1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This transformation analyzes and transforms the induction variables (and
11 // computations derived from them) into forms suitable for efficient execution
12 // on the target.
13 //
14 // This pass performs a strength reduction on array references inside loops that
15 // have as one or more of their components the loop induction variable, it
16 // rewrites expressions to take advantage of scaled-index addressing modes
17 // available on the target, and it performs a variety of other optimizations
18 // related to loop induction variables.
19 //
20 // Terminology note: this code has a lot of handling for "post-increment" or
21 // "post-inc" users. This is not talking about post-increment addressing modes;
22 // it is instead talking about code like this:
23 //
24 //   %i = phi [ 0, %entry ], [ %i.next, %latch ]
25 //   ...
26 //   %i.next = add %i, 1
27 //   %c = icmp eq %i.next, %n
28 //
29 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
30 // it's useful to think about these as the same register, with some uses using
31 // the value of the register before the add and some using it after. In this
32 // example, the icmp is a post-increment user, since it uses %i.next, which is
33 // the value of the induction variable after the increment. The other common
34 // case of post-increment users is users outside the loop.
35 //
36 // TODO: More sophistication in the way Formulae are generated and filtered.
37 //
38 // TODO: Handle multiple loops at a time.
39 //
40 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead
41 //       of a GlobalValue?
42 //
43 // TODO: When truncation is free, truncate ICmp users' operands to make it a
44 //       smaller encoding (on x86 at least).
45 //
46 // TODO: When a negated register is used by an add (such as in a list of
47 //       multiple base registers, or as the increment expression in an addrec),
48 //       we may not actually need both reg and (-1 * reg) in registers; the
49 //       negation can be implemented by using a sub instead of an add. The
50 //       lack of support for taking this into consideration when making
51 //       register pressure decisions is partly worked around by the "Special"
52 //       use kind.
53 //
54 //===----------------------------------------------------------------------===//
55 
56 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h"
57 #include "llvm/ADT/DenseSet.h"
58 #include "llvm/ADT/Hashing.h"
59 #include "llvm/ADT/STLExtras.h"
60 #include "llvm/ADT/SetVector.h"
61 #include "llvm/ADT/SmallBitVector.h"
62 #include "llvm/Analysis/IVUsers.h"
63 #include "llvm/Analysis/LoopPass.h"
64 #include "llvm/Analysis/LoopPassManager.h"
65 #include "llvm/Analysis/ScalarEvolutionExpander.h"
66 #include "llvm/Analysis/TargetTransformInfo.h"
67 #include "llvm/IR/Constants.h"
68 #include "llvm/IR/DerivedTypes.h"
69 #include "llvm/IR/Dominators.h"
70 #include "llvm/IR/Instructions.h"
71 #include "llvm/IR/IntrinsicInst.h"
72 #include "llvm/IR/Module.h"
73 #include "llvm/IR/ValueHandle.h"
74 #include "llvm/Support/CommandLine.h"
75 #include "llvm/Support/Debug.h"
76 #include "llvm/Support/raw_ostream.h"
77 #include "llvm/Transforms/Scalar.h"
78 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
79 #include "llvm/Transforms/Utils/Local.h"
80 #include <algorithm>
81 using namespace llvm;
82 
83 #define DEBUG_TYPE "loop-reduce"
84 
85 /// MaxIVUsers is an arbitrary threshold that provides an early opportunitiy for
86 /// bail out. This threshold is far beyond the number of users that LSR can
87 /// conceivably solve, so it should not affect generated code, but catches the
88 /// worst cases before LSR burns too much compile time and stack space.
89 static const unsigned MaxIVUsers = 200;
90 
91 // Temporary flag to cleanup congruent phis after LSR phi expansion.
92 // It's currently disabled until we can determine whether it's truly useful or
93 // not. The flag should be removed after the v3.0 release.
94 // This is now needed for ivchains.
95 static cl::opt<bool> EnablePhiElim(
96   "enable-lsr-phielim", cl::Hidden, cl::init(true),
97   cl::desc("Enable LSR phi elimination"));
98 
99 #ifndef NDEBUG
100 // Stress test IV chain generation.
101 static cl::opt<bool> StressIVChain(
102   "stress-ivchain", cl::Hidden, cl::init(false),
103   cl::desc("Stress test LSR IV chains"));
104 #else
105 static bool StressIVChain = false;
106 #endif
107 
108 namespace {
109 
110 struct MemAccessTy {
111   /// Used in situations where the accessed memory type is unknown.
112   static const unsigned UnknownAddressSpace = ~0u;
113 
114   Type *MemTy;
115   unsigned AddrSpace;
116 
117   MemAccessTy() : MemTy(nullptr), AddrSpace(UnknownAddressSpace) {}
118 
119   MemAccessTy(Type *Ty, unsigned AS) :
120     MemTy(Ty), AddrSpace(AS) {}
121 
122   bool operator==(MemAccessTy Other) const {
123     return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace;
124   }
125 
126   bool operator!=(MemAccessTy Other) const { return !(*this == Other); }
127 
128   static MemAccessTy getUnknown(LLVMContext &Ctx) {
129     return MemAccessTy(Type::getVoidTy(Ctx), UnknownAddressSpace);
130   }
131 };
132 
133 /// This class holds data which is used to order reuse candidates.
134 class RegSortData {
135 public:
136   /// This represents the set of LSRUse indices which reference
137   /// a particular register.
138   SmallBitVector UsedByIndices;
139 
140   void print(raw_ostream &OS) const;
141   void dump() const;
142 };
143 
144 }
145 
146 void RegSortData::print(raw_ostream &OS) const {
147   OS << "[NumUses=" << UsedByIndices.count() << ']';
148 }
149 
150 LLVM_DUMP_METHOD
151 void RegSortData::dump() const {
152   print(errs()); errs() << '\n';
153 }
154 
155 namespace {
156 
157 /// Map register candidates to information about how they are used.
158 class RegUseTracker {
159   typedef DenseMap<const SCEV *, RegSortData> RegUsesTy;
160 
161   RegUsesTy RegUsesMap;
162   SmallVector<const SCEV *, 16> RegSequence;
163 
164 public:
165   void countRegister(const SCEV *Reg, size_t LUIdx);
166   void dropRegister(const SCEV *Reg, size_t LUIdx);
167   void swapAndDropUse(size_t LUIdx, size_t LastLUIdx);
168 
169   bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
170 
171   const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
172 
173   void clear();
174 
175   typedef SmallVectorImpl<const SCEV *>::iterator iterator;
176   typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator;
177   iterator begin() { return RegSequence.begin(); }
178   iterator end()   { return RegSequence.end(); }
179   const_iterator begin() const { return RegSequence.begin(); }
180   const_iterator end() const   { return RegSequence.end(); }
181 };
182 
183 }
184 
185 void
186 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) {
187   std::pair<RegUsesTy::iterator, bool> Pair =
188     RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
189   RegSortData &RSD = Pair.first->second;
190   if (Pair.second)
191     RegSequence.push_back(Reg);
192   RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
193   RSD.UsedByIndices.set(LUIdx);
194 }
195 
196 void
197 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) {
198   RegUsesTy::iterator It = RegUsesMap.find(Reg);
199   assert(It != RegUsesMap.end());
200   RegSortData &RSD = It->second;
201   assert(RSD.UsedByIndices.size() > LUIdx);
202   RSD.UsedByIndices.reset(LUIdx);
203 }
204 
205 void
206 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) {
207   assert(LUIdx <= LastLUIdx);
208 
209   // Update RegUses. The data structure is not optimized for this purpose;
210   // we must iterate through it and update each of the bit vectors.
211   for (auto &Pair : RegUsesMap) {
212     SmallBitVector &UsedByIndices = Pair.second.UsedByIndices;
213     if (LUIdx < UsedByIndices.size())
214       UsedByIndices[LUIdx] =
215         LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : 0;
216     UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx));
217   }
218 }
219 
220 bool
221 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
222   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
223   if (I == RegUsesMap.end())
224     return false;
225   const SmallBitVector &UsedByIndices = I->second.UsedByIndices;
226   int i = UsedByIndices.find_first();
227   if (i == -1) return false;
228   if ((size_t)i != LUIdx) return true;
229   return UsedByIndices.find_next(i) != -1;
230 }
231 
232 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
233   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
234   assert(I != RegUsesMap.end() && "Unknown register!");
235   return I->second.UsedByIndices;
236 }
237 
238 void RegUseTracker::clear() {
239   RegUsesMap.clear();
240   RegSequence.clear();
241 }
242 
243 namespace {
244 
245 /// This class holds information that describes a formula for computing
246 /// satisfying a use. It may include broken-out immediates and scaled registers.
247 struct Formula {
248   /// Global base address used for complex addressing.
249   GlobalValue *BaseGV;
250 
251   /// Base offset for complex addressing.
252   int64_t BaseOffset;
253 
254   /// Whether any complex addressing has a base register.
255   bool HasBaseReg;
256 
257   /// The scale of any complex addressing.
258   int64_t Scale;
259 
260   /// The list of "base" registers for this use. When this is non-empty. The
261   /// canonical representation of a formula is
262   /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and
263   /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty().
264   /// #1 enforces that the scaled register is always used when at least two
265   /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2.
266   /// #2 enforces that 1 * reg is reg.
267   /// This invariant can be temporarly broken while building a formula.
268   /// However, every formula inserted into the LSRInstance must be in canonical
269   /// form.
270   SmallVector<const SCEV *, 4> BaseRegs;
271 
272   /// The 'scaled' register for this use. This should be non-null when Scale is
273   /// not zero.
274   const SCEV *ScaledReg;
275 
276   /// An additional constant offset which added near the use. This requires a
277   /// temporary register, but the offset itself can live in an add immediate
278   /// field rather than a register.
279   int64_t UnfoldedOffset;
280 
281   Formula()
282       : BaseGV(nullptr), BaseOffset(0), HasBaseReg(false), Scale(0),
283         ScaledReg(nullptr), UnfoldedOffset(0) {}
284 
285   void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE);
286 
287   bool isCanonical() const;
288 
289   void canonicalize();
290 
291   bool unscale();
292 
293   size_t getNumRegs() const;
294   Type *getType() const;
295 
296   void deleteBaseReg(const SCEV *&S);
297 
298   bool referencesReg(const SCEV *S) const;
299   bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
300                                   const RegUseTracker &RegUses) const;
301 
302   void print(raw_ostream &OS) const;
303   void dump() const;
304 };
305 
306 }
307 
308 /// Recursion helper for initialMatch.
309 static void DoInitialMatch(const SCEV *S, Loop *L,
310                            SmallVectorImpl<const SCEV *> &Good,
311                            SmallVectorImpl<const SCEV *> &Bad,
312                            ScalarEvolution &SE) {
313   // Collect expressions which properly dominate the loop header.
314   if (SE.properlyDominates(S, L->getHeader())) {
315     Good.push_back(S);
316     return;
317   }
318 
319   // Look at add operands.
320   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
321     for (const SCEV *S : Add->operands())
322       DoInitialMatch(S, L, Good, Bad, SE);
323     return;
324   }
325 
326   // Look at addrec operands.
327   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
328     if (!AR->getStart()->isZero()) {
329       DoInitialMatch(AR->getStart(), L, Good, Bad, SE);
330       DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
331                                       AR->getStepRecurrence(SE),
332                                       // FIXME: AR->getNoWrapFlags()
333                                       AR->getLoop(), SCEV::FlagAnyWrap),
334                      L, Good, Bad, SE);
335       return;
336     }
337 
338   // Handle a multiplication by -1 (negation) if it didn't fold.
339   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
340     if (Mul->getOperand(0)->isAllOnesValue()) {
341       SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end());
342       const SCEV *NewMul = SE.getMulExpr(Ops);
343 
344       SmallVector<const SCEV *, 4> MyGood;
345       SmallVector<const SCEV *, 4> MyBad;
346       DoInitialMatch(NewMul, L, MyGood, MyBad, SE);
347       const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
348         SE.getEffectiveSCEVType(NewMul->getType())));
349       for (const SCEV *S : MyGood)
350         Good.push_back(SE.getMulExpr(NegOne, S));
351       for (const SCEV *S : MyBad)
352         Bad.push_back(SE.getMulExpr(NegOne, S));
353       return;
354     }
355 
356   // Ok, we can't do anything interesting. Just stuff the whole thing into a
357   // register and hope for the best.
358   Bad.push_back(S);
359 }
360 
361 /// Incorporate loop-variant parts of S into this Formula, attempting to keep
362 /// all loop-invariant and loop-computable values in a single base register.
363 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) {
364   SmallVector<const SCEV *, 4> Good;
365   SmallVector<const SCEV *, 4> Bad;
366   DoInitialMatch(S, L, Good, Bad, SE);
367   if (!Good.empty()) {
368     const SCEV *Sum = SE.getAddExpr(Good);
369     if (!Sum->isZero())
370       BaseRegs.push_back(Sum);
371     HasBaseReg = true;
372   }
373   if (!Bad.empty()) {
374     const SCEV *Sum = SE.getAddExpr(Bad);
375     if (!Sum->isZero())
376       BaseRegs.push_back(Sum);
377     HasBaseReg = true;
378   }
379   canonicalize();
380 }
381 
382 /// \brief Check whether or not this formula statisfies the canonical
383 /// representation.
384 /// \see Formula::BaseRegs.
385 bool Formula::isCanonical() const {
386   if (ScaledReg)
387     return Scale != 1 || !BaseRegs.empty();
388   return BaseRegs.size() <= 1;
389 }
390 
391 /// \brief Helper method to morph a formula into its canonical representation.
392 /// \see Formula::BaseRegs.
393 /// Every formula having more than one base register, must use the ScaledReg
394 /// field. Otherwise, we would have to do special cases everywhere in LSR
395 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ...
396 /// On the other hand, 1*reg should be canonicalized into reg.
397 void Formula::canonicalize() {
398   if (isCanonical())
399     return;
400   // So far we did not need this case. This is easy to implement but it is
401   // useless to maintain dead code. Beside it could hurt compile time.
402   assert(!BaseRegs.empty() && "1*reg => reg, should not be needed.");
403   // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg.
404   ScaledReg = BaseRegs.back();
405   BaseRegs.pop_back();
406   Scale = 1;
407   size_t BaseRegsSize = BaseRegs.size();
408   size_t Try = 0;
409   // If ScaledReg is an invariant, try to find a variant expression.
410   while (Try < BaseRegsSize && !isa<SCEVAddRecExpr>(ScaledReg))
411     std::swap(ScaledReg, BaseRegs[Try++]);
412 }
413 
414 /// \brief Get rid of the scale in the formula.
415 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2.
416 /// \return true if it was possible to get rid of the scale, false otherwise.
417 /// \note After this operation the formula may not be in the canonical form.
418 bool Formula::unscale() {
419   if (Scale != 1)
420     return false;
421   Scale = 0;
422   BaseRegs.push_back(ScaledReg);
423   ScaledReg = nullptr;
424   return true;
425 }
426 
427 /// Return the total number of register operands used by this formula. This does
428 /// not include register uses implied by non-constant addrec strides.
429 size_t Formula::getNumRegs() const {
430   return !!ScaledReg + BaseRegs.size();
431 }
432 
433 /// Return the type of this formula, if it has one, or null otherwise. This type
434 /// is meaningless except for the bit size.
435 Type *Formula::getType() const {
436   return !BaseRegs.empty() ? BaseRegs.front()->getType() :
437          ScaledReg ? ScaledReg->getType() :
438          BaseGV ? BaseGV->getType() :
439          nullptr;
440 }
441 
442 /// Delete the given base reg from the BaseRegs list.
443 void Formula::deleteBaseReg(const SCEV *&S) {
444   if (&S != &BaseRegs.back())
445     std::swap(S, BaseRegs.back());
446   BaseRegs.pop_back();
447 }
448 
449 /// Test if this formula references the given register.
450 bool Formula::referencesReg(const SCEV *S) const {
451   return S == ScaledReg || is_contained(BaseRegs, S);
452 }
453 
454 /// Test whether this formula uses registers which are used by uses other than
455 /// the use with the given index.
456 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
457                                          const RegUseTracker &RegUses) const {
458   if (ScaledReg)
459     if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
460       return true;
461   for (const SCEV *BaseReg : BaseRegs)
462     if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx))
463       return true;
464   return false;
465 }
466 
467 void Formula::print(raw_ostream &OS) const {
468   bool First = true;
469   if (BaseGV) {
470     if (!First) OS << " + "; else First = false;
471     BaseGV->printAsOperand(OS, /*PrintType=*/false);
472   }
473   if (BaseOffset != 0) {
474     if (!First) OS << " + "; else First = false;
475     OS << BaseOffset;
476   }
477   for (const SCEV *BaseReg : BaseRegs) {
478     if (!First) OS << " + "; else First = false;
479     OS << "reg(" << *BaseReg << ')';
480   }
481   if (HasBaseReg && BaseRegs.empty()) {
482     if (!First) OS << " + "; else First = false;
483     OS << "**error: HasBaseReg**";
484   } else if (!HasBaseReg && !BaseRegs.empty()) {
485     if (!First) OS << " + "; else First = false;
486     OS << "**error: !HasBaseReg**";
487   }
488   if (Scale != 0) {
489     if (!First) OS << " + "; else First = false;
490     OS << Scale << "*reg(";
491     if (ScaledReg)
492       OS << *ScaledReg;
493     else
494       OS << "<unknown>";
495     OS << ')';
496   }
497   if (UnfoldedOffset != 0) {
498     if (!First) OS << " + ";
499     OS << "imm(" << UnfoldedOffset << ')';
500   }
501 }
502 
503 LLVM_DUMP_METHOD
504 void Formula::dump() const {
505   print(errs()); errs() << '\n';
506 }
507 
508 /// Return true if the given addrec can be sign-extended without changing its
509 /// value.
510 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
511   Type *WideTy =
512     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
513   return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
514 }
515 
516 /// Return true if the given add can be sign-extended without changing its
517 /// value.
518 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
519   Type *WideTy =
520     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
521   return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
522 }
523 
524 /// Return true if the given mul can be sign-extended without changing its
525 /// value.
526 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) {
527   Type *WideTy =
528     IntegerType::get(SE.getContext(),
529                      SE.getTypeSizeInBits(M->getType()) * M->getNumOperands());
530   return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy));
531 }
532 
533 /// Return an expression for LHS /s RHS, if it can be determined and if the
534 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits
535 /// is true, expressions like (X * Y) /s Y are simplified to Y, ignoring that
536 /// the multiplication may overflow, which is useful when the result will be
537 /// used in a context where the most significant bits are ignored.
538 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
539                                 ScalarEvolution &SE,
540                                 bool IgnoreSignificantBits = false) {
541   // Handle the trivial case, which works for any SCEV type.
542   if (LHS == RHS)
543     return SE.getConstant(LHS->getType(), 1);
544 
545   // Handle a few RHS special cases.
546   const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
547   if (RC) {
548     const APInt &RA = RC->getAPInt();
549     // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
550     // some folding.
551     if (RA.isAllOnesValue())
552       return SE.getMulExpr(LHS, RC);
553     // Handle x /s 1 as x.
554     if (RA == 1)
555       return LHS;
556   }
557 
558   // Check for a division of a constant by a constant.
559   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
560     if (!RC)
561       return nullptr;
562     const APInt &LA = C->getAPInt();
563     const APInt &RA = RC->getAPInt();
564     if (LA.srem(RA) != 0)
565       return nullptr;
566     return SE.getConstant(LA.sdiv(RA));
567   }
568 
569   // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
570   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
571     if (IgnoreSignificantBits || isAddRecSExtable(AR, SE)) {
572       const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
573                                       IgnoreSignificantBits);
574       if (!Step) return nullptr;
575       const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
576                                        IgnoreSignificantBits);
577       if (!Start) return nullptr;
578       // FlagNW is independent of the start value, step direction, and is
579       // preserved with smaller magnitude steps.
580       // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
581       return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap);
582     }
583     return nullptr;
584   }
585 
586   // Distribute the sdiv over add operands, if the add doesn't overflow.
