1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This transformation analyzes and transforms the induction variables (and 11 // computations derived from them) into forms suitable for efficient execution 12 // on the target. 13 // 14 // This pass performs a strength reduction on array references inside loops that 15 // have as one or more of their components the loop induction variable, it 16 // rewrites expressions to take advantage of scaled-index addressing modes 17 // available on the target, and it performs a variety of other optimizations 18 // related to loop induction variables. 19 // 20 // Terminology note: this code has a lot of handling for "post-increment" or 21 // "post-inc" users. This is not talking about post-increment addressing modes; 22 // it is instead talking about code like this: 23 // 24 // %i = phi [ 0, %entry ], [ %i.next, %latch ] 25 // ... 26 // %i.next = add %i, 1 27 // %c = icmp eq %i.next, %n 28 // 29 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however 30 // it's useful to think about these as the same register, with some uses using 31 // the value of the register before the add and some using // it after. In this 32 // example, the icmp is a post-increment user, since it uses %i.next, which is 33 // the value of the induction variable after the increment. The other common 34 // case of post-increment users is users outside the loop. 35 // 36 // TODO: More sophistication in the way Formulae are generated and filtered. 37 // 38 // TODO: Handle multiple loops at a time. 39 // 40 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead 41 // of a GlobalValue? 42 // 43 // TODO: When truncation is free, truncate ICmp users' operands to make it a 44 // smaller encoding (on x86 at least). 45 // 46 // TODO: When a negated register is used by an add (such as in a list of 47 // multiple base registers, or as the increment expression in an addrec), 48 // we may not actually need both reg and (-1 * reg) in registers; the 49 // negation can be implemented by using a sub instead of an add. The 50 // lack of support for taking this into consideration when making 51 // register pressure decisions is partly worked around by the "Special" 52 // use kind. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #define DEBUG_TYPE "loop-reduce" 57 #include "llvm/Transforms/Scalar.h" 58 #include "llvm/ADT/DenseSet.h" 59 #include "llvm/ADT/STLExtras.h" 60 #include "llvm/ADT/SetVector.h" 61 #include "llvm/ADT/SmallBitVector.h" 62 #include "llvm/Analysis/IVUsers.h" 63 #include "llvm/Analysis/LoopPass.h" 64 #include "llvm/Analysis/ScalarEvolutionExpander.h" 65 #include "llvm/Analysis/TargetTransformInfo.h" 66 #include "llvm/IR/Constants.h" 67 #include "llvm/IR/DerivedTypes.h" 68 #include "llvm/IR/Dominators.h" 69 #include "llvm/IR/Instructions.h" 70 #include "llvm/IR/IntrinsicInst.h" 71 #include "llvm/Support/CommandLine.h" 72 #include "llvm/Support/Debug.h" 73 #include "llvm/Support/ValueHandle.h" 74 #include "llvm/Support/raw_ostream.h" 75 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 76 #include "llvm/Transforms/Utils/Local.h" 77 #include <algorithm> 78 using namespace llvm; 79 80 /// MaxIVUsers is an arbitrary threshold that provides an early opportunitiy for 81 /// bail out. This threshold is far beyond the number of users that LSR can 82 /// conceivably solve, so it should not affect generated code, but catches the 83 /// worst cases before LSR burns too much compile time and stack space. 84 static const unsigned MaxIVUsers = 200; 85 86 // Temporary flag to cleanup congruent phis after LSR phi expansion. 87 // It's currently disabled until we can determine whether it's truly useful or 88 // not. The flag should be removed after the v3.0 release. 89 // This is now needed for ivchains. 90 static cl::opt<bool> EnablePhiElim( 91 "enable-lsr-phielim", cl::Hidden, cl::init(true), 92 cl::desc("Enable LSR phi elimination")); 93 94 #ifndef NDEBUG 95 // Stress test IV chain generation. 96 static cl::opt<bool> StressIVChain( 97 "stress-ivchain", cl::Hidden, cl::init(false), 98 cl::desc("Stress test LSR IV chains")); 99 #else 100 static bool StressIVChain = false; 101 #endif 102 103 namespace { 104 105 /// RegSortData - This class holds data which is used to order reuse candidates. 106 class RegSortData { 107 public: 108 /// UsedByIndices - This represents the set of LSRUse indices which reference 109 /// a particular register. 110 SmallBitVector UsedByIndices; 111 112 RegSortData() {} 113 114 void print(raw_ostream &OS) const; 115 void dump() const; 116 }; 117 118 } 119 120 void RegSortData::print(raw_ostream &OS) const { 121 OS << "[NumUses=" << UsedByIndices.count() << ']'; 122 } 123 124 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 125 void RegSortData::dump() const { 126 print(errs()); errs() << '\n'; 127 } 128 #endif 129 130 namespace { 131 132 /// RegUseTracker - Map register candidates to information about how they are 133 /// used. 134 class RegUseTracker { 135 typedef DenseMap<const SCEV *, RegSortData> RegUsesTy; 136 137 RegUsesTy RegUsesMap; 138 SmallVector<const SCEV *, 16> RegSequence; 139 140 public: 141 void CountRegister(const SCEV *Reg, size_t LUIdx); 142 void DropRegister(const SCEV *Reg, size_t LUIdx); 143 void SwapAndDropUse(size_t LUIdx, size_t LastLUIdx); 144 145 bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const; 146 147 const SmallBitVector &getUsedByIndices(const SCEV *Reg) const; 148 149 void clear(); 150 151 typedef SmallVectorImpl<const SCEV *>::iterator iterator; 152 typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator; 153 iterator begin() { return RegSequence.begin(); } 154 iterator end() { return RegSequence.end(); } 155 const_iterator begin() const { return RegSequence.begin(); } 156 const_iterator end() const { return RegSequence.end(); } 157 }; 158 159 } 160 161 void 162 RegUseTracker::CountRegister(const SCEV *Reg, size_t LUIdx) { 163 std::pair<RegUsesTy::iterator, bool> Pair = 164 RegUsesMap.insert(std::make_pair(Reg, RegSortData())); 165 RegSortData &RSD = Pair.first->second; 166 if (Pair.second) 167 RegSequence.push_back(Reg); 168 RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1)); 169 RSD.UsedByIndices.set(LUIdx); 170 } 171 172 void 173 RegUseTracker::DropRegister(const SCEV *Reg, size_t LUIdx) { 174 RegUsesTy::iterator It = RegUsesMap.find(Reg); 175 assert(It != RegUsesMap.end()); 176 RegSortData &RSD = It->second; 177 assert(RSD.UsedByIndices.size() > LUIdx); 178 RSD.UsedByIndices.reset(LUIdx); 179 } 180 181 void 182 RegUseTracker::SwapAndDropUse(size_t LUIdx, size_t LastLUIdx) { 183 assert(LUIdx <= LastLUIdx); 184 185 // Update RegUses. The data structure is not optimized for this purpose; 186 // we must iterate through it and update each of the bit vectors. 187 for (RegUsesTy::iterator I = RegUsesMap.begin(), E = RegUsesMap.end(); 188 I != E; ++I) { 189 SmallBitVector &UsedByIndices = I->second.UsedByIndices; 190 if (LUIdx < UsedByIndices.size()) 191 UsedByIndices[LUIdx] = 192 LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : 0; 193 UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx)); 194 } 195 } 196 197 bool 198 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const { 199 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 200 if (I == RegUsesMap.end()) 201 return false; 202 const SmallBitVector &UsedByIndices = I->second.UsedByIndices; 203 int i = UsedByIndices.find_first(); 204 if (i == -1) return false; 205 if ((size_t)i != LUIdx) return true; 206 return UsedByIndices.find_next(i) != -1; 207 } 208 209 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const { 210 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 211 assert(I != RegUsesMap.end() && "Unknown register!"); 212 return I->second.UsedByIndices; 213 } 214 215 void RegUseTracker::clear() { 216 RegUsesMap.clear(); 217 RegSequence.clear(); 218 } 219 220 namespace { 221 222 /// Formula - This class holds information that describes a formula for 223 /// computing satisfying a use. It may include broken-out immediates and scaled 224 /// registers. 225 struct Formula { 226 /// Global base address used for complex addressing. 227 GlobalValue *BaseGV; 228 229 /// Base offset for complex addressing. 230 int64_t BaseOffset; 231 232 /// Whether any complex addressing has a base register. 233 bool HasBaseReg; 234 235 /// The scale of any complex addressing. 236 int64_t Scale; 237 238 /// BaseRegs - The list of "base" registers for this use. When this is 239 /// non-empty, 240 SmallVector<const SCEV *, 4> BaseRegs; 241 242 /// ScaledReg - The 'scaled' register for this use. This should be non-null 243 /// when Scale is not zero. 244 const SCEV *ScaledReg; 245 246 /// UnfoldedOffset - An additional constant offset which added near the 247 /// use. This requires a temporary register, but the offset itself can 248 /// live in an add immediate field rather than a register. 249 int64_t UnfoldedOffset; 250 251 Formula() 252 : BaseGV(0), BaseOffset(0), HasBaseReg(false), Scale(0), ScaledReg(0), 253 UnfoldedOffset(0) {} 254 255 void InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE); 256 257 unsigned getNumRegs() const; 258 Type *getType() const; 259 260 void DeleteBaseReg(const SCEV *&S); 261 262 bool referencesReg(const SCEV *S) const; 263 bool hasRegsUsedByUsesOtherThan(size_t LUIdx, 264 const RegUseTracker &RegUses) const; 265 266 void print(raw_ostream &OS) const; 267 void dump() const; 268 }; 269 270 } 271 272 /// DoInitialMatch - Recursion helper for InitialMatch. 273 static void DoInitialMatch(const SCEV *S, Loop *L, 274 SmallVectorImpl<const SCEV *> &Good, 275 SmallVectorImpl<const SCEV *> &Bad, 276 ScalarEvolution &SE) { 277 // Collect expressions which properly dominate the loop header. 278 if (SE.properlyDominates(S, L->getHeader())) { 279 Good.push_back(S); 280 return; 281 } 282 283 // Look at add operands. 284 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 285 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); 286 I != E; ++I) 287 DoInitialMatch(*I, L, Good, Bad, SE); 288 return; 289 } 290 291 // Look at addrec operands. 292 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 293 if (!AR->getStart()->isZero()) { 294 DoInitialMatch(AR->getStart(), L, Good, Bad, SE); 295 DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0), 296 AR->getStepRecurrence(SE), 297 // FIXME: AR->getNoWrapFlags() 298 AR->getLoop(), SCEV::FlagAnyWrap), 299 L, Good, Bad, SE); 300 return; 301 } 302 303 // Handle a multiplication by -1 (negation) if it didn't fold. 304 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) 305 if (Mul->getOperand(0)->isAllOnesValue()) { 306 SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end()); 307 const SCEV *NewMul = SE.getMulExpr(Ops); 308 309 SmallVector<const SCEV *, 4> MyGood; 310 SmallVector<const SCEV *, 4> MyBad; 311 DoInitialMatch(NewMul, L, MyGood, MyBad, SE); 312 const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue( 313 SE.getEffectiveSCEVType(NewMul->getType()))); 314 for (SmallVectorImpl<const SCEV *>::const_iterator I = MyGood.begin(), 315 E = MyGood.end(); I != E; ++I) 316 Good.push_back(SE.getMulExpr(NegOne, *I)); 317 for (SmallVectorImpl<const SCEV *>::const_iterator I = MyBad.begin(), 318 E = MyBad.end(); I != E; ++I) 319 Bad.push_back(SE.getMulExpr(NegOne, *I)); 320 return; 321 } 322 323 // Ok, we can't do anything interesting. Just stuff the whole thing into a 324 // register and hope for the best. 325 Bad.push_back(S); 326 } 327 328 /// InitialMatch - Incorporate loop-variant parts of S into this Formula, 329 /// attempting to keep all loop-invariant and loop-computable values in a 330 /// single base register. 331 void Formula::InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) { 332 SmallVector<const SCEV *, 4> Good; 333 SmallVector<const SCEV *, 4> Bad; 334 DoInitialMatch(S, L, Good, Bad, SE); 335 if (!Good.empty()) { 336 const SCEV *Sum = SE.getAddExpr(Good); 337 if (!Sum->isZero()) 338 BaseRegs.push_back(Sum); 339 HasBaseReg = true; 340 } 341 if (!Bad.empty()) { 342 const SCEV *Sum = SE.getAddExpr(Bad); 343 if (!Sum->isZero()) 344 BaseRegs.push_back(Sum); 345 HasBaseReg = true; 346 } 347 } 348 349 /// getNumRegs - Return the total number of register operands used by this 350 /// formula. This does not include register uses implied by non-constant 351 /// addrec strides. 352 unsigned Formula::getNumRegs() const { 353 return !!ScaledReg + BaseRegs.size(); 354 } 355 356 /// getType - Return the type of this formula, if it has one, or null 357 /// otherwise. This type is meaningless except for the bit size. 358 Type *Formula::getType() const { 359 return !BaseRegs.empty() ? BaseRegs.front()->getType() : 360 ScaledReg ? ScaledReg->getType() : 361 BaseGV ? BaseGV->getType() : 362 0; 363 } 364 365 /// DeleteBaseReg - Delete the given base reg from the BaseRegs list. 366 void Formula::DeleteBaseReg(const SCEV *&S) { 367 if (&S != &BaseRegs.back()) 368 std::swap(S, BaseRegs.back()); 369 BaseRegs.pop_back(); 370 } 371 372 /// referencesReg - Test if this formula references the given register. 373 bool Formula::referencesReg(const SCEV *S) const { 374 return S == ScaledReg || 375 std::find(BaseRegs.begin(), BaseRegs.end(), S) != BaseRegs.end(); 376 } 377 378 /// hasRegsUsedByUsesOtherThan - Test whether this formula uses registers 379 /// which are used by uses other than the use with the given index. 380 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx, 381 const RegUseTracker &RegUses) const { 382 if (ScaledReg) 383 if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx)) 384 return true; 385 for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(), 386 E = BaseRegs.end(); I != E; ++I) 387 if (RegUses.isRegUsedByUsesOtherThan(*I, LUIdx)) 388 return true; 389 return false; 390 } 391 392 void Formula::print(raw_ostream &OS) const { 393 bool First = true; 394 if (BaseGV) { 395 if (!First) OS << " + "; else First = false; 396 BaseGV->printAsOperand(OS, /*PrintType=*/false); 397 } 398 if (BaseOffset != 0) { 399 if (!First) OS << " + "; else First = false; 400 OS << BaseOffset; 401 } 402 for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(), 403 E = BaseRegs.end(); I != E; ++I) { 404 if (!First) OS << " + "; else First = false; 405 OS << "reg(" << **I << ')'; 406 } 407 if (HasBaseReg && BaseRegs.empty()) { 408 if (!First) OS << " + "; else First = false; 409 OS << "**error: HasBaseReg**"; 410 } else if (!HasBaseReg && !BaseRegs.empty()) { 411 if (!First) OS << " + "; else First = false; 412 OS << "**error: !HasBaseReg**"; 413 } 414 if (Scale != 0) { 415 if (!First) OS << " + "; else First = false; 416 OS << Scale << "*reg("; 417 if (ScaledReg) 418 OS << *ScaledReg; 419 else 420 OS << "<unknown>"; 421 OS << ')'; 422 } 423 if (UnfoldedOffset != 0) { 424 if (!First) OS << " + "; else First = false; 425 OS << "imm(" << UnfoldedOffset << ')'; 426 } 427 } 428 429 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 430 void Formula::dump() const { 431 print(errs()); errs() << '\n'; 432 } 433 #endif 434 435 /// isAddRecSExtable - Return true if the given addrec can be sign-extended 436 /// without changing its value. 437 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 438 Type *WideTy = 439 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1); 440 return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy)); 441 } 442 443 /// isAddSExtable - Return true if the given add can be sign-extended 444 /// without changing its value. 445 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) { 446 Type *WideTy = 447 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1); 448 return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy)); 449 } 450 451 /// isMulSExtable - Return true if the given mul can be sign-extended 452 /// without changing its value. 453 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) { 454 Type *WideTy = 455 IntegerType::get(SE.getContext(), 456 SE.getTypeSizeInBits(M->getType()) * M->getNumOperands()); 457 return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy)); 458 } 459 460 /// getExactSDiv - Return an expression for LHS /s RHS, if it can be determined 461 /// and if the remainder is known to be zero, or null otherwise. If 462 /// IgnoreSignificantBits is true, expressions like (X * Y) /s Y are simplified 463 /// to Y, ignoring that the multiplication may overflow, which is useful when 464 /// the result will be used in a context where the most significant bits are 465 /// ignored. 466 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS, 467 ScalarEvolution &SE, 468 bool IgnoreSignificantBits = false) { 469 // Handle the trivial case, which works for any SCEV type. 470 if (LHS == RHS) 471 return SE.getConstant(LHS->getType(), 1); 472 473 // Handle a few RHS special cases. 474 const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS); 475 if (RC) { 476 const APInt &RA = RC->getValue()->getValue(); 477 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do 478 // some folding. 479 if (RA.isAllOnesValue()) 480 return SE.getMulExpr(LHS, RC); 481 // Handle x /s 1 as x. 482 if (RA == 1) 483 return LHS; 484 } 485 486 // Check for a division of a constant by a constant. 487 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) { 488 if (!RC) 489 return 0; 490 const APInt &LA = C->getValue()->getValue(); 491 const APInt &RA = RC->getValue()->getValue(); 492 if (LA.srem(RA) != 0) 493 return 0; 494 return SE.getConstant(LA.sdiv(RA)); 495 } 496 497 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow. 498 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) { 499 if (IgnoreSignificantBits || isAddRecSExtable(AR, SE)) { 500 const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE, 501 IgnoreSignificantBits); 502 if (!Step) return 0; 503 const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE, 504 IgnoreSignificantBits); 505 if (!Start) return 0; 506 // FlagNW is independent of the start value, step direction, and is 507 // preserved with smaller magnitude steps. 508 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 509 return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap); 510 } 511 return 0; 512 } 513 514 // Distribute the sdiv over add operands, if the add doesn't overflow. 515 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) { 516 if (IgnoreSignificantBits || isAddSExtable(Add, SE)) { 517 SmallVector<const SCEV *, 8> Ops; 518 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); 519 I != E; ++I) { 520 const SCEV *Op = getExactSDiv(*I, RHS, SE, 521 IgnoreSignificantBits); 522 if (!Op) return 0; 523 Ops.push_back(Op); 524 } 525 return SE.getAddExpr(Ops); 526 } 527 return 0; 528 } 529 530 // Check for a multiply operand that we can pull RHS out of. 531 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) { 532 if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) { 533 SmallVector<const SCEV *, 4> Ops; 534 bool Found = false; 535 for (SCEVMulExpr::op_iterator I = Mul->op_begin(), E = Mul->op_end(); 536 I != E; ++I) { 537 const SCEV *S = *I; 538 if (!Found) 539 if (const SCEV *Q = getExactSDiv(S, RHS, SE, 540 IgnoreSignificantBits)) { 541 S = Q; 542 Found = true; 543 } 544 Ops.push_back(S); 545 } 546 return Found ? SE.getMulExpr(Ops) : 0; 547 } 548 return 0; 549 } 550 551 // Otherwise we don't know. 552 return 0; 553 } 554 555 /// ExtractImmediate - If S involves the addition of a constant integer value, 556 /// return that integer value, and mutate S to point to a new SCEV with that 557 /// value excluded. 558 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) { 559 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 560 if (C->getValue()->getValue().getMinSignedBits() <= 64) { 561 S = SE.getConstant(C->getType(), 0); 562 return C->getValue()->getSExtValue(); 563 } 564 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 565 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 566 int64_t Result = ExtractImmediate(NewOps.front(), SE); 567 if (Result != 0) 568 S = SE.getAddExpr(NewOps); 569 return Result; 570 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 571 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 572 int64_t Result = ExtractImmediate(NewOps.front(), SE); 573 if (Result != 0) 574 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 575 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 576 SCEV::FlagAnyWrap); 577 return Result; 578 } 579 return 0; 580 } 581 582 /// ExtractSymbol - If S involves the addition of a GlobalValue address, 583 /// return that symbol, and mutate S to point to a new SCEV with that 584 /// value excluded. 585 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) { 586 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 587 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) { 588 S = SE.getConstant(GV->getType(), 0); 589 return GV; 590 } 591 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 592 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 593 GlobalValue *Result = ExtractSymbol(NewOps.back(), SE); 594 if (Result) 595 S = SE.getAddExpr(NewOps); 596 return Result; 597 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 598 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 599 GlobalValue *Result = ExtractSymbol(NewOps.front(), SE); 600 if (Result) 601 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 602 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 603 SCEV::FlagAnyWrap); 604 return Result; 605 } 606 return 0; 607 } 608 609 /// isAddressUse - Returns true if the specified instruction is using the 610 /// specified value as an address. 611 static bool isAddressUse(Instruction *Inst, Value *OperandVal) { 612 bool isAddress = isa<LoadInst>(Inst); 613 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 614 if (SI->getOperand(1) == OperandVal) 615 isAddress = true; 616 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 617 // Addressing modes can also be folded into prefetches and a variety 618 // of intrinsics. 619 switch (II->getIntrinsicID()) { 620 default: break; 621 case Intrinsic::prefetch: 622 case Intrinsic::x86_sse_storeu_ps: 623 case Intrinsic::x86_sse2_storeu_pd: 624 case Intrinsic::x86_sse2_storeu_dq: 625 case Intrinsic::x86_sse2_storel_dq: 626 if (II->getArgOperand(0) == OperandVal) 627 isAddress = true; 628 break; 629 } 630 } 631 return isAddress; 632 } 633 634 /// getAccessType - Return the type of the memory being accessed. 635 static Type *getAccessType(const Instruction *Inst) { 636 Type *AccessTy = Inst->getType(); 637 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) 638 AccessTy = SI->getOperand(0)->getType(); 639 else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 640 // Addressing modes can also be folded into prefetches and a variety 641 // of intrinsics. 