1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This transformation analyzes and transforms the induction variables (and 11 // computations derived from them) into forms suitable for efficient execution 12 // on the target. 13 // 14 // This pass performs a strength reduction on array references inside loops that 15 // have as one or more of their components the loop induction variable, it 16 // rewrites expressions to take advantage of scaled-index addressing modes 17 // available on the target, and it performs a variety of other optimizations 18 // related to loop induction variables. 19 // 20 // Terminology note: this code has a lot of handling for "post-increment" or 21 // "post-inc" users. This is not talking about post-increment addressing modes; 22 // it is instead talking about code like this: 23 // 24 // %i = phi [ 0, %entry ], [ %i.next, %latch ] 25 // ... 26 // %i.next = add %i, 1 27 // %c = icmp eq %i.next, %n 28 // 29 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however 30 // it's useful to think about these as the same register, with some uses using 31 // the value of the register before the add and some using it after. In this 32 // example, the icmp is a post-increment user, since it uses %i.next, which is 33 // the value of the induction variable after the increment. The other common 34 // case of post-increment users is users outside the loop. 35 // 36 // TODO: More sophistication in the way Formulae are generated and filtered. 37 // 38 // TODO: Handle multiple loops at a time. 39 // 40 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead 41 // of a GlobalValue? 42 // 43 // TODO: When truncation is free, truncate ICmp users' operands to make it a 44 // smaller encoding (on x86 at least). 45 // 46 // TODO: When a negated register is used by an add (such as in a list of 47 // multiple base registers, or as the increment expression in an addrec), 48 // we may not actually need both reg and (-1 * reg) in registers; the 49 // negation can be implemented by using a sub instead of an add. The 50 // lack of support for taking this into consideration when making 51 // register pressure decisions is partly worked around by the "Special" 52 // use kind. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h" 57 #include "llvm/ADT/DenseSet.h" 58 #include "llvm/ADT/Hashing.h" 59 #include "llvm/ADT/STLExtras.h" 60 #include "llvm/ADT/SetVector.h" 61 #include "llvm/ADT/SmallBitVector.h" 62 #include "llvm/Analysis/IVUsers.h" 63 #include "llvm/Analysis/LoopPass.h" 64 #include "llvm/Analysis/LoopPassManager.h" 65 #include "llvm/Analysis/ScalarEvolutionExpander.h" 66 #include "llvm/Analysis/TargetTransformInfo.h" 67 #include "llvm/IR/Constants.h" 68 #include "llvm/IR/DerivedTypes.h" 69 #include "llvm/IR/Dominators.h" 70 #include "llvm/IR/Instructions.h" 71 #include "llvm/IR/IntrinsicInst.h" 72 #include "llvm/IR/Module.h" 73 #include "llvm/IR/ValueHandle.h" 74 #include "llvm/Support/CommandLine.h" 75 #include "llvm/Support/Debug.h" 76 #include "llvm/Support/raw_ostream.h" 77 #include "llvm/Transforms/Scalar.h" 78 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 79 #include "llvm/Transforms/Utils/Local.h" 80 #include <algorithm> 81 using namespace llvm; 82 83 #define DEBUG_TYPE "loop-reduce" 84 85 /// MaxIVUsers is an arbitrary threshold that provides an early opportunitiy for 86 /// bail out. This threshold is far beyond the number of users that LSR can 87 /// conceivably solve, so it should not affect generated code, but catches the 88 /// worst cases before LSR burns too much compile time and stack space. 89 static const unsigned MaxIVUsers = 200; 90 91 // Temporary flag to cleanup congruent phis after LSR phi expansion. 92 // It's currently disabled until we can determine whether it's truly useful or 93 // not. The flag should be removed after the v3.0 release. 94 // This is now needed for ivchains. 95 static cl::opt<bool> EnablePhiElim( 96 "enable-lsr-phielim", cl::Hidden, cl::init(true), 97 cl::desc("Enable LSR phi elimination")); 98 99 #ifndef NDEBUG 100 // Stress test IV chain generation. 101 static cl::opt<bool> StressIVChain( 102 "stress-ivchain", cl::Hidden, cl::init(false), 103 cl::desc("Stress test LSR IV chains")); 104 #else 105 static bool StressIVChain = false; 106 #endif 107 108 namespace { 109 110 struct MemAccessTy { 111 /// Used in situations where the accessed memory type is unknown. 112 static const unsigned UnknownAddressSpace = ~0u; 113 114 Type *MemTy; 115 unsigned AddrSpace; 116 117 MemAccessTy() : MemTy(nullptr), AddrSpace(UnknownAddressSpace) {} 118 119 MemAccessTy(Type *Ty, unsigned AS) : 120 MemTy(Ty), AddrSpace(AS) {} 121 122 bool operator==(MemAccessTy Other) const { 123 return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace; 124 } 125 126 bool operator!=(MemAccessTy Other) const { return !(*this == Other); } 127 128 static MemAccessTy getUnknown(LLVMContext &Ctx) { 129 return MemAccessTy(Type::getVoidTy(Ctx), UnknownAddressSpace); 130 } 131 }; 132 133 /// This class holds data which is used to order reuse candidates. 134 class RegSortData { 135 public: 136 /// This represents the set of LSRUse indices which reference 137 /// a particular register. 138 SmallBitVector UsedByIndices; 139 140 void print(raw_ostream &OS) const; 141 void dump() const; 142 }; 143 144 } 145 146 void RegSortData::print(raw_ostream &OS) const { 147 OS << "[NumUses=" << UsedByIndices.count() << ']'; 148 } 149 150 LLVM_DUMP_METHOD 151 void RegSortData::dump() const { 152 print(errs()); errs() << '\n'; 153 } 154 155 namespace { 156 157 /// Map register candidates to information about how they are used. 158 class RegUseTracker { 159 typedef DenseMap<const SCEV *, RegSortData> RegUsesTy; 160 161 RegUsesTy RegUsesMap; 162 SmallVector<const SCEV *, 16> RegSequence; 163 164 public: 165 void countRegister(const SCEV *Reg, size_t LUIdx); 166 void dropRegister(const SCEV *Reg, size_t LUIdx); 167 void swapAndDropUse(size_t LUIdx, size_t LastLUIdx); 168 169 bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const; 170 171 const SmallBitVector &getUsedByIndices(const SCEV *Reg) const; 172 173 void clear(); 174 175 typedef SmallVectorImpl<const SCEV *>::iterator iterator; 176 typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator; 177 iterator begin() { return RegSequence.begin(); } 178 iterator end() { return RegSequence.end(); } 179 const_iterator begin() const { return RegSequence.begin(); } 180 const_iterator end() const { return RegSequence.end(); } 181 }; 182 183 } 184 185 void 186 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) { 187 std::pair<RegUsesTy::iterator, bool> Pair = 188 RegUsesMap.insert(std::make_pair(Reg, RegSortData())); 189 RegSortData &RSD = Pair.first->second; 190 if (Pair.second) 191 RegSequence.push_back(Reg); 192 RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1)); 193 RSD.UsedByIndices.set(LUIdx); 194 } 195 196 void 197 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) { 198 RegUsesTy::iterator It = RegUsesMap.find(Reg); 199 assert(It != RegUsesMap.end()); 200 RegSortData &RSD = It->second; 201 assert(RSD.UsedByIndices.size() > LUIdx); 202 RSD.UsedByIndices.reset(LUIdx); 203 } 204 205 void 206 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) { 207 assert(LUIdx <= LastLUIdx); 208 209 // Update RegUses. The data structure is not optimized for this purpose; 210 // we must iterate through it and update each of the bit vectors. 211 for (auto &Pair : RegUsesMap) { 212 SmallBitVector &UsedByIndices = Pair.second.UsedByIndices; 213 if (LUIdx < UsedByIndices.size()) 214 UsedByIndices[LUIdx] = 215 LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : 0; 216 UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx)); 217 } 218 } 219 220 bool 221 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const { 222 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 223 if (I == RegUsesMap.end()) 224 return false; 225 const SmallBitVector &UsedByIndices = I->second.UsedByIndices; 226 int i = UsedByIndices.find_first(); 227 if (i == -1) return false; 228 if ((size_t)i != LUIdx) return true; 229 return UsedByIndices.find_next(i) != -1; 230 } 231 232 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const { 233 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 234 assert(I != RegUsesMap.end() && "Unknown register!"); 235 return I->second.UsedByIndices; 236 } 237 238 void RegUseTracker::clear() { 239 RegUsesMap.clear(); 240 RegSequence.clear(); 241 } 242 243 namespace { 244 245 /// This class holds information that describes a formula for computing 246 /// satisfying a use. It may include broken-out immediates and scaled registers. 247 struct Formula { 248 /// Global base address used for complex addressing. 249 GlobalValue *BaseGV; 250 251 /// Base offset for complex addressing. 252 int64_t BaseOffset; 253 254 /// Whether any complex addressing has a base register. 255 bool HasBaseReg; 256 257 /// The scale of any complex addressing. 258 int64_t Scale; 259 260 /// The list of "base" registers for this use. When this is non-empty. The 261 /// canonical representation of a formula is 262 /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and 263 /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty(). 264 /// #1 enforces that the scaled register is always used when at least two 265 /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2. 266 /// #2 enforces that 1 * reg is reg. 267 /// This invariant can be temporarly broken while building a formula. 268 /// However, every formula inserted into the LSRInstance must be in canonical 269 /// form. 270 SmallVector<const SCEV *, 4> BaseRegs; 271 272 /// The 'scaled' register for this use. This should be non-null when Scale is 273 /// not zero. 274 const SCEV *ScaledReg; 275 276 /// An additional constant offset which added near the use. This requires a 277 /// temporary register, but the offset itself can live in an add immediate 278 /// field rather than a register. 279 int64_t UnfoldedOffset; 280 281 Formula() 282 : BaseGV(nullptr), BaseOffset(0), HasBaseReg(false), Scale(0), 283 ScaledReg(nullptr), UnfoldedOffset(0) {} 284 285 void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE); 286 287 bool isCanonical() const; 288 289 void canonicalize(); 290 291 bool unscale(); 292 293 size_t getNumRegs() const; 294 Type *getType() const; 295 296 void deleteBaseReg(const SCEV *&S); 297 298 bool referencesReg(const SCEV *S) const; 299 bool hasRegsUsedByUsesOtherThan(size_t LUIdx, 300 const RegUseTracker &RegUses) const; 301 302 void print(raw_ostream &OS) const; 303 void dump() const; 304 }; 305 306 } 307 308 /// Recursion helper for initialMatch. 309 static void DoInitialMatch(const SCEV *S, Loop *L, 310 SmallVectorImpl<const SCEV *> &Good, 311 SmallVectorImpl<const SCEV *> &Bad, 312 ScalarEvolution &SE) { 313 // Collect expressions which properly dominate the loop header. 314 if (SE.properlyDominates(S, L->getHeader())) { 315 Good.push_back(S); 316 return; 317 } 318 319 // Look at add operands. 320 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 321 for (const SCEV *S : Add->operands()) 322 DoInitialMatch(S, L, Good, Bad, SE); 323 return; 324 } 325 326 // Look at addrec operands. 327 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 328 if (!AR->getStart()->isZero()) { 329 DoInitialMatch(AR->getStart(), L, Good, Bad, SE); 330 DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0), 331 AR->getStepRecurrence(SE), 332 // FIXME: AR->getNoWrapFlags() 333 AR->getLoop(), SCEV::FlagAnyWrap), 334 L, Good, Bad, SE); 335 return; 336 } 337 338 // Handle a multiplication by -1 (negation) if it didn't fold. 339 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) 340 if (Mul->getOperand(0)->isAllOnesValue()) { 341 SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end()); 342 const SCEV *NewMul = SE.getMulExpr(Ops); 343 344 SmallVector<const SCEV *, 4> MyGood; 345 SmallVector<const SCEV *, 4> MyBad; 346 DoInitialMatch(NewMul, L, MyGood, MyBad, SE); 347 const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue( 348 SE.getEffectiveSCEVType(NewMul->getType()))); 349 for (const SCEV *S : MyGood) 350 Good.push_back(SE.getMulExpr(NegOne, S)); 351 for (const SCEV *S : MyBad) 352 Bad.push_back(SE.getMulExpr(NegOne, S)); 353 return; 354 } 355 356 // Ok, we can't do anything interesting. Just stuff the whole thing into a 357 // register and hope for the best. 358 Bad.push_back(S); 359 } 360 361 /// Incorporate loop-variant parts of S into this Formula, attempting to keep 362 /// all loop-invariant and loop-computable values in a single base register. 363 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) { 364 SmallVector<const SCEV *, 4> Good; 365 SmallVector<const SCEV *, 4> Bad; 366 DoInitialMatch(S, L, Good, Bad, SE); 367 if (!Good.empty()) { 368 const SCEV *Sum = SE.getAddExpr(Good); 369 if (!Sum->isZero()) 370 BaseRegs.push_back(Sum); 371 HasBaseReg = true; 372 } 373 if (!Bad.empty()) { 374 const SCEV *Sum = SE.getAddExpr(Bad); 375 if (!Sum->isZero()) 376 BaseRegs.push_back(Sum); 377 HasBaseReg = true; 378 } 379 canonicalize(); 380 } 381 382 /// \brief Check whether or not this formula statisfies the canonical 383 /// representation. 384 /// \see Formula::BaseRegs. 385 bool Formula::isCanonical() const { 386 if (ScaledReg) 387 return Scale != 1 || !BaseRegs.empty(); 388 return BaseRegs.size() <= 1; 389 } 390 391 /// \brief Helper method to morph a formula into its canonical representation. 392 /// \see Formula::BaseRegs. 393 /// Every formula having more than one base register, must use the ScaledReg 394 /// field. Otherwise, we would have to do special cases everywhere in LSR 395 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ... 396 /// On the other hand, 1*reg should be canonicalized into reg. 397 void Formula::canonicalize() { 398 if (isCanonical()) 399 return; 400 // So far we did not need this case. This is easy to implement but it is 401 // useless to maintain dead code. Beside it could hurt compile time. 402 assert(!BaseRegs.empty() && "1*reg => reg, should not be needed."); 403 // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg. 404 ScaledReg = BaseRegs.back(); 405 BaseRegs.pop_back(); 406 Scale = 1; 407 size_t BaseRegsSize = BaseRegs.size(); 408 size_t Try = 0; 409 // If ScaledReg is an invariant, try to find a variant expression. 410 while (Try < BaseRegsSize && !isa<SCEVAddRecExpr>(ScaledReg)) 411 std::swap(ScaledReg, BaseRegs[Try++]); 412 } 413 414 /// \brief Get rid of the scale in the formula. 415 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2. 416 /// \return true if it was possible to get rid of the scale, false otherwise. 417 /// \note After this operation the formula may not be in the canonical form. 418 bool Formula::unscale() { 419 if (Scale != 1) 420 return false; 421 Scale = 0; 422 BaseRegs.push_back(ScaledReg); 423 ScaledReg = nullptr; 424 return true; 425 } 426 427 /// Return the total number of register operands used by this formula. This does 428 /// not include register uses implied by non-constant addrec strides. 429 size_t Formula::getNumRegs() const { 430 return !!ScaledReg + BaseRegs.size(); 431 } 432 433 /// Return the type of this formula, if it has one, or null otherwise. This type 434 /// is meaningless except for the bit size. 435 Type *Formula::getType() const { 436 return !BaseRegs.empty() ? BaseRegs.front()->getType() : 437 ScaledReg ? ScaledReg->getType() : 438 BaseGV ? BaseGV->getType() : 439 nullptr; 440 } 441 442 /// Delete the given base reg from the BaseRegs list. 443 void Formula::deleteBaseReg(const SCEV *&S) { 444 if (&S != &BaseRegs.back()) 445 std::swap(S, BaseRegs.back()); 446 BaseRegs.pop_back(); 447 } 448 449 /// Test if this formula references the given register. 450 bool Formula::referencesReg(const SCEV *S) const { 451 return S == ScaledReg || is_contained(BaseRegs, S); 452 } 453 454 /// Test whether this formula uses registers which are used by uses other than 455 /// the use with the given index. 456 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx, 457 const RegUseTracker &RegUses) const { 458 if (ScaledReg) 459 if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx)) 460 return true; 461 for (const SCEV *BaseReg : BaseRegs) 462 if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx)) 463 return true; 464 return false; 465 } 466 467 void Formula::print(raw_ostream &OS) const { 468 bool First = true; 469 if (BaseGV) { 470 if (!First) OS << " + "; else First = false; 471 BaseGV->printAsOperand(OS, /*PrintType=*/false); 472 } 473 if (BaseOffset != 0) { 474 if (!First) OS << " + "; else First = false; 475 OS << BaseOffset; 476 } 477 for (const SCEV *BaseReg : BaseRegs) { 478 if (!First) OS << " + "; else First = false; 479 OS << "reg(" << *BaseReg << ')'; 480 } 481 if (HasBaseReg && BaseRegs.empty()) { 482 if (!First) OS << " + "; else First = false; 483 OS << "**error: HasBaseReg**"; 484 } else if (!HasBaseReg && !BaseRegs.empty()) { 485 if (!First) OS << " + "; else First = false; 486 OS << "**error: !HasBaseReg**"; 487 } 488 if (Scale != 0) { 489 if (!First) OS << " + "; else First = false; 490 OS << Scale << "*reg("; 491 if (ScaledReg) 492 OS << *ScaledReg; 493 else 494 OS << "<unknown>"; 495 OS << ')'; 496 } 497 if (UnfoldedOffset != 0) { 498 if (!First) OS << " + "; 499 OS << "imm(" << UnfoldedOffset << ')'; 500 } 501 } 502 503 LLVM_DUMP_METHOD 504 void Formula::dump() const { 505 print(errs()); errs() << '\n'; 506 } 507 508 /// Return true if the given addrec can be sign-extended without changing its 509 /// value. 510 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 511 Type *WideTy = 512 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1); 513 return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy)); 514 } 515 516 /// Return true if the given add can be sign-extended without changing its 517 /// value. 518 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) { 519 Type *WideTy = 520 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1); 521 return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy)); 522 } 523 524 /// Return true if the given mul can be sign-extended without changing its 525 /// value. 526 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) { 527 Type *WideTy = 528 IntegerType::get(SE.getContext(), 529 SE.getTypeSizeInBits(M->getType()) * M->getNumOperands()); 530 return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy)); 531 } 532 533 /// Return an expression for LHS /s RHS, if it can be determined and if the 534 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits 535 /// is true, expressions like (X * Y) /s Y are simplified to Y, ignoring that 536 /// the multiplication may overflow, which is useful when the result will be 537 /// used in a context where the most significant bits are ignored. 538 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS, 539 ScalarEvolution &SE, 540 bool IgnoreSignificantBits = false) { 541 // Handle the trivial case, which works for any SCEV type. 542 if (LHS == RHS) 543 return SE.getConstant(LHS->getType(), 1); 544 545 // Handle a few RHS special cases. 546 const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS); 547 if (RC) { 548 const APInt &RA = RC->getAPInt(); 549 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do 550 // some folding. 551 if (RA.isAllOnesValue()) 552 return SE.getMulExpr(LHS, RC); 553 // Handle x /s 1 as x. 554 if (RA == 1) 555 return LHS; 556 } 557 558 // Check for a division of a constant by a constant. 559 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) { 560 if (!RC) 561 return nullptr; 562 const APInt &LA = C->getAPInt(); 563 const APInt &RA = RC->getAPInt(); 564 if (LA.srem(RA) != 0) 565 return nullptr; 566 return SE.getConstant(LA.sdiv(RA)); 567 } 568 569 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow. 570 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) { 571 if (IgnoreSignificantBits || isAddRecSExtable(AR, SE)) { 572 const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE, 573 IgnoreSignificantBits); 574 if (!Step) return nullptr; 575 const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE, 576 IgnoreSignificantBits); 577 if (!Start) return nullptr; 578 // FlagNW is independent of the start value, step direction, and is 579 // preserved with smaller magnitude steps. 580 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 581 return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap); 582 } 583 return nullptr; 584 } 585 586 // Distribute the sdiv over add operands, if the add doesn't overflow. 587 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) { 588 if (IgnoreSignificantBits || isAddSExtable(Add, SE)) { 589 SmallVector<const SCEV *, 8> Ops; 590 for (const SCEV *S : Add->operands()) { 591 const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits); 592 if (!Op) return nullptr; 593 Ops.push_back(Op); 594 } 595 return SE.getAddExpr(Ops); 596 } 597 return nullptr; 598 } 599 600 // Check for a multiply operand that we can pull RHS out of. 601 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) { 602 if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) { 603 SmallVector<const SCEV *, 4> Ops; 604 bool Found = false; 605 for (const SCEV *S : Mul->operands()) { 606 if (!Found) 607 if (const SCEV *Q = getExactSDiv(S, RHS, SE, 608 IgnoreSignificantBits)) { 609 S = Q; 610 Found = true; 611 } 612 Ops.push_back(S); 613 } 614 return Found ? SE.getMulExpr(Ops) : nullptr; 615 } 616 return nullptr; 617 } 618 619 // Otherwise we don't know. 620 return nullptr; 621 } 622 623 /// If S involves the addition of a constant integer value, return that integer 624 /// value, and mutate S to point to a new SCEV with that value excluded. 625 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) { 626 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 627 if (C->getAPInt().getMinSignedBits() <= 64) { 628 S = SE.getConstant(C->getType(), 0); 629 return C->getValue()->getSExtValue(); 630 } 631 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 632 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 633 int64_t Result = ExtractImmediate(NewOps.front(), SE); 634 if (Result != 0) 635 S = SE.getAddExpr(NewOps); 636 return Result; 637 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 638 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 639 int64_t Result = ExtractImmediate(NewOps.front(), SE); 640 if (Result != 0) 641 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 642 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 643 SCEV::FlagAnyWrap); 644 return Result; 645 } 646 return 0; 647 } 648 649 /// If S involves the addition of a GlobalValue address, return that symbol, and 650 /// mutate S to point to a new SCEV with that value excluded. 