/false, Scale,
2399                                           AccessTy.AddrSpace))
2400               goto decline_post_inc;
2401           }
2402         }
2403 
2404     DEBUG(dbgs() << "  Change loop exiting icmp to use postinc iv: "
2405                  << *Cond << '\n');
2406 
2407     // It's possible for the setcc instruction to be anywhere in the loop, and
2408     // possible for it to have multiple users.  If it is not immediately before
2409     // the exiting block branch, move it.
2410     if (&*++BasicBlock::iterator(Cond) != TermBr) {
2411       if (Cond->hasOneUse()) {
2412         Cond->moveBefore(TermBr);
2413       } else {
2414         // Clone the terminating condition and insert into the loopend.
2415         ICmpInst *OldCond = Cond;
2416         Cond = cast<ICmpInst>(Cond->clone());
2417         Cond->setName(L->getHeader()->getName() + ".termcond");
2418         ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond);
2419 
2420         // Clone the IVUse, as the old use still exists!
2421         CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
2422         TermBr->replaceUsesOfWith(OldCond, Cond);
2423       }
2424     }
2425 
2426     // If we get to here, we know that we can transform the setcc instruction to
2427     // use the post-incremented version of the IV, allowing us to coalesce the
2428     // live ranges for the IV correctly.
2429     CondUse->transformToPostInc(L);
2430     Changed = true;
2431 
2432     PostIncs.insert(Cond);
2433   decline_post_inc:;
2434   }
2435 
2436   // Determine an insertion point for the loop induction variable increment. It
2437   // must dominate all the post-inc comparisons we just set up, and it must
2438   // dominate the loop latch edge.
2439   IVIncInsertPos = L->getLoopLatch()->getTerminator();
2440   for (Instruction *Inst : PostIncs) {
2441     BasicBlock *BB =
2442       DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
2443                                     Inst->getParent());
2444     if (BB == Inst->getParent())
2445       IVIncInsertPos = Inst;
2446     else if (BB != IVIncInsertPos->getParent())
2447       IVIncInsertPos = BB->getTerminator();
2448   }
2449 }
2450 
2451 /// Determine if the given use can accommodate a fixup at the given offset and
2452 /// other details. If so, update the use and return true.
2453 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset,
2454                                      bool HasBaseReg, LSRUse::KindType Kind,
2455                                      MemAccessTy AccessTy) {
2456   int64_t NewMinOffset = LU.MinOffset;
2457   int64_t NewMaxOffset = LU.MaxOffset;
2458   MemAccessTy NewAccessTy = AccessTy;
2459 
2460   // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
2461   // something conservative, however this can pessimize in the case that one of
2462   // the uses will have all its uses outside the loop, for example.
2463   if (LU.Kind != Kind)
2464     return false;
2465 
2466   // Check for a mismatched access type, and fall back conservatively as needed.
2467   // TODO: Be less conservative when the type is similar and can use the same
2468   // addressing modes.
2469   if (Kind == LSRUse::Address) {
2470     if (AccessTy.MemTy != LU.AccessTy.MemTy) {
2471       NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(),
2472                                             AccessTy.AddrSpace);
2473     }
2474   }
2475 
2476   // Conservatively assume HasBaseReg is true for now.
2477   if (NewOffset < LU.MinOffset) {
2478     if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2479                           LU.MaxOffset - NewOffset, HasBaseReg))
2480       return false;
2481     NewMinOffset = NewOffset;
2482   } else if (NewOffset > LU.MaxOffset) {
2483     if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2484                           NewOffset - LU.MinOffset, HasBaseReg))
2485       return false;
2486     NewMaxOffset = NewOffset;
2487   }
2488 
2489   // Update the use.
2490   LU.MinOffset = NewMinOffset;
2491   LU.MaxOffset = NewMaxOffset;
2492   LU.AccessTy = NewAccessTy;
2493   return true;
2494 }
2495 
2496 /// Return an LSRUse index and an offset value for a fixup which needs the given
2497 /// expression, with the given kind and optional access type.  Either reuse an
2498 /// existing use or create a new one, as needed.
2499 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr,
2500                                                LSRUse::KindType Kind,
2501                                                MemAccessTy AccessTy) {
2502   const SCEV *Copy = Expr;
2503   int64_t Offset = ExtractImmediate(Expr, SE);
2504 
2505   // Basic uses can't accept any offset, for example.
2506   if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr,
2507                         Offset, /*HasBaseReg=*/ true)) {
2508     Expr = Copy;
2509     Offset = 0;
2510   }
2511 
2512   std::pair<UseMapTy::iterator, bool> P =
2513     UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0));
2514   if (!P.second) {
2515     // A use already existed with this base.
2516     size_t LUIdx = P.first->second;
2517     LSRUse &LU = Uses[LUIdx];
2518     if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
2519       // Reuse this use.
2520       return std::make_pair(LUIdx, Offset);
2521   }
2522 
2523   // Create a new use.
2524   size_t LUIdx = Uses.size();
2525   P.first->second = LUIdx;
2526   Uses.push_back(LSRUse(Kind, AccessTy));
2527   LSRUse &LU = Uses[LUIdx];
2528 
2529   LU.MinOffset = Offset;
2530   LU.MaxOffset = Offset;
2531   return std::make_pair(LUIdx, Offset);
2532 }
2533 
2534 /// Delete the given use from the Uses list.
2535 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) {
2536   if (&LU != &Uses.back())
2537     std::swap(LU, Uses.back());
2538   Uses.pop_back();
2539 
2540   // Update RegUses.
2541   RegUses.swapAndDropUse(LUIdx, Uses.size());
2542 }
2543 
2544 /// Look for a use distinct from OrigLU which is has a formula that has the same
2545 /// registers as the given formula.
2546 LSRUse *
2547 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
2548                                        const LSRUse &OrigLU) {
2549   // Search all uses for the formula. This could be more clever.
2550   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2551     LSRUse &LU = Uses[LUIdx];
2552     // Check whether this use is close enough to OrigLU, to see whether it's
2553     // worthwhile looking through its formulae.
2554     // Ignore ICmpZero uses because they may contain formulae generated by
2555     // GenerateICmpZeroScales, in which case adding fixup offsets may
2556     // be invalid.
2557     if (&LU != &OrigLU &&
2558         LU.Kind != LSRUse::ICmpZero &&
2559         LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
2560         LU.WidestFixupType == OrigLU.WidestFixupType &&
2561         LU.HasFormulaWithSameRegs(OrigF)) {
2562       // Scan through this use's formulae.
2563       for (const Formula &F : LU.Formulae) {
2564         // Check to see if this formula has the same registers and symbols
2565         // as OrigF.
2566         if (F.BaseRegs == OrigF.BaseRegs &&
2567             F.ScaledReg == OrigF.ScaledReg &&
2568             F.BaseGV == OrigF.BaseGV &&
2569             F.Scale == OrigF.Scale &&
2570             F.UnfoldedOffset == OrigF.UnfoldedOffset) {
2571           if (F.BaseOffset == 0)
2572             return &LU;
2573           // This is the formula where all the registers and symbols matched;
2574           // there aren't going to be any others. Since we declined it, we
2575           // can skip the rest of the formulae and proceed to the next LSRUse.
2576           break;
2577         }
2578       }
2579     }
2580   }
2581 
2582   // Nothing looked good.
2583   return nullptr;
2584 }
2585 
2586 void LSRInstance::CollectInterestingTypesAndFactors() {
2587   SmallSetVector<const SCEV *, 4> Strides;
2588 
2589   // Collect interesting types and strides.
2590   SmallVector<const SCEV *, 4> Worklist;
2591   for (const IVStrideUse &U : IU) {
2592     const SCEV *Expr = IU.getExpr(U);
2593 
2594     // Collect interesting types.
2595     Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
2596 
2597     // Add strides for mentioned loops.
2598     Worklist.push_back(Expr);
2599     do {
2600       const SCEV *S = Worklist.pop_back_val();
2601       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2602         if (AR->getLoop() == L)
2603           Strides.insert(AR->getStepRecurrence(SE));
2604         Worklist.push_back(AR->getStart());
2605       } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2606         Worklist.append(Add->op_begin(), Add->op_end());
2607       }
2608     } while (!Worklist.empty());
2609   }
2610 
2611   // Compute interesting factors from the set of interesting strides.
2612   for (SmallSetVector<const SCEV *, 4>::const_iterator
2613        I = Strides.begin(), E = Strides.end(); I != E; ++I)
2614     for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
2615          std::next(I); NewStrideIter != E; ++NewStrideIter) {
2616       const SCEV *OldStride = *I;
2617       const SCEV *NewStride = *NewStrideIter;
2618 
2619       if (SE.getTypeSizeInBits(OldStride->getType()) !=
2620           SE.getTypeSizeInBits(NewStride->getType())) {
2621         if (SE.getTypeSizeInBits(OldStride->getType()) >
2622             SE.getTypeSizeInBits(NewStride->getType()))
2623           NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
2624         else
2625           OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
2626       }
2627       if (const SCEVConstant *Factor =
2628             dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
2629                                                         SE, true))) {
2630         if (Factor->getAPInt().getMinSignedBits() <= 64)
2631           Factors.insert(Factor->getAPInt().getSExtValue());
2632       } else if (const SCEVConstant *Factor =
2633                    dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
2634                                                                NewStride,
2635                                                                SE, true))) {
2636         if (Factor->getAPInt().getMinSignedBits() <= 64)
2637           Factors.insert(Factor->getAPInt().getSExtValue());
2638       }
2639     }
2640 
2641   // If all uses use the same type, don't bother looking for truncation-based
2642   // reuse.
2643   if (Types.size() == 1)
2644     Types.clear();
2645 
2646   DEBUG(print_factors_and_types(dbgs()));
2647 }
2648 
2649 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in
2650 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to
2651 /// IVStrideUses, we could partially skip this.
2652 static User::op_iterator
2653 findIVOperand(User::op_iterator OI, User::op_iterator OE,
2654               Loop *L, ScalarEvolution &SE) {
2655   for(; OI != OE; ++OI) {
2656     if (Instruction *Oper = dyn_cast<Instruction>(*OI)) {
2657       if (!SE.isSCEVable(Oper->getType()))
2658         continue;
2659 
2660       if (const SCEVAddRecExpr *AR =
2661           dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) {
2662         if (AR->getLoop() == L)
2663           break;
2664       }
2665     }
2666   }
2667   return OI;
2668 }
2669 
2670 /// IVChain logic must consistenctly peek base TruncInst operands, so wrap it in
2671 /// a convenient helper.
2672 static Value *getWideOperand(Value *Oper) {
2673   if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper))
2674     return Trunc->getOperand(0);
2675   return Oper;
2676 }
2677 
2678 /// Return true if we allow an IV chain to include both types.
2679 static bool isCompatibleIVType(Value *LVal, Value *RVal) {
2680   Type *LType = LVal->getType();
2681   Type *RType = RVal->getType();
2682   return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy() &&
2683                               // Different address spaces means (possibly)
2684                               // different types of the pointer implementation,
2685                               // e.g. i16 vs i32 so disallow that.
2686                               (LType->getPointerAddressSpace() ==
2687                                RType->getPointerAddressSpace()));
2688 }
2689 
2690 /// Return an approximation of this SCEV expression's "base", or NULL for any
2691 /// constant. Returning the expression itself is conservative. Returning a
2692 /// deeper subexpression is more precise and valid as long as it isn't less
2693 /// complex than another subexpression. For expressions involving multiple
2694 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids
2695 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i],
2696 /// IVInc==b-a.
2697 ///
2698 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost
2699 /// SCEVUnknown, we simply return the rightmost SCEV operand.
2700 static const SCEV *getExprBase(const SCEV *S) {
2701   switch (S->getSCEVType()) {
2702   default: // uncluding scUnknown.
2703     return S;
2704   case scConstant:
2705     return nullptr;
2706   case scTruncate:
2707     return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand());
2708   case scZeroExtend:
2709     return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand());
2710   case scSignExtend:
2711     return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand());
2712   case scAddExpr: {
2713     // Skip over scaled operands (scMulExpr) to follow add operands as long as
2714     // there's nothing more complex.
2715     // FIXME: not sure if we want to recognize negation.
2716     const SCEVAddExpr *Add = cast<SCEVAddExpr>(S);
2717     for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()),
2718            E(Add->op_begin()); I != E; ++I) {
2719       const SCEV *SubExpr = *I;
2720       if (SubExpr->getSCEVType() == scAddExpr)
2721         return getExprBase(SubExpr);
2722 
2723       if (SubExpr->getSCEVType() != scMulExpr)
2724         return SubExpr;
2725     }
2726     return S; // all operands are scaled, be conservative.
2727   }
2728   case scAddRecExpr:
2729     return getExprBase(cast<SCEVAddRecExpr>(S)->getStart());
2730   }
2731 }
2732 
2733 /// Return true if the chain increment is profitable to expand into a loop
2734 /// invariant value, which may require its own register. A profitable chain
2735 /// increment will be an offset relative to the same base. We allow such offsets
2736 /// to potentially be used as chain increment as long as it's not obviously
2737 /// expensive to expand using real instructions.
2738 bool IVChain::isProfitableIncrement(const SCEV *OperExpr,
2739                                     const SCEV *IncExpr,
2740                                     ScalarEvolution &SE) {
2741   // Aggressively form chains when -stress-ivchain.
2742   if (StressIVChain)
2743     return true;
2744 
2745   // Do not replace a constant offset from IV head with a nonconstant IV
2746   // increment.
2747   if (!isa<SCEVConstant>(IncExpr)) {
2748     const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand));
2749     if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr)))
2750       return false;
2751   }
2752 
2753   SmallPtrSet<const SCEV*, 8> Processed;
2754   return !isHighCostExpansion(IncExpr, Processed, SE);
2755 }
2756 
2757 /// Return true if the number of registers needed for the chain is estimated to
2758 /// be less than the number required for the individual IV users. First prohibit
2759 /// any IV users that keep the IV live across increments (the Users set should
2760 /// be empty). Next count the number and type of increments in the chain.
2761 ///
2762 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't
2763 /// effectively use postinc addressing modes. Only consider it profitable it the
2764 /// increments can be computed in fewer registers when chained.
2765 ///
2766 /// TODO: Consider IVInc free if it's already used in another chains.
2767 static bool
2768 isProfitableChain(IVChain &Chain, SmallPtrSetImpl<Instruction*> &Users,
2769                   ScalarEvolution &SE, const TargetTransformInfo &TTI) {
2770   if (StressIVChain)
2771     return true;
2772 
2773   if (!Chain.hasIncs())
2774     return false;
2775 
2776   if (!Users.empty()) {
2777     DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n";
2778           for (Instruction *Inst : Users) {
2779             dbgs() << "  " << *Inst << "\n";
2780           });
2781     return false;
2782   }
2783   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
2784 
2785   // The chain itself may require a register, so intialize cost to 1.