642 switch (II->getIntrinsicID()) { 643 default: break; 644 case Intrinsic::x86_sse_storeu_ps: 645 case Intrinsic::x86_sse2_storeu_pd: 646 case Intrinsic::x86_sse2_storeu_dq: 647 case Intrinsic::x86_sse2_storel_dq: 648 AccessTy = II->getArgOperand(0)->getType(); 649 break; 650 } 651 } 652 653 // All pointers have the same requirements, so canonicalize them to an 654 // arbitrary pointer type to minimize variation. 655 if (PointerType *PTy = dyn_cast<PointerType>(AccessTy)) 656 AccessTy = PointerType::get(IntegerType::get(PTy->getContext(), 1), 657 PTy->getAddressSpace()); 658 659 return AccessTy; 660 } 661 662 /// isExistingPhi - Return true if this AddRec is already a phi in its loop. 663 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 664 for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin(); 665 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 666 if (SE.isSCEVable(PN->getType()) && 667 (SE.getEffectiveSCEVType(PN->getType()) == 668 SE.getEffectiveSCEVType(AR->getType())) && 669 SE.getSCEV(PN) == AR) 670 return true; 671 } 672 return false; 673 } 674 675 /// Check if expanding this expression is likely to incur significant cost. This 676 /// is tricky because SCEV doesn't track which expressions are actually computed 677 /// by the current IR. 678 /// 679 /// We currently allow expansion of IV increments that involve adds, 680 /// multiplication by constants, and AddRecs from existing phis. 681 /// 682 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an 683 /// obvious multiple of the UDivExpr. 684 static bool isHighCostExpansion(const SCEV *S, 685 SmallPtrSet<const SCEV*, 8> &Processed, 686 ScalarEvolution &SE) { 687 // Zero/One operand expressions 688 switch (S->getSCEVType()) { 689 case scUnknown: 690 case scConstant: 691 return false; 692 case scTruncate: 693 return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(), 694 Processed, SE); 695 case scZeroExtend: 696 return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(), 697 Processed, SE); 698 case scSignExtend: 699 return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(), 700 Processed, SE); 701 } 702 703 if (!Processed.insert(S)) 704 return false; 705 706 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 707 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); 708 I != E; ++I) { 709 if (isHighCostExpansion(*I, Processed, SE)) 710 return true; 711 } 712 return false; 713 } 714 715 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 716 if (Mul->getNumOperands() == 2) { 717 // Multiplication by a constant is ok 718 if (isa<SCEVConstant>(Mul->getOperand(0))) 719 return isHighCostExpansion(Mul->getOperand(1), Processed, SE); 720 721 // If we have the value of one operand, check if an existing 722 // multiplication already generates this expression. 723 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) { 724 Value *UVal = U->getValue(); 725 for (Value::use_iterator UI = UVal->use_begin(), UE = UVal->use_end(); 726 UI != UE; ++UI) { 727 // If U is a constant, it may be used by a ConstantExpr. 728 Instruction *User = dyn_cast<Instruction>(*UI); 729 if (User && User->getOpcode() == Instruction::Mul 730 && SE.isSCEVable(User->getType())) { 731 return SE.getSCEV(User) == Mul; 732 } 733 } 734 } 735 } 736 } 737 738 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 739 if (isExistingPhi(AR, SE)) 740 return false; 741 } 742 743 // Fow now, consider any other type of expression (div/mul/min/max) high cost. 744 return true; 745 } 746 747 /// DeleteTriviallyDeadInstructions - If any of the instructions is the 748 /// specified set are trivially dead, delete them and see if this makes any of 749 /// their operands subsequently dead. 750 static bool 751 DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) { 752 bool Changed = false; 753 754 while (!DeadInsts.empty()) { 755 Value *V = DeadInsts.pop_back_val(); 756 Instruction *I = dyn_cast_or_null<Instruction>(V); 757 758 if (I == 0 || !isInstructionTriviallyDead(I)) 759 continue; 760 761 for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) 762 if (Instruction *U = dyn_cast<Instruction>(*OI)) { 763 *OI = 0; 764 if (U->use_empty()) 765 DeadInsts.push_back(U); 766 } 767 768 I->eraseFromParent(); 769 Changed = true; 770 } 771 772 return Changed; 773 } 774 775 namespace { 776 class LSRUse; 777 } 778 // Check if it is legal to fold 2 base registers. 779 static bool isLegal2RegAMUse(const TargetTransformInfo &TTI, const LSRUse &LU, 780 const Formula &F); 781 // Get the cost of the scaling factor used in F for LU. 782 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, 783 const LSRUse &LU, const Formula &F); 784 785 namespace { 786 787 /// Cost - This class is used to measure and compare candidate formulae. 788 class Cost { 789 /// TODO: Some of these could be merged. Also, a lexical ordering 790 /// isn't always optimal. 791 unsigned NumRegs; 792 unsigned AddRecCost; 793 unsigned NumIVMuls; 794 unsigned NumBaseAdds; 795 unsigned ImmCost; 796 unsigned SetupCost; 797 unsigned ScaleCost; 798 799 public: 800 Cost() 801 : NumRegs(0), AddRecCost(0), NumIVMuls(0), NumBaseAdds(0), ImmCost(0), 802 SetupCost(0), ScaleCost(0) {} 803 804 bool operator<(const Cost &Other) const; 805 806 void Loose(); 807 808 #ifndef NDEBUG 809 // Once any of the metrics loses, they must all remain losers. 810 bool isValid() { 811 return ((NumRegs | AddRecCost | NumIVMuls | NumBaseAdds 812 | ImmCost | SetupCost | ScaleCost) != ~0u) 813 || ((NumRegs & AddRecCost & NumIVMuls & NumBaseAdds 814 & ImmCost & SetupCost & ScaleCost) == ~0u); 815 } 816 #endif 817 818 bool isLoser() { 819 assert(isValid() && "invalid cost"); 820 return NumRegs == ~0u; 821 } 822 823 void RateFormula(const TargetTransformInfo &TTI, 824 const Formula &F, 825 SmallPtrSet<const SCEV *, 16> &Regs, 826 const DenseSet<const SCEV *> &VisitedRegs, 827 const Loop *L, 828 const SmallVectorImpl<int64_t> &Offsets, 829 ScalarEvolution &SE, DominatorTree &DT, 830 const LSRUse &LU, 831 SmallPtrSet<const SCEV *, 16> *LoserRegs = 0); 832 833 void print(raw_ostream &OS) const; 834 void dump() const; 835 836 private: 837 void RateRegister(const SCEV *Reg, 838 SmallPtrSet<const SCEV *, 16> &Regs, 839 const Loop *L, 840 ScalarEvolution &SE, DominatorTree &DT); 841 void RatePrimaryRegister(const SCEV *Reg, 842 SmallPtrSet<const SCEV *, 16> &Regs, 843 const Loop *L, 844 ScalarEvolution &SE, DominatorTree &DT, 845 SmallPtrSet<const SCEV *, 16> *LoserRegs); 846 }; 847 848 } 849 850 /// RateRegister - Tally up interesting quantities from the given register. 851 void Cost::RateRegister(const SCEV *Reg, 852 SmallPtrSet<const SCEV *, 16> &Regs, 853 const Loop *L, 854 ScalarEvolution &SE, DominatorTree &DT) { 855 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) { 856 // If this is an addrec for another loop, don't second-guess its addrec phi 857 // nodes. LSR isn't currently smart enough to reason about more than one 858 // loop at a time. LSR has already run on inner loops, will not run on outer 859 // loops, and cannot be expected to change sibling loops. 860 if (AR->getLoop() != L) { 861 // If the AddRec exists, consider it's register free and leave it alone. 862 if (isExistingPhi(AR, SE)) 863 return; 864 865 // Otherwise, do not consider this formula at all. 866 Loose(); 867 return; 868 } 869 AddRecCost += 1; /// TODO: This should be a function of the stride. 870 871 // Add the step value register, if it needs one. 872 // TODO: The non-affine case isn't precisely modeled here. 873 if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) { 874 if (!Regs.count(AR->getOperand(1))) { 875 RateRegister(AR->getOperand(1), Regs, L, SE, DT); 876 if (isLoser()) 877 return; 878 } 879 } 880 } 881 ++NumRegs; 882 883 // Rough heuristic; favor registers which don't require extra setup 884 // instructions in the preheader. 885 if (!isa<SCEVUnknown>(Reg) && 886 !isa<SCEVConstant>(Reg) && 887 !(isa<SCEVAddRecExpr>(Reg) && 888 (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) || 889 isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart())))) 890 ++SetupCost; 891 892 NumIVMuls += isa<SCEVMulExpr>(Reg) && 893 SE.hasComputableLoopEvolution(Reg, L); 894 } 895 896 /// RatePrimaryRegister - Record this register in the set. If we haven't seen it 897 /// before, rate it. Optional LoserRegs provides a way to declare any formula 898 /// that refers to one of those regs an instant loser. 899 void Cost::RatePrimaryRegister(const SCEV *Reg, 900 SmallPtrSet<const SCEV *, 16> &Regs, 901 const Loop *L, 902 ScalarEvolution &SE, DominatorTree &DT, 903 SmallPtrSet<const SCEV *, 16> *LoserRegs) { 904 if (LoserRegs && LoserRegs->count(Reg)) { 905 Loose(); 906 return; 907 } 908 if (Regs.insert(Reg)) { 909 RateRegister(Reg, Regs, L, SE, DT); 910 if (LoserRegs && isLoser()) 911 LoserRegs->insert(Reg); 912 } 913 } 914 915 void Cost::RateFormula(const TargetTransformInfo &TTI, 916 const Formula &F, 917 SmallPtrSet<const SCEV *, 16> &Regs, 918 const DenseSet<const SCEV *> &VisitedRegs, 919 const Loop *L, 920 const SmallVectorImpl<int64_t> &Offsets, 921 ScalarEvolution &SE, DominatorTree &DT, 922 const LSRUse &LU, 923 SmallPtrSet<const SCEV *, 16> *LoserRegs) { 924 // Tally up the registers. 925 if (const SCEV *ScaledReg = F.ScaledReg) { 926 if (VisitedRegs.count(ScaledReg)) { 927 Loose(); 928 return; 929 } 930 RatePrimaryRegister(ScaledReg, Regs, L, SE, DT, LoserRegs); 931 if (isLoser()) 932 return; 933 } 934 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(), 935 E = F.BaseRegs.end(); I != E; ++I) { 936 const SCEV *BaseReg = *I; 937 if (VisitedRegs.count(BaseReg)) { 938 Loose(); 939 return; 940 } 941 RatePrimaryRegister(BaseReg, Regs, L, SE, DT, LoserRegs); 942 if (isLoser()) 943 return; 944 } 945 946 // Determine how many (unfolded) adds we'll need inside the loop. 947 size_t NumBaseParts = F.BaseRegs.size() + (F.UnfoldedOffset != 0); 948 if (NumBaseParts > 1) 949 // Do not count the base and a possible second register if the target 950 // allows to fold 2 registers. 951 NumBaseAdds += NumBaseParts - (1 + isLegal2RegAMUse(TTI, LU, F)); 952 953 // Accumulate non-free scaling amounts. 954 ScaleCost += getScalingFactorCost(TTI, LU, F); 955 956 // Tally up the non-zero immediates. 957 for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(), 958 E = Offsets.end(); I != E; ++I) { 959 int64_t Offset = (uint64_t)*I + F.BaseOffset; 960 if (F.BaseGV) 961 ImmCost += 64; // Handle symbolic values conservatively. 962 // TODO: This should probably be the pointer size. 963 else if (Offset != 0) 964 ImmCost += APInt(64, Offset, true).getMinSignedBits(); 965 } 966 assert(isValid() && "invalid cost"); 967 } 968 969 /// Loose - Set this cost to a losing value. 970 void Cost::Loose() { 971 NumRegs = ~0u; 972 AddRecCost = ~0u; 973 NumIVMuls = ~0u; 974 NumBaseAdds = ~0u; 975 ImmCost = ~0u; 976 SetupCost = ~0u; 977 ScaleCost = ~0u; 978 } 979 980 /// operator< - Choose the lower cost. 981 bool Cost::operator<(const Cost &Other) const { 982 if (NumRegs != Other.NumRegs) 983 return NumRegs < Other.NumRegs; 984 if (AddRecCost != Other.AddRecCost) 985 return AddRecCost < Other.AddRecCost; 986 if (NumIVMuls != Other.NumIVMuls) 987 return NumIVMuls < Other.NumIVMuls; 988 if (NumBaseAdds != Other.NumBaseAdds) 989 return NumBaseAdds < Other.NumBaseAdds; 990 if (ScaleCost != Other.ScaleCost) 991 return ScaleCost < Other.ScaleCost; 992 if (ImmCost != Other.ImmCost) 993 return ImmCost < Other.ImmCost; 994 if (SetupCost != Other.SetupCost) 995 return SetupCost < Other.SetupCost; 996 return false; 997 } 998 999 void Cost::print(raw_ostream &OS) const { 1000 OS << NumRegs << " reg" << (NumRegs == 1 ? "" : "s"); 1001 if (AddRecCost != 0) 1002 OS << ", with addrec cost " << AddRecCost; 1003 if (NumIVMuls != 0) 1004 OS << ", plus " << NumIVMuls << " IV mul" << (NumIVMuls == 1 ? "" : "s"); 1005 if (NumBaseAdds != 0) 1006 OS << ", plus " << NumBaseAdds << " base add" 1007 << (NumBaseAdds == 1 ? "" : "s"); 1008 if (ScaleCost != 0) 1009 OS << ", plus " << ScaleCost << " scale cost"; 1010 if (ImmCost != 0) 1011 OS << ", plus " << ImmCost << " imm cost"; 1012 if (SetupCost != 0) 1013 OS << ", plus " << SetupCost << " setup cost"; 1014 } 1015 1016 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1017 void Cost::dump() const { 1018 print(errs()); errs() << '\n'; 1019 } 1020 #endif 1021 1022 namespace { 1023 1024 /// LSRFixup - An operand value in an instruction which is to be replaced 1025 /// with some equivalent, possibly strength-reduced, replacement. 1026 struct LSRFixup { 1027 /// UserInst - The instruction which will be updated. 1028 Instruction *UserInst; 1029 1030 /// OperandValToReplace - The operand of the instruction which will 1031 /// be replaced. The operand may be used more than once; every instance 1032 /// will be replaced. 1033 Value *OperandValToReplace; 1034 1035 /// PostIncLoops - If this user is to use the post-incremented value of an 1036 /// induction variable, this variable is non-null and holds the loop 1037 /// associated with the induction variable. 1038 PostIncLoopSet PostIncLoops; 1039 1040 /// LUIdx - The index of the LSRUse describing the expression which 1041 /// this fixup needs, minus an offset (below). 1042 size_t LUIdx; 1043 1044 /// Offset - A constant offset to be added to the LSRUse expression. 1045 /// This allows multiple fixups to share the same LSRUse with different 1046 /// offsets, for example in an unrolled loop. 1047 int64_t Offset; 1048 1049 bool isUseFullyOutsideLoop(const Loop *L) const; 1050 1051 LSRFixup(); 1052 1053 void print(raw_ostream &OS) const; 1054 void dump() const; 1055 }; 1056 1057 } 1058 1059 LSRFixup::LSRFixup() 1060 : UserInst(0), OperandValToReplace(0), LUIdx(~size_t(0)), Offset(0) {} 1061 1062 /// isUseFullyOutsideLoop - Test whether this fixup always uses its 1063 /// value outside of the given loop. 1064 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const { 1065 // PHI nodes use their value in their incoming blocks. 1066 if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) { 1067 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1068 if (PN->getIncomingValue(i) == OperandValToReplace && 1069 L->contains(PN->getIncomingBlock(i))) 1070 return false; 1071 return true; 1072 } 1073 1074 return !L->contains(UserInst); 1075 } 1076 1077 void LSRFixup::print(raw_ostream &OS) const { 1078 OS << "UserInst="; 1079 // Store is common and interesting enough to be worth special-casing. 1080 if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) { 1081 OS << "store "; 1082 Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false); 1083 } else if (UserInst->getType()->isVoidTy()) 1084 OS << UserInst->getOpcodeName(); 1085 else 1086 UserInst->printAsOperand(OS, /*PrintType=*/false); 1087 1088 OS << ", OperandValToReplace="; 1089 OperandValToReplace->printAsOperand(OS, /*PrintType=*/false); 1090 1091 for (PostIncLoopSet::const_iterator I = PostIncLoops.begin(), 1092 E = PostIncLoops.end(); I != E; ++I) { 1093 OS << ", PostIncLoop="; 1094 (*I)->getHeader()->printAsOperand(OS, /*PrintType=*/false); 1095 } 1096 1097 if (LUIdx != ~size_t(0)) 1098 OS << ", LUIdx=" << LUIdx; 1099 1100 if (Offset != 0) 1101 OS << ", Offset=" << Offset; 1102 } 1103 1104 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1105 void LSRFixup::dump() const { 1106 print(errs()); errs() << '\n'; 1107 } 1108 #endif 1109 1110 namespace { 1111 1112 /// UniquifierDenseMapInfo - A DenseMapInfo implementation for holding 1113 /// DenseMaps and DenseSets of sorted SmallVectors of const SCEV*. 1114 struct UniquifierDenseMapInfo { 1115 static SmallVector<const SCEV *, 4> getEmptyKey() { 1116 SmallVector<const SCEV *, 4> V; 1117 V.push_back(reinterpret_cast<const SCEV *>(-1)); 1118 return V; 1119 } 1120 1121 static SmallVector<const SCEV *, 4> getTombstoneKey() { 1122 SmallVector<const SCEV *, 4> V; 1123 V.push_back(reinterpret_cast<const SCEV *>(-2)); 1124 return V; 1125 } 1126 1127 static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) { 1128 unsigned Result = 0; 1129 for (SmallVectorImpl<const SCEV *>::const_iterator I = V.begin(), 1130 E = V.end(); I != E; ++I) 1131 Result ^= DenseMapInfo<const SCEV *>::getHashValue(*I); 1132 return Result; 1133 } 1134 1135 static bool isEqual(const SmallVector<const SCEV *, 4> &LHS, 1136 const SmallVector<const SCEV *, 4> &RHS) { 1137 return LHS == RHS; 1138 } 1139 }; 1140 1141 /// LSRUse - This class holds the state that LSR keeps for each use in 1142 /// IVUsers, as well as uses invented by LSR itself. It includes information 1143 /// about what kinds of things can be folded into the user, information about 1144 /// the user itself, and information about how the use may be satisfied. 1145 /// TODO: Represent multiple users of the same expression in common? 1146 class LSRUse { 1147 DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier; 1148 1149 public: 1150 /// KindType - An enum for a kind of use, indicating what types of 1151 /// scaled and immediate operands it might support. 1152 enum KindType { 1153 Basic, ///< A normal use, with no folding. 1154 Special, ///< A special case of basic, allowing -1 scales. 1155 Address, ///< An address use; folding according to TargetLowering 1156 ICmpZero ///< An equality icmp with both operands folded into one. 1157 // TODO: Add a generic icmp too? 1158 }; 1159 1160 KindType Kind; 1161 Type *AccessTy; 1162 1163 SmallVector<int64_t, 8> Offsets; 1164 int64_t MinOffset; 1165 int64_t MaxOffset; 1166 1167 /// AllFixupsOutsideLoop - This records whether all of the fixups using this 1168 /// LSRUse are outside of the loop, in which case some special-case heuristics 1169 /// may be used. 1170 bool AllFixupsOutsideLoop; 1171 1172 /// RigidFormula is set to true to guarantee that this use will be associated 1173 /// with a single formula--the one that initially matched. Some SCEV 1174 /// expressions cannot be expanded. This allows LSR to consider the registers 1175 /// used by those expressions without the need to expand them later after 1176 /// changing the formula. 1177 bool RigidFormula; 1178 1179 /// WidestFixupType - This records the widest use type for any fixup using 1180 /// this LSRUse. FindUseWithSimilarFormula can't consider uses with different 1181 /// max fixup widths to be equivalent, because the narrower one may be relying 1182 /// on the implicit truncation to truncate away bogus bits. 1183 Type *WidestFixupType; 1184 1185 /// Formulae - A list of ways to build a value that can satisfy this user. 1186 /// After the list is populated, one of these is selected heuristically and 1187 /// used to formulate a replacement for OperandValToReplace in UserInst. 1188 SmallVector<Formula, 12> Formulae; 1189 1190 /// Regs - The set of register candidates used by all formulae in this LSRUse. 1191 SmallPtrSet<const SCEV *, 4> Regs; 1192 1193 LSRUse(KindType K, Type *T) : Kind(K), AccessTy(T), 1194 MinOffset(INT64_MAX), 1195 MaxOffset(INT64_MIN), 1196 AllFixupsOutsideLoop(true), 1197 RigidFormula(false), 1198 WidestFixupType(0) {} 1199 1200 bool HasFormulaWithSameRegs(const Formula &F) const; 1201 bool InsertFormula(const Formula &F); 1202 void DeleteFormula(Formula &F); 1203 void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses); 1204 1205 void print(raw_ostream &OS) const; 1206 void dump() const; 1207 }; 1208 1209 } 1210 1211 /// HasFormula - Test whether this use as a formula which has the same 1212 /// registers as the given formula. 1213 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const { 1214 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1215 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1216 // Unstable sort by host order ok, because this is only used for uniquifying. 1217 std::sort(Key.begin(), Key.end()); 1218 return Uniquifier.count(Key); 1219 } 1220 1221 /// InsertFormula - If the given formula has not yet been inserted, add it to 1222 /// the list, and return true. Return false otherwise. 1223 bool LSRUse::InsertFormula(const Formula &F) { 1224 if (!Formulae.empty() && RigidFormula) 1225 return false; 1226 1227 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1228 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1229 // Unstable sort by host order ok, because this is only used for uniquifying. 1230 std::sort(Key.begin(), Key.end()); 1231 1232 if (!Uniquifier.insert(Key).second) 1233 return false; 1234 1235 // Using a register to hold the value of 0 is not profitable. 1236 assert((!F.ScaledReg || !F.ScaledReg->isZero()) && 1237 "Zero allocated in a scaled register!"); 1238 #ifndef NDEBUG 1239 for (SmallVectorImpl<const SCEV *>::const_iterator I = 1240 F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) 1241 assert(!(*I)->isZero() && "Zero allocated in a base register!"); 1242 #endif 1243 1244 // Add the formula to the list. 1245 Formulae.push_back(F); 1246 1247 // Record registers now being used by this use. 1248 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1249 1250 return true; 1251 } 1252 1253 /// DeleteFormula - Remove the given formula from this use's list. 1254 void LSRUse::DeleteFormula(Formula &F) { 1255 if (&F != &Formulae.back()) 1256 std::swap(F, Formulae.back()); 1257 Formulae.pop_back(); 1258 } 1259 1260 /// RecomputeRegs - Recompute the Regs field, and update RegUses. 1261 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) { 1262 // Now that we've filtered out some formulae, recompute the Regs set. 1263 SmallPtrSet<const SCEV *, 4> OldRegs = Regs; 1264 Regs.clear(); 1265 for (SmallVectorImpl<Formula>::const_iterator I = Formulae.begin(), 1266 E = Formulae.end(); I != E; ++I) { 1267 const Formula &F = *I; 1268 if (F.ScaledReg) Regs.insert(F.ScaledReg); 1269 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1270 } 1271 1272 // Update the RegTracker. 1273 for (SmallPtrSet<const SCEV *, 4>::iterator I = OldRegs.begin(), 1274 E = OldRegs.end(); I != E; ++I) 1275 if (!Regs.count(*I)) 1276 RegUses.DropRegister(*I, LUIdx); 1277 } 1278 1279 void LSRUse::print(raw_ostream &OS) const { 1280 OS << "LSR Use: Kind="; 1281 switch (Kind) { 1282 case Basic: OS << "Basic"; break; 1283 case Special: OS << "Special"; break; 1284 case ICmpZero: OS << "ICmpZero"; break; 1285 case Address: 1286 OS << "Address of "; 1287 if (AccessTy->isPointerTy()) 1288 OS << "pointer"; // the full pointer type could be really verbose 1289 else 1290 OS << *AccessTy; 1291 } 1292 1293 OS << ", Offsets={"; 1294 for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(), 1295 E = Offsets.end(); I != E; ++I) { 1296 OS << *I; 1297 if (llvm::next(I) != E) 1298 OS << ','; 1299 } 1300 OS << '}'; 1301 1302 if (AllFixupsOutsideLoop) 1303 OS << ", all-fixups-outside-loop"; 1304 1305 if (WidestFixupType) 1306 OS << ", widest fixup type: " << *WidestFixupType; 1307 } 1308 1309 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1310 void LSRUse::dump() const { 1311 print(errs()); errs() << '\n'; 1312 } 1313 #endif 1314 1315 /// isLegalUse - Test whether the use described by AM is "legal", meaning it can 1316 /// be completely folded into the user instruction at isel time. This includes 1317 /// address-mode folding and special icmp tricks. 