1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This transformation analyzes and transforms the induction variables (and
10 // computations derived from them) into forms suitable for efficient execution
11 // on the target.
12 //
13 // This pass performs a strength reduction on array references inside loops that
14 // have as one or more of their components the loop induction variable, it
15 // rewrites expressions to take advantage of scaled-index addressing modes
16 // available on the target, and it performs a variety of other optimizations
17 // related to loop induction variables.
18 //
19 // Terminology note: this code has a lot of handling for "post-increment" or
20 // "post-inc" users. This is not talking about post-increment addressing modes;
21 // it is instead talking about code like this:
22 //
23 //   %i = phi [ 0, %entry ], [ %i.next, %latch ]
24 //   ...
25 //   %i.next = add %i, 1
26 //   %c = icmp eq %i.next, %n
27 //
28 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
29 // it's useful to think about these as the same register, with some uses using
30 // the value of the register before the add and some using it after. In this
31 // example, the icmp is a post-increment user, since it uses %i.next, which is
32 // the value of the induction variable after the increment. The other common
33 // case of post-increment users is users outside the loop.
34 //
35 // TODO: More sophistication in the way Formulae are generated and filtered.
36 //
37 // TODO: Handle multiple loops at a time.
38 //
39 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead
40 //       of a GlobalValue?
41 //
42 // TODO: When truncation is free, truncate ICmp users' operands to make it a
43 //       smaller encoding (on x86 at least).
44 //
45 // TODO: When a negated register is used by an add (such as in a list of
46 //       multiple base registers, or as the increment expression in an addrec),
47 //       we may not actually need both reg and (-1 * reg) in registers; the
48 //       negation can be implemented by using a sub instead of an add. The
49 //       lack of support for taking this into consideration when making
50 //       register pressure decisions is partly worked around by the "Special"
51 //       use kind.
52 //
53 //===----------------------------------------------------------------------===//
54 
55 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h"
56 #include "llvm/ADT/APInt.h"
57 #include "llvm/ADT/DenseMap.h"
58 #include "llvm/ADT/DenseSet.h"
59 #include "llvm/ADT/Hashing.h"
60 #include "llvm/ADT/PointerIntPair.h"
61 #include "llvm/ADT/STLExtras.h"
62 #include "llvm/ADT/SetVector.h"
63 #include "llvm/ADT/SmallBitVector.h"
64 #include "llvm/ADT/SmallPtrSet.h"
65 #include "llvm/ADT/SmallSet.h"
66 #include "llvm/ADT/SmallVector.h"
67 #include "llvm/ADT/iterator_range.h"
68 #include "llvm/Analysis/IVUsers.h"
69 #include "llvm/Analysis/LoopAnalysisManager.h"
70 #include "llvm/Analysis/LoopInfo.h"
71 #include "llvm/Analysis/LoopPass.h"
72 #include "llvm/Analysis/MemorySSA.h"
73 #include "llvm/Analysis/MemorySSAUpdater.h"
74 #include "llvm/Analysis/ScalarEvolution.h"
75 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
76 #include "llvm/Analysis/ScalarEvolutionNormalization.h"
77 #include "llvm/Analysis/TargetTransformInfo.h"
78 #include "llvm/Config/llvm-config.h"
79 #include "llvm/IR/BasicBlock.h"
80 #include "llvm/IR/Constant.h"
81 #include "llvm/IR/Constants.h"
82 #include "llvm/IR/DerivedTypes.h"
83 #include "llvm/IR/Dominators.h"
84 #include "llvm/IR/GlobalValue.h"
85 #include "llvm/IR/IRBuilder.h"
86 #include "llvm/IR/InstrTypes.h"
87 #include "llvm/IR/Instruction.h"
88 #include "llvm/IR/Instructions.h"
89 #include "llvm/IR/IntrinsicInst.h"
90 #include "llvm/IR/Intrinsics.h"
91 #include "llvm/IR/Module.h"
92 #include "llvm/IR/OperandTraits.h"
93 #include "llvm/IR/Operator.h"
94 #include "llvm/IR/PassManager.h"
95 #include "llvm/IR/Type.h"
96 #include "llvm/IR/Use.h"
97 #include "llvm/IR/User.h"
98 #include "llvm/IR/Value.h"
99 #include "llvm/IR/ValueHandle.h"
100 #include "llvm/InitializePasses.h"
101 #include "llvm/Pass.h"
102 #include "llvm/Support/Casting.h"
103 #include "llvm/Support/CommandLine.h"
104 #include "llvm/Support/Compiler.h"
105 #include "llvm/Support/Debug.h"
106 #include "llvm/Support/ErrorHandling.h"
107 #include "llvm/Support/MathExtras.h"
108 #include "llvm/Support/raw_ostream.h"
109 #include "llvm/Transforms/Scalar.h"
110 #include "llvm/Transforms/Utils.h"
111 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
112 #include "llvm/Transforms/Utils/Local.h"
113 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
114 #include <algorithm>
115 #include <cassert>
116 #include <cstddef>
117 #include <cstdint>
118 #include <cstdlib>
119 #include <iterator>
120 #include <limits>
121 #include <map>
122 #include <numeric>
123 #include <utility>
124 
125 using namespace llvm;
126 
127 #define DEBUG_TYPE "loop-reduce"
128 
129 /// MaxIVUsers is an arbitrary threshold that provides an early opportunity for
130 /// bail out. This threshold is far beyond the number of users that LSR can
131 /// conceivably solve, so it should not affect generated code, but catches the
132 /// worst cases before LSR burns too much compile time and stack space.
133 static const unsigned MaxIVUsers = 200;
134 
135 // Temporary flag to cleanup congruent phis after LSR phi expansion.
136 // It's currently disabled until we can determine whether it's truly useful or
137 // not. The flag should be removed after the v3.0 release.
138 // This is now needed for ivchains.
139 static cl::opt<bool> EnablePhiElim(
140   "enable-lsr-phielim", cl::Hidden, cl::init(true),
141   cl::desc("Enable LSR phi elimination"));
142 
143 // The flag adds instruction count to solutions cost comparision.
144 static cl::opt<bool> InsnsCost(
145   "lsr-insns-cost", cl::Hidden, cl::init(true),
146   cl::desc("Add instruction count to a LSR cost model"));
147 
148 // Flag to choose how to narrow complex lsr solution
149 static cl::opt<bool> LSRExpNarrow(
150   "lsr-exp-narrow", cl::Hidden, cl::init(false),
151   cl::desc("Narrow LSR complex solution using"
152            " expectation of registers number"));
153 
154 // Flag to narrow search space by filtering non-optimal formulae with
155 // the same ScaledReg and Scale.
156 static cl::opt<bool> FilterSameScaledReg(
157     "lsr-filter-same-scaled-reg", cl::Hidden, cl::init(true),
158     cl::desc("Narrow LSR search space by filtering non-optimal formulae"
159              " with the same ScaledReg and Scale"));
160 
161 static cl::opt<bool> EnableBackedgeIndexing(
162   "lsr-backedge-indexing", cl::Hidden, cl::init(true),
163   cl::desc("Enable the generation of cross iteration indexed memops"));
164 
165 static cl::opt<unsigned> ComplexityLimit(
166   "lsr-complexity-limit", cl::Hidden,
167   cl::init(std::numeric_limits<uint16_t>::max()),
168   cl::desc("LSR search space complexity limit"));
169 
170 static cl::opt<unsigned> SetupCostDepthLimit(
171     "lsr-setupcost-depth-limit", cl::Hidden, cl::init(7),
172     cl::desc("The limit on recursion depth for LSRs setup cost"));
173 
174 #ifndef NDEBUG
175 // Stress test IV chain generation.
176 static cl::opt<bool> StressIVChain(
177   "stress-ivchain", cl::Hidden, cl::init(false),
178   cl::desc("Stress test LSR IV chains"));
179 #else
180 static bool StressIVChain = false;
181 #endif
182 
183 namespace {
184 
185 struct MemAccessTy {
186   /// Used in situations where the accessed memory type is unknown.
187   static const unsigned UnknownAddressSpace =
188       std::numeric_limits<unsigned>::max();
189 
190   Type *MemTy = nullptr;
191   unsigned AddrSpace = UnknownAddressSpace;
192 
193   MemAccessTy() = default;
194   MemAccessTy(Type *Ty, unsigned AS) : MemTy(Ty), AddrSpace(AS) {}
195 
196   bool operator==(MemAccessTy Other) const {
197     return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace;
198   }
199 
200   bool operator!=(MemAccessTy Other) const { return !(*this == Other); }
201 
202   static MemAccessTy getUnknown(LLVMContext &Ctx,
203                                 unsigned AS = UnknownAddressSpace) {
204     return MemAccessTy(Type::getVoidTy(Ctx), AS);
205   }
206 
207   Type *getType() { return MemTy; }
208 };
209 
210 /// This class holds data which is used to order reuse candidates.
211 class RegSortData {
212 public:
213   /// This represents the set of LSRUse indices which reference
214   /// a particular register.
215   SmallBitVector UsedByIndices;
216 
217   void print(raw_ostream &OS) const;
218   void dump() const;
219 };
220 
221 } // end anonymous namespace
222 
223 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
224 void RegSortData::print(raw_ostream &OS) const {
225   OS << "[NumUses=" << UsedByIndices.count() << ']';
226 }
227 
228 LLVM_DUMP_METHOD void RegSortData::dump() const {
229   print(errs()); errs() << '\n';
230 }
231 #endif
232 
233 namespace {
234 
235 /// Map register candidates to information about how they are used.
236 class RegUseTracker {
237   using RegUsesTy = DenseMap<const SCEV *, RegSortData>;
238 
239   RegUsesTy RegUsesMap;
240   SmallVector<const SCEV *, 16> RegSequence;
241 
242 public:
243   void countRegister(const SCEV *Reg, size_t LUIdx);
244   void dropRegister(const SCEV *Reg, size_t LUIdx);
245   void swapAndDropUse(size_t LUIdx, size_t LastLUIdx);
246 
247   bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
248 
249   const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
250 
251   void clear();
252 
253   using iterator = SmallVectorImpl<const SCEV *>::iterator;
254   using const_iterator = SmallVectorImpl<const SCEV *>::const_iterator;
255 
256   iterator begin() { return RegSequence.begin(); }
257   iterator end()   { return RegSequence.end(); }
258   const_iterator begin() const { return RegSequence.begin(); }
259   const_iterator end() const   { return RegSequence.end(); }
260 };
261 
262 } // end anonymous namespace
263 
264 void
265 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) {
266   std::pair<RegUsesTy::iterator, bool> Pair =
267     RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
268   RegSortData &RSD = Pair.first->second;
269   if (Pair.second)
270     RegSequence.push_back(Reg);
271   RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
272   RSD.UsedByIndices.set(LUIdx);
273 }
274 
275 void
276 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) {
277   RegUsesTy::iterator It = RegUsesMap.find(Reg);
278   assert(It != RegUsesMap.end());
279   RegSortData &RSD = It->second;
280   assert(RSD.UsedByIndices.size() > LUIdx);
281   RSD.UsedByIndices.reset(LUIdx);
282 }
283 
284 void
285 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) {
286   assert(LUIdx <= LastLUIdx);
287 
288   // Update RegUses. The data structure is not optimized for this purpose;
289   // we must iterate through it and update each of the bit vectors.
290   for (auto &Pair : RegUsesMap) {
291     SmallBitVector &UsedByIndices = Pair.second.UsedByIndices;
292     if (LUIdx < UsedByIndices.size())
293       UsedByIndices[LUIdx] =
294         LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false;
295     UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx));
296   }
297 }
298 
299 bool
300 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
301   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
302   if (I == RegUsesMap.end())
303     return false;
304   const SmallBitVector &UsedByIndices = I->second.UsedByIndices;
305   int i = UsedByIndices.find_first();
306   if (i == -1) return false;
307   if ((size_t)i != LUIdx) return true;
308   return UsedByIndices.find_next(i) != -1;
309 }
310 
311 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
312   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
313   assert(I != RegUsesMap.end() && "Unknown register!");
314   return I->second.UsedByIndices;
315 }
316 
317 void RegUseTracker::clear() {
318   RegUsesMap.clear();
319   RegSequence.clear();
320 }
321 
322 namespace {
323 
324 /// This class holds information that describes a formula for computing
325 /// satisfying a use. It may include broken-out immediates and scaled registers.
326 struct Formula {
327   /// Global base address used for complex addressing.
328   GlobalValue *BaseGV = nullptr;
329 
330   /// Base offset for complex addressing.
331   int64_t BaseOffset = 0;
332 
333   /// Whether any complex addressing has a base register.
334   bool HasBaseReg = false;
335 
336   /// The scale of any complex addressing.
337   int64_t Scale = 0;
338 
339   /// The list of "base" registers for this use. When this is non-empty. The
340   /// canonical representation of a formula is
341   /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and
342   /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty().
343   /// 3. The reg containing recurrent expr related with currect loop in the
344   /// formula should be put in the ScaledReg.
345   /// #1 enforces that the scaled register is always used when at least two
346   /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2.
347   /// #2 enforces that 1 * reg is reg.
348   /// #3 ensures invariant regs with respect to current loop can be combined
349   /// together in LSR codegen.
350   /// This invariant can be temporarily broken while building a formula.
351   /// However, every formula inserted into the LSRInstance must be in canonical
352   /// form.
353   SmallVector<const SCEV *, 4> BaseRegs;
354 
355   /// The 'scaled' register for this use. This should be non-null when Scale is
356   /// not zero.
357   const SCEV *ScaledReg = nullptr;
358 
359   /// An additional constant offset which added near the use. This requires a
360   /// temporary register, but the offset itself can live in an add immediate
361   /// field rather than a register.
362   int64_t UnfoldedOffset = 0;
363 
364   Formula() = default;
365 
366   void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE);
367 
368   bool isCanonical(const Loop &L) const;
369 
370   void canonicalize(const Loop &L);
371 
372   bool unscale();
373 
374   bool hasZeroEnd() const;
375 
376   size_t getNumRegs() const;
377   Type *getType() const;
378 
379   void deleteBaseReg(const SCEV *&S);
380 
381   bool referencesReg(const SCEV *S) const;
382   bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
383                                   const RegUseTracker &RegUses) const;
384 
385   void print(raw_ostream &OS) const;
386   void dump() const;
387 };
388 
389 } // end anonymous namespace
390 
391 /// Recursion helper for initialMatch.
392 static void DoInitialMatch(const SCEV *S, Loop *L,
393                            SmallVectorImpl<const SCEV *> &Good,
394                            SmallVectorImpl<const SCEV *> &Bad,
395                            ScalarEvolution &SE) {
396   // Collect expressions which properly dominate the loop header.
397   if (SE.properlyDominates(S, L->getHeader())) {
398     Good.push_back(S);
399     return;
400   }
401 
402   // Look at add operands.
403   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
404     for (const SCEV *S : Add->operands())
405       DoInitialMatch(S, L, Good, Bad, SE);
406     return;
407   }
408 
409   // Look at addrec operands.
410   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
411     if (!AR->getStart()->isZero() && AR->isAffine()) {
412       DoInitialMatch(AR->getStart(), L, Good, Bad, SE);
413       DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
414                                       AR->getStepRecurrence(SE),
415                                       // FIXME: AR->getNoWrapFlags()
416                                       AR->getLoop(), SCEV::FlagAnyWrap),
417                      L, Good, Bad, SE);
418       return;
419     }
420 
421   // Handle a multiplication by -1 (negation) if it didn't fold.
422   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
423     if (Mul->getOperand(0)->isAllOnesValue()) {
424       SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end());
425       const SCEV *NewMul = SE.getMulExpr(Ops);
426 
427       SmallVector<const SCEV *, 4> MyGood;
428       SmallVector<const SCEV *, 4> MyBad;
429       DoInitialMatch(NewMul, L, MyGood, MyBad, SE);
430       const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
431         SE.getEffectiveSCEVType(NewMul->getType())));
432       for (const SCEV *S : MyGood)
433         Good.push_back(SE.getMulExpr(NegOne, S));
434       for (const SCEV *S : MyBad)
435         Bad.push_back(SE.getMulExpr(NegOne, S));
436       return;
437     }
438 
439   // Ok, we can't do anything interesting. Just stuff the whole thing into a
440   // register and hope for the best.
441   Bad.push_back(S);
442 }
443 
444 /// Incorporate loop-variant parts of S into this Formula, attempting to keep
445 /// all loop-invariant and loop-computable values in a single base register.
446 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) {
447   SmallVector<const SCEV *, 4> Good;
448   SmallVector<const SCEV *, 4> Bad;
449   DoInitialMatch(S, L, Good, Bad, SE);
450   if (!Good.empty()) {
451     const SCEV *Sum = SE.getAddExpr(Good);
452     if (!Sum->isZero())
453       BaseRegs.push_back(Sum);
454     HasBaseReg = true;
455   }
456   if (!Bad.empty()) {
457     const SCEV *Sum = SE.getAddExpr(Bad);
458     if (!Sum->isZero())
459       BaseRegs.push_back(Sum);
460     HasBaseReg = true;
461   }
462   canonicalize(*L);
463 }
464 
465 /// Check whether or not this formula satisfies the canonical
466 /// representation.
467 /// \see Formula::BaseRegs.
468 bool Formula::isCanonical(const Loop &L) const {
469   if (!ScaledReg)
470     return BaseRegs.size() <= 1;
471 
472   if (Scale != 1)
473     return true;
474 
475   if (Scale == 1 && BaseRegs.empty())
476     return false;
477 
478   const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg);
479   if (SAR && SAR->getLoop() == &L)
480     return true;
481 
482   // If ScaledReg is not a recurrent expr, or it is but its loop is not current
483   // loop, meanwhile BaseRegs contains a recurrent expr reg related with current
484   // loop, we want to swap the reg in BaseRegs with ScaledReg.
485   auto I =
486       find_if(make_range(BaseRegs.begin(), BaseRegs.end()), [&](const SCEV *S) {
487         return isa<const SCEVAddRecExpr>(S) &&
488                (cast<SCEVAddRecExpr>(S)->getLoop() == &L);
489       });
490   return I == BaseRegs.end();
491 }
492 
493 /// Helper method to morph a formula into its canonical representation.
494 /// \see Formula::BaseRegs.
495 /// Every formula having more than one base register, must use the ScaledReg
496 /// field. Otherwise, we would have to do special cases everywhere in LSR
497 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ...
498 /// On the other hand, 1*reg should be canonicalized into reg.
499 void Formula::canonicalize(const Loop &L) {
500   if (isCanonical(L))
501     return;
502   // So far we did not need this case. This is easy to implement but it is
503   // useless to maintain dead code. Beside it could hurt compile time.
504   assert(!BaseRegs.empty() && "1*reg => reg, should not be needed.");
505 
506   // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg.
507   if (!ScaledReg) {
508     ScaledReg = BaseRegs.back();
509     BaseRegs.pop_back();
510     Scale = 1;
511   }
512 
513   // If ScaledReg is an invariant with respect to L, find the reg from
514   // BaseRegs containing the recurrent expr related with Loop L. Swap the
515   // reg with ScaledReg.
516   const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg);
517   if (!SAR || SAR->getLoop() != &L) {
518     auto I = find_if(make_range(BaseRegs.begin(), BaseRegs.end()),
519                      [&](const SCEV *S) {
520                        return isa<const SCEVAddRecExpr>(S) &&
521                               (cast<SCEVAddRecExpr>(S)->getLoop() == &L);
522                      });
523     if (I != BaseRegs.end())
524       std::swap(ScaledReg, *I);
525   }
526 }
527 
528 /// Get rid of the scale in the formula.
529 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2.
530 /// \return true if it was possible to get rid of the scale, false otherwise.
531 /// \note After this operation the formula may not be in the canonical form.
532 bool Formula::unscale() {
533   if (Scale != 1)
534     return false;
535   Scale = 0;
536   BaseRegs.push_back(ScaledReg);
537   ScaledReg = nullptr;
538   return true;
539 }
540 
541 bool Formula::hasZeroEnd() const {
542   if (UnfoldedOffset || BaseOffset)
543     return false;
544   if (BaseRegs.size() != 1 || ScaledReg)
545     return false;
546   return true;
547 }
548 
549 /// Return the total number of register operands used by this formula. This does
550 /// not include register uses implied by non-constant addrec strides.
551 size_t Formula::getNumRegs() const {
552   return !!ScaledReg + BaseRegs.size();
553 }
554 
555 /// Return the type of this formula, if it has one, or null otherwise. This type
556 /// is meaningless except for the bit size.
557 Type *Formula::getType() const {
558   return !BaseRegs.empty() ? BaseRegs.front()->getType() :
559          ScaledReg ? ScaledReg->getType() :
560          BaseGV ? BaseGV->getType() :
561          nullptr;
562 }
563 
564 /// Delete the given base reg from the BaseRegs list.
565 void Formula::deleteBaseReg(const SCEV *&S) {
566   if (&S != &BaseRegs.back())
567     std::swap(S, BaseRegs.back());
568   BaseRegs.pop_back();
569 }
570 
571 /// Test if this formula references the given register.
572 bool Formula::referencesReg(const SCEV *S) const {
573   return S == ScaledReg || is_contained(BaseRegs, S);
574 }
575 
576 /// Test whether this formula uses registers which are used by uses other than
577 /// the use with the given index.
578 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
579                                          const RegUseTracker &RegUses) const {
580   if (ScaledReg)
581     if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
582       return true;
583   for (const SCEV *BaseReg : BaseRegs)
584     if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx))
585       return true;
586   return false;
587 }
588 
589 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
590 void Formula::print(raw_ostream &OS) const {
591   bool First = true;
592   if (BaseGV) {
593     if (!First) OS << " + "; else First = false;
594     BaseGV->printAsOperand(OS, /*PrintType=*/false);
595   }
596   if (BaseOffset != 0) {
597     if (!First) OS << " + "; else First = false;
598     OS << BaseOffset;
599   }
600   for (const SCEV *BaseReg : BaseRegs) {
601     if (!First) OS << " + "; else First = false;
602     OS << "reg(" << *BaseReg << ')';
603   }
604   if (HasBaseReg && BaseRegs.empty()) {
605     if (!First) OS << " + "; else First = false;
606     OS << "**error: HasBaseReg**";
607   } else if (!HasBaseReg && !BaseRegs.empty()) {
608     if (!First) OS << " + "; else First = false;
609     OS << "**error: !HasBaseReg**";
610   }
611   if (Scale != 0) {
612     if (!First) OS << " + "; else First = false;
613     OS << Scale << "*reg(";
614     if (ScaledReg)
615       OS << *ScaledReg;
616     else
617       OS << "<unknown>";
618     OS << ')';
619   }
620   if (UnfoldedOffset != 0) {
621     if (!First) OS << " + ";
622     OS << "imm(" << UnfoldedOffset << ')';
623   }
624 }
625 
626 LLVM_DUMP_METHOD void Formula::dump() const {
627   print(errs()); errs() << '\n';
628 }
629 #endif
630 
631 /// Return true if the given addrec can be sign-extended without changing its
632 /// value.
633 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
634   Type *WideTy =
635     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
636   return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
637 }
638 
639 /// Return true if the given add can be sign-extended without changing its
640 /// value.
641 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
642   Type *WideTy =
643     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
644   return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
645 }
646 
647 /// Return true if the given mul can be sign-extended without changing its
648 /// value.
649 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) {
650   Type *WideTy =
651     IntegerType::get(SE.getContext(),
652                      SE.getTypeSizeInBits(M->getType()) * M->getNumOperands());
653   return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy));
654 }
655 
656 /// Return an expression for LHS /s RHS, if it can be determined and if the
657 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits
658 /// is true, expressions like (X * Y) /s Y are simplified to Y, ignoring that
659 /// the multiplication may overflow, which is useful when the result will be
660 /// used in a context where the most significant bits are ignored.
661 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
662                                 ScalarEvolution &SE,
663                                 bool IgnoreSignificantBits = false) {
664   // Handle the trivial case, which works for any SCEV type.
665   if (LHS == RHS)
666     return SE.getConstant(LHS->getType(), 1);
667 
668   // Handle a few RHS special cases.
669   const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
670   if (RC) {
671     const APInt &RA = RC->getAPInt();
672     // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
673     // some folding.
674     if (RA.isAllOnesValue())
675       return SE.getMulExpr(LHS, RC);
676     // Handle x /s 1 as x.
677     if (RA == 1)
678       return LHS;
679   }
680 
681   // Check for a division of a constant by a constant.
682   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
683     if (!RC)
684       return nullptr;
685     const APInt &LA = C->getAPInt();
686     const APInt &RA = RC->getAPInt();
687     if (LA.srem(RA) != 0)
688       return nullptr;
689     return SE.getConstant(LA.sdiv(RA));
690   }
691 
692   // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
693   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
694     if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) {
695       const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
696                                       IgnoreSignificantBits);
697       if (!Step) return nullptr;
698       const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
699                                        IgnoreSignificantBits);
700       if (!Start) return nullptr;
701       // FlagNW is independent of the start value, step direction, and is
702       // preserved with smaller magnitude steps.
703       // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
704       return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap);
705     }
706     return nullptr;
707   }
708 
709   // Distribute the sdiv over add operands, if the add doesn't overflow.
710   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
711     if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
712       SmallVector<const SCEV *, 8> Ops;
713       for (const SCEV *S : Add->operands()) {
714         const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits);
715         if (!Op) return nullptr;
716         Ops.push_back(Op);
717       }
718       return SE.getAddExpr(Ops);
719     }
720     return nullptr;
721   }
722 
723   // Check for a multiply operand that we can pull RHS out of.
724   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) {
725     if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
726       SmallVector<const SCEV *, 4> Ops;
727       bool Found = false;
728       for (const SCEV *S : Mul->operands()) {
729         if (!Found)
730           if (const SCEV *Q = getExactSDiv(S, RHS, SE,
731                                            IgnoreSignificantBits)) {
732             S = Q;
733             Found = true;
734           }
735         Ops.push_back(S);
736       }
737       return Found ? SE.getMulExpr(Ops) : nullptr;
738     }
739     return nullptr;
740   }
741 
742   // Otherwise we don't know.
743   return nullptr;
744 }
745 
746 /// If S involves the addition of a constant integer value, return that integer
747 /// value, and mutate S to point to a new SCEV with that value excluded.
748 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
749   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
750     if (C->getAPInt().getMinSignedBits() <= 64) {
751       S = SE.getConstant(C->getType(), 0);
752       return C->getValue()->getSExtValue();
753     }
754   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
755     SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
756     int64_t Result = ExtractImmediate(NewOps.front(), SE);
757     if (Result != 0)
758       S = SE.getAddExpr(NewOps);
759     return Result;
760   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
761     SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
762     int64_t Result = ExtractImmediate(NewOps.front(), SE);
763     if (Result != 0)
764       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
765                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
766                            SCEV::FlagAnyWrap);
767     return Result;
768   }
769   return 0;
770 }
771 
772 /// If S involves the addition of a GlobalValue address, return that symbol, and
773 /// mutate S to point to a new SCEV with that value excluded.