2786   int cost = 1;
2787 
2788   // A complete chain likely eliminates the need for keeping the original IV in
2789   // a register. LSR does not currently know how to form a complete chain unless
2790   // the header phi already exists.
2791   if (isa<PHINode>(Chain.tailUserInst())
2792       && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) {
2793     --cost;
2794   }
2795   const SCEV *LastIncExpr = nullptr;
2796   unsigned NumConstIncrements = 0;
2797   unsigned NumVarIncrements = 0;
2798   unsigned NumReusedIncrements = 0;
2799   for (const IVInc &Inc : Chain) {
2800     if (Inc.IncExpr->isZero())
2801       continue;
2802 
2803     // Incrementing by zero or some constant is neutral. We assume constants can
2804     // be folded into an addressing mode or an add's immediate operand.
2805     if (isa<SCEVConstant>(Inc.IncExpr)) {
2806       ++NumConstIncrements;
2807       continue;
2808     }
2809 
2810     if (Inc.IncExpr == LastIncExpr)
2811       ++NumReusedIncrements;
2812     else
2813       ++NumVarIncrements;
2814 
2815     LastIncExpr = Inc.IncExpr;
2816   }
2817   // An IV chain with a single increment is handled by LSR's postinc
2818   // uses. However, a chain with multiple increments requires keeping the IV's
2819   // value live longer than it needs to be if chained.
2820   if (NumConstIncrements > 1)
2821     --cost;
2822 
2823   // Materializing increment expressions in the preheader that didn't exist in
2824   // the original code may cost a register. For example, sign-extended array
2825   // indices can produce ridiculous increments like this:
2826   // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64)))
2827   cost += NumVarIncrements;
2828 
2829   // Reusing variable increments likely saves a register to hold the multiple of
2830   // the stride.
2831   cost -= NumReusedIncrements;
2832 
2833   DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost
2834                << "\n");
2835 
2836   return cost < 0;
2837 }
2838 
2839 /// Add this IV user to an existing chain or make it the head of a new chain.
2840 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper,
2841                                    SmallVectorImpl<ChainUsers> &ChainUsersVec) {
2842   // When IVs are used as types of varying widths, they are generally converted
2843   // to a wider type with some uses remaining narrow under a (free) trunc.
2844   Value *const NextIV = getWideOperand(IVOper);
2845   const SCEV *const OperExpr = SE.getSCEV(NextIV);
2846   const SCEV *const OperExprBase = getExprBase(OperExpr);
2847 
2848   // Visit all existing chains. Check if its IVOper can be computed as a
2849   // profitable loop invariant increment from the last link in the Chain.
2850   unsigned ChainIdx = 0, NChains = IVChainVec.size();
2851   const SCEV *LastIncExpr = nullptr;
2852   for (; ChainIdx < NChains; ++ChainIdx) {
2853     IVChain &Chain = IVChainVec[ChainIdx];
2854 
2855     // Prune the solution space aggressively by checking that both IV operands
2856     // are expressions that operate on the same unscaled SCEVUnknown. This
2857     // "base" will be canceled by the subsequent getMinusSCEV call. Checking
2858     // first avoids creating extra SCEV expressions.
2859     if (!StressIVChain && Chain.ExprBase != OperExprBase)
2860       continue;
2861 
2862     Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand);
2863     if (!isCompatibleIVType(PrevIV, NextIV))
2864       continue;
2865 
2866     // A phi node terminates a chain.
2867     if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst()))
2868       continue;
2869 
2870     // The increment must be loop-invariant so it can be kept in a register.
2871     const SCEV *PrevExpr = SE.getSCEV(PrevIV);
2872     const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr);
2873     if (!SE.isLoopInvariant(IncExpr, L))
2874       continue;
2875 
2876     if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) {
2877       LastIncExpr = IncExpr;
2878       break;
2879     }
2880   }
2881   // If we haven't found a chain, create a new one, unless we hit the max. Don't
2882   // bother for phi nodes, because they must be last in the chain.
2883   if (ChainIdx == NChains) {
2884     if (isa<PHINode>(UserInst))
2885       return;
2886     if (NChains >= MaxChains && !StressIVChain) {
2887       DEBUG(dbgs() << "IV Chain Limit\n");
2888       return;
2889     }
2890     LastIncExpr = OperExpr;
2891     // IVUsers may have skipped over sign/zero extensions. We don't currently
2892     // attempt to form chains involving extensions unless they can be hoisted
2893     // into this loop's AddRec.
2894     if (!isa<SCEVAddRecExpr>(LastIncExpr))
2895       return;
2896     ++NChains;
2897     IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr),
2898                                  OperExprBase));
2899     ChainUsersVec.resize(NChains);
2900     DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst
2901                  << ") IV=" << *LastIncExpr << "\n");
2902   } else {
2903     DEBUG(dbgs() << "IV Chain#" << ChainIdx << "  Inc: (" << *UserInst
2904                  << ") IV+" << *LastIncExpr << "\n");
2905     // Add this IV user to the end of the chain.
2906     IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr));
2907   }
2908   IVChain &Chain = IVChainVec[ChainIdx];
2909 
2910   SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers;
2911   // This chain's NearUsers become FarUsers.
2912   if (!LastIncExpr->isZero()) {
2913     ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(),
2914                                             NearUsers.end());
2915     NearUsers.clear();
2916   }
2917 
2918   // All other uses of IVOperand become near uses of the chain.
2919   // We currently ignore intermediate values within SCEV expressions, assuming
2920   // they will eventually be used be the current chain, or can be computed
2921   // from one of the chain increments. To be more precise we could
2922   // transitively follow its user and only add leaf IV users to the set.
2923   for (User *U : IVOper->users()) {
2924     Instruction *OtherUse = dyn_cast<Instruction>(U);
2925     if (!OtherUse)
2926       continue;
2927     // Uses in the chain will no longer be uses if the chain is formed.
2928     // Include the head of the chain in this iteration (not Chain.begin()).
2929     IVChain::const_iterator IncIter = Chain.Incs.begin();
2930     IVChain::const_iterator IncEnd = Chain.Incs.end();
2931     for( ; IncIter != IncEnd; ++IncIter) {
2932       if (IncIter->UserInst == OtherUse)
2933         break;
2934     }
2935     if (IncIter != IncEnd)
2936       continue;
2937 
2938     if (SE.isSCEVable(OtherUse->getType())
2939         && !isa<SCEVUnknown>(SE.getSCEV(OtherUse))
2940         && IU.isIVUserOrOperand(OtherUse)) {
2941       continue;
2942     }
2943     NearUsers.insert(OtherUse);
2944   }
2945 
2946   // Since this user is part of the chain, it's no longer considered a use
2947   // of the chain.
2948   ChainUsersVec[ChainIdx].FarUsers.erase(UserInst);
2949 }
2950 
2951 /// Populate the vector of Chains.
2952 ///
2953 /// This decreases ILP at the architecture level. Targets with ample registers,
2954 /// multiple memory ports, and no register renaming probably don't want
2955 /// this. However, such targets should probably disable LSR altogether.
2956 ///
2957 /// The job of LSR is to make a reasonable choice of induction variables across
2958 /// the loop. Subsequent passes can easily "unchain" computation exposing more
2959 /// ILP *within the loop* if the target wants it.
2960 ///
2961 /// Finding the best IV chain is potentially a scheduling problem. Since LSR
2962 /// will not reorder memory operations, it will recognize this as a chain, but
2963 /// will generate redundant IV increments. Ideally this would be corrected later
2964 /// by a smart scheduler:
2965 ///        = A[i]
2966 ///        = A[i+x]
2967 /// A[i]   =
2968 /// A[i+x] =
2969 ///
2970 /// TODO: Walk the entire domtree within this loop, not just the path to the
2971 /// loop latch. This will discover chains on side paths, but requires
2972 /// maintaining multiple copies of the Chains state.
2973 void LSRInstance::CollectChains() {
2974   DEBUG(dbgs() << "Collecting IV Chains.\n");
2975   SmallVector<ChainUsers, 8> ChainUsersVec;
2976 
2977   SmallVector<BasicBlock *,8> LatchPath;
2978   BasicBlock *LoopHeader = L->getHeader();
2979   for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch());
2980        Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) {
2981     LatchPath.push_back(Rung->getBlock());
2982   }
2983   LatchPath.push_back(LoopHeader);
2984 
2985   // Walk the instruction stream from the loop header to the loop latch.
2986   for (BasicBlock *BB : reverse(LatchPath)) {
2987     for (Instruction &I : *BB) {
2988       // Skip instructions that weren't seen by IVUsers analysis.
2989       if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I))
2990         continue;
2991 
2992       // Ignore users that are part of a SCEV expression. This way we only
2993       // consider leaf IV Users. This effectively rediscovers a portion of
2994       // IVUsers analysis but in program order this time.
2995       if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I)))
2996           continue;
2997 
2998       // Remove this instruction from any NearUsers set it may be in.
2999       for (unsigned ChainIdx = 0, NChains = IVChainVec.size();
3000            ChainIdx < NChains; ++ChainIdx) {
3001         ChainUsersVec[ChainIdx].NearUsers.erase(&I);
3002       }
3003       // Search for operands that can be chained.
3004       SmallPtrSet<Instruction*, 4> UniqueOperands;
3005       User::op_iterator IVOpEnd = I.op_end();
3006       User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE);
3007       while (IVOpIter != IVOpEnd) {
3008         Instruction *IVOpInst = cast<Instruction>(*IVOpIter);
3009         if (UniqueOperands.insert(IVOpInst).second)
3010           ChainInstruction(&I, IVOpInst, ChainUsersVec);
3011         IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
3012       }
3013     } // Continue walking down the instructions.
3014   } // Continue walking down the domtree.
3015   // Visit phi backedges to determine if the chain can generate the IV postinc.
3016   for (PHINode &PN : L->getHeader()->phis()) {
3017     if (!SE.isSCEVable(PN.getType()))
3018       continue;
3019 
3020     Instruction *IncV =
3021         dyn_cast<Instruction>(PN.getIncomingValueForBlock(L->getLoopLatch()));
3022     if (IncV)
3023       ChainInstruction(&PN, IncV, ChainUsersVec);
3024   }
3025   // Remove any unprofitable chains.
3026   unsigned ChainIdx = 0;
3027   for (unsigned UsersIdx = 0, NChains = IVChainVec.size();
3028        UsersIdx < NChains; ++UsersIdx) {
3029     if (!isProfitableChain(IVChainVec[UsersIdx],
3030                            ChainUsersVec[UsersIdx].FarUsers, SE, TTI))
3031       continue;
3032     // Preserve the chain at UsesIdx.
3033     if (ChainIdx != UsersIdx)
3034       IVChainVec[ChainIdx] = IVChainVec[UsersIdx];
3035     FinalizeChain(IVChainVec[ChainIdx]);
3036     ++ChainIdx;
3037   }
3038   IVChainVec.resize(ChainIdx);
3039 }
3040 
3041 void LSRInstance::FinalizeChain(IVChain &Chain) {
3042   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
3043   DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n");
3044 
3045   for (const IVInc &Inc : Chain) {
3046     DEBUG(dbgs() << "        Inc: " << *Inc.UserInst << "\n");
3047     auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand);
3048     assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand");
3049     IVIncSet.insert(UseI);
3050   }
3051 }
3052 
3053 /// Return true if the IVInc can be folded into an addressing mode.
3054 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst,
3055                              Value *Operand, const TargetTransformInfo &TTI) {
3056   const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr);
3057   if (!IncConst || !isAddressUse(TTI, UserInst, Operand))
3058     return false;
3059 
3060   if (IncConst->getAPInt().getMinSignedBits() > 64)
3061     return false;
3062 
3063   MemAccessTy AccessTy = getAccessType(TTI, UserInst);
3064   int64_t IncOffset = IncConst->getValue()->getSExtValue();
3065   if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr,
3066                         IncOffset, /*HaseBaseReg=*/false))
3067     return false;
3068 
3069   return true;
3070 }
3071 
3072 /// Generate an add or subtract for each IVInc in a chain to materialize the IV
3073 /// user's operand from the previous IV user's operand.
3074 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
3075                                   SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
3076   // Find the new IVOperand for the head of the chain. It may have been replaced
3077   // by LSR.
3078   const IVInc &Head = Chain.Incs[0];
3079   User::op_iterator IVOpEnd = Head.UserInst->op_end();
3080   // findIVOperand returns IVOpEnd if it can no longer find a valid IV user.
3081   User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(),
3082                                              IVOpEnd, L, SE);
3083   Value *IVSrc = nullptr;
3084   while (IVOpIter != IVOpEnd) {
3085     IVSrc = getWideOperand(*IVOpIter);
3086 
3087     // If this operand computes the expression that the chain needs, we may use
3088     // it. (Check this after setting IVSrc which is used below.)
3089     //
3090     // Note that if Head.IncExpr is wider than IVSrc, then this phi is too
3091     // narrow for the chain, so we can no longer use it. We do allow using a
3092     // wider phi, assuming the LSR checked for free truncation. In that case we
3093     // should already have a truncate on this operand such that
3094     // getSCEV(IVSrc) == IncExpr.
3095     if (SE.getSCEV(*IVOpIter) == Head.IncExpr
3096         || SE.getSCEV(IVSrc) == Head.IncExpr) {
3097       break;
3098     }
3099     IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
3100   }
3101   if (IVOpIter == IVOpEnd) {
3102     // Gracefully give up on this chain.
3103     DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n");
3104     return;
3105   }
3106 
3107   DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n");
3108   Type *IVTy = IVSrc->getType();
3109   Type *IntTy = SE.getEffectiveSCEVType(IVTy);
3110   const SCEV *LeftOverExpr = nullptr;
3111   for (const IVInc &Inc : Chain) {
3112     Instruction *InsertPt = Inc.UserInst;
3113     if (isa<PHINode>(InsertPt))
3114       InsertPt = L->getLoopLatch()->getTerminator();
3115 
3116     // IVOper will replace the current IV User's operand. IVSrc is the IV
3117     // value currently held in a register.
3118     Value *IVOper = IVSrc;
3119     if (!Inc.IncExpr->isZero()) {
3120       // IncExpr was the result of subtraction of two narrow values, so must
3121       // be signed.
3122       const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy);
3123       LeftOverExpr = LeftOverExpr ?
3124         SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr;
3125     }
3126     if (LeftOverExpr && !LeftOverExpr->isZero()) {
3127       // Expand the IV increment.
3128       Rewriter.clearPostInc();
3129       Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt);
3130       const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc),
3131                                              SE.getUnknown(IncV));
3132       IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt);
3133 
3134       // If an IV increment can't be folded, use it as the next IV value.