1318 static bool isLegalUse(const TargetTransformInfo &TTI, LSRUse::KindType Kind, 1319 Type *AccessTy, GlobalValue *BaseGV, int64_t BaseOffset, 1320 bool HasBaseReg, int64_t Scale) { 1321 switch (Kind) { 1322 case LSRUse::Address: 1323 return TTI.isLegalAddressingMode(AccessTy, BaseGV, BaseOffset, HasBaseReg, Scale); 1324 1325 // Otherwise, just guess that reg+reg addressing is legal. 1326 //return ; 1327 1328 case LSRUse::ICmpZero: 1329 // There's not even a target hook for querying whether it would be legal to 1330 // fold a GV into an ICmp. 1331 if (BaseGV) 1332 return false; 1333 1334 // ICmp only has two operands; don't allow more than two non-trivial parts. 1335 if (Scale != 0 && HasBaseReg && BaseOffset != 0) 1336 return false; 1337 1338 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by 1339 // putting the scaled register in the other operand of the icmp. 1340 if (Scale != 0 && Scale != -1) 1341 return false; 1342 1343 // If we have low-level target information, ask the target if it can fold an 1344 // integer immediate on an icmp. 1345 if (BaseOffset != 0) { 1346 // We have one of: 1347 // ICmpZero BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset 1348 // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset 1349 // Offs is the ICmp immediate. 1350 if (Scale == 0) 1351 // The cast does the right thing with INT64_MIN. 1352 BaseOffset = -(uint64_t)BaseOffset; 1353 return TTI.isLegalICmpImmediate(BaseOffset); 1354 } 1355 1356 // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg 1357 return true; 1358 1359 case LSRUse::Basic: 1360 // Only handle single-register values. 1361 return !BaseGV && Scale == 0 && BaseOffset == 0; 1362 1363 case LSRUse::Special: 1364 // Special case Basic to handle -1 scales. 1365 return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0; 1366 } 1367 1368 llvm_unreachable("Invalid LSRUse Kind!"); 1369 } 1370 1371 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1372 int64_t MaxOffset, LSRUse::KindType Kind, Type *AccessTy, 1373 GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg, 1374 int64_t Scale) { 1375 // Check for overflow. 1376 if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) != 1377 (MinOffset > 0)) 1378 return false; 1379 MinOffset = (uint64_t)BaseOffset + MinOffset; 1380 if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) != 1381 (MaxOffset > 0)) 1382 return false; 1383 MaxOffset = (uint64_t)BaseOffset + MaxOffset; 1384 1385 return isLegalUse(TTI, Kind, AccessTy, BaseGV, MinOffset, HasBaseReg, 1386 Scale) && 1387 isLegalUse(TTI, Kind, AccessTy, BaseGV, MaxOffset, HasBaseReg, Scale); 1388 } 1389 1390 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1391 int64_t MaxOffset, LSRUse::KindType Kind, Type *AccessTy, 1392 const Formula &F) { 1393 return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV, 1394 F.BaseOffset, F.HasBaseReg, F.Scale); 1395 } 1396 1397 static bool isLegal2RegAMUse(const TargetTransformInfo &TTI, const LSRUse &LU, 1398 const Formula &F) { 1399 // If F is used as an Addressing Mode, it may fold one Base plus one 1400 // scaled register. If the scaled register is nil, do as if another 1401 // element of the base regs is a 1-scaled register. 1402 // This is possible if BaseRegs has at least 2 registers. 1403 1404 // If this is not an address calculation, this is not an addressing mode 1405 // use. 1406 if (LU.Kind != LSRUse::Address) 1407 return false; 1408 1409 // F is already scaled. 1410 if (F.Scale != 0) 1411 return false; 1412 1413 // We need to keep one register for the base and one to scale. 1414 if (F.BaseRegs.size() < 2) 1415 return false; 1416 1417 return isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 1418 F.BaseGV, F.BaseOffset, F.HasBaseReg, 1); 1419 } 1420 1421 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, 1422 const LSRUse &LU, const Formula &F) { 1423 if (!F.Scale) 1424 return 0; 1425 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1426 LU.AccessTy, F) && "Illegal formula in use."); 1427 1428 switch (LU.Kind) { 1429 case LSRUse::Address: { 1430 // Check the scaling factor cost with both the min and max offsets. 1431 int ScaleCostMinOffset = 1432 TTI.getScalingFactorCost(LU.AccessTy, F.BaseGV, 1433 F.BaseOffset + LU.MinOffset, 1434 F.HasBaseReg, F.Scale); 1435 int ScaleCostMaxOffset = 1436 TTI.getScalingFactorCost(LU.AccessTy, F.BaseGV, 1437 F.BaseOffset + LU.MaxOffset, 1438 F.HasBaseReg, F.Scale); 1439 1440 assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 && 1441 "Legal addressing mode has an illegal cost!"); 1442 return std::max(ScaleCostMinOffset, ScaleCostMaxOffset); 1443 } 1444 case LSRUse::ICmpZero: 1445 // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg. 1446 // Therefore, return 0 in case F.Scale == -1. 1447 return F.Scale != -1; 1448 1449 case LSRUse::Basic: 1450 case LSRUse::Special: 1451 return 0; 1452 } 1453 1454 llvm_unreachable("Invalid LSRUse Kind!"); 1455 } 1456 1457 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1458 LSRUse::KindType Kind, Type *AccessTy, 1459 GlobalValue *BaseGV, int64_t BaseOffset, 1460 bool HasBaseReg) { 1461 // Fast-path: zero is always foldable. 1462 if (BaseOffset == 0 && !BaseGV) return true; 1463 1464 // Conservatively, create an address with an immediate and a 1465 // base and a scale. 1466 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1467 1468 // Canonicalize a scale of 1 to a base register if the formula doesn't 1469 // already have a base register. 1470 if (!HasBaseReg && Scale == 1) { 1471 Scale = 0; 1472 HasBaseReg = true; 1473 } 1474 1475 return isLegalUse(TTI, Kind, AccessTy, BaseGV, BaseOffset, HasBaseReg, Scale); 1476 } 1477 1478 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1479 ScalarEvolution &SE, int64_t MinOffset, 1480 int64_t MaxOffset, LSRUse::KindType Kind, 1481 Type *AccessTy, const SCEV *S, bool HasBaseReg) { 1482 // Fast-path: zero is always foldable. 1483 if (S->isZero()) return true; 1484 1485 // Conservatively, create an address with an immediate and a 1486 // base and a scale. 1487 int64_t BaseOffset = ExtractImmediate(S, SE); 1488 GlobalValue *BaseGV = ExtractSymbol(S, SE); 1489 1490 // If there's anything else involved, it's not foldable. 1491 if (!S->isZero()) return false; 1492 1493 // Fast-path: zero is always foldable. 1494 if (BaseOffset == 0 && !BaseGV) return true; 1495 1496 // Conservatively, create an address with an immediate and a 1497 // base and a scale. 1498 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1499 1500 return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1501 BaseOffset, HasBaseReg, Scale); 1502 } 1503 1504 namespace { 1505 1506 /// UseMapDenseMapInfo - A DenseMapInfo implementation for holding 1507 /// DenseMaps and DenseSets of pairs of const SCEV* and LSRUse::Kind. 1508 struct UseMapDenseMapInfo { 1509 static std::pair<const SCEV *, LSRUse::KindType> getEmptyKey() { 1510 return std::make_pair(reinterpret_cast<const SCEV *>(-1), LSRUse::Basic); 1511 } 1512 1513 static std::pair<const SCEV *, LSRUse::KindType> getTombstoneKey() { 1514 return std::make_pair(reinterpret_cast<const SCEV *>(-2), LSRUse::Basic); 1515 } 1516 1517 static unsigned 1518 getHashValue(const std::pair<const SCEV *, LSRUse::KindType> &V) { 1519 unsigned Result = DenseMapInfo<const SCEV *>::getHashValue(V.first); 1520 Result ^= DenseMapInfo<unsigned>::getHashValue(unsigned(V.second)); 1521 return Result; 1522 } 1523 1524 static bool isEqual(const std::pair<const SCEV *, LSRUse::KindType> &LHS, 1525 const std::pair<const SCEV *, LSRUse::KindType> &RHS) { 1526 return LHS == RHS; 1527 } 1528 }; 1529 1530 /// IVInc - An individual increment in a Chain of IV increments. 1531 /// Relate an IV user to an expression that computes the IV it uses from the IV 1532 /// used by the previous link in the Chain. 1533 /// 1534 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the 1535 /// original IVOperand. The head of the chain's IVOperand is only valid during 1536 /// chain collection, before LSR replaces IV users. During chain generation, 1537 /// IncExpr can be used to find the new IVOperand that computes the same 1538 /// expression. 1539 struct IVInc { 1540 Instruction *UserInst; 1541 Value* IVOperand; 1542 const SCEV *IncExpr; 1543 1544 IVInc(Instruction *U, Value *O, const SCEV *E): 1545 UserInst(U), IVOperand(O), IncExpr(E) {} 1546 }; 1547 1548 // IVChain - The list of IV increments in program order. 1549 // We typically add the head of a chain without finding subsequent links. 1550 struct IVChain { 1551 SmallVector<IVInc,1> Incs; 1552 const SCEV *ExprBase; 1553 1554 IVChain() : ExprBase(0) {} 1555 1556 IVChain(const IVInc &Head, const SCEV *Base) 1557 : Incs(1, Head), ExprBase(Base) {} 1558 1559 typedef SmallVectorImpl<IVInc>::const_iterator const_iterator; 1560 1561 // begin - return the first increment in the chain. 1562 const_iterator begin() const { 1563 assert(!Incs.empty()); 1564 return llvm::next(Incs.begin()); 1565 } 1566 const_iterator end() const { 1567 return Incs.end(); 1568 } 1569 1570 // hasIncs - Returns true if this chain contains any increments. 1571 bool hasIncs() const { return Incs.size() >= 2; } 1572 1573 // add - Add an IVInc to the end of this chain. 1574 void add(const IVInc &X) { Incs.push_back(X); } 1575 1576 // tailUserInst - Returns the last UserInst in the chain. 1577 Instruction *tailUserInst() const { return Incs.back().UserInst; } 1578 1579 // isProfitableIncrement - Returns true if IncExpr can be profitably added to 1580 // this chain. 1581 bool isProfitableIncrement(const SCEV *OperExpr, 1582 const SCEV *IncExpr, 1583 ScalarEvolution&); 1584 }; 1585 1586 /// ChainUsers - Helper for CollectChains to track multiple IV increment uses. 1587 /// Distinguish between FarUsers that definitely cross IV increments and 1588 /// NearUsers that may be used between IV increments. 1589 struct ChainUsers { 1590 SmallPtrSet<Instruction*, 4> FarUsers; 1591 SmallPtrSet<Instruction*, 4> NearUsers; 1592 }; 1593 1594 /// LSRInstance - This class holds state for the main loop strength reduction 1595 /// logic. 1596 class LSRInstance { 1597 IVUsers &IU; 1598 ScalarEvolution &SE; 1599 DominatorTree &DT; 1600 LoopInfo &LI; 1601 const TargetTransformInfo &TTI; 1602 Loop *const L; 1603 bool Changed; 1604 1605 /// IVIncInsertPos - This is the insert position that the current loop's 1606 /// induction variable increment should be placed. In simple loops, this is 1607 /// the latch block's terminator. But in more complicated cases, this is a 1608 /// position which will dominate all the in-loop post-increment users. 1609 Instruction *IVIncInsertPos; 1610 1611 /// Factors - Interesting factors between use strides. 1612 SmallSetVector<int64_t, 8> Factors; 1613 1614 /// Types - Interesting use types, to facilitate truncation reuse. 1615 SmallSetVector<Type *, 4> Types; 1616 1617 /// Fixups - The list of operands which are to be replaced. 1618 SmallVector<LSRFixup, 16> Fixups; 1619 1620 /// Uses - The list of interesting uses. 1621 SmallVector<LSRUse, 16> Uses; 1622 1623 /// RegUses - Track which uses use which register candidates. 1624 RegUseTracker RegUses; 1625 1626 // Limit the number of chains to avoid quadratic behavior. We don't expect to 1627 // have more than a few IV increment chains in a loop. Missing a Chain falls 1628 // back to normal LSR behavior for those uses. 1629 static const unsigned MaxChains = 8; 1630 1631 /// IVChainVec - IV users can form a chain of IV increments. 1632 SmallVector<IVChain, MaxChains> IVChainVec; 1633 1634 /// IVIncSet - IV users that belong to profitable IVChains. 1635 SmallPtrSet<Use*, MaxChains> IVIncSet; 1636 1637 void OptimizeShadowIV(); 1638 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse); 1639 ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse); 1640 void OptimizeLoopTermCond(); 1641 1642 void ChainInstruction(Instruction *UserInst, Instruction *IVOper, 1643 SmallVectorImpl<ChainUsers> &ChainUsersVec); 1644 void FinalizeChain(IVChain &Chain); 1645 void CollectChains(); 1646 void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 1647 SmallVectorImpl<WeakVH> &DeadInsts); 1648 1649 void CollectInterestingTypesAndFactors(); 1650 void CollectFixupsAndInitialFormulae(); 1651 1652 LSRFixup &getNewFixup() { 1653 Fixups.push_back(LSRFixup()); 1654 return Fixups.back(); 1655 } 1656 1657 // Support for sharing of LSRUses between LSRFixups. 1658 typedef DenseMap<std::pair<const SCEV *, LSRUse::KindType>, 1659 size_t, 1660 UseMapDenseMapInfo> UseMapTy; 1661 UseMapTy UseMap; 1662 1663 bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, 1664 LSRUse::KindType Kind, Type *AccessTy); 1665 1666 std::pair<size_t, int64_t> getUse(const SCEV *&Expr, 1667 LSRUse::KindType Kind, 1668 Type *AccessTy); 1669 1670 void DeleteUse(LSRUse &LU, size_t LUIdx); 1671 1672 LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU); 1673 1674 void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1675 void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1676 void CountRegisters(const Formula &F, size_t LUIdx); 1677 bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F); 1678 1679 void CollectLoopInvariantFixupsAndFormulae(); 1680 1681 void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base, 1682 unsigned Depth = 0); 1683 void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base); 1684 void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1685 void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1686 void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base); 1687 void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base); 1688 void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base); 1689 void GenerateCrossUseConstantOffsets(); 1690 void GenerateAllReuseFormulae(); 1691 1692 void FilterOutUndesirableDedicatedRegisters(); 1693 1694 size_t EstimateSearchSpaceComplexity() const; 1695 void NarrowSearchSpaceByDetectingSupersets(); 1696 void NarrowSearchSpaceByCollapsingUnrolledCode(); 1697 void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 1698 void NarrowSearchSpaceByPickingWinnerRegs(); 1699 void NarrowSearchSpaceUsingHeuristics(); 1700 1701 void SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 1702 Cost &SolutionCost, 1703 SmallVectorImpl<const Formula *> &Workspace, 1704 const Cost &CurCost, 1705 const SmallPtrSet<const SCEV *, 16> &CurRegs, 1706 DenseSet<const SCEV *> &VisitedRegs) const; 1707 void Solve(SmallVectorImpl<const Formula *> &Solution) const; 1708 1709 BasicBlock::iterator 1710 HoistInsertPosition(BasicBlock::iterator IP, 1711 const SmallVectorImpl<Instruction *> &Inputs) const; 1712 BasicBlock::iterator 1713 AdjustInsertPositionForExpand(BasicBlock::iterator IP, 1714 const LSRFixup &LF, 1715 const LSRUse &LU, 1716 SCEVExpander &Rewriter) const; 1717 1718 Value *Expand(const LSRFixup &LF, 1719 const Formula &F, 1720 BasicBlock::iterator IP, 1721 SCEVExpander &Rewriter, 1722 SmallVectorImpl<WeakVH> &DeadInsts) const; 1723 void RewriteForPHI(PHINode *PN, const LSRFixup &LF, 1724 const Formula &F, 1725 SCEVExpander &Rewriter, 1726 SmallVectorImpl<WeakVH> &DeadInsts, 1727 Pass *P) const; 1728 void Rewrite(const LSRFixup &LF, 1729 const Formula &F, 1730 SCEVExpander &Rewriter, 1731 SmallVectorImpl<WeakVH> &DeadInsts, 1732 Pass *P) const; 1733 void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution, 1734 Pass *P); 1735 1736 public: 1737 LSRInstance(Loop *L, Pass *P); 1738 1739 bool getChanged() const { return Changed; } 1740 1741 void print_factors_and_types(raw_ostream &OS) const; 1742 void print_fixups(raw_ostream &OS) const; 1743 void print_uses(raw_ostream &OS) const; 1744 void print(raw_ostream &OS) const; 1745 void dump() const; 1746 }; 1747 1748 } 1749 1750 /// OptimizeShadowIV - If IV is used in a int-to-float cast 1751 /// inside the loop then try to eliminate the cast operation. 1752 void LSRInstance::OptimizeShadowIV() { 1753 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 1754 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 1755 return; 1756 1757 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); 1758 UI != E; /* empty */) { 1759 IVUsers::const_iterator CandidateUI = UI; 1760 ++UI; 1761 Instruction *ShadowUse = CandidateUI->getUser(); 1762 Type *DestTy = 0; 1763 bool IsSigned = false; 1764 1765 /* If shadow use is a int->float cast then insert a second IV 1766 to eliminate this cast. 1767 1768 for (unsigned i = 0; i < n; ++i) 1769 foo((double)i); 1770 1771 is transformed into 1772 1773 double d = 0.0; 1774 for (unsigned i = 0; i < n; ++i, ++d) 1775 foo(d); 1776 */ 1777 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) { 1778 IsSigned = false; 1779 DestTy = UCast->getDestTy(); 1780 } 1781 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) { 1782 IsSigned = true; 1783 DestTy = SCast->getDestTy(); 1784 } 1785 if (!DestTy) continue; 1786 1787 // If target does not support DestTy natively then do not apply 1788 // this transformation. 1789 if (!TTI.isTypeLegal(DestTy)) continue; 1790 1791 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0)); 1792 if (!PH) continue; 1793 if (PH->getNumIncomingValues() != 2) continue; 1794 1795 Type *SrcTy = PH->getType(); 1796 int Mantissa = DestTy->getFPMantissaWidth(); 1797 if (Mantissa == -1) continue; 1798 if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa) 1799 continue; 1800 1801 unsigned Entry, Latch; 1802 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) { 1803 Entry = 0; 1804 Latch = 1; 1805 } else { 1806 Entry = 1; 1807 Latch = 0; 1808 } 1809 1810 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry)); 1811 if (!Init) continue; 1812 Constant *NewInit = ConstantFP::get(DestTy, IsSigned ? 1813 (double)Init->getSExtValue() : 1814 (double)Init->getZExtValue()); 1815 1816 BinaryOperator *Incr = 1817 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch)); 1818 if (!Incr) continue; 1819 if (Incr->getOpcode() != Instruction::Add 1820 && Incr->getOpcode() != Instruction::Sub) 1821 continue; 1822 1823 /* Initialize new IV, double d = 0.0 in above example. */ 1824 ConstantInt *C = 0; 1825 if (Incr->getOperand(0) == PH) 1826 C = dyn_cast<ConstantInt>(Incr->getOperand(1)); 1827 else if (Incr->getOperand(1) == PH) 1828 C = dyn_cast<ConstantInt>(Incr->getOperand(0)); 1829 else 1830 continue; 1831 1832 if (!C) continue; 1833 1834 // Ignore negative constants, as the code below doesn't handle them 1835 // correctly. TODO: Remove this restriction. 1836 if (!C->getValue().isStrictlyPositive()) continue; 1837 1838 /* Add new PHINode. */ 1839 PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH); 1840 1841 /* create new increment. '++d' in above example. */ 1842 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue()); 1843 BinaryOperator *NewIncr = 1844 BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ? 1845 Instruction::FAdd : Instruction::FSub, 1846 NewPH, CFP, "IV.S.next.", Incr); 1847 1848 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry)); 1849 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch)); 1850 1851 /* Remove cast operation */ 1852 ShadowUse->replaceAllUsesWith(NewPH); 1853 ShadowUse->eraseFromParent(); 1854 Changed = true; 1855 break; 1856 } 1857 } 1858 1859 /// FindIVUserForCond - If Cond has an operand that is an expression of an IV, 1860 /// set the IV user and stride information and return true, otherwise return 1861 /// false. 1862 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) { 1863 for (IVUsers::iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) 1864 if (UI->getUser() == Cond) { 1865 // NOTE: we could handle setcc instructions with multiple uses here, but 1866 // InstCombine does it as well for simple uses, it's not clear that it 1867 // occurs enough in real life to handle. 1868 CondUse = UI; 1869 return true; 1870 } 1871 return false; 1872 } 1873 1874 /// OptimizeMax - Rewrite the loop's terminating condition if it uses 1875 /// a max computation. 1876 /// 1877 /// This is a narrow solution to a specific, but acute, problem. For loops 1878 /// like this: 1879 /// 1880 /// i = 0; 1881 /// do { 1882 /// p[i] = 0.0; 1883 /// } while (++i < n); 1884 /// 1885 /// the trip count isn't just 'n', because 'n' might not be positive. And 1886 /// unfortunately this can come up even for loops where the user didn't use 1887 /// a C do-while loop. For example, seemingly well-behaved top-test loops 1888 /// will commonly be lowered like this: 1889 // 1890 /// if (n > 0) { 1891 /// i = 0; 1892 /// do { 1893 /// p[i] = 0.0; 1894 /// } while (++i < n); 1895 /// } 1896 /// 1897 /// and then it's possible for subsequent optimization to obscure the if 1898 /// test in such a way that indvars can't find it. 1899 /// 1900 /// When indvars can't find the if test in loops like this, it creates a 1901 /// max expression, which allows it to give the loop a canonical 1902 /// induction variable: 1903 /// 1904 /// i = 0; 1905 /// max = n < 1 ? 1 : n; 1906 /// do { 1907 /// p[i] = 0.0; 1908 /// } while (++i != max); 1909 /// 1910 /// Canonical induction variables are necessary because the loop passes 1911 /// are designed around them. The most obvious example of this is the 1912 /// LoopInfo analysis, which doesn't remember trip count values. It 1913 /// expects to be able to rediscover the trip count each time it is 1914 /// needed, and it does this using a simple analysis that only succeeds if 1915 /// the loop has a canonical induction variable. 1916 /// 1917 /// However, when it comes time to generate code, the maximum operation 1918 /// can be quite costly, especially if it's inside of an outer loop. 1919 /// 1920 /// This function solves this problem by detecting this type of loop and 1921 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting 1922 /// the instructions for the maximum computation. 1923 /// 1924 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) { 1925 // Check that the loop matches the pattern we're looking for. 1926 if (Cond->getPredicate() != CmpInst::ICMP_EQ && 1927 Cond->getPredicate() != CmpInst::ICMP_NE) 1928 return Cond; 1929 1930 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1)); 1931 if (!Sel || !Sel->hasOneUse()) return Cond; 1932 1933 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 1934 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 1935 return Cond; 1936 const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1); 1937 1938 // Add one to the backedge-taken count to get the trip count. 