587   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
588     if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
589       SmallVector<const SCEV *, 8> Ops;
590       for (const SCEV *S : Add->operands()) {
591         const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits);
592         if (!Op) return nullptr;
593         Ops.push_back(Op);
594       }
595       return SE.getAddExpr(Ops);
596     }
597     return nullptr;
598   }
599 
600   // Check for a multiply operand that we can pull RHS out of.
601   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) {
602     if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
603       SmallVector<const SCEV *, 4> Ops;
604       bool Found = false;
605       for (const SCEV *S : Mul->operands()) {
606         if (!Found)
607           if (const SCEV *Q = getExactSDiv(S, RHS, SE,
608                                            IgnoreSignificantBits)) {
609             S = Q;
610             Found = true;
611           }
612         Ops.push_back(S);
613       }
614       return Found ? SE.getMulExpr(Ops) : nullptr;
615     }
616     return nullptr;
617   }
618 
619   // Otherwise we don't know.
620   return nullptr;
621 }
622 
623 /// If S involves the addition of a constant integer value, return that integer
624 /// value, and mutate S to point to a new SCEV with that value excluded.
625 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
626   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
627     if (C->getAPInt().getMinSignedBits() <= 64) {
628       S = SE.getConstant(C->getType(), 0);
629       return C->getValue()->getSExtValue();
630     }
631   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
632     SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
633     int64_t Result = ExtractImmediate(NewOps.front(), SE);
634     if (Result != 0)
635       S = SE.getAddExpr(NewOps);
636     return Result;
637   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
638     SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
639     int64_t Result = ExtractImmediate(NewOps.front(), SE);
640     if (Result != 0)
641       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
642                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
643                            SCEV::FlagAnyWrap);
644     return Result;
645   }
646   return 0;
647 }
648 
649 /// If S involves the addition of a GlobalValue address, return that symbol, and
650 /// mutate S to point to a new SCEV with that value excluded.
651 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
652   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
653     if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
654       S = SE.getConstant(GV->getType(), 0);
655       return GV;
656     }
657   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
658     SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
659     GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
660     if (Result)
661       S = SE.getAddExpr(NewOps);
662     return Result;
663   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
664     SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
665     GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
666     if (Result)
667       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
668                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
669                            SCEV::FlagAnyWrap);
670     return Result;
671   }
672   return nullptr;
673 }
674 
675 /// Returns true if the specified instruction is using the specified value as an
676 /// address.
677 static bool isAddressUse(Instruction *Inst, Value *OperandVal) {
678   bool isAddress = isa<LoadInst>(Inst);
679   if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
680     if (SI->getOperand(1) == OperandVal)
681       isAddress = true;
682   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
683     // Addressing modes can also be folded into prefetches and a variety
684     // of intrinsics.
685     switch (II->getIntrinsicID()) {
686       default: break;
687       case Intrinsic::prefetch:
688         if (II->getArgOperand(0) == OperandVal)
689           isAddress = true;
690         break;
691     }
692   }
693   return isAddress;
694 }
695 
696 /// Return the type of the memory being accessed.
697 static MemAccessTy getAccessType(const Instruction *Inst) {
698   MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace);
699   if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
700     AccessTy.MemTy = SI->getOperand(0)->getType();
701     AccessTy.AddrSpace = SI->getPointerAddressSpace();
702   } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
703     AccessTy.AddrSpace = LI->getPointerAddressSpace();
704   }
705 
706   // All pointers have the same requirements, so canonicalize them to an
707   // arbitrary pointer type to minimize variation.
708   if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy))
709     AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
710                                       PTy->getAddressSpace());
711 
712   return AccessTy;
713 }
714 
715 /// Return true if this AddRec is already a phi in its loop.
716 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
717   for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin();
718        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
719     if (SE.isSCEVable(PN->getType()) &&
720         (SE.getEffectiveSCEVType(PN->getType()) ==
721          SE.getEffectiveSCEVType(AR->getType())) &&
722         SE.getSCEV(PN) == AR)
723       return true;
724   }
725   return false;
726 }
727 
728 /// Check if expanding this expression is likely to incur significant cost. This
729 /// is tricky because SCEV doesn't track which expressions are actually computed
730 /// by the current IR.
731 ///
732 /// We currently allow expansion of IV increments that involve adds,
733 /// multiplication by constants, and AddRecs from existing phis.
734 ///
735 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an
736 /// obvious multiple of the UDivExpr.
737 static bool isHighCostExpansion(const SCEV *S,
738                                 SmallPtrSetImpl<const SCEV*> &Processed,
739                                 ScalarEvolution &SE) {
740   // Zero/One operand expressions
741   switch (S->getSCEVType()) {
742   case scUnknown:
743   case scConstant:
744     return false;
745   case scTruncate:
746     return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(),
747                                Processed, SE);
748   case scZeroExtend:
749     return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(),
750                                Processed, SE);
751   case scSignExtend:
752     return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(),
753                                Processed, SE);
754   }
755 
756   if (!Processed.insert(S).second)
757     return false;
758 
759   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
760     for (const SCEV *S : Add->operands()) {
761       if (isHighCostExpansion(S, Processed, SE))
762         return true;
763     }
764     return false;
765   }
766 
767   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
768     if (Mul->getNumOperands() == 2) {
769       // Multiplication by a constant is ok
770       if (isa<SCEVConstant>(Mul->getOperand(0)))
771         return isHighCostExpansion(Mul->getOperand(1), Processed, SE);
772 
773       // If we have the value of one operand, check if an existing
774       // multiplication already generates this expression.
775       if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) {
776         Value *UVal = U->getValue();
777         for (User *UR : UVal->users()) {
778           // If U is a constant, it may be used by a ConstantExpr.
779           Instruction *UI = dyn_cast<Instruction>(UR);
780           if (UI && UI->getOpcode() == Instruction::Mul &&
781               SE.isSCEVable(UI->getType())) {
782             return SE.getSCEV(UI) == Mul;
783           }
784         }
785       }
786     }
787   }
788 
789   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
790     if (isExistingPhi(AR, SE))
791       return false;
792   }
793 
794   // Fow now, consider any other type of expression (div/mul/min/max) high cost.
795   return true;
796 }
797 
798 /// If any of the instructions is the specified set are trivially dead, delete
799 /// them and see if this makes any of their operands subsequently dead.
800 static bool
801 DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) {
802   bool Changed = false;
803 
804   while (!DeadInsts.empty()) {
805     Value *V = DeadInsts.pop_back_val();
806     Instruction *I = dyn_cast_or_null<Instruction>(V);
807 
808     if (!I || !isInstructionTriviallyDead(I))
809       continue;
810 
811     for (Use &O : I->operands())
812       if (Instruction *U = dyn_cast<Instruction>(O)) {
813         O = nullptr;
814         if (U->use_empty())
815           DeadInsts.emplace_back(U);
816       }
817 
818     I->eraseFromParent();
819     Changed = true;
820   }
821 
822   return Changed;
823 }
824 
825 namespace {
826 class LSRUse;
827 }
828 
829 /// \brief Check if the addressing mode defined by \p F is completely
830 /// folded in \p LU at isel time.
831 /// This includes address-mode folding and special icmp tricks.
832 /// This function returns true if \p LU can accommodate what \p F
833 /// defines and up to 1 base + 1 scaled + offset.
834 /// In other words, if \p F has several base registers, this function may
835 /// still return true. Therefore, users still need to account for
836 /// additional base registers and/or unfolded offsets to derive an
837 /// accurate cost model.
838 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
839                                  const LSRUse &LU, const Formula &F);
840 // Get the cost of the scaling factor used in F for LU.
841 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
842                                      const LSRUse &LU, const Formula &F);
843 
844 namespace {
845 
846 /// This class is used to measure and compare candidate formulae.
847 class Cost {
848   /// TODO: Some of these could be merged. Also, a lexical ordering
849   /// isn't always optimal.
850   unsigned NumRegs;
851   unsigned AddRecCost;
852   unsigned NumIVMuls;
853   unsigned NumBaseAdds;
854   unsigned ImmCost;
855   unsigned SetupCost;
856   unsigned ScaleCost;
857 
858 public:
859   Cost()
860     : NumRegs(0), AddRecCost(0), NumIVMuls(0), NumBaseAdds(0), ImmCost(0),
861       SetupCost(0), ScaleCost(0) {}
862 
863   bool operator<(const Cost &Other) const;
864 
865   void Lose();
866 
867 #ifndef NDEBUG
868   // Once any of the metrics loses, they must all remain losers.
869   bool isValid() {
870     return ((NumRegs | AddRecCost | NumIVMuls | NumBaseAdds
871              | ImmCost | SetupCost | ScaleCost) != ~0u)
872       || ((NumRegs & AddRecCost & NumIVMuls & NumBaseAdds
873            & ImmCost & SetupCost & ScaleCost) == ~0u);
874   }
875 #endif
876 
877   bool isLoser() {
878     assert(isValid() && "invalid cost");
879     return NumRegs == ~0u;
880   }
881 
882   void RateFormula(const TargetTransformInfo &TTI,
883                    const Formula &F,
884                    SmallPtrSetImpl<const SCEV *> &Regs,
885                    const DenseSet<const SCEV *> &VisitedRegs,
886                    const Loop *L,
887                    ScalarEvolution &SE, DominatorTree &DT,
888                    const LSRUse &LU,
889                    SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr);
890 
891   void print(raw_ostream &OS) const;
892   void dump() const;
893 
894 private:
895   void RateRegister(const SCEV *Reg,
896                     SmallPtrSetImpl<const SCEV *> &Regs,
897                     const Loop *L,
898                     ScalarEvolution &SE, DominatorTree &DT);
899   void RatePrimaryRegister(const SCEV *Reg,
900                            SmallPtrSetImpl<const SCEV *> &Regs,
901                            const Loop *L,
902                            ScalarEvolution &SE, DominatorTree &DT,
903                            SmallPtrSetImpl<const SCEV *> *LoserRegs);
904 };
905 
906 /// An operand value in an instruction which is to be replaced with some
907 /// equivalent, possibly strength-reduced, replacement.
908 struct LSRFixup {
909   /// The instruction which will be updated.
910   Instruction *UserInst;
911 
912   /// The operand of the instruction which will be replaced. The operand may be
913   /// used more than once; every instance will be replaced.
914   Value *OperandValToReplace;
915 
916   /// If this user is to use the post-incremented value of an induction
917   /// variable, this variable is non-null and holds the loop associated with the
918   /// induction variable.
919   PostIncLoopSet PostIncLoops;
920 
921   /// A constant offset to be added to the LSRUse expression.  This allows
922   /// multiple fixups to share the same LSRUse with different offsets, for
923   /// example in an unrolled loop.
924   int64_t Offset;
925 
926   bool isUseFullyOutsideLoop(const Loop *L) const;
927 
928   LSRFixup();
929 
930   void print(raw_ostream &OS) const;
931   void dump() const;
932 };
933 
934 
935 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted
936 /// SmallVectors of const SCEV*.
937 struct UniquifierDenseMapInfo {
938   static SmallVector<const SCEV *, 4> getEmptyKey() {
939     SmallVector<const SCEV *, 4>  V;
940     V.push_back(reinterpret_cast<const SCEV *>(-1));
941     return V;
942   }
943 
944   static SmallVector<const SCEV *, 4> getTombstoneKey() {
945     SmallVector<const SCEV *, 4> V;
946     V.push_back(reinterpret_cast<const SCEV *>(-2));
947     return V;
948   }
949 
950   static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) {
951     return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
952   }
953 
954   static bool isEqual(const SmallVector<const SCEV *, 4> &LHS,
955                       const SmallVector<const SCEV *, 4> &RHS) {
956     return LHS == RHS;
957   }
958 };
959 
960 /// This class holds the state that LSR keeps for each use in IVUsers, as well
961 /// as uses invented by LSR itself. It includes information about what kinds of
962 /// things can be folded into the user, information about the user itself, and
963 /// information about how the use may be satisfied.  TODO: Represent multiple
964 /// users of the same expression in common?
965 class LSRUse {
966   DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier;
967 
968 public:
969   /// An enum for a kind of use, indicating what types of scaled and immediate
970   /// operands it might support.
971   enum KindType {
972     Basic,   ///< A normal use, with no folding.
973     Special, ///< A special case of basic, allowing -1 scales.
974     Address, ///< An address use; folding according to TargetLowering
975     ICmpZero ///< An equality icmp with both operands folded into one.
976     // TODO: Add a generic icmp too?
977   };
978 
979   typedef PointerIntPair<const SCEV *, 2, KindType> SCEVUseKindPair;
980 
981   KindType Kind;
982   MemAccessTy AccessTy;
983 
984   /// The list of operands which are to be replaced.
985   SmallVector<LSRFixup, 8> Fixups;
986 
987   /// Keep track of the min and max offsets of the fixups.
988   int64_t MinOffset;
989   int64_t MaxOffset;
990 
991   /// This records whether all of the fixups using this LSRUse are outside of
992   /// the loop, in which case some special-case heuristics may be used.
993   bool AllFixupsOutsideLoop;
994 
995   /// RigidFormula is set to true to guarantee that this use will be associated
996   /// with a single formula--the one that initially matched. Some SCEV
997   /// expressions cannot be expanded. This allows LSR to consider the registers
998   /// used by those expressions without the need to expand them later after
999   /// changing the formula.
1000   bool RigidFormula;
1001 
1002   /// This records the widest use type for any fixup using this
1003   /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max
1004   /// fixup widths to be equivalent, because the narrower one may be relying on
1005   /// the implicit truncation to truncate away bogus bits.
1006   Type *WidestFixupType;
1007 
1008   /// A list of ways to build a value that can satisfy this user.  After the
1009   /// list is populated, one of these is selected heuristically and used to
1010   /// formulate a replacement for OperandValToReplace in UserInst.
1011   SmallVector<Formula, 12> Formulae;
1012 
1013   /// The set of register candidates used by all formulae in this LSRUse.
1014   SmallPtrSet<const SCEV *, 4> Regs;
1015 
1016   LSRUse(KindType K, MemAccessTy AT)
1017       : Kind(K), AccessTy(AT), MinOffset(INT64_MAX), MaxOffset(INT64_MIN),
1018         AllFixupsOutsideLoop(true), RigidFormula(false),
1019         WidestFixupType(nullptr) {}
1020 
1021   LSRFixup &getNewFixup() {
1022     Fixups.push_back(LSRFixup());
1023     return Fixups.back();
1024   }
1025 
1026   void pushFixup(LSRFixup &f) {
1027     Fixups.push_back(f);
1028     if (f.Offset > MaxOffset)
1029       MaxOffset = f.Offset;
1030     if (f.Offset < MinOffset)
1031       MinOffset = f.Offset;
1032   }
1033 
1034   bool HasFormulaWithSameRegs(const Formula &F) const;
1035   bool InsertFormula(const Formula &F);
1036   void DeleteFormula(Formula &F);
1037   void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
1038 
1039   void print(raw_ostream &OS) const;
1040   void dump() const;
1041 };
1042 
1043 }
1044 
1045 /// Tally up interesting quantities from the given register.
1046 void Cost::RateRegister(const SCEV *Reg,
1047                         SmallPtrSetImpl<const SCEV *> &Regs,
1048                         const Loop *L,
1049                         ScalarEvolution &SE, DominatorTree &DT) {
1050   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
1051     // If this is an addrec for another loop, don't second-guess its addrec phi
1052     // nodes. LSR isn't currently smart enough to reason about more than one
1053     // loop at a time. LSR has already run on inner loops, will not run on outer
1054     // loops, and cannot be expected to change sibling loops.
1055     if (AR->getLoop() != L) {
1056       // If the AddRec exists, consider it's register free and leave it alone.
1057       if (isExistingPhi(AR, SE))
1058         return;
1059 
1060       // Otherwise, do not consider this formula at all.
1061       Lose();
1062       return;
1063     }
1064     AddRecCost += 1; /// TODO: This should be a function of the stride.
1065 
1066     // Add the step value register, if it needs one.
1067     // TODO: The non-affine case isn't precisely modeled here.
1068     if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) {
1069       if (!Regs.count(AR->getOperand(1))) {
1070         RateRegister(AR->getOperand(1), Regs, L, SE, DT);
1071         if (isLoser())
1072           return;
1073       }
1074     }
1075   }
1076   ++NumRegs;
1077 
1078   // Rough heuristic; favor registers which don't require extra setup
1079   // instructions in the preheader.
1080   if (!isa<SCEVUnknown>(Reg) &&
1081       !isa<SCEVConstant>(Reg) &&
1082       !(isa<SCEVAddRecExpr>(Reg) &&
1083         (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) ||
1084          isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart()))))
1085     ++SetupCost;
1086 
1087   NumIVMuls += isa<SCEVMulExpr>(Reg) &&
1088                SE.hasComputableLoopEvolution(Reg, L);
1089 }
1090 
1091 /// Record this register in the set. If we haven't seen it before, rate
1092 /// it. Optional LoserRegs provides a way to declare any formula that refers to
1093 /// one of those regs an instant loser.
1094 void Cost::RatePrimaryRegister(const SCEV *Reg,
1095                                SmallPtrSetImpl<const SCEV *> &Regs,
1096                                const Loop *L,
1097                                ScalarEvolution &SE, DominatorTree &DT,
1098                                SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1099   if (LoserRegs && LoserRegs->count(Reg)) {
1100     Lose();
1101     return;
1102   }
1103   if (Regs.insert(Reg).second) {
1104     RateRegister(Reg, Regs, L, SE, DT);
1105     if (LoserRegs && isLoser())
1106       LoserRegs->insert(Reg);
1107   }
1108 }
1109 
1110 void Cost::RateFormula(const TargetTransformInfo &TTI,
1111                        const Formula &F,
1112                        SmallPtrSetImpl<const SCEV *> &Regs,
1113                        const DenseSet<const SCEV *> &VisitedRegs,
1114                        const Loop *L,
1115                        ScalarEvolution &SE, DominatorTree &DT,
1116                        const LSRUse &LU,
1117                        SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1118   assert(F.isCanonical() && "Cost is accurate only for canonical formula");
1119   // Tally up the registers.
1120   if (const SCEV *ScaledReg = F.ScaledReg) {
1121     if (VisitedRegs.count(ScaledReg)) {
1122       Lose();
1123       return;
1124     }
1125     RatePrimaryRegister(ScaledReg, Regs, L, SE, DT, LoserRegs);
1126     if (isLoser())
1127       return;
1128   }
1129   for (const SCEV *BaseReg : F.BaseRegs) {
1130     if (VisitedRegs.count(BaseReg)) {
1131       Lose();
1132       return;
1133     }
1134     RatePrimaryRegister(BaseReg, Regs, L, SE, DT, LoserRegs);
1135     if (isLoser())
1136       return;
1137   }
1138 
1139   // Determine how many (unfolded) adds we'll need inside the loop.
1140   size_t NumBaseParts = F.getNumRegs();
1141   if (NumBaseParts > 1)
1142     // Do not count the base and a possible second register if the target
1143     // allows to fold 2 registers.
1144     NumBaseAdds +=
1145         NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(TTI, LU, F)));
1146   NumBaseAdds += (F.UnfoldedOffset != 0);
1147 
1148   // Accumulate non-free scaling amounts.
1149   ScaleCost += getScalingFactorCost(TTI, LU, F);
1150 
1151   // Tally up the non-zero immediates.
1152   for (const LSRFixup &Fixup : LU.Fixups) {
1153     int64_t O = Fixup.Offset;
1154     int64_t Offset = (uint64_t)O + F.BaseOffset;
1155     if (F.BaseGV)
1156       ImmCost += 64; // Handle symbolic values conservatively.
1157                      // TODO: This should probably be the pointer size.
1158     else if (Offset != 0)
1159       ImmCost += APInt(64, Offset, true).getMinSignedBits();
1160 
1161     // Check with target if this offset with this instruction is
1162     // specifically not supported.
1163     if ((isa<LoadInst>(Fixup.UserInst) || isa<StoreInst>(Fixup.UserInst)) &&
1164         !TTI.isFoldableMemAccessOffset(Fixup.UserInst, Offset))
1165       NumBaseAdds++;
1166   }
1167   assert(isValid() && "invalid cost");
1168 }
1169 
1170 /// Set this cost to a losing value.