651 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) { 652 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 653 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) { 654 S = SE.getConstant(GV->getType(), 0); 655 return GV; 656 } 657 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 658 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 659 GlobalValue *Result = ExtractSymbol(NewOps.back(), SE); 660 if (Result) 661 S = SE.getAddExpr(NewOps); 662 return Result; 663 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 664 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 665 GlobalValue *Result = ExtractSymbol(NewOps.front(), SE); 666 if (Result) 667 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 668 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 669 SCEV::FlagAnyWrap); 670 return Result; 671 } 672 return nullptr; 673 } 674 675 /// Returns true if the specified instruction is using the specified value as an 676 /// address. 677 static bool isAddressUse(Instruction *Inst, Value *OperandVal) { 678 bool isAddress = isa<LoadInst>(Inst); 679 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 680 if (SI->getOperand(1) == OperandVal) 681 isAddress = true; 682 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 683 // Addressing modes can also be folded into prefetches and a variety 684 // of intrinsics. 685 switch (II->getIntrinsicID()) { 686 default: break; 687 case Intrinsic::prefetch: 688 if (II->getArgOperand(0) == OperandVal) 689 isAddress = true; 690 break; 691 } 692 } 693 return isAddress; 694 } 695 696 /// Return the type of the memory being accessed. 697 static MemAccessTy getAccessType(const Instruction *Inst) { 698 MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace); 699 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 700 AccessTy.MemTy = SI->getOperand(0)->getType(); 701 AccessTy.AddrSpace = SI->getPointerAddressSpace(); 702 } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 703 AccessTy.AddrSpace = LI->getPointerAddressSpace(); 704 } 705 706 // All pointers have the same requirements, so canonicalize them to an 707 // arbitrary pointer type to minimize variation. 708 if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy)) 709 AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1), 710 PTy->getAddressSpace()); 711 712 return AccessTy; 713 } 714 715 /// Return true if this AddRec is already a phi in its loop. 716 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 717 for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin(); 718 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 719 if (SE.isSCEVable(PN->getType()) && 720 (SE.getEffectiveSCEVType(PN->getType()) == 721 SE.getEffectiveSCEVType(AR->getType())) && 722 SE.getSCEV(PN) == AR) 723 return true; 724 } 725 return false; 726 } 727 728 /// Check if expanding this expression is likely to incur significant cost. This 729 /// is tricky because SCEV doesn't track which expressions are actually computed 730 /// by the current IR. 731 /// 732 /// We currently allow expansion of IV increments that involve adds, 733 /// multiplication by constants, and AddRecs from existing phis. 734 /// 735 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an 736 /// obvious multiple of the UDivExpr. 737 static bool isHighCostExpansion(const SCEV *S, 738 SmallPtrSetImpl<const SCEV*> &Processed, 739 ScalarEvolution &SE) { 740 // Zero/One operand expressions 741 switch (S->getSCEVType()) { 742 case scUnknown: 743 case scConstant: 744 return false; 745 case scTruncate: 746 return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(), 747 Processed, SE); 748 case scZeroExtend: 749 return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(), 750 Processed, SE); 751 case scSignExtend: 752 return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(), 753 Processed, SE); 754 } 755 756 if (!Processed.insert(S).second) 757 return false; 758 759 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 760 for (const SCEV *S : Add->operands()) { 761 if (isHighCostExpansion(S, Processed, SE)) 762 return true; 763 } 764 return false; 765 } 766 767 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 768 if (Mul->getNumOperands() == 2) { 769 // Multiplication by a constant is ok 770 if (isa<SCEVConstant>(Mul->getOperand(0))) 771 return isHighCostExpansion(Mul->getOperand(1), Processed, SE); 772 773 // If we have the value of one operand, check if an existing 774 // multiplication already generates this expression. 775 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) { 776 Value *UVal = U->getValue(); 777 for (User *UR : UVal->users()) { 778 // If U is a constant, it may be used by a ConstantExpr. 779 Instruction *UI = dyn_cast<Instruction>(UR); 780 if (UI && UI->getOpcode() == Instruction::Mul && 781 SE.isSCEVable(UI->getType())) { 782 return SE.getSCEV(UI) == Mul; 783 } 784 } 785 } 786 } 787 } 788 789 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 790 if (isExistingPhi(AR, SE)) 791 return false; 792 } 793 794 // Fow now, consider any other type of expression (div/mul/min/max) high cost. 795 return true; 796 } 797 798 /// If any of the instructions is the specified set are trivially dead, delete 799 /// them and see if this makes any of their operands subsequently dead. 800 static bool 801 DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) { 802 bool Changed = false; 803 804 while (!DeadInsts.empty()) { 805 Value *V = DeadInsts.pop_back_val(); 806 Instruction *I = dyn_cast_or_null<Instruction>(V); 807 808 if (!I || !isInstructionTriviallyDead(I)) 809 continue; 810 811 for (Use &O : I->operands()) 812 if (Instruction *U = dyn_cast<Instruction>(O)) { 813 O = nullptr; 814 if (U->use_empty()) 815 DeadInsts.emplace_back(U); 816 } 817 818 I->eraseFromParent(); 819 Changed = true; 820 } 821 822 return Changed; 823 } 824 825 namespace { 826 class LSRUse; 827 } 828 829 /// \brief Check if the addressing mode defined by \p F is completely 830 /// folded in \p LU at isel time. 831 /// This includes address-mode folding and special icmp tricks. 832 /// This function returns true if \p LU can accommodate what \p F 833 /// defines and up to 1 base + 1 scaled + offset. 834 /// In other words, if \p F has several base registers, this function may 835 /// still return true. Therefore, users still need to account for 836 /// additional base registers and/or unfolded offsets to derive an 837 /// accurate cost model. 838 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 839 const LSRUse &LU, const Formula &F); 840 // Get the cost of the scaling factor used in F for LU. 841 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, 842 const LSRUse &LU, const Formula &F); 843 844 namespace { 845 846 /// This class is used to measure and compare candidate formulae. 847 class Cost { 848 /// TODO: Some of these could be merged. Also, a lexical ordering 849 /// isn't always optimal. 850 unsigned NumRegs; 851 unsigned AddRecCost; 852 unsigned NumIVMuls; 853 unsigned NumBaseAdds; 854 unsigned ImmCost; 855 unsigned SetupCost; 856 unsigned ScaleCost; 857 858 public: 859 Cost() 860 : NumRegs(0), AddRecCost(0), NumIVMuls(0), NumBaseAdds(0), ImmCost(0), 861 SetupCost(0), ScaleCost(0) {} 862 863 bool operator<(const Cost &Other) const; 864 865 void Lose(); 866 867 #ifndef NDEBUG 868 // Once any of the metrics loses, they must all remain losers. 869 bool isValid() { 870 return ((NumRegs | AddRecCost | NumIVMuls | NumBaseAdds 871 | ImmCost | SetupCost | ScaleCost) != ~0u) 872 || ((NumRegs & AddRecCost & NumIVMuls & NumBaseAdds 873 & ImmCost & SetupCost & ScaleCost) == ~0u); 874 } 875 #endif 876 877 bool isLoser() { 878 assert(isValid() && "invalid cost"); 879 return NumRegs == ~0u; 880 } 881 882 void RateFormula(const TargetTransformInfo &TTI, 883 const Formula &F, 884 SmallPtrSetImpl<const SCEV *> &Regs, 885 const DenseSet<const SCEV *> &VisitedRegs, 886 const Loop *L, 887 ScalarEvolution &SE, DominatorTree &DT, 888 const LSRUse &LU, 889 SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr); 890 891 void print(raw_ostream &OS) const; 892 void dump() const; 893 894 private: 895 void RateRegister(const SCEV *Reg, 896 SmallPtrSetImpl<const SCEV *> &Regs, 897 const Loop *L, 898 ScalarEvolution &SE, DominatorTree &DT); 899 void RatePrimaryRegister(const SCEV *Reg, 900 SmallPtrSetImpl<const SCEV *> &Regs, 901 const Loop *L, 902 ScalarEvolution &SE, DominatorTree &DT, 903 SmallPtrSetImpl<const SCEV *> *LoserRegs); 904 }; 905 906 /// An operand value in an instruction which is to be replaced with some 907 /// equivalent, possibly strength-reduced, replacement. 908 struct LSRFixup { 909 /// The instruction which will be updated. 910 Instruction *UserInst; 911 912 /// The operand of the instruction which will be replaced. The operand may be 913 /// used more than once; every instance will be replaced. 914 Value *OperandValToReplace; 915 916 /// If this user is to use the post-incremented value of an induction 917 /// variable, this variable is non-null and holds the loop associated with the 918 /// induction variable. 919 PostIncLoopSet PostIncLoops; 920 921 /// A constant offset to be added to the LSRUse expression. This allows 922 /// multiple fixups to share the same LSRUse with different offsets, for 923 /// example in an unrolled loop. 924 int64_t Offset; 925 926 bool isUseFullyOutsideLoop(const Loop *L) const; 927 928 LSRFixup(); 929 930 void print(raw_ostream &OS) const; 931 void dump() const; 932 }; 933 934 935 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted 936 /// SmallVectors of const SCEV*. 937 struct UniquifierDenseMapInfo { 938 static SmallVector<const SCEV *, 4> getEmptyKey() { 939 SmallVector<const SCEV *, 4> V; 940 V.push_back(reinterpret_cast<const SCEV *>(-1)); 941 return V; 942 } 943 944 static SmallVector<const SCEV *, 4> getTombstoneKey() { 945 SmallVector<const SCEV *, 4> V; 946 V.push_back(reinterpret_cast<const SCEV *>(-2)); 947 return V; 948 } 949 950 static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) { 951 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 952 } 953 954 static bool isEqual(const SmallVector<const SCEV *, 4> &LHS, 955 const SmallVector<const SCEV *, 4> &RHS) { 956 return LHS == RHS; 957 } 958 }; 959 960 /// This class holds the state that LSR keeps for each use in IVUsers, as well 961 /// as uses invented by LSR itself. It includes information about what kinds of 962 /// things can be folded into the user, information about the user itself, and 963 /// information about how the use may be satisfied. TODO: Represent multiple 964 /// users of the same expression in common? 965 class LSRUse { 966 DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier; 967 968 public: 969 /// An enum for a kind of use, indicating what types of scaled and immediate 970 /// operands it might support. 971 enum KindType { 972 Basic, ///< A normal use, with no folding. 973 Special, ///< A special case of basic, allowing -1 scales. 974 Address, ///< An address use; folding according to TargetLowering 975 ICmpZero ///< An equality icmp with both operands folded into one. 976 // TODO: Add a generic icmp too? 977 }; 978 979 typedef PointerIntPair<const SCEV *, 2, KindType> SCEVUseKindPair; 980 981 KindType Kind; 982 MemAccessTy AccessTy; 983 984 /// The list of operands which are to be replaced. 985 SmallVector<LSRFixup, 8> Fixups; 986 987 /// Keep track of the min and max offsets of the fixups. 988 int64_t MinOffset; 989 int64_t MaxOffset; 990 991 /// This records whether all of the fixups using this LSRUse are outside of 992 /// the loop, in which case some special-case heuristics may be used. 993 bool AllFixupsOutsideLoop; 994 995 /// RigidFormula is set to true to guarantee that this use will be associated 996 /// with a single formula--the one that initially matched. Some SCEV 997 /// expressions cannot be expanded. This allows LSR to consider the registers 998 /// used by those expressions without the need to expand them later after 999 /// changing the formula. 1000 bool RigidFormula; 1001 1002 /// This records the widest use type for any fixup using this 1003 /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max 1004 /// fixup widths to be equivalent, because the narrower one may be relying on 1005 /// the implicit truncation to truncate away bogus bits. 1006 Type *WidestFixupType; 1007 1008 /// A list of ways to build a value that can satisfy this user. After the 1009 /// list is populated, one of these is selected heuristically and used to 1010 /// formulate a replacement for OperandValToReplace in UserInst. 1011 SmallVector<Formula, 12> Formulae; 1012 1013 /// The set of register candidates used by all formulae in this LSRUse. 1014 SmallPtrSet<const SCEV *, 4> Regs; 1015 1016 LSRUse(KindType K, MemAccessTy AT) 1017 : Kind(K), AccessTy(AT), MinOffset(INT64_MAX), MaxOffset(INT64_MIN), 1018 AllFixupsOutsideLoop(true), RigidFormula(false), 1019 WidestFixupType(nullptr) {} 1020 1021 LSRFixup &getNewFixup() { 1022 Fixups.push_back(LSRFixup()); 1023 return Fixups.back(); 1024 } 1025 1026 void pushFixup(LSRFixup &f) { 1027 Fixups.push_back(f); 1028 if (f.Offset > MaxOffset) 1029 MaxOffset = f.Offset; 1030 if (f.Offset < MinOffset) 1031 MinOffset = f.Offset; 1032 } 1033 1034 bool HasFormulaWithSameRegs(const Formula &F) const; 1035 bool InsertFormula(const Formula &F); 1036 void DeleteFormula(Formula &F); 1037 void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses); 1038 1039 void print(raw_ostream &OS) const; 1040 void dump() const; 1041 }; 1042 1043 } 1044 1045 /// Tally up interesting quantities from the given register. 1046 void Cost::RateRegister(const SCEV *Reg, 1047 SmallPtrSetImpl<const SCEV *> &Regs, 1048 const Loop *L, 1049 ScalarEvolution &SE, DominatorTree &DT) { 1050 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) { 1051 // If this is an addrec for another loop, don't second-guess its addrec phi 1052 // nodes. LSR isn't currently smart enough to reason about more than one 1053 // loop at a time. LSR has already run on inner loops, will not run on outer 1054 // loops, and cannot be expected to change sibling loops. 1055 if (AR->getLoop() != L) { 1056 // If the AddRec exists, consider it's register free and leave it alone. 1057 if (isExistingPhi(AR, SE)) 1058 return; 1059 1060 // Otherwise, do not consider this formula at all. 1061 Lose(); 1062 return; 1063 } 1064 AddRecCost += 1; /// TODO: This should be a function of the stride. 1065 1066 // Add the step value register, if it needs one. 1067 // TODO: The non-affine case isn't precisely modeled here. 1068 if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) { 1069 if (!Regs.count(AR->getOperand(1))) { 1070 RateRegister(AR->getOperand(1), Regs, L, SE, DT); 1071 if (isLoser()) 1072 return; 1073 } 1074 } 1075 } 1076 ++NumRegs; 1077 1078 // Rough heuristic; favor registers which don't require extra setup 1079 // instructions in the preheader. 1080 if (!isa<SCEVUnknown>(Reg) && 1081 !isa<SCEVConstant>(Reg) && 1082 !(isa<SCEVAddRecExpr>(Reg) && 1083 (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) || 1084 isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart())))) 1085 ++SetupCost; 1086 1087 NumIVMuls += isa<SCEVMulExpr>(Reg) && 1088 SE.hasComputableLoopEvolution(Reg, L); 1089 } 1090 1091 /// Record this register in the set. If we haven't seen it before, rate 1092 /// it. Optional LoserRegs provides a way to declare any formula that refers to 1093 /// one of those regs an instant loser. 1094 void Cost::RatePrimaryRegister(const SCEV *Reg, 1095 SmallPtrSetImpl<const SCEV *> &Regs, 1096 const Loop *L, 1097 ScalarEvolution &SE, DominatorTree &DT, 1098 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1099 if (LoserRegs && LoserRegs->count(Reg)) { 1100 Lose(); 1101 return; 1102 } 1103 if (Regs.insert(Reg).second) { 1104 RateRegister(Reg, Regs, L, SE, DT); 1105 if (LoserRegs && isLoser()) 1106 LoserRegs->insert(Reg); 1107 } 1108 } 1109 1110 void Cost::RateFormula(const TargetTransformInfo &TTI, 1111 const Formula &F, 1112 SmallPtrSetImpl<const SCEV *> &Regs, 1113 const DenseSet<const SCEV *> &VisitedRegs, 1114 const Loop *L, 1115 ScalarEvolution &SE, DominatorTree &DT, 1116 const LSRUse &LU, 1117 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1118 assert(F.isCanonical() && "Cost is accurate only for canonical formula"); 1119 // Tally up the registers. 1120 if (const SCEV *ScaledReg = F.ScaledReg) { 1121 if (VisitedRegs.count(ScaledReg)) { 1122 Lose(); 1123 return; 1124 } 1125 RatePrimaryRegister(ScaledReg, Regs, L, SE, DT, LoserRegs); 1126 if (isLoser()) 1127 return; 1128 } 1129 for (const SCEV *BaseReg : F.BaseRegs) { 1130 if (VisitedRegs.count(BaseReg)) { 1131 Lose(); 1132 return; 1133 } 1134 RatePrimaryRegister(BaseReg, Regs, L, SE, DT, LoserRegs); 1135 if (isLoser()) 1136 return; 1137 } 1138 1139 // Determine how many (unfolded) adds we'll need inside the loop. 1140 size_t NumBaseParts = F.getNumRegs(); 1141 if (NumBaseParts > 1) 1142 // Do not count the base and a possible second register if the target 1143 // allows to fold 2 registers. 1144 NumBaseAdds += 1145 NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(TTI, LU, F))); 1146 NumBaseAdds += (F.UnfoldedOffset != 0); 1147 1148 // Accumulate non-free scaling amounts. 1149 ScaleCost += getScalingFactorCost(TTI, LU, F); 1150 1151 // Tally up the non-zero immediates. 1152 for (const LSRFixup &Fixup : LU.Fixups) { 1153 int64_t O = Fixup.Offset; 1154 int64_t Offset = (uint64_t)O + F.BaseOffset; 1155 if (F.BaseGV) 1156 ImmCost += 64; // Handle symbolic values conservatively. 1157 // TODO: This should probably be the pointer size. 1158 else if (Offset != 0) 1159 ImmCost += APInt(64, Offset, true).getMinSignedBits(); 1160 1161 // Check with target if this offset with this instruction is 1162 // specifically not supported. 1163 if ((isa<LoadInst>(Fixup.UserInst) || isa<StoreInst>(Fixup.UserInst)) && 1164 !TTI.isFoldableMemAccessOffset(Fixup.UserInst, Offset)) 1165 NumBaseAdds++; 1166 } 1167 assert(isValid() && "invalid cost"); 1168 } 1169 1170 /// Set this cost to a losing value. 1171 void Cost::Lose() { 1172 NumRegs = ~0u; 1173 AddRecCost = ~0u; 1174 NumIVMuls = ~0u; 1175 NumBaseAdds = ~0u; 1176 ImmCost = ~0u; 1177 SetupCost = ~0u; 1178 ScaleCost = ~0u; 1179 } 1180 1181 /// Choose the lower cost. 1182 bool Cost::operator<(const Cost &Other) const { 1183 return std::tie(NumRegs, AddRecCost, NumIVMuls, NumBaseAdds, ScaleCost, 1184 ImmCost, SetupCost) < 1185 std::tie(Other.NumRegs, Other.AddRecCost, Other.NumIVMuls, 1186 Other.NumBaseAdds, Other.ScaleCost, Other.ImmCost, 1187 Other.SetupCost); 1188 } 1189 1190 void Cost::print(raw_ostream &OS) const { 1191 OS << NumRegs << " reg" << (NumRegs == 1 ? "" : "s"); 1192 if (AddRecCost != 0) 1193 OS << ", with addrec cost " << AddRecCost; 1194 if (NumIVMuls != 0) 1195 OS << ", plus " << NumIVMuls << " IV mul" << (NumIVMuls == 1 ? "" : "s"); 1196 if (NumBaseAdds != 0) 1197 OS << ", plus " << NumBaseAdds << " base add" 1198 << (NumBaseAdds == 1 ? "" : "s"); 1199 if (ScaleCost != 0) 1200 OS << ", plus " << ScaleCost << " scale cost"; 1201 if (ImmCost != 0) 1202 OS << ", plus " << ImmCost << " imm cost"; 1203 if (SetupCost != 0) 1204 OS << ", plus " << SetupCost << " setup cost"; 1205 } 1206 1207 LLVM_DUMP_METHOD 1208 void Cost::dump() const { 1209 print(errs()); errs() << '\n'; 1210 } 1211 1212 LSRFixup::LSRFixup() 1213 : UserInst(nullptr), OperandValToReplace(nullptr), 1214 Offset(0) {} 1215 1216 /// Test whether this fixup always uses its value outside of the given loop. 1217 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const { 1218 // PHI nodes use their value in their incoming blocks. 1219 if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) { 1220 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1221 if (PN->getIncomingValue(i) == OperandValToReplace && 1222 L->contains(PN->getIncomingBlock(i))) 1223 return false; 1224 return true; 1225 } 1226 1227 return !L->contains(UserInst); 1228 } 1229 1230 void LSRFixup::print(raw_ostream &OS) const { 1231 OS << "UserInst="; 1232 // Store is common and interesting enough to be worth special-casing. 1233 if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) { 1234 OS << "store "; 1235 Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false); 1236 } else if (UserInst->getType()->isVoidTy()) 1237 OS << UserInst->getOpcodeName(); 1238 else 1239 UserInst->printAsOperand(OS, /*PrintType=*/false); 1240 1241 OS << ", OperandValToReplace="; 1242 OperandValToReplace->printAsOperand(OS, /*PrintType=*/false); 1243 1244 for (const Loop *PIL : PostIncLoops) { 1245 OS << ", PostIncLoop="; 1246 PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 1247 } 1248 1249 if (Offset != 0) 1250 OS << ", Offset=" << Offset; 1251 } 1252 1253 LLVM_DUMP_METHOD 1254 void LSRFixup::dump() const { 1255 print(errs()); errs() << '\n'; 1256 } 1257 1258 /// Test whether this use as a formula which has the same registers as the given 1259 /// formula. 1260 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const { 1261 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1262 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1263 // Unstable sort by host order ok, because this is only used for uniquifying. 1264 std::sort(Key.begin(), Key.end()); 1265 return Uniquifier.count(Key); 1266 } 1267 1268 /// If the given formula has not yet been inserted, add it to the list, and 1269 /// return true. Return false otherwise. The formula must be in canonical form. 1270 bool LSRUse::InsertFormula(const Formula &F) { 1271 assert(F.isCanonical() && "Invalid canonical representation"); 1272 1273 if (!Formulae.empty() && RigidFormula) 1274 return false; 1275 1276 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1277 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1278 // Unstable sort by host order ok, because this is only used for uniquifying. 1279 std::sort(Key.begin(), Key.end()); 1280 1281 if (!Uniquifier.insert(Key).second) 1282 return false; 1283 1284 // Using a register to hold the value of 0 is not profitable. 1285 assert((!F.ScaledReg || !F.ScaledReg->isZero()) && 1286 "Zero allocated in a scaled register!"); 1287 #ifndef NDEBUG 1288 for (const SCEV *BaseReg : F.BaseRegs) 1289 assert(!BaseReg->isZero() && "Zero allocated in a base register!"); 1290 #endif 1291 1292 // Add the formula to the list. 1293 Formulae.push_back(F); 1294 1295 // Record registers now being used by this use. 1296 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1297 if (F.ScaledReg) 1298 Regs.insert(F.ScaledReg); 1299 1300 return true; 1301 } 1302 1303 /// Remove the given formula from this use's list. 1304 void LSRUse::DeleteFormula(Formula &F) { 1305 if (&F != &Formulae.back()) 1306 std::swap(F, Formulae.back()); 1307 Formulae.pop_back(); 1308 } 1309 1310 /// Recompute the Regs field, and update RegUses. 1311 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) { 1312 // Now that we've filtered out some formulae, recompute the Regs set. 1313 SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs); 1314 Regs.clear(); 1315 for (const Formula &F : Formulae) { 1316 if (F.ScaledReg) Regs.insert(F.ScaledReg); 1317 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1318 } 1319 1320 // Update the RegTracker. 