1939 const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount); 1940 if (IterationCount != SE.getSCEV(Sel)) return Cond; 1941 1942 // Check for a max calculation that matches the pattern. There's no check 1943 // for ICMP_ULE here because the comparison would be with zero, which 1944 // isn't interesting. 1945 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1946 const SCEVNAryExpr *Max = 0; 1947 if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) { 1948 Pred = ICmpInst::ICMP_SLE; 1949 Max = S; 1950 } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) { 1951 Pred = ICmpInst::ICMP_SLT; 1952 Max = S; 1953 } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) { 1954 Pred = ICmpInst::ICMP_ULT; 1955 Max = U; 1956 } else { 1957 // No match; bail. 1958 return Cond; 1959 } 1960 1961 // To handle a max with more than two operands, this optimization would 1962 // require additional checking and setup. 1963 if (Max->getNumOperands() != 2) 1964 return Cond; 1965 1966 const SCEV *MaxLHS = Max->getOperand(0); 1967 const SCEV *MaxRHS = Max->getOperand(1); 1968 1969 // ScalarEvolution canonicalizes constants to the left. For < and >, look 1970 // for a comparison with 1. For <= and >=, a comparison with zero. 1971 if (!MaxLHS || 1972 (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One))) 1973 return Cond; 1974 1975 // Check the relevant induction variable for conformance to 1976 // the pattern. 1977 const SCEV *IV = SE.getSCEV(Cond->getOperand(0)); 1978 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV); 1979 if (!AR || !AR->isAffine() || 1980 AR->getStart() != One || 1981 AR->getStepRecurrence(SE) != One) 1982 return Cond; 1983 1984 assert(AR->getLoop() == L && 1985 "Loop condition operand is an addrec in a different loop!"); 1986 1987 // Check the right operand of the select, and remember it, as it will 1988 // be used in the new comparison instruction. 1989 Value *NewRHS = 0; 1990 if (ICmpInst::isTrueWhenEqual(Pred)) { 1991 // Look for n+1, and grab n. 1992 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1))) 1993 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 1994 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 1995 NewRHS = BO->getOperand(0); 1996 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2))) 1997 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 1998 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 1999 NewRHS = BO->getOperand(0); 2000 if (!NewRHS) 2001 return Cond; 2002 } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS) 2003 NewRHS = Sel->getOperand(1); 2004 else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS) 2005 NewRHS = Sel->getOperand(2); 2006 else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS)) 2007 NewRHS = SU->getValue(); 2008 else 2009 // Max doesn't match expected pattern. 2010 return Cond; 2011 2012 // Determine the new comparison opcode. It may be signed or unsigned, 2013 // and the original comparison may be either equality or inequality. 2014 if (Cond->getPredicate() == CmpInst::ICMP_EQ) 2015 Pred = CmpInst::getInversePredicate(Pred); 2016 2017 // Ok, everything looks ok to change the condition into an SLT or SGE and 2018 // delete the max calculation. 2019 ICmpInst *NewCond = 2020 new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp"); 2021 2022 // Delete the max calculation instructions. 2023 Cond->replaceAllUsesWith(NewCond); 2024 CondUse->setUser(NewCond); 2025 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0)); 2026 Cond->eraseFromParent(); 2027 Sel->eraseFromParent(); 2028 if (Cmp->use_empty()) 2029 Cmp->eraseFromParent(); 2030 return NewCond; 2031 } 2032 2033 /// OptimizeLoopTermCond - Change loop terminating condition to use the 2034 /// postinc iv when possible. 2035 void 2036 LSRInstance::OptimizeLoopTermCond() { 2037 SmallPtrSet<Instruction *, 4> PostIncs; 2038 2039 BasicBlock *LatchBlock = L->getLoopLatch(); 2040 SmallVector<BasicBlock*, 8> ExitingBlocks; 2041 L->getExitingBlocks(ExitingBlocks); 2042 2043 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 2044 BasicBlock *ExitingBlock = ExitingBlocks[i]; 2045 2046 // Get the terminating condition for the loop if possible. If we 2047 // can, we want to change it to use a post-incremented version of its 2048 // induction variable, to allow coalescing the live ranges for the IV into 2049 // one register value. 2050 2051 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 2052 if (!TermBr) 2053 continue; 2054 // FIXME: Overly conservative, termination condition could be an 'or' etc.. 2055 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition())) 2056 continue; 2057 2058 // Search IVUsesByStride to find Cond's IVUse if there is one. 2059 IVStrideUse *CondUse = 0; 2060 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition()); 2061 if (!FindIVUserForCond(Cond, CondUse)) 2062 continue; 2063 2064 // If the trip count is computed in terms of a max (due to ScalarEvolution 2065 // being unable to find a sufficient guard, for example), change the loop 2066 // comparison to use SLT or ULT instead of NE. 2067 // One consequence of doing this now is that it disrupts the count-down 2068 // optimization. That's not always a bad thing though, because in such 2069 // cases it may still be worthwhile to avoid a max. 2070 Cond = OptimizeMax(Cond, CondUse); 2071 2072 // If this exiting block dominates the latch block, it may also use 2073 // the post-inc value if it won't be shared with other uses. 2074 // Check for dominance. 2075 if (!DT.dominates(ExitingBlock, LatchBlock)) 2076 continue; 2077 2078 // Conservatively avoid trying to use the post-inc value in non-latch 2079 // exits if there may be pre-inc users in intervening blocks. 2080 if (LatchBlock != ExitingBlock) 2081 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) 2082 // Test if the use is reachable from the exiting block. This dominator 2083 // query is a conservative approximation of reachability. 2084 if (&*UI != CondUse && 2085 !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) { 2086 // Conservatively assume there may be reuse if the quotient of their 2087 // strides could be a legal scale. 2088 const SCEV *A = IU.getStride(*CondUse, L); 2089 const SCEV *B = IU.getStride(*UI, L); 2090 if (!A || !B) continue; 2091 if (SE.getTypeSizeInBits(A->getType()) != 2092 SE.getTypeSizeInBits(B->getType())) { 2093 if (SE.getTypeSizeInBits(A->getType()) > 2094 SE.getTypeSizeInBits(B->getType())) 2095 B = SE.getSignExtendExpr(B, A->getType()); 2096 else 2097 A = SE.getSignExtendExpr(A, B->getType()); 2098 } 2099 if (const SCEVConstant *D = 2100 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) { 2101 const ConstantInt *C = D->getValue(); 2102 // Stride of one or negative one can have reuse with non-addresses. 2103 if (C->isOne() || C->isAllOnesValue()) 2104 goto decline_post_inc; 2105 // Avoid weird situations. 2106 if (C->getValue().getMinSignedBits() >= 64 || 2107 C->getValue().isMinSignedValue()) 2108 goto decline_post_inc; 2109 // Check for possible scaled-address reuse. 2110 Type *AccessTy = getAccessType(UI->getUser()); 2111 int64_t Scale = C->getSExtValue(); 2112 if (TTI.isLegalAddressingMode(AccessTy, /*BaseGV=*/ 0, 2113 /*BaseOffset=*/ 0, 2114 /*HasBaseReg=*/ false, Scale)) 2115 goto decline_post_inc; 2116 Scale = -Scale; 2117 if (TTI.isLegalAddressingMode(AccessTy, /*BaseGV=*/ 0, 2118 /*BaseOffset=*/ 0, 2119 /*HasBaseReg=*/ false, Scale)) 2120 goto decline_post_inc; 2121 } 2122 } 2123 2124 DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: " 2125 << *Cond << '\n'); 2126 2127 // It's possible for the setcc instruction to be anywhere in the loop, and 2128 // possible for it to have multiple users. If it is not immediately before 2129 // the exiting block branch, move it. 2130 if (&*++BasicBlock::iterator(Cond) != TermBr) { 2131 if (Cond->hasOneUse()) { 2132 Cond->moveBefore(TermBr); 2133 } else { 2134 // Clone the terminating condition and insert into the loopend. 2135 ICmpInst *OldCond = Cond; 2136 Cond = cast<ICmpInst>(Cond->clone()); 2137 Cond->setName(L->getHeader()->getName() + ".termcond"); 2138 ExitingBlock->getInstList().insert(TermBr, Cond); 2139 2140 // Clone the IVUse, as the old use still exists! 2141 CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace()); 2142 TermBr->replaceUsesOfWith(OldCond, Cond); 2143 } 2144 } 2145 2146 // If we get to here, we know that we can transform the setcc instruction to 2147 // use the post-incremented version of the IV, allowing us to coalesce the 2148 // live ranges for the IV correctly. 2149 CondUse->transformToPostInc(L); 2150 Changed = true; 2151 2152 PostIncs.insert(Cond); 2153 decline_post_inc:; 2154 } 2155 2156 // Determine an insertion point for the loop induction variable increment. It 2157 // must dominate all the post-inc comparisons we just set up, and it must 2158 // dominate the loop latch edge. 2159 IVIncInsertPos = L->getLoopLatch()->getTerminator(); 2160 for (SmallPtrSet<Instruction *, 4>::const_iterator I = PostIncs.begin(), 2161 E = PostIncs.end(); I != E; ++I) { 2162 BasicBlock *BB = 2163 DT.findNearestCommonDominator(IVIncInsertPos->getParent(), 2164 (*I)->getParent()); 2165 if (BB == (*I)->getParent()) 2166 IVIncInsertPos = *I; 2167 else if (BB != IVIncInsertPos->getParent()) 2168 IVIncInsertPos = BB->getTerminator(); 2169 } 2170 } 2171 2172 /// reconcileNewOffset - Determine if the given use can accommodate a fixup 2173 /// at the given offset and other details. If so, update the use and 2174 /// return true. 2175 bool 2176 LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, 2177 LSRUse::KindType Kind, Type *AccessTy) { 2178 int64_t NewMinOffset = LU.MinOffset; 2179 int64_t NewMaxOffset = LU.MaxOffset; 2180 Type *NewAccessTy = AccessTy; 2181 2182 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to 2183 // something conservative, however this can pessimize in the case that one of 2184 // the uses will have all its uses outside the loop, for example. 2185 if (LU.Kind != Kind) 2186 return false; 2187 // Conservatively assume HasBaseReg is true for now. 2188 if (NewOffset < LU.MinOffset) { 2189 if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ 0, 2190 LU.MaxOffset - NewOffset, HasBaseReg)) 2191 return false; 2192 NewMinOffset = NewOffset; 2193 } else if (NewOffset > LU.MaxOffset) { 2194 if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ 0, 2195 NewOffset - LU.MinOffset, HasBaseReg)) 2196 return false; 2197 NewMaxOffset = NewOffset; 2198 } 2199 // Check for a mismatched access type, and fall back conservatively as needed. 2200 // TODO: Be less conservative when the type is similar and can use the same 2201 // addressing modes. 2202 if (Kind == LSRUse::Address && AccessTy != LU.AccessTy) 2203 NewAccessTy = Type::getVoidTy(AccessTy->getContext()); 2204 2205 // Update the use. 2206 LU.MinOffset = NewMinOffset; 2207 LU.MaxOffset = NewMaxOffset; 2208 LU.AccessTy = NewAccessTy; 2209 if (NewOffset != LU.Offsets.back()) 2210 LU.Offsets.push_back(NewOffset); 2211 return true; 2212 } 2213 2214 /// getUse - Return an LSRUse index and an offset value for a fixup which 2215 /// needs the given expression, with the given kind and optional access type. 2216 /// Either reuse an existing use or create a new one, as needed. 2217 std::pair<size_t, int64_t> 2218 LSRInstance::getUse(const SCEV *&Expr, 2219 LSRUse::KindType Kind, Type *AccessTy) { 2220 const SCEV *Copy = Expr; 2221 int64_t Offset = ExtractImmediate(Expr, SE); 2222 2223 // Basic uses can't accept any offset, for example. 2224 if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ 0, 2225 Offset, /*HasBaseReg=*/ true)) { 2226 Expr = Copy; 2227 Offset = 0; 2228 } 2229 2230 std::pair<UseMapTy::iterator, bool> P = 2231 UseMap.insert(std::make_pair(std::make_pair(Expr, Kind), 0)); 2232 if (!P.second) { 2233 // A use already existed with this base. 2234 size_t LUIdx = P.first->second; 2235 LSRUse &LU = Uses[LUIdx]; 2236 if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy)) 2237 // Reuse this use. 2238 return std::make_pair(LUIdx, Offset); 2239 } 2240 2241 // Create a new use. 2242 size_t LUIdx = Uses.size(); 2243 P.first->second = LUIdx; 2244 Uses.push_back(LSRUse(Kind, AccessTy)); 2245 LSRUse &LU = Uses[LUIdx]; 2246 2247 // We don't need to track redundant offsets, but we don't need to go out 2248 // of our way here to avoid them. 2249 if (LU.Offsets.empty() || Offset != LU.Offsets.back()) 2250 LU.Offsets.push_back(Offset); 2251 2252 LU.MinOffset = Offset; 2253 LU.MaxOffset = Offset; 2254 return std::make_pair(LUIdx, Offset); 2255 } 2256 2257 /// DeleteUse - Delete the given use from the Uses list. 2258 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) { 2259 if (&LU != &Uses.back()) 2260 std::swap(LU, Uses.back()); 2261 Uses.pop_back(); 2262 2263 // Update RegUses. 2264 RegUses.SwapAndDropUse(LUIdx, Uses.size()); 2265 } 2266 2267 /// FindUseWithFormula - Look for a use distinct from OrigLU which is has 2268 /// a formula that has the same registers as the given formula. 2269 LSRUse * 2270 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF, 2271 const LSRUse &OrigLU) { 2272 // Search all uses for the formula. This could be more clever. 2273 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 2274 LSRUse &LU = Uses[LUIdx]; 2275 // Check whether this use is close enough to OrigLU, to see whether it's 2276 // worthwhile looking through its formulae. 2277 // Ignore ICmpZero uses because they may contain formulae generated by 2278 // GenerateICmpZeroScales, in which case adding fixup offsets may 2279 // be invalid. 2280 if (&LU != &OrigLU && 2281 LU.Kind != LSRUse::ICmpZero && 2282 LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy && 2283 LU.WidestFixupType == OrigLU.WidestFixupType && 2284 LU.HasFormulaWithSameRegs(OrigF)) { 2285 // Scan through this use's formulae. 2286 for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(), 2287 E = LU.Formulae.end(); I != E; ++I) { 2288 const Formula &F = *I; 2289 // Check to see if this formula has the same registers and symbols 2290 // as OrigF. 2291 if (F.BaseRegs == OrigF.BaseRegs && 2292 F.ScaledReg == OrigF.ScaledReg && 2293 F.BaseGV == OrigF.BaseGV && 2294 F.Scale == OrigF.Scale && 2295 F.UnfoldedOffset == OrigF.UnfoldedOffset) { 2296 if (F.BaseOffset == 0) 2297 return &LU; 2298 // This is the formula where all the registers and symbols matched; 2299 // there aren't going to be any others. Since we declined it, we 2300 // can skip the rest of the formulae and proceed to the next LSRUse. 2301 break; 2302 } 2303 } 2304 } 2305 } 2306 2307 // Nothing looked good. 2308 return 0; 2309 } 2310 2311 void LSRInstance::CollectInterestingTypesAndFactors() { 2312 SmallSetVector<const SCEV *, 4> Strides; 2313 2314 // Collect interesting types and strides. 2315 SmallVector<const SCEV *, 4> Worklist; 2316 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) { 2317 const SCEV *Expr = IU.getExpr(*UI); 2318 2319 // Collect interesting types. 2320 Types.insert(SE.getEffectiveSCEVType(Expr->getType())); 2321 2322 // Add strides for mentioned loops. 2323 Worklist.push_back(Expr); 2324 do { 2325 const SCEV *S = Worklist.pop_back_val(); 2326 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2327 if (AR->getLoop() == L) 2328 Strides.insert(AR->getStepRecurrence(SE)); 2329 Worklist.push_back(AR->getStart()); 2330 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2331 Worklist.append(Add->op_begin(), Add->op_end()); 2332 } 2333 } while (!Worklist.empty()); 2334 } 2335 2336 // Compute interesting factors from the set of interesting strides. 2337 for (SmallSetVector<const SCEV *, 4>::const_iterator 2338 I = Strides.begin(), E = Strides.end(); I != E; ++I) 2339 for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter = 2340 llvm::next(I); NewStrideIter != E; ++NewStrideIter) { 2341 const SCEV *OldStride = *I; 2342 const SCEV *NewStride = *NewStrideIter; 2343 2344 if (SE.getTypeSizeInBits(OldStride->getType()) != 2345 SE.getTypeSizeInBits(NewStride->getType())) { 2346 if (SE.getTypeSizeInBits(OldStride->getType()) > 2347 SE.getTypeSizeInBits(NewStride->getType())) 2348 NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType()); 2349 else 2350 OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType()); 2351 } 2352 if (const SCEVConstant *Factor = 2353 dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride, 2354 SE, true))) { 2355 if (Factor->getValue()->getValue().getMinSignedBits() <= 64) 2356 Factors.insert(Factor->getValue()->getValue().getSExtValue()); 2357 } else if (const SCEVConstant *Factor = 2358 dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride, 2359 NewStride, 2360 SE, true))) { 2361 if (Factor->getValue()->getValue().getMinSignedBits() <= 64) 2362 Factors.insert(Factor->getValue()->getValue().getSExtValue()); 2363 } 2364 } 2365 2366 // If all uses use the same type, don't bother looking for truncation-based 2367 // reuse. 2368 if (Types.size() == 1) 2369 Types.clear(); 2370 2371 DEBUG(print_factors_and_types(dbgs())); 2372 } 2373 2374 /// findIVOperand - Helper for CollectChains that finds an IV operand (computed 2375 /// by an AddRec in this loop) within [OI,OE) or returns OE. If IVUsers mapped 2376 /// Instructions to IVStrideUses, we could partially skip this. 2377 static User::op_iterator 2378 findIVOperand(User::op_iterator OI, User::op_iterator OE, 2379 Loop *L, ScalarEvolution &SE) { 2380 for(; OI != OE; ++OI) { 2381 if (Instruction *Oper = dyn_cast<Instruction>(*OI)) { 2382 if (!SE.isSCEVable(Oper->getType())) 2383 continue; 2384 2385 if (const SCEVAddRecExpr *AR = 2386 dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) { 2387 if (AR->getLoop() == L) 2388 break; 2389 } 2390 } 2391 } 2392 return OI; 2393 } 2394 2395 /// getWideOperand - IVChain logic must consistenctly peek base TruncInst 2396 /// operands, so wrap it in a convenient helper. 2397 static Value *getWideOperand(Value *Oper) { 2398 if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper)) 2399 return Trunc->getOperand(0); 2400 return Oper; 2401 } 2402 2403 /// isCompatibleIVType - Return true if we allow an IV chain to include both 2404 /// types. 2405 static bool isCompatibleIVType(Value *LVal, Value *RVal) { 2406 Type *LType = LVal->getType(); 2407 Type *RType = RVal->getType(); 2408 return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy()); 2409 } 2410 2411 /// getExprBase - Return an approximation of this SCEV expression's "base", or 2412 /// NULL for any constant. Returning the expression itself is 2413 /// conservative. Returning a deeper subexpression is more precise and valid as 2414 /// long as it isn't less complex than another subexpression. For expressions 2415 /// involving multiple unscaled values, we need to return the pointer-type 2416 /// SCEVUnknown. This avoids forming chains across objects, such as: 2417 /// PrevOper==a[i], IVOper==b[i], IVInc==b-a. 2418 /// 2419 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost 2420 /// SCEVUnknown, we simply return the rightmost SCEV operand. 2421 static const SCEV *getExprBase(const SCEV *S) { 2422 switch (S->getSCEVType()) { 2423 default: // uncluding scUnknown. 2424 return S; 2425 case scConstant: 2426 return 0; 2427 case scTruncate: 2428 return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand()); 2429 case scZeroExtend: 2430 return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand()); 2431 case scSignExtend: 2432 return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand()); 2433 case scAddExpr: { 2434 // Skip over scaled operands (scMulExpr) to follow add operands as long as 2435 // there's nothing more complex. 2436 // FIXME: not sure if we want to recognize negation. 2437 const SCEVAddExpr *Add = cast<SCEVAddExpr>(S); 2438 for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()), 2439 E(Add->op_begin()); I != E; ++I) { 2440 const SCEV *SubExpr = *I; 2441 if (SubExpr->getSCEVType() == scAddExpr) 2442 return getExprBase(SubExpr); 2443 2444 if (SubExpr->getSCEVType() != scMulExpr) 2445 return SubExpr; 2446 } 2447 return S; // all operands are scaled, be conservative. 2448 } 2449 case scAddRecExpr: 2450 return getExprBase(cast<SCEVAddRecExpr>(S)->getStart()); 2451 } 2452 } 2453 2454 /// Return true if the chain increment is profitable to expand into a loop 2455 /// invariant value, which may require its own register. A profitable chain 2456 /// increment will be an offset relative to the same base. We allow such offsets 2457 /// to potentially be used as chain increment as long as it's not obviously 2458 /// expensive to expand using real instructions. 2459 bool IVChain::isProfitableIncrement(const SCEV *OperExpr, 2460 const SCEV *IncExpr, 2461 ScalarEvolution &SE) { 2462 // Aggressively form chains when -stress-ivchain. 2463 if (StressIVChain) 2464 return true; 2465 2466 // Do not replace a constant offset from IV head with a nonconstant IV 2467 // increment. 2468 if (!isa<SCEVConstant>(IncExpr)) { 2469 const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand)); 2470 if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr))) 2471 return 0; 2472 } 2473 2474 SmallPtrSet<const SCEV*, 8> Processed; 2475 return !isHighCostExpansion(IncExpr, Processed, SE); 2476 } 2477 2478 /// Return true if the number of registers needed for the chain is estimated to 2479 /// be less than the number required for the individual IV users. First prohibit 2480 /// any IV users that keep the IV live across increments (the Users set should 2481 /// be empty). Next count the number and type of increments in the chain. 2482 /// 2483 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't 2484 /// effectively use postinc addressing modes. Only consider it profitable it the 2485 /// increments can be computed in fewer registers when chained. 2486 /// 2487 /// TODO: Consider IVInc free if it's already used in another chains. 2488 static bool 2489 isProfitableChain(IVChain &Chain, SmallPtrSet<Instruction*, 4> &Users, 2490 ScalarEvolution &SE, const TargetTransformInfo &TTI) { 2491 if (StressIVChain) 2492 return true; 2493 2494 if (!Chain.hasIncs()) 2495 return false; 2496 2497 if (!Users.empty()) { 2498 DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n"; 2499 for (SmallPtrSet<Instruction*, 4>::const_iterator I = Users.begin(), 2500 E = Users.end(); I != E; ++I) { 2501 dbgs() << " " << **I << "\n"; 2502 }); 2503 return false; 2504 } 2505 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 2506 2507 // The chain itself may require a register, so intialize cost to 1. 