1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This transformation analyzes and transforms the induction variables (and 10 // computations derived from them) into forms suitable for efficient execution 11 // on the target. 12 // 13 // This pass performs a strength reduction on array references inside loops that 14 // have as one or more of their components the loop induction variable, it 15 // rewrites expressions to take advantage of scaled-index addressing modes 16 // available on the target, and it performs a variety of other optimizations 17 // related to loop induction variables. 18 // 19 // Terminology note: this code has a lot of handling for "post-increment" or 20 // "post-inc" users. This is not talking about post-increment addressing modes; 21 // it is instead talking about code like this: 22 // 23 // %i = phi [ 0, %entry ], [ %i.next, %latch ] 24 // ... 25 // %i.next = add %i, 1 26 // %c = icmp eq %i.next, %n 27 // 28 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however 29 // it's useful to think about these as the same register, with some uses using 30 // the value of the register before the add and some using it after. In this 31 // example, the icmp is a post-increment user, since it uses %i.next, which is 32 // the value of the induction variable after the increment. The other common 33 // case of post-increment users is users outside the loop. 34 // 35 // TODO: More sophistication in the way Formulae are generated and filtered. 36 // 37 // TODO: Handle multiple loops at a time. 38 // 39 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead 40 // of a GlobalValue? 41 // 42 // TODO: When truncation is free, truncate ICmp users' operands to make it a 43 // smaller encoding (on x86 at least). 44 // 45 // TODO: When a negated register is used by an add (such as in a list of 46 // multiple base registers, or as the increment expression in an addrec), 47 // we may not actually need both reg and (-1 * reg) in registers; the 48 // negation can be implemented by using a sub instead of an add. The 49 // lack of support for taking this into consideration when making 50 // register pressure decisions is partly worked around by the "Special" 51 // use kind. 52 // 53 //===----------------------------------------------------------------------===// 54 55 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h" 56 #include "llvm/ADT/APInt.h" 57 #include "llvm/ADT/DenseMap.h" 58 #include "llvm/ADT/DenseSet.h" 59 #include "llvm/ADT/Hashing.h" 60 #include "llvm/ADT/PointerIntPair.h" 61 #include "llvm/ADT/STLExtras.h" 62 #include "llvm/ADT/SetVector.h" 63 #include "llvm/ADT/SmallBitVector.h" 64 #include "llvm/ADT/SmallPtrSet.h" 65 #include "llvm/ADT/SmallSet.h" 66 #include "llvm/ADT/SmallVector.h" 67 #include "llvm/ADT/iterator_range.h" 68 #include "llvm/Analysis/IVUsers.h" 69 #include "llvm/Analysis/LoopAnalysisManager.h" 70 #include "llvm/Analysis/LoopInfo.h" 71 #include "llvm/Analysis/LoopPass.h" 72 #include "llvm/Analysis/MemorySSA.h" 73 #include "llvm/Analysis/MemorySSAUpdater.h" 74 #include "llvm/Analysis/ScalarEvolution.h" 75 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 76 #include "llvm/Analysis/ScalarEvolutionNormalization.h" 77 #include "llvm/Analysis/TargetTransformInfo.h" 78 #include "llvm/Config/llvm-config.h" 79 #include "llvm/IR/BasicBlock.h" 80 #include "llvm/IR/Constant.h" 81 #include "llvm/IR/Constants.h" 82 #include "llvm/IR/DerivedTypes.h" 83 #include "llvm/IR/Dominators.h" 84 #include "llvm/IR/GlobalValue.h" 85 #include "llvm/IR/IRBuilder.h" 86 #include "llvm/IR/InstrTypes.h" 87 #include "llvm/IR/Instruction.h" 88 #include "llvm/IR/Instructions.h" 89 #include "llvm/IR/IntrinsicInst.h" 90 #include "llvm/IR/Intrinsics.h" 91 #include "llvm/IR/Module.h" 92 #include "llvm/IR/OperandTraits.h" 93 #include "llvm/IR/Operator.h" 94 #include "llvm/IR/PassManager.h" 95 #include "llvm/IR/Type.h" 96 #include "llvm/IR/Use.h" 97 #include "llvm/IR/User.h" 98 #include "llvm/IR/Value.h" 99 #include "llvm/IR/ValueHandle.h" 100 #include "llvm/InitializePasses.h" 101 #include "llvm/Pass.h" 102 #include "llvm/Support/Casting.h" 103 #include "llvm/Support/CommandLine.h" 104 #include "llvm/Support/Compiler.h" 105 #include "llvm/Support/Debug.h" 106 #include "llvm/Support/ErrorHandling.h" 107 #include "llvm/Support/MathExtras.h" 108 #include "llvm/Support/raw_ostream.h" 109 #include "llvm/Transforms/Scalar.h" 110 #include "llvm/Transforms/Utils.h" 111 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 112 #include "llvm/Transforms/Utils/Local.h" 113 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 114 #include <algorithm> 115 #include <cassert> 116 #include <cstddef> 117 #include <cstdint> 118 #include <cstdlib> 119 #include <iterator> 120 #include <limits> 121 #include <map> 122 #include <numeric> 123 #include <utility> 124 125 using namespace llvm; 126 127 #define DEBUG_TYPE "loop-reduce" 128 129 /// MaxIVUsers is an arbitrary threshold that provides an early opportunity for 130 /// bail out. This threshold is far beyond the number of users that LSR can 131 /// conceivably solve, so it should not affect generated code, but catches the 132 /// worst cases before LSR burns too much compile time and stack space. 133 static const unsigned MaxIVUsers = 200; 134 135 // Temporary flag to cleanup congruent phis after LSR phi expansion. 136 // It's currently disabled until we can determine whether it's truly useful or 137 // not. The flag should be removed after the v3.0 release. 138 // This is now needed for ivchains. 139 static cl::opt<bool> EnablePhiElim( 140 "enable-lsr-phielim", cl::Hidden, cl::init(true), 141 cl::desc("Enable LSR phi elimination")); 142 143 // The flag adds instruction count to solutions cost comparision. 144 static cl::opt<bool> InsnsCost( 145 "lsr-insns-cost", cl::Hidden, cl::init(true), 146 cl::desc("Add instruction count to a LSR cost model")); 147 148 // Flag to choose how to narrow complex lsr solution 149 static cl::opt<bool> LSRExpNarrow( 150 "lsr-exp-narrow", cl::Hidden, cl::init(false), 151 cl::desc("Narrow LSR complex solution using" 152 " expectation of registers number")); 153 154 // Flag to narrow search space by filtering non-optimal formulae with 155 // the same ScaledReg and Scale. 156 static cl::opt<bool> FilterSameScaledReg( 157 "lsr-filter-same-scaled-reg", cl::Hidden, cl::init(true), 158 cl::desc("Narrow LSR search space by filtering non-optimal formulae" 159 " with the same ScaledReg and Scale")); 160 161 static cl::opt<bool> EnableBackedgeIndexing( 162 "lsr-backedge-indexing", cl::Hidden, cl::init(true), 163 cl::desc("Enable the generation of cross iteration indexed memops")); 164 165 static cl::opt<unsigned> ComplexityLimit( 166 "lsr-complexity-limit", cl::Hidden, 167 cl::init(std::numeric_limits<uint16_t>::max()), 168 cl::desc("LSR search space complexity limit")); 169 170 static cl::opt<unsigned> SetupCostDepthLimit( 171 "lsr-setupcost-depth-limit", cl::Hidden, cl::init(7), 172 cl::desc("The limit on recursion depth for LSRs setup cost")); 173 174 #ifndef NDEBUG 175 // Stress test IV chain generation. 176 static cl::opt<bool> StressIVChain( 177 "stress-ivchain", cl::Hidden, cl::init(false), 178 cl::desc("Stress test LSR IV chains")); 179 #else 180 static bool StressIVChain = false; 181 #endif 182 183 namespace { 184 185 struct MemAccessTy { 186 /// Used in situations where the accessed memory type is unknown. 187 static const unsigned UnknownAddressSpace = 188 std::numeric_limits<unsigned>::max(); 189 190 Type *MemTy = nullptr; 191 unsigned AddrSpace = UnknownAddressSpace; 192 193 MemAccessTy() = default; 194 MemAccessTy(Type *Ty, unsigned AS) : MemTy(Ty), AddrSpace(AS) {} 195 196 bool operator==(MemAccessTy Other) const { 197 return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace; 198 } 199 200 bool operator!=(MemAccessTy Other) const { return !(*this == Other); } 201 202 static MemAccessTy getUnknown(LLVMContext &Ctx, 203 unsigned AS = UnknownAddressSpace) { 204 return MemAccessTy(Type::getVoidTy(Ctx), AS); 205 } 206 207 Type *getType() { return MemTy; } 208 }; 209 210 /// This class holds data which is used to order reuse candidates. 211 class RegSortData { 212 public: 213 /// This represents the set of LSRUse indices which reference 214 /// a particular register. 215 SmallBitVector UsedByIndices; 216 217 void print(raw_ostream &OS) const; 218 void dump() const; 219 }; 220 221 } // end anonymous namespace 222 223 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 224 void RegSortData::print(raw_ostream &OS) const { 225 OS << "[NumUses=" << UsedByIndices.count() << ']'; 226 } 227 228 LLVM_DUMP_METHOD void RegSortData::dump() const { 229 print(errs()); errs() << '\n'; 230 } 231 #endif 232 233 namespace { 234 235 /// Map register candidates to information about how they are used. 236 class RegUseTracker { 237 using RegUsesTy = DenseMap<const SCEV *, RegSortData>; 238 239 RegUsesTy RegUsesMap; 240 SmallVector<const SCEV *, 16> RegSequence; 241 242 public: 243 void countRegister(const SCEV *Reg, size_t LUIdx); 244 void dropRegister(const SCEV *Reg, size_t LUIdx); 245 void swapAndDropUse(size_t LUIdx, size_t LastLUIdx); 246 247 bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const; 248 249 const SmallBitVector &getUsedByIndices(const SCEV *Reg) const; 250 251 void clear(); 252 253 using iterator = SmallVectorImpl<const SCEV *>::iterator; 254 using const_iterator = SmallVectorImpl<const SCEV *>::const_iterator; 255 256 iterator begin() { return RegSequence.begin(); } 257 iterator end() { return RegSequence.end(); } 258 const_iterator begin() const { return RegSequence.begin(); } 259 const_iterator end() const { return RegSequence.end(); } 260 }; 261 262 } // end anonymous namespace 263 264 void 265 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) { 266 std::pair<RegUsesTy::iterator, bool> Pair = 267 RegUsesMap.insert(std::make_pair(Reg, RegSortData())); 268 RegSortData &RSD = Pair.first->second; 269 if (Pair.second) 270 RegSequence.push_back(Reg); 271 RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1)); 272 RSD.UsedByIndices.set(LUIdx); 273 } 274 275 void 276 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) { 277 RegUsesTy::iterator It = RegUsesMap.find(Reg); 278 assert(It != RegUsesMap.end()); 279 RegSortData &RSD = It->second; 280 assert(RSD.UsedByIndices.size() > LUIdx); 281 RSD.UsedByIndices.reset(LUIdx); 282 } 283 284 void 285 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) { 286 assert(LUIdx <= LastLUIdx); 287 288 // Update RegUses. The data structure is not optimized for this purpose; 289 // we must iterate through it and update each of the bit vectors. 290 for (auto &Pair : RegUsesMap) { 291 SmallBitVector &UsedByIndices = Pair.second.UsedByIndices; 292 if (LUIdx < UsedByIndices.size()) 293 UsedByIndices[LUIdx] = 294 LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false; 295 UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx)); 296 } 297 } 298 299 bool 300 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const { 301 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 302 if (I == RegUsesMap.end()) 303 return false; 304 const SmallBitVector &UsedByIndices = I->second.UsedByIndices; 305 int i = UsedByIndices.find_first(); 306 if (i == -1) return false; 307 if ((size_t)i != LUIdx) return true; 308 return UsedByIndices.find_next(i) != -1; 309 } 310 311 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const { 312 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 313 assert(I != RegUsesMap.end() && "Unknown register!"); 314 return I->second.UsedByIndices; 315 } 316 317 void RegUseTracker::clear() { 318 RegUsesMap.clear(); 319 RegSequence.clear(); 320 } 321 322 namespace { 323 324 /// This class holds information that describes a formula for computing 325 /// satisfying a use. It may include broken-out immediates and scaled registers. 326 struct Formula { 327 /// Global base address used for complex addressing. 328 GlobalValue *BaseGV = nullptr; 329 330 /// Base offset for complex addressing. 331 int64_t BaseOffset = 0; 332 333 /// Whether any complex addressing has a base register. 334 bool HasBaseReg = false; 335 336 /// The scale of any complex addressing. 337 int64_t Scale = 0; 338 339 /// The list of "base" registers for this use. When this is non-empty. The 340 /// canonical representation of a formula is 341 /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and 342 /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty(). 343 /// 3. The reg containing recurrent expr related with currect loop in the 344 /// formula should be put in the ScaledReg. 345 /// #1 enforces that the scaled register is always used when at least two 346 /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2. 347 /// #2 enforces that 1 * reg is reg. 348 /// #3 ensures invariant regs with respect to current loop can be combined 349 /// together in LSR codegen. 350 /// This invariant can be temporarily broken while building a formula. 351 /// However, every formula inserted into the LSRInstance must be in canonical 352 /// form. 353 SmallVector<const SCEV *, 4> BaseRegs; 354 355 /// The 'scaled' register for this use. This should be non-null when Scale is 356 /// not zero. 357 const SCEV *ScaledReg = nullptr; 358 359 /// An additional constant offset which added near the use. This requires a 360 /// temporary register, but the offset itself can live in an add immediate 361 /// field rather than a register. 362 int64_t UnfoldedOffset = 0; 363 364 Formula() = default; 365 366 void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE); 367 368 bool isCanonical(const Loop &L) const; 369 370 void canonicalize(const Loop &L); 371 372 bool unscale(); 373 374 bool hasZeroEnd() const; 375 376 size_t getNumRegs() const; 377 Type *getType() const; 378 379 void deleteBaseReg(const SCEV *&S); 380 381 bool referencesReg(const SCEV *S) const; 382 bool hasRegsUsedByUsesOtherThan(size_t LUIdx, 383 const RegUseTracker &RegUses) const; 384 385 void print(raw_ostream &OS) const; 386 void dump() const; 387 }; 388 389 } // end anonymous namespace 390 391 /// Recursion helper for initialMatch. 392 static void DoInitialMatch(const SCEV *S, Loop *L, 393 SmallVectorImpl<const SCEV *> &Good, 394 SmallVectorImpl<const SCEV *> &Bad, 395 ScalarEvolution &SE) { 396 // Collect expressions which properly dominate the loop header. 397 if (SE.properlyDominates(S, L->getHeader())) { 398 Good.push_back(S); 399 return; 400 } 401 402 // Look at add operands. 403 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 404 for (const SCEV *S : Add->operands()) 405 DoInitialMatch(S, L, Good, Bad, SE); 406 return; 407 } 408 409 // Look at addrec operands. 410 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 411 if (!AR->getStart()->isZero() && AR->isAffine()) { 412 DoInitialMatch(AR->getStart(), L, Good, Bad, SE); 413 DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0), 414 AR->getStepRecurrence(SE), 415 // FIXME: AR->getNoWrapFlags() 416 AR->getLoop(), SCEV::FlagAnyWrap), 417 L, Good, Bad, SE); 418 return; 419 } 420 421 // Handle a multiplication by -1 (negation) if it didn't fold. 422 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) 423 if (Mul->getOperand(0)->isAllOnesValue()) { 424 SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end()); 425 const SCEV *NewMul = SE.getMulExpr(Ops); 426 427 SmallVector<const SCEV *, 4> MyGood; 428 SmallVector<const SCEV *, 4> MyBad; 429 DoInitialMatch(NewMul, L, MyGood, MyBad, SE); 430 const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue( 431 SE.getEffectiveSCEVType(NewMul->getType()))); 432 for (const SCEV *S : MyGood) 433 Good.push_back(SE.getMulExpr(NegOne, S)); 434 for (const SCEV *S : MyBad) 435 Bad.push_back(SE.getMulExpr(NegOne, S)); 436 return; 437 } 438 439 // Ok, we can't do anything interesting. Just stuff the whole thing into a 440 // register and hope for the best. 441 Bad.push_back(S); 442 } 443 444 /// Incorporate loop-variant parts of S into this Formula, attempting to keep 445 /// all loop-invariant and loop-computable values in a single base register. 446 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) { 447 SmallVector<const SCEV *, 4> Good; 448 SmallVector<const SCEV *, 4> Bad; 449 DoInitialMatch(S, L, Good, Bad, SE); 450 if (!Good.empty()) { 451 const SCEV *Sum = SE.getAddExpr(Good); 452 if (!Sum->isZero()) 453 BaseRegs.push_back(Sum); 454 HasBaseReg = true; 455 } 456 if (!Bad.empty()) { 457 const SCEV *Sum = SE.getAddExpr(Bad); 458 if (!Sum->isZero()) 459 BaseRegs.push_back(Sum); 460 HasBaseReg = true; 461 } 462 canonicalize(*L); 463 } 464 465 /// Check whether or not this formula satisfies the canonical 466 /// representation. 467 /// \see Formula::BaseRegs. 468 bool Formula::isCanonical(const Loop &L) const { 469 if (!ScaledReg) 470 return BaseRegs.size() <= 1; 471 472 if (Scale != 1) 473 return true; 474 475 if (Scale == 1 && BaseRegs.empty()) 476 return false; 477 478 const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg); 479 if (SAR && SAR->getLoop() == &L) 480 return true; 481 482 // If ScaledReg is not a recurrent expr, or it is but its loop is not current 483 // loop, meanwhile BaseRegs contains a recurrent expr reg related with current 484 // loop, we want to swap the reg in BaseRegs with ScaledReg. 485 auto I = 486 find_if(make_range(BaseRegs.begin(), BaseRegs.end()), [&](const SCEV *S) { 487 return isa<const SCEVAddRecExpr>(S) && 488 (cast<SCEVAddRecExpr>(S)->getLoop() == &L); 489 }); 490 return I == BaseRegs.end(); 491 } 492 493 /// Helper method to morph a formula into its canonical representation. 494 /// \see Formula::BaseRegs. 495 /// Every formula having more than one base register, must use the ScaledReg 496 /// field. Otherwise, we would have to do special cases everywhere in LSR 497 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ... 498 /// On the other hand, 1*reg should be canonicalized into reg. 499 void Formula::canonicalize(const Loop &L) { 500 if (isCanonical(L)) 501 return; 502 // So far we did not need this case. This is easy to implement but it is 503 // useless to maintain dead code. Beside it could hurt compile time. 504 assert(!BaseRegs.empty() && "1*reg => reg, should not be needed."); 505 506 // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg. 507 if (!ScaledReg) { 508 ScaledReg = BaseRegs.back(); 509 BaseRegs.pop_back(); 510 Scale = 1; 511 } 512 513 // If ScaledReg is an invariant with respect to L, find the reg from 514 // BaseRegs containing the recurrent expr related with Loop L. Swap the 515 // reg with ScaledReg. 516 const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg); 517 if (!SAR || SAR->getLoop() != &L) { 518 auto I = find_if(make_range(BaseRegs.begin(), BaseRegs.end()), 519 [&](const SCEV *S) { 520 return isa<const SCEVAddRecExpr>(S) && 521 (cast<SCEVAddRecExpr>(S)->getLoop() == &L); 522 }); 523 if (I != BaseRegs.end()) 524 std::swap(ScaledReg, *I); 525 } 526 } 527 528 /// Get rid of the scale in the formula. 529 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2. 530 /// \return true if it was possible to get rid of the scale, false otherwise. 531 /// \note After this operation the formula may not be in the canonical form. 532 bool Formula::unscale() { 533 if (Scale != 1) 534 return false; 535 Scale = 0; 536 BaseRegs.push_back(ScaledReg); 537 ScaledReg = nullptr; 538 return true; 539 } 540 541 bool Formula::hasZeroEnd() const { 542 if (UnfoldedOffset || BaseOffset) 543 return false; 544 if (BaseRegs.size() != 1 || ScaledReg) 545 return false; 546 return true; 547 } 548 549 /// Return the total number of register operands used by this formula. This does 550 /// not include register uses implied by non-constant addrec strides. 551 size_t Formula::getNumRegs() const { 552 return !!ScaledReg + BaseRegs.size(); 553 } 554 555 /// Return the type of this formula, if it has one, or null otherwise. This type 556 /// is meaningless except for the bit size. 557 Type *Formula::getType() const { 558 return !BaseRegs.empty() ? BaseRegs.front()->getType() : 559 ScaledReg ? ScaledReg->getType() : 560 BaseGV ? BaseGV->getType() : 561 nullptr; 562 } 563 564 /// Delete the given base reg from the BaseRegs list. 565 void Formula::deleteBaseReg(const SCEV *&S) { 566 if (&S != &BaseRegs.back()) 567 std::swap(S, BaseRegs.back()); 568 BaseRegs.pop_back(); 569 } 570 571 /// Test if this formula references the given register. 572 bool Formula::referencesReg(const SCEV *S) const { 573 return S == ScaledReg || is_contained(BaseRegs, S); 574 } 575 576 /// Test whether this formula uses registers which are used by uses other than 577 /// the use with the given index. 578 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx, 579 const RegUseTracker &RegUses) const { 580 if (ScaledReg) 581 if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx)) 582 return true; 583 for (const SCEV *BaseReg : BaseRegs) 584 if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx)) 585 return true; 586 return false; 587 } 588 589 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 590 void Formula::print(raw_ostream &OS) const { 591 bool First = true; 592 if (BaseGV) { 593 if (!First) OS << " + "; else First = false; 594 BaseGV->printAsOperand(OS, /*PrintType=*/false); 595 } 596 if (BaseOffset != 0) { 597 if (!First) OS << " + "; else First = false; 598 OS << BaseOffset; 599 } 600 for (const SCEV *BaseReg : BaseRegs) { 601 if (!First) OS << " + "; else First = false; 602 OS << "reg(" << *BaseReg << ')'; 603 } 604 if (HasBaseReg && BaseRegs.empty()) { 605 if (!First) OS << " + "; else First = false; 606 OS << "**error: HasBaseReg**"; 607 } else if (!HasBaseReg && !BaseRegs.empty()) { 608 if (!First) OS << " + "; else First = false; 609 OS << "**error: !HasBaseReg**"; 610 } 611 if (Scale != 0) { 612 if (!First) OS << " + "; else First = false; 613 OS << Scale << "*reg("; 614 if (ScaledReg) 615 OS << *ScaledReg; 616 else 617 OS << "<unknown>"; 618 OS << ')'; 619 } 620 if (UnfoldedOffset != 0) { 621 if (!First) OS << " + "; 622 OS << "imm(" << UnfoldedOffset << ')'; 623 } 624 } 625 626 LLVM_DUMP_METHOD void Formula::dump() const { 627 print(errs()); errs() << '\n'; 628 } 629 #endif 630 631 /// Return true if the given addrec can be sign-extended without changing its 632 /// value. 633 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 634 Type *WideTy = 635 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1); 636 return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy)); 637 } 638 639 /// Return true if the given add can be sign-extended without changing its 640 /// value. 641 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) { 642 Type *WideTy = 643 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1); 644 return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy)); 645 } 646 647 /// Return true if the given mul can be sign-extended without changing its 648 /// value. 649 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) { 650 Type *WideTy = 651 IntegerType::get(SE.getContext(), 652 SE.getTypeSizeInBits(M->getType()) * M->getNumOperands()); 653 return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy)); 654 } 655 656 /// Return an expression for LHS /s RHS, if it can be determined and if the 657 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits 658 /// is true, expressions like (X * Y) /s Y are simplified to Y, ignoring that 659 /// the multiplication may overflow, which is useful when the result will be 660 /// used in a context where the most significant bits are ignored. 661 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS, 662 ScalarEvolution &SE, 663 bool IgnoreSignificantBits = false) { 664 // Handle the trivial case, which works for any SCEV type. 665 if (LHS == RHS) 666 return SE.getConstant(LHS->getType(), 1); 667 668 // Handle a few RHS special cases. 669 const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS); 670 if (RC) { 671 const APInt &RA = RC->getAPInt(); 672 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do 673 // some folding. 674 if (RA.isAllOnesValue()) 675 return SE.getMulExpr(LHS, RC); 676 // Handle x /s 1 as x. 677 if (RA == 1) 678 return LHS; 679 } 680 681 // Check for a division of a constant by a constant. 682 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) { 683 if (!RC) 684 return nullptr; 685 const APInt &LA = C->getAPInt(); 686 const APInt &RA = RC->getAPInt(); 687 if (LA.srem(RA) != 0) 688 return nullptr; 689 return SE.getConstant(LA.sdiv(RA)); 690 } 691 692 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow. 693 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) { 694 if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) { 695 const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE, 696 IgnoreSignificantBits); 697 if (!Step) return nullptr; 698 const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE, 699 IgnoreSignificantBits); 700 if (!Start) return nullptr; 701 // FlagNW is independent of the start value, step direction, and is 702 // preserved with smaller magnitude steps. 703 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 704 return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap); 705 } 706 return nullptr; 707 } 708 709 // Distribute the sdiv over add operands, if the add doesn't overflow. 710 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) { 711 if (IgnoreSignificantBits || isAddSExtable(Add, SE)) { 712 SmallVector<const SCEV *, 8> Ops; 713 for (const SCEV *S : Add->operands()) { 714 const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits); 715 if (!Op) return nullptr; 716 Ops.push_back(Op); 717 } 718 return SE.getAddExpr(Ops); 719 } 720 return nullptr; 721 } 722 723 // Check for a multiply operand that we can pull RHS out of. 724 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) { 725 if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) { 726 SmallVector<const SCEV *, 4> Ops; 727 bool Found = false; 728 for (const SCEV *S : Mul->operands()) { 729 if (!Found) 730 if (const SCEV *Q = getExactSDiv(S, RHS, SE, 731 IgnoreSignificantBits)) { 732 S = Q; 733 Found = true; 734 } 735 Ops.push_back(S); 736 } 737 return Found ? SE.getMulExpr(Ops) : nullptr; 738 } 739 return nullptr; 740 } 741 742 // Otherwise we don't know. 743 return nullptr; 744 } 745 746 /// If S involves the addition of a constant integer value, return that integer 747 /// value, and mutate S to point to a new SCEV with that value excluded. 