1171 void Cost::Lose() {
1172   NumRegs = ~0u;
1173   AddRecCost = ~0u;
1174   NumIVMuls = ~0u;
1175   NumBaseAdds = ~0u;
1176   ImmCost = ~0u;
1177   SetupCost = ~0u;
1178   ScaleCost = ~0u;
1179 }
1180 
1181 /// Choose the lower cost.
1182 bool Cost::operator<(const Cost &Other) const {
1183   return std::tie(NumRegs, AddRecCost, NumIVMuls, NumBaseAdds, ScaleCost,
1184                   ImmCost, SetupCost) <
1185          std::tie(Other.NumRegs, Other.AddRecCost, Other.NumIVMuls,
1186                   Other.NumBaseAdds, Other.ScaleCost, Other.ImmCost,
1187                   Other.SetupCost);
1188 }
1189 
1190 void Cost::print(raw_ostream &OS) const {
1191   OS << NumRegs << " reg" << (NumRegs == 1 ? "" : "s");
1192   if (AddRecCost != 0)
1193     OS << ", with addrec cost " << AddRecCost;
1194   if (NumIVMuls != 0)
1195     OS << ", plus " << NumIVMuls << " IV mul" << (NumIVMuls == 1 ? "" : "s");
1196   if (NumBaseAdds != 0)
1197     OS << ", plus " << NumBaseAdds << " base add"
1198        << (NumBaseAdds == 1 ? "" : "s");
1199   if (ScaleCost != 0)
1200     OS << ", plus " << ScaleCost << " scale cost";
1201   if (ImmCost != 0)
1202     OS << ", plus " << ImmCost << " imm cost";
1203   if (SetupCost != 0)
1204     OS << ", plus " << SetupCost << " setup cost";
1205 }
1206 
1207 LLVM_DUMP_METHOD
1208 void Cost::dump() const {
1209   print(errs()); errs() << '\n';
1210 }
1211 
1212 LSRFixup::LSRFixup()
1213   : UserInst(nullptr), OperandValToReplace(nullptr),
1214     Offset(0) {}
1215 
1216 /// Test whether this fixup always uses its value outside of the given loop.
1217 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
1218   // PHI nodes use their value in their incoming blocks.
1219   if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
1220     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1221       if (PN->getIncomingValue(i) == OperandValToReplace &&
1222           L->contains(PN->getIncomingBlock(i)))
1223         return false;
1224     return true;
1225   }
1226 
1227   return !L->contains(UserInst);
1228 }
1229 
1230 void LSRFixup::print(raw_ostream &OS) const {
1231   OS << "UserInst=";
1232   // Store is common and interesting enough to be worth special-casing.
1233   if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
1234     OS << "store ";
1235     Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false);
1236   } else if (UserInst->getType()->isVoidTy())
1237     OS << UserInst->getOpcodeName();
1238   else
1239     UserInst->printAsOperand(OS, /*PrintType=*/false);
1240 
1241   OS << ", OperandValToReplace=";
1242   OperandValToReplace->printAsOperand(OS, /*PrintType=*/false);
1243 
1244   for (const Loop *PIL : PostIncLoops) {
1245     OS << ", PostIncLoop=";
1246     PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
1247   }
1248 
1249   if (Offset != 0)
1250     OS << ", Offset=" << Offset;
1251 }
1252 
1253 LLVM_DUMP_METHOD
1254 void LSRFixup::dump() const {
1255   print(errs()); errs() << '\n';
1256 }
1257 
1258 /// Test whether this use as a formula which has the same registers as the given
1259 /// formula.
1260 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
1261   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1262   if (F.ScaledReg) Key.push_back(F.ScaledReg);
1263   // Unstable sort by host order ok, because this is only used for uniquifying.
1264   std::sort(Key.begin(), Key.end());
1265   return Uniquifier.count(Key);
1266 }
1267 
1268 /// If the given formula has not yet been inserted, add it to the list, and
1269 /// return true. Return false otherwise.  The formula must be in canonical form.
1270 bool LSRUse::InsertFormula(const Formula &F) {
1271   assert(F.isCanonical() && "Invalid canonical representation");
1272 
1273   if (!Formulae.empty() && RigidFormula)
1274     return false;
1275 
1276   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1277   if (F.ScaledReg) Key.push_back(F.ScaledReg);
1278   // Unstable sort by host order ok, because this is only used for uniquifying.
1279   std::sort(Key.begin(), Key.end());
1280 
1281   if (!Uniquifier.insert(Key).second)
1282     return false;
1283 
1284   // Using a register to hold the value of 0 is not profitable.
1285   assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
1286          "Zero allocated in a scaled register!");
1287 #ifndef NDEBUG
1288   for (const SCEV *BaseReg : F.BaseRegs)
1289     assert(!BaseReg->isZero() && "Zero allocated in a base register!");
1290 #endif
1291 
1292   // Add the formula to the list.
1293   Formulae.push_back(F);
1294 
1295   // Record registers now being used by this use.
1296   Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1297   if (F.ScaledReg)
1298     Regs.insert(F.ScaledReg);
1299 
1300   return true;
1301 }
1302 
1303 /// Remove the given formula from this use's list.
1304 void LSRUse::DeleteFormula(Formula &F) {
1305   if (&F != &Formulae.back())
1306     std::swap(F, Formulae.back());
1307   Formulae.pop_back();
1308 }
1309 
1310 /// Recompute the Regs field, and update RegUses.
1311 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
1312   // Now that we've filtered out some formulae, recompute the Regs set.
1313   SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs);
1314   Regs.clear();
1315   for (const Formula &F : Formulae) {
1316     if (F.ScaledReg) Regs.insert(F.ScaledReg);
1317     Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1318   }
1319 
1320   // Update the RegTracker.
1321   for (const SCEV *S : OldRegs)
1322     if (!Regs.count(S))
1323       RegUses.dropRegister(S, LUIdx);
1324 }
1325 
1326 void LSRUse::print(raw_ostream &OS) const {
1327   OS << "LSR Use: Kind=";
1328   switch (Kind) {
1329   case Basic:    OS << "Basic"; break;
1330   case Special:  OS << "Special"; break;
1331   case ICmpZero: OS << "ICmpZero"; break;
1332   case Address:
1333     OS << "Address of ";
1334     if (AccessTy.MemTy->isPointerTy())
1335       OS << "pointer"; // the full pointer type could be really verbose
1336     else {
1337       OS << *AccessTy.MemTy;
1338     }
1339 
1340     OS << " in addrspace(" << AccessTy.AddrSpace << ')';
1341   }
1342 
1343   OS << ", Offsets={";
1344   bool NeedComma = false;
1345   for (const LSRFixup &Fixup : Fixups) {
1346     if (NeedComma) OS << ',';
1347     OS << Fixup.Offset;
1348     NeedComma = true;
1349   }
1350   OS << '}';
1351 
1352   if (AllFixupsOutsideLoop)
1353     OS << ", all-fixups-outside-loop";
1354 
1355   if (WidestFixupType)
1356     OS << ", widest fixup type: " << *WidestFixupType;
1357 }
1358 
1359 LLVM_DUMP_METHOD
1360 void LSRUse::dump() const {
1361   print(errs()); errs() << '\n';
1362 }
1363 
1364 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1365                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1366                                  GlobalValue *BaseGV, int64_t BaseOffset,
1367                                  bool HasBaseReg, int64_t Scale) {
1368   switch (Kind) {
1369   case LSRUse::Address:
1370     return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset,
1371                                      HasBaseReg, Scale, AccessTy.AddrSpace);
1372 
1373   case LSRUse::ICmpZero:
1374     // There's not even a target hook for querying whether it would be legal to
1375     // fold a GV into an ICmp.
1376     if (BaseGV)
1377       return false;
1378 
1379     // ICmp only has two operands; don't allow more than two non-trivial parts.
1380     if (Scale != 0 && HasBaseReg && BaseOffset != 0)
1381       return false;
1382 
1383     // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
1384     // putting the scaled register in the other operand of the icmp.
1385     if (Scale != 0 && Scale != -1)
1386       return false;
1387 
1388     // If we have low-level target information, ask the target if it can fold an
1389     // integer immediate on an icmp.
1390     if (BaseOffset != 0) {
1391       // We have one of:
1392       // ICmpZero     BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset
1393       // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset
1394       // Offs is the ICmp immediate.
1395       if (Scale == 0)
1396         // The cast does the right thing with INT64_MIN.
1397         BaseOffset = -(uint64_t)BaseOffset;
1398       return TTI.isLegalICmpImmediate(BaseOffset);
1399     }
1400 
1401     // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg
1402     return true;
1403 
1404   case LSRUse::Basic:
1405     // Only handle single-register values.
1406     return !BaseGV && Scale == 0 && BaseOffset == 0;
1407 
1408   case LSRUse::Special:
1409     // Special case Basic to handle -1 scales.
1410     return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0;
1411   }
1412 
1413   llvm_unreachable("Invalid LSRUse Kind!");
1414 }
1415 
1416 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1417                                  int64_t MinOffset, int64_t MaxOffset,
1418                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1419                                  GlobalValue *BaseGV, int64_t BaseOffset,
1420                                  bool HasBaseReg, int64_t Scale) {
1421   // Check for overflow.
1422   if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) !=
1423       (MinOffset > 0))
1424     return false;
1425   MinOffset = (uint64_t)BaseOffset + MinOffset;
1426   if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) !=
1427       (MaxOffset > 0))
1428     return false;
1429   MaxOffset = (uint64_t)BaseOffset + MaxOffset;
1430 
1431   return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset,
1432                               HasBaseReg, Scale) &&
1433          isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset,
1434                               HasBaseReg, Scale);
1435 }
1436 
1437 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1438                                  int64_t MinOffset, int64_t MaxOffset,
1439                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1440                                  const Formula &F) {
1441   // For the purpose of isAMCompletelyFolded either having a canonical formula
1442   // or a scale not equal to zero is correct.
1443   // Problems may arise from non canonical formulae having a scale == 0.
1444   // Strictly speaking it would best to just rely on canonical formulae.
1445   // However, when we generate the scaled formulae, we first check that the
1446   // scaling factor is profitable before computing the actual ScaledReg for
1447   // compile time sake.
1448   assert((F.isCanonical() || F.Scale != 0));
1449   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1450                               F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale);
1451 }
1452 
1453 /// Test whether we know how to expand the current formula.
1454 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1455                        int64_t MaxOffset, LSRUse::KindType Kind,
1456                        MemAccessTy AccessTy, GlobalValue *BaseGV,
1457                        int64_t BaseOffset, bool HasBaseReg, int64_t Scale) {
1458   // We know how to expand completely foldable formulae.
1459   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1460                               BaseOffset, HasBaseReg, Scale) ||
1461          // Or formulae that use a base register produced by a sum of base
1462          // registers.
1463          (Scale == 1 &&
1464           isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1465                                BaseGV, BaseOffset, true, 0));
1466 }
1467 
1468 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1469                        int64_t MaxOffset, LSRUse::KindType Kind,
1470                        MemAccessTy AccessTy, const Formula &F) {
1471   return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV,
1472                     F.BaseOffset, F.HasBaseReg, F.Scale);
1473 }
1474 
1475 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1476                                  const LSRUse &LU, const Formula &F) {
1477   return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1478                               LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg,
1479                               F.Scale);
1480 }
1481 
1482 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
1483                                      const LSRUse &LU, const Formula &F) {
1484   if (!F.Scale)
1485     return 0;
1486 
1487   // If the use is not completely folded in that instruction, we will have to
1488   // pay an extra cost only for scale != 1.
1489   if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1490                             LU.AccessTy, F))
1491     return F.Scale != 1;
1492 
1493   switch (LU.Kind) {
1494   case LSRUse::Address: {
1495     // Check the scaling factor cost with both the min and max offsets.
1496     int ScaleCostMinOffset = TTI.getScalingFactorCost(
1497         LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg,
1498         F.Scale, LU.AccessTy.AddrSpace);
1499     int ScaleCostMaxOffset = TTI.getScalingFactorCost(
1500         LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg,
1501         F.Scale, LU.AccessTy.AddrSpace);
1502 
1503     assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 &&
1504            "Legal addressing mode has an illegal cost!");
1505     return std::max(ScaleCostMinOffset, ScaleCostMaxOffset);
1506   }
1507   case LSRUse::ICmpZero:
1508   case LSRUse::Basic:
1509   case LSRUse::Special:
1510     // The use is completely folded, i.e., everything is folded into the
1511     // instruction.
1512     return 0;
1513   }
1514 
1515   llvm_unreachable("Invalid LSRUse Kind!");
1516 }
1517 
1518 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1519                              LSRUse::KindType Kind, MemAccessTy AccessTy,
1520                              GlobalValue *BaseGV, int64_t BaseOffset,
1521                              bool HasBaseReg) {
1522   // Fast-path: zero is always foldable.
1523   if (BaseOffset == 0 && !BaseGV) return true;
1524 
1525   // Conservatively, create an address with an immediate and a
1526   // base and a scale.
1527   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1528 
1529   // Canonicalize a scale of 1 to a base register if the formula doesn't
1530   // already have a base register.
1531   if (!HasBaseReg && Scale == 1) {
1532     Scale = 0;
1533     HasBaseReg = true;
1534   }
1535 
1536   return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset,
1537                               HasBaseReg, Scale);
1538 }
1539 
1540 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1541                              ScalarEvolution &SE, int64_t MinOffset,
1542                              int64_t MaxOffset, LSRUse::KindType Kind,
1543                              MemAccessTy AccessTy, const SCEV *S,
1544                              bool HasBaseReg) {
1545   // Fast-path: zero is always foldable.
1546   if (S->isZero()) return true;
1547 
1548   // Conservatively, create an address with an immediate and a
1549   // base and a scale.
1550   int64_t BaseOffset = ExtractImmediate(S, SE);
1551   GlobalValue *BaseGV = ExtractSymbol(S, SE);
1552 
1553   // If there's anything else involved, it's not foldable.
1554   if (!S->isZero()) return false;
1555 
1556   // Fast-path: zero is always foldable.
1557   if (BaseOffset == 0 && !BaseGV) return true;
1558 
1559   // Conservatively, create an address with an immediate and a
1560   // base and a scale.
1561   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1562 
1563   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1564                               BaseOffset, HasBaseReg, Scale);
1565 }
1566 
1567 namespace {
1568 
1569 /// An individual increment in a Chain of IV increments.  Relate an IV user to
1570 /// an expression that computes the IV it uses from the IV used by the previous
1571 /// link in the Chain.
1572 ///
1573 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the
1574 /// original IVOperand. The head of the chain's IVOperand is only valid during
1575 /// chain collection, before LSR replaces IV users. During chain generation,
1576 /// IncExpr can be used to find the new IVOperand that computes the same
1577 /// expression.
1578 struct IVInc {
1579   Instruction *UserInst;
1580   Value* IVOperand;
1581   const SCEV *IncExpr;
1582 
1583   IVInc(Instruction *U, Value *O, const SCEV *E):
1584     UserInst(U), IVOperand(O), IncExpr(E) {}
1585 };
1586 
1587 // The list of IV increments in program order.  We typically add the head of a
1588 // chain without finding subsequent links.
1589 struct IVChain {
1590   SmallVector<IVInc,1> Incs;
1591   const SCEV *ExprBase;
1592 
1593   IVChain() : ExprBase(nullptr) {}
1594 
1595   IVChain(const IVInc &Head, const SCEV *Base)
1596     : Incs(1, Head), ExprBase(Base) {}
1597 
1598   typedef SmallVectorImpl<IVInc>::const_iterator const_iterator;
1599 
1600   // Return the first increment in the chain.
1601   const_iterator begin() const {
1602     assert(!Incs.empty());
1603     return std::next(Incs.begin());
1604   }
1605   const_iterator end() const {
1606     return Incs.end();
1607   }
1608 
1609   // Returns true if this chain contains any increments.
1610   bool hasIncs() const { return Incs.size() >= 2; }
1611 
1612   // Add an IVInc to the end of this chain.
1613   void add(const IVInc &X) { Incs.push_back(X); }
1614 
1615   // Returns the last UserInst in the chain.
1616   Instruction *tailUserInst() const { return Incs.back().UserInst; }
1617 
1618   // Returns true if IncExpr can be profitably added to this chain.
1619   bool isProfitableIncrement(const SCEV *OperExpr,
1620                              const SCEV *IncExpr,
1621                              ScalarEvolution&);
1622 };
1623 
1624 /// Helper for CollectChains to track multiple IV increment uses.  Distinguish
1625 /// between FarUsers that definitely cross IV increments and NearUsers that may
1626 /// be used between IV increments.
1627 struct ChainUsers {
1628   SmallPtrSet<Instruction*, 4> FarUsers;
1629   SmallPtrSet<Instruction*, 4> NearUsers;
1630 };
1631 
1632 /// This class holds state for the main loop strength reduction logic.
1633 class LSRInstance {
1634   IVUsers &IU;
1635   ScalarEvolution &SE;
1636   DominatorTree &DT;
1637   LoopInfo &LI;
1638   const TargetTransformInfo &TTI;
1639   Loop *const L;
1640   bool Changed;
1641 
1642   /// This is the insert position that the current loop's induction variable
1643   /// increment should be placed. In simple loops, this is the latch block's
1644   /// terminator. But in more complicated cases, this is a position which will
1645   /// dominate all the in-loop post-increment users.
1646   Instruction *IVIncInsertPos;
1647 
1648   /// Interesting factors between use strides.
1649   SmallSetVector<int64_t, 8> Factors;
1650 
1651   /// Interesting use types, to facilitate truncation reuse.
1652   SmallSetVector<Type *, 4> Types;
1653 
1654   /// The list of interesting uses.
1655   SmallVector<LSRUse, 16> Uses;
1656 
1657   /// Track which uses use which register candidates.
1658   RegUseTracker RegUses;
1659 
1660   // Limit the number of chains to avoid quadratic behavior. We don't expect to
1661   // have more than a few IV increment chains in a loop. Missing a Chain falls
1662   // back to normal LSR behavior for those uses.
1663   static const unsigned MaxChains = 8;
1664 
1665   /// IV users can form a chain of IV increments.
1666   SmallVector<IVChain, MaxChains> IVChainVec;
1667 
1668   /// IV users that belong to profitable IVChains.
1669   SmallPtrSet<Use*, MaxChains> IVIncSet;
1670 
1671   void OptimizeShadowIV();
1672   bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
1673   ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
1674   void OptimizeLoopTermCond();
1675 
1676   void ChainInstruction(Instruction *UserInst, Instruction *IVOper,
1677                         SmallVectorImpl<ChainUsers> &ChainUsersVec);
1678   void FinalizeChain(IVChain &Chain);
1679   void CollectChains();
1680   void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
1681                        SmallVectorImpl<WeakVH> &DeadInsts);
1682 
1683   void CollectInterestingTypesAndFactors();
1684   void CollectFixupsAndInitialFormulae();
1685 
1686   // Support for sharing of LSRUses between LSRFixups.