2508 int cost = 1; 2509 2510 // A complete chain likely eliminates the need for keeping the original IV in 2511 // a register. LSR does not currently know how to form a complete chain unless 2512 // the header phi already exists. 2513 if (isa<PHINode>(Chain.tailUserInst()) 2514 && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) { 2515 --cost; 2516 } 2517 const SCEV *LastIncExpr = 0; 2518 unsigned NumConstIncrements = 0; 2519 unsigned NumVarIncrements = 0; 2520 unsigned NumReusedIncrements = 0; 2521 for (IVChain::const_iterator I = Chain.begin(), E = Chain.end(); 2522 I != E; ++I) { 2523 2524 if (I->IncExpr->isZero()) 2525 continue; 2526 2527 // Incrementing by zero or some constant is neutral. We assume constants can 2528 // be folded into an addressing mode or an add's immediate operand. 2529 if (isa<SCEVConstant>(I->IncExpr)) { 2530 ++NumConstIncrements; 2531 continue; 2532 } 2533 2534 if (I->IncExpr == LastIncExpr) 2535 ++NumReusedIncrements; 2536 else 2537 ++NumVarIncrements; 2538 2539 LastIncExpr = I->IncExpr; 2540 } 2541 // An IV chain with a single increment is handled by LSR's postinc 2542 // uses. However, a chain with multiple increments requires keeping the IV's 2543 // value live longer than it needs to be if chained. 2544 if (NumConstIncrements > 1) 2545 --cost; 2546 2547 // Materializing increment expressions in the preheader that didn't exist in 2548 // the original code may cost a register. For example, sign-extended array 2549 // indices can produce ridiculous increments like this: 2550 // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64))) 2551 cost += NumVarIncrements; 2552 2553 // Reusing variable increments likely saves a register to hold the multiple of 2554 // the stride. 2555 cost -= NumReusedIncrements; 2556 2557 DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost 2558 << "\n"); 2559 2560 return cost < 0; 2561 } 2562 2563 /// ChainInstruction - Add this IV user to an existing chain or make it the head 2564 /// of a new chain. 2565 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper, 2566 SmallVectorImpl<ChainUsers> &ChainUsersVec) { 2567 // When IVs are used as types of varying widths, they are generally converted 2568 // to a wider type with some uses remaining narrow under a (free) trunc. 2569 Value *const NextIV = getWideOperand(IVOper); 2570 const SCEV *const OperExpr = SE.getSCEV(NextIV); 2571 const SCEV *const OperExprBase = getExprBase(OperExpr); 2572 2573 // Visit all existing chains. Check if its IVOper can be computed as a 2574 // profitable loop invariant increment from the last link in the Chain. 2575 unsigned ChainIdx = 0, NChains = IVChainVec.size(); 2576 const SCEV *LastIncExpr = 0; 2577 for (; ChainIdx < NChains; ++ChainIdx) { 2578 IVChain &Chain = IVChainVec[ChainIdx]; 2579 2580 // Prune the solution space aggressively by checking that both IV operands 2581 // are expressions that operate on the same unscaled SCEVUnknown. This 2582 // "base" will be canceled by the subsequent getMinusSCEV call. Checking 2583 // first avoids creating extra SCEV expressions. 2584 if (!StressIVChain && Chain.ExprBase != OperExprBase) 2585 continue; 2586 2587 Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand); 2588 if (!isCompatibleIVType(PrevIV, NextIV)) 2589 continue; 2590 2591 // A phi node terminates a chain. 2592 if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst())) 2593 continue; 2594 2595 // The increment must be loop-invariant so it can be kept in a register. 2596 const SCEV *PrevExpr = SE.getSCEV(PrevIV); 2597 const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr); 2598 if (!SE.isLoopInvariant(IncExpr, L)) 2599 continue; 2600 2601 if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) { 2602 LastIncExpr = IncExpr; 2603 break; 2604 } 2605 } 2606 // If we haven't found a chain, create a new one, unless we hit the max. Don't 2607 // bother for phi nodes, because they must be last in the chain. 2608 if (ChainIdx == NChains) { 2609 if (isa<PHINode>(UserInst)) 2610 return; 2611 if (NChains >= MaxChains && !StressIVChain) { 2612 DEBUG(dbgs() << "IV Chain Limit\n"); 2613 return; 2614 } 2615 LastIncExpr = OperExpr; 2616 // IVUsers may have skipped over sign/zero extensions. We don't currently 2617 // attempt to form chains involving extensions unless they can be hoisted 2618 // into this loop's AddRec. 2619 if (!isa<SCEVAddRecExpr>(LastIncExpr)) 2620 return; 2621 ++NChains; 2622 IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr), 2623 OperExprBase)); 2624 ChainUsersVec.resize(NChains); 2625 DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst 2626 << ") IV=" << *LastIncExpr << "\n"); 2627 } else { 2628 DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Inc: (" << *UserInst 2629 << ") IV+" << *LastIncExpr << "\n"); 2630 // Add this IV user to the end of the chain. 2631 IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr)); 2632 } 2633 IVChain &Chain = IVChainVec[ChainIdx]; 2634 2635 SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers; 2636 // This chain's NearUsers become FarUsers. 2637 if (!LastIncExpr->isZero()) { 2638 ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(), 2639 NearUsers.end()); 2640 NearUsers.clear(); 2641 } 2642 2643 // All other uses of IVOperand become near uses of the chain. 2644 // We currently ignore intermediate values within SCEV expressions, assuming 2645 // they will eventually be used be the current chain, or can be computed 2646 // from one of the chain increments. To be more precise we could 2647 // transitively follow its user and only add leaf IV users to the set. 2648 for (Value::use_iterator UseIter = IVOper->use_begin(), 2649 UseEnd = IVOper->use_end(); UseIter != UseEnd; ++UseIter) { 2650 Instruction *OtherUse = dyn_cast<Instruction>(*UseIter); 2651 if (!OtherUse) 2652 continue; 2653 // Uses in the chain will no longer be uses if the chain is formed. 2654 // Include the head of the chain in this iteration (not Chain.begin()). 2655 IVChain::const_iterator IncIter = Chain.Incs.begin(); 2656 IVChain::const_iterator IncEnd = Chain.Incs.end(); 2657 for( ; IncIter != IncEnd; ++IncIter) { 2658 if (IncIter->UserInst == OtherUse) 2659 break; 2660 } 2661 if (IncIter != IncEnd) 2662 continue; 2663 2664 if (SE.isSCEVable(OtherUse->getType()) 2665 && !isa<SCEVUnknown>(SE.getSCEV(OtherUse)) 2666 && IU.isIVUserOrOperand(OtherUse)) { 2667 continue; 2668 } 2669 NearUsers.insert(OtherUse); 2670 } 2671 2672 // Since this user is part of the chain, it's no longer considered a use 2673 // of the chain. 2674 ChainUsersVec[ChainIdx].FarUsers.erase(UserInst); 2675 } 2676 2677 /// CollectChains - Populate the vector of Chains. 2678 /// 2679 /// This decreases ILP at the architecture level. Targets with ample registers, 2680 /// multiple memory ports, and no register renaming probably don't want 2681 /// this. However, such targets should probably disable LSR altogether. 2682 /// 2683 /// The job of LSR is to make a reasonable choice of induction variables across 2684 /// the loop. Subsequent passes can easily "unchain" computation exposing more 2685 /// ILP *within the loop* if the target wants it. 2686 /// 2687 /// Finding the best IV chain is potentially a scheduling problem. Since LSR 2688 /// will not reorder memory operations, it will recognize this as a chain, but 2689 /// will generate redundant IV increments. Ideally this would be corrected later 2690 /// by a smart scheduler: 2691 /// = A[i] 2692 /// = A[i+x] 2693 /// A[i] = 2694 /// A[i+x] = 2695 /// 2696 /// TODO: Walk the entire domtree within this loop, not just the path to the 2697 /// loop latch. This will discover chains on side paths, but requires 2698 /// maintaining multiple copies of the Chains state. 2699 void LSRInstance::CollectChains() { 2700 DEBUG(dbgs() << "Collecting IV Chains.\n"); 2701 SmallVector<ChainUsers, 8> ChainUsersVec; 2702 2703 SmallVector<BasicBlock *,8> LatchPath; 2704 BasicBlock *LoopHeader = L->getHeader(); 2705 for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch()); 2706 Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) { 2707 LatchPath.push_back(Rung->getBlock()); 2708 } 2709 LatchPath.push_back(LoopHeader); 2710 2711 // Walk the instruction stream from the loop header to the loop latch. 2712 for (SmallVectorImpl<BasicBlock *>::reverse_iterator 2713 BBIter = LatchPath.rbegin(), BBEnd = LatchPath.rend(); 2714 BBIter != BBEnd; ++BBIter) { 2715 for (BasicBlock::iterator I = (*BBIter)->begin(), E = (*BBIter)->end(); 2716 I != E; ++I) { 2717 // Skip instructions that weren't seen by IVUsers analysis. 2718 if (isa<PHINode>(I) || !IU.isIVUserOrOperand(I)) 2719 continue; 2720 2721 // Ignore users that are part of a SCEV expression. This way we only 2722 // consider leaf IV Users. This effectively rediscovers a portion of 2723 // IVUsers analysis but in program order this time. 2724 if (SE.isSCEVable(I->getType()) && !isa<SCEVUnknown>(SE.getSCEV(I))) 2725 continue; 2726 2727 // Remove this instruction from any NearUsers set it may be in. 2728 for (unsigned ChainIdx = 0, NChains = IVChainVec.size(); 2729 ChainIdx < NChains; ++ChainIdx) { 2730 ChainUsersVec[ChainIdx].NearUsers.erase(I); 2731 } 2732 // Search for operands that can be chained. 2733 SmallPtrSet<Instruction*, 4> UniqueOperands; 2734 User::op_iterator IVOpEnd = I->op_end(); 2735 User::op_iterator IVOpIter = findIVOperand(I->op_begin(), IVOpEnd, L, SE); 2736 while (IVOpIter != IVOpEnd) { 2737 Instruction *IVOpInst = cast<Instruction>(*IVOpIter); 2738 if (UniqueOperands.insert(IVOpInst)) 2739 ChainInstruction(I, IVOpInst, ChainUsersVec); 2740 IVOpIter = findIVOperand(llvm::next(IVOpIter), IVOpEnd, L, SE); 2741 } 2742 } // Continue walking down the instructions. 2743 } // Continue walking down the domtree. 2744 // Visit phi backedges to determine if the chain can generate the IV postinc. 2745 for (BasicBlock::iterator I = L->getHeader()->begin(); 2746 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 2747 if (!SE.isSCEVable(PN->getType())) 2748 continue; 2749 2750 Instruction *IncV = 2751 dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch())); 2752 if (IncV) 2753 ChainInstruction(PN, IncV, ChainUsersVec); 2754 } 2755 // Remove any unprofitable chains. 2756 unsigned ChainIdx = 0; 2757 for (unsigned UsersIdx = 0, NChains = IVChainVec.size(); 2758 UsersIdx < NChains; ++UsersIdx) { 2759 if (!isProfitableChain(IVChainVec[UsersIdx], 2760 ChainUsersVec[UsersIdx].FarUsers, SE, TTI)) 2761 continue; 2762 // Preserve the chain at UsesIdx. 2763 if (ChainIdx != UsersIdx) 2764 IVChainVec[ChainIdx] = IVChainVec[UsersIdx]; 2765 FinalizeChain(IVChainVec[ChainIdx]); 2766 ++ChainIdx; 2767 } 2768 IVChainVec.resize(ChainIdx); 2769 } 2770 2771 void LSRInstance::FinalizeChain(IVChain &Chain) { 2772 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 2773 DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n"); 2774 2775 for (IVChain::const_iterator I = Chain.begin(), E = Chain.end(); 2776 I != E; ++I) { 2777 DEBUG(dbgs() << " Inc: " << *I->UserInst << "\n"); 2778 User::op_iterator UseI = 2779 std::find(I->UserInst->op_begin(), I->UserInst->op_end(), I->IVOperand); 2780 assert(UseI != I->UserInst->op_end() && "cannot find IV operand"); 2781 IVIncSet.insert(UseI); 2782 } 2783 } 2784 2785 /// Return true if the IVInc can be folded into an addressing mode. 2786 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst, 2787 Value *Operand, const TargetTransformInfo &TTI) { 2788 const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr); 2789 if (!IncConst || !isAddressUse(UserInst, Operand)) 2790 return false; 2791 2792 if (IncConst->getValue()->getValue().getMinSignedBits() > 64) 2793 return false; 2794 2795 int64_t IncOffset = IncConst->getValue()->getSExtValue(); 2796 if (!isAlwaysFoldable(TTI, LSRUse::Address, 2797 getAccessType(UserInst), /*BaseGV=*/ 0, 2798 IncOffset, /*HaseBaseReg=*/ false)) 2799 return false; 2800 2801 return true; 2802 } 2803 2804 /// GenerateIVChains - Generate an add or subtract for each IVInc in a chain to 2805 /// materialize the IV user's operand from the previous IV user's operand. 2806 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 2807 SmallVectorImpl<WeakVH> &DeadInsts) { 2808 // Find the new IVOperand for the head of the chain. It may have been replaced 2809 // by LSR. 2810 const IVInc &Head = Chain.Incs[0]; 2811 User::op_iterator IVOpEnd = Head.UserInst->op_end(); 2812 // findIVOperand returns IVOpEnd if it can no longer find a valid IV user. 2813 User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(), 2814 IVOpEnd, L, SE); 2815 Value *IVSrc = 0; 2816 while (IVOpIter != IVOpEnd) { 2817 IVSrc = getWideOperand(*IVOpIter); 2818 2819 // If this operand computes the expression that the chain needs, we may use 2820 // it. (Check this after setting IVSrc which is used below.) 2821 // 2822 // Note that if Head.IncExpr is wider than IVSrc, then this phi is too 2823 // narrow for the chain, so we can no longer use it. We do allow using a 2824 // wider phi, assuming the LSR checked for free truncation. In that case we 2825 // should already have a truncate on this operand such that 2826 // getSCEV(IVSrc) == IncExpr. 2827 if (SE.getSCEV(*IVOpIter) == Head.IncExpr 2828 || SE.getSCEV(IVSrc) == Head.IncExpr) { 2829 break; 2830 } 2831 IVOpIter = findIVOperand(llvm::next(IVOpIter), IVOpEnd, L, SE); 2832 } 2833 if (IVOpIter == IVOpEnd) { 2834 // Gracefully give up on this chain. 2835 DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n"); 2836 return; 2837 } 2838 2839 DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n"); 2840 Type *IVTy = IVSrc->getType(); 2841 Type *IntTy = SE.getEffectiveSCEVType(IVTy); 2842 const SCEV *LeftOverExpr = 0; 2843 for (IVChain::const_iterator IncI = Chain.begin(), 2844 IncE = Chain.end(); IncI != IncE; ++IncI) { 2845 2846 Instruction *InsertPt = IncI->UserInst; 2847 if (isa<PHINode>(InsertPt)) 2848 InsertPt = L->getLoopLatch()->getTerminator(); 2849 2850 // IVOper will replace the current IV User's operand. IVSrc is the IV 2851 // value currently held in a register. 2852 Value *IVOper = IVSrc; 2853 if (!IncI->IncExpr->isZero()) { 2854 // IncExpr was the result of subtraction of two narrow values, so must 2855 // be signed. 2856 const SCEV *IncExpr = SE.getNoopOrSignExtend(IncI->IncExpr, IntTy); 2857 LeftOverExpr = LeftOverExpr ? 2858 SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr; 2859 } 2860 if (LeftOverExpr && !LeftOverExpr->isZero()) { 2861 // Expand the IV increment. 2862 Rewriter.clearPostInc(); 2863 Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt); 2864 const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc), 2865 SE.getUnknown(IncV)); 2866 IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt); 2867 2868 // If an IV increment can't be folded, use it as the next IV value. 2869 if (!canFoldIVIncExpr(LeftOverExpr, IncI->UserInst, IncI->IVOperand, 2870 TTI)) { 2871 assert(IVTy == IVOper->getType() && "inconsistent IV increment type"); 2872 IVSrc = IVOper; 2873 LeftOverExpr = 0; 2874 } 2875 } 2876 Type *OperTy = IncI->IVOperand->getType(); 2877 if (IVTy != OperTy) { 2878 assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) && 2879 "cannot extend a chained IV"); 2880 IRBuilder<> Builder(InsertPt); 2881 IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain"); 2882 } 2883 IncI->UserInst->replaceUsesOfWith(IncI->IVOperand, IVOper); 2884 DeadInsts.push_back(IncI->IVOperand); 2885 } 2886 // If LSR created a new, wider phi, we may also replace its postinc. We only 2887 // do this if we also found a wide value for the head of the chain. 2888 if (isa<PHINode>(Chain.tailUserInst())) { 2889 for (BasicBlock::iterator I = L->getHeader()->begin(); 2890 PHINode *Phi = dyn_cast<PHINode>(I); ++I) { 2891 if (!isCompatibleIVType(Phi, IVSrc)) 2892 continue; 2893 Instruction *PostIncV = dyn_cast<Instruction>( 2894 Phi->getIncomingValueForBlock(L->getLoopLatch())); 2895 if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc))) 2896 continue; 2897 Value *IVOper = IVSrc; 2898 Type *PostIncTy = PostIncV->getType(); 2899 if (IVTy != PostIncTy) { 2900 assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types"); 2901 IRBuilder<> Builder(L->getLoopLatch()->getTerminator()); 2902 Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc()); 2903 IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain"); 2904 } 2905 Phi->replaceUsesOfWith(PostIncV, IVOper); 2906 DeadInsts.push_back(PostIncV); 2907 } 2908 } 2909 } 2910 2911 void LSRInstance::CollectFixupsAndInitialFormulae() { 2912 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) { 2913 Instruction *UserInst = UI->getUser(); 2914 // Skip IV users that are part of profitable IV Chains. 2915 User::op_iterator UseI = std::find(UserInst->op_begin(), UserInst->op_end(), 2916 UI->getOperandValToReplace()); 2917 assert(UseI != UserInst->op_end() && "cannot find IV operand"); 2918 if (IVIncSet.count(UseI)) 2919 continue; 2920 2921 // Record the uses. 2922 LSRFixup &LF = getNewFixup(); 2923 LF.UserInst = UserInst; 2924 LF.OperandValToReplace = UI->getOperandValToReplace(); 2925 LF.PostIncLoops = UI->getPostIncLoops(); 2926 2927 LSRUse::KindType Kind = LSRUse::Basic; 2928 Type *AccessTy = 0; 2929 if (isAddressUse(LF.UserInst, LF.OperandValToReplace)) { 2930 Kind = LSRUse::Address; 2931 AccessTy = getAccessType(LF.UserInst); 2932 } 2933 2934 const SCEV *S = IU.getExpr(*UI); 2935 2936 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as 2937 // (N - i == 0), and this allows (N - i) to be the expression that we work 2938 // with rather than just N or i, so we can consider the register 2939 // requirements for both N and i at the same time. Limiting this code to 2940 // equality icmps is not a problem because all interesting loops use 2941 // equality icmps, thanks to IndVarSimplify. 2942 if (ICmpInst *CI = dyn_cast<ICmpInst>(LF.UserInst)) 2943 if (CI->isEquality()) { 2944 // Swap the operands if needed to put the OperandValToReplace on the 2945 // left, for consistency. 2946 Value *NV = CI->getOperand(1); 2947 if (NV == LF.OperandValToReplace) { 2948 CI->setOperand(1, CI->getOperand(0)); 2949 CI->setOperand(0, NV); 2950 NV = CI->getOperand(1); 2951 Changed = true; 2952 } 2953 2954 // x == y --> x - y == 0 2955 const SCEV *N = SE.getSCEV(NV); 2956 if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) { 2957 // S is normalized, so normalize N before folding it into S 2958 // to keep the result normalized. 2959 N = TransformForPostIncUse(Normalize, N, CI, 0, 2960 LF.PostIncLoops, SE, DT); 2961 Kind = LSRUse::ICmpZero; 2962 S = SE.getMinusSCEV(N, S); 2963 } 2964 2965 // -1 and the negations of all interesting strides (except the negation 2966 // of -1) are now also interesting. 2967 for (size_t i = 0, e = Factors.size(); i != e; ++i) 2968 if (Factors[i] != -1) 2969 Factors.insert(-(uint64_t)Factors[i]); 2970 Factors.insert(-1); 2971 } 2972 2973 // Set up the initial formula for this use. 2974 std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy); 2975 LF.LUIdx = P.first; 2976 LF.Offset = P.second; 2977 LSRUse &LU = Uses[LF.LUIdx]; 2978 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 2979 if (!LU.WidestFixupType || 2980 SE.getTypeSizeInBits(LU.WidestFixupType) < 2981 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 2982 LU.WidestFixupType = LF.OperandValToReplace->getType(); 2983 2984 // If this is the first use of this LSRUse, give it a formula. 2985 if (LU.Formulae.empty()) { 2986 InsertInitialFormula(S, LU, LF.LUIdx); 2987 CountRegisters(LU.Formulae.back(), LF.LUIdx); 2988 } 2989 } 2990 2991 DEBUG(print_fixups(dbgs())); 2992 } 2993 2994 /// InsertInitialFormula - Insert a formula for the given expression into 2995 /// the given use, separating out loop-variant portions from loop-invariant 2996 /// and loop-computable portions. 2997 void 2998 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) { 2999 // Mark uses whose expressions cannot be expanded. 3000 if (!isSafeToExpand(S, SE)) 3001 LU.RigidFormula = true; 3002 3003 Formula F; 3004 F.InitialMatch(S, L, SE); 3005 bool Inserted = InsertFormula(LU, LUIdx, F); 3006 assert(Inserted && "Initial formula already exists!"); (void)Inserted; 3007 } 3008 3009 /// InsertSupplementalFormula - Insert a simple single-register formula for 3010 /// the given expression into the given use. 3011 void 3012 LSRInstance::InsertSupplementalFormula(const SCEV *S, 3013 LSRUse &LU, size_t LUIdx) { 3014 Formula F; 3015 F.BaseRegs.push_back(S); 3016 F.HasBaseReg = true; 3017 bool Inserted = InsertFormula(LU, LUIdx, F); 3018 assert(Inserted && "Supplemental formula already exists!"); (void)Inserted; 3019 } 3020 3021 /// CountRegisters - Note which registers are used by the given formula, 3022 /// updating RegUses. 3023 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) { 3024 if (F.ScaledReg) 3025 RegUses.CountRegister(F.ScaledReg, LUIdx); 3026 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(), 3027 E = F.BaseRegs.end(); I != E; ++I) 3028 RegUses.CountRegister(*I, LUIdx); 3029 } 3030 3031 /// InsertFormula - If the given formula has not yet been inserted, add it to 3032 /// the list, and return true. Return false otherwise. 3033 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) { 3034 if (!LU.InsertFormula(F)) 3035 return false; 3036 3037 CountRegisters(F, LUIdx); 3038 return true; 3039 } 3040 3041 /// CollectLoopInvariantFixupsAndFormulae - Check for other uses of 3042 /// loop-invariant values which we're tracking. These other uses will pin these 3043 /// values in registers, making them less profitable for elimination. 3044 /// TODO: This currently misses non-constant addrec step registers. 3045 /// TODO: Should this give more weight to users inside the loop? 3046 void 3047 LSRInstance::CollectLoopInvariantFixupsAndFormulae() { 3048 SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end()); 3049 SmallPtrSet<const SCEV *, 8> Inserted; 3050 3051 while (!Worklist.empty()) { 3052 const SCEV *S = Worklist.pop_back_val(); 3053 3054 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) 3055 Worklist.append(N->op_begin(), N->op_end()); 3056 else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) 3057 Worklist.push_back(C->getOperand()); 3058 else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 3059 Worklist.push_back(D->getLHS()); 3060 Worklist.push_back(D->getRHS()); 3061 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 3062 if (!Inserted.insert(U)) continue; 3063 const Value *V = U->getValue(); 3064 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 3065 // Look for instructions defined outside the loop. 3066 if (L->contains(Inst)) continue; 3067 } else if (isa<UndefValue>(V)) 3068 // Undef doesn't have a live range, so it doesn't matter. 