3135       if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) {
3136         assert(IVTy == IVOper->getType() && "inconsistent IV increment type");
3137         IVSrc = IVOper;
3138         LeftOverExpr = nullptr;
3139       }
3140     }
3141     Type *OperTy = Inc.IVOperand->getType();
3142     if (IVTy != OperTy) {
3143       assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) &&
3144              "cannot extend a chained IV");
3145       IRBuilder<> Builder(InsertPt);
3146       IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain");
3147     }
3148     Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper);
3149     DeadInsts.emplace_back(Inc.IVOperand);
3150   }
3151   // If LSR created a new, wider phi, we may also replace its postinc. We only
3152   // do this if we also found a wide value for the head of the chain.
3153   if (isa<PHINode>(Chain.tailUserInst())) {
3154     for (PHINode &Phi : L->getHeader()->phis()) {
3155       if (!isCompatibleIVType(&Phi, IVSrc))
3156         continue;
3157       Instruction *PostIncV = dyn_cast<Instruction>(
3158           Phi.getIncomingValueForBlock(L->getLoopLatch()));
3159       if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc)))
3160         continue;
3161       Value *IVOper = IVSrc;
3162       Type *PostIncTy = PostIncV->getType();
3163       if (IVTy != PostIncTy) {
3164         assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types");
3165         IRBuilder<> Builder(L->getLoopLatch()->getTerminator());
3166         Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc());
3167         IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain");
3168       }
3169       Phi.replaceUsesOfWith(PostIncV, IVOper);
3170       DeadInsts.emplace_back(PostIncV);
3171     }
3172   }
3173 }
3174 
3175 void LSRInstance::CollectFixupsAndInitialFormulae() {
3176   for (const IVStrideUse &U : IU) {
3177     Instruction *UserInst = U.getUser();
3178     // Skip IV users that are part of profitable IV Chains.
3179     User::op_iterator UseI =
3180         find(UserInst->operands(), U.getOperandValToReplace());
3181     assert(UseI != UserInst->op_end() && "cannot find IV operand");
3182     if (IVIncSet.count(UseI)) {
3183       DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n');
3184       continue;
3185     }
3186 
3187     LSRUse::KindType Kind = LSRUse::Basic;
3188     MemAccessTy AccessTy;
3189     if (isAddressUse(TTI, UserInst, U.getOperandValToReplace())) {
3190       Kind = LSRUse::Address;
3191       AccessTy = getAccessType(TTI, UserInst);
3192     }
3193 
3194     const SCEV *S = IU.getExpr(U);
3195     PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops();
3196 
3197     // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
3198     // (N - i == 0), and this allows (N - i) to be the expression that we work
3199     // with rather than just N or i, so we can consider the register
3200     // requirements for both N and i at the same time. Limiting this code to
3201     // equality icmps is not a problem because all interesting loops use
3202     // equality icmps, thanks to IndVarSimplify.
3203     if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst))
3204       if (CI->isEquality()) {
3205         // Swap the operands if needed to put the OperandValToReplace on the
3206         // left, for consistency.
3207         Value *NV = CI->getOperand(1);
3208         if (NV == U.getOperandValToReplace()) {
3209           CI->setOperand(1, CI->getOperand(0));
3210           CI->setOperand(0, NV);
3211           NV = CI->getOperand(1);
3212           Changed = true;
3213         }
3214 
3215         // x == y  -->  x - y == 0
3216         const SCEV *N = SE.getSCEV(NV);
3217         if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) {
3218           // S is normalized, so normalize N before folding it into S
3219           // to keep the result normalized.
3220           N = normalizeForPostIncUse(N, TmpPostIncLoops, SE);
3221           Kind = LSRUse::ICmpZero;
3222           S = SE.getMinusSCEV(N, S);
3223         }
3224 
3225         // -1 and the negations of all interesting strides (except the negation
3226         // of -1) are now also interesting.
3227         for (size_t i = 0, e = Factors.size(); i != e; ++i)
3228           if (Factors[i] != -1)
3229             Factors.insert(-(uint64_t)Factors[i]);
3230         Factors.insert(-1);
3231       }
3232 
3233     // Get or create an LSRUse.
3234     std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
3235     size_t LUIdx = P.first;
3236     int64_t Offset = P.second;
3237     LSRUse &LU = Uses[LUIdx];
3238 
3239     // Record the fixup.
3240     LSRFixup &LF = LU.getNewFixup();
3241     LF.UserInst = UserInst;
3242     LF.OperandValToReplace = U.getOperandValToReplace();
3243     LF.PostIncLoops = TmpPostIncLoops;
3244     LF.Offset = Offset;
3245     LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3246 
3247     if (!LU.WidestFixupType ||
3248         SE.getTypeSizeInBits(LU.WidestFixupType) <
3249         SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3250       LU.WidestFixupType = LF.OperandValToReplace->getType();
3251 
3252     // If this is the first use of this LSRUse, give it a formula.
3253     if (LU.Formulae.empty()) {
3254       InsertInitialFormula(S, LU, LUIdx);
3255       CountRegisters(LU.Formulae.back(), LUIdx);
3256     }
3257   }
3258 
3259   DEBUG(print_fixups(dbgs()));
3260 }
3261 
3262 /// Insert a formula for the given expression into the given use, separating out
3263 /// loop-variant portions from loop-invariant and loop-computable portions.
3264 void
3265 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
3266   // Mark uses whose expressions cannot be expanded.
3267   if (!isSafeToExpand(S, SE))
3268     LU.RigidFormula = true;
3269 
3270   Formula F;
3271   F.initialMatch(S, L, SE);
3272   bool Inserted = InsertFormula(LU, LUIdx, F);
3273   assert(Inserted && "Initial formula already exists!"); (void)Inserted;
3274 }
3275 
3276 /// Insert a simple single-register formula for the given expression into the
3277 /// given use.
3278 void
3279 LSRInstance::InsertSupplementalFormula(const SCEV *S,
3280                                        LSRUse &LU, size_t LUIdx) {
3281   Formula F;
3282   F.BaseRegs.push_back(S);
3283   F.HasBaseReg = true;
3284   bool Inserted = InsertFormula(LU, LUIdx, F);
3285   assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
3286 }
3287 
3288 /// Note which registers are used by the given formula, updating RegUses.
3289 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
3290   if (F.ScaledReg)
3291     RegUses.countRegister(F.ScaledReg, LUIdx);
3292   for (const SCEV *BaseReg : F.BaseRegs)
3293     RegUses.countRegister(BaseReg, LUIdx);
3294 }
3295 
3296 /// If the given formula has not yet been inserted, add it to the list, and
3297 /// return true. Return false otherwise.
3298 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
3299   // Do not insert formula that we will not be able to expand.
3300   assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) &&
3301          "Formula is illegal");
3302 
3303   if (!LU.InsertFormula(F, *L))
3304     return false;
3305 
3306   CountRegisters(F, LUIdx);
3307   return true;
3308 }
3309 
3310 /// Check for other uses of loop-invariant values which we're tracking. These
3311 /// other uses will pin these values in registers, making them less profitable
3312 /// for elimination.
3313 /// TODO: This currently misses non-constant addrec step registers.
3314 /// TODO: Should this give more weight to users inside the loop?
3315 void
3316 LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
3317   SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
3318   SmallPtrSet<const SCEV *, 32> Visited;
3319 
3320   while (!Worklist.empty()) {
3321     const SCEV *S = Worklist.pop_back_val();
3322 
3323     // Don't process the same SCEV twice
3324     if (!Visited.insert(S).second)
3325       continue;
3326 
3327     if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
3328       Worklist.append(N->op_begin(), N->op_end());
3329     else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
3330       Worklist.push_back(C->getOperand());
3331     else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
3332       Worklist.push_back(D->getLHS());
3333       Worklist.push_back(D->getRHS());
3334     } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) {
3335       const Value *V = US->getValue();
3336       if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
3337         // Look for instructions defined outside the loop.
3338         if (L->contains(Inst)) continue;
3339       } else if (isa<UndefValue>(V))
3340         // Undef doesn't have a live range, so it doesn't matter.
3341         continue;
3342       for (const Use &U : V->uses()) {
3343         const Instruction *UserInst = dyn_cast<Instruction>(U.getUser());
3344         // Ignore non-instructions.
3345         if (!UserInst)
3346           continue;
3347         // Ignore instructions in other functions (as can happen with
3348         // Constants).
3349         if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
3350           continue;
3351         // Ignore instructions not dominated by the loop.
3352         const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
3353           UserInst->getParent() :
3354           cast<PHINode>(UserInst)->getIncomingBlock(
3355             PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
3356         if (!DT.dominates(L->getHeader(), UseBB))
3357           continue;
3358         // Don't bother if the instruction is in a BB which ends in an EHPad.
3359         if (UseBB->getTerminator()->isEHPad())
3360           continue;
3361         // Don't bother rewriting PHIs in catchswitch blocks.
3362         if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator()))
3363           continue;
3364         // Ignore uses which are part of other SCEV expressions, to avoid
3365         // analyzing them multiple times.
3366         if (SE.isSCEVable(UserInst->getType())) {
3367           const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
3368           // If the user is a no-op, look through to its uses.
3369           if (!isa<SCEVUnknown>(UserS))
3370             continue;
3371           if (UserS == US) {
3372             Worklist.push_back(
3373               SE.getUnknown(const_cast<Instruction *>(UserInst)));
3374             continue;
3375           }
3376         }
3377         // Ignore icmp instructions which are already being analyzed.
3378         if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
3379           unsigned OtherIdx = !U.getOperandNo();
3380           Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
3381           if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L))
3382             continue;
3383         }
3384 
3385         std::pair<size_t, int64_t> P = getUse(
3386             S, LSRUse::Basic, MemAccessTy());
3387         size_t LUIdx = P.first;
3388         int64_t Offset = P.second;
3389         LSRUse &LU = Uses[LUIdx];
3390         LSRFixup &LF = LU.getNewFixup();
3391         LF.UserInst = const_cast<Instruction *>(UserInst);
3392         LF.OperandValToReplace = U;
3393         LF.Offset = Offset;
3394         LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3395         if (!LU.WidestFixupType ||
3396             SE.getTypeSizeInBits(LU.WidestFixupType) <
3397             SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3398           LU.WidestFixupType = LF.OperandValToReplace->getType();
3399         InsertSupplementalFormula(US, LU, LUIdx);
3400         CountRegisters(LU.Formulae.back(), Uses.size() - 1);
3401         break;
3402       }
3403     }
3404   }
3405 }
3406 
3407 /// Split S into subexpressions which can be pulled out into separate
3408 /// registers. If C is non-null, multiply each subexpression by C.
3409 ///
3410 /// Return remainder expression after factoring the subexpressions captured by
3411 /// Ops. If Ops is complete, return NULL.
3412 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C,
3413                                    SmallVectorImpl<const SCEV *> &Ops,
3414                                    const Loop *L,
3415                                    ScalarEvolution &SE,
3416                                    unsigned Depth = 0) {
3417   // Arbitrarily cap recursion to protect compile time.
3418   if (Depth >= 3)
3419     return S;
3420 
3421   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3422     // Break out add operands.
3423     for (const SCEV *S : Add->operands()) {
3424       const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1);
3425       if (Remainder)
3426         Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3427     }
3428     return nullptr;
3429   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
3430     // Split a non-zero base out of an addrec.
3431     if (AR->getStart()->isZero() || !AR->isAffine())
3432       return S;
3433 
3434     const SCEV *Remainder = CollectSubexprs(AR->getStart(),
3435                                             C, Ops, L, SE, Depth+1);
3436     // Split the non-zero AddRec unless it is part of a nested recurrence that
3437     // does not pertain to this loop.
3438     if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) {
3439       Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3440       Remainder = nullptr;
3441     }
3442     if (Remainder != AR->getStart()) {
3443       if (!Remainder)
3444         Remainder = SE.getConstant(AR->getType(), 0);
3445       return SE.getAddRecExpr(Remainder,
3446                               AR->getStepRecurrence(SE),
3447                               AR->getLoop(),
3448                               //FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
3449                               SCEV::FlagAnyWrap);
3450     }
3451   } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3452     // Break (C * (a + b + c)) into C*a + C*b + C*c.
3453     if (Mul->getNumOperands() != 2)
3454       return S;
3455     if (const SCEVConstant *Op0 =
3456         dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3457       C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0;
3458       const SCEV *Remainder =
3459         CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1);
3460       if (Remainder)
3461         Ops.push_back(SE.getMulExpr(C, Remainder));
3462       return nullptr;
3463     }
3464   }
3465   return S;
3466 }
3467 
3468 /// \brief Helper function for LSRInstance::GenerateReassociations.
3469 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
3470                                              const Formula &Base,
3471                                              unsigned Depth, size_t Idx,
3472                                              bool IsScaledReg) {
3473   const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3474   SmallVector<const SCEV *, 8> AddOps;
3475   const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE);
3476   if (Remainder)
3477     AddOps.push_back(Remainder);
3478 
3479   if (AddOps.size() == 1)
3480     return;
3481 
3482   for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
3483                                                      JE = AddOps.end();
3484        J != JE; ++J) {
3485     // Loop-variant "unknown" values are uninteresting; we won't be able to
3486     // do anything meaningful with them.
3487     if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L))
3488       continue;
3489 
3490     // Don't pull a constant into a register if the constant could be folded
3491     // into an immediate field.
3492     if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3493                          LU.AccessTy, *J, Base.getNumRegs() > 1))
3494       continue;
3495 
3496     // Collect all operands except *J.
3497     SmallVector<const SCEV *, 8> InnerAddOps(
3498         ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J);
3499     InnerAddOps.append(std::next(J),
3500                        ((const SmallVector<const SCEV *, 8> &)AddOps).end());
3501 
3502     // Don't leave just a constant behind in a register if the constant could
3503     // be folded into an immediate field.
3504     if (InnerAddOps.size() == 1 &&
3505         isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3506                          LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1))
3507       continue;
3508 
3509     const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
3510     if (InnerSum->isZero())
3511       continue;
3512     Formula F = Base;
3513 
3514     // Add the remaining pieces of the add back into the new formula.
3515     const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum);
3516     if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 &&
3517         TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3518                                 InnerSumSC->getValue()->getZExtValue())) {
3519       F.UnfoldedOffset =
3520           (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue();
3521       if (IsScaledReg)
3522         F.ScaledReg = nullptr;
3523       else
3524         F.BaseRegs.erase(F.BaseRegs.begin() + Idx);
3525     } else if (IsScaledReg)
3526       F.ScaledReg = InnerSum;
3527     else
3528       F.BaseRegs[Idx] = InnerSum;
3529 
3530     // Add J as its own register, or an unfolded immediate.