748 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) { 749 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 750 if (C->getAPInt().getMinSignedBits() <= 64) { 751 S = SE.getConstant(C->getType(), 0); 752 return C->getValue()->getSExtValue(); 753 } 754 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 755 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 756 int64_t Result = ExtractImmediate(NewOps.front(), SE); 757 if (Result != 0) 758 S = SE.getAddExpr(NewOps); 759 return Result; 760 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 761 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 762 int64_t Result = ExtractImmediate(NewOps.front(), SE); 763 if (Result != 0) 764 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 765 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 766 SCEV::FlagAnyWrap); 767 return Result; 768 } 769 return 0; 770 } 771 772 /// If S involves the addition of a GlobalValue address, return that symbol, and 773 /// mutate S to point to a new SCEV with that value excluded. 774 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) { 775 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 776 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) { 777 S = SE.getConstant(GV->getType(), 0); 778 return GV; 779 } 780 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 781 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 782 GlobalValue *Result = ExtractSymbol(NewOps.back(), SE); 783 if (Result) 784 S = SE.getAddExpr(NewOps); 785 return Result; 786 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 787 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 788 GlobalValue *Result = ExtractSymbol(NewOps.front(), SE); 789 if (Result) 790 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 791 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 792 SCEV::FlagAnyWrap); 793 return Result; 794 } 795 return nullptr; 796 } 797 798 /// Returns true if the specified instruction is using the specified value as an 799 /// address. 800 static bool isAddressUse(const TargetTransformInfo &TTI, 801 Instruction *Inst, Value *OperandVal) { 802 bool isAddress = isa<LoadInst>(Inst); 803 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 804 if (SI->getPointerOperand() == OperandVal) 805 isAddress = true; 806 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 807 // Addressing modes can also be folded into prefetches and a variety 808 // of intrinsics. 809 switch (II->getIntrinsicID()) { 810 case Intrinsic::memset: 811 case Intrinsic::prefetch: 812 case Intrinsic::masked_load: 813 if (II->getArgOperand(0) == OperandVal) 814 isAddress = true; 815 break; 816 case Intrinsic::masked_store: 817 if (II->getArgOperand(1) == OperandVal) 818 isAddress = true; 819 break; 820 case Intrinsic::memmove: 821 case Intrinsic::memcpy: 822 if (II->getArgOperand(0) == OperandVal || 823 II->getArgOperand(1) == OperandVal) 824 isAddress = true; 825 break; 826 default: { 827 MemIntrinsicInfo IntrInfo; 828 if (TTI.getTgtMemIntrinsic(II, IntrInfo)) { 829 if (IntrInfo.PtrVal == OperandVal) 830 isAddress = true; 831 } 832 } 833 } 834 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) { 835 if (RMW->getPointerOperand() == OperandVal) 836 isAddress = true; 837 } else if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 838 if (CmpX->getPointerOperand() == OperandVal) 839 isAddress = true; 840 } 841 return isAddress; 842 } 843 844 /// Return the type of the memory being accessed. 845 static MemAccessTy getAccessType(const TargetTransformInfo &TTI, 846 Instruction *Inst, Value *OperandVal) { 847 MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace); 848 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 849 AccessTy.MemTy = SI->getOperand(0)->getType(); 850 AccessTy.AddrSpace = SI->getPointerAddressSpace(); 851 } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 852 AccessTy.AddrSpace = LI->getPointerAddressSpace(); 853 } else if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) { 854 AccessTy.AddrSpace = RMW->getPointerAddressSpace(); 855 } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 856 AccessTy.AddrSpace = CmpX->getPointerAddressSpace(); 857 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 858 switch (II->getIntrinsicID()) { 859 case Intrinsic::prefetch: 860 case Intrinsic::memset: 861 AccessTy.AddrSpace = II->getArgOperand(0)->getType()->getPointerAddressSpace(); 862 AccessTy.MemTy = OperandVal->getType(); 863 break; 864 case Intrinsic::memmove: 865 case Intrinsic::memcpy: 866 AccessTy.AddrSpace = OperandVal->getType()->getPointerAddressSpace(); 867 AccessTy.MemTy = OperandVal->getType(); 868 break; 869 case Intrinsic::masked_load: 870 AccessTy.AddrSpace = 871 II->getArgOperand(0)->getType()->getPointerAddressSpace(); 872 break; 873 case Intrinsic::masked_store: 874 AccessTy.MemTy = II->getOperand(0)->getType(); 875 AccessTy.AddrSpace = 876 II->getArgOperand(1)->getType()->getPointerAddressSpace(); 877 break; 878 default: { 879 MemIntrinsicInfo IntrInfo; 880 if (TTI.getTgtMemIntrinsic(II, IntrInfo) && IntrInfo.PtrVal) { 881 AccessTy.AddrSpace 882 = IntrInfo.PtrVal->getType()->getPointerAddressSpace(); 883 } 884 885 break; 886 } 887 } 888 } 889 890 // All pointers have the same requirements, so canonicalize them to an 891 // arbitrary pointer type to minimize variation. 892 if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy)) 893 AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1), 894 PTy->getAddressSpace()); 895 896 return AccessTy; 897 } 898 899 /// Return true if this AddRec is already a phi in its loop. 900 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 901 for (PHINode &PN : AR->getLoop()->getHeader()->phis()) { 902 if (SE.isSCEVable(PN.getType()) && 903 (SE.getEffectiveSCEVType(PN.getType()) == 904 SE.getEffectiveSCEVType(AR->getType())) && 905 SE.getSCEV(&PN) == AR) 906 return true; 907 } 908 return false; 909 } 910 911 /// Check if expanding this expression is likely to incur significant cost. This 912 /// is tricky because SCEV doesn't track which expressions are actually computed 913 /// by the current IR. 914 /// 915 /// We currently allow expansion of IV increments that involve adds, 916 /// multiplication by constants, and AddRecs from existing phis. 917 /// 918 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an 919 /// obvious multiple of the UDivExpr. 920 static bool isHighCostExpansion(const SCEV *S, 921 SmallPtrSetImpl<const SCEV*> &Processed, 922 ScalarEvolution &SE) { 923 // Zero/One operand expressions 924 switch (S->getSCEVType()) { 925 case scUnknown: 926 case scConstant: 927 return false; 928 case scTruncate: 929 return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(), 930 Processed, SE); 931 case scZeroExtend: 932 return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(), 933 Processed, SE); 934 case scSignExtend: 935 return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(), 936 Processed, SE); 937 } 938 939 if (!Processed.insert(S).second) 940 return false; 941 942 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 943 for (const SCEV *S : Add->operands()) { 944 if (isHighCostExpansion(S, Processed, SE)) 945 return true; 946 } 947 return false; 948 } 949 950 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 951 if (Mul->getNumOperands() == 2) { 952 // Multiplication by a constant is ok 953 if (isa<SCEVConstant>(Mul->getOperand(0))) 954 return isHighCostExpansion(Mul->getOperand(1), Processed, SE); 955 956 // If we have the value of one operand, check if an existing 957 // multiplication already generates this expression. 958 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) { 959 Value *UVal = U->getValue(); 960 for (User *UR : UVal->users()) { 961 // If U is a constant, it may be used by a ConstantExpr. 962 Instruction *UI = dyn_cast<Instruction>(UR); 963 if (UI && UI->getOpcode() == Instruction::Mul && 964 SE.isSCEVable(UI->getType())) { 965 return SE.getSCEV(UI) == Mul; 966 } 967 } 968 } 969 } 970 } 971 972 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 973 if (isExistingPhi(AR, SE)) 974 return false; 975 } 976 977 // Fow now, consider any other type of expression (div/mul/min/max) high cost. 978 return true; 979 } 980 981 namespace { 982 983 class LSRUse; 984 985 } // end anonymous namespace 986 987 /// Check if the addressing mode defined by \p F is completely 988 /// folded in \p LU at isel time. 989 /// This includes address-mode folding and special icmp tricks. 990 /// This function returns true if \p LU can accommodate what \p F 991 /// defines and up to 1 base + 1 scaled + offset. 992 /// In other words, if \p F has several base registers, this function may 993 /// still return true. Therefore, users still need to account for 994 /// additional base registers and/or unfolded offsets to derive an 995 /// accurate cost model. 996 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 997 const LSRUse &LU, const Formula &F); 998 999 // Get the cost of the scaling factor used in F for LU. 1000 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, 1001 const LSRUse &LU, const Formula &F, 1002 const Loop &L); 1003 1004 namespace { 1005 1006 /// This class is used to measure and compare candidate formulae. 1007 class Cost { 1008 const Loop *L = nullptr; 1009 ScalarEvolution *SE = nullptr; 1010 const TargetTransformInfo *TTI = nullptr; 1011 TargetTransformInfo::LSRCost C; 1012 1013 public: 1014 Cost() = delete; 1015 Cost(const Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI) : 1016 L(L), SE(&SE), TTI(&TTI) { 1017 C.Insns = 0; 1018 C.NumRegs = 0; 1019 C.AddRecCost = 0; 1020 C.NumIVMuls = 0; 1021 C.NumBaseAdds = 0; 1022 C.ImmCost = 0; 1023 C.SetupCost = 0; 1024 C.ScaleCost = 0; 1025 } 1026 1027 bool isLess(Cost &Other); 1028 1029 void Lose(); 1030 1031 #ifndef NDEBUG 1032 // Once any of the metrics loses, they must all remain losers. 1033 bool isValid() { 1034 return ((C.Insns | C.NumRegs | C.AddRecCost | C.NumIVMuls | C.NumBaseAdds 1035 | C.ImmCost | C.SetupCost | C.ScaleCost) != ~0u) 1036 || ((C.Insns & C.NumRegs & C.AddRecCost & C.NumIVMuls & C.NumBaseAdds 1037 & C.ImmCost & C.SetupCost & C.ScaleCost) == ~0u); 1038 } 1039 #endif 1040 1041 bool isLoser() { 1042 assert(isValid() && "invalid cost"); 1043 return C.NumRegs == ~0u; 1044 } 1045 1046 void RateFormula(const Formula &F, 1047 SmallPtrSetImpl<const SCEV *> &Regs, 1048 const DenseSet<const SCEV *> &VisitedRegs, 1049 const LSRUse &LU, 1050 SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr); 1051 1052 void print(raw_ostream &OS) const; 1053 void dump() const; 1054 1055 private: 1056 void RateRegister(const Formula &F, const SCEV *Reg, 1057 SmallPtrSetImpl<const SCEV *> &Regs); 1058 void RatePrimaryRegister(const Formula &F, const SCEV *Reg, 1059 SmallPtrSetImpl<const SCEV *> &Regs, 1060 SmallPtrSetImpl<const SCEV *> *LoserRegs); 1061 }; 1062 1063 /// An operand value in an instruction which is to be replaced with some 1064 /// equivalent, possibly strength-reduced, replacement. 1065 struct LSRFixup { 1066 /// The instruction which will be updated. 1067 Instruction *UserInst = nullptr; 1068 1069 /// The operand of the instruction which will be replaced. The operand may be 1070 /// used more than once; every instance will be replaced. 1071 Value *OperandValToReplace = nullptr; 1072 1073 /// If this user is to use the post-incremented value of an induction 1074 /// variable, this set is non-empty and holds the loops associated with the 1075 /// induction variable. 1076 PostIncLoopSet PostIncLoops; 1077 1078 /// A constant offset to be added to the LSRUse expression. This allows 1079 /// multiple fixups to share the same LSRUse with different offsets, for 1080 /// example in an unrolled loop. 1081 int64_t Offset = 0; 1082 1083 LSRFixup() = default; 1084 1085 bool isUseFullyOutsideLoop(const Loop *L) const; 1086 1087 void print(raw_ostream &OS) const; 1088 void dump() const; 1089 }; 1090 1091 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted 1092 /// SmallVectors of const SCEV*. 1093 struct UniquifierDenseMapInfo { 1094 static SmallVector<const SCEV *, 4> getEmptyKey() { 1095 SmallVector<const SCEV *, 4> V; 1096 V.push_back(reinterpret_cast<const SCEV *>(-1)); 1097 return V; 1098 } 1099 1100 static SmallVector<const SCEV *, 4> getTombstoneKey() { 1101 SmallVector<const SCEV *, 4> V; 1102 V.push_back(reinterpret_cast<const SCEV *>(-2)); 1103 return V; 1104 } 1105 1106 static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) { 1107 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 1108 } 1109 1110 static bool isEqual(const SmallVector<const SCEV *, 4> &LHS, 1111 const SmallVector<const SCEV *, 4> &RHS) { 1112 return LHS == RHS; 1113 } 1114 }; 1115 1116 /// This class holds the state that LSR keeps for each use in IVUsers, as well 1117 /// as uses invented by LSR itself. It includes information about what kinds of 1118 /// things can be folded into the user, information about the user itself, and 1119 /// information about how the use may be satisfied. TODO: Represent multiple 1120 /// users of the same expression in common? 1121 class LSRUse { 1122 DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier; 1123 1124 public: 1125 /// An enum for a kind of use, indicating what types of scaled and immediate 1126 /// operands it might support. 1127 enum KindType { 1128 Basic, ///< A normal use, with no folding. 1129 Special, ///< A special case of basic, allowing -1 scales. 1130 Address, ///< An address use; folding according to TargetLowering 1131 ICmpZero ///< An equality icmp with both operands folded into one. 1132 // TODO: Add a generic icmp too? 1133 }; 1134 1135 using SCEVUseKindPair = PointerIntPair<const SCEV *, 2, KindType>; 1136 1137 KindType Kind; 1138 MemAccessTy AccessTy; 1139 1140 /// The list of operands which are to be replaced. 1141 SmallVector<LSRFixup, 8> Fixups; 1142 1143 /// Keep track of the min and max offsets of the fixups. 1144 int64_t MinOffset = std::numeric_limits<int64_t>::max(); 1145 int64_t MaxOffset = std::numeric_limits<int64_t>::min(); 1146 1147 /// This records whether all of the fixups using this LSRUse are outside of 1148 /// the loop, in which case some special-case heuristics may be used. 1149 bool AllFixupsOutsideLoop = true; 1150 1151 /// RigidFormula is set to true to guarantee that this use will be associated 1152 /// with a single formula--the one that initially matched. Some SCEV 1153 /// expressions cannot be expanded. This allows LSR to consider the registers 1154 /// used by those expressions without the need to expand them later after 1155 /// changing the formula. 1156 bool RigidFormula = false; 1157 1158 /// This records the widest use type for any fixup using this 1159 /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max 1160 /// fixup widths to be equivalent, because the narrower one may be relying on 1161 /// the implicit truncation to truncate away bogus bits. 1162 Type *WidestFixupType = nullptr; 1163 1164 /// A list of ways to build a value that can satisfy this user. After the 1165 /// list is populated, one of these is selected heuristically and used to 1166 /// formulate a replacement for OperandValToReplace in UserInst. 1167 SmallVector<Formula, 12> Formulae; 1168 1169 /// The set of register candidates used by all formulae in this LSRUse. 1170 SmallPtrSet<const SCEV *, 4> Regs; 1171 1172 LSRUse(KindType K, MemAccessTy AT) : Kind(K), AccessTy(AT) {} 1173 1174 LSRFixup &getNewFixup() { 1175 Fixups.push_back(LSRFixup()); 1176 return Fixups.back(); 1177 } 1178 1179 void pushFixup(LSRFixup &f) { 1180 Fixups.push_back(f); 1181 if (f.Offset > MaxOffset) 1182 MaxOffset = f.Offset; 1183 if (f.Offset < MinOffset) 1184 MinOffset = f.Offset; 1185 } 1186 1187 bool HasFormulaWithSameRegs(const Formula &F) const; 1188 float getNotSelectedProbability(const SCEV *Reg) const; 1189 bool InsertFormula(const Formula &F, const Loop &L); 1190 void DeleteFormula(Formula &F); 1191 void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses); 1192 1193 void print(raw_ostream &OS) const; 1194 void dump() const; 1195 }; 1196 1197 } // end anonymous namespace 1198 1199 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1200 LSRUse::KindType Kind, MemAccessTy AccessTy, 1201 GlobalValue *BaseGV, int64_t BaseOffset, 1202 bool HasBaseReg, int64_t Scale, 1203 Instruction *Fixup = nullptr); 1204 1205 static unsigned getSetupCost(const SCEV *Reg, unsigned Depth) { 1206 if (isa<SCEVUnknown>(Reg) || isa<SCEVConstant>(Reg)) 1207 return 1; 1208 if (Depth == 0) 1209 return 0; 1210 if (const auto *S = dyn_cast<SCEVAddRecExpr>(Reg)) 1211 return getSetupCost(S->getStart(), Depth - 1); 1212 if (auto S = dyn_cast<SCEVCastExpr>(Reg)) 1213 return getSetupCost(S->getOperand(), Depth - 1); 1214 if (auto S = dyn_cast<SCEVNAryExpr>(Reg)) 1215 return std::accumulate(S->op_begin(), S->op_end(), 0, 1216 [&](unsigned i, const SCEV *Reg) { 1217 return i + getSetupCost(Reg, Depth - 1); 1218 }); 1219 if (auto S = dyn_cast<SCEVUDivExpr>(Reg)) 1220 return getSetupCost(S->getLHS(), Depth - 1) + 1221 getSetupCost(S->getRHS(), Depth - 1); 1222 return 0; 1223 } 1224 1225 /// Tally up interesting quantities from the given register. 1226 void Cost::RateRegister(const Formula &F, const SCEV *Reg, 1227 SmallPtrSetImpl<const SCEV *> &Regs) { 1228 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) { 1229 // If this is an addrec for another loop, it should be an invariant 1230 // with respect to L since L is the innermost loop (at least 1231 // for now LSR only handles innermost loops). 1232 if (AR->getLoop() != L) { 1233 // If the AddRec exists, consider it's register free and leave it alone. 1234 if (isExistingPhi(AR, *SE)) 1235 return; 1236 1237 // It is bad to allow LSR for current loop to add induction variables 1238 // for its sibling loops. 1239 if (!AR->getLoop()->contains(L)) { 1240 Lose(); 1241 return; 1242 } 1243 1244 // Otherwise, it will be an invariant with respect to Loop L. 1245 ++C.NumRegs; 1246 return; 1247 } 1248 1249 unsigned LoopCost = 1; 1250 if (TTI->isIndexedLoadLegal(TTI->MIM_PostInc, AR->getType()) || 1251 TTI->isIndexedStoreLegal(TTI->MIM_PostInc, AR->getType())) { 1252 1253 // If the step size matches the base offset, we could use pre-indexed 1254 // addressing. 1255 if (TTI->shouldFavorBackedgeIndex(L)) { 1256 if (auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE))) 1257 if (Step->getAPInt() == F.BaseOffset) 1258 LoopCost = 0; 1259 } 1260 1261 if (TTI->shouldFavorPostInc()) { 1262 const SCEV *LoopStep = AR->getStepRecurrence(*SE); 1263 if (isa<SCEVConstant>(LoopStep)) { 1264 const SCEV *LoopStart = AR->getStart(); 1265 if (!isa<SCEVConstant>(LoopStart) && 1266 SE->isLoopInvariant(LoopStart, L)) 1267 LoopCost = 0; 1268 } 1269 } 1270 } 1271 C.AddRecCost += LoopCost; 1272 1273 // Add the step value register, if it needs one. 1274 // TODO: The non-affine case isn't precisely modeled here. 1275 if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) { 1276 if (!Regs.count(AR->getOperand(1))) { 1277 RateRegister(F, AR->getOperand(1), Regs); 1278 if (isLoser()) 1279 return; 1280 } 1281 } 1282 } 1283 ++C.NumRegs; 1284 1285 // Rough heuristic; favor registers which don't require extra setup 1286 // instructions in the preheader. 1287 C.SetupCost += getSetupCost(Reg, SetupCostDepthLimit); 1288 // Ensure we don't, even with the recusion limit, produce invalid costs. 1289 C.SetupCost = std::min<unsigned>(C.SetupCost, 1 << 16); 1290 1291 C.NumIVMuls += isa<SCEVMulExpr>(Reg) && 1292 SE->hasComputableLoopEvolution(Reg, L); 1293 } 1294 1295 /// Record this register in the set. If we haven't seen it before, rate 1296 /// it. Optional LoserRegs provides a way to declare any formula that refers to 1297 /// one of those regs an instant loser. 1298 void Cost::RatePrimaryRegister(const Formula &F, const SCEV *Reg, 1299 SmallPtrSetImpl<const SCEV *> &Regs, 1300 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1301 if (LoserRegs && LoserRegs->count(Reg)) { 1302 Lose(); 1303 return; 1304 } 1305 if (Regs.insert(Reg).second) { 1306 RateRegister(F, Reg, Regs); 1307 if (LoserRegs && isLoser()) 1308 LoserRegs->insert(Reg); 1309 } 1310 } 1311 1312 void Cost::RateFormula(const Formula &F, 1313 SmallPtrSetImpl<const SCEV *> &Regs, 1314 const DenseSet<const SCEV *> &VisitedRegs, 1315 const LSRUse &LU, 1316 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1317 assert(F.isCanonical(*L) && "Cost is accurate only for canonical formula"); 1318 // Tally up the registers. 1319 unsigned PrevAddRecCost = C.AddRecCost; 1320 unsigned PrevNumRegs = C.NumRegs; 1321 unsigned PrevNumBaseAdds = C.NumBaseAdds; 1322 if (const SCEV *ScaledReg = F.ScaledReg) { 1323 if (VisitedRegs.count(ScaledReg)) { 1324 Lose(); 1325 return; 1326 } 1327 RatePrimaryRegister(F, ScaledReg, Regs, LoserRegs); 1328 if (isLoser()) 1329 return; 1330 } 1331 for (const SCEV *BaseReg : F.BaseRegs) { 1332 if (VisitedRegs.count(BaseReg)) { 1333 Lose(); 1334 return; 1335 } 1336 RatePrimaryRegister(F, BaseReg, Regs, LoserRegs); 1337 if (isLoser()) 1338 return; 1339 } 1340 1341 // Determine how many (unfolded) adds we'll need inside the loop. 1342 size_t NumBaseParts = F.getNumRegs(); 1343 if (NumBaseParts > 1) 1344 // Do not count the base and a possible second register if the target 1345 // allows to fold 2 registers. 1346 C.NumBaseAdds += 1347 NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(*TTI, LU, F))); 1348 C.NumBaseAdds += (F.UnfoldedOffset != 0); 1349 1350 // Accumulate non-free scaling amounts. 1351 C.ScaleCost += getScalingFactorCost(*TTI, LU, F, *L); 1352 1353 // Tally up the non-zero immediates. 1354 for (const LSRFixup &Fixup : LU.Fixups) { 1355 int64_t O = Fixup.Offset; 1356 int64_t Offset = (uint64_t)O + F.BaseOffset; 1357 if (F.BaseGV) 1358 C.ImmCost += 64; // Handle symbolic values conservatively. 1359 // TODO: This should probably be the pointer size. 1360 else if (Offset != 0) 1361 C.ImmCost += APInt(64, Offset, true).getMinSignedBits(); 1362 1363 // Check with target if this offset with this instruction is 1364 // specifically not supported. 1365 if (LU.Kind == LSRUse::Address && Offset != 0 && 1366 !isAMCompletelyFolded(*TTI, LSRUse::Address, LU.AccessTy, F.BaseGV, 1367 Offset, F.HasBaseReg, F.Scale, Fixup.UserInst)) 1368 C.NumBaseAdds++; 1369 } 1370 1371 // If we don't count instruction cost exit here. 1372 if (!InsnsCost) { 1373 assert(isValid() && "invalid cost"); 1374 return; 1375 } 1376 1377 // Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as 1378 // additional instruction (at least fill). 1379 // TODO: Need distinguish register class? 1380 unsigned TTIRegNum = TTI->getNumberOfRegisters( 1381 TTI->getRegisterClassForType(false, F.getType())) - 1; 1382 if (C.NumRegs > TTIRegNum) { 1383 // Cost already exceeded TTIRegNum, then only newly added register can add 1384 // new instructions. 1385 if (PrevNumRegs > TTIRegNum) 1386 C.Insns += (C.NumRegs - PrevNumRegs); 1387 else 1388 C.Insns += (C.NumRegs - TTIRegNum); 1389 } 1390 1391 // If ICmpZero formula ends with not 0, it could not be replaced by 1392 // just add or sub. We'll need to compare final result of AddRec. 1393 // That means we'll need an additional instruction. But if the target can 1394 // macro-fuse a compare with a branch, don't count this extra instruction. 1395 // For -10 + {0, +, 1}: 1396 // i = i + 1; 1397 // cmp i, 10 1398 // 1399 // For {-10, +, 1}: 1400 // i = i + 1; 1401 if (LU.Kind == LSRUse::ICmpZero && !F.hasZeroEnd() && 1402 !TTI->canMacroFuseCmp()) 1403 C.Insns++; 1404 // Each new AddRec adds 1 instruction to calculation. 1405 C.Insns += (C.AddRecCost - PrevAddRecCost); 1406 1407 // BaseAdds adds instructions for unfolded registers. 1408 if (LU.Kind != LSRUse::ICmpZero) 1409 C.Insns += C.NumBaseAdds - PrevNumBaseAdds; 1410 assert(isValid() && "invalid cost"); 1411 } 1412 1413 /// Set this cost to a losing value. 1414 void Cost::Lose() { 1415 C.Insns = std::numeric_limits<unsigned>::max(); 1416 C.NumRegs = std::numeric_limits<unsigned>::max(); 1417 C.AddRecCost = std::numeric_limits<unsigned>::max(); 1418 C.NumIVMuls = std::numeric_limits<unsigned>::max(); 1419 C.NumBaseAdds = std::numeric_limits<unsigned>::max(); 1420 C.ImmCost = std::numeric_limits<unsigned>::max(); 1421 C.SetupCost = std::numeric_limits<unsigned>::max(); 1422 C.ScaleCost = std::numeric_limits<unsigned>::max(); 1423 } 1424 1425 /// Choose the lower cost. 1426 bool Cost::isLess(Cost &Other) { 1427 if (InsnsCost.getNumOccurrences() > 0 && InsnsCost && 1428 C.Insns != Other.C.Insns) 1429 return C.Insns < Other.C.Insns; 1430 return TTI->isLSRCostLess(C, Other.C); 1431 } 1432 1433 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1434 void Cost::print(raw_ostream &OS) const { 1435 if (InsnsCost) 1436 OS << C.Insns << " instruction" << (C.Insns == 1 ? " " : "s "); 1437 OS << C.NumRegs << " reg" << (C.NumRegs == 1 ? "" : "s"); 1438 if (C.AddRecCost != 0) 1439 OS << ", with addrec cost " << C.AddRecCost; 1440 if (C.NumIVMuls != 0) 1441 OS << ", plus " << C.NumIVMuls << " IV mul" 1442 << (C.NumIVMuls == 1 ? "" : "s"); 1443 if (C.NumBaseAdds != 0) 1444 OS << ", plus " << C.NumBaseAdds << " base add" 1445 << (C.NumBaseAdds == 1 ? "" : "s"); 1446 if (C.ScaleCost != 0) 1447 OS << ", plus " << C.ScaleCost << " scale cost"; 1448 if (C.ImmCost != 0) 1449 OS << ", plus " << C.ImmCost << " imm cost"; 1450 if (C.SetupCost != 0) 1451 OS << ", plus " << C.SetupCost << " setup cost"; 1452 } 1453 1454 LLVM_DUMP_METHOD void Cost::dump() const { 1455 print(errs()); errs() << '\n'; 1456 } 1457 #endif 1458 1459 /// Test whether this fixup always uses its value outside of the given loop. 1460 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const { 1461 // PHI nodes use their value in their incoming blocks. 1462 if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) { 1463 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1464 if (PN->getIncomingValue(i) == OperandValToReplace && 1465 L->contains(PN->getIncomingBlock(i))) 1466 return false; 1467 return true; 1468 } 1469 1470 return !L->contains(UserInst); 1471 } 1472 1473 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1474 void LSRFixup::print(raw_ostream &OS) const { 1475 OS << "UserInst="; 1476 // Store is common and interesting enough to be worth special-casing. 1477 if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) { 1478 OS << "store "; 1479 Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false); 1480 } else if (UserInst->getType()->isVoidTy()) 1481 OS << UserInst->getOpcodeName(); 1482 else 1483 UserInst->printAsOperand(OS, /*PrintType=*/false); 1484 1485 OS << ", OperandValToReplace="; 1486 OperandValToReplace->printAsOperand(OS, /*PrintType=*/false); 1487 1488 for (const Loop *PIL : PostIncLoops) { 1489 OS << ", PostIncLoop="; 1490 PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 1491 } 1492 1493 if (Offset != 0) 1494 OS << ", Offset=" << Offset; 1495 } 1496 1497 LLVM_DUMP_METHOD void LSRFixup::dump() const { 1498 print(errs()); errs() << '\n'; 1499 } 1500 #endif 1501 1502 /// Test whether this use as a formula which has the same registers as the given 1503 /// formula. 1504 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const { 1505 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1506 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1507 // Unstable sort by host order ok, because this is only used for uniquifying. 