774 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
775   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
776     if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
777       S = SE.getConstant(GV->getType(), 0);
778       return GV;
779     }
780   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
781     SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
782     GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
783     if (Result)
784       S = SE.getAddExpr(NewOps);
785     return Result;
786   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
787     SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
788     GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
789     if (Result)
790       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
791                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
792                            SCEV::FlagAnyWrap);
793     return Result;
794   }
795   return nullptr;
796 }
797 
798 /// Returns true if the specified instruction is using the specified value as an
799 /// address.
800 static bool isAddressUse(const TargetTransformInfo &TTI,
801                          Instruction *Inst, Value *OperandVal) {
802   bool isAddress = isa<LoadInst>(Inst);
803   if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
804     if (SI->getPointerOperand() == OperandVal)
805       isAddress = true;
806   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
807     // Addressing modes can also be folded into prefetches and a variety
808     // of intrinsics.
809     switch (II->getIntrinsicID()) {
810     case Intrinsic::memset:
811     case Intrinsic::prefetch:
812     case Intrinsic::masked_load:
813       if (II->getArgOperand(0) == OperandVal)
814         isAddress = true;
815       break;
816     case Intrinsic::masked_store:
817       if (II->getArgOperand(1) == OperandVal)
818         isAddress = true;
819       break;
820     case Intrinsic::memmove:
821     case Intrinsic::memcpy:
822       if (II->getArgOperand(0) == OperandVal ||
823           II->getArgOperand(1) == OperandVal)
824         isAddress = true;
825       break;
826     default: {
827       MemIntrinsicInfo IntrInfo;
828       if (TTI.getTgtMemIntrinsic(II, IntrInfo)) {
829         if (IntrInfo.PtrVal == OperandVal)
830           isAddress = true;
831       }
832     }
833     }
834   } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
835     if (RMW->getPointerOperand() == OperandVal)
836       isAddress = true;
837   } else if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
838     if (CmpX->getPointerOperand() == OperandVal)
839       isAddress = true;
840   }
841   return isAddress;
842 }
843 
844 /// Return the type of the memory being accessed.
845 static MemAccessTy getAccessType(const TargetTransformInfo &TTI,
846                                  Instruction *Inst, Value *OperandVal) {
847   MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace);
848   if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
849     AccessTy.MemTy = SI->getOperand(0)->getType();
850     AccessTy.AddrSpace = SI->getPointerAddressSpace();
851   } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
852     AccessTy.AddrSpace = LI->getPointerAddressSpace();
853   } else if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
854     AccessTy.AddrSpace = RMW->getPointerAddressSpace();
855   } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
856     AccessTy.AddrSpace = CmpX->getPointerAddressSpace();
857   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
858     switch (II->getIntrinsicID()) {
859     case Intrinsic::prefetch:
860     case Intrinsic::memset:
861       AccessTy.AddrSpace = II->getArgOperand(0)->getType()->getPointerAddressSpace();
862       AccessTy.MemTy = OperandVal->getType();
863       break;
864     case Intrinsic::memmove:
865     case Intrinsic::memcpy:
866       AccessTy.AddrSpace = OperandVal->getType()->getPointerAddressSpace();
867       AccessTy.MemTy = OperandVal->getType();
868       break;
869     case Intrinsic::masked_load:
870       AccessTy.AddrSpace =
871           II->getArgOperand(0)->getType()->getPointerAddressSpace();
872       break;
873     case Intrinsic::masked_store:
874       AccessTy.MemTy = II->getOperand(0)->getType();
875       AccessTy.AddrSpace =
876           II->getArgOperand(1)->getType()->getPointerAddressSpace();
877       break;
878     default: {
879       MemIntrinsicInfo IntrInfo;
880       if (TTI.getTgtMemIntrinsic(II, IntrInfo) && IntrInfo.PtrVal) {
881         AccessTy.AddrSpace
882           = IntrInfo.PtrVal->getType()->getPointerAddressSpace();
883       }
884 
885       break;
886     }
887     }
888   }
889 
890   // All pointers have the same requirements, so canonicalize them to an
891   // arbitrary pointer type to minimize variation.
892   if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy))
893     AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
894                                       PTy->getAddressSpace());
895 
896   return AccessTy;
897 }
898 
899 /// Return true if this AddRec is already a phi in its loop.
900 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
901   for (PHINode &PN : AR->getLoop()->getHeader()->phis()) {
902     if (SE.isSCEVable(PN.getType()) &&
903         (SE.getEffectiveSCEVType(PN.getType()) ==
904          SE.getEffectiveSCEVType(AR->getType())) &&
905         SE.getSCEV(&PN) == AR)
906       return true;
907   }
908   return false;
909 }
910 
911 /// Check if expanding this expression is likely to incur significant cost. This
912 /// is tricky because SCEV doesn't track which expressions are actually computed
913 /// by the current IR.
914 ///
915 /// We currently allow expansion of IV increments that involve adds,
916 /// multiplication by constants, and AddRecs from existing phis.
917 ///
918 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an
919 /// obvious multiple of the UDivExpr.
920 static bool isHighCostExpansion(const SCEV *S,
921                                 SmallPtrSetImpl<const SCEV*> &Processed,
922                                 ScalarEvolution &SE) {
923   // Zero/One operand expressions
924   switch (S->getSCEVType()) {
925   case scUnknown:
926   case scConstant:
927     return false;
928   case scTruncate:
929     return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(),
930                                Processed, SE);
931   case scZeroExtend:
932     return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(),
933                                Processed, SE);
934   case scSignExtend:
935     return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(),
936                                Processed, SE);
937   }
938 
939   if (!Processed.insert(S).second)
940     return false;
941 
942   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
943     for (const SCEV *S : Add->operands()) {
944       if (isHighCostExpansion(S, Processed, SE))
945         return true;
946     }
947     return false;
948   }
949 
950   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
951     if (Mul->getNumOperands() == 2) {
952       // Multiplication by a constant is ok
953       if (isa<SCEVConstant>(Mul->getOperand(0)))
954         return isHighCostExpansion(Mul->getOperand(1), Processed, SE);
955 
956       // If we have the value of one operand, check if an existing
957       // multiplication already generates this expression.
958       if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) {
959         Value *UVal = U->getValue();
960         for (User *UR : UVal->users()) {
961           // If U is a constant, it may be used by a ConstantExpr.
962           Instruction *UI = dyn_cast<Instruction>(UR);
963           if (UI && UI->getOpcode() == Instruction::Mul &&
964               SE.isSCEVable(UI->getType())) {
965             return SE.getSCEV(UI) == Mul;
966           }
967         }
968       }
969     }
970   }
971 
972   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
973     if (isExistingPhi(AR, SE))
974       return false;
975   }
976 
977   // Fow now, consider any other type of expression (div/mul/min/max) high cost.
978   return true;
979 }
980 
981 namespace {
982 
983 class LSRUse;
984 
985 } // end anonymous namespace
986 
987 /// Check if the addressing mode defined by \p F is completely
988 /// folded in \p LU at isel time.
989 /// This includes address-mode folding and special icmp tricks.
990 /// This function returns true if \p LU can accommodate what \p F
991 /// defines and up to 1 base + 1 scaled + offset.
992 /// In other words, if \p F has several base registers, this function may
993 /// still return true. Therefore, users still need to account for
994 /// additional base registers and/or unfolded offsets to derive an
995 /// accurate cost model.
996 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
997                                  const LSRUse &LU, const Formula &F);
998 
999 // Get the cost of the scaling factor used in F for LU.
1000 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
1001                                      const LSRUse &LU, const Formula &F,
1002                                      const Loop &L);
1003 
1004 namespace {
1005 
1006 /// This class is used to measure and compare candidate formulae.
1007 class Cost {
1008   const Loop *L = nullptr;
1009   ScalarEvolution *SE = nullptr;
1010   const TargetTransformInfo *TTI = nullptr;
1011   TargetTransformInfo::LSRCost C;
1012 
1013 public:
1014   Cost() = delete;
1015   Cost(const Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI) :
1016     L(L), SE(&SE), TTI(&TTI) {
1017     C.Insns = 0;
1018     C.NumRegs = 0;
1019     C.AddRecCost = 0;
1020     C.NumIVMuls = 0;
1021     C.NumBaseAdds = 0;
1022     C.ImmCost = 0;
1023     C.SetupCost = 0;
1024     C.ScaleCost = 0;
1025   }
1026 
1027   bool isLess(Cost &Other);
1028 
1029   void Lose();
1030 
1031 #ifndef NDEBUG
1032   // Once any of the metrics loses, they must all remain losers.
1033   bool isValid() {
1034     return ((C.Insns | C.NumRegs | C.AddRecCost | C.NumIVMuls | C.NumBaseAdds
1035              | C.ImmCost | C.SetupCost | C.ScaleCost) != ~0u)
1036       || ((C.Insns & C.NumRegs & C.AddRecCost & C.NumIVMuls & C.NumBaseAdds
1037            & C.ImmCost & C.SetupCost & C.ScaleCost) == ~0u);
1038   }
1039 #endif
1040 
1041   bool isLoser() {
1042     assert(isValid() && "invalid cost");
1043     return C.NumRegs == ~0u;
1044   }
1045 
1046   void RateFormula(const Formula &F,
1047                    SmallPtrSetImpl<const SCEV *> &Regs,
1048                    const DenseSet<const SCEV *> &VisitedRegs,
1049                    const LSRUse &LU,
1050                    SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr);
1051 
1052   void print(raw_ostream &OS) const;
1053   void dump() const;
1054 
1055 private:
1056   void RateRegister(const Formula &F, const SCEV *Reg,
1057                     SmallPtrSetImpl<const SCEV *> &Regs);
1058   void RatePrimaryRegister(const Formula &F, const SCEV *Reg,
1059                            SmallPtrSetImpl<const SCEV *> &Regs,
1060                            SmallPtrSetImpl<const SCEV *> *LoserRegs);
1061 };
1062 
1063 /// An operand value in an instruction which is to be replaced with some
1064 /// equivalent, possibly strength-reduced, replacement.
1065 struct LSRFixup {
1066   /// The instruction which will be updated.
1067   Instruction *UserInst = nullptr;
1068 
1069   /// The operand of the instruction which will be replaced. The operand may be
1070   /// used more than once; every instance will be replaced.
1071   Value *OperandValToReplace = nullptr;
1072 
1073   /// If this user is to use the post-incremented value of an induction
1074   /// variable, this set is non-empty and holds the loops associated with the
1075   /// induction variable.
1076   PostIncLoopSet PostIncLoops;
1077 
1078   /// A constant offset to be added to the LSRUse expression.  This allows
1079   /// multiple fixups to share the same LSRUse with different offsets, for
1080   /// example in an unrolled loop.
1081   int64_t Offset = 0;
1082 
1083   LSRFixup() = default;
1084 
1085   bool isUseFullyOutsideLoop(const Loop *L) const;
1086 
1087   void print(raw_ostream &OS) const;
1088   void dump() const;
1089 };
1090 
1091 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted
1092 /// SmallVectors of const SCEV*.
1093 struct UniquifierDenseMapInfo {
1094   static SmallVector<const SCEV *, 4> getEmptyKey() {
1095     SmallVector<const SCEV *, 4>  V;
1096     V.push_back(reinterpret_cast<const SCEV *>(-1));
1097     return V;
1098   }
1099 
1100   static SmallVector<const SCEV *, 4> getTombstoneKey() {
1101     SmallVector<const SCEV *, 4> V;
1102     V.push_back(reinterpret_cast<const SCEV *>(-2));
1103     return V;
1104   }
1105 
1106   static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) {
1107     return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
1108   }
1109 
1110   static bool isEqual(const SmallVector<const SCEV *, 4> &LHS,
1111                       const SmallVector<const SCEV *, 4> &RHS) {
1112     return LHS == RHS;
1113   }
1114 };
1115 
1116 /// This class holds the state that LSR keeps for each use in IVUsers, as well
1117 /// as uses invented by LSR itself. It includes information about what kinds of
1118 /// things can be folded into the user, information about the user itself, and
1119 /// information about how the use may be satisfied.  TODO: Represent multiple
1120 /// users of the same expression in common?
1121 class LSRUse {
1122   DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier;
1123 
1124 public:
1125   /// An enum for a kind of use, indicating what types of scaled and immediate
1126   /// operands it might support.
1127   enum KindType {
1128     Basic,   ///< A normal use, with no folding.
1129     Special, ///< A special case of basic, allowing -1 scales.
1130     Address, ///< An address use; folding according to TargetLowering
1131     ICmpZero ///< An equality icmp with both operands folded into one.
1132     // TODO: Add a generic icmp too?
1133   };
1134 
1135   using SCEVUseKindPair = PointerIntPair<const SCEV *, 2, KindType>;
1136 
1137   KindType Kind;
1138   MemAccessTy AccessTy;
1139 
1140   /// The list of operands which are to be replaced.
1141   SmallVector<LSRFixup, 8> Fixups;
1142 
1143   /// Keep track of the min and max offsets of the fixups.
1144   int64_t MinOffset = std::numeric_limits<int64_t>::max();
1145   int64_t MaxOffset = std::numeric_limits<int64_t>::min();
1146 
1147   /// This records whether all of the fixups using this LSRUse are outside of
1148   /// the loop, in which case some special-case heuristics may be used.
1149   bool AllFixupsOutsideLoop = true;
1150 
1151   /// RigidFormula is set to true to guarantee that this use will be associated
1152   /// with a single formula--the one that initially matched. Some SCEV
1153   /// expressions cannot be expanded. This allows LSR to consider the registers
1154   /// used by those expressions without the need to expand them later after
1155   /// changing the formula.
1156   bool RigidFormula = false;
1157 
1158   /// This records the widest use type for any fixup using this
1159   /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max
1160   /// fixup widths to be equivalent, because the narrower one may be relying on
1161   /// the implicit truncation to truncate away bogus bits.
1162   Type *WidestFixupType = nullptr;
1163 
1164   /// A list of ways to build a value that can satisfy this user.  After the
1165   /// list is populated, one of these is selected heuristically and used to
1166   /// formulate a replacement for OperandValToReplace in UserInst.
1167   SmallVector<Formula, 12> Formulae;
1168 
1169   /// The set of register candidates used by all formulae in this LSRUse.
1170   SmallPtrSet<const SCEV *, 4> Regs;
1171 
1172   LSRUse(KindType K, MemAccessTy AT) : Kind(K), AccessTy(AT) {}
1173 
1174   LSRFixup &getNewFixup() {
1175     Fixups.push_back(LSRFixup());
1176     return Fixups.back();
1177   }
1178 
1179   void pushFixup(LSRFixup &f) {
1180     Fixups.push_back(f);
1181     if (f.Offset > MaxOffset)
1182       MaxOffset = f.Offset;
1183     if (f.Offset < MinOffset)
1184       MinOffset = f.Offset;
1185   }
1186 
1187   bool HasFormulaWithSameRegs(const Formula &F) const;
1188   float getNotSelectedProbability(const SCEV *Reg) const;
1189   bool InsertFormula(const Formula &F, const Loop &L);
1190   void DeleteFormula(Formula &F);
1191   void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
1192 
1193   void print(raw_ostream &OS) const;
1194   void dump() const;
1195 };
1196 
1197 } // end anonymous namespace
1198 
1199 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1200                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1201                                  GlobalValue *BaseGV, int64_t BaseOffset,
1202                                  bool HasBaseReg, int64_t Scale,
1203                                  Instruction *Fixup = nullptr);
1204 
1205 static unsigned getSetupCost(const SCEV *Reg, unsigned Depth) {
1206   if (isa<SCEVUnknown>(Reg) || isa<SCEVConstant>(Reg))
1207     return 1;
1208   if (Depth == 0)
1209     return 0;
1210   if (const auto *S = dyn_cast<SCEVAddRecExpr>(Reg))
1211     return getSetupCost(S->getStart(), Depth - 1);
1212   if (auto S = dyn_cast<SCEVCastExpr>(Reg))
1213     return getSetupCost(S->getOperand(), Depth - 1);
1214   if (auto S = dyn_cast<SCEVNAryExpr>(Reg))
1215     return std::accumulate(S->op_begin(), S->op_end(), 0,
1216                            [&](unsigned i, const SCEV *Reg) {
1217                              return i + getSetupCost(Reg, Depth - 1);
1218                            });
1219   if (auto S = dyn_cast<SCEVUDivExpr>(Reg))
1220     return getSetupCost(S->getLHS(), Depth - 1) +
1221            getSetupCost(S->getRHS(), Depth - 1);
1222   return 0;
1223 }
1224 
1225 /// Tally up interesting quantities from the given register.
1226 void Cost::RateRegister(const Formula &F, const SCEV *Reg,
1227                         SmallPtrSetImpl<const SCEV *> &Regs) {
1228   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
1229     // If this is an addrec for another loop, it should be an invariant
1230     // with respect to L since L is the innermost loop (at least
1231     // for now LSR only handles innermost loops).
1232     if (AR->getLoop() != L) {
1233       // If the AddRec exists, consider it's register free and leave it alone.
1234       if (isExistingPhi(AR, *SE))
1235         return;
1236 
1237       // It is bad to allow LSR for current loop to add induction variables
1238       // for its sibling loops.
1239       if (!AR->getLoop()->contains(L)) {
1240         Lose();
1241         return;
1242       }
1243 
1244       // Otherwise, it will be an invariant with respect to Loop L.
1245       ++C.NumRegs;
1246       return;
1247     }
1248 
1249     unsigned LoopCost = 1;
1250     if (TTI->isIndexedLoadLegal(TTI->MIM_PostInc, AR->getType()) ||
1251         TTI->isIndexedStoreLegal(TTI->MIM_PostInc, AR->getType())) {
1252 
1253       // If the step size matches the base offset, we could use pre-indexed
1254       // addressing.
1255       if (TTI->shouldFavorBackedgeIndex(L)) {
1256         if (auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)))
1257           if (Step->getAPInt() == F.BaseOffset)
1258             LoopCost = 0;
1259       }
1260 
1261       if (TTI->shouldFavorPostInc()) {
1262         const SCEV *LoopStep = AR->getStepRecurrence(*SE);
1263         if (isa<SCEVConstant>(LoopStep)) {
1264           const SCEV *LoopStart = AR->getStart();
1265           if (!isa<SCEVConstant>(LoopStart) &&
1266               SE->isLoopInvariant(LoopStart, L))
1267             LoopCost = 0;
1268         }
1269       }
1270     }
1271     C.AddRecCost += LoopCost;
1272 
1273     // Add the step value register, if it needs one.
1274     // TODO: The non-affine case isn't precisely modeled here.
1275     if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) {
1276       if (!Regs.count(AR->getOperand(1))) {
1277         RateRegister(F, AR->getOperand(1), Regs);
1278         if (isLoser())
1279           return;
1280       }
1281     }
1282   }
1283   ++C.NumRegs;
1284 
1285   // Rough heuristic; favor registers which don't require extra setup
1286   // instructions in the preheader.
1287   C.SetupCost += getSetupCost(Reg, SetupCostDepthLimit);
1288   // Ensure we don't, even with the recusion limit, produce invalid costs.
1289   C.SetupCost = std::min<unsigned>(C.SetupCost, 1 << 16);
1290 
1291   C.NumIVMuls += isa<SCEVMulExpr>(Reg) &&
1292                SE->hasComputableLoopEvolution(Reg, L);
1293 }
1294 
1295 /// Record this register in the set. If we haven't seen it before, rate
1296 /// it. Optional LoserRegs provides a way to declare any formula that refers to
1297 /// one of those regs an instant loser.
1298 void Cost::RatePrimaryRegister(const Formula &F, const SCEV *Reg,
1299                                SmallPtrSetImpl<const SCEV *> &Regs,
1300                                SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1301   if (LoserRegs && LoserRegs->count(Reg)) {
1302     Lose();
1303     return;
1304   }
1305   if (Regs.insert(Reg).second) {
1306     RateRegister(F, Reg, Regs);
1307     if (LoserRegs && isLoser())
1308       LoserRegs->insert(Reg);
1309   }
1310 }
1311 
1312 void Cost::RateFormula(const Formula &F,
1313                        SmallPtrSetImpl<const SCEV *> &Regs,
1314                        const DenseSet<const SCEV *> &VisitedRegs,
1315                        const LSRUse &LU,
1316                        SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1317   assert(F.isCanonical(*L) && "Cost is accurate only for canonical formula");
1318   // Tally up the registers.
1319   unsigned PrevAddRecCost = C.AddRecCost;
1320   unsigned PrevNumRegs = C.NumRegs;
1321   unsigned PrevNumBaseAdds = C.NumBaseAdds;
1322   if (const SCEV *ScaledReg = F.ScaledReg) {
1323     if (VisitedRegs.count(ScaledReg)) {
1324       Lose();
1325       return;
1326     }
1327     RatePrimaryRegister(F, ScaledReg, Regs, LoserRegs);
1328     if (isLoser())
1329       return;
1330   }
1331   for (const SCEV *BaseReg : F.BaseRegs) {
1332     if (VisitedRegs.count(BaseReg)) {
1333       Lose();
1334       return;
1335     }
1336     RatePrimaryRegister(F, BaseReg, Regs, LoserRegs);
1337     if (isLoser())
1338       return;
1339   }
1340 
1341   // Determine how many (unfolded) adds we'll need inside the loop.
1342   size_t NumBaseParts = F.getNumRegs();
1343   if (NumBaseParts > 1)
1344     // Do not count the base and a possible second register if the target
1345     // allows to fold 2 registers.
1346     C.NumBaseAdds +=
1347         NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(*TTI, LU, F)));
1348   C.NumBaseAdds += (F.UnfoldedOffset != 0);
1349 
1350   // Accumulate non-free scaling amounts.
1351   C.ScaleCost += getScalingFactorCost(*TTI, LU, F, *L);
1352 
1353   // Tally up the non-zero immediates.
1354   for (const LSRFixup &Fixup : LU.Fixups) {
1355     int64_t O = Fixup.Offset;
1356     int64_t Offset = (uint64_t)O + F.BaseOffset;
1357     if (F.BaseGV)
1358       C.ImmCost += 64; // Handle symbolic values conservatively.
1359                      // TODO: This should probably be the pointer size.
1360     else if (Offset != 0)
1361       C.ImmCost += APInt(64, Offset, true).getMinSignedBits();
1362 
1363     // Check with target if this offset with this instruction is
1364     // specifically not supported.
1365     if (LU.Kind == LSRUse::Address && Offset != 0 &&
1366         !isAMCompletelyFolded(*TTI, LSRUse::Address, LU.AccessTy, F.BaseGV,
1367                               Offset, F.HasBaseReg, F.Scale, Fixup.UserInst))
1368       C.NumBaseAdds++;
1369   }
1370 
1371   // If we don't count instruction cost exit here.
1372   if (!InsnsCost) {
1373     assert(isValid() && "invalid cost");
1374     return;
1375   }
1376 
1377   // Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as
1378   // additional instruction (at least fill).
1379   // TODO: Need distinguish register class?
1380   unsigned TTIRegNum = TTI->getNumberOfRegisters(
1381                        TTI->getRegisterClassForType(false, F.getType())) - 1;
1382   if (C.NumRegs > TTIRegNum) {
1383     // Cost already exceeded TTIRegNum, then only newly added register can add
1384     // new instructions.
1385     if (PrevNumRegs > TTIRegNum)
1386       C.Insns += (C.NumRegs - PrevNumRegs);
1387     else
1388       C.Insns += (C.NumRegs - TTIRegNum);
1389   }
1390 
1391   // If ICmpZero formula ends with not 0, it could not be replaced by
1392   // just add or sub. We'll need to compare final result of AddRec.
1393   // That means we'll need an additional instruction. But if the target can
1394   // macro-fuse a compare with a branch, don't count this extra instruction.
1395   // For -10 + {0, +, 1}:
1396   // i = i + 1;
1397   // cmp i, 10
1398   //
1399   // For {-10, +, 1}:
1400   // i = i + 1;
1401   if (LU.Kind == LSRUse::ICmpZero && !F.hasZeroEnd() &&
1402       !TTI->canMacroFuseCmp())
1403     C.Insns++;
1404   // Each new AddRec adds 1 instruction to calculation.
1405   C.Insns += (C.AddRecCost - PrevAddRecCost);
1406 
1407   // BaseAdds adds instructions for unfolded registers.
1408   if (LU.Kind != LSRUse::ICmpZero)
1409     C.Insns += C.NumBaseAdds - PrevNumBaseAdds;
1410   assert(isValid() && "invalid cost");
1411 }
1412 
1413 /// Set this cost to a losing value.
1414 void Cost::Lose() {
1415   C.Insns = std::numeric_limits<unsigned>::max();
1416   C.NumRegs = std::numeric_limits<unsigned>::max();
1417   C.AddRecCost = std::numeric_limits<unsigned>::max();
1418   C.NumIVMuls = std::numeric_limits<unsigned>::max();
1419   C.NumBaseAdds = std::numeric_limits<unsigned>::max();
1420   C.ImmCost = std::numeric_limits<unsigned>::max();
1421   C.SetupCost = std::numeric_limits<unsigned>::max();
1422   C.ScaleCost = std::numeric_limits<unsigned>::max();
1423 }
1424 
1425 /// Choose the lower cost.
1426 bool Cost::isLess(Cost &Other) {
1427   if (InsnsCost.getNumOccurrences() > 0 && InsnsCost &&
1428       C.Insns != Other.C.Insns)
1429     return C.Insns < Other.C.Insns;
1430   return TTI->isLSRCostLess(C, Other.C);
1431 }
1432 
1433 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1434 void Cost::print(raw_ostream &OS) const {
1435   if (InsnsCost)
1436     OS << C.Insns << " instruction" << (C.Insns == 1 ? " " : "s ");
1437   OS << C.NumRegs << " reg" << (C.NumRegs == 1 ? "" : "s");
1438   if (C.AddRecCost != 0)
1439     OS << ", with addrec cost " << C.AddRecCost;
1440   if (C.NumIVMuls != 0)
1441     OS << ", plus " << C.NumIVMuls << " IV mul"
1442        << (C.NumIVMuls == 1 ? "" : "s");
1443   if (C.NumBaseAdds != 0)
1444     OS << ", plus " << C.NumBaseAdds << " base add"
1445        << (C.NumBaseAdds == 1 ? "" : "s");
1446   if (C.ScaleCost != 0)
1447     OS << ", plus " << C.ScaleCost << " scale cost";
1448   if (C.ImmCost != 0)
1449     OS << ", plus " << C.ImmCost << " imm cost";
1450   if (C.SetupCost != 0)
1451     OS << ", plus " << C.SetupCost << " setup cost";
1452 }
1453 
1454 LLVM_DUMP_METHOD void Cost::dump() const {
1455   print(errs()); errs() << '\n';
1456 }
1457 #endif
1458 
1459 /// Test whether this fixup always uses its value outside of the given loop.
1460 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
1461   // PHI nodes use their value in their incoming blocks.
1462   if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
1463     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1464       if (PN->getIncomingValue(i) == OperandValToReplace &&
1465           L->contains(PN->getIncomingBlock(i)))
1466         return false;
1467     return true;
1468   }
1469 
1470   return !L->contains(UserInst);
1471 }
1472 
1473 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1474 void LSRFixup::print(raw_ostream &OS) const {
1475   OS << "UserInst=";
1476   // Store is common and interesting enough to be worth special-casing.