1321 for (const SCEV *S : OldRegs) 1322 if (!Regs.count(S)) 1323 RegUses.dropRegister(S, LUIdx); 1324 } 1325 1326 void LSRUse::print(raw_ostream &OS) const { 1327 OS << "LSR Use: Kind="; 1328 switch (Kind) { 1329 case Basic: OS << "Basic"; break; 1330 case Special: OS << "Special"; break; 1331 case ICmpZero: OS << "ICmpZero"; break; 1332 case Address: 1333 OS << "Address of "; 1334 if (AccessTy.MemTy->isPointerTy()) 1335 OS << "pointer"; // the full pointer type could be really verbose 1336 else { 1337 OS << *AccessTy.MemTy; 1338 } 1339 1340 OS << " in addrspace(" << AccessTy.AddrSpace << ')'; 1341 } 1342 1343 OS << ", Offsets={"; 1344 bool NeedComma = false; 1345 for (const LSRFixup &Fixup : Fixups) { 1346 if (NeedComma) OS << ','; 1347 OS << Fixup.Offset; 1348 NeedComma = true; 1349 } 1350 OS << '}'; 1351 1352 if (AllFixupsOutsideLoop) 1353 OS << ", all-fixups-outside-loop"; 1354 1355 if (WidestFixupType) 1356 OS << ", widest fixup type: " << *WidestFixupType; 1357 } 1358 1359 LLVM_DUMP_METHOD 1360 void LSRUse::dump() const { 1361 print(errs()); errs() << '\n'; 1362 } 1363 1364 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1365 LSRUse::KindType Kind, MemAccessTy AccessTy, 1366 GlobalValue *BaseGV, int64_t BaseOffset, 1367 bool HasBaseReg, int64_t Scale) { 1368 switch (Kind) { 1369 case LSRUse::Address: 1370 return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset, 1371 HasBaseReg, Scale, AccessTy.AddrSpace); 1372 1373 case LSRUse::ICmpZero: 1374 // There's not even a target hook for querying whether it would be legal to 1375 // fold a GV into an ICmp. 1376 if (BaseGV) 1377 return false; 1378 1379 // ICmp only has two operands; don't allow more than two non-trivial parts. 1380 if (Scale != 0 && HasBaseReg && BaseOffset != 0) 1381 return false; 1382 1383 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by 1384 // putting the scaled register in the other operand of the icmp. 1385 if (Scale != 0 && Scale != -1) 1386 return false; 1387 1388 // If we have low-level target information, ask the target if it can fold an 1389 // integer immediate on an icmp. 1390 if (BaseOffset != 0) { 1391 // We have one of: 1392 // ICmpZero BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset 1393 // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset 1394 // Offs is the ICmp immediate. 1395 if (Scale == 0) 1396 // The cast does the right thing with INT64_MIN. 1397 BaseOffset = -(uint64_t)BaseOffset; 1398 return TTI.isLegalICmpImmediate(BaseOffset); 1399 } 1400 1401 // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg 1402 return true; 1403 1404 case LSRUse::Basic: 1405 // Only handle single-register values. 1406 return !BaseGV && Scale == 0 && BaseOffset == 0; 1407 1408 case LSRUse::Special: 1409 // Special case Basic to handle -1 scales. 1410 return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0; 1411 } 1412 1413 llvm_unreachable("Invalid LSRUse Kind!"); 1414 } 1415 1416 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1417 int64_t MinOffset, int64_t MaxOffset, 1418 LSRUse::KindType Kind, MemAccessTy AccessTy, 1419 GlobalValue *BaseGV, int64_t BaseOffset, 1420 bool HasBaseReg, int64_t Scale) { 1421 // Check for overflow. 1422 if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) != 1423 (MinOffset > 0)) 1424 return false; 1425 MinOffset = (uint64_t)BaseOffset + MinOffset; 1426 if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) != 1427 (MaxOffset > 0)) 1428 return false; 1429 MaxOffset = (uint64_t)BaseOffset + MaxOffset; 1430 1431 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset, 1432 HasBaseReg, Scale) && 1433 isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset, 1434 HasBaseReg, Scale); 1435 } 1436 1437 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1438 int64_t MinOffset, int64_t MaxOffset, 1439 LSRUse::KindType Kind, MemAccessTy AccessTy, 1440 const Formula &F) { 1441 // For the purpose of isAMCompletelyFolded either having a canonical formula 1442 // or a scale not equal to zero is correct. 1443 // Problems may arise from non canonical formulae having a scale == 0. 1444 // Strictly speaking it would best to just rely on canonical formulae. 1445 // However, when we generate the scaled formulae, we first check that the 1446 // scaling factor is profitable before computing the actual ScaledReg for 1447 // compile time sake. 1448 assert((F.isCanonical() || F.Scale != 0)); 1449 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1450 F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale); 1451 } 1452 1453 /// Test whether we know how to expand the current formula. 1454 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1455 int64_t MaxOffset, LSRUse::KindType Kind, 1456 MemAccessTy AccessTy, GlobalValue *BaseGV, 1457 int64_t BaseOffset, bool HasBaseReg, int64_t Scale) { 1458 // We know how to expand completely foldable formulae. 1459 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1460 BaseOffset, HasBaseReg, Scale) || 1461 // Or formulae that use a base register produced by a sum of base 1462 // registers. 1463 (Scale == 1 && 1464 isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1465 BaseGV, BaseOffset, true, 0)); 1466 } 1467 1468 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1469 int64_t MaxOffset, LSRUse::KindType Kind, 1470 MemAccessTy AccessTy, const Formula &F) { 1471 return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV, 1472 F.BaseOffset, F.HasBaseReg, F.Scale); 1473 } 1474 1475 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1476 const LSRUse &LU, const Formula &F) { 1477 return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1478 LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg, 1479 F.Scale); 1480 } 1481 1482 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, 1483 const LSRUse &LU, const Formula &F) { 1484 if (!F.Scale) 1485 return 0; 1486 1487 // If the use is not completely folded in that instruction, we will have to 1488 // pay an extra cost only for scale != 1. 1489 if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1490 LU.AccessTy, F)) 1491 return F.Scale != 1; 1492 1493 switch (LU.Kind) { 1494 case LSRUse::Address: { 1495 // Check the scaling factor cost with both the min and max offsets. 1496 int ScaleCostMinOffset = TTI.getScalingFactorCost( 1497 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg, 1498 F.Scale, LU.AccessTy.AddrSpace); 1499 int ScaleCostMaxOffset = TTI.getScalingFactorCost( 1500 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg, 1501 F.Scale, LU.AccessTy.AddrSpace); 1502 1503 assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 && 1504 "Legal addressing mode has an illegal cost!"); 1505 return std::max(ScaleCostMinOffset, ScaleCostMaxOffset); 1506 } 1507 case LSRUse::ICmpZero: 1508 case LSRUse::Basic: 1509 case LSRUse::Special: 1510 // The use is completely folded, i.e., everything is folded into the 1511 // instruction. 1512 return 0; 1513 } 1514 1515 llvm_unreachable("Invalid LSRUse Kind!"); 1516 } 1517 1518 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1519 LSRUse::KindType Kind, MemAccessTy AccessTy, 1520 GlobalValue *BaseGV, int64_t BaseOffset, 1521 bool HasBaseReg) { 1522 // Fast-path: zero is always foldable. 1523 if (BaseOffset == 0 && !BaseGV) return true; 1524 1525 // Conservatively, create an address with an immediate and a 1526 // base and a scale. 1527 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1528 1529 // Canonicalize a scale of 1 to a base register if the formula doesn't 1530 // already have a base register. 1531 if (!HasBaseReg && Scale == 1) { 1532 Scale = 0; 1533 HasBaseReg = true; 1534 } 1535 1536 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset, 1537 HasBaseReg, Scale); 1538 } 1539 1540 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1541 ScalarEvolution &SE, int64_t MinOffset, 1542 int64_t MaxOffset, LSRUse::KindType Kind, 1543 MemAccessTy AccessTy, const SCEV *S, 1544 bool HasBaseReg) { 1545 // Fast-path: zero is always foldable. 1546 if (S->isZero()) return true; 1547 1548 // Conservatively, create an address with an immediate and a 1549 // base and a scale. 1550 int64_t BaseOffset = ExtractImmediate(S, SE); 1551 GlobalValue *BaseGV = ExtractSymbol(S, SE); 1552 1553 // If there's anything else involved, it's not foldable. 1554 if (!S->isZero()) return false; 1555 1556 // Fast-path: zero is always foldable. 1557 if (BaseOffset == 0 && !BaseGV) return true; 1558 1559 // Conservatively, create an address with an immediate and a 1560 // base and a scale. 1561 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1562 1563 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1564 BaseOffset, HasBaseReg, Scale); 1565 } 1566 1567 namespace { 1568 1569 /// An individual increment in a Chain of IV increments. Relate an IV user to 1570 /// an expression that computes the IV it uses from the IV used by the previous 1571 /// link in the Chain. 1572 /// 1573 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the 1574 /// original IVOperand. The head of the chain's IVOperand is only valid during 1575 /// chain collection, before LSR replaces IV users. During chain generation, 1576 /// IncExpr can be used to find the new IVOperand that computes the same 1577 /// expression. 1578 struct IVInc { 1579 Instruction *UserInst; 1580 Value* IVOperand; 1581 const SCEV *IncExpr; 1582 1583 IVInc(Instruction *U, Value *O, const SCEV *E): 1584 UserInst(U), IVOperand(O), IncExpr(E) {} 1585 }; 1586 1587 // The list of IV increments in program order. We typically add the head of a 1588 // chain without finding subsequent links. 1589 struct IVChain { 1590 SmallVector<IVInc,1> Incs; 1591 const SCEV *ExprBase; 1592 1593 IVChain() : ExprBase(nullptr) {} 1594 1595 IVChain(const IVInc &Head, const SCEV *Base) 1596 : Incs(1, Head), ExprBase(Base) {} 1597 1598 typedef SmallVectorImpl<IVInc>::const_iterator const_iterator; 1599 1600 // Return the first increment in the chain. 1601 const_iterator begin() const { 1602 assert(!Incs.empty()); 1603 return std::next(Incs.begin()); 1604 } 1605 const_iterator end() const { 1606 return Incs.end(); 1607 } 1608 1609 // Returns true if this chain contains any increments. 1610 bool hasIncs() const { return Incs.size() >= 2; } 1611 1612 // Add an IVInc to the end of this chain. 1613 void add(const IVInc &X) { Incs.push_back(X); } 1614 1615 // Returns the last UserInst in the chain. 1616 Instruction *tailUserInst() const { return Incs.back().UserInst; } 1617 1618 // Returns true if IncExpr can be profitably added to this chain. 1619 bool isProfitableIncrement(const SCEV *OperExpr, 1620 const SCEV *IncExpr, 1621 ScalarEvolution&); 1622 }; 1623 1624 /// Helper for CollectChains to track multiple IV increment uses. Distinguish 1625 /// between FarUsers that definitely cross IV increments and NearUsers that may 1626 /// be used between IV increments. 1627 struct ChainUsers { 1628 SmallPtrSet<Instruction*, 4> FarUsers; 1629 SmallPtrSet<Instruction*, 4> NearUsers; 1630 }; 1631 1632 /// This class holds state for the main loop strength reduction logic. 1633 class LSRInstance { 1634 IVUsers &IU; 1635 ScalarEvolution &SE; 1636 DominatorTree &DT; 1637 LoopInfo &LI; 1638 const TargetTransformInfo &TTI; 1639 Loop *const L; 1640 bool Changed; 1641 1642 /// This is the insert position that the current loop's induction variable 1643 /// increment should be placed. In simple loops, this is the latch block's 1644 /// terminator. But in more complicated cases, this is a position which will 1645 /// dominate all the in-loop post-increment users. 1646 Instruction *IVIncInsertPos; 1647 1648 /// Interesting factors between use strides. 1649 SmallSetVector<int64_t, 8> Factors; 1650 1651 /// Interesting use types, to facilitate truncation reuse. 1652 SmallSetVector<Type *, 4> Types; 1653 1654 /// The list of interesting uses. 1655 SmallVector<LSRUse, 16> Uses; 1656 1657 /// Track which uses use which register candidates. 1658 RegUseTracker RegUses; 1659 1660 // Limit the number of chains to avoid quadratic behavior. We don't expect to 1661 // have more than a few IV increment chains in a loop. Missing a Chain falls 1662 // back to normal LSR behavior for those uses. 1663 static const unsigned MaxChains = 8; 1664 1665 /// IV users can form a chain of IV increments. 1666 SmallVector<IVChain, MaxChains> IVChainVec; 1667 1668 /// IV users that belong to profitable IVChains. 1669 SmallPtrSet<Use*, MaxChains> IVIncSet; 1670 1671 void OptimizeShadowIV(); 1672 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse); 1673 ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse); 1674 void OptimizeLoopTermCond(); 1675 1676 void ChainInstruction(Instruction *UserInst, Instruction *IVOper, 1677 SmallVectorImpl<ChainUsers> &ChainUsersVec); 1678 void FinalizeChain(IVChain &Chain); 1679 void CollectChains(); 1680 void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 1681 SmallVectorImpl<WeakVH> &DeadInsts); 1682 1683 void CollectInterestingTypesAndFactors(); 1684 void CollectFixupsAndInitialFormulae(); 1685 1686 // Support for sharing of LSRUses between LSRFixups. 1687 typedef DenseMap<LSRUse::SCEVUseKindPair, size_t> UseMapTy; 1688 UseMapTy UseMap; 1689 1690 bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, 1691 LSRUse::KindType Kind, MemAccessTy AccessTy); 1692 1693 std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind, 1694 MemAccessTy AccessTy); 1695 1696 void DeleteUse(LSRUse &LU, size_t LUIdx); 1697 1698 LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU); 1699 1700 void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1701 void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1702 void CountRegisters(const Formula &F, size_t LUIdx); 1703 bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F); 1704 1705 void CollectLoopInvariantFixupsAndFormulae(); 1706 1707 void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base, 1708 unsigned Depth = 0); 1709 1710 void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 1711 const Formula &Base, unsigned Depth, 1712 size_t Idx, bool IsScaledReg = false); 1713 void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base); 1714 void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 1715 const Formula &Base, size_t Idx, 1716 bool IsScaledReg = false); 1717 void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1718 void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx, 1719 const Formula &Base, 1720 const SmallVectorImpl<int64_t> &Worklist, 1721 size_t Idx, bool IsScaledReg = false); 1722 void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1723 void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base); 1724 void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base); 1725 void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base); 1726 void GenerateCrossUseConstantOffsets(); 1727 void GenerateAllReuseFormulae(); 1728 1729 void FilterOutUndesirableDedicatedRegisters(); 1730 1731 size_t EstimateSearchSpaceComplexity() const; 1732 void NarrowSearchSpaceByDetectingSupersets(); 1733 void NarrowSearchSpaceByCollapsingUnrolledCode(); 1734 void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 1735 void NarrowSearchSpaceByPickingWinnerRegs(); 1736 void NarrowSearchSpaceUsingHeuristics(); 1737 1738 void SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 1739 Cost &SolutionCost, 1740 SmallVectorImpl<const Formula *> &Workspace, 1741 const Cost &CurCost, 1742 const SmallPtrSet<const SCEV *, 16> &CurRegs, 1743 DenseSet<const SCEV *> &VisitedRegs) const; 1744 void Solve(SmallVectorImpl<const Formula *> &Solution) const; 1745 1746 BasicBlock::iterator 1747 HoistInsertPosition(BasicBlock::iterator IP, 1748 const SmallVectorImpl<Instruction *> &Inputs) const; 1749 BasicBlock::iterator 1750 AdjustInsertPositionForExpand(BasicBlock::iterator IP, 1751 const LSRFixup &LF, 1752 const LSRUse &LU, 1753 SCEVExpander &Rewriter) const; 1754 1755 Value *Expand(const LSRUse &LU, const LSRFixup &LF, 1756 const Formula &F, 1757 BasicBlock::iterator IP, 1758 SCEVExpander &Rewriter, 1759 SmallVectorImpl<WeakVH> &DeadInsts) const; 1760 void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF, 1761 const Formula &F, 1762 SCEVExpander &Rewriter, 1763 SmallVectorImpl<WeakVH> &DeadInsts) const; 1764 void Rewrite(const LSRUse &LU, const LSRFixup &LF, 1765 const Formula &F, 1766 SCEVExpander &Rewriter, 1767 SmallVectorImpl<WeakVH> &DeadInsts) const; 1768 void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution); 1769 1770 public: 1771 LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT, 1772 LoopInfo &LI, const TargetTransformInfo &TTI); 1773 1774 bool getChanged() const { return Changed; } 1775 1776 void print_factors_and_types(raw_ostream &OS) const; 1777 void print_fixups(raw_ostream &OS) const; 1778 void print_uses(raw_ostream &OS) const; 1779 void print(raw_ostream &OS) const; 1780 void dump() const; 1781 }; 1782 1783 } 1784 1785 /// If IV is used in a int-to-float cast inside the loop then try to eliminate 1786 /// the cast operation. 1787 void LSRInstance::OptimizeShadowIV() { 1788 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 1789 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 1790 return; 1791 1792 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); 1793 UI != E; /* empty */) { 1794 IVUsers::const_iterator CandidateUI = UI; 1795 ++UI; 1796 Instruction *ShadowUse = CandidateUI->getUser(); 1797 Type *DestTy = nullptr; 1798 bool IsSigned = false; 1799 1800 /* If shadow use is a int->float cast then insert a second IV 1801 to eliminate this cast. 1802 1803 for (unsigned i = 0; i < n; ++i) 1804 foo((double)i); 1805 1806 is transformed into 1807 1808 double d = 0.0; 1809 for (unsigned i = 0; i < n; ++i, ++d) 1810 foo(d); 1811 */ 1812 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) { 1813 IsSigned = false; 1814 DestTy = UCast->getDestTy(); 1815 } 1816 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) { 1817 IsSigned = true; 1818 DestTy = SCast->getDestTy(); 1819 } 1820 if (!DestTy) continue; 1821 1822 // If target does not support DestTy natively then do not apply 1823 // this transformation. 1824 if (!TTI.isTypeLegal(DestTy)) continue; 1825 1826 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0)); 1827 if (!PH) continue; 1828 if (PH->getNumIncomingValues() != 2) continue; 1829 1830 Type *SrcTy = PH->getType(); 1831 int Mantissa = DestTy->getFPMantissaWidth(); 1832 if (Mantissa == -1) continue; 1833 if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa) 1834 continue; 1835 1836 unsigned Entry, Latch; 1837 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) { 1838 Entry = 0; 1839 Latch = 1; 1840 } else { 1841 Entry = 1; 1842 Latch = 0; 1843 } 1844 1845 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry)); 1846 if (!Init) continue; 1847 Constant *NewInit = ConstantFP::get(DestTy, IsSigned ? 1848 (double)Init->getSExtValue() : 1849 (double)Init->getZExtValue()); 1850 1851 BinaryOperator *Incr = 1852 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch)); 1853 if (!Incr) continue; 1854 if (Incr->getOpcode() != Instruction::Add 1855 && Incr->getOpcode() != Instruction::Sub) 1856 continue; 1857 1858 /* Initialize new IV, double d = 0.0 in above example. */ 1859 ConstantInt *C = nullptr; 1860 if (Incr->getOperand(0) == PH) 1861 C = dyn_cast<ConstantInt>(Incr->getOperand(1)); 1862 else if (Incr->getOperand(1) == PH) 1863 C = dyn_cast<ConstantInt>(Incr->getOperand(0)); 1864 else 1865 continue; 1866 1867 if (!C) continue; 1868 1869 // Ignore negative constants, as the code below doesn't handle them 1870 // correctly. TODO: Remove this restriction. 1871 if (!C->getValue().isStrictlyPositive()) continue; 1872 1873 /* Add new PHINode. */ 1874 PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH); 1875 1876 /* create new increment. '++d' in above example. */ 1877 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue()); 1878 BinaryOperator *NewIncr = 1879 BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ? 1880 Instruction::FAdd : Instruction::FSub, 1881 NewPH, CFP, "IV.S.next.", Incr); 1882 1883 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry)); 1884 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch)); 1885 1886 /* Remove cast operation */ 1887 ShadowUse->replaceAllUsesWith(NewPH); 1888 ShadowUse->eraseFromParent(); 1889 Changed = true; 1890 break; 1891 } 1892 } 1893 1894 /// If Cond has an operand that is an expression of an IV, set the IV user and 1895 /// stride information and return true, otherwise return false. 1896 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) { 1897 for (IVStrideUse &U : IU) 1898 if (U.getUser() == Cond) { 1899 // NOTE: we could handle setcc instructions with multiple uses here, but 1900 // InstCombine does it as well for simple uses, it's not clear that it 1901 // occurs enough in real life to handle. 1902 CondUse = &U; 1903 return true; 1904 } 1905 return false; 1906 } 1907 1908 /// Rewrite the loop's terminating condition if it uses a max computation. 1909 /// 1910 /// This is a narrow solution to a specific, but acute, problem. For loops 1911 /// like this: 1912 /// 1913 /// i = 0; 1914 /// do { 1915 /// p[i] = 0.0; 1916 /// } while (++i < n); 1917 /// 1918 /// the trip count isn't just 'n', because 'n' might not be positive. And 1919 /// unfortunately this can come up even for loops where the user didn't use 1920 /// a C do-while loop. For example, seemingly well-behaved top-test loops 1921 /// will commonly be lowered like this: 1922 // 1923 /// if (n > 0) { 1924 /// i = 0; 1925 /// do { 1926 /// p[i] = 0.0; 1927 /// } while (++i < n); 1928 /// } 1929 /// 1930 /// and then it's possible for subsequent optimization to obscure the if 1931 /// test in such a way that indvars can't find it. 1932 /// 1933 /// When indvars can't find the if test in loops like this, it creates a 1934 /// max expression, which allows it to give the loop a canonical 1935 /// induction variable: 1936 /// 1937 /// i = 0; 1938 /// max = n < 1 ? 1 : n; 1939 /// do { 1940 /// p[i] = 0.0; 1941 /// } while (++i != max); 1942 /// 1943 /// Canonical induction variables are necessary because the loop passes 1944 /// are designed around them. The most obvious example of this is the 1945 /// LoopInfo analysis, which doesn't remember trip count values. It 1946 /// expects to be able to rediscover the trip count each time it is 1947 /// needed, and it does this using a simple analysis that only succeeds if 1948 /// the loop has a canonical induction variable. 1949 /// 1950 /// However, when it comes time to generate code, the maximum operation 1951 /// can be quite costly, especially if it's inside of an outer loop. 1952 /// 1953 /// This function solves this problem by detecting this type of loop and 1954 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting 1955 /// the instructions for the maximum computation. 1956 /// 1957 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) { 1958 // Check that the loop matches the pattern we're looking for. 1959 if (Cond->getPredicate() != CmpInst::ICMP_EQ && 1960 Cond->getPredicate() != CmpInst::ICMP_NE) 1961 return Cond; 1962 1963 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1)); 1964 if (!Sel || !Sel->hasOneUse()) return Cond; 1965 1966 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 1967 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 1968 return Cond; 1969 const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1); 1970 1971 // Add one to the backedge-taken count to get the trip count. 