1508 llvm::sort(Key); 1509 return Uniquifier.count(Key); 1510 } 1511 1512 /// The function returns a probability of selecting formula without Reg. 1513 float LSRUse::getNotSelectedProbability(const SCEV *Reg) const { 1514 unsigned FNum = 0; 1515 for (const Formula &F : Formulae) 1516 if (F.referencesReg(Reg)) 1517 FNum++; 1518 return ((float)(Formulae.size() - FNum)) / Formulae.size(); 1519 } 1520 1521 /// If the given formula has not yet been inserted, add it to the list, and 1522 /// return true. Return false otherwise. The formula must be in canonical form. 1523 bool LSRUse::InsertFormula(const Formula &F, const Loop &L) { 1524 assert(F.isCanonical(L) && "Invalid canonical representation"); 1525 1526 if (!Formulae.empty() && RigidFormula) 1527 return false; 1528 1529 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1530 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1531 // Unstable sort by host order ok, because this is only used for uniquifying. 1532 llvm::sort(Key); 1533 1534 if (!Uniquifier.insert(Key).second) 1535 return false; 1536 1537 // Using a register to hold the value of 0 is not profitable. 1538 assert((!F.ScaledReg || !F.ScaledReg->isZero()) && 1539 "Zero allocated in a scaled register!"); 1540 #ifndef NDEBUG 1541 for (const SCEV *BaseReg : F.BaseRegs) 1542 assert(!BaseReg->isZero() && "Zero allocated in a base register!"); 1543 #endif 1544 1545 // Add the formula to the list. 1546 Formulae.push_back(F); 1547 1548 // Record registers now being used by this use. 1549 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1550 if (F.ScaledReg) 1551 Regs.insert(F.ScaledReg); 1552 1553 return true; 1554 } 1555 1556 /// Remove the given formula from this use's list. 1557 void LSRUse::DeleteFormula(Formula &F) { 1558 if (&F != &Formulae.back()) 1559 std::swap(F, Formulae.back()); 1560 Formulae.pop_back(); 1561 } 1562 1563 /// Recompute the Regs field, and update RegUses. 1564 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) { 1565 // Now that we've filtered out some formulae, recompute the Regs set. 1566 SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs); 1567 Regs.clear(); 1568 for (const Formula &F : Formulae) { 1569 if (F.ScaledReg) Regs.insert(F.ScaledReg); 1570 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1571 } 1572 1573 // Update the RegTracker. 1574 for (const SCEV *S : OldRegs) 1575 if (!Regs.count(S)) 1576 RegUses.dropRegister(S, LUIdx); 1577 } 1578 1579 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1580 void LSRUse::print(raw_ostream &OS) const { 1581 OS << "LSR Use: Kind="; 1582 switch (Kind) { 1583 case Basic: OS << "Basic"; break; 1584 case Special: OS << "Special"; break; 1585 case ICmpZero: OS << "ICmpZero"; break; 1586 case Address: 1587 OS << "Address of "; 1588 if (AccessTy.MemTy->isPointerTy()) 1589 OS << "pointer"; // the full pointer type could be really verbose 1590 else { 1591 OS << *AccessTy.MemTy; 1592 } 1593 1594 OS << " in addrspace(" << AccessTy.AddrSpace << ')'; 1595 } 1596 1597 OS << ", Offsets={"; 1598 bool NeedComma = false; 1599 for (const LSRFixup &Fixup : Fixups) { 1600 if (NeedComma) OS << ','; 1601 OS << Fixup.Offset; 1602 NeedComma = true; 1603 } 1604 OS << '}'; 1605 1606 if (AllFixupsOutsideLoop) 1607 OS << ", all-fixups-outside-loop"; 1608 1609 if (WidestFixupType) 1610 OS << ", widest fixup type: " << *WidestFixupType; 1611 } 1612 1613 LLVM_DUMP_METHOD void LSRUse::dump() const { 1614 print(errs()); errs() << '\n'; 1615 } 1616 #endif 1617 1618 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1619 LSRUse::KindType Kind, MemAccessTy AccessTy, 1620 GlobalValue *BaseGV, int64_t BaseOffset, 1621 bool HasBaseReg, int64_t Scale, 1622 Instruction *Fixup/*= nullptr*/) { 1623 switch (Kind) { 1624 case LSRUse::Address: 1625 return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset, 1626 HasBaseReg, Scale, AccessTy.AddrSpace, Fixup); 1627 1628 case LSRUse::ICmpZero: 1629 // There's not even a target hook for querying whether it would be legal to 1630 // fold a GV into an ICmp. 1631 if (BaseGV) 1632 return false; 1633 1634 // ICmp only has two operands; don't allow more than two non-trivial parts. 1635 if (Scale != 0 && HasBaseReg && BaseOffset != 0) 1636 return false; 1637 1638 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by 1639 // putting the scaled register in the other operand of the icmp. 1640 if (Scale != 0 && Scale != -1) 1641 return false; 1642 1643 // If we have low-level target information, ask the target if it can fold an 1644 // integer immediate on an icmp. 1645 if (BaseOffset != 0) { 1646 // We have one of: 1647 // ICmpZero BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset 1648 // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset 1649 // Offs is the ICmp immediate. 1650 if (Scale == 0) 1651 // The cast does the right thing with 1652 // std::numeric_limits<int64_t>::min(). 1653 BaseOffset = -(uint64_t)BaseOffset; 1654 return TTI.isLegalICmpImmediate(BaseOffset); 1655 } 1656 1657 // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg 1658 return true; 1659 1660 case LSRUse::Basic: 1661 // Only handle single-register values. 1662 return !BaseGV && Scale == 0 && BaseOffset == 0; 1663 1664 case LSRUse::Special: 1665 // Special case Basic to handle -1 scales. 1666 return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0; 1667 } 1668 1669 llvm_unreachable("Invalid LSRUse Kind!"); 1670 } 1671 1672 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1673 int64_t MinOffset, int64_t MaxOffset, 1674 LSRUse::KindType Kind, MemAccessTy AccessTy, 1675 GlobalValue *BaseGV, int64_t BaseOffset, 1676 bool HasBaseReg, int64_t Scale) { 1677 // Check for overflow. 1678 if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) != 1679 (MinOffset > 0)) 1680 return false; 1681 MinOffset = (uint64_t)BaseOffset + MinOffset; 1682 if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) != 1683 (MaxOffset > 0)) 1684 return false; 1685 MaxOffset = (uint64_t)BaseOffset + MaxOffset; 1686 1687 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset, 1688 HasBaseReg, Scale) && 1689 isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset, 1690 HasBaseReg, Scale); 1691 } 1692 1693 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1694 int64_t MinOffset, int64_t MaxOffset, 1695 LSRUse::KindType Kind, MemAccessTy AccessTy, 1696 const Formula &F, const Loop &L) { 1697 // For the purpose of isAMCompletelyFolded either having a canonical formula 1698 // or a scale not equal to zero is correct. 1699 // Problems may arise from non canonical formulae having a scale == 0. 1700 // Strictly speaking it would best to just rely on canonical formulae. 1701 // However, when we generate the scaled formulae, we first check that the 1702 // scaling factor is profitable before computing the actual ScaledReg for 1703 // compile time sake. 1704 assert((F.isCanonical(L) || F.Scale != 0)); 1705 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1706 F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale); 1707 } 1708 1709 /// Test whether we know how to expand the current formula. 1710 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1711 int64_t MaxOffset, LSRUse::KindType Kind, 1712 MemAccessTy AccessTy, GlobalValue *BaseGV, 1713 int64_t BaseOffset, bool HasBaseReg, int64_t Scale) { 1714 // We know how to expand completely foldable formulae. 1715 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1716 BaseOffset, HasBaseReg, Scale) || 1717 // Or formulae that use a base register produced by a sum of base 1718 // registers. 1719 (Scale == 1 && 1720 isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1721 BaseGV, BaseOffset, true, 0)); 1722 } 1723 1724 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1725 int64_t MaxOffset, LSRUse::KindType Kind, 1726 MemAccessTy AccessTy, const Formula &F) { 1727 return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV, 1728 F.BaseOffset, F.HasBaseReg, F.Scale); 1729 } 1730 1731 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1732 const LSRUse &LU, const Formula &F) { 1733 // Target may want to look at the user instructions. 1734 if (LU.Kind == LSRUse::Address && TTI.LSRWithInstrQueries()) { 1735 for (const LSRFixup &Fixup : LU.Fixups) 1736 if (!isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV, 1737 (F.BaseOffset + Fixup.Offset), F.HasBaseReg, 1738 F.Scale, Fixup.UserInst)) 1739 return false; 1740 return true; 1741 } 1742 1743 return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1744 LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg, 1745 F.Scale); 1746 } 1747 1748 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, 1749 const LSRUse &LU, const Formula &F, 1750 const Loop &L) { 1751 if (!F.Scale) 1752 return 0; 1753 1754 // If the use is not completely folded in that instruction, we will have to 1755 // pay an extra cost only for scale != 1. 1756 if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1757 LU.AccessTy, F, L)) 1758 return F.Scale != 1; 1759 1760 switch (LU.Kind) { 1761 case LSRUse::Address: { 1762 // Check the scaling factor cost with both the min and max offsets. 1763 int ScaleCostMinOffset = TTI.getScalingFactorCost( 1764 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg, 1765 F.Scale, LU.AccessTy.AddrSpace); 1766 int ScaleCostMaxOffset = TTI.getScalingFactorCost( 1767 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg, 1768 F.Scale, LU.AccessTy.AddrSpace); 1769 1770 assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 && 1771 "Legal addressing mode has an illegal cost!"); 1772 return std::max(ScaleCostMinOffset, ScaleCostMaxOffset); 1773 } 1774 case LSRUse::ICmpZero: 1775 case LSRUse::Basic: 1776 case LSRUse::Special: 1777 // The use is completely folded, i.e., everything is folded into the 1778 // instruction. 1779 return 0; 1780 } 1781 1782 llvm_unreachable("Invalid LSRUse Kind!"); 1783 } 1784 1785 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1786 LSRUse::KindType Kind, MemAccessTy AccessTy, 1787 GlobalValue *BaseGV, int64_t BaseOffset, 1788 bool HasBaseReg) { 1789 // Fast-path: zero is always foldable. 1790 if (BaseOffset == 0 && !BaseGV) return true; 1791 1792 // Conservatively, create an address with an immediate and a 1793 // base and a scale. 1794 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1795 1796 // Canonicalize a scale of 1 to a base register if the formula doesn't 1797 // already have a base register. 1798 if (!HasBaseReg && Scale == 1) { 1799 Scale = 0; 1800 HasBaseReg = true; 1801 } 1802 1803 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset, 1804 HasBaseReg, Scale); 1805 } 1806 1807 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1808 ScalarEvolution &SE, int64_t MinOffset, 1809 int64_t MaxOffset, LSRUse::KindType Kind, 1810 MemAccessTy AccessTy, const SCEV *S, 1811 bool HasBaseReg) { 1812 // Fast-path: zero is always foldable. 1813 if (S->isZero()) return true; 1814 1815 // Conservatively, create an address with an immediate and a 1816 // base and a scale. 1817 int64_t BaseOffset = ExtractImmediate(S, SE); 1818 GlobalValue *BaseGV = ExtractSymbol(S, SE); 1819 1820 // If there's anything else involved, it's not foldable. 1821 if (!S->isZero()) return false; 1822 1823 // Fast-path: zero is always foldable. 1824 if (BaseOffset == 0 && !BaseGV) return true; 1825 1826 // Conservatively, create an address with an immediate and a 1827 // base and a scale. 1828 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1829 1830 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1831 BaseOffset, HasBaseReg, Scale); 1832 } 1833 1834 namespace { 1835 1836 /// An individual increment in a Chain of IV increments. Relate an IV user to 1837 /// an expression that computes the IV it uses from the IV used by the previous 1838 /// link in the Chain. 1839 /// 1840 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the 1841 /// original IVOperand. The head of the chain's IVOperand is only valid during 1842 /// chain collection, before LSR replaces IV users. During chain generation, 1843 /// IncExpr can be used to find the new IVOperand that computes the same 1844 /// expression. 1845 struct IVInc { 1846 Instruction *UserInst; 1847 Value* IVOperand; 1848 const SCEV *IncExpr; 1849 1850 IVInc(Instruction *U, Value *O, const SCEV *E) 1851 : UserInst(U), IVOperand(O), IncExpr(E) {} 1852 }; 1853 1854 // The list of IV increments in program order. We typically add the head of a 1855 // chain without finding subsequent links. 1856 struct IVChain { 1857 SmallVector<IVInc, 1> Incs; 1858 const SCEV *ExprBase = nullptr; 1859 1860 IVChain() = default; 1861 IVChain(const IVInc &Head, const SCEV *Base) 1862 : Incs(1, Head), ExprBase(Base) {} 1863 1864 using const_iterator = SmallVectorImpl<IVInc>::const_iterator; 1865 1866 // Return the first increment in the chain. 1867 const_iterator begin() const { 1868 assert(!Incs.empty()); 1869 return std::next(Incs.begin()); 1870 } 1871 const_iterator end() const { 1872 return Incs.end(); 1873 } 1874 1875 // Returns true if this chain contains any increments. 1876 bool hasIncs() const { return Incs.size() >= 2; } 1877 1878 // Add an IVInc to the end of this chain. 1879 void add(const IVInc &X) { Incs.push_back(X); } 1880 1881 // Returns the last UserInst in the chain. 1882 Instruction *tailUserInst() const { return Incs.back().UserInst; } 1883 1884 // Returns true if IncExpr can be profitably added to this chain. 1885 bool isProfitableIncrement(const SCEV *OperExpr, 1886 const SCEV *IncExpr, 1887 ScalarEvolution&); 1888 }; 1889 1890 /// Helper for CollectChains to track multiple IV increment uses. Distinguish 1891 /// between FarUsers that definitely cross IV increments and NearUsers that may 1892 /// be used between IV increments. 1893 struct ChainUsers { 1894 SmallPtrSet<Instruction*, 4> FarUsers; 1895 SmallPtrSet<Instruction*, 4> NearUsers; 1896 }; 1897 1898 /// This class holds state for the main loop strength reduction logic. 1899 class LSRInstance { 1900 IVUsers &IU; 1901 ScalarEvolution &SE; 1902 DominatorTree &DT; 1903 LoopInfo &LI; 1904 AssumptionCache &AC; 1905 TargetLibraryInfo &TLI; 1906 const TargetTransformInfo &TTI; 1907 Loop *const L; 1908 MemorySSAUpdater *MSSAU; 1909 bool FavorBackedgeIndex = false; 1910 bool Changed = false; 1911 1912 /// This is the insert position that the current loop's induction variable 1913 /// increment should be placed. In simple loops, this is the latch block's 1914 /// terminator. But in more complicated cases, this is a position which will 1915 /// dominate all the in-loop post-increment users. 1916 Instruction *IVIncInsertPos = nullptr; 1917 1918 /// Interesting factors between use strides. 1919 /// 1920 /// We explicitly use a SetVector which contains a SmallSet, instead of the 1921 /// default, a SmallDenseSet, because we need to use the full range of 1922 /// int64_ts, and there's currently no good way of doing that with 1923 /// SmallDenseSet. 1924 SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors; 1925 1926 /// Interesting use types, to facilitate truncation reuse. 1927 SmallSetVector<Type *, 4> Types; 1928 1929 /// The list of interesting uses. 1930 mutable SmallVector<LSRUse, 16> Uses; 1931 1932 /// Track which uses use which register candidates. 1933 RegUseTracker RegUses; 1934 1935 // Limit the number of chains to avoid quadratic behavior. We don't expect to 1936 // have more than a few IV increment chains in a loop. Missing a Chain falls 1937 // back to normal LSR behavior for those uses. 1938 static const unsigned MaxChains = 8; 1939 1940 /// IV users can form a chain of IV increments. 1941 SmallVector<IVChain, MaxChains> IVChainVec; 1942 1943 /// IV users that belong to profitable IVChains. 1944 SmallPtrSet<Use*, MaxChains> IVIncSet; 1945 1946 void OptimizeShadowIV(); 1947 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse); 1948 ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse); 1949 void OptimizeLoopTermCond(); 1950 1951 void ChainInstruction(Instruction *UserInst, Instruction *IVOper, 1952 SmallVectorImpl<ChainUsers> &ChainUsersVec); 1953 void FinalizeChain(IVChain &Chain); 1954 void CollectChains(); 1955 void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 1956 SmallVectorImpl<WeakTrackingVH> &DeadInsts); 1957 1958 void CollectInterestingTypesAndFactors(); 1959 void CollectFixupsAndInitialFormulae(); 1960 1961 // Support for sharing of LSRUses between LSRFixups. 1962 using UseMapTy = DenseMap<LSRUse::SCEVUseKindPair, size_t>; 1963 UseMapTy UseMap; 1964 1965 bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, 1966 LSRUse::KindType Kind, MemAccessTy AccessTy); 1967 1968 std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind, 1969 MemAccessTy AccessTy); 1970 1971 void DeleteUse(LSRUse &LU, size_t LUIdx); 1972 1973 LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU); 1974 1975 void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1976 void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1977 void CountRegisters(const Formula &F, size_t LUIdx); 1978 bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F); 1979 1980 void CollectLoopInvariantFixupsAndFormulae(); 1981 1982 void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base, 1983 unsigned Depth = 0); 1984 1985 void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 1986 const Formula &Base, unsigned Depth, 1987 size_t Idx, bool IsScaledReg = false); 1988 void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base); 1989 void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 1990 const Formula &Base, size_t Idx, 1991 bool IsScaledReg = false); 1992 void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1993 void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx, 1994 const Formula &Base, 1995 const SmallVectorImpl<int64_t> &Worklist, 1996 size_t Idx, bool IsScaledReg = false); 1997 void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1998 void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base); 1999 void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base); 2000 void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base); 2001 void GenerateCrossUseConstantOffsets(); 2002 void GenerateAllReuseFormulae(); 2003 2004 void FilterOutUndesirableDedicatedRegisters(); 2005 2006 size_t EstimateSearchSpaceComplexity() const; 2007 void NarrowSearchSpaceByDetectingSupersets(); 2008 void NarrowSearchSpaceByCollapsingUnrolledCode(); 2009 void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 2010 void NarrowSearchSpaceByFilterFormulaWithSameScaledReg(); 2011 void NarrowSearchSpaceByDeletingCostlyFormulas(); 2012 void NarrowSearchSpaceByPickingWinnerRegs(); 2013 void NarrowSearchSpaceUsingHeuristics(); 2014 2015 void SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 2016 Cost &SolutionCost, 2017 SmallVectorImpl<const Formula *> &Workspace, 2018 const Cost &CurCost, 2019 const SmallPtrSet<const SCEV *, 16> &CurRegs, 2020 DenseSet<const SCEV *> &VisitedRegs) const; 2021 void Solve(SmallVectorImpl<const Formula *> &Solution) const; 2022 2023 BasicBlock::iterator 2024 HoistInsertPosition(BasicBlock::iterator IP, 2025 const SmallVectorImpl<Instruction *> &Inputs) const; 2026 BasicBlock::iterator 2027 AdjustInsertPositionForExpand(BasicBlock::iterator IP, 2028 const LSRFixup &LF, 2029 const LSRUse &LU, 2030 SCEVExpander &Rewriter) const; 2031 2032 Value *Expand(const LSRUse &LU, const LSRFixup &LF, const Formula &F, 2033 BasicBlock::iterator IP, SCEVExpander &Rewriter, 2034 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 2035 void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF, 2036 const Formula &F, SCEVExpander &Rewriter, 2037 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 2038 void Rewrite(const LSRUse &LU, const LSRFixup &LF, const Formula &F, 2039 SCEVExpander &Rewriter, 2040 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 2041 void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution); 2042 2043 public: 2044 LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT, 2045 LoopInfo &LI, const TargetTransformInfo &TTI, AssumptionCache &AC, 2046 TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU); 2047 2048 bool getChanged() const { return Changed; } 2049 2050 void print_factors_and_types(raw_ostream &OS) const; 2051 void print_fixups(raw_ostream &OS) const; 2052 void print_uses(raw_ostream &OS) const; 2053 void print(raw_ostream &OS) const; 2054 void dump() const; 2055 }; 2056 2057 } // end anonymous namespace 2058 2059 /// If IV is used in a int-to-float cast inside the loop then try to eliminate 2060 /// the cast operation. 2061 void LSRInstance::OptimizeShadowIV() { 2062 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 2063 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2064 return; 2065 2066 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); 2067 UI != E; /* empty */) { 2068 IVUsers::const_iterator CandidateUI = UI; 2069 ++UI; 2070 Instruction *ShadowUse = CandidateUI->getUser(); 2071 Type *DestTy = nullptr; 2072 bool IsSigned = false; 2073 2074 /* If shadow use is a int->float cast then insert a second IV 2075 to eliminate this cast. 2076 2077 for (unsigned i = 0; i < n; ++i) 2078 foo((double)i); 2079 2080 is transformed into 2081 2082 double d = 0.0; 2083 for (unsigned i = 0; i < n; ++i, ++d) 2084 foo(d); 2085 */ 2086 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) { 2087 IsSigned = false; 2088 DestTy = UCast->getDestTy(); 2089 } 2090 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) { 2091 IsSigned = true; 2092 DestTy = SCast->getDestTy(); 2093 } 2094 if (!DestTy) continue; 2095 2096 // If target does not support DestTy natively then do not apply 2097 // this transformation. 2098 if (!TTI.isTypeLegal(DestTy)) continue; 2099 2100 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0)); 2101 if (!PH) continue; 2102 if (PH->getNumIncomingValues() != 2) continue; 2103 2104 // If the calculation in integers overflows, the result in FP type will 2105 // differ. So we only can do this transformation if we are guaranteed to not 2106 // deal with overflowing values 2107 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PH)); 2108 if (!AR) continue; 2109 if (IsSigned && !AR->hasNoSignedWrap()) continue; 2110 if (!IsSigned && !AR->hasNoUnsignedWrap()) continue; 2111 2112 Type *SrcTy = PH->getType(); 2113 int Mantissa = DestTy->getFPMantissaWidth(); 2114 if (Mantissa == -1) continue; 2115 if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa) 2116 continue; 2117 2118 unsigned Entry, Latch; 2119 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) { 2120 Entry = 0; 2121 Latch = 1; 2122 } else { 2123 Entry = 1; 2124 Latch = 0; 2125 } 2126 2127 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry)); 2128 if (!Init) continue; 2129 Constant *NewInit = ConstantFP::get(DestTy, IsSigned ? 2130 (double)Init->getSExtValue() : 2131 (double)Init->getZExtValue()); 2132 2133 BinaryOperator *Incr = 2134 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch)); 2135 if (!Incr) continue; 2136 if (Incr->getOpcode() != Instruction::Add 2137 && Incr->getOpcode() != Instruction::Sub) 2138 continue; 2139 2140 /* Initialize new IV, double d = 0.0 in above example. */ 2141 ConstantInt *C = nullptr; 2142 if (Incr->getOperand(0) == PH) 2143 C = dyn_cast<ConstantInt>(Incr->getOperand(1)); 2144 else if (Incr->getOperand(1) == PH) 2145 C = dyn_cast<ConstantInt>(Incr->getOperand(0)); 2146 else 2147 continue; 2148 2149 if (!C) continue; 2150 2151 // Ignore negative constants, as the code below doesn't handle them 2152 // correctly. TODO: Remove this restriction. 2153 if (!C->getValue().isStrictlyPositive()) continue; 2154 2155 /* Add new PHINode. */ 2156 PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH); 2157 2158 /* create new increment. '++d' in above example. */ 2159 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue()); 2160 BinaryOperator *NewIncr = 2161 BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ? 2162 Instruction::FAdd : Instruction::FSub, 2163 NewPH, CFP, "IV.S.next.", Incr); 2164 2165 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry)); 2166 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch)); 2167 2168 /* Remove cast operation */ 2169 ShadowUse->replaceAllUsesWith(NewPH); 2170 ShadowUse->eraseFromParent(); 2171 Changed = true; 2172 break; 2173 } 2174 } 2175 2176 /// If Cond has an operand that is an expression of an IV, set the IV user and 2177 /// stride information and return true, otherwise return false. 2178 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) { 2179 for (IVStrideUse &U : IU) 2180 if (U.getUser() == Cond) { 2181 // NOTE: we could handle setcc instructions with multiple uses here, but 2182 // InstCombine does it as well for simple uses, it's not clear that it 2183 // occurs enough in real life to handle. 2184 CondUse = &U; 2185 return true; 2186 } 2187 return false; 2188 } 2189 2190 /// Rewrite the loop's terminating condition if it uses a max computation. 2191 /// 2192 /// This is a narrow solution to a specific, but acute, problem. For loops 2193 /// like this: 2194 /// 2195 /// i = 0; 2196 /// do { 2197 /// p[i] = 0.0; 2198 /// } while (++i < n); 2199 /// 2200 /// the trip count isn't just 'n', because 'n' might not be positive. And 2201 /// unfortunately this can come up even for loops where the user didn't use 2202 /// a C do-while loop. For example, seemingly well-behaved top-test loops 2203 /// will commonly be lowered like this: 2204 /// 2205 /// if (n > 0) { 2206 /// i = 0; 2207 /// do { 2208 /// p[i] = 0.0; 2209 /// } while (++i < n); 2210 /// } 2211 /// 2212 /// and then it's possible for subsequent optimization to obscure the if 2213 /// test in such a way that indvars can't find it. 2214 /// 2215 /// When indvars can't find the if test in loops like this, it creates a 2216 /// max expression, which allows it to give the loop a canonical 2217 /// induction variable: 2218 /// 2219 /// i = 0; 2220 /// max = n < 1 ? 1 : n; 2221 /// do { 2222 /// p[i] = 0.0; 2223 /// } while (++i != max); 2224 /// 2225 /// Canonical induction variables are necessary because the loop passes 2226 /// are designed around them. The most obvious example of this is the 2227 /// LoopInfo analysis, which doesn't remember trip count values. It 2228 /// expects to be able to rediscover the trip count each time it is 2229 /// needed, and it does this using a simple analysis that only succeeds if 2230 /// the loop has a canonical induction variable. 2231 /// 2232 /// However, when it comes time to generate code, the maximum operation 2233 /// can be quite costly, especially if it's inside of an outer loop. 2234 /// 2235 /// This function solves this problem by detecting this type of loop and 2236 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting 2237 /// the instructions for the maximum computation. 