1477   if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
1478     OS << "store ";
1479     Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false);
1480   } else if (UserInst->getType()->isVoidTy())
1481     OS << UserInst->getOpcodeName();
1482   else
1483     UserInst->printAsOperand(OS, /*PrintType=*/false);
1484 
1485   OS << ", OperandValToReplace=";
1486   OperandValToReplace->printAsOperand(OS, /*PrintType=*/false);
1487 
1488   for (const Loop *PIL : PostIncLoops) {
1489     OS << ", PostIncLoop=";
1490     PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
1491   }
1492 
1493   if (Offset != 0)
1494     OS << ", Offset=" << Offset;
1495 }
1496 
1497 LLVM_DUMP_METHOD void LSRFixup::dump() const {
1498   print(errs()); errs() << '\n';
1499 }
1500 #endif
1501 
1502 /// Test whether this use as a formula which has the same registers as the given
1503 /// formula.
1504 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
1505   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1506   if (F.ScaledReg) Key.push_back(F.ScaledReg);
1507   // Unstable sort by host order ok, because this is only used for uniquifying.
1508   llvm::sort(Key);
1509   return Uniquifier.count(Key);
1510 }
1511 
1512 /// The function returns a probability of selecting formula without Reg.
1513 float LSRUse::getNotSelectedProbability(const SCEV *Reg) const {
1514   unsigned FNum = 0;
1515   for (const Formula &F : Formulae)
1516     if (F.referencesReg(Reg))
1517       FNum++;
1518   return ((float)(Formulae.size() - FNum)) / Formulae.size();
1519 }
1520 
1521 /// If the given formula has not yet been inserted, add it to the list, and
1522 /// return true. Return false otherwise.  The formula must be in canonical form.
1523 bool LSRUse::InsertFormula(const Formula &F, const Loop &L) {
1524   assert(F.isCanonical(L) && "Invalid canonical representation");
1525 
1526   if (!Formulae.empty() && RigidFormula)
1527     return false;
1528 
1529   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1530   if (F.ScaledReg) Key.push_back(F.ScaledReg);
1531   // Unstable sort by host order ok, because this is only used for uniquifying.
1532   llvm::sort(Key);
1533 
1534   if (!Uniquifier.insert(Key).second)
1535     return false;
1536 
1537   // Using a register to hold the value of 0 is not profitable.
1538   assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
1539          "Zero allocated in a scaled register!");
1540 #ifndef NDEBUG
1541   for (const SCEV *BaseReg : F.BaseRegs)
1542     assert(!BaseReg->isZero() && "Zero allocated in a base register!");
1543 #endif
1544 
1545   // Add the formula to the list.
1546   Formulae.push_back(F);
1547 
1548   // Record registers now being used by this use.
1549   Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1550   if (F.ScaledReg)
1551     Regs.insert(F.ScaledReg);
1552 
1553   return true;
1554 }
1555 
1556 /// Remove the given formula from this use's list.
1557 void LSRUse::DeleteFormula(Formula &F) {
1558   if (&F != &Formulae.back())
1559     std::swap(F, Formulae.back());
1560   Formulae.pop_back();
1561 }
1562 
1563 /// Recompute the Regs field, and update RegUses.
1564 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
1565   // Now that we've filtered out some formulae, recompute the Regs set.
1566   SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs);
1567   Regs.clear();
1568   for (const Formula &F : Formulae) {
1569     if (F.ScaledReg) Regs.insert(F.ScaledReg);
1570     Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1571   }
1572 
1573   // Update the RegTracker.
1574   for (const SCEV *S : OldRegs)
1575     if (!Regs.count(S))
1576       RegUses.dropRegister(S, LUIdx);
1577 }
1578 
1579 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1580 void LSRUse::print(raw_ostream &OS) const {
1581   OS << "LSR Use: Kind=";
1582   switch (Kind) {
1583   case Basic:    OS << "Basic"; break;
1584   case Special:  OS << "Special"; break;
1585   case ICmpZero: OS << "ICmpZero"; break;
1586   case Address:
1587     OS << "Address of ";
1588     if (AccessTy.MemTy->isPointerTy())
1589       OS << "pointer"; // the full pointer type could be really verbose
1590     else {
1591       OS << *AccessTy.MemTy;
1592     }
1593 
1594     OS << " in addrspace(" << AccessTy.AddrSpace << ')';
1595   }
1596 
1597   OS << ", Offsets={";
1598   bool NeedComma = false;
1599   for (const LSRFixup &Fixup : Fixups) {
1600     if (NeedComma) OS << ',';
1601     OS << Fixup.Offset;
1602     NeedComma = true;
1603   }
1604   OS << '}';
1605 
1606   if (AllFixupsOutsideLoop)
1607     OS << ", all-fixups-outside-loop";
1608 
1609   if (WidestFixupType)
1610     OS << ", widest fixup type: " << *WidestFixupType;
1611 }
1612 
1613 LLVM_DUMP_METHOD void LSRUse::dump() const {
1614   print(errs()); errs() << '\n';
1615 }
1616 #endif
1617 
1618 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1619                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1620                                  GlobalValue *BaseGV, int64_t BaseOffset,
1621                                  bool HasBaseReg, int64_t Scale,
1622                                  Instruction *Fixup/*= nullptr*/) {
1623   switch (Kind) {
1624   case LSRUse::Address:
1625     return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset,
1626                                      HasBaseReg, Scale, AccessTy.AddrSpace, Fixup);
1627 
1628   case LSRUse::ICmpZero:
1629     // There's not even a target hook for querying whether it would be legal to
1630     // fold a GV into an ICmp.
1631     if (BaseGV)
1632       return false;
1633 
1634     // ICmp only has two operands; don't allow more than two non-trivial parts.
1635     if (Scale != 0 && HasBaseReg && BaseOffset != 0)
1636       return false;
1637 
1638     // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
1639     // putting the scaled register in the other operand of the icmp.
1640     if (Scale != 0 && Scale != -1)
1641       return false;
1642 
1643     // If we have low-level target information, ask the target if it can fold an
1644     // integer immediate on an icmp.
1645     if (BaseOffset != 0) {
1646       // We have one of:
1647       // ICmpZero     BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset
1648       // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset
1649       // Offs is the ICmp immediate.
1650       if (Scale == 0)
1651         // The cast does the right thing with
1652         // std::numeric_limits<int64_t>::min().
1653         BaseOffset = -(uint64_t)BaseOffset;
1654       return TTI.isLegalICmpImmediate(BaseOffset);
1655     }
1656 
1657     // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg
1658     return true;
1659 
1660   case LSRUse::Basic:
1661     // Only handle single-register values.
1662     return !BaseGV && Scale == 0 && BaseOffset == 0;
1663 
1664   case LSRUse::Special:
1665     // Special case Basic to handle -1 scales.
1666     return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0;
1667   }
1668 
1669   llvm_unreachable("Invalid LSRUse Kind!");
1670 }
1671 
1672 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1673                                  int64_t MinOffset, int64_t MaxOffset,
1674                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1675                                  GlobalValue *BaseGV, int64_t BaseOffset,
1676                                  bool HasBaseReg, int64_t Scale) {
1677   // Check for overflow.
1678   if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) !=
1679       (MinOffset > 0))
1680     return false;
1681   MinOffset = (uint64_t)BaseOffset + MinOffset;
1682   if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) !=
1683       (MaxOffset > 0))
1684     return false;
1685   MaxOffset = (uint64_t)BaseOffset + MaxOffset;
1686 
1687   return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset,
1688                               HasBaseReg, Scale) &&
1689          isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset,
1690                               HasBaseReg, Scale);
1691 }
1692 
1693 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1694                                  int64_t MinOffset, int64_t MaxOffset,
1695                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1696                                  const Formula &F, const Loop &L) {
1697   // For the purpose of isAMCompletelyFolded either having a canonical formula
1698   // or a scale not equal to zero is correct.
1699   // Problems may arise from non canonical formulae having a scale == 0.
1700   // Strictly speaking it would best to just rely on canonical formulae.
1701   // However, when we generate the scaled formulae, we first check that the
1702   // scaling factor is profitable before computing the actual ScaledReg for
1703   // compile time sake.
1704   assert((F.isCanonical(L) || F.Scale != 0));
1705   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1706                               F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale);
1707 }
1708 
1709 /// Test whether we know how to expand the current formula.
1710 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1711                        int64_t MaxOffset, LSRUse::KindType Kind,
1712                        MemAccessTy AccessTy, GlobalValue *BaseGV,
1713                        int64_t BaseOffset, bool HasBaseReg, int64_t Scale) {
1714   // We know how to expand completely foldable formulae.
1715   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1716                               BaseOffset, HasBaseReg, Scale) ||
1717          // Or formulae that use a base register produced by a sum of base
1718          // registers.
1719          (Scale == 1 &&
1720           isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1721                                BaseGV, BaseOffset, true, 0));
1722 }
1723 
1724 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1725                        int64_t MaxOffset, LSRUse::KindType Kind,
1726                        MemAccessTy AccessTy, const Formula &F) {
1727   return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV,
1728                     F.BaseOffset, F.HasBaseReg, F.Scale);
1729 }
1730 
1731 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1732                                  const LSRUse &LU, const Formula &F) {
1733   // Target may want to look at the user instructions.
1734   if (LU.Kind == LSRUse::Address && TTI.LSRWithInstrQueries()) {
1735     for (const LSRFixup &Fixup : LU.Fixups)
1736       if (!isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV,
1737                                 (F.BaseOffset + Fixup.Offset), F.HasBaseReg,
1738                                 F.Scale, Fixup.UserInst))
1739         return false;
1740     return true;
1741   }
1742 
1743   return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1744                               LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg,
1745                               F.Scale);
1746 }
1747 
1748 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
1749                                      const LSRUse &LU, const Formula &F,
1750                                      const Loop &L) {
1751   if (!F.Scale)
1752     return 0;
1753 
1754   // If the use is not completely folded in that instruction, we will have to
1755   // pay an extra cost only for scale != 1.
1756   if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1757                             LU.AccessTy, F, L))
1758     return F.Scale != 1;
1759 
1760   switch (LU.Kind) {
1761   case LSRUse::Address: {
1762     // Check the scaling factor cost with both the min and max offsets.
1763     int ScaleCostMinOffset = TTI.getScalingFactorCost(
1764         LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg,
1765         F.Scale, LU.AccessTy.AddrSpace);
1766     int ScaleCostMaxOffset = TTI.getScalingFactorCost(
1767         LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg,
1768         F.Scale, LU.AccessTy.AddrSpace);
1769 
1770     assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 &&
1771            "Legal addressing mode has an illegal cost!");
1772     return std::max(ScaleCostMinOffset, ScaleCostMaxOffset);
1773   }
1774   case LSRUse::ICmpZero:
1775   case LSRUse::Basic:
1776   case LSRUse::Special:
1777     // The use is completely folded, i.e., everything is folded into the
1778     // instruction.
1779     return 0;
1780   }
1781 
1782   llvm_unreachable("Invalid LSRUse Kind!");
1783 }
1784 
1785 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1786                              LSRUse::KindType Kind, MemAccessTy AccessTy,
1787                              GlobalValue *BaseGV, int64_t BaseOffset,
1788                              bool HasBaseReg) {
1789   // Fast-path: zero is always foldable.
1790   if (BaseOffset == 0 && !BaseGV) return true;
1791 
1792   // Conservatively, create an address with an immediate and a
1793   // base and a scale.
1794   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1795 
1796   // Canonicalize a scale of 1 to a base register if the formula doesn't
1797   // already have a base register.
1798   if (!HasBaseReg && Scale == 1) {
1799     Scale = 0;
1800     HasBaseReg = true;
1801   }
1802 
1803   return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset,
1804                               HasBaseReg, Scale);
1805 }
1806 
1807 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1808                              ScalarEvolution &SE, int64_t MinOffset,
1809                              int64_t MaxOffset, LSRUse::KindType Kind,
1810                              MemAccessTy AccessTy, const SCEV *S,
1811                              bool HasBaseReg) {
1812   // Fast-path: zero is always foldable.
1813   if (S->isZero()) return true;
1814 
1815   // Conservatively, create an address with an immediate and a
1816   // base and a scale.
1817   int64_t BaseOffset = ExtractImmediate(S, SE);
1818   GlobalValue *BaseGV = ExtractSymbol(S, SE);
1819 
1820   // If there's anything else involved, it's not foldable.
1821   if (!S->isZero()) return false;
1822 
1823   // Fast-path: zero is always foldable.
1824   if (BaseOffset == 0 && !BaseGV) return true;
1825 
1826   // Conservatively, create an address with an immediate and a
1827   // base and a scale.
1828   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1829 
1830   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1831                               BaseOffset, HasBaseReg, Scale);
1832 }
1833 
1834 namespace {
1835 
1836 /// An individual increment in a Chain of IV increments.  Relate an IV user to
1837 /// an expression that computes the IV it uses from the IV used by the previous
1838 /// link in the Chain.
1839 ///
1840 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the
1841 /// original IVOperand. The head of the chain's IVOperand is only valid during
1842 /// chain collection, before LSR replaces IV users. During chain generation,
1843 /// IncExpr can be used to find the new IVOperand that computes the same
1844 /// expression.
1845 struct IVInc {
1846   Instruction *UserInst;
1847   Value* IVOperand;
1848   const SCEV *IncExpr;
1849 
1850   IVInc(Instruction *U, Value *O, const SCEV *E)
1851       : UserInst(U), IVOperand(O), IncExpr(E) {}
1852 };
1853 
1854 // The list of IV increments in program order.  We typically add the head of a
1855 // chain without finding subsequent links.
1856 struct IVChain {
1857   SmallVector<IVInc, 1> Incs;
1858   const SCEV *ExprBase = nullptr;
1859 
1860   IVChain() = default;
1861   IVChain(const IVInc &Head, const SCEV *Base)
1862       : Incs(1, Head), ExprBase(Base) {}
1863 
1864   using const_iterator = SmallVectorImpl<IVInc>::const_iterator;
1865 
1866   // Return the first increment in the chain.
1867   const_iterator begin() const {
1868     assert(!Incs.empty());
1869     return std::next(Incs.begin());
1870   }
1871   const_iterator end() const {
1872     return Incs.end();
1873   }
1874 
1875   // Returns true if this chain contains any increments.
1876   bool hasIncs() const { return Incs.size() >= 2; }
1877 
1878   // Add an IVInc to the end of this chain.
1879   void add(const IVInc &X) { Incs.push_back(X); }
1880 
1881   // Returns the last UserInst in the chain.
1882   Instruction *tailUserInst() const { return Incs.back().UserInst; }
1883 
1884   // Returns true if IncExpr can be profitably added to this chain.
1885   bool isProfitableIncrement(const SCEV *OperExpr,
1886                              const SCEV *IncExpr,
1887                              ScalarEvolution&);
1888 };
1889 
1890 /// Helper for CollectChains to track multiple IV increment uses.  Distinguish
1891 /// between FarUsers that definitely cross IV increments and NearUsers that may
1892 /// be used between IV increments.
1893 struct ChainUsers {
1894   SmallPtrSet<Instruction*, 4> FarUsers;
1895   SmallPtrSet<Instruction*, 4> NearUsers;
1896 };
1897 
1898 /// This class holds state for the main loop strength reduction logic.
1899 class LSRInstance {
1900   IVUsers &IU;
1901   ScalarEvolution &SE;
1902   DominatorTree &DT;
1903   LoopInfo &LI;
1904   AssumptionCache &AC;
1905   TargetLibraryInfo &TLI;
1906   const TargetTransformInfo &TTI;
1907   Loop *const L;
1908   MemorySSAUpdater *MSSAU;
1909   bool FavorBackedgeIndex = false;
1910   bool Changed = false;
1911 
1912   /// This is the insert position that the current loop's induction variable
1913   /// increment should be placed. In simple loops, this is the latch block's
1914   /// terminator. But in more complicated cases, this is a position which will
1915   /// dominate all the in-loop post-increment users.
1916   Instruction *IVIncInsertPos = nullptr;
1917 
1918   /// Interesting factors between use strides.
1919   ///
1920   /// We explicitly use a SetVector which contains a SmallSet, instead of the
1921   /// default, a SmallDenseSet, because we need to use the full range of
1922   /// int64_ts, and there's currently no good way of doing that with
1923   /// SmallDenseSet.
1924   SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors;
1925 
1926   /// Interesting use types, to facilitate truncation reuse.
1927   SmallSetVector<Type *, 4> Types;
1928 
1929   /// The list of interesting uses.
1930   mutable SmallVector<LSRUse, 16> Uses;
1931 
1932   /// Track which uses use which register candidates.
1933   RegUseTracker RegUses;
1934 
1935   // Limit the number of chains to avoid quadratic behavior. We don't expect to
1936   // have more than a few IV increment chains in a loop. Missing a Chain falls
1937   // back to normal LSR behavior for those uses.
1938   static const unsigned MaxChains = 8;
1939 
1940   /// IV users can form a chain of IV increments.
1941   SmallVector<IVChain, MaxChains> IVChainVec;
1942 
1943   /// IV users that belong to profitable IVChains.
1944   SmallPtrSet<Use*, MaxChains> IVIncSet;
1945 
1946   void OptimizeShadowIV();
1947   bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
1948   ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
1949   void OptimizeLoopTermCond();
1950 
1951   void ChainInstruction(Instruction *UserInst, Instruction *IVOper,
1952                         SmallVectorImpl<ChainUsers> &ChainUsersVec);
1953   void FinalizeChain(IVChain &Chain);
1954   void CollectChains();
1955   void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
1956                        SmallVectorImpl<WeakTrackingVH> &DeadInsts);
1957 
1958   void CollectInterestingTypesAndFactors();
1959   void CollectFixupsAndInitialFormulae();
1960 
1961   // Support for sharing of LSRUses between LSRFixups.
1962   using UseMapTy = DenseMap<LSRUse::SCEVUseKindPair, size_t>;
1963   UseMapTy UseMap;
1964 
1965   bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
1966                           LSRUse::KindType Kind, MemAccessTy AccessTy);
1967 
1968   std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind,
1969                                     MemAccessTy AccessTy);
1970 
1971   void DeleteUse(LSRUse &LU, size_t LUIdx);
1972 
1973   LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
1974 
1975   void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1976   void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1977   void CountRegisters(const Formula &F, size_t LUIdx);
1978   bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
1979 
1980   void CollectLoopInvariantFixupsAndFormulae();
1981 
1982   void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
1983                               unsigned Depth = 0);
1984 
1985   void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
1986                                   const Formula &Base, unsigned Depth,
1987                                   size_t Idx, bool IsScaledReg = false);
1988   void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
1989   void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
1990                                    const Formula &Base, size_t Idx,
1991                                    bool IsScaledReg = false);
1992   void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1993   void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx,
1994                                    const Formula &Base,
1995                                    const SmallVectorImpl<int64_t> &Worklist,
1996                                    size_t Idx, bool IsScaledReg = false);
1997   void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1998   void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1999   void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
2000   void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
2001   void GenerateCrossUseConstantOffsets();
2002   void GenerateAllReuseFormulae();
2003 
2004   void FilterOutUndesirableDedicatedRegisters();
2005 
2006   size_t EstimateSearchSpaceComplexity() const;
2007   void NarrowSearchSpaceByDetectingSupersets();
2008   void NarrowSearchSpaceByCollapsingUnrolledCode();
2009   void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
2010   void NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
2011   void NarrowSearchSpaceByDeletingCostlyFormulas();
2012   void NarrowSearchSpaceByPickingWinnerRegs();
2013   void NarrowSearchSpaceUsingHeuristics();
2014 
2015   void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
2016                     Cost &SolutionCost,
2017                     SmallVectorImpl<const Formula *> &Workspace,
2018                     const Cost &CurCost,
2019                     const SmallPtrSet<const SCEV *, 16> &CurRegs,
2020                     DenseSet<const SCEV *> &VisitedRegs) const;
2021   void Solve(SmallVectorImpl<const Formula *> &Solution) const;
2022 
2023   BasicBlock::iterator
2024     HoistInsertPosition(BasicBlock::iterator IP,
2025                         const SmallVectorImpl<Instruction *> &Inputs) const;
2026   BasicBlock::iterator
2027     AdjustInsertPositionForExpand(BasicBlock::iterator IP,
2028                                   const LSRFixup &LF,
2029                                   const LSRUse &LU,
2030                                   SCEVExpander &Rewriter) const;
2031 
2032   Value *Expand(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
2033                 BasicBlock::iterator IP, SCEVExpander &Rewriter,
2034                 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2035   void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF,
2036                      const Formula &F, SCEVExpander &Rewriter,
2037                      SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2038   void Rewrite(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
2039                SCEVExpander &Rewriter,
2040                SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2041   void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution);
2042 
2043 public:
2044   LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT,
2045               LoopInfo &LI, const TargetTransformInfo &TTI, AssumptionCache &AC,
2046               TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU);
2047 
2048   bool getChanged() const { return Changed; }
2049 
2050   void print_factors_and_types(raw_ostream &OS) const;
2051   void print_fixups(raw_ostream &OS) const;
2052   void print_uses(raw_ostream &OS) const;
2053   void print(raw_ostream &OS) const;
2054   void dump() const;
2055 };
2056 
2057 } // end anonymous namespace
2058 
2059 /// If IV is used in a int-to-float cast inside the loop then try to eliminate
2060 /// the cast operation.
2061 void LSRInstance::OptimizeShadowIV() {
2062   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
2063   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2064     return;
2065 
2066   for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
2067        UI != E; /* empty */) {
2068     IVUsers::const_iterator CandidateUI = UI;
2069     ++UI;
2070     Instruction *ShadowUse = CandidateUI->getUser();
2071     Type *DestTy = nullptr;
2072     bool IsSigned = false;
2073 
2074     /* If shadow use is a int->float cast then insert a second IV
2075        to eliminate this cast.
2076 
2077          for (unsigned i = 0; i < n; ++i)
2078            foo((double)i);
2079 
2080        is transformed into
2081 
2082          double d = 0.0;
2083          for (unsigned i = 0; i < n; ++i, ++d)
2084            foo(d);
2085     */
2086     if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) {
2087       IsSigned = false;
2088       DestTy = UCast->getDestTy();
2089     }
2090     else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) {
2091       IsSigned = true;
2092       DestTy = SCast->getDestTy();
2093     }
2094     if (!DestTy) continue;
2095 
2096     // If target does not support DestTy natively then do not apply
2097     // this transformation.
2098     if (!TTI.isTypeLegal(DestTy)) continue;
2099 
2100     PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
2101     if (!PH) continue;
2102     if (PH->getNumIncomingValues() != 2) continue;
2103 
2104     // If the calculation in integers overflows, the result in FP type will
2105     // differ. So we only can do this transformation if we are guaranteed to not
2106     // deal with overflowing values
2107     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PH));
2108     if (!AR) continue;
2109     if (IsSigned && !AR->hasNoSignedWrap()) continue;
2110     if (!IsSigned && !AR->hasNoUnsignedWrap()) continue;
2111 
2112     Type *SrcTy = PH->getType();
2113     int Mantissa = DestTy->getFPMantissaWidth();
2114     if (Mantissa == -1) continue;
2115     if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
2116       continue;
2117 
2118     unsigned Entry, Latch;
2119     if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
2120       Entry = 0;
2121       Latch = 1;
2122     } else {
2123       Entry = 1;
2124       Latch = 0;
2125     }
2126 
2127     ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
2128     if (!Init) continue;
2129     Constant *NewInit = ConstantFP::get(DestTy, IsSigned ?
2130                                         (double)Init->getSExtValue() :
2131                                         (double)Init->getZExtValue());
2132 
2133     BinaryOperator *Incr =
2134       dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
2135     if (!Incr) continue;
2136     if (Incr->getOpcode() != Instruction::Add
2137         && Incr->getOpcode() != Instruction::Sub)
2138       continue;
2139 
2140     /* Initialize new IV, double d = 0.0 in above example. */
2141     ConstantInt *C = nullptr;
2142     if (Incr->getOperand(0) == PH)
2143       C = dyn_cast<ConstantInt>(Incr->getOperand(1));
2144     else if (Incr->getOperand(1) == PH)
2145       C = dyn_cast<ConstantInt>(Incr->getOperand(0));
2146     else
2147       continue;
2148 
2149     if (!C) continue;
2150 
2151     // Ignore negative constants, as the code below doesn't handle them
2152     // correctly. TODO: Remove this restriction.
2153     if (!C->getValue().isStrictlyPositive()) continue;
2154 
2155     /* Add new PHINode. */
2156     PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH);
2157 
2158     /* create new increment. '++d' in above example. */
2159     Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
2160     BinaryOperator *NewIncr =
2161       BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
2162                                Instruction::FAdd : Instruction::FSub,
2163                              NewPH, CFP, "IV.S.next.", Incr);
2164 
2165     NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
2166     NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
2167 
2168     /* Remove cast operation */
2169     ShadowUse->replaceAllUsesWith(NewPH);
2170     ShadowUse->eraseFromParent();
2171     Changed = true;
2172     break;
2173   }
2174 }
2175 
2176 /// If Cond has an operand that is an expression of an IV, set the IV user and
2177 /// stride information and return true, otherwise return false.
2178 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
2179   for (IVStrideUse &U : IU)
2180     if (U.getUser() == Cond) {
2181       // NOTE: we could handle setcc instructions with multiple uses here, but
2182       // InstCombine does it as well for simple uses, it's not clear that it
2183       // occurs enough in real life to handle.
2184       CondUse = &U;
2185       return true;
2186     }
2187   return false;
2188 }
2189 
2190 /// Rewrite the loop's terminating condition if it uses a max computation.
2191 ///
2192 /// This is a narrow solution to a specific, but acute, problem. For loops
2193 /// like this:
2194 ///
2195 ///   i = 0;
2196 ///   do {
2197 ///     p[i] = 0.0;
2198 ///   } while (++i < n);
2199 ///
2200 /// the trip count isn't just 'n', because 'n' might not be positive. And
2201 /// unfortunately this can come up even for loops where the user didn't use
2202 /// a C do-while loop. For example, seemingly well-behaved top-test loops
2203 /// will commonly be lowered like this:
2204 ///
2205 ///   if (n > 0) {
2206 ///     i = 0;
2207 ///     do {
2208 ///       p[i] = 0.0;
2209 ///     } while (++i < n);
2210 ///   }
2211 ///
2212 /// and then it's possible for subsequent optimization to obscure the if
2213 /// test in such a way that indvars can't find it.
2214 ///
2215 /// When indvars can't find the if test in loops like this, it creates a
2216 /// max expression, which allows it to give the loop a canonical
2217 /// induction variable:
2218 ///
2219 ///   i = 0;
2220 ///   max = n < 1 ? 1 : n;
2221 ///   do {
2222 ///     p[i] = 0.0;
2223 ///   } while (++i != max);
2224 ///
2225 /// Canonical induction variables are necessary because the loop passes
2226 /// are designed around them. The most obvious example of this is the
2227 /// LoopInfo analysis, which doesn't remember trip count values. It
2228 /// expects to be able to rediscover the trip count each time it is
2229 /// needed, and it does this using a simple analysis that only succeeds if
2230 /// the loop has a canonical induction variable.
