1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This transformation analyzes and transforms the induction variables (and 11 // computations derived from them) into forms suitable for efficient execution 12 // on the target. 13 // 14 // This pass performs a strength reduction on array references inside loops that 15 // have as one or more of their components the loop induction variable, it 16 // rewrites expressions to take advantage of scaled-index addressing modes 17 // available on the target, and it performs a variety of other optimizations 18 // related to loop induction variables. 19 // 20 // Terminology note: this code has a lot of handling for "post-increment" or 21 // "post-inc" users. This is not talking about post-increment addressing modes; 22 // it is instead talking about code like this: 23 // 24 // %i = phi [ 0, %entry ], [ %i.next, %latch ] 25 // ... 26 // %i.next = add %i, 1 27 // %c = icmp eq %i.next, %n 28 // 29 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however 30 // it's useful to think about these as the same register, with some uses using 31 // the value of the register before the add and some using it after. In this 32 // example, the icmp is a post-increment user, since it uses %i.next, which is 33 // the value of the induction variable after the increment. The other common 34 // case of post-increment users is users outside the loop. 35 // 36 // TODO: More sophistication in the way Formulae are generated and filtered. 37 // 38 // TODO: Handle multiple loops at a time. 39 // 40 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead 41 // of a GlobalValue? 42 // 43 // TODO: When truncation is free, truncate ICmp users' operands to make it a 44 // smaller encoding (on x86 at least). 45 // 46 // TODO: When a negated register is used by an add (such as in a list of 47 // multiple base registers, or as the increment expression in an addrec), 48 // we may not actually need both reg and (-1 * reg) in registers; the 49 // negation can be implemented by using a sub instead of an add. The 50 // lack of support for taking this into consideration when making 51 // register pressure decisions is partly worked around by the "Special" 52 // use kind. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h" 57 #include "llvm/ADT/APInt.h" 58 #include "llvm/ADT/DenseMap.h" 59 #include "llvm/ADT/DenseSet.h" 60 #include "llvm/ADT/Hashing.h" 61 #include "llvm/ADT/PointerIntPair.h" 62 #include "llvm/ADT/STLExtras.h" 63 #include "llvm/ADT/SetVector.h" 64 #include "llvm/ADT/SmallBitVector.h" 65 #include "llvm/ADT/SmallPtrSet.h" 66 #include "llvm/ADT/SmallSet.h" 67 #include "llvm/ADT/SmallVector.h" 68 #include "llvm/Analysis/IVUsers.h" 69 #include "llvm/Analysis/LoopInfo.h" 70 #include "llvm/Analysis/LoopPass.h" 71 #include "llvm/Analysis/ScalarEvolution.h" 72 #include "llvm/Analysis/ScalarEvolutionExpander.h" 73 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 74 #include "llvm/Analysis/ScalarEvolutionNormalization.h" 75 #include "llvm/Analysis/TargetTransformInfo.h" 76 #include "llvm/IR/BasicBlock.h" 77 #include "llvm/IR/Constant.h" 78 #include "llvm/IR/Constants.h" 79 #include "llvm/IR/DerivedTypes.h" 80 #include "llvm/IR/Dominators.h" 81 #include "llvm/IR/GlobalValue.h" 82 #include "llvm/IR/IRBuilder.h" 83 #include "llvm/IR/Instruction.h" 84 #include "llvm/IR/Instructions.h" 85 #include "llvm/IR/IntrinsicInst.h" 86 #include "llvm/IR/Module.h" 87 #include "llvm/IR/OperandTraits.h" 88 #include "llvm/IR/Operator.h" 89 #include "llvm/IR/Type.h" 90 #include "llvm/IR/Value.h" 91 #include "llvm/IR/ValueHandle.h" 92 #include "llvm/Pass.h" 93 #include "llvm/Support/Casting.h" 94 #include "llvm/Support/CommandLine.h" 95 #include "llvm/Support/Compiler.h" 96 #include "llvm/Support/Debug.h" 97 #include "llvm/Support/ErrorHandling.h" 98 #include "llvm/Support/MathExtras.h" 99 #include "llvm/Support/raw_ostream.h" 100 #include "llvm/Transforms/Scalar.h" 101 #include "llvm/Transforms/Scalar/LoopPassManager.h" 102 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 103 #include "llvm/Transforms/Utils/Local.h" 104 #include <algorithm> 105 #include <cassert> 106 #include <cstddef> 107 #include <cstdint> 108 #include <cstdlib> 109 #include <iterator> 110 #include <map> 111 #include <tuple> 112 #include <utility> 113 114 using namespace llvm; 115 116 #define DEBUG_TYPE "loop-reduce" 117 118 /// MaxIVUsers is an arbitrary threshold that provides an early opportunitiy for 119 /// bail out. This threshold is far beyond the number of users that LSR can 120 /// conceivably solve, so it should not affect generated code, but catches the 121 /// worst cases before LSR burns too much compile time and stack space. 122 static const unsigned MaxIVUsers = 200; 123 124 // Temporary flag to cleanup congruent phis after LSR phi expansion. 125 // It's currently disabled until we can determine whether it's truly useful or 126 // not. The flag should be removed after the v3.0 release. 127 // This is now needed for ivchains. 128 static cl::opt<bool> EnablePhiElim( 129 "enable-lsr-phielim", cl::Hidden, cl::init(true), 130 cl::desc("Enable LSR phi elimination")); 131 132 // The flag adds instruction count to solutions cost comparision. 133 static cl::opt<bool> InsnsCost( 134 "lsr-insns-cost", cl::Hidden, cl::init(false), 135 cl::desc("Add instruction count to a LSR cost model")); 136 137 #ifndef NDEBUG 138 // Stress test IV chain generation. 139 static cl::opt<bool> StressIVChain( 140 "stress-ivchain", cl::Hidden, cl::init(false), 141 cl::desc("Stress test LSR IV chains")); 142 #else 143 static bool StressIVChain = false; 144 #endif 145 146 namespace { 147 148 struct MemAccessTy { 149 /// Used in situations where the accessed memory type is unknown. 150 static const unsigned UnknownAddressSpace = ~0u; 151 152 Type *MemTy; 153 unsigned AddrSpace; 154 155 MemAccessTy() : MemTy(nullptr), AddrSpace(UnknownAddressSpace) {} 156 157 MemAccessTy(Type *Ty, unsigned AS) : 158 MemTy(Ty), AddrSpace(AS) {} 159 160 bool operator==(MemAccessTy Other) const { 161 return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace; 162 } 163 164 bool operator!=(MemAccessTy Other) const { return !(*this == Other); } 165 166 static MemAccessTy getUnknown(LLVMContext &Ctx, 167 unsigned AS = UnknownAddressSpace) { 168 return MemAccessTy(Type::getVoidTy(Ctx), AS); 169 } 170 }; 171 172 /// This class holds data which is used to order reuse candidates. 173 class RegSortData { 174 public: 175 /// This represents the set of LSRUse indices which reference 176 /// a particular register. 177 SmallBitVector UsedByIndices; 178 179 void print(raw_ostream &OS) const; 180 void dump() const; 181 }; 182 183 } // end anonymous namespace 184 185 void RegSortData::print(raw_ostream &OS) const { 186 OS << "[NumUses=" << UsedByIndices.count() << ']'; 187 } 188 189 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 190 LLVM_DUMP_METHOD void RegSortData::dump() const { 191 print(errs()); errs() << '\n'; 192 } 193 #endif 194 195 namespace { 196 197 /// Map register candidates to information about how they are used. 198 class RegUseTracker { 199 typedef DenseMap<const SCEV *, RegSortData> RegUsesTy; 200 201 RegUsesTy RegUsesMap; 202 SmallVector<const SCEV *, 16> RegSequence; 203 204 public: 205 void countRegister(const SCEV *Reg, size_t LUIdx); 206 void dropRegister(const SCEV *Reg, size_t LUIdx); 207 void swapAndDropUse(size_t LUIdx, size_t LastLUIdx); 208 209 bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const; 210 211 const SmallBitVector &getUsedByIndices(const SCEV *Reg) const; 212 213 void clear(); 214 215 typedef SmallVectorImpl<const SCEV *>::iterator iterator; 216 typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator; 217 iterator begin() { return RegSequence.begin(); } 218 iterator end() { return RegSequence.end(); } 219 const_iterator begin() const { return RegSequence.begin(); } 220 const_iterator end() const { return RegSequence.end(); } 221 }; 222 223 } // end anonymous namespace 224 225 void 226 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) { 227 std::pair<RegUsesTy::iterator, bool> Pair = 228 RegUsesMap.insert(std::make_pair(Reg, RegSortData())); 229 RegSortData &RSD = Pair.first->second; 230 if (Pair.second) 231 RegSequence.push_back(Reg); 232 RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1)); 233 RSD.UsedByIndices.set(LUIdx); 234 } 235 236 void 237 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) { 238 RegUsesTy::iterator It = RegUsesMap.find(Reg); 239 assert(It != RegUsesMap.end()); 240 RegSortData &RSD = It->second; 241 assert(RSD.UsedByIndices.size() > LUIdx); 242 RSD.UsedByIndices.reset(LUIdx); 243 } 244 245 void 246 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) { 247 assert(LUIdx <= LastLUIdx); 248 249 // Update RegUses. The data structure is not optimized for this purpose; 250 // we must iterate through it and update each of the bit vectors. 251 for (auto &Pair : RegUsesMap) { 252 SmallBitVector &UsedByIndices = Pair.second.UsedByIndices; 253 if (LUIdx < UsedByIndices.size()) 254 UsedByIndices[LUIdx] = 255 LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false; 256 UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx)); 257 } 258 } 259 260 bool 261 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const { 262 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 263 if (I == RegUsesMap.end()) 264 return false; 265 const SmallBitVector &UsedByIndices = I->second.UsedByIndices; 266 int i = UsedByIndices.find_first(); 267 if (i == -1) return false; 268 if ((size_t)i != LUIdx) return true; 269 return UsedByIndices.find_next(i) != -1; 270 } 271 272 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const { 273 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 274 assert(I != RegUsesMap.end() && "Unknown register!"); 275 return I->second.UsedByIndices; 276 } 277 278 void RegUseTracker::clear() { 279 RegUsesMap.clear(); 280 RegSequence.clear(); 281 } 282 283 namespace { 284 285 /// This class holds information that describes a formula for computing 286 /// satisfying a use. It may include broken-out immediates and scaled registers. 287 struct Formula { 288 /// Global base address used for complex addressing. 289 GlobalValue *BaseGV; 290 291 /// Base offset for complex addressing. 292 int64_t BaseOffset; 293 294 /// Whether any complex addressing has a base register. 295 bool HasBaseReg; 296 297 /// The scale of any complex addressing. 298 int64_t Scale; 299 300 /// The list of "base" registers for this use. When this is non-empty. The 301 /// canonical representation of a formula is 302 /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and 303 /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty(). 304 /// #1 enforces that the scaled register is always used when at least two 305 /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2. 306 /// #2 enforces that 1 * reg is reg. 307 /// This invariant can be temporarly broken while building a formula. 308 /// However, every formula inserted into the LSRInstance must be in canonical 309 /// form. 310 SmallVector<const SCEV *, 4> BaseRegs; 311 312 /// The 'scaled' register for this use. This should be non-null when Scale is 313 /// not zero. 314 const SCEV *ScaledReg; 315 316 /// An additional constant offset which added near the use. This requires a 317 /// temporary register, but the offset itself can live in an add immediate 318 /// field rather than a register. 319 int64_t UnfoldedOffset; 320 321 Formula() 322 : BaseGV(nullptr), BaseOffset(0), HasBaseReg(false), Scale(0), 323 ScaledReg(nullptr), UnfoldedOffset(0) {} 324 325 void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE); 326 327 bool isCanonical() const; 328 329 void canonicalize(); 330 331 bool unscale(); 332 333 bool hasZeroEnd() const; 334 335 size_t getNumRegs() const; 336 Type *getType() const; 337 338 void deleteBaseReg(const SCEV *&S); 339 340 bool referencesReg(const SCEV *S) const; 341 bool hasRegsUsedByUsesOtherThan(size_t LUIdx, 342 const RegUseTracker &RegUses) const; 343 344 void print(raw_ostream &OS) const; 345 void dump() const; 346 }; 347 348 } // end anonymous namespace 349 350 /// Recursion helper for initialMatch. 351 static void DoInitialMatch(const SCEV *S, Loop *L, 352 SmallVectorImpl<const SCEV *> &Good, 353 SmallVectorImpl<const SCEV *> &Bad, 354 ScalarEvolution &SE) { 355 // Collect expressions which properly dominate the loop header. 356 if (SE.properlyDominates(S, L->getHeader())) { 357 Good.push_back(S); 358 return; 359 } 360 361 // Look at add operands. 362 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 363 for (const SCEV *S : Add->operands()) 364 DoInitialMatch(S, L, Good, Bad, SE); 365 return; 366 } 367 368 // Look at addrec operands. 369 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 370 if (!AR->getStart()->isZero() && AR->isAffine()) { 371 DoInitialMatch(AR->getStart(), L, Good, Bad, SE); 372 DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0), 373 AR->getStepRecurrence(SE), 374 // FIXME: AR->getNoWrapFlags() 375 AR->getLoop(), SCEV::FlagAnyWrap), 376 L, Good, Bad, SE); 377 return; 378 } 379 380 // Handle a multiplication by -1 (negation) if it didn't fold. 381 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) 382 if (Mul->getOperand(0)->isAllOnesValue()) { 383 SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end()); 384 const SCEV *NewMul = SE.getMulExpr(Ops); 385 386 SmallVector<const SCEV *, 4> MyGood; 387 SmallVector<const SCEV *, 4> MyBad; 388 DoInitialMatch(NewMul, L, MyGood, MyBad, SE); 389 const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue( 390 SE.getEffectiveSCEVType(NewMul->getType()))); 391 for (const SCEV *S : MyGood) 392 Good.push_back(SE.getMulExpr(NegOne, S)); 393 for (const SCEV *S : MyBad) 394 Bad.push_back(SE.getMulExpr(NegOne, S)); 395 return; 396 } 397 398 // Ok, we can't do anything interesting. Just stuff the whole thing into a 399 // register and hope for the best. 400 Bad.push_back(S); 401 } 402 403 /// Incorporate loop-variant parts of S into this Formula, attempting to keep 404 /// all loop-invariant and loop-computable values in a single base register. 405 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) { 406 SmallVector<const SCEV *, 4> Good; 407 SmallVector<const SCEV *, 4> Bad; 408 DoInitialMatch(S, L, Good, Bad, SE); 409 if (!Good.empty()) { 410 const SCEV *Sum = SE.getAddExpr(Good); 411 if (!Sum->isZero()) 412 BaseRegs.push_back(Sum); 413 HasBaseReg = true; 414 } 415 if (!Bad.empty()) { 416 const SCEV *Sum = SE.getAddExpr(Bad); 417 if (!Sum->isZero()) 418 BaseRegs.push_back(Sum); 419 HasBaseReg = true; 420 } 421 canonicalize(); 422 } 423 424 /// \brief Check whether or not this formula statisfies the canonical 425 /// representation. 426 /// \see Formula::BaseRegs. 427 bool Formula::isCanonical() const { 428 if (ScaledReg) 429 return Scale != 1 || !BaseRegs.empty(); 430 return BaseRegs.size() <= 1; 431 } 432 433 /// \brief Helper method to morph a formula into its canonical representation. 434 /// \see Formula::BaseRegs. 435 /// Every formula having more than one base register, must use the ScaledReg 436 /// field. Otherwise, we would have to do special cases everywhere in LSR 437 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ... 438 /// On the other hand, 1*reg should be canonicalized into reg. 439 void Formula::canonicalize() { 440 if (isCanonical()) 441 return; 442 // So far we did not need this case. This is easy to implement but it is 443 // useless to maintain dead code. Beside it could hurt compile time. 444 assert(!BaseRegs.empty() && "1*reg => reg, should not be needed."); 445 // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg. 446 ScaledReg = BaseRegs.back(); 447 BaseRegs.pop_back(); 448 Scale = 1; 449 size_t BaseRegsSize = BaseRegs.size(); 450 size_t Try = 0; 451 // If ScaledReg is an invariant, try to find a variant expression. 452 while (Try < BaseRegsSize && !isa<SCEVAddRecExpr>(ScaledReg)) 453 std::swap(ScaledReg, BaseRegs[Try++]); 454 } 455 456 /// \brief Get rid of the scale in the formula. 457 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2. 458 /// \return true if it was possible to get rid of the scale, false otherwise. 459 /// \note After this operation the formula may not be in the canonical form. 460 bool Formula::unscale() { 461 if (Scale != 1) 462 return false; 463 Scale = 0; 464 BaseRegs.push_back(ScaledReg); 465 ScaledReg = nullptr; 466 return true; 467 } 468 469 bool Formula::hasZeroEnd() const { 470 if (UnfoldedOffset || BaseOffset) 471 return false; 472 if (BaseRegs.size() != 1 || ScaledReg) 473 return false; 474 return true; 475 } 476 477 /// Return the total number of register operands used by this formula. This does 478 /// not include register uses implied by non-constant addrec strides. 479 size_t Formula::getNumRegs() const { 480 return !!ScaledReg + BaseRegs.size(); 481 } 482 483 /// Return the type of this formula, if it has one, or null otherwise. This type 484 /// is meaningless except for the bit size. 485 Type *Formula::getType() const { 486 return !BaseRegs.empty() ? BaseRegs.front()->getType() : 487 ScaledReg ? ScaledReg->getType() : 488 BaseGV ? BaseGV->getType() : 489 nullptr; 490 } 491 492 /// Delete the given base reg from the BaseRegs list. 493 void Formula::deleteBaseReg(const SCEV *&S) { 494 if (&S != &BaseRegs.back()) 495 std::swap(S, BaseRegs.back()); 496 BaseRegs.pop_back(); 497 } 498 499 /// Test if this formula references the given register. 500 bool Formula::referencesReg(const SCEV *S) const { 501 return S == ScaledReg || is_contained(BaseRegs, S); 502 } 503 504 /// Test whether this formula uses registers which are used by uses other than 505 /// the use with the given index. 506 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx, 507 const RegUseTracker &RegUses) const { 508 if (ScaledReg) 509 if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx)) 510 return true; 511 for (const SCEV *BaseReg : BaseRegs) 512 if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx)) 513 return true; 514 return false; 515 } 516 517 void Formula::print(raw_ostream &OS) const { 518 bool First = true; 519 if (BaseGV) { 520 if (!First) OS << " + "; else First = false; 521 BaseGV->printAsOperand(OS, /*PrintType=*/false); 522 } 523 if (BaseOffset != 0) { 524 if (!First) OS << " + "; else First = false; 525 OS << BaseOffset; 526 } 527 for (const SCEV *BaseReg : BaseRegs) { 528 if (!First) OS << " + "; else First = false; 529 OS << "reg(" << *BaseReg << ')'; 530 } 531 if (HasBaseReg && BaseRegs.empty()) { 532 if (!First) OS << " + "; else First = false; 533 OS << "**error: HasBaseReg**"; 534 } else if (!HasBaseReg && !BaseRegs.empty()) { 535 if (!First) OS << " + "; else First = false; 536 OS << "**error: !HasBaseReg**"; 537 } 538 if (Scale != 0) { 539 if (!First) OS << " + "; else First = false; 540 OS << Scale << "*reg("; 541 if (ScaledReg) 542 OS << *ScaledReg; 543 else 544 OS << "<unknown>"; 545 OS << ')'; 546 } 547 if (UnfoldedOffset != 0) { 548 if (!First) OS << " + "; 549 OS << "imm(" << UnfoldedOffset << ')'; 550 } 551 } 552 553 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 554 LLVM_DUMP_METHOD void Formula::dump() const { 555 print(errs()); errs() << '\n'; 556 } 557 #endif 558 559 /// Return true if the given addrec can be sign-extended without changing its 560 /// value. 561 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 562 Type *WideTy = 563 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1); 564 return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy)); 565 } 566 567 /// Return true if the given add can be sign-extended without changing its 568 /// value. 569 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) { 570 Type *WideTy = 571 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1); 572 return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy)); 573 } 574 575 /// Return true if the given mul can be sign-extended without changing its 576 /// value. 577 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) { 578 Type *WideTy = 579 IntegerType::get(SE.getContext(), 580 SE.getTypeSizeInBits(M->getType()) * M->getNumOperands()); 581 return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy)); 582 } 583 584 /// Return an expression for LHS /s RHS, if it can be determined and if the 585 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits 586 /// is true, expressions like (X * Y) /s Y are simplified to Y, ignoring that 587 /// the multiplication may overflow, which is useful when the result will be 588 /// used in a context where the most significant bits are ignored. 589 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS, 590 ScalarEvolution &SE, 591 bool IgnoreSignificantBits = false) { 592 // Handle the trivial case, which works for any SCEV type. 593 if (LHS == RHS) 594 return SE.getConstant(LHS->getType(), 1); 595 596 // Handle a few RHS special cases. 597 const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS); 598 if (RC) { 599 const APInt &RA = RC->getAPInt(); 600 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do 601 // some folding. 602 if (RA.isAllOnesValue()) 603 return SE.getMulExpr(LHS, RC); 604 // Handle x /s 1 as x. 605 if (RA == 1) 606 return LHS; 607 } 608 609 // Check for a division of a constant by a constant. 610 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) { 611 if (!RC) 612 return nullptr; 613 const APInt &LA = C->getAPInt(); 614 const APInt &RA = RC->getAPInt(); 615 if (LA.srem(RA) != 0) 616 return nullptr; 617 return SE.getConstant(LA.sdiv(RA)); 618 } 619 620 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow. 621 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) { 622 if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) { 623 const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE, 624 IgnoreSignificantBits); 625 if (!Step) return nullptr; 626 const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE, 627 IgnoreSignificantBits); 628 if (!Start) return nullptr; 629 // FlagNW is independent of the start value, step direction, and is 630 // preserved with smaller magnitude steps. 631 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 632 return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap); 633 } 634 return nullptr; 635 } 636 637 // Distribute the sdiv over add operands, if the add doesn't overflow. 638 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) { 639 if (IgnoreSignificantBits || isAddSExtable(Add, SE)) { 640 SmallVector<const SCEV *, 8> Ops; 641 for (const SCEV *S : Add->operands()) { 642 const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits); 643 if (!Op) return nullptr; 644 Ops.push_back(Op); 645 } 646 return SE.getAddExpr(Ops); 647 } 648 return nullptr; 649 } 650 651 // Check for a multiply operand that we can pull RHS out of. 652 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) { 653 if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) { 654 SmallVector<const SCEV *, 4> Ops; 655 bool Found = false; 656 for (const SCEV *S : Mul->operands()) { 657 if (!Found) 658 if (const SCEV *Q = getExactSDiv(S, RHS, SE, 659 IgnoreSignificantBits)) { 660 S = Q; 661 Found = true; 662 } 663 Ops.push_back(S); 664 } 665 return Found ? SE.getMulExpr(Ops) : nullptr; 666 } 667 return nullptr; 668 } 669 670 // Otherwise we don't know. 671 return nullptr; 672 } 673 674 /// If S involves the addition of a constant integer value, return that integer 675 /// value, and mutate S to point to a new SCEV with that value excluded. 