1972 const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount); 1973 if (IterationCount != SE.getSCEV(Sel)) return Cond; 1974 1975 // Check for a max calculation that matches the pattern. There's no check 1976 // for ICMP_ULE here because the comparison would be with zero, which 1977 // isn't interesting. 1978 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1979 const SCEVNAryExpr *Max = nullptr; 1980 if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) { 1981 Pred = ICmpInst::ICMP_SLE; 1982 Max = S; 1983 } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) { 1984 Pred = ICmpInst::ICMP_SLT; 1985 Max = S; 1986 } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) { 1987 Pred = ICmpInst::ICMP_ULT; 1988 Max = U; 1989 } else { 1990 // No match; bail. 1991 return Cond; 1992 } 1993 1994 // To handle a max with more than two operands, this optimization would 1995 // require additional checking and setup. 1996 if (Max->getNumOperands() != 2) 1997 return Cond; 1998 1999 const SCEV *MaxLHS = Max->getOperand(0); 2000 const SCEV *MaxRHS = Max->getOperand(1); 2001 2002 // ScalarEvolution canonicalizes constants to the left. For < and >, look 2003 // for a comparison with 1. For <= and >=, a comparison with zero. 2004 if (!MaxLHS || 2005 (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One))) 2006 return Cond; 2007 2008 // Check the relevant induction variable for conformance to 2009 // the pattern. 2010 const SCEV *IV = SE.getSCEV(Cond->getOperand(0)); 2011 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV); 2012 if (!AR || !AR->isAffine() || 2013 AR->getStart() != One || 2014 AR->getStepRecurrence(SE) != One) 2015 return Cond; 2016 2017 assert(AR->getLoop() == L && 2018 "Loop condition operand is an addrec in a different loop!"); 2019 2020 // Check the right operand of the select, and remember it, as it will 2021 // be used in the new comparison instruction. 2022 Value *NewRHS = nullptr; 2023 if (ICmpInst::isTrueWhenEqual(Pred)) { 2024 // Look for n+1, and grab n. 2025 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1))) 2026 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2027 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2028 NewRHS = BO->getOperand(0); 2029 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2))) 2030 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2031 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2032 NewRHS = BO->getOperand(0); 2033 if (!NewRHS) 2034 return Cond; 2035 } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS) 2036 NewRHS = Sel->getOperand(1); 2037 else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS) 2038 NewRHS = Sel->getOperand(2); 2039 else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS)) 2040 NewRHS = SU->getValue(); 2041 else 2042 // Max doesn't match expected pattern. 2043 return Cond; 2044 2045 // Determine the new comparison opcode. It may be signed or unsigned, 2046 // and the original comparison may be either equality or inequality. 2047 if (Cond->getPredicate() == CmpInst::ICMP_EQ) 2048 Pred = CmpInst::getInversePredicate(Pred); 2049 2050 // Ok, everything looks ok to change the condition into an SLT or SGE and 2051 // delete the max calculation. 2052 ICmpInst *NewCond = 2053 new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp"); 2054 2055 // Delete the max calculation instructions. 2056 Cond->replaceAllUsesWith(NewCond); 2057 CondUse->setUser(NewCond); 2058 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0)); 2059 Cond->eraseFromParent(); 2060 Sel->eraseFromParent(); 2061 if (Cmp->use_empty()) 2062 Cmp->eraseFromParent(); 2063 return NewCond; 2064 } 2065 2066 /// Change loop terminating condition to use the postinc iv when possible. 2067 void 2068 LSRInstance::OptimizeLoopTermCond() { 2069 SmallPtrSet<Instruction *, 4> PostIncs; 2070 2071 // We need a different set of heuristics for rotated and non-rotated loops. 2072 // If a loop is rotated then the latch is also the backedge, so inserting 2073 // post-inc expressions just before the latch is ideal. To reduce live ranges 2074 // it also makes sense to rewrite terminating conditions to use post-inc 2075 // expressions. 2076 // 2077 // If the loop is not rotated then the latch is not a backedge; the latch 2078 // check is done in the loop head. Adding post-inc expressions before the 2079 // latch will cause overlapping live-ranges of pre-inc and post-inc expressions 2080 // in the loop body. In this case we do *not* want to use post-inc expressions 2081 // in the latch check, and we want to insert post-inc expressions before 2082 // the backedge. 2083 BasicBlock *LatchBlock = L->getLoopLatch(); 2084 SmallVector<BasicBlock*, 8> ExitingBlocks; 2085 L->getExitingBlocks(ExitingBlocks); 2086 if (llvm::all_of(ExitingBlocks, [&LatchBlock](const BasicBlock *BB) { 2087 return LatchBlock != BB; 2088 })) { 2089 // The backedge doesn't exit the loop; treat this as a head-tested loop. 2090 IVIncInsertPos = LatchBlock->getTerminator(); 2091 return; 2092 } 2093 2094 // Otherwise treat this as a rotated loop. 2095 for (BasicBlock *ExitingBlock : ExitingBlocks) { 2096 2097 // Get the terminating condition for the loop if possible. If we 2098 // can, we want to change it to use a post-incremented version of its 2099 // induction variable, to allow coalescing the live ranges for the IV into 2100 // one register value. 2101 2102 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 2103 if (!TermBr) 2104 continue; 2105 // FIXME: Overly conservative, termination condition could be an 'or' etc.. 2106 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition())) 2107 continue; 2108 2109 // Search IVUsesByStride to find Cond's IVUse if there is one. 2110 IVStrideUse *CondUse = nullptr; 2111 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition()); 2112 if (!FindIVUserForCond(Cond, CondUse)) 2113 continue; 2114 2115 // If the trip count is computed in terms of a max (due to ScalarEvolution 2116 // being unable to find a sufficient guard, for example), change the loop 2117 // comparison to use SLT or ULT instead of NE. 2118 // One consequence of doing this now is that it disrupts the count-down 2119 // optimization. That's not always a bad thing though, because in such 2120 // cases it may still be worthwhile to avoid a max. 2121 Cond = OptimizeMax(Cond, CondUse); 2122 2123 // If this exiting block dominates the latch block, it may also use 2124 // the post-inc value if it won't be shared with other uses. 2125 // Check for dominance. 2126 if (!DT.dominates(ExitingBlock, LatchBlock)) 2127 continue; 2128 2129 // Conservatively avoid trying to use the post-inc value in non-latch 2130 // exits if there may be pre-inc users in intervening blocks. 2131 if (LatchBlock != ExitingBlock) 2132 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) 2133 // Test if the use is reachable from the exiting block. This dominator 2134 // query is a conservative approximation of reachability. 2135 if (&*UI != CondUse && 2136 !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) { 2137 // Conservatively assume there may be reuse if the quotient of their 2138 // strides could be a legal scale. 2139 const SCEV *A = IU.getStride(*CondUse, L); 2140 const SCEV *B = IU.getStride(*UI, L); 2141 if (!A || !B) continue; 2142 if (SE.getTypeSizeInBits(A->getType()) != 2143 SE.getTypeSizeInBits(B->getType())) { 2144 if (SE.getTypeSizeInBits(A->getType()) > 2145 SE.getTypeSizeInBits(B->getType())) 2146 B = SE.getSignExtendExpr(B, A->getType()); 2147 else 2148 A = SE.getSignExtendExpr(A, B->getType()); 2149 } 2150 if (const SCEVConstant *D = 2151 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) { 2152 const ConstantInt *C = D->getValue(); 2153 // Stride of one or negative one can have reuse with non-addresses. 2154 if (C->isOne() || C->isAllOnesValue()) 2155 goto decline_post_inc; 2156 // Avoid weird situations. 2157 if (C->getValue().getMinSignedBits() >= 64 || 2158 C->getValue().isMinSignedValue()) 2159 goto decline_post_inc; 2160 // Check for possible scaled-address reuse. 2161 MemAccessTy AccessTy = getAccessType(UI->getUser()); 2162 int64_t Scale = C->getSExtValue(); 2163 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2164 /*BaseOffset=*/0, 2165 /*HasBaseReg=*/false, Scale, 2166 AccessTy.AddrSpace)) 2167 goto decline_post_inc; 2168 Scale = -Scale; 2169 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2170 /*BaseOffset=*/0, 2171 /*HasBaseReg=*/false, Scale, 2172 AccessTy.AddrSpace)) 2173 goto decline_post_inc; 2174 } 2175 } 2176 2177 DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: " 2178 << *Cond << '\n'); 2179 2180 // It's possible for the setcc instruction to be anywhere in the loop, and 2181 // possible for it to have multiple users. If it is not immediately before 2182 // the exiting block branch, move it. 2183 if (&*++BasicBlock::iterator(Cond) != TermBr) { 2184 if (Cond->hasOneUse()) { 2185 Cond->moveBefore(TermBr); 2186 } else { 2187 // Clone the terminating condition and insert into the loopend. 2188 ICmpInst *OldCond = Cond; 2189 Cond = cast<ICmpInst>(Cond->clone()); 2190 Cond->setName(L->getHeader()->getName() + ".termcond"); 2191 ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond); 2192 2193 // Clone the IVUse, as the old use still exists! 2194 CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace()); 2195 TermBr->replaceUsesOfWith(OldCond, Cond); 2196 } 2197 } 2198 2199 // If we get to here, we know that we can transform the setcc instruction to 2200 // use the post-incremented version of the IV, allowing us to coalesce the 2201 // live ranges for the IV correctly. 2202 CondUse->transformToPostInc(L); 2203 Changed = true; 2204 2205 PostIncs.insert(Cond); 2206 decline_post_inc:; 2207 } 2208 2209 // Determine an insertion point for the loop induction variable increment. It 2210 // must dominate all the post-inc comparisons we just set up, and it must 2211 // dominate the loop latch edge. 2212 IVIncInsertPos = L->getLoopLatch()->getTerminator(); 2213 for (Instruction *Inst : PostIncs) { 2214 BasicBlock *BB = 2215 DT.findNearestCommonDominator(IVIncInsertPos->getParent(), 2216 Inst->getParent()); 2217 if (BB == Inst->getParent()) 2218 IVIncInsertPos = Inst; 2219 else if (BB != IVIncInsertPos->getParent()) 2220 IVIncInsertPos = BB->getTerminator(); 2221 } 2222 } 2223 2224 /// Determine if the given use can accommodate a fixup at the given offset and 2225 /// other details. If so, update the use and return true. 2226 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, 2227 bool HasBaseReg, LSRUse::KindType Kind, 2228 MemAccessTy AccessTy) { 2229 int64_t NewMinOffset = LU.MinOffset; 2230 int64_t NewMaxOffset = LU.MaxOffset; 2231 MemAccessTy NewAccessTy = AccessTy; 2232 2233 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to 2234 // something conservative, however this can pessimize in the case that one of 2235 // the uses will have all its uses outside the loop, for example. 2236 if (LU.Kind != Kind) 2237 return false; 2238 2239 // Check for a mismatched access type, and fall back conservatively as needed. 2240 // TODO: Be less conservative when the type is similar and can use the same 2241 // addressing modes. 2242 if (Kind == LSRUse::Address) { 2243 if (AccessTy != LU.AccessTy) 2244 NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext()); 2245 } 2246 2247 // Conservatively assume HasBaseReg is true for now. 2248 if (NewOffset < LU.MinOffset) { 2249 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2250 LU.MaxOffset - NewOffset, HasBaseReg)) 2251 return false; 2252 NewMinOffset = NewOffset; 2253 } else if (NewOffset > LU.MaxOffset) { 2254 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2255 NewOffset - LU.MinOffset, HasBaseReg)) 2256 return false; 2257 NewMaxOffset = NewOffset; 2258 } 2259 2260 // Update the use. 2261 LU.MinOffset = NewMinOffset; 2262 LU.MaxOffset = NewMaxOffset; 2263 LU.AccessTy = NewAccessTy; 2264 return true; 2265 } 2266 2267 /// Return an LSRUse index and an offset value for a fixup which needs the given 2268 /// expression, with the given kind and optional access type. Either reuse an 2269 /// existing use or create a new one, as needed. 2270 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr, 2271 LSRUse::KindType Kind, 2272 MemAccessTy AccessTy) { 2273 const SCEV *Copy = Expr; 2274 int64_t Offset = ExtractImmediate(Expr, SE); 2275 2276 // Basic uses can't accept any offset, for example. 2277 if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr, 2278 Offset, /*HasBaseReg=*/ true)) { 2279 Expr = Copy; 2280 Offset = 0; 2281 } 2282 2283 std::pair<UseMapTy::iterator, bool> P = 2284 UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0)); 2285 if (!P.second) { 2286 // A use already existed with this base. 2287 size_t LUIdx = P.first->second; 2288 LSRUse &LU = Uses[LUIdx]; 2289 if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy)) 2290 // Reuse this use. 2291 return std::make_pair(LUIdx, Offset); 2292 } 2293 2294 // Create a new use. 2295 size_t LUIdx = Uses.size(); 2296 P.first->second = LUIdx; 2297 Uses.push_back(LSRUse(Kind, AccessTy)); 2298 LSRUse &LU = Uses[LUIdx]; 2299 2300 LU.MinOffset = Offset; 2301 LU.MaxOffset = Offset; 2302 return std::make_pair(LUIdx, Offset); 2303 } 2304 2305 /// Delete the given use from the Uses list. 2306 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) { 2307 if (&LU != &Uses.back()) 2308 std::swap(LU, Uses.back()); 2309 Uses.pop_back(); 2310 2311 // Update RegUses. 2312 RegUses.swapAndDropUse(LUIdx, Uses.size()); 2313 } 2314 2315 /// Look for a use distinct from OrigLU which is has a formula that has the same 2316 /// registers as the given formula. 2317 LSRUse * 2318 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF, 2319 const LSRUse &OrigLU) { 2320 // Search all uses for the formula. This could be more clever. 2321 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 2322 LSRUse &LU = Uses[LUIdx]; 2323 // Check whether this use is close enough to OrigLU, to see whether it's 2324 // worthwhile looking through its formulae. 2325 // Ignore ICmpZero uses because they may contain formulae generated by 2326 // GenerateICmpZeroScales, in which case adding fixup offsets may 2327 // be invalid. 2328 if (&LU != &OrigLU && 2329 LU.Kind != LSRUse::ICmpZero && 2330 LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy && 2331 LU.WidestFixupType == OrigLU.WidestFixupType && 2332 LU.HasFormulaWithSameRegs(OrigF)) { 2333 // Scan through this use's formulae. 2334 for (const Formula &F : LU.Formulae) { 2335 // Check to see if this formula has the same registers and symbols 2336 // as OrigF. 2337 if (F.BaseRegs == OrigF.BaseRegs && 2338 F.ScaledReg == OrigF.ScaledReg && 2339 F.BaseGV == OrigF.BaseGV && 2340 F.Scale == OrigF.Scale && 2341 F.UnfoldedOffset == OrigF.UnfoldedOffset) { 2342 if (F.BaseOffset == 0) 2343 return &LU; 2344 // This is the formula where all the registers and symbols matched; 2345 // there aren't going to be any others. Since we declined it, we 2346 // can skip the rest of the formulae and proceed to the next LSRUse. 2347 break; 2348 } 2349 } 2350 } 2351 } 2352 2353 // Nothing looked good. 2354 return nullptr; 2355 } 2356 2357 void LSRInstance::CollectInterestingTypesAndFactors() { 2358 SmallSetVector<const SCEV *, 4> Strides; 2359 2360 // Collect interesting types and strides. 2361 SmallVector<const SCEV *, 4> Worklist; 2362 for (const IVStrideUse &U : IU) { 2363 const SCEV *Expr = IU.getExpr(U); 2364 2365 // Collect interesting types. 2366 Types.insert(SE.getEffectiveSCEVType(Expr->getType())); 2367 2368 // Add strides for mentioned loops. 2369 Worklist.push_back(Expr); 2370 do { 2371 const SCEV *S = Worklist.pop_back_val(); 2372 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2373 if (AR->getLoop() == L) 2374 Strides.insert(AR->getStepRecurrence(SE)); 2375 Worklist.push_back(AR->getStart()); 2376 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2377 Worklist.append(Add->op_begin(), Add->op_end()); 2378 } 2379 } while (!Worklist.empty()); 2380 } 2381 2382 // Compute interesting factors from the set of interesting strides. 2383 for (SmallSetVector<const SCEV *, 4>::const_iterator 2384 I = Strides.begin(), E = Strides.end(); I != E; ++I) 2385 for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter = 2386 std::next(I); NewStrideIter != E; ++NewStrideIter) { 2387 const SCEV *OldStride = *I; 2388 const SCEV *NewStride = *NewStrideIter; 2389 2390 if (SE.getTypeSizeInBits(OldStride->getType()) != 2391 SE.getTypeSizeInBits(NewStride->getType())) { 2392 if (SE.getTypeSizeInBits(OldStride->getType()) > 2393 SE.getTypeSizeInBits(NewStride->getType())) 2394 NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType()); 2395 else 2396 OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType()); 2397 } 2398 if (const SCEVConstant *Factor = 2399 dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride, 2400 SE, true))) { 2401 if (Factor->getAPInt().getMinSignedBits() <= 64) 2402 Factors.insert(Factor->getAPInt().getSExtValue()); 2403 } else if (const SCEVConstant *Factor = 2404 dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride, 2405 NewStride, 2406 SE, true))) { 2407 if (Factor->getAPInt().getMinSignedBits() <= 64) 2408 Factors.insert(Factor->getAPInt().getSExtValue()); 2409 } 2410 } 2411 2412 // If all uses use the same type, don't bother looking for truncation-based 2413 // reuse. 2414 if (Types.size() == 1) 2415 Types.clear(); 2416 2417 DEBUG(print_factors_and_types(dbgs())); 2418 } 2419 2420 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in 2421 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to 2422 /// IVStrideUses, we could partially skip this. 2423 static User::op_iterator 2424 findIVOperand(User::op_iterator OI, User::op_iterator OE, 2425 Loop *L, ScalarEvolution &SE) { 2426 for(; OI != OE; ++OI) { 2427 if (Instruction *Oper = dyn_cast<Instruction>(*OI)) { 2428 if (!SE.isSCEVable(Oper->getType())) 2429 continue; 2430 2431 if (const SCEVAddRecExpr *AR = 2432 dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) { 2433 if (AR->getLoop() == L) 2434 break; 2435 } 2436 } 2437 } 2438 return OI; 2439 } 2440 2441 /// IVChain logic must consistenctly peek base TruncInst operands, so wrap it in 2442 /// a convenient helper. 2443 static Value *getWideOperand(Value *Oper) { 2444 if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper)) 2445 return Trunc->getOperand(0); 2446 return Oper; 2447 } 2448 2449 /// Return true if we allow an IV chain to include both types. 2450 static bool isCompatibleIVType(Value *LVal, Value *RVal) { 2451 Type *LType = LVal->getType(); 2452 Type *RType = RVal->getType(); 2453 return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy()); 2454 } 2455 2456 /// Return an approximation of this SCEV expression's "base", or NULL for any 2457 /// constant. Returning the expression itself is conservative. Returning a 2458 /// deeper subexpression is more precise and valid as long as it isn't less 2459 /// complex than another subexpression. For expressions involving multiple 2460 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids 2461 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i], 2462 /// IVInc==b-a. 2463 /// 2464 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost 2465 /// SCEVUnknown, we simply return the rightmost SCEV operand. 2466 static const SCEV *getExprBase(const SCEV *S) { 2467 switch (S->getSCEVType()) { 2468 default: // uncluding scUnknown. 2469 return S; 2470 case scConstant: 2471 return nullptr; 2472 case scTruncate: 2473 return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand()); 2474 case scZeroExtend: 2475 return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand()); 2476 case scSignExtend: 2477 return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand()); 2478 case scAddExpr: { 2479 // Skip over scaled operands (scMulExpr) to follow add operands as long as 2480 // there's nothing more complex. 2481 // FIXME: not sure if we want to recognize negation. 2482 const SCEVAddExpr *Add = cast<SCEVAddExpr>(S); 2483 for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()), 2484 E(Add->op_begin()); I != E; ++I) { 2485 const SCEV *SubExpr = *I; 2486 if (SubExpr->getSCEVType() == scAddExpr) 2487 return getExprBase(SubExpr); 2488 2489 if (SubExpr->getSCEVType() != scMulExpr) 2490 return SubExpr; 2491 } 2492 return S; // all operands are scaled, be conservative. 2493 } 2494 case scAddRecExpr: 2495 return getExprBase(cast<SCEVAddRecExpr>(S)->getStart()); 2496 } 2497 } 2498 2499 /// Return true if the chain increment is profitable to expand into a loop 2500 /// invariant value, which may require its own register. A profitable chain 2501 /// increment will be an offset relative to the same base. We allow such offsets 2502 /// to potentially be used as chain increment as long as it's not obviously 2503 /// expensive to expand using real instructions. 2504 bool IVChain::isProfitableIncrement(const SCEV *OperExpr, 2505 const SCEV *IncExpr, 2506 ScalarEvolution &SE) { 2507 // Aggressively form chains when -stress-ivchain. 2508 if (StressIVChain) 2509 return true; 2510 2511 // Do not replace a constant offset from IV head with a nonconstant IV 2512 // increment. 2513 if (!isa<SCEVConstant>(IncExpr)) { 2514 const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand)); 2515 if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr))) 2516 return 0; 2517 } 2518 2519 SmallPtrSet<const SCEV*, 8> Processed; 2520 return !isHighCostExpansion(IncExpr, Processed, SE); 2521 } 2522 2523 /// Return true if the number of registers needed for the chain is estimated to 2524 /// be less than the number required for the individual IV users. First prohibit 2525 /// any IV users that keep the IV live across increments (the Users set should 2526 /// be empty). Next count the number and type of increments in the chain. 2527 /// 2528 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't 2529 /// effectively use postinc addressing modes. Only consider it profitable it the 2530 /// increments can be computed in fewer registers when chained. 2531 /// 2532 /// TODO: Consider IVInc free if it's already used in another chains. 2533 static bool 2534 isProfitableChain(IVChain &Chain, SmallPtrSetImpl<Instruction*> &Users, 2535 ScalarEvolution &SE, const TargetTransformInfo &TTI) { 2536 if (StressIVChain) 2537 return true; 2538 2539 if (!Chain.hasIncs()) 2540 return false; 2541 2542 if (!Users.empty()) { 2543 DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n"; 2544 for (Instruction *Inst : Users) { 2545 dbgs() << " " << *Inst << "\n"; 2546 }); 2547 return false; 2548 } 2549 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 2550 2551 // The chain itself may require a register, so intialize cost to 1. 