3531     const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J);
3532     if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 &&
3533         TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3534                                 SC->getValue()->getZExtValue()))
3535       F.UnfoldedOffset =
3536           (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue();
3537     else
3538       F.BaseRegs.push_back(*J);
3539     // We may have changed the number of register in base regs, adjust the
3540     // formula accordingly.
3541     F.canonicalize(*L);
3542 
3543     if (InsertFormula(LU, LUIdx, F))
3544       // If that formula hadn't been seen before, recurse to find more like
3545       // it.
3546       GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth + 1);
3547   }
3548 }
3549 
3550 /// Split out subexpressions from adds and the bases of addrecs.
3551 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
3552                                          Formula Base, unsigned Depth) {
3553   assert(Base.isCanonical(*L) && "Input must be in the canonical form");
3554   // Arbitrarily cap recursion to protect compile time.
3555   if (Depth >= 3)
3556     return;
3557 
3558   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3559     GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i);
3560 
3561   if (Base.Scale == 1)
3562     GenerateReassociationsImpl(LU, LUIdx, Base, Depth,
3563                                /* Idx */ -1, /* IsScaledReg */ true);
3564 }
3565 
3566 ///  Generate a formula consisting of all of the loop-dominating registers added
3567 /// into a single register.
3568 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
3569                                        Formula Base) {
3570   // This method is only interesting on a plurality of registers.
3571   if (Base.BaseRegs.size() + (Base.Scale == 1) <= 1)
3572     return;
3573 
3574   // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before
3575   // processing the formula.
3576   Base.unscale();
3577   Formula F = Base;
3578   F.BaseRegs.clear();
3579   SmallVector<const SCEV *, 4> Ops;
3580   for (const SCEV *BaseReg : Base.BaseRegs) {
3581     if (SE.properlyDominates(BaseReg, L->getHeader()) &&
3582         !SE.hasComputableLoopEvolution(BaseReg, L))
3583       Ops.push_back(BaseReg);
3584     else
3585       F.BaseRegs.push_back(BaseReg);
3586   }
3587   if (Ops.size() > 1) {
3588     const SCEV *Sum = SE.getAddExpr(Ops);
3589     // TODO: If Sum is zero, it probably means ScalarEvolution missed an
3590     // opportunity to fold something. For now, just ignore such cases
3591     // rather than proceed with zero in a register.
3592     if (!Sum->isZero()) {
3593       F.BaseRegs.push_back(Sum);
3594       F.canonicalize(*L);
3595       (void)InsertFormula(LU, LUIdx, F);
3596     }
3597   }
3598 }
3599 
3600 /// \brief Helper function for LSRInstance::GenerateSymbolicOffsets.
3601 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
3602                                               const Formula &Base, size_t Idx,
3603                                               bool IsScaledReg) {
3604   const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3605   GlobalValue *GV = ExtractSymbol(G, SE);
3606   if (G->isZero() || !GV)
3607     return;
3608   Formula F = Base;
3609   F.BaseGV = GV;
3610   if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3611     return;
3612   if (IsScaledReg)
3613     F.ScaledReg = G;
3614   else
3615     F.BaseRegs[Idx] = G;
3616   (void)InsertFormula(LU, LUIdx, F);
3617 }
3618 
3619 /// Generate reuse formulae using symbolic offsets.
3620 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
3621                                           Formula Base) {
3622   // We can't add a symbolic offset if the address already contains one.
3623   if (Base.BaseGV) return;
3624 
3625   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3626     GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i);
3627   if (Base.Scale == 1)
3628     GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1,
3629                                 /* IsScaledReg */ true);
3630 }
3631 
3632 /// \brief Helper function for LSRInstance::GenerateConstantOffsets.
3633 void LSRInstance::GenerateConstantOffsetsImpl(
3634     LSRUse &LU, unsigned LUIdx, const Formula &Base,
3635     const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) {
3636   const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3637   for (int64_t Offset : Worklist) {
3638     Formula F = Base;
3639     F.BaseOffset = (uint64_t)Base.BaseOffset - Offset;
3640     if (isLegalUse(TTI, LU.MinOffset - Offset, LU.MaxOffset - Offset, LU.Kind,
3641                    LU.AccessTy, F)) {
3642       // Add the offset to the base register.
3643       const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G);
3644       // If it cancelled out, drop the base register, otherwise update it.
3645       if (NewG->isZero()) {
3646         if (IsScaledReg) {
3647           F.Scale = 0;
3648           F.ScaledReg = nullptr;
3649         } else
3650           F.deleteBaseReg(F.BaseRegs[Idx]);
3651         F.canonicalize(*L);
3652       } else if (IsScaledReg)
3653         F.ScaledReg = NewG;
3654       else
3655         F.BaseRegs[Idx] = NewG;
3656 
3657       (void)InsertFormula(LU, LUIdx, F);
3658     }
3659   }
3660 
3661   int64_t Imm = ExtractImmediate(G, SE);
3662   if (G->isZero() || Imm == 0)
3663     return;
3664   Formula F = Base;
3665   F.BaseOffset = (uint64_t)F.BaseOffset + Imm;
3666   if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3667     return;
3668   if (IsScaledReg)
3669     F.ScaledReg = G;
3670   else
3671     F.BaseRegs[Idx] = G;
3672   (void)InsertFormula(LU, LUIdx, F);
3673 }
3674 
3675 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
3676 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
3677                                           Formula Base) {
3678   // TODO: For now, just add the min and max offset, because it usually isn't
3679   // worthwhile looking at everything inbetween.
3680   SmallVector<int64_t, 2> Worklist;
3681   Worklist.push_back(LU.MinOffset);
3682   if (LU.MaxOffset != LU.MinOffset)
3683     Worklist.push_back(LU.MaxOffset);
3684 
3685   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3686     GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i);
3687   if (Base.Scale == 1)
3688     GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1,
3689                                 /* IsScaledReg */ true);
3690 }
3691 
3692 /// For ICmpZero, check to see if we can scale up the comparison. For example, x
3693 /// == y -> x*c == y*c.
3694 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
3695                                          Formula Base) {
3696   if (LU.Kind != LSRUse::ICmpZero) return;
3697 
3698   // Determine the integer type for the base formula.
3699   Type *IntTy = Base.getType();
3700   if (!IntTy) return;
3701   if (SE.getTypeSizeInBits(IntTy) > 64) return;
3702 
3703   // Don't do this if there is more than one offset.
3704   if (LU.MinOffset != LU.MaxOffset) return;
3705 
3706   // Check if transformation is valid. It is illegal to multiply pointer.
3707   if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy())
3708     return;
3709   for (const SCEV *BaseReg : Base.BaseRegs)
3710     if (BaseReg->getType()->isPointerTy())
3711       return;
3712   assert(!Base.BaseGV && "ICmpZero use is not legal!");
3713 
3714   // Check each interesting stride.
3715   for (int64_t Factor : Factors) {
3716     // Check that the multiplication doesn't overflow.
3717     if (Base.BaseOffset == std::numeric_limits<int64_t>::min() && Factor == -1)
3718       continue;
3719     int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor;
3720     if (NewBaseOffset / Factor != Base.BaseOffset)
3721       continue;
3722     // If the offset will be truncated at this use, check that it is in bounds.
3723     if (!IntTy->isPointerTy() &&
3724         !ConstantInt::isValueValidForType(IntTy, NewBaseOffset))
3725       continue;
3726 
3727     // Check that multiplying with the use offset doesn't overflow.
3728     int64_t Offset = LU.MinOffset;
3729     if (Offset == std::numeric_limits<int64_t>::min() && Factor == -1)
3730       continue;
3731     Offset = (uint64_t)Offset * Factor;
3732     if (Offset / Factor != LU.MinOffset)
3733       continue;
3734     // If the offset will be truncated at this use, check that it is in bounds.
3735     if (!IntTy->isPointerTy() &&
3736         !ConstantInt::isValueValidForType(IntTy, Offset))
3737       continue;
3738 
3739     Formula F = Base;
3740     F.BaseOffset = NewBaseOffset;
3741 
3742     // Check that this scale is legal.
3743     if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F))
3744       continue;
3745 
3746     // Compensate for the use having MinOffset built into it.
3747     F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset;
3748 
3749     const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3750 
3751     // Check that multiplying with each base register doesn't overflow.
3752     for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
3753       F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
3754       if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
3755         goto next;
3756     }
3757 
3758     // Check that multiplying with the scaled register doesn't overflow.
3759     if (F.ScaledReg) {
3760       F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
3761       if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
3762         continue;
3763     }
3764 
3765     // Check that multiplying with the unfolded offset doesn't overflow.
3766     if (F.UnfoldedOffset != 0) {
3767       if (F.UnfoldedOffset == std::numeric_limits<int64_t>::min() &&
3768           Factor == -1)
3769         continue;
3770       F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor;
3771       if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset)
3772         continue;
3773       // If the offset will be truncated, check that it is in bounds.
3774       if (!IntTy->isPointerTy() &&
3775           !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset))
3776         continue;
3777     }
3778 
3779     // If we make it here and it's legal, add it.
3780     (void)InsertFormula(LU, LUIdx, F);
3781   next:;
3782   }
3783 }
3784 
3785 /// Generate stride factor reuse formulae by making use of scaled-offset address
3786 /// modes, for example.
3787 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
3788   // Determine the integer type for the base formula.
3789   Type *IntTy = Base.getType();
3790   if (!IntTy) return;
3791 
3792   // If this Formula already has a scaled register, we can't add another one.
3793   // Try to unscale the formula to generate a better scale.
3794   if (Base.Scale != 0 && !Base.unscale())
3795     return;
3796 
3797   assert(Base.Scale == 0 && "unscale did not did its job!");
3798 
3799   // Check each interesting stride.
3800   for (int64_t Factor : Factors) {
3801     Base.Scale = Factor;
3802     Base.HasBaseReg = Base.BaseRegs.size() > 1;
3803     // Check whether this scale is going to be legal.
3804     if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
3805                     Base)) {
3806       // As a special-case, handle special out-of-loop Basic users specially.
3807       // TODO: Reconsider this special case.
3808       if (LU.Kind == LSRUse::Basic &&
3809           isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special,
3810                      LU.AccessTy, Base) &&
3811           LU.AllFixupsOutsideLoop)
3812         LU.Kind = LSRUse::Special;
3813       else
3814         continue;
3815     }
3816     // For an ICmpZero, negating a solitary base register won't lead to
3817     // new solutions.
3818     if (LU.Kind == LSRUse::ICmpZero &&
3819         !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV)
3820       continue;
3821     // For each addrec base reg, if its loop is current loop, apply the scale.
3822     for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
3823       const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i]);
3824       if (AR && (AR->getLoop() == L || LU.AllFixupsOutsideLoop)) {
3825         const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3826         if (FactorS->isZero())
3827           continue;
3828         // Divide out the factor, ignoring high bits, since we'll be
3829         // scaling the value back up in the end.
3830         if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) {
3831           // TODO: This could be optimized to avoid all the copying.
3832           Formula F = Base;
3833           F.ScaledReg = Quotient;
3834           F.deleteBaseReg(F.BaseRegs[i]);
3835           // The canonical representation of 1*reg is reg, which is already in
3836           // Base. In that case, do not try to insert the formula, it will be
3837           // rejected anyway.
3838           if (F.Scale == 1 && (F.BaseRegs.empty() ||
3839                                (AR->getLoop() != L && LU.AllFixupsOutsideLoop)))
3840             continue;
3841           // If AllFixupsOutsideLoop is true and F.Scale is 1, we may generate
3842           // non canonical Formula with ScaledReg's loop not being L.
3843           if (F.Scale == 1 && LU.AllFixupsOutsideLoop)
3844             F.canonicalize(*L);
3845           (void)InsertFormula(LU, LUIdx, F);
3846         }
3847       }
3848     }
3849   }
3850 }
3851 
3852 /// Generate reuse formulae from different IV types.
3853 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
3854   // Don't bother truncating symbolic values.
3855   if (Base.BaseGV) return;
3856 
3857   // Determine the integer type for the base formula.
3858   Type *DstTy = Base.getType();
3859   if (!DstTy) return;
3860   DstTy = SE.getEffectiveSCEVType(DstTy);
3861 
3862   for (Type *SrcTy : Types) {
3863     if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) {
3864       Formula F = Base;
3865 
3866       if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy);
3867       for (const SCEV *&BaseReg : F.BaseRegs)
3868         BaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy);
3869 
3870       // TODO: This assumes we've done basic processing on all uses and
3871       // have an idea what the register usage is.
3872       if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
3873         continue;
3874 
3875       F.canonicalize(*L);
3876       (void)InsertFormula(LU, LUIdx, F);
3877     }
3878   }
3879 }
3880 
3881 namespace {
3882 
3883 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer
3884 /// modifications so that the search phase doesn't have to worry about the data
3885 /// structures moving underneath it.
3886 struct WorkItem {
3887   size_t LUIdx;
3888   int64_t Imm;
3889   const SCEV *OrigReg;
3890 
3891   WorkItem(size_t LI, int64_t I, const SCEV *R)
3892       : LUIdx(LI), Imm(I), OrigReg(R) {}
3893 
3894   void print(raw_ostream &OS) const;
3895   void dump() const;
3896 };
3897 
3898 } // end anonymous namespace
3899 
3900 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3901 void WorkItem::print(raw_ostream &OS) const {
3902   OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
3903      << " , add offset " << Imm;
3904 }
3905 
3906 LLVM_DUMP_METHOD void WorkItem::dump() const {
3907   print(errs()); errs() << '\n';
3908 }
3909 #endif
3910 
3911 /// Look for registers which are a constant distance apart and try to form reuse
3912 /// opportunities between them.
3913 void LSRInstance::GenerateCrossUseConstantOffsets() {
3914   // Group the registers by their value without any added constant offset.
3915   using ImmMapTy = std::map<int64_t, const SCEV *>;
3916 
3917   DenseMap<const SCEV *, ImmMapTy> Map;
3918   DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
3919   SmallVector<const SCEV *, 8> Sequence;
3920   for (const SCEV *Use : RegUses) {
3921     const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify.
3922     int64_t Imm = ExtractImmediate(Reg, SE);
3923     auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy()));
3924     if (Pair.second)
3925       Sequence.push_back(Reg);
3926     Pair.first->second.insert(std::make_pair(Imm, Use));
3927     UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use);
3928   }
3929 
3930   // Now examine each set of registers with the same base value. Build up
3931   // a list of work to do and do the work in a separate step so that we're
3932   // not adding formulae and register counts while we're searching.
3933   SmallVector<WorkItem, 32> WorkItems;
3934   SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
3935   for (const SCEV *Reg : Sequence) {
3936     const ImmMapTy &Imms = Map.find(Reg)->second;
3937 
3938     // It's not worthwhile looking for reuse if there's only one offset.