1687   typedef DenseMap<LSRUse::SCEVUseKindPair, size_t> UseMapTy;
1688   UseMapTy UseMap;
1689 
1690   bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
1691                           LSRUse::KindType Kind, MemAccessTy AccessTy);
1692 
1693   std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind,
1694                                     MemAccessTy AccessTy);
1695 
1696   void DeleteUse(LSRUse &LU, size_t LUIdx);
1697 
1698   LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
1699 
1700   void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1701   void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1702   void CountRegisters(const Formula &F, size_t LUIdx);
1703   bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
1704 
1705   void CollectLoopInvariantFixupsAndFormulae();
1706 
1707   void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
1708                               unsigned Depth = 0);
1709 
1710   void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
1711                                   const Formula &Base, unsigned Depth,
1712                                   size_t Idx, bool IsScaledReg = false);
1713   void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
1714   void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
1715                                    const Formula &Base, size_t Idx,
1716                                    bool IsScaledReg = false);
1717   void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1718   void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx,
1719                                    const Formula &Base,
1720                                    const SmallVectorImpl<int64_t> &Worklist,
1721                                    size_t Idx, bool IsScaledReg = false);
1722   void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1723   void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1724   void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1725   void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
1726   void GenerateCrossUseConstantOffsets();
1727   void GenerateAllReuseFormulae();
1728 
1729   void FilterOutUndesirableDedicatedRegisters();
1730 
1731   size_t EstimateSearchSpaceComplexity() const;
1732   void NarrowSearchSpaceByDetectingSupersets();
1733   void NarrowSearchSpaceByCollapsingUnrolledCode();
1734   void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
1735   void NarrowSearchSpaceByPickingWinnerRegs();
1736   void NarrowSearchSpaceUsingHeuristics();
1737 
1738   void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
1739                     Cost &SolutionCost,
1740                     SmallVectorImpl<const Formula *> &Workspace,
1741                     const Cost &CurCost,
1742                     const SmallPtrSet<const SCEV *, 16> &CurRegs,
1743                     DenseSet<const SCEV *> &VisitedRegs) const;
1744   void Solve(SmallVectorImpl<const Formula *> &Solution) const;
1745 
1746   BasicBlock::iterator
1747     HoistInsertPosition(BasicBlock::iterator IP,
1748                         const SmallVectorImpl<Instruction *> &Inputs) const;
1749   BasicBlock::iterator
1750     AdjustInsertPositionForExpand(BasicBlock::iterator IP,
1751                                   const LSRFixup &LF,
1752                                   const LSRUse &LU,
1753                                   SCEVExpander &Rewriter) const;
1754 
1755   Value *Expand(const LSRUse &LU, const LSRFixup &LF,
1756                 const Formula &F,
1757                 BasicBlock::iterator IP,
1758                 SCEVExpander &Rewriter,
1759                 SmallVectorImpl<WeakVH> &DeadInsts) const;
1760   void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF,
1761                      const Formula &F,
1762                      SCEVExpander &Rewriter,
1763                      SmallVectorImpl<WeakVH> &DeadInsts) const;
1764   void Rewrite(const LSRUse &LU, const LSRFixup &LF,
1765                const Formula &F,
1766                SCEVExpander &Rewriter,
1767                SmallVectorImpl<WeakVH> &DeadInsts) const;
1768   void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution);
1769 
1770 public:
1771   LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT,
1772               LoopInfo &LI, const TargetTransformInfo &TTI);
1773 
1774   bool getChanged() const { return Changed; }
1775 
1776   void print_factors_and_types(raw_ostream &OS) const;
1777   void print_fixups(raw_ostream &OS) const;
1778   void print_uses(raw_ostream &OS) const;
1779   void print(raw_ostream &OS) const;
1780   void dump() const;
1781 };
1782 
1783 }
1784 
1785 /// If IV is used in a int-to-float cast inside the loop then try to eliminate
1786 /// the cast operation.
1787 void LSRInstance::OptimizeShadowIV() {
1788   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
1789   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1790     return;
1791 
1792   for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
1793        UI != E; /* empty */) {
1794     IVUsers::const_iterator CandidateUI = UI;
1795     ++UI;
1796     Instruction *ShadowUse = CandidateUI->getUser();
1797     Type *DestTy = nullptr;
1798     bool IsSigned = false;
1799 
1800     /* If shadow use is a int->float cast then insert a second IV
1801        to eliminate this cast.
1802 
1803          for (unsigned i = 0; i < n; ++i)
1804            foo((double)i);
1805 
1806        is transformed into
1807 
1808          double d = 0.0;
1809          for (unsigned i = 0; i < n; ++i, ++d)
1810            foo(d);
1811     */
1812     if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) {
1813       IsSigned = false;
1814       DestTy = UCast->getDestTy();
1815     }
1816     else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) {
1817       IsSigned = true;
1818       DestTy = SCast->getDestTy();
1819     }
1820     if (!DestTy) continue;
1821 
1822     // If target does not support DestTy natively then do not apply
1823     // this transformation.
1824     if (!TTI.isTypeLegal(DestTy)) continue;
1825 
1826     PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
1827     if (!PH) continue;
1828     if (PH->getNumIncomingValues() != 2) continue;
1829 
1830     Type *SrcTy = PH->getType();
1831     int Mantissa = DestTy->getFPMantissaWidth();
1832     if (Mantissa == -1) continue;
1833     if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
1834       continue;
1835 
1836     unsigned Entry, Latch;
1837     if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
1838       Entry = 0;
1839       Latch = 1;
1840     } else {
1841       Entry = 1;
1842       Latch = 0;
1843     }
1844 
1845     ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
1846     if (!Init) continue;
1847     Constant *NewInit = ConstantFP::get(DestTy, IsSigned ?
1848                                         (double)Init->getSExtValue() :
1849                                         (double)Init->getZExtValue());
1850 
1851     BinaryOperator *Incr =
1852       dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
1853     if (!Incr) continue;
1854     if (Incr->getOpcode() != Instruction::Add
1855         && Incr->getOpcode() != Instruction::Sub)
1856       continue;
1857 
1858     /* Initialize new IV, double d = 0.0 in above example. */
1859     ConstantInt *C = nullptr;
1860     if (Incr->getOperand(0) == PH)
1861       C = dyn_cast<ConstantInt>(Incr->getOperand(1));
1862     else if (Incr->getOperand(1) == PH)
1863       C = dyn_cast<ConstantInt>(Incr->getOperand(0));
1864     else
1865       continue;
1866 
1867     if (!C) continue;
1868 
1869     // Ignore negative constants, as the code below doesn't handle them
1870     // correctly. TODO: Remove this restriction.
1871     if (!C->getValue().isStrictlyPositive()) continue;
1872 
1873     /* Add new PHINode. */
1874     PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH);
1875 
1876     /* create new increment. '++d' in above example. */
1877     Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
1878     BinaryOperator *NewIncr =
1879       BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
1880                                Instruction::FAdd : Instruction::FSub,
1881                              NewPH, CFP, "IV.S.next.", Incr);
1882 
1883     NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
1884     NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
1885 
1886     /* Remove cast operation */
1887     ShadowUse->replaceAllUsesWith(NewPH);
1888     ShadowUse->eraseFromParent();
1889     Changed = true;
1890     break;
1891   }
1892 }
1893 
1894 /// If Cond has an operand that is an expression of an IV, set the IV user and
1895 /// stride information and return true, otherwise return false.
1896 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
1897   for (IVStrideUse &U : IU)
1898     if (U.getUser() == Cond) {
1899       // NOTE: we could handle setcc instructions with multiple uses here, but
1900       // InstCombine does it as well for simple uses, it's not clear that it
1901       // occurs enough in real life to handle.
1902       CondUse = &U;
1903       return true;
1904     }
1905   return false;
1906 }
1907 
1908 /// Rewrite the loop's terminating condition if it uses a max computation.
1909 ///
1910 /// This is a narrow solution to a specific, but acute, problem. For loops
1911 /// like this:
1912 ///
1913 ///   i = 0;
1914 ///   do {
1915 ///     p[i] = 0.0;
1916 ///   } while (++i < n);
1917 ///
1918 /// the trip count isn't just 'n', because 'n' might not be positive. And
1919 /// unfortunately this can come up even for loops where the user didn't use
1920 /// a C do-while loop. For example, seemingly well-behaved top-test loops
1921 /// will commonly be lowered like this:
1922 //
1923 ///   if (n > 0) {
1924 ///     i = 0;
1925 ///     do {
1926 ///       p[i] = 0.0;
1927 ///     } while (++i < n);
1928 ///   }
1929 ///
1930 /// and then it's possible for subsequent optimization to obscure the if
1931 /// test in such a way that indvars can't find it.
1932 ///
1933 /// When indvars can't find the if test in loops like this, it creates a
1934 /// max expression, which allows it to give the loop a canonical
1935 /// induction variable:
1936 ///
1937 ///   i = 0;
1938 ///   max = n < 1 ? 1 : n;
1939 ///   do {
1940 ///     p[i] = 0.0;
1941 ///   } while (++i != max);
1942 ///
1943 /// Canonical induction variables are necessary because the loop passes
1944 /// are designed around them. The most obvious example of this is the
1945 /// LoopInfo analysis, which doesn't remember trip count values. It
1946 /// expects to be able to rediscover the trip count each time it is
1947 /// needed, and it does this using a simple analysis that only succeeds if
1948 /// the loop has a canonical induction variable.
1949 ///
1950 /// However, when it comes time to generate code, the maximum operation
1951 /// can be quite costly, especially if it's inside of an outer loop.
1952 ///
1953 /// This function solves this problem by detecting this type of loop and
1954 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
1955 /// the instructions for the maximum computation.
1956 ///
1957 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
1958   // Check that the loop matches the pattern we're looking for.
1959   if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
1960       Cond->getPredicate() != CmpInst::ICMP_NE)
1961     return Cond;
1962 
1963   SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
1964   if (!Sel || !Sel->hasOneUse()) return Cond;
1965 
1966   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
1967   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1968     return Cond;
1969   const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
1970 
1971   // Add one to the backedge-taken count to get the trip count.
1972   const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount);
1973   if (IterationCount != SE.getSCEV(Sel)) return Cond;
1974 
1975   // Check for a max calculation that matches the pattern. There's no check
1976   // for ICMP_ULE here because the comparison would be with zero, which
1977   // isn't interesting.
1978   CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1979   const SCEVNAryExpr *Max = nullptr;
1980   if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
1981     Pred = ICmpInst::ICMP_SLE;
1982     Max = S;
1983   } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
1984     Pred = ICmpInst::ICMP_SLT;
1985     Max = S;
1986   } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
1987     Pred = ICmpInst::ICMP_ULT;
1988     Max = U;
1989   } else {
1990     // No match; bail.
1991     return Cond;
1992   }
1993 
1994   // To handle a max with more than two operands, this optimization would
1995   // require additional checking and setup.
1996   if (Max->getNumOperands() != 2)
1997     return Cond;
1998 
1999   const SCEV *MaxLHS = Max->getOperand(0);
2000   const SCEV *MaxRHS = Max->getOperand(1);
2001 
2002   // ScalarEvolution canonicalizes constants to the left. For < and >, look
2003   // for a comparison with 1. For <= and >=, a comparison with zero.
2004   if (!MaxLHS ||
2005       (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
2006     return Cond;
2007 
2008   // Check the relevant induction variable for conformance to
2009   // the pattern.
2010   const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
2011   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
2012   if (!AR || !AR->isAffine() ||
2013       AR->getStart() != One ||
2014       AR->getStepRecurrence(SE) != One)
2015     return Cond;
2016 
2017   assert(AR->getLoop() == L &&
2018          "Loop condition operand is an addrec in a different loop!");
2019 
2020   // Check the right operand of the select, and remember it, as it will
2021   // be used in the new comparison instruction.
2022   Value *NewRHS = nullptr;
2023   if (ICmpInst::isTrueWhenEqual(Pred)) {
2024     // Look for n+1, and grab n.
2025     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
2026       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2027          if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2028            NewRHS = BO->getOperand(0);
2029     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
2030       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2031         if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2032           NewRHS = BO->getOperand(0);
2033     if (!NewRHS)
2034       return Cond;
2035   } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
2036     NewRHS = Sel->getOperand(1);
2037   else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
2038     NewRHS = Sel->getOperand(2);
2039   else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS))
2040     NewRHS = SU->getValue();
2041   else
2042     // Max doesn't match expected pattern.
2043     return Cond;
2044 
2045   // Determine the new comparison opcode. It may be signed or unsigned,
2046   // and the original comparison may be either equality or inequality.
2047   if (Cond->getPredicate() == CmpInst::ICMP_EQ)
2048     Pred = CmpInst::getInversePredicate(Pred);
2049 
2050   // Ok, everything looks ok to change the condition into an SLT or SGE and
2051   // delete the max calculation.
2052   ICmpInst *NewCond =
2053     new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
2054 
2055   // Delete the max calculation instructions.
2056   Cond->replaceAllUsesWith(NewCond);
2057   CondUse->setUser(NewCond);
2058   Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
2059   Cond->eraseFromParent();
2060   Sel->eraseFromParent();
2061   if (Cmp->use_empty())
2062     Cmp->eraseFromParent();
2063   return NewCond;
2064 }
2065 
2066 /// Change loop terminating condition to use the postinc iv when possible.
2067 void
2068 LSRInstance::OptimizeLoopTermCond() {
2069   SmallPtrSet<Instruction *, 4> PostIncs;
2070 
2071   // We need a different set of heuristics for rotated and non-rotated loops.
2072   // If a loop is rotated then the latch is also the backedge, so inserting
2073   // post-inc expressions just before the latch is ideal. To reduce live ranges
2074   // it also makes sense to rewrite terminating conditions to use post-inc
2075   // expressions.
2076   //
2077   // If the loop is not rotated then the latch is not a backedge; the latch
2078   // check is done in the loop head. Adding post-inc expressions before the
2079   // latch will cause overlapping live-ranges of pre-inc and post-inc expressions
2080   // in the loop body. In this case we do *not* want to use post-inc expressions
2081   // in the latch check, and we want to insert post-inc expressions before
2082   // the backedge.
2083   BasicBlock *LatchBlock = L->getLoopLatch();
2084   SmallVector<BasicBlock*, 8> ExitingBlocks;
2085   L->getExitingBlocks(ExitingBlocks);
2086   if (llvm::all_of(ExitingBlocks, [&LatchBlock](const BasicBlock *BB) {
2087         return LatchBlock != BB;
2088       })) {
2089     // The backedge doesn't exit the loop; treat this as a head-tested loop.
2090     IVIncInsertPos = LatchBlock->getTerminator();
2091     return;
2092   }
2093 
2094   // Otherwise treat this as a rotated loop.
2095   for (BasicBlock *ExitingBlock : ExitingBlocks) {
2096 
2097     // Get the terminating condition for the loop if possible.  If we
2098     // can, we want to change it to use a post-incremented version of its
2099     // induction variable, to allow coalescing the live ranges for the IV into
2100     // one register value.
2101 
2102     BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
2103     if (!TermBr)
2104       continue;
2105     // FIXME: Overly conservative, termination condition could be an 'or' etc..
2106     if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
2107       continue;
2108 
2109     // Search IVUsesByStride to find Cond's IVUse if there is one.
2110     IVStrideUse *CondUse = nullptr;
2111     ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
2112     if (!FindIVUserForCond(Cond, CondUse))
2113       continue;
2114 
2115     // If the trip count is computed in terms of a max (due to ScalarEvolution
2116     // being unable to find a sufficient guard, for example), change the loop
2117     // comparison to use SLT or ULT instead of NE.
2118     // One consequence of doing this now is that it disrupts the count-down
2119     // optimization. That's not always a bad thing though, because in such
2120     // cases it may still be worthwhile to avoid a max.
2121     Cond = OptimizeMax(Cond, CondUse);
2122 
2123     // If this exiting block dominates the latch block, it may also use
2124     // the post-inc value if it won't be shared with other uses.
2125     // Check for dominance.
2126     if (!DT.dominates(ExitingBlock, LatchBlock))
2127       continue;
2128 
2129     // Conservatively avoid trying to use the post-inc value in non-latch
2130     // exits if there may be pre-inc users in intervening blocks.
2131     if (LatchBlock != ExitingBlock)
2132       for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
2133         // Test if the use is reachable from the exiting block. This dominator
2134         // query is a conservative approximation of reachability.
2135         if (&*UI != CondUse &&
2136             !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
2137           // Conservatively assume there may be reuse if the quotient of their
2138           // strides could be a legal scale.
2139           const SCEV *A = IU.getStride(*CondUse, L);
2140           const SCEV *B = IU.getStride(*UI, L);
2141           if (!A || !B) continue;
2142           if (SE.getTypeSizeInBits(A->getType()) !=
2143               SE.getTypeSizeInBits(B->getType())) {
2144             if (SE.getTypeSizeInBits(A->getType()) >
2145                 SE.getTypeSizeInBits(B->getType()))
2146               B = SE.getSignExtendExpr(B, A->getType());
2147             else
2148               A = SE.getSignExtendExpr(A, B->getType());
2149           }
2150           if (const SCEVConstant *D =
2151                 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
2152             const ConstantInt *C = D->getValue();
2153             // Stride of one or negative one can have reuse with non-addresses.
2154             if (C->isOne() || C->isAllOnesValue())
2155               goto decline_post_inc;
2156             // Avoid weird situations.
2157             if (C->getValue().getMinSignedBits() >= 64 ||
2158                 C->getValue().isMinSignedValue())
2159               goto decline_post_inc;
2160             // Check for possible scaled-address reuse.
2161             MemAccessTy AccessTy = getAccessType(UI->getUser());
2162             int64_t Scale = C->getSExtValue();
2163             if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2164                                           /*BaseOffset=*/0,
2165                                           /*HasBaseReg=*/false, Scale,
2166                                           AccessTy.AddrSpace))
2167               goto decline_post_inc;
2168             Scale = -Scale;
2169             if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2170                                           /*BaseOffset=*/0,
2171                                           /*HasBaseReg=*/false, Scale,
2172                                           AccessTy.AddrSpace))
2173               goto decline_post_inc;
2174           }
2175         }
2176 
2177     DEBUG(dbgs() << "  Change loop exiting icmp to use postinc iv: "
2178                  << *Cond << '\n');
2179 
2180     // It's possible for the setcc instruction to be anywhere in the loop, and
2181     // possible for it to have multiple users.  If it is not immediately before
2182     // the exiting block branch, move it.
2183     if (&*++BasicBlock::iterator(Cond) != TermBr) {
2184       if (Cond->hasOneUse()) {
2185         Cond->moveBefore(TermBr);
2186       } else {
2187         // Clone the terminating condition and insert into the loopend.
2188         ICmpInst *OldCond = Cond;
2189         Cond = cast<ICmpInst>(Cond->clone());
2190         Cond->setName(L->getHeader()->getName() + ".termcond");
2191         ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond);
2192 
2193         // Clone the IVUse, as the old use still exists!
2194         CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
2195         TermBr->replaceUsesOfWith(OldCond, Cond);
2196       }
2197     }
2198 
2199     // If we get to here, we know that we can transform the setcc instruction to
2200     // use the post-incremented version of the IV, allowing us to coalesce the
2201     // live ranges for the IV correctly.
2202     CondUse->transformToPostInc(L);
2203     Changed = true;
2204 
2205     PostIncs.insert(Cond);
2206   decline_post_inc:;
2207   }
2208 
2209   // Determine an insertion point for the loop induction variable increment. It
2210   // must dominate all the post-inc comparisons we just set up, and it must
2211   // dominate the loop latch edge.
2212   IVIncInsertPos = L->getLoopLatch()->getTerminator();
2213   for (Instruction *Inst : PostIncs) {
2214     BasicBlock *BB =
2215       DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
2216                                     Inst->getParent());
2217     if (BB == Inst->getParent())
2218       IVIncInsertPos = Inst;
2219     else if (BB != IVIncInsertPos->getParent())
2220       IVIncInsertPos = BB->getTerminator();
2221   }
2222 }
2223 
2224 /// Determine if the given use can accommodate a fixup at the given offset and
2225 /// other details. If so, update the use and return true.
2226 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset,
2227                                      bool HasBaseReg, LSRUse::KindType Kind,
2228                                      MemAccessTy AccessTy) {
2229   int64_t NewMinOffset = LU.MinOffset;
2230   int64_t NewMaxOffset = LU.MaxOffset;
2231   MemAccessTy NewAccessTy = AccessTy;
2232 
2233   // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
2234   // something conservative, however this can pessimize in the case that one of
2235   // the uses will have all its uses outside the loop, for example.
2236   if (LU.Kind != Kind)
2237     return false;
2238 
2239   // Check for a mismatched access type, and fall back conservatively as needed.
2240   // TODO: Be less conservative when the type is similar and can use the same
2241   // addressing modes.
2242   if (Kind == LSRUse::Address) {
2243     if (AccessTy != LU.AccessTy)
2244       NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext());
2245   }
2246 
2247   // Conservatively assume HasBaseReg is true for now.
2248   if (NewOffset < LU.MinOffset) {
2249     if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2250                           LU.MaxOffset - NewOffset, HasBaseReg))
2251       return false;
2252     NewMinOffset = NewOffset;
2253   } else if (NewOffset > LU.MaxOffset) {
2254     if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2255                           NewOffset - LU.MinOffset, HasBaseReg))
2256       return false;
2257     NewMaxOffset = NewOffset;
2258   }
2259 
2260   // Update the use.