2552 int cost = 1; 2553 2554 // A complete chain likely eliminates the need for keeping the original IV in 2555 // a register. LSR does not currently know how to form a complete chain unless 2556 // the header phi already exists. 2557 if (isa<PHINode>(Chain.tailUserInst()) 2558 && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) { 2559 --cost; 2560 } 2561 const SCEV *LastIncExpr = nullptr; 2562 unsigned NumConstIncrements = 0; 2563 unsigned NumVarIncrements = 0; 2564 unsigned NumReusedIncrements = 0; 2565 for (const IVInc &Inc : Chain) { 2566 if (Inc.IncExpr->isZero()) 2567 continue; 2568 2569 // Incrementing by zero or some constant is neutral. We assume constants can 2570 // be folded into an addressing mode or an add's immediate operand. 2571 if (isa<SCEVConstant>(Inc.IncExpr)) { 2572 ++NumConstIncrements; 2573 continue; 2574 } 2575 2576 if (Inc.IncExpr == LastIncExpr) 2577 ++NumReusedIncrements; 2578 else 2579 ++NumVarIncrements; 2580 2581 LastIncExpr = Inc.IncExpr; 2582 } 2583 // An IV chain with a single increment is handled by LSR's postinc 2584 // uses. However, a chain with multiple increments requires keeping the IV's 2585 // value live longer than it needs to be if chained. 2586 if (NumConstIncrements > 1) 2587 --cost; 2588 2589 // Materializing increment expressions in the preheader that didn't exist in 2590 // the original code may cost a register. For example, sign-extended array 2591 // indices can produce ridiculous increments like this: 2592 // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64))) 2593 cost += NumVarIncrements; 2594 2595 // Reusing variable increments likely saves a register to hold the multiple of 2596 // the stride. 2597 cost -= NumReusedIncrements; 2598 2599 DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost 2600 << "\n"); 2601 2602 return cost < 0; 2603 } 2604 2605 /// Add this IV user to an existing chain or make it the head of a new chain. 2606 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper, 2607 SmallVectorImpl<ChainUsers> &ChainUsersVec) { 2608 // When IVs are used as types of varying widths, they are generally converted 2609 // to a wider type with some uses remaining narrow under a (free) trunc. 2610 Value *const NextIV = getWideOperand(IVOper); 2611 const SCEV *const OperExpr = SE.getSCEV(NextIV); 2612 const SCEV *const OperExprBase = getExprBase(OperExpr); 2613 2614 // Visit all existing chains. Check if its IVOper can be computed as a 2615 // profitable loop invariant increment from the last link in the Chain. 2616 unsigned ChainIdx = 0, NChains = IVChainVec.size(); 2617 const SCEV *LastIncExpr = nullptr; 2618 for (; ChainIdx < NChains; ++ChainIdx) { 2619 IVChain &Chain = IVChainVec[ChainIdx]; 2620 2621 // Prune the solution space aggressively by checking that both IV operands 2622 // are expressions that operate on the same unscaled SCEVUnknown. This 2623 // "base" will be canceled by the subsequent getMinusSCEV call. Checking 2624 // first avoids creating extra SCEV expressions. 2625 if (!StressIVChain && Chain.ExprBase != OperExprBase) 2626 continue; 2627 2628 Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand); 2629 if (!isCompatibleIVType(PrevIV, NextIV)) 2630 continue; 2631 2632 // A phi node terminates a chain. 2633 if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst())) 2634 continue; 2635 2636 // The increment must be loop-invariant so it can be kept in a register. 2637 const SCEV *PrevExpr = SE.getSCEV(PrevIV); 2638 const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr); 2639 if (!SE.isLoopInvariant(IncExpr, L)) 2640 continue; 2641 2642 if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) { 2643 LastIncExpr = IncExpr; 2644 break; 2645 } 2646 } 2647 // If we haven't found a chain, create a new one, unless we hit the max. Don't 2648 // bother for phi nodes, because they must be last in the chain. 2649 if (ChainIdx == NChains) { 2650 if (isa<PHINode>(UserInst)) 2651 return; 2652 if (NChains >= MaxChains && !StressIVChain) { 2653 DEBUG(dbgs() << "IV Chain Limit\n"); 2654 return; 2655 } 2656 LastIncExpr = OperExpr; 2657 // IVUsers may have skipped over sign/zero extensions. We don't currently 2658 // attempt to form chains involving extensions unless they can be hoisted 2659 // into this loop's AddRec. 2660 if (!isa<SCEVAddRecExpr>(LastIncExpr)) 2661 return; 2662 ++NChains; 2663 IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr), 2664 OperExprBase)); 2665 ChainUsersVec.resize(NChains); 2666 DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst 2667 << ") IV=" << *LastIncExpr << "\n"); 2668 } else { 2669 DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Inc: (" << *UserInst 2670 << ") IV+" << *LastIncExpr << "\n"); 2671 // Add this IV user to the end of the chain. 2672 IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr)); 2673 } 2674 IVChain &Chain = IVChainVec[ChainIdx]; 2675 2676 SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers; 2677 // This chain's NearUsers become FarUsers. 2678 if (!LastIncExpr->isZero()) { 2679 ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(), 2680 NearUsers.end()); 2681 NearUsers.clear(); 2682 } 2683 2684 // All other uses of IVOperand become near uses of the chain. 2685 // We currently ignore intermediate values within SCEV expressions, assuming 2686 // they will eventually be used be the current chain, or can be computed 2687 // from one of the chain increments. To be more precise we could 2688 // transitively follow its user and only add leaf IV users to the set. 2689 for (User *U : IVOper->users()) { 2690 Instruction *OtherUse = dyn_cast<Instruction>(U); 2691 if (!OtherUse) 2692 continue; 2693 // Uses in the chain will no longer be uses if the chain is formed. 2694 // Include the head of the chain in this iteration (not Chain.begin()). 2695 IVChain::const_iterator IncIter = Chain.Incs.begin(); 2696 IVChain::const_iterator IncEnd = Chain.Incs.end(); 2697 for( ; IncIter != IncEnd; ++IncIter) { 2698 if (IncIter->UserInst == OtherUse) 2699 break; 2700 } 2701 if (IncIter != IncEnd) 2702 continue; 2703 2704 if (SE.isSCEVable(OtherUse->getType()) 2705 && !isa<SCEVUnknown>(SE.getSCEV(OtherUse)) 2706 && IU.isIVUserOrOperand(OtherUse)) { 2707 continue; 2708 } 2709 NearUsers.insert(OtherUse); 2710 } 2711 2712 // Since this user is part of the chain, it's no longer considered a use 2713 // of the chain. 2714 ChainUsersVec[ChainIdx].FarUsers.erase(UserInst); 2715 } 2716 2717 /// Populate the vector of Chains. 2718 /// 2719 /// This decreases ILP at the architecture level. Targets with ample registers, 2720 /// multiple memory ports, and no register renaming probably don't want 2721 /// this. However, such targets should probably disable LSR altogether. 2722 /// 2723 /// The job of LSR is to make a reasonable choice of induction variables across 2724 /// the loop. Subsequent passes can easily "unchain" computation exposing more 2725 /// ILP *within the loop* if the target wants it. 2726 /// 2727 /// Finding the best IV chain is potentially a scheduling problem. Since LSR 2728 /// will not reorder memory operations, it will recognize this as a chain, but 2729 /// will generate redundant IV increments. Ideally this would be corrected later 2730 /// by a smart scheduler: 2731 /// = A[i] 2732 /// = A[i+x] 2733 /// A[i] = 2734 /// A[i+x] = 2735 /// 2736 /// TODO: Walk the entire domtree within this loop, not just the path to the 2737 /// loop latch. This will discover chains on side paths, but requires 2738 /// maintaining multiple copies of the Chains state. 2739 void LSRInstance::CollectChains() { 2740 DEBUG(dbgs() << "Collecting IV Chains.\n"); 2741 SmallVector<ChainUsers, 8> ChainUsersVec; 2742 2743 SmallVector<BasicBlock *,8> LatchPath; 2744 BasicBlock *LoopHeader = L->getHeader(); 2745 for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch()); 2746 Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) { 2747 LatchPath.push_back(Rung->getBlock()); 2748 } 2749 LatchPath.push_back(LoopHeader); 2750 2751 // Walk the instruction stream from the loop header to the loop latch. 2752 for (BasicBlock *BB : reverse(LatchPath)) { 2753 for (Instruction &I : *BB) { 2754 // Skip instructions that weren't seen by IVUsers analysis. 2755 if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I)) 2756 continue; 2757 2758 // Ignore users that are part of a SCEV expression. This way we only 2759 // consider leaf IV Users. This effectively rediscovers a portion of 2760 // IVUsers analysis but in program order this time. 2761 if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I))) 2762 continue; 2763 2764 // Remove this instruction from any NearUsers set it may be in. 2765 for (unsigned ChainIdx = 0, NChains = IVChainVec.size(); 2766 ChainIdx < NChains; ++ChainIdx) { 2767 ChainUsersVec[ChainIdx].NearUsers.erase(&I); 2768 } 2769 // Search for operands that can be chained. 2770 SmallPtrSet<Instruction*, 4> UniqueOperands; 2771 User::op_iterator IVOpEnd = I.op_end(); 2772 User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE); 2773 while (IVOpIter != IVOpEnd) { 2774 Instruction *IVOpInst = cast<Instruction>(*IVOpIter); 2775 if (UniqueOperands.insert(IVOpInst).second) 2776 ChainInstruction(&I, IVOpInst, ChainUsersVec); 2777 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 2778 } 2779 } // Continue walking down the instructions. 2780 } // Continue walking down the domtree. 2781 // Visit phi backedges to determine if the chain can generate the IV postinc. 2782 for (BasicBlock::iterator I = L->getHeader()->begin(); 2783 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 2784 if (!SE.isSCEVable(PN->getType())) 2785 continue; 2786 2787 Instruction *IncV = 2788 dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch())); 2789 if (IncV) 2790 ChainInstruction(PN, IncV, ChainUsersVec); 2791 } 2792 // Remove any unprofitable chains. 2793 unsigned ChainIdx = 0; 2794 for (unsigned UsersIdx = 0, NChains = IVChainVec.size(); 2795 UsersIdx < NChains; ++UsersIdx) { 2796 if (!isProfitableChain(IVChainVec[UsersIdx], 2797 ChainUsersVec[UsersIdx].FarUsers, SE, TTI)) 2798 continue; 2799 // Preserve the chain at UsesIdx. 2800 if (ChainIdx != UsersIdx) 2801 IVChainVec[ChainIdx] = IVChainVec[UsersIdx]; 2802 FinalizeChain(IVChainVec[ChainIdx]); 2803 ++ChainIdx; 2804 } 2805 IVChainVec.resize(ChainIdx); 2806 } 2807 2808 void LSRInstance::FinalizeChain(IVChain &Chain) { 2809 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 2810 DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n"); 2811 2812 for (const IVInc &Inc : Chain) { 2813 DEBUG(dbgs() << " Inc: " << Inc.UserInst << "\n"); 2814 auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand); 2815 assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand"); 2816 IVIncSet.insert(UseI); 2817 } 2818 } 2819 2820 /// Return true if the IVInc can be folded into an addressing mode. 2821 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst, 2822 Value *Operand, const TargetTransformInfo &TTI) { 2823 const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr); 2824 if (!IncConst || !isAddressUse(UserInst, Operand)) 2825 return false; 2826 2827 if (IncConst->getAPInt().getMinSignedBits() > 64) 2828 return false; 2829 2830 MemAccessTy AccessTy = getAccessType(UserInst); 2831 int64_t IncOffset = IncConst->getValue()->getSExtValue(); 2832 if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr, 2833 IncOffset, /*HaseBaseReg=*/false)) 2834 return false; 2835 2836 return true; 2837 } 2838 2839 /// Generate an add or subtract for each IVInc in a chain to materialize the IV 2840 /// user's operand from the previous IV user's operand. 2841 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 2842 SmallVectorImpl<WeakVH> &DeadInsts) { 2843 // Find the new IVOperand for the head of the chain. It may have been replaced 2844 // by LSR. 2845 const IVInc &Head = Chain.Incs[0]; 2846 User::op_iterator IVOpEnd = Head.UserInst->op_end(); 2847 // findIVOperand returns IVOpEnd if it can no longer find a valid IV user. 2848 User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(), 2849 IVOpEnd, L, SE); 2850 Value *IVSrc = nullptr; 2851 while (IVOpIter != IVOpEnd) { 2852 IVSrc = getWideOperand(*IVOpIter); 2853 2854 // If this operand computes the expression that the chain needs, we may use 2855 // it. (Check this after setting IVSrc which is used below.) 2856 // 2857 // Note that if Head.IncExpr is wider than IVSrc, then this phi is too 2858 // narrow for the chain, so we can no longer use it. We do allow using a 2859 // wider phi, assuming the LSR checked for free truncation. In that case we 2860 // should already have a truncate on this operand such that 2861 // getSCEV(IVSrc) == IncExpr. 2862 if (SE.getSCEV(*IVOpIter) == Head.IncExpr 2863 || SE.getSCEV(IVSrc) == Head.IncExpr) { 2864 break; 2865 } 2866 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 2867 } 2868 if (IVOpIter == IVOpEnd) { 2869 // Gracefully give up on this chain. 2870 DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n"); 2871 return; 2872 } 2873 2874 DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n"); 2875 Type *IVTy = IVSrc->getType(); 2876 Type *IntTy = SE.getEffectiveSCEVType(IVTy); 2877 const SCEV *LeftOverExpr = nullptr; 2878 for (const IVInc &Inc : Chain) { 2879 Instruction *InsertPt = Inc.UserInst; 2880 if (isa<PHINode>(InsertPt)) 2881 InsertPt = L->getLoopLatch()->getTerminator(); 2882 2883 // IVOper will replace the current IV User's operand. IVSrc is the IV 2884 // value currently held in a register. 2885 Value *IVOper = IVSrc; 2886 if (!Inc.IncExpr->isZero()) { 2887 // IncExpr was the result of subtraction of two narrow values, so must 2888 // be signed. 2889 const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy); 2890 LeftOverExpr = LeftOverExpr ? 2891 SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr; 2892 } 2893 if (LeftOverExpr && !LeftOverExpr->isZero()) { 2894 // Expand the IV increment. 2895 Rewriter.clearPostInc(); 2896 Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt); 2897 const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc), 2898 SE.getUnknown(IncV)); 2899 IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt); 2900 2901 // If an IV increment can't be folded, use it as the next IV value. 2902 if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) { 2903 assert(IVTy == IVOper->getType() && "inconsistent IV increment type"); 2904 IVSrc = IVOper; 2905 LeftOverExpr = nullptr; 2906 } 2907 } 2908 Type *OperTy = Inc.IVOperand->getType(); 2909 if (IVTy != OperTy) { 2910 assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) && 2911 "cannot extend a chained IV"); 2912 IRBuilder<> Builder(InsertPt); 2913 IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain"); 2914 } 2915 Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper); 2916 DeadInsts.emplace_back(Inc.IVOperand); 2917 } 2918 // If LSR created a new, wider phi, we may also replace its postinc. We only 2919 // do this if we also found a wide value for the head of the chain. 2920 if (isa<PHINode>(Chain.tailUserInst())) { 2921 for (BasicBlock::iterator I = L->getHeader()->begin(); 2922 PHINode *Phi = dyn_cast<PHINode>(I); ++I) { 2923 if (!isCompatibleIVType(Phi, IVSrc)) 2924 continue; 2925 Instruction *PostIncV = dyn_cast<Instruction>( 2926 Phi->getIncomingValueForBlock(L->getLoopLatch())); 2927 if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc))) 2928 continue; 2929 Value *IVOper = IVSrc; 2930 Type *PostIncTy = PostIncV->getType(); 2931 if (IVTy != PostIncTy) { 2932 assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types"); 2933 IRBuilder<> Builder(L->getLoopLatch()->getTerminator()); 2934 Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc()); 2935 IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain"); 2936 } 2937 Phi->replaceUsesOfWith(PostIncV, IVOper); 2938 DeadInsts.emplace_back(PostIncV); 2939 } 2940 } 2941 } 2942 2943 void LSRInstance::CollectFixupsAndInitialFormulae() { 2944 for (const IVStrideUse &U : IU) { 2945 Instruction *UserInst = U.getUser(); 2946 // Skip IV users that are part of profitable IV Chains. 2947 User::op_iterator UseI = 2948 find(UserInst->operands(), U.getOperandValToReplace()); 2949 assert(UseI != UserInst->op_end() && "cannot find IV operand"); 2950 if (IVIncSet.count(UseI)) 2951 continue; 2952 2953 LSRUse::KindType Kind = LSRUse::Basic; 2954 MemAccessTy AccessTy; 2955 if (isAddressUse(UserInst, U.getOperandValToReplace())) { 2956 Kind = LSRUse::Address; 2957 AccessTy = getAccessType(UserInst); 2958 } 2959 2960 const SCEV *S = IU.getExpr(U); 2961 PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops(); 2962 2963 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as 2964 // (N - i == 0), and this allows (N - i) to be the expression that we work 2965 // with rather than just N or i, so we can consider the register 2966 // requirements for both N and i at the same time. Limiting this code to 2967 // equality icmps is not a problem because all interesting loops use 2968 // equality icmps, thanks to IndVarSimplify. 2969 if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst)) 2970 if (CI->isEquality()) { 2971 // Swap the operands if needed to put the OperandValToReplace on the 2972 // left, for consistency. 2973 Value *NV = CI->getOperand(1); 2974 if (NV == U.getOperandValToReplace()) { 2975 CI->setOperand(1, CI->getOperand(0)); 2976 CI->setOperand(0, NV); 2977 NV = CI->getOperand(1); 2978 Changed = true; 2979 } 2980 2981 // x == y --> x - y == 0 2982 const SCEV *N = SE.getSCEV(NV); 2983 if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) { 2984 // S is normalized, so normalize N before folding it into S 2985 // to keep the result normalized. 2986 N = TransformForPostIncUse(Normalize, N, CI, nullptr, 2987 TmpPostIncLoops, SE, DT); 2988 Kind = LSRUse::ICmpZero; 2989 S = SE.getMinusSCEV(N, S); 2990 } 2991 2992 // -1 and the negations of all interesting strides (except the negation 2993 // of -1) are now also interesting. 2994 for (size_t i = 0, e = Factors.size(); i != e; ++i) 2995 if (Factors[i] != -1) 2996 Factors.insert(-(uint64_t)Factors[i]); 2997 Factors.insert(-1); 2998 } 2999 3000 // Get or create an LSRUse. 3001 std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy); 3002 size_t LUIdx = P.first; 3003 int64_t Offset = P.second; 3004 LSRUse &LU = Uses[LUIdx]; 3005 3006 // Record the fixup. 3007 LSRFixup &LF = LU.getNewFixup(); 3008 LF.UserInst = UserInst; 3009 LF.OperandValToReplace = U.getOperandValToReplace(); 3010 LF.PostIncLoops = TmpPostIncLoops; 3011 LF.Offset = Offset; 3012 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3013 3014 if (!LU.WidestFixupType || 3015 SE.getTypeSizeInBits(LU.WidestFixupType) < 3016 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3017 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3018 3019 // If this is the first use of this LSRUse, give it a formula. 3020 if (LU.Formulae.empty()) { 3021 InsertInitialFormula(S, LU, LUIdx); 3022 CountRegisters(LU.Formulae.back(), LUIdx); 3023 } 3024 } 3025 3026 DEBUG(print_fixups(dbgs())); 3027 } 3028 3029 /// Insert a formula for the given expression into the given use, separating out 3030 /// loop-variant portions from loop-invariant and loop-computable portions. 3031 void 3032 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) { 3033 // Mark uses whose expressions cannot be expanded. 3034 if (!isSafeToExpand(S, SE)) 3035 LU.RigidFormula = true; 3036 3037 Formula F; 3038 F.initialMatch(S, L, SE); 3039 bool Inserted = InsertFormula(LU, LUIdx, F); 3040 assert(Inserted && "Initial formula already exists!"); (void)Inserted; 3041 } 3042 3043 /// Insert a simple single-register formula for the given expression into the 3044 /// given use. 3045 void 3046 LSRInstance::InsertSupplementalFormula(const SCEV *S, 3047 LSRUse &LU, size_t LUIdx) { 3048 Formula F; 3049 F.BaseRegs.push_back(S); 3050 F.HasBaseReg = true; 3051 bool Inserted = InsertFormula(LU, LUIdx, F); 3052 assert(Inserted && "Supplemental formula already exists!"); (void)Inserted; 3053 } 3054 3055 /// Note which registers are used by the given formula, updating RegUses. 3056 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) { 3057 if (F.ScaledReg) 3058 RegUses.countRegister(F.ScaledReg, LUIdx); 3059 for (const SCEV *BaseReg : F.BaseRegs) 3060 RegUses.countRegister(BaseReg, LUIdx); 3061 } 3062 3063 /// If the given formula has not yet been inserted, add it to the list, and 3064 /// return true. Return false otherwise. 3065 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) { 3066 // Do not insert formula that we will not be able to expand. 3067 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) && 3068 "Formula is illegal"); 3069 if (!LU.InsertFormula(F)) 3070 return false; 3071 3072 CountRegisters(F, LUIdx); 3073 return true; 3074 } 3075 3076 /// Check for other uses of loop-invariant values which we're tracking. These 3077 /// other uses will pin these values in registers, making them less profitable 3078 /// for elimination. 3079 /// TODO: This currently misses non-constant addrec step registers. 3080 /// TODO: Should this give more weight to users inside the loop? 3081 void 3082 LSRInstance::CollectLoopInvariantFixupsAndFormulae() { 3083 SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end()); 3084 SmallPtrSet<const SCEV *, 32> Visited; 3085 3086 while (!Worklist.empty()) { 3087 const SCEV *S = Worklist.pop_back_val(); 3088 3089 // Don't process the same SCEV twice 3090 if (!Visited.insert(S).second) 3091 continue; 3092 3093 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) 3094 Worklist.append(N->op_begin(), N->op_end()); 3095 else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) 3096 Worklist.push_back(C->getOperand()); 3097 else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 3098 Worklist.push_back(D->getLHS()); 3099 Worklist.push_back(D->getRHS()); 3100 } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) { 3101 const Value *V = US->getValue(); 3102 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 3103 // Look for instructions defined outside the loop. 3104 if (L->contains(Inst)) continue; 3105 } else if (isa<UndefValue>(V)) 3106 // Undef doesn't have a live range, so it doesn't matter. 3107 continue; 3108 for (const Use &U : V->uses()) { 3109 const Instruction *UserInst = dyn_cast<Instruction>(U.getUser()); 3110 // Ignore non-instructions. 3111 if (!UserInst) 3112 continue; 3113 // Ignore instructions in other functions (as can happen with 3114 // Constants). 3115 if (UserInst->getParent()->getParent() != L->getHeader()->getParent()) 3116 continue; 3117 // Ignore instructions not dominated by the loop. 3118 const BasicBlock *UseBB = !isa<PHINode>(UserInst) ? 3119 UserInst->getParent() : 3120 cast<PHINode>(UserInst)->getIncomingBlock( 3121 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 3122 if (!DT.dominates(L->getHeader(), UseBB)) 3123 continue; 3124 // Don't bother if the instruction is in a BB which ends in an EHPad. 3125 if (UseBB->getTerminator()->isEHPad()) 3126 continue; 3127 // Ignore uses which are part of other SCEV expressions, to avoid 3128 // analyzing them multiple times. 