2231 ///
2232 /// However, when it comes time to generate code, the maximum operation
2233 /// can be quite costly, especially if it's inside of an outer loop.
2234 ///
2235 /// This function solves this problem by detecting this type of loop and
2236 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
2237 /// the instructions for the maximum computation.
2238 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
2239   // Check that the loop matches the pattern we're looking for.
2240   if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
2241       Cond->getPredicate() != CmpInst::ICMP_NE)
2242     return Cond;
2243 
2244   SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
2245   if (!Sel || !Sel->hasOneUse()) return Cond;
2246 
2247   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
2248   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2249     return Cond;
2250   const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
2251 
2252   // Add one to the backedge-taken count to get the trip count.
2253   const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount);
2254   if (IterationCount != SE.getSCEV(Sel)) return Cond;
2255 
2256   // Check for a max calculation that matches the pattern. There's no check
2257   // for ICMP_ULE here because the comparison would be with zero, which
2258   // isn't interesting.
2259   CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
2260   const SCEVNAryExpr *Max = nullptr;
2261   if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
2262     Pred = ICmpInst::ICMP_SLE;
2263     Max = S;
2264   } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
2265     Pred = ICmpInst::ICMP_SLT;
2266     Max = S;
2267   } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
2268     Pred = ICmpInst::ICMP_ULT;
2269     Max = U;
2270   } else {
2271     // No match; bail.
2272     return Cond;
2273   }
2274 
2275   // To handle a max with more than two operands, this optimization would
2276   // require additional checking and setup.
2277   if (Max->getNumOperands() != 2)
2278     return Cond;
2279 
2280   const SCEV *MaxLHS = Max->getOperand(0);
2281   const SCEV *MaxRHS = Max->getOperand(1);
2282 
2283   // ScalarEvolution canonicalizes constants to the left. For < and >, look
2284   // for a comparison with 1. For <= and >=, a comparison with zero.
2285   if (!MaxLHS ||
2286       (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
2287     return Cond;
2288 
2289   // Check the relevant induction variable for conformance to
2290   // the pattern.
2291   const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
2292   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
2293   if (!AR || !AR->isAffine() ||
2294       AR->getStart() != One ||
2295       AR->getStepRecurrence(SE) != One)
2296     return Cond;
2297 
2298   assert(AR->getLoop() == L &&
2299          "Loop condition operand is an addrec in a different loop!");
2300 
2301   // Check the right operand of the select, and remember it, as it will
2302   // be used in the new comparison instruction.
2303   Value *NewRHS = nullptr;
2304   if (ICmpInst::isTrueWhenEqual(Pred)) {
2305     // Look for n+1, and grab n.
2306     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
2307       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2308          if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2309            NewRHS = BO->getOperand(0);
2310     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
2311       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2312         if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2313           NewRHS = BO->getOperand(0);
2314     if (!NewRHS)
2315       return Cond;
2316   } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
2317     NewRHS = Sel->getOperand(1);
2318   else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
2319     NewRHS = Sel->getOperand(2);
2320   else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS))
2321     NewRHS = SU->getValue();
2322   else
2323     // Max doesn't match expected pattern.
2324     return Cond;
2325 
2326   // Determine the new comparison opcode. It may be signed or unsigned,
2327   // and the original comparison may be either equality or inequality.
2328   if (Cond->getPredicate() == CmpInst::ICMP_EQ)
2329     Pred = CmpInst::getInversePredicate(Pred);
2330 
2331   // Ok, everything looks ok to change the condition into an SLT or SGE and
2332   // delete the max calculation.
2333   ICmpInst *NewCond =
2334     new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
2335 
2336   // Delete the max calculation instructions.
2337   Cond->replaceAllUsesWith(NewCond);
2338   CondUse->setUser(NewCond);
2339   Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
2340   Cond->eraseFromParent();
2341   Sel->eraseFromParent();
2342   if (Cmp->use_empty())
2343     Cmp->eraseFromParent();
2344   return NewCond;
2345 }
2346 
2347 /// Change loop terminating condition to use the postinc iv when possible.
2348 void
2349 LSRInstance::OptimizeLoopTermCond() {
2350   SmallPtrSet<Instruction *, 4> PostIncs;
2351 
2352   // We need a different set of heuristics for rotated and non-rotated loops.
2353   // If a loop is rotated then the latch is also the backedge, so inserting
2354   // post-inc expressions just before the latch is ideal. To reduce live ranges
2355   // it also makes sense to rewrite terminating conditions to use post-inc
2356   // expressions.
2357   //
2358   // If the loop is not rotated then the latch is not a backedge; the latch
2359   // check is done in the loop head. Adding post-inc expressions before the
2360   // latch will cause overlapping live-ranges of pre-inc and post-inc expressions
2361   // in the loop body. In this case we do *not* want to use post-inc expressions
2362   // in the latch check, and we want to insert post-inc expressions before
2363   // the backedge.
2364   BasicBlock *LatchBlock = L->getLoopLatch();
2365   SmallVector<BasicBlock*, 8> ExitingBlocks;
2366   L->getExitingBlocks(ExitingBlocks);
2367   if (llvm::all_of(ExitingBlocks, [&LatchBlock](const BasicBlock *BB) {
2368         return LatchBlock != BB;
2369       })) {
2370     // The backedge doesn't exit the loop; treat this as a head-tested loop.
2371     IVIncInsertPos = LatchBlock->getTerminator();
2372     return;
2373   }
2374 
2375   // Otherwise treat this as a rotated loop.
2376   for (BasicBlock *ExitingBlock : ExitingBlocks) {
2377     // Get the terminating condition for the loop if possible.  If we
2378     // can, we want to change it to use a post-incremented version of its
2379     // induction variable, to allow coalescing the live ranges for the IV into
2380     // one register value.
2381 
2382     BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
2383     if (!TermBr)
2384       continue;
2385     // FIXME: Overly conservative, termination condition could be an 'or' etc..
2386     if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
2387       continue;
2388 
2389     // Search IVUsesByStride to find Cond's IVUse if there is one.
2390     IVStrideUse *CondUse = nullptr;
2391     ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
2392     if (!FindIVUserForCond(Cond, CondUse))
2393       continue;
2394 
2395     // If the trip count is computed in terms of a max (due to ScalarEvolution
2396     // being unable to find a sufficient guard, for example), change the loop
2397     // comparison to use SLT or ULT instead of NE.
2398     // One consequence of doing this now is that it disrupts the count-down
2399     // optimization. That's not always a bad thing though, because in such
2400     // cases it may still be worthwhile to avoid a max.
2401     Cond = OptimizeMax(Cond, CondUse);
2402 
2403     // If this exiting block dominates the latch block, it may also use
2404     // the post-inc value if it won't be shared with other uses.
2405     // Check for dominance.
2406     if (!DT.dominates(ExitingBlock, LatchBlock))
2407       continue;
2408 
2409     // Conservatively avoid trying to use the post-inc value in non-latch
2410     // exits if there may be pre-inc users in intervening blocks.
2411     if (LatchBlock != ExitingBlock)
2412       for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
2413         // Test if the use is reachable from the exiting block. This dominator
2414         // query is a conservative approximation of reachability.
2415         if (&*UI != CondUse &&
2416             !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
2417           // Conservatively assume there may be reuse if the quotient of their
2418           // strides could be a legal scale.
2419           const SCEV *A = IU.getStride(*CondUse, L);
2420           const SCEV *B = IU.getStride(*UI, L);
2421           if (!A || !B) continue;
2422           if (SE.getTypeSizeInBits(A->getType()) !=
2423               SE.getTypeSizeInBits(B->getType())) {
2424             if (SE.getTypeSizeInBits(A->getType()) >
2425                 SE.getTypeSizeInBits(B->getType()))
2426               B = SE.getSignExtendExpr(B, A->getType());
2427             else
2428               A = SE.getSignExtendExpr(A, B->getType());
2429           }
2430           if (const SCEVConstant *D =
2431                 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
2432             const ConstantInt *C = D->getValue();
2433             // Stride of one or negative one can have reuse with non-addresses.
2434             if (C->isOne() || C->isMinusOne())
2435               goto decline_post_inc;
2436             // Avoid weird situations.
2437             if (C->getValue().getMinSignedBits() >= 64 ||
2438                 C->getValue().isMinSignedValue())
2439               goto decline_post_inc;
2440             // Check for possible scaled-address reuse.
2441             if (isAddressUse(TTI, UI->getUser(), UI->getOperandValToReplace())) {
2442               MemAccessTy AccessTy = getAccessType(
2443                   TTI, UI->getUser(), UI->getOperandValToReplace());
2444               int64_t Scale = C->getSExtValue();
2445               if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2446                                             /*BaseOffset=*/0,
2447                                             /*HasBaseReg=*/false, Scale,
2448                                             AccessTy.AddrSpace))
2449                 goto decline_post_inc;
2450               Scale = -Scale;
2451               if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2452                                             /*BaseOffset=*/0,
2453                                             /*HasBaseReg=*/false, Scale,
2454                                             AccessTy.AddrSpace))
2455                 goto decline_post_inc;
2456             }
2457           }
2458         }
2459 
2460     LLVM_DEBUG(dbgs() << "  Change loop exiting icmp to use postinc iv: "
2461                       << *Cond << '\n');
2462 
2463     // It's possible for the setcc instruction to be anywhere in the loop, and
2464     // possible for it to have multiple users.  If it is not immediately before
2465     // the exiting block branch, move it.
2466     if (&*++BasicBlock::iterator(Cond) != TermBr) {
2467       if (Cond->hasOneUse()) {
2468         Cond->moveBefore(TermBr);
2469       } else {
2470         // Clone the terminating condition and insert into the loopend.
2471         ICmpInst *OldCond = Cond;
2472         Cond = cast<ICmpInst>(Cond->clone());
2473         Cond->setName(L->getHeader()->getName() + ".termcond");
2474         ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond);
2475 
2476         // Clone the IVUse, as the old use still exists!
2477         CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
2478         TermBr->replaceUsesOfWith(OldCond, Cond);
2479       }
2480     }
2481 
2482     // If we get to here, we know that we can transform the setcc instruction to
2483     // use the post-incremented version of the IV, allowing us to coalesce the
2484     // live ranges for the IV correctly.
2485     CondUse->transformToPostInc(L);
2486     Changed = true;
2487 
2488     PostIncs.insert(Cond);
2489   decline_post_inc:;
2490   }
2491 
2492   // Determine an insertion point for the loop induction variable increment. It
2493   // must dominate all the post-inc comparisons we just set up, and it must
2494   // dominate the loop latch edge.
2495   IVIncInsertPos = L->getLoopLatch()->getTerminator();
2496   for (Instruction *Inst : PostIncs) {
2497     BasicBlock *BB =
2498       DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
2499                                     Inst->getParent());
2500     if (BB == Inst->getParent())
2501       IVIncInsertPos = Inst;
2502     else if (BB != IVIncInsertPos->getParent())
2503       IVIncInsertPos = BB->getTerminator();
2504   }
2505 }
2506 
2507 /// Determine if the given use can accommodate a fixup at the given offset and
2508 /// other details. If so, update the use and return true.
2509 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset,
2510                                      bool HasBaseReg, LSRUse::KindType Kind,
2511                                      MemAccessTy AccessTy) {
2512   int64_t NewMinOffset = LU.MinOffset;
2513   int64_t NewMaxOffset = LU.MaxOffset;
2514   MemAccessTy NewAccessTy = AccessTy;
2515 
2516   // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
2517   // something conservative, however this can pessimize in the case that one of
2518   // the uses will have all its uses outside the loop, for example.
2519   if (LU.Kind != Kind)
2520     return false;
2521 
2522   // Check for a mismatched access type, and fall back conservatively as needed.
2523   // TODO: Be less conservative when the type is similar and can use the same
2524   // addressing modes.
2525   if (Kind == LSRUse::Address) {
2526     if (AccessTy.MemTy != LU.AccessTy.MemTy) {
2527       NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(),
2528                                             AccessTy.AddrSpace);
2529     }
2530   }
2531 
2532   // Conservatively assume HasBaseReg is true for now.
2533   if (NewOffset < LU.MinOffset) {
2534     if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2535                           LU.MaxOffset - NewOffset, HasBaseReg))
2536       return false;
2537     NewMinOffset = NewOffset;
2538   } else if (NewOffset > LU.MaxOffset) {
2539     if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2540                           NewOffset - LU.MinOffset, HasBaseReg))
2541       return false;
2542     NewMaxOffset = NewOffset;
2543   }
2544 
2545   // Update the use.
2546   LU.MinOffset = NewMinOffset;
2547   LU.MaxOffset = NewMaxOffset;
2548   LU.AccessTy = NewAccessTy;
2549   return true;
2550 }
2551 
2552 /// Return an LSRUse index and an offset value for a fixup which needs the given
2553 /// expression, with the given kind and optional access type.  Either reuse an
2554 /// existing use or create a new one, as needed.
2555 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr,
2556                                                LSRUse::KindType Kind,
2557                                                MemAccessTy AccessTy) {
2558   const SCEV *Copy = Expr;
2559   int64_t Offset = ExtractImmediate(Expr, SE);
2560 
2561   // Basic uses can't accept any offset, for example.
2562   if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr,
2563                         Offset, /*HasBaseReg=*/ true)) {
2564     Expr = Copy;
2565     Offset = 0;
2566   }
2567 
2568   std::pair<UseMapTy::iterator, bool> P =
2569     UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0));
2570   if (!P.second) {
2571     // A use already existed with this base.
2572     size_t LUIdx = P.first->second;
2573     LSRUse &LU = Uses[LUIdx];
2574     if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
2575       // Reuse this use.
2576       return std::make_pair(LUIdx, Offset);
2577   }
2578 
2579   // Create a new use.
2580   size_t LUIdx = Uses.size();
2581   P.first->second = LUIdx;
2582   Uses.push_back(LSRUse(Kind, AccessTy));
2583   LSRUse &LU = Uses[LUIdx];
2584 
2585   LU.MinOffset = Offset;
2586   LU.MaxOffset = Offset;
2587   return std::make_pair(LUIdx, Offset);
2588 }
2589 
2590 /// Delete the given use from the Uses list.
2591 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) {
2592   if (&LU != &Uses.back())
2593     std::swap(LU, Uses.back());
2594   Uses.pop_back();
2595 
2596   // Update RegUses.
2597   RegUses.swapAndDropUse(LUIdx, Uses.size());
2598 }
2599 
2600 /// Look for a use distinct from OrigLU which is has a formula that has the same
2601 /// registers as the given formula.
2602 LSRUse *
2603 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
2604                                        const LSRUse &OrigLU) {
2605   // Search all uses for the formula. This could be more clever.
2606   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2607     LSRUse &LU = Uses[LUIdx];
2608     // Check whether this use is close enough to OrigLU, to see whether it's
2609     // worthwhile looking through its formulae.
2610     // Ignore ICmpZero uses because they may contain formulae generated by
2611     // GenerateICmpZeroScales, in which case adding fixup offsets may
2612     // be invalid.
2613     if (&LU != &OrigLU &&
2614         LU.Kind != LSRUse::ICmpZero &&
2615         LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
2616         LU.WidestFixupType == OrigLU.WidestFixupType &&
2617         LU.HasFormulaWithSameRegs(OrigF)) {
2618       // Scan through this use's formulae.
2619       for (const Formula &F : LU.Formulae) {
2620         // Check to see if this formula has the same registers and symbols
2621         // as OrigF.
2622         if (F.BaseRegs == OrigF.BaseRegs &&
2623             F.ScaledReg == OrigF.ScaledReg &&
2624             F.BaseGV == OrigF.BaseGV &&
2625             F.Scale == OrigF.Scale &&
2626             F.UnfoldedOffset == OrigF.UnfoldedOffset) {
2627           if (F.BaseOffset == 0)
2628             return &LU;
2629           // This is the formula where all the registers and symbols matched;
2630           // there aren't going to be any others. Since we declined it, we
2631           // can skip the rest of the formulae and proceed to the next LSRUse.
2632           break;
2633         }
2634       }
2635     }
2636   }
2637 
2638   // Nothing looked good.
2639   return nullptr;
2640 }
2641 
2642 void LSRInstance::CollectInterestingTypesAndFactors() {
2643   SmallSetVector<const SCEV *, 4> Strides;
2644 
2645   // Collect interesting types and strides.
2646   SmallVector<const SCEV *, 4> Worklist;
2647   for (const IVStrideUse &U : IU) {
2648     const SCEV *Expr = IU.getExpr(U);
2649 
2650     // Collect interesting types.
2651     Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
2652 
2653     // Add strides for mentioned loops.
2654     Worklist.push_back(Expr);
2655     do {
2656       const SCEV *S = Worklist.pop_back_val();
2657       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2658         if (AR->getLoop() == L)
2659           Strides.insert(AR->getStepRecurrence(SE));
2660         Worklist.push_back(AR->getStart());
2661       } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2662         Worklist.append(Add->op_begin(), Add->op_end());
2663       }
2664     } while (!Worklist.empty());
2665   }
2666 
2667   // Compute interesting factors from the set of interesting strides.
2668   for (SmallSetVector<const SCEV *, 4>::const_iterator
2669        I = Strides.begin(), E = Strides.end(); I != E; ++I)
2670     for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
2671          std::next(I); NewStrideIter != E; ++NewStrideIter) {
2672       const SCEV *OldStride = *I;
2673       const SCEV *NewStride = *NewStrideIter;
2674 
2675       if (SE.getTypeSizeInBits(OldStride->getType()) !=
2676           SE.getTypeSizeInBits(NewStride->getType())) {
2677         if (SE.getTypeSizeInBits(OldStride->getType()) >
2678             SE.getTypeSizeInBits(NewStride->getType()))
2679           NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
2680         else
2681           OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
2682       }
2683       if (const SCEVConstant *Factor =
2684             dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
2685                                                         SE, true))) {
2686         if (Factor->getAPInt().getMinSignedBits() <= 64)
2687           Factors.insert(Factor->getAPInt().getSExtValue());
2688       } else if (const SCEVConstant *Factor =
2689                    dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
2690                                                                NewStride,
2691                                                                SE, true))) {
2692         if (Factor->getAPInt().getMinSignedBits() <= 64)
2693           Factors.insert(Factor->getAPInt().getSExtValue());
2694       }
2695     }
2696 
2697   // If all uses use the same type, don't bother looking for truncation-based
2698   // reuse.
2699   if (Types.size() == 1)
2700     Types.clear();
2701 
2702   LLVM_DEBUG(print_factors_and_types(dbgs()));
2703 }
2704 
2705 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in
2706 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to
2707 /// IVStrideUses, we could partially skip this.
2708 static User::op_iterator
2709 findIVOperand(User::op_iterator OI, User::op_iterator OE,
2710               Loop *L, ScalarEvolution &SE) {
2711   for(; OI != OE; ++OI) {
2712     if (Instruction *Oper = dyn_cast<Instruction>(*OI)) {
2713       if (!SE.isSCEVable(Oper->getType()))
2714         continue;
2715 
2716       if (const SCEVAddRecExpr *AR =
2717           dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) {
2718         if (AR->getLoop() == L)
2719           break;
2720       }
2721     }
2722   }
2723   return OI;
2724 }
2725 
2726 /// IVChain logic must consistently peek base TruncInst operands, so wrap it in
2727 /// a convenient helper.
2728 static Value *getWideOperand(Value *Oper) {
2729   if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper))
2730     return Trunc->getOperand(0);
2731   return Oper;
2732 }
2733 
2734 /// Return true if we allow an IV chain to include both types.
2735 static bool isCompatibleIVType(Value *LVal, Value *RVal) {
2736   Type *LType = LVal->getType();
2737   Type *RType = RVal->getType();
2738   return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy() &&
2739                               // Different address spaces means (possibly)
2740                               // different types of the pointer implementation,
2741                               // e.g. i16 vs i32 so disallow that.
2742                               (LType->getPointerAddressSpace() ==
2743                                RType->getPointerAddressSpace()));
2744 }
2745 
2746 /// Return an approximation of this SCEV expression's "base", or NULL for any
2747 /// constant. Returning the expression itself is conservative. Returning a
2748 /// deeper subexpression is more precise and valid as long as it isn't less
2749 /// complex than another subexpression. For expressions involving multiple
2750 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids
2751 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i],
2752 /// IVInc==b-a.
2753 ///
2754 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost
2755 /// SCEVUnknown, we simply return the rightmost SCEV operand.
2756 static const SCEV *getExprBase(const SCEV *S) {
2757   switch (S->getSCEVType()) {
2758   default: // uncluding scUnknown.
2759     return S;
2760   case scConstant:
2761     return nullptr;
2762   case scTruncate:
2763     return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand());
2764   case scZeroExtend:
2765     return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand());
2766   case scSignExtend:
2767     return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand());
2768   case scAddExpr: {
2769     // Skip over scaled operands (scMulExpr) to follow add operands as long as
2770     // there's nothing more complex.
2771     // FIXME: not sure if we want to recognize negation.
2772     const SCEVAddExpr *Add = cast<SCEVAddExpr>(S);
2773     for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()),
2774            E(Add->op_begin()); I != E; ++I) {
2775       const SCEV *SubExpr = *I;
2776       if (SubExpr->getSCEVType() == scAddExpr)
2777         return getExprBase(SubExpr);
2778 
2779       if (SubExpr->getSCEVType() != scMulExpr)
2780         return SubExpr;
2781     }
2782     return S; // all operands are scaled, be conservative.
2783   }
2784   case scAddRecExpr:
2785     return getExprBase(cast<SCEVAddRecExpr>(S)->getStart());
2786   }
2787 }
2788 
2789 /// Return true if the chain increment is profitable to expand into a loop
2790 /// invariant value, which may require its own register. A profitable chain
2791 /// increment will be an offset relative to the same base. We allow such offsets
2792 /// to potentially be used as chain increment as long as it's not obviously
2793 /// expensive to expand using real instructions.
2794 bool IVChain::isProfitableIncrement(const SCEV *OperExpr,
2795                                     const SCEV *IncExpr,
2796                                     ScalarEvolution &SE) {
2797   // Aggressively form chains when -stress-ivchain.
2798   if (StressIVChain)
2799     return true;
2800 
2801   // Do not replace a constant offset from IV head with a nonconstant IV
2802   // increment.
2803   if (!isa<SCEVConstant>(IncExpr)) {
2804     const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand));
2805     if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr)))
2806       return false;
2807   }
2808 
2809   SmallPtrSet<const SCEV*, 8> Processed;
2810   return !isHighCostExpansion(IncExpr, Processed, SE);
2811 }
2812 
2813 /// Return true if the number of registers needed for the chain is estimated to
2814 /// be less than the number required for the individual IV users. First prohibit
2815 /// any IV users that keep the IV live across increments (the Users set should
2816 /// be empty). Next count the number and type of increments in the chain.
2817 ///
2818 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't
2819 /// effectively use postinc addressing modes. Only consider it profitable it the
2820 /// increments can be computed in fewer registers when chained.
2821 ///
2822 /// TODO: Consider IVInc free if it's already used in another chains.
2823 static bool isProfitableChain(IVChain &Chain,
2824                               SmallPtrSetImpl<Instruction *> &Users,
2825                               ScalarEvolution &SE,
2826                               const TargetTransformInfo &TTI) {
2827   if (StressIVChain)
2828     return true;
2829 
2830   if (!Chain.hasIncs())
2831     return false;
2832 
2833   if (!Users.empty()) {
2834     LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n";
2835                for (Instruction *Inst
2836                     : Users) { dbgs() << "  " << *Inst << "\n"; });
2837     return false;
2838   }
2839   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
2840 
2841   // The chain itself may require a register, so intialize cost to 1.
2842   int cost = 1;
2843 
2844   // A complete chain likely eliminates the need for keeping the original IV in
2845   // a register. LSR does not currently know how to form a complete chain unless
2846   // the header phi already exists.
2847   if (isa<PHINode>(Chain.tailUserInst())
2848       && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) {
2849     --cost;
2850   }
2851   const SCEV *LastIncExpr = nullptr;
2852   unsigned NumConstIncrements = 0;
2853   unsigned NumVarIncrements = 0;
2854   unsigned NumReusedIncrements = 0;
2855 
2856   if (TTI.isProfitableLSRChainElement(Chain.Incs[0].UserInst))
2857     return true;
2858 
2859   for (const IVInc &Inc : Chain) {
2860     if (TTI.isProfitableLSRChainElement(Inc.UserInst))
2861       return true;
2862 
2863     if (Inc.IncExpr->isZero())
2864       continue;
2865 
2866     // Incrementing by zero or some constant is neutral. We assume constants can
2867     // be folded into an addressing mode or an add's immediate operand.
2868     if (isa<SCEVConstant>(Inc.IncExpr)) {
2869       ++NumConstIncrements;
2870       continue;
2871     }
2872 
2873     if (Inc.IncExpr == LastIncExpr)
2874       ++NumReusedIncrements;
2875     else
2876       ++NumVarIncrements;
2877 
2878     LastIncExpr = Inc.IncExpr;
2879   }
2880   // An IV chain with a single increment is handled by LSR's postinc
2881   // uses. However, a chain with multiple increments requires keeping the IV's
2882   // value live longer than it needs to be if chained.
2883   if (NumConstIncrements > 1)
2884     --cost;
2885 
2886   // Materializing increment expressions in the preheader that didn't exist in
2887   // the original code may cost a register. For example, sign-extended array
2888   // indices can produce ridiculous increments like this:
2889   // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64)))
2890   cost += NumVarIncrements;
2891 
2892   // Reusing variable increments likely saves a register to hold the multiple of
2893   // the stride.
2894   cost -= NumReusedIncrements;
2895 
2896   LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost
2897                     << "\n");
2898 
2899   return cost < 0;
2900 }
2901 
2902 /// Add this IV user to an existing chain or make it the head of a new chain.
2903 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper,
2904                                    SmallVectorImpl<ChainUsers> &ChainUsersVec) {
2905   // When IVs are used as types of varying widths, they are generally converted
2906   // to a wider type with some uses remaining narrow under a (free) trunc.
2907   Value *const NextIV = getWideOperand(IVOper);
2908   const SCEV *const OperExpr = SE.getSCEV(NextIV);
2909   const SCEV *const OperExprBase = getExprBase(OperExpr);
2910 
2911   // Visit all existing chains. Check if its IVOper can be computed as a
2912   // profitable loop invariant increment from the last link in the Chain.
2913   unsigned ChainIdx = 0, NChains = IVChainVec.size();
2914   const SCEV *LastIncExpr = nullptr;
2915   for (; ChainIdx < NChains; ++ChainIdx) {
2916     IVChain &Chain = IVChainVec[ChainIdx];
2917 
2918     // Prune the solution space aggressively by checking that both IV operands
2919     // are expressions that operate on the same unscaled SCEVUnknown. This
2920     // "base" will be canceled by the subsequent getMinusSCEV call. Checking
2921     // first avoids creating extra SCEV expressions.
2922     if (!StressIVChain && Chain.ExprBase != OperExprBase)
2923       continue;
2924 
2925     Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand);
2926     if (!isCompatibleIVType(PrevIV, NextIV))
2927       continue;
2928 
2929     // A phi node terminates a chain.