676 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) { 677 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 678 if (C->getAPInt().getMinSignedBits() <= 64) { 679 S = SE.getConstant(C->getType(), 0); 680 return C->getValue()->getSExtValue(); 681 } 682 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 683 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 684 int64_t Result = ExtractImmediate(NewOps.front(), SE); 685 if (Result != 0) 686 S = SE.getAddExpr(NewOps); 687 return Result; 688 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 689 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 690 int64_t Result = ExtractImmediate(NewOps.front(), SE); 691 if (Result != 0) 692 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 693 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 694 SCEV::FlagAnyWrap); 695 return Result; 696 } 697 return 0; 698 } 699 700 /// If S involves the addition of a GlobalValue address, return that symbol, and 701 /// mutate S to point to a new SCEV with that value excluded. 702 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) { 703 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 704 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) { 705 S = SE.getConstant(GV->getType(), 0); 706 return GV; 707 } 708 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 709 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 710 GlobalValue *Result = ExtractSymbol(NewOps.back(), SE); 711 if (Result) 712 S = SE.getAddExpr(NewOps); 713 return Result; 714 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 715 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 716 GlobalValue *Result = ExtractSymbol(NewOps.front(), SE); 717 if (Result) 718 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 719 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 720 SCEV::FlagAnyWrap); 721 return Result; 722 } 723 return nullptr; 724 } 725 726 /// Returns true if the specified instruction is using the specified value as an 727 /// address. 728 static bool isAddressUse(Instruction *Inst, Value *OperandVal) { 729 bool isAddress = isa<LoadInst>(Inst); 730 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 731 if (SI->getPointerOperand() == OperandVal) 732 isAddress = true; 733 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 734 // Addressing modes can also be folded into prefetches and a variety 735 // of intrinsics. 736 switch (II->getIntrinsicID()) { 737 default: break; 738 case Intrinsic::prefetch: 739 if (II->getArgOperand(0) == OperandVal) 740 isAddress = true; 741 break; 742 } 743 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) { 744 if (RMW->getPointerOperand() == OperandVal) 745 isAddress = true; 746 } else if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 747 if (CmpX->getPointerOperand() == OperandVal) 748 isAddress = true; 749 } 750 return isAddress; 751 } 752 753 /// Return the type of the memory being accessed. 754 static MemAccessTy getAccessType(const Instruction *Inst) { 755 MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace); 756 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 757 AccessTy.MemTy = SI->getOperand(0)->getType(); 758 AccessTy.AddrSpace = SI->getPointerAddressSpace(); 759 } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 760 AccessTy.AddrSpace = LI->getPointerAddressSpace(); 761 } else if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) { 762 AccessTy.AddrSpace = RMW->getPointerAddressSpace(); 763 } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 764 AccessTy.AddrSpace = CmpX->getPointerAddressSpace(); 765 } 766 767 // All pointers have the same requirements, so canonicalize them to an 768 // arbitrary pointer type to minimize variation. 769 if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy)) 770 AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1), 771 PTy->getAddressSpace()); 772 773 return AccessTy; 774 } 775 776 /// Return true if this AddRec is already a phi in its loop. 777 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 778 for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin(); 779 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 780 if (SE.isSCEVable(PN->getType()) && 781 (SE.getEffectiveSCEVType(PN->getType()) == 782 SE.getEffectiveSCEVType(AR->getType())) && 783 SE.getSCEV(PN) == AR) 784 return true; 785 } 786 return false; 787 } 788 789 /// Check if expanding this expression is likely to incur significant cost. This 790 /// is tricky because SCEV doesn't track which expressions are actually computed 791 /// by the current IR. 792 /// 793 /// We currently allow expansion of IV increments that involve adds, 794 /// multiplication by constants, and AddRecs from existing phis. 795 /// 796 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an 797 /// obvious multiple of the UDivExpr. 798 static bool isHighCostExpansion(const SCEV *S, 799 SmallPtrSetImpl<const SCEV*> &Processed, 800 ScalarEvolution &SE) { 801 // Zero/One operand expressions 802 switch (S->getSCEVType()) { 803 case scUnknown: 804 case scConstant: 805 return false; 806 case scTruncate: 807 return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(), 808 Processed, SE); 809 case scZeroExtend: 810 return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(), 811 Processed, SE); 812 case scSignExtend: 813 return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(), 814 Processed, SE); 815 } 816 817 if (!Processed.insert(S).second) 818 return false; 819 820 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 821 for (const SCEV *S : Add->operands()) { 822 if (isHighCostExpansion(S, Processed, SE)) 823 return true; 824 } 825 return false; 826 } 827 828 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 829 if (Mul->getNumOperands() == 2) { 830 // Multiplication by a constant is ok 831 if (isa<SCEVConstant>(Mul->getOperand(0))) 832 return isHighCostExpansion(Mul->getOperand(1), Processed, SE); 833 834 // If we have the value of one operand, check if an existing 835 // multiplication already generates this expression. 836 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) { 837 Value *UVal = U->getValue(); 838 for (User *UR : UVal->users()) { 839 // If U is a constant, it may be used by a ConstantExpr. 840 Instruction *UI = dyn_cast<Instruction>(UR); 841 if (UI && UI->getOpcode() == Instruction::Mul && 842 SE.isSCEVable(UI->getType())) { 843 return SE.getSCEV(UI) == Mul; 844 } 845 } 846 } 847 } 848 } 849 850 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 851 if (isExistingPhi(AR, SE)) 852 return false; 853 } 854 855 // Fow now, consider any other type of expression (div/mul/min/max) high cost. 856 return true; 857 } 858 859 /// If any of the instructions is the specified set are trivially dead, delete 860 /// them and see if this makes any of their operands subsequently dead. 861 static bool 862 DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) { 863 bool Changed = false; 864 865 while (!DeadInsts.empty()) { 866 Value *V = DeadInsts.pop_back_val(); 867 Instruction *I = dyn_cast_or_null<Instruction>(V); 868 869 if (!I || !isInstructionTriviallyDead(I)) 870 continue; 871 872 for (Use &O : I->operands()) 873 if (Instruction *U = dyn_cast<Instruction>(O)) { 874 O = nullptr; 875 if (U->use_empty()) 876 DeadInsts.emplace_back(U); 877 } 878 879 I->eraseFromParent(); 880 Changed = true; 881 } 882 883 return Changed; 884 } 885 886 namespace { 887 888 class LSRUse; 889 890 } // end anonymous namespace 891 892 /// \brief Check if the addressing mode defined by \p F is completely 893 /// folded in \p LU at isel time. 894 /// This includes address-mode folding and special icmp tricks. 895 /// This function returns true if \p LU can accommodate what \p F 896 /// defines and up to 1 base + 1 scaled + offset. 897 /// In other words, if \p F has several base registers, this function may 898 /// still return true. Therefore, users still need to account for 899 /// additional base registers and/or unfolded offsets to derive an 900 /// accurate cost model. 901 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 902 const LSRUse &LU, const Formula &F); 903 // Get the cost of the scaling factor used in F for LU. 904 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, 905 const LSRUse &LU, const Formula &F); 906 907 namespace { 908 909 /// This class is used to measure and compare candidate formulae. 910 class Cost { 911 /// TODO: Some of these could be merged. Also, a lexical ordering 912 /// isn't always optimal. 913 unsigned Insns; 914 unsigned NumRegs; 915 unsigned AddRecCost; 916 unsigned NumIVMuls; 917 unsigned NumBaseAdds; 918 unsigned ImmCost; 919 unsigned SetupCost; 920 unsigned ScaleCost; 921 922 public: 923 Cost() 924 : Insns(0), NumRegs(0), AddRecCost(0), NumIVMuls(0), NumBaseAdds(0), 925 ImmCost(0), SetupCost(0), ScaleCost(0) {} 926 927 bool operator<(const Cost &Other) const; 928 929 void Lose(); 930 931 #ifndef NDEBUG 932 // Once any of the metrics loses, they must all remain losers. 933 bool isValid() { 934 return ((Insns | NumRegs | AddRecCost | NumIVMuls | NumBaseAdds 935 | ImmCost | SetupCost | ScaleCost) != ~0u) 936 || ((Insns & NumRegs & AddRecCost & NumIVMuls & NumBaseAdds 937 & ImmCost & SetupCost & ScaleCost) == ~0u); 938 } 939 #endif 940 941 bool isLoser() { 942 assert(isValid() && "invalid cost"); 943 return NumRegs == ~0u; 944 } 945 946 void RateFormula(const TargetTransformInfo &TTI, 947 const Formula &F, 948 SmallPtrSetImpl<const SCEV *> &Regs, 949 const DenseSet<const SCEV *> &VisitedRegs, 950 const Loop *L, 951 ScalarEvolution &SE, DominatorTree &DT, 952 const LSRUse &LU, 953 SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr); 954 955 void print(raw_ostream &OS) const; 956 void dump() const; 957 958 private: 959 void RateRegister(const SCEV *Reg, 960 SmallPtrSetImpl<const SCEV *> &Regs, 961 const Loop *L, 962 ScalarEvolution &SE, DominatorTree &DT); 963 void RatePrimaryRegister(const SCEV *Reg, 964 SmallPtrSetImpl<const SCEV *> &Regs, 965 const Loop *L, 966 ScalarEvolution &SE, DominatorTree &DT, 967 SmallPtrSetImpl<const SCEV *> *LoserRegs); 968 }; 969 970 /// An operand value in an instruction which is to be replaced with some 971 /// equivalent, possibly strength-reduced, replacement. 972 struct LSRFixup { 973 /// The instruction which will be updated. 974 Instruction *UserInst; 975 976 /// The operand of the instruction which will be replaced. The operand may be 977 /// used more than once; every instance will be replaced. 978 Value *OperandValToReplace; 979 980 /// If this user is to use the post-incremented value of an induction 981 /// variable, this variable is non-null and holds the loop associated with the 982 /// induction variable. 983 PostIncLoopSet PostIncLoops; 984 985 /// A constant offset to be added to the LSRUse expression. This allows 986 /// multiple fixups to share the same LSRUse with different offsets, for 987 /// example in an unrolled loop. 988 int64_t Offset; 989 990 bool isUseFullyOutsideLoop(const Loop *L) const; 991 992 LSRFixup(); 993 994 void print(raw_ostream &OS) const; 995 void dump() const; 996 }; 997 998 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted 999 /// SmallVectors of const SCEV*. 1000 struct UniquifierDenseMapInfo { 1001 static SmallVector<const SCEV *, 4> getEmptyKey() { 1002 SmallVector<const SCEV *, 4> V; 1003 V.push_back(reinterpret_cast<const SCEV *>(-1)); 1004 return V; 1005 } 1006 1007 static SmallVector<const SCEV *, 4> getTombstoneKey() { 1008 SmallVector<const SCEV *, 4> V; 1009 V.push_back(reinterpret_cast<const SCEV *>(-2)); 1010 return V; 1011 } 1012 1013 static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) { 1014 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 1015 } 1016 1017 static bool isEqual(const SmallVector<const SCEV *, 4> &LHS, 1018 const SmallVector<const SCEV *, 4> &RHS) { 1019 return LHS == RHS; 1020 } 1021 }; 1022 1023 /// This class holds the state that LSR keeps for each use in IVUsers, as well 1024 /// as uses invented by LSR itself. It includes information about what kinds of 1025 /// things can be folded into the user, information about the user itself, and 1026 /// information about how the use may be satisfied. TODO: Represent multiple 1027 /// users of the same expression in common? 1028 class LSRUse { 1029 DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier; 1030 1031 public: 1032 /// An enum for a kind of use, indicating what types of scaled and immediate 1033 /// operands it might support. 1034 enum KindType { 1035 Basic, ///< A normal use, with no folding. 1036 Special, ///< A special case of basic, allowing -1 scales. 1037 Address, ///< An address use; folding according to TargetLowering 1038 ICmpZero ///< An equality icmp with both operands folded into one. 1039 // TODO: Add a generic icmp too? 1040 }; 1041 1042 typedef PointerIntPair<const SCEV *, 2, KindType> SCEVUseKindPair; 1043 1044 KindType Kind; 1045 MemAccessTy AccessTy; 1046 1047 /// The list of operands which are to be replaced. 1048 SmallVector<LSRFixup, 8> Fixups; 1049 1050 /// Keep track of the min and max offsets of the fixups. 1051 int64_t MinOffset; 1052 int64_t MaxOffset; 1053 1054 /// This records whether all of the fixups using this LSRUse are outside of 1055 /// the loop, in which case some special-case heuristics may be used. 1056 bool AllFixupsOutsideLoop; 1057 1058 /// RigidFormula is set to true to guarantee that this use will be associated 1059 /// with a single formula--the one that initially matched. Some SCEV 1060 /// expressions cannot be expanded. This allows LSR to consider the registers 1061 /// used by those expressions without the need to expand them later after 1062 /// changing the formula. 1063 bool RigidFormula; 1064 1065 /// This records the widest use type for any fixup using this 1066 /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max 1067 /// fixup widths to be equivalent, because the narrower one may be relying on 1068 /// the implicit truncation to truncate away bogus bits. 1069 Type *WidestFixupType; 1070 1071 /// A list of ways to build a value that can satisfy this user. After the 1072 /// list is populated, one of these is selected heuristically and used to 1073 /// formulate a replacement for OperandValToReplace in UserInst. 1074 SmallVector<Formula, 12> Formulae; 1075 1076 /// The set of register candidates used by all formulae in this LSRUse. 1077 SmallPtrSet<const SCEV *, 4> Regs; 1078 1079 LSRUse(KindType K, MemAccessTy AT) 1080 : Kind(K), AccessTy(AT), MinOffset(INT64_MAX), MaxOffset(INT64_MIN), 1081 AllFixupsOutsideLoop(true), RigidFormula(false), 1082 WidestFixupType(nullptr) {} 1083 1084 LSRFixup &getNewFixup() { 1085 Fixups.push_back(LSRFixup()); 1086 return Fixups.back(); 1087 } 1088 1089 void pushFixup(LSRFixup &f) { 1090 Fixups.push_back(f); 1091 if (f.Offset > MaxOffset) 1092 MaxOffset = f.Offset; 1093 if (f.Offset < MinOffset) 1094 MinOffset = f.Offset; 1095 } 1096 1097 bool HasFormulaWithSameRegs(const Formula &F) const; 1098 bool InsertFormula(const Formula &F); 1099 void DeleteFormula(Formula &F); 1100 void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses); 1101 1102 void print(raw_ostream &OS) const; 1103 void dump() const; 1104 }; 1105 1106 } // end anonymous namespace 1107 1108 /// Tally up interesting quantities from the given register. 1109 void Cost::RateRegister(const SCEV *Reg, 1110 SmallPtrSetImpl<const SCEV *> &Regs, 1111 const Loop *L, 1112 ScalarEvolution &SE, DominatorTree &DT) { 1113 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) { 1114 // If this is an addrec for another loop, it should be an invariant 1115 // with respect to L since L is the innermost loop (at least 1116 // for now LSR only handles innermost loops). 1117 if (AR->getLoop() != L) { 1118 // If the AddRec exists, consider it's register free and leave it alone. 1119 if (isExistingPhi(AR, SE)) 1120 return; 1121 1122 // It is bad to allow LSR for current loop to add induction variables 1123 // for its sibling loops. 1124 if (!AR->getLoop()->contains(L)) { 1125 Lose(); 1126 return; 1127 } 1128 1129 // Otherwise, it will be an invariant with respect to Loop L. 1130 ++NumRegs; 1131 return; 1132 } 1133 AddRecCost += 1; /// TODO: This should be a function of the stride. 1134 1135 // Add the step value register, if it needs one. 1136 // TODO: The non-affine case isn't precisely modeled here. 1137 if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) { 1138 if (!Regs.count(AR->getOperand(1))) { 1139 RateRegister(AR->getOperand(1), Regs, L, SE, DT); 1140 if (isLoser()) 1141 return; 1142 } 1143 } 1144 } 1145 ++NumRegs; 1146 1147 // Rough heuristic; favor registers which don't require extra setup 1148 // instructions in the preheader. 1149 if (!isa<SCEVUnknown>(Reg) && 1150 !isa<SCEVConstant>(Reg) && 1151 !(isa<SCEVAddRecExpr>(Reg) && 1152 (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) || 1153 isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart())))) 1154 ++SetupCost; 1155 1156 NumIVMuls += isa<SCEVMulExpr>(Reg) && 1157 SE.hasComputableLoopEvolution(Reg, L); 1158 } 1159 1160 /// Record this register in the set. If we haven't seen it before, rate 1161 /// it. Optional LoserRegs provides a way to declare any formula that refers to 1162 /// one of those regs an instant loser. 1163 void Cost::RatePrimaryRegister(const SCEV *Reg, 1164 SmallPtrSetImpl<const SCEV *> &Regs, 1165 const Loop *L, 1166 ScalarEvolution &SE, DominatorTree &DT, 1167 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1168 if (LoserRegs && LoserRegs->count(Reg)) { 1169 Lose(); 1170 return; 1171 } 1172 if (Regs.insert(Reg).second) { 1173 RateRegister(Reg, Regs, L, SE, DT); 1174 if (LoserRegs && isLoser()) 1175 LoserRegs->insert(Reg); 1176 } 1177 } 1178 1179 void Cost::RateFormula(const TargetTransformInfo &TTI, 1180 const Formula &F, 1181 SmallPtrSetImpl<const SCEV *> &Regs, 1182 const DenseSet<const SCEV *> &VisitedRegs, 1183 const Loop *L, 1184 ScalarEvolution &SE, DominatorTree &DT, 1185 const LSRUse &LU, 1186 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1187 assert(F.isCanonical() && "Cost is accurate only for canonical formula"); 1188 // Tally up the registers. 1189 unsigned PrevAddRecCost = AddRecCost; 1190 unsigned PrevNumRegs = NumRegs; 1191 unsigned PrevNumBaseAdds = NumBaseAdds; 1192 if (const SCEV *ScaledReg = F.ScaledReg) { 1193 if (VisitedRegs.count(ScaledReg)) { 1194 Lose(); 1195 return; 1196 } 1197 RatePrimaryRegister(ScaledReg, Regs, L, SE, DT, LoserRegs); 1198 if (isLoser()) 1199 return; 1200 } 1201 for (const SCEV *BaseReg : F.BaseRegs) { 1202 if (VisitedRegs.count(BaseReg)) { 1203 Lose(); 1204 return; 1205 } 1206 RatePrimaryRegister(BaseReg, Regs, L, SE, DT, LoserRegs); 1207 if (isLoser()) 1208 return; 1209 } 1210 1211 // Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as 1212 // additional instruction (at least fill). 1213 unsigned TTIRegNum = TTI.getNumberOfRegisters(false) - 1; 1214 if (NumRegs > TTIRegNum) { 1215 // Cost already exceeded TTIRegNum, then only newly added register can add 1216 // new instructions. 1217 if (PrevNumRegs > TTIRegNum) 1218 Insns += (NumRegs - PrevNumRegs); 1219 else 1220 Insns += (NumRegs - TTIRegNum); 1221 } 1222 1223 // Determine how many (unfolded) adds we'll need inside the loop. 1224 size_t NumBaseParts = F.getNumRegs(); 1225 if (NumBaseParts > 1) 1226 // Do not count the base and a possible second register if the target 1227 // allows to fold 2 registers. 1228 NumBaseAdds += 1229 NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(TTI, LU, F))); 1230 NumBaseAdds += (F.UnfoldedOffset != 0); 1231 1232 // Accumulate non-free scaling amounts. 1233 ScaleCost += getScalingFactorCost(TTI, LU, F); 1234 1235 // Tally up the non-zero immediates. 1236 for (const LSRFixup &Fixup : LU.Fixups) { 1237 int64_t O = Fixup.Offset; 1238 int64_t Offset = (uint64_t)O + F.BaseOffset; 1239 if (F.BaseGV) 1240 ImmCost += 64; // Handle symbolic values conservatively. 1241 // TODO: This should probably be the pointer size. 1242 else if (Offset != 0) 1243 ImmCost += APInt(64, Offset, true).getMinSignedBits(); 1244 1245 // Check with target if this offset with this instruction is 1246 // specifically not supported. 1247 if ((isa<LoadInst>(Fixup.UserInst) || isa<StoreInst>(Fixup.UserInst)) && 1248 !TTI.isFoldableMemAccessOffset(Fixup.UserInst, Offset)) 1249 NumBaseAdds++; 1250 } 1251 1252 // If ICmpZero formula ends with not 0, it could not be replaced by 1253 // just add or sub. We'll need to compare final result of AddRec. 1254 // That means we'll need an additional instruction. 1255 // For -10 + {0, +, 1}: 1256 // i = i + 1; 1257 // cmp i, 10 1258 // 1259 // For {-10, +, 1}: 1260 // i = i + 1; 1261 if (LU.Kind == LSRUse::ICmpZero && !F.hasZeroEnd()) 1262 Insns++; 1263 // Each new AddRec adds 1 instruction to calculation. 1264 Insns += (AddRecCost - PrevAddRecCost); 1265 1266 // BaseAdds adds instructions for unfolded registers. 1267 if (LU.Kind != LSRUse::ICmpZero) 1268 Insns += NumBaseAdds - PrevNumBaseAdds; 1269 assert(isValid() && "invalid cost"); 1270 } 1271 1272 /// Set this cost to a losing value. 1273 void Cost::Lose() { 1274 Insns = ~0u; 1275 NumRegs = ~0u; 1276 AddRecCost = ~0u; 1277 NumIVMuls = ~0u; 1278 NumBaseAdds = ~0u; 1279 ImmCost = ~0u; 1280 SetupCost = ~0u; 1281 ScaleCost = ~0u; 1282 } 1283 1284 /// Choose the lower cost. 1285 bool Cost::operator<(const Cost &Other) const { 1286 if (InsnsCost && Insns != Other.Insns) 1287 return Insns < Other.Insns; 1288 return std::tie(NumRegs, AddRecCost, NumIVMuls, NumBaseAdds, ScaleCost, 1289 ImmCost, SetupCost) < 1290 std::tie(Other.NumRegs, Other.AddRecCost, Other.NumIVMuls, 1291 Other.NumBaseAdds, Other.ScaleCost, Other.ImmCost, 1292 Other.SetupCost); 1293 } 1294 1295 void Cost::print(raw_ostream &OS) const { 1296 OS << Insns << " instruction" << (Insns == 1 ? " " : "s "); 1297 OS << NumRegs << " reg" << (NumRegs == 1 ? "" : "s"); 1298 if (AddRecCost != 0) 1299 OS << ", with addrec cost " << AddRecCost; 1300 if (NumIVMuls != 0) 1301 OS << ", plus " << NumIVMuls << " IV mul" << (NumIVMuls == 1 ? "" : "s"); 1302 if (NumBaseAdds != 0) 1303 OS << ", plus " << NumBaseAdds << " base add" 1304 << (NumBaseAdds == 1 ? "" : "s"); 1305 if (ScaleCost != 0) 1306 OS << ", plus " << ScaleCost << " scale cost"; 1307 if (ImmCost != 0) 1308 OS << ", plus " << ImmCost << " imm cost"; 1309 if (SetupCost != 0) 1310 OS << ", plus " << SetupCost << " setup cost"; 1311 } 1312 1313 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1314 LLVM_DUMP_METHOD void Cost::dump() const { 1315 print(errs()); errs() << '\n'; 1316 } 1317 #endif 1318 1319 LSRFixup::LSRFixup() 1320 : UserInst(nullptr), OperandValToReplace(nullptr), 1321 Offset(0) {} 1322 1323 /// Test whether this fixup always uses its value outside of the given loop. 1324 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const { 1325 // PHI nodes use their value in their incoming blocks. 1326 if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) { 1327 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1328 if (PN->getIncomingValue(i) == OperandValToReplace && 1329 L->contains(PN->getIncomingBlock(i))) 1330 return false; 1331 return true; 1332 } 1333 1334 return !L->contains(UserInst); 1335 } 1336 1337 void LSRFixup::print(raw_ostream &OS) const { 1338 OS << "UserInst="; 1339 // Store is common and interesting enough to be worth special-casing. 