2238 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) { 2239 // Check that the loop matches the pattern we're looking for. 2240 if (Cond->getPredicate() != CmpInst::ICMP_EQ && 2241 Cond->getPredicate() != CmpInst::ICMP_NE) 2242 return Cond; 2243 2244 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1)); 2245 if (!Sel || !Sel->hasOneUse()) return Cond; 2246 2247 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 2248 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2249 return Cond; 2250 const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1); 2251 2252 // Add one to the backedge-taken count to get the trip count. 2253 const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount); 2254 if (IterationCount != SE.getSCEV(Sel)) return Cond; 2255 2256 // Check for a max calculation that matches the pattern. There's no check 2257 // for ICMP_ULE here because the comparison would be with zero, which 2258 // isn't interesting. 2259 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 2260 const SCEVNAryExpr *Max = nullptr; 2261 if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) { 2262 Pred = ICmpInst::ICMP_SLE; 2263 Max = S; 2264 } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) { 2265 Pred = ICmpInst::ICMP_SLT; 2266 Max = S; 2267 } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) { 2268 Pred = ICmpInst::ICMP_ULT; 2269 Max = U; 2270 } else { 2271 // No match; bail. 2272 return Cond; 2273 } 2274 2275 // To handle a max with more than two operands, this optimization would 2276 // require additional checking and setup. 2277 if (Max->getNumOperands() != 2) 2278 return Cond; 2279 2280 const SCEV *MaxLHS = Max->getOperand(0); 2281 const SCEV *MaxRHS = Max->getOperand(1); 2282 2283 // ScalarEvolution canonicalizes constants to the left. For < and >, look 2284 // for a comparison with 1. For <= and >=, a comparison with zero. 2285 if (!MaxLHS || 2286 (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One))) 2287 return Cond; 2288 2289 // Check the relevant induction variable for conformance to 2290 // the pattern. 2291 const SCEV *IV = SE.getSCEV(Cond->getOperand(0)); 2292 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV); 2293 if (!AR || !AR->isAffine() || 2294 AR->getStart() != One || 2295 AR->getStepRecurrence(SE) != One) 2296 return Cond; 2297 2298 assert(AR->getLoop() == L && 2299 "Loop condition operand is an addrec in a different loop!"); 2300 2301 // Check the right operand of the select, and remember it, as it will 2302 // be used in the new comparison instruction. 2303 Value *NewRHS = nullptr; 2304 if (ICmpInst::isTrueWhenEqual(Pred)) { 2305 // Look for n+1, and grab n. 2306 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1))) 2307 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2308 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2309 NewRHS = BO->getOperand(0); 2310 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2))) 2311 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2312 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2313 NewRHS = BO->getOperand(0); 2314 if (!NewRHS) 2315 return Cond; 2316 } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS) 2317 NewRHS = Sel->getOperand(1); 2318 else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS) 2319 NewRHS = Sel->getOperand(2); 2320 else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS)) 2321 NewRHS = SU->getValue(); 2322 else 2323 // Max doesn't match expected pattern. 2324 return Cond; 2325 2326 // Determine the new comparison opcode. It may be signed or unsigned, 2327 // and the original comparison may be either equality or inequality. 2328 if (Cond->getPredicate() == CmpInst::ICMP_EQ) 2329 Pred = CmpInst::getInversePredicate(Pred); 2330 2331 // Ok, everything looks ok to change the condition into an SLT or SGE and 2332 // delete the max calculation. 2333 ICmpInst *NewCond = 2334 new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp"); 2335 2336 // Delete the max calculation instructions. 2337 Cond->replaceAllUsesWith(NewCond); 2338 CondUse->setUser(NewCond); 2339 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0)); 2340 Cond->eraseFromParent(); 2341 Sel->eraseFromParent(); 2342 if (Cmp->use_empty()) 2343 Cmp->eraseFromParent(); 2344 return NewCond; 2345 } 2346 2347 /// Change loop terminating condition to use the postinc iv when possible. 2348 void 2349 LSRInstance::OptimizeLoopTermCond() { 2350 SmallPtrSet<Instruction *, 4> PostIncs; 2351 2352 // We need a different set of heuristics for rotated and non-rotated loops. 2353 // If a loop is rotated then the latch is also the backedge, so inserting 2354 // post-inc expressions just before the latch is ideal. To reduce live ranges 2355 // it also makes sense to rewrite terminating conditions to use post-inc 2356 // expressions. 2357 // 2358 // If the loop is not rotated then the latch is not a backedge; the latch 2359 // check is done in the loop head. Adding post-inc expressions before the 2360 // latch will cause overlapping live-ranges of pre-inc and post-inc expressions 2361 // in the loop body. In this case we do *not* want to use post-inc expressions 2362 // in the latch check, and we want to insert post-inc expressions before 2363 // the backedge. 2364 BasicBlock *LatchBlock = L->getLoopLatch(); 2365 SmallVector<BasicBlock*, 8> ExitingBlocks; 2366 L->getExitingBlocks(ExitingBlocks); 2367 if (llvm::all_of(ExitingBlocks, [&LatchBlock](const BasicBlock *BB) { 2368 return LatchBlock != BB; 2369 })) { 2370 // The backedge doesn't exit the loop; treat this as a head-tested loop. 2371 IVIncInsertPos = LatchBlock->getTerminator(); 2372 return; 2373 } 2374 2375 // Otherwise treat this as a rotated loop. 2376 for (BasicBlock *ExitingBlock : ExitingBlocks) { 2377 // Get the terminating condition for the loop if possible. If we 2378 // can, we want to change it to use a post-incremented version of its 2379 // induction variable, to allow coalescing the live ranges for the IV into 2380 // one register value. 2381 2382 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 2383 if (!TermBr) 2384 continue; 2385 // FIXME: Overly conservative, termination condition could be an 'or' etc.. 2386 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition())) 2387 continue; 2388 2389 // Search IVUsesByStride to find Cond's IVUse if there is one. 2390 IVStrideUse *CondUse = nullptr; 2391 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition()); 2392 if (!FindIVUserForCond(Cond, CondUse)) 2393 continue; 2394 2395 // If the trip count is computed in terms of a max (due to ScalarEvolution 2396 // being unable to find a sufficient guard, for example), change the loop 2397 // comparison to use SLT or ULT instead of NE. 2398 // One consequence of doing this now is that it disrupts the count-down 2399 // optimization. That's not always a bad thing though, because in such 2400 // cases it may still be worthwhile to avoid a max. 2401 Cond = OptimizeMax(Cond, CondUse); 2402 2403 // If this exiting block dominates the latch block, it may also use 2404 // the post-inc value if it won't be shared with other uses. 2405 // Check for dominance. 2406 if (!DT.dominates(ExitingBlock, LatchBlock)) 2407 continue; 2408 2409 // Conservatively avoid trying to use the post-inc value in non-latch 2410 // exits if there may be pre-inc users in intervening blocks. 2411 if (LatchBlock != ExitingBlock) 2412 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) 2413 // Test if the use is reachable from the exiting block. This dominator 2414 // query is a conservative approximation of reachability. 2415 if (&*UI != CondUse && 2416 !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) { 2417 // Conservatively assume there may be reuse if the quotient of their 2418 // strides could be a legal scale. 2419 const SCEV *A = IU.getStride(*CondUse, L); 2420 const SCEV *B = IU.getStride(*UI, L); 2421 if (!A || !B) continue; 2422 if (SE.getTypeSizeInBits(A->getType()) != 2423 SE.getTypeSizeInBits(B->getType())) { 2424 if (SE.getTypeSizeInBits(A->getType()) > 2425 SE.getTypeSizeInBits(B->getType())) 2426 B = SE.getSignExtendExpr(B, A->getType()); 2427 else 2428 A = SE.getSignExtendExpr(A, B->getType()); 2429 } 2430 if (const SCEVConstant *D = 2431 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) { 2432 const ConstantInt *C = D->getValue(); 2433 // Stride of one or negative one can have reuse with non-addresses. 2434 if (C->isOne() || C->isMinusOne()) 2435 goto decline_post_inc; 2436 // Avoid weird situations. 2437 if (C->getValue().getMinSignedBits() >= 64 || 2438 C->getValue().isMinSignedValue()) 2439 goto decline_post_inc; 2440 // Check for possible scaled-address reuse. 2441 if (isAddressUse(TTI, UI->getUser(), UI->getOperandValToReplace())) { 2442 MemAccessTy AccessTy = getAccessType( 2443 TTI, UI->getUser(), UI->getOperandValToReplace()); 2444 int64_t Scale = C->getSExtValue(); 2445 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2446 /*BaseOffset=*/0, 2447 /*HasBaseReg=*/false, Scale, 2448 AccessTy.AddrSpace)) 2449 goto decline_post_inc; 2450 Scale = -Scale; 2451 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2452 /*BaseOffset=*/0, 2453 /*HasBaseReg=*/false, Scale, 2454 AccessTy.AddrSpace)) 2455 goto decline_post_inc; 2456 } 2457 } 2458 } 2459 2460 LLVM_DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: " 2461 << *Cond << '\n'); 2462 2463 // It's possible for the setcc instruction to be anywhere in the loop, and 2464 // possible for it to have multiple users. If it is not immediately before 2465 // the exiting block branch, move it. 2466 if (&*++BasicBlock::iterator(Cond) != TermBr) { 2467 if (Cond->hasOneUse()) { 2468 Cond->moveBefore(TermBr); 2469 } else { 2470 // Clone the terminating condition and insert into the loopend. 2471 ICmpInst *OldCond = Cond; 2472 Cond = cast<ICmpInst>(Cond->clone()); 2473 Cond->setName(L->getHeader()->getName() + ".termcond"); 2474 ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond); 2475 2476 // Clone the IVUse, as the old use still exists! 2477 CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace()); 2478 TermBr->replaceUsesOfWith(OldCond, Cond); 2479 } 2480 } 2481 2482 // If we get to here, we know that we can transform the setcc instruction to 2483 // use the post-incremented version of the IV, allowing us to coalesce the 2484 // live ranges for the IV correctly. 2485 CondUse->transformToPostInc(L); 2486 Changed = true; 2487 2488 PostIncs.insert(Cond); 2489 decline_post_inc:; 2490 } 2491 2492 // Determine an insertion point for the loop induction variable increment. It 2493 // must dominate all the post-inc comparisons we just set up, and it must 2494 // dominate the loop latch edge. 2495 IVIncInsertPos = L->getLoopLatch()->getTerminator(); 2496 for (Instruction *Inst : PostIncs) { 2497 BasicBlock *BB = 2498 DT.findNearestCommonDominator(IVIncInsertPos->getParent(), 2499 Inst->getParent()); 2500 if (BB == Inst->getParent()) 2501 IVIncInsertPos = Inst; 2502 else if (BB != IVIncInsertPos->getParent()) 2503 IVIncInsertPos = BB->getTerminator(); 2504 } 2505 } 2506 2507 /// Determine if the given use can accommodate a fixup at the given offset and 2508 /// other details. If so, update the use and return true. 2509 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, 2510 bool HasBaseReg, LSRUse::KindType Kind, 2511 MemAccessTy AccessTy) { 2512 int64_t NewMinOffset = LU.MinOffset; 2513 int64_t NewMaxOffset = LU.MaxOffset; 2514 MemAccessTy NewAccessTy = AccessTy; 2515 2516 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to 2517 // something conservative, however this can pessimize in the case that one of 2518 // the uses will have all its uses outside the loop, for example. 2519 if (LU.Kind != Kind) 2520 return false; 2521 2522 // Check for a mismatched access type, and fall back conservatively as needed. 2523 // TODO: Be less conservative when the type is similar and can use the same 2524 // addressing modes. 2525 if (Kind == LSRUse::Address) { 2526 if (AccessTy.MemTy != LU.AccessTy.MemTy) { 2527 NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(), 2528 AccessTy.AddrSpace); 2529 } 2530 } 2531 2532 // Conservatively assume HasBaseReg is true for now. 2533 if (NewOffset < LU.MinOffset) { 2534 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2535 LU.MaxOffset - NewOffset, HasBaseReg)) 2536 return false; 2537 NewMinOffset = NewOffset; 2538 } else if (NewOffset > LU.MaxOffset) { 2539 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2540 NewOffset - LU.MinOffset, HasBaseReg)) 2541 return false; 2542 NewMaxOffset = NewOffset; 2543 } 2544 2545 // Update the use. 2546 LU.MinOffset = NewMinOffset; 2547 LU.MaxOffset = NewMaxOffset; 2548 LU.AccessTy = NewAccessTy; 2549 return true; 2550 } 2551 2552 /// Return an LSRUse index and an offset value for a fixup which needs the given 2553 /// expression, with the given kind and optional access type. Either reuse an 2554 /// existing use or create a new one, as needed. 2555 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr, 2556 LSRUse::KindType Kind, 2557 MemAccessTy AccessTy) { 2558 const SCEV *Copy = Expr; 2559 int64_t Offset = ExtractImmediate(Expr, SE); 2560 2561 // Basic uses can't accept any offset, for example. 2562 if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr, 2563 Offset, /*HasBaseReg=*/ true)) { 2564 Expr = Copy; 2565 Offset = 0; 2566 } 2567 2568 std::pair<UseMapTy::iterator, bool> P = 2569 UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0)); 2570 if (!P.second) { 2571 // A use already existed with this base. 2572 size_t LUIdx = P.first->second; 2573 LSRUse &LU = Uses[LUIdx]; 2574 if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy)) 2575 // Reuse this use. 2576 return std::make_pair(LUIdx, Offset); 2577 } 2578 2579 // Create a new use. 2580 size_t LUIdx = Uses.size(); 2581 P.first->second = LUIdx; 2582 Uses.push_back(LSRUse(Kind, AccessTy)); 2583 LSRUse &LU = Uses[LUIdx]; 2584 2585 LU.MinOffset = Offset; 2586 LU.MaxOffset = Offset; 2587 return std::make_pair(LUIdx, Offset); 2588 } 2589 2590 /// Delete the given use from the Uses list. 2591 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) { 2592 if (&LU != &Uses.back()) 2593 std::swap(LU, Uses.back()); 2594 Uses.pop_back(); 2595 2596 // Update RegUses. 2597 RegUses.swapAndDropUse(LUIdx, Uses.size()); 2598 } 2599 2600 /// Look for a use distinct from OrigLU which is has a formula that has the same 2601 /// registers as the given formula. 2602 LSRUse * 2603 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF, 2604 const LSRUse &OrigLU) { 2605 // Search all uses for the formula. This could be more clever. 2606 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 2607 LSRUse &LU = Uses[LUIdx]; 2608 // Check whether this use is close enough to OrigLU, to see whether it's 2609 // worthwhile looking through its formulae. 2610 // Ignore ICmpZero uses because they may contain formulae generated by 2611 // GenerateICmpZeroScales, in which case adding fixup offsets may 2612 // be invalid. 2613 if (&LU != &OrigLU && 2614 LU.Kind != LSRUse::ICmpZero && 2615 LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy && 2616 LU.WidestFixupType == OrigLU.WidestFixupType && 2617 LU.HasFormulaWithSameRegs(OrigF)) { 2618 // Scan through this use's formulae. 2619 for (const Formula &F : LU.Formulae) { 2620 // Check to see if this formula has the same registers and symbols 2621 // as OrigF. 2622 if (F.BaseRegs == OrigF.BaseRegs && 2623 F.ScaledReg == OrigF.ScaledReg && 2624 F.BaseGV == OrigF.BaseGV && 2625 F.Scale == OrigF.Scale && 2626 F.UnfoldedOffset == OrigF.UnfoldedOffset) { 2627 if (F.BaseOffset == 0) 2628 return &LU; 2629 // This is the formula where all the registers and symbols matched; 2630 // there aren't going to be any others. Since we declined it, we 2631 // can skip the rest of the formulae and proceed to the next LSRUse. 2632 break; 2633 } 2634 } 2635 } 2636 } 2637 2638 // Nothing looked good. 2639 return nullptr; 2640 } 2641 2642 void LSRInstance::CollectInterestingTypesAndFactors() { 2643 SmallSetVector<const SCEV *, 4> Strides; 2644 2645 // Collect interesting types and strides. 2646 SmallVector<const SCEV *, 4> Worklist; 2647 for (const IVStrideUse &U : IU) { 2648 const SCEV *Expr = IU.getExpr(U); 2649 2650 // Collect interesting types. 2651 Types.insert(SE.getEffectiveSCEVType(Expr->getType())); 2652 2653 // Add strides for mentioned loops. 2654 Worklist.push_back(Expr); 2655 do { 2656 const SCEV *S = Worklist.pop_back_val(); 2657 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2658 if (AR->getLoop() == L) 2659 Strides.insert(AR->getStepRecurrence(SE)); 2660 Worklist.push_back(AR->getStart()); 2661 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2662 Worklist.append(Add->op_begin(), Add->op_end()); 2663 } 2664 } while (!Worklist.empty()); 2665 } 2666 2667 // Compute interesting factors from the set of interesting strides. 2668 for (SmallSetVector<const SCEV *, 4>::const_iterator 2669 I = Strides.begin(), E = Strides.end(); I != E; ++I) 2670 for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter = 2671 std::next(I); NewStrideIter != E; ++NewStrideIter) { 2672 const SCEV *OldStride = *I; 2673 const SCEV *NewStride = *NewStrideIter; 2674 2675 if (SE.getTypeSizeInBits(OldStride->getType()) != 2676 SE.getTypeSizeInBits(NewStride->getType())) { 2677 if (SE.getTypeSizeInBits(OldStride->getType()) > 2678 SE.getTypeSizeInBits(NewStride->getType())) 2679 NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType()); 2680 else 2681 OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType()); 2682 } 2683 if (const SCEVConstant *Factor = 2684 dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride, 2685 SE, true))) { 2686 if (Factor->getAPInt().getMinSignedBits() <= 64) 2687 Factors.insert(Factor->getAPInt().getSExtValue()); 2688 } else if (const SCEVConstant *Factor = 2689 dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride, 2690 NewStride, 2691 SE, true))) { 2692 if (Factor->getAPInt().getMinSignedBits() <= 64) 2693 Factors.insert(Factor->getAPInt().getSExtValue()); 2694 } 2695 } 2696 2697 // If all uses use the same type, don't bother looking for truncation-based 2698 // reuse. 2699 if (Types.size() == 1) 2700 Types.clear(); 2701 2702 LLVM_DEBUG(print_factors_and_types(dbgs())); 2703 } 2704 2705 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in 2706 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to 2707 /// IVStrideUses, we could partially skip this. 2708 static User::op_iterator 2709 findIVOperand(User::op_iterator OI, User::op_iterator OE, 2710 Loop *L, ScalarEvolution &SE) { 2711 for(; OI != OE; ++OI) { 2712 if (Instruction *Oper = dyn_cast<Instruction>(*OI)) { 2713 if (!SE.isSCEVable(Oper->getType())) 2714 continue; 2715 2716 if (const SCEVAddRecExpr *AR = 2717 dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) { 2718 if (AR->getLoop() == L) 2719 break; 2720 } 2721 } 2722 } 2723 return OI; 2724 } 2725 2726 /// IVChain logic must consistently peek base TruncInst operands, so wrap it in 2727 /// a convenient helper. 2728 static Value *getWideOperand(Value *Oper) { 2729 if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper)) 2730 return Trunc->getOperand(0); 2731 return Oper; 2732 } 2733 2734 /// Return true if we allow an IV chain to include both types. 2735 static bool isCompatibleIVType(Value *LVal, Value *RVal) { 2736 Type *LType = LVal->getType(); 2737 Type *RType = RVal->getType(); 2738 return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy() && 2739 // Different address spaces means (possibly) 2740 // different types of the pointer implementation, 2741 // e.g. i16 vs i32 so disallow that. 2742 (LType->getPointerAddressSpace() == 2743 RType->getPointerAddressSpace())); 2744 } 2745 2746 /// Return an approximation of this SCEV expression's "base", or NULL for any 2747 /// constant. Returning the expression itself is conservative. Returning a 2748 /// deeper subexpression is more precise and valid as long as it isn't less 2749 /// complex than another subexpression. For expressions involving multiple 2750 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids 2751 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i], 2752 /// IVInc==b-a. 2753 /// 2754 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost 2755 /// SCEVUnknown, we simply return the rightmost SCEV operand. 2756 static const SCEV *getExprBase(const SCEV *S) { 2757 switch (S->getSCEVType()) { 2758 default: // uncluding scUnknown. 2759 return S; 2760 case scConstant: 2761 return nullptr; 2762 case scTruncate: 2763 return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand()); 2764 case scZeroExtend: 2765 return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand()); 2766 case scSignExtend: 2767 return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand()); 2768 case scAddExpr: { 2769 // Skip over scaled operands (scMulExpr) to follow add operands as long as 2770 // there's nothing more complex. 2771 // FIXME: not sure if we want to recognize negation. 2772 const SCEVAddExpr *Add = cast<SCEVAddExpr>(S); 2773 for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()), 2774 E(Add->op_begin()); I != E; ++I) { 2775 const SCEV *SubExpr = *I; 2776 if (SubExpr->getSCEVType() == scAddExpr) 2777 return getExprBase(SubExpr); 2778 2779 if (SubExpr->getSCEVType() != scMulExpr) 2780 return SubExpr; 2781 } 2782 return S; // all operands are scaled, be conservative. 2783 } 2784 case scAddRecExpr: 2785 return getExprBase(cast<SCEVAddRecExpr>(S)->getStart()); 2786 } 2787 } 2788 2789 /// Return true if the chain increment is profitable to expand into a loop 2790 /// invariant value, which may require its own register. A profitable chain 2791 /// increment will be an offset relative to the same base. We allow such offsets 2792 /// to potentially be used as chain increment as long as it's not obviously 2793 /// expensive to expand using real instructions. 2794 bool IVChain::isProfitableIncrement(const SCEV *OperExpr, 2795 const SCEV *IncExpr, 2796 ScalarEvolution &SE) { 2797 // Aggressively form chains when -stress-ivchain. 2798 if (StressIVChain) 2799 return true; 2800 2801 // Do not replace a constant offset from IV head with a nonconstant IV 2802 // increment. 2803 if (!isa<SCEVConstant>(IncExpr)) { 2804 const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand)); 2805 if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr))) 2806 return false; 2807 } 2808 2809 SmallPtrSet<const SCEV*, 8> Processed; 2810 return !isHighCostExpansion(IncExpr, Processed, SE); 2811 } 2812 2813 /// Return true if the number of registers needed for the chain is estimated to 2814 /// be less than the number required for the individual IV users. First prohibit 2815 /// any IV users that keep the IV live across increments (the Users set should 2816 /// be empty). Next count the number and type of increments in the chain. 2817 /// 2818 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't 2819 /// effectively use postinc addressing modes. Only consider it profitable it the 2820 /// increments can be computed in fewer registers when chained. 2821 /// 2822 /// TODO: Consider IVInc free if it's already used in another chains. 2823 static bool isProfitableChain(IVChain &Chain, 2824 SmallPtrSetImpl<Instruction *> &Users, 2825 ScalarEvolution &SE, 2826 const TargetTransformInfo &TTI) { 2827 if (StressIVChain) 2828 return true; 2829 2830 if (!Chain.hasIncs()) 2831 return false; 2832 2833 if (!Users.empty()) { 2834 LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n"; 2835 for (Instruction *Inst 2836 : Users) { dbgs() << " " << *Inst << "\n"; }); 2837 return false; 2838 } 2839 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 2840 2841 // The chain itself may require a register, so intialize cost to 1. 2842 int cost = 1; 2843 2844 // A complete chain likely eliminates the need for keeping the original IV in 2845 // a register. LSR does not currently know how to form a complete chain unless 2846 // the header phi already exists. 2847 if (isa<PHINode>(Chain.tailUserInst()) 2848 && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) { 2849 --cost; 2850 } 2851 const SCEV *LastIncExpr = nullptr; 2852 unsigned NumConstIncrements = 0; 2853 unsigned NumVarIncrements = 0; 2854 unsigned NumReusedIncrements = 0; 2855 2856 if (TTI.isProfitableLSRChainElement(Chain.Incs[0].UserInst)) 2857 return true; 2858 2859 for (const IVInc &Inc : Chain) { 2860 if (TTI.isProfitableLSRChainElement(Inc.UserInst)) 2861 return true; 2862 2863 if (Inc.IncExpr->isZero()) 2864 continue; 2865 2866 // Incrementing by zero or some constant is neutral. We assume constants can 2867 // be folded into an addressing mode or an add's immediate operand. 2868 if (isa<SCEVConstant>(Inc.IncExpr)) { 2869 ++NumConstIncrements; 2870 continue; 2871 } 2872 2873 if (Inc.IncExpr == LastIncExpr) 2874 ++NumReusedIncrements; 2875 else 2876 ++NumVarIncrements; 2877 2878 LastIncExpr = Inc.IncExpr; 2879 } 2880 // An IV chain with a single increment is handled by LSR's postinc 2881 // uses. However, a chain with multiple increments requires keeping the IV's 2882 // value live longer than it needs to be if chained. 2883 if (NumConstIncrements > 1) 2884 --cost; 2885 2886 // Materializing increment expressions in the preheader that didn't exist in 2887 // the original code may cost a register. For example, sign-extended array 2888 // indices can produce ridiculous increments like this: 2889 // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64))) 2890 cost += NumVarIncrements; 2891 2892 // Reusing variable increments likely saves a register to hold the multiple of 2893 // the stride. 2894 cost -= NumReusedIncrements; 2895 2896 LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost 2897 << "\n"); 2898 2899 return cost < 0; 2900 } 2901 2902 /// Add this IV user to an existing chain or make it the head of a new chain. 2903 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper, 2904 SmallVectorImpl<ChainUsers> &ChainUsersVec) { 2905 // When IVs are used as types of varying widths, they are generally converted 2906 // to a wider type with some uses remaining narrow under a (free) trunc. 2907 Value *const NextIV = getWideOperand(IVOper); 2908 const SCEV *const OperExpr = SE.getSCEV(NextIV); 2909 const SCEV *const OperExprBase = getExprBase(OperExpr); 2910 2911 // Visit all existing chains. Check if its IVOper can be computed as a 2912 // profitable loop invariant increment from the last link in the Chain. 2913 unsigned ChainIdx = 0, NChains = IVChainVec.size(); 2914 const SCEV *LastIncExpr = nullptr; 2915 for (; ChainIdx < NChains; ++ChainIdx) { 2916 IVChain &Chain = IVChainVec[ChainIdx]; 2917 2918 // Prune the solution space aggressively by checking that both IV operands 2919 // are expressions that operate on the same unscaled SCEVUnknown. This 2920 // "base" will be canceled by the subsequent getMinusSCEV call. Checking 2921 // first avoids creating extra SCEV expressions. 