2930     if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst()))
2931       continue;
2932 
2933     // The increment must be loop-invariant so it can be kept in a register.
2934     const SCEV *PrevExpr = SE.getSCEV(PrevIV);
2935     const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr);
2936     if (!SE.isLoopInvariant(IncExpr, L))
2937       continue;
2938 
2939     if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) {
2940       LastIncExpr = IncExpr;
2941       break;
2942     }
2943   }
2944   // If we haven't found a chain, create a new one, unless we hit the max. Don't
2945   // bother for phi nodes, because they must be last in the chain.
2946   if (ChainIdx == NChains) {
2947     if (isa<PHINode>(UserInst))
2948       return;
2949     if (NChains >= MaxChains && !StressIVChain) {
2950       LLVM_DEBUG(dbgs() << "IV Chain Limit\n");
2951       return;
2952     }
2953     LastIncExpr = OperExpr;
2954     // IVUsers may have skipped over sign/zero extensions. We don't currently
2955     // attempt to form chains involving extensions unless they can be hoisted
2956     // into this loop's AddRec.
2957     if (!isa<SCEVAddRecExpr>(LastIncExpr))
2958       return;
2959     ++NChains;
2960     IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr),
2961                                  OperExprBase));
2962     ChainUsersVec.resize(NChains);
2963     LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst
2964                       << ") IV=" << *LastIncExpr << "\n");
2965   } else {
2966     LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << "  Inc: (" << *UserInst
2967                       << ") IV+" << *LastIncExpr << "\n");
2968     // Add this IV user to the end of the chain.
2969     IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr));
2970   }
2971   IVChain &Chain = IVChainVec[ChainIdx];
2972 
2973   SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers;
2974   // This chain's NearUsers become FarUsers.
2975   if (!LastIncExpr->isZero()) {
2976     ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(),
2977                                             NearUsers.end());
2978     NearUsers.clear();
2979   }
2980 
2981   // All other uses of IVOperand become near uses of the chain.
2982   // We currently ignore intermediate values within SCEV expressions, assuming
2983   // they will eventually be used be the current chain, or can be computed
2984   // from one of the chain increments. To be more precise we could
2985   // transitively follow its user and only add leaf IV users to the set.
2986   for (User *U : IVOper->users()) {
2987     Instruction *OtherUse = dyn_cast<Instruction>(U);
2988     if (!OtherUse)
2989       continue;
2990     // Uses in the chain will no longer be uses if the chain is formed.
2991     // Include the head of the chain in this iteration (not Chain.begin()).
2992     IVChain::const_iterator IncIter = Chain.Incs.begin();
2993     IVChain::const_iterator IncEnd = Chain.Incs.end();
2994     for( ; IncIter != IncEnd; ++IncIter) {
2995       if (IncIter->UserInst == OtherUse)
2996         break;
2997     }
2998     if (IncIter != IncEnd)
2999       continue;
3000 
3001     if (SE.isSCEVable(OtherUse->getType())
3002         && !isa<SCEVUnknown>(SE.getSCEV(OtherUse))
3003         && IU.isIVUserOrOperand(OtherUse)) {
3004       continue;
3005     }
3006     NearUsers.insert(OtherUse);
3007   }
3008 
3009   // Since this user is part of the chain, it's no longer considered a use
3010   // of the chain.
3011   ChainUsersVec[ChainIdx].FarUsers.erase(UserInst);
3012 }
3013 
3014 /// Populate the vector of Chains.
3015 ///
3016 /// This decreases ILP at the architecture level. Targets with ample registers,
3017 /// multiple memory ports, and no register renaming probably don't want
3018 /// this. However, such targets should probably disable LSR altogether.
3019 ///
3020 /// The job of LSR is to make a reasonable choice of induction variables across
3021 /// the loop. Subsequent passes can easily "unchain" computation exposing more
3022 /// ILP *within the loop* if the target wants it.
3023 ///
3024 /// Finding the best IV chain is potentially a scheduling problem. Since LSR
3025 /// will not reorder memory operations, it will recognize this as a chain, but
3026 /// will generate redundant IV increments. Ideally this would be corrected later
3027 /// by a smart scheduler:
3028 ///        = A[i]
3029 ///        = A[i+x]
3030 /// A[i]   =
3031 /// A[i+x] =
3032 ///
3033 /// TODO: Walk the entire domtree within this loop, not just the path to the
3034 /// loop latch. This will discover chains on side paths, but requires
3035 /// maintaining multiple copies of the Chains state.
3036 void LSRInstance::CollectChains() {
3037   LLVM_DEBUG(dbgs() << "Collecting IV Chains.\n");
3038   SmallVector<ChainUsers, 8> ChainUsersVec;
3039 
3040   SmallVector<BasicBlock *,8> LatchPath;
3041   BasicBlock *LoopHeader = L->getHeader();
3042   for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch());
3043        Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) {
3044     LatchPath.push_back(Rung->getBlock());
3045   }
3046   LatchPath.push_back(LoopHeader);
3047 
3048   // Walk the instruction stream from the loop header to the loop latch.
3049   for (BasicBlock *BB : reverse(LatchPath)) {
3050     for (Instruction &I : *BB) {
3051       // Skip instructions that weren't seen by IVUsers analysis.
3052       if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I))
3053         continue;
3054 
3055       // Ignore users that are part of a SCEV expression. This way we only
3056       // consider leaf IV Users. This effectively rediscovers a portion of
3057       // IVUsers analysis but in program order this time.
3058       if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I)))
3059           continue;
3060 
3061       // Remove this instruction from any NearUsers set it may be in.
3062       for (unsigned ChainIdx = 0, NChains = IVChainVec.size();
3063            ChainIdx < NChains; ++ChainIdx) {
3064         ChainUsersVec[ChainIdx].NearUsers.erase(&I);
3065       }
3066       // Search for operands that can be chained.
3067       SmallPtrSet<Instruction*, 4> UniqueOperands;
3068       User::op_iterator IVOpEnd = I.op_end();
3069       User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE);
3070       while (IVOpIter != IVOpEnd) {
3071         Instruction *IVOpInst = cast<Instruction>(*IVOpIter);
3072         if (UniqueOperands.insert(IVOpInst).second)
3073           ChainInstruction(&I, IVOpInst, ChainUsersVec);
3074         IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
3075       }
3076     } // Continue walking down the instructions.
3077   } // Continue walking down the domtree.
3078   // Visit phi backedges to determine if the chain can generate the IV postinc.
3079   for (PHINode &PN : L->getHeader()->phis()) {
3080     if (!SE.isSCEVable(PN.getType()))
3081       continue;
3082 
3083     Instruction *IncV =
3084         dyn_cast<Instruction>(PN.getIncomingValueForBlock(L->getLoopLatch()));
3085     if (IncV)
3086       ChainInstruction(&PN, IncV, ChainUsersVec);
3087   }
3088   // Remove any unprofitable chains.
3089   unsigned ChainIdx = 0;
3090   for (unsigned UsersIdx = 0, NChains = IVChainVec.size();
3091        UsersIdx < NChains; ++UsersIdx) {
3092     if (!isProfitableChain(IVChainVec[UsersIdx],
3093                            ChainUsersVec[UsersIdx].FarUsers, SE, TTI))
3094       continue;
3095     // Preserve the chain at UsesIdx.
3096     if (ChainIdx != UsersIdx)
3097       IVChainVec[ChainIdx] = IVChainVec[UsersIdx];
3098     FinalizeChain(IVChainVec[ChainIdx]);
3099     ++ChainIdx;
3100   }
3101   IVChainVec.resize(ChainIdx);
3102 }
3103 
3104 void LSRInstance::FinalizeChain(IVChain &Chain) {
3105   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
3106   LLVM_DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n");
3107 
3108   for (const IVInc &Inc : Chain) {
3109     LLVM_DEBUG(dbgs() << "        Inc: " << *Inc.UserInst << "\n");
3110     auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand);
3111     assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand");
3112     IVIncSet.insert(UseI);
3113   }
3114 }
3115 
3116 /// Return true if the IVInc can be folded into an addressing mode.
3117 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst,
3118                              Value *Operand, const TargetTransformInfo &TTI) {
3119   const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr);
3120   if (!IncConst || !isAddressUse(TTI, UserInst, Operand))
3121     return false;
3122 
3123   if (IncConst->getAPInt().getMinSignedBits() > 64)
3124     return false;
3125 
3126   MemAccessTy AccessTy = getAccessType(TTI, UserInst, Operand);
3127   int64_t IncOffset = IncConst->getValue()->getSExtValue();
3128   if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr,
3129                         IncOffset, /*HasBaseReg=*/false))
3130     return false;
3131 
3132   return true;
3133 }
3134 
3135 /// Generate an add or subtract for each IVInc in a chain to materialize the IV
3136 /// user's operand from the previous IV user's operand.
3137 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
3138                                   SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
3139   // Find the new IVOperand for the head of the chain. It may have been replaced
3140   // by LSR.
3141   const IVInc &Head = Chain.Incs[0];
3142   User::op_iterator IVOpEnd = Head.UserInst->op_end();
3143   // findIVOperand returns IVOpEnd if it can no longer find a valid IV user.
3144   User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(),
3145                                              IVOpEnd, L, SE);
3146   Value *IVSrc = nullptr;
3147   while (IVOpIter != IVOpEnd) {
3148     IVSrc = getWideOperand(*IVOpIter);
3149 
3150     // If this operand computes the expression that the chain needs, we may use
3151     // it. (Check this after setting IVSrc which is used below.)
3152     //
3153     // Note that if Head.IncExpr is wider than IVSrc, then this phi is too
3154     // narrow for the chain, so we can no longer use it. We do allow using a
3155     // wider phi, assuming the LSR checked for free truncation. In that case we
3156     // should already have a truncate on this operand such that
3157     // getSCEV(IVSrc) == IncExpr.
3158     if (SE.getSCEV(*IVOpIter) == Head.IncExpr
3159         || SE.getSCEV(IVSrc) == Head.IncExpr) {
3160       break;
3161     }
3162     IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
3163   }
3164   if (IVOpIter == IVOpEnd) {
3165     // Gracefully give up on this chain.
3166     LLVM_DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n");
3167     return;
3168   }
3169   assert(IVSrc && "Failed to find IV chain source");
3170 
3171   LLVM_DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n");
3172   Type *IVTy = IVSrc->getType();
3173   Type *IntTy = SE.getEffectiveSCEVType(IVTy);
3174   const SCEV *LeftOverExpr = nullptr;
3175   for (const IVInc &Inc : Chain) {
3176     Instruction *InsertPt = Inc.UserInst;
3177     if (isa<PHINode>(InsertPt))
3178       InsertPt = L->getLoopLatch()->getTerminator();
3179 
3180     // IVOper will replace the current IV User's operand. IVSrc is the IV
3181     // value currently held in a register.
3182     Value *IVOper = IVSrc;
3183     if (!Inc.IncExpr->isZero()) {
3184       // IncExpr was the result of subtraction of two narrow values, so must
3185       // be signed.
3186       const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy);
3187       LeftOverExpr = LeftOverExpr ?
3188         SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr;
3189     }
3190     if (LeftOverExpr && !LeftOverExpr->isZero()) {
3191       // Expand the IV increment.
3192       Rewriter.clearPostInc();
3193       Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt);
3194       const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc),
3195                                              SE.getUnknown(IncV));
3196       IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt);
3197 
3198       // If an IV increment can't be folded, use it as the next IV value.
3199       if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) {
3200         assert(IVTy == IVOper->getType() && "inconsistent IV increment type");
3201         IVSrc = IVOper;
3202         LeftOverExpr = nullptr;
3203       }
3204     }
3205     Type *OperTy = Inc.IVOperand->getType();
3206     if (IVTy != OperTy) {
3207       assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) &&
3208              "cannot extend a chained IV");
3209       IRBuilder<> Builder(InsertPt);
3210       IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain");
3211     }
3212     Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper);
3213     if (auto *OperandIsInstr = dyn_cast<Instruction>(Inc.IVOperand))
3214       DeadInsts.emplace_back(OperandIsInstr);
3215   }
3216   // If LSR created a new, wider phi, we may also replace its postinc. We only
3217   // do this if we also found a wide value for the head of the chain.
3218   if (isa<PHINode>(Chain.tailUserInst())) {
3219     for (PHINode &Phi : L->getHeader()->phis()) {
3220       if (!isCompatibleIVType(&Phi, IVSrc))
3221         continue;
3222       Instruction *PostIncV = dyn_cast<Instruction>(
3223           Phi.getIncomingValueForBlock(L->getLoopLatch()));
3224       if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc)))
3225         continue;
3226       Value *IVOper = IVSrc;
3227       Type *PostIncTy = PostIncV->getType();
3228       if (IVTy != PostIncTy) {
3229         assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types");
3230         IRBuilder<> Builder(L->getLoopLatch()->getTerminator());
3231         Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc());
3232         IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain");
3233       }
3234       Phi.replaceUsesOfWith(PostIncV, IVOper);
3235       DeadInsts.emplace_back(PostIncV);
3236     }
3237   }
3238 }
3239 
3240 void LSRInstance::CollectFixupsAndInitialFormulae() {
3241   BranchInst *ExitBranch = nullptr;
3242   bool SaveCmp = TTI.canSaveCmp(L, &ExitBranch, &SE, &LI, &DT, &AC, &TLI);
3243 
3244   for (const IVStrideUse &U : IU) {
3245     Instruction *UserInst = U.getUser();
3246     // Skip IV users that are part of profitable IV Chains.
3247     User::op_iterator UseI =
3248         find(UserInst->operands(), U.getOperandValToReplace());
3249     assert(UseI != UserInst->op_end() && "cannot find IV operand");
3250     if (IVIncSet.count(UseI)) {
3251       LLVM_DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n');
3252       continue;
3253     }
3254 
3255     LSRUse::KindType Kind = LSRUse::Basic;
3256     MemAccessTy AccessTy;
3257     if (isAddressUse(TTI, UserInst, U.getOperandValToReplace())) {
3258       Kind = LSRUse::Address;
3259       AccessTy = getAccessType(TTI, UserInst, U.getOperandValToReplace());
3260     }
3261 
3262     const SCEV *S = IU.getExpr(U);
3263     PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops();
3264 
3265     // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
3266     // (N - i == 0), and this allows (N - i) to be the expression that we work
3267     // with rather than just N or i, so we can consider the register
3268     // requirements for both N and i at the same time. Limiting this code to
3269     // equality icmps is not a problem because all interesting loops use
3270     // equality icmps, thanks to IndVarSimplify.
3271     if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst)) {
3272       // If CI can be saved in some target, like replaced inside hardware loop
3273       // in PowerPC, no need to generate initial formulae for it.
3274       if (SaveCmp && CI == dyn_cast<ICmpInst>(ExitBranch->getCondition()))
3275         continue;
3276       if (CI->isEquality()) {
3277         // Swap the operands if needed to put the OperandValToReplace on the
3278         // left, for consistency.
3279         Value *NV = CI->getOperand(1);
3280         if (NV == U.getOperandValToReplace()) {
3281           CI->setOperand(1, CI->getOperand(0));
3282           CI->setOperand(0, NV);
3283           NV = CI->getOperand(1);
3284           Changed = true;
3285         }
3286 
3287         // x == y  -->  x - y == 0
3288         const SCEV *N = SE.getSCEV(NV);
3289         if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) {
3290           // S is normalized, so normalize N before folding it into S
3291           // to keep the result normalized.
3292           N = normalizeForPostIncUse(N, TmpPostIncLoops, SE);
3293           Kind = LSRUse::ICmpZero;
3294           S = SE.getMinusSCEV(N, S);
3295         }
3296 
3297         // -1 and the negations of all interesting strides (except the negation
3298         // of -1) are now also interesting.
3299         for (size_t i = 0, e = Factors.size(); i != e; ++i)
3300           if (Factors[i] != -1)
3301             Factors.insert(-(uint64_t)Factors[i]);
3302         Factors.insert(-1);
3303       }
3304     }
3305 
3306     // Get or create an LSRUse.
3307     std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
3308     size_t LUIdx = P.first;
3309     int64_t Offset = P.second;
3310     LSRUse &LU = Uses[LUIdx];
3311 
3312     // Record the fixup.
3313     LSRFixup &LF = LU.getNewFixup();
3314     LF.UserInst = UserInst;
3315     LF.OperandValToReplace = U.getOperandValToReplace();
3316     LF.PostIncLoops = TmpPostIncLoops;
3317     LF.Offset = Offset;
3318     LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3319 
3320     if (!LU.WidestFixupType ||
3321         SE.getTypeSizeInBits(LU.WidestFixupType) <
3322         SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3323       LU.WidestFixupType = LF.OperandValToReplace->getType();
3324 
3325     // If this is the first use of this LSRUse, give it a formula.
3326     if (LU.Formulae.empty()) {
3327       InsertInitialFormula(S, LU, LUIdx);
3328       CountRegisters(LU.Formulae.back(), LUIdx);
3329     }
3330   }
3331 
3332   LLVM_DEBUG(print_fixups(dbgs()));
3333 }
3334 
3335 /// Insert a formula for the given expression into the given use, separating out
3336 /// loop-variant portions from loop-invariant and loop-computable portions.
3337 void
3338 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
3339   // Mark uses whose expressions cannot be expanded.
3340   if (!isSafeToExpand(S, SE))
3341     LU.RigidFormula = true;
3342 
3343   Formula F;
3344   F.initialMatch(S, L, SE);
3345   bool Inserted = InsertFormula(LU, LUIdx, F);
3346   assert(Inserted && "Initial formula already exists!"); (void)Inserted;
3347 }
3348 
3349 /// Insert a simple single-register formula for the given expression into the
3350 /// given use.
3351 void
3352 LSRInstance::InsertSupplementalFormula(const SCEV *S,
3353                                        LSRUse &LU, size_t LUIdx) {
3354   Formula F;
3355   F.BaseRegs.push_back(S);
3356   F.HasBaseReg = true;
3357   bool Inserted = InsertFormula(LU, LUIdx, F);
3358   assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
3359 }
3360 
3361 /// Note which registers are used by the given formula, updating RegUses.
3362 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
3363   if (F.ScaledReg)
3364     RegUses.countRegister(F.ScaledReg, LUIdx);
3365   for (const SCEV *BaseReg : F.BaseRegs)
3366     RegUses.countRegister(BaseReg, LUIdx);
3367 }
3368 
3369 /// If the given formula has not yet been inserted, add it to the list, and
3370 /// return true. Return false otherwise.
3371 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
3372   // Do not insert formula that we will not be able to expand.
3373   assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) &&
3374          "Formula is illegal");
3375 
3376   if (!LU.InsertFormula(F, *L))
3377     return false;
3378 
3379   CountRegisters(F, LUIdx);
3380   return true;
3381 }
3382 
3383 /// Check for other uses of loop-invariant values which we're tracking. These
3384 /// other uses will pin these values in registers, making them less profitable
3385 /// for elimination.
3386 /// TODO: This currently misses non-constant addrec step registers.
3387 /// TODO: Should this give more weight to users inside the loop?
3388 void
3389 LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
3390   SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
3391   SmallPtrSet<const SCEV *, 32> Visited;
3392 
3393   while (!Worklist.empty()) {
3394     const SCEV *S = Worklist.pop_back_val();
3395 
3396     // Don't process the same SCEV twice
3397     if (!Visited.insert(S).second)
3398       continue;
3399 
3400     if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
3401       Worklist.append(N->op_begin(), N->op_end());
3402     else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
3403       Worklist.push_back(C->getOperand());
3404     else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
3405       Worklist.push_back(D->getLHS());
3406       Worklist.push_back(D->getRHS());
3407     } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) {
3408       const Value *V = US->getValue();
3409       if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
3410         // Look for instructions defined outside the loop.
3411         if (L->contains(Inst)) continue;
3412       } else if (isa<UndefValue>(V))
3413         // Undef doesn't have a live range, so it doesn't matter.
3414         continue;
3415       for (const Use &U : V->uses()) {
3416         const Instruction *UserInst = dyn_cast<Instruction>(U.getUser());
3417         // Ignore non-instructions.
3418         if (!UserInst)
3419           continue;
3420         // Ignore instructions in other functions (as can happen with
3421         // Constants).
3422         if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
3423           continue;
3424         // Ignore instructions not dominated by the loop.
3425         const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
3426           UserInst->getParent() :
3427           cast<PHINode>(UserInst)->getIncomingBlock(
3428             PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
3429         if (!DT.dominates(L->getHeader(), UseBB))
3430           continue;
3431         // Don't bother if the instruction is in a BB which ends in an EHPad.
3432         if (UseBB->getTerminator()->isEHPad())
3433           continue;
3434         // Don't bother rewriting PHIs in catchswitch blocks.
3435         if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator()))
3436           continue;
3437         // Ignore uses which are part of other SCEV expressions, to avoid
3438         // analyzing them multiple times.
3439         if (SE.isSCEVable(UserInst->getType())) {
3440           const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
3441           // If the user is a no-op, look through to its uses.
3442           if (!isa<SCEVUnknown>(UserS))
3443             continue;
3444           if (UserS == US) {
3445             Worklist.push_back(
3446               SE.getUnknown(const_cast<Instruction *>(UserInst)));
3447             continue;
3448           }
3449         }
3450         // Ignore icmp instructions which are already being analyzed.
3451         if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
3452           unsigned OtherIdx = !U.getOperandNo();
3453           Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
3454           if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L))
3455             continue;
3456         }
3457 
3458         std::pair<size_t, int64_t> P = getUse(
3459             S, LSRUse::Basic, MemAccessTy());
3460         size_t LUIdx = P.first;
3461         int64_t Offset = P.second;
3462         LSRUse &LU = Uses[LUIdx];
3463         LSRFixup &LF = LU.getNewFixup();
3464         LF.UserInst = const_cast<Instruction *>(UserInst);
3465         LF.OperandValToReplace = U;
3466         LF.Offset = Offset;
3467         LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3468         if (!LU.WidestFixupType ||
3469             SE.getTypeSizeInBits(LU.WidestFixupType) <
3470             SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3471           LU.WidestFixupType = LF.OperandValToReplace->getType();
3472         InsertSupplementalFormula(US, LU, LUIdx);
3473         CountRegisters(LU.Formulae.back(), Uses.size() - 1);
3474         break;
3475       }
3476     }
3477   }
3478 }
3479 
3480 /// Split S into subexpressions which can be pulled out into separate
3481 /// registers. If C is non-null, multiply each subexpression by C.
3482 ///
3483 /// Return remainder expression after factoring the subexpressions captured by
3484 /// Ops. If Ops is complete, return NULL.
3485 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C,
3486                                    SmallVectorImpl<const SCEV *> &Ops,
3487                                    const Loop *L,
3488                                    ScalarEvolution &SE,
3489                                    unsigned Depth = 0) {
3490   // Arbitrarily cap recursion to protect compile time.
3491   if (Depth >= 3)
3492     return S;
3493 
3494   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3495     // Break out add operands.
3496     for (const SCEV *S : Add->operands()) {
3497       const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1);
3498       if (Remainder)
3499         Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3500     }
3501     return nullptr;
3502   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
3503     // Split a non-zero base out of an addrec.
3504     if (AR->getStart()->isZero() || !AR->isAffine())
3505       return S;
3506 
3507     const SCEV *Remainder = CollectSubexprs(AR->getStart(),
3508                                             C, Ops, L, SE, Depth+1);
3509     // Split the non-zero AddRec unless it is part of a nested recurrence that
3510     // does not pertain to this loop.
3511     if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) {
3512       Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3513       Remainder = nullptr;
3514     }
3515     if (Remainder != AR->getStart()) {
3516       if (!Remainder)
3517         Remainder = SE.getConstant(AR->getType(), 0);
3518       return SE.getAddRecExpr(Remainder,
3519                               AR->getStepRecurrence(SE),
3520                               AR->getLoop(),
3521                               //FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
3522                               SCEV::FlagAnyWrap);
3523     }
3524   } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3525     // Break (C * (a + b + c)) into C*a + C*b + C*c.
3526     if (Mul->getNumOperands() != 2)
3527       return S;
3528     if (const SCEVConstant *Op0 =
3529         dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3530       C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0;
3531       const SCEV *Remainder =
3532         CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1);
3533       if (Remainder)
3534         Ops.push_back(SE.getMulExpr(C, Remainder));
3535       return nullptr;
3536     }
3537   }
3538   return S;
3539 }
3540 
3541 /// Return true if the SCEV represents a value that may end up as a
3542 /// post-increment operation.
3543 static bool mayUsePostIncMode(const TargetTransformInfo &TTI,
3544                               LSRUse &LU, const SCEV *S, const Loop *L,
3545                               ScalarEvolution &SE) {
3546   if (LU.Kind != LSRUse::Address ||
3547       !LU.AccessTy.getType()->isIntOrIntVectorTy())
3548     return false;
3549   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S);
3550   if (!AR)
3551     return false;
3552   const SCEV *LoopStep = AR->getStepRecurrence(SE);
3553   if (!isa<SCEVConstant>(LoopStep))
3554     return false;
3555   // Check if a post-indexed load/store can be used.
3556   if (TTI.isIndexedLoadLegal(TTI.MIM_PostInc, AR->getType()) ||
3557       TTI.isIndexedStoreLegal(TTI.MIM_PostInc, AR->getType())) {
3558     const SCEV *LoopStart = AR->getStart();
3559     if (!isa<SCEVConstant>(LoopStart) && SE.isLoopInvariant(LoopStart, L))
3560       return true;
3561   }
3562   return false;
3563 }
3564 
3565 /// Helper function for LSRInstance::GenerateReassociations.
3566 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
3567                                              const Formula &Base,
3568                                              unsigned Depth, size_t Idx,
3569                                              bool IsScaledReg) {
3570   const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3571   // Don't generate reassociations for the base register of a value that
3572   // may generate a post-increment operator. The reason is that the
3573   // reassociations cause extra base+register formula to be created,
3574   // and possibly chosen, but the post-increment is more efficient.
3575   if (TTI.shouldFavorPostInc() && mayUsePostIncMode(TTI, LU, BaseReg, L, SE))
3576     return;
3577   SmallVector<const SCEV *, 8> AddOps;
3578   const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE);
3579   if (Remainder)
3580     AddOps.push_back(Remainder);
3581 
3582   if (AddOps.size() == 1)
3583     return;
3584 
3585   for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
3586                                                      JE = AddOps.end();
3587        J != JE; ++J) {
3588     // Loop-variant "unknown" values are uninteresting; we won't be able to
3589     // do anything meaningful with them.
3590     if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L))
3591       continue;
3592 
3593     // Don't pull a constant into a register if the constant could be folded
3594     // into an immediate field.
3595     if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3596                          LU.AccessTy, *J, Base.getNumRegs() > 1))
3597       continue;
3598 
3599     // Collect all operands except *J.
3600     SmallVector<const SCEV *, 8> InnerAddOps(
3601         ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J);
3602     InnerAddOps.append(std::next(J),
3603                        ((const SmallVector<const SCEV *, 8> &)AddOps).end());
3604 
3605     // Don't leave just a constant behind in a register if the constant could
3606     // be folded into an immediate field.