1340 if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) { 1341 OS << "store "; 1342 Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false); 1343 } else if (UserInst->getType()->isVoidTy()) 1344 OS << UserInst->getOpcodeName(); 1345 else 1346 UserInst->printAsOperand(OS, /*PrintType=*/false); 1347 1348 OS << ", OperandValToReplace="; 1349 OperandValToReplace->printAsOperand(OS, /*PrintType=*/false); 1350 1351 for (const Loop *PIL : PostIncLoops) { 1352 OS << ", PostIncLoop="; 1353 PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 1354 } 1355 1356 if (Offset != 0) 1357 OS << ", Offset=" << Offset; 1358 } 1359 1360 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1361 LLVM_DUMP_METHOD void LSRFixup::dump() const { 1362 print(errs()); errs() << '\n'; 1363 } 1364 #endif 1365 1366 /// Test whether this use as a formula which has the same registers as the given 1367 /// formula. 1368 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const { 1369 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1370 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1371 // Unstable sort by host order ok, because this is only used for uniquifying. 1372 std::sort(Key.begin(), Key.end()); 1373 return Uniquifier.count(Key); 1374 } 1375 1376 /// If the given formula has not yet been inserted, add it to the list, and 1377 /// return true. Return false otherwise. The formula must be in canonical form. 1378 bool LSRUse::InsertFormula(const Formula &F) { 1379 assert(F.isCanonical() && "Invalid canonical representation"); 1380 1381 if (!Formulae.empty() && RigidFormula) 1382 return false; 1383 1384 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1385 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1386 // Unstable sort by host order ok, because this is only used for uniquifying. 1387 std::sort(Key.begin(), Key.end()); 1388 1389 if (!Uniquifier.insert(Key).second) 1390 return false; 1391 1392 // Using a register to hold the value of 0 is not profitable. 1393 assert((!F.ScaledReg || !F.ScaledReg->isZero()) && 1394 "Zero allocated in a scaled register!"); 1395 #ifndef NDEBUG 1396 for (const SCEV *BaseReg : F.BaseRegs) 1397 assert(!BaseReg->isZero() && "Zero allocated in a base register!"); 1398 #endif 1399 1400 // Add the formula to the list. 1401 Formulae.push_back(F); 1402 1403 // Record registers now being used by this use. 1404 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1405 if (F.ScaledReg) 1406 Regs.insert(F.ScaledReg); 1407 1408 return true; 1409 } 1410 1411 /// Remove the given formula from this use's list. 1412 void LSRUse::DeleteFormula(Formula &F) { 1413 if (&F != &Formulae.back()) 1414 std::swap(F, Formulae.back()); 1415 Formulae.pop_back(); 1416 } 1417 1418 /// Recompute the Regs field, and update RegUses. 1419 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) { 1420 // Now that we've filtered out some formulae, recompute the Regs set. 1421 SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs); 1422 Regs.clear(); 1423 for (const Formula &F : Formulae) { 1424 if (F.ScaledReg) Regs.insert(F.ScaledReg); 1425 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1426 } 1427 1428 // Update the RegTracker. 1429 for (const SCEV *S : OldRegs) 1430 if (!Regs.count(S)) 1431 RegUses.dropRegister(S, LUIdx); 1432 } 1433 1434 void LSRUse::print(raw_ostream &OS) const { 1435 OS << "LSR Use: Kind="; 1436 switch (Kind) { 1437 case Basic: OS << "Basic"; break; 1438 case Special: OS << "Special"; break; 1439 case ICmpZero: OS << "ICmpZero"; break; 1440 case Address: 1441 OS << "Address of "; 1442 if (AccessTy.MemTy->isPointerTy()) 1443 OS << "pointer"; // the full pointer type could be really verbose 1444 else { 1445 OS << *AccessTy.MemTy; 1446 } 1447 1448 OS << " in addrspace(" << AccessTy.AddrSpace << ')'; 1449 } 1450 1451 OS << ", Offsets={"; 1452 bool NeedComma = false; 1453 for (const LSRFixup &Fixup : Fixups) { 1454 if (NeedComma) OS << ','; 1455 OS << Fixup.Offset; 1456 NeedComma = true; 1457 } 1458 OS << '}'; 1459 1460 if (AllFixupsOutsideLoop) 1461 OS << ", all-fixups-outside-loop"; 1462 1463 if (WidestFixupType) 1464 OS << ", widest fixup type: " << *WidestFixupType; 1465 } 1466 1467 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1468 LLVM_DUMP_METHOD void LSRUse::dump() const { 1469 print(errs()); errs() << '\n'; 1470 } 1471 #endif 1472 1473 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1474 LSRUse::KindType Kind, MemAccessTy AccessTy, 1475 GlobalValue *BaseGV, int64_t BaseOffset, 1476 bool HasBaseReg, int64_t Scale) { 1477 switch (Kind) { 1478 case LSRUse::Address: 1479 return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset, 1480 HasBaseReg, Scale, AccessTy.AddrSpace); 1481 1482 case LSRUse::ICmpZero: 1483 // There's not even a target hook for querying whether it would be legal to 1484 // fold a GV into an ICmp. 1485 if (BaseGV) 1486 return false; 1487 1488 // ICmp only has two operands; don't allow more than two non-trivial parts. 1489 if (Scale != 0 && HasBaseReg && BaseOffset != 0) 1490 return false; 1491 1492 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by 1493 // putting the scaled register in the other operand of the icmp. 1494 if (Scale != 0 && Scale != -1) 1495 return false; 1496 1497 // If we have low-level target information, ask the target if it can fold an 1498 // integer immediate on an icmp. 1499 if (BaseOffset != 0) { 1500 // We have one of: 1501 // ICmpZero BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset 1502 // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset 1503 // Offs is the ICmp immediate. 1504 if (Scale == 0) 1505 // The cast does the right thing with INT64_MIN. 1506 BaseOffset = -(uint64_t)BaseOffset; 1507 return TTI.isLegalICmpImmediate(BaseOffset); 1508 } 1509 1510 // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg 1511 return true; 1512 1513 case LSRUse::Basic: 1514 // Only handle single-register values. 1515 return !BaseGV && Scale == 0 && BaseOffset == 0; 1516 1517 case LSRUse::Special: 1518 // Special case Basic to handle -1 scales. 1519 return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0; 1520 } 1521 1522 llvm_unreachable("Invalid LSRUse Kind!"); 1523 } 1524 1525 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1526 int64_t MinOffset, int64_t MaxOffset, 1527 LSRUse::KindType Kind, MemAccessTy AccessTy, 1528 GlobalValue *BaseGV, int64_t BaseOffset, 1529 bool HasBaseReg, int64_t Scale) { 1530 // Check for overflow. 1531 if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) != 1532 (MinOffset > 0)) 1533 return false; 1534 MinOffset = (uint64_t)BaseOffset + MinOffset; 1535 if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) != 1536 (MaxOffset > 0)) 1537 return false; 1538 MaxOffset = (uint64_t)BaseOffset + MaxOffset; 1539 1540 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset, 1541 HasBaseReg, Scale) && 1542 isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset, 1543 HasBaseReg, Scale); 1544 } 1545 1546 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1547 int64_t MinOffset, int64_t MaxOffset, 1548 LSRUse::KindType Kind, MemAccessTy AccessTy, 1549 const Formula &F) { 1550 // For the purpose of isAMCompletelyFolded either having a canonical formula 1551 // or a scale not equal to zero is correct. 1552 // Problems may arise from non canonical formulae having a scale == 0. 1553 // Strictly speaking it would best to just rely on canonical formulae. 1554 // However, when we generate the scaled formulae, we first check that the 1555 // scaling factor is profitable before computing the actual ScaledReg for 1556 // compile time sake. 1557 assert((F.isCanonical() || F.Scale != 0)); 1558 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1559 F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale); 1560 } 1561 1562 /// Test whether we know how to expand the current formula. 1563 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1564 int64_t MaxOffset, LSRUse::KindType Kind, 1565 MemAccessTy AccessTy, GlobalValue *BaseGV, 1566 int64_t BaseOffset, bool HasBaseReg, int64_t Scale) { 1567 // We know how to expand completely foldable formulae. 1568 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1569 BaseOffset, HasBaseReg, Scale) || 1570 // Or formulae that use a base register produced by a sum of base 1571 // registers. 1572 (Scale == 1 && 1573 isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1574 BaseGV, BaseOffset, true, 0)); 1575 } 1576 1577 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1578 int64_t MaxOffset, LSRUse::KindType Kind, 1579 MemAccessTy AccessTy, const Formula &F) { 1580 return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV, 1581 F.BaseOffset, F.HasBaseReg, F.Scale); 1582 } 1583 1584 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1585 const LSRUse &LU, const Formula &F) { 1586 return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1587 LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg, 1588 F.Scale); 1589 } 1590 1591 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, 1592 const LSRUse &LU, const Formula &F) { 1593 if (!F.Scale) 1594 return 0; 1595 1596 // If the use is not completely folded in that instruction, we will have to 1597 // pay an extra cost only for scale != 1. 1598 if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1599 LU.AccessTy, F)) 1600 return F.Scale != 1; 1601 1602 switch (LU.Kind) { 1603 case LSRUse::Address: { 1604 // Check the scaling factor cost with both the min and max offsets. 1605 int ScaleCostMinOffset = TTI.getScalingFactorCost( 1606 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg, 1607 F.Scale, LU.AccessTy.AddrSpace); 1608 int ScaleCostMaxOffset = TTI.getScalingFactorCost( 1609 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg, 1610 F.Scale, LU.AccessTy.AddrSpace); 1611 1612 assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 && 1613 "Legal addressing mode has an illegal cost!"); 1614 return std::max(ScaleCostMinOffset, ScaleCostMaxOffset); 1615 } 1616 case LSRUse::ICmpZero: 1617 case LSRUse::Basic: 1618 case LSRUse::Special: 1619 // The use is completely folded, i.e., everything is folded into the 1620 // instruction. 1621 return 0; 1622 } 1623 1624 llvm_unreachable("Invalid LSRUse Kind!"); 1625 } 1626 1627 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1628 LSRUse::KindType Kind, MemAccessTy AccessTy, 1629 GlobalValue *BaseGV, int64_t BaseOffset, 1630 bool HasBaseReg) { 1631 // Fast-path: zero is always foldable. 1632 if (BaseOffset == 0 && !BaseGV) return true; 1633 1634 // Conservatively, create an address with an immediate and a 1635 // base and a scale. 1636 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1637 1638 // Canonicalize a scale of 1 to a base register if the formula doesn't 1639 // already have a base register. 1640 if (!HasBaseReg && Scale == 1) { 1641 Scale = 0; 1642 HasBaseReg = true; 1643 } 1644 1645 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset, 1646 HasBaseReg, Scale); 1647 } 1648 1649 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1650 ScalarEvolution &SE, int64_t MinOffset, 1651 int64_t MaxOffset, LSRUse::KindType Kind, 1652 MemAccessTy AccessTy, const SCEV *S, 1653 bool HasBaseReg) { 1654 // Fast-path: zero is always foldable. 1655 if (S->isZero()) return true; 1656 1657 // Conservatively, create an address with an immediate and a 1658 // base and a scale. 1659 int64_t BaseOffset = ExtractImmediate(S, SE); 1660 GlobalValue *BaseGV = ExtractSymbol(S, SE); 1661 1662 // If there's anything else involved, it's not foldable. 1663 if (!S->isZero()) return false; 1664 1665 // Fast-path: zero is always foldable. 1666 if (BaseOffset == 0 && !BaseGV) return true; 1667 1668 // Conservatively, create an address with an immediate and a 1669 // base and a scale. 1670 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1671 1672 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1673 BaseOffset, HasBaseReg, Scale); 1674 } 1675 1676 namespace { 1677 1678 /// An individual increment in a Chain of IV increments. Relate an IV user to 1679 /// an expression that computes the IV it uses from the IV used by the previous 1680 /// link in the Chain. 1681 /// 1682 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the 1683 /// original IVOperand. The head of the chain's IVOperand is only valid during 1684 /// chain collection, before LSR replaces IV users. During chain generation, 1685 /// IncExpr can be used to find the new IVOperand that computes the same 1686 /// expression. 1687 struct IVInc { 1688 Instruction *UserInst; 1689 Value* IVOperand; 1690 const SCEV *IncExpr; 1691 1692 IVInc(Instruction *U, Value *O, const SCEV *E): 1693 UserInst(U), IVOperand(O), IncExpr(E) {} 1694 }; 1695 1696 // The list of IV increments in program order. We typically add the head of a 1697 // chain without finding subsequent links. 1698 struct IVChain { 1699 SmallVector<IVInc,1> Incs; 1700 const SCEV *ExprBase; 1701 1702 IVChain() : ExprBase(nullptr) {} 1703 1704 IVChain(const IVInc &Head, const SCEV *Base) 1705 : Incs(1, Head), ExprBase(Base) {} 1706 1707 typedef SmallVectorImpl<IVInc>::const_iterator const_iterator; 1708 1709 // Return the first increment in the chain. 1710 const_iterator begin() const { 1711 assert(!Incs.empty()); 1712 return std::next(Incs.begin()); 1713 } 1714 const_iterator end() const { 1715 return Incs.end(); 1716 } 1717 1718 // Returns true if this chain contains any increments. 1719 bool hasIncs() const { return Incs.size() >= 2; } 1720 1721 // Add an IVInc to the end of this chain. 1722 void add(const IVInc &X) { Incs.push_back(X); } 1723 1724 // Returns the last UserInst in the chain. 1725 Instruction *tailUserInst() const { return Incs.back().UserInst; } 1726 1727 // Returns true if IncExpr can be profitably added to this chain. 1728 bool isProfitableIncrement(const SCEV *OperExpr, 1729 const SCEV *IncExpr, 1730 ScalarEvolution&); 1731 }; 1732 1733 /// Helper for CollectChains to track multiple IV increment uses. Distinguish 1734 /// between FarUsers that definitely cross IV increments and NearUsers that may 1735 /// be used between IV increments. 1736 struct ChainUsers { 1737 SmallPtrSet<Instruction*, 4> FarUsers; 1738 SmallPtrSet<Instruction*, 4> NearUsers; 1739 }; 1740 1741 /// This class holds state for the main loop strength reduction logic. 1742 class LSRInstance { 1743 IVUsers &IU; 1744 ScalarEvolution &SE; 1745 DominatorTree &DT; 1746 LoopInfo &LI; 1747 const TargetTransformInfo &TTI; 1748 Loop *const L; 1749 bool Changed; 1750 1751 /// This is the insert position that the current loop's induction variable 1752 /// increment should be placed. In simple loops, this is the latch block's 1753 /// terminator. But in more complicated cases, this is a position which will 1754 /// dominate all the in-loop post-increment users. 1755 Instruction *IVIncInsertPos; 1756 1757 /// Interesting factors between use strides. 1758 /// 1759 /// We explicitly use a SetVector which contains a SmallSet, instead of the 1760 /// default, a SmallDenseSet, because we need to use the full range of 1761 /// int64_ts, and there's currently no good way of doing that with 1762 /// SmallDenseSet. 1763 SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors; 1764 1765 /// Interesting use types, to facilitate truncation reuse. 1766 SmallSetVector<Type *, 4> Types; 1767 1768 /// The list of interesting uses. 1769 SmallVector<LSRUse, 16> Uses; 1770 1771 /// Track which uses use which register candidates. 1772 RegUseTracker RegUses; 1773 1774 // Limit the number of chains to avoid quadratic behavior. We don't expect to 1775 // have more than a few IV increment chains in a loop. Missing a Chain falls 1776 // back to normal LSR behavior for those uses. 1777 static const unsigned MaxChains = 8; 1778 1779 /// IV users can form a chain of IV increments. 1780 SmallVector<IVChain, MaxChains> IVChainVec; 1781 1782 /// IV users that belong to profitable IVChains. 1783 SmallPtrSet<Use*, MaxChains> IVIncSet; 1784 1785 void OptimizeShadowIV(); 1786 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse); 1787 ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse); 1788 void OptimizeLoopTermCond(); 1789 1790 void ChainInstruction(Instruction *UserInst, Instruction *IVOper, 1791 SmallVectorImpl<ChainUsers> &ChainUsersVec); 1792 void FinalizeChain(IVChain &Chain); 1793 void CollectChains(); 1794 void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 1795 SmallVectorImpl<WeakVH> &DeadInsts); 1796 1797 void CollectInterestingTypesAndFactors(); 1798 void CollectFixupsAndInitialFormulae(); 1799 1800 // Support for sharing of LSRUses between LSRFixups. 1801 typedef DenseMap<LSRUse::SCEVUseKindPair, size_t> UseMapTy; 1802 UseMapTy UseMap; 1803 1804 bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, 1805 LSRUse::KindType Kind, MemAccessTy AccessTy); 1806 1807 std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind, 1808 MemAccessTy AccessTy); 1809 1810 void DeleteUse(LSRUse &LU, size_t LUIdx); 1811 1812 LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU); 1813 1814 void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1815 void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1816 void CountRegisters(const Formula &F, size_t LUIdx); 1817 bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F); 1818 1819 void CollectLoopInvariantFixupsAndFormulae(); 1820 1821 void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base, 1822 unsigned Depth = 0); 1823 1824 void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 1825 const Formula &Base, unsigned Depth, 1826 size_t Idx, bool IsScaledReg = false); 1827 void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base); 1828 void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 1829 const Formula &Base, size_t Idx, 1830 bool IsScaledReg = false); 1831 void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1832 void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx, 1833 const Formula &Base, 1834 const SmallVectorImpl<int64_t> &Worklist, 1835 size_t Idx, bool IsScaledReg = false); 1836 void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1837 void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base); 1838 void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base); 1839 void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base); 1840 void GenerateCrossUseConstantOffsets(); 1841 void GenerateAllReuseFormulae(); 1842 1843 void FilterOutUndesirableDedicatedRegisters(); 1844 1845 size_t EstimateSearchSpaceComplexity() const; 1846 void NarrowSearchSpaceByDetectingSupersets(); 1847 void NarrowSearchSpaceByCollapsingUnrolledCode(); 1848 void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 1849 void NarrowSearchSpaceByPickingWinnerRegs(); 1850 void NarrowSearchSpaceUsingHeuristics(); 1851 1852 void SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 1853 Cost &SolutionCost, 1854 SmallVectorImpl<const Formula *> &Workspace, 1855 const Cost &CurCost, 1856 const SmallPtrSet<const SCEV *, 16> &CurRegs, 1857 DenseSet<const SCEV *> &VisitedRegs) const; 1858 void Solve(SmallVectorImpl<const Formula *> &Solution) const; 1859 1860 BasicBlock::iterator 1861 HoistInsertPosition(BasicBlock::iterator IP, 1862 const SmallVectorImpl<Instruction *> &Inputs) const; 1863 BasicBlock::iterator 1864 AdjustInsertPositionForExpand(BasicBlock::iterator IP, 1865 const LSRFixup &LF, 1866 const LSRUse &LU, 1867 SCEVExpander &Rewriter) const; 1868 1869 Value *Expand(const LSRUse &LU, const LSRFixup &LF, 1870 const Formula &F, 1871 BasicBlock::iterator IP, 1872 SCEVExpander &Rewriter, 1873 SmallVectorImpl<WeakVH> &DeadInsts) const; 1874 void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF, 1875 const Formula &F, 1876 SCEVExpander &Rewriter, 1877 SmallVectorImpl<WeakVH> &DeadInsts) const; 1878 void Rewrite(const LSRUse &LU, const LSRFixup &LF, 1879 const Formula &F, 1880 SCEVExpander &Rewriter, 1881 SmallVectorImpl<WeakVH> &DeadInsts) const; 1882 void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution); 1883 1884 public: 1885 LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT, 1886 LoopInfo &LI, const TargetTransformInfo &TTI); 1887 1888 bool getChanged() const { return Changed; } 1889 1890 void print_factors_and_types(raw_ostream &OS) const; 1891 void print_fixups(raw_ostream &OS) const; 1892 void print_uses(raw_ostream &OS) const; 1893 void print(raw_ostream &OS) const; 1894 void dump() const; 1895 }; 1896 1897 } // end anonymous namespace 1898 1899 /// If IV is used in a int-to-float cast inside the loop then try to eliminate 1900 /// the cast operation. 1901 void LSRInstance::OptimizeShadowIV() { 1902 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 1903 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 1904 return; 1905 1906 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); 1907 UI != E; /* empty */) { 1908 IVUsers::const_iterator CandidateUI = UI; 1909 ++UI; 1910 Instruction *ShadowUse = CandidateUI->getUser(); 1911 Type *DestTy = nullptr; 1912 bool IsSigned = false; 1913 1914 /* If shadow use is a int->float cast then insert a second IV 1915 to eliminate this cast. 1916 1917 for (unsigned i = 0; i < n; ++i) 1918 foo((double)i); 1919 1920 is transformed into 1921 1922 double d = 0.0; 1923 for (unsigned i = 0; i < n; ++i, ++d) 1924 foo(d); 1925 */ 1926 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) { 1927 IsSigned = false; 1928 DestTy = UCast->getDestTy(); 1929 } 1930 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) { 1931 IsSigned = true; 1932 DestTy = SCast->getDestTy(); 1933 } 1934 if (!DestTy) continue; 1935 1936 // If target does not support DestTy natively then do not apply 1937 // this transformation. 1938 if (!TTI.isTypeLegal(DestTy)) continue; 1939 1940 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0)); 1941 if (!PH) continue; 1942 if (PH->getNumIncomingValues() != 2) continue; 1943 1944 Type *SrcTy = PH->getType(); 1945 int Mantissa = DestTy->getFPMantissaWidth(); 1946 if (Mantissa == -1) continue; 1947 if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa) 1948 continue; 1949 1950 unsigned Entry, Latch; 1951 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) { 1952 Entry = 0; 1953 Latch = 1; 1954 } else { 1955 Entry = 1; 1956 Latch = 0; 1957 } 1958 1959 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry)); 1960 if (!Init) continue; 1961 Constant *NewInit = ConstantFP::get(DestTy, IsSigned ? 1962 (double)Init->getSExtValue() : 1963 (double)Init->getZExtValue()); 1964 1965 BinaryOperator *Incr = 1966 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch)); 1967 if (!Incr) continue; 1968 if (Incr->getOpcode() != Instruction::Add 1969 && Incr->getOpcode() != Instruction::Sub) 1970 continue; 1971 1972 /* Initialize new IV, double d = 0.0 in above example. */ 1973 ConstantInt *C = nullptr; 1974 if (Incr->getOperand(0) == PH) 1975 C = dyn_cast<ConstantInt>(Incr->getOperand(1)); 1976 else if (Incr->getOperand(1) == PH) 1977 C = dyn_cast<ConstantInt>(Incr->getOperand(0)); 1978 else 1979 continue; 1980 1981 if (!C) continue; 1982 1983 // Ignore negative constants, as the code below doesn't handle them 1984 // correctly. TODO: Remove this restriction. 1985 if (!C->getValue().isStrictlyPositive()) continue; 1986 1987 /* Add new PHINode. */ 1988 PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH); 1989 1990 /* create new increment. '++d' in above example. */ 1991 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue()); 1992 BinaryOperator *NewIncr = 1993 BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ? 1994 Instruction::FAdd : Instruction::FSub, 1995 NewPH, CFP, "IV.S.next.", Incr); 1996 1997 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry)); 1998 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch)); 1999 2000 /* Remove cast operation */ 2001 ShadowUse->replaceAllUsesWith(NewPH); 2002 ShadowUse->eraseFromParent(); 2003 Changed = true; 2004 break; 2005 } 2006 } 2007 2008 /// If Cond has an operand that is an expression of an IV, set the IV user and 2009 /// stride information and return true, otherwise return false. 