3939     if (Imms.size() == 1)
3940       continue;
3941 
3942     DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
3943           for (const auto &Entry : Imms)
3944             dbgs() << ' ' << Entry.first;
3945           dbgs() << '\n');
3946 
3947     // Examine each offset.
3948     for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
3949          J != JE; ++J) {
3950       const SCEV *OrigReg = J->second;
3951 
3952       int64_t JImm = J->first;
3953       const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
3954 
3955       if (!isa<SCEVConstant>(OrigReg) &&
3956           UsedByIndicesMap[Reg].count() == 1) {
3957         DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n');
3958         continue;
3959       }
3960 
3961       // Conservatively examine offsets between this orig reg a few selected
3962       // other orig regs.
3963       ImmMapTy::const_iterator OtherImms[] = {
3964         Imms.begin(), std::prev(Imms.end()),
3965         Imms.lower_bound((Imms.begin()->first + std::prev(Imms.end())->first) /
3966                          2)
3967       };
3968       for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
3969         ImmMapTy::const_iterator M = OtherImms[i];
3970         if (M == J || M == JE) continue;
3971 
3972         // Compute the difference between the two.
3973         int64_t Imm = (uint64_t)JImm - M->first;
3974         for (unsigned LUIdx : UsedByIndices.set_bits())
3975           // Make a memo of this use, offset, and register tuple.
3976           if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second)
3977             WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
3978       }
3979     }
3980   }
3981 
3982   Map.clear();
3983   Sequence.clear();
3984   UsedByIndicesMap.clear();
3985   UniqueItems.clear();
3986 
3987   // Now iterate through the worklist and add new formulae.
3988   for (const WorkItem &WI : WorkItems) {
3989     size_t LUIdx = WI.LUIdx;
3990     LSRUse &LU = Uses[LUIdx];
3991     int64_t Imm = WI.Imm;
3992     const SCEV *OrigReg = WI.OrigReg;
3993 
3994     Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
3995     const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
3996     unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
3997 
3998     // TODO: Use a more targeted data structure.
3999     for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
4000       Formula F = LU.Formulae[L];
4001       // FIXME: The code for the scaled and unscaled registers looks
4002       // very similar but slightly different. Investigate if they
4003       // could be merged. That way, we would not have to unscale the
4004       // Formula.
4005       F.unscale();
4006       // Use the immediate in the scaled register.
4007       if (F.ScaledReg == OrigReg) {
4008         int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale;
4009         // Don't create 50 + reg(-50).
4010         if (F.referencesReg(SE.getSCEV(
4011                    ConstantInt::get(IntTy, -(uint64_t)Offset))))
4012           continue;
4013         Formula NewF = F;
4014         NewF.BaseOffset = Offset;
4015         if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
4016                         NewF))
4017           continue;
4018         NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
4019 
4020         // If the new scale is a constant in a register, and adding the constant
4021         // value to the immediate would produce a value closer to zero than the
4022         // immediate itself, then the formula isn't worthwhile.
4023         if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
4024           if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) &&
4025               (C->getAPInt().abs() * APInt(BitWidth, F.Scale))
4026                   .ule(std::abs(NewF.BaseOffset)))
4027             continue;
4028 
4029         // OK, looks good.
4030         NewF.canonicalize(*this->L);
4031         (void)InsertFormula(LU, LUIdx, NewF);
4032       } else {
4033         // Use the immediate in a base register.
4034         for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
4035           const SCEV *BaseReg = F.BaseRegs[N];
4036           if (BaseReg != OrigReg)
4037             continue;
4038           Formula NewF = F;
4039           NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm;
4040           if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset,
4041                           LU.Kind, LU.AccessTy, NewF)) {
4042             if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm))
4043               continue;
4044             NewF = F;
4045             NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm;
4046           }
4047           NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
4048 
4049           // If the new formula has a constant in a register, and adding the
4050           // constant value to the immediate would produce a value closer to
4051           // zero than the immediate itself, then the formula isn't worthwhile.
4052           for (const SCEV *NewReg : NewF.BaseRegs)
4053             if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg))
4054               if ((C->getAPInt() + NewF.BaseOffset)
4055                       .abs()
4056                       .slt(std::abs(NewF.BaseOffset)) &&
4057                   (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >=
4058                       countTrailingZeros<uint64_t>(NewF.BaseOffset))
4059                 goto skip_formula;
4060 
4061           // Ok, looks good.
4062           NewF.canonicalize(*this->L);
4063           (void)InsertFormula(LU, LUIdx, NewF);
4064           break;
4065         skip_formula:;
4066         }
4067       }
4068     }
4069   }
4070 }
4071 
4072 /// Generate formulae for each use.
4073 void
4074 LSRInstance::GenerateAllReuseFormulae() {
4075   // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
4076   // queries are more precise.
4077   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4078     LSRUse &LU = Uses[LUIdx];
4079     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4080       GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
4081     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4082       GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
4083   }
4084   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4085     LSRUse &LU = Uses[LUIdx];
4086     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4087       GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
4088     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4089       GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
4090     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4091       GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
4092     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4093       GenerateScales(LU, LUIdx, LU.Formulae[i]);
4094   }
4095   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4096     LSRUse &LU = Uses[LUIdx];
4097     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4098       GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
4099   }
4100 
4101   GenerateCrossUseConstantOffsets();
4102 
4103   DEBUG(dbgs() << "\n"
4104                   "After generating reuse formulae:\n";
4105         print_uses(dbgs()));
4106 }
4107 
4108 /// If there are multiple formulae with the same set of registers used
4109 /// by other uses, pick the best one and delete the others.
4110 void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
4111   DenseSet<const SCEV *> VisitedRegs;
4112   SmallPtrSet<const SCEV *, 16> Regs;
4113   SmallPtrSet<const SCEV *, 16> LoserRegs;
4114 #ifndef NDEBUG
4115   bool ChangedFormulae = false;
4116 #endif
4117 
4118   // Collect the best formula for each unique set of shared registers. This
4119   // is reset for each use.
4120   using BestFormulaeTy =
4121       DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>;
4122 
4123   BestFormulaeTy BestFormulae;
4124 
4125   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4126     LSRUse &LU = Uses[LUIdx];
4127     DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n');
4128 
4129     bool Any = false;
4130     for (size_t FIdx = 0, NumForms = LU.Formulae.size();
4131          FIdx != NumForms; ++FIdx) {
4132       Formula &F = LU.Formulae[FIdx];
4133 
4134       // Some formulas are instant losers. For example, they may depend on
4135       // nonexistent AddRecs from other loops. These need to be filtered
4136       // immediately, otherwise heuristics could choose them over others leading
4137       // to an unsatisfactory solution. Passing LoserRegs into RateFormula here
4138       // avoids the need to recompute this information across formulae using the
4139       // same bad AddRec. Passing LoserRegs is also essential unless we remove
4140       // the corresponding bad register from the Regs set.
4141       Cost CostF;
4142       Regs.clear();
4143       CostF.RateFormula(TTI, F, Regs, VisitedRegs, L, SE, DT, LU, &LoserRegs);
4144       if (CostF.isLoser()) {
4145         // During initial formula generation, undesirable formulae are generated
4146         // by uses within other loops that have some non-trivial address mode or
4147         // use the postinc form of the IV. LSR needs to provide these formulae
4148         // as the basis of rediscovering the desired formula that uses an AddRec
4149         // corresponding to the existing phi. Once all formulae have been
4150         // generated, these initial losers may be pruned.
4151         DEBUG(dbgs() << "  Filtering loser "; F.print(dbgs());
4152               dbgs() << "\n");
4153       }
4154       else {
4155         SmallVector<const SCEV *, 4> Key;
4156         for (const SCEV *Reg : F.BaseRegs) {
4157           if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
4158             Key.push_back(Reg);
4159         }
4160         if (F.ScaledReg &&
4161             RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
4162           Key.push_back(F.ScaledReg);
4163         // Unstable sort by host order ok, because this is only used for
4164         // uniquifying.
4165         std::sort(Key.begin(), Key.end());
4166 
4167         std::pair<BestFormulaeTy::const_iterator, bool> P =
4168           BestFormulae.insert(std::make_pair(Key, FIdx));
4169         if (P.second)
4170           continue;
4171 
4172         Formula &Best = LU.Formulae[P.first->second];
4173 
4174         Cost CostBest;
4175         Regs.clear();
4176         CostBest.RateFormula(TTI, Best, Regs, VisitedRegs, L, SE, DT, LU);
4177         if (CostF.isLess(CostBest, TTI))
4178           std::swap(F, Best);
4179         DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
4180               dbgs() << "\n"
4181                         "    in favor of formula "; Best.print(dbgs());
4182               dbgs() << '\n');
4183       }
4184 #ifndef NDEBUG
4185       ChangedFormulae = true;
4186 #endif
4187       LU.DeleteFormula(F);
4188       --FIdx;
4189       --NumForms;
4190       Any = true;
4191     }
4192 
4193     // Now that we've filtered out some formulae, recompute the Regs set.
4194     if (Any)
4195       LU.RecomputeRegs(LUIdx, RegUses);
4196 
4197     // Reset this to prepare for the next use.
4198     BestFormulae.clear();
4199   }
4200 
4201   DEBUG(if (ChangedFormulae) {
4202           dbgs() << "\n"
4203                     "After filtering out undesirable candidates:\n";
4204           print_uses(dbgs());
4205         });
4206 }
4207 
4208 // This is a rough guess that seems to work fairly well.
4209 static const size_t ComplexityLimit = std::numeric_limits<uint16_t>::max();
4210 
4211 /// Estimate the worst-case number of solutions the solver might have to
4212 /// consider. It almost never considers this many solutions because it prune the
4213 /// search space, but the pruning isn't always sufficient.
4214 size_t LSRInstance::EstimateSearchSpaceComplexity() const {
4215   size_t Power = 1;
4216   for (const LSRUse &LU : Uses) {
4217     size_t FSize = LU.Formulae.size();
4218     if (FSize >= ComplexityLimit) {
4219       Power = ComplexityLimit;
4220       break;
4221     }
4222     Power *= FSize;
4223     if (Power >= ComplexityLimit)
4224       break;
4225   }
4226   return Power;
4227 }
4228 
4229 /// When one formula uses a superset of the registers of another formula, it
4230 /// won't help reduce register pressure (though it may not necessarily hurt
4231 /// register pressure); remove it to simplify the system.
4232 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
4233   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4234     DEBUG(dbgs() << "The search space is too complex.\n");
4235 
4236     DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
4237                     "which use a superset of registers used by other "
4238                     "formulae.\n");
4239 
4240     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4241       LSRUse &LU = Uses[LUIdx];
4242       bool Any = false;
4243       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4244         Formula &F = LU.Formulae[i];
4245         // Look for a formula with a constant or GV in a register. If the use
4246         // also has a formula with that same value in an immediate field,
4247         // delete the one that uses a register.
4248         for (SmallVectorImpl<const SCEV *>::const_iterator
4249              I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
4250           if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
4251             Formula NewF = F;
4252             NewF.BaseOffset += C->getValue()->getSExtValue();
4253             NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4254                                 (I - F.BaseRegs.begin()));
4255             if (LU.HasFormulaWithSameRegs(NewF)) {
4256               DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
4257               LU.DeleteFormula(F);
4258               --i;
4259               --e;
4260               Any = true;
4261               break;
4262             }
4263           } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
4264             if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
4265               if (!F.BaseGV) {
4266                 Formula NewF = F;
4267                 NewF.BaseGV = GV;
4268                 NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4269                                     (I - F.BaseRegs.begin()));
4270                 if (LU.HasFormulaWithSameRegs(NewF)) {
4271                   DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4272                         dbgs() << '\n');
4273                   LU.DeleteFormula(F);
4274                   --i;
4275                   --e;
4276                   Any = true;
4277                   break;
4278                 }
4279               }
4280           }
4281         }
4282       }
4283       if (Any)
4284         LU.RecomputeRegs(LUIdx, RegUses);
4285     }
4286 
4287     DEBUG(dbgs() << "After pre-selection:\n";
4288           print_uses(dbgs()));
4289   }
4290 }
4291 
4292 /// When there are many registers for expressions like A, A+1, A+2, etc.,
4293 /// allocate a single register for them.
4294 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
4295   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4296     return;
4297 
4298   DEBUG(dbgs() << "The search space is too complex.\n"
4299                   "Narrowing the search space by assuming that uses separated "
4300                   "by a constant offset will use the same registers.\n");
4301 
4302   // This is especially useful for unrolled loops.
4303 
4304   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4305     LSRUse &LU = Uses[LUIdx];
4306     for (const Formula &F : LU.Formulae) {
4307       if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1))
4308         continue;
4309 
4310       LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU);
4311       if (!LUThatHas)
4312         continue;
4313 
4314       if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false,
4315                               LU.Kind, LU.AccessTy))
4316         continue;
4317 
4318       DEBUG(dbgs() << "  Deleting use "; LU.print(dbgs()); dbgs() << '\n');
4319 
4320       LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
4321 
4322       // Transfer the fixups of LU to LUThatHas.
4323       for (LSRFixup &Fixup : LU.Fixups) {
4324         Fixup.Offset += F.BaseOffset;
4325         LUThatHas->pushFixup(Fixup);
4326         DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n');
4327       }
4328 
4329       // Delete formulae from the new use which are no longer legal.
4330       bool Any = false;
4331       for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
4332         Formula &F = LUThatHas->Formulae[i];
4333         if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset,
4334                         LUThatHas->Kind, LUThatHas->AccessTy, F)) {
4335           DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4336                 dbgs() << '\n');
4337           LUThatHas->DeleteFormula(F);
4338           --i;
4339           --e;
4340           Any = true;
4341         }
4342       }
4343 
4344       if (Any)
4345         LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
4346 
4347       // Delete the old use.
4348       DeleteUse(LU, LUIdx);
4349       --LUIdx;
4350       --NumUses;
4351       break;
4352     }
4353   }
4354 
4355   DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4356 }
4357 
4358 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that
4359 /// we've done more filtering, as it may be able to find more formulae to
4360 /// eliminate.
4361 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){
4362   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4363     DEBUG(dbgs() << "The search space is too complex.\n");
4364 
4365     DEBUG(dbgs() << "Narrowing the search space by re-filtering out "
4366                     "undesirable dedicated registers.\n");
4367 
4368     FilterOutUndesirableDedicatedRegisters();
4369 
4370     DEBUG(dbgs() << "After pre-selection:\n";
4371           print_uses(dbgs()));
4372   }
4373 }
4374 
4375 /// If a LSRUse has multiple formulae with the same ScaledReg and Scale.
4376 /// Pick the best one and delete the others.
4377 /// This narrowing heuristic is to keep as many formulae with different
4378 /// Scale and ScaledReg pair as possible while narrowing the search space.