3607     if (InnerAddOps.size() == 1 &&
3608         isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3609                          LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1))
3610       continue;
3611 
3612     const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
3613     if (InnerSum->isZero())
3614       continue;
3615     Formula F = Base;
3616 
3617     // Add the remaining pieces of the add back into the new formula.
3618     const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum);
3619     if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 &&
3620         TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3621                                 InnerSumSC->getValue()->getZExtValue())) {
3622       F.UnfoldedOffset =
3623           (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue();
3624       if (IsScaledReg)
3625         F.ScaledReg = nullptr;
3626       else
3627         F.BaseRegs.erase(F.BaseRegs.begin() + Idx);
3628     } else if (IsScaledReg)
3629       F.ScaledReg = InnerSum;
3630     else
3631       F.BaseRegs[Idx] = InnerSum;
3632 
3633     // Add J as its own register, or an unfolded immediate.
3634     const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J);
3635     if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 &&
3636         TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3637                                 SC->getValue()->getZExtValue()))
3638       F.UnfoldedOffset =
3639           (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue();
3640     else
3641       F.BaseRegs.push_back(*J);
3642     // We may have changed the number of register in base regs, adjust the
3643     // formula accordingly.
3644     F.canonicalize(*L);
3645 
3646     if (InsertFormula(LU, LUIdx, F))
3647       // If that formula hadn't been seen before, recurse to find more like
3648       // it.
3649       // Add check on Log16(AddOps.size()) - same as Log2_32(AddOps.size()) >> 2)
3650       // Because just Depth is not enough to bound compile time.
3651       // This means that every time AddOps.size() is greater 16^x we will add
3652       // x to Depth.
3653       GenerateReassociations(LU, LUIdx, LU.Formulae.back(),
3654                              Depth + 1 + (Log2_32(AddOps.size()) >> 2));
3655   }
3656 }
3657 
3658 /// Split out subexpressions from adds and the bases of addrecs.
3659 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
3660                                          Formula Base, unsigned Depth) {
3661   assert(Base.isCanonical(*L) && "Input must be in the canonical form");
3662   // Arbitrarily cap recursion to protect compile time.
3663   if (Depth >= 3)
3664     return;
3665 
3666   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3667     GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i);
3668 
3669   if (Base.Scale == 1)
3670     GenerateReassociationsImpl(LU, LUIdx, Base, Depth,
3671                                /* Idx */ -1, /* IsScaledReg */ true);
3672 }
3673 
3674 ///  Generate a formula consisting of all of the loop-dominating registers added
3675 /// into a single register.
3676 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
3677                                        Formula Base) {
3678   // This method is only interesting on a plurality of registers.
3679   if (Base.BaseRegs.size() + (Base.Scale == 1) +
3680       (Base.UnfoldedOffset != 0) <= 1)
3681     return;
3682 
3683   // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before
3684   // processing the formula.
3685   Base.unscale();
3686   SmallVector<const SCEV *, 4> Ops;
3687   Formula NewBase = Base;
3688   NewBase.BaseRegs.clear();
3689   Type *CombinedIntegerType = nullptr;
3690   for (const SCEV *BaseReg : Base.BaseRegs) {
3691     if (SE.properlyDominates(BaseReg, L->getHeader()) &&
3692         !SE.hasComputableLoopEvolution(BaseReg, L)) {
3693       if (!CombinedIntegerType)
3694         CombinedIntegerType = SE.getEffectiveSCEVType(BaseReg->getType());
3695       Ops.push_back(BaseReg);
3696     }
3697     else
3698       NewBase.BaseRegs.push_back(BaseReg);
3699   }
3700 
3701   // If no register is relevant, we're done.
3702   if (Ops.size() == 0)
3703     return;
3704 
3705   // Utility function for generating the required variants of the combined
3706   // registers.
3707   auto GenerateFormula = [&](const SCEV *Sum) {
3708     Formula F = NewBase;
3709 
3710     // TODO: If Sum is zero, it probably means ScalarEvolution missed an
3711     // opportunity to fold something. For now, just ignore such cases
3712     // rather than proceed with zero in a register.
3713     if (Sum->isZero())
3714       return;
3715 
3716     F.BaseRegs.push_back(Sum);
3717     F.canonicalize(*L);
3718     (void)InsertFormula(LU, LUIdx, F);
3719   };
3720 
3721   // If we collected at least two registers, generate a formula combining them.
3722   if (Ops.size() > 1) {
3723     SmallVector<const SCEV *, 4> OpsCopy(Ops); // Don't let SE modify Ops.
3724     GenerateFormula(SE.getAddExpr(OpsCopy));
3725   }
3726 
3727   // If we have an unfolded offset, generate a formula combining it with the
3728   // registers collected.
3729   if (NewBase.UnfoldedOffset) {
3730     assert(CombinedIntegerType && "Missing a type for the unfolded offset");
3731     Ops.push_back(SE.getConstant(CombinedIntegerType, NewBase.UnfoldedOffset,
3732                                  true));
3733     NewBase.UnfoldedOffset = 0;
3734     GenerateFormula(SE.getAddExpr(Ops));
3735   }
3736 }
3737 
3738 /// Helper function for LSRInstance::GenerateSymbolicOffsets.
3739 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
3740                                               const Formula &Base, size_t Idx,
3741                                               bool IsScaledReg) {
3742   const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3743   GlobalValue *GV = ExtractSymbol(G, SE);
3744   if (G->isZero() || !GV)
3745     return;
3746   Formula F = Base;
3747   F.BaseGV = GV;
3748   if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3749     return;
3750   if (IsScaledReg)
3751     F.ScaledReg = G;
3752   else
3753     F.BaseRegs[Idx] = G;
3754   (void)InsertFormula(LU, LUIdx, F);
3755 }
3756 
3757 /// Generate reuse formulae using symbolic offsets.
3758 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
3759                                           Formula Base) {
3760   // We can't add a symbolic offset if the address already contains one.
3761   if (Base.BaseGV) return;
3762 
3763   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3764     GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i);
3765   if (Base.Scale == 1)
3766     GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1,
3767                                 /* IsScaledReg */ true);
3768 }
3769 
3770 /// Helper function for LSRInstance::GenerateConstantOffsets.
3771 void LSRInstance::GenerateConstantOffsetsImpl(
3772     LSRUse &LU, unsigned LUIdx, const Formula &Base,
3773     const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) {
3774 
3775   auto GenerateOffset = [&](const SCEV *G, int64_t Offset) {
3776     Formula F = Base;
3777     F.BaseOffset = (uint64_t)Base.BaseOffset - Offset;
3778 
3779     if (isLegalUse(TTI, LU.MinOffset - Offset, LU.MaxOffset - Offset, LU.Kind,
3780                    LU.AccessTy, F)) {
3781       // Add the offset to the base register.
3782       const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G);
3783       // If it cancelled out, drop the base register, otherwise update it.
3784       if (NewG->isZero()) {
3785         if (IsScaledReg) {
3786           F.Scale = 0;
3787           F.ScaledReg = nullptr;
3788         } else
3789           F.deleteBaseReg(F.BaseRegs[Idx]);
3790         F.canonicalize(*L);
3791       } else if (IsScaledReg)
3792         F.ScaledReg = NewG;
3793       else
3794         F.BaseRegs[Idx] = NewG;
3795 
3796       (void)InsertFormula(LU, LUIdx, F);
3797     }
3798   };
3799 
3800   const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3801 
3802   // With constant offsets and constant steps, we can generate pre-inc
3803   // accesses by having the offset equal the step. So, for access #0 with a
3804   // step of 8, we generate a G - 8 base which would require the first access
3805   // to be ((G - 8) + 8),+,8. The pre-indexed access then updates the pointer
3806   // for itself and hopefully becomes the base for other accesses. This means
3807   // means that a single pre-indexed access can be generated to become the new
3808   // base pointer for each iteration of the loop, resulting in no extra add/sub
3809   // instructions for pointer updating.
3810   if (FavorBackedgeIndex && LU.Kind == LSRUse::Address) {
3811     if (auto *GAR = dyn_cast<SCEVAddRecExpr>(G)) {
3812       if (auto *StepRec =
3813           dyn_cast<SCEVConstant>(GAR->getStepRecurrence(SE))) {
3814         const APInt &StepInt = StepRec->getAPInt();
3815         int64_t Step = StepInt.isNegative() ?
3816           StepInt.getSExtValue() : StepInt.getZExtValue();
3817 
3818         for (int64_t Offset : Worklist) {
3819           Offset -= Step;
3820           GenerateOffset(G, Offset);
3821         }
3822       }
3823     }
3824   }
3825   for (int64_t Offset : Worklist)
3826     GenerateOffset(G, Offset);
3827 
3828   int64_t Imm = ExtractImmediate(G, SE);
3829   if (G->isZero() || Imm == 0)
3830     return;
3831   Formula F = Base;
3832   F.BaseOffset = (uint64_t)F.BaseOffset + Imm;
3833   if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3834     return;
3835   if (IsScaledReg)
3836     F.ScaledReg = G;
3837   else
3838     F.BaseRegs[Idx] = G;
3839   (void)InsertFormula(LU, LUIdx, F);
3840 }
3841 
3842 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
3843 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
3844                                           Formula Base) {
3845   // TODO: For now, just add the min and max offset, because it usually isn't
3846   // worthwhile looking at everything inbetween.
3847   SmallVector<int64_t, 2> Worklist;
3848   Worklist.push_back(LU.MinOffset);
3849   if (LU.MaxOffset != LU.MinOffset)
3850     Worklist.push_back(LU.MaxOffset);
3851 
3852   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3853     GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i);
3854   if (Base.Scale == 1)
3855     GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1,
3856                                 /* IsScaledReg */ true);
3857 }
3858 
3859 /// For ICmpZero, check to see if we can scale up the comparison. For example, x
3860 /// == y -> x*c == y*c.
3861 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
3862                                          Formula Base) {
3863   if (LU.Kind != LSRUse::ICmpZero) return;
3864 
3865   // Determine the integer type for the base formula.
3866   Type *IntTy = Base.getType();
3867   if (!IntTy) return;
3868   if (SE.getTypeSizeInBits(IntTy) > 64) return;
3869 
3870   // Don't do this if there is more than one offset.
3871   if (LU.MinOffset != LU.MaxOffset) return;
3872 
3873   // Check if transformation is valid. It is illegal to multiply pointer.
3874   if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy())
3875     return;
3876   for (const SCEV *BaseReg : Base.BaseRegs)
3877     if (BaseReg->getType()->isPointerTy())
3878       return;
3879   assert(!Base.BaseGV && "ICmpZero use is not legal!");
3880 
3881   // Check each interesting stride.
3882   for (int64_t Factor : Factors) {
3883     // Check that the multiplication doesn't overflow.
3884     if (Base.BaseOffset == std::numeric_limits<int64_t>::min() && Factor == -1)
3885       continue;
3886     int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor;
3887     if (NewBaseOffset / Factor != Base.BaseOffset)
3888       continue;
3889     // If the offset will be truncated at this use, check that it is in bounds.
3890     if (!IntTy->isPointerTy() &&
3891         !ConstantInt::isValueValidForType(IntTy, NewBaseOffset))
3892       continue;
3893 
3894     // Check that multiplying with the use offset doesn't overflow.
3895     int64_t Offset = LU.MinOffset;
3896     if (Offset == std::numeric_limits<int64_t>::min() && Factor == -1)
3897       continue;
3898     Offset = (uint64_t)Offset * Factor;
3899     if (Offset / Factor != LU.MinOffset)
3900       continue;
3901     // If the offset will be truncated at this use, check that it is in bounds.
3902     if (!IntTy->isPointerTy() &&
3903         !ConstantInt::isValueValidForType(IntTy, Offset))
3904       continue;
3905 
3906     Formula F = Base;
3907     F.BaseOffset = NewBaseOffset;
3908 
3909     // Check that this scale is legal.
3910     if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F))
3911       continue;
3912 
3913     // Compensate for the use having MinOffset built into it.
3914     F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset;
3915 
3916     const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3917 
3918     // Check that multiplying with each base register doesn't overflow.
3919     for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
3920       F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
3921       if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
3922         goto next;
3923     }
3924 
3925     // Check that multiplying with the scaled register doesn't overflow.
3926     if (F.ScaledReg) {
3927       F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
3928       if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
3929         continue;
3930     }
3931 
3932     // Check that multiplying with the unfolded offset doesn't overflow.
3933     if (F.UnfoldedOffset != 0) {
3934       if (F.UnfoldedOffset == std::numeric_limits<int64_t>::min() &&
3935           Factor == -1)
3936         continue;
3937       F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor;
3938       if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset)
3939         continue;
3940       // If the offset will be truncated, check that it is in bounds.
3941       if (!IntTy->isPointerTy() &&
3942           !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset))
3943         continue;
3944     }
3945 
3946     // If we make it here and it's legal, add it.
3947     (void)InsertFormula(LU, LUIdx, F);
3948   next:;
3949   }
3950 }
3951 
3952 /// Generate stride factor reuse formulae by making use of scaled-offset address
3953 /// modes, for example.
3954 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
3955   // Determine the integer type for the base formula.
3956   Type *IntTy = Base.getType();
3957   if (!IntTy) return;
3958 
3959   // If this Formula already has a scaled register, we can't add another one.
3960   // Try to unscale the formula to generate a better scale.
3961   if (Base.Scale != 0 && !Base.unscale())
3962     return;
3963 
3964   assert(Base.Scale == 0 && "unscale did not did its job!");
3965 
3966   // Check each interesting stride.
3967   for (int64_t Factor : Factors) {
3968     Base.Scale = Factor;
3969     Base.HasBaseReg = Base.BaseRegs.size() > 1;
3970     // Check whether this scale is going to be legal.
3971     if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
3972                     Base)) {
3973       // As a special-case, handle special out-of-loop Basic users specially.
3974       // TODO: Reconsider this special case.
3975       if (LU.Kind == LSRUse::Basic &&
3976           isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special,
3977                      LU.AccessTy, Base) &&
3978           LU.AllFixupsOutsideLoop)
3979         LU.Kind = LSRUse::Special;
3980       else
3981         continue;
3982     }
3983     // For an ICmpZero, negating a solitary base register won't lead to
3984     // new solutions.
3985     if (LU.Kind == LSRUse::ICmpZero &&
3986         !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV)
3987       continue;
3988     // For each addrec base reg, if its loop is current loop, apply the scale.
3989     for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
3990       const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i]);
3991       if (AR && (AR->getLoop() == L || LU.AllFixupsOutsideLoop)) {
3992         const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3993         if (FactorS->isZero())
3994           continue;
3995         // Divide out the factor, ignoring high bits, since we'll be
3996         // scaling the value back up in the end.
3997         if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) {
3998           // TODO: This could be optimized to avoid all the copying.
3999           Formula F = Base;
4000           F.ScaledReg = Quotient;
4001           F.deleteBaseReg(F.BaseRegs[i]);
4002           // The canonical representation of 1*reg is reg, which is already in
4003           // Base. In that case, do not try to insert the formula, it will be
4004           // rejected anyway.
4005           if (F.Scale == 1 && (F.BaseRegs.empty() ||
4006                                (AR->getLoop() != L && LU.AllFixupsOutsideLoop)))
4007             continue;
4008           // If AllFixupsOutsideLoop is true and F.Scale is 1, we may generate
4009           // non canonical Formula with ScaledReg's loop not being L.
4010           if (F.Scale == 1 && LU.AllFixupsOutsideLoop)
4011             F.canonicalize(*L);
4012           (void)InsertFormula(LU, LUIdx, F);
4013         }
4014       }
4015     }
4016   }
4017 }
4018 
4019 /// Generate reuse formulae from different IV types.
4020 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
4021   // Don't bother truncating symbolic values.
4022   if (Base.BaseGV) return;
4023 
4024   // Determine the integer type for the base formula.
4025   Type *DstTy = Base.getType();
4026   if (!DstTy) return;
4027   DstTy = SE.getEffectiveSCEVType(DstTy);
4028 
4029   for (Type *SrcTy : Types) {
4030     if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) {
4031       Formula F = Base;
4032 
4033       // Sometimes SCEV is able to prove zero during ext transform. It may
4034       // happen if SCEV did not do all possible transforms while creating the
4035       // initial node (maybe due to depth limitations), but it can do them while
4036       // taking ext.
4037       if (F.ScaledReg) {
4038         const SCEV *NewScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy);
4039         if (NewScaledReg->isZero())
4040          continue;
4041         F.ScaledReg = NewScaledReg;
4042       }
4043       bool HasZeroBaseReg = false;
4044       for (const SCEV *&BaseReg : F.BaseRegs) {
4045         const SCEV *NewBaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy);
4046         if (NewBaseReg->isZero()) {
4047           HasZeroBaseReg = true;
4048           break;
4049         }
4050         BaseReg = NewBaseReg;
4051       }
4052       if (HasZeroBaseReg)
4053         continue;
4054 
4055       // TODO: This assumes we've done basic processing on all uses and
4056       // have an idea what the register usage is.
4057       if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
4058         continue;
4059 
4060       F.canonicalize(*L);
4061       (void)InsertFormula(LU, LUIdx, F);
4062     }
4063   }
4064 }
4065 
4066 namespace {
4067 
4068 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer
4069 /// modifications so that the search phase doesn't have to worry about the data
4070 /// structures moving underneath it.
4071 struct WorkItem {
4072   size_t LUIdx;
4073   int64_t Imm;
4074   const SCEV *OrigReg;
4075 
4076   WorkItem(size_t LI, int64_t I, const SCEV *R)
4077       : LUIdx(LI), Imm(I), OrigReg(R) {}
4078 
4079   void print(raw_ostream &OS) const;
4080   void dump() const;
4081 };
4082 
4083 } // end anonymous namespace
4084 
4085 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4086 void WorkItem::print(raw_ostream &OS) const {
4087   OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
4088      << " , add offset " << Imm;
4089 }
4090 
4091 LLVM_DUMP_METHOD void WorkItem::dump() const {
4092   print(errs()); errs() << '\n';
4093 }
4094 #endif
4095 
4096 /// Look for registers which are a constant distance apart and try to form reuse
4097 /// opportunities between them.
4098 void LSRInstance::GenerateCrossUseConstantOffsets() {
4099   // Group the registers by their value without any added constant offset.
4100   using ImmMapTy = std::map<int64_t, const SCEV *>;
4101 
4102   DenseMap<const SCEV *, ImmMapTy> Map;
4103   DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
4104   SmallVector<const SCEV *, 8> Sequence;
4105   for (const SCEV *Use : RegUses) {
4106     const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify.
4107     int64_t Imm = ExtractImmediate(Reg, SE);
4108     auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy()));
4109     if (Pair.second)
4110       Sequence.push_back(Reg);
4111     Pair.first->second.insert(std::make_pair(Imm, Use));
4112     UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use);
4113   }
4114 
4115   // Now examine each set of registers with the same base value. Build up
4116   // a list of work to do and do the work in a separate step so that we're
4117   // not adding formulae and register counts while we're searching.
4118   SmallVector<WorkItem, 32> WorkItems;
4119   SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
4120   for (const SCEV *Reg : Sequence) {
4121     const ImmMapTy &Imms = Map.find(Reg)->second;
4122 
4123     // It's not worthwhile looking for reuse if there's only one offset.
4124     if (Imms.size() == 1)
4125       continue;
4126 
4127     LLVM_DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
4128                for (const auto &Entry
4129                     : Imms) dbgs()
4130                << ' ' << Entry.first;
4131                dbgs() << '\n');
4132 
4133     // Examine each offset.
4134     for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
4135          J != JE; ++J) {
4136       const SCEV *OrigReg = J->second;
4137 
4138       int64_t JImm = J->first;
4139       const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
4140 
4141       if (!isa<SCEVConstant>(OrigReg) &&
4142           UsedByIndicesMap[Reg].count() == 1) {
4143         LLVM_DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg
4144                           << '\n');
4145         continue;
4146       }
4147 
4148       // Conservatively examine offsets between this orig reg a few selected
4149       // other orig regs.
4150       int64_t First = Imms.begin()->first;
4151       int64_t Last = std::prev(Imms.end())->first;
4152       // Compute (First + Last)  / 2 without overflow using the fact that
4153       // First + Last = 2 * (First + Last) + (First ^ Last).
4154       int64_t Avg = (First & Last) + ((First ^ Last) >> 1);
4155       // If the result is negative and First is odd and Last even (or vice versa),
4156       // we rounded towards -inf. Add 1 in that case, to round towards 0.
4157       Avg = Avg + ((First ^ Last) & ((uint64_t)Avg >> 63));
4158       ImmMapTy::const_iterator OtherImms[] = {
4159           Imms.begin(), std::prev(Imms.end()),
4160          Imms.lower_bound(Avg)};
4161       for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
4162         ImmMapTy::const_iterator M = OtherImms[i];
4163         if (M == J || M == JE) continue;
4164 
4165         // Compute the difference between the two.
4166         int64_t Imm = (uint64_t)JImm - M->first;
4167         for (unsigned LUIdx : UsedByIndices.set_bits())
4168           // Make a memo of this use, offset, and register tuple.
4169           if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second)
4170             WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
4171       }
4172     }
4173   }
4174 
4175   Map.clear();
4176   Sequence.clear();
4177   UsedByIndicesMap.clear();
4178   UniqueItems.clear();
4179 
4180   // Now iterate through the worklist and add new formulae.
4181   for (const WorkItem &WI : WorkItems) {
4182     size_t LUIdx = WI.LUIdx;
4183     LSRUse &LU = Uses[LUIdx];
4184     int64_t Imm = WI.Imm;
4185     const SCEV *OrigReg = WI.OrigReg;
4186 
4187     Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
4188     const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
4189     unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
4190 
4191     // TODO: Use a more targeted data structure.
4192     for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
4193       Formula F = LU.Formulae[L];
4194       // FIXME: The code for the scaled and unscaled registers looks
4195       // very similar but slightly different. Investigate if they
4196       // could be merged. That way, we would not have to unscale the
4197       // Formula.
4198       F.unscale();
4199       // Use the immediate in the scaled register.
4200       if (F.ScaledReg == OrigReg) {
4201         int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale;
4202         // Don't create 50 + reg(-50).
4203         if (F.referencesReg(SE.getSCEV(
4204                    ConstantInt::get(IntTy, -(uint64_t)Offset))))
4205           continue;
4206         Formula NewF = F;
4207         NewF.BaseOffset = Offset;
4208         if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
4209                         NewF))
4210           continue;
4211         NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
4212 
4213         // If the new scale is a constant in a register, and adding the constant
4214         // value to the immediate would produce a value closer to zero than the
4215         // immediate itself, then the formula isn't worthwhile.
4216         if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
4217           if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) &&
4218               (C->getAPInt().abs() * APInt(BitWidth, F.Scale))
4219                   .ule(std::abs(NewF.BaseOffset)))
4220             continue;
4221 
4222         // OK, looks good.
4223         NewF.canonicalize(*this->L);
4224         (void)InsertFormula(LU, LUIdx, NewF);
4225       } else {
4226         // Use the immediate in a base register.
4227         for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
4228           const SCEV *BaseReg = F.BaseRegs[N];
4229           if (BaseReg != OrigReg)
4230             continue;
4231           Formula NewF = F;
4232           NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm;
4233           if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset,
4234                           LU.Kind, LU.AccessTy, NewF)) {
4235             if (TTI.shouldFavorPostInc() &&
4236                 mayUsePostIncMode(TTI, LU, OrigReg, this->L, SE))
4237               continue;
4238             if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm))
4239               continue;
4240             NewF = F;
4241             NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm;
4242           }
4243           NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
4244 
4245           // If the new formula has a constant in a register, and adding the
4246           // constant value to the immediate would produce a value closer to
4247           // zero than the immediate itself, then the formula isn't worthwhile.
4248           for (const SCEV *NewReg : NewF.BaseRegs)
4249             if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg))
4250               if ((C->getAPInt() + NewF.BaseOffset)
4251                       .abs()
4252                       .slt(std::abs(NewF.BaseOffset)) &&
4253                   (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >=
4254                       countTrailingZeros<uint64_t>(NewF.BaseOffset))
4255                 goto skip_formula;
4256 
4257           // Ok, looks good.
4258           NewF.canonicalize(*this->L);
4259           (void)InsertFormula(LU, LUIdx, NewF);
4260           break;
4261         skip_formula:;
4262         }
4263       }
4264     }
4265   }
4266 }
4267 
4268 /// Generate formulae for each use.
4269 void
4270 LSRInstance::GenerateAllReuseFormulae() {
4271   // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
4272   // queries are more precise.
4273   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4274     LSRUse &LU = Uses[LUIdx];
4275     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4276       GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
4277     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4278       GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
4279   }
4280   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4281     LSRUse &LU = Uses[LUIdx];
4282     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4283       GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
4284     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4285       GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
4286     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4287       GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
4288     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4289       GenerateScales(LU, LUIdx, LU.Formulae[i]);
4290   }
4291   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4292     LSRUse &LU = Uses[LUIdx];
4293     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4294       GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
4295   }
4296 
4297   GenerateCrossUseConstantOffsets();
4298 
4299   LLVM_DEBUG(dbgs() << "\n"
4300                        "After generating reuse formulae:\n";
4301              print_uses(dbgs()));
4302 }
4303 
4304 /// If there are multiple formulae with the same set of registers used
4305 /// by other uses, pick the best one and delete the others.
4306 void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
4307   DenseSet<const SCEV *> VisitedRegs;
4308   SmallPtrSet<const SCEV *, 16> Regs;
4309   SmallPtrSet<const SCEV *, 16> LoserRegs;
4310 #ifndef NDEBUG
4311   bool ChangedFormulae = false;
4312 #endif
4313 
4314   // Collect the best formula for each unique set of shared registers. This
4315   // is reset for each use.
4316   using BestFormulaeTy =
4317       DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>;
4318 
4319   BestFormulaeTy BestFormulae;
4320 
4321   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4322     LSRUse &LU = Uses[LUIdx];
4323     LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs());
4324                dbgs() << '\n');
4325 
4326     bool Any = false;
4327     for (size_t FIdx = 0, NumForms = LU.Formulae.size();
4328          FIdx != NumForms; ++FIdx) {
4329       Formula &F = LU.Formulae[FIdx];
4330 
4331       // Some formulas are instant losers. For example, they may depend on
4332       // nonexistent AddRecs from other loops. These need to be filtered
4333       // immediately, otherwise heuristics could choose them over others leading
4334       // to an unsatisfactory solution. Passing LoserRegs into RateFormula here
4335       // avoids the need to recompute this information across formulae using the
4336       // same bad AddRec. Passing LoserRegs is also essential unless we remove
4337       // the corresponding bad register from the Regs set.
4338       Cost CostF(L, SE, TTI);
4339       Regs.clear();
4340       CostF.RateFormula(F, Regs, VisitedRegs, LU, &LoserRegs);
4341       if (CostF.isLoser()) {
4342         // During initial formula generation, undesirable formulae are generated
4343         // by uses within other loops that have some non-trivial address mode or
4344         // use the postinc form of the IV. LSR needs to provide these formulae
4345         // as the basis of rediscovering the desired formula that uses an AddRec
4346         // corresponding to the existing phi. Once all formulae have been
4347         // generated, these initial losers may be pruned.