2010 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) { 2011 for (IVStrideUse &U : IU) 2012 if (U.getUser() == Cond) { 2013 // NOTE: we could handle setcc instructions with multiple uses here, but 2014 // InstCombine does it as well for simple uses, it's not clear that it 2015 // occurs enough in real life to handle. 2016 CondUse = &U; 2017 return true; 2018 } 2019 return false; 2020 } 2021 2022 /// Rewrite the loop's terminating condition if it uses a max computation. 2023 /// 2024 /// This is a narrow solution to a specific, but acute, problem. For loops 2025 /// like this: 2026 /// 2027 /// i = 0; 2028 /// do { 2029 /// p[i] = 0.0; 2030 /// } while (++i < n); 2031 /// 2032 /// the trip count isn't just 'n', because 'n' might not be positive. And 2033 /// unfortunately this can come up even for loops where the user didn't use 2034 /// a C do-while loop. For example, seemingly well-behaved top-test loops 2035 /// will commonly be lowered like this: 2036 // 2037 /// if (n > 0) { 2038 /// i = 0; 2039 /// do { 2040 /// p[i] = 0.0; 2041 /// } while (++i < n); 2042 /// } 2043 /// 2044 /// and then it's possible for subsequent optimization to obscure the if 2045 /// test in such a way that indvars can't find it. 2046 /// 2047 /// When indvars can't find the if test in loops like this, it creates a 2048 /// max expression, which allows it to give the loop a canonical 2049 /// induction variable: 2050 /// 2051 /// i = 0; 2052 /// max = n < 1 ? 1 : n; 2053 /// do { 2054 /// p[i] = 0.0; 2055 /// } while (++i != max); 2056 /// 2057 /// Canonical induction variables are necessary because the loop passes 2058 /// are designed around them. The most obvious example of this is the 2059 /// LoopInfo analysis, which doesn't remember trip count values. It 2060 /// expects to be able to rediscover the trip count each time it is 2061 /// needed, and it does this using a simple analysis that only succeeds if 2062 /// the loop has a canonical induction variable. 2063 /// 2064 /// However, when it comes time to generate code, the maximum operation 2065 /// can be quite costly, especially if it's inside of an outer loop. 2066 /// 2067 /// This function solves this problem by detecting this type of loop and 2068 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting 2069 /// the instructions for the maximum computation. 2070 /// 2071 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) { 2072 // Check that the loop matches the pattern we're looking for. 2073 if (Cond->getPredicate() != CmpInst::ICMP_EQ && 2074 Cond->getPredicate() != CmpInst::ICMP_NE) 2075 return Cond; 2076 2077 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1)); 2078 if (!Sel || !Sel->hasOneUse()) return Cond; 2079 2080 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 2081 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2082 return Cond; 2083 const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1); 2084 2085 // Add one to the backedge-taken count to get the trip count. 2086 const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount); 2087 if (IterationCount != SE.getSCEV(Sel)) return Cond; 2088 2089 // Check for a max calculation that matches the pattern. There's no check 2090 // for ICMP_ULE here because the comparison would be with zero, which 2091 // isn't interesting. 2092 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 2093 const SCEVNAryExpr *Max = nullptr; 2094 if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) { 2095 Pred = ICmpInst::ICMP_SLE; 2096 Max = S; 2097 } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) { 2098 Pred = ICmpInst::ICMP_SLT; 2099 Max = S; 2100 } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) { 2101 Pred = ICmpInst::ICMP_ULT; 2102 Max = U; 2103 } else { 2104 // No match; bail. 2105 return Cond; 2106 } 2107 2108 // To handle a max with more than two operands, this optimization would 2109 // require additional checking and setup. 2110 if (Max->getNumOperands() != 2) 2111 return Cond; 2112 2113 const SCEV *MaxLHS = Max->getOperand(0); 2114 const SCEV *MaxRHS = Max->getOperand(1); 2115 2116 // ScalarEvolution canonicalizes constants to the left. For < and >, look 2117 // for a comparison with 1. For <= and >=, a comparison with zero. 2118 if (!MaxLHS || 2119 (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One))) 2120 return Cond; 2121 2122 // Check the relevant induction variable for conformance to 2123 // the pattern. 2124 const SCEV *IV = SE.getSCEV(Cond->getOperand(0)); 2125 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV); 2126 if (!AR || !AR->isAffine() || 2127 AR->getStart() != One || 2128 AR->getStepRecurrence(SE) != One) 2129 return Cond; 2130 2131 assert(AR->getLoop() == L && 2132 "Loop condition operand is an addrec in a different loop!"); 2133 2134 // Check the right operand of the select, and remember it, as it will 2135 // be used in the new comparison instruction. 2136 Value *NewRHS = nullptr; 2137 if (ICmpInst::isTrueWhenEqual(Pred)) { 2138 // Look for n+1, and grab n. 2139 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1))) 2140 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2141 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2142 NewRHS = BO->getOperand(0); 2143 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2))) 2144 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2145 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2146 NewRHS = BO->getOperand(0); 2147 if (!NewRHS) 2148 return Cond; 2149 } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS) 2150 NewRHS = Sel->getOperand(1); 2151 else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS) 2152 NewRHS = Sel->getOperand(2); 2153 else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS)) 2154 NewRHS = SU->getValue(); 2155 else 2156 // Max doesn't match expected pattern. 2157 return Cond; 2158 2159 // Determine the new comparison opcode. It may be signed or unsigned, 2160 // and the original comparison may be either equality or inequality. 2161 if (Cond->getPredicate() == CmpInst::ICMP_EQ) 2162 Pred = CmpInst::getInversePredicate(Pred); 2163 2164 // Ok, everything looks ok to change the condition into an SLT or SGE and 2165 // delete the max calculation. 2166 ICmpInst *NewCond = 2167 new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp"); 2168 2169 // Delete the max calculation instructions. 2170 Cond->replaceAllUsesWith(NewCond); 2171 CondUse->setUser(NewCond); 2172 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0)); 2173 Cond->eraseFromParent(); 2174 Sel->eraseFromParent(); 2175 if (Cmp->use_empty()) 2176 Cmp->eraseFromParent(); 2177 return NewCond; 2178 } 2179 2180 /// Change loop terminating condition to use the postinc iv when possible. 2181 void 2182 LSRInstance::OptimizeLoopTermCond() { 2183 SmallPtrSet<Instruction *, 4> PostIncs; 2184 2185 // We need a different set of heuristics for rotated and non-rotated loops. 2186 // If a loop is rotated then the latch is also the backedge, so inserting 2187 // post-inc expressions just before the latch is ideal. To reduce live ranges 2188 // it also makes sense to rewrite terminating conditions to use post-inc 2189 // expressions. 2190 // 2191 // If the loop is not rotated then the latch is not a backedge; the latch 2192 // check is done in the loop head. Adding post-inc expressions before the 2193 // latch will cause overlapping live-ranges of pre-inc and post-inc expressions 2194 // in the loop body. In this case we do *not* want to use post-inc expressions 2195 // in the latch check, and we want to insert post-inc expressions before 2196 // the backedge. 2197 BasicBlock *LatchBlock = L->getLoopLatch(); 2198 SmallVector<BasicBlock*, 8> ExitingBlocks; 2199 L->getExitingBlocks(ExitingBlocks); 2200 if (llvm::all_of(ExitingBlocks, [&LatchBlock](const BasicBlock *BB) { 2201 return LatchBlock != BB; 2202 })) { 2203 // The backedge doesn't exit the loop; treat this as a head-tested loop. 2204 IVIncInsertPos = LatchBlock->getTerminator(); 2205 return; 2206 } 2207 2208 // Otherwise treat this as a rotated loop. 2209 for (BasicBlock *ExitingBlock : ExitingBlocks) { 2210 2211 // Get the terminating condition for the loop if possible. If we 2212 // can, we want to change it to use a post-incremented version of its 2213 // induction variable, to allow coalescing the live ranges for the IV into 2214 // one register value. 2215 2216 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 2217 if (!TermBr) 2218 continue; 2219 // FIXME: Overly conservative, termination condition could be an 'or' etc.. 2220 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition())) 2221 continue; 2222 2223 // Search IVUsesByStride to find Cond's IVUse if there is one. 2224 IVStrideUse *CondUse = nullptr; 2225 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition()); 2226 if (!FindIVUserForCond(Cond, CondUse)) 2227 continue; 2228 2229 // If the trip count is computed in terms of a max (due to ScalarEvolution 2230 // being unable to find a sufficient guard, for example), change the loop 2231 // comparison to use SLT or ULT instead of NE. 2232 // One consequence of doing this now is that it disrupts the count-down 2233 // optimization. That's not always a bad thing though, because in such 2234 // cases it may still be worthwhile to avoid a max. 2235 Cond = OptimizeMax(Cond, CondUse); 2236 2237 // If this exiting block dominates the latch block, it may also use 2238 // the post-inc value if it won't be shared with other uses. 2239 // Check for dominance. 2240 if (!DT.dominates(ExitingBlock, LatchBlock)) 2241 continue; 2242 2243 // Conservatively avoid trying to use the post-inc value in non-latch 2244 // exits if there may be pre-inc users in intervening blocks. 2245 if (LatchBlock != ExitingBlock) 2246 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) 2247 // Test if the use is reachable from the exiting block. This dominator 2248 // query is a conservative approximation of reachability. 2249 if (&*UI != CondUse && 2250 !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) { 2251 // Conservatively assume there may be reuse if the quotient of their 2252 // strides could be a legal scale. 2253 const SCEV *A = IU.getStride(*CondUse, L); 2254 const SCEV *B = IU.getStride(*UI, L); 2255 if (!A || !B) continue; 2256 if (SE.getTypeSizeInBits(A->getType()) != 2257 SE.getTypeSizeInBits(B->getType())) { 2258 if (SE.getTypeSizeInBits(A->getType()) > 2259 SE.getTypeSizeInBits(B->getType())) 2260 B = SE.getSignExtendExpr(B, A->getType()); 2261 else 2262 A = SE.getSignExtendExpr(A, B->getType()); 2263 } 2264 if (const SCEVConstant *D = 2265 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) { 2266 const ConstantInt *C = D->getValue(); 2267 // Stride of one or negative one can have reuse with non-addresses. 2268 if (C->isOne() || C->isAllOnesValue()) 2269 goto decline_post_inc; 2270 // Avoid weird situations. 2271 if (C->getValue().getMinSignedBits() >= 64 || 2272 C->getValue().isMinSignedValue()) 2273 goto decline_post_inc; 2274 // Check for possible scaled-address reuse. 2275 MemAccessTy AccessTy = getAccessType(UI->getUser()); 2276 int64_t Scale = C->getSExtValue(); 2277 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2278 /*BaseOffset=*/0, 2279 /*HasBaseReg=*/false, Scale, 2280 AccessTy.AddrSpace)) 2281 goto decline_post_inc; 2282 Scale = -Scale; 2283 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2284 /*BaseOffset=*/0, 2285 /*HasBaseReg=*/false, Scale, 2286 AccessTy.AddrSpace)) 2287 goto decline_post_inc; 2288 } 2289 } 2290 2291 DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: " 2292 << *Cond << '\n'); 2293 2294 // It's possible for the setcc instruction to be anywhere in the loop, and 2295 // possible for it to have multiple users. If it is not immediately before 2296 // the exiting block branch, move it. 2297 if (&*++BasicBlock::iterator(Cond) != TermBr) { 2298 if (Cond->hasOneUse()) { 2299 Cond->moveBefore(TermBr); 2300 } else { 2301 // Clone the terminating condition and insert into the loopend. 2302 ICmpInst *OldCond = Cond; 2303 Cond = cast<ICmpInst>(Cond->clone()); 2304 Cond->setName(L->getHeader()->getName() + ".termcond"); 2305 ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond); 2306 2307 // Clone the IVUse, as the old use still exists! 2308 CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace()); 2309 TermBr->replaceUsesOfWith(OldCond, Cond); 2310 } 2311 } 2312 2313 // If we get to here, we know that we can transform the setcc instruction to 2314 // use the post-incremented version of the IV, allowing us to coalesce the 2315 // live ranges for the IV correctly. 2316 CondUse->transformToPostInc(L); 2317 Changed = true; 2318 2319 PostIncs.insert(Cond); 2320 decline_post_inc:; 2321 } 2322 2323 // Determine an insertion point for the loop induction variable increment. It 2324 // must dominate all the post-inc comparisons we just set up, and it must 2325 // dominate the loop latch edge. 2326 IVIncInsertPos = L->getLoopLatch()->getTerminator(); 2327 for (Instruction *Inst : PostIncs) { 2328 BasicBlock *BB = 2329 DT.findNearestCommonDominator(IVIncInsertPos->getParent(), 2330 Inst->getParent()); 2331 if (BB == Inst->getParent()) 2332 IVIncInsertPos = Inst; 2333 else if (BB != IVIncInsertPos->getParent()) 2334 IVIncInsertPos = BB->getTerminator(); 2335 } 2336 } 2337 2338 /// Determine if the given use can accommodate a fixup at the given offset and 2339 /// other details. If so, update the use and return true. 2340 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, 2341 bool HasBaseReg, LSRUse::KindType Kind, 2342 MemAccessTy AccessTy) { 2343 int64_t NewMinOffset = LU.MinOffset; 2344 int64_t NewMaxOffset = LU.MaxOffset; 2345 MemAccessTy NewAccessTy = AccessTy; 2346 2347 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to 2348 // something conservative, however this can pessimize in the case that one of 2349 // the uses will have all its uses outside the loop, for example. 2350 if (LU.Kind != Kind) 2351 return false; 2352 2353 // Check for a mismatched access type, and fall back conservatively as needed. 2354 // TODO: Be less conservative when the type is similar and can use the same 2355 // addressing modes. 2356 if (Kind == LSRUse::Address) { 2357 if (AccessTy.MemTy != LU.AccessTy.MemTy) { 2358 NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(), 2359 AccessTy.AddrSpace); 2360 } 2361 } 2362 2363 // Conservatively assume HasBaseReg is true for now. 2364 if (NewOffset < LU.MinOffset) { 2365 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2366 LU.MaxOffset - NewOffset, HasBaseReg)) 2367 return false; 2368 NewMinOffset = NewOffset; 2369 } else if (NewOffset > LU.MaxOffset) { 2370 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2371 NewOffset - LU.MinOffset, HasBaseReg)) 2372 return false; 2373 NewMaxOffset = NewOffset; 2374 } 2375 2376 // Update the use. 2377 LU.MinOffset = NewMinOffset; 2378 LU.MaxOffset = NewMaxOffset; 2379 LU.AccessTy = NewAccessTy; 2380 return true; 2381 } 2382 2383 /// Return an LSRUse index and an offset value for a fixup which needs the given 2384 /// expression, with the given kind and optional access type. Either reuse an 2385 /// existing use or create a new one, as needed. 2386 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr, 2387 LSRUse::KindType Kind, 2388 MemAccessTy AccessTy) { 2389 const SCEV *Copy = Expr; 2390 int64_t Offset = ExtractImmediate(Expr, SE); 2391 2392 // Basic uses can't accept any offset, for example. 2393 if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr, 2394 Offset, /*HasBaseReg=*/ true)) { 2395 Expr = Copy; 2396 Offset = 0; 2397 } 2398 2399 std::pair<UseMapTy::iterator, bool> P = 2400 UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0)); 2401 if (!P.second) { 2402 // A use already existed with this base. 2403 size_t LUIdx = P.first->second; 2404 LSRUse &LU = Uses[LUIdx]; 2405 if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy)) 2406 // Reuse this use. 2407 return std::make_pair(LUIdx, Offset); 2408 } 2409 2410 // Create a new use. 2411 size_t LUIdx = Uses.size(); 2412 P.first->second = LUIdx; 2413 Uses.push_back(LSRUse(Kind, AccessTy)); 2414 LSRUse &LU = Uses[LUIdx]; 2415 2416 LU.MinOffset = Offset; 2417 LU.MaxOffset = Offset; 2418 return std::make_pair(LUIdx, Offset); 2419 } 2420 2421 /// Delete the given use from the Uses list. 2422 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) { 2423 if (&LU != &Uses.back()) 2424 std::swap(LU, Uses.back()); 2425 Uses.pop_back(); 2426 2427 // Update RegUses. 2428 RegUses.swapAndDropUse(LUIdx, Uses.size()); 2429 } 2430 2431 /// Look for a use distinct from OrigLU which is has a formula that has the same 2432 /// registers as the given formula. 2433 LSRUse * 2434 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF, 2435 const LSRUse &OrigLU) { 2436 // Search all uses for the formula. This could be more clever. 2437 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 2438 LSRUse &LU = Uses[LUIdx]; 2439 // Check whether this use is close enough to OrigLU, to see whether it's 2440 // worthwhile looking through its formulae. 2441 // Ignore ICmpZero uses because they may contain formulae generated by 2442 // GenerateICmpZeroScales, in which case adding fixup offsets may 2443 // be invalid. 2444 if (&LU != &OrigLU && 2445 LU.Kind != LSRUse::ICmpZero && 2446 LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy && 2447 LU.WidestFixupType == OrigLU.WidestFixupType && 2448 LU.HasFormulaWithSameRegs(OrigF)) { 2449 // Scan through this use's formulae. 2450 for (const Formula &F : LU.Formulae) { 2451 // Check to see if this formula has the same registers and symbols 2452 // as OrigF. 2453 if (F.BaseRegs == OrigF.BaseRegs && 2454 F.ScaledReg == OrigF.ScaledReg && 2455 F.BaseGV == OrigF.BaseGV && 2456 F.Scale == OrigF.Scale && 2457 F.UnfoldedOffset == OrigF.UnfoldedOffset) { 2458 if (F.BaseOffset == 0) 2459 return &LU; 2460 // This is the formula where all the registers and symbols matched; 2461 // there aren't going to be any others. Since we declined it, we 2462 // can skip the rest of the formulae and proceed to the next LSRUse. 2463 break; 2464 } 2465 } 2466 } 2467 } 2468 2469 // Nothing looked good. 2470 return nullptr; 2471 } 2472 2473 void LSRInstance::CollectInterestingTypesAndFactors() { 2474 SmallSetVector<const SCEV *, 4> Strides; 2475 2476 // Collect interesting types and strides. 2477 SmallVector<const SCEV *, 4> Worklist; 2478 for (const IVStrideUse &U : IU) { 2479 const SCEV *Expr = IU.getExpr(U); 2480 2481 // Collect interesting types. 2482 Types.insert(SE.getEffectiveSCEVType(Expr->getType())); 2483 2484 // Add strides for mentioned loops. 2485 Worklist.push_back(Expr); 2486 do { 2487 const SCEV *S = Worklist.pop_back_val(); 2488 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2489 if (AR->getLoop() == L) 2490 Strides.insert(AR->getStepRecurrence(SE)); 2491 Worklist.push_back(AR->getStart()); 2492 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2493 Worklist.append(Add->op_begin(), Add->op_end()); 2494 } 2495 } while (!Worklist.empty()); 2496 } 2497 2498 // Compute interesting factors from the set of interesting strides. 2499 for (SmallSetVector<const SCEV *, 4>::const_iterator 2500 I = Strides.begin(), E = Strides.end(); I != E; ++I) 2501 for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter = 2502 std::next(I); NewStrideIter != E; ++NewStrideIter) { 2503 const SCEV *OldStride = *I; 2504 const SCEV *NewStride = *NewStrideIter; 2505 2506 if (SE.getTypeSizeInBits(OldStride->getType()) != 2507 SE.getTypeSizeInBits(NewStride->getType())) { 2508 if (SE.getTypeSizeInBits(OldStride->getType()) > 2509 SE.getTypeSizeInBits(NewStride->getType())) 2510 NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType()); 2511 else 2512 OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType()); 2513 } 2514 if (const SCEVConstant *Factor = 2515 dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride, 2516 SE, true))) { 2517 if (Factor->getAPInt().getMinSignedBits() <= 64) 2518 Factors.insert(Factor->getAPInt().getSExtValue()); 2519 } else if (const SCEVConstant *Factor = 2520 dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride, 2521 NewStride, 2522 SE, true))) { 2523 if (Factor->getAPInt().getMinSignedBits() <= 64) 2524 Factors.insert(Factor->getAPInt().getSExtValue()); 2525 } 2526 } 2527 2528 // If all uses use the same type, don't bother looking for truncation-based 2529 // reuse. 2530 if (Types.size() == 1) 2531 Types.clear(); 2532 2533 DEBUG(print_factors_and_types(dbgs())); 2534 } 2535 2536 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in 2537 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to 2538 /// IVStrideUses, we could partially skip this. 2539 static User::op_iterator 2540 findIVOperand(User::op_iterator OI, User::op_iterator OE, 2541 Loop *L, ScalarEvolution &SE) { 2542 for(; OI != OE; ++OI) { 2543 if (Instruction *Oper = dyn_cast<Instruction>(*OI)) { 2544 if (!SE.isSCEVable(Oper->getType())) 2545 continue; 2546 2547 if (const SCEVAddRecExpr *AR = 2548 dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) { 2549 if (AR->getLoop() == L) 2550 break; 2551 } 2552 } 2553 } 2554 return OI; 2555 } 2556 2557 /// IVChain logic must consistenctly peek base TruncInst operands, so wrap it in 2558 /// a convenient helper. 2559 static Value *getWideOperand(Value *Oper) { 2560 if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper)) 2561 return Trunc->getOperand(0); 2562 return Oper; 2563 } 2564 2565 /// Return true if we allow an IV chain to include both types. 2566 static bool isCompatibleIVType(Value *LVal, Value *RVal) { 2567 Type *LType = LVal->getType(); 2568 Type *RType = RVal->getType(); 2569 return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy() && 2570 // Different address spaces means (possibly) 2571 // different types of the pointer implementation, 2572 // e.g. i16 vs i32 so disallow that. 2573 (LType->getPointerAddressSpace() == 2574 RType->getPointerAddressSpace())); 2575 } 2576 2577 /// Return an approximation of this SCEV expression's "base", or NULL for any 2578 /// constant. Returning the expression itself is conservative. Returning a 2579 /// deeper subexpression is more precise and valid as long as it isn't less 2580 /// complex than another subexpression. For expressions involving multiple 2581 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids 2582 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i], 2583 /// IVInc==b-a. 2584 /// 2585 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost 2586 /// SCEVUnknown, we simply return the rightmost SCEV operand. 2587 static const SCEV *getExprBase(const SCEV *S) { 2588 switch (S->getSCEVType()) { 2589 default: // uncluding scUnknown. 2590 return S; 2591 case scConstant: 2592 return nullptr; 2593 case scTruncate: 2594 return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand()); 2595 case scZeroExtend: 2596 return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand()); 2597 case scSignExtend: 2598 return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand()); 2599 case scAddExpr: { 2600 // Skip over scaled operands (scMulExpr) to follow add operands as long as 2601 // there's nothing more complex. 2602 // FIXME: not sure if we want to recognize negation. 2603 const SCEVAddExpr *Add = cast<SCEVAddExpr>(S); 2604 for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()), 2605 E(Add->op_begin()); I != E; ++I) { 2606 const SCEV *SubExpr = *I; 2607 if (SubExpr->getSCEVType() == scAddExpr) 2608 return getExprBase(SubExpr); 2609 2610 if (SubExpr->getSCEVType() != scMulExpr) 2611 return SubExpr; 2612 } 2613 return S; // all operands are scaled, be conservative. 