2922 if (!StressIVChain && Chain.ExprBase != OperExprBase) 2923 continue; 2924 2925 Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand); 2926 if (!isCompatibleIVType(PrevIV, NextIV)) 2927 continue; 2928 2929 // A phi node terminates a chain. 2930 if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst())) 2931 continue; 2932 2933 // The increment must be loop-invariant so it can be kept in a register. 2934 const SCEV *PrevExpr = SE.getSCEV(PrevIV); 2935 const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr); 2936 if (!SE.isLoopInvariant(IncExpr, L)) 2937 continue; 2938 2939 if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) { 2940 LastIncExpr = IncExpr; 2941 break; 2942 } 2943 } 2944 // If we haven't found a chain, create a new one, unless we hit the max. Don't 2945 // bother for phi nodes, because they must be last in the chain. 2946 if (ChainIdx == NChains) { 2947 if (isa<PHINode>(UserInst)) 2948 return; 2949 if (NChains >= MaxChains && !StressIVChain) { 2950 LLVM_DEBUG(dbgs() << "IV Chain Limit\n"); 2951 return; 2952 } 2953 LastIncExpr = OperExpr; 2954 // IVUsers may have skipped over sign/zero extensions. We don't currently 2955 // attempt to form chains involving extensions unless they can be hoisted 2956 // into this loop's AddRec. 2957 if (!isa<SCEVAddRecExpr>(LastIncExpr)) 2958 return; 2959 ++NChains; 2960 IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr), 2961 OperExprBase)); 2962 ChainUsersVec.resize(NChains); 2963 LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst 2964 << ") IV=" << *LastIncExpr << "\n"); 2965 } else { 2966 LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Inc: (" << *UserInst 2967 << ") IV+" << *LastIncExpr << "\n"); 2968 // Add this IV user to the end of the chain. 2969 IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr)); 2970 } 2971 IVChain &Chain = IVChainVec[ChainIdx]; 2972 2973 SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers; 2974 // This chain's NearUsers become FarUsers. 2975 if (!LastIncExpr->isZero()) { 2976 ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(), 2977 NearUsers.end()); 2978 NearUsers.clear(); 2979 } 2980 2981 // All other uses of IVOperand become near uses of the chain. 2982 // We currently ignore intermediate values within SCEV expressions, assuming 2983 // they will eventually be used be the current chain, or can be computed 2984 // from one of the chain increments. To be more precise we could 2985 // transitively follow its user and only add leaf IV users to the set. 2986 for (User *U : IVOper->users()) { 2987 Instruction *OtherUse = dyn_cast<Instruction>(U); 2988 if (!OtherUse) 2989 continue; 2990 // Uses in the chain will no longer be uses if the chain is formed. 2991 // Include the head of the chain in this iteration (not Chain.begin()). 2992 IVChain::const_iterator IncIter = Chain.Incs.begin(); 2993 IVChain::const_iterator IncEnd = Chain.Incs.end(); 2994 for( ; IncIter != IncEnd; ++IncIter) { 2995 if (IncIter->UserInst == OtherUse) 2996 break; 2997 } 2998 if (IncIter != IncEnd) 2999 continue; 3000 3001 if (SE.isSCEVable(OtherUse->getType()) 3002 && !isa<SCEVUnknown>(SE.getSCEV(OtherUse)) 3003 && IU.isIVUserOrOperand(OtherUse)) { 3004 continue; 3005 } 3006 NearUsers.insert(OtherUse); 3007 } 3008 3009 // Since this user is part of the chain, it's no longer considered a use 3010 // of the chain. 3011 ChainUsersVec[ChainIdx].FarUsers.erase(UserInst); 3012 } 3013 3014 /// Populate the vector of Chains. 3015 /// 3016 /// This decreases ILP at the architecture level. Targets with ample registers, 3017 /// multiple memory ports, and no register renaming probably don't want 3018 /// this. However, such targets should probably disable LSR altogether. 3019 /// 3020 /// The job of LSR is to make a reasonable choice of induction variables across 3021 /// the loop. Subsequent passes can easily "unchain" computation exposing more 3022 /// ILP *within the loop* if the target wants it. 3023 /// 3024 /// Finding the best IV chain is potentially a scheduling problem. Since LSR 3025 /// will not reorder memory operations, it will recognize this as a chain, but 3026 /// will generate redundant IV increments. Ideally this would be corrected later 3027 /// by a smart scheduler: 3028 /// = A[i] 3029 /// = A[i+x] 3030 /// A[i] = 3031 /// A[i+x] = 3032 /// 3033 /// TODO: Walk the entire domtree within this loop, not just the path to the 3034 /// loop latch. This will discover chains on side paths, but requires 3035 /// maintaining multiple copies of the Chains state. 3036 void LSRInstance::CollectChains() { 3037 LLVM_DEBUG(dbgs() << "Collecting IV Chains.\n"); 3038 SmallVector<ChainUsers, 8> ChainUsersVec; 3039 3040 SmallVector<BasicBlock *,8> LatchPath; 3041 BasicBlock *LoopHeader = L->getHeader(); 3042 for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch()); 3043 Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) { 3044 LatchPath.push_back(Rung->getBlock()); 3045 } 3046 LatchPath.push_back(LoopHeader); 3047 3048 // Walk the instruction stream from the loop header to the loop latch. 3049 for (BasicBlock *BB : reverse(LatchPath)) { 3050 for (Instruction &I : *BB) { 3051 // Skip instructions that weren't seen by IVUsers analysis. 3052 if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I)) 3053 continue; 3054 3055 // Ignore users that are part of a SCEV expression. This way we only 3056 // consider leaf IV Users. This effectively rediscovers a portion of 3057 // IVUsers analysis but in program order this time. 3058 if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I))) 3059 continue; 3060 3061 // Remove this instruction from any NearUsers set it may be in. 3062 for (unsigned ChainIdx = 0, NChains = IVChainVec.size(); 3063 ChainIdx < NChains; ++ChainIdx) { 3064 ChainUsersVec[ChainIdx].NearUsers.erase(&I); 3065 } 3066 // Search for operands that can be chained. 3067 SmallPtrSet<Instruction*, 4> UniqueOperands; 3068 User::op_iterator IVOpEnd = I.op_end(); 3069 User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE); 3070 while (IVOpIter != IVOpEnd) { 3071 Instruction *IVOpInst = cast<Instruction>(*IVOpIter); 3072 if (UniqueOperands.insert(IVOpInst).second) 3073 ChainInstruction(&I, IVOpInst, ChainUsersVec); 3074 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 3075 } 3076 } // Continue walking down the instructions. 3077 } // Continue walking down the domtree. 3078 // Visit phi backedges to determine if the chain can generate the IV postinc. 3079 for (PHINode &PN : L->getHeader()->phis()) { 3080 if (!SE.isSCEVable(PN.getType())) 3081 continue; 3082 3083 Instruction *IncV = 3084 dyn_cast<Instruction>(PN.getIncomingValueForBlock(L->getLoopLatch())); 3085 if (IncV) 3086 ChainInstruction(&PN, IncV, ChainUsersVec); 3087 } 3088 // Remove any unprofitable chains. 3089 unsigned ChainIdx = 0; 3090 for (unsigned UsersIdx = 0, NChains = IVChainVec.size(); 3091 UsersIdx < NChains; ++UsersIdx) { 3092 if (!isProfitableChain(IVChainVec[UsersIdx], 3093 ChainUsersVec[UsersIdx].FarUsers, SE, TTI)) 3094 continue; 3095 // Preserve the chain at UsesIdx. 3096 if (ChainIdx != UsersIdx) 3097 IVChainVec[ChainIdx] = IVChainVec[UsersIdx]; 3098 FinalizeChain(IVChainVec[ChainIdx]); 3099 ++ChainIdx; 3100 } 3101 IVChainVec.resize(ChainIdx); 3102 } 3103 3104 void LSRInstance::FinalizeChain(IVChain &Chain) { 3105 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 3106 LLVM_DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n"); 3107 3108 for (const IVInc &Inc : Chain) { 3109 LLVM_DEBUG(dbgs() << " Inc: " << *Inc.UserInst << "\n"); 3110 auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand); 3111 assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand"); 3112 IVIncSet.insert(UseI); 3113 } 3114 } 3115 3116 /// Return true if the IVInc can be folded into an addressing mode. 3117 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst, 3118 Value *Operand, const TargetTransformInfo &TTI) { 3119 const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr); 3120 if (!IncConst || !isAddressUse(TTI, UserInst, Operand)) 3121 return false; 3122 3123 if (IncConst->getAPInt().getMinSignedBits() > 64) 3124 return false; 3125 3126 MemAccessTy AccessTy = getAccessType(TTI, UserInst, Operand); 3127 int64_t IncOffset = IncConst->getValue()->getSExtValue(); 3128 if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr, 3129 IncOffset, /*HasBaseReg=*/false)) 3130 return false; 3131 3132 return true; 3133 } 3134 3135 /// Generate an add or subtract for each IVInc in a chain to materialize the IV 3136 /// user's operand from the previous IV user's operand. 3137 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 3138 SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 3139 // Find the new IVOperand for the head of the chain. It may have been replaced 3140 // by LSR. 3141 const IVInc &Head = Chain.Incs[0]; 3142 User::op_iterator IVOpEnd = Head.UserInst->op_end(); 3143 // findIVOperand returns IVOpEnd if it can no longer find a valid IV user. 3144 User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(), 3145 IVOpEnd, L, SE); 3146 Value *IVSrc = nullptr; 3147 while (IVOpIter != IVOpEnd) { 3148 IVSrc = getWideOperand(*IVOpIter); 3149 3150 // If this operand computes the expression that the chain needs, we may use 3151 // it. (Check this after setting IVSrc which is used below.) 3152 // 3153 // Note that if Head.IncExpr is wider than IVSrc, then this phi is too 3154 // narrow for the chain, so we can no longer use it. We do allow using a 3155 // wider phi, assuming the LSR checked for free truncation. In that case we 3156 // should already have a truncate on this operand such that 3157 // getSCEV(IVSrc) == IncExpr. 3158 if (SE.getSCEV(*IVOpIter) == Head.IncExpr 3159 || SE.getSCEV(IVSrc) == Head.IncExpr) { 3160 break; 3161 } 3162 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 3163 } 3164 if (IVOpIter == IVOpEnd) { 3165 // Gracefully give up on this chain. 3166 LLVM_DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n"); 3167 return; 3168 } 3169 assert(IVSrc && "Failed to find IV chain source"); 3170 3171 LLVM_DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n"); 3172 Type *IVTy = IVSrc->getType(); 3173 Type *IntTy = SE.getEffectiveSCEVType(IVTy); 3174 const SCEV *LeftOverExpr = nullptr; 3175 for (const IVInc &Inc : Chain) { 3176 Instruction *InsertPt = Inc.UserInst; 3177 if (isa<PHINode>(InsertPt)) 3178 InsertPt = L->getLoopLatch()->getTerminator(); 3179 3180 // IVOper will replace the current IV User's operand. IVSrc is the IV 3181 // value currently held in a register. 3182 Value *IVOper = IVSrc; 3183 if (!Inc.IncExpr->isZero()) { 3184 // IncExpr was the result of subtraction of two narrow values, so must 3185 // be signed. 3186 const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy); 3187 LeftOverExpr = LeftOverExpr ? 3188 SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr; 3189 } 3190 if (LeftOverExpr && !LeftOverExpr->isZero()) { 3191 // Expand the IV increment. 3192 Rewriter.clearPostInc(); 3193 Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt); 3194 const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc), 3195 SE.getUnknown(IncV)); 3196 IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt); 3197 3198 // If an IV increment can't be folded, use it as the next IV value. 3199 if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) { 3200 assert(IVTy == IVOper->getType() && "inconsistent IV increment type"); 3201 IVSrc = IVOper; 3202 LeftOverExpr = nullptr; 3203 } 3204 } 3205 Type *OperTy = Inc.IVOperand->getType(); 3206 if (IVTy != OperTy) { 3207 assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) && 3208 "cannot extend a chained IV"); 3209 IRBuilder<> Builder(InsertPt); 3210 IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain"); 3211 } 3212 Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper); 3213 if (auto *OperandIsInstr = dyn_cast<Instruction>(Inc.IVOperand)) 3214 DeadInsts.emplace_back(OperandIsInstr); 3215 } 3216 // If LSR created a new, wider phi, we may also replace its postinc. We only 3217 // do this if we also found a wide value for the head of the chain. 3218 if (isa<PHINode>(Chain.tailUserInst())) { 3219 for (PHINode &Phi : L->getHeader()->phis()) { 3220 if (!isCompatibleIVType(&Phi, IVSrc)) 3221 continue; 3222 Instruction *PostIncV = dyn_cast<Instruction>( 3223 Phi.getIncomingValueForBlock(L->getLoopLatch())); 3224 if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc))) 3225 continue; 3226 Value *IVOper = IVSrc; 3227 Type *PostIncTy = PostIncV->getType(); 3228 if (IVTy != PostIncTy) { 3229 assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types"); 3230 IRBuilder<> Builder(L->getLoopLatch()->getTerminator()); 3231 Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc()); 3232 IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain"); 3233 } 3234 Phi.replaceUsesOfWith(PostIncV, IVOper); 3235 DeadInsts.emplace_back(PostIncV); 3236 } 3237 } 3238 } 3239 3240 void LSRInstance::CollectFixupsAndInitialFormulae() { 3241 BranchInst *ExitBranch = nullptr; 3242 bool SaveCmp = TTI.canSaveCmp(L, &ExitBranch, &SE, &LI, &DT, &AC, &TLI); 3243 3244 for (const IVStrideUse &U : IU) { 3245 Instruction *UserInst = U.getUser(); 3246 // Skip IV users that are part of profitable IV Chains. 3247 User::op_iterator UseI = 3248 find(UserInst->operands(), U.getOperandValToReplace()); 3249 assert(UseI != UserInst->op_end() && "cannot find IV operand"); 3250 if (IVIncSet.count(UseI)) { 3251 LLVM_DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n'); 3252 continue; 3253 } 3254 3255 LSRUse::KindType Kind = LSRUse::Basic; 3256 MemAccessTy AccessTy; 3257 if (isAddressUse(TTI, UserInst, U.getOperandValToReplace())) { 3258 Kind = LSRUse::Address; 3259 AccessTy = getAccessType(TTI, UserInst, U.getOperandValToReplace()); 3260 } 3261 3262 const SCEV *S = IU.getExpr(U); 3263 PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops(); 3264 3265 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as 3266 // (N - i == 0), and this allows (N - i) to be the expression that we work 3267 // with rather than just N or i, so we can consider the register 3268 // requirements for both N and i at the same time. Limiting this code to 3269 // equality icmps is not a problem because all interesting loops use 3270 // equality icmps, thanks to IndVarSimplify. 3271 if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst)) { 3272 // If CI can be saved in some target, like replaced inside hardware loop 3273 // in PowerPC, no need to generate initial formulae for it. 3274 if (SaveCmp && CI == dyn_cast<ICmpInst>(ExitBranch->getCondition())) 3275 continue; 3276 if (CI->isEquality()) { 3277 // Swap the operands if needed to put the OperandValToReplace on the 3278 // left, for consistency. 3279 Value *NV = CI->getOperand(1); 3280 if (NV == U.getOperandValToReplace()) { 3281 CI->setOperand(1, CI->getOperand(0)); 3282 CI->setOperand(0, NV); 3283 NV = CI->getOperand(1); 3284 Changed = true; 3285 } 3286 3287 // x == y --> x - y == 0 3288 const SCEV *N = SE.getSCEV(NV); 3289 if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) { 3290 // S is normalized, so normalize N before folding it into S 3291 // to keep the result normalized. 3292 N = normalizeForPostIncUse(N, TmpPostIncLoops, SE); 3293 Kind = LSRUse::ICmpZero; 3294 S = SE.getMinusSCEV(N, S); 3295 } 3296 3297 // -1 and the negations of all interesting strides (except the negation 3298 // of -1) are now also interesting. 3299 for (size_t i = 0, e = Factors.size(); i != e; ++i) 3300 if (Factors[i] != -1) 3301 Factors.insert(-(uint64_t)Factors[i]); 3302 Factors.insert(-1); 3303 } 3304 } 3305 3306 // Get or create an LSRUse. 3307 std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy); 3308 size_t LUIdx = P.first; 3309 int64_t Offset = P.second; 3310 LSRUse &LU = Uses[LUIdx]; 3311 3312 // Record the fixup. 3313 LSRFixup &LF = LU.getNewFixup(); 3314 LF.UserInst = UserInst; 3315 LF.OperandValToReplace = U.getOperandValToReplace(); 3316 LF.PostIncLoops = TmpPostIncLoops; 3317 LF.Offset = Offset; 3318 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3319 3320 if (!LU.WidestFixupType || 3321 SE.getTypeSizeInBits(LU.WidestFixupType) < 3322 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3323 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3324 3325 // If this is the first use of this LSRUse, give it a formula. 3326 if (LU.Formulae.empty()) { 3327 InsertInitialFormula(S, LU, LUIdx); 3328 CountRegisters(LU.Formulae.back(), LUIdx); 3329 } 3330 } 3331 3332 LLVM_DEBUG(print_fixups(dbgs())); 3333 } 3334 3335 /// Insert a formula for the given expression into the given use, separating out 3336 /// loop-variant portions from loop-invariant and loop-computable portions. 3337 void 3338 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) { 3339 // Mark uses whose expressions cannot be expanded. 3340 if (!isSafeToExpand(S, SE)) 3341 LU.RigidFormula = true; 3342 3343 Formula F; 3344 F.initialMatch(S, L, SE); 3345 bool Inserted = InsertFormula(LU, LUIdx, F); 3346 assert(Inserted && "Initial formula already exists!"); (void)Inserted; 3347 } 3348 3349 /// Insert a simple single-register formula for the given expression into the 3350 /// given use. 3351 void 3352 LSRInstance::InsertSupplementalFormula(const SCEV *S, 3353 LSRUse &LU, size_t LUIdx) { 3354 Formula F; 3355 F.BaseRegs.push_back(S); 3356 F.HasBaseReg = true; 3357 bool Inserted = InsertFormula(LU, LUIdx, F); 3358 assert(Inserted && "Supplemental formula already exists!"); (void)Inserted; 3359 } 3360 3361 /// Note which registers are used by the given formula, updating RegUses. 3362 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) { 3363 if (F.ScaledReg) 3364 RegUses.countRegister(F.ScaledReg, LUIdx); 3365 for (const SCEV *BaseReg : F.BaseRegs) 3366 RegUses.countRegister(BaseReg, LUIdx); 3367 } 3368 3369 /// If the given formula has not yet been inserted, add it to the list, and 3370 /// return true. Return false otherwise. 3371 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) { 3372 // Do not insert formula that we will not be able to expand. 3373 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) && 3374 "Formula is illegal"); 3375 3376 if (!LU.InsertFormula(F, *L)) 3377 return false; 3378 3379 CountRegisters(F, LUIdx); 3380 return true; 3381 } 3382 3383 /// Check for other uses of loop-invariant values which we're tracking. These 3384 /// other uses will pin these values in registers, making them less profitable 3385 /// for elimination. 3386 /// TODO: This currently misses non-constant addrec step registers. 3387 /// TODO: Should this give more weight to users inside the loop? 3388 void 3389 LSRInstance::CollectLoopInvariantFixupsAndFormulae() { 3390 SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end()); 3391 SmallPtrSet<const SCEV *, 32> Visited; 3392 3393 while (!Worklist.empty()) { 3394 const SCEV *S = Worklist.pop_back_val(); 3395 3396 // Don't process the same SCEV twice 3397 if (!Visited.insert(S).second) 3398 continue; 3399 3400 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) 3401 Worklist.append(N->op_begin(), N->op_end()); 3402 else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) 3403 Worklist.push_back(C->getOperand()); 3404 else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 3405 Worklist.push_back(D->getLHS()); 3406 Worklist.push_back(D->getRHS()); 3407 } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) { 3408 const Value *V = US->getValue(); 3409 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 3410 // Look for instructions defined outside the loop. 3411 if (L->contains(Inst)) continue; 3412 } else if (isa<UndefValue>(V)) 3413 // Undef doesn't have a live range, so it doesn't matter. 3414 continue; 3415 for (const Use &U : V->uses()) { 3416 const Instruction *UserInst = dyn_cast<Instruction>(U.getUser()); 3417 // Ignore non-instructions. 3418 if (!UserInst) 3419 continue; 3420 // Ignore instructions in other functions (as can happen with 3421 // Constants). 3422 if (UserInst->getParent()->getParent() != L->getHeader()->getParent()) 3423 continue; 3424 // Ignore instructions not dominated by the loop. 3425 const BasicBlock *UseBB = !isa<PHINode>(UserInst) ? 3426 UserInst->getParent() : 3427 cast<PHINode>(UserInst)->getIncomingBlock( 3428 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 3429 if (!DT.dominates(L->getHeader(), UseBB)) 3430 continue; 3431 // Don't bother if the instruction is in a BB which ends in an EHPad. 3432 if (UseBB->getTerminator()->isEHPad()) 3433 continue; 3434 // Don't bother rewriting PHIs in catchswitch blocks. 3435 if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator())) 3436 continue; 3437 // Ignore uses which are part of other SCEV expressions, to avoid 3438 // analyzing them multiple times. 3439 if (SE.isSCEVable(UserInst->getType())) { 3440 const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst)); 3441 // If the user is a no-op, look through to its uses. 3442 if (!isa<SCEVUnknown>(UserS)) 3443 continue; 3444 if (UserS == US) { 3445 Worklist.push_back( 3446 SE.getUnknown(const_cast<Instruction *>(UserInst))); 3447 continue; 3448 } 3449 } 3450 // Ignore icmp instructions which are already being analyzed. 3451 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) { 3452 unsigned OtherIdx = !U.getOperandNo(); 3453 Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx)); 3454 if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L)) 3455 continue; 3456 } 3457 3458 std::pair<size_t, int64_t> P = getUse( 3459 S, LSRUse::Basic, MemAccessTy()); 3460 size_t LUIdx = P.first; 3461 int64_t Offset = P.second; 3462 LSRUse &LU = Uses[LUIdx]; 3463 LSRFixup &LF = LU.getNewFixup(); 3464 LF.UserInst = const_cast<Instruction *>(UserInst); 3465 LF.OperandValToReplace = U; 3466 LF.Offset = Offset; 3467 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3468 if (!LU.WidestFixupType || 3469 SE.getTypeSizeInBits(LU.WidestFixupType) < 3470 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3471 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3472 InsertSupplementalFormula(US, LU, LUIdx); 3473 CountRegisters(LU.Formulae.back(), Uses.size() - 1); 3474 break; 3475 } 3476 } 3477 } 3478 } 3479 3480 /// Split S into subexpressions which can be pulled out into separate 3481 /// registers. If C is non-null, multiply each subexpression by C. 3482 /// 3483 /// Return remainder expression after factoring the subexpressions captured by 3484 /// Ops. If Ops is complete, return NULL. 3485 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C, 3486 SmallVectorImpl<const SCEV *> &Ops, 3487 const Loop *L, 3488 ScalarEvolution &SE, 3489 unsigned Depth = 0) { 3490 // Arbitrarily cap recursion to protect compile time. 3491 if (Depth >= 3) 3492 return S; 3493 3494 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3495 // Break out add operands. 3496 for (const SCEV *S : Add->operands()) { 3497 const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1); 3498 if (Remainder) 3499 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3500 } 3501 return nullptr; 3502 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 3503 // Split a non-zero base out of an addrec. 3504 if (AR->getStart()->isZero() || !AR->isAffine()) 3505 return S; 3506 3507 const SCEV *Remainder = CollectSubexprs(AR->getStart(), 3508 C, Ops, L, SE, Depth+1); 3509 // Split the non-zero AddRec unless it is part of a nested recurrence that 3510 // does not pertain to this loop. 3511 if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) { 3512 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3513 Remainder = nullptr; 3514 } 3515 if (Remainder != AR->getStart()) { 3516 if (!Remainder) 3517 Remainder = SE.getConstant(AR->getType(), 0); 3518 return SE.getAddRecExpr(Remainder, 3519 AR->getStepRecurrence(SE), 3520 AR->getLoop(), 3521 //FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 3522 SCEV::FlagAnyWrap); 3523 } 3524 } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3525 // Break (C * (a + b + c)) into C*a + C*b + C*c. 3526 if (Mul->getNumOperands() != 2) 3527 return S; 3528 if (const SCEVConstant *Op0 = 3529 dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3530 C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0; 3531 const SCEV *Remainder = 3532 CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1); 3533 if (Remainder) 3534 Ops.push_back(SE.getMulExpr(C, Remainder)); 3535 return nullptr; 3536 } 3537 } 3538 return S; 3539 } 3540 3541 /// Return true if the SCEV represents a value that may end up as a 3542 /// post-increment operation. 3543 static bool mayUsePostIncMode(const TargetTransformInfo &TTI, 3544 LSRUse &LU, const SCEV *S, const Loop *L, 3545 ScalarEvolution &SE) { 3546 if (LU.Kind != LSRUse::Address || 3547 !LU.AccessTy.getType()->isIntOrIntVectorTy()) 3548 return false; 3549 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S); 3550 if (!AR) 3551 return false; 3552 const SCEV *LoopStep = AR->getStepRecurrence(SE); 3553 if (!isa<SCEVConstant>(LoopStep)) 3554 return false; 3555 // Check if a post-indexed load/store can be used. 3556 if (TTI.isIndexedLoadLegal(TTI.MIM_PostInc, AR->getType()) || 3557 TTI.isIndexedStoreLegal(TTI.MIM_PostInc, AR->getType())) { 3558 const SCEV *LoopStart = AR->getStart(); 3559 if (!isa<SCEVConstant>(LoopStart) && SE.isLoopInvariant(LoopStart, L)) 3560 return true; 3561 } 3562 return false; 3563 } 3564 3565 /// Helper function for LSRInstance::GenerateReassociations. 3566 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 3567 const Formula &Base, 3568 unsigned Depth, size_t Idx, 3569 bool IsScaledReg) { 3570 const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3571 // Don't generate reassociations for the base register of a value that 3572 // may generate a post-increment operator. The reason is that the 3573 // reassociations cause extra base+register formula to be created, 3574 // and possibly chosen, but the post-increment is more efficient. 3575 if (TTI.shouldFavorPostInc() && mayUsePostIncMode(TTI, LU, BaseReg, L, SE)) 3576 return; 3577 SmallVector<const SCEV *, 8> AddOps; 3578 const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE); 3579 if (Remainder) 3580 AddOps.push_back(Remainder); 3581 3582 if (AddOps.size() == 1) 3583 return; 3584 3585 for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(), 3586 JE = AddOps.end(); 3587 J != JE; ++J) { 3588 // Loop-variant "unknown" values are uninteresting; we won't be able to 3589 // do anything meaningful with them. 3590 if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L)) 3591 continue; 3592 3593 // Don't pull a constant into a register if the constant could be folded 3594 // into an immediate field. 