3069 continue; 3070 for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end(); 3071 UI != UE; ++UI) { 3072 const Instruction *UserInst = dyn_cast<Instruction>(*UI); 3073 // Ignore non-instructions. 3074 if (!UserInst) 3075 continue; 3076 // Ignore instructions in other functions (as can happen with 3077 // Constants). 3078 if (UserInst->getParent()->getParent() != L->getHeader()->getParent()) 3079 continue; 3080 // Ignore instructions not dominated by the loop. 3081 const BasicBlock *UseBB = !isa<PHINode>(UserInst) ? 3082 UserInst->getParent() : 3083 cast<PHINode>(UserInst)->getIncomingBlock( 3084 PHINode::getIncomingValueNumForOperand(UI.getOperandNo())); 3085 if (!DT.dominates(L->getHeader(), UseBB)) 3086 continue; 3087 // Ignore uses which are part of other SCEV expressions, to avoid 3088 // analyzing them multiple times. 3089 if (SE.isSCEVable(UserInst->getType())) { 3090 const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst)); 3091 // If the user is a no-op, look through to its uses. 3092 if (!isa<SCEVUnknown>(UserS)) 3093 continue; 3094 if (UserS == U) { 3095 Worklist.push_back( 3096 SE.getUnknown(const_cast<Instruction *>(UserInst))); 3097 continue; 3098 } 3099 } 3100 // Ignore icmp instructions which are already being analyzed. 3101 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) { 3102 unsigned OtherIdx = !UI.getOperandNo(); 3103 Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx)); 3104 if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L)) 3105 continue; 3106 } 3107 3108 LSRFixup &LF = getNewFixup(); 3109 LF.UserInst = const_cast<Instruction *>(UserInst); 3110 LF.OperandValToReplace = UI.getUse(); 3111 std::pair<size_t, int64_t> P = getUse(S, LSRUse::Basic, 0); 3112 LF.LUIdx = P.first; 3113 LF.Offset = P.second; 3114 LSRUse &LU = Uses[LF.LUIdx]; 3115 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3116 if (!LU.WidestFixupType || 3117 SE.getTypeSizeInBits(LU.WidestFixupType) < 3118 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3119 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3120 InsertSupplementalFormula(U, LU, LF.LUIdx); 3121 CountRegisters(LU.Formulae.back(), Uses.size() - 1); 3122 break; 3123 } 3124 } 3125 } 3126 } 3127 3128 /// CollectSubexprs - Split S into subexpressions which can be pulled out into 3129 /// separate registers. If C is non-null, multiply each subexpression by C. 3130 /// 3131 /// Return remainder expression after factoring the subexpressions captured by 3132 /// Ops. If Ops is complete, return NULL. 3133 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C, 3134 SmallVectorImpl<const SCEV *> &Ops, 3135 const Loop *L, 3136 ScalarEvolution &SE, 3137 unsigned Depth = 0) { 3138 // Arbitrarily cap recursion to protect compile time. 3139 if (Depth >= 3) 3140 return S; 3141 3142 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3143 // Break out add operands. 3144 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); 3145 I != E; ++I) { 3146 const SCEV *Remainder = CollectSubexprs(*I, C, Ops, L, SE, Depth+1); 3147 if (Remainder) 3148 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3149 } 3150 return 0; 3151 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 3152 // Split a non-zero base out of an addrec. 3153 if (AR->getStart()->isZero()) 3154 return S; 3155 3156 const SCEV *Remainder = CollectSubexprs(AR->getStart(), 3157 C, Ops, L, SE, Depth+1); 3158 // Split the non-zero AddRec unless it is part of a nested recurrence that 3159 // does not pertain to this loop. 3160 if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) { 3161 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3162 Remainder = 0; 3163 } 3164 if (Remainder != AR->getStart()) { 3165 if (!Remainder) 3166 Remainder = SE.getConstant(AR->getType(), 0); 3167 return SE.getAddRecExpr(Remainder, 3168 AR->getStepRecurrence(SE), 3169 AR->getLoop(), 3170 //FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 3171 SCEV::FlagAnyWrap); 3172 } 3173 } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3174 // Break (C * (a + b + c)) into C*a + C*b + C*c. 3175 if (Mul->getNumOperands() != 2) 3176 return S; 3177 if (const SCEVConstant *Op0 = 3178 dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3179 C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0; 3180 const SCEV *Remainder = 3181 CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1); 3182 if (Remainder) 3183 Ops.push_back(SE.getMulExpr(C, Remainder)); 3184 return 0; 3185 } 3186 } 3187 return S; 3188 } 3189 3190 /// GenerateReassociations - Split out subexpressions from adds and the bases of 3191 /// addrecs. 3192 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx, 3193 Formula Base, 3194 unsigned Depth) { 3195 // Arbitrarily cap recursion to protect compile time. 3196 if (Depth >= 3) return; 3197 3198 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { 3199 const SCEV *BaseReg = Base.BaseRegs[i]; 3200 3201 SmallVector<const SCEV *, 8> AddOps; 3202 const SCEV *Remainder = CollectSubexprs(BaseReg, 0, AddOps, L, SE); 3203 if (Remainder) 3204 AddOps.push_back(Remainder); 3205 3206 if (AddOps.size() == 1) continue; 3207 3208 for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(), 3209 JE = AddOps.end(); J != JE; ++J) { 3210 3211 // Loop-variant "unknown" values are uninteresting; we won't be able to 3212 // do anything meaningful with them. 3213 if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L)) 3214 continue; 3215 3216 // Don't pull a constant into a register if the constant could be folded 3217 // into an immediate field. 3218 if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3219 LU.AccessTy, *J, Base.getNumRegs() > 1)) 3220 continue; 3221 3222 // Collect all operands except *J. 3223 SmallVector<const SCEV *, 8> InnerAddOps 3224 (((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J); 3225 InnerAddOps.append 3226 (llvm::next(J), ((const SmallVector<const SCEV *, 8> &)AddOps).end()); 3227 3228 // Don't leave just a constant behind in a register if the constant could 3229 // be folded into an immediate field. 3230 if (InnerAddOps.size() == 1 && 3231 isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3232 LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1)) 3233 continue; 3234 3235 const SCEV *InnerSum = SE.getAddExpr(InnerAddOps); 3236 if (InnerSum->isZero()) 3237 continue; 3238 Formula F = Base; 3239 3240 // Add the remaining pieces of the add back into the new formula. 3241 const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum); 3242 if (InnerSumSC && 3243 SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 && 3244 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3245 InnerSumSC->getValue()->getZExtValue())) { 3246 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset + 3247 InnerSumSC->getValue()->getZExtValue(); 3248 F.BaseRegs.erase(F.BaseRegs.begin() + i); 3249 } else 3250 F.BaseRegs[i] = InnerSum; 3251 3252 // Add J as its own register, or an unfolded immediate. 3253 const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J); 3254 if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 && 3255 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3256 SC->getValue()->getZExtValue())) 3257 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset + 3258 SC->getValue()->getZExtValue(); 3259 else 3260 F.BaseRegs.push_back(*J); 3261 3262 if (InsertFormula(LU, LUIdx, F)) 3263 // If that formula hadn't been seen before, recurse to find more like 3264 // it. 3265 GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth+1); 3266 } 3267 } 3268 } 3269 3270 /// GenerateCombinations - Generate a formula consisting of all of the 3271 /// loop-dominating registers added into a single register. 3272 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx, 3273 Formula Base) { 3274 // This method is only interesting on a plurality of registers. 3275 if (Base.BaseRegs.size() <= 1) return; 3276 3277 Formula F = Base; 3278 F.BaseRegs.clear(); 3279 SmallVector<const SCEV *, 4> Ops; 3280 for (SmallVectorImpl<const SCEV *>::const_iterator 3281 I = Base.BaseRegs.begin(), E = Base.BaseRegs.end(); I != E; ++I) { 3282 const SCEV *BaseReg = *I; 3283 if (SE.properlyDominates(BaseReg, L->getHeader()) && 3284 !SE.hasComputableLoopEvolution(BaseReg, L)) 3285 Ops.push_back(BaseReg); 3286 else 3287 F.BaseRegs.push_back(BaseReg); 3288 } 3289 if (Ops.size() > 1) { 3290 const SCEV *Sum = SE.getAddExpr(Ops); 3291 // TODO: If Sum is zero, it probably means ScalarEvolution missed an 3292 // opportunity to fold something. For now, just ignore such cases 3293 // rather than proceed with zero in a register. 3294 if (!Sum->isZero()) { 3295 F.BaseRegs.push_back(Sum); 3296 (void)InsertFormula(LU, LUIdx, F); 3297 } 3298 } 3299 } 3300 3301 /// GenerateSymbolicOffsets - Generate reuse formulae using symbolic offsets. 3302 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, 3303 Formula Base) { 3304 // We can't add a symbolic offset if the address already contains one. 3305 if (Base.BaseGV) return; 3306 3307 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { 3308 const SCEV *G = Base.BaseRegs[i]; 3309 GlobalValue *GV = ExtractSymbol(G, SE); 3310 if (G->isZero() || !GV) 3311 continue; 3312 Formula F = Base; 3313 F.BaseGV = GV; 3314 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3315 continue; 3316 F.BaseRegs[i] = G; 3317 (void)InsertFormula(LU, LUIdx, F); 3318 } 3319 } 3320 3321 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets. 3322 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, 3323 Formula Base) { 3324 // TODO: For now, just add the min and max offset, because it usually isn't 3325 // worthwhile looking at everything inbetween. 3326 SmallVector<int64_t, 2> Worklist; 3327 Worklist.push_back(LU.MinOffset); 3328 if (LU.MaxOffset != LU.MinOffset) 3329 Worklist.push_back(LU.MaxOffset); 3330 3331 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { 3332 const SCEV *G = Base.BaseRegs[i]; 3333 3334 for (SmallVectorImpl<int64_t>::const_iterator I = Worklist.begin(), 3335 E = Worklist.end(); I != E; ++I) { 3336 Formula F = Base; 3337 F.BaseOffset = (uint64_t)Base.BaseOffset - *I; 3338 if (isLegalUse(TTI, LU.MinOffset - *I, LU.MaxOffset - *I, LU.Kind, 3339 LU.AccessTy, F)) { 3340 // Add the offset to the base register. 3341 const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), *I), G); 3342 // If it cancelled out, drop the base register, otherwise update it. 3343 if (NewG->isZero()) { 3344 std::swap(F.BaseRegs[i], F.BaseRegs.back()); 3345 F.BaseRegs.pop_back(); 3346 } else 3347 F.BaseRegs[i] = NewG; 3348 3349 (void)InsertFormula(LU, LUIdx, F); 3350 } 3351 } 3352 3353 int64_t Imm = ExtractImmediate(G, SE); 3354 if (G->isZero() || Imm == 0) 3355 continue; 3356 Formula F = Base; 3357 F.BaseOffset = (uint64_t)F.BaseOffset + Imm; 3358 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3359 continue; 3360 F.BaseRegs[i] = G; 3361 (void)InsertFormula(LU, LUIdx, F); 3362 } 3363 } 3364 3365 /// GenerateICmpZeroScales - For ICmpZero, check to see if we can scale up 3366 /// the comparison. For example, x == y -> x*c == y*c. 3367 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, 3368 Formula Base) { 3369 if (LU.Kind != LSRUse::ICmpZero) return; 3370 3371 // Determine the integer type for the base formula. 3372 Type *IntTy = Base.getType(); 3373 if (!IntTy) return; 3374 if (SE.getTypeSizeInBits(IntTy) > 64) return; 3375 3376 // Don't do this if there is more than one offset. 3377 if (LU.MinOffset != LU.MaxOffset) return; 3378 3379 assert(!Base.BaseGV && "ICmpZero use is not legal!"); 3380 3381 // Check each interesting stride. 3382 for (SmallSetVector<int64_t, 8>::const_iterator 3383 I = Factors.begin(), E = Factors.end(); I != E; ++I) { 3384 int64_t Factor = *I; 3385 3386 // Check that the multiplication doesn't overflow. 3387 if (Base.BaseOffset == INT64_MIN && Factor == -1) 3388 continue; 3389 int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor; 3390 if (NewBaseOffset / Factor != Base.BaseOffset) 3391 continue; 3392 3393 // Check that multiplying with the use offset doesn't overflow. 3394 int64_t Offset = LU.MinOffset; 3395 if (Offset == INT64_MIN && Factor == -1) 3396 continue; 3397 Offset = (uint64_t)Offset * Factor; 3398 if (Offset / Factor != LU.MinOffset) 3399 continue; 3400 3401 Formula F = Base; 3402 F.BaseOffset = NewBaseOffset; 3403 3404 // Check that this scale is legal. 3405 if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F)) 3406 continue; 3407 3408 // Compensate for the use having MinOffset built into it. 3409 F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset; 3410 3411 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3412 3413 // Check that multiplying with each base register doesn't overflow. 3414 for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) { 3415 F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS); 3416 if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i]) 3417 goto next; 3418 } 3419 3420 // Check that multiplying with the scaled register doesn't overflow. 3421 if (F.ScaledReg) { 3422 F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS); 3423 if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg) 3424 continue; 3425 } 3426 3427 // Check that multiplying with the unfolded offset doesn't overflow. 3428 if (F.UnfoldedOffset != 0) { 3429 if (F.UnfoldedOffset == INT64_MIN && Factor == -1) 3430 continue; 3431 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor; 3432 if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset) 3433 continue; 3434 } 3435 3436 // If we make it here and it's legal, add it. 3437 (void)InsertFormula(LU, LUIdx, F); 3438 next:; 3439 } 3440 } 3441 3442 /// GenerateScales - Generate stride factor reuse formulae by making use of 3443 /// scaled-offset address modes, for example. 3444 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) { 3445 // Determine the integer type for the base formula. 3446 Type *IntTy = Base.getType(); 3447 if (!IntTy) return; 3448 3449 // If this Formula already has a scaled register, we can't add another one. 3450 if (Base.Scale != 0) return; 3451 3452 // Check each interesting stride. 3453 for (SmallSetVector<int64_t, 8>::const_iterator 3454 I = Factors.begin(), E = Factors.end(); I != E; ++I) { 3455 int64_t Factor = *I; 3456 3457 Base.Scale = Factor; 3458 Base.HasBaseReg = Base.BaseRegs.size() > 1; 3459 // Check whether this scale is going to be legal. 3460 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 3461 Base)) { 3462 // As a special-case, handle special out-of-loop Basic users specially. 3463 // TODO: Reconsider this special case. 3464 if (LU.Kind == LSRUse::Basic && 3465 isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special, 3466 LU.AccessTy, Base) && 3467 LU.AllFixupsOutsideLoop) 3468 LU.Kind = LSRUse::Special; 3469 else 3470 continue; 3471 } 3472 // For an ICmpZero, negating a solitary base register won't lead to 3473 // new solutions. 3474 if (LU.Kind == LSRUse::ICmpZero && 3475 !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV) 3476 continue; 3477 // For each addrec base reg, apply the scale, if possible. 3478 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3479 if (const SCEVAddRecExpr *AR = 3480 dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i])) { 3481 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3482 if (FactorS->isZero()) 3483 continue; 3484 // Divide out the factor, ignoring high bits, since we'll be 3485 // scaling the value back up in the end. 3486 if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) { 3487 // TODO: This could be optimized to avoid all the copying. 3488 Formula F = Base; 3489 F.ScaledReg = Quotient; 3490 F.DeleteBaseReg(F.BaseRegs[i]); 3491 (void)InsertFormula(LU, LUIdx, F); 3492 } 3493 } 3494 } 3495 } 3496 3497 /// GenerateTruncates - Generate reuse formulae from different IV types. 3498 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) { 3499 // Don't bother truncating symbolic values. 3500 if (Base.BaseGV) return; 3501 3502 // Determine the integer type for the base formula. 3503 Type *DstTy = Base.getType(); 3504 if (!DstTy) return; 3505 DstTy = SE.getEffectiveSCEVType(DstTy); 3506 3507 for (SmallSetVector<Type *, 4>::const_iterator 3508 I = Types.begin(), E = Types.end(); I != E; ++I) { 3509 Type *SrcTy = *I; 3510 if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) { 3511 Formula F = Base; 3512 3513 if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, *I); 3514 for (SmallVectorImpl<const SCEV *>::iterator J = F.BaseRegs.begin(), 3515 JE = F.BaseRegs.end(); J != JE; ++J) 3516 *J = SE.getAnyExtendExpr(*J, SrcTy); 3517 3518 // TODO: This assumes we've done basic processing on all uses and 3519 // have an idea what the register usage is. 3520 if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses)) 3521 continue; 3522 3523 (void)InsertFormula(LU, LUIdx, F); 3524 } 3525 } 3526 } 3527 3528 namespace { 3529 3530 /// WorkItem - Helper class for GenerateCrossUseConstantOffsets. It's used to 3531 /// defer modifications so that the search phase doesn't have to worry about 3532 /// the data structures moving underneath it. 3533 struct WorkItem { 3534 size_t LUIdx; 3535 int64_t Imm; 3536 const SCEV *OrigReg; 3537 3538 WorkItem(size_t LI, int64_t I, const SCEV *R) 3539 : LUIdx(LI), Imm(I), OrigReg(R) {} 3540 3541 void print(raw_ostream &OS) const; 3542 void dump() const; 3543 }; 3544 3545 } 3546 3547 void WorkItem::print(raw_ostream &OS) const { 3548 OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx 3549 << " , add offset " << Imm; 3550 } 3551 3552 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 3553 void WorkItem::dump() const { 3554 print(errs()); errs() << '\n'; 3555 } 3556 #endif 3557 3558 /// GenerateCrossUseConstantOffsets - Look for registers which are a constant 3559 /// distance apart and try to form reuse opportunities between them. 3560 void LSRInstance::GenerateCrossUseConstantOffsets() { 3561 // Group the registers by their value without any added constant offset. 3562 typedef std::map<int64_t, const SCEV *> ImmMapTy; 3563 typedef DenseMap<const SCEV *, ImmMapTy> RegMapTy; 3564 RegMapTy Map; 3565 DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap; 3566 SmallVector<const SCEV *, 8> Sequence; 3567 for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end(); 3568 I != E; ++I) { 3569 const SCEV *Reg = *I; 3570 int64_t Imm = ExtractImmediate(Reg, SE); 3571 std::pair<RegMapTy::iterator, bool> Pair = 3572 Map.insert(std::make_pair(Reg, ImmMapTy())); 3573 if (Pair.second) 3574 Sequence.push_back(Reg); 3575 Pair.first->second.insert(std::make_pair(Imm, *I)); 3576 UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(*I); 3577 } 3578 3579 // Now examine each set of registers with the same base value. Build up 3580 // a list of work to do and do the work in a separate step so that we're 3581 // not adding formulae and register counts while we're searching. 3582 SmallVector<WorkItem, 32> WorkItems; 3583 SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems; 3584 for (SmallVectorImpl<const SCEV *>::const_iterator I = Sequence.begin(), 3585 E = Sequence.end(); I != E; ++I) { 3586 const SCEV *Reg = *I; 3587 const ImmMapTy &Imms = Map.find(Reg)->second; 3588 3589 // It's not worthwhile looking for reuse if there's only one offset. 3590 if (Imms.size() == 1) 3591 continue; 3592 3593 DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':'; 3594 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); 3595 J != JE; ++J) 3596 dbgs() << ' ' << J->first; 3597 dbgs() << '\n'); 3598 3599 // Examine each offset. 3600 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); 3601 J != JE; ++J) { 3602 const SCEV *OrigReg = J->second; 3603 3604 int64_t JImm = J->first; 3605 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg); 3606 3607 if (!isa<SCEVConstant>(OrigReg) && 3608 UsedByIndicesMap[Reg].count() == 1) { 3609 DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n'); 3610 continue; 3611 } 3612 3613 // Conservatively examine offsets between this orig reg a few selected 3614 // other orig regs. 3615 ImmMapTy::const_iterator OtherImms[] = { 3616 Imms.begin(), prior(Imms.end()), 3617 Imms.lower_bound((Imms.begin()->first + prior(Imms.end())->first) / 2) 3618 }; 3619 for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) { 3620 ImmMapTy::const_iterator M = OtherImms[i]; 3621 if (M == J || M == JE) continue; 3622 3623 // Compute the difference between the two. 3624 int64_t Imm = (uint64_t)JImm - M->first; 3625 for (int LUIdx = UsedByIndices.find_first(); LUIdx != -1; 3626 LUIdx = UsedByIndices.find_next(LUIdx)) 3627 // Make a memo of this use, offset, and register tuple. 3628 if (UniqueItems.insert(std::make_pair(LUIdx, Imm))) 3629 WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg)); 3630 } 3631 } 3632 } 3633 3634 Map.clear(); 3635 Sequence.clear(); 3636 UsedByIndicesMap.clear(); 3637 UniqueItems.clear(); 3638 3639 // Now iterate through the worklist and add new formulae. 3640 for (SmallVectorImpl<WorkItem>::const_iterator I = WorkItems.begin(), 3641 E = WorkItems.end(); I != E; ++I) { 3642 const WorkItem &WI = *I; 3643 size_t LUIdx = WI.LUIdx; 3644 LSRUse &LU = Uses[LUIdx]; 3645 int64_t Imm = WI.Imm; 3646 const SCEV *OrigReg = WI.OrigReg; 3647 3648 Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType()); 3649 const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm)); 3650 unsigned BitWidth = SE.getTypeSizeInBits(IntTy); 3651 3652 // TODO: Use a more targeted data structure. 3653 for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) { 3654 const Formula &F = LU.Formulae[L]; 3655 // Use the immediate in the scaled register. 3656 if (F.ScaledReg == OrigReg) { 3657 int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale; 3658 // Don't create 50 + reg(-50). 3659 if (F.referencesReg(SE.getSCEV( 3660 ConstantInt::get(IntTy, -(uint64_t)Offset)))) 3661 continue; 3662 Formula NewF = F; 3663 NewF.BaseOffset = Offset; 3664 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 3665 NewF)) 3666 continue; 3667 NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg); 3668 3669 // If the new scale is a constant in a register, and adding the constant 3670 // value to the immediate would produce a value closer to zero than the 3671 // immediate itself, then the formula isn't worthwhile. 3672 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg)) 3673 if (C->getValue()->isNegative() != 3674 (NewF.BaseOffset < 0) && 3675 (C->getValue()->getValue().abs() * APInt(BitWidth, F.Scale)) 3676 .ule(abs64(NewF.BaseOffset))) 3677 continue; 3678 3679 // OK, looks good. 3680 (void)InsertFormula(LU, LUIdx, NewF); 3681 } else { 3682 // Use the immediate in a base register. 