2614 } 2615 case scAddRecExpr: 2616 return getExprBase(cast<SCEVAddRecExpr>(S)->getStart()); 2617 } 2618 } 2619 2620 /// Return true if the chain increment is profitable to expand into a loop 2621 /// invariant value, which may require its own register. A profitable chain 2622 /// increment will be an offset relative to the same base. We allow such offsets 2623 /// to potentially be used as chain increment as long as it's not obviously 2624 /// expensive to expand using real instructions. 2625 bool IVChain::isProfitableIncrement(const SCEV *OperExpr, 2626 const SCEV *IncExpr, 2627 ScalarEvolution &SE) { 2628 // Aggressively form chains when -stress-ivchain. 2629 if (StressIVChain) 2630 return true; 2631 2632 // Do not replace a constant offset from IV head with a nonconstant IV 2633 // increment. 2634 if (!isa<SCEVConstant>(IncExpr)) { 2635 const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand)); 2636 if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr))) 2637 return false; 2638 } 2639 2640 SmallPtrSet<const SCEV*, 8> Processed; 2641 return !isHighCostExpansion(IncExpr, Processed, SE); 2642 } 2643 2644 /// Return true if the number of registers needed for the chain is estimated to 2645 /// be less than the number required for the individual IV users. First prohibit 2646 /// any IV users that keep the IV live across increments (the Users set should 2647 /// be empty). Next count the number and type of increments in the chain. 2648 /// 2649 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't 2650 /// effectively use postinc addressing modes. Only consider it profitable it the 2651 /// increments can be computed in fewer registers when chained. 2652 /// 2653 /// TODO: Consider IVInc free if it's already used in another chains. 2654 static bool 2655 isProfitableChain(IVChain &Chain, SmallPtrSetImpl<Instruction*> &Users, 2656 ScalarEvolution &SE, const TargetTransformInfo &TTI) { 2657 if (StressIVChain) 2658 return true; 2659 2660 if (!Chain.hasIncs()) 2661 return false; 2662 2663 if (!Users.empty()) { 2664 DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n"; 2665 for (Instruction *Inst : Users) { 2666 dbgs() << " " << *Inst << "\n"; 2667 }); 2668 return false; 2669 } 2670 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 2671 2672 // The chain itself may require a register, so intialize cost to 1. 2673 int cost = 1; 2674 2675 // A complete chain likely eliminates the need for keeping the original IV in 2676 // a register. LSR does not currently know how to form a complete chain unless 2677 // the header phi already exists. 2678 if (isa<PHINode>(Chain.tailUserInst()) 2679 && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) { 2680 --cost; 2681 } 2682 const SCEV *LastIncExpr = nullptr; 2683 unsigned NumConstIncrements = 0; 2684 unsigned NumVarIncrements = 0; 2685 unsigned NumReusedIncrements = 0; 2686 for (const IVInc &Inc : Chain) { 2687 if (Inc.IncExpr->isZero()) 2688 continue; 2689 2690 // Incrementing by zero or some constant is neutral. We assume constants can 2691 // be folded into an addressing mode or an add's immediate operand. 2692 if (isa<SCEVConstant>(Inc.IncExpr)) { 2693 ++NumConstIncrements; 2694 continue; 2695 } 2696 2697 if (Inc.IncExpr == LastIncExpr) 2698 ++NumReusedIncrements; 2699 else 2700 ++NumVarIncrements; 2701 2702 LastIncExpr = Inc.IncExpr; 2703 } 2704 // An IV chain with a single increment is handled by LSR's postinc 2705 // uses. However, a chain with multiple increments requires keeping the IV's 2706 // value live longer than it needs to be if chained. 2707 if (NumConstIncrements > 1) 2708 --cost; 2709 2710 // Materializing increment expressions in the preheader that didn't exist in 2711 // the original code may cost a register. For example, sign-extended array 2712 // indices can produce ridiculous increments like this: 2713 // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64))) 2714 cost += NumVarIncrements; 2715 2716 // Reusing variable increments likely saves a register to hold the multiple of 2717 // the stride. 2718 cost -= NumReusedIncrements; 2719 2720 DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost 2721 << "\n"); 2722 2723 return cost < 0; 2724 } 2725 2726 /// Add this IV user to an existing chain or make it the head of a new chain. 2727 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper, 2728 SmallVectorImpl<ChainUsers> &ChainUsersVec) { 2729 // When IVs are used as types of varying widths, they are generally converted 2730 // to a wider type with some uses remaining narrow under a (free) trunc. 2731 Value *const NextIV = getWideOperand(IVOper); 2732 const SCEV *const OperExpr = SE.getSCEV(NextIV); 2733 const SCEV *const OperExprBase = getExprBase(OperExpr); 2734 2735 // Visit all existing chains. Check if its IVOper can be computed as a 2736 // profitable loop invariant increment from the last link in the Chain. 2737 unsigned ChainIdx = 0, NChains = IVChainVec.size(); 2738 const SCEV *LastIncExpr = nullptr; 2739 for (; ChainIdx < NChains; ++ChainIdx) { 2740 IVChain &Chain = IVChainVec[ChainIdx]; 2741 2742 // Prune the solution space aggressively by checking that both IV operands 2743 // are expressions that operate on the same unscaled SCEVUnknown. This 2744 // "base" will be canceled by the subsequent getMinusSCEV call. Checking 2745 // first avoids creating extra SCEV expressions. 2746 if (!StressIVChain && Chain.ExprBase != OperExprBase) 2747 continue; 2748 2749 Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand); 2750 if (!isCompatibleIVType(PrevIV, NextIV)) 2751 continue; 2752 2753 // A phi node terminates a chain. 2754 if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst())) 2755 continue; 2756 2757 // The increment must be loop-invariant so it can be kept in a register. 2758 const SCEV *PrevExpr = SE.getSCEV(PrevIV); 2759 const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr); 2760 if (!SE.isLoopInvariant(IncExpr, L)) 2761 continue; 2762 2763 if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) { 2764 LastIncExpr = IncExpr; 2765 break; 2766 } 2767 } 2768 // If we haven't found a chain, create a new one, unless we hit the max. Don't 2769 // bother for phi nodes, because they must be last in the chain. 2770 if (ChainIdx == NChains) { 2771 if (isa<PHINode>(UserInst)) 2772 return; 2773 if (NChains >= MaxChains && !StressIVChain) { 2774 DEBUG(dbgs() << "IV Chain Limit\n"); 2775 return; 2776 } 2777 LastIncExpr = OperExpr; 2778 // IVUsers may have skipped over sign/zero extensions. We don't currently 2779 // attempt to form chains involving extensions unless they can be hoisted 2780 // into this loop's AddRec. 2781 if (!isa<SCEVAddRecExpr>(LastIncExpr)) 2782 return; 2783 ++NChains; 2784 IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr), 2785 OperExprBase)); 2786 ChainUsersVec.resize(NChains); 2787 DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst 2788 << ") IV=" << *LastIncExpr << "\n"); 2789 } else { 2790 DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Inc: (" << *UserInst 2791 << ") IV+" << *LastIncExpr << "\n"); 2792 // Add this IV user to the end of the chain. 2793 IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr)); 2794 } 2795 IVChain &Chain = IVChainVec[ChainIdx]; 2796 2797 SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers; 2798 // This chain's NearUsers become FarUsers. 2799 if (!LastIncExpr->isZero()) { 2800 ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(), 2801 NearUsers.end()); 2802 NearUsers.clear(); 2803 } 2804 2805 // All other uses of IVOperand become near uses of the chain. 2806 // We currently ignore intermediate values within SCEV expressions, assuming 2807 // they will eventually be used be the current chain, or can be computed 2808 // from one of the chain increments. To be more precise we could 2809 // transitively follow its user and only add leaf IV users to the set. 2810 for (User *U : IVOper->users()) { 2811 Instruction *OtherUse = dyn_cast<Instruction>(U); 2812 if (!OtherUse) 2813 continue; 2814 // Uses in the chain will no longer be uses if the chain is formed. 2815 // Include the head of the chain in this iteration (not Chain.begin()). 2816 IVChain::const_iterator IncIter = Chain.Incs.begin(); 2817 IVChain::const_iterator IncEnd = Chain.Incs.end(); 2818 for( ; IncIter != IncEnd; ++IncIter) { 2819 if (IncIter->UserInst == OtherUse) 2820 break; 2821 } 2822 if (IncIter != IncEnd) 2823 continue; 2824 2825 if (SE.isSCEVable(OtherUse->getType()) 2826 && !isa<SCEVUnknown>(SE.getSCEV(OtherUse)) 2827 && IU.isIVUserOrOperand(OtherUse)) { 2828 continue; 2829 } 2830 NearUsers.insert(OtherUse); 2831 } 2832 2833 // Since this user is part of the chain, it's no longer considered a use 2834 // of the chain. 2835 ChainUsersVec[ChainIdx].FarUsers.erase(UserInst); 2836 } 2837 2838 /// Populate the vector of Chains. 2839 /// 2840 /// This decreases ILP at the architecture level. Targets with ample registers, 2841 /// multiple memory ports, and no register renaming probably don't want 2842 /// this. However, such targets should probably disable LSR altogether. 2843 /// 2844 /// The job of LSR is to make a reasonable choice of induction variables across 2845 /// the loop. Subsequent passes can easily "unchain" computation exposing more 2846 /// ILP *within the loop* if the target wants it. 2847 /// 2848 /// Finding the best IV chain is potentially a scheduling problem. Since LSR 2849 /// will not reorder memory operations, it will recognize this as a chain, but 2850 /// will generate redundant IV increments. Ideally this would be corrected later 2851 /// by a smart scheduler: 2852 /// = A[i] 2853 /// = A[i+x] 2854 /// A[i] = 2855 /// A[i+x] = 2856 /// 2857 /// TODO: Walk the entire domtree within this loop, not just the path to the 2858 /// loop latch. This will discover chains on side paths, but requires 2859 /// maintaining multiple copies of the Chains state. 2860 void LSRInstance::CollectChains() { 2861 DEBUG(dbgs() << "Collecting IV Chains.\n"); 2862 SmallVector<ChainUsers, 8> ChainUsersVec; 2863 2864 SmallVector<BasicBlock *,8> LatchPath; 2865 BasicBlock *LoopHeader = L->getHeader(); 2866 for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch()); 2867 Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) { 2868 LatchPath.push_back(Rung->getBlock()); 2869 } 2870 LatchPath.push_back(LoopHeader); 2871 2872 // Walk the instruction stream from the loop header to the loop latch. 2873 for (BasicBlock *BB : reverse(LatchPath)) { 2874 for (Instruction &I : *BB) { 2875 // Skip instructions that weren't seen by IVUsers analysis. 2876 if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I)) 2877 continue; 2878 2879 // Ignore users that are part of a SCEV expression. This way we only 2880 // consider leaf IV Users. This effectively rediscovers a portion of 2881 // IVUsers analysis but in program order this time. 2882 if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I))) 2883 continue; 2884 2885 // Remove this instruction from any NearUsers set it may be in. 2886 for (unsigned ChainIdx = 0, NChains = IVChainVec.size(); 2887 ChainIdx < NChains; ++ChainIdx) { 2888 ChainUsersVec[ChainIdx].NearUsers.erase(&I); 2889 } 2890 // Search for operands that can be chained. 2891 SmallPtrSet<Instruction*, 4> UniqueOperands; 2892 User::op_iterator IVOpEnd = I.op_end(); 2893 User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE); 2894 while (IVOpIter != IVOpEnd) { 2895 Instruction *IVOpInst = cast<Instruction>(*IVOpIter); 2896 if (UniqueOperands.insert(IVOpInst).second) 2897 ChainInstruction(&I, IVOpInst, ChainUsersVec); 2898 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 2899 } 2900 } // Continue walking down the instructions. 2901 } // Continue walking down the domtree. 2902 // Visit phi backedges to determine if the chain can generate the IV postinc. 2903 for (BasicBlock::iterator I = L->getHeader()->begin(); 2904 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 2905 if (!SE.isSCEVable(PN->getType())) 2906 continue; 2907 2908 Instruction *IncV = 2909 dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch())); 2910 if (IncV) 2911 ChainInstruction(PN, IncV, ChainUsersVec); 2912 } 2913 // Remove any unprofitable chains. 2914 unsigned ChainIdx = 0; 2915 for (unsigned UsersIdx = 0, NChains = IVChainVec.size(); 2916 UsersIdx < NChains; ++UsersIdx) { 2917 if (!isProfitableChain(IVChainVec[UsersIdx], 2918 ChainUsersVec[UsersIdx].FarUsers, SE, TTI)) 2919 continue; 2920 // Preserve the chain at UsesIdx. 2921 if (ChainIdx != UsersIdx) 2922 IVChainVec[ChainIdx] = IVChainVec[UsersIdx]; 2923 FinalizeChain(IVChainVec[ChainIdx]); 2924 ++ChainIdx; 2925 } 2926 IVChainVec.resize(ChainIdx); 2927 } 2928 2929 void LSRInstance::FinalizeChain(IVChain &Chain) { 2930 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 2931 DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n"); 2932 2933 for (const IVInc &Inc : Chain) { 2934 DEBUG(dbgs() << " Inc: " << *Inc.UserInst << "\n"); 2935 auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand); 2936 assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand"); 2937 IVIncSet.insert(UseI); 2938 } 2939 } 2940 2941 /// Return true if the IVInc can be folded into an addressing mode. 2942 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst, 2943 Value *Operand, const TargetTransformInfo &TTI) { 2944 const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr); 2945 if (!IncConst || !isAddressUse(UserInst, Operand)) 2946 return false; 2947 2948 if (IncConst->getAPInt().getMinSignedBits() > 64) 2949 return false; 2950 2951 MemAccessTy AccessTy = getAccessType(UserInst); 2952 int64_t IncOffset = IncConst->getValue()->getSExtValue(); 2953 if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr, 2954 IncOffset, /*HaseBaseReg=*/false)) 2955 return false; 2956 2957 return true; 2958 } 2959 2960 /// Generate an add or subtract for each IVInc in a chain to materialize the IV 2961 /// user's operand from the previous IV user's operand. 2962 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 2963 SmallVectorImpl<WeakVH> &DeadInsts) { 2964 // Find the new IVOperand for the head of the chain. It may have been replaced 2965 // by LSR. 2966 const IVInc &Head = Chain.Incs[0]; 2967 User::op_iterator IVOpEnd = Head.UserInst->op_end(); 2968 // findIVOperand returns IVOpEnd if it can no longer find a valid IV user. 2969 User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(), 2970 IVOpEnd, L, SE); 2971 Value *IVSrc = nullptr; 2972 while (IVOpIter != IVOpEnd) { 2973 IVSrc = getWideOperand(*IVOpIter); 2974 2975 // If this operand computes the expression that the chain needs, we may use 2976 // it. (Check this after setting IVSrc which is used below.) 2977 // 2978 // Note that if Head.IncExpr is wider than IVSrc, then this phi is too 2979 // narrow for the chain, so we can no longer use it. We do allow using a 2980 // wider phi, assuming the LSR checked for free truncation. In that case we 2981 // should already have a truncate on this operand such that 2982 // getSCEV(IVSrc) == IncExpr. 2983 if (SE.getSCEV(*IVOpIter) == Head.IncExpr 2984 || SE.getSCEV(IVSrc) == Head.IncExpr) { 2985 break; 2986 } 2987 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 2988 } 2989 if (IVOpIter == IVOpEnd) { 2990 // Gracefully give up on this chain. 2991 DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n"); 2992 return; 2993 } 2994 2995 DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n"); 2996 Type *IVTy = IVSrc->getType(); 2997 Type *IntTy = SE.getEffectiveSCEVType(IVTy); 2998 const SCEV *LeftOverExpr = nullptr; 2999 for (const IVInc &Inc : Chain) { 3000 Instruction *InsertPt = Inc.UserInst; 3001 if (isa<PHINode>(InsertPt)) 3002 InsertPt = L->getLoopLatch()->getTerminator(); 3003 3004 // IVOper will replace the current IV User's operand. IVSrc is the IV 3005 // value currently held in a register. 3006 Value *IVOper = IVSrc; 3007 if (!Inc.IncExpr->isZero()) { 3008 // IncExpr was the result of subtraction of two narrow values, so must 3009 // be signed. 3010 const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy); 3011 LeftOverExpr = LeftOverExpr ? 3012 SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr; 3013 } 3014 if (LeftOverExpr && !LeftOverExpr->isZero()) { 3015 // Expand the IV increment. 3016 Rewriter.clearPostInc(); 3017 Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt); 3018 const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc), 3019 SE.getUnknown(IncV)); 3020 IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt); 3021 3022 // If an IV increment can't be folded, use it as the next IV value. 3023 if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) { 3024 assert(IVTy == IVOper->getType() && "inconsistent IV increment type"); 3025 IVSrc = IVOper; 3026 LeftOverExpr = nullptr; 3027 } 3028 } 3029 Type *OperTy = Inc.IVOperand->getType(); 3030 if (IVTy != OperTy) { 3031 assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) && 3032 "cannot extend a chained IV"); 3033 IRBuilder<> Builder(InsertPt); 3034 IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain"); 3035 } 3036 Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper); 3037 DeadInsts.emplace_back(Inc.IVOperand); 3038 } 3039 // If LSR created a new, wider phi, we may also replace its postinc. We only 3040 // do this if we also found a wide value for the head of the chain. 3041 if (isa<PHINode>(Chain.tailUserInst())) { 3042 for (BasicBlock::iterator I = L->getHeader()->begin(); 3043 PHINode *Phi = dyn_cast<PHINode>(I); ++I) { 3044 if (!isCompatibleIVType(Phi, IVSrc)) 3045 continue; 3046 Instruction *PostIncV = dyn_cast<Instruction>( 3047 Phi->getIncomingValueForBlock(L->getLoopLatch())); 3048 if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc))) 3049 continue; 3050 Value *IVOper = IVSrc; 3051 Type *PostIncTy = PostIncV->getType(); 3052 if (IVTy != PostIncTy) { 3053 assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types"); 3054 IRBuilder<> Builder(L->getLoopLatch()->getTerminator()); 3055 Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc()); 3056 IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain"); 3057 } 3058 Phi->replaceUsesOfWith(PostIncV, IVOper); 3059 DeadInsts.emplace_back(PostIncV); 3060 } 3061 } 3062 } 3063 3064 void LSRInstance::CollectFixupsAndInitialFormulae() { 3065 for (const IVStrideUse &U : IU) { 3066 Instruction *UserInst = U.getUser(); 3067 // Skip IV users that are part of profitable IV Chains. 3068 User::op_iterator UseI = 3069 find(UserInst->operands(), U.getOperandValToReplace()); 3070 assert(UseI != UserInst->op_end() && "cannot find IV operand"); 3071 if (IVIncSet.count(UseI)) { 3072 DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n'); 3073 continue; 3074 } 3075 3076 LSRUse::KindType Kind = LSRUse::Basic; 3077 MemAccessTy AccessTy; 3078 if (isAddressUse(UserInst, U.getOperandValToReplace())) { 3079 Kind = LSRUse::Address; 3080 AccessTy = getAccessType(UserInst); 3081 } 3082 3083 const SCEV *S = IU.getExpr(U); 3084 PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops(); 3085 3086 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as 3087 // (N - i == 0), and this allows (N - i) to be the expression that we work 3088 // with rather than just N or i, so we can consider the register 3089 // requirements for both N and i at the same time. Limiting this code to 3090 // equality icmps is not a problem because all interesting loops use 3091 // equality icmps, thanks to IndVarSimplify. 3092 if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst)) 3093 if (CI->isEquality()) { 3094 // Swap the operands if needed to put the OperandValToReplace on the 3095 // left, for consistency. 3096 Value *NV = CI->getOperand(1); 3097 if (NV == U.getOperandValToReplace()) { 3098 CI->setOperand(1, CI->getOperand(0)); 3099 CI->setOperand(0, NV); 3100 NV = CI->getOperand(1); 3101 Changed = true; 3102 } 3103 3104 // x == y --> x - y == 0 3105 const SCEV *N = SE.getSCEV(NV); 3106 if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) { 3107 // S is normalized, so normalize N before folding it into S 3108 // to keep the result normalized. 3109 N = TransformForPostIncUse(Normalize, N, CI, nullptr, 3110 TmpPostIncLoops, SE, DT); 3111 Kind = LSRUse::ICmpZero; 3112 S = SE.getMinusSCEV(N, S); 3113 } 3114 3115 // -1 and the negations of all interesting strides (except the negation 3116 // of -1) are now also interesting. 3117 for (size_t i = 0, e = Factors.size(); i != e; ++i) 3118 if (Factors[i] != -1) 3119 Factors.insert(-(uint64_t)Factors[i]); 3120 Factors.insert(-1); 3121 } 3122 3123 // Get or create an LSRUse. 3124 std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy); 3125 size_t LUIdx = P.first; 3126 int64_t Offset = P.second; 3127 LSRUse &LU = Uses[LUIdx]; 3128 3129 // Record the fixup. 3130 LSRFixup &LF = LU.getNewFixup(); 3131 LF.UserInst = UserInst; 3132 LF.OperandValToReplace = U.getOperandValToReplace(); 3133 LF.PostIncLoops = TmpPostIncLoops; 3134 LF.Offset = Offset; 3135 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3136 3137 if (!LU.WidestFixupType || 3138 SE.getTypeSizeInBits(LU.WidestFixupType) < 3139 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3140 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3141 3142 // If this is the first use of this LSRUse, give it a formula. 3143 if (LU.Formulae.empty()) { 3144 InsertInitialFormula(S, LU, LUIdx); 3145 CountRegisters(LU.Formulae.back(), LUIdx); 3146 } 3147 } 3148 3149 DEBUG(print_fixups(dbgs())); 3150 } 3151 3152 /// Insert a formula for the given expression into the given use, separating out 3153 /// loop-variant portions from loop-invariant and loop-computable portions. 3154 void 3155 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) { 3156 // Mark uses whose expressions cannot be expanded. 3157 if (!isSafeToExpand(S, SE)) 3158 LU.RigidFormula = true; 3159 3160 Formula F; 3161 F.initialMatch(S, L, SE); 3162 bool Inserted = InsertFormula(LU, LUIdx, F); 3163 assert(Inserted && "Initial formula already exists!"); (void)Inserted; 3164 } 3165 3166 /// Insert a simple single-register formula for the given expression into the 3167 /// given use. 3168 void 3169 LSRInstance::InsertSupplementalFormula(const SCEV *S, 3170 LSRUse &LU, size_t LUIdx) { 3171 Formula F; 3172 F.BaseRegs.push_back(S); 3173 F.HasBaseReg = true; 3174 bool Inserted = InsertFormula(LU, LUIdx, F); 3175 assert(Inserted && "Supplemental formula already exists!"); (void)Inserted; 3176 } 3177 3178 /// Note which registers are used by the given formula, updating RegUses. 3179 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) { 3180 if (F.ScaledReg) 3181 RegUses.countRegister(F.ScaledReg, LUIdx); 3182 for (const SCEV *BaseReg : F.BaseRegs) 3183 RegUses.countRegister(BaseReg, LUIdx); 3184 } 3185 3186 /// If the given formula has not yet been inserted, add it to the list, and 3187 /// return true. Return false otherwise. 3188 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) { 3189 // Do not insert formula that we will not be able to expand. 3190 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) && 3191 "Formula is illegal"); 3192 if (!LU.InsertFormula(F)) 3193 return false; 3194 3195 CountRegisters(F, LUIdx); 3196 return true; 3197 } 3198 3199 /// Check for other uses of loop-invariant values which we're tracking. These 3200 /// other uses will pin these values in registers, making them less profitable 3201 /// for elimination. 3202 /// TODO: This currently misses non-constant addrec step registers. 