2261   LU.MinOffset = NewMinOffset;
2262   LU.MaxOffset = NewMaxOffset;
2263   LU.AccessTy = NewAccessTy;
2264   return true;
2265 }
2266 
2267 /// Return an LSRUse index and an offset value for a fixup which needs the given
2268 /// expression, with the given kind and optional access type.  Either reuse an
2269 /// existing use or create a new one, as needed.
2270 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr,
2271                                                LSRUse::KindType Kind,
2272                                                MemAccessTy AccessTy) {
2273   const SCEV *Copy = Expr;
2274   int64_t Offset = ExtractImmediate(Expr, SE);
2275 
2276   // Basic uses can't accept any offset, for example.
2277   if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr,
2278                         Offset, /*HasBaseReg=*/ true)) {
2279     Expr = Copy;
2280     Offset = 0;
2281   }
2282 
2283   std::pair<UseMapTy::iterator, bool> P =
2284     UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0));
2285   if (!P.second) {
2286     // A use already existed with this base.
2287     size_t LUIdx = P.first->second;
2288     LSRUse &LU = Uses[LUIdx];
2289     if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
2290       // Reuse this use.
2291       return std::make_pair(LUIdx, Offset);
2292   }
2293 
2294   // Create a new use.
2295   size_t LUIdx = Uses.size();
2296   P.first->second = LUIdx;
2297   Uses.push_back(LSRUse(Kind, AccessTy));
2298   LSRUse &LU = Uses[LUIdx];
2299 
2300   LU.MinOffset = Offset;
2301   LU.MaxOffset = Offset;
2302   return std::make_pair(LUIdx, Offset);
2303 }
2304 
2305 /// Delete the given use from the Uses list.
2306 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) {
2307   if (&LU != &Uses.back())
2308     std::swap(LU, Uses.back());
2309   Uses.pop_back();
2310 
2311   // Update RegUses.
2312   RegUses.swapAndDropUse(LUIdx, Uses.size());
2313 }
2314 
2315 /// Look for a use distinct from OrigLU which is has a formula that has the same
2316 /// registers as the given formula.
2317 LSRUse *
2318 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
2319                                        const LSRUse &OrigLU) {
2320   // Search all uses for the formula. This could be more clever.
2321   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2322     LSRUse &LU = Uses[LUIdx];
2323     // Check whether this use is close enough to OrigLU, to see whether it's
2324     // worthwhile looking through its formulae.
2325     // Ignore ICmpZero uses because they may contain formulae generated by
2326     // GenerateICmpZeroScales, in which case adding fixup offsets may
2327     // be invalid.
2328     if (&LU != &OrigLU &&
2329         LU.Kind != LSRUse::ICmpZero &&
2330         LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
2331         LU.WidestFixupType == OrigLU.WidestFixupType &&
2332         LU.HasFormulaWithSameRegs(OrigF)) {
2333       // Scan through this use's formulae.
2334       for (const Formula &F : LU.Formulae) {
2335         // Check to see if this formula has the same registers and symbols
2336         // as OrigF.
2337         if (F.BaseRegs == OrigF.BaseRegs &&
2338             F.ScaledReg == OrigF.ScaledReg &&
2339             F.BaseGV == OrigF.BaseGV &&
2340             F.Scale == OrigF.Scale &&
2341             F.UnfoldedOffset == OrigF.UnfoldedOffset) {
2342           if (F.BaseOffset == 0)
2343             return &LU;
2344           // This is the formula where all the registers and symbols matched;
2345           // there aren't going to be any others. Since we declined it, we
2346           // can skip the rest of the formulae and proceed to the next LSRUse.
2347           break;
2348         }
2349       }
2350     }
2351   }
2352 
2353   // Nothing looked good.
2354   return nullptr;
2355 }
2356 
2357 void LSRInstance::CollectInterestingTypesAndFactors() {
2358   SmallSetVector<const SCEV *, 4> Strides;
2359 
2360   // Collect interesting types and strides.
2361   SmallVector<const SCEV *, 4> Worklist;
2362   for (const IVStrideUse &U : IU) {
2363     const SCEV *Expr = IU.getExpr(U);
2364 
2365     // Collect interesting types.
2366     Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
2367 
2368     // Add strides for mentioned loops.
2369     Worklist.push_back(Expr);
2370     do {
2371       const SCEV *S = Worklist.pop_back_val();
2372       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2373         if (AR->getLoop() == L)
2374           Strides.insert(AR->getStepRecurrence(SE));
2375         Worklist.push_back(AR->getStart());
2376       } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2377         Worklist.append(Add->op_begin(), Add->op_end());
2378       }
2379     } while (!Worklist.empty());
2380   }
2381 
2382   // Compute interesting factors from the set of interesting strides.
2383   for (SmallSetVector<const SCEV *, 4>::const_iterator
2384        I = Strides.begin(), E = Strides.end(); I != E; ++I)
2385     for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
2386          std::next(I); NewStrideIter != E; ++NewStrideIter) {
2387       const SCEV *OldStride = *I;
2388       const SCEV *NewStride = *NewStrideIter;
2389 
2390       if (SE.getTypeSizeInBits(OldStride->getType()) !=
2391           SE.getTypeSizeInBits(NewStride->getType())) {
2392         if (SE.getTypeSizeInBits(OldStride->getType()) >
2393             SE.getTypeSizeInBits(NewStride->getType()))
2394           NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
2395         else
2396           OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
2397       }
2398       if (const SCEVConstant *Factor =
2399             dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
2400                                                         SE, true))) {
2401         if (Factor->getAPInt().getMinSignedBits() <= 64)
2402           Factors.insert(Factor->getAPInt().getSExtValue());
2403       } else if (const SCEVConstant *Factor =
2404                    dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
2405                                                                NewStride,
2406                                                                SE, true))) {
2407         if (Factor->getAPInt().getMinSignedBits() <= 64)
2408           Factors.insert(Factor->getAPInt().getSExtValue());
2409       }
2410     }
2411 
2412   // If all uses use the same type, don't bother looking for truncation-based
2413   // reuse.
2414   if (Types.size() == 1)
2415     Types.clear();
2416 
2417   DEBUG(print_factors_and_types(dbgs()));
2418 }
2419 
2420 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in
2421 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to
2422 /// IVStrideUses, we could partially skip this.
2423 static User::op_iterator
2424 findIVOperand(User::op_iterator OI, User::op_iterator OE,
2425               Loop *L, ScalarEvolution &SE) {
2426   for(; OI != OE; ++OI) {
2427     if (Instruction *Oper = dyn_cast<Instruction>(*OI)) {
2428       if (!SE.isSCEVable(Oper->getType()))
2429         continue;
2430 
2431       if (const SCEVAddRecExpr *AR =
2432           dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) {
2433         if (AR->getLoop() == L)
2434           break;
2435       }
2436     }
2437   }
2438   return OI;
2439 }
2440 
2441 /// IVChain logic must consistenctly peek base TruncInst operands, so wrap it in
2442 /// a convenient helper.
2443 static Value *getWideOperand(Value *Oper) {
2444   if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper))
2445     return Trunc->getOperand(0);
2446   return Oper;
2447 }
2448 
2449 /// Return true if we allow an IV chain to include both types.
2450 static bool isCompatibleIVType(Value *LVal, Value *RVal) {
2451   Type *LType = LVal->getType();
2452   Type *RType = RVal->getType();
2453   return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy());
2454 }
2455 
2456 /// Return an approximation of this SCEV expression's "base", or NULL for any
2457 /// constant. Returning the expression itself is conservative. Returning a
2458 /// deeper subexpression is more precise and valid as long as it isn't less
2459 /// complex than another subexpression. For expressions involving multiple
2460 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids
2461 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i],
2462 /// IVInc==b-a.
2463 ///
2464 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost
2465 /// SCEVUnknown, we simply return the rightmost SCEV operand.
2466 static const SCEV *getExprBase(const SCEV *S) {
2467   switch (S->getSCEVType()) {
2468   default: // uncluding scUnknown.
2469     return S;
2470   case scConstant:
2471     return nullptr;
2472   case scTruncate:
2473     return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand());
2474   case scZeroExtend:
2475     return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand());
2476   case scSignExtend:
2477     return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand());
2478   case scAddExpr: {
2479     // Skip over scaled operands (scMulExpr) to follow add operands as long as
2480     // there's nothing more complex.
2481     // FIXME: not sure if we want to recognize negation.
2482     const SCEVAddExpr *Add = cast<SCEVAddExpr>(S);
2483     for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()),
2484            E(Add->op_begin()); I != E; ++I) {
2485       const SCEV *SubExpr = *I;
2486       if (SubExpr->getSCEVType() == scAddExpr)
2487         return getExprBase(SubExpr);
2488 
2489       if (SubExpr->getSCEVType() != scMulExpr)
2490         return SubExpr;
2491     }
2492     return S; // all operands are scaled, be conservative.
2493   }
2494   case scAddRecExpr:
2495     return getExprBase(cast<SCEVAddRecExpr>(S)->getStart());
2496   }
2497 }
2498 
2499 /// Return true if the chain increment is profitable to expand into a loop
2500 /// invariant value, which may require its own register. A profitable chain
2501 /// increment will be an offset relative to the same base. We allow such offsets
2502 /// to potentially be used as chain increment as long as it's not obviously
2503 /// expensive to expand using real instructions.
2504 bool IVChain::isProfitableIncrement(const SCEV *OperExpr,
2505                                     const SCEV *IncExpr,
2506                                     ScalarEvolution &SE) {
2507   // Aggressively form chains when -stress-ivchain.
2508   if (StressIVChain)
2509     return true;
2510 
2511   // Do not replace a constant offset from IV head with a nonconstant IV
2512   // increment.
2513   if (!isa<SCEVConstant>(IncExpr)) {
2514     const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand));
2515     if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr)))
2516       return 0;
2517   }
2518 
2519   SmallPtrSet<const SCEV*, 8> Processed;
2520   return !isHighCostExpansion(IncExpr, Processed, SE);
2521 }
2522 
2523 /// Return true if the number of registers needed for the chain is estimated to
2524 /// be less than the number required for the individual IV users. First prohibit
2525 /// any IV users that keep the IV live across increments (the Users set should
2526 /// be empty). Next count the number and type of increments in the chain.
2527 ///
2528 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't
2529 /// effectively use postinc addressing modes. Only consider it profitable it the
2530 /// increments can be computed in fewer registers when chained.
2531 ///
2532 /// TODO: Consider IVInc free if it's already used in another chains.
2533 static bool
2534 isProfitableChain(IVChain &Chain, SmallPtrSetImpl<Instruction*> &Users,
2535                   ScalarEvolution &SE, const TargetTransformInfo &TTI) {
2536   if (StressIVChain)
2537     return true;
2538 
2539   if (!Chain.hasIncs())
2540     return false;
2541 
2542   if (!Users.empty()) {
2543     DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n";
2544           for (Instruction *Inst : Users) {
2545             dbgs() << "  " << *Inst << "\n";
2546           });
2547     return false;
2548   }
2549   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
2550 
2551   // The chain itself may require a register, so intialize cost to 1.
2552   int cost = 1;
2553 
2554   // A complete chain likely eliminates the need for keeping the original IV in
2555   // a register. LSR does not currently know how to form a complete chain unless
2556   // the header phi already exists.
2557   if (isa<PHINode>(Chain.tailUserInst())
2558       && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) {
2559     --cost;
2560   }
2561   const SCEV *LastIncExpr = nullptr;
2562   unsigned NumConstIncrements = 0;
2563   unsigned NumVarIncrements = 0;
2564   unsigned NumReusedIncrements = 0;
2565   for (const IVInc &Inc : Chain) {
2566     if (Inc.IncExpr->isZero())
2567       continue;
2568 
2569     // Incrementing by zero or some constant is neutral. We assume constants can
2570     // be folded into an addressing mode or an add's immediate operand.
2571     if (isa<SCEVConstant>(Inc.IncExpr)) {
2572       ++NumConstIncrements;
2573       continue;
2574     }
2575 
2576     if (Inc.IncExpr == LastIncExpr)
2577       ++NumReusedIncrements;
2578     else
2579       ++NumVarIncrements;
2580 
2581     LastIncExpr = Inc.IncExpr;
2582   }
2583   // An IV chain with a single increment is handled by LSR's postinc
2584   // uses. However, a chain with multiple increments requires keeping the IV's
2585   // value live longer than it needs to be if chained.
2586   if (NumConstIncrements > 1)
2587     --cost;
2588 
2589   // Materializing increment expressions in the preheader that didn't exist in
2590   // the original code may cost a register. For example, sign-extended array
2591   // indices can produce ridiculous increments like this:
2592   // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64)))
2593   cost += NumVarIncrements;
2594 
2595   // Reusing variable increments likely saves a register to hold the multiple of
2596   // the stride.
2597   cost -= NumReusedIncrements;
2598 
2599   DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost
2600                << "\n");
2601 
2602   return cost < 0;
2603 }
2604 
2605 /// Add this IV user to an existing chain or make it the head of a new chain.
2606 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper,
2607                                    SmallVectorImpl<ChainUsers> &ChainUsersVec) {
2608   // When IVs are used as types of varying widths, they are generally converted
2609   // to a wider type with some uses remaining narrow under a (free) trunc.
2610   Value *const NextIV = getWideOperand(IVOper);
2611   const SCEV *const OperExpr = SE.getSCEV(NextIV);
2612   const SCEV *const OperExprBase = getExprBase(OperExpr);
2613 
2614   // Visit all existing chains. Check if its IVOper can be computed as a
2615   // profitable loop invariant increment from the last link in the Chain.
2616   unsigned ChainIdx = 0, NChains = IVChainVec.size();
2617   const SCEV *LastIncExpr = nullptr;
2618   for (; ChainIdx < NChains; ++ChainIdx) {
2619     IVChain &Chain = IVChainVec[ChainIdx];
2620 
2621     // Prune the solution space aggressively by checking that both IV operands
2622     // are expressions that operate on the same unscaled SCEVUnknown. This
2623     // "base" will be canceled by the subsequent getMinusSCEV call. Checking
2624     // first avoids creating extra SCEV expressions.
2625     if (!StressIVChain && Chain.ExprBase != OperExprBase)
2626       continue;
2627 
2628     Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand);
2629     if (!isCompatibleIVType(PrevIV, NextIV))
2630       continue;
2631 
2632     // A phi node terminates a chain.
2633     if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst()))
2634       continue;
2635 
2636     // The increment must be loop-invariant so it can be kept in a register.
2637     const SCEV *PrevExpr = SE.getSCEV(PrevIV);
2638     const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr);
2639     if (!SE.isLoopInvariant(IncExpr, L))
2640       continue;
2641 
2642     if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) {
2643       LastIncExpr = IncExpr;
2644       break;
2645     }
2646   }
2647   // If we haven't found a chain, create a new one, unless we hit the max. Don't
2648   // bother for phi nodes, because they must be last in the chain.
2649   if (ChainIdx == NChains) {
2650     if (isa<PHINode>(UserInst))
2651       return;
2652     if (NChains >= MaxChains && !StressIVChain) {
2653       DEBUG(dbgs() << "IV Chain Limit\n");
2654       return;
2655     }
2656     LastIncExpr = OperExpr;
2657     // IVUsers may have skipped over sign/zero extensions. We don't currently
2658     // attempt to form chains involving extensions unless they can be hoisted
2659     // into this loop's AddRec.
2660     if (!isa<SCEVAddRecExpr>(LastIncExpr))
2661       return;
2662     ++NChains;
2663     IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr),
2664                                  OperExprBase));
2665     ChainUsersVec.resize(NChains);
2666     DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst
2667                  << ") IV=" << *LastIncExpr << "\n");
2668   } else {
2669     DEBUG(dbgs() << "IV Chain#" << ChainIdx << "  Inc: (" << *UserInst
2670                  << ") IV+" << *LastIncExpr << "\n");
2671     // Add this IV user to the end of the chain.
2672     IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr));
2673   }
2674   IVChain &Chain = IVChainVec[ChainIdx];
2675 
2676   SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers;
2677   // This chain's NearUsers become FarUsers.
2678   if (!LastIncExpr->isZero()) {
2679     ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(),
2680                                             NearUsers.end());
2681     NearUsers.clear();
2682   }
2683 
2684   // All other uses of IVOperand become near uses of the chain.
2685   // We currently ignore intermediate values within SCEV expressions, assuming
2686   // they will eventually be used be the current chain, or can be computed
2687   // from one of the chain increments. To be more precise we could
2688   // transitively follow its user and only add leaf IV users to the set.
2689   for (User *U : IVOper->users()) {
2690     Instruction *OtherUse = dyn_cast<Instruction>(U);
2691     if (!OtherUse)
2692       continue;
2693     // Uses in the chain will no longer be uses if the chain is formed.
2694     // Include the head of the chain in this iteration (not Chain.begin()).
2695     IVChain::const_iterator IncIter = Chain.Incs.begin();
2696     IVChain::const_iterator IncEnd = Chain.Incs.end();
2697     for( ; IncIter != IncEnd; ++IncIter) {
2698       if (IncIter->UserInst == OtherUse)
2699         break;
2700     }
2701     if (IncIter != IncEnd)
2702       continue;
2703 
2704     if (SE.isSCEVable(OtherUse->getType())
2705         && !isa<SCEVUnknown>(SE.getSCEV(OtherUse))
2706         && IU.isIVUserOrOperand(OtherUse)) {
2707       continue;
2708     }
2709     NearUsers.insert(OtherUse);
2710   }
2711 
2712   // Since this user is part of the chain, it's no longer considered a use
2713   // of the chain.
2714   ChainUsersVec[ChainIdx].FarUsers.erase(UserInst);
2715 }
2716 
2717 /// Populate the vector of Chains.
2718 ///
2719 /// This decreases ILP at the architecture level. Targets with ample registers,
2720 /// multiple memory ports, and no register renaming probably don't want
2721 /// this. However, such targets should probably disable LSR altogether.
2722 ///
2723 /// The job of LSR is to make a reasonable choice of induction variables across
2724 /// the loop. Subsequent passes can easily "unchain" computation exposing more
2725 /// ILP *within the loop* if the target wants it.
2726 ///
2727 /// Finding the best IV chain is potentially a scheduling problem. Since LSR
2728 /// will not reorder memory operations, it will recognize this as a chain, but
2729 /// will generate redundant IV increments. Ideally this would be corrected later
2730 /// by a smart scheduler:
2731 ///        = A[i]
2732 ///        = A[i+x]
2733 /// A[i]   =
2734 /// A[i+x] =
2735 ///
2736 /// TODO: Walk the entire domtree within this loop, not just the path to the
2737 /// loop latch. This will discover chains on side paths, but requires
2738 /// maintaining multiple copies of the Chains state.
2739 void LSRInstance::CollectChains() {
2740   DEBUG(dbgs() << "Collecting IV Chains.\n");
2741   SmallVector<ChainUsers, 8> ChainUsersVec;
2742 
2743   SmallVector<BasicBlock *,8> LatchPath;
2744   BasicBlock *LoopHeader = L->getHeader();
2745   for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch());
2746        Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) {
2747     LatchPath.push_back(Rung->getBlock());
2748   }
2749   LatchPath.push_back(LoopHeader);
2750 
2751   // Walk the instruction stream from the loop header to the loop latch.
2752   for (BasicBlock *BB : reverse(LatchPath)) {
2753     for (Instruction &I : *BB) {
2754       // Skip instructions that weren't seen by IVUsers analysis.
2755       if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I))
2756         continue;
2757 
2758       // Ignore users that are part of a SCEV expression. This way we only
2759       // consider leaf IV Users. This effectively rediscovers a portion of
2760       // IVUsers analysis but in program order this time.
2761       if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I)))
2762         continue;
2763 
2764       // Remove this instruction from any NearUsers set it may be in.
2765       for (unsigned ChainIdx = 0, NChains = IVChainVec.size();
2766            ChainIdx < NChains; ++ChainIdx) {
2767         ChainUsersVec[ChainIdx].NearUsers.erase(&I);
2768       }
2769       // Search for operands that can be chained.