4348         LLVM_DEBUG(dbgs() << "  Filtering loser "; F.print(dbgs());
4349                    dbgs() << "\n");
4350       }
4351       else {
4352         SmallVector<const SCEV *, 4> Key;
4353         for (const SCEV *Reg : F.BaseRegs) {
4354           if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
4355             Key.push_back(Reg);
4356         }
4357         if (F.ScaledReg &&
4358             RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
4359           Key.push_back(F.ScaledReg);
4360         // Unstable sort by host order ok, because this is only used for
4361         // uniquifying.
4362         llvm::sort(Key);
4363 
4364         std::pair<BestFormulaeTy::const_iterator, bool> P =
4365           BestFormulae.insert(std::make_pair(Key, FIdx));
4366         if (P.second)
4367           continue;
4368 
4369         Formula &Best = LU.Formulae[P.first->second];
4370 
4371         Cost CostBest(L, SE, TTI);
4372         Regs.clear();
4373         CostBest.RateFormula(Best, Regs, VisitedRegs, LU);
4374         if (CostF.isLess(CostBest))
4375           std::swap(F, Best);
4376         LLVM_DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
4377                    dbgs() << "\n"
4378                              "    in favor of formula ";
4379                    Best.print(dbgs()); dbgs() << '\n');
4380       }
4381 #ifndef NDEBUG
4382       ChangedFormulae = true;
4383 #endif
4384       LU.DeleteFormula(F);
4385       --FIdx;
4386       --NumForms;
4387       Any = true;
4388     }
4389 
4390     // Now that we've filtered out some formulae, recompute the Regs set.
4391     if (Any)
4392       LU.RecomputeRegs(LUIdx, RegUses);
4393 
4394     // Reset this to prepare for the next use.
4395     BestFormulae.clear();
4396   }
4397 
4398   LLVM_DEBUG(if (ChangedFormulae) {
4399     dbgs() << "\n"
4400               "After filtering out undesirable candidates:\n";
4401     print_uses(dbgs());
4402   });
4403 }
4404 
4405 /// Estimate the worst-case number of solutions the solver might have to
4406 /// consider. It almost never considers this many solutions because it prune the
4407 /// search space, but the pruning isn't always sufficient.
4408 size_t LSRInstance::EstimateSearchSpaceComplexity() const {
4409   size_t Power = 1;
4410   for (const LSRUse &LU : Uses) {
4411     size_t FSize = LU.Formulae.size();
4412     if (FSize >= ComplexityLimit) {
4413       Power = ComplexityLimit;
4414       break;
4415     }
4416     Power *= FSize;
4417     if (Power >= ComplexityLimit)
4418       break;
4419   }
4420   return Power;
4421 }
4422 
4423 /// When one formula uses a superset of the registers of another formula, it
4424 /// won't help reduce register pressure (though it may not necessarily hurt
4425 /// register pressure); remove it to simplify the system.
4426 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
4427   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4428     LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4429 
4430     LLVM_DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
4431                          "which use a superset of registers used by other "
4432                          "formulae.\n");
4433 
4434     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4435       LSRUse &LU = Uses[LUIdx];
4436       bool Any = false;
4437       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4438         Formula &F = LU.Formulae[i];
4439         // Look for a formula with a constant or GV in a register. If the use
4440         // also has a formula with that same value in an immediate field,
4441         // delete the one that uses a register.
4442         for (SmallVectorImpl<const SCEV *>::const_iterator
4443              I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
4444           if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
4445             Formula NewF = F;
4446             //FIXME: Formulas should store bitwidth to do wrapping properly.
4447             //       See PR41034.
4448             NewF.BaseOffset += (uint64_t)C->getValue()->getSExtValue();
4449             NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4450                                 (I - F.BaseRegs.begin()));
4451             if (LU.HasFormulaWithSameRegs(NewF)) {
4452               LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4453                          dbgs() << '\n');
4454               LU.DeleteFormula(F);
4455               --i;
4456               --e;
4457               Any = true;
4458               break;
4459             }
4460           } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
4461             if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
4462               if (!F.BaseGV) {
4463                 Formula NewF = F;
4464                 NewF.BaseGV = GV;
4465                 NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4466                                     (I - F.BaseRegs.begin()));
4467                 if (LU.HasFormulaWithSameRegs(NewF)) {
4468                   LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4469                              dbgs() << '\n');
4470                   LU.DeleteFormula(F);
4471                   --i;
4472                   --e;
4473                   Any = true;
4474                   break;
4475                 }
4476               }
4477           }
4478         }
4479       }
4480       if (Any)
4481         LU.RecomputeRegs(LUIdx, RegUses);
4482     }
4483 
4484     LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4485   }
4486 }
4487 
4488 /// When there are many registers for expressions like A, A+1, A+2, etc.,
4489 /// allocate a single register for them.
4490 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
4491   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4492     return;
4493 
4494   LLVM_DEBUG(
4495       dbgs() << "The search space is too complex.\n"
4496                 "Narrowing the search space by assuming that uses separated "
4497                 "by a constant offset will use the same registers.\n");
4498 
4499   // This is especially useful for unrolled loops.
4500 
4501   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4502     LSRUse &LU = Uses[LUIdx];
4503     for (const Formula &F : LU.Formulae) {
4504       if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1))
4505         continue;
4506 
4507       LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU);
4508       if (!LUThatHas)
4509         continue;
4510 
4511       if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false,
4512                               LU.Kind, LU.AccessTy))
4513         continue;
4514 
4515       LLVM_DEBUG(dbgs() << "  Deleting use "; LU.print(dbgs()); dbgs() << '\n');
4516 
4517       LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
4518 
4519       // Transfer the fixups of LU to LUThatHas.
4520       for (LSRFixup &Fixup : LU.Fixups) {
4521         Fixup.Offset += F.BaseOffset;
4522         LUThatHas->pushFixup(Fixup);
4523         LLVM_DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n');
4524       }
4525 
4526       // Delete formulae from the new use which are no longer legal.
4527       bool Any = false;
4528       for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
4529         Formula &F = LUThatHas->Formulae[i];
4530         if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset,
4531                         LUThatHas->Kind, LUThatHas->AccessTy, F)) {
4532           LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
4533           LUThatHas->DeleteFormula(F);
4534           --i;
4535           --e;
4536           Any = true;
4537         }
4538       }
4539 
4540       if (Any)
4541         LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
4542 
4543       // Delete the old use.
4544       DeleteUse(LU, LUIdx);
4545       --LUIdx;
4546       --NumUses;
4547       break;
4548     }
4549   }
4550 
4551   LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4552 }
4553 
4554 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that
4555 /// we've done more filtering, as it may be able to find more formulae to
4556 /// eliminate.
4557 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){
4558   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4559     LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4560 
4561     LLVM_DEBUG(dbgs() << "Narrowing the search space by re-filtering out "
4562                          "undesirable dedicated registers.\n");
4563 
4564     FilterOutUndesirableDedicatedRegisters();
4565 
4566     LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4567   }
4568 }
4569 
4570 /// If a LSRUse has multiple formulae with the same ScaledReg and Scale.
4571 /// Pick the best one and delete the others.
4572 /// This narrowing heuristic is to keep as many formulae with different
4573 /// Scale and ScaledReg pair as possible while narrowing the search space.
4574 /// The benefit is that it is more likely to find out a better solution
4575 /// from a formulae set with more Scale and ScaledReg variations than
4576 /// a formulae set with the same Scale and ScaledReg. The picking winner
4577 /// reg heuristic will often keep the formulae with the same Scale and
4578 /// ScaledReg and filter others, and we want to avoid that if possible.
4579 void LSRInstance::NarrowSearchSpaceByFilterFormulaWithSameScaledReg() {
4580   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4581     return;
4582 
4583   LLVM_DEBUG(
4584       dbgs() << "The search space is too complex.\n"
4585                 "Narrowing the search space by choosing the best Formula "
4586                 "from the Formulae with the same Scale and ScaledReg.\n");
4587 
4588   // Map the "Scale * ScaledReg" pair to the best formula of current LSRUse.
4589   using BestFormulaeTy = DenseMap<std::pair<const SCEV *, int64_t>, size_t>;
4590 
4591   BestFormulaeTy BestFormulae;
4592 #ifndef NDEBUG
4593   bool ChangedFormulae = false;
4594 #endif
4595   DenseSet<const SCEV *> VisitedRegs;
4596   SmallPtrSet<const SCEV *, 16> Regs;
4597 
4598   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4599     LSRUse &LU = Uses[LUIdx];
4600     LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs());
4601                dbgs() << '\n');
4602 
4603     // Return true if Formula FA is better than Formula FB.
4604     auto IsBetterThan = [&](Formula &FA, Formula &FB) {
4605       // First we will try to choose the Formula with fewer new registers.
4606       // For a register used by current Formula, the more the register is
4607       // shared among LSRUses, the less we increase the register number
4608       // counter of the formula.
4609       size_t FARegNum = 0;
4610       for (const SCEV *Reg : FA.BaseRegs) {
4611         const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg);
4612         FARegNum += (NumUses - UsedByIndices.count() + 1);
4613       }
4614       size_t FBRegNum = 0;
4615       for (const SCEV *Reg : FB.BaseRegs) {
4616         const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg);
4617         FBRegNum += (NumUses - UsedByIndices.count() + 1);
4618       }
4619       if (FARegNum != FBRegNum)
4620         return FARegNum < FBRegNum;
4621 
4622       // If the new register numbers are the same, choose the Formula with
4623       // less Cost.
4624       Cost CostFA(L, SE, TTI);
4625       Cost CostFB(L, SE, TTI);
4626       Regs.clear();
4627       CostFA.RateFormula(FA, Regs, VisitedRegs, LU);
4628       Regs.clear();
4629       CostFB.RateFormula(FB, Regs, VisitedRegs, LU);
4630       return CostFA.isLess(CostFB);
4631     };
4632 
4633     bool Any = false;
4634     for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms;
4635          ++FIdx) {
4636       Formula &F = LU.Formulae[FIdx];
4637       if (!F.ScaledReg)
4638         continue;
4639       auto P = BestFormulae.insert({{F.ScaledReg, F.Scale}, FIdx});
4640       if (P.second)
4641         continue;
4642 
4643       Formula &Best = LU.Formulae[P.first->second];
4644       if (IsBetterThan(F, Best))
4645         std::swap(F, Best);
4646       LLVM_DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
4647                  dbgs() << "\n"
4648                            "    in favor of formula ";
4649                  Best.print(dbgs()); dbgs() << '\n');
4650 #ifndef NDEBUG
4651       ChangedFormulae = true;
4652 #endif
4653       LU.DeleteFormula(F);
4654       --FIdx;
4655       --NumForms;
4656       Any = true;
4657     }
4658     if (Any)
4659       LU.RecomputeRegs(LUIdx, RegUses);
4660 
4661     // Reset this to prepare for the next use.
4662     BestFormulae.clear();
4663   }
4664 
4665   LLVM_DEBUG(if (ChangedFormulae) {
4666     dbgs() << "\n"
4667               "After filtering out undesirable candidates:\n";
4668     print_uses(dbgs());
4669   });
4670 }
4671 
4672 /// The function delete formulas with high registers number expectation.
4673 /// Assuming we don't know the value of each formula (already delete
4674 /// all inefficient), generate probability of not selecting for each
4675 /// register.
4676 /// For example,
4677 /// Use1:
4678 ///  reg(a) + reg({0,+,1})
4679 ///  reg(a) + reg({-1,+,1}) + 1
4680 ///  reg({a,+,1})
4681 /// Use2:
4682 ///  reg(b) + reg({0,+,1})
4683 ///  reg(b) + reg({-1,+,1}) + 1
4684 ///  reg({b,+,1})
4685 /// Use3:
4686 ///  reg(c) + reg(b) + reg({0,+,1})
4687 ///  reg(c) + reg({b,+,1})
4688 ///
4689 /// Probability of not selecting
4690 ///                 Use1   Use2    Use3
4691 /// reg(a)         (1/3) *   1   *   1
4692 /// reg(b)           1   * (1/3) * (1/2)
4693 /// reg({0,+,1})   (2/3) * (2/3) * (1/2)
4694 /// reg({-1,+,1})  (2/3) * (2/3) *   1
4695 /// reg({a,+,1})   (2/3) *   1   *   1
4696 /// reg({b,+,1})     1   * (2/3) * (2/3)
4697 /// reg(c)           1   *   1   *   0
4698 ///
4699 /// Now count registers number mathematical expectation for each formula:
4700 /// Note that for each use we exclude probability if not selecting for the use.
4701 /// For example for Use1 probability for reg(a) would be just 1 * 1 (excluding
4702 /// probabilty 1/3 of not selecting for Use1).
4703 /// Use1:
4704 ///  reg(a) + reg({0,+,1})          1 + 1/3       -- to be deleted
4705 ///  reg(a) + reg({-1,+,1}) + 1     1 + 4/9       -- to be deleted
4706 ///  reg({a,+,1})                   1
4707 /// Use2:
4708 ///  reg(b) + reg({0,+,1})          1/2 + 1/3     -- to be deleted
4709 ///  reg(b) + reg({-1,+,1}) + 1     1/2 + 2/3     -- to be deleted
4710 ///  reg({b,+,1})                   2/3
4711 /// Use3:
4712 ///  reg(c) + reg(b) + reg({0,+,1}) 1 + 1/3 + 4/9 -- to be deleted
4713 ///  reg(c) + reg({b,+,1})          1 + 2/3
4714 void LSRInstance::NarrowSearchSpaceByDeletingCostlyFormulas() {
4715   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4716     return;
4717   // Ok, we have too many of formulae on our hands to conveniently handle.
4718   // Use a rough heuristic to thin out the list.
4719 
4720   // Set of Regs wich will be 100% used in final solution.
4721   // Used in each formula of a solution (in example above this is reg(c)).
4722   // We can skip them in calculations.
4723   SmallPtrSet<const SCEV *, 4> UniqRegs;
4724   LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4725 
4726   // Map each register to probability of not selecting
4727   DenseMap <const SCEV *, float> RegNumMap;
4728   for (const SCEV *Reg : RegUses) {
4729     if (UniqRegs.count(Reg))
4730       continue;
4731     float PNotSel = 1;
4732     for (const LSRUse &LU : Uses) {
4733       if (!LU.Regs.count(Reg))
4734         continue;
4735       float P = LU.getNotSelectedProbability(Reg);
4736       if (P != 0.0)
4737         PNotSel *= P;
4738       else
4739         UniqRegs.insert(Reg);
4740     }
4741     RegNumMap.insert(std::make_pair(Reg, PNotSel));
4742   }
4743 
4744   LLVM_DEBUG(
4745       dbgs() << "Narrowing the search space by deleting costly formulas\n");
4746 
4747   // Delete formulas where registers number expectation is high.
4748   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4749     LSRUse &LU = Uses[LUIdx];
4750     // If nothing to delete - continue.
4751     if (LU.Formulae.size() < 2)
4752       continue;
4753     // This is temporary solution to test performance. Float should be
4754     // replaced with round independent type (based on integers) to avoid
4755     // different results for different target builds.
4756     float FMinRegNum = LU.Formulae[0].getNumRegs();
4757     float FMinARegNum = LU.Formulae[0].getNumRegs();
4758     size_t MinIdx = 0;
4759     for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4760       Formula &F = LU.Formulae[i];
4761       float FRegNum = 0;
4762       float FARegNum = 0;
4763       for (const SCEV *BaseReg : F.BaseRegs) {
4764         if (UniqRegs.count(BaseReg))
4765           continue;
4766         FRegNum += RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg);
4767         if (isa<SCEVAddRecExpr>(BaseReg))
4768           FARegNum +=
4769               RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg);
4770       }
4771       if (const SCEV *ScaledReg = F.ScaledReg) {
4772         if (!UniqRegs.count(ScaledReg)) {
4773           FRegNum +=
4774               RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg);
4775           if (isa<SCEVAddRecExpr>(ScaledReg))
4776             FARegNum +=
4777                 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg);
4778         }
4779       }
4780       if (FMinRegNum > FRegNum ||
4781           (FMinRegNum == FRegNum && FMinARegNum > FARegNum)) {
4782         FMinRegNum = FRegNum;
4783         FMinARegNum = FARegNum;
4784         MinIdx = i;
4785       }
4786     }
4787     LLVM_DEBUG(dbgs() << "  The formula "; LU.Formulae[MinIdx].print(dbgs());
4788                dbgs() << " with min reg num " << FMinRegNum << '\n');
4789     if (MinIdx != 0)
4790       std::swap(LU.Formulae[MinIdx], LU.Formulae[0]);
4791     while (LU.Formulae.size() != 1) {
4792       LLVM_DEBUG(dbgs() << "  Deleting "; LU.Formulae.back().print(dbgs());
4793                  dbgs() << '\n');
4794       LU.Formulae.pop_back();
4795     }
4796     LU.RecomputeRegs(LUIdx, RegUses);
4797     assert(LU.Formulae.size() == 1 && "Should be exactly 1 min regs formula");
4798     Formula &F = LU.Formulae[0];
4799     LLVM_DEBUG(dbgs() << "  Leaving only "; F.print(dbgs()); dbgs() << '\n');
4800     // When we choose the formula, the regs become unique.
4801     UniqRegs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
4802     if (F.ScaledReg)
4803       UniqRegs.insert(F.ScaledReg);
4804   }
4805   LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4806 }
4807 
4808 /// Pick a register which seems likely to be profitable, and then in any use
4809 /// which has any reference to that register, delete all formulae which do not
4810 /// reference that register.
4811 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() {
4812   // With all other options exhausted, loop until the system is simple
4813   // enough to handle.
4814   SmallPtrSet<const SCEV *, 4> Taken;
4815   while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4816     // Ok, we have too many of formulae on our hands to conveniently handle.
4817     // Use a rough heuristic to thin out the list.
4818     LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4819 
4820     // Pick the register which is used by the most LSRUses, which is likely
4821     // to be a good reuse register candidate.
4822     const SCEV *Best = nullptr;
4823     unsigned BestNum = 0;
4824     for (const SCEV *Reg : RegUses) {
4825       if (Taken.count(Reg))
4826         continue;
4827       if (!Best) {
4828         Best = Reg;
4829         BestNum = RegUses.getUsedByIndices(Reg).count();
4830       } else {
4831         unsigned Count = RegUses.getUsedByIndices(Reg).count();
4832         if (Count > BestNum) {
4833           Best = Reg;
4834           BestNum = Count;
4835         }
4836       }
4837     }
4838     assert(Best && "Failed to find best LSRUse candidate");
4839 
4840     LLVM_DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
4841                       << " will yield profitable reuse.\n");
4842     Taken.insert(Best);
4843 
4844     // In any use with formulae which references this register, delete formulae
4845     // which don't reference it.
4846     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4847       LSRUse &LU = Uses[LUIdx];
4848       if (!LU.Regs.count(Best)) continue;
4849 
4850       bool Any = false;
4851       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4852         Formula &F = LU.Formulae[i];
4853         if (!F.referencesReg(Best)) {
4854           LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
4855           LU.DeleteFormula(F);
4856           --e;
4857           --i;
4858           Any = true;
4859           assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
4860           continue;
4861         }
4862       }
4863 
4864       if (Any)
4865         LU.RecomputeRegs(LUIdx, RegUses);
4866     }
4867 
4868     LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4869   }
4870 }
4871 
4872 /// If there are an extraordinary number of formulae to choose from, use some
4873 /// rough heuristics to prune down the number of formulae. This keeps the main
4874 /// solver from taking an extraordinary amount of time in some worst-case
4875 /// scenarios.
4876 void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
4877   NarrowSearchSpaceByDetectingSupersets();
4878   NarrowSearchSpaceByCollapsingUnrolledCode();
4879   NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
4880   if (FilterSameScaledReg)
4881     NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
4882   if (LSRExpNarrow)
4883     NarrowSearchSpaceByDeletingCostlyFormulas();
4884   else
4885     NarrowSearchSpaceByPickingWinnerRegs();
4886 }
4887 
4888 /// This is the recursive solver.
4889 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
4890                                Cost &SolutionCost,
4891                                SmallVectorImpl<const Formula *> &Workspace,
4892                                const Cost &CurCost,
4893                                const SmallPtrSet<const SCEV *, 16> &CurRegs,
4894                                DenseSet<const SCEV *> &VisitedRegs) const {
4895   // Some ideas:
4896   //  - prune more:
4897   //    - use more aggressive filtering
4898   //    - sort the formula so that the most profitable solutions are found first
4899   //    - sort the uses too
4900   //  - search faster:
4901   //    - don't compute a cost, and then compare. compare while computing a cost
4902   //      and bail early.
4903   //    - track register sets with SmallBitVector
4904 
4905   const LSRUse &LU = Uses[Workspace.size()];
4906 
4907   // If this use references any register that's already a part of the
4908   // in-progress solution, consider it a requirement that a formula must
4909   // reference that register in order to be considered. This prunes out
4910   // unprofitable searching.
4911   SmallSetVector<const SCEV *, 4> ReqRegs;
4912   for (const SCEV *S : CurRegs)
4913     if (LU.Regs.count(S))
4914       ReqRegs.insert(S);
4915 
4916   SmallPtrSet<const SCEV *, 16> NewRegs;
4917   Cost NewCost(L, SE, TTI);
4918   for (const Formula &F : LU.Formulae) {
4919     // Ignore formulae which may not be ideal in terms of register reuse of
4920     // ReqRegs.  The formula should use all required registers before
4921     // introducing new ones.
4922     // This can sometimes (notably when trying to favour postinc) lead to
4923     // sub-optimial decisions. There it is best left to the cost modelling to
4924     // get correct.
4925     if (!TTI.shouldFavorPostInc() || LU.Kind != LSRUse::Address) {
4926       int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size());
4927       for (const SCEV *Reg : ReqRegs) {
4928         if ((F.ScaledReg && F.ScaledReg == Reg) ||
4929             is_contained(F.BaseRegs, Reg)) {
4930           --NumReqRegsToFind;
4931           if (NumReqRegsToFind == 0)
4932             break;
4933         }
4934       }
4935       if (NumReqRegsToFind != 0) {
4936         // If none of the formulae satisfied the required registers, then we could
4937         // clear ReqRegs and try again. Currently, we simply give up in this case.
4938         continue;
4939       }
4940     }
4941 
4942     // Evaluate the cost of the current formula. If it's already worse than
4943     // the current best, prune the search at that point.
4944     NewCost = CurCost;
4945     NewRegs = CurRegs;
4946     NewCost.RateFormula(F, NewRegs, VisitedRegs, LU);
4947     if (NewCost.isLess(SolutionCost)) {
4948       Workspace.push_back(&F);
4949       if (Workspace.size() != Uses.size()) {
4950         SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
4951                      NewRegs, VisitedRegs);
4952         if (F.getNumRegs() == 1 && Workspace.size() == 1)
4953           VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
4954       } else {
4955         LLVM_DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
4956                    dbgs() << ".\nRegs:\n";
4957                    for (const SCEV *S : NewRegs) dbgs()
4958                       << "- " << *S << "\n";
4959                    dbgs() << '\n');
4960 
4961         SolutionCost = NewCost;
4962         Solution = Workspace;
4963       }
4964       Workspace.pop_back();
4965     }
4966   }
4967 }
4968 
4969 /// Choose one formula from each use. Return the results in the given Solution
4970 /// vector.
4971 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
4972   SmallVector<const Formula *, 8> Workspace;
4973   Cost SolutionCost(L, SE, TTI);
4974   SolutionCost.Lose();
4975   Cost CurCost(L, SE, TTI);
4976   SmallPtrSet<const SCEV *, 16> CurRegs;
4977   DenseSet<const SCEV *> VisitedRegs;
4978   Workspace.reserve(Uses.size());
4979 
4980   // SolveRecurse does all the work.
4981   SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
4982                CurRegs, VisitedRegs);
4983   if (Solution.empty()) {
4984     LLVM_DEBUG(dbgs() << "\nNo Satisfactory Solution\n");
4985     return;
4986   }
4987 
4988   // Ok, we've now made all our decisions.
4989   LLVM_DEBUG(dbgs() << "\n"
4990                        "The chosen solution requires ";
4991              SolutionCost.print(dbgs()); dbgs() << ":\n";
4992              for (size_t i = 0, e = Uses.size(); i != e; ++i) {
4993                dbgs() << "  ";
4994                Uses[i].print(dbgs());
4995                dbgs() << "\n"
4996                          "    ";
4997                Solution[i]->print(dbgs());
4998                dbgs() << '\n';
4999              });
5000 
5001   assert(Solution.size() == Uses.size() && "Malformed solution!");
5002 }
5003 
5004 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as
5005 /// we can go while still being dominated by the input positions. This helps
5006 /// canonicalize the insert position, which encourages sharing.
5007 BasicBlock::iterator
5008 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
5009                                  const SmallVectorImpl<Instruction *> &Inputs)
5010                                                                          const {
5011   Instruction *Tentative = &*IP;
5012   while (true) {
5013     bool AllDominate = true;
5014     Instruction *BetterPos = nullptr;
5015     // Don't bother attempting to insert before a catchswitch, their basic block
5016     // cannot have other non-PHI instructions.
5017     if (isa<CatchSwitchInst>(Tentative))
5018       return IP;
5019 
5020     for (Instruction *Inst : Inputs) {
5021       if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
5022         AllDominate = false;
5023         break;
5024       }
5025       // Attempt to find an insert position in the middle of the block,
5026       // instead of at the end, so that it can be used for other expansions.
5027       if (Tentative->getParent() == Inst->getParent() &&
5028           (!BetterPos || !DT.dominates(Inst, BetterPos)))
5029         BetterPos = &*std::next(BasicBlock::iterator(Inst));
5030     }
5031     if (!AllDominate)
5032       break;
5033     if (BetterPos)
5034       IP = BetterPos->getIterator();
5035     else
5036       IP = Tentative->getIterator();
5037 
5038     const Loop *IPLoop = LI.getLoopFor(IP->getParent());
5039     unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
5040 
5041     BasicBlock *IDom;
5042     for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) {
5043       if (!Rung) return IP;
5044       Rung = Rung->getIDom();
5045       if (!Rung) return IP;
5046       IDom = Rung->getBlock();
5047 
5048       // Don't climb into a loop though.
5049       const Loop *IDomLoop = LI.getLoopFor(IDom);
5050       unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
5051       if (IDomDepth <= IPLoopDepth &&
5052           (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
5053         break;
5054     }
5055 
5056     Tentative = IDom->getTerminator();
5057   }
5058 
5059   return IP;
5060 }
5061 
5062 /// Determine an input position which will be dominated by the operands and
5063 /// which will dominate the result.
5064 BasicBlock::iterator
5065 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP,
5066                                            const LSRFixup &LF,
5067                                            const LSRUse &LU,
5068                                            SCEVExpander &Rewriter) const {
5069   // Collect some instructions which must be dominated by the
5070   // expanding replacement. These must be dominated by any operands that
5071   // will be required in the expansion.