3203 /// TODO: Should this give more weight to users inside the loop? 3204 void 3205 LSRInstance::CollectLoopInvariantFixupsAndFormulae() { 3206 SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end()); 3207 SmallPtrSet<const SCEV *, 32> Visited; 3208 3209 while (!Worklist.empty()) { 3210 const SCEV *S = Worklist.pop_back_val(); 3211 3212 // Don't process the same SCEV twice 3213 if (!Visited.insert(S).second) 3214 continue; 3215 3216 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) 3217 Worklist.append(N->op_begin(), N->op_end()); 3218 else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) 3219 Worklist.push_back(C->getOperand()); 3220 else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 3221 Worklist.push_back(D->getLHS()); 3222 Worklist.push_back(D->getRHS()); 3223 } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) { 3224 const Value *V = US->getValue(); 3225 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 3226 // Look for instructions defined outside the loop. 3227 if (L->contains(Inst)) continue; 3228 } else if (isa<UndefValue>(V)) 3229 // Undef doesn't have a live range, so it doesn't matter. 3230 continue; 3231 for (const Use &U : V->uses()) { 3232 const Instruction *UserInst = dyn_cast<Instruction>(U.getUser()); 3233 // Ignore non-instructions. 3234 if (!UserInst) 3235 continue; 3236 // Ignore instructions in other functions (as can happen with 3237 // Constants). 3238 if (UserInst->getParent()->getParent() != L->getHeader()->getParent()) 3239 continue; 3240 // Ignore instructions not dominated by the loop. 3241 const BasicBlock *UseBB = !isa<PHINode>(UserInst) ? 3242 UserInst->getParent() : 3243 cast<PHINode>(UserInst)->getIncomingBlock( 3244 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 3245 if (!DT.dominates(L->getHeader(), UseBB)) 3246 continue; 3247 // Don't bother if the instruction is in a BB which ends in an EHPad. 3248 if (UseBB->getTerminator()->isEHPad()) 3249 continue; 3250 // Don't bother rewriting PHIs in catchswitch blocks. 3251 if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator())) 3252 continue; 3253 // Ignore uses which are part of other SCEV expressions, to avoid 3254 // analyzing them multiple times. 3255 if (SE.isSCEVable(UserInst->getType())) { 3256 const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst)); 3257 // If the user is a no-op, look through to its uses. 3258 if (!isa<SCEVUnknown>(UserS)) 3259 continue; 3260 if (UserS == US) { 3261 Worklist.push_back( 3262 SE.getUnknown(const_cast<Instruction *>(UserInst))); 3263 continue; 3264 } 3265 } 3266 // Ignore icmp instructions which are already being analyzed. 3267 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) { 3268 unsigned OtherIdx = !U.getOperandNo(); 3269 Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx)); 3270 if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L)) 3271 continue; 3272 } 3273 3274 std::pair<size_t, int64_t> P = getUse( 3275 S, LSRUse::Basic, MemAccessTy()); 3276 size_t LUIdx = P.first; 3277 int64_t Offset = P.second; 3278 LSRUse &LU = Uses[LUIdx]; 3279 LSRFixup &LF = LU.getNewFixup(); 3280 LF.UserInst = const_cast<Instruction *>(UserInst); 3281 LF.OperandValToReplace = U; 3282 LF.Offset = Offset; 3283 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3284 if (!LU.WidestFixupType || 3285 SE.getTypeSizeInBits(LU.WidestFixupType) < 3286 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3287 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3288 InsertSupplementalFormula(US, LU, LUIdx); 3289 CountRegisters(LU.Formulae.back(), Uses.size() - 1); 3290 break; 3291 } 3292 } 3293 } 3294 } 3295 3296 /// Split S into subexpressions which can be pulled out into separate 3297 /// registers. If C is non-null, multiply each subexpression by C. 3298 /// 3299 /// Return remainder expression after factoring the subexpressions captured by 3300 /// Ops. If Ops is complete, return NULL. 3301 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C, 3302 SmallVectorImpl<const SCEV *> &Ops, 3303 const Loop *L, 3304 ScalarEvolution &SE, 3305 unsigned Depth = 0) { 3306 // Arbitrarily cap recursion to protect compile time. 3307 if (Depth >= 3) 3308 return S; 3309 3310 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3311 // Break out add operands. 3312 for (const SCEV *S : Add->operands()) { 3313 const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1); 3314 if (Remainder) 3315 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3316 } 3317 return nullptr; 3318 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 3319 // Split a non-zero base out of an addrec. 3320 if (AR->getStart()->isZero() || !AR->isAffine()) 3321 return S; 3322 3323 const SCEV *Remainder = CollectSubexprs(AR->getStart(), 3324 C, Ops, L, SE, Depth+1); 3325 // Split the non-zero AddRec unless it is part of a nested recurrence that 3326 // does not pertain to this loop. 3327 if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) { 3328 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3329 Remainder = nullptr; 3330 } 3331 if (Remainder != AR->getStart()) { 3332 if (!Remainder) 3333 Remainder = SE.getConstant(AR->getType(), 0); 3334 return SE.getAddRecExpr(Remainder, 3335 AR->getStepRecurrence(SE), 3336 AR->getLoop(), 3337 //FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 3338 SCEV::FlagAnyWrap); 3339 } 3340 } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3341 // Break (C * (a + b + c)) into C*a + C*b + C*c. 3342 if (Mul->getNumOperands() != 2) 3343 return S; 3344 if (const SCEVConstant *Op0 = 3345 dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3346 C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0; 3347 const SCEV *Remainder = 3348 CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1); 3349 if (Remainder) 3350 Ops.push_back(SE.getMulExpr(C, Remainder)); 3351 return nullptr; 3352 } 3353 } 3354 return S; 3355 } 3356 3357 /// \brief Helper function for LSRInstance::GenerateReassociations. 3358 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 3359 const Formula &Base, 3360 unsigned Depth, size_t Idx, 3361 bool IsScaledReg) { 3362 const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3363 SmallVector<const SCEV *, 8> AddOps; 3364 const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE); 3365 if (Remainder) 3366 AddOps.push_back(Remainder); 3367 3368 if (AddOps.size() == 1) 3369 return; 3370 3371 for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(), 3372 JE = AddOps.end(); 3373 J != JE; ++J) { 3374 3375 // Loop-variant "unknown" values are uninteresting; we won't be able to 3376 // do anything meaningful with them. 3377 if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L)) 3378 continue; 3379 3380 // Don't pull a constant into a register if the constant could be folded 3381 // into an immediate field. 3382 if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3383 LU.AccessTy, *J, Base.getNumRegs() > 1)) 3384 continue; 3385 3386 // Collect all operands except *J. 3387 SmallVector<const SCEV *, 8> InnerAddOps( 3388 ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J); 3389 InnerAddOps.append(std::next(J), 3390 ((const SmallVector<const SCEV *, 8> &)AddOps).end()); 3391 3392 // Don't leave just a constant behind in a register if the constant could 3393 // be folded into an immediate field. 3394 if (InnerAddOps.size() == 1 && 3395 isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3396 LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1)) 3397 continue; 3398 3399 const SCEV *InnerSum = SE.getAddExpr(InnerAddOps); 3400 if (InnerSum->isZero()) 3401 continue; 3402 Formula F = Base; 3403 3404 // Add the remaining pieces of the add back into the new formula. 3405 const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum); 3406 if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 && 3407 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3408 InnerSumSC->getValue()->getZExtValue())) { 3409 F.UnfoldedOffset = 3410 (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue(); 3411 if (IsScaledReg) 3412 F.ScaledReg = nullptr; 3413 else 3414 F.BaseRegs.erase(F.BaseRegs.begin() + Idx); 3415 } else if (IsScaledReg) 3416 F.ScaledReg = InnerSum; 3417 else 3418 F.BaseRegs[Idx] = InnerSum; 3419 3420 // Add J as its own register, or an unfolded immediate. 3421 const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J); 3422 if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 && 3423 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3424 SC->getValue()->getZExtValue())) 3425 F.UnfoldedOffset = 3426 (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue(); 3427 else 3428 F.BaseRegs.push_back(*J); 3429 // We may have changed the number of register in base regs, adjust the 3430 // formula accordingly. 3431 F.canonicalize(); 3432 3433 if (InsertFormula(LU, LUIdx, F)) 3434 // If that formula hadn't been seen before, recurse to find more like 3435 // it. 3436 GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth + 1); 3437 } 3438 } 3439 3440 /// Split out subexpressions from adds and the bases of addrecs. 3441 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx, 3442 Formula Base, unsigned Depth) { 3443 assert(Base.isCanonical() && "Input must be in the canonical form"); 3444 // Arbitrarily cap recursion to protect compile time. 3445 if (Depth >= 3) 3446 return; 3447 3448 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3449 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i); 3450 3451 if (Base.Scale == 1) 3452 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, 3453 /* Idx */ -1, /* IsScaledReg */ true); 3454 } 3455 3456 /// Generate a formula consisting of all of the loop-dominating registers added 3457 /// into a single register. 3458 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx, 3459 Formula Base) { 3460 // This method is only interesting on a plurality of registers. 3461 if (Base.BaseRegs.size() + (Base.Scale == 1) <= 1) 3462 return; 3463 3464 // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before 3465 // processing the formula. 3466 Base.unscale(); 3467 Formula F = Base; 3468 F.BaseRegs.clear(); 3469 SmallVector<const SCEV *, 4> Ops; 3470 for (const SCEV *BaseReg : Base.BaseRegs) { 3471 if (SE.properlyDominates(BaseReg, L->getHeader()) && 3472 !SE.hasComputableLoopEvolution(BaseReg, L)) 3473 Ops.push_back(BaseReg); 3474 else 3475 F.BaseRegs.push_back(BaseReg); 3476 } 3477 if (Ops.size() > 1) { 3478 const SCEV *Sum = SE.getAddExpr(Ops); 3479 // TODO: If Sum is zero, it probably means ScalarEvolution missed an 3480 // opportunity to fold something. For now, just ignore such cases 3481 // rather than proceed with zero in a register. 3482 if (!Sum->isZero()) { 3483 F.BaseRegs.push_back(Sum); 3484 F.canonicalize(); 3485 (void)InsertFormula(LU, LUIdx, F); 3486 } 3487 } 3488 } 3489 3490 /// \brief Helper function for LSRInstance::GenerateSymbolicOffsets. 3491 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 3492 const Formula &Base, size_t Idx, 3493 bool IsScaledReg) { 3494 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3495 GlobalValue *GV = ExtractSymbol(G, SE); 3496 if (G->isZero() || !GV) 3497 return; 3498 Formula F = Base; 3499 F.BaseGV = GV; 3500 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3501 return; 3502 if (IsScaledReg) 3503 F.ScaledReg = G; 3504 else 3505 F.BaseRegs[Idx] = G; 3506 (void)InsertFormula(LU, LUIdx, F); 3507 } 3508 3509 /// Generate reuse formulae using symbolic offsets. 3510 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, 3511 Formula Base) { 3512 // We can't add a symbolic offset if the address already contains one. 3513 if (Base.BaseGV) return; 3514 3515 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3516 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i); 3517 if (Base.Scale == 1) 3518 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1, 3519 /* IsScaledReg */ true); 3520 } 3521 3522 /// \brief Helper function for LSRInstance::GenerateConstantOffsets. 3523 void LSRInstance::GenerateConstantOffsetsImpl( 3524 LSRUse &LU, unsigned LUIdx, const Formula &Base, 3525 const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) { 3526 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3527 for (int64_t Offset : Worklist) { 3528 Formula F = Base; 3529 F.BaseOffset = (uint64_t)Base.BaseOffset - Offset; 3530 if (isLegalUse(TTI, LU.MinOffset - Offset, LU.MaxOffset - Offset, LU.Kind, 3531 LU.AccessTy, F)) { 3532 // Add the offset to the base register. 3533 const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G); 3534 // If it cancelled out, drop the base register, otherwise update it. 3535 if (NewG->isZero()) { 3536 if (IsScaledReg) { 3537 F.Scale = 0; 3538 F.ScaledReg = nullptr; 3539 } else 3540 F.deleteBaseReg(F.BaseRegs[Idx]); 3541 F.canonicalize(); 3542 } else if (IsScaledReg) 3543 F.ScaledReg = NewG; 3544 else 3545 F.BaseRegs[Idx] = NewG; 3546 3547 (void)InsertFormula(LU, LUIdx, F); 3548 } 3549 } 3550 3551 int64_t Imm = ExtractImmediate(G, SE); 3552 if (G->isZero() || Imm == 0) 3553 return; 3554 Formula F = Base; 3555 F.BaseOffset = (uint64_t)F.BaseOffset + Imm; 3556 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3557 return; 3558 if (IsScaledReg) 3559 F.ScaledReg = G; 3560 else 3561 F.BaseRegs[Idx] = G; 3562 (void)InsertFormula(LU, LUIdx, F); 3563 } 3564 3565 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets. 3566 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, 3567 Formula Base) { 3568 // TODO: For now, just add the min and max offset, because it usually isn't 3569 // worthwhile looking at everything inbetween. 3570 SmallVector<int64_t, 2> Worklist; 3571 Worklist.push_back(LU.MinOffset); 3572 if (LU.MaxOffset != LU.MinOffset) 3573 Worklist.push_back(LU.MaxOffset); 3574 3575 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3576 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i); 3577 if (Base.Scale == 1) 3578 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1, 3579 /* IsScaledReg */ true); 3580 } 3581 3582 /// For ICmpZero, check to see if we can scale up the comparison. For example, x 3583 /// == y -> x*c == y*c. 3584 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, 3585 Formula Base) { 3586 if (LU.Kind != LSRUse::ICmpZero) return; 3587 3588 // Determine the integer type for the base formula. 3589 Type *IntTy = Base.getType(); 3590 if (!IntTy) return; 3591 if (SE.getTypeSizeInBits(IntTy) > 64) return; 3592 3593 // Don't do this if there is more than one offset. 3594 if (LU.MinOffset != LU.MaxOffset) return; 3595 3596 assert(!Base.BaseGV && "ICmpZero use is not legal!"); 3597 3598 // Check each interesting stride. 3599 for (int64_t Factor : Factors) { 3600 // Check that the multiplication doesn't overflow. 3601 if (Base.BaseOffset == INT64_MIN && Factor == -1) 3602 continue; 3603 int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor; 3604 if (NewBaseOffset / Factor != Base.BaseOffset) 3605 continue; 3606 // If the offset will be truncated at this use, check that it is in bounds. 3607 if (!IntTy->isPointerTy() && 3608 !ConstantInt::isValueValidForType(IntTy, NewBaseOffset)) 3609 continue; 3610 3611 // Check that multiplying with the use offset doesn't overflow. 3612 int64_t Offset = LU.MinOffset; 3613 if (Offset == INT64_MIN && Factor == -1) 3614 continue; 3615 Offset = (uint64_t)Offset * Factor; 3616 if (Offset / Factor != LU.MinOffset) 3617 continue; 3618 // If the offset will be truncated at this use, check that it is in bounds. 3619 if (!IntTy->isPointerTy() && 3620 !ConstantInt::isValueValidForType(IntTy, Offset)) 3621 continue; 3622 3623 Formula F = Base; 3624 F.BaseOffset = NewBaseOffset; 3625 3626 // Check that this scale is legal. 3627 if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F)) 3628 continue; 3629 3630 // Compensate for the use having MinOffset built into it. 3631 F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset; 3632 3633 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3634 3635 // Check that multiplying with each base register doesn't overflow. 3636 for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) { 3637 F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS); 3638 if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i]) 3639 goto next; 3640 } 3641 3642 // Check that multiplying with the scaled register doesn't overflow. 3643 if (F.ScaledReg) { 3644 F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS); 3645 if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg) 3646 continue; 3647 } 3648 3649 // Check that multiplying with the unfolded offset doesn't overflow. 3650 if (F.UnfoldedOffset != 0) { 3651 if (F.UnfoldedOffset == INT64_MIN && Factor == -1) 3652 continue; 3653 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor; 3654 if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset) 3655 continue; 3656 // If the offset will be truncated, check that it is in bounds. 3657 if (!IntTy->isPointerTy() && 3658 !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset)) 3659 continue; 3660 } 3661 3662 // If we make it here and it's legal, add it. 3663 (void)InsertFormula(LU, LUIdx, F); 3664 next:; 3665 } 3666 } 3667 3668 /// Generate stride factor reuse formulae by making use of scaled-offset address 3669 /// modes, for example. 3670 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) { 3671 // Determine the integer type for the base formula. 3672 Type *IntTy = Base.getType(); 3673 if (!IntTy) return; 3674 3675 // If this Formula already has a scaled register, we can't add another one. 3676 // Try to unscale the formula to generate a better scale. 3677 if (Base.Scale != 0 && !Base.unscale()) 3678 return; 3679 3680 assert(Base.Scale == 0 && "unscale did not did its job!"); 3681 3682 // Check each interesting stride. 3683 for (int64_t Factor : Factors) { 3684 Base.Scale = Factor; 3685 Base.HasBaseReg = Base.BaseRegs.size() > 1; 3686 // Check whether this scale is going to be legal. 3687 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 3688 Base)) { 3689 // As a special-case, handle special out-of-loop Basic users specially. 3690 // TODO: Reconsider this special case. 3691 if (LU.Kind == LSRUse::Basic && 3692 isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special, 3693 LU.AccessTy, Base) && 3694 LU.AllFixupsOutsideLoop) 3695 LU.Kind = LSRUse::Special; 3696 else 3697 continue; 3698 } 3699 // For an ICmpZero, negating a solitary base register won't lead to 3700 // new solutions. 3701 if (LU.Kind == LSRUse::ICmpZero && 3702 !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV) 3703 continue; 3704 // For each addrec base reg, apply the scale, if possible. 3705 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3706 if (const SCEVAddRecExpr *AR = 3707 dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i])) { 3708 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3709 if (FactorS->isZero()) 3710 continue; 3711 // Divide out the factor, ignoring high bits, since we'll be 3712 // scaling the value back up in the end. 3713 if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) { 3714 // TODO: This could be optimized to avoid all the copying. 3715 Formula F = Base; 3716 F.ScaledReg = Quotient; 3717 F.deleteBaseReg(F.BaseRegs[i]); 3718 // The canonical representation of 1*reg is reg, which is already in 3719 // Base. In that case, do not try to insert the formula, it will be 3720 // rejected anyway. 3721 if (F.Scale == 1 && F.BaseRegs.empty()) 3722 continue; 3723 (void)InsertFormula(LU, LUIdx, F); 3724 } 3725 } 3726 } 3727 } 3728 3729 /// Generate reuse formulae from different IV types. 3730 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) { 3731 // Don't bother truncating symbolic values. 3732 if (Base.BaseGV) return; 3733 3734 // Determine the integer type for the base formula. 3735 Type *DstTy = Base.getType(); 3736 if (!DstTy) return; 3737 DstTy = SE.getEffectiveSCEVType(DstTy); 3738 3739 for (Type *SrcTy : Types) { 3740 if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) { 3741 Formula F = Base; 3742 3743 if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy); 3744 for (const SCEV *&BaseReg : F.BaseRegs) 3745 BaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy); 3746 3747 // TODO: This assumes we've done basic processing on all uses and 3748 // have an idea what the register usage is. 3749 if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses)) 3750 continue; 3751 3752 (void)InsertFormula(LU, LUIdx, F); 3753 } 3754 } 3755 } 3756 3757 namespace { 3758 3759 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer 3760 /// modifications so that the search phase doesn't have to worry about the data 3761 /// structures moving underneath it. 3762 struct WorkItem { 3763 size_t LUIdx; 3764 int64_t Imm; 3765 const SCEV *OrigReg; 3766 3767 WorkItem(size_t LI, int64_t I, const SCEV *R) 3768 : LUIdx(LI), Imm(I), OrigReg(R) {} 3769 3770 void print(raw_ostream &OS) const; 3771 void dump() const; 3772 }; 3773 3774 } // end anonymous namespace 3775 3776 void WorkItem::print(raw_ostream &OS) const { 3777 OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx 3778 << " , add offset " << Imm; 3779 } 3780 3781 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 3782 LLVM_DUMP_METHOD void WorkItem::dump() const { 3783 print(errs()); errs() << '\n'; 3784 } 3785 #endif 3786 3787 /// Look for registers which are a constant distance apart and try to form reuse 3788 /// opportunities between them. 3789 void LSRInstance::GenerateCrossUseConstantOffsets() { 3790 // Group the registers by their value without any added constant offset. 3791 typedef std::map<int64_t, const SCEV *> ImmMapTy; 3792 DenseMap<const SCEV *, ImmMapTy> Map; 3793 DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap; 3794 SmallVector<const SCEV *, 8> Sequence; 3795 for (const SCEV *Use : RegUses) { 3796 const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify. 3797 int64_t Imm = ExtractImmediate(Reg, SE); 3798 auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy())); 3799 if (Pair.second) 3800 Sequence.push_back(Reg); 3801 Pair.first->second.insert(std::make_pair(Imm, Use)); 3802 UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use); 3803 } 3804 3805 // Now examine each set of registers with the same base value. Build up 3806 // a list of work to do and do the work in a separate step so that we're 3807 // not adding formulae and register counts while we're searching. 3808 SmallVector<WorkItem, 32> WorkItems; 3809 SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems; 3810 for (const SCEV *Reg : Sequence) { 3811 const ImmMapTy &Imms = Map.find(Reg)->second; 3812 3813 // It's not worthwhile looking for reuse if there's only one offset. 3814 if (Imms.size() == 1) 3815 continue; 3816 3817 DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':'; 3818 for (const auto &Entry : Imms) 3819 dbgs() << ' ' << Entry.first; 3820 dbgs() << '\n'); 3821 3822 // Examine each offset. 3823 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); 3824 J != JE; ++J) { 3825 const SCEV *OrigReg = J->second; 3826 3827 int64_t JImm = J->first; 3828 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg); 3829 3830 if (!isa<SCEVConstant>(OrigReg) && 3831 UsedByIndicesMap[Reg].count() == 1) { 3832 DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n'); 3833 continue; 3834 } 3835 3836 // Conservatively examine offsets between this orig reg a few selected 3837 // other orig regs. 3838 ImmMapTy::const_iterator OtherImms[] = { 3839 Imms.begin(), std::prev(Imms.end()), 3840 Imms.lower_bound((Imms.begin()->first + std::prev(Imms.end())->first) / 3841 2) 3842 }; 3843 for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) { 3844 ImmMapTy::const_iterator M = OtherImms[i]; 3845 if (M == J || M == JE) continue; 3846 3847 // Compute the difference between the two. 3848 int64_t Imm = (uint64_t)JImm - M->first; 3849 for (int LUIdx = UsedByIndices.find_first(); LUIdx != -1; 3850 LUIdx = UsedByIndices.find_next(LUIdx)) 3851 // Make a memo of this use, offset, and register tuple. 