2770       SmallPtrSet<Instruction*, 4> UniqueOperands;
2771       User::op_iterator IVOpEnd = I.op_end();
2772       User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE);
2773       while (IVOpIter != IVOpEnd) {
2774         Instruction *IVOpInst = cast<Instruction>(*IVOpIter);
2775         if (UniqueOperands.insert(IVOpInst).second)
2776           ChainInstruction(&I, IVOpInst, ChainUsersVec);
2777         IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
2778       }
2779     } // Continue walking down the instructions.
2780   } // Continue walking down the domtree.
2781   // Visit phi backedges to determine if the chain can generate the IV postinc.
2782   for (BasicBlock::iterator I = L->getHeader()->begin();
2783        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
2784     if (!SE.isSCEVable(PN->getType()))
2785       continue;
2786 
2787     Instruction *IncV =
2788       dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch()));
2789     if (IncV)
2790       ChainInstruction(PN, IncV, ChainUsersVec);
2791   }
2792   // Remove any unprofitable chains.
2793   unsigned ChainIdx = 0;
2794   for (unsigned UsersIdx = 0, NChains = IVChainVec.size();
2795        UsersIdx < NChains; ++UsersIdx) {
2796     if (!isProfitableChain(IVChainVec[UsersIdx],
2797                            ChainUsersVec[UsersIdx].FarUsers, SE, TTI))
2798       continue;
2799     // Preserve the chain at UsesIdx.
2800     if (ChainIdx != UsersIdx)
2801       IVChainVec[ChainIdx] = IVChainVec[UsersIdx];
2802     FinalizeChain(IVChainVec[ChainIdx]);
2803     ++ChainIdx;
2804   }
2805   IVChainVec.resize(ChainIdx);
2806 }
2807 
2808 void LSRInstance::FinalizeChain(IVChain &Chain) {
2809   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
2810   DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n");
2811 
2812   for (const IVInc &Inc : Chain) {
2813     DEBUG(dbgs() << "        Inc: " << Inc.UserInst << "\n");
2814     auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand);
2815     assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand");
2816     IVIncSet.insert(UseI);
2817   }
2818 }
2819 
2820 /// Return true if the IVInc can be folded into an addressing mode.
2821 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst,
2822                              Value *Operand, const TargetTransformInfo &TTI) {
2823   const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr);
2824   if (!IncConst || !isAddressUse(UserInst, Operand))
2825     return false;
2826 
2827   if (IncConst->getAPInt().getMinSignedBits() > 64)
2828     return false;
2829 
2830   MemAccessTy AccessTy = getAccessType(UserInst);
2831   int64_t IncOffset = IncConst->getValue()->getSExtValue();
2832   if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr,
2833                         IncOffset, /*HaseBaseReg=*/false))
2834     return false;
2835 
2836   return true;
2837 }
2838 
2839 /// Generate an add or subtract for each IVInc in a chain to materialize the IV
2840 /// user's operand from the previous IV user's operand.
2841 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
2842                                   SmallVectorImpl<WeakVH> &DeadInsts) {
2843   // Find the new IVOperand for the head of the chain. It may have been replaced
2844   // by LSR.
2845   const IVInc &Head = Chain.Incs[0];
2846   User::op_iterator IVOpEnd = Head.UserInst->op_end();
2847   // findIVOperand returns IVOpEnd if it can no longer find a valid IV user.
2848   User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(),
2849                                              IVOpEnd, L, SE);
2850   Value *IVSrc = nullptr;
2851   while (IVOpIter != IVOpEnd) {
2852     IVSrc = getWideOperand(*IVOpIter);
2853 
2854     // If this operand computes the expression that the chain needs, we may use
2855     // it. (Check this after setting IVSrc which is used below.)
2856     //
2857     // Note that if Head.IncExpr is wider than IVSrc, then this phi is too
2858     // narrow for the chain, so we can no longer use it. We do allow using a
2859     // wider phi, assuming the LSR checked for free truncation. In that case we
2860     // should already have a truncate on this operand such that
2861     // getSCEV(IVSrc) == IncExpr.
2862     if (SE.getSCEV(*IVOpIter) == Head.IncExpr
2863         || SE.getSCEV(IVSrc) == Head.IncExpr) {
2864       break;
2865     }
2866     IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
2867   }
2868   if (IVOpIter == IVOpEnd) {
2869     // Gracefully give up on this chain.
2870     DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n");
2871     return;
2872   }
2873 
2874   DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n");
2875   Type *IVTy = IVSrc->getType();
2876   Type *IntTy = SE.getEffectiveSCEVType(IVTy);
2877   const SCEV *LeftOverExpr = nullptr;
2878   for (const IVInc &Inc : Chain) {
2879     Instruction *InsertPt = Inc.UserInst;
2880     if (isa<PHINode>(InsertPt))
2881       InsertPt = L->getLoopLatch()->getTerminator();
2882 
2883     // IVOper will replace the current IV User's operand. IVSrc is the IV
2884     // value currently held in a register.
2885     Value *IVOper = IVSrc;
2886     if (!Inc.IncExpr->isZero()) {
2887       // IncExpr was the result of subtraction of two narrow values, so must
2888       // be signed.
2889       const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy);
2890       LeftOverExpr = LeftOverExpr ?
2891         SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr;
2892     }
2893     if (LeftOverExpr && !LeftOverExpr->isZero()) {
2894       // Expand the IV increment.
2895       Rewriter.clearPostInc();
2896       Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt);
2897       const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc),
2898                                              SE.getUnknown(IncV));
2899       IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt);
2900 
2901       // If an IV increment can't be folded, use it as the next IV value.
2902       if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) {
2903         assert(IVTy == IVOper->getType() && "inconsistent IV increment type");
2904         IVSrc = IVOper;
2905         LeftOverExpr = nullptr;
2906       }
2907     }
2908     Type *OperTy = Inc.IVOperand->getType();
2909     if (IVTy != OperTy) {
2910       assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) &&
2911              "cannot extend a chained IV");
2912       IRBuilder<> Builder(InsertPt);
2913       IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain");
2914     }
2915     Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper);
2916     DeadInsts.emplace_back(Inc.IVOperand);
2917   }
2918   // If LSR created a new, wider phi, we may also replace its postinc. We only
2919   // do this if we also found a wide value for the head of the chain.
2920   if (isa<PHINode>(Chain.tailUserInst())) {
2921     for (BasicBlock::iterator I = L->getHeader()->begin();
2922          PHINode *Phi = dyn_cast<PHINode>(I); ++I) {
2923       if (!isCompatibleIVType(Phi, IVSrc))
2924         continue;
2925       Instruction *PostIncV = dyn_cast<Instruction>(
2926         Phi->getIncomingValueForBlock(L->getLoopLatch()));
2927       if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc)))
2928         continue;
2929       Value *IVOper = IVSrc;
2930       Type *PostIncTy = PostIncV->getType();
2931       if (IVTy != PostIncTy) {
2932         assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types");
2933         IRBuilder<> Builder(L->getLoopLatch()->getTerminator());
2934         Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc());
2935         IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain");
2936       }
2937       Phi->replaceUsesOfWith(PostIncV, IVOper);
2938       DeadInsts.emplace_back(PostIncV);
2939     }
2940   }
2941 }
2942 
2943 void LSRInstance::CollectFixupsAndInitialFormulae() {
2944   for (const IVStrideUse &U : IU) {
2945     Instruction *UserInst = U.getUser();
2946     // Skip IV users that are part of profitable IV Chains.
2947     User::op_iterator UseI =
2948         find(UserInst->operands(), U.getOperandValToReplace());
2949     assert(UseI != UserInst->op_end() && "cannot find IV operand");
2950     if (IVIncSet.count(UseI))
2951       continue;
2952 
2953     LSRUse::KindType Kind = LSRUse::Basic;
2954     MemAccessTy AccessTy;
2955     if (isAddressUse(UserInst, U.getOperandValToReplace())) {
2956       Kind = LSRUse::Address;
2957       AccessTy = getAccessType(UserInst);
2958     }
2959 
2960     const SCEV *S = IU.getExpr(U);
2961     PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops();
2962 
2963     // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
2964     // (N - i == 0), and this allows (N - i) to be the expression that we work
2965     // with rather than just N or i, so we can consider the register
2966     // requirements for both N and i at the same time. Limiting this code to
2967     // equality icmps is not a problem because all interesting loops use
2968     // equality icmps, thanks to IndVarSimplify.
2969     if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst))
2970       if (CI->isEquality()) {
2971         // Swap the operands if needed to put the OperandValToReplace on the
2972         // left, for consistency.
2973         Value *NV = CI->getOperand(1);
2974         if (NV == U.getOperandValToReplace()) {
2975           CI->setOperand(1, CI->getOperand(0));
2976           CI->setOperand(0, NV);
2977           NV = CI->getOperand(1);
2978           Changed = true;
2979         }
2980 
2981         // x == y  -->  x - y == 0
2982         const SCEV *N = SE.getSCEV(NV);
2983         if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) {
2984           // S is normalized, so normalize N before folding it into S
2985           // to keep the result normalized.
2986           N = TransformForPostIncUse(Normalize, N, CI, nullptr,
2987                                      TmpPostIncLoops, SE, DT);
2988           Kind = LSRUse::ICmpZero;
2989           S = SE.getMinusSCEV(N, S);
2990         }
2991 
2992         // -1 and the negations of all interesting strides (except the negation
2993         // of -1) are now also interesting.
2994         for (size_t i = 0, e = Factors.size(); i != e; ++i)
2995           if (Factors[i] != -1)
2996             Factors.insert(-(uint64_t)Factors[i]);
2997         Factors.insert(-1);
2998       }
2999 
3000     // Get or create an LSRUse.
3001     std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
3002     size_t LUIdx = P.first;
3003     int64_t Offset = P.second;
3004     LSRUse &LU = Uses[LUIdx];
3005 
3006     // Record the fixup.
3007     LSRFixup &LF = LU.getNewFixup();
3008     LF.UserInst = UserInst;
3009     LF.OperandValToReplace = U.getOperandValToReplace();
3010     LF.PostIncLoops = TmpPostIncLoops;
3011     LF.Offset = Offset;
3012     LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3013 
3014     if (!LU.WidestFixupType ||
3015         SE.getTypeSizeInBits(LU.WidestFixupType) <
3016         SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3017       LU.WidestFixupType = LF.OperandValToReplace->getType();
3018 
3019     // If this is the first use of this LSRUse, give it a formula.
3020     if (LU.Formulae.empty()) {
3021       InsertInitialFormula(S, LU, LUIdx);
3022       CountRegisters(LU.Formulae.back(), LUIdx);
3023     }
3024   }
3025 
3026   DEBUG(print_fixups(dbgs()));
3027 }
3028 
3029 /// Insert a formula for the given expression into the given use, separating out
3030 /// loop-variant portions from loop-invariant and loop-computable portions.
3031 void
3032 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
3033   // Mark uses whose expressions cannot be expanded.
3034   if (!isSafeToExpand(S, SE))
3035     LU.RigidFormula = true;
3036 
3037   Formula F;
3038   F.initialMatch(S, L, SE);
3039   bool Inserted = InsertFormula(LU, LUIdx, F);
3040   assert(Inserted && "Initial formula already exists!"); (void)Inserted;
3041 }
3042 
3043 /// Insert a simple single-register formula for the given expression into the
3044 /// given use.
3045 void
3046 LSRInstance::InsertSupplementalFormula(const SCEV *S,
3047                                        LSRUse &LU, size_t LUIdx) {
3048   Formula F;
3049   F.BaseRegs.push_back(S);
3050   F.HasBaseReg = true;
3051   bool Inserted = InsertFormula(LU, LUIdx, F);
3052   assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
3053 }
3054 
3055 /// Note which registers are used by the given formula, updating RegUses.
3056 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
3057   if (F.ScaledReg)
3058     RegUses.countRegister(F.ScaledReg, LUIdx);
3059   for (const SCEV *BaseReg : F.BaseRegs)
3060     RegUses.countRegister(BaseReg, LUIdx);
3061 }
3062 
3063 /// If the given formula has not yet been inserted, add it to the list, and
3064 /// return true. Return false otherwise.
3065 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
3066   // Do not insert formula that we will not be able to expand.
3067   assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) &&
3068          "Formula is illegal");
3069   if (!LU.InsertFormula(F))
3070     return false;
3071 
3072   CountRegisters(F, LUIdx);
3073   return true;
3074 }
3075 
3076 /// Check for other uses of loop-invariant values which we're tracking. These
3077 /// other uses will pin these values in registers, making them less profitable
3078 /// for elimination.
3079 /// TODO: This currently misses non-constant addrec step registers.
3080 /// TODO: Should this give more weight to users inside the loop?
3081 void
3082 LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
3083   SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
3084   SmallPtrSet<const SCEV *, 32> Visited;
3085 
3086   while (!Worklist.empty()) {
3087     const SCEV *S = Worklist.pop_back_val();
3088 
3089     // Don't process the same SCEV twice
3090     if (!Visited.insert(S).second)
3091       continue;
3092 
3093     if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
3094       Worklist.append(N->op_begin(), N->op_end());
3095     else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
3096       Worklist.push_back(C->getOperand());
3097     else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
3098       Worklist.push_back(D->getLHS());
3099       Worklist.push_back(D->getRHS());
3100     } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) {
3101       const Value *V = US->getValue();
3102       if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
3103         // Look for instructions defined outside the loop.
3104         if (L->contains(Inst)) continue;
3105       } else if (isa<UndefValue>(V))
3106         // Undef doesn't have a live range, so it doesn't matter.
3107         continue;
3108       for (const Use &U : V->uses()) {
3109         const Instruction *UserInst = dyn_cast<Instruction>(U.getUser());
3110         // Ignore non-instructions.
3111         if (!UserInst)
3112           continue;
3113         // Ignore instructions in other functions (as can happen with
3114         // Constants).
3115         if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
3116           continue;
3117         // Ignore instructions not dominated by the loop.
3118         const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
3119           UserInst->getParent() :
3120           cast<PHINode>(UserInst)->getIncomingBlock(
3121             PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
3122         if (!DT.dominates(L->getHeader(), UseBB))
3123           continue;
3124         // Don't bother if the instruction is in a BB which ends in an EHPad.
3125         if (UseBB->getTerminator()->isEHPad())
3126           continue;
3127         // Ignore uses which are part of other SCEV expressions, to avoid
3128         // analyzing them multiple times.
3129         if (SE.isSCEVable(UserInst->getType())) {
3130           const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
3131           // If the user is a no-op, look through to its uses.
3132           if (!isa<SCEVUnknown>(UserS))
3133             continue;
3134           if (UserS == US) {
3135             Worklist.push_back(
3136               SE.getUnknown(const_cast<Instruction *>(UserInst)));
3137             continue;
3138           }
3139         }
3140         // Ignore icmp instructions which are already being analyzed.
3141         if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
3142           unsigned OtherIdx = !U.getOperandNo();
3143           Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
3144           if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L))
3145             continue;
3146         }
3147 
3148         std::pair<size_t, int64_t> P = getUse(
3149             S, LSRUse::Basic, MemAccessTy());
3150         size_t LUIdx = P.first;
3151         int64_t Offset = P.second;
3152         LSRUse &LU = Uses[LUIdx];
3153         LSRFixup &LF = LU.getNewFixup();
3154         LF.UserInst = const_cast<Instruction *>(UserInst);
3155         LF.OperandValToReplace = U;
3156         LF.Offset = Offset;
3157         LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3158         if (!LU.WidestFixupType ||
3159             SE.getTypeSizeInBits(LU.WidestFixupType) <
3160             SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3161           LU.WidestFixupType = LF.OperandValToReplace->getType();
3162         InsertSupplementalFormula(US, LU, LUIdx);
3163         CountRegisters(LU.Formulae.back(), Uses.size() - 1);
3164         break;
3165       }
3166     }
3167   }
3168 }
3169 
3170 /// Split S into subexpressions which can be pulled out into separate
3171 /// registers. If C is non-null, multiply each subexpression by C.
3172 ///
3173 /// Return remainder expression after factoring the subexpressions captured by
3174 /// Ops. If Ops is complete, return NULL.
3175 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C,
3176                                    SmallVectorImpl<const SCEV *> &Ops,
3177                                    const Loop *L,
3178                                    ScalarEvolution &SE,
3179                                    unsigned Depth = 0) {
3180   // Arbitrarily cap recursion to protect compile time.
3181   if (Depth >= 3)
3182     return S;
3183 
3184   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3185     // Break out add operands.
3186     for (const SCEV *S : Add->operands()) {
3187       const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1);
3188       if (Remainder)
3189         Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3190     }
3191     return nullptr;
3192   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
3193     // Split a non-zero base out of an addrec.
3194     if (AR->getStart()->isZero())
3195       return S;
3196 
3197     const SCEV *Remainder = CollectSubexprs(AR->getStart(),
3198                                             C, Ops, L, SE, Depth+1);
3199     // Split the non-zero AddRec unless it is part of a nested recurrence that
3200     // does not pertain to this loop.
3201     if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) {
3202       Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3203       Remainder = nullptr;
3204     }
3205     if (Remainder != AR->getStart()) {
3206       if (!Remainder)
3207         Remainder = SE.getConstant(AR->getType(), 0);
3208       return SE.getAddRecExpr(Remainder,
3209                               AR->getStepRecurrence(SE),
3210                               AR->getLoop(),
3211                               //FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
3212                               SCEV::FlagAnyWrap);
3213     }
3214   } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3215     // Break (C * (a + b + c)) into C*a + C*b + C*c.
3216     if (Mul->getNumOperands() != 2)
3217       return S;
3218     if (const SCEVConstant *Op0 =
3219         dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3220       C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0;
3221       const SCEV *Remainder =
3222         CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1);
3223       if (Remainder)
3224         Ops.push_back(SE.getMulExpr(C, Remainder));
3225       return nullptr;
3226     }
3227   }
3228   return S;
3229 }
3230 
3231 /// \brief Helper function for LSRInstance::GenerateReassociations.
3232 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
3233                                              const Formula &Base,
3234                                              unsigned Depth, size_t Idx,
3235                                              bool IsScaledReg) {
3236   const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3237   SmallVector<const SCEV *, 8> AddOps;
3238   const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE);
3239   if (Remainder)
3240     AddOps.push_back(Remainder);
3241 
3242   if (AddOps.size() == 1)
3243     return;
3244 
3245   for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
3246                                                      JE = AddOps.end();
3247        J != JE; ++J) {
3248 
3249     // Loop-variant "unknown" values are uninteresting; we won't be able to
3250     // do anything meaningful with them.
3251     if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L))
3252       continue;
3253 
3254     // Don't pull a constant into a register if the constant could be folded
3255     // into an immediate field.
3256     if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3257                          LU.AccessTy, *J, Base.getNumRegs() > 1))
3258       continue;
3259 
3260     // Collect all operands except *J.
3261     SmallVector<const SCEV *, 8> InnerAddOps(
3262         ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J);
3263     InnerAddOps.append(std::next(J),
3264                        ((const SmallVector<const SCEV *, 8> &)AddOps).end());
3265 
3266     // Don't leave just a constant behind in a register if the constant could
3267     // be folded into an immediate field.
3268     if (InnerAddOps.size() == 1 &&
3269         isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3270                          LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1))
3271       continue;
3272 
3273     const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
3274     if (InnerSum->isZero())
3275       continue;
3276     Formula F = Base;
3277 
3278     // Add the remaining pieces of the add back into the new formula.
3279     const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum);
3280     if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 &&
3281         TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3282                                 InnerSumSC->getValue()->getZExtValue())) {
3283       F.UnfoldedOffset =
3284           (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue();
3285       if (IsScaledReg)
3286         F.ScaledReg = nullptr;
3287       else
3288         F.BaseRegs.erase(F.BaseRegs.begin() + Idx);
3289     } else if (IsScaledReg)
3290       F.ScaledReg = InnerSum;
3291     else
3292       F.BaseRegs[Idx] = InnerSum;
3293 
3294     // Add J as its own register, or an unfolded immediate.