3595 if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3596 LU.AccessTy, *J, Base.getNumRegs() > 1)) 3597 continue; 3598 3599 // Collect all operands except *J. 3600 SmallVector<const SCEV *, 8> InnerAddOps( 3601 ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J); 3602 InnerAddOps.append(std::next(J), 3603 ((const SmallVector<const SCEV *, 8> &)AddOps).end()); 3604 3605 // Don't leave just a constant behind in a register if the constant could 3606 // be folded into an immediate field. 3607 if (InnerAddOps.size() == 1 && 3608 isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3609 LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1)) 3610 continue; 3611 3612 const SCEV *InnerSum = SE.getAddExpr(InnerAddOps); 3613 if (InnerSum->isZero()) 3614 continue; 3615 Formula F = Base; 3616 3617 // Add the remaining pieces of the add back into the new formula. 3618 const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum); 3619 if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 && 3620 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3621 InnerSumSC->getValue()->getZExtValue())) { 3622 F.UnfoldedOffset = 3623 (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue(); 3624 if (IsScaledReg) 3625 F.ScaledReg = nullptr; 3626 else 3627 F.BaseRegs.erase(F.BaseRegs.begin() + Idx); 3628 } else if (IsScaledReg) 3629 F.ScaledReg = InnerSum; 3630 else 3631 F.BaseRegs[Idx] = InnerSum; 3632 3633 // Add J as its own register, or an unfolded immediate. 3634 const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J); 3635 if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 && 3636 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3637 SC->getValue()->getZExtValue())) 3638 F.UnfoldedOffset = 3639 (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue(); 3640 else 3641 F.BaseRegs.push_back(*J); 3642 // We may have changed the number of register in base regs, adjust the 3643 // formula accordingly. 3644 F.canonicalize(*L); 3645 3646 if (InsertFormula(LU, LUIdx, F)) 3647 // If that formula hadn't been seen before, recurse to find more like 3648 // it. 3649 // Add check on Log16(AddOps.size()) - same as Log2_32(AddOps.size()) >> 2) 3650 // Because just Depth is not enough to bound compile time. 3651 // This means that every time AddOps.size() is greater 16^x we will add 3652 // x to Depth. 3653 GenerateReassociations(LU, LUIdx, LU.Formulae.back(), 3654 Depth + 1 + (Log2_32(AddOps.size()) >> 2)); 3655 } 3656 } 3657 3658 /// Split out subexpressions from adds and the bases of addrecs. 3659 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx, 3660 Formula Base, unsigned Depth) { 3661 assert(Base.isCanonical(*L) && "Input must be in the canonical form"); 3662 // Arbitrarily cap recursion to protect compile time. 3663 if (Depth >= 3) 3664 return; 3665 3666 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3667 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i); 3668 3669 if (Base.Scale == 1) 3670 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, 3671 /* Idx */ -1, /* IsScaledReg */ true); 3672 } 3673 3674 /// Generate a formula consisting of all of the loop-dominating registers added 3675 /// into a single register. 3676 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx, 3677 Formula Base) { 3678 // This method is only interesting on a plurality of registers. 3679 if (Base.BaseRegs.size() + (Base.Scale == 1) + 3680 (Base.UnfoldedOffset != 0) <= 1) 3681 return; 3682 3683 // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before 3684 // processing the formula. 3685 Base.unscale(); 3686 SmallVector<const SCEV *, 4> Ops; 3687 Formula NewBase = Base; 3688 NewBase.BaseRegs.clear(); 3689 Type *CombinedIntegerType = nullptr; 3690 for (const SCEV *BaseReg : Base.BaseRegs) { 3691 if (SE.properlyDominates(BaseReg, L->getHeader()) && 3692 !SE.hasComputableLoopEvolution(BaseReg, L)) { 3693 if (!CombinedIntegerType) 3694 CombinedIntegerType = SE.getEffectiveSCEVType(BaseReg->getType()); 3695 Ops.push_back(BaseReg); 3696 } 3697 else 3698 NewBase.BaseRegs.push_back(BaseReg); 3699 } 3700 3701 // If no register is relevant, we're done. 3702 if (Ops.size() == 0) 3703 return; 3704 3705 // Utility function for generating the required variants of the combined 3706 // registers. 3707 auto GenerateFormula = [&](const SCEV *Sum) { 3708 Formula F = NewBase; 3709 3710 // TODO: If Sum is zero, it probably means ScalarEvolution missed an 3711 // opportunity to fold something. For now, just ignore such cases 3712 // rather than proceed with zero in a register. 3713 if (Sum->isZero()) 3714 return; 3715 3716 F.BaseRegs.push_back(Sum); 3717 F.canonicalize(*L); 3718 (void)InsertFormula(LU, LUIdx, F); 3719 }; 3720 3721 // If we collected at least two registers, generate a formula combining them. 3722 if (Ops.size() > 1) { 3723 SmallVector<const SCEV *, 4> OpsCopy(Ops); // Don't let SE modify Ops. 3724 GenerateFormula(SE.getAddExpr(OpsCopy)); 3725 } 3726 3727 // If we have an unfolded offset, generate a formula combining it with the 3728 // registers collected. 3729 if (NewBase.UnfoldedOffset) { 3730 assert(CombinedIntegerType && "Missing a type for the unfolded offset"); 3731 Ops.push_back(SE.getConstant(CombinedIntegerType, NewBase.UnfoldedOffset, 3732 true)); 3733 NewBase.UnfoldedOffset = 0; 3734 GenerateFormula(SE.getAddExpr(Ops)); 3735 } 3736 } 3737 3738 /// Helper function for LSRInstance::GenerateSymbolicOffsets. 3739 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 3740 const Formula &Base, size_t Idx, 3741 bool IsScaledReg) { 3742 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3743 GlobalValue *GV = ExtractSymbol(G, SE); 3744 if (G->isZero() || !GV) 3745 return; 3746 Formula F = Base; 3747 F.BaseGV = GV; 3748 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3749 return; 3750 if (IsScaledReg) 3751 F.ScaledReg = G; 3752 else 3753 F.BaseRegs[Idx] = G; 3754 (void)InsertFormula(LU, LUIdx, F); 3755 } 3756 3757 /// Generate reuse formulae using symbolic offsets. 3758 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, 3759 Formula Base) { 3760 // We can't add a symbolic offset if the address already contains one. 3761 if (Base.BaseGV) return; 3762 3763 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3764 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i); 3765 if (Base.Scale == 1) 3766 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1, 3767 /* IsScaledReg */ true); 3768 } 3769 3770 /// Helper function for LSRInstance::GenerateConstantOffsets. 3771 void LSRInstance::GenerateConstantOffsetsImpl( 3772 LSRUse &LU, unsigned LUIdx, const Formula &Base, 3773 const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) { 3774 3775 auto GenerateOffset = [&](const SCEV *G, int64_t Offset) { 3776 Formula F = Base; 3777 F.BaseOffset = (uint64_t)Base.BaseOffset - Offset; 3778 3779 if (isLegalUse(TTI, LU.MinOffset - Offset, LU.MaxOffset - Offset, LU.Kind, 3780 LU.AccessTy, F)) { 3781 // Add the offset to the base register. 3782 const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G); 3783 // If it cancelled out, drop the base register, otherwise update it. 3784 if (NewG->isZero()) { 3785 if (IsScaledReg) { 3786 F.Scale = 0; 3787 F.ScaledReg = nullptr; 3788 } else 3789 F.deleteBaseReg(F.BaseRegs[Idx]); 3790 F.canonicalize(*L); 3791 } else if (IsScaledReg) 3792 F.ScaledReg = NewG; 3793 else 3794 F.BaseRegs[Idx] = NewG; 3795 3796 (void)InsertFormula(LU, LUIdx, F); 3797 } 3798 }; 3799 3800 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3801 3802 // With constant offsets and constant steps, we can generate pre-inc 3803 // accesses by having the offset equal the step. So, for access #0 with a 3804 // step of 8, we generate a G - 8 base which would require the first access 3805 // to be ((G - 8) + 8),+,8. The pre-indexed access then updates the pointer 3806 // for itself and hopefully becomes the base for other accesses. This means 3807 // means that a single pre-indexed access can be generated to become the new 3808 // base pointer for each iteration of the loop, resulting in no extra add/sub 3809 // instructions for pointer updating. 3810 if (FavorBackedgeIndex && LU.Kind == LSRUse::Address) { 3811 if (auto *GAR = dyn_cast<SCEVAddRecExpr>(G)) { 3812 if (auto *StepRec = 3813 dyn_cast<SCEVConstant>(GAR->getStepRecurrence(SE))) { 3814 const APInt &StepInt = StepRec->getAPInt(); 3815 int64_t Step = StepInt.isNegative() ? 3816 StepInt.getSExtValue() : StepInt.getZExtValue(); 3817 3818 for (int64_t Offset : Worklist) { 3819 Offset -= Step; 3820 GenerateOffset(G, Offset); 3821 } 3822 } 3823 } 3824 } 3825 for (int64_t Offset : Worklist) 3826 GenerateOffset(G, Offset); 3827 3828 int64_t Imm = ExtractImmediate(G, SE); 3829 if (G->isZero() || Imm == 0) 3830 return; 3831 Formula F = Base; 3832 F.BaseOffset = (uint64_t)F.BaseOffset + Imm; 3833 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3834 return; 3835 if (IsScaledReg) 3836 F.ScaledReg = G; 3837 else 3838 F.BaseRegs[Idx] = G; 3839 (void)InsertFormula(LU, LUIdx, F); 3840 } 3841 3842 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets. 3843 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, 3844 Formula Base) { 3845 // TODO: For now, just add the min and max offset, because it usually isn't 3846 // worthwhile looking at everything inbetween. 3847 SmallVector<int64_t, 2> Worklist; 3848 Worklist.push_back(LU.MinOffset); 3849 if (LU.MaxOffset != LU.MinOffset) 3850 Worklist.push_back(LU.MaxOffset); 3851 3852 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3853 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i); 3854 if (Base.Scale == 1) 3855 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1, 3856 /* IsScaledReg */ true); 3857 } 3858 3859 /// For ICmpZero, check to see if we can scale up the comparison. For example, x 3860 /// == y -> x*c == y*c. 3861 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, 3862 Formula Base) { 3863 if (LU.Kind != LSRUse::ICmpZero) return; 3864 3865 // Determine the integer type for the base formula. 3866 Type *IntTy = Base.getType(); 3867 if (!IntTy) return; 3868 if (SE.getTypeSizeInBits(IntTy) > 64) return; 3869 3870 // Don't do this if there is more than one offset. 3871 if (LU.MinOffset != LU.MaxOffset) return; 3872 3873 // Check if transformation is valid. It is illegal to multiply pointer. 3874 if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy()) 3875 return; 3876 for (const SCEV *BaseReg : Base.BaseRegs) 3877 if (BaseReg->getType()->isPointerTy()) 3878 return; 3879 assert(!Base.BaseGV && "ICmpZero use is not legal!"); 3880 3881 // Check each interesting stride. 3882 for (int64_t Factor : Factors) { 3883 // Check that the multiplication doesn't overflow. 3884 if (Base.BaseOffset == std::numeric_limits<int64_t>::min() && Factor == -1) 3885 continue; 3886 int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor; 3887 if (NewBaseOffset / Factor != Base.BaseOffset) 3888 continue; 3889 // If the offset will be truncated at this use, check that it is in bounds. 3890 if (!IntTy->isPointerTy() && 3891 !ConstantInt::isValueValidForType(IntTy, NewBaseOffset)) 3892 continue; 3893 3894 // Check that multiplying with the use offset doesn't overflow. 3895 int64_t Offset = LU.MinOffset; 3896 if (Offset == std::numeric_limits<int64_t>::min() && Factor == -1) 3897 continue; 3898 Offset = (uint64_t)Offset * Factor; 3899 if (Offset / Factor != LU.MinOffset) 3900 continue; 3901 // If the offset will be truncated at this use, check that it is in bounds. 3902 if (!IntTy->isPointerTy() && 3903 !ConstantInt::isValueValidForType(IntTy, Offset)) 3904 continue; 3905 3906 Formula F = Base; 3907 F.BaseOffset = NewBaseOffset; 3908 3909 // Check that this scale is legal. 3910 if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F)) 3911 continue; 3912 3913 // Compensate for the use having MinOffset built into it. 3914 F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset; 3915 3916 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3917 3918 // Check that multiplying with each base register doesn't overflow. 3919 for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) { 3920 F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS); 3921 if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i]) 3922 goto next; 3923 } 3924 3925 // Check that multiplying with the scaled register doesn't overflow. 3926 if (F.ScaledReg) { 3927 F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS); 3928 if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg) 3929 continue; 3930 } 3931 3932 // Check that multiplying with the unfolded offset doesn't overflow. 3933 if (F.UnfoldedOffset != 0) { 3934 if (F.UnfoldedOffset == std::numeric_limits<int64_t>::min() && 3935 Factor == -1) 3936 continue; 3937 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor; 3938 if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset) 3939 continue; 3940 // If the offset will be truncated, check that it is in bounds. 3941 if (!IntTy->isPointerTy() && 3942 !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset)) 3943 continue; 3944 } 3945 3946 // If we make it here and it's legal, add it. 3947 (void)InsertFormula(LU, LUIdx, F); 3948 next:; 3949 } 3950 } 3951 3952 /// Generate stride factor reuse formulae by making use of scaled-offset address 3953 /// modes, for example. 3954 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) { 3955 // Determine the integer type for the base formula. 3956 Type *IntTy = Base.getType(); 3957 if (!IntTy) return; 3958 3959 // If this Formula already has a scaled register, we can't add another one. 3960 // Try to unscale the formula to generate a better scale. 3961 if (Base.Scale != 0 && !Base.unscale()) 3962 return; 3963 3964 assert(Base.Scale == 0 && "unscale did not did its job!"); 3965 3966 // Check each interesting stride. 3967 for (int64_t Factor : Factors) { 3968 Base.Scale = Factor; 3969 Base.HasBaseReg = Base.BaseRegs.size() > 1; 3970 // Check whether this scale is going to be legal. 3971 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 3972 Base)) { 3973 // As a special-case, handle special out-of-loop Basic users specially. 3974 // TODO: Reconsider this special case. 3975 if (LU.Kind == LSRUse::Basic && 3976 isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special, 3977 LU.AccessTy, Base) && 3978 LU.AllFixupsOutsideLoop) 3979 LU.Kind = LSRUse::Special; 3980 else 3981 continue; 3982 } 3983 // For an ICmpZero, negating a solitary base register won't lead to 3984 // new solutions. 3985 if (LU.Kind == LSRUse::ICmpZero && 3986 !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV) 3987 continue; 3988 // For each addrec base reg, if its loop is current loop, apply the scale. 3989 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { 3990 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i]); 3991 if (AR && (AR->getLoop() == L || LU.AllFixupsOutsideLoop)) { 3992 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3993 if (FactorS->isZero()) 3994 continue; 3995 // Divide out the factor, ignoring high bits, since we'll be 3996 // scaling the value back up in the end. 3997 if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) { 3998 // TODO: This could be optimized to avoid all the copying. 3999 Formula F = Base; 4000 F.ScaledReg = Quotient; 4001 F.deleteBaseReg(F.BaseRegs[i]); 4002 // The canonical representation of 1*reg is reg, which is already in 4003 // Base. In that case, do not try to insert the formula, it will be 4004 // rejected anyway. 4005 if (F.Scale == 1 && (F.BaseRegs.empty() || 4006 (AR->getLoop() != L && LU.AllFixupsOutsideLoop))) 4007 continue; 4008 // If AllFixupsOutsideLoop is true and F.Scale is 1, we may generate 4009 // non canonical Formula with ScaledReg's loop not being L. 4010 if (F.Scale == 1 && LU.AllFixupsOutsideLoop) 4011 F.canonicalize(*L); 4012 (void)InsertFormula(LU, LUIdx, F); 4013 } 4014 } 4015 } 4016 } 4017 } 4018 4019 /// Generate reuse formulae from different IV types. 4020 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) { 4021 // Don't bother truncating symbolic values. 4022 if (Base.BaseGV) return; 4023 4024 // Determine the integer type for the base formula. 4025 Type *DstTy = Base.getType(); 4026 if (!DstTy) return; 4027 DstTy = SE.getEffectiveSCEVType(DstTy); 4028 4029 for (Type *SrcTy : Types) { 4030 if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) { 4031 Formula F = Base; 4032 4033 // Sometimes SCEV is able to prove zero during ext transform. It may 4034 // happen if SCEV did not do all possible transforms while creating the 4035 // initial node (maybe due to depth limitations), but it can do them while 4036 // taking ext. 4037 if (F.ScaledReg) { 4038 const SCEV *NewScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy); 4039 if (NewScaledReg->isZero()) 4040 continue; 4041 F.ScaledReg = NewScaledReg; 4042 } 4043 bool HasZeroBaseReg = false; 4044 for (const SCEV *&BaseReg : F.BaseRegs) { 4045 const SCEV *NewBaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy); 4046 if (NewBaseReg->isZero()) { 4047 HasZeroBaseReg = true; 4048 break; 4049 } 4050 BaseReg = NewBaseReg; 4051 } 4052 if (HasZeroBaseReg) 4053 continue; 4054 4055 // TODO: This assumes we've done basic processing on all uses and 4056 // have an idea what the register usage is. 4057 if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses)) 4058 continue; 4059 4060 F.canonicalize(*L); 4061 (void)InsertFormula(LU, LUIdx, F); 4062 } 4063 } 4064 } 4065 4066 namespace { 4067 4068 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer 4069 /// modifications so that the search phase doesn't have to worry about the data 4070 /// structures moving underneath it. 4071 struct WorkItem { 4072 size_t LUIdx; 4073 int64_t Imm; 4074 const SCEV *OrigReg; 4075 4076 WorkItem(size_t LI, int64_t I, const SCEV *R) 4077 : LUIdx(LI), Imm(I), OrigReg(R) {} 4078 4079 void print(raw_ostream &OS) const; 4080 void dump() const; 4081 }; 4082 4083 } // end anonymous namespace 4084 4085 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 4086 void WorkItem::print(raw_ostream &OS) const { 4087 OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx 4088 << " , add offset " << Imm; 4089 } 4090 4091 LLVM_DUMP_METHOD void WorkItem::dump() const { 4092 print(errs()); errs() << '\n'; 4093 } 4094 #endif 4095 4096 /// Look for registers which are a constant distance apart and try to form reuse 4097 /// opportunities between them. 4098 void LSRInstance::GenerateCrossUseConstantOffsets() { 4099 // Group the registers by their value without any added constant offset. 4100 using ImmMapTy = std::map<int64_t, const SCEV *>; 4101 4102 DenseMap<const SCEV *, ImmMapTy> Map; 4103 DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap; 4104 SmallVector<const SCEV *, 8> Sequence; 4105 for (const SCEV *Use : RegUses) { 4106 const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify. 4107 int64_t Imm = ExtractImmediate(Reg, SE); 4108 auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy())); 4109 if (Pair.second) 4110 Sequence.push_back(Reg); 4111 Pair.first->second.insert(std::make_pair(Imm, Use)); 4112 UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use); 4113 } 4114 4115 // Now examine each set of registers with the same base value. Build up 4116 // a list of work to do and do the work in a separate step so that we're 4117 // not adding formulae and register counts while we're searching. 4118 SmallVector<WorkItem, 32> WorkItems; 4119 SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems; 4120 for (const SCEV *Reg : Sequence) { 4121 const ImmMapTy &Imms = Map.find(Reg)->second; 4122 4123 // It's not worthwhile looking for reuse if there's only one offset. 4124 if (Imms.size() == 1) 4125 continue; 4126 4127 LLVM_DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':'; 4128 for (const auto &Entry 4129 : Imms) dbgs() 4130 << ' ' << Entry.first; 4131 dbgs() << '\n'); 4132 4133 // Examine each offset. 4134 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); 4135 J != JE; ++J) { 4136 const SCEV *OrigReg = J->second; 4137 4138 int64_t JImm = J->first; 4139 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg); 4140 4141 if (!isa<SCEVConstant>(OrigReg) && 4142 UsedByIndicesMap[Reg].count() == 1) { 4143 LLVM_DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg 4144 << '\n'); 4145 continue; 4146 } 4147 4148 // Conservatively examine offsets between this orig reg a few selected 4149 // other orig regs. 4150 int64_t First = Imms.begin()->first; 4151 int64_t Last = std::prev(Imms.end())->first; 4152 // Compute (First + Last) / 2 without overflow using the fact that 4153 // First + Last = 2 * (First + Last) + (First ^ Last). 4154 int64_t Avg = (First & Last) + ((First ^ Last) >> 1); 4155 // If the result is negative and First is odd and Last even (or vice versa), 4156 // we rounded towards -inf. Add 1 in that case, to round towards 0. 4157 Avg = Avg + ((First ^ Last) & ((uint64_t)Avg >> 63)); 4158 ImmMapTy::const_iterator OtherImms[] = { 4159 Imms.begin(), std::prev(Imms.end()), 4160 Imms.lower_bound(Avg)}; 4161 for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) { 4162 ImmMapTy::const_iterator M = OtherImms[i]; 4163 if (M == J || M == JE) continue; 4164 4165 // Compute the difference between the two. 4166 int64_t Imm = (uint64_t)JImm - M->first; 4167 for (unsigned LUIdx : UsedByIndices.set_bits()) 4168 // Make a memo of this use, offset, and register tuple. 4169 if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second) 4170 WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg)); 4171 } 4172 } 4173 } 4174 4175 Map.clear(); 4176 Sequence.clear(); 4177 UsedByIndicesMap.clear(); 4178 UniqueItems.clear(); 4179 4180 // Now iterate through the worklist and add new formulae. 4181 for (const WorkItem &WI : WorkItems) { 4182 size_t LUIdx = WI.LUIdx; 4183 LSRUse &LU = Uses[LUIdx]; 4184 int64_t Imm = WI.Imm; 4185 const SCEV *OrigReg = WI.OrigReg; 4186 4187 Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType()); 4188 const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm)); 4189 unsigned BitWidth = SE.getTypeSizeInBits(IntTy); 4190 4191 // TODO: Use a more targeted data structure. 4192 for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) { 4193 Formula F = LU.Formulae[L]; 4194 // FIXME: The code for the scaled and unscaled registers looks 4195 // very similar but slightly different. Investigate if they 4196 // could be merged. That way, we would not have to unscale the 4197 // Formula. 4198 F.unscale(); 4199 // Use the immediate in the scaled register. 4200 if (F.ScaledReg == OrigReg) { 4201 int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale; 4202 // Don't create 50 + reg(-50). 4203 if (F.referencesReg(SE.getSCEV( 4204 ConstantInt::get(IntTy, -(uint64_t)Offset)))) 4205 continue; 4206 Formula NewF = F; 4207 NewF.BaseOffset = Offset; 4208 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 4209 NewF)) 4210 continue; 4211 NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg); 4212 4213 // If the new scale is a constant in a register, and adding the constant 4214 // value to the immediate would produce a value closer to zero than the 4215 // immediate itself, then the formula isn't worthwhile. 4216 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg)) 4217 if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) && 4218 (C->getAPInt().abs() * APInt(BitWidth, F.Scale)) 4219 .ule(std::abs(NewF.BaseOffset))) 4220 continue; 4221 4222 // OK, looks good. 4223 NewF.canonicalize(*this->L); 4224 (void)InsertFormula(LU, LUIdx, NewF); 4225 } else { 4226 // Use the immediate in a base register. 4227 for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) { 4228 const SCEV *BaseReg = F.BaseRegs[N]; 4229 if (BaseReg != OrigReg) 4230 continue; 4231 Formula NewF = F; 4232 NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm; 4233 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, 4234 LU.Kind, LU.AccessTy, NewF)) { 4235 if (TTI.shouldFavorPostInc() && 4236 mayUsePostIncMode(TTI, LU, OrigReg, this->L, SE)) 4237 continue; 4238 if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm)) 4239 continue; 4240 NewF = F; 4241 NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm; 4242 } 4243 NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg); 4244 4245 // If the new formula has a constant in a register, and adding the 4246 // constant value to the immediate would produce a value closer to 4247 // zero than the immediate itself, then the formula isn't worthwhile. 4248 for (const SCEV *NewReg : NewF.BaseRegs) 4249 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg)) 4250 if ((C->getAPInt() + NewF.BaseOffset) 4251 .abs() 4252 .slt(std::abs(NewF.BaseOffset)) && 4253 (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >= 4254 countTrailingZeros<uint64_t>(NewF.BaseOffset)) 4255 goto skip_formula; 4256 4257 // Ok, looks good. 4258 NewF.canonicalize(*this->L); 4259 (void)InsertFormula(LU, LUIdx, NewF); 4260 break; 4261 skip_formula:; 4262 } 4263 } 4264 } 4265 } 4266 } 4267 4268 /// Generate formulae for each use. 4269 void 4270 LSRInstance::GenerateAllReuseFormulae() { 4271 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan 4272 // queries are more precise. 4273 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4274 LSRUse &LU = Uses[LUIdx]; 4275 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4276 GenerateReassociations(LU, LUIdx, LU.Formulae[i]); 4277 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4278 GenerateCombinations(LU, LUIdx, LU.Formulae[i]); 4279 } 4280 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4281 LSRUse &LU = Uses[LUIdx]; 4282 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4283 GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]); 4284 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4285 GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]); 4286 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4287 GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]); 4288 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4289 GenerateScales(LU, LUIdx, LU.Formulae[i]); 4290 } 4291 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4292 LSRUse &LU = Uses[LUIdx]; 4293 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4294 GenerateTruncates(LU, LUIdx, LU.Formulae[i]); 4295 } 4296 4297 GenerateCrossUseConstantOffsets(); 4298 4299 LLVM_DEBUG(dbgs() << "\n" 4300 "After generating reuse formulae:\n"; 4301 print_uses(dbgs())); 4302 } 4303 4304 /// If there are multiple formulae with the same set of registers used 4305 /// by other uses, pick the best one and delete the others. 