3852 if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second) 3853 WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg)); 3854 } 3855 } 3856 } 3857 3858 Map.clear(); 3859 Sequence.clear(); 3860 UsedByIndicesMap.clear(); 3861 UniqueItems.clear(); 3862 3863 // Now iterate through the worklist and add new formulae. 3864 for (const WorkItem &WI : WorkItems) { 3865 size_t LUIdx = WI.LUIdx; 3866 LSRUse &LU = Uses[LUIdx]; 3867 int64_t Imm = WI.Imm; 3868 const SCEV *OrigReg = WI.OrigReg; 3869 3870 Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType()); 3871 const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm)); 3872 unsigned BitWidth = SE.getTypeSizeInBits(IntTy); 3873 3874 // TODO: Use a more targeted data structure. 3875 for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) { 3876 Formula F = LU.Formulae[L]; 3877 // FIXME: The code for the scaled and unscaled registers looks 3878 // very similar but slightly different. Investigate if they 3879 // could be merged. That way, we would not have to unscale the 3880 // Formula. 3881 F.unscale(); 3882 // Use the immediate in the scaled register. 3883 if (F.ScaledReg == OrigReg) { 3884 int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale; 3885 // Don't create 50 + reg(-50). 3886 if (F.referencesReg(SE.getSCEV( 3887 ConstantInt::get(IntTy, -(uint64_t)Offset)))) 3888 continue; 3889 Formula NewF = F; 3890 NewF.BaseOffset = Offset; 3891 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 3892 NewF)) 3893 continue; 3894 NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg); 3895 3896 // If the new scale is a constant in a register, and adding the constant 3897 // value to the immediate would produce a value closer to zero than the 3898 // immediate itself, then the formula isn't worthwhile. 3899 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg)) 3900 if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) && 3901 (C->getAPInt().abs() * APInt(BitWidth, F.Scale)) 3902 .ule(std::abs(NewF.BaseOffset))) 3903 continue; 3904 3905 // OK, looks good. 3906 NewF.canonicalize(); 3907 (void)InsertFormula(LU, LUIdx, NewF); 3908 } else { 3909 // Use the immediate in a base register. 3910 for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) { 3911 const SCEV *BaseReg = F.BaseRegs[N]; 3912 if (BaseReg != OrigReg) 3913 continue; 3914 Formula NewF = F; 3915 NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm; 3916 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, 3917 LU.Kind, LU.AccessTy, NewF)) { 3918 if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm)) 3919 continue; 3920 NewF = F; 3921 NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm; 3922 } 3923 NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg); 3924 3925 // If the new formula has a constant in a register, and adding the 3926 // constant value to the immediate would produce a value closer to 3927 // zero than the immediate itself, then the formula isn't worthwhile. 3928 for (const SCEV *NewReg : NewF.BaseRegs) 3929 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg)) 3930 if ((C->getAPInt() + NewF.BaseOffset) 3931 .abs() 3932 .slt(std::abs(NewF.BaseOffset)) && 3933 (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >= 3934 countTrailingZeros<uint64_t>(NewF.BaseOffset)) 3935 goto skip_formula; 3936 3937 // Ok, looks good. 3938 NewF.canonicalize(); 3939 (void)InsertFormula(LU, LUIdx, NewF); 3940 break; 3941 skip_formula:; 3942 } 3943 } 3944 } 3945 } 3946 } 3947 3948 /// Generate formulae for each use. 3949 void 3950 LSRInstance::GenerateAllReuseFormulae() { 3951 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan 3952 // queries are more precise. 3953 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3954 LSRUse &LU = Uses[LUIdx]; 3955 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3956 GenerateReassociations(LU, LUIdx, LU.Formulae[i]); 3957 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3958 GenerateCombinations(LU, LUIdx, LU.Formulae[i]); 3959 } 3960 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3961 LSRUse &LU = Uses[LUIdx]; 3962 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3963 GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]); 3964 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3965 GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]); 3966 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3967 GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]); 3968 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3969 GenerateScales(LU, LUIdx, LU.Formulae[i]); 3970 } 3971 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3972 LSRUse &LU = Uses[LUIdx]; 3973 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3974 GenerateTruncates(LU, LUIdx, LU.Formulae[i]); 3975 } 3976 3977 GenerateCrossUseConstantOffsets(); 3978 3979 DEBUG(dbgs() << "\n" 3980 "After generating reuse formulae:\n"; 3981 print_uses(dbgs())); 3982 } 3983 3984 /// If there are multiple formulae with the same set of registers used 3985 /// by other uses, pick the best one and delete the others. 3986 void LSRInstance::FilterOutUndesirableDedicatedRegisters() { 3987 DenseSet<const SCEV *> VisitedRegs; 3988 SmallPtrSet<const SCEV *, 16> Regs; 3989 SmallPtrSet<const SCEV *, 16> LoserRegs; 3990 #ifndef NDEBUG 3991 bool ChangedFormulae = false; 3992 #endif 3993 3994 // Collect the best formula for each unique set of shared registers. This 3995 // is reset for each use. 3996 typedef DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo> 3997 BestFormulaeTy; 3998 BestFormulaeTy BestFormulae; 3999 4000 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4001 LSRUse &LU = Uses[LUIdx]; 4002 DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n'); 4003 4004 bool Any = false; 4005 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); 4006 FIdx != NumForms; ++FIdx) { 4007 Formula &F = LU.Formulae[FIdx]; 4008 4009 // Some formulas are instant losers. For example, they may depend on 4010 // nonexistent AddRecs from other loops. These need to be filtered 4011 // immediately, otherwise heuristics could choose them over others leading 4012 // to an unsatisfactory solution. Passing LoserRegs into RateFormula here 4013 // avoids the need to recompute this information across formulae using the 4014 // same bad AddRec. Passing LoserRegs is also essential unless we remove 4015 // the corresponding bad register from the Regs set. 4016 Cost CostF; 4017 Regs.clear(); 4018 CostF.RateFormula(TTI, F, Regs, VisitedRegs, L, SE, DT, LU, &LoserRegs); 4019 if (CostF.isLoser()) { 4020 // During initial formula generation, undesirable formulae are generated 4021 // by uses within other loops that have some non-trivial address mode or 4022 // use the postinc form of the IV. LSR needs to provide these formulae 4023 // as the basis of rediscovering the desired formula that uses an AddRec 4024 // corresponding to the existing phi. Once all formulae have been 4025 // generated, these initial losers may be pruned. 4026 DEBUG(dbgs() << " Filtering loser "; F.print(dbgs()); 4027 dbgs() << "\n"); 4028 } 4029 else { 4030 SmallVector<const SCEV *, 4> Key; 4031 for (const SCEV *Reg : F.BaseRegs) { 4032 if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx)) 4033 Key.push_back(Reg); 4034 } 4035 if (F.ScaledReg && 4036 RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx)) 4037 Key.push_back(F.ScaledReg); 4038 // Unstable sort by host order ok, because this is only used for 4039 // uniquifying. 4040 std::sort(Key.begin(), Key.end()); 4041 4042 std::pair<BestFormulaeTy::const_iterator, bool> P = 4043 BestFormulae.insert(std::make_pair(Key, FIdx)); 4044 if (P.second) 4045 continue; 4046 4047 Formula &Best = LU.Formulae[P.first->second]; 4048 4049 Cost CostBest; 4050 Regs.clear(); 4051 CostBest.RateFormula(TTI, Best, Regs, VisitedRegs, L, SE, DT, LU); 4052 if (CostF < CostBest) 4053 std::swap(F, Best); 4054 DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 4055 dbgs() << "\n" 4056 " in favor of formula "; Best.print(dbgs()); 4057 dbgs() << '\n'); 4058 } 4059 #ifndef NDEBUG 4060 ChangedFormulae = true; 4061 #endif 4062 LU.DeleteFormula(F); 4063 --FIdx; 4064 --NumForms; 4065 Any = true; 4066 } 4067 4068 // Now that we've filtered out some formulae, recompute the Regs set. 4069 if (Any) 4070 LU.RecomputeRegs(LUIdx, RegUses); 4071 4072 // Reset this to prepare for the next use. 4073 BestFormulae.clear(); 4074 } 4075 4076 DEBUG(if (ChangedFormulae) { 4077 dbgs() << "\n" 4078 "After filtering out undesirable candidates:\n"; 4079 print_uses(dbgs()); 4080 }); 4081 } 4082 4083 // This is a rough guess that seems to work fairly well. 4084 static const size_t ComplexityLimit = UINT16_MAX; 4085 4086 /// Estimate the worst-case number of solutions the solver might have to 4087 /// consider. It almost never considers this many solutions because it prune the 4088 /// search space, but the pruning isn't always sufficient. 4089 size_t LSRInstance::EstimateSearchSpaceComplexity() const { 4090 size_t Power = 1; 4091 for (const LSRUse &LU : Uses) { 4092 size_t FSize = LU.Formulae.size(); 4093 if (FSize >= ComplexityLimit) { 4094 Power = ComplexityLimit; 4095 break; 4096 } 4097 Power *= FSize; 4098 if (Power >= ComplexityLimit) 4099 break; 4100 } 4101 return Power; 4102 } 4103 4104 /// When one formula uses a superset of the registers of another formula, it 4105 /// won't help reduce register pressure (though it may not necessarily hurt 4106 /// register pressure); remove it to simplify the system. 4107 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() { 4108 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4109 DEBUG(dbgs() << "The search space is too complex.\n"); 4110 4111 DEBUG(dbgs() << "Narrowing the search space by eliminating formulae " 4112 "which use a superset of registers used by other " 4113 "formulae.\n"); 4114 4115 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4116 LSRUse &LU = Uses[LUIdx]; 4117 bool Any = false; 4118 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4119 Formula &F = LU.Formulae[i]; 4120 // Look for a formula with a constant or GV in a register. If the use 4121 // also has a formula with that same value in an immediate field, 4122 // delete the one that uses a register. 4123 for (SmallVectorImpl<const SCEV *>::const_iterator 4124 I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) { 4125 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) { 4126 Formula NewF = F; 4127 NewF.BaseOffset += C->getValue()->getSExtValue(); 4128 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4129 (I - F.BaseRegs.begin())); 4130 if (LU.HasFormulaWithSameRegs(NewF)) { 4131 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4132 LU.DeleteFormula(F); 4133 --i; 4134 --e; 4135 Any = true; 4136 break; 4137 } 4138 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) { 4139 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) 4140 if (!F.BaseGV) { 4141 Formula NewF = F; 4142 NewF.BaseGV = GV; 4143 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4144 (I - F.BaseRegs.begin())); 4145 if (LU.HasFormulaWithSameRegs(NewF)) { 4146 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4147 dbgs() << '\n'); 4148 LU.DeleteFormula(F); 4149 --i; 4150 --e; 4151 Any = true; 4152 break; 4153 } 4154 } 4155 } 4156 } 4157 } 4158 if (Any) 4159 LU.RecomputeRegs(LUIdx, RegUses); 4160 } 4161 4162 DEBUG(dbgs() << "After pre-selection:\n"; 4163 print_uses(dbgs())); 4164 } 4165 } 4166 4167 /// When there are many registers for expressions like A, A+1, A+2, etc., 4168 /// allocate a single register for them. 4169 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() { 4170 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4171 return; 4172 4173 DEBUG(dbgs() << "The search space is too complex.\n" 4174 "Narrowing the search space by assuming that uses separated " 4175 "by a constant offset will use the same registers.\n"); 4176 4177 // This is especially useful for unrolled loops. 4178 4179 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4180 LSRUse &LU = Uses[LUIdx]; 4181 for (const Formula &F : LU.Formulae) { 4182 if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1)) 4183 continue; 4184 4185 LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU); 4186 if (!LUThatHas) 4187 continue; 4188 4189 if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false, 4190 LU.Kind, LU.AccessTy)) 4191 continue; 4192 4193 DEBUG(dbgs() << " Deleting use "; LU.print(dbgs()); dbgs() << '\n'); 4194 4195 LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop; 4196 4197 // Transfer the fixups of LU to LUThatHas. 4198 for (LSRFixup &Fixup : LU.Fixups) { 4199 Fixup.Offset += F.BaseOffset; 4200 LUThatHas->pushFixup(Fixup); 4201 DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n'); 4202 } 4203 4204 // Delete formulae from the new use which are no longer legal. 4205 bool Any = false; 4206 for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) { 4207 Formula &F = LUThatHas->Formulae[i]; 4208 if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset, 4209 LUThatHas->Kind, LUThatHas->AccessTy, F)) { 4210 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4211 dbgs() << '\n'); 4212 LUThatHas->DeleteFormula(F); 4213 --i; 4214 --e; 4215 Any = true; 4216 } 4217 } 4218 4219 if (Any) 4220 LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses); 4221 4222 // Delete the old use. 4223 DeleteUse(LU, LUIdx); 4224 --LUIdx; 4225 --NumUses; 4226 break; 4227 } 4228 } 4229 4230 DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4231 } 4232 4233 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that 4234 /// we've done more filtering, as it may be able to find more formulae to 4235 /// eliminate. 4236 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){ 4237 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4238 DEBUG(dbgs() << "The search space is too complex.\n"); 4239 4240 DEBUG(dbgs() << "Narrowing the search space by re-filtering out " 4241 "undesirable dedicated registers.\n"); 4242 4243 FilterOutUndesirableDedicatedRegisters(); 4244 4245 DEBUG(dbgs() << "After pre-selection:\n"; 4246 print_uses(dbgs())); 4247 } 4248 } 4249 4250 /// Pick a register which seems likely to be profitable, and then in any use 4251 /// which has any reference to that register, delete all formulae which do not 4252 /// reference that register. 4253 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() { 4254 // With all other options exhausted, loop until the system is simple 4255 // enough to handle. 4256 SmallPtrSet<const SCEV *, 4> Taken; 4257 while (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4258 // Ok, we have too many of formulae on our hands to conveniently handle. 4259 // Use a rough heuristic to thin out the list. 4260 DEBUG(dbgs() << "The search space is too complex.\n"); 4261 4262 // Pick the register which is used by the most LSRUses, which is likely 4263 // to be a good reuse register candidate. 4264 const SCEV *Best = nullptr; 4265 unsigned BestNum = 0; 4266 for (const SCEV *Reg : RegUses) { 4267 if (Taken.count(Reg)) 4268 continue; 4269 if (!Best) { 4270 Best = Reg; 4271 BestNum = RegUses.getUsedByIndices(Reg).count(); 4272 } else { 4273 unsigned Count = RegUses.getUsedByIndices(Reg).count(); 4274 if (Count > BestNum) { 4275 Best = Reg; 4276 BestNum = Count; 4277 } 4278 } 4279 } 4280 4281 DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best 4282 << " will yield profitable reuse.\n"); 4283 Taken.insert(Best); 4284 4285 // In any use with formulae which references this register, delete formulae 4286 // which don't reference it. 4287 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4288 LSRUse &LU = Uses[LUIdx]; 4289 if (!LU.Regs.count(Best)) continue; 4290 4291 bool Any = false; 4292 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4293 Formula &F = LU.Formulae[i]; 4294 if (!F.referencesReg(Best)) { 4295 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4296 LU.DeleteFormula(F); 4297 --e; 4298 --i; 4299 Any = true; 4300 assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?"); 4301 continue; 4302 } 4303 } 4304 4305 if (Any) 4306 LU.RecomputeRegs(LUIdx, RegUses); 4307 } 4308 4309 DEBUG(dbgs() << "After pre-selection:\n"; 4310 print_uses(dbgs())); 4311 } 4312 } 4313 4314 /// If there are an extraordinary number of formulae to choose from, use some 4315 /// rough heuristics to prune down the number of formulae. This keeps the main 4316 /// solver from taking an extraordinary amount of time in some worst-case 4317 /// scenarios. 4318 void LSRInstance::NarrowSearchSpaceUsingHeuristics() { 4319 NarrowSearchSpaceByDetectingSupersets(); 4320 NarrowSearchSpaceByCollapsingUnrolledCode(); 4321 NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 4322 NarrowSearchSpaceByPickingWinnerRegs(); 4323 } 4324 4325 /// This is the recursive solver. 4326 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 4327 Cost &SolutionCost, 4328 SmallVectorImpl<const Formula *> &Workspace, 4329 const Cost &CurCost, 4330 const SmallPtrSet<const SCEV *, 16> &CurRegs, 4331 DenseSet<const SCEV *> &VisitedRegs) const { 4332 // Some ideas: 4333 // - prune more: 4334 // - use more aggressive filtering 4335 // - sort the formula so that the most profitable solutions are found first 4336 // - sort the uses too 4337 // - search faster: 4338 // - don't compute a cost, and then compare. compare while computing a cost 4339 // and bail early. 4340 // - track register sets with SmallBitVector 4341 4342 const LSRUse &LU = Uses[Workspace.size()]; 4343 4344 // If this use references any register that's already a part of the 4345 // in-progress solution, consider it a requirement that a formula must 4346 // reference that register in order to be considered. This prunes out 4347 // unprofitable searching. 4348 SmallSetVector<const SCEV *, 4> ReqRegs; 4349 for (const SCEV *S : CurRegs) 4350 if (LU.Regs.count(S)) 4351 ReqRegs.insert(S); 4352 4353 SmallPtrSet<const SCEV *, 16> NewRegs; 4354 Cost NewCost; 4355 for (const Formula &F : LU.Formulae) { 4356 // Ignore formulae which may not be ideal in terms of register reuse of 4357 // ReqRegs. The formula should use all required registers before 4358 // introducing new ones. 4359 int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size()); 4360 for (const SCEV *Reg : ReqRegs) { 4361 if ((F.ScaledReg && F.ScaledReg == Reg) || 4362 is_contained(F.BaseRegs, Reg)) { 4363 --NumReqRegsToFind; 4364 if (NumReqRegsToFind == 0) 4365 break; 4366 } 4367 } 4368 if (NumReqRegsToFind != 0) { 4369 // If none of the formulae satisfied the required registers, then we could 4370 // clear ReqRegs and try again. Currently, we simply give up in this case. 4371 continue; 4372 } 4373 4374 // Evaluate the cost of the current formula. If it's already worse than 4375 // the current best, prune the search at that point. 4376 NewCost = CurCost; 4377 NewRegs = CurRegs; 4378 NewCost.RateFormula(TTI, F, NewRegs, VisitedRegs, L, SE, DT, LU); 4379 if (NewCost < SolutionCost) { 4380 Workspace.push_back(&F); 4381 if (Workspace.size() != Uses.size()) { 4382 SolveRecurse(Solution, SolutionCost, Workspace, NewCost, 4383 NewRegs, VisitedRegs); 4384 if (F.getNumRegs() == 1 && Workspace.size() == 1) 4385 VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]); 4386 } else { 4387 DEBUG(dbgs() << "New best at "; NewCost.print(dbgs()); 4388 dbgs() << ".\n Regs:"; 4389 for (const SCEV *S : NewRegs) 4390 dbgs() << ' ' << *S; 4391 dbgs() << '\n'); 4392 4393 SolutionCost = NewCost; 4394 Solution = Workspace; 4395 } 4396 Workspace.pop_back(); 4397 } 4398 } 4399 } 4400 4401 /// Choose one formula from each use. Return the results in the given Solution 4402 /// vector. 4403 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const { 4404 SmallVector<const Formula *, 8> Workspace; 4405 Cost SolutionCost; 4406 SolutionCost.Lose(); 4407 Cost CurCost; 4408 SmallPtrSet<const SCEV *, 16> CurRegs; 4409 DenseSet<const SCEV *> VisitedRegs; 4410 Workspace.reserve(Uses.size()); 4411 4412 // SolveRecurse does all the work. 4413 SolveRecurse(Solution, SolutionCost, Workspace, CurCost, 4414 CurRegs, VisitedRegs); 4415 if (Solution.empty()) { 4416 DEBUG(dbgs() << "\nNo Satisfactory Solution\n"); 4417 return; 4418 } 4419 4420 // Ok, we've now made all our decisions. 4421 DEBUG(dbgs() << "\n" 4422 "The chosen solution requires "; SolutionCost.print(dbgs()); 4423 dbgs() << ":\n"; 4424 for (size_t i = 0, e = Uses.size(); i != e; ++i) { 4425 dbgs() << " "; 4426 Uses[i].print(dbgs()); 4427 dbgs() << "\n" 4428 " "; 4429 Solution[i]->print(dbgs()); 4430 dbgs() << '\n'; 4431 }); 4432 4433 assert(Solution.size() == Uses.size() && "Malformed solution!"); 4434 } 4435 4436 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as 4437 /// we can go while still being dominated by the input positions. This helps 4438 /// canonicalize the insert position, which encourages sharing. 4439 BasicBlock::iterator 4440 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP, 4441 const SmallVectorImpl<Instruction *> &Inputs) 4442 const { 4443 Instruction *Tentative = &*IP; 4444 while (true) { 4445 bool AllDominate = true; 4446 Instruction *BetterPos = nullptr; 4447 // Don't bother attempting to insert before a catchswitch, their basic block 4448 // cannot have other non-PHI instructions. 4449 if (isa<CatchSwitchInst>(Tentative)) 4450 return IP; 4451 4452 for (Instruction *Inst : Inputs) { 4453 if (Inst == Tentative || !DT.dominates(Inst, Tentative)) { 4454 AllDominate = false; 4455 break; 4456 } 4457 // Attempt to find an insert position in the middle of the block, 4458 // instead of at the end, so that it can be used for other expansions. 4459 if (Tentative->getParent() == Inst->getParent() && 4460 (!BetterPos || !DT.dominates(Inst, BetterPos))) 4461 BetterPos = &*std::next(BasicBlock::iterator(Inst)); 4462 } 4463 if (!AllDominate) 4464 break; 4465 if (BetterPos) 4466 IP = BetterPos->getIterator(); 4467 else 4468 IP = Tentative->getIterator(); 4469 4470 const Loop *IPLoop = LI.getLoopFor(IP->getParent()); 4471 unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0; 4472 4473 BasicBlock *IDom; 4474 for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) { 4475 if (!Rung) return IP; 4476 Rung = Rung->getIDom(); 4477 if (!Rung) return IP; 4478 IDom = Rung->getBlock(); 4479 4480 // Don't climb into a loop though. 4481 const Loop *IDomLoop = LI.getLoopFor(IDom); 4482 unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0; 4483 if (IDomDepth <= IPLoopDepth && 4484 (IDomDepth != IPLoopDepth || IDomLoop == IPLoop)) 4485 break; 4486 } 4487 4488 Tentative = IDom->getTerminator(); 4489 } 4490 4491 return IP; 4492 } 4493 4494 /// Determine an input position which will be dominated by the operands and 4495 /// which will dominate the result. 4496 BasicBlock::iterator 4497 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP, 4498 const LSRFixup &LF, 4499 const LSRUse &LU, 4500 SCEVExpander &Rewriter) const { 4501 // Collect some instructions which must be dominated by the 4502 // expanding replacement. These must be dominated by any operands that 4503 // will be required in the expansion. 