3295     const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J);
3296     if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 &&
3297         TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3298                                 SC->getValue()->getZExtValue()))
3299       F.UnfoldedOffset =
3300           (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue();
3301     else
3302       F.BaseRegs.push_back(*J);
3303     // We may have changed the number of register in base regs, adjust the
3304     // formula accordingly.
3305     F.canonicalize();
3306 
3307     if (InsertFormula(LU, LUIdx, F))
3308       // If that formula hadn't been seen before, recurse to find more like
3309       // it.
3310       GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth + 1);
3311   }
3312 }
3313 
3314 /// Split out subexpressions from adds and the bases of addrecs.
3315 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
3316                                          Formula Base, unsigned Depth) {
3317   assert(Base.isCanonical() && "Input must be in the canonical form");
3318   // Arbitrarily cap recursion to protect compile time.
3319   if (Depth >= 3)
3320     return;
3321 
3322   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3323     GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i);
3324 
3325   if (Base.Scale == 1)
3326     GenerateReassociationsImpl(LU, LUIdx, Base, Depth,
3327                                /* Idx */ -1, /* IsScaledReg */ true);
3328 }
3329 
3330 ///  Generate a formula consisting of all of the loop-dominating registers added
3331 /// into a single register.
3332 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
3333                                        Formula Base) {
3334   // This method is only interesting on a plurality of registers.
3335   if (Base.BaseRegs.size() + (Base.Scale == 1) <= 1)
3336     return;
3337 
3338   // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before
3339   // processing the formula.
3340   Base.unscale();
3341   Formula F = Base;
3342   F.BaseRegs.clear();
3343   SmallVector<const SCEV *, 4> Ops;
3344   for (const SCEV *BaseReg : Base.BaseRegs) {
3345     if (SE.properlyDominates(BaseReg, L->getHeader()) &&
3346         !SE.hasComputableLoopEvolution(BaseReg, L))
3347       Ops.push_back(BaseReg);
3348     else
3349       F.BaseRegs.push_back(BaseReg);
3350   }
3351   if (Ops.size() > 1) {
3352     const SCEV *Sum = SE.getAddExpr(Ops);
3353     // TODO: If Sum is zero, it probably means ScalarEvolution missed an
3354     // opportunity to fold something. For now, just ignore such cases
3355     // rather than proceed with zero in a register.
3356     if (!Sum->isZero()) {
3357       F.BaseRegs.push_back(Sum);
3358       F.canonicalize();
3359       (void)InsertFormula(LU, LUIdx, F);
3360     }
3361   }
3362 }
3363 
3364 /// \brief Helper function for LSRInstance::GenerateSymbolicOffsets.
3365 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
3366                                               const Formula &Base, size_t Idx,
3367                                               bool IsScaledReg) {
3368   const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3369   GlobalValue *GV = ExtractSymbol(G, SE);
3370   if (G->isZero() || !GV)
3371     return;
3372   Formula F = Base;
3373   F.BaseGV = GV;
3374   if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3375     return;
3376   if (IsScaledReg)
3377     F.ScaledReg = G;
3378   else
3379     F.BaseRegs[Idx] = G;
3380   (void)InsertFormula(LU, LUIdx, F);
3381 }
3382 
3383 /// Generate reuse formulae using symbolic offsets.
3384 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
3385                                           Formula Base) {
3386   // We can't add a symbolic offset if the address already contains one.
3387   if (Base.BaseGV) return;
3388 
3389   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3390     GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i);
3391   if (Base.Scale == 1)
3392     GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1,
3393                                 /* IsScaledReg */ true);
3394 }
3395 
3396 /// \brief Helper function for LSRInstance::GenerateConstantOffsets.
3397 void LSRInstance::GenerateConstantOffsetsImpl(
3398     LSRUse &LU, unsigned LUIdx, const Formula &Base,
3399     const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) {
3400   const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3401   for (int64_t Offset : Worklist) {
3402     Formula F = Base;
3403     F.BaseOffset = (uint64_t)Base.BaseOffset - Offset;
3404     if (isLegalUse(TTI, LU.MinOffset - Offset, LU.MaxOffset - Offset, LU.Kind,
3405                    LU.AccessTy, F)) {
3406       // Add the offset to the base register.
3407       const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G);
3408       // If it cancelled out, drop the base register, otherwise update it.
3409       if (NewG->isZero()) {
3410         if (IsScaledReg) {
3411           F.Scale = 0;
3412           F.ScaledReg = nullptr;
3413         } else
3414           F.deleteBaseReg(F.BaseRegs[Idx]);
3415         F.canonicalize();
3416       } else if (IsScaledReg)
3417         F.ScaledReg = NewG;
3418       else
3419         F.BaseRegs[Idx] = NewG;
3420 
3421       (void)InsertFormula(LU, LUIdx, F);
3422     }
3423   }
3424 
3425   int64_t Imm = ExtractImmediate(G, SE);
3426   if (G->isZero() || Imm == 0)
3427     return;
3428   Formula F = Base;
3429   F.BaseOffset = (uint64_t)F.BaseOffset + Imm;
3430   if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3431     return;
3432   if (IsScaledReg)
3433     F.ScaledReg = G;
3434   else
3435     F.BaseRegs[Idx] = G;
3436   (void)InsertFormula(LU, LUIdx, F);
3437 }
3438 
3439 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
3440 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
3441                                           Formula Base) {
3442   // TODO: For now, just add the min and max offset, because it usually isn't
3443   // worthwhile looking at everything inbetween.
3444   SmallVector<int64_t, 2> Worklist;
3445   Worklist.push_back(LU.MinOffset);
3446   if (LU.MaxOffset != LU.MinOffset)
3447     Worklist.push_back(LU.MaxOffset);
3448 
3449   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3450     GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i);
3451   if (Base.Scale == 1)
3452     GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1,
3453                                 /* IsScaledReg */ true);
3454 }
3455 
3456 /// For ICmpZero, check to see if we can scale up the comparison. For example, x
3457 /// == y -> x*c == y*c.
3458 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
3459                                          Formula Base) {
3460   if (LU.Kind != LSRUse::ICmpZero) return;
3461 
3462   // Determine the integer type for the base formula.
3463   Type *IntTy = Base.getType();
3464   if (!IntTy) return;
3465   if (SE.getTypeSizeInBits(IntTy) > 64) return;
3466 
3467   // Don't do this if there is more than one offset.
3468   if (LU.MinOffset != LU.MaxOffset) return;
3469 
3470   assert(!Base.BaseGV && "ICmpZero use is not legal!");
3471 
3472   // Check each interesting stride.
3473   for (int64_t Factor : Factors) {
3474     // Check that the multiplication doesn't overflow.
3475     if (Base.BaseOffset == INT64_MIN && Factor == -1)
3476       continue;
3477     int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor;
3478     if (NewBaseOffset / Factor != Base.BaseOffset)
3479       continue;
3480     // If the offset will be truncated at this use, check that it is in bounds.
3481     if (!IntTy->isPointerTy() &&
3482         !ConstantInt::isValueValidForType(IntTy, NewBaseOffset))
3483       continue;
3484 
3485     // Check that multiplying with the use offset doesn't overflow.
3486     int64_t Offset = LU.MinOffset;
3487     if (Offset == INT64_MIN && Factor == -1)
3488       continue;
3489     Offset = (uint64_t)Offset * Factor;
3490     if (Offset / Factor != LU.MinOffset)
3491       continue;
3492     // If the offset will be truncated at this use, check that it is in bounds.
3493     if (!IntTy->isPointerTy() &&
3494         !ConstantInt::isValueValidForType(IntTy, Offset))
3495       continue;
3496 
3497     Formula F = Base;
3498     F.BaseOffset = NewBaseOffset;
3499 
3500     // Check that this scale is legal.
3501     if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F))
3502       continue;
3503 
3504     // Compensate for the use having MinOffset built into it.
3505     F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset;
3506 
3507     const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3508 
3509     // Check that multiplying with each base register doesn't overflow.
3510     for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
3511       F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
3512       if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
3513         goto next;
3514     }
3515 
3516     // Check that multiplying with the scaled register doesn't overflow.
3517     if (F.ScaledReg) {
3518       F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
3519       if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
3520         continue;
3521     }
3522 
3523     // Check that multiplying with the unfolded offset doesn't overflow.
3524     if (F.UnfoldedOffset != 0) {
3525       if (F.UnfoldedOffset == INT64_MIN && Factor == -1)
3526         continue;
3527       F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor;
3528       if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset)
3529         continue;
3530       // If the offset will be truncated, check that it is in bounds.
3531       if (!IntTy->isPointerTy() &&
3532           !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset))
3533         continue;
3534     }
3535 
3536     // If we make it here and it's legal, add it.
3537     (void)InsertFormula(LU, LUIdx, F);
3538   next:;
3539   }
3540 }
3541 
3542 /// Generate stride factor reuse formulae by making use of scaled-offset address
3543 /// modes, for example.
3544 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
3545   // Determine the integer type for the base formula.
3546   Type *IntTy = Base.getType();
3547   if (!IntTy) return;
3548 
3549   // If this Formula already has a scaled register, we can't add another one.
3550   // Try to unscale the formula to generate a better scale.
3551   if (Base.Scale != 0 && !Base.unscale())
3552     return;
3553 
3554   assert(Base.Scale == 0 && "unscale did not did its job!");
3555 
3556   // Check each interesting stride.
3557   for (int64_t Factor : Factors) {
3558     Base.Scale = Factor;
3559     Base.HasBaseReg = Base.BaseRegs.size() > 1;
3560     // Check whether this scale is going to be legal.
3561     if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
3562                     Base)) {
3563       // As a special-case, handle special out-of-loop Basic users specially.
3564       // TODO: Reconsider this special case.
3565       if (LU.Kind == LSRUse::Basic &&
3566           isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special,
3567                      LU.AccessTy, Base) &&
3568           LU.AllFixupsOutsideLoop)
3569         LU.Kind = LSRUse::Special;
3570       else
3571         continue;
3572     }
3573     // For an ICmpZero, negating a solitary base register won't lead to
3574     // new solutions.
3575     if (LU.Kind == LSRUse::ICmpZero &&
3576         !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV)
3577       continue;
3578     // For each addrec base reg, apply the scale, if possible.
3579     for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3580       if (const SCEVAddRecExpr *AR =
3581             dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i])) {
3582         const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3583         if (FactorS->isZero())
3584           continue;
3585         // Divide out the factor, ignoring high bits, since we'll be
3586         // scaling the value back up in the end.
3587         if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) {
3588           // TODO: This could be optimized to avoid all the copying.
3589           Formula F = Base;
3590           F.ScaledReg = Quotient;
3591           F.deleteBaseReg(F.BaseRegs[i]);
3592           // The canonical representation of 1*reg is reg, which is already in
3593           // Base. In that case, do not try to insert the formula, it will be
3594           // rejected anyway.
3595           if (F.Scale == 1 && F.BaseRegs.empty())
3596             continue;
3597           (void)InsertFormula(LU, LUIdx, F);
3598         }
3599       }
3600   }
3601 }
3602 
3603 /// Generate reuse formulae from different IV types.
3604 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
3605   // Don't bother truncating symbolic values.
3606   if (Base.BaseGV) return;
3607 
3608   // Determine the integer type for the base formula.
3609   Type *DstTy = Base.getType();
3610   if (!DstTy) return;
3611   DstTy = SE.getEffectiveSCEVType(DstTy);
3612 
3613   for (Type *SrcTy : Types) {
3614     if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) {
3615       Formula F = Base;
3616 
3617       if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy);
3618       for (const SCEV *&BaseReg : F.BaseRegs)
3619         BaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy);
3620 
3621       // TODO: This assumes we've done basic processing on all uses and
3622       // have an idea what the register usage is.
3623       if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
3624         continue;
3625 
3626       (void)InsertFormula(LU, LUIdx, F);
3627     }
3628   }
3629 }
3630 
3631 namespace {
3632 
3633 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer
3634 /// modifications so that the search phase doesn't have to worry about the data
3635 /// structures moving underneath it.
3636 struct WorkItem {
3637   size_t LUIdx;
3638   int64_t Imm;
3639   const SCEV *OrigReg;
3640 
3641   WorkItem(size_t LI, int64_t I, const SCEV *R)
3642     : LUIdx(LI), Imm(I), OrigReg(R) {}
3643 
3644   void print(raw_ostream &OS) const;
3645   void dump() const;
3646 };
3647 
3648 }
3649 
3650 void WorkItem::print(raw_ostream &OS) const {
3651   OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
3652      << " , add offset " << Imm;
3653 }
3654 
3655 LLVM_DUMP_METHOD
3656 void WorkItem::dump() const {
3657   print(errs()); errs() << '\n';
3658 }
3659 
3660 /// Look for registers which are a constant distance apart and try to form reuse
3661 /// opportunities between them.
3662 void LSRInstance::GenerateCrossUseConstantOffsets() {
3663   // Group the registers by their value without any added constant offset.
3664   typedef std::map<int64_t, const SCEV *> ImmMapTy;
3665   DenseMap<const SCEV *, ImmMapTy> Map;
3666   DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
3667   SmallVector<const SCEV *, 8> Sequence;
3668   for (const SCEV *Use : RegUses) {
3669     const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify.
3670     int64_t Imm = ExtractImmediate(Reg, SE);
3671     auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy()));
3672     if (Pair.second)
3673       Sequence.push_back(Reg);
3674     Pair.first->second.insert(std::make_pair(Imm, Use));
3675     UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use);
3676   }
3677 
3678   // Now examine each set of registers with the same base value. Build up
3679   // a list of work to do and do the work in a separate step so that we're
3680   // not adding formulae and register counts while we're searching.
3681   SmallVector<WorkItem, 32> WorkItems;
3682   SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
3683   for (const SCEV *Reg : Sequence) {
3684     const ImmMapTy &Imms = Map.find(Reg)->second;
3685 
3686     // It's not worthwhile looking for reuse if there's only one offset.
3687     if (Imms.size() == 1)
3688       continue;
3689 
3690     DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
3691           for (const auto &Entry : Imms)
3692             dbgs() << ' ' << Entry.first;
3693           dbgs() << '\n');
3694 
3695     // Examine each offset.
3696     for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
3697          J != JE; ++J) {
3698       const SCEV *OrigReg = J->second;
3699 
3700       int64_t JImm = J->first;
3701       const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
3702 
3703       if (!isa<SCEVConstant>(OrigReg) &&
3704           UsedByIndicesMap[Reg].count() == 1) {
3705         DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n');
3706         continue;
3707       }
3708 
3709       // Conservatively examine offsets between this orig reg a few selected
3710       // other orig regs.
3711       ImmMapTy::const_iterator OtherImms[] = {
3712         Imms.begin(), std::prev(Imms.end()),
3713         Imms.lower_bound((Imms.begin()->first + std::prev(Imms.end())->first) /
3714                          2)
3715       };
3716       for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
3717         ImmMapTy::const_iterator M = OtherImms[i];
3718         if (M == J || M == JE) continue;
3719 
3720         // Compute the difference between the two.
3721         int64_t Imm = (uint64_t)JImm - M->first;
3722         for (int LUIdx = UsedByIndices.find_first(); LUIdx != -1;
3723              LUIdx = UsedByIndices.find_next(LUIdx))
3724           // Make a memo of this use, offset, and register tuple.
3725           if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second)
3726             WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
3727       }
3728     }
3729   }
3730 
3731   Map.clear();
3732   Sequence.clear();
3733   UsedByIndicesMap.clear();
3734   UniqueItems.clear();
3735 
3736   // Now iterate through the worklist and add new formulae.
3737   for (const WorkItem &WI : WorkItems) {
3738     size_t LUIdx = WI.LUIdx;
3739     LSRUse &LU = Uses[LUIdx];
3740     int64_t Imm = WI.Imm;
3741     const SCEV *OrigReg = WI.OrigReg;
3742 
3743     Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
3744     const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
3745     unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
3746 
3747     // TODO: Use a more targeted data structure.
3748     for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
3749       Formula F = LU.Formulae[L];
3750       // FIXME: The code for the scaled and unscaled registers looks
3751       // very similar but slightly different. Investigate if they
3752       // could be merged. That way, we would not have to unscale the
3753       // Formula.
3754       F.unscale();
3755       // Use the immediate in the scaled register.
3756       if (F.ScaledReg == OrigReg) {
3757         int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale;
3758         // Don't create 50 + reg(-50).
3759         if (F.referencesReg(SE.getSCEV(
3760                    ConstantInt::get(IntTy, -(uint64_t)Offset))))
3761           continue;
3762         Formula NewF = F;
3763         NewF.BaseOffset = Offset;
3764         if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
3765                         NewF))
3766           continue;
3767         NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
3768 
3769         // If the new scale is a constant in a register, and adding the constant
3770         // value to the immediate would produce a value closer to zero than the
3771         // immediate itself, then the formula isn't worthwhile.
3772         if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
3773           if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) &&
3774               (C->getAPInt().abs() * APInt(BitWidth, F.Scale))
3775                   .ule(std::abs(NewF.BaseOffset)))
3776             continue;
3777 
3778         // OK, looks good.
3779         NewF.canonicalize();
3780         (void)InsertFormula(LU, LUIdx, NewF);
3781       } else {
3782         // Use the immediate in a base register.
3783         for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
3784           const SCEV *BaseReg = F.BaseRegs[N];
3785           if (BaseReg != OrigReg)
3786             continue;
3787           Formula NewF = F;
3788           NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm;
3789           if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset,
3790                           LU.Kind, LU.AccessTy, NewF)) {
3791             if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm))
3792               continue;
3793             NewF = F;
3794             NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm;
3795           }
3796           NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
3797 
3798           // If the new formula has a constant in a register, and adding the
3799           // constant value to the immediate would produce a value closer to
3800           // zero than the immediate itself, then the formula isn't worthwhile.
3801           for (const SCEV *NewReg : NewF.BaseRegs)
3802             if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg))
3803               if ((C->getAPInt() + NewF.BaseOffset)
3804                       .abs()
3805                       .slt(std::abs(NewF.BaseOffset)) &&
3806                   (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >=
3807                       countTrailingZeros<uint64_t>(NewF.BaseOffset))
3808                 goto skip_formula;
3809 
3810           // Ok, looks good.
3811           NewF.canonicalize();
3812           (void)InsertFormula(LU, LUIdx, NewF);
3813           break;
3814         skip_formula:;
3815         }
3816       }
3817     }
3818   }
3819 }
3820 
3821 /// Generate formulae for each use.
3822 void
3823 LSRInstance::GenerateAllReuseFormulae() {
3824   // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
3825   // queries are more precise.
3826   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3827     LSRUse &LU = Uses[LUIdx];
3828     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3829       GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
3830     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3831       GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
3832   }
3833   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3834     LSRUse &LU = Uses[LUIdx];
3835     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3836       GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
3837     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3838       GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
3839     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3840       GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
3841     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3842       GenerateScales(LU, LUIdx, LU.Formulae[i]);
3843   }
3844   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3845     LSRUse &LU = Uses[LUIdx];
3846     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3847       GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
3848   }
3849 
3850   GenerateCrossUseConstantOffsets();
3851 
3852   DEBUG(dbgs() << "\n"
3853                   "After generating reuse formulae:\n";
3854         print_uses(dbgs()));
3855 }
3856 
3857 /// If there are multiple formulae with the same set of registers used
3858 /// by other uses, pick the best one and delete the others.
3859 void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
3860   DenseSet<const SCEV *> VisitedRegs;
3861   SmallPtrSet<const SCEV *, 16> Regs;
3862   SmallPtrSet<const SCEV *, 16> LoserRegs;
3863 #ifndef NDEBUG
3864   bool ChangedFormulae = false;
3865 #endif
3866 
3867   // Collect the best formula for each unique set of shared registers. This
3868   // is reset for each use.