3129 if (SE.isSCEVable(UserInst->getType())) { 3130 const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst)); 3131 // If the user is a no-op, look through to its uses. 3132 if (!isa<SCEVUnknown>(UserS)) 3133 continue; 3134 if (UserS == US) { 3135 Worklist.push_back( 3136 SE.getUnknown(const_cast<Instruction *>(UserInst))); 3137 continue; 3138 } 3139 } 3140 // Ignore icmp instructions which are already being analyzed. 3141 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) { 3142 unsigned OtherIdx = !U.getOperandNo(); 3143 Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx)); 3144 if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L)) 3145 continue; 3146 } 3147 3148 std::pair<size_t, int64_t> P = getUse( 3149 S, LSRUse::Basic, MemAccessTy()); 3150 size_t LUIdx = P.first; 3151 int64_t Offset = P.second; 3152 LSRUse &LU = Uses[LUIdx]; 3153 LSRFixup &LF = LU.getNewFixup(); 3154 LF.UserInst = const_cast<Instruction *>(UserInst); 3155 LF.OperandValToReplace = U; 3156 LF.Offset = Offset; 3157 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3158 if (!LU.WidestFixupType || 3159 SE.getTypeSizeInBits(LU.WidestFixupType) < 3160 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3161 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3162 InsertSupplementalFormula(US, LU, LUIdx); 3163 CountRegisters(LU.Formulae.back(), Uses.size() - 1); 3164 break; 3165 } 3166 } 3167 } 3168 } 3169 3170 /// Split S into subexpressions which can be pulled out into separate 3171 /// registers. If C is non-null, multiply each subexpression by C. 3172 /// 3173 /// Return remainder expression after factoring the subexpressions captured by 3174 /// Ops. If Ops is complete, return NULL. 3175 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C, 3176 SmallVectorImpl<const SCEV *> &Ops, 3177 const Loop *L, 3178 ScalarEvolution &SE, 3179 unsigned Depth = 0) { 3180 // Arbitrarily cap recursion to protect compile time. 3181 if (Depth >= 3) 3182 return S; 3183 3184 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3185 // Break out add operands. 3186 for (const SCEV *S : Add->operands()) { 3187 const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1); 3188 if (Remainder) 3189 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3190 } 3191 return nullptr; 3192 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 3193 // Split a non-zero base out of an addrec. 3194 if (AR->getStart()->isZero()) 3195 return S; 3196 3197 const SCEV *Remainder = CollectSubexprs(AR->getStart(), 3198 C, Ops, L, SE, Depth+1); 3199 // Split the non-zero AddRec unless it is part of a nested recurrence that 3200 // does not pertain to this loop. 3201 if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) { 3202 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3203 Remainder = nullptr; 3204 } 3205 if (Remainder != AR->getStart()) { 3206 if (!Remainder) 3207 Remainder = SE.getConstant(AR->getType(), 0); 3208 return SE.getAddRecExpr(Remainder, 3209 AR->getStepRecurrence(SE), 3210 AR->getLoop(), 3211 //FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 3212 SCEV::FlagAnyWrap); 3213 } 3214 } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3215 // Break (C * (a + b + c)) into C*a + C*b + C*c. 3216 if (Mul->getNumOperands() != 2) 3217 return S; 3218 if (const SCEVConstant *Op0 = 3219 dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3220 C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0; 3221 const SCEV *Remainder = 3222 CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1); 3223 if (Remainder) 3224 Ops.push_back(SE.getMulExpr(C, Remainder)); 3225 return nullptr; 3226 } 3227 } 3228 return S; 3229 } 3230 3231 /// \brief Helper function for LSRInstance::GenerateReassociations. 3232 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 3233 const Formula &Base, 3234 unsigned Depth, size_t Idx, 3235 bool IsScaledReg) { 3236 const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3237 SmallVector<const SCEV *, 8> AddOps; 3238 const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE); 3239 if (Remainder) 3240 AddOps.push_back(Remainder); 3241 3242 if (AddOps.size() == 1) 3243 return; 3244 3245 for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(), 3246 JE = AddOps.end(); 3247 J != JE; ++J) { 3248 3249 // Loop-variant "unknown" values are uninteresting; we won't be able to 3250 // do anything meaningful with them. 3251 if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L)) 3252 continue; 3253 3254 // Don't pull a constant into a register if the constant could be folded 3255 // into an immediate field. 3256 if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3257 LU.AccessTy, *J, Base.getNumRegs() > 1)) 3258 continue; 3259 3260 // Collect all operands except *J. 3261 SmallVector<const SCEV *, 8> InnerAddOps( 3262 ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J); 3263 InnerAddOps.append(std::next(J), 3264 ((const SmallVector<const SCEV *, 8> &)AddOps).end()); 3265 3266 // Don't leave just a constant behind in a register if the constant could 3267 // be folded into an immediate field. 3268 if (InnerAddOps.size() == 1 && 3269 isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3270 LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1)) 3271 continue; 3272 3273 const SCEV *InnerSum = SE.getAddExpr(InnerAddOps); 3274 if (InnerSum->isZero()) 3275 continue; 3276 Formula F = Base; 3277 3278 // Add the remaining pieces of the add back into the new formula. 3279 const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum); 3280 if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 && 3281 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3282 InnerSumSC->getValue()->getZExtValue())) { 3283 F.UnfoldedOffset = 3284 (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue(); 3285 if (IsScaledReg) 3286 F.ScaledReg = nullptr; 3287 else 3288 F.BaseRegs.erase(F.BaseRegs.begin() + Idx); 3289 } else if (IsScaledReg) 3290 F.ScaledReg = InnerSum; 3291 else 3292 F.BaseRegs[Idx] = InnerSum; 3293 3294 // Add J as its own register, or an unfolded immediate. 3295 const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J); 3296 if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 && 3297 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3298 SC->getValue()->getZExtValue())) 3299 F.UnfoldedOffset = 3300 (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue(); 3301 else 3302 F.BaseRegs.push_back(*J); 3303 // We may have changed the number of register in base regs, adjust the 3304 // formula accordingly. 3305 F.canonicalize(); 3306 3307 if (InsertFormula(LU, LUIdx, F)) 3308 // If that formula hadn't been seen before, recurse to find more like 3309 // it. 3310 GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth + 1); 3311 } 3312 } 3313 3314 /// Split out subexpressions from adds and the bases of addrecs. 3315 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx, 3316 Formula Base, unsigned Depth) { 3317 assert(Base.isCanonical() && "Input must be in the canonical form"); 3318 // Arbitrarily cap recursion to protect compile time. 3319 if (Depth >= 3) 3320 return; 3321 3322 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3323 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i); 3324 3325 if (Base.Scale == 1) 3326 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, 3327 /* Idx */ -1, /* IsScaledReg */ true); 3328 } 3329 3330 /// Generate a formula consisting of all of the loop-dominating registers added 3331 /// into a single register. 3332 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx, 3333 Formula Base) { 3334 // This method is only interesting on a plurality of registers. 3335 if (Base.BaseRegs.size() + (Base.Scale == 1) <= 1) 3336 return; 3337 3338 // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before 3339 // processing the formula. 3340 Base.unscale(); 3341 Formula F = Base; 3342 F.BaseRegs.clear(); 3343 SmallVector<const SCEV *, 4> Ops; 3344 for (const SCEV *BaseReg : Base.BaseRegs) { 3345 if (SE.properlyDominates(BaseReg, L->getHeader()) && 3346 !SE.hasComputableLoopEvolution(BaseReg, L)) 3347 Ops.push_back(BaseReg); 3348 else 3349 F.BaseRegs.push_back(BaseReg); 3350 } 3351 if (Ops.size() > 1) { 3352 const SCEV *Sum = SE.getAddExpr(Ops); 3353 // TODO: If Sum is zero, it probably means ScalarEvolution missed an 3354 // opportunity to fold something. For now, just ignore such cases 3355 // rather than proceed with zero in a register. 3356 if (!Sum->isZero()) { 3357 F.BaseRegs.push_back(Sum); 3358 F.canonicalize(); 3359 (void)InsertFormula(LU, LUIdx, F); 3360 } 3361 } 3362 } 3363 3364 /// \brief Helper function for LSRInstance::GenerateSymbolicOffsets. 3365 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 3366 const Formula &Base, size_t Idx, 3367 bool IsScaledReg) { 3368 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3369 GlobalValue *GV = ExtractSymbol(G, SE); 3370 if (G->isZero() || !GV) 3371 return; 3372 Formula F = Base; 3373 F.BaseGV = GV; 3374 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3375 return; 3376 if (IsScaledReg) 3377 F.ScaledReg = G; 3378 else 3379 F.BaseRegs[Idx] = G; 3380 (void)InsertFormula(LU, LUIdx, F); 3381 } 3382 3383 /// Generate reuse formulae using symbolic offsets. 3384 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, 3385 Formula Base) { 3386 // We can't add a symbolic offset if the address already contains one. 3387 if (Base.BaseGV) return; 3388 3389 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3390 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i); 3391 if (Base.Scale == 1) 3392 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1, 3393 /* IsScaledReg */ true); 3394 } 3395 3396 /// \brief Helper function for LSRInstance::GenerateConstantOffsets. 3397 void LSRInstance::GenerateConstantOffsetsImpl( 3398 LSRUse &LU, unsigned LUIdx, const Formula &Base, 3399 const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) { 3400 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3401 for (int64_t Offset : Worklist) { 3402 Formula F = Base; 3403 F.BaseOffset = (uint64_t)Base.BaseOffset - Offset; 3404 if (isLegalUse(TTI, LU.MinOffset - Offset, LU.MaxOffset - Offset, LU.Kind, 3405 LU.AccessTy, F)) { 3406 // Add the offset to the base register. 3407 const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G); 3408 // If it cancelled out, drop the base register, otherwise update it. 3409 if (NewG->isZero()) { 3410 if (IsScaledReg) { 3411 F.Scale = 0; 3412 F.ScaledReg = nullptr; 3413 } else 3414 F.deleteBaseReg(F.BaseRegs[Idx]); 3415 F.canonicalize(); 3416 } else if (IsScaledReg) 3417 F.ScaledReg = NewG; 3418 else 3419 F.BaseRegs[Idx] = NewG; 3420 3421 (void)InsertFormula(LU, LUIdx, F); 3422 } 3423 } 3424 3425 int64_t Imm = ExtractImmediate(G, SE); 3426 if (G->isZero() || Imm == 0) 3427 return; 3428 Formula F = Base; 3429 F.BaseOffset = (uint64_t)F.BaseOffset + Imm; 3430 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3431 return; 3432 if (IsScaledReg) 3433 F.ScaledReg = G; 3434 else 3435 F.BaseRegs[Idx] = G; 3436 (void)InsertFormula(LU, LUIdx, F); 3437 } 3438 3439 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets. 3440 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, 3441 Formula Base) { 3442 // TODO: For now, just add the min and max offset, because it usually isn't 3443 // worthwhile looking at everything inbetween. 3444 SmallVector<int64_t, 2> Worklist; 3445 Worklist.push_back(LU.MinOffset); 3446 if (LU.MaxOffset != LU.MinOffset) 3447 Worklist.push_back(LU.MaxOffset); 3448 3449 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3450 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i); 3451 if (Base.Scale == 1) 3452 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1, 3453 /* IsScaledReg */ true); 3454 } 3455 3456 /// For ICmpZero, check to see if we can scale up the comparison. For example, x 3457 /// == y -> x*c == y*c. 3458 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, 3459 Formula Base) { 3460 if (LU.Kind != LSRUse::ICmpZero) return; 3461 3462 // Determine the integer type for the base formula. 3463 Type *IntTy = Base.getType(); 3464 if (!IntTy) return; 3465 if (SE.getTypeSizeInBits(IntTy) > 64) return; 3466 3467 // Don't do this if there is more than one offset. 3468 if (LU.MinOffset != LU.MaxOffset) return; 3469 3470 assert(!Base.BaseGV && "ICmpZero use is not legal!"); 3471 3472 // Check each interesting stride. 3473 for (int64_t Factor : Factors) { 3474 // Check that the multiplication doesn't overflow. 3475 if (Base.BaseOffset == INT64_MIN && Factor == -1) 3476 continue; 3477 int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor; 3478 if (NewBaseOffset / Factor != Base.BaseOffset) 3479 continue; 3480 // If the offset will be truncated at this use, check that it is in bounds. 3481 if (!IntTy->isPointerTy() && 3482 !ConstantInt::isValueValidForType(IntTy, NewBaseOffset)) 3483 continue; 3484 3485 // Check that multiplying with the use offset doesn't overflow. 3486 int64_t Offset = LU.MinOffset; 3487 if (Offset == INT64_MIN && Factor == -1) 3488 continue; 3489 Offset = (uint64_t)Offset * Factor; 3490 if (Offset / Factor != LU.MinOffset) 3491 continue; 3492 // If the offset will be truncated at this use, check that it is in bounds. 3493 if (!IntTy->isPointerTy() && 3494 !ConstantInt::isValueValidForType(IntTy, Offset)) 3495 continue; 3496 3497 Formula F = Base; 3498 F.BaseOffset = NewBaseOffset; 3499 3500 // Check that this scale is legal. 3501 if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F)) 3502 continue; 3503 3504 // Compensate for the use having MinOffset built into it. 3505 F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset; 3506 3507 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3508 3509 // Check that multiplying with each base register doesn't overflow. 3510 for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) { 3511 F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS); 3512 if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i]) 3513 goto next; 3514 } 3515 3516 // Check that multiplying with the scaled register doesn't overflow. 3517 if (F.ScaledReg) { 3518 F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS); 3519 if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg) 3520 continue; 3521 } 3522 3523 // Check that multiplying with the unfolded offset doesn't overflow. 3524 if (F.UnfoldedOffset != 0) { 3525 if (F.UnfoldedOffset == INT64_MIN && Factor == -1) 3526 continue; 3527 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor; 3528 if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset) 3529 continue; 3530 // If the offset will be truncated, check that it is in bounds. 3531 if (!IntTy->isPointerTy() && 3532 !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset)) 3533 continue; 3534 } 3535 3536 // If we make it here and it's legal, add it. 3537 (void)InsertFormula(LU, LUIdx, F); 3538 next:; 3539 } 3540 } 3541 3542 /// Generate stride factor reuse formulae by making use of scaled-offset address 3543 /// modes, for example. 3544 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) { 3545 // Determine the integer type for the base formula. 3546 Type *IntTy = Base.getType(); 3547 if (!IntTy) return; 3548 3549 // If this Formula already has a scaled register, we can't add another one. 3550 // Try to unscale the formula to generate a better scale. 3551 if (Base.Scale != 0 && !Base.unscale()) 3552 return; 3553 3554 assert(Base.Scale == 0 && "unscale did not did its job!"); 3555 3556 // Check each interesting stride. 3557 for (int64_t Factor : Factors) { 3558 Base.Scale = Factor; 3559 Base.HasBaseReg = Base.BaseRegs.size() > 1; 3560 // Check whether this scale is going to be legal. 3561 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 3562 Base)) { 3563 // As a special-case, handle special out-of-loop Basic users specially. 3564 // TODO: Reconsider this special case. 3565 if (LU.Kind == LSRUse::Basic && 3566 isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special, 3567 LU.AccessTy, Base) && 3568 LU.AllFixupsOutsideLoop) 3569 LU.Kind = LSRUse::Special; 3570 else 3571 continue; 3572 } 3573 // For an ICmpZero, negating a solitary base register won't lead to 3574 // new solutions. 3575 if (LU.Kind == LSRUse::ICmpZero && 3576 !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV) 3577 continue; 3578 // For each addrec base reg, apply the scale, if possible. 3579 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3580 if (const SCEVAddRecExpr *AR = 3581 dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i])) { 3582 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3583 if (FactorS->isZero()) 3584 continue; 3585 // Divide out the factor, ignoring high bits, since we'll be 3586 // scaling the value back up in the end. 3587 if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) { 3588 // TODO: This could be optimized to avoid all the copying. 3589 Formula F = Base; 3590 F.ScaledReg = Quotient; 3591 F.deleteBaseReg(F.BaseRegs[i]); 3592 // The canonical representation of 1*reg is reg, which is already in 3593 // Base. In that case, do not try to insert the formula, it will be 3594 // rejected anyway. 3595 if (F.Scale == 1 && F.BaseRegs.empty()) 3596 continue; 3597 (void)InsertFormula(LU, LUIdx, F); 3598 } 3599 } 3600 } 3601 } 3602 3603 /// Generate reuse formulae from different IV types. 3604 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) { 3605 // Don't bother truncating symbolic values. 3606 if (Base.BaseGV) return; 3607 3608 // Determine the integer type for the base formula. 3609 Type *DstTy = Base.getType(); 3610 if (!DstTy) return; 3611 DstTy = SE.getEffectiveSCEVType(DstTy); 3612 3613 for (Type *SrcTy : Types) { 3614 if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) { 3615 Formula F = Base; 3616 3617 if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy); 3618 for (const SCEV *&BaseReg : F.BaseRegs) 3619 BaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy); 3620 3621 // TODO: This assumes we've done basic processing on all uses and 3622 // have an idea what the register usage is. 3623 if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses)) 3624 continue; 3625 3626 (void)InsertFormula(LU, LUIdx, F); 3627 } 3628 } 3629 } 3630 3631 namespace { 3632 3633 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer 3634 /// modifications so that the search phase doesn't have to worry about the data 3635 /// structures moving underneath it. 3636 struct WorkItem { 3637 size_t LUIdx; 3638 int64_t Imm; 3639 const SCEV *OrigReg; 3640 3641 WorkItem(size_t LI, int64_t I, const SCEV *R) 3642 : LUIdx(LI), Imm(I), OrigReg(R) {} 3643 3644 void print(raw_ostream &OS) const; 3645 void dump() const; 3646 }; 3647 3648 } 3649 3650 void WorkItem::print(raw_ostream &OS) const { 3651 OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx 3652 << " , add offset " << Imm; 3653 } 3654 3655 LLVM_DUMP_METHOD 3656 void WorkItem::dump() const { 3657 print(errs()); errs() << '\n'; 3658 } 3659 3660 /// Look for registers which are a constant distance apart and try to form reuse 3661 /// opportunities between them. 3662 void LSRInstance::GenerateCrossUseConstantOffsets() { 3663 // Group the registers by their value without any added constant offset. 3664 typedef std::map<int64_t, const SCEV *> ImmMapTy; 3665 DenseMap<const SCEV *, ImmMapTy> Map; 3666 DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap; 3667 SmallVector<const SCEV *, 8> Sequence; 3668 for (const SCEV *Use : RegUses) { 3669 const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify. 3670 int64_t Imm = ExtractImmediate(Reg, SE); 3671 auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy())); 3672 if (Pair.second) 3673 Sequence.push_back(Reg); 3674 Pair.first->second.insert(std::make_pair(Imm, Use)); 3675 UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use); 3676 } 3677 3678 // Now examine each set of registers with the same base value. Build up 3679 // a list of work to do and do the work in a separate step so that we're 3680 // not adding formulae and register counts while we're searching. 3681 SmallVector<WorkItem, 32> WorkItems; 3682 SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems; 3683 for (const SCEV *Reg : Sequence) { 3684 const ImmMapTy &Imms = Map.find(Reg)->second; 3685 3686 // It's not worthwhile looking for reuse if there's only one offset. 3687 if (Imms.size() == 1) 3688 continue; 3689 3690 DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':'; 3691 for (const auto &Entry : Imms) 3692 dbgs() << ' ' << Entry.first; 3693 dbgs() << '\n'); 3694 3695 // Examine each offset. 3696 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); 3697 J != JE; ++J) { 3698 const SCEV *OrigReg = J->second; 3699 3700 int64_t JImm = J->first; 3701 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg); 3702 3703 if (!isa<SCEVConstant>(OrigReg) && 3704 UsedByIndicesMap[Reg].count() == 1) { 3705 DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n'); 3706 continue; 3707 } 3708 3709 // Conservatively examine offsets between this orig reg a few selected 3710 // other orig regs. 3711 ImmMapTy::const_iterator OtherImms[] = { 3712 Imms.begin(), std::prev(Imms.end()), 3713 Imms.lower_bound((Imms.begin()->first + std::prev(Imms.end())->first) / 3714 2) 3715 }; 3716 for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) { 3717 ImmMapTy::const_iterator M = OtherImms[i]; 3718 if (M == J || M == JE) continue; 3719 3720 // Compute the difference between the two. 3721 int64_t Imm = (uint64_t)JImm - M->first; 3722 for (int LUIdx = UsedByIndices.find_first(); LUIdx != -1; 3723 LUIdx = UsedByIndices.find_next(LUIdx)) 3724 // Make a memo of this use, offset, and register tuple. 3725 if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second) 3726 WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg)); 3727 } 3728 } 3729 } 3730 3731 Map.clear(); 3732 Sequence.clear(); 3733 UsedByIndicesMap.clear(); 3734 UniqueItems.clear(); 3735 3736 // Now iterate through the worklist and add new formulae. 3737 for (const WorkItem &WI : WorkItems) { 3738 size_t LUIdx = WI.LUIdx; 3739 LSRUse &LU = Uses[LUIdx]; 3740 int64_t Imm = WI.Imm; 3741 const SCEV *OrigReg = WI.OrigReg; 3742 3743 Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType()); 3744 const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm)); 3745 unsigned BitWidth = SE.getTypeSizeInBits(IntTy); 3746 3747 // TODO: Use a more targeted data structure. 3748 for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) { 3749 Formula F = LU.Formulae[L]; 3750 // FIXME: The code for the scaled and unscaled registers looks 3751 // very similar but slightly different. Investigate if they 3752 // could be merged. That way, we would not have to unscale the 3753 // Formula. 3754 F.unscale(); 3755 // Use the immediate in the scaled register. 3756 if (F.ScaledReg == OrigReg) { 3757 int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale; 3758 // Don't create 50 + reg(-50). 