4379 /// The benefit is that it is more likely to find out a better solution
4380 /// from a formulae set with more Scale and ScaledReg variations than
4381 /// a formulae set with the same Scale and ScaledReg. The picking winner
4382 /// reg heurstic will often keep the formulae with the same Scale and
4383 /// ScaledReg and filter others, and we want to avoid that if possible.
4384 void LSRInstance::NarrowSearchSpaceByFilterFormulaWithSameScaledReg() {
4385   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4386     return;
4387 
4388   DEBUG(dbgs() << "The search space is too complex.\n"
4389                   "Narrowing the search space by choosing the best Formula "
4390                   "from the Formulae with the same Scale and ScaledReg.\n");
4391 
4392   // Map the "Scale * ScaledReg" pair to the best formula of current LSRUse.
4393   using BestFormulaeTy = DenseMap<std::pair<const SCEV *, int64_t>, size_t>;
4394 
4395   BestFormulaeTy BestFormulae;
4396 #ifndef NDEBUG
4397   bool ChangedFormulae = false;
4398 #endif
4399   DenseSet<const SCEV *> VisitedRegs;
4400   SmallPtrSet<const SCEV *, 16> Regs;
4401 
4402   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4403     LSRUse &LU = Uses[LUIdx];
4404     DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n');
4405 
4406     // Return true if Formula FA is better than Formula FB.
4407     auto IsBetterThan = [&](Formula &FA, Formula &FB) {
4408       // First we will try to choose the Formula with fewer new registers.
4409       // For a register used by current Formula, the more the register is
4410       // shared among LSRUses, the less we increase the register number
4411       // counter of the formula.
4412       size_t FARegNum = 0;
4413       for (const SCEV *Reg : FA.BaseRegs) {
4414         const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg);
4415         FARegNum += (NumUses - UsedByIndices.count() + 1);
4416       }
4417       size_t FBRegNum = 0;
4418       for (const SCEV *Reg : FB.BaseRegs) {
4419         const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg);
4420         FBRegNum += (NumUses - UsedByIndices.count() + 1);
4421       }
4422       if (FARegNum != FBRegNum)
4423         return FARegNum < FBRegNum;
4424 
4425       // If the new register numbers are the same, choose the Formula with
4426       // less Cost.
4427       Cost CostFA, CostFB;
4428       Regs.clear();
4429       CostFA.RateFormula(TTI, FA, Regs, VisitedRegs, L, SE, DT, LU);
4430       Regs.clear();
4431       CostFB.RateFormula(TTI, FB, Regs, VisitedRegs, L, SE, DT, LU);
4432       return CostFA.isLess(CostFB, TTI);
4433     };
4434 
4435     bool Any = false;
4436     for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms;
4437          ++FIdx) {
4438       Formula &F = LU.Formulae[FIdx];
4439       if (!F.ScaledReg)
4440         continue;
4441       auto P = BestFormulae.insert({{F.ScaledReg, F.Scale}, FIdx});
4442       if (P.second)
4443         continue;
4444 
4445       Formula &Best = LU.Formulae[P.first->second];
4446       if (IsBetterThan(F, Best))
4447         std::swap(F, Best);
4448       DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
4449             dbgs() << "\n"
4450                       "    in favor of formula ";
4451             Best.print(dbgs()); dbgs() << '\n');
4452 #ifndef NDEBUG
4453       ChangedFormulae = true;
4454 #endif
4455       LU.DeleteFormula(F);
4456       --FIdx;
4457       --NumForms;
4458       Any = true;
4459     }
4460     if (Any)
4461       LU.RecomputeRegs(LUIdx, RegUses);
4462 
4463     // Reset this to prepare for the next use.
4464     BestFormulae.clear();
4465   }
4466 
4467   DEBUG(if (ChangedFormulae) {
4468     dbgs() << "\n"
4469               "After filtering out undesirable candidates:\n";
4470     print_uses(dbgs());
4471   });
4472 }
4473 
4474 /// The function delete formulas with high registers number expectation.
4475 /// Assuming we don't know the value of each formula (already delete
4476 /// all inefficient), generate probability of not selecting for each
4477 /// register.
4478 /// For example,
4479 /// Use1:
4480 ///  reg(a) + reg({0,+,1})
4481 ///  reg(a) + reg({-1,+,1}) + 1
4482 ///  reg({a,+,1})
4483 /// Use2:
4484 ///  reg(b) + reg({0,+,1})
4485 ///  reg(b) + reg({-1,+,1}) + 1
4486 ///  reg({b,+,1})
4487 /// Use3:
4488 ///  reg(c) + reg(b) + reg({0,+,1})
4489 ///  reg(c) + reg({b,+,1})
4490 ///
4491 /// Probability of not selecting
4492 ///                 Use1   Use2    Use3
4493 /// reg(a)         (1/3) *   1   *   1
4494 /// reg(b)           1   * (1/3) * (1/2)
4495 /// reg({0,+,1})   (2/3) * (2/3) * (1/2)
4496 /// reg({-1,+,1})  (2/3) * (2/3) *   1
4497 /// reg({a,+,1})   (2/3) *   1   *   1
4498 /// reg({b,+,1})     1   * (2/3) * (2/3)
4499 /// reg(c)           1   *   1   *   0
4500 ///
4501 /// Now count registers number mathematical expectation for each formula:
4502 /// Note that for each use we exclude probability if not selecting for the use.
4503 /// For example for Use1 probability for reg(a) would be just 1 * 1 (excluding
4504 /// probabilty 1/3 of not selecting for Use1).
4505 /// Use1:
4506 ///  reg(a) + reg({0,+,1})          1 + 1/3       -- to be deleted
4507 ///  reg(a) + reg({-1,+,1}) + 1     1 + 4/9       -- to be deleted
4508 ///  reg({a,+,1})                   1
4509 /// Use2:
4510 ///  reg(b) + reg({0,+,1})          1/2 + 1/3     -- to be deleted
4511 ///  reg(b) + reg({-1,+,1}) + 1     1/2 + 2/3     -- to be deleted
4512 ///  reg({b,+,1})                   2/3
4513 /// Use3:
4514 ///  reg(c) + reg(b) + reg({0,+,1}) 1 + 1/3 + 4/9 -- to be deleted
4515 ///  reg(c) + reg({b,+,1})          1 + 2/3
4516 void LSRInstance::NarrowSearchSpaceByDeletingCostlyFormulas() {
4517   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4518     return;
4519   // Ok, we have too many of formulae on our hands to conveniently handle.
4520   // Use a rough heuristic to thin out the list.
4521 
4522   // Set of Regs wich will be 100% used in final solution.
4523   // Used in each formula of a solution (in example above this is reg(c)).
4524   // We can skip them in calculations.
4525   SmallPtrSet<const SCEV *, 4> UniqRegs;
4526   DEBUG(dbgs() << "The search space is too complex.\n");
4527 
4528   // Map each register to probability of not selecting
4529   DenseMap <const SCEV *, float> RegNumMap;
4530   for (const SCEV *Reg : RegUses) {
4531     if (UniqRegs.count(Reg))
4532       continue;
4533     float PNotSel = 1;
4534     for (const LSRUse &LU : Uses) {
4535       if (!LU.Regs.count(Reg))
4536         continue;
4537       float P = LU.getNotSelectedProbability(Reg);
4538       if (P != 0.0)
4539         PNotSel *= P;
4540       else
4541         UniqRegs.insert(Reg);
4542     }
4543     RegNumMap.insert(std::make_pair(Reg, PNotSel));
4544   }
4545 
4546   DEBUG(dbgs() << "Narrowing the search space by deleting costly formulas\n");
4547 
4548   // Delete formulas where registers number expectation is high.
4549   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4550     LSRUse &LU = Uses[LUIdx];
4551     // If nothing to delete - continue.
4552     if (LU.Formulae.size() < 2)
4553       continue;
4554     // This is temporary solution to test performance. Float should be
4555     // replaced with round independent type (based on integers) to avoid
4556     // different results for different target builds.
4557     float FMinRegNum = LU.Formulae[0].getNumRegs();
4558     float FMinARegNum = LU.Formulae[0].getNumRegs();
4559     size_t MinIdx = 0;
4560     for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4561       Formula &F = LU.Formulae[i];
4562       float FRegNum = 0;
4563       float FARegNum = 0;
4564       for (const SCEV *BaseReg : F.BaseRegs) {
4565         if (UniqRegs.count(BaseReg))
4566           continue;
4567         FRegNum += RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg);
4568         if (isa<SCEVAddRecExpr>(BaseReg))
4569           FARegNum +=
4570               RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg);
4571       }
4572       if (const SCEV *ScaledReg = F.ScaledReg) {
4573         if (!UniqRegs.count(ScaledReg)) {
4574           FRegNum +=
4575               RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg);
4576           if (isa<SCEVAddRecExpr>(ScaledReg))
4577             FARegNum +=
4578                 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg);
4579         }
4580       }
4581       if (FMinRegNum > FRegNum ||
4582           (FMinRegNum == FRegNum && FMinARegNum > FARegNum)) {
4583         FMinRegNum = FRegNum;
4584         FMinARegNum = FARegNum;
4585         MinIdx = i;
4586       }
4587     }
4588     DEBUG(dbgs() << "  The formula "; LU.Formulae[MinIdx].print(dbgs());
4589           dbgs() << " with min reg num " << FMinRegNum << '\n');
4590     if (MinIdx != 0)
4591       std::swap(LU.Formulae[MinIdx], LU.Formulae[0]);
4592     while (LU.Formulae.size() != 1) {
4593       DEBUG(dbgs() << "  Deleting "; LU.Formulae.back().print(dbgs());
4594             dbgs() << '\n');
4595       LU.Formulae.pop_back();
4596     }
4597     LU.RecomputeRegs(LUIdx, RegUses);
4598     assert(LU.Formulae.size() == 1 && "Should be exactly 1 min regs formula");
4599     Formula &F = LU.Formulae[0];
4600     DEBUG(dbgs() << "  Leaving only "; F.print(dbgs()); dbgs() << '\n');
4601     // When we choose the formula, the regs become unique.
4602     UniqRegs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
4603     if (F.ScaledReg)
4604       UniqRegs.insert(F.ScaledReg);
4605   }
4606   DEBUG(dbgs() << "After pre-selection:\n";
4607   print_uses(dbgs()));
4608 }
4609 
4610 /// Pick a register which seems likely to be profitable, and then in any use
4611 /// which has any reference to that register, delete all formulae which do not
4612 /// reference that register.
4613 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() {
4614   // With all other options exhausted, loop until the system is simple
4615   // enough to handle.
4616   SmallPtrSet<const SCEV *, 4> Taken;
4617   while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4618     // Ok, we have too many of formulae on our hands to conveniently handle.
4619     // Use a rough heuristic to thin out the list.
4620     DEBUG(dbgs() << "The search space is too complex.\n");
4621 
4622     // Pick the register which is used by the most LSRUses, which is likely
4623     // to be a good reuse register candidate.
4624     const SCEV *Best = nullptr;
4625     unsigned BestNum = 0;
4626     for (const SCEV *Reg : RegUses) {
4627       if (Taken.count(Reg))
4628         continue;
4629       if (!Best) {
4630         Best = Reg;
4631         BestNum = RegUses.getUsedByIndices(Reg).count();
4632       } else {
4633         unsigned Count = RegUses.getUsedByIndices(Reg).count();
4634         if (Count > BestNum) {
4635           Best = Reg;
4636           BestNum = Count;
4637         }
4638       }
4639     }
4640 
4641     DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
4642                  << " will yield profitable reuse.\n");
4643     Taken.insert(Best);
4644 
4645     // In any use with formulae which references this register, delete formulae
4646     // which don't reference it.
4647     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4648       LSRUse &LU = Uses[LUIdx];
4649       if (!LU.Regs.count(Best)) continue;
4650 
4651       bool Any = false;
4652       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4653         Formula &F = LU.Formulae[i];
4654         if (!F.referencesReg(Best)) {
4655           DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
4656           LU.DeleteFormula(F);
4657           --e;
4658           --i;
4659           Any = true;
4660           assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
4661           continue;
4662         }
4663       }
4664 
4665       if (Any)
4666         LU.RecomputeRegs(LUIdx, RegUses);
4667     }
4668 
4669     DEBUG(dbgs() << "After pre-selection:\n";
4670           print_uses(dbgs()));
4671   }
4672 }
4673 
4674 /// If there are an extraordinary number of formulae to choose from, use some
4675 /// rough heuristics to prune down the number of formulae. This keeps the main
4676 /// solver from taking an extraordinary amount of time in some worst-case
4677 /// scenarios.
4678 void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
4679   NarrowSearchSpaceByDetectingSupersets();
4680   NarrowSearchSpaceByCollapsingUnrolledCode();
4681   NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
4682   if (FilterSameScaledReg)
4683     NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
4684   if (LSRExpNarrow)
4685     NarrowSearchSpaceByDeletingCostlyFormulas();
4686   else
4687     NarrowSearchSpaceByPickingWinnerRegs();
4688 }
4689 
4690 /// This is the recursive solver.
4691 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
4692                                Cost &SolutionCost,
4693                                SmallVectorImpl<const Formula *> &Workspace,
4694                                const Cost &CurCost,
4695                                const SmallPtrSet<const SCEV *, 16> &CurRegs,
4696                                DenseSet<const SCEV *> &VisitedRegs) const {
4697   // Some ideas:
4698   //  - prune more:
4699   //    - use more aggressive filtering
4700   //    - sort the formula so that the most profitable solutions are found first
4701   //    - sort the uses too
4702   //  - search faster:
4703   //    - don't compute a cost, and then compare. compare while computing a cost
4704   //      and bail early.
4705   //    - track register sets with SmallBitVector
4706 
4707   const LSRUse &LU = Uses[Workspace.size()];
4708 
4709   // If this use references any register that's already a part of the
4710   // in-progress solution, consider it a requirement that a formula must
4711   // reference that register in order to be considered. This prunes out
4712   // unprofitable searching.
4713   SmallSetVector<const SCEV *, 4> ReqRegs;
4714   for (const SCEV *S : CurRegs)
4715     if (LU.Regs.count(S))
4716       ReqRegs.insert(S);
4717 
4718   SmallPtrSet<const SCEV *, 16> NewRegs;
4719   Cost NewCost;
4720   for (const Formula &F : LU.Formulae) {
4721     // Ignore formulae which may not be ideal in terms of register reuse of
4722     // ReqRegs.  The formula should use all required registers before
4723     // introducing new ones.
4724     int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size());
4725     for (const SCEV *Reg : ReqRegs) {
4726       if ((F.ScaledReg && F.ScaledReg == Reg) ||
4727           is_contained(F.BaseRegs, Reg)) {
4728         --NumReqRegsToFind;
4729         if (NumReqRegsToFind == 0)
4730           break;
4731       }
4732     }
4733     if (NumReqRegsToFind != 0) {
4734       // If none of the formulae satisfied the required registers, then we could
4735       // clear ReqRegs and try again. Currently, we simply give up in this case.