4504 SmallVector<Instruction *, 4> Inputs; 4505 if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace)) 4506 Inputs.push_back(I); 4507 if (LU.Kind == LSRUse::ICmpZero) 4508 if (Instruction *I = 4509 dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1))) 4510 Inputs.push_back(I); 4511 if (LF.PostIncLoops.count(L)) { 4512 if (LF.isUseFullyOutsideLoop(L)) 4513 Inputs.push_back(L->getLoopLatch()->getTerminator()); 4514 else 4515 Inputs.push_back(IVIncInsertPos); 4516 } 4517 // The expansion must also be dominated by the increment positions of any 4518 // loops it for which it is using post-inc mode. 4519 for (const Loop *PIL : LF.PostIncLoops) { 4520 if (PIL == L) continue; 4521 4522 // Be dominated by the loop exit. 4523 SmallVector<BasicBlock *, 4> ExitingBlocks; 4524 PIL->getExitingBlocks(ExitingBlocks); 4525 if (!ExitingBlocks.empty()) { 4526 BasicBlock *BB = ExitingBlocks[0]; 4527 for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i) 4528 BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]); 4529 Inputs.push_back(BB->getTerminator()); 4530 } 4531 } 4532 4533 assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad() 4534 && !isa<DbgInfoIntrinsic>(LowestIP) && 4535 "Insertion point must be a normal instruction"); 4536 4537 // Then, climb up the immediate dominator tree as far as we can go while 4538 // still being dominated by the input positions. 4539 BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs); 4540 4541 // Don't insert instructions before PHI nodes. 4542 while (isa<PHINode>(IP)) ++IP; 4543 4544 // Ignore landingpad instructions. 4545 while (IP->isEHPad()) ++IP; 4546 4547 // Ignore debug intrinsics. 4548 while (isa<DbgInfoIntrinsic>(IP)) ++IP; 4549 4550 // Set IP below instructions recently inserted by SCEVExpander. This keeps the 4551 // IP consistent across expansions and allows the previously inserted 4552 // instructions to be reused by subsequent expansion. 4553 while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP) 4554 ++IP; 4555 4556 return IP; 4557 } 4558 4559 /// Emit instructions for the leading candidate expression for this LSRUse (this 4560 /// is called "expanding"). 4561 Value *LSRInstance::Expand(const LSRUse &LU, 4562 const LSRFixup &LF, 4563 const Formula &F, 4564 BasicBlock::iterator IP, 4565 SCEVExpander &Rewriter, 4566 SmallVectorImpl<WeakVH> &DeadInsts) const { 4567 if (LU.RigidFormula) 4568 return LF.OperandValToReplace; 4569 4570 // Determine an input position which will be dominated by the operands and 4571 // which will dominate the result. 4572 IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter); 4573 Rewriter.setInsertPoint(&*IP); 4574 4575 // Inform the Rewriter if we have a post-increment use, so that it can 4576 // perform an advantageous expansion. 4577 Rewriter.setPostInc(LF.PostIncLoops); 4578 4579 // This is the type that the user actually needs. 4580 Type *OpTy = LF.OperandValToReplace->getType(); 4581 // This will be the type that we'll initially expand to. 4582 Type *Ty = F.getType(); 4583 if (!Ty) 4584 // No type known; just expand directly to the ultimate type. 4585 Ty = OpTy; 4586 else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy)) 4587 // Expand directly to the ultimate type if it's the right size. 4588 Ty = OpTy; 4589 // This is the type to do integer arithmetic in. 4590 Type *IntTy = SE.getEffectiveSCEVType(Ty); 4591 4592 // Build up a list of operands to add together to form the full base. 4593 SmallVector<const SCEV *, 8> Ops; 4594 4595 // Expand the BaseRegs portion. 4596 for (const SCEV *Reg : F.BaseRegs) { 4597 assert(!Reg->isZero() && "Zero allocated in a base register!"); 4598 4599 // If we're expanding for a post-inc user, make the post-inc adjustment. 4600 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 4601 Reg = TransformForPostIncUse(Denormalize, Reg, 4602 LF.UserInst, LF.OperandValToReplace, 4603 Loops, SE, DT); 4604 4605 Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr))); 4606 } 4607 4608 // Expand the ScaledReg portion. 4609 Value *ICmpScaledV = nullptr; 4610 if (F.Scale != 0) { 4611 const SCEV *ScaledS = F.ScaledReg; 4612 4613 // If we're expanding for a post-inc user, make the post-inc adjustment. 4614 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 4615 ScaledS = TransformForPostIncUse(Denormalize, ScaledS, 4616 LF.UserInst, LF.OperandValToReplace, 4617 Loops, SE, DT); 4618 4619 if (LU.Kind == LSRUse::ICmpZero) { 4620 // Expand ScaleReg as if it was part of the base regs. 4621 if (F.Scale == 1) 4622 Ops.push_back( 4623 SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr))); 4624 else { 4625 // An interesting way of "folding" with an icmp is to use a negated 4626 // scale, which we'll implement by inserting it into the other operand 4627 // of the icmp. 4628 assert(F.Scale == -1 && 4629 "The only scale supported by ICmpZero uses is -1!"); 4630 ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr); 4631 } 4632 } else { 4633 // Otherwise just expand the scaled register and an explicit scale, 4634 // which is expected to be matched as part of the address. 4635 4636 // Flush the operand list to suppress SCEVExpander hoisting address modes. 4637 // Unless the addressing mode will not be folded. 4638 if (!Ops.empty() && LU.Kind == LSRUse::Address && 4639 isAMCompletelyFolded(TTI, LU, F)) { 4640 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 4641 Ops.clear(); 4642 Ops.push_back(SE.getUnknown(FullV)); 4643 } 4644 ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)); 4645 if (F.Scale != 1) 4646 ScaledS = 4647 SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale)); 4648 Ops.push_back(ScaledS); 4649 } 4650 } 4651 4652 // Expand the GV portion. 4653 if (F.BaseGV) { 4654 // Flush the operand list to suppress SCEVExpander hoisting. 4655 if (!Ops.empty()) { 4656 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 4657 Ops.clear(); 4658 Ops.push_back(SE.getUnknown(FullV)); 4659 } 4660 Ops.push_back(SE.getUnknown(F.BaseGV)); 4661 } 4662 4663 // Flush the operand list to suppress SCEVExpander hoisting of both folded and 4664 // unfolded offsets. LSR assumes they both live next to their uses. 4665 if (!Ops.empty()) { 4666 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 4667 Ops.clear(); 4668 Ops.push_back(SE.getUnknown(FullV)); 4669 } 4670 4671 // Expand the immediate portion. 4672 int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset; 4673 if (Offset != 0) { 4674 if (LU.Kind == LSRUse::ICmpZero) { 4675 // The other interesting way of "folding" with an ICmpZero is to use a 4676 // negated immediate. 4677 if (!ICmpScaledV) 4678 ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset); 4679 else { 4680 Ops.push_back(SE.getUnknown(ICmpScaledV)); 4681 ICmpScaledV = ConstantInt::get(IntTy, Offset); 4682 } 4683 } else { 4684 // Just add the immediate values. These again are expected to be matched 4685 // as part of the address. 4686 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset))); 4687 } 4688 } 4689 4690 // Expand the unfolded offset portion. 4691 int64_t UnfoldedOffset = F.UnfoldedOffset; 4692 if (UnfoldedOffset != 0) { 4693 // Just add the immediate values. 4694 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, 4695 UnfoldedOffset))); 4696 } 4697 4698 // Emit instructions summing all the operands. 4699 const SCEV *FullS = Ops.empty() ? 4700 SE.getConstant(IntTy, 0) : 4701 SE.getAddExpr(Ops); 4702 Value *FullV = Rewriter.expandCodeFor(FullS, Ty); 4703 4704 // We're done expanding now, so reset the rewriter. 4705 Rewriter.clearPostInc(); 4706 4707 // An ICmpZero Formula represents an ICmp which we're handling as a 4708 // comparison against zero. Now that we've expanded an expression for that 4709 // form, update the ICmp's other operand. 4710 if (LU.Kind == LSRUse::ICmpZero) { 4711 ICmpInst *CI = cast<ICmpInst>(LF.UserInst); 4712 DeadInsts.emplace_back(CI->getOperand(1)); 4713 assert(!F.BaseGV && "ICmp does not support folding a global value and " 4714 "a scale at the same time!"); 4715 if (F.Scale == -1) { 4716 if (ICmpScaledV->getType() != OpTy) { 4717 Instruction *Cast = 4718 CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false, 4719 OpTy, false), 4720 ICmpScaledV, OpTy, "tmp", CI); 4721 ICmpScaledV = Cast; 4722 } 4723 CI->setOperand(1, ICmpScaledV); 4724 } else { 4725 // A scale of 1 means that the scale has been expanded as part of the 4726 // base regs. 4727 assert((F.Scale == 0 || F.Scale == 1) && 4728 "ICmp does not support folding a global value and " 4729 "a scale at the same time!"); 4730 Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy), 4731 -(uint64_t)Offset); 4732 if (C->getType() != OpTy) 4733 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 4734 OpTy, false), 4735 C, OpTy); 4736 4737 CI->setOperand(1, C); 4738 } 4739 } 4740 4741 return FullV; 4742 } 4743 4744 /// Helper for Rewrite. PHI nodes are special because the use of their operands 4745 /// effectively happens in their predecessor blocks, so the expression may need 4746 /// to be expanded in multiple places. 4747 void LSRInstance::RewriteForPHI(PHINode *PN, 4748 const LSRUse &LU, 4749 const LSRFixup &LF, 4750 const Formula &F, 4751 SCEVExpander &Rewriter, 4752 SmallVectorImpl<WeakVH> &DeadInsts) const { 4753 DenseMap<BasicBlock *, Value *> Inserted; 4754 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 4755 if (PN->getIncomingValue(i) == LF.OperandValToReplace) { 4756 BasicBlock *BB = PN->getIncomingBlock(i); 4757 4758 // If this is a critical edge, split the edge so that we do not insert 4759 // the code on all predecessor/successor paths. We do this unless this 4760 // is the canonical backedge for this loop, which complicates post-inc 4761 // users. 4762 if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 && 4763 !isa<IndirectBrInst>(BB->getTerminator()) && 4764 !isa<CatchSwitchInst>(BB->getTerminator())) { 4765 BasicBlock *Parent = PN->getParent(); 4766 Loop *PNLoop = LI.getLoopFor(Parent); 4767 if (!PNLoop || Parent != PNLoop->getHeader()) { 4768 // Split the critical edge. 4769 BasicBlock *NewBB = nullptr; 4770 if (!Parent->isLandingPad()) { 4771 NewBB = SplitCriticalEdge(BB, Parent, 4772 CriticalEdgeSplittingOptions(&DT, &LI) 4773 .setMergeIdenticalEdges() 4774 .setDontDeleteUselessPHIs()); 4775 } else { 4776 SmallVector<BasicBlock*, 2> NewBBs; 4777 SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI); 4778 NewBB = NewBBs[0]; 4779 } 4780 // If NewBB==NULL, then SplitCriticalEdge refused to split because all 4781 // phi predecessors are identical. The simple thing to do is skip 4782 // splitting in this case rather than complicate the API. 4783 if (NewBB) { 4784 // If PN is outside of the loop and BB is in the loop, we want to 4785 // move the block to be immediately before the PHI block, not 4786 // immediately after BB. 4787 if (L->contains(BB) && !L->contains(PN)) 4788 NewBB->moveBefore(PN->getParent()); 4789 4790 // Splitting the edge can reduce the number of PHI entries we have. 4791 e = PN->getNumIncomingValues(); 4792 BB = NewBB; 4793 i = PN->getBasicBlockIndex(BB); 4794 } 4795 } 4796 } 4797 4798 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair = 4799 Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr))); 4800 if (!Pair.second) 4801 PN->setIncomingValue(i, Pair.first->second); 4802 else { 4803 Value *FullV = Expand(LU, LF, F, BB->getTerminator()->getIterator(), 4804 Rewriter, DeadInsts); 4805 4806 // If this is reuse-by-noop-cast, insert the noop cast. 4807 Type *OpTy = LF.OperandValToReplace->getType(); 4808 if (FullV->getType() != OpTy) 4809 FullV = 4810 CastInst::Create(CastInst::getCastOpcode(FullV, false, 4811 OpTy, false), 4812 FullV, LF.OperandValToReplace->getType(), 4813 "tmp", BB->getTerminator()); 4814 4815 PN->setIncomingValue(i, FullV); 4816 Pair.first->second = FullV; 4817 } 4818 } 4819 } 4820 4821 /// Emit instructions for the leading candidate expression for this LSRUse (this 4822 /// is called "expanding"), and update the UserInst to reference the newly 4823 /// expanded value. 4824 void LSRInstance::Rewrite(const LSRUse &LU, 4825 const LSRFixup &LF, 4826 const Formula &F, 4827 SCEVExpander &Rewriter, 4828 SmallVectorImpl<WeakVH> &DeadInsts) const { 4829 // First, find an insertion point that dominates UserInst. For PHI nodes, 4830 // find the nearest block which dominates all the relevant uses. 4831 if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) { 4832 RewriteForPHI(PN, LU, LF, F, Rewriter, DeadInsts); 4833 } else { 4834 Value *FullV = 4835 Expand(LU, LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts); 4836 4837 // If this is reuse-by-noop-cast, insert the noop cast. 4838 Type *OpTy = LF.OperandValToReplace->getType(); 4839 if (FullV->getType() != OpTy) { 4840 Instruction *Cast = 4841 CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false), 4842 FullV, OpTy, "tmp", LF.UserInst); 4843 FullV = Cast; 4844 } 4845 4846 // Update the user. ICmpZero is handled specially here (for now) because 4847 // Expand may have updated one of the operands of the icmp already, and 4848 // its new value may happen to be equal to LF.OperandValToReplace, in 4849 // which case doing replaceUsesOfWith leads to replacing both operands 4850 // with the same value. TODO: Reorganize this. 4851 if (LU.Kind == LSRUse::ICmpZero) 4852 LF.UserInst->setOperand(0, FullV); 4853 else 4854 LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV); 4855 } 4856 4857 DeadInsts.emplace_back(LF.OperandValToReplace); 4858 } 4859 4860 /// Rewrite all the fixup locations with new values, following the chosen 4861 /// solution. 4862 void LSRInstance::ImplementSolution( 4863 const SmallVectorImpl<const Formula *> &Solution) { 4864 // Keep track of instructions we may have made dead, so that 4865 // we can remove them after we are done working. 4866 SmallVector<WeakVH, 16> DeadInsts; 4867 4868 SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(), 4869 "lsr"); 4870 #ifndef NDEBUG 4871 Rewriter.setDebugType(DEBUG_TYPE); 4872 #endif 4873 Rewriter.disableCanonicalMode(); 4874 Rewriter.enableLSRMode(); 4875 Rewriter.setIVIncInsertPos(L, IVIncInsertPos); 4876 4877 // Mark phi nodes that terminate chains so the expander tries to reuse them. 4878 for (const IVChain &Chain : IVChainVec) { 4879 if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst())) 4880 Rewriter.setChainedPhi(PN); 4881 } 4882 4883 // Expand the new value definitions and update the users. 4884 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) 4885 for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) { 4886 Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], Rewriter, DeadInsts); 4887 Changed = true; 4888 } 4889 4890 for (const IVChain &Chain : IVChainVec) { 4891 GenerateIVChain(Chain, Rewriter, DeadInsts); 4892 Changed = true; 4893 } 4894 // Clean up after ourselves. This must be done before deleting any 4895 // instructions. 4896 Rewriter.clear(); 4897 4898 Changed |= DeleteTriviallyDeadInstructions(DeadInsts); 4899 } 4900 4901 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, 4902 DominatorTree &DT, LoopInfo &LI, 4903 const TargetTransformInfo &TTI) 4904 : IU(IU), SE(SE), DT(DT), LI(LI), TTI(TTI), L(L), Changed(false), 4905 IVIncInsertPos(nullptr) { 4906 // If LoopSimplify form is not available, stay out of trouble. 4907 if (!L->isLoopSimplifyForm()) 4908 return; 4909 4910 // If there's no interesting work to be done, bail early. 4911 if (IU.empty()) return; 4912 4913 // If there's too much analysis to be done, bail early. We won't be able to 4914 // model the problem anyway. 4915 unsigned NumUsers = 0; 4916 for (const IVStrideUse &U : IU) { 4917 if (++NumUsers > MaxIVUsers) { 4918 (void)U; 4919 DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U << "\n"); 4920 return; 4921 } 4922 // Bail out if we have a PHI on an EHPad that gets a value from a 4923 // CatchSwitchInst. Because the CatchSwitchInst cannot be split, there is 4924 // no good place to stick any instructions. 4925 if (auto *PN = dyn_cast<PHINode>(U.getUser())) { 4926 auto *FirstNonPHI = PN->getParent()->getFirstNonPHI(); 4927 if (isa<FuncletPadInst>(FirstNonPHI) || 4928 isa<CatchSwitchInst>(FirstNonPHI)) 4929 for (BasicBlock *PredBB : PN->blocks()) 4930 if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI())) 4931 return; 4932 } 4933 } 4934 4935 #ifndef NDEBUG 4936 // All dominating loops must have preheaders, or SCEVExpander may not be able 4937 // to materialize an AddRecExpr whose Start is an outer AddRecExpr. 4938 // 4939 // IVUsers analysis should only create users that are dominated by simple loop 4940 // headers. Since this loop should dominate all of its users, its user list 4941 // should be empty if this loop itself is not within a simple loop nest. 4942 for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader()); 4943 Rung; Rung = Rung->getIDom()) { 4944 BasicBlock *BB = Rung->getBlock(); 4945 const Loop *DomLoop = LI.getLoopFor(BB); 4946 if (DomLoop && DomLoop->getHeader() == BB) { 4947 assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest"); 4948 } 4949 } 4950 #endif // DEBUG 4951 4952 DEBUG(dbgs() << "\nLSR on loop "; 4953 L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false); 4954 dbgs() << ":\n"); 4955 4956 // First, perform some low-level loop optimizations. 4957 OptimizeShadowIV(); 4958 OptimizeLoopTermCond(); 4959 4960 // If loop preparation eliminates all interesting IV users, bail. 4961 if (IU.empty()) return; 4962 4963 // Skip nested loops until we can model them better with formulae. 4964 if (!L->empty()) { 4965 DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n"); 4966 return; 4967 } 4968 4969 // Start collecting data and preparing for the solver. 4970 CollectChains(); 4971 CollectInterestingTypesAndFactors(); 4972 CollectFixupsAndInitialFormulae(); 4973 CollectLoopInvariantFixupsAndFormulae(); 4974 4975 assert(!Uses.empty() && "IVUsers reported at least one use"); 4976 DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n"; 4977 print_uses(dbgs())); 4978 4979 // Now use the reuse data to generate a bunch of interesting ways 4980 // to formulate the values needed for the uses. 4981 GenerateAllReuseFormulae(); 4982 4983 FilterOutUndesirableDedicatedRegisters(); 4984 NarrowSearchSpaceUsingHeuristics(); 4985 4986 SmallVector<const Formula *, 8> Solution; 4987 Solve(Solution); 4988 4989 // Release memory that is no longer needed. 4990 Factors.clear(); 4991 Types.clear(); 4992 RegUses.clear(); 4993 4994 if (Solution.empty()) 4995 return; 4996 4997 #ifndef NDEBUG 4998 // Formulae should be legal. 4999 for (const LSRUse &LU : Uses) { 5000 for (const Formula &F : LU.Formulae) 5001 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 5002 F) && "Illegal formula generated!"); 5003 }; 5004 #endif 5005 5006 // Now that we've decided what we want, make it so. 5007 ImplementSolution(Solution); 5008 } 5009 5010 void LSRInstance::print_factors_and_types(raw_ostream &OS) const { 5011 if (Factors.empty() && Types.empty()) return; 5012 5013 OS << "LSR has identified the following interesting factors and types: "; 5014 bool First = true; 5015 5016 for (int64_t Factor : Factors) { 5017 if (!First) OS << ", "; 5018 First = false; 5019 OS << '*' << Factor; 5020 } 5021 5022 for (Type *Ty : Types) { 5023 if (!First) OS << ", "; 5024 First = false; 5025 OS << '(' << *Ty << ')'; 5026 } 5027 OS << '\n'; 5028 } 5029 5030 void LSRInstance::print_fixups(raw_ostream &OS) const { 5031 OS << "LSR is examining the following fixup sites:\n"; 5032 for (const LSRUse &LU : Uses) 5033 for (const LSRFixup &LF : LU.Fixups) { 5034 dbgs() << " "; 5035 LF.print(OS); 5036 OS << '\n'; 5037 } 5038 } 5039 5040 void LSRInstance::print_uses(raw_ostream &OS) const { 5041 OS << "LSR is examining the following uses:\n"; 5042 for (const LSRUse &LU : Uses) { 5043 dbgs() << " "; 5044 LU.print(OS); 5045 OS << '\n'; 5046 for (const Formula &F : LU.Formulae) { 5047 OS << " "; 5048 F.print(OS); 5049 OS << '\n'; 5050 } 5051 } 5052 } 5053 5054 void LSRInstance::print(raw_ostream &OS) const { 5055 print_factors_and_types(OS); 5056 print_fixups(OS); 5057 print_uses(OS); 5058 } 5059 5060 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 5061 LLVM_DUMP_METHOD void LSRInstance::dump() const { 5062 print(errs()); errs() << '\n'; 5063 } 5064 #endif 5065 5066 namespace { 5067 5068 class LoopStrengthReduce : public LoopPass { 5069 public: 5070 static char ID; // Pass ID, replacement for typeid 5071 5072 LoopStrengthReduce(); 5073 5074 private: 5075 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 5076 void getAnalysisUsage(AnalysisUsage &AU) const override; 5077 }; 5078 5079 } // end anonymous namespace 5080 5081 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) { 5082 initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry()); 5083 } 5084 5085 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const { 5086 // We split critical edges, so we change the CFG. However, we do update 5087 // many analyses if they are around. 5088 AU.addPreservedID(LoopSimplifyID); 5089 5090 AU.addRequired<LoopInfoWrapperPass>(); 5091 AU.addPreserved<LoopInfoWrapperPass>(); 5092 AU.addRequiredID(LoopSimplifyID); 5093 AU.addRequired<DominatorTreeWrapperPass>(); 5094 AU.addPreserved<DominatorTreeWrapperPass>(); 5095 AU.addRequired<ScalarEvolutionWrapperPass>(); 5096 AU.addPreserved<ScalarEvolutionWrapperPass>(); 5097 // Requiring LoopSimplify a second time here prevents IVUsers from running 5098 // twice, since LoopSimplify was invalidated by running ScalarEvolution. 5099 AU.addRequiredID(LoopSimplifyID); 5100 AU.addRequired<IVUsersWrapperPass>(); 5101 AU.addPreserved<IVUsersWrapperPass>(); 5102 AU.addRequired<TargetTransformInfoWrapperPass>(); 5103 } 5104 5105 static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE, 5106 DominatorTree &DT, LoopInfo &LI, 5107 const TargetTransformInfo &TTI) { 5108 bool Changed = false; 5109 5110 // Run the main LSR transformation. 5111 Changed |= LSRInstance(L, IU, SE, DT, LI, TTI).getChanged(); 5112 5113 // Remove any extra phis created by processing inner loops. 5114 Changed |= DeleteDeadPHIs(L->getHeader()); 5115 if (EnablePhiElim && L->isLoopSimplifyForm()) { 5116 SmallVector<WeakVH, 16> DeadInsts; 5117 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 5118 SCEVExpander Rewriter(SE, DL, "lsr"); 5119 #ifndef NDEBUG 5120 Rewriter.setDebugType(DEBUG_TYPE); 5121 #endif 5122 unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI); 5123 if (numFolded) { 5124 Changed = true; 5125 DeleteTriviallyDeadInstructions(DeadInsts); 5126 DeleteDeadPHIs(L->getHeader()); 5127 } 5128 } 5129 return Changed; 5130 } 5131 5132 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) { 5133 if (skipLoop(L)) 5134 return false; 5135 5136 auto &IU = getAnalysis<IVUsersWrapperPass>().getIU(); 5137 auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 5138 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 5139 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 5140 const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI( 5141 *L->getHeader()->getParent()); 5142 return ReduceLoopStrength(L, IU, SE, DT, LI, TTI); 5143 } 5144 5145 PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM, 5146 LoopStandardAnalysisResults &AR, 5147 LPMUpdater &) { 5148 if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE, 5149 AR.DT, AR.LI, AR.TTI)) 5150 return PreservedAnalyses::all(); 5151 5152 return getLoopPassPreservedAnalyses(); 5153 } 5154 5155 char LoopStrengthReduce::ID = 0; 5156 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce", 5157 "Loop Strength Reduction", false, false) 5158 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 5159 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 5160 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 5161 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass) 5162 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 5163 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 5164 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce", 5165 "Loop Strength Reduction", false, false) 5166 5167 Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); } 5168