3759 if (F.referencesReg(SE.getSCEV( 3760 ConstantInt::get(IntTy, -(uint64_t)Offset)))) 3761 continue; 3762 Formula NewF = F; 3763 NewF.BaseOffset = Offset; 3764 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 3765 NewF)) 3766 continue; 3767 NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg); 3768 3769 // If the new scale is a constant in a register, and adding the constant 3770 // value to the immediate would produce a value closer to zero than the 3771 // immediate itself, then the formula isn't worthwhile. 3772 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg)) 3773 if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) && 3774 (C->getAPInt().abs() * APInt(BitWidth, F.Scale)) 3775 .ule(std::abs(NewF.BaseOffset))) 3776 continue; 3777 3778 // OK, looks good. 3779 NewF.canonicalize(); 3780 (void)InsertFormula(LU, LUIdx, NewF); 3781 } else { 3782 // Use the immediate in a base register. 3783 for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) { 3784 const SCEV *BaseReg = F.BaseRegs[N]; 3785 if (BaseReg != OrigReg) 3786 continue; 3787 Formula NewF = F; 3788 NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm; 3789 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, 3790 LU.Kind, LU.AccessTy, NewF)) { 3791 if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm)) 3792 continue; 3793 NewF = F; 3794 NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm; 3795 } 3796 NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg); 3797 3798 // If the new formula has a constant in a register, and adding the 3799 // constant value to the immediate would produce a value closer to 3800 // zero than the immediate itself, then the formula isn't worthwhile. 3801 for (const SCEV *NewReg : NewF.BaseRegs) 3802 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg)) 3803 if ((C->getAPInt() + NewF.BaseOffset) 3804 .abs() 3805 .slt(std::abs(NewF.BaseOffset)) && 3806 (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >= 3807 countTrailingZeros<uint64_t>(NewF.BaseOffset)) 3808 goto skip_formula; 3809 3810 // Ok, looks good. 3811 NewF.canonicalize(); 3812 (void)InsertFormula(LU, LUIdx, NewF); 3813 break; 3814 skip_formula:; 3815 } 3816 } 3817 } 3818 } 3819 } 3820 3821 /// Generate formulae for each use. 3822 void 3823 LSRInstance::GenerateAllReuseFormulae() { 3824 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan 3825 // queries are more precise. 3826 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3827 LSRUse &LU = Uses[LUIdx]; 3828 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3829 GenerateReassociations(LU, LUIdx, LU.Formulae[i]); 3830 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3831 GenerateCombinations(LU, LUIdx, LU.Formulae[i]); 3832 } 3833 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3834 LSRUse &LU = Uses[LUIdx]; 3835 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3836 GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]); 3837 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3838 GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]); 3839 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3840 GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]); 3841 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3842 GenerateScales(LU, LUIdx, LU.Formulae[i]); 3843 } 3844 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3845 LSRUse &LU = Uses[LUIdx]; 3846 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3847 GenerateTruncates(LU, LUIdx, LU.Formulae[i]); 3848 } 3849 3850 GenerateCrossUseConstantOffsets(); 3851 3852 DEBUG(dbgs() << "\n" 3853 "After generating reuse formulae:\n"; 3854 print_uses(dbgs())); 3855 } 3856 3857 /// If there are multiple formulae with the same set of registers used 3858 /// by other uses, pick the best one and delete the others. 3859 void LSRInstance::FilterOutUndesirableDedicatedRegisters() { 3860 DenseSet<const SCEV *> VisitedRegs; 3861 SmallPtrSet<const SCEV *, 16> Regs; 3862 SmallPtrSet<const SCEV *, 16> LoserRegs; 3863 #ifndef NDEBUG 3864 bool ChangedFormulae = false; 3865 #endif 3866 3867 // Collect the best formula for each unique set of shared registers. This 3868 // is reset for each use. 3869 typedef DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo> 3870 BestFormulaeTy; 3871 BestFormulaeTy BestFormulae; 3872 3873 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3874 LSRUse &LU = Uses[LUIdx]; 3875 DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n'); 3876 3877 bool Any = false; 3878 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); 3879 FIdx != NumForms; ++FIdx) { 3880 Formula &F = LU.Formulae[FIdx]; 3881 3882 // Some formulas are instant losers. For example, they may depend on 3883 // nonexistent AddRecs from other loops. These need to be filtered 3884 // immediately, otherwise heuristics could choose them over others leading 3885 // to an unsatisfactory solution. Passing LoserRegs into RateFormula here 3886 // avoids the need to recompute this information across formulae using the 3887 // same bad AddRec. Passing LoserRegs is also essential unless we remove 3888 // the corresponding bad register from the Regs set. 3889 Cost CostF; 3890 Regs.clear(); 3891 CostF.RateFormula(TTI, F, Regs, VisitedRegs, L, SE, DT, LU, &LoserRegs); 3892 if (CostF.isLoser()) { 3893 // During initial formula generation, undesirable formulae are generated 3894 // by uses within other loops that have some non-trivial address mode or 3895 // use the postinc form of the IV. LSR needs to provide these formulae 3896 // as the basis of rediscovering the desired formula that uses an AddRec 3897 // corresponding to the existing phi. Once all formulae have been 3898 // generated, these initial losers may be pruned. 3899 DEBUG(dbgs() << " Filtering loser "; F.print(dbgs()); 3900 dbgs() << "\n"); 3901 } 3902 else { 3903 SmallVector<const SCEV *, 4> Key; 3904 for (const SCEV *Reg : F.BaseRegs) { 3905 if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx)) 3906 Key.push_back(Reg); 3907 } 3908 if (F.ScaledReg && 3909 RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx)) 3910 Key.push_back(F.ScaledReg); 3911 // Unstable sort by host order ok, because this is only used for 3912 // uniquifying. 3913 std::sort(Key.begin(), Key.end()); 3914 3915 std::pair<BestFormulaeTy::const_iterator, bool> P = 3916 BestFormulae.insert(std::make_pair(Key, FIdx)); 3917 if (P.second) 3918 continue; 3919 3920 Formula &Best = LU.Formulae[P.first->second]; 3921 3922 Cost CostBest; 3923 Regs.clear(); 3924 CostBest.RateFormula(TTI, Best, Regs, VisitedRegs, L, SE, DT, LU); 3925 if (CostF < CostBest) 3926 std::swap(F, Best); 3927 DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 3928 dbgs() << "\n" 3929 " in favor of formula "; Best.print(dbgs()); 3930 dbgs() << '\n'); 3931 } 3932 #ifndef NDEBUG 3933 ChangedFormulae = true; 3934 #endif 3935 LU.DeleteFormula(F); 3936 --FIdx; 3937 --NumForms; 3938 Any = true; 3939 } 3940 3941 // Now that we've filtered out some formulae, recompute the Regs set. 3942 if (Any) 3943 LU.RecomputeRegs(LUIdx, RegUses); 3944 3945 // Reset this to prepare for the next use. 3946 BestFormulae.clear(); 3947 } 3948 3949 DEBUG(if (ChangedFormulae) { 3950 dbgs() << "\n" 3951 "After filtering out undesirable candidates:\n"; 3952 print_uses(dbgs()); 3953 }); 3954 } 3955 3956 // This is a rough guess that seems to work fairly well. 3957 static const size_t ComplexityLimit = UINT16_MAX; 3958 3959 /// Estimate the worst-case number of solutions the solver might have to 3960 /// consider. It almost never considers this many solutions because it prune the 3961 /// search space, but the pruning isn't always sufficient. 3962 size_t LSRInstance::EstimateSearchSpaceComplexity() const { 3963 size_t Power = 1; 3964 for (const LSRUse &LU : Uses) { 3965 size_t FSize = LU.Formulae.size(); 3966 if (FSize >= ComplexityLimit) { 3967 Power = ComplexityLimit; 3968 break; 3969 } 3970 Power *= FSize; 3971 if (Power >= ComplexityLimit) 3972 break; 3973 } 3974 return Power; 3975 } 3976 3977 /// When one formula uses a superset of the registers of another formula, it 3978 /// won't help reduce register pressure (though it may not necessarily hurt 3979 /// register pressure); remove it to simplify the system. 3980 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() { 3981 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 3982 DEBUG(dbgs() << "The search space is too complex.\n"); 3983 3984 DEBUG(dbgs() << "Narrowing the search space by eliminating formulae " 3985 "which use a superset of registers used by other " 3986 "formulae.\n"); 3987 3988 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3989 LSRUse &LU = Uses[LUIdx]; 3990 bool Any = false; 3991 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 3992 Formula &F = LU.Formulae[i]; 3993 // Look for a formula with a constant or GV in a register. If the use 3994 // also has a formula with that same value in an immediate field, 3995 // delete the one that uses a register. 3996 for (SmallVectorImpl<const SCEV *>::const_iterator 3997 I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) { 3998 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) { 3999 Formula NewF = F; 4000 NewF.BaseOffset += C->getValue()->getSExtValue(); 4001 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4002 (I - F.BaseRegs.begin())); 4003 if (LU.HasFormulaWithSameRegs(NewF)) { 4004 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4005 LU.DeleteFormula(F); 4006 --i; 4007 --e; 4008 Any = true; 4009 break; 4010 } 4011 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) { 4012 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) 4013 if (!F.BaseGV) { 4014 Formula NewF = F; 4015 NewF.BaseGV = GV; 4016 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4017 (I - F.BaseRegs.begin())); 4018 if (LU.HasFormulaWithSameRegs(NewF)) { 4019 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4020 dbgs() << '\n'); 4021 LU.DeleteFormula(F); 4022 --i; 4023 --e; 4024 Any = true; 4025 break; 4026 } 4027 } 4028 } 4029 } 4030 } 4031 if (Any) 4032 LU.RecomputeRegs(LUIdx, RegUses); 4033 } 4034 4035 DEBUG(dbgs() << "After pre-selection:\n"; 4036 print_uses(dbgs())); 4037 } 4038 } 4039 4040 /// When there are many registers for expressions like A, A+1, A+2, etc., 4041 /// allocate a single register for them. 4042 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() { 4043 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4044 return; 4045 4046 DEBUG(dbgs() << "The search space is too complex.\n" 4047 "Narrowing the search space by assuming that uses separated " 4048 "by a constant offset will use the same registers.\n"); 4049 4050 // This is especially useful for unrolled loops. 4051 4052 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4053 LSRUse &LU = Uses[LUIdx]; 4054 for (const Formula &F : LU.Formulae) { 4055 if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1)) 4056 continue; 4057 4058 LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU); 4059 if (!LUThatHas) 4060 continue; 4061 4062 if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false, 4063 LU.Kind, LU.AccessTy)) 4064 continue; 4065 4066 DEBUG(dbgs() << " Deleting use "; LU.print(dbgs()); dbgs() << '\n'); 4067 4068 LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop; 4069 4070 // Transfer the fixups of LU to LUThatHas. 4071 for (LSRFixup &Fixup : LU.Fixups) { 4072 Fixup.Offset += F.BaseOffset; 4073 LUThatHas->pushFixup(Fixup); 4074 DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n'); 4075 } 4076 4077 // Delete formulae from the new use which are no longer legal. 4078 bool Any = false; 4079 for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) { 4080 Formula &F = LUThatHas->Formulae[i]; 4081 if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset, 4082 LUThatHas->Kind, LUThatHas->AccessTy, F)) { 4083 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4084 dbgs() << '\n'); 4085 LUThatHas->DeleteFormula(F); 4086 --i; 4087 --e; 4088 Any = true; 4089 } 4090 } 4091 4092 if (Any) 4093 LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses); 4094 4095 // Delete the old use. 4096 DeleteUse(LU, LUIdx); 4097 --LUIdx; 4098 --NumUses; 4099 break; 4100 } 4101 } 4102 4103 DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4104 } 4105 4106 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that 4107 /// we've done more filtering, as it may be able to find more formulae to 4108 /// eliminate. 4109 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){ 4110 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4111 DEBUG(dbgs() << "The search space is too complex.\n"); 4112 4113 DEBUG(dbgs() << "Narrowing the search space by re-filtering out " 4114 "undesirable dedicated registers.\n"); 4115 4116 FilterOutUndesirableDedicatedRegisters(); 4117 4118 DEBUG(dbgs() << "After pre-selection:\n"; 4119 print_uses(dbgs())); 4120 } 4121 } 4122 4123 /// Pick a register which seems likely to be profitable, and then in any use 4124 /// which has any reference to that register, delete all formulae which do not 4125 /// reference that register. 4126 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() { 4127 // With all other options exhausted, loop until the system is simple 4128 // enough to handle. 4129 SmallPtrSet<const SCEV *, 4> Taken; 4130 while (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4131 // Ok, we have too many of formulae on our hands to conveniently handle. 4132 // Use a rough heuristic to thin out the list. 4133 DEBUG(dbgs() << "The search space is too complex.\n"); 4134 4135 // Pick the register which is used by the most LSRUses, which is likely 4136 // to be a good reuse register candidate. 4137 const SCEV *Best = nullptr; 4138 unsigned BestNum = 0; 4139 for (const SCEV *Reg : RegUses) { 4140 if (Taken.count(Reg)) 4141 continue; 4142 if (!Best) 4143 Best = Reg; 4144 else { 4145 unsigned Count = RegUses.getUsedByIndices(Reg).count(); 4146 if (Count > BestNum) { 4147 Best = Reg; 4148 BestNum = Count; 4149 } 4150 } 4151 } 4152 4153 DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best 4154 << " will yield profitable reuse.\n"); 4155 Taken.insert(Best); 4156 4157 // In any use with formulae which references this register, delete formulae 4158 // which don't reference it. 4159 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4160 LSRUse &LU = Uses[LUIdx]; 4161 if (!LU.Regs.count(Best)) continue; 4162 4163 bool Any = false; 4164 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4165 Formula &F = LU.Formulae[i]; 4166 if (!F.referencesReg(Best)) { 4167 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4168 LU.DeleteFormula(F); 4169 --e; 4170 --i; 4171 Any = true; 4172 assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?"); 4173 continue; 4174 } 4175 } 4176 4177 if (Any) 4178 LU.RecomputeRegs(LUIdx, RegUses); 4179 } 4180 4181 DEBUG(dbgs() << "After pre-selection:\n"; 4182 print_uses(dbgs())); 4183 } 4184 } 4185 4186 /// If there are an extraordinary number of formulae to choose from, use some 4187 /// rough heuristics to prune down the number of formulae. This keeps the main 4188 /// solver from taking an extraordinary amount of time in some worst-case 4189 /// scenarios. 4190 void LSRInstance::NarrowSearchSpaceUsingHeuristics() { 4191 NarrowSearchSpaceByDetectingSupersets(); 4192 NarrowSearchSpaceByCollapsingUnrolledCode(); 4193 NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 4194 NarrowSearchSpaceByPickingWinnerRegs(); 4195 } 4196 4197 /// This is the recursive solver. 4198 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 4199 Cost &SolutionCost, 4200 SmallVectorImpl<const Formula *> &Workspace, 4201 const Cost &CurCost, 4202 const SmallPtrSet<const SCEV *, 16> &CurRegs, 4203 DenseSet<const SCEV *> &VisitedRegs) const { 4204 // Some ideas: 4205 // - prune more: 4206 // - use more aggressive filtering 4207 // - sort the formula so that the most profitable solutions are found first 4208 // - sort the uses too 4209 // - search faster: 4210 // - don't compute a cost, and then compare. compare while computing a cost 4211 // and bail early. 4212 // - track register sets with SmallBitVector 4213 4214 const LSRUse &LU = Uses[Workspace.size()]; 4215 4216 // If this use references any register that's already a part of the 4217 // in-progress solution, consider it a requirement that a formula must 4218 // reference that register in order to be considered. This prunes out 4219 // unprofitable searching. 4220 SmallSetVector<const SCEV *, 4> ReqRegs; 4221 for (const SCEV *S : CurRegs) 4222 if (LU.Regs.count(S)) 4223 ReqRegs.insert(S); 4224 4225 SmallPtrSet<const SCEV *, 16> NewRegs; 4226 Cost NewCost; 4227 for (const Formula &F : LU.Formulae) { 4228 // Ignore formulae which may not be ideal in terms of register reuse of 4229 // ReqRegs. The formula should use all required registers before 4230 // introducing new ones. 4231 int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size()); 4232 for (const SCEV *Reg : ReqRegs) { 4233 if ((F.ScaledReg && F.ScaledReg == Reg) || 4234 is_contained(F.BaseRegs, Reg)) { 4235 --NumReqRegsToFind; 4236 if (NumReqRegsToFind == 0) 4237 break; 4238 } 4239 } 4240 if (NumReqRegsToFind != 0) { 4241 // If none of the formulae satisfied the required registers, then we could 4242 // clear ReqRegs and try again. Currently, we simply give up in this case. 4243 continue; 4244 } 4245 4246 // Evaluate the cost of the current formula. If it's already worse than 4247 // the current best, prune the search at that point. 4248 NewCost = CurCost; 4249 NewRegs = CurRegs; 4250 NewCost.RateFormula(TTI, F, NewRegs, VisitedRegs, L, SE, DT, LU); 4251 if (NewCost < SolutionCost) { 4252 Workspace.push_back(&F); 4253 if (Workspace.size() != Uses.size()) { 4254 SolveRecurse(Solution, SolutionCost, Workspace, NewCost, 4255 NewRegs, VisitedRegs); 4256 if (F.getNumRegs() == 1 && Workspace.size() == 1) 4257 VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]); 4258 } else { 4259 DEBUG(dbgs() << "New best at "; NewCost.print(dbgs()); 4260 dbgs() << ".\n Regs:"; 4261 for (const SCEV *S : NewRegs) 4262 dbgs() << ' ' << *S; 4263 dbgs() << '\n'); 4264 4265 SolutionCost = NewCost; 4266 Solution = Workspace; 4267 } 4268 Workspace.pop_back(); 4269 } 4270 } 4271 } 4272 4273 /// Choose one formula from each use. Return the results in the given Solution 4274 /// vector. 4275 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const { 4276 SmallVector<const Formula *, 8> Workspace; 4277 Cost SolutionCost; 4278 SolutionCost.Lose(); 4279 Cost CurCost; 4280 SmallPtrSet<const SCEV *, 16> CurRegs; 4281 DenseSet<const SCEV *> VisitedRegs; 4282 Workspace.reserve(Uses.size()); 4283 4284 // SolveRecurse does all the work. 4285 SolveRecurse(Solution, SolutionCost, Workspace, CurCost, 4286 CurRegs, VisitedRegs); 4287 if (Solution.empty()) { 4288 DEBUG(dbgs() << "\nNo Satisfactory Solution\n"); 4289 return; 4290 } 4291 4292 // Ok, we've now made all our decisions. 4293 DEBUG(dbgs() << "\n" 4294 "The chosen solution requires "; SolutionCost.print(dbgs()); 4295 dbgs() << ":\n"; 4296 for (size_t i = 0, e = Uses.size(); i != e; ++i) { 4297 dbgs() << " "; 4298 Uses[i].print(dbgs()); 4299 dbgs() << "\n" 4300 " "; 4301 Solution[i]->print(dbgs()); 4302 dbgs() << '\n'; 4303 }); 4304 4305 assert(Solution.size() == Uses.size() && "Malformed solution!"); 4306 } 4307 4308 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as 4309 /// we can go while still being dominated by the input positions. This helps 4310 /// canonicalize the insert position, which encourages sharing. 4311 BasicBlock::iterator 4312 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP, 4313 const SmallVectorImpl<Instruction *> &Inputs) 4314 const { 4315 Instruction *Tentative = &*IP; 4316 for (;;) { 4317 bool AllDominate = true; 4318 Instruction *BetterPos = nullptr; 4319 // Don't bother attempting to insert before a catchswitch, their basic block 4320 // cannot have other non-PHI instructions. 4321 if (isa<CatchSwitchInst>(Tentative)) 4322 return IP; 4323 4324 for (Instruction *Inst : Inputs) { 4325 if (Inst == Tentative || !DT.dominates(Inst, Tentative)) { 4326 AllDominate = false; 4327 break; 4328 } 4329 // Attempt to find an insert position in the middle of the block, 4330 // instead of at the end, so that it can be used for other expansions. 4331 if (Tentative->getParent() == Inst->getParent() && 4332 (!BetterPos || !DT.dominates(Inst, BetterPos))) 4333 BetterPos = &*std::next(BasicBlock::iterator(Inst)); 4334 } 4335 if (!AllDominate) 4336 break; 4337 if (BetterPos) 4338 IP = BetterPos->getIterator(); 4339 else 4340 IP = Tentative->getIterator(); 4341 4342 const Loop *IPLoop = LI.getLoopFor(IP->getParent()); 4343 unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0; 4344 4345 BasicBlock *IDom; 4346 for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) { 4347 if (!Rung) return IP; 4348 Rung = Rung->getIDom(); 4349 if (!Rung) return IP; 4350 IDom = Rung->getBlock(); 4351 4352 // Don't climb into a loop though. 4353 const Loop *IDomLoop = LI.getLoopFor(IDom); 4354 unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0; 4355 if (IDomDepth <= IPLoopDepth && 4356 (IDomDepth != IPLoopDepth || IDomLoop == IPLoop)) 4357 break; 4358 } 4359 4360 Tentative = IDom->getTerminator(); 4361 } 4362 4363 return IP; 4364 } 4365 4366 /// Determine an input position which will be dominated by the operands and 4367 /// which will dominate the result. 4368 BasicBlock::iterator 4369 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP, 4370 const LSRFixup &LF, 4371 const LSRUse &LU, 4372 SCEVExpander &Rewriter) const { 4373 // Collect some instructions which must be dominated by the 4374 // expanding replacement. These must be dominated by any operands that 4375 // will be required in the expansion. 4376 SmallVector<Instruction *, 4> Inputs; 4377 if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace)) 4378 Inputs.push_back(I); 4379 if (LU.Kind == LSRUse::ICmpZero) 4380 if (Instruction *I = 4381 dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1))) 4382 Inputs.push_back(I); 4383 if (LF.PostIncLoops.count(L)) { 4384 if (LF.isUseFullyOutsideLoop(L)) 4385 Inputs.push_back(L->getLoopLatch()->getTerminator()); 4386 else 4387 Inputs.push_back(IVIncInsertPos); 4388 } 4389 // The expansion must also be dominated by the increment positions of any 4390 // loops it for which it is using post-inc mode. 4391 for (const Loop *PIL : LF.PostIncLoops) { 4392 if (PIL == L) continue; 4393 4394 // Be dominated by the loop exit. 4395 SmallVector<BasicBlock *, 4> ExitingBlocks; 4396 PIL->getExitingBlocks(ExitingBlocks); 4397 if (!ExitingBlocks.empty()) { 4398 BasicBlock *BB = ExitingBlocks[0]; 4399 for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i) 4400 BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]); 4401 Inputs.push_back(BB->getTerminator()); 4402 } 4403 } 4404 4405 assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad() 4406 && !isa<DbgInfoIntrinsic>(LowestIP) && 4407 "Insertion point must be a normal instruction"); 4408 4409 // Then, climb up the immediate dominator tree as far as we can go while 4410 // still being dominated by the input positions. 