4306 void LSRInstance::FilterOutUndesirableDedicatedRegisters() { 4307 DenseSet<const SCEV *> VisitedRegs; 4308 SmallPtrSet<const SCEV *, 16> Regs; 4309 SmallPtrSet<const SCEV *, 16> LoserRegs; 4310 #ifndef NDEBUG 4311 bool ChangedFormulae = false; 4312 #endif 4313 4314 // Collect the best formula for each unique set of shared registers. This 4315 // is reset for each use. 4316 using BestFormulaeTy = 4317 DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>; 4318 4319 BestFormulaeTy BestFormulae; 4320 4321 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4322 LSRUse &LU = Uses[LUIdx]; 4323 LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); 4324 dbgs() << '\n'); 4325 4326 bool Any = false; 4327 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); 4328 FIdx != NumForms; ++FIdx) { 4329 Formula &F = LU.Formulae[FIdx]; 4330 4331 // Some formulas are instant losers. For example, they may depend on 4332 // nonexistent AddRecs from other loops. These need to be filtered 4333 // immediately, otherwise heuristics could choose them over others leading 4334 // to an unsatisfactory solution. Passing LoserRegs into RateFormula here 4335 // avoids the need to recompute this information across formulae using the 4336 // same bad AddRec. Passing LoserRegs is also essential unless we remove 4337 // the corresponding bad register from the Regs set. 4338 Cost CostF(L, SE, TTI); 4339 Regs.clear(); 4340 CostF.RateFormula(F, Regs, VisitedRegs, LU, &LoserRegs); 4341 if (CostF.isLoser()) { 4342 // During initial formula generation, undesirable formulae are generated 4343 // by uses within other loops that have some non-trivial address mode or 4344 // use the postinc form of the IV. LSR needs to provide these formulae 4345 // as the basis of rediscovering the desired formula that uses an AddRec 4346 // corresponding to the existing phi. Once all formulae have been 4347 // generated, these initial losers may be pruned. 4348 LLVM_DEBUG(dbgs() << " Filtering loser "; F.print(dbgs()); 4349 dbgs() << "\n"); 4350 } 4351 else { 4352 SmallVector<const SCEV *, 4> Key; 4353 for (const SCEV *Reg : F.BaseRegs) { 4354 if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx)) 4355 Key.push_back(Reg); 4356 } 4357 if (F.ScaledReg && 4358 RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx)) 4359 Key.push_back(F.ScaledReg); 4360 // Unstable sort by host order ok, because this is only used for 4361 // uniquifying. 4362 llvm::sort(Key); 4363 4364 std::pair<BestFormulaeTy::const_iterator, bool> P = 4365 BestFormulae.insert(std::make_pair(Key, FIdx)); 4366 if (P.second) 4367 continue; 4368 4369 Formula &Best = LU.Formulae[P.first->second]; 4370 4371 Cost CostBest(L, SE, TTI); 4372 Regs.clear(); 4373 CostBest.RateFormula(Best, Regs, VisitedRegs, LU); 4374 if (CostF.isLess(CostBest)) 4375 std::swap(F, Best); 4376 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 4377 dbgs() << "\n" 4378 " in favor of formula "; 4379 Best.print(dbgs()); dbgs() << '\n'); 4380 } 4381 #ifndef NDEBUG 4382 ChangedFormulae = true; 4383 #endif 4384 LU.DeleteFormula(F); 4385 --FIdx; 4386 --NumForms; 4387 Any = true; 4388 } 4389 4390 // Now that we've filtered out some formulae, recompute the Regs set. 4391 if (Any) 4392 LU.RecomputeRegs(LUIdx, RegUses); 4393 4394 // Reset this to prepare for the next use. 4395 BestFormulae.clear(); 4396 } 4397 4398 LLVM_DEBUG(if (ChangedFormulae) { 4399 dbgs() << "\n" 4400 "After filtering out undesirable candidates:\n"; 4401 print_uses(dbgs()); 4402 }); 4403 } 4404 4405 /// Estimate the worst-case number of solutions the solver might have to 4406 /// consider. It almost never considers this many solutions because it prune the 4407 /// search space, but the pruning isn't always sufficient. 4408 size_t LSRInstance::EstimateSearchSpaceComplexity() const { 4409 size_t Power = 1; 4410 for (const LSRUse &LU : Uses) { 4411 size_t FSize = LU.Formulae.size(); 4412 if (FSize >= ComplexityLimit) { 4413 Power = ComplexityLimit; 4414 break; 4415 } 4416 Power *= FSize; 4417 if (Power >= ComplexityLimit) 4418 break; 4419 } 4420 return Power; 4421 } 4422 4423 /// When one formula uses a superset of the registers of another formula, it 4424 /// won't help reduce register pressure (though it may not necessarily hurt 4425 /// register pressure); remove it to simplify the system. 4426 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() { 4427 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4428 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4429 4430 LLVM_DEBUG(dbgs() << "Narrowing the search space by eliminating formulae " 4431 "which use a superset of registers used by other " 4432 "formulae.\n"); 4433 4434 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4435 LSRUse &LU = Uses[LUIdx]; 4436 bool Any = false; 4437 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4438 Formula &F = LU.Formulae[i]; 4439 // Look for a formula with a constant or GV in a register. If the use 4440 // also has a formula with that same value in an immediate field, 4441 // delete the one that uses a register. 4442 for (SmallVectorImpl<const SCEV *>::const_iterator 4443 I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) { 4444 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) { 4445 Formula NewF = F; 4446 //FIXME: Formulas should store bitwidth to do wrapping properly. 4447 // See PR41034. 4448 NewF.BaseOffset += (uint64_t)C->getValue()->getSExtValue(); 4449 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4450 (I - F.BaseRegs.begin())); 4451 if (LU.HasFormulaWithSameRegs(NewF)) { 4452 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4453 dbgs() << '\n'); 4454 LU.DeleteFormula(F); 4455 --i; 4456 --e; 4457 Any = true; 4458 break; 4459 } 4460 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) { 4461 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) 4462 if (!F.BaseGV) { 4463 Formula NewF = F; 4464 NewF.BaseGV = GV; 4465 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4466 (I - F.BaseRegs.begin())); 4467 if (LU.HasFormulaWithSameRegs(NewF)) { 4468 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4469 dbgs() << '\n'); 4470 LU.DeleteFormula(F); 4471 --i; 4472 --e; 4473 Any = true; 4474 break; 4475 } 4476 } 4477 } 4478 } 4479 } 4480 if (Any) 4481 LU.RecomputeRegs(LUIdx, RegUses); 4482 } 4483 4484 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4485 } 4486 } 4487 4488 /// When there are many registers for expressions like A, A+1, A+2, etc., 4489 /// allocate a single register for them. 4490 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() { 4491 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4492 return; 4493 4494 LLVM_DEBUG( 4495 dbgs() << "The search space is too complex.\n" 4496 "Narrowing the search space by assuming that uses separated " 4497 "by a constant offset will use the same registers.\n"); 4498 4499 // This is especially useful for unrolled loops. 4500 4501 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4502 LSRUse &LU = Uses[LUIdx]; 4503 for (const Formula &F : LU.Formulae) { 4504 if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1)) 4505 continue; 4506 4507 LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU); 4508 if (!LUThatHas) 4509 continue; 4510 4511 if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false, 4512 LU.Kind, LU.AccessTy)) 4513 continue; 4514 4515 LLVM_DEBUG(dbgs() << " Deleting use "; LU.print(dbgs()); dbgs() << '\n'); 4516 4517 LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop; 4518 4519 // Transfer the fixups of LU to LUThatHas. 4520 for (LSRFixup &Fixup : LU.Fixups) { 4521 Fixup.Offset += F.BaseOffset; 4522 LUThatHas->pushFixup(Fixup); 4523 LLVM_DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n'); 4524 } 4525 4526 // Delete formulae from the new use which are no longer legal. 4527 bool Any = false; 4528 for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) { 4529 Formula &F = LUThatHas->Formulae[i]; 4530 if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset, 4531 LUThatHas->Kind, LUThatHas->AccessTy, F)) { 4532 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4533 LUThatHas->DeleteFormula(F); 4534 --i; 4535 --e; 4536 Any = true; 4537 } 4538 } 4539 4540 if (Any) 4541 LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses); 4542 4543 // Delete the old use. 4544 DeleteUse(LU, LUIdx); 4545 --LUIdx; 4546 --NumUses; 4547 break; 4548 } 4549 } 4550 4551 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4552 } 4553 4554 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that 4555 /// we've done more filtering, as it may be able to find more formulae to 4556 /// eliminate. 4557 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){ 4558 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4559 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4560 4561 LLVM_DEBUG(dbgs() << "Narrowing the search space by re-filtering out " 4562 "undesirable dedicated registers.\n"); 4563 4564 FilterOutUndesirableDedicatedRegisters(); 4565 4566 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4567 } 4568 } 4569 4570 /// If a LSRUse has multiple formulae with the same ScaledReg and Scale. 4571 /// Pick the best one and delete the others. 4572 /// This narrowing heuristic is to keep as many formulae with different 4573 /// Scale and ScaledReg pair as possible while narrowing the search space. 4574 /// The benefit is that it is more likely to find out a better solution 4575 /// from a formulae set with more Scale and ScaledReg variations than 4576 /// a formulae set with the same Scale and ScaledReg. The picking winner 4577 /// reg heuristic will often keep the formulae with the same Scale and 4578 /// ScaledReg and filter others, and we want to avoid that if possible. 4579 void LSRInstance::NarrowSearchSpaceByFilterFormulaWithSameScaledReg() { 4580 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4581 return; 4582 4583 LLVM_DEBUG( 4584 dbgs() << "The search space is too complex.\n" 4585 "Narrowing the search space by choosing the best Formula " 4586 "from the Formulae with the same Scale and ScaledReg.\n"); 4587 4588 // Map the "Scale * ScaledReg" pair to the best formula of current LSRUse. 4589 using BestFormulaeTy = DenseMap<std::pair<const SCEV *, int64_t>, size_t>; 4590 4591 BestFormulaeTy BestFormulae; 4592 #ifndef NDEBUG 4593 bool ChangedFormulae = false; 4594 #endif 4595 DenseSet<const SCEV *> VisitedRegs; 4596 SmallPtrSet<const SCEV *, 16> Regs; 4597 4598 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4599 LSRUse &LU = Uses[LUIdx]; 4600 LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); 4601 dbgs() << '\n'); 4602 4603 // Return true if Formula FA is better than Formula FB. 4604 auto IsBetterThan = [&](Formula &FA, Formula &FB) { 4605 // First we will try to choose the Formula with fewer new registers. 4606 // For a register used by current Formula, the more the register is 4607 // shared among LSRUses, the less we increase the register number 4608 // counter of the formula. 4609 size_t FARegNum = 0; 4610 for (const SCEV *Reg : FA.BaseRegs) { 4611 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg); 4612 FARegNum += (NumUses - UsedByIndices.count() + 1); 4613 } 4614 size_t FBRegNum = 0; 4615 for (const SCEV *Reg : FB.BaseRegs) { 4616 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg); 4617 FBRegNum += (NumUses - UsedByIndices.count() + 1); 4618 } 4619 if (FARegNum != FBRegNum) 4620 return FARegNum < FBRegNum; 4621 4622 // If the new register numbers are the same, choose the Formula with 4623 // less Cost. 4624 Cost CostFA(L, SE, TTI); 4625 Cost CostFB(L, SE, TTI); 4626 Regs.clear(); 4627 CostFA.RateFormula(FA, Regs, VisitedRegs, LU); 4628 Regs.clear(); 4629 CostFB.RateFormula(FB, Regs, VisitedRegs, LU); 4630 return CostFA.isLess(CostFB); 4631 }; 4632 4633 bool Any = false; 4634 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms; 4635 ++FIdx) { 4636 Formula &F = LU.Formulae[FIdx]; 4637 if (!F.ScaledReg) 4638 continue; 4639 auto P = BestFormulae.insert({{F.ScaledReg, F.Scale}, FIdx}); 4640 if (P.second) 4641 continue; 4642 4643 Formula &Best = LU.Formulae[P.first->second]; 4644 if (IsBetterThan(F, Best)) 4645 std::swap(F, Best); 4646 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 4647 dbgs() << "\n" 4648 " in favor of formula "; 4649 Best.print(dbgs()); dbgs() << '\n'); 4650 #ifndef NDEBUG 4651 ChangedFormulae = true; 4652 #endif 4653 LU.DeleteFormula(F); 4654 --FIdx; 4655 --NumForms; 4656 Any = true; 4657 } 4658 if (Any) 4659 LU.RecomputeRegs(LUIdx, RegUses); 4660 4661 // Reset this to prepare for the next use. 4662 BestFormulae.clear(); 4663 } 4664 4665 LLVM_DEBUG(if (ChangedFormulae) { 4666 dbgs() << "\n" 4667 "After filtering out undesirable candidates:\n"; 4668 print_uses(dbgs()); 4669 }); 4670 } 4671 4672 /// The function delete formulas with high registers number expectation. 4673 /// Assuming we don't know the value of each formula (already delete 4674 /// all inefficient), generate probability of not selecting for each 4675 /// register. 4676 /// For example, 4677 /// Use1: 4678 /// reg(a) + reg({0,+,1}) 4679 /// reg(a) + reg({-1,+,1}) + 1 4680 /// reg({a,+,1}) 4681 /// Use2: 4682 /// reg(b) + reg({0,+,1}) 4683 /// reg(b) + reg({-1,+,1}) + 1 4684 /// reg({b,+,1}) 4685 /// Use3: 4686 /// reg(c) + reg(b) + reg({0,+,1}) 4687 /// reg(c) + reg({b,+,1}) 4688 /// 4689 /// Probability of not selecting 4690 /// Use1 Use2 Use3 4691 /// reg(a) (1/3) * 1 * 1 4692 /// reg(b) 1 * (1/3) * (1/2) 4693 /// reg({0,+,1}) (2/3) * (2/3) * (1/2) 4694 /// reg({-1,+,1}) (2/3) * (2/3) * 1 4695 /// reg({a,+,1}) (2/3) * 1 * 1 4696 /// reg({b,+,1}) 1 * (2/3) * (2/3) 4697 /// reg(c) 1 * 1 * 0 4698 /// 4699 /// Now count registers number mathematical expectation for each formula: 4700 /// Note that for each use we exclude probability if not selecting for the use. 4701 /// For example for Use1 probability for reg(a) would be just 1 * 1 (excluding 4702 /// probabilty 1/3 of not selecting for Use1). 4703 /// Use1: 4704 /// reg(a) + reg({0,+,1}) 1 + 1/3 -- to be deleted 4705 /// reg(a) + reg({-1,+,1}) + 1 1 + 4/9 -- to be deleted 4706 /// reg({a,+,1}) 1 4707 /// Use2: 4708 /// reg(b) + reg({0,+,1}) 1/2 + 1/3 -- to be deleted 4709 /// reg(b) + reg({-1,+,1}) + 1 1/2 + 2/3 -- to be deleted 4710 /// reg({b,+,1}) 2/3 4711 /// Use3: 4712 /// reg(c) + reg(b) + reg({0,+,1}) 1 + 1/3 + 4/9 -- to be deleted 4713 /// reg(c) + reg({b,+,1}) 1 + 2/3 4714 void LSRInstance::NarrowSearchSpaceByDeletingCostlyFormulas() { 4715 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4716 return; 4717 // Ok, we have too many of formulae on our hands to conveniently handle. 4718 // Use a rough heuristic to thin out the list. 4719 4720 // Set of Regs wich will be 100% used in final solution. 4721 // Used in each formula of a solution (in example above this is reg(c)). 4722 // We can skip them in calculations. 4723 SmallPtrSet<const SCEV *, 4> UniqRegs; 4724 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4725 4726 // Map each register to probability of not selecting 4727 DenseMap <const SCEV *, float> RegNumMap; 4728 for (const SCEV *Reg : RegUses) { 4729 if (UniqRegs.count(Reg)) 4730 continue; 4731 float PNotSel = 1; 4732 for (const LSRUse &LU : Uses) { 4733 if (!LU.Regs.count(Reg)) 4734 continue; 4735 float P = LU.getNotSelectedProbability(Reg); 4736 if (P != 0.0) 4737 PNotSel *= P; 4738 else 4739 UniqRegs.insert(Reg); 4740 } 4741 RegNumMap.insert(std::make_pair(Reg, PNotSel)); 4742 } 4743 4744 LLVM_DEBUG( 4745 dbgs() << "Narrowing the search space by deleting costly formulas\n"); 4746 4747 // Delete formulas where registers number expectation is high. 4748 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4749 LSRUse &LU = Uses[LUIdx]; 4750 // If nothing to delete - continue. 4751 if (LU.Formulae.size() < 2) 4752 continue; 4753 // This is temporary solution to test performance. Float should be 4754 // replaced with round independent type (based on integers) to avoid 4755 // different results for different target builds. 4756 float FMinRegNum = LU.Formulae[0].getNumRegs(); 4757 float FMinARegNum = LU.Formulae[0].getNumRegs(); 4758 size_t MinIdx = 0; 4759 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4760 Formula &F = LU.Formulae[i]; 4761 float FRegNum = 0; 4762 float FARegNum = 0; 4763 for (const SCEV *BaseReg : F.BaseRegs) { 4764 if (UniqRegs.count(BaseReg)) 4765 continue; 4766 FRegNum += RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg); 4767 if (isa<SCEVAddRecExpr>(BaseReg)) 4768 FARegNum += 4769 RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg); 4770 } 4771 if (const SCEV *ScaledReg = F.ScaledReg) { 4772 if (!UniqRegs.count(ScaledReg)) { 4773 FRegNum += 4774 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg); 4775 if (isa<SCEVAddRecExpr>(ScaledReg)) 4776 FARegNum += 4777 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg); 4778 } 4779 } 4780 if (FMinRegNum > FRegNum || 4781 (FMinRegNum == FRegNum && FMinARegNum > FARegNum)) { 4782 FMinRegNum = FRegNum; 4783 FMinARegNum = FARegNum; 4784 MinIdx = i; 4785 } 4786 } 4787 LLVM_DEBUG(dbgs() << " The formula "; LU.Formulae[MinIdx].print(dbgs()); 4788 dbgs() << " with min reg num " << FMinRegNum << '\n'); 4789 if (MinIdx != 0) 4790 std::swap(LU.Formulae[MinIdx], LU.Formulae[0]); 4791 while (LU.Formulae.size() != 1) { 4792 LLVM_DEBUG(dbgs() << " Deleting "; LU.Formulae.back().print(dbgs()); 4793 dbgs() << '\n'); 4794 LU.Formulae.pop_back(); 4795 } 4796 LU.RecomputeRegs(LUIdx, RegUses); 4797 assert(LU.Formulae.size() == 1 && "Should be exactly 1 min regs formula"); 4798 Formula &F = LU.Formulae[0]; 4799 LLVM_DEBUG(dbgs() << " Leaving only "; F.print(dbgs()); dbgs() << '\n'); 4800 // When we choose the formula, the regs become unique. 4801 UniqRegs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 4802 if (F.ScaledReg) 4803 UniqRegs.insert(F.ScaledReg); 4804 } 4805 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4806 } 4807 4808 /// Pick a register which seems likely to be profitable, and then in any use 4809 /// which has any reference to that register, delete all formulae which do not 4810 /// reference that register. 4811 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() { 4812 // With all other options exhausted, loop until the system is simple 4813 // enough to handle. 4814 SmallPtrSet<const SCEV *, 4> Taken; 4815 while (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4816 // Ok, we have too many of formulae on our hands to conveniently handle. 4817 // Use a rough heuristic to thin out the list. 4818 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4819 4820 // Pick the register which is used by the most LSRUses, which is likely 4821 // to be a good reuse register candidate. 4822 const SCEV *Best = nullptr; 4823 unsigned BestNum = 0; 4824 for (const SCEV *Reg : RegUses) { 4825 if (Taken.count(Reg)) 4826 continue; 4827 if (!Best) { 4828 Best = Reg; 4829 BestNum = RegUses.getUsedByIndices(Reg).count(); 4830 } else { 4831 unsigned Count = RegUses.getUsedByIndices(Reg).count(); 4832 if (Count > BestNum) { 4833 Best = Reg; 4834 BestNum = Count; 4835 } 4836 } 4837 } 4838 assert(Best && "Failed to find best LSRUse candidate"); 4839 4840 LLVM_DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best 4841 << " will yield profitable reuse.\n"); 4842 Taken.insert(Best); 4843 4844 // In any use with formulae which references this register, delete formulae 4845 // which don't reference it. 4846 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4847 LSRUse &LU = Uses[LUIdx]; 4848 if (!LU.Regs.count(Best)) continue; 4849 4850 bool Any = false; 4851 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4852 Formula &F = LU.Formulae[i]; 4853 if (!F.referencesReg(Best)) { 4854 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4855 LU.DeleteFormula(F); 4856 --e; 4857 --i; 4858 Any = true; 4859 assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?"); 4860 continue; 4861 } 4862 } 4863 4864 if (Any) 4865 LU.RecomputeRegs(LUIdx, RegUses); 4866 } 4867 4868 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4869 } 4870 } 4871 4872 /// If there are an extraordinary number of formulae to choose from, use some 4873 /// rough heuristics to prune down the number of formulae. This keeps the main 4874 /// solver from taking an extraordinary amount of time in some worst-case 4875 /// scenarios. 4876 void LSRInstance::NarrowSearchSpaceUsingHeuristics() { 4877 NarrowSearchSpaceByDetectingSupersets(); 4878 NarrowSearchSpaceByCollapsingUnrolledCode(); 4879 NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 4880 if (FilterSameScaledReg) 4881 NarrowSearchSpaceByFilterFormulaWithSameScaledReg(); 4882 if (LSRExpNarrow) 4883 NarrowSearchSpaceByDeletingCostlyFormulas(); 4884 else 4885 NarrowSearchSpaceByPickingWinnerRegs(); 4886 } 4887 4888 /// This is the recursive solver. 4889 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 4890 Cost &SolutionCost, 4891 SmallVectorImpl<const Formula *> &Workspace, 4892 const Cost &CurCost, 4893 const SmallPtrSet<const SCEV *, 16> &CurRegs, 4894 DenseSet<const SCEV *> &VisitedRegs) const { 4895 // Some ideas: 4896 // - prune more: 4897 // - use more aggressive filtering 4898 // - sort the formula so that the most profitable solutions are found first 4899 // - sort the uses too 4900 // - search faster: 4901 // - don't compute a cost, and then compare. compare while computing a cost 4902 // and bail early. 4903 // - track register sets with SmallBitVector 4904 4905 const LSRUse &LU = Uses[Workspace.size()]; 4906 4907 // If this use references any register that's already a part of the 4908 // in-progress solution, consider it a requirement that a formula must 4909 // reference that register in order to be considered. This prunes out 4910 // unprofitable searching. 4911 SmallSetVector<const SCEV *, 4> ReqRegs; 4912 for (const SCEV *S : CurRegs) 4913 if (LU.Regs.count(S)) 4914 ReqRegs.insert(S); 4915 4916 SmallPtrSet<const SCEV *, 16> NewRegs; 4917 Cost NewCost(L, SE, TTI); 4918 for (const Formula &F : LU.Formulae) { 4919 // Ignore formulae which may not be ideal in terms of register reuse of 4920 // ReqRegs. The formula should use all required registers before 4921 // introducing new ones. 4922 // This can sometimes (notably when trying to favour postinc) lead to 4923 // sub-optimial decisions. There it is best left to the cost modelling to 4924 // get correct. 4925 if (!TTI.shouldFavorPostInc() || LU.Kind != LSRUse::Address) { 4926 int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size()); 4927 for (const SCEV *Reg : ReqRegs) { 4928 if ((F.ScaledReg && F.ScaledReg == Reg) || 4929 is_contained(F.BaseRegs, Reg)) { 4930 --NumReqRegsToFind; 4931 if (NumReqRegsToFind == 0) 4932 break; 4933 } 4934 } 4935 if (NumReqRegsToFind != 0) { 4936 // If none of the formulae satisfied the required registers, then we could 4937 // clear ReqRegs and try again. Currently, we simply give up in this case. 4938 continue; 4939 } 4940 } 4941 4942 // Evaluate the cost of the current formula. If it's already worse than 4943 // the current best, prune the search at that point. 4944 NewCost = CurCost; 4945 NewRegs = CurRegs; 4946 NewCost.RateFormula(F, NewRegs, VisitedRegs, LU); 4947 if (NewCost.isLess(SolutionCost)) { 4948 Workspace.push_back(&F); 4949 if (Workspace.size() != Uses.size()) { 4950 SolveRecurse(Solution, SolutionCost, Workspace, NewCost, 4951 NewRegs, VisitedRegs); 4952 if (F.getNumRegs() == 1 && Workspace.size() == 1) 4953 VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]); 4954 } else { 4955 LLVM_DEBUG(dbgs() << "New best at "; NewCost.print(dbgs()); 4956 dbgs() << ".\nRegs:\n"; 4957 for (const SCEV *S : NewRegs) dbgs() 4958 << "- " << *S << "\n"; 4959 dbgs() << '\n'); 4960 4961 SolutionCost = NewCost; 4962 Solution = Workspace; 4963 } 4964 Workspace.pop_back(); 4965 } 4966 } 4967 } 4968 4969 /// Choose one formula from each use. Return the results in the given Solution 4970 /// vector. 4971 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const { 4972 SmallVector<const Formula *, 8> Workspace; 4973 Cost SolutionCost(L, SE, TTI); 4974 SolutionCost.Lose(); 4975 Cost CurCost(L, SE, TTI); 4976 SmallPtrSet<const SCEV *, 16> CurRegs; 4977 DenseSet<const SCEV *> VisitedRegs; 4978 Workspace.reserve(Uses.size()); 4979 4980 // SolveRecurse does all the work. 4981 SolveRecurse(Solution, SolutionCost, Workspace, CurCost, 4982 CurRegs, VisitedRegs); 4983 if (Solution.empty()) { 4984 LLVM_DEBUG(dbgs() << "\nNo Satisfactory Solution\n"); 4985 return; 4986 } 4987 4988 // Ok, we've now made all our decisions. 4989 LLVM_DEBUG(dbgs() << "\n" 4990 "The chosen solution requires "; 4991 SolutionCost.print(dbgs()); dbgs() << ":\n"; 4992 for (size_t i = 0, e = Uses.size(); i != e; ++i) { 4993 dbgs() << " "; 4994 Uses[i].print(dbgs()); 4995 dbgs() << "\n" 4996 " "; 4997 Solution[i]->print(dbgs()); 4998 dbgs() << '\n'; 4999 }); 5000 5001 assert(Solution.size() == Uses.size() && "Malformed solution!"); 5002 } 5003 5004 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as 5005 /// we can go while still being dominated by the input positions. This helps 5006 /// canonicalize the insert position, which encourages sharing. 5007 BasicBlock::iterator 5008 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP, 5009 const SmallVectorImpl<Instruction *> &Inputs) 5010 const { 5011 Instruction *Tentative = &*IP; 5012 while (true) { 5013 bool AllDominate = true; 5014 Instruction *BetterPos = nullptr; 5015 // Don't bother attempting to insert before a catchswitch, their basic block 5016 // cannot have other non-PHI instructions. 5017 if (isa<CatchSwitchInst>(Tentative)) 5018 return IP; 5019 5020 for (Instruction *Inst : Inputs) { 5021 if (Inst == Tentative || !DT.dominates(Inst, Tentative)) { 5022 AllDominate = false; 5023 break; 5024 } 5025 // Attempt to find an insert position in the middle of the block, 5026 // instead of at the end, so that it can be used for other expansions. 5027 if (Tentative->getParent() == Inst->getParent() && 5028 (!BetterPos || !DT.dominates(Inst, BetterPos))) 5029 BetterPos = &*std::next(BasicBlock::iterator(Inst)); 5030 } 5031 if (!AllDominate) 5032 break; 5033 if (BetterPos) 5034 IP = BetterPos->getIterator(); 5035 else 5036 IP = Tentative->getIterator(); 5037 5038 const Loop *IPLoop = LI.getLoopFor(IP->getParent()); 5039 unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0; 5040 5041 BasicBlock *IDom; 5042 for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) { 5043 if (!Rung) return IP; 5044 Rung = Rung->getIDom(); 5045 if (!Rung) return IP; 5046 IDom = Rung->getBlock(); 5047 5048 // Don't climb into a loop though. 5049 const Loop *IDomLoop = LI.getLoopFor(IDom); 5050 unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0; 5051 if (IDomDepth <= IPLoopDepth && 5052 (IDomDepth != IPLoopDepth || IDomLoop == IPLoop)) 5053 break; 5054 } 5055 5056 Tentative = IDom->getTerminator(); 5057 } 5058 5059 return IP; 5060 } 5061 5062 /// Determine an input position which will be dominated by the operands and 5063 /// which will dominate the result. 5064 BasicBlock::iterator 5065 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP, 5066 const LSRFixup &LF, 5067 const LSRUse &LU, 5068 SCEVExpander &Rewriter) const { 5069 // Collect some instructions which must be dominated by the 5070 // expanding replacement. These must be dominated by any operands that 5071 // will be required in the expansion. 