4736       continue;
4737     }
4738 
4739     // Evaluate the cost of the current formula. If it's already worse than
4740     // the current best, prune the search at that point.
4741     NewCost = CurCost;
4742     NewRegs = CurRegs;
4743     NewCost.RateFormula(TTI, F, NewRegs, VisitedRegs, L, SE, DT, LU);
4744     if (NewCost.isLess(SolutionCost, TTI)) {
4745       Workspace.push_back(&F);
4746       if (Workspace.size() != Uses.size()) {
4747         SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
4748                      NewRegs, VisitedRegs);
4749         if (F.getNumRegs() == 1 && Workspace.size() == 1)
4750           VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
4751       } else {
4752         DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
4753               dbgs() << ".\n Regs:";
4754               for (const SCEV *S : NewRegs)
4755                 dbgs() << ' ' << *S;
4756               dbgs() << '\n');
4757 
4758         SolutionCost = NewCost;
4759         Solution = Workspace;
4760       }
4761       Workspace.pop_back();
4762     }
4763   }
4764 }
4765 
4766 /// Choose one formula from each use. Return the results in the given Solution
4767 /// vector.
4768 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
4769   SmallVector<const Formula *, 8> Workspace;
4770   Cost SolutionCost;
4771   SolutionCost.Lose();
4772   Cost CurCost;
4773   SmallPtrSet<const SCEV *, 16> CurRegs;
4774   DenseSet<const SCEV *> VisitedRegs;
4775   Workspace.reserve(Uses.size());
4776 
4777   // SolveRecurse does all the work.
4778   SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
4779                CurRegs, VisitedRegs);
4780   if (Solution.empty()) {
4781     DEBUG(dbgs() << "\nNo Satisfactory Solution\n");
4782     return;
4783   }
4784 
4785   // Ok, we've now made all our decisions.
4786   DEBUG(dbgs() << "\n"
4787                   "The chosen solution requires "; SolutionCost.print(dbgs());
4788         dbgs() << ":\n";
4789         for (size_t i = 0, e = Uses.size(); i != e; ++i) {
4790           dbgs() << "  ";
4791           Uses[i].print(dbgs());
4792           dbgs() << "\n"
4793                     "    ";
4794           Solution[i]->print(dbgs());
4795           dbgs() << '\n';
4796         });
4797 
4798   assert(Solution.size() == Uses.size() && "Malformed solution!");
4799 }
4800 
4801 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as
4802 /// we can go while still being dominated by the input positions. This helps
4803 /// canonicalize the insert position, which encourages sharing.
4804 BasicBlock::iterator
4805 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
4806                                  const SmallVectorImpl<Instruction *> &Inputs)
4807                                                                          const {
4808   Instruction *Tentative = &*IP;
4809   while (true) {
4810     bool AllDominate = true;
4811     Instruction *BetterPos = nullptr;
4812     // Don't bother attempting to insert before a catchswitch, their basic block
4813     // cannot have other non-PHI instructions.
4814     if (isa<CatchSwitchInst>(Tentative))
4815       return IP;
4816 
4817     for (Instruction *Inst : Inputs) {
4818       if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
4819         AllDominate = false;
4820         break;
4821       }
4822       // Attempt to find an insert position in the middle of the block,
4823       // instead of at the end, so that it can be used for other expansions.
4824       if (Tentative->getParent() == Inst->getParent() &&
4825           (!BetterPos || !DT.dominates(Inst, BetterPos)))
4826         BetterPos = &*std::next(BasicBlock::iterator(Inst));
4827     }
4828     if (!AllDominate)
4829       break;
4830     if (BetterPos)
4831       IP = BetterPos->getIterator();
4832     else
4833       IP = Tentative->getIterator();
4834 
4835     const Loop *IPLoop = LI.getLoopFor(IP->getParent());
4836     unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
4837 
4838     BasicBlock *IDom;
4839     for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) {
4840       if (!Rung) return IP;
4841       Rung = Rung->getIDom();
4842       if (!Rung) return IP;
4843       IDom = Rung->getBlock();
4844 
4845       // Don't climb into a loop though.
4846       const Loop *IDomLoop = LI.getLoopFor(IDom);
4847       unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
4848       if (IDomDepth <= IPLoopDepth &&
4849           (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
4850         break;
4851     }
4852 
4853     Tentative = IDom->getTerminator();
4854   }
4855 
4856   return IP;
4857 }
4858 
4859 /// Determine an input position which will be dominated by the operands and
4860 /// which will dominate the result.
4861 BasicBlock::iterator
4862 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP,
4863                                            const LSRFixup &LF,
4864                                            const LSRUse &LU,
4865                                            SCEVExpander &Rewriter) const {
4866   // Collect some instructions which must be dominated by the
4867   // expanding replacement. These must be dominated by any operands that
4868   // will be required in the expansion.
4869   SmallVector<Instruction *, 4> Inputs;
4870   if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
4871     Inputs.push_back(I);
4872   if (LU.Kind == LSRUse::ICmpZero)
4873     if (Instruction *I =
4874           dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
4875       Inputs.push_back(I);
4876   if (LF.PostIncLoops.count(L)) {
4877     if (LF.isUseFullyOutsideLoop(L))
4878       Inputs.push_back(L->getLoopLatch()->getTerminator());
4879     else
4880       Inputs.push_back(IVIncInsertPos);
4881   }
4882   // The expansion must also be dominated by the increment positions of any
4883   // loops it for which it is using post-inc mode.
4884   for (const Loop *PIL : LF.PostIncLoops) {
4885     if (PIL == L) continue;
4886 
4887     // Be dominated by the loop exit.
4888     SmallVector<BasicBlock *, 4> ExitingBlocks;
4889     PIL->getExitingBlocks(ExitingBlocks);
4890     if (!ExitingBlocks.empty()) {
4891       BasicBlock *BB = ExitingBlocks[0];
4892       for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
4893         BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
4894       Inputs.push_back(BB->getTerminator());
4895     }
4896   }
4897 
4898   assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad()
4899          && !isa<DbgInfoIntrinsic>(LowestIP) &&
4900          "Insertion point must be a normal instruction");
4901 
4902   // Then, climb up the immediate dominator tree as far as we can go while
4903   // still being dominated by the input positions.
4904   BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs);
4905 
4906   // Don't insert instructions before PHI nodes.
4907   while (isa<PHINode>(IP)) ++IP;
4908 
4909   // Ignore landingpad instructions.
4910   while (IP->isEHPad()) ++IP;
4911 
4912   // Ignore debug intrinsics.
4913   while (isa<DbgInfoIntrinsic>(IP)) ++IP;
4914 
4915   // Set IP below instructions recently inserted by SCEVExpander. This keeps the
4916   // IP consistent across expansions and allows the previously inserted
4917   // instructions to be reused by subsequent expansion.
4918   while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP)
4919     ++IP;
4920 
4921   return IP;
4922 }
4923 
4924 /// Emit instructions for the leading candidate expression for this LSRUse (this
4925 /// is called "expanding").
4926 Value *LSRInstance::Expand(const LSRUse &LU, const LSRFixup &LF,
4927                            const Formula &F, BasicBlock::iterator IP,
4928                            SCEVExpander &Rewriter,
4929                            SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
4930   if (LU.RigidFormula)
4931     return LF.OperandValToReplace;
4932 
4933   // Determine an input position which will be dominated by the operands and
4934   // which will dominate the result.
4935   IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter);
4936   Rewriter.setInsertPoint(&*IP);
4937 
4938   // Inform the Rewriter if we have a post-increment use, so that it can
4939   // perform an advantageous expansion.
4940   Rewriter.setPostInc(LF.PostIncLoops);
4941 
4942   // This is the type that the user actually needs.
4943   Type *OpTy = LF.OperandValToReplace->getType();
4944   // This will be the type that we'll initially expand to.
4945   Type *Ty = F.getType();
4946   if (!Ty)
4947     // No type known; just expand directly to the ultimate type.
4948     Ty = OpTy;
4949   else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
4950     // Expand directly to the ultimate type if it's the right size.
4951     Ty = OpTy;
4952   // This is the type to do integer arithmetic in.
4953   Type *IntTy = SE.getEffectiveSCEVType(Ty);
4954 
4955   // Build up a list of operands to add together to form the full base.
4956   SmallVector<const SCEV *, 8> Ops;
4957 
4958   // Expand the BaseRegs portion.
4959   for (const SCEV *Reg : F.BaseRegs) {
4960     assert(!Reg->isZero() && "Zero allocated in a base register!");
4961 
4962     // If we're expanding for a post-inc user, make the post-inc adjustment.
4963     Reg = denormalizeForPostIncUse(Reg, LF.PostIncLoops, SE);
4964     Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr)));
4965   }
4966 
4967   // Expand the ScaledReg portion.
4968   Value *ICmpScaledV = nullptr;
4969   if (F.Scale != 0) {
4970     const SCEV *ScaledS = F.ScaledReg;
4971 
4972     // If we're expanding for a post-inc user, make the post-inc adjustment.
4973     PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
4974     ScaledS = denormalizeForPostIncUse(ScaledS, Loops, SE);
4975 
4976     if (LU.Kind == LSRUse::ICmpZero) {
4977       // Expand ScaleReg as if it was part of the base regs.
4978       if (F.Scale == 1)
4979         Ops.push_back(
4980             SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)));
4981       else {
4982         // An interesting way of "folding" with an icmp is to use a negated
4983         // scale, which we'll implement by inserting it into the other operand
4984         // of the icmp.
4985         assert(F.Scale == -1 &&
4986                "The only scale supported by ICmpZero uses is -1!");
4987         ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr);
4988       }
4989     } else {
4990       // Otherwise just expand the scaled register and an explicit scale,
4991       // which is expected to be matched as part of the address.
4992 
4993       // Flush the operand list to suppress SCEVExpander hoisting address modes.
4994       // Unless the addressing mode will not be folded.
4995       if (!Ops.empty() && LU.Kind == LSRUse::Address &&
4996           isAMCompletelyFolded(TTI, LU, F)) {
4997         Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), nullptr);
4998         Ops.clear();
4999         Ops.push_back(SE.getUnknown(FullV));
5000       }
5001       ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr));
5002       if (F.Scale != 1)
5003         ScaledS =
5004             SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale));
5005       Ops.push_back(ScaledS);
5006     }
5007   }
5008 
5009   // Expand the GV portion.
5010   if (F.BaseGV) {
5011     // Flush the operand list to suppress SCEVExpander hoisting.
5012     if (!Ops.empty()) {
5013       Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
5014       Ops.clear();
5015       Ops.push_back(SE.getUnknown(FullV));
5016     }
5017     Ops.push_back(SE.getUnknown(F.BaseGV));
5018   }
5019 
5020   // Flush the operand list to suppress SCEVExpander hoisting of both folded and
5021   // unfolded offsets. LSR assumes they both live next to their uses.
5022   if (!Ops.empty()) {
5023     Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
5024     Ops.clear();
5025     Ops.push_back(SE.getUnknown(FullV));
5026   }
5027 
5028   // Expand the immediate portion.
5029   int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset;
5030   if (Offset != 0) {
5031     if (LU.Kind == LSRUse::ICmpZero) {
5032       // The other interesting way of "folding" with an ICmpZero is to use a
5033       // negated immediate.
5034       if (!ICmpScaledV)
5035         ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset);
5036       else {
5037         Ops.push_back(SE.getUnknown(ICmpScaledV));
5038         ICmpScaledV = ConstantInt::get(IntTy, Offset);
5039       }
5040     } else {
5041       // Just add the immediate values. These again are expected to be matched
5042       // as part of the address.
5043       Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
5044     }
5045   }
5046 
5047   // Expand the unfolded offset portion.
5048   int64_t UnfoldedOffset = F.UnfoldedOffset;
5049   if (UnfoldedOffset != 0) {
5050     // Just add the immediate values.
5051     Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy,
5052                                                        UnfoldedOffset)));
5053   }
5054 
5055   // Emit instructions summing all the operands.
5056   const SCEV *FullS = Ops.empty() ?
5057                       SE.getConstant(IntTy, 0) :
5058                       SE.getAddExpr(Ops);
5059   Value *FullV = Rewriter.expandCodeFor(FullS, Ty);
5060 
5061   // We're done expanding now, so reset the rewriter.
5062   Rewriter.clearPostInc();
5063 
5064   // An ICmpZero Formula represents an ICmp which we're handling as a
5065   // comparison against zero. Now that we've expanded an expression for that
5066   // form, update the ICmp's other operand.
5067   if (LU.Kind == LSRUse::ICmpZero) {
5068     ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
5069     DeadInsts.emplace_back(CI->getOperand(1));
5070     assert(!F.BaseGV && "ICmp does not support folding a global value and "
5071                            "a scale at the same time!");
5072     if (F.Scale == -1) {
5073       if (ICmpScaledV->getType() != OpTy) {
5074         Instruction *Cast =
5075           CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
5076                                                    OpTy, false),
5077                            ICmpScaledV, OpTy, "tmp", CI);
5078         ICmpScaledV = Cast;
5079       }
5080       CI->setOperand(1, ICmpScaledV);
5081     } else {
5082       // A scale of 1 means that the scale has been expanded as part of the
5083       // base regs.
5084       assert((F.Scale == 0 || F.Scale == 1) &&
5085              "ICmp does not support folding a global value and "
5086              "a scale at the same time!");
5087       Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
5088                                            -(uint64_t)Offset);
5089       if (C->getType() != OpTy)
5090         C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
5091                                                           OpTy, false),
5092                                   C, OpTy);
5093 
5094       CI->setOperand(1, C);
5095     }
5096   }
5097 
5098   return FullV;
5099 }
5100 
5101 /// Helper for Rewrite. PHI nodes are special because the use of their operands
5102 /// effectively happens in their predecessor blocks, so the expression may need
5103 /// to be expanded in multiple places.
5104 void LSRInstance::RewriteForPHI(
5105     PHINode *PN, const LSRUse &LU, const LSRFixup &LF, const Formula &F,
5106     SCEVExpander &Rewriter, SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5107   DenseMap<BasicBlock *, Value *> Inserted;
5108   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
5109     if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
5110       BasicBlock *BB = PN->getIncomingBlock(i);
5111 
5112       // If this is a critical edge, split the edge so that we do not insert
5113       // the code on all predecessor/successor paths.  We do this unless this
5114       // is the canonical backedge for this loop, which complicates post-inc
5115       // users.