3683 for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) { 3684 const SCEV *BaseReg = F.BaseRegs[N]; 3685 if (BaseReg != OrigReg) 3686 continue; 3687 Formula NewF = F; 3688 NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm; 3689 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, 3690 LU.Kind, LU.AccessTy, NewF)) { 3691 if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm)) 3692 continue; 3693 NewF = F; 3694 NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm; 3695 } 3696 NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg); 3697 3698 // If the new formula has a constant in a register, and adding the 3699 // constant value to the immediate would produce a value closer to 3700 // zero than the immediate itself, then the formula isn't worthwhile. 3701 for (SmallVectorImpl<const SCEV *>::const_iterator 3702 J = NewF.BaseRegs.begin(), JE = NewF.BaseRegs.end(); 3703 J != JE; ++J) 3704 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*J)) 3705 if ((C->getValue()->getValue() + NewF.BaseOffset).abs().slt( 3706 abs64(NewF.BaseOffset)) && 3707 (C->getValue()->getValue() + 3708 NewF.BaseOffset).countTrailingZeros() >= 3709 countTrailingZeros<uint64_t>(NewF.BaseOffset)) 3710 goto skip_formula; 3711 3712 // Ok, looks good. 3713 (void)InsertFormula(LU, LUIdx, NewF); 3714 break; 3715 skip_formula:; 3716 } 3717 } 3718 } 3719 } 3720 } 3721 3722 /// GenerateAllReuseFormulae - Generate formulae for each use. 3723 void 3724 LSRInstance::GenerateAllReuseFormulae() { 3725 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan 3726 // queries are more precise. 3727 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3728 LSRUse &LU = Uses[LUIdx]; 3729 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3730 GenerateReassociations(LU, LUIdx, LU.Formulae[i]); 3731 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3732 GenerateCombinations(LU, LUIdx, LU.Formulae[i]); 3733 } 3734 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3735 LSRUse &LU = Uses[LUIdx]; 3736 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3737 GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]); 3738 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3739 GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]); 3740 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3741 GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]); 3742 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3743 GenerateScales(LU, LUIdx, LU.Formulae[i]); 3744 } 3745 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3746 LSRUse &LU = Uses[LUIdx]; 3747 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3748 GenerateTruncates(LU, LUIdx, LU.Formulae[i]); 3749 } 3750 3751 GenerateCrossUseConstantOffsets(); 3752 3753 DEBUG(dbgs() << "\n" 3754 "After generating reuse formulae:\n"; 3755 print_uses(dbgs())); 3756 } 3757 3758 /// If there are multiple formulae with the same set of registers used 3759 /// by other uses, pick the best one and delete the others. 3760 void LSRInstance::FilterOutUndesirableDedicatedRegisters() { 3761 DenseSet<const SCEV *> VisitedRegs; 3762 SmallPtrSet<const SCEV *, 16> Regs; 3763 SmallPtrSet<const SCEV *, 16> LoserRegs; 3764 #ifndef NDEBUG 3765 bool ChangedFormulae = false; 3766 #endif 3767 3768 // Collect the best formula for each unique set of shared registers. This 3769 // is reset for each use. 3770 typedef DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo> 3771 BestFormulaeTy; 3772 BestFormulaeTy BestFormulae; 3773 3774 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3775 LSRUse &LU = Uses[LUIdx]; 3776 DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n'); 3777 3778 bool Any = false; 3779 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); 3780 FIdx != NumForms; ++FIdx) { 3781 Formula &F = LU.Formulae[FIdx]; 3782 3783 // Some formulas are instant losers. For example, they may depend on 3784 // nonexistent AddRecs from other loops. These need to be filtered 3785 // immediately, otherwise heuristics could choose them over others leading 3786 // to an unsatisfactory solution. Passing LoserRegs into RateFormula here 3787 // avoids the need to recompute this information across formulae using the 3788 // same bad AddRec. Passing LoserRegs is also essential unless we remove 3789 // the corresponding bad register from the Regs set. 3790 Cost CostF; 3791 Regs.clear(); 3792 CostF.RateFormula(TTI, F, Regs, VisitedRegs, L, LU.Offsets, SE, DT, LU, 3793 &LoserRegs); 3794 if (CostF.isLoser()) { 3795 // During initial formula generation, undesirable formulae are generated 3796 // by uses within other loops that have some non-trivial address mode or 3797 // use the postinc form of the IV. LSR needs to provide these formulae 3798 // as the basis of rediscovering the desired formula that uses an AddRec 3799 // corresponding to the existing phi. Once all formulae have been 3800 // generated, these initial losers may be pruned. 3801 DEBUG(dbgs() << " Filtering loser "; F.print(dbgs()); 3802 dbgs() << "\n"); 3803 } 3804 else { 3805 SmallVector<const SCEV *, 4> Key; 3806 for (SmallVectorImpl<const SCEV *>::const_iterator J = F.BaseRegs.begin(), 3807 JE = F.BaseRegs.end(); J != JE; ++J) { 3808 const SCEV *Reg = *J; 3809 if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx)) 3810 Key.push_back(Reg); 3811 } 3812 if (F.ScaledReg && 3813 RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx)) 3814 Key.push_back(F.ScaledReg); 3815 // Unstable sort by host order ok, because this is only used for 3816 // uniquifying. 3817 std::sort(Key.begin(), Key.end()); 3818 3819 std::pair<BestFormulaeTy::const_iterator, bool> P = 3820 BestFormulae.insert(std::make_pair(Key, FIdx)); 3821 if (P.second) 3822 continue; 3823 3824 Formula &Best = LU.Formulae[P.first->second]; 3825 3826 Cost CostBest; 3827 Regs.clear(); 3828 CostBest.RateFormula(TTI, Best, Regs, VisitedRegs, L, LU.Offsets, SE, 3829 DT, LU); 3830 if (CostF < CostBest) 3831 std::swap(F, Best); 3832 DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 3833 dbgs() << "\n" 3834 " in favor of formula "; Best.print(dbgs()); 3835 dbgs() << '\n'); 3836 } 3837 #ifndef NDEBUG 3838 ChangedFormulae = true; 3839 #endif 3840 LU.DeleteFormula(F); 3841 --FIdx; 3842 --NumForms; 3843 Any = true; 3844 } 3845 3846 // Now that we've filtered out some formulae, recompute the Regs set. 3847 if (Any) 3848 LU.RecomputeRegs(LUIdx, RegUses); 3849 3850 // Reset this to prepare for the next use. 3851 BestFormulae.clear(); 3852 } 3853 3854 DEBUG(if (ChangedFormulae) { 3855 dbgs() << "\n" 3856 "After filtering out undesirable candidates:\n"; 3857 print_uses(dbgs()); 3858 }); 3859 } 3860 3861 // This is a rough guess that seems to work fairly well. 3862 static const size_t ComplexityLimit = UINT16_MAX; 3863 3864 /// EstimateSearchSpaceComplexity - Estimate the worst-case number of 3865 /// solutions the solver might have to consider. It almost never considers 3866 /// this many solutions because it prune the search space, but the pruning 3867 /// isn't always sufficient. 3868 size_t LSRInstance::EstimateSearchSpaceComplexity() const { 3869 size_t Power = 1; 3870 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(), 3871 E = Uses.end(); I != E; ++I) { 3872 size_t FSize = I->Formulae.size(); 3873 if (FSize >= ComplexityLimit) { 3874 Power = ComplexityLimit; 3875 break; 3876 } 3877 Power *= FSize; 3878 if (Power >= ComplexityLimit) 3879 break; 3880 } 3881 return Power; 3882 } 3883 3884 /// NarrowSearchSpaceByDetectingSupersets - When one formula uses a superset 3885 /// of the registers of another formula, it won't help reduce register 3886 /// pressure (though it may not necessarily hurt register pressure); remove 3887 /// it to simplify the system. 3888 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() { 3889 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 3890 DEBUG(dbgs() << "The search space is too complex.\n"); 3891 3892 DEBUG(dbgs() << "Narrowing the search space by eliminating formulae " 3893 "which use a superset of registers used by other " 3894 "formulae.\n"); 3895 3896 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3897 LSRUse &LU = Uses[LUIdx]; 3898 bool Any = false; 3899 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 3900 Formula &F = LU.Formulae[i]; 3901 // Look for a formula with a constant or GV in a register. If the use 3902 // also has a formula with that same value in an immediate field, 3903 // delete the one that uses a register. 3904 for (SmallVectorImpl<const SCEV *>::const_iterator 3905 I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) { 3906 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) { 3907 Formula NewF = F; 3908 NewF.BaseOffset += C->getValue()->getSExtValue(); 3909 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 3910 (I - F.BaseRegs.begin())); 3911 if (LU.HasFormulaWithSameRegs(NewF)) { 3912 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 3913 LU.DeleteFormula(F); 3914 --i; 3915 --e; 3916 Any = true; 3917 break; 3918 } 3919 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) { 3920 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) 3921 if (!F.BaseGV) { 3922 Formula NewF = F; 3923 NewF.BaseGV = GV; 3924 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 3925 (I - F.BaseRegs.begin())); 3926 if (LU.HasFormulaWithSameRegs(NewF)) { 3927 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 3928 dbgs() << '\n'); 3929 LU.DeleteFormula(F); 3930 --i; 3931 --e; 3932 Any = true; 3933 break; 3934 } 3935 } 3936 } 3937 } 3938 } 3939 if (Any) 3940 LU.RecomputeRegs(LUIdx, RegUses); 3941 } 3942 3943 DEBUG(dbgs() << "After pre-selection:\n"; 3944 print_uses(dbgs())); 3945 } 3946 } 3947 3948 /// NarrowSearchSpaceByCollapsingUnrolledCode - When there are many registers 3949 /// for expressions like A, A+1, A+2, etc., allocate a single register for 3950 /// them. 3951 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() { 3952 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 3953 return; 3954 3955 DEBUG(dbgs() << "The search space is too complex.\n" 3956 "Narrowing the search space by assuming that uses separated " 3957 "by a constant offset will use the same registers.\n"); 3958 3959 // This is especially useful for unrolled loops. 3960 3961 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3962 LSRUse &LU = Uses[LUIdx]; 3963 for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(), 3964 E = LU.Formulae.end(); I != E; ++I) { 3965 const Formula &F = *I; 3966 if (F.BaseOffset == 0 || F.Scale != 0) 3967 continue; 3968 3969 LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU); 3970 if (!LUThatHas) 3971 continue; 3972 3973 if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false, 3974 LU.Kind, LU.AccessTy)) 3975 continue; 3976 3977 DEBUG(dbgs() << " Deleting use "; LU.print(dbgs()); dbgs() << '\n'); 3978 3979 LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop; 3980 3981 // Update the relocs to reference the new use. 3982 for (SmallVectorImpl<LSRFixup>::iterator I = Fixups.begin(), 3983 E = Fixups.end(); I != E; ++I) { 3984 LSRFixup &Fixup = *I; 3985 if (Fixup.LUIdx == LUIdx) { 3986 Fixup.LUIdx = LUThatHas - &Uses.front(); 3987 Fixup.Offset += F.BaseOffset; 3988 // Add the new offset to LUThatHas' offset list. 3989 if (LUThatHas->Offsets.back() != Fixup.Offset) { 3990 LUThatHas->Offsets.push_back(Fixup.Offset); 3991 if (Fixup.Offset > LUThatHas->MaxOffset) 3992 LUThatHas->MaxOffset = Fixup.Offset; 3993 if (Fixup.Offset < LUThatHas->MinOffset) 3994 LUThatHas->MinOffset = Fixup.Offset; 3995 } 3996 DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n'); 3997 } 3998 if (Fixup.LUIdx == NumUses-1) 3999 Fixup.LUIdx = LUIdx; 4000 } 4001 4002 // Delete formulae from the new use which are no longer legal. 4003 bool Any = false; 4004 for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) { 4005 Formula &F = LUThatHas->Formulae[i]; 4006 if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset, 4007 LUThatHas->Kind, LUThatHas->AccessTy, F)) { 4008 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4009 dbgs() << '\n'); 4010 LUThatHas->DeleteFormula(F); 4011 --i; 4012 --e; 4013 Any = true; 4014 } 4015 } 4016 4017 if (Any) 4018 LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses); 4019 4020 // Delete the old use. 4021 DeleteUse(LU, LUIdx); 4022 --LUIdx; 4023 --NumUses; 4024 break; 4025 } 4026 } 4027 4028 DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4029 } 4030 4031 /// NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters - Call 4032 /// FilterOutUndesirableDedicatedRegisters again, if necessary, now that 4033 /// we've done more filtering, as it may be able to find more formulae to 4034 /// eliminate. 4035 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){ 4036 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4037 DEBUG(dbgs() << "The search space is too complex.\n"); 4038 4039 DEBUG(dbgs() << "Narrowing the search space by re-filtering out " 4040 "undesirable dedicated registers.\n"); 4041 4042 FilterOutUndesirableDedicatedRegisters(); 4043 4044 DEBUG(dbgs() << "After pre-selection:\n"; 4045 print_uses(dbgs())); 4046 } 4047 } 4048 4049 /// NarrowSearchSpaceByPickingWinnerRegs - Pick a register which seems likely 4050 /// to be profitable, and then in any use which has any reference to that 4051 /// register, delete all formulae which do not reference that register. 4052 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() { 4053 // With all other options exhausted, loop until the system is simple 4054 // enough to handle. 4055 SmallPtrSet<const SCEV *, 4> Taken; 4056 while (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4057 // Ok, we have too many of formulae on our hands to conveniently handle. 4058 // Use a rough heuristic to thin out the list. 4059 DEBUG(dbgs() << "The search space is too complex.\n"); 4060 4061 // Pick the register which is used by the most LSRUses, which is likely 4062 // to be a good reuse register candidate. 4063 const SCEV *Best = 0; 4064 unsigned BestNum = 0; 4065 for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end(); 4066 I != E; ++I) { 4067 const SCEV *Reg = *I; 4068 if (Taken.count(Reg)) 4069 continue; 4070 if (!Best) 4071 Best = Reg; 4072 else { 4073 unsigned Count = RegUses.getUsedByIndices(Reg).count(); 4074 if (Count > BestNum) { 4075 Best = Reg; 4076 BestNum = Count; 4077 } 4078 } 4079 } 4080 4081 DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best 4082 << " will yield profitable reuse.\n"); 4083 Taken.insert(Best); 4084 4085 // In any use with formulae which references this register, delete formulae 4086 // which don't reference it. 4087 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4088 LSRUse &LU = Uses[LUIdx]; 4089 if (!LU.Regs.count(Best)) continue; 4090 4091 bool Any = false; 4092 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4093 Formula &F = LU.Formulae[i]; 4094 if (!F.referencesReg(Best)) { 4095 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4096 LU.DeleteFormula(F); 4097 --e; 4098 --i; 4099 Any = true; 4100 assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?"); 4101 continue; 4102 } 4103 } 4104 4105 if (Any) 4106 LU.RecomputeRegs(LUIdx, RegUses); 4107 } 4108 4109 DEBUG(dbgs() << "After pre-selection:\n"; 4110 print_uses(dbgs())); 4111 } 4112 } 4113 4114 /// NarrowSearchSpaceUsingHeuristics - If there are an extraordinary number of 4115 /// formulae to choose from, use some rough heuristics to prune down the number 4116 /// of formulae. This keeps the main solver from taking an extraordinary amount 4117 /// of time in some worst-case scenarios. 4118 void LSRInstance::NarrowSearchSpaceUsingHeuristics() { 4119 NarrowSearchSpaceByDetectingSupersets(); 4120 NarrowSearchSpaceByCollapsingUnrolledCode(); 4121 NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 4122 NarrowSearchSpaceByPickingWinnerRegs(); 4123 } 4124 4125 /// SolveRecurse - This is the recursive solver. 4126 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 4127 Cost &SolutionCost, 4128 SmallVectorImpl<const Formula *> &Workspace, 4129 const Cost &CurCost, 4130 const SmallPtrSet<const SCEV *, 16> &CurRegs, 4131 DenseSet<const SCEV *> &VisitedRegs) const { 4132 // Some ideas: 4133 // - prune more: 4134 // - use more aggressive filtering 4135 // - sort the formula so that the most profitable solutions are found first 4136 // - sort the uses too 4137 // - search faster: 4138 // - don't compute a cost, and then compare. compare while computing a cost 4139 // and bail early. 4140 // - track register sets with SmallBitVector 4141 4142 const LSRUse &LU = Uses[Workspace.size()]; 4143 4144 // If this use references any register that's already a part of the 4145 // in-progress solution, consider it a requirement that a formula must 4146 // reference that register in order to be considered. This prunes out 4147 // unprofitable searching. 4148 SmallSetVector<const SCEV *, 4> ReqRegs; 4149 for (SmallPtrSet<const SCEV *, 16>::const_iterator I = CurRegs.begin(), 4150 E = CurRegs.end(); I != E; ++I) 4151 if (LU.Regs.count(*I)) 4152 ReqRegs.insert(*I); 4153 4154 SmallPtrSet<const SCEV *, 16> NewRegs; 4155 Cost NewCost; 4156 for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(), 4157 E = LU.Formulae.end(); I != E; ++I) { 4158 const Formula &F = *I; 4159 4160 // Ignore formulae which do not use any of the required registers. 4161 bool SatisfiedReqReg = true; 4162 for (SmallSetVector<const SCEV *, 4>::const_iterator J = ReqRegs.begin(), 4163 JE = ReqRegs.end(); J != JE; ++J) { 4164 const SCEV *Reg = *J; 4165 if ((!F.ScaledReg || F.ScaledReg != Reg) && 4166 std::find(F.BaseRegs.begin(), F.BaseRegs.end(), Reg) == 4167 F.BaseRegs.end()) { 4168 SatisfiedReqReg = false; 4169 break; 4170 } 4171 } 4172 if (!SatisfiedReqReg) { 4173 // If none of the formulae satisfied the required registers, then we could 4174 // clear ReqRegs and try again. Currently, we simply give up in this case. 4175 continue; 4176 } 4177 4178 // Evaluate the cost of the current formula. If it's already worse than 4179 // the current best, prune the search at that point. 4180 NewCost = CurCost; 4181 NewRegs = CurRegs; 4182 NewCost.RateFormula(TTI, F, NewRegs, VisitedRegs, L, LU.Offsets, SE, DT, 4183 LU); 4184 if (NewCost < SolutionCost) { 4185 Workspace.push_back(&F); 4186 if (Workspace.size() != Uses.size()) { 4187 SolveRecurse(Solution, SolutionCost, Workspace, NewCost, 4188 NewRegs, VisitedRegs); 4189 if (F.getNumRegs() == 1 && Workspace.size() == 1) 4190 VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]); 4191 } else { 4192 DEBUG(dbgs() << "New best at "; NewCost.print(dbgs()); 4193 dbgs() << ".\n Regs:"; 4194 for (SmallPtrSet<const SCEV *, 16>::const_iterator 4195 I = NewRegs.begin(), E = NewRegs.end(); I != E; ++I) 4196 dbgs() << ' ' << **I; 4197 dbgs() << '\n'); 4198 4199 SolutionCost = NewCost; 4200 Solution = Workspace; 4201 } 4202 Workspace.pop_back(); 4203 } 4204 } 4205 } 4206 4207 /// Solve - Choose one formula from each use. Return the results in the given 4208 /// Solution vector. 4209 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const { 4210 SmallVector<const Formula *, 8> Workspace; 4211 Cost SolutionCost; 4212 SolutionCost.Loose(); 4213 Cost CurCost; 4214 SmallPtrSet<const SCEV *, 16> CurRegs; 4215 DenseSet<const SCEV *> VisitedRegs; 4216 Workspace.reserve(Uses.size()); 4217 4218 // SolveRecurse does all the work. 4219 SolveRecurse(Solution, SolutionCost, Workspace, CurCost, 4220 CurRegs, VisitedRegs); 4221 if (Solution.empty()) { 4222 DEBUG(dbgs() << "\nNo Satisfactory Solution\n"); 4223 return; 4224 } 4225 4226 // Ok, we've now made all our decisions. 4227 DEBUG(dbgs() << "\n" 4228 "The chosen solution requires "; SolutionCost.print(dbgs()); 4229 dbgs() << ":\n"; 4230 for (size_t i = 0, e = Uses.size(); i != e; ++i) { 4231 dbgs() << " "; 4232 Uses[i].print(dbgs()); 4233 dbgs() << "\n" 4234 " "; 4235 Solution[i]->print(dbgs()); 4236 dbgs() << '\n'; 4237 }); 4238 4239 assert(Solution.size() == Uses.size() && "Malformed solution!"); 4240 } 4241 4242 /// HoistInsertPosition - Helper for AdjustInsertPositionForExpand. Climb up 4243 /// the dominator tree far as we can go while still being dominated by the 4244 /// input positions. This helps canonicalize the insert position, which 4245 /// encourages sharing. 4246 BasicBlock::iterator 4247 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP, 4248 const SmallVectorImpl<Instruction *> &Inputs) 4249 const { 4250 for (;;) { 4251 const Loop *IPLoop = LI.getLoopFor(IP->getParent()); 4252 unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0; 4253 4254 BasicBlock *IDom; 4255 for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) { 4256 if (!Rung) return IP; 4257 Rung = Rung->getIDom(); 4258 if (!Rung) return IP; 4259 IDom = Rung->getBlock(); 4260 4261 // Don't climb into a loop though. 4262 const Loop *IDomLoop = LI.getLoopFor(IDom); 4263 unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0; 4264 if (IDomDepth <= IPLoopDepth && 4265 (IDomDepth != IPLoopDepth || IDomLoop == IPLoop)) 4266 break; 4267 } 4268 4269 bool AllDominate = true; 4270 Instruction *BetterPos = 0; 4271 Instruction *Tentative = IDom->getTerminator(); 4272 for (SmallVectorImpl<Instruction *>::const_iterator I = Inputs.begin(), 4273 E = Inputs.end(); I != E; ++I) { 4274 Instruction *Inst = *I; 4275 if (Inst == Tentative || !DT.dominates(Inst, Tentative)) { 4276 AllDominate = false; 4277 break; 4278 } 4279 // Attempt to find an insert position in the middle of the block, 4280 // instead of at the end, so that it can be used for other expansions. 4281 if (IDom == Inst->getParent() && 4282 (!BetterPos || !DT.dominates(Inst, BetterPos))) 4283 BetterPos = llvm::next(BasicBlock::iterator(Inst)); 4284 } 4285 if (!AllDominate) 4286 break; 4287 if (BetterPos) 4288 IP = BetterPos; 4289 else 4290 IP = Tentative; 4291 } 4292 4293 return IP; 4294 } 4295 4296 /// AdjustInsertPositionForExpand - Determine an input position which will be 4297 /// dominated by the operands and which will dominate the result. 4298 BasicBlock::iterator 4299 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP, 4300 const LSRFixup &LF, 4301 const LSRUse &LU, 4302 SCEVExpander &Rewriter) const { 4303 // Collect some instructions which must be dominated by the 4304 // expanding replacement. These must be dominated by any operands that 4305 // will be required in the expansion. 