5072 SmallVector<Instruction *, 4> Inputs; 5073 if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace)) 5074 Inputs.push_back(I); 5075 if (LU.Kind == LSRUse::ICmpZero) 5076 if (Instruction *I = 5077 dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1))) 5078 Inputs.push_back(I); 5079 if (LF.PostIncLoops.count(L)) { 5080 if (LF.isUseFullyOutsideLoop(L)) 5081 Inputs.push_back(L->getLoopLatch()->getTerminator()); 5082 else 5083 Inputs.push_back(IVIncInsertPos); 5084 } 5085 // The expansion must also be dominated by the increment positions of any 5086 // loops it for which it is using post-inc mode. 5087 for (const Loop *PIL : LF.PostIncLoops) { 5088 if (PIL == L) continue; 5089 5090 // Be dominated by the loop exit. 5091 SmallVector<BasicBlock *, 4> ExitingBlocks; 5092 PIL->getExitingBlocks(ExitingBlocks); 5093 if (!ExitingBlocks.empty()) { 5094 BasicBlock *BB = ExitingBlocks[0]; 5095 for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i) 5096 BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]); 5097 Inputs.push_back(BB->getTerminator()); 5098 } 5099 } 5100 5101 assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad() 5102 && !isa<DbgInfoIntrinsic>(LowestIP) && 5103 "Insertion point must be a normal instruction"); 5104 5105 // Then, climb up the immediate dominator tree as far as we can go while 5106 // still being dominated by the input positions. 5107 BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs); 5108 5109 // Don't insert instructions before PHI nodes. 5110 while (isa<PHINode>(IP)) ++IP; 5111 5112 // Ignore landingpad instructions. 5113 while (IP->isEHPad()) ++IP; 5114 5115 // Ignore debug intrinsics. 5116 while (isa<DbgInfoIntrinsic>(IP)) ++IP; 5117 5118 // Set IP below instructions recently inserted by SCEVExpander. This keeps the 5119 // IP consistent across expansions and allows the previously inserted 5120 // instructions to be reused by subsequent expansion. 5121 while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP) 5122 ++IP; 5123 5124 return IP; 5125 } 5126 5127 /// Emit instructions for the leading candidate expression for this LSRUse (this 5128 /// is called "expanding"). 5129 Value *LSRInstance::Expand(const LSRUse &LU, const LSRFixup &LF, 5130 const Formula &F, BasicBlock::iterator IP, 5131 SCEVExpander &Rewriter, 5132 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5133 if (LU.RigidFormula) 5134 return LF.OperandValToReplace; 5135 5136 // Determine an input position which will be dominated by the operands and 5137 // which will dominate the result. 5138 IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter); 5139 Rewriter.setInsertPoint(&*IP); 5140 5141 // Inform the Rewriter if we have a post-increment use, so that it can 5142 // perform an advantageous expansion. 5143 Rewriter.setPostInc(LF.PostIncLoops); 5144 5145 // This is the type that the user actually needs. 5146 Type *OpTy = LF.OperandValToReplace->getType(); 5147 // This will be the type that we'll initially expand to. 5148 Type *Ty = F.getType(); 5149 if (!Ty) 5150 // No type known; just expand directly to the ultimate type. 5151 Ty = OpTy; 5152 else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy)) 5153 // Expand directly to the ultimate type if it's the right size. 5154 Ty = OpTy; 5155 // This is the type to do integer arithmetic in. 5156 Type *IntTy = SE.getEffectiveSCEVType(Ty); 5157 5158 // Build up a list of operands to add together to form the full base. 5159 SmallVector<const SCEV *, 8> Ops; 5160 5161 // Expand the BaseRegs portion. 5162 for (const SCEV *Reg : F.BaseRegs) { 5163 assert(!Reg->isZero() && "Zero allocated in a base register!"); 5164 5165 // If we're expanding for a post-inc user, make the post-inc adjustment. 5166 Reg = denormalizeForPostIncUse(Reg, LF.PostIncLoops, SE); 5167 Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr))); 5168 } 5169 5170 // Expand the ScaledReg portion. 5171 Value *ICmpScaledV = nullptr; 5172 if (F.Scale != 0) { 5173 const SCEV *ScaledS = F.ScaledReg; 5174 5175 // If we're expanding for a post-inc user, make the post-inc adjustment. 5176 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 5177 ScaledS = denormalizeForPostIncUse(ScaledS, Loops, SE); 5178 5179 if (LU.Kind == LSRUse::ICmpZero) { 5180 // Expand ScaleReg as if it was part of the base regs. 5181 if (F.Scale == 1) 5182 Ops.push_back( 5183 SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr))); 5184 else { 5185 // An interesting way of "folding" with an icmp is to use a negated 5186 // scale, which we'll implement by inserting it into the other operand 5187 // of the icmp. 5188 assert(F.Scale == -1 && 5189 "The only scale supported by ICmpZero uses is -1!"); 5190 ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr); 5191 } 5192 } else { 5193 // Otherwise just expand the scaled register and an explicit scale, 5194 // which is expected to be matched as part of the address. 5195 5196 // Flush the operand list to suppress SCEVExpander hoisting address modes. 5197 // Unless the addressing mode will not be folded. 5198 if (!Ops.empty() && LU.Kind == LSRUse::Address && 5199 isAMCompletelyFolded(TTI, LU, F)) { 5200 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), nullptr); 5201 Ops.clear(); 5202 Ops.push_back(SE.getUnknown(FullV)); 5203 } 5204 ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)); 5205 if (F.Scale != 1) 5206 ScaledS = 5207 SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale)); 5208 Ops.push_back(ScaledS); 5209 } 5210 } 5211 5212 // Expand the GV portion. 5213 if (F.BaseGV) { 5214 // Flush the operand list to suppress SCEVExpander hoisting. 5215 if (!Ops.empty()) { 5216 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 5217 Ops.clear(); 5218 Ops.push_back(SE.getUnknown(FullV)); 5219 } 5220 Ops.push_back(SE.getUnknown(F.BaseGV)); 5221 } 5222 5223 // Flush the operand list to suppress SCEVExpander hoisting of both folded and 5224 // unfolded offsets. LSR assumes they both live next to their uses. 5225 if (!Ops.empty()) { 5226 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 5227 Ops.clear(); 5228 Ops.push_back(SE.getUnknown(FullV)); 5229 } 5230 5231 // Expand the immediate portion. 5232 int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset; 5233 if (Offset != 0) { 5234 if (LU.Kind == LSRUse::ICmpZero) { 5235 // The other interesting way of "folding" with an ICmpZero is to use a 5236 // negated immediate. 5237 if (!ICmpScaledV) 5238 ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset); 5239 else { 5240 Ops.push_back(SE.getUnknown(ICmpScaledV)); 5241 ICmpScaledV = ConstantInt::get(IntTy, Offset); 5242 } 5243 } else { 5244 // Just add the immediate values. These again are expected to be matched 5245 // as part of the address. 5246 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset))); 5247 } 5248 } 5249 5250 // Expand the unfolded offset portion. 5251 int64_t UnfoldedOffset = F.UnfoldedOffset; 5252 if (UnfoldedOffset != 0) { 5253 // Just add the immediate values. 5254 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, 5255 UnfoldedOffset))); 5256 } 5257 5258 // Emit instructions summing all the operands. 5259 const SCEV *FullS = Ops.empty() ? 5260 SE.getConstant(IntTy, 0) : 5261 SE.getAddExpr(Ops); 5262 Value *FullV = Rewriter.expandCodeFor(FullS, Ty); 5263 5264 // We're done expanding now, so reset the rewriter. 5265 Rewriter.clearPostInc(); 5266 5267 // An ICmpZero Formula represents an ICmp which we're handling as a 5268 // comparison against zero. Now that we've expanded an expression for that 5269 // form, update the ICmp's other operand. 5270 if (LU.Kind == LSRUse::ICmpZero) { 5271 ICmpInst *CI = cast<ICmpInst>(LF.UserInst); 5272 if (auto *OperandIsInstr = dyn_cast<Instruction>(CI->getOperand(1))) 5273 DeadInsts.emplace_back(OperandIsInstr); 5274 assert(!F.BaseGV && "ICmp does not support folding a global value and " 5275 "a scale at the same time!"); 5276 if (F.Scale == -1) { 5277 if (ICmpScaledV->getType() != OpTy) { 5278 Instruction *Cast = 5279 CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false, 5280 OpTy, false), 5281 ICmpScaledV, OpTy, "tmp", CI); 5282 ICmpScaledV = Cast; 5283 } 5284 CI->setOperand(1, ICmpScaledV); 5285 } else { 5286 // A scale of 1 means that the scale has been expanded as part of the 5287 // base regs. 5288 assert((F.Scale == 0 || F.Scale == 1) && 5289 "ICmp does not support folding a global value and " 5290 "a scale at the same time!"); 5291 Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy), 5292 -(uint64_t)Offset); 5293 if (C->getType() != OpTy) 5294 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 5295 OpTy, false), 5296 C, OpTy); 5297 5298 CI->setOperand(1, C); 5299 } 5300 } 5301 5302 return FullV; 5303 } 5304 5305 /// Helper for Rewrite. PHI nodes are special because the use of their operands 5306 /// effectively happens in their predecessor blocks, so the expression may need 5307 /// to be expanded in multiple places. 5308 void LSRInstance::RewriteForPHI( 5309 PHINode *PN, const LSRUse &LU, const LSRFixup &LF, const Formula &F, 5310 SCEVExpander &Rewriter, SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5311 DenseMap<BasicBlock *, Value *> Inserted; 5312 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 5313 if (PN->getIncomingValue(i) == LF.OperandValToReplace) { 5314 bool needUpdateFixups = false; 5315 BasicBlock *BB = PN->getIncomingBlock(i); 5316 5317 // If this is a critical edge, split the edge so that we do not insert 5318 // the code on all predecessor/successor paths. We do this unless this 5319 // is the canonical backedge for this loop, which complicates post-inc 5320 // users. 5321 if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 && 5322 !isa<IndirectBrInst>(BB->getTerminator()) && 5323 !isa<CatchSwitchInst>(BB->getTerminator())) { 5324 BasicBlock *Parent = PN->getParent(); 5325 Loop *PNLoop = LI.getLoopFor(Parent); 5326 if (!PNLoop || Parent != PNLoop->getHeader()) { 5327 // Split the critical edge. 5328 BasicBlock *NewBB = nullptr; 5329 if (!Parent->isLandingPad()) { 5330 NewBB = SplitCriticalEdge(BB, Parent, 5331 CriticalEdgeSplittingOptions(&DT, &LI) 5332 .setMergeIdenticalEdges() 5333 .setKeepOneInputPHIs()); 5334 } else { 5335 SmallVector<BasicBlock*, 2> NewBBs; 5336 SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI); 5337 NewBB = NewBBs[0]; 5338 } 5339 // If NewBB==NULL, then SplitCriticalEdge refused to split because all 5340 // phi predecessors are identical. The simple thing to do is skip 5341 // splitting in this case rather than complicate the API. 5342 if (NewBB) { 5343 // If PN is outside of the loop and BB is in the loop, we want to 5344 // move the block to be immediately before the PHI block, not 5345 // immediately after BB. 5346 if (L->contains(BB) && !L->contains(PN)) 5347 NewBB->moveBefore(PN->getParent()); 5348 5349 // Splitting the edge can reduce the number of PHI entries we have. 5350 e = PN->getNumIncomingValues(); 5351 BB = NewBB; 5352 i = PN->getBasicBlockIndex(BB); 5353 5354 needUpdateFixups = true; 5355 } 5356 } 5357 } 5358 5359 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair = 5360 Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr))); 5361 if (!Pair.second) 5362 PN->setIncomingValue(i, Pair.first->second); 5363 else { 5364 Value *FullV = Expand(LU, LF, F, BB->getTerminator()->getIterator(), 5365 Rewriter, DeadInsts); 5366 5367 // If this is reuse-by-noop-cast, insert the noop cast. 5368 Type *OpTy = LF.OperandValToReplace->getType(); 5369 if (FullV->getType() != OpTy) 5370 FullV = 5371 CastInst::Create(CastInst::getCastOpcode(FullV, false, 5372 OpTy, false), 5373 FullV, LF.OperandValToReplace->getType(), 5374 "tmp", BB->getTerminator()); 5375 5376 PN->setIncomingValue(i, FullV); 5377 Pair.first->second = FullV; 5378 } 5379 5380 // If LSR splits critical edge and phi node has other pending 5381 // fixup operands, we need to update those pending fixups. Otherwise 5382 // formulae will not be implemented completely and some instructions 5383 // will not be eliminated. 5384 if (needUpdateFixups) { 5385 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) 5386 for (LSRFixup &Fixup : Uses[LUIdx].Fixups) 5387 // If fixup is supposed to rewrite some operand in the phi 5388 // that was just updated, it may be already moved to 5389 // another phi node. Such fixup requires update. 5390 if (Fixup.UserInst == PN) { 5391 // Check if the operand we try to replace still exists in the 5392 // original phi. 5393 bool foundInOriginalPHI = false; 5394 for (const auto &val : PN->incoming_values()) 5395 if (val == Fixup.OperandValToReplace) { 5396 foundInOriginalPHI = true; 5397 break; 5398 } 5399 5400 // If fixup operand found in original PHI - nothing to do. 5401 if (foundInOriginalPHI) 5402 continue; 5403 5404 // Otherwise it might be moved to another PHI and requires update. 5405 // If fixup operand not found in any of the incoming blocks that 5406 // means we have already rewritten it - nothing to do. 5407 for (const auto &Block : PN->blocks()) 5408 for (BasicBlock::iterator I = Block->begin(); isa<PHINode>(I); 5409 ++I) { 5410 PHINode *NewPN = cast<PHINode>(I); 5411 for (const auto &val : NewPN->incoming_values()) 5412 if (val == Fixup.OperandValToReplace) 5413 Fixup.UserInst = NewPN; 5414 } 5415 } 5416 } 5417 } 5418 } 5419 5420 /// Emit instructions for the leading candidate expression for this LSRUse (this 5421 /// is called "expanding"), and update the UserInst to reference the newly 5422 /// expanded value. 5423 void LSRInstance::Rewrite(const LSRUse &LU, const LSRFixup &LF, 5424 const Formula &F, SCEVExpander &Rewriter, 5425 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5426 // First, find an insertion point that dominates UserInst. For PHI nodes, 5427 // find the nearest block which dominates all the relevant uses. 5428 if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) { 5429 RewriteForPHI(PN, LU, LF, F, Rewriter, DeadInsts); 5430 } else { 5431 Value *FullV = 5432 Expand(LU, LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts); 5433 5434 // If this is reuse-by-noop-cast, insert the noop cast. 5435 Type *OpTy = LF.OperandValToReplace->getType(); 5436 if (FullV->getType() != OpTy) { 5437 Instruction *Cast = 5438 CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false), 5439 FullV, OpTy, "tmp", LF.UserInst); 5440 FullV = Cast; 5441 } 5442 5443 // Update the user. ICmpZero is handled specially here (for now) because 5444 // Expand may have updated one of the operands of the icmp already, and 5445 // its new value may happen to be equal to LF.OperandValToReplace, in 5446 // which case doing replaceUsesOfWith leads to replacing both operands 5447 // with the same value. TODO: Reorganize this. 5448 if (LU.Kind == LSRUse::ICmpZero) 5449 LF.UserInst->setOperand(0, FullV); 5450 else 5451 LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV); 5452 } 5453 5454 if (auto *OperandIsInstr = dyn_cast<Instruction>(LF.OperandValToReplace)) 5455 DeadInsts.emplace_back(OperandIsInstr); 5456 } 5457 5458 /// Rewrite all the fixup locations with new values, following the chosen 5459 /// solution. 5460 void LSRInstance::ImplementSolution( 5461 const SmallVectorImpl<const Formula *> &Solution) { 5462 // Keep track of instructions we may have made dead, so that 5463 // we can remove them after we are done working. 5464 SmallVector<WeakTrackingVH, 16> DeadInsts; 5465 5466 SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(), 5467 "lsr"); 5468 #ifndef NDEBUG 5469 Rewriter.setDebugType(DEBUG_TYPE); 5470 #endif 5471 Rewriter.disableCanonicalMode(); 5472 Rewriter.enableLSRMode(); 5473 Rewriter.setIVIncInsertPos(L, IVIncInsertPos); 5474 5475 // Mark phi nodes that terminate chains so the expander tries to reuse them. 5476 for (const IVChain &Chain : IVChainVec) { 5477 if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst())) 5478 Rewriter.setChainedPhi(PN); 5479 } 5480 5481 // Expand the new value definitions and update the users. 5482 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) 5483 for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) { 5484 Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], Rewriter, DeadInsts); 5485 Changed = true; 5486 } 5487 5488 for (const IVChain &Chain : IVChainVec) { 5489 GenerateIVChain(Chain, Rewriter, DeadInsts); 5490 Changed = true; 5491 } 5492 // Clean up after ourselves. This must be done before deleting any 5493 // instructions. 5494 Rewriter.clear(); 5495 5496 Changed |= RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts, 5497 &TLI, MSSAU); 5498 } 5499 5500 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, 5501 DominatorTree &DT, LoopInfo &LI, 5502 const TargetTransformInfo &TTI, AssumptionCache &AC, 5503 TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU) 5504 : IU(IU), SE(SE), DT(DT), LI(LI), AC(AC), TLI(TLI), TTI(TTI), L(L), 5505 MSSAU(MSSAU), FavorBackedgeIndex(EnableBackedgeIndexing && 5506 TTI.shouldFavorBackedgeIndex(L)) { 5507 // If LoopSimplify form is not available, stay out of trouble. 5508 if (!L->isLoopSimplifyForm()) 5509 return; 5510 5511 // If there's no interesting work to be done, bail early. 5512 if (IU.empty()) return; 5513 5514 // If there's too much analysis to be done, bail early. We won't be able to 5515 // model the problem anyway. 5516 unsigned NumUsers = 0; 5517 for (const IVStrideUse &U : IU) { 5518 if (++NumUsers > MaxIVUsers) { 5519 (void)U; 5520 LLVM_DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U 5521 << "\n"); 5522 return; 5523 } 5524 // Bail out if we have a PHI on an EHPad that gets a value from a 5525 // CatchSwitchInst. Because the CatchSwitchInst cannot be split, there is 5526 // no good place to stick any instructions. 5527 if (auto *PN = dyn_cast<PHINode>(U.getUser())) { 5528 auto *FirstNonPHI = PN->getParent()->getFirstNonPHI(); 5529 if (isa<FuncletPadInst>(FirstNonPHI) || 5530 isa<CatchSwitchInst>(FirstNonPHI)) 5531 for (BasicBlock *PredBB : PN->blocks()) 5532 if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI())) 5533 return; 5534 } 5535 } 5536 5537 #ifndef NDEBUG 5538 // All dominating loops must have preheaders, or SCEVExpander may not be able 5539 // to materialize an AddRecExpr whose Start is an outer AddRecExpr. 5540 // 5541 // IVUsers analysis should only create users that are dominated by simple loop 5542 // headers. Since this loop should dominate all of its users, its user list 5543 // should be empty if this loop itself is not within a simple loop nest. 5544 for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader()); 5545 Rung; Rung = Rung->getIDom()) { 5546 BasicBlock *BB = Rung->getBlock(); 5547 const Loop *DomLoop = LI.getLoopFor(BB); 5548 if (DomLoop && DomLoop->getHeader() == BB) { 5549 assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest"); 5550 } 5551 } 5552 #endif // DEBUG 5553 5554 LLVM_DEBUG(dbgs() << "\nLSR on loop "; 5555 L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false); 5556 dbgs() << ":\n"); 5557 5558 // First, perform some low-level loop optimizations. 5559 OptimizeShadowIV(); 5560 OptimizeLoopTermCond(); 5561 5562 // If loop preparation eliminates all interesting IV users, bail. 5563 if (IU.empty()) return; 5564 5565 // Skip nested loops until we can model them better with formulae. 5566 if (!L->empty()) { 5567 LLVM_DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n"); 5568 return; 5569 } 5570 5571 // Start collecting data and preparing for the solver. 5572 CollectChains(); 5573 CollectInterestingTypesAndFactors(); 5574 CollectFixupsAndInitialFormulae(); 5575 CollectLoopInvariantFixupsAndFormulae(); 5576 5577 if (Uses.empty()) 5578 return; 5579 5580 LLVM_DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n"; 5581 print_uses(dbgs())); 5582 5583 // Now use the reuse data to generate a bunch of interesting ways 5584 // to formulate the values needed for the uses. 5585 GenerateAllReuseFormulae(); 5586 5587 FilterOutUndesirableDedicatedRegisters(); 5588 NarrowSearchSpaceUsingHeuristics(); 5589 5590 SmallVector<const Formula *, 8> Solution; 5591 Solve(Solution); 5592 5593 // Release memory that is no longer needed. 5594 Factors.clear(); 5595 Types.clear(); 5596 RegUses.clear(); 5597 5598 if (Solution.empty()) 5599 return; 5600 5601 #ifndef NDEBUG 5602 // Formulae should be legal. 5603 for (const LSRUse &LU : Uses) { 5604 for (const Formula &F : LU.Formulae) 5605 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 5606 F) && "Illegal formula generated!"); 5607 }; 5608 #endif 5609 5610 // Now that we've decided what we want, make it so. 5611 ImplementSolution(Solution); 5612 } 5613 5614 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 5615 void LSRInstance::print_factors_and_types(raw_ostream &OS) const { 5616 if (Factors.empty() && Types.empty()) return; 5617 5618 OS << "LSR has identified the following interesting factors and types: "; 5619 bool First = true; 5620 5621 for (int64_t Factor : Factors) { 5622 if (!First) OS << ", "; 5623 First = false; 5624 OS << '*' << Factor; 5625 } 5626 5627 for (Type *Ty : Types) { 5628 if (!First) OS << ", "; 5629 First = false; 5630 OS << '(' << *Ty << ')'; 5631 } 5632 OS << '\n'; 5633 } 5634 5635 void LSRInstance::print_fixups(raw_ostream &OS) const { 5636 OS << "LSR is examining the following fixup sites:\n"; 5637 for (const LSRUse &LU : Uses) 5638 for (const LSRFixup &LF : LU.Fixups) { 5639 dbgs() << " "; 5640 LF.print(OS); 5641 OS << '\n'; 5642 } 5643 } 5644 5645 void LSRInstance::print_uses(raw_ostream &OS) const { 5646 OS << "LSR is examining the following uses:\n"; 5647 for (const LSRUse &LU : Uses) { 5648 dbgs() << " "; 5649 LU.print(OS); 5650 OS << '\n'; 5651 for (const Formula &F : LU.Formulae) { 5652 OS << " "; 5653 F.print(OS); 5654 OS << '\n'; 5655 } 5656 } 5657 } 5658 5659 void LSRInstance::print(raw_ostream &OS) const { 5660 print_factors_and_types(OS); 5661 print_fixups(OS); 5662 print_uses(OS); 5663 } 5664 5665 LLVM_DUMP_METHOD void LSRInstance::dump() const { 5666 print(errs()); errs() << '\n'; 5667 } 5668 #endif 5669 5670 namespace { 5671 5672 class LoopStrengthReduce : public LoopPass { 5673 public: 5674 static char ID; // Pass ID, replacement for typeid 5675 5676 LoopStrengthReduce(); 5677 5678 private: 5679 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 5680 void getAnalysisUsage(AnalysisUsage &AU) const override; 5681 }; 5682 5683 } // end anonymous namespace 5684 5685 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) { 5686 initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry()); 5687 } 5688 5689 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const { 5690 // We split critical edges, so we change the CFG. However, we do update 5691 // many analyses if they are around. 5692 AU.addPreservedID(LoopSimplifyID); 5693 5694 AU.addRequired<LoopInfoWrapperPass>(); 5695 AU.addPreserved<LoopInfoWrapperPass>(); 5696 AU.addRequiredID(LoopSimplifyID); 5697 AU.addRequired<DominatorTreeWrapperPass>(); 5698 AU.addPreserved<DominatorTreeWrapperPass>(); 5699 AU.addRequired<ScalarEvolutionWrapperPass>(); 5700 AU.addPreserved<ScalarEvolutionWrapperPass>(); 5701 AU.addRequired<AssumptionCacheTracker>(); 5702 AU.addRequired<TargetLibraryInfoWrapperPass>(); 5703 // Requiring LoopSimplify a second time here prevents IVUsers from running 5704 // twice, since LoopSimplify was invalidated by running ScalarEvolution. 5705 AU.addRequiredID(LoopSimplifyID); 5706 AU.addRequired<IVUsersWrapperPass>(); 5707 AU.addPreserved<IVUsersWrapperPass>(); 5708 AU.addRequired<TargetTransformInfoWrapperPass>(); 5709 AU.addPreserved<MemorySSAWrapperPass>(); 5710 } 5711 5712 static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE, 5713 DominatorTree &DT, LoopInfo &LI, 5714 const TargetTransformInfo &TTI, 5715 AssumptionCache &AC, TargetLibraryInfo &TLI, 5716 MemorySSA *MSSA) { 5717 5718 bool Changed = false; 5719 std::unique_ptr<MemorySSAUpdater> MSSAU; 5720 if (MSSA) 5721 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 5722 5723 // Run the main LSR transformation. 5724 Changed |= 5725 LSRInstance(L, IU, SE, DT, LI, TTI, AC, TLI, MSSAU.get()).getChanged(); 5726 5727 // Remove any extra phis created by processing inner loops. 5728 Changed |= DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get()); 5729 if (EnablePhiElim && L->isLoopSimplifyForm()) { 5730 SmallVector<WeakTrackingVH, 16> DeadInsts; 5731 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 5732 SCEVExpander Rewriter(SE, DL, "lsr"); 5733 #ifndef NDEBUG 5734 Rewriter.setDebugType(DEBUG_TYPE); 5735 #endif 5736 unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI); 5737 if (numFolded) { 5738 Changed = true; 5739 RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts, &TLI, 5740 MSSAU.get()); 5741 DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get()); 5742 } 5743 } 5744 return Changed; 5745 } 5746 5747 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) { 5748 if (skipLoop(L)) 5749 return false; 5750 5751 auto &IU = getAnalysis<IVUsersWrapperPass>().getIU(); 5752 auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 5753 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 5754 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 5755 const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI( 5756 *L->getHeader()->getParent()); 5757 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache( 5758 *L->getHeader()->getParent()); 5759 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI( 5760 *L->getHeader()->getParent()); 5761 auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>(); 5762 MemorySSA *MSSA = nullptr; 5763 if (MSSAAnalysis) 5764 MSSA = &MSSAAnalysis->getMSSA(); 5765 return ReduceLoopStrength(L, IU, SE, DT, LI, TTI, AC, TLI, MSSA); 5766 } 5767 5768 PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM, 5769 LoopStandardAnalysisResults &AR, 5770 LPMUpdater &) { 5771 if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE, 5772 AR.DT, AR.LI, AR.TTI, AR.AC, AR.TLI, AR.MSSA)) 5773 return PreservedAnalyses::all(); 5774 5775 auto PA = getLoopPassPreservedAnalyses(); 5776 if (AR.MSSA) 5777 PA.preserve<MemorySSAAnalysis>(); 5778 return PA; 5779 } 5780 5781 char LoopStrengthReduce::ID = 0; 5782 5783 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce", 5784 "Loop Strength Reduction", false, false) 5785 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 5786 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 5787 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 5788 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass) 5789 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 5790 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 5791 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce", 5792 "Loop Strength Reduction", false, false) 5793 5794 Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); } 5795