5116       if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
5117           !isa<IndirectBrInst>(BB->getTerminator()) &&
5118           !isa<CatchSwitchInst>(BB->getTerminator())) {
5119         BasicBlock *Parent = PN->getParent();
5120         Loop *PNLoop = LI.getLoopFor(Parent);
5121         if (!PNLoop || Parent != PNLoop->getHeader()) {
5122           // Split the critical edge.
5123           BasicBlock *NewBB = nullptr;
5124           if (!Parent->isLandingPad()) {
5125             NewBB = SplitCriticalEdge(BB, Parent,
5126                                       CriticalEdgeSplittingOptions(&DT, &LI)
5127                                           .setMergeIdenticalEdges()
5128                                           .setDontDeleteUselessPHIs());
5129           } else {
5130             SmallVector<BasicBlock*, 2> NewBBs;
5131             SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI);
5132             NewBB = NewBBs[0];
5133           }
5134           // If NewBB==NULL, then SplitCriticalEdge refused to split because all
5135           // phi predecessors are identical. The simple thing to do is skip
5136           // splitting in this case rather than complicate the API.
5137           if (NewBB) {
5138             // If PN is outside of the loop and BB is in the loop, we want to
5139             // move the block to be immediately before the PHI block, not
5140             // immediately after BB.
5141             if (L->contains(BB) && !L->contains(PN))
5142               NewBB->moveBefore(PN->getParent());
5143 
5144             // Splitting the edge can reduce the number of PHI entries we have.
5145             e = PN->getNumIncomingValues();
5146             BB = NewBB;
5147             i = PN->getBasicBlockIndex(BB);
5148           }
5149         }
5150       }
5151 
5152       std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
5153         Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr)));
5154       if (!Pair.second)
5155         PN->setIncomingValue(i, Pair.first->second);
5156       else {
5157         Value *FullV = Expand(LU, LF, F, BB->getTerminator()->getIterator(),
5158                               Rewriter, DeadInsts);
5159 
5160         // If this is reuse-by-noop-cast, insert the noop cast.
5161         Type *OpTy = LF.OperandValToReplace->getType();
5162         if (FullV->getType() != OpTy)
5163           FullV =
5164             CastInst::Create(CastInst::getCastOpcode(FullV, false,
5165                                                      OpTy, false),
5166                              FullV, LF.OperandValToReplace->getType(),
5167                              "tmp", BB->getTerminator());
5168 
5169         PN->setIncomingValue(i, FullV);
5170         Pair.first->second = FullV;
5171       }
5172     }
5173 }
5174 
5175 /// Emit instructions for the leading candidate expression for this LSRUse (this
5176 /// is called "expanding"), and update the UserInst to reference the newly
5177 /// expanded value.
5178 void LSRInstance::Rewrite(const LSRUse &LU, const LSRFixup &LF,
5179                           const Formula &F, SCEVExpander &Rewriter,
5180                           SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5181   // First, find an insertion point that dominates UserInst. For PHI nodes,
5182   // find the nearest block which dominates all the relevant uses.
5183   if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
5184     RewriteForPHI(PN, LU, LF, F, Rewriter, DeadInsts);
5185   } else {
5186     Value *FullV =
5187       Expand(LU, LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts);
5188 
5189     // If this is reuse-by-noop-cast, insert the noop cast.
5190     Type *OpTy = LF.OperandValToReplace->getType();
5191     if (FullV->getType() != OpTy) {
5192       Instruction *Cast =
5193         CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
5194                          FullV, OpTy, "tmp", LF.UserInst);
5195       FullV = Cast;
5196     }
5197 
5198     // Update the user. ICmpZero is handled specially here (for now) because
5199     // Expand may have updated one of the operands of the icmp already, and
5200     // its new value may happen to be equal to LF.OperandValToReplace, in
5201     // which case doing replaceUsesOfWith leads to replacing both operands
5202     // with the same value. TODO: Reorganize this.
5203     if (LU.Kind == LSRUse::ICmpZero)
5204       LF.UserInst->setOperand(0, FullV);
5205     else
5206       LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
5207   }
5208 
5209   DeadInsts.emplace_back(LF.OperandValToReplace);
5210 }
5211 
5212 /// Rewrite all the fixup locations with new values, following the chosen
5213 /// solution.
5214 void LSRInstance::ImplementSolution(
5215     const SmallVectorImpl<const Formula *> &Solution) {
5216   // Keep track of instructions we may have made dead, so that
5217   // we can remove them after we are done working.
5218   SmallVector<WeakTrackingVH, 16> DeadInsts;
5219 
5220   SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(),
5221                         "lsr");
5222 #ifndef NDEBUG
5223   Rewriter.setDebugType(DEBUG_TYPE);
5224 #endif
5225   Rewriter.disableCanonicalMode();
5226   Rewriter.enableLSRMode();
5227   Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
5228 
5229   // Mark phi nodes that terminate chains so the expander tries to reuse them.
5230   for (const IVChain &Chain : IVChainVec) {
5231     if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst()))
5232       Rewriter.setChainedPhi(PN);
5233   }
5234 
5235   // Expand the new value definitions and update the users.
5236   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx)
5237     for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) {
5238       Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], Rewriter, DeadInsts);
5239       Changed = true;
5240     }
5241 
5242   for (const IVChain &Chain : IVChainVec) {
5243     GenerateIVChain(Chain, Rewriter, DeadInsts);
5244     Changed = true;
5245   }
5246   // Clean up after ourselves. This must be done before deleting any
5247   // instructions.
5248   Rewriter.clear();
5249 
5250   Changed |= DeleteTriviallyDeadInstructions(DeadInsts);
5251 }
5252 
5253 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE,
5254                          DominatorTree &DT, LoopInfo &LI,
5255                          const TargetTransformInfo &TTI)
5256     : IU(IU), SE(SE), DT(DT), LI(LI), TTI(TTI), L(L) {
5257   // If LoopSimplify form is not available, stay out of trouble.
5258   if (!L->isLoopSimplifyForm())
5259     return;
5260 
5261   // If there's no interesting work to be done, bail early.
5262   if (IU.empty()) return;
5263 
5264   // If there's too much analysis to be done, bail early. We won't be able to
5265   // model the problem anyway.
5266   unsigned NumUsers = 0;
5267   for (const IVStrideUse &U : IU) {
5268     if (++NumUsers > MaxIVUsers) {
5269       (void)U;
5270       DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U << "\n");
5271       return;
5272     }
5273     // Bail out if we have a PHI on an EHPad that gets a value from a
5274     // CatchSwitchInst.  Because the CatchSwitchInst cannot be split, there is
5275     // no good place to stick any instructions.
5276     if (auto *PN = dyn_cast<PHINode>(U.getUser())) {
5277        auto *FirstNonPHI = PN->getParent()->getFirstNonPHI();
5278        if (isa<FuncletPadInst>(FirstNonPHI) ||
5279            isa<CatchSwitchInst>(FirstNonPHI))
5280          for (BasicBlock *PredBB : PN->blocks())
5281            if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI()))
5282              return;
5283     }
5284   }
5285 
5286 #ifndef NDEBUG
5287   // All dominating loops must have preheaders, or SCEVExpander may not be able
5288   // to materialize an AddRecExpr whose Start is an outer AddRecExpr.
5289   //
5290   // IVUsers analysis should only create users that are dominated by simple loop
5291   // headers. Since this loop should dominate all of its users, its user list
5292   // should be empty if this loop itself is not within a simple loop nest.
5293   for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader());
5294        Rung; Rung = Rung->getIDom()) {
5295     BasicBlock *BB = Rung->getBlock();
5296     const Loop *DomLoop = LI.getLoopFor(BB);
5297     if (DomLoop && DomLoop->getHeader() == BB) {
5298       assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest");
5299     }
5300   }
5301 #endif // DEBUG
5302 
5303   DEBUG(dbgs() << "\nLSR on loop ";
5304         L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false);
5305         dbgs() << ":\n");
5306 
5307   // First, perform some low-level loop optimizations.
5308   OptimizeShadowIV();
5309   OptimizeLoopTermCond();
5310 
5311   // If loop preparation eliminates all interesting IV users, bail.
5312   if (IU.empty()) return;
5313 
5314   // Skip nested loops until we can model them better with formulae.
5315   if (!L->empty()) {
5316     DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n");
5317     return;
5318   }
5319 
5320   // Start collecting data and preparing for the solver.
5321   CollectChains();
5322   CollectInterestingTypesAndFactors();
5323   CollectFixupsAndInitialFormulae();
5324   CollectLoopInvariantFixupsAndFormulae();
5325 
5326   assert(!Uses.empty() && "IVUsers reported at least one use");
5327   DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
5328         print_uses(dbgs()));
5329 
5330   // Now use the reuse data to generate a bunch of interesting ways
5331   // to formulate the values needed for the uses.
5332   GenerateAllReuseFormulae();
5333 
5334   FilterOutUndesirableDedicatedRegisters();
5335   NarrowSearchSpaceUsingHeuristics();
5336 
5337   SmallVector<const Formula *, 8> Solution;
5338   Solve(Solution);
5339 
5340   // Release memory that is no longer needed.
5341   Factors.clear();
5342   Types.clear();
5343   RegUses.clear();
5344 
5345   if (Solution.empty())
5346     return;
5347 
5348 #ifndef NDEBUG
5349   // Formulae should be legal.
5350   for (const LSRUse &LU : Uses) {
5351     for (const Formula &F : LU.Formulae)
5352       assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
5353                         F) && "Illegal formula generated!");
5354   };
5355 #endif
5356 
5357   // Now that we've decided what we want, make it so.
5358   ImplementSolution(Solution);
5359 }
5360 
5361 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
5362 void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
5363   if (Factors.empty() && Types.empty()) return;
5364 
5365   OS << "LSR has identified the following interesting factors and types: ";
5366   bool First = true;
5367 
5368   for (int64_t Factor : Factors) {
5369     if (!First) OS << ", ";
5370     First = false;
5371     OS << '*' << Factor;
5372   }
5373 
5374   for (Type *Ty : Types) {
5375     if (!First) OS << ", ";
5376     First = false;
5377     OS << '(' << *Ty << ')';
5378   }
5379   OS << '\n';
5380 }
5381 
5382 void LSRInstance::print_fixups(raw_ostream &OS) const {
5383   OS << "LSR is examining the following fixup sites:\n";
5384   for (const LSRUse &LU : Uses)
5385     for (const LSRFixup &LF : LU.Fixups) {
5386       dbgs() << "  ";
5387       LF.print(OS);
5388       OS << '\n';
5389     }
5390 }
5391 
5392 void LSRInstance::print_uses(raw_ostream &OS) const {
5393   OS << "LSR is examining the following uses:\n";
5394   for (const LSRUse &LU : Uses) {
5395     dbgs() << "  ";
5396     LU.print(OS);
5397     OS << '\n';
5398     for (const Formula &F : LU.Formulae) {
5399       OS << "    ";
5400       F.print(OS);
5401       OS << '\n';
5402     }
5403   }
5404 }
5405 
5406 void LSRInstance::print(raw_ostream &OS) const {
5407   print_factors_and_types(OS);
5408   print_fixups(OS);
5409   print_uses(OS);
5410 }
5411 
5412 LLVM_DUMP_METHOD void LSRInstance::dump() const {
5413   print(errs()); errs() << '\n';
5414 }
5415 #endif
5416 
5417 namespace {
5418 
5419 class LoopStrengthReduce : public LoopPass {
5420 public:
5421   static char ID; // Pass ID, replacement for typeid
5422 
5423   LoopStrengthReduce();
5424 
5425 private:
5426   bool runOnLoop(Loop *L, LPPassManager &LPM) override;
5427   void getAnalysisUsage(AnalysisUsage &AU) const override;
5428 };
5429 
5430 } // end anonymous namespace
5431 
5432 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) {
5433   initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
5434 }
5435 
5436 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
5437   // We split critical edges, so we change the CFG.  However, we do update
5438   // many analyses if they are around.
5439   AU.addPreservedID(LoopSimplifyID);
5440 
5441   AU.addRequired<LoopInfoWrapperPass>();
5442   AU.addPreserved<LoopInfoWrapperPass>();
5443   AU.addRequiredID(LoopSimplifyID);
5444   AU.addRequired<DominatorTreeWrapperPass>();
5445   AU.addPreserved<DominatorTreeWrapperPass>();
5446   AU.addRequired<ScalarEvolutionWrapperPass>();
5447   AU.addPreserved<ScalarEvolutionWrapperPass>();
5448   // Requiring LoopSimplify a second time here prevents IVUsers from running
5449   // twice, since LoopSimplify was invalidated by running ScalarEvolution.
5450   AU.addRequiredID(LoopSimplifyID);
5451   AU.addRequired<IVUsersWrapperPass>();
5452   AU.addPreserved<IVUsersWrapperPass>();
5453   AU.addRequired<TargetTransformInfoWrapperPass>();
5454 }
5455 
5456 static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE,
5457                                DominatorTree &DT, LoopInfo &LI,
5458                                const TargetTransformInfo &TTI) {
5459   bool Changed = false;
5460 
5461   // Run the main LSR transformation.
5462   Changed |= LSRInstance(L, IU, SE, DT, LI, TTI).getChanged();
5463 
5464   // Remove any extra phis created by processing inner loops.
5465   Changed |= DeleteDeadPHIs(L->getHeader());
5466   if (EnablePhiElim && L->isLoopSimplifyForm()) {
5467     SmallVector<WeakTrackingVH, 16> DeadInsts;
5468     const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
5469     SCEVExpander Rewriter(SE, DL, "lsr");
5470 #ifndef NDEBUG
5471     Rewriter.setDebugType(DEBUG_TYPE);
5472 #endif
5473     unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI);
5474     if (numFolded) {
5475       Changed = true;
5476       DeleteTriviallyDeadInstructions(DeadInsts);
5477       DeleteDeadPHIs(L->getHeader());
5478     }
5479   }
5480   return Changed;
5481 }
5482 
5483 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
5484   if (skipLoop(L))
5485     return false;
5486 
5487   auto &IU = getAnalysis<IVUsersWrapperPass>().getIU();
5488   auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
5489   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
5490   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
5491   const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
5492       *L->getHeader()->getParent());
5493   return ReduceLoopStrength(L, IU, SE, DT, LI, TTI);
5494 }
5495 
5496 PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM,
5497                                               LoopStandardAnalysisResults &AR,
5498                                               LPMUpdater &) {
5499   if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE,
5500                           AR.DT, AR.LI, AR.TTI))
5501     return PreservedAnalyses::all();
5502 
5503   return getLoopPassPreservedAnalyses();
5504 }
5505 
5506 char LoopStrengthReduce::ID = 0;
5507 
5508 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce",
5509                       "Loop Strength Reduction", false, false)
5510 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
5511 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
5512 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
5513 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass)
5514 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
5515 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
5516 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce",
5517                     "Loop Strength Reduction", false, false)
5518 
5519 Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); }
5520