5072   SmallVector<Instruction *, 4> Inputs;
5073   if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
5074     Inputs.push_back(I);
5075   if (LU.Kind == LSRUse::ICmpZero)
5076     if (Instruction *I =
5077           dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
5078       Inputs.push_back(I);
5079   if (LF.PostIncLoops.count(L)) {
5080     if (LF.isUseFullyOutsideLoop(L))
5081       Inputs.push_back(L->getLoopLatch()->getTerminator());
5082     else
5083       Inputs.push_back(IVIncInsertPos);
5084   }
5085   // The expansion must also be dominated by the increment positions of any
5086   // loops it for which it is using post-inc mode.
5087   for (const Loop *PIL : LF.PostIncLoops) {
5088     if (PIL == L) continue;
5089 
5090     // Be dominated by the loop exit.
5091     SmallVector<BasicBlock *, 4> ExitingBlocks;
5092     PIL->getExitingBlocks(ExitingBlocks);
5093     if (!ExitingBlocks.empty()) {
5094       BasicBlock *BB = ExitingBlocks[0];
5095       for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
5096         BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
5097       Inputs.push_back(BB->getTerminator());
5098     }
5099   }
5100 
5101   assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad()
5102          && !isa<DbgInfoIntrinsic>(LowestIP) &&
5103          "Insertion point must be a normal instruction");
5104 
5105   // Then, climb up the immediate dominator tree as far as we can go while
5106   // still being dominated by the input positions.
5107   BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs);
5108 
5109   // Don't insert instructions before PHI nodes.
5110   while (isa<PHINode>(IP)) ++IP;
5111 
5112   // Ignore landingpad instructions.
5113   while (IP->isEHPad()) ++IP;
5114 
5115   // Ignore debug intrinsics.
5116   while (isa<DbgInfoIntrinsic>(IP)) ++IP;
5117 
5118   // Set IP below instructions recently inserted by SCEVExpander. This keeps the
5119   // IP consistent across expansions and allows the previously inserted
5120   // instructions to be reused by subsequent expansion.
5121   while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP)
5122     ++IP;
5123 
5124   return IP;
5125 }
5126 
5127 /// Emit instructions for the leading candidate expression for this LSRUse (this
5128 /// is called "expanding").
5129 Value *LSRInstance::Expand(const LSRUse &LU, const LSRFixup &LF,
5130                            const Formula &F, BasicBlock::iterator IP,
5131                            SCEVExpander &Rewriter,
5132                            SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5133   if (LU.RigidFormula)
5134     return LF.OperandValToReplace;
5135 
5136   // Determine an input position which will be dominated by the operands and
5137   // which will dominate the result.
5138   IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter);
5139   Rewriter.setInsertPoint(&*IP);
5140 
5141   // Inform the Rewriter if we have a post-increment use, so that it can
5142   // perform an advantageous expansion.
5143   Rewriter.setPostInc(LF.PostIncLoops);
5144 
5145   // This is the type that the user actually needs.
5146   Type *OpTy = LF.OperandValToReplace->getType();
5147   // This will be the type that we'll initially expand to.
5148   Type *Ty = F.getType();
5149   if (!Ty)
5150     // No type known; just expand directly to the ultimate type.
5151     Ty = OpTy;
5152   else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
5153     // Expand directly to the ultimate type if it's the right size.
5154     Ty = OpTy;
5155   // This is the type to do integer arithmetic in.
5156   Type *IntTy = SE.getEffectiveSCEVType(Ty);
5157 
5158   // Build up a list of operands to add together to form the full base.
5159   SmallVector<const SCEV *, 8> Ops;
5160 
5161   // Expand the BaseRegs portion.
5162   for (const SCEV *Reg : F.BaseRegs) {
5163     assert(!Reg->isZero() && "Zero allocated in a base register!");
5164 
5165     // If we're expanding for a post-inc user, make the post-inc adjustment.
5166     Reg = denormalizeForPostIncUse(Reg, LF.PostIncLoops, SE);
5167     Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr)));
5168   }
5169 
5170   // Expand the ScaledReg portion.
5171   Value *ICmpScaledV = nullptr;
5172   if (F.Scale != 0) {
5173     const SCEV *ScaledS = F.ScaledReg;
5174 
5175     // If we're expanding for a post-inc user, make the post-inc adjustment.
5176     PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
5177     ScaledS = denormalizeForPostIncUse(ScaledS, Loops, SE);
5178 
5179     if (LU.Kind == LSRUse::ICmpZero) {
5180       // Expand ScaleReg as if it was part of the base regs.
5181       if (F.Scale == 1)
5182         Ops.push_back(
5183             SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)));
5184       else {
5185         // An interesting way of "folding" with an icmp is to use a negated
5186         // scale, which we'll implement by inserting it into the other operand
5187         // of the icmp.
5188         assert(F.Scale == -1 &&
5189                "The only scale supported by ICmpZero uses is -1!");
5190         ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr);
5191       }
5192     } else {
5193       // Otherwise just expand the scaled register and an explicit scale,
5194       // which is expected to be matched as part of the address.
5195 
5196       // Flush the operand list to suppress SCEVExpander hoisting address modes.
5197       // Unless the addressing mode will not be folded.
5198       if (!Ops.empty() && LU.Kind == LSRUse::Address &&
5199           isAMCompletelyFolded(TTI, LU, F)) {
5200         Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), nullptr);
5201         Ops.clear();
5202         Ops.push_back(SE.getUnknown(FullV));
5203       }
5204       ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr));
5205       if (F.Scale != 1)
5206         ScaledS =
5207             SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale));
5208       Ops.push_back(ScaledS);
5209     }
5210   }
5211 
5212   // Expand the GV portion.
5213   if (F.BaseGV) {
5214     // Flush the operand list to suppress SCEVExpander hoisting.
5215     if (!Ops.empty()) {
5216       Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
5217       Ops.clear();
5218       Ops.push_back(SE.getUnknown(FullV));
5219     }
5220     Ops.push_back(SE.getUnknown(F.BaseGV));
5221   }
5222 
5223   // Flush the operand list to suppress SCEVExpander hoisting of both folded and
5224   // unfolded offsets. LSR assumes they both live next to their uses.
5225   if (!Ops.empty()) {
5226     Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
5227     Ops.clear();
5228     Ops.push_back(SE.getUnknown(FullV));
5229   }
5230 
5231   // Expand the immediate portion.
5232   int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset;
5233   if (Offset != 0) {
5234     if (LU.Kind == LSRUse::ICmpZero) {
5235       // The other interesting way of "folding" with an ICmpZero is to use a
5236       // negated immediate.
5237       if (!ICmpScaledV)
5238         ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset);
5239       else {
5240         Ops.push_back(SE.getUnknown(ICmpScaledV));
5241         ICmpScaledV = ConstantInt::get(IntTy, Offset);
5242       }
5243     } else {
5244       // Just add the immediate values. These again are expected to be matched
5245       // as part of the address.
5246       Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
5247     }
5248   }
5249 
5250   // Expand the unfolded offset portion.
5251   int64_t UnfoldedOffset = F.UnfoldedOffset;
5252   if (UnfoldedOffset != 0) {
5253     // Just add the immediate values.
5254     Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy,
5255                                                        UnfoldedOffset)));
5256   }
5257 
5258   // Emit instructions summing all the operands.
5259   const SCEV *FullS = Ops.empty() ?
5260                       SE.getConstant(IntTy, 0) :
5261                       SE.getAddExpr(Ops);
5262   Value *FullV = Rewriter.expandCodeFor(FullS, Ty);
5263 
5264   // We're done expanding now, so reset the rewriter.
5265   Rewriter.clearPostInc();
5266 
5267   // An ICmpZero Formula represents an ICmp which we're handling as a
5268   // comparison against zero. Now that we've expanded an expression for that
5269   // form, update the ICmp's other operand.
5270   if (LU.Kind == LSRUse::ICmpZero) {
5271     ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
5272     if (auto *OperandIsInstr = dyn_cast<Instruction>(CI->getOperand(1)))
5273       DeadInsts.emplace_back(OperandIsInstr);
5274     assert(!F.BaseGV && "ICmp does not support folding a global value and "
5275                            "a scale at the same time!");
5276     if (F.Scale == -1) {
5277       if (ICmpScaledV->getType() != OpTy) {
5278         Instruction *Cast =
5279           CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
5280                                                    OpTy, false),
5281                            ICmpScaledV, OpTy, "tmp", CI);
5282         ICmpScaledV = Cast;
5283       }
5284       CI->setOperand(1, ICmpScaledV);
5285     } else {
5286       // A scale of 1 means that the scale has been expanded as part of the
5287       // base regs.
5288       assert((F.Scale == 0 || F.Scale == 1) &&
5289              "ICmp does not support folding a global value and "
5290              "a scale at the same time!");
5291       Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
5292                                            -(uint64_t)Offset);
5293       if (C->getType() != OpTy)
5294         C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
5295                                                           OpTy, false),
5296                                   C, OpTy);
5297 
5298       CI->setOperand(1, C);
5299     }
5300   }
5301 
5302   return FullV;
5303 }
5304 
5305 /// Helper for Rewrite. PHI nodes are special because the use of their operands
5306 /// effectively happens in their predecessor blocks, so the expression may need
5307 /// to be expanded in multiple places.
5308 void LSRInstance::RewriteForPHI(
5309     PHINode *PN, const LSRUse &LU, const LSRFixup &LF, const Formula &F,
5310     SCEVExpander &Rewriter, SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5311   DenseMap<BasicBlock *, Value *> Inserted;
5312   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
5313     if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
5314       bool needUpdateFixups = false;
5315       BasicBlock *BB = PN->getIncomingBlock(i);
5316 
5317       // If this is a critical edge, split the edge so that we do not insert
5318       // the code on all predecessor/successor paths.  We do this unless this
5319       // is the canonical backedge for this loop, which complicates post-inc
5320       // users.
5321       if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
5322           !isa<IndirectBrInst>(BB->getTerminator()) &&
5323           !isa<CatchSwitchInst>(BB->getTerminator())) {
5324         BasicBlock *Parent = PN->getParent();
5325         Loop *PNLoop = LI.getLoopFor(Parent);
5326         if (!PNLoop || Parent != PNLoop->getHeader()) {
5327           // Split the critical edge.
5328           BasicBlock *NewBB = nullptr;
5329           if (!Parent->isLandingPad()) {
5330             NewBB = SplitCriticalEdge(BB, Parent,
5331                                       CriticalEdgeSplittingOptions(&DT, &LI)
5332                                           .setMergeIdenticalEdges()
5333                                           .setKeepOneInputPHIs());
5334           } else {
5335             SmallVector<BasicBlock*, 2> NewBBs;
5336             SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI);
5337             NewBB = NewBBs[0];
5338           }
5339           // If NewBB==NULL, then SplitCriticalEdge refused to split because all
5340           // phi predecessors are identical. The simple thing to do is skip
5341           // splitting in this case rather than complicate the API.
5342           if (NewBB) {
5343             // If PN is outside of the loop and BB is in the loop, we want to
5344             // move the block to be immediately before the PHI block, not
5345             // immediately after BB.
5346             if (L->contains(BB) && !L->contains(PN))
5347               NewBB->moveBefore(PN->getParent());
5348 
5349             // Splitting the edge can reduce the number of PHI entries we have.
5350             e = PN->getNumIncomingValues();
5351             BB = NewBB;
5352             i = PN->getBasicBlockIndex(BB);
5353 
5354             needUpdateFixups = true;
5355           }
5356         }
5357       }
5358 
5359       std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
5360         Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr)));
5361       if (!Pair.second)
5362         PN->setIncomingValue(i, Pair.first->second);
5363       else {
5364         Value *FullV = Expand(LU, LF, F, BB->getTerminator()->getIterator(),
5365                               Rewriter, DeadInsts);
5366 
5367         // If this is reuse-by-noop-cast, insert the noop cast.
5368         Type *OpTy = LF.OperandValToReplace->getType();
5369         if (FullV->getType() != OpTy)
5370           FullV =
5371             CastInst::Create(CastInst::getCastOpcode(FullV, false,
5372                                                      OpTy, false),
5373                              FullV, LF.OperandValToReplace->getType(),
5374                              "tmp", BB->getTerminator());
5375 
5376         PN->setIncomingValue(i, FullV);
5377         Pair.first->second = FullV;
5378       }
5379 
5380       // If LSR splits critical edge and phi node has other pending
5381       // fixup operands, we need to update those pending fixups. Otherwise
5382       // formulae will not be implemented completely and some instructions
5383       // will not be eliminated.
5384       if (needUpdateFixups) {
5385         for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx)
5386           for (LSRFixup &Fixup : Uses[LUIdx].Fixups)
5387             // If fixup is supposed to rewrite some operand in the phi
5388             // that was just updated, it may be already moved to
5389             // another phi node. Such fixup requires update.
5390             if (Fixup.UserInst == PN) {
5391               // Check if the operand we try to replace still exists in the
5392               // original phi.
5393               bool foundInOriginalPHI = false;
5394               for (const auto &val : PN->incoming_values())
5395                 if (val == Fixup.OperandValToReplace) {
5396                   foundInOriginalPHI = true;
5397                   break;
5398                 }
5399 
5400               // If fixup operand found in original PHI - nothing to do.
5401               if (foundInOriginalPHI)
5402                 continue;
5403 
5404               // Otherwise it might be moved to another PHI and requires update.
5405               // If fixup operand not found in any of the incoming blocks that
5406               // means we have already rewritten it - nothing to do.
5407               for (const auto &Block : PN->blocks())
5408                 for (BasicBlock::iterator I = Block->begin(); isa<PHINode>(I);
5409                      ++I) {
5410                   PHINode *NewPN = cast<PHINode>(I);
5411                   for (const auto &val : NewPN->incoming_values())
5412                     if (val == Fixup.OperandValToReplace)
5413                       Fixup.UserInst = NewPN;
5414                 }
5415             }
5416       }
5417     }
5418 }
5419 
5420 /// Emit instructions for the leading candidate expression for this LSRUse (this
5421 /// is called "expanding"), and update the UserInst to reference the newly
5422 /// expanded value.
5423 void LSRInstance::Rewrite(const LSRUse &LU, const LSRFixup &LF,
5424                           const Formula &F, SCEVExpander &Rewriter,
5425                           SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5426   // First, find an insertion point that dominates UserInst. For PHI nodes,
5427   // find the nearest block which dominates all the relevant uses.
5428   if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
5429     RewriteForPHI(PN, LU, LF, F, Rewriter, DeadInsts);
5430   } else {
5431     Value *FullV =
5432       Expand(LU, LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts);
5433 
5434     // If this is reuse-by-noop-cast, insert the noop cast.
5435     Type *OpTy = LF.OperandValToReplace->getType();
5436     if (FullV->getType() != OpTy) {
5437       Instruction *Cast =
5438         CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
5439                          FullV, OpTy, "tmp", LF.UserInst);
5440       FullV = Cast;
5441     }
5442 
5443     // Update the user. ICmpZero is handled specially here (for now) because
5444     // Expand may have updated one of the operands of the icmp already, and
5445     // its new value may happen to be equal to LF.OperandValToReplace, in
5446     // which case doing replaceUsesOfWith leads to replacing both operands
5447     // with the same value. TODO: Reorganize this.
5448     if (LU.Kind == LSRUse::ICmpZero)
5449       LF.UserInst->setOperand(0, FullV);
5450     else
5451       LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
5452   }
5453 
5454   if (auto *OperandIsInstr = dyn_cast<Instruction>(LF.OperandValToReplace))
5455     DeadInsts.emplace_back(OperandIsInstr);
5456 }
5457 
5458 /// Rewrite all the fixup locations with new values, following the chosen
5459 /// solution.
5460 void LSRInstance::ImplementSolution(
5461     const SmallVectorImpl<const Formula *> &Solution) {
5462   // Keep track of instructions we may have made dead, so that
5463   // we can remove them after we are done working.
5464   SmallVector<WeakTrackingVH, 16> DeadInsts;
5465 
5466   SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(),
5467                         "lsr");
5468 #ifndef NDEBUG
5469   Rewriter.setDebugType(DEBUG_TYPE);
5470 #endif
5471   Rewriter.disableCanonicalMode();
5472   Rewriter.enableLSRMode();
5473   Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
5474 
5475   // Mark phi nodes that terminate chains so the expander tries to reuse them.
5476   for (const IVChain &Chain : IVChainVec) {
5477     if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst()))
5478       Rewriter.setChainedPhi(PN);
5479   }
5480 
5481   // Expand the new value definitions and update the users.
5482   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx)
5483     for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) {
5484       Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], Rewriter, DeadInsts);
5485       Changed = true;
5486     }
5487 
5488   for (const IVChain &Chain : IVChainVec) {
5489     GenerateIVChain(Chain, Rewriter, DeadInsts);
5490     Changed = true;
5491   }
5492   // Clean up after ourselves. This must be done before deleting any
5493   // instructions.
5494   Rewriter.clear();
5495 
5496   Changed |= RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts,
5497                                                                   &TLI, MSSAU);
5498 }
5499 
5500 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE,
5501                          DominatorTree &DT, LoopInfo &LI,
5502                          const TargetTransformInfo &TTI, AssumptionCache &AC,
5503                          TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU)
5504     : IU(IU), SE(SE), DT(DT), LI(LI), AC(AC), TLI(TLI), TTI(TTI), L(L),
5505       MSSAU(MSSAU), FavorBackedgeIndex(EnableBackedgeIndexing &&
5506                                        TTI.shouldFavorBackedgeIndex(L)) {
5507   // If LoopSimplify form is not available, stay out of trouble.
5508   if (!L->isLoopSimplifyForm())
5509     return;
5510 
5511   // If there's no interesting work to be done, bail early.
5512   if (IU.empty()) return;
5513 
5514   // If there's too much analysis to be done, bail early. We won't be able to
5515   // model the problem anyway.
5516   unsigned NumUsers = 0;
5517   for (const IVStrideUse &U : IU) {
5518     if (++NumUsers > MaxIVUsers) {
5519       (void)U;
5520       LLVM_DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U
5521                         << "\n");
5522       return;
5523     }
5524     // Bail out if we have a PHI on an EHPad that gets a value from a
5525     // CatchSwitchInst.  Because the CatchSwitchInst cannot be split, there is
5526     // no good place to stick any instructions.
5527     if (auto *PN = dyn_cast<PHINode>(U.getUser())) {
5528        auto *FirstNonPHI = PN->getParent()->getFirstNonPHI();
5529        if (isa<FuncletPadInst>(FirstNonPHI) ||
5530            isa<CatchSwitchInst>(FirstNonPHI))
5531          for (BasicBlock *PredBB : PN->blocks())
5532            if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI()))
5533              return;
5534     }
5535   }
5536 
5537 #ifndef NDEBUG
5538   // All dominating loops must have preheaders, or SCEVExpander may not be able
5539   // to materialize an AddRecExpr whose Start is an outer AddRecExpr.
5540   //
5541   // IVUsers analysis should only create users that are dominated by simple loop
5542   // headers. Since this loop should dominate all of its users, its user list
5543   // should be empty if this loop itself is not within a simple loop nest.
5544   for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader());
5545        Rung; Rung = Rung->getIDom()) {
5546     BasicBlock *BB = Rung->getBlock();
5547     const Loop *DomLoop = LI.getLoopFor(BB);
5548     if (DomLoop && DomLoop->getHeader() == BB) {
5549       assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest");
5550     }
5551   }
5552 #endif // DEBUG
5553 
5554   LLVM_DEBUG(dbgs() << "\nLSR on loop ";
5555              L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false);
5556              dbgs() << ":\n");
5557 
5558   // First, perform some low-level loop optimizations.
5559   OptimizeShadowIV();
5560   OptimizeLoopTermCond();
5561 
5562   // If loop preparation eliminates all interesting IV users, bail.
5563   if (IU.empty()) return;
5564 
5565   // Skip nested loops until we can model them better with formulae.
5566   if (!L->empty()) {
5567     LLVM_DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n");
5568     return;
5569   }
5570 
5571   // Start collecting data and preparing for the solver.
5572   CollectChains();
5573   CollectInterestingTypesAndFactors();
5574   CollectFixupsAndInitialFormulae();
5575   CollectLoopInvariantFixupsAndFormulae();
5576 
5577   if (Uses.empty())
5578     return;
5579 
5580   LLVM_DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
5581              print_uses(dbgs()));
5582 
5583   // Now use the reuse data to generate a bunch of interesting ways
5584   // to formulate the values needed for the uses.
5585   GenerateAllReuseFormulae();
5586 
5587   FilterOutUndesirableDedicatedRegisters();
5588   NarrowSearchSpaceUsingHeuristics();
5589 
5590   SmallVector<const Formula *, 8> Solution;
5591   Solve(Solution);
5592 
5593   // Release memory that is no longer needed.
5594   Factors.clear();
5595   Types.clear();
5596   RegUses.clear();
5597 
5598   if (Solution.empty())
5599     return;
5600 
5601 #ifndef NDEBUG
5602   // Formulae should be legal.
5603   for (const LSRUse &LU : Uses) {
5604     for (const Formula &F : LU.Formulae)
5605       assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
5606                         F) && "Illegal formula generated!");
5607   };
5608 #endif
5609 
5610   // Now that we've decided what we want, make it so.
5611   ImplementSolution(Solution);
5612 }
5613 
5614 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
5615 void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
5616   if (Factors.empty() && Types.empty()) return;
5617 
5618   OS << "LSR has identified the following interesting factors and types: ";
5619   bool First = true;
5620 
5621   for (int64_t Factor : Factors) {
5622     if (!First) OS << ", ";
5623     First = false;
5624     OS << '*' << Factor;
5625   }
5626 
5627   for (Type *Ty : Types) {
5628     if (!First) OS << ", ";
5629     First = false;
5630     OS << '(' << *Ty << ')';
5631   }
5632   OS << '\n';
5633 }
5634 
5635 void LSRInstance::print_fixups(raw_ostream &OS) const {
5636   OS << "LSR is examining the following fixup sites:\n";
5637   for (const LSRUse &LU : Uses)
5638     for (const LSRFixup &LF : LU.Fixups) {
5639       dbgs() << "  ";
5640       LF.print(OS);
5641       OS << '\n';
5642     }
5643 }
5644 
5645 void LSRInstance::print_uses(raw_ostream &OS) const {
5646   OS << "LSR is examining the following uses:\n";
5647   for (const LSRUse &LU : Uses) {
5648     dbgs() << "  ";
5649     LU.print(OS);
5650     OS << '\n';
5651     for (const Formula &F : LU.Formulae) {
5652       OS << "    ";
5653       F.print(OS);
5654       OS << '\n';
5655     }
5656   }
5657 }
5658 
5659 void LSRInstance::print(raw_ostream &OS) const {
5660   print_factors_and_types(OS);
5661   print_fixups(OS);
5662   print_uses(OS);
5663 }
5664 
5665 LLVM_DUMP_METHOD void LSRInstance::dump() const {
5666   print(errs()); errs() << '\n';
5667 }
5668 #endif
5669 
5670 namespace {
5671 
5672 class LoopStrengthReduce : public LoopPass {
5673 public:
5674   static char ID; // Pass ID, replacement for typeid
5675 
5676   LoopStrengthReduce();
5677 
5678 private:
5679   bool runOnLoop(Loop *L, LPPassManager &LPM) override;
5680   void getAnalysisUsage(AnalysisUsage &AU) const override;
5681 };
5682 
5683 } // end anonymous namespace
5684 
5685 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) {
5686   initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
5687 }
5688 
5689 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
5690   // We split critical edges, so we change the CFG.  However, we do update
5691   // many analyses if they are around.
5692   AU.addPreservedID(LoopSimplifyID);
5693 
5694   AU.addRequired<LoopInfoWrapperPass>();
5695   AU.addPreserved<LoopInfoWrapperPass>();
5696   AU.addRequiredID(LoopSimplifyID);
5697   AU.addRequired<DominatorTreeWrapperPass>();
5698   AU.addPreserved<DominatorTreeWrapperPass>();
5699   AU.addRequired<ScalarEvolutionWrapperPass>();
5700   AU.addPreserved<ScalarEvolutionWrapperPass>();
5701   AU.addRequired<AssumptionCacheTracker>();
5702   AU.addRequired<TargetLibraryInfoWrapperPass>();
5703   // Requiring LoopSimplify a second time here prevents IVUsers from running
5704   // twice, since LoopSimplify was invalidated by running ScalarEvolution.
5705   AU.addRequiredID(LoopSimplifyID);
5706   AU.addRequired<IVUsersWrapperPass>();
5707   AU.addPreserved<IVUsersWrapperPass>();
5708   AU.addRequired<TargetTransformInfoWrapperPass>();
5709   AU.addPreserved<MemorySSAWrapperPass>();
5710 }
5711 
5712 static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE,
5713                                DominatorTree &DT, LoopInfo &LI,
5714                                const TargetTransformInfo &TTI,
5715                                AssumptionCache &AC, TargetLibraryInfo &TLI,
5716                                MemorySSA *MSSA) {
5717 
5718   bool Changed = false;
5719   std::unique_ptr<MemorySSAUpdater> MSSAU;
5720   if (MSSA)
5721     MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
5722 
5723   // Run the main LSR transformation.
5724   Changed |=
5725       LSRInstance(L, IU, SE, DT, LI, TTI, AC, TLI, MSSAU.get()).getChanged();
5726 
5727   // Remove any extra phis created by processing inner loops.
5728   Changed |= DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get());
5729   if (EnablePhiElim && L->isLoopSimplifyForm()) {
5730     SmallVector<WeakTrackingVH, 16> DeadInsts;
5731     const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
5732     SCEVExpander Rewriter(SE, DL, "lsr");
5733 #ifndef NDEBUG
5734     Rewriter.setDebugType(DEBUG_TYPE);
5735 #endif
5736     unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI);
5737     if (numFolded) {
5738       Changed = true;
5739       RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts, &TLI,
5740                                                            MSSAU.get());
5741       DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get());
5742     }
5743   }
5744   return Changed;
5745 }
5746 
5747 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
5748   if (skipLoop(L))
5749     return false;
5750 
5751   auto &IU = getAnalysis<IVUsersWrapperPass>().getIU();
5752   auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
5753   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
5754   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
5755   const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
5756       *L->getHeader()->getParent());
5757   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
5758       *L->getHeader()->getParent());
5759   auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
5760       *L->getHeader()->getParent());
5761   auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>();
5762   MemorySSA *MSSA = nullptr;
5763   if (MSSAAnalysis)
5764     MSSA = &MSSAAnalysis->getMSSA();
5765   return ReduceLoopStrength(L, IU, SE, DT, LI, TTI, AC, TLI, MSSA);
5766 }
5767 
5768 PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM,
5769                                               LoopStandardAnalysisResults &AR,
5770                                               LPMUpdater &) {
5771   if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE,
5772                           AR.DT, AR.LI, AR.TTI, AR.AC, AR.TLI, AR.MSSA))
5773     return PreservedAnalyses::all();
5774 
5775   auto PA = getLoopPassPreservedAnalyses();
5776   if (AR.MSSA)
5777     PA.preserve<MemorySSAAnalysis>();
5778   return PA;
5779 }
5780 
5781 char LoopStrengthReduce::ID = 0;
5782 
5783 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce",
5784                       "Loop Strength Reduction", false, false)
5785 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
5786 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
5787 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
5788 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass)
5789 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
5790 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
5791 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce",
5792                     "Loop Strength Reduction", false, false)
5793 
5794 Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); }
5795