4411 BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs); 4412 4413 // Don't insert instructions before PHI nodes. 4414 while (isa<PHINode>(IP)) ++IP; 4415 4416 // Ignore landingpad instructions. 4417 while (IP->isEHPad()) ++IP; 4418 4419 // Ignore debug intrinsics. 4420 while (isa<DbgInfoIntrinsic>(IP)) ++IP; 4421 4422 // Set IP below instructions recently inserted by SCEVExpander. This keeps the 4423 // IP consistent across expansions and allows the previously inserted 4424 // instructions to be reused by subsequent expansion. 4425 while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP) 4426 ++IP; 4427 4428 return IP; 4429 } 4430 4431 /// Emit instructions for the leading candidate expression for this LSRUse (this 4432 /// is called "expanding"). 4433 Value *LSRInstance::Expand(const LSRUse &LU, 4434 const LSRFixup &LF, 4435 const Formula &F, 4436 BasicBlock::iterator IP, 4437 SCEVExpander &Rewriter, 4438 SmallVectorImpl<WeakVH> &DeadInsts) const { 4439 if (LU.RigidFormula) 4440 return LF.OperandValToReplace; 4441 4442 // Determine an input position which will be dominated by the operands and 4443 // which will dominate the result. 4444 IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter); 4445 Rewriter.setInsertPoint(&*IP); 4446 4447 // Inform the Rewriter if we have a post-increment use, so that it can 4448 // perform an advantageous expansion. 4449 Rewriter.setPostInc(LF.PostIncLoops); 4450 4451 // This is the type that the user actually needs. 4452 Type *OpTy = LF.OperandValToReplace->getType(); 4453 // This will be the type that we'll initially expand to. 4454 Type *Ty = F.getType(); 4455 if (!Ty) 4456 // No type known; just expand directly to the ultimate type. 4457 Ty = OpTy; 4458 else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy)) 4459 // Expand directly to the ultimate type if it's the right size. 4460 Ty = OpTy; 4461 // This is the type to do integer arithmetic in. 4462 Type *IntTy = SE.getEffectiveSCEVType(Ty); 4463 4464 // Build up a list of operands to add together to form the full base. 4465 SmallVector<const SCEV *, 8> Ops; 4466 4467 // Expand the BaseRegs portion. 4468 for (const SCEV *Reg : F.BaseRegs) { 4469 assert(!Reg->isZero() && "Zero allocated in a base register!"); 4470 4471 // If we're expanding for a post-inc user, make the post-inc adjustment. 4472 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 4473 Reg = TransformForPostIncUse(Denormalize, Reg, 4474 LF.UserInst, LF.OperandValToReplace, 4475 Loops, SE, DT); 4476 4477 Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr))); 4478 } 4479 4480 // Expand the ScaledReg portion. 4481 Value *ICmpScaledV = nullptr; 4482 if (F.Scale != 0) { 4483 const SCEV *ScaledS = F.ScaledReg; 4484 4485 // If we're expanding for a post-inc user, make the post-inc adjustment. 4486 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 4487 ScaledS = TransformForPostIncUse(Denormalize, ScaledS, 4488 LF.UserInst, LF.OperandValToReplace, 4489 Loops, SE, DT); 4490 4491 if (LU.Kind == LSRUse::ICmpZero) { 4492 // Expand ScaleReg as if it was part of the base regs. 4493 if (F.Scale == 1) 4494 Ops.push_back( 4495 SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr))); 4496 else { 4497 // An interesting way of "folding" with an icmp is to use a negated 4498 // scale, which we'll implement by inserting it into the other operand 4499 // of the icmp. 4500 assert(F.Scale == -1 && 4501 "The only scale supported by ICmpZero uses is -1!"); 4502 ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr); 4503 } 4504 } else { 4505 // Otherwise just expand the scaled register and an explicit scale, 4506 // which is expected to be matched as part of the address. 4507 4508 // Flush the operand list to suppress SCEVExpander hoisting address modes. 4509 // Unless the addressing mode will not be folded. 4510 if (!Ops.empty() && LU.Kind == LSRUse::Address && 4511 isAMCompletelyFolded(TTI, LU, F)) { 4512 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 4513 Ops.clear(); 4514 Ops.push_back(SE.getUnknown(FullV)); 4515 } 4516 ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)); 4517 if (F.Scale != 1) 4518 ScaledS = 4519 SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale)); 4520 Ops.push_back(ScaledS); 4521 } 4522 } 4523 4524 // Expand the GV portion. 4525 if (F.BaseGV) { 4526 // Flush the operand list to suppress SCEVExpander hoisting. 4527 if (!Ops.empty()) { 4528 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 4529 Ops.clear(); 4530 Ops.push_back(SE.getUnknown(FullV)); 4531 } 4532 Ops.push_back(SE.getUnknown(F.BaseGV)); 4533 } 4534 4535 // Flush the operand list to suppress SCEVExpander hoisting of both folded and 4536 // unfolded offsets. LSR assumes they both live next to their uses. 4537 if (!Ops.empty()) { 4538 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 4539 Ops.clear(); 4540 Ops.push_back(SE.getUnknown(FullV)); 4541 } 4542 4543 // Expand the immediate portion. 4544 int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset; 4545 if (Offset != 0) { 4546 if (LU.Kind == LSRUse::ICmpZero) { 4547 // The other interesting way of "folding" with an ICmpZero is to use a 4548 // negated immediate. 4549 if (!ICmpScaledV) 4550 ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset); 4551 else { 4552 Ops.push_back(SE.getUnknown(ICmpScaledV)); 4553 ICmpScaledV = ConstantInt::get(IntTy, Offset); 4554 } 4555 } else { 4556 // Just add the immediate values. These again are expected to be matched 4557 // as part of the address. 4558 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset))); 4559 } 4560 } 4561 4562 // Expand the unfolded offset portion. 4563 int64_t UnfoldedOffset = F.UnfoldedOffset; 4564 if (UnfoldedOffset != 0) { 4565 // Just add the immediate values. 4566 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, 4567 UnfoldedOffset))); 4568 } 4569 4570 // Emit instructions summing all the operands. 4571 const SCEV *FullS = Ops.empty() ? 4572 SE.getConstant(IntTy, 0) : 4573 SE.getAddExpr(Ops); 4574 Value *FullV = Rewriter.expandCodeFor(FullS, Ty); 4575 4576 // We're done expanding now, so reset the rewriter. 4577 Rewriter.clearPostInc(); 4578 4579 // An ICmpZero Formula represents an ICmp which we're handling as a 4580 // comparison against zero. Now that we've expanded an expression for that 4581 // form, update the ICmp's other operand. 4582 if (LU.Kind == LSRUse::ICmpZero) { 4583 ICmpInst *CI = cast<ICmpInst>(LF.UserInst); 4584 DeadInsts.emplace_back(CI->getOperand(1)); 4585 assert(!F.BaseGV && "ICmp does not support folding a global value and " 4586 "a scale at the same time!"); 4587 if (F.Scale == -1) { 4588 if (ICmpScaledV->getType() != OpTy) { 4589 Instruction *Cast = 4590 CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false, 4591 OpTy, false), 4592 ICmpScaledV, OpTy, "tmp", CI); 4593 ICmpScaledV = Cast; 4594 } 4595 CI->setOperand(1, ICmpScaledV); 4596 } else { 4597 // A scale of 1 means that the scale has been expanded as part of the 4598 // base regs. 4599 assert((F.Scale == 0 || F.Scale == 1) && 4600 "ICmp does not support folding a global value and " 4601 "a scale at the same time!"); 4602 Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy), 4603 -(uint64_t)Offset); 4604 if (C->getType() != OpTy) 4605 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 4606 OpTy, false), 4607 C, OpTy); 4608 4609 CI->setOperand(1, C); 4610 } 4611 } 4612 4613 return FullV; 4614 } 4615 4616 /// Helper for Rewrite. PHI nodes are special because the use of their operands 4617 /// effectively happens in their predecessor blocks, so the expression may need 4618 /// to be expanded in multiple places. 4619 void LSRInstance::RewriteForPHI(PHINode *PN, 4620 const LSRUse &LU, 4621 const LSRFixup &LF, 4622 const Formula &F, 4623 SCEVExpander &Rewriter, 4624 SmallVectorImpl<WeakVH> &DeadInsts) const { 4625 DenseMap<BasicBlock *, Value *> Inserted; 4626 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 4627 if (PN->getIncomingValue(i) == LF.OperandValToReplace) { 4628 BasicBlock *BB = PN->getIncomingBlock(i); 4629 4630 // If this is a critical edge, split the edge so that we do not insert 4631 // the code on all predecessor/successor paths. We do this unless this 4632 // is the canonical backedge for this loop, which complicates post-inc 4633 // users. 4634 if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 && 4635 !isa<IndirectBrInst>(BB->getTerminator())) { 4636 BasicBlock *Parent = PN->getParent(); 4637 Loop *PNLoop = LI.getLoopFor(Parent); 4638 if (!PNLoop || Parent != PNLoop->getHeader()) { 4639 // Split the critical edge. 4640 BasicBlock *NewBB = nullptr; 4641 if (!Parent->isLandingPad()) { 4642 NewBB = SplitCriticalEdge(BB, Parent, 4643 CriticalEdgeSplittingOptions(&DT, &LI) 4644 .setMergeIdenticalEdges() 4645 .setDontDeleteUselessPHIs()); 4646 } else { 4647 SmallVector<BasicBlock*, 2> NewBBs; 4648 SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI); 4649 NewBB = NewBBs[0]; 4650 } 4651 // If NewBB==NULL, then SplitCriticalEdge refused to split because all 4652 // phi predecessors are identical. The simple thing to do is skip 4653 // splitting in this case rather than complicate the API. 4654 if (NewBB) { 4655 // If PN is outside of the loop and BB is in the loop, we want to 4656 // move the block to be immediately before the PHI block, not 4657 // immediately after BB. 4658 if (L->contains(BB) && !L->contains(PN)) 4659 NewBB->moveBefore(PN->getParent()); 4660 4661 // Splitting the edge can reduce the number of PHI entries we have. 4662 e = PN->getNumIncomingValues(); 4663 BB = NewBB; 4664 i = PN->getBasicBlockIndex(BB); 4665 } 4666 } 4667 } 4668 4669 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair = 4670 Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr))); 4671 if (!Pair.second) 4672 PN->setIncomingValue(i, Pair.first->second); 4673 else { 4674 Value *FullV = Expand(LU, LF, F, BB->getTerminator()->getIterator(), 4675 Rewriter, DeadInsts); 4676 4677 // If this is reuse-by-noop-cast, insert the noop cast. 4678 Type *OpTy = LF.OperandValToReplace->getType(); 4679 if (FullV->getType() != OpTy) 4680 FullV = 4681 CastInst::Create(CastInst::getCastOpcode(FullV, false, 4682 OpTy, false), 4683 FullV, LF.OperandValToReplace->getType(), 4684 "tmp", BB->getTerminator()); 4685 4686 PN->setIncomingValue(i, FullV); 4687 Pair.first->second = FullV; 4688 } 4689 } 4690 } 4691 4692 /// Emit instructions for the leading candidate expression for this LSRUse (this 4693 /// is called "expanding"), and update the UserInst to reference the newly 4694 /// expanded value. 4695 void LSRInstance::Rewrite(const LSRUse &LU, 4696 const LSRFixup &LF, 4697 const Formula &F, 4698 SCEVExpander &Rewriter, 4699 SmallVectorImpl<WeakVH> &DeadInsts) const { 4700 // First, find an insertion point that dominates UserInst. For PHI nodes, 4701 // find the nearest block which dominates all the relevant uses. 4702 if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) { 4703 RewriteForPHI(PN, LU, LF, F, Rewriter, DeadInsts); 4704 } else { 4705 Value *FullV = 4706 Expand(LU, LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts); 4707 4708 // If this is reuse-by-noop-cast, insert the noop cast. 4709 Type *OpTy = LF.OperandValToReplace->getType(); 4710 if (FullV->getType() != OpTy) { 4711 Instruction *Cast = 4712 CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false), 4713 FullV, OpTy, "tmp", LF.UserInst); 4714 FullV = Cast; 4715 } 4716 4717 // Update the user. ICmpZero is handled specially here (for now) because 4718 // Expand may have updated one of the operands of the icmp already, and 4719 // its new value may happen to be equal to LF.OperandValToReplace, in 4720 // which case doing replaceUsesOfWith leads to replacing both operands 4721 // with the same value. TODO: Reorganize this. 4722 if (LU.Kind == LSRUse::ICmpZero) 4723 LF.UserInst->setOperand(0, FullV); 4724 else 4725 LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV); 4726 } 4727 4728 DeadInsts.emplace_back(LF.OperandValToReplace); 4729 } 4730 4731 /// Rewrite all the fixup locations with new values, following the chosen 4732 /// solution. 4733 void LSRInstance::ImplementSolution( 4734 const SmallVectorImpl<const Formula *> &Solution) { 4735 // Keep track of instructions we may have made dead, so that 4736 // we can remove them after we are done working. 4737 SmallVector<WeakVH, 16> DeadInsts; 4738 4739 SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(), 4740 "lsr"); 4741 #ifndef NDEBUG 4742 Rewriter.setDebugType(DEBUG_TYPE); 4743 #endif 4744 Rewriter.disableCanonicalMode(); 4745 Rewriter.enableLSRMode(); 4746 Rewriter.setIVIncInsertPos(L, IVIncInsertPos); 4747 4748 // Mark phi nodes that terminate chains so the expander tries to reuse them. 4749 for (const IVChain &Chain : IVChainVec) { 4750 if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst())) 4751 Rewriter.setChainedPhi(PN); 4752 } 4753 4754 // Expand the new value definitions and update the users. 4755 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) 4756 for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) { 4757 Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], Rewriter, DeadInsts); 4758 Changed = true; 4759 } 4760 4761 for (const IVChain &Chain : IVChainVec) { 4762 GenerateIVChain(Chain, Rewriter, DeadInsts); 4763 Changed = true; 4764 } 4765 // Clean up after ourselves. This must be done before deleting any 4766 // instructions. 4767 Rewriter.clear(); 4768 4769 Changed |= DeleteTriviallyDeadInstructions(DeadInsts); 4770 } 4771 4772 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, 4773 DominatorTree &DT, LoopInfo &LI, 4774 const TargetTransformInfo &TTI) 4775 : IU(IU), SE(SE), DT(DT), LI(LI), TTI(TTI), L(L), Changed(false), 4776 IVIncInsertPos(nullptr) { 4777 // If LoopSimplify form is not available, stay out of trouble. 4778 if (!L->isLoopSimplifyForm()) 4779 return; 4780 4781 // If there's no interesting work to be done, bail early. 4782 if (IU.empty()) return; 4783 4784 // If there's too much analysis to be done, bail early. We won't be able to 4785 // model the problem anyway. 4786 unsigned NumUsers = 0; 4787 for (const IVStrideUse &U : IU) { 4788 if (++NumUsers > MaxIVUsers) { 4789 (void)U; 4790 DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U << "\n"); 4791 return; 4792 } 4793 // Bail out if we have a PHI on an EHPad that gets a value from a 4794 // CatchSwitchInst. Because the CatchSwitchInst cannot be split, there is 4795 // no good place to stick any instructions. 4796 if (auto *PN = dyn_cast<PHINode>(U.getUser())) { 4797 auto *FirstNonPHI = PN->getParent()->getFirstNonPHI(); 4798 if (isa<FuncletPadInst>(FirstNonPHI) || 4799 isa<CatchSwitchInst>(FirstNonPHI)) 4800 for (BasicBlock *PredBB : PN->blocks()) 4801 if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI())) 4802 return; 4803 } 4804 } 4805 4806 #ifndef NDEBUG 4807 // All dominating loops must have preheaders, or SCEVExpander may not be able 4808 // to materialize an AddRecExpr whose Start is an outer AddRecExpr. 4809 // 4810 // IVUsers analysis should only create users that are dominated by simple loop 4811 // headers. Since this loop should dominate all of its users, its user list 4812 // should be empty if this loop itself is not within a simple loop nest. 4813 for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader()); 4814 Rung; Rung = Rung->getIDom()) { 4815 BasicBlock *BB = Rung->getBlock(); 4816 const Loop *DomLoop = LI.getLoopFor(BB); 4817 if (DomLoop && DomLoop->getHeader() == BB) { 4818 assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest"); 4819 } 4820 } 4821 #endif // DEBUG 4822 4823 DEBUG(dbgs() << "\nLSR on loop "; 4824 L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false); 4825 dbgs() << ":\n"); 4826 4827 // First, perform some low-level loop optimizations. 4828 OptimizeShadowIV(); 4829 OptimizeLoopTermCond(); 4830 4831 // If loop preparation eliminates all interesting IV users, bail. 4832 if (IU.empty()) return; 4833 4834 // Skip nested loops until we can model them better with formulae. 4835 if (!L->empty()) { 4836 DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n"); 4837 return; 4838 } 4839 4840 // Start collecting data and preparing for the solver. 4841 CollectChains(); 4842 CollectInterestingTypesAndFactors(); 4843 CollectFixupsAndInitialFormulae(); 4844 CollectLoopInvariantFixupsAndFormulae(); 4845 4846 assert(!Uses.empty() && "IVUsers reported at least one use"); 4847 DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n"; 4848 print_uses(dbgs())); 4849 4850 // Now use the reuse data to generate a bunch of interesting ways 4851 // to formulate the values needed for the uses. 4852 GenerateAllReuseFormulae(); 4853 4854 FilterOutUndesirableDedicatedRegisters(); 4855 NarrowSearchSpaceUsingHeuristics(); 4856 4857 SmallVector<const Formula *, 8> Solution; 4858 Solve(Solution); 4859 4860 // Release memory that is no longer needed. 4861 Factors.clear(); 4862 Types.clear(); 4863 RegUses.clear(); 4864 4865 if (Solution.empty()) 4866 return; 4867 4868 #ifndef NDEBUG 4869 // Formulae should be legal. 4870 for (const LSRUse &LU : Uses) { 4871 for (const Formula &F : LU.Formulae) 4872 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 4873 F) && "Illegal formula generated!"); 4874 }; 4875 #endif 4876 4877 // Now that we've decided what we want, make it so. 4878 ImplementSolution(Solution); 4879 } 4880 4881 void LSRInstance::print_factors_and_types(raw_ostream &OS) const { 4882 if (Factors.empty() && Types.empty()) return; 4883 4884 OS << "LSR has identified the following interesting factors and types: "; 4885 bool First = true; 4886 4887 for (int64_t Factor : Factors) { 4888 if (!First) OS << ", "; 4889 First = false; 4890 OS << '*' << Factor; 4891 } 4892 4893 for (Type *Ty : Types) { 4894 if (!First) OS << ", "; 4895 First = false; 4896 OS << '(' << *Ty << ')'; 4897 } 4898 OS << '\n'; 4899 } 4900 4901 void LSRInstance::print_fixups(raw_ostream &OS) const { 4902 OS << "LSR is examining the following fixup sites:\n"; 4903 for (const LSRUse &LU : Uses) 4904 for (const LSRFixup &LF : LU.Fixups) { 4905 dbgs() << " "; 4906 LF.print(OS); 4907 OS << '\n'; 4908 } 4909 } 4910 4911 void LSRInstance::print_uses(raw_ostream &OS) const { 4912 OS << "LSR is examining the following uses:\n"; 4913 for (const LSRUse &LU : Uses) { 4914 dbgs() << " "; 4915 LU.print(OS); 4916 OS << '\n'; 4917 for (const Formula &F : LU.Formulae) { 4918 OS << " "; 4919 F.print(OS); 4920 OS << '\n'; 4921 } 4922 } 4923 } 4924 4925 void LSRInstance::print(raw_ostream &OS) const { 4926 print_factors_and_types(OS); 4927 print_fixups(OS); 4928 print_uses(OS); 4929 } 4930 4931 LLVM_DUMP_METHOD 4932 void LSRInstance::dump() const { 4933 print(errs()); errs() << '\n'; 4934 } 4935 4936 namespace { 4937 4938 class LoopStrengthReduce : public LoopPass { 4939 public: 4940 static char ID; // Pass ID, replacement for typeid 4941 LoopStrengthReduce(); 4942 4943 private: 4944 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 4945 void getAnalysisUsage(AnalysisUsage &AU) const override; 4946 }; 4947 } 4948 4949 char LoopStrengthReduce::ID = 0; 4950 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce", 4951 "Loop Strength Reduction", false, false) 4952 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 4953 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 4954 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 4955 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass) 4956 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 4957 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 4958 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce", 4959 "Loop Strength Reduction", false, false) 4960 4961 Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); } 4962 4963 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) { 4964 initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry()); 4965 } 4966 4967 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const { 4968 // We split critical edges, so we change the CFG. However, we do update 4969 // many analyses if they are around. 4970 AU.addPreservedID(LoopSimplifyID); 4971 4972 AU.addRequired<LoopInfoWrapperPass>(); 4973 AU.addPreserved<LoopInfoWrapperPass>(); 4974 AU.addRequiredID(LoopSimplifyID); 4975 AU.addRequired<DominatorTreeWrapperPass>(); 4976 AU.addPreserved<DominatorTreeWrapperPass>(); 4977 AU.addRequired<ScalarEvolutionWrapperPass>(); 4978 AU.addPreserved<ScalarEvolutionWrapperPass>(); 4979 // Requiring LoopSimplify a second time here prevents IVUsers from running 4980 // twice, since LoopSimplify was invalidated by running ScalarEvolution. 4981 AU.addRequiredID(LoopSimplifyID); 4982 AU.addRequired<IVUsersWrapperPass>(); 4983 AU.addPreserved<IVUsersWrapperPass>(); 4984 AU.addRequired<TargetTransformInfoWrapperPass>(); 4985 } 4986 4987 static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE, 4988 DominatorTree &DT, LoopInfo &LI, 4989 const TargetTransformInfo &TTI) { 4990 bool Changed = false; 4991 4992 // Run the main LSR transformation. 4993 Changed |= LSRInstance(L, IU, SE, DT, LI, TTI).getChanged(); 4994 4995 // Remove any extra phis created by processing inner loops. 4996 Changed |= DeleteDeadPHIs(L->getHeader()); 4997 if (EnablePhiElim && L->isLoopSimplifyForm()) { 4998 SmallVector<WeakVH, 16> DeadInsts; 4999 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 5000 SCEVExpander Rewriter(SE, DL, "lsr"); 5001 #ifndef NDEBUG 5002 Rewriter.setDebugType(DEBUG_TYPE); 5003 #endif 5004 unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI); 5005 if (numFolded) { 5006 Changed = true; 5007 DeleteTriviallyDeadInstructions(DeadInsts); 5008 DeleteDeadPHIs(L->getHeader()); 5009 } 5010 } 5011 return Changed; 5012 } 5013 5014 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) { 5015 if (skipLoop(L)) 5016 return false; 5017 5018 auto &IU = getAnalysis<IVUsersWrapperPass>().getIU(); 5019 auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 5020 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 5021 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 5022 const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI( 5023 *L->getHeader()->getParent()); 5024 return ReduceLoopStrength(L, IU, SE, DT, LI, TTI); 5025 } 5026 5027 PreservedAnalyses LoopStrengthReducePass::run(Loop &L, 5028 LoopAnalysisManager &AM) { 5029 const auto &FAM = 5030 AM.getResult<FunctionAnalysisManagerLoopProxy>(L).getManager(); 5031 Function *F = L.getHeader()->getParent(); 5032 5033 auto &IU = AM.getResult<IVUsersAnalysis>(L); 5034 auto *SE = FAM.getCachedResult<ScalarEvolutionAnalysis>(*F); 5035 auto *DT = FAM.getCachedResult<DominatorTreeAnalysis>(*F); 5036 auto *LI = FAM.getCachedResult<LoopAnalysis>(*F); 5037 auto *TTI = FAM.getCachedResult<TargetIRAnalysis>(*F); 5038 assert((SE && DT && LI && TTI) && 5039 "Analyses for Loop Strength Reduce not available"); 5040 5041 if (!ReduceLoopStrength(&L, IU, *SE, *DT, *LI, *TTI)) 5042 return PreservedAnalyses::all(); 5043 5044 return getLoopPassPreservedAnalyses(); 5045 } 5046