4306 SmallVector<Instruction *, 4> Inputs; 4307 if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace)) 4308 Inputs.push_back(I); 4309 if (LU.Kind == LSRUse::ICmpZero) 4310 if (Instruction *I = 4311 dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1))) 4312 Inputs.push_back(I); 4313 if (LF.PostIncLoops.count(L)) { 4314 if (LF.isUseFullyOutsideLoop(L)) 4315 Inputs.push_back(L->getLoopLatch()->getTerminator()); 4316 else 4317 Inputs.push_back(IVIncInsertPos); 4318 } 4319 // The expansion must also be dominated by the increment positions of any 4320 // loops it for which it is using post-inc mode. 4321 for (PostIncLoopSet::const_iterator I = LF.PostIncLoops.begin(), 4322 E = LF.PostIncLoops.end(); I != E; ++I) { 4323 const Loop *PIL = *I; 4324 if (PIL == L) continue; 4325 4326 // Be dominated by the loop exit. 4327 SmallVector<BasicBlock *, 4> ExitingBlocks; 4328 PIL->getExitingBlocks(ExitingBlocks); 4329 if (!ExitingBlocks.empty()) { 4330 BasicBlock *BB = ExitingBlocks[0]; 4331 for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i) 4332 BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]); 4333 Inputs.push_back(BB->getTerminator()); 4334 } 4335 } 4336 4337 assert(!isa<PHINode>(LowestIP) && !isa<LandingPadInst>(LowestIP) 4338 && !isa<DbgInfoIntrinsic>(LowestIP) && 4339 "Insertion point must be a normal instruction"); 4340 4341 // Then, climb up the immediate dominator tree as far as we can go while 4342 // still being dominated by the input positions. 4343 BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs); 4344 4345 // Don't insert instructions before PHI nodes. 4346 while (isa<PHINode>(IP)) ++IP; 4347 4348 // Ignore landingpad instructions. 4349 while (isa<LandingPadInst>(IP)) ++IP; 4350 4351 // Ignore debug intrinsics. 4352 while (isa<DbgInfoIntrinsic>(IP)) ++IP; 4353 4354 // Set IP below instructions recently inserted by SCEVExpander. This keeps the 4355 // IP consistent across expansions and allows the previously inserted 4356 // instructions to be reused by subsequent expansion. 4357 while (Rewriter.isInsertedInstruction(IP) && IP != LowestIP) ++IP; 4358 4359 return IP; 4360 } 4361 4362 /// Expand - Emit instructions for the leading candidate expression for this 4363 /// LSRUse (this is called "expanding"). 4364 Value *LSRInstance::Expand(const LSRFixup &LF, 4365 const Formula &F, 4366 BasicBlock::iterator IP, 4367 SCEVExpander &Rewriter, 4368 SmallVectorImpl<WeakVH> &DeadInsts) const { 4369 const LSRUse &LU = Uses[LF.LUIdx]; 4370 if (LU.RigidFormula) 4371 return LF.OperandValToReplace; 4372 4373 // Determine an input position which will be dominated by the operands and 4374 // which will dominate the result. 4375 IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter); 4376 4377 // Inform the Rewriter if we have a post-increment use, so that it can 4378 // perform an advantageous expansion. 4379 Rewriter.setPostInc(LF.PostIncLoops); 4380 4381 // This is the type that the user actually needs. 4382 Type *OpTy = LF.OperandValToReplace->getType(); 4383 // This will be the type that we'll initially expand to. 4384 Type *Ty = F.getType(); 4385 if (!Ty) 4386 // No type known; just expand directly to the ultimate type. 4387 Ty = OpTy; 4388 else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy)) 4389 // Expand directly to the ultimate type if it's the right size. 4390 Ty = OpTy; 4391 // This is the type to do integer arithmetic in. 4392 Type *IntTy = SE.getEffectiveSCEVType(Ty); 4393 4394 // Build up a list of operands to add together to form the full base. 4395 SmallVector<const SCEV *, 8> Ops; 4396 4397 // Expand the BaseRegs portion. 4398 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(), 4399 E = F.BaseRegs.end(); I != E; ++I) { 4400 const SCEV *Reg = *I; 4401 assert(!Reg->isZero() && "Zero allocated in a base register!"); 4402 4403 // If we're expanding for a post-inc user, make the post-inc adjustment. 4404 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 4405 Reg = TransformForPostIncUse(Denormalize, Reg, 4406 LF.UserInst, LF.OperandValToReplace, 4407 Loops, SE, DT); 4408 4409 Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, 0, IP))); 4410 } 4411 4412 // Expand the ScaledReg portion. 4413 Value *ICmpScaledV = 0; 4414 if (F.Scale != 0) { 4415 const SCEV *ScaledS = F.ScaledReg; 4416 4417 // If we're expanding for a post-inc user, make the post-inc adjustment. 4418 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 4419 ScaledS = TransformForPostIncUse(Denormalize, ScaledS, 4420 LF.UserInst, LF.OperandValToReplace, 4421 Loops, SE, DT); 4422 4423 if (LU.Kind == LSRUse::ICmpZero) { 4424 // An interesting way of "folding" with an icmp is to use a negated 4425 // scale, which we'll implement by inserting it into the other operand 4426 // of the icmp. 4427 assert(F.Scale == -1 && 4428 "The only scale supported by ICmpZero uses is -1!"); 4429 ICmpScaledV = Rewriter.expandCodeFor(ScaledS, 0, IP); 4430 } else { 4431 // Otherwise just expand the scaled register and an explicit scale, 4432 // which is expected to be matched as part of the address. 4433 4434 // Flush the operand list to suppress SCEVExpander hoisting address modes. 4435 if (!Ops.empty() && LU.Kind == LSRUse::Address) { 4436 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP); 4437 Ops.clear(); 4438 Ops.push_back(SE.getUnknown(FullV)); 4439 } 4440 ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, 0, IP)); 4441 ScaledS = SE.getMulExpr(ScaledS, 4442 SE.getConstant(ScaledS->getType(), F.Scale)); 4443 Ops.push_back(ScaledS); 4444 } 4445 } 4446 4447 // Expand the GV portion. 4448 if (F.BaseGV) { 4449 // Flush the operand list to suppress SCEVExpander hoisting. 4450 if (!Ops.empty()) { 4451 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP); 4452 Ops.clear(); 4453 Ops.push_back(SE.getUnknown(FullV)); 4454 } 4455 Ops.push_back(SE.getUnknown(F.BaseGV)); 4456 } 4457 4458 // Flush the operand list to suppress SCEVExpander hoisting of both folded and 4459 // unfolded offsets. LSR assumes they both live next to their uses. 4460 if (!Ops.empty()) { 4461 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP); 4462 Ops.clear(); 4463 Ops.push_back(SE.getUnknown(FullV)); 4464 } 4465 4466 // Expand the immediate portion. 4467 int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset; 4468 if (Offset != 0) { 4469 if (LU.Kind == LSRUse::ICmpZero) { 4470 // The other interesting way of "folding" with an ICmpZero is to use a 4471 // negated immediate. 4472 if (!ICmpScaledV) 4473 ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset); 4474 else { 4475 Ops.push_back(SE.getUnknown(ICmpScaledV)); 4476 ICmpScaledV = ConstantInt::get(IntTy, Offset); 4477 } 4478 } else { 4479 // Just add the immediate values. These again are expected to be matched 4480 // as part of the address. 4481 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset))); 4482 } 4483 } 4484 4485 // Expand the unfolded offset portion. 4486 int64_t UnfoldedOffset = F.UnfoldedOffset; 4487 if (UnfoldedOffset != 0) { 4488 // Just add the immediate values. 4489 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, 4490 UnfoldedOffset))); 4491 } 4492 4493 // Emit instructions summing all the operands. 4494 const SCEV *FullS = Ops.empty() ? 4495 SE.getConstant(IntTy, 0) : 4496 SE.getAddExpr(Ops); 4497 Value *FullV = Rewriter.expandCodeFor(FullS, Ty, IP); 4498 4499 // We're done expanding now, so reset the rewriter. 4500 Rewriter.clearPostInc(); 4501 4502 // An ICmpZero Formula represents an ICmp which we're handling as a 4503 // comparison against zero. Now that we've expanded an expression for that 4504 // form, update the ICmp's other operand. 4505 if (LU.Kind == LSRUse::ICmpZero) { 4506 ICmpInst *CI = cast<ICmpInst>(LF.UserInst); 4507 DeadInsts.push_back(CI->getOperand(1)); 4508 assert(!F.BaseGV && "ICmp does not support folding a global value and " 4509 "a scale at the same time!"); 4510 if (F.Scale == -1) { 4511 if (ICmpScaledV->getType() != OpTy) { 4512 Instruction *Cast = 4513 CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false, 4514 OpTy, false), 4515 ICmpScaledV, OpTy, "tmp", CI); 4516 ICmpScaledV = Cast; 4517 } 4518 CI->setOperand(1, ICmpScaledV); 4519 } else { 4520 assert(F.Scale == 0 && 4521 "ICmp does not support folding a global value and " 4522 "a scale at the same time!"); 4523 Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy), 4524 -(uint64_t)Offset); 4525 if (C->getType() != OpTy) 4526 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 4527 OpTy, false), 4528 C, OpTy); 4529 4530 CI->setOperand(1, C); 4531 } 4532 } 4533 4534 return FullV; 4535 } 4536 4537 /// RewriteForPHI - Helper for Rewrite. PHI nodes are special because the use 4538 /// of their operands effectively happens in their predecessor blocks, so the 4539 /// expression may need to be expanded in multiple places. 4540 void LSRInstance::RewriteForPHI(PHINode *PN, 4541 const LSRFixup &LF, 4542 const Formula &F, 4543 SCEVExpander &Rewriter, 4544 SmallVectorImpl<WeakVH> &DeadInsts, 4545 Pass *P) const { 4546 DenseMap<BasicBlock *, Value *> Inserted; 4547 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 4548 if (PN->getIncomingValue(i) == LF.OperandValToReplace) { 4549 BasicBlock *BB = PN->getIncomingBlock(i); 4550 4551 // If this is a critical edge, split the edge so that we do not insert 4552 // the code on all predecessor/successor paths. We do this unless this 4553 // is the canonical backedge for this loop, which complicates post-inc 4554 // users. 4555 if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 && 4556 !isa<IndirectBrInst>(BB->getTerminator())) { 4557 BasicBlock *Parent = PN->getParent(); 4558 Loop *PNLoop = LI.getLoopFor(Parent); 4559 if (!PNLoop || Parent != PNLoop->getHeader()) { 4560 // Split the critical edge. 4561 BasicBlock *NewBB = 0; 4562 if (!Parent->isLandingPad()) { 4563 NewBB = SplitCriticalEdge(BB, Parent, P, 4564 /*MergeIdenticalEdges=*/true, 4565 /*DontDeleteUselessPhis=*/true); 4566 } else { 4567 SmallVector<BasicBlock*, 2> NewBBs; 4568 SplitLandingPadPredecessors(Parent, BB, "", "", P, NewBBs); 4569 NewBB = NewBBs[0]; 4570 } 4571 // If NewBB==NULL, then SplitCriticalEdge refused to split because all 4572 // phi predecessors are identical. The simple thing to do is skip 4573 // splitting in this case rather than complicate the API. 4574 if (NewBB) { 4575 // If PN is outside of the loop and BB is in the loop, we want to 4576 // move the block to be immediately before the PHI block, not 4577 // immediately after BB. 4578 if (L->contains(BB) && !L->contains(PN)) 4579 NewBB->moveBefore(PN->getParent()); 4580 4581 // Splitting the edge can reduce the number of PHI entries we have. 4582 e = PN->getNumIncomingValues(); 4583 BB = NewBB; 4584 i = PN->getBasicBlockIndex(BB); 4585 } 4586 } 4587 } 4588 4589 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair = 4590 Inserted.insert(std::make_pair(BB, static_cast<Value *>(0))); 4591 if (!Pair.second) 4592 PN->setIncomingValue(i, Pair.first->second); 4593 else { 4594 Value *FullV = Expand(LF, F, BB->getTerminator(), Rewriter, DeadInsts); 4595 4596 // If this is reuse-by-noop-cast, insert the noop cast. 4597 Type *OpTy = LF.OperandValToReplace->getType(); 4598 if (FullV->getType() != OpTy) 4599 FullV = 4600 CastInst::Create(CastInst::getCastOpcode(FullV, false, 4601 OpTy, false), 4602 FullV, LF.OperandValToReplace->getType(), 4603 "tmp", BB->getTerminator()); 4604 4605 PN->setIncomingValue(i, FullV); 4606 Pair.first->second = FullV; 4607 } 4608 } 4609 } 4610 4611 /// Rewrite - Emit instructions for the leading candidate expression for this 4612 /// LSRUse (this is called "expanding"), and update the UserInst to reference 4613 /// the newly expanded value. 4614 void LSRInstance::Rewrite(const LSRFixup &LF, 4615 const Formula &F, 4616 SCEVExpander &Rewriter, 4617 SmallVectorImpl<WeakVH> &DeadInsts, 4618 Pass *P) const { 4619 // First, find an insertion point that dominates UserInst. For PHI nodes, 4620 // find the nearest block which dominates all the relevant uses. 4621 if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) { 4622 RewriteForPHI(PN, LF, F, Rewriter, DeadInsts, P); 4623 } else { 4624 Value *FullV = Expand(LF, F, LF.UserInst, Rewriter, DeadInsts); 4625 4626 // If this is reuse-by-noop-cast, insert the noop cast. 4627 Type *OpTy = LF.OperandValToReplace->getType(); 4628 if (FullV->getType() != OpTy) { 4629 Instruction *Cast = 4630 CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false), 4631 FullV, OpTy, "tmp", LF.UserInst); 4632 FullV = Cast; 4633 } 4634 4635 // Update the user. ICmpZero is handled specially here (for now) because 4636 // Expand may have updated one of the operands of the icmp already, and 4637 // its new value may happen to be equal to LF.OperandValToReplace, in 4638 // which case doing replaceUsesOfWith leads to replacing both operands 4639 // with the same value. TODO: Reorganize this. 4640 if (Uses[LF.LUIdx].Kind == LSRUse::ICmpZero) 4641 LF.UserInst->setOperand(0, FullV); 4642 else 4643 LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV); 4644 } 4645 4646 DeadInsts.push_back(LF.OperandValToReplace); 4647 } 4648 4649 /// ImplementSolution - Rewrite all the fixup locations with new values, 4650 /// following the chosen solution. 4651 void 4652 LSRInstance::ImplementSolution(const SmallVectorImpl<const Formula *> &Solution, 4653 Pass *P) { 4654 // Keep track of instructions we may have made dead, so that 4655 // we can remove them after we are done working. 4656 SmallVector<WeakVH, 16> DeadInsts; 4657 4658 SCEVExpander Rewriter(SE, "lsr"); 4659 #ifndef NDEBUG 4660 Rewriter.setDebugType(DEBUG_TYPE); 4661 #endif 4662 Rewriter.disableCanonicalMode(); 4663 Rewriter.enableLSRMode(); 4664 Rewriter.setIVIncInsertPos(L, IVIncInsertPos); 4665 4666 // Mark phi nodes that terminate chains so the expander tries to reuse them. 4667 for (SmallVectorImpl<IVChain>::const_iterator ChainI = IVChainVec.begin(), 4668 ChainE = IVChainVec.end(); ChainI != ChainE; ++ChainI) { 4669 if (PHINode *PN = dyn_cast<PHINode>(ChainI->tailUserInst())) 4670 Rewriter.setChainedPhi(PN); 4671 } 4672 4673 // Expand the new value definitions and update the users. 4674 for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(), 4675 E = Fixups.end(); I != E; ++I) { 4676 const LSRFixup &Fixup = *I; 4677 4678 Rewrite(Fixup, *Solution[Fixup.LUIdx], Rewriter, DeadInsts, P); 4679 4680 Changed = true; 4681 } 4682 4683 for (SmallVectorImpl<IVChain>::const_iterator ChainI = IVChainVec.begin(), 4684 ChainE = IVChainVec.end(); ChainI != ChainE; ++ChainI) { 4685 GenerateIVChain(*ChainI, Rewriter, DeadInsts); 4686 Changed = true; 4687 } 4688 // Clean up after ourselves. This must be done before deleting any 4689 // instructions. 4690 Rewriter.clear(); 4691 4692 Changed |= DeleteTriviallyDeadInstructions(DeadInsts); 4693 } 4694 4695 LSRInstance::LSRInstance(Loop *L, Pass *P) 4696 : IU(P->getAnalysis<IVUsers>()), SE(P->getAnalysis<ScalarEvolution>()), 4697 DT(P->getAnalysis<DominatorTreeWrapperPass>().getDomTree()), 4698 LI(P->getAnalysis<LoopInfo>()), 4699 TTI(P->getAnalysis<TargetTransformInfo>()), L(L), Changed(false), 4700 IVIncInsertPos(0) { 4701 // If LoopSimplify form is not available, stay out of trouble. 4702 if (!L->isLoopSimplifyForm()) 4703 return; 4704 4705 // If there's no interesting work to be done, bail early. 4706 if (IU.empty()) return; 4707 4708 // If there's too much analysis to be done, bail early. We won't be able to 4709 // model the problem anyway. 4710 unsigned NumUsers = 0; 4711 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) { 4712 if (++NumUsers > MaxIVUsers) { 4713 DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << *L 4714 << "\n"); 4715 return; 4716 } 4717 } 4718 4719 #ifndef NDEBUG 4720 // All dominating loops must have preheaders, or SCEVExpander may not be able 4721 // to materialize an AddRecExpr whose Start is an outer AddRecExpr. 4722 // 4723 // IVUsers analysis should only create users that are dominated by simple loop 4724 // headers. Since this loop should dominate all of its users, its user list 4725 // should be empty if this loop itself is not within a simple loop nest. 4726 for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader()); 4727 Rung; Rung = Rung->getIDom()) { 4728 BasicBlock *BB = Rung->getBlock(); 4729 const Loop *DomLoop = LI.getLoopFor(BB); 4730 if (DomLoop && DomLoop->getHeader() == BB) { 4731 assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest"); 4732 } 4733 } 4734 #endif // DEBUG 4735 4736 DEBUG(dbgs() << "\nLSR on loop "; 4737 L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false); 4738 dbgs() << ":\n"); 4739 4740 // First, perform some low-level loop optimizations. 4741 OptimizeShadowIV(); 4742 OptimizeLoopTermCond(); 4743 4744 // If loop preparation eliminates all interesting IV users, bail. 4745 if (IU.empty()) return; 4746 4747 // Skip nested loops until we can model them better with formulae. 4748 if (!L->empty()) { 4749 DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n"); 4750 return; 4751 } 4752 4753 // Start collecting data and preparing for the solver. 4754 CollectChains(); 4755 CollectInterestingTypesAndFactors(); 4756 CollectFixupsAndInitialFormulae(); 4757 CollectLoopInvariantFixupsAndFormulae(); 4758 4759 assert(!Uses.empty() && "IVUsers reported at least one use"); 4760 DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n"; 4761 print_uses(dbgs())); 4762 4763 // Now use the reuse data to generate a bunch of interesting ways 4764 // to formulate the values needed for the uses. 4765 GenerateAllReuseFormulae(); 4766 4767 FilterOutUndesirableDedicatedRegisters(); 4768 NarrowSearchSpaceUsingHeuristics(); 4769 4770 SmallVector<const Formula *, 8> Solution; 4771 Solve(Solution); 4772 4773 // Release memory that is no longer needed. 4774 Factors.clear(); 4775 Types.clear(); 4776 RegUses.clear(); 4777 4778 if (Solution.empty()) 4779 return; 4780 4781 #ifndef NDEBUG 4782 // Formulae should be legal. 4783 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(), E = Uses.end(); 4784 I != E; ++I) { 4785 const LSRUse &LU = *I; 4786 for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(), 4787 JE = LU.Formulae.end(); 4788 J != JE; ++J) 4789 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 4790 *J) && "Illegal formula generated!"); 4791 }; 4792 #endif 4793 4794 // Now that we've decided what we want, make it so. 4795 ImplementSolution(Solution, P); 4796 } 4797 4798 void LSRInstance::print_factors_and_types(raw_ostream &OS) const { 4799 if (Factors.empty() && Types.empty()) return; 4800 4801 OS << "LSR has identified the following interesting factors and types: "; 4802 bool First = true; 4803 4804 for (SmallSetVector<int64_t, 8>::const_iterator 4805 I = Factors.begin(), E = Factors.end(); I != E; ++I) { 4806 if (!First) OS << ", "; 4807 First = false; 4808 OS << '*' << *I; 4809 } 4810 4811 for (SmallSetVector<Type *, 4>::const_iterator 4812 I = Types.begin(), E = Types.end(); I != E; ++I) { 4813 if (!First) OS << ", "; 4814 First = false; 4815 OS << '(' << **I << ')'; 4816 } 4817 OS << '\n'; 4818 } 4819 4820 void LSRInstance::print_fixups(raw_ostream &OS) const { 4821 OS << "LSR is examining the following fixup sites:\n"; 4822 for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(), 4823 E = Fixups.end(); I != E; ++I) { 4824 dbgs() << " "; 4825 I->print(OS); 4826 OS << '\n'; 4827 } 4828 } 4829 4830 void LSRInstance::print_uses(raw_ostream &OS) const { 4831 OS << "LSR is examining the following uses:\n"; 4832 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(), 4833 E = Uses.end(); I != E; ++I) { 4834 const LSRUse &LU = *I; 4835 dbgs() << " "; 4836 LU.print(OS); 4837 OS << '\n'; 4838 for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(), 4839 JE = LU.Formulae.end(); J != JE; ++J) { 4840 OS << " "; 4841 J->print(OS); 4842 OS << '\n'; 4843 } 4844 } 4845 } 4846 4847 void LSRInstance::print(raw_ostream &OS) const { 4848 print_factors_and_types(OS); 4849 print_fixups(OS); 4850 print_uses(OS); 4851 } 4852 4853 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 4854 void LSRInstance::dump() const { 4855 print(errs()); errs() << '\n'; 4856 } 4857 #endif 4858 4859 namespace { 4860 4861 class LoopStrengthReduce : public LoopPass { 4862 public: 4863 static char ID; // Pass ID, replacement for typeid 4864 LoopStrengthReduce(); 4865 4866 private: 4867 bool runOnLoop(Loop *L, LPPassManager &LPM); 4868 void getAnalysisUsage(AnalysisUsage &AU) const; 4869 }; 4870 4871 } 4872 4873 char LoopStrengthReduce::ID = 0; 4874 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce", 4875 "Loop Strength Reduction", false, false) 4876 INITIALIZE_AG_DEPENDENCY(TargetTransformInfo) 4877 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 4878 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 4879 INITIALIZE_PASS_DEPENDENCY(IVUsers) 4880 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 4881 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 4882 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce", 4883 "Loop Strength Reduction", false, false) 4884 4885 4886 Pass *llvm::createLoopStrengthReducePass() { 4887 return new LoopStrengthReduce(); 4888 } 4889 4890 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) { 4891 initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry()); 4892 } 4893 4894 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const { 4895 // We split critical edges, so we change the CFG. However, we do update 4896 // many analyses if they are around. 4897 AU.addPreservedID(LoopSimplifyID); 4898 4899 AU.addRequired<LoopInfo>(); 4900 AU.addPreserved<LoopInfo>(); 4901 AU.addRequiredID(LoopSimplifyID); 4902 AU.addRequired<DominatorTreeWrapperPass>(); 4903 AU.addPreserved<DominatorTreeWrapperPass>(); 4904 AU.addRequired<ScalarEvolution>(); 4905 AU.addPreserved<ScalarEvolution>(); 4906 // Requiring LoopSimplify a second time here prevents IVUsers from running 4907 // twice, since LoopSimplify was invalidated by running ScalarEvolution. 4908 AU.addRequiredID(LoopSimplifyID); 4909 AU.addRequired<IVUsers>(); 4910 AU.addPreserved<IVUsers>(); 4911 AU.addRequired<TargetTransformInfo>(); 4912 } 4913 4914 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) { 4915 bool Changed = false; 4916 4917 // Run the main LSR transformation. 4918 Changed |= LSRInstance(L, this).getChanged(); 4919 4920 // Remove any extra phis created by processing inner loops. 4921 Changed |= DeleteDeadPHIs(L->getHeader()); 4922 if (EnablePhiElim && L->isLoopSimplifyForm()) { 4923 SmallVector<WeakVH, 16> DeadInsts; 4924 SCEVExpander Rewriter(getAnalysis<ScalarEvolution>(), "lsr"); 4925 #ifndef NDEBUG 4926 Rewriter.setDebugType(DEBUG_TYPE); 4927 #endif 4928 unsigned numFolded = Rewriter.replaceCongruentIVs( 4929 L, &getAnalysis<DominatorTreeWrapperPass>().getDomTree(), DeadInsts, 4930 &getAnalysis<TargetTransformInfo>()); 4931 if (numFolded) { 4932 Changed = true; 4933 DeleteTriviallyDeadInstructions(DeadInsts); 4934 DeleteDeadPHIs(L->getHeader()); 4935 } 4936 } 4937 return Changed; 4938 } 4939