3869   typedef DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>
3870     BestFormulaeTy;
3871   BestFormulaeTy BestFormulae;
3872 
3873   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3874     LSRUse &LU = Uses[LUIdx];
3875     DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n');
3876 
3877     bool Any = false;
3878     for (size_t FIdx = 0, NumForms = LU.Formulae.size();
3879          FIdx != NumForms; ++FIdx) {
3880       Formula &F = LU.Formulae[FIdx];
3881 
3882       // Some formulas are instant losers. For example, they may depend on
3883       // nonexistent AddRecs from other loops. These need to be filtered
3884       // immediately, otherwise heuristics could choose them over others leading
3885       // to an unsatisfactory solution. Passing LoserRegs into RateFormula here
3886       // avoids the need to recompute this information across formulae using the
3887       // same bad AddRec. Passing LoserRegs is also essential unless we remove
3888       // the corresponding bad register from the Regs set.
3889       Cost CostF;
3890       Regs.clear();
3891       CostF.RateFormula(TTI, F, Regs, VisitedRegs, L, SE, DT, LU, &LoserRegs);
3892       if (CostF.isLoser()) {
3893         // During initial formula generation, undesirable formulae are generated
3894         // by uses within other loops that have some non-trivial address mode or
3895         // use the postinc form of the IV. LSR needs to provide these formulae
3896         // as the basis of rediscovering the desired formula that uses an AddRec
3897         // corresponding to the existing phi. Once all formulae have been
3898         // generated, these initial losers may be pruned.
3899         DEBUG(dbgs() << "  Filtering loser "; F.print(dbgs());
3900               dbgs() << "\n");
3901       }
3902       else {
3903         SmallVector<const SCEV *, 4> Key;
3904         for (const SCEV *Reg : F.BaseRegs) {
3905           if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
3906             Key.push_back(Reg);
3907         }
3908         if (F.ScaledReg &&
3909             RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
3910           Key.push_back(F.ScaledReg);
3911         // Unstable sort by host order ok, because this is only used for
3912         // uniquifying.
3913         std::sort(Key.begin(), Key.end());
3914 
3915         std::pair<BestFormulaeTy::const_iterator, bool> P =
3916           BestFormulae.insert(std::make_pair(Key, FIdx));
3917         if (P.second)
3918           continue;
3919 
3920         Formula &Best = LU.Formulae[P.first->second];
3921 
3922         Cost CostBest;
3923         Regs.clear();
3924         CostBest.RateFormula(TTI, Best, Regs, VisitedRegs, L, SE, DT, LU);
3925         if (CostF < CostBest)
3926           std::swap(F, Best);
3927         DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
3928               dbgs() << "\n"
3929                         "    in favor of formula "; Best.print(dbgs());
3930               dbgs() << '\n');
3931       }
3932 #ifndef NDEBUG
3933       ChangedFormulae = true;
3934 #endif
3935       LU.DeleteFormula(F);
3936       --FIdx;
3937       --NumForms;
3938       Any = true;
3939     }
3940 
3941     // Now that we've filtered out some formulae, recompute the Regs set.
3942     if (Any)
3943       LU.RecomputeRegs(LUIdx, RegUses);
3944 
3945     // Reset this to prepare for the next use.
3946     BestFormulae.clear();
3947   }
3948 
3949   DEBUG(if (ChangedFormulae) {
3950           dbgs() << "\n"
3951                     "After filtering out undesirable candidates:\n";
3952           print_uses(dbgs());
3953         });
3954 }
3955 
3956 // This is a rough guess that seems to work fairly well.
3957 static const size_t ComplexityLimit = UINT16_MAX;
3958 
3959 /// Estimate the worst-case number of solutions the solver might have to
3960 /// consider. It almost never considers this many solutions because it prune the
3961 /// search space, but the pruning isn't always sufficient.
3962 size_t LSRInstance::EstimateSearchSpaceComplexity() const {
3963   size_t Power = 1;
3964   for (const LSRUse &LU : Uses) {
3965     size_t FSize = LU.Formulae.size();
3966     if (FSize >= ComplexityLimit) {
3967       Power = ComplexityLimit;
3968       break;
3969     }
3970     Power *= FSize;
3971     if (Power >= ComplexityLimit)
3972       break;
3973   }
3974   return Power;
3975 }
3976 
3977 /// When one formula uses a superset of the registers of another formula, it
3978 /// won't help reduce register pressure (though it may not necessarily hurt
3979 /// register pressure); remove it to simplify the system.
3980 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
3981   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
3982     DEBUG(dbgs() << "The search space is too complex.\n");
3983 
3984     DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
3985                     "which use a superset of registers used by other "
3986                     "formulae.\n");
3987 
3988     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3989       LSRUse &LU = Uses[LUIdx];
3990       bool Any = false;
3991       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
3992         Formula &F = LU.Formulae[i];
3993         // Look for a formula with a constant or GV in a register. If the use
3994         // also has a formula with that same value in an immediate field,
3995         // delete the one that uses a register.
3996         for (SmallVectorImpl<const SCEV *>::const_iterator
3997              I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
3998           if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
3999             Formula NewF = F;
4000             NewF.BaseOffset += C->getValue()->getSExtValue();
4001             NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4002                                 (I - F.BaseRegs.begin()));
4003             if (LU.HasFormulaWithSameRegs(NewF)) {
4004               DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
4005               LU.DeleteFormula(F);
4006               --i;
4007               --e;
4008               Any = true;
4009               break;
4010             }
4011           } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
4012             if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
4013               if (!F.BaseGV) {
4014                 Formula NewF = F;
4015                 NewF.BaseGV = GV;
4016                 NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4017                                     (I - F.BaseRegs.begin()));
4018                 if (LU.HasFormulaWithSameRegs(NewF)) {
4019                   DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4020                         dbgs() << '\n');
4021                   LU.DeleteFormula(F);
4022                   --i;
4023                   --e;
4024                   Any = true;
4025                   break;
4026                 }
4027               }
4028           }
4029         }
4030       }
4031       if (Any)
4032         LU.RecomputeRegs(LUIdx, RegUses);
4033     }
4034 
4035     DEBUG(dbgs() << "After pre-selection:\n";
4036           print_uses(dbgs()));
4037   }
4038 }
4039 
4040 /// When there are many registers for expressions like A, A+1, A+2, etc.,
4041 /// allocate a single register for them.
4042 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
4043   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4044     return;
4045 
4046   DEBUG(dbgs() << "The search space is too complex.\n"
4047                   "Narrowing the search space by assuming that uses separated "
4048                   "by a constant offset will use the same registers.\n");
4049 
4050   // This is especially useful for unrolled loops.
4051 
4052   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4053     LSRUse &LU = Uses[LUIdx];
4054     for (const Formula &F : LU.Formulae) {
4055       if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1))
4056         continue;
4057 
4058       LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU);
4059       if (!LUThatHas)
4060         continue;
4061 
4062       if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false,
4063                               LU.Kind, LU.AccessTy))
4064         continue;
4065 
4066       DEBUG(dbgs() << "  Deleting use "; LU.print(dbgs()); dbgs() << '\n');
4067 
4068       LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
4069 
4070       // Transfer the fixups of LU to LUThatHas.
4071       for (LSRFixup &Fixup : LU.Fixups) {
4072         Fixup.Offset += F.BaseOffset;
4073         LUThatHas->pushFixup(Fixup);
4074         DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n');
4075       }
4076 
4077       // Delete formulae from the new use which are no longer legal.
4078       bool Any = false;
4079       for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
4080         Formula &F = LUThatHas->Formulae[i];
4081         if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset,
4082                         LUThatHas->Kind, LUThatHas->AccessTy, F)) {
4083           DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4084                 dbgs() << '\n');
4085           LUThatHas->DeleteFormula(F);
4086           --i;
4087           --e;
4088           Any = true;
4089         }
4090       }
4091 
4092       if (Any)
4093         LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
4094 
4095       // Delete the old use.
4096       DeleteUse(LU, LUIdx);
4097       --LUIdx;
4098       --NumUses;
4099       break;
4100     }
4101   }
4102 
4103   DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4104 }
4105 
4106 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that
4107 /// we've done more filtering, as it may be able to find more formulae to
4108 /// eliminate.
4109 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){
4110   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4111     DEBUG(dbgs() << "The search space is too complex.\n");
4112 
4113     DEBUG(dbgs() << "Narrowing the search space by re-filtering out "
4114                     "undesirable dedicated registers.\n");
4115 
4116     FilterOutUndesirableDedicatedRegisters();
4117 
4118     DEBUG(dbgs() << "After pre-selection:\n";
4119           print_uses(dbgs()));
4120   }
4121 }
4122 
4123 /// Pick a register which seems likely to be profitable, and then in any use
4124 /// which has any reference to that register, delete all formulae which do not
4125 /// reference that register.
4126 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() {
4127   // With all other options exhausted, loop until the system is simple
4128   // enough to handle.
4129   SmallPtrSet<const SCEV *, 4> Taken;
4130   while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4131     // Ok, we have too many of formulae on our hands to conveniently handle.
4132     // Use a rough heuristic to thin out the list.
4133     DEBUG(dbgs() << "The search space is too complex.\n");
4134 
4135     // Pick the register which is used by the most LSRUses, which is likely
4136     // to be a good reuse register candidate.
4137     const SCEV *Best = nullptr;
4138     unsigned BestNum = 0;
4139     for (const SCEV *Reg : RegUses) {
4140       if (Taken.count(Reg))
4141         continue;
4142       if (!Best)
4143         Best = Reg;
4144       else {
4145         unsigned Count = RegUses.getUsedByIndices(Reg).count();
4146         if (Count > BestNum) {
4147           Best = Reg;
4148           BestNum = Count;
4149         }
4150       }
4151     }
4152 
4153     DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
4154                  << " will yield profitable reuse.\n");
4155     Taken.insert(Best);
4156 
4157     // In any use with formulae which references this register, delete formulae
4158     // which don't reference it.
4159     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4160       LSRUse &LU = Uses[LUIdx];
4161       if (!LU.Regs.count(Best)) continue;
4162 
4163       bool Any = false;
4164       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4165         Formula &F = LU.Formulae[i];
4166         if (!F.referencesReg(Best)) {
4167           DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
4168           LU.DeleteFormula(F);
4169           --e;
4170           --i;
4171           Any = true;
4172           assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
4173           continue;
4174         }
4175       }
4176 
4177       if (Any)
4178         LU.RecomputeRegs(LUIdx, RegUses);
4179     }
4180 
4181     DEBUG(dbgs() << "After pre-selection:\n";
4182           print_uses(dbgs()));
4183   }
4184 }
4185 
4186 /// If there are an extraordinary number of formulae to choose from, use some
4187 /// rough heuristics to prune down the number of formulae. This keeps the main
4188 /// solver from taking an extraordinary amount of time in some worst-case
4189 /// scenarios.
4190 void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
4191   NarrowSearchSpaceByDetectingSupersets();
4192   NarrowSearchSpaceByCollapsingUnrolledCode();
4193   NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
4194   NarrowSearchSpaceByPickingWinnerRegs();
4195 }
4196 
4197 /// This is the recursive solver.
4198 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
4199                                Cost &SolutionCost,
4200                                SmallVectorImpl<const Formula *> &Workspace,
4201                                const Cost &CurCost,
4202                                const SmallPtrSet<const SCEV *, 16> &CurRegs,
4203                                DenseSet<const SCEV *> &VisitedRegs) const {
4204   // Some ideas:
4205   //  - prune more:
4206   //    - use more aggressive filtering
4207   //    - sort the formula so that the most profitable solutions are found first
4208   //    - sort the uses too
4209   //  - search faster:
4210   //    - don't compute a cost, and then compare. compare while computing a cost
4211   //      and bail early.
4212   //    - track register sets with SmallBitVector
4213 
4214   const LSRUse &LU = Uses[Workspace.size()];
4215 
4216   // If this use references any register that's already a part of the
4217   // in-progress solution, consider it a requirement that a formula must
4218   // reference that register in order to be considered. This prunes out
4219   // unprofitable searching.
4220   SmallSetVector<const SCEV *, 4> ReqRegs;
4221   for (const SCEV *S : CurRegs)
4222     if (LU.Regs.count(S))
4223       ReqRegs.insert(S);
4224 
4225   SmallPtrSet<const SCEV *, 16> NewRegs;
4226   Cost NewCost;
4227   for (const Formula &F : LU.Formulae) {
4228     // Ignore formulae which may not be ideal in terms of register reuse of
4229     // ReqRegs.  The formula should use all required registers before
4230     // introducing new ones.
4231     int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size());
4232     for (const SCEV *Reg : ReqRegs) {
4233       if ((F.ScaledReg && F.ScaledReg == Reg) ||
4234           is_contained(F.BaseRegs, Reg)) {
4235         --NumReqRegsToFind;
4236         if (NumReqRegsToFind == 0)
4237           break;
4238       }
4239     }
4240     if (NumReqRegsToFind != 0) {
4241       // If none of the formulae satisfied the required registers, then we could
4242       // clear ReqRegs and try again. Currently, we simply give up in this case.
4243       continue;
4244     }
4245 
4246     // Evaluate the cost of the current formula. If it's already worse than
4247     // the current best, prune the search at that point.
4248     NewCost = CurCost;
4249     NewRegs = CurRegs;
4250     NewCost.RateFormula(TTI, F, NewRegs, VisitedRegs, L, SE, DT, LU);
4251     if (NewCost < SolutionCost) {
4252       Workspace.push_back(&F);
4253       if (Workspace.size() != Uses.size()) {
4254         SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
4255                      NewRegs, VisitedRegs);
4256         if (F.getNumRegs() == 1 && Workspace.size() == 1)
4257           VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
4258       } else {
4259         DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
4260               dbgs() << ".\n Regs:";
4261               for (const SCEV *S : NewRegs)
4262                 dbgs() << ' ' << *S;
4263               dbgs() << '\n');
4264 
4265         SolutionCost = NewCost;
4266         Solution = Workspace;
4267       }
4268       Workspace.pop_back();
4269     }
4270   }
4271 }
4272 
4273 /// Choose one formula from each use. Return the results in the given Solution
4274 /// vector.
4275 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
4276   SmallVector<const Formula *, 8> Workspace;
4277   Cost SolutionCost;
4278   SolutionCost.Lose();
4279   Cost CurCost;
4280   SmallPtrSet<const SCEV *, 16> CurRegs;
4281   DenseSet<const SCEV *> VisitedRegs;
4282   Workspace.reserve(Uses.size());
4283 
4284   // SolveRecurse does all the work.
4285   SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
4286                CurRegs, VisitedRegs);
4287   if (Solution.empty()) {
4288     DEBUG(dbgs() << "\nNo Satisfactory Solution\n");
4289     return;
4290   }
4291 
4292   // Ok, we've now made all our decisions.
4293   DEBUG(dbgs() << "\n"
4294                   "The chosen solution requires "; SolutionCost.print(dbgs());
4295         dbgs() << ":\n";
4296         for (size_t i = 0, e = Uses.size(); i != e; ++i) {
4297           dbgs() << "  ";
4298           Uses[i].print(dbgs());
4299           dbgs() << "\n"
4300                     "    ";
4301           Solution[i]->print(dbgs());
4302           dbgs() << '\n';
4303         });
4304 
4305   assert(Solution.size() == Uses.size() && "Malformed solution!");
4306 }
4307 
4308 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as
4309 /// we can go while still being dominated by the input positions. This helps
4310 /// canonicalize the insert position, which encourages sharing.
4311 BasicBlock::iterator
4312 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
4313                                  const SmallVectorImpl<Instruction *> &Inputs)
4314                                                                          const {
4315   Instruction *Tentative = &*IP;
4316   for (;;) {
4317     bool AllDominate = true;
4318     Instruction *BetterPos = nullptr;
4319     // Don't bother attempting to insert before a catchswitch, their basic block
4320     // cannot have other non-PHI instructions.
4321     if (isa<CatchSwitchInst>(Tentative))
4322       return IP;
4323 
4324     for (Instruction *Inst : Inputs) {
4325       if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
4326         AllDominate = false;
4327         break;
4328       }
4329       // Attempt to find an insert position in the middle of the block,
4330       // instead of at the end, so that it can be used for other expansions.
4331       if (Tentative->getParent() == Inst->getParent() &&
4332           (!BetterPos || !DT.dominates(Inst, BetterPos)))
4333         BetterPos = &*std::next(BasicBlock::iterator(Inst));
4334     }
4335     if (!AllDominate)
4336       break;
4337     if (BetterPos)
4338       IP = BetterPos->getIterator();
4339     else
4340       IP = Tentative->getIterator();
4341 
4342     const Loop *IPLoop = LI.getLoopFor(IP->getParent());
4343     unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
4344 
4345     BasicBlock *IDom;
4346     for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) {
4347       if (!Rung) return IP;
4348       Rung = Rung->getIDom();
4349       if (!Rung) return IP;
4350       IDom = Rung->getBlock();
4351 
4352       // Don't climb into a loop though.
4353       const Loop *IDomLoop = LI.getLoopFor(IDom);
4354       unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
4355       if (IDomDepth <= IPLoopDepth &&
4356           (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
4357         break;
4358     }
4359 
4360     Tentative = IDom->getTerminator();
4361   }
4362 
4363   return IP;
4364 }
4365 
4366 /// Determine an input position which will be dominated by the operands and
4367 /// which will dominate the result.
4368 BasicBlock::iterator
4369 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP,
4370                                            const LSRFixup &LF,
4371                                            const LSRUse &LU,
4372                                            SCEVExpander &Rewriter) const {
4373   // Collect some instructions which must be dominated by the
4374   // expanding replacement. These must be dominated by any operands that
4375   // will be required in the expansion.
4376   SmallVector<Instruction *, 4> Inputs;
4377   if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
4378     Inputs.push_back(I);
4379   if (LU.Kind == LSRUse::ICmpZero)
4380     if (Instruction *I =
4381           dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
4382       Inputs.push_back(I);
4383   if (LF.PostIncLoops.count(L)) {
4384     if (LF.isUseFullyOutsideLoop(L))
4385       Inputs.push_back(L->getLoopLatch()->getTerminator());
4386     else
4387       Inputs.push_back(IVIncInsertPos);
4388   }
4389   // The expansion must also be dominated by the increment positions of any
4390   // loops it for which it is using post-inc mode.
4391   for (const Loop *PIL : LF.PostIncLoops) {
4392     if (PIL == L) continue;
4393 
4394     // Be dominated by the loop exit.
4395     SmallVector<BasicBlock *, 4> ExitingBlocks;
4396     PIL->getExitingBlocks(ExitingBlocks);
4397     if (!ExitingBlocks.empty()) {
4398       BasicBlock *BB = ExitingBlocks[0];
4399       for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
4400         BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
4401       Inputs.push_back(BB->getTerminator());
4402     }
4403   }
4404 
4405   assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad()
4406          && !isa<DbgInfoIntrinsic>(LowestIP) &&
4407          "Insertion point must be a normal instruction");
4408 
4409   // Then, climb up the immediate dominator tree as far as we can go while
4410   // still being dominated by the input positions.
4411   BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs);
4412 
4413   // Don't insert instructions before PHI nodes.
4414   while (isa<PHINode>(IP)) ++IP;
4415 
4416   // Ignore landingpad instructions.
4417   while (IP->isEHPad()) ++IP;
4418 
4419   // Ignore debug intrinsics.
4420   while (isa<DbgInfoIntrinsic>(IP)) ++IP;
4421 
4422   // Set IP below instructions recently inserted by SCEVExpander. This keeps the
4423   // IP consistent across expansions and allows the previously inserted
4424   // instructions to be reused by subsequent expansion.
4425   while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP)
4426     ++IP;
4427 
4428   return IP;
4429 }
4430 
4431 /// Emit instructions for the leading candidate expression for this LSRUse (this
4432 /// is called "expanding").
4433 Value *LSRInstance::Expand(const LSRUse &LU,
4434                            const LSRFixup &LF,
4435                            const Formula &F,
4436                            BasicBlock::iterator IP,
4437                            SCEVExpander &Rewriter,
4438                            SmallVectorImpl<WeakVH> &DeadInsts) const {
4439   if (LU.RigidFormula)
4440     return LF.OperandValToReplace;
4441 
4442   // Determine an input position which will be dominated by the operands and
4443   // which will dominate the result.
4444   IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter);
4445   Rewriter.setInsertPoint(&*IP);
4446 
4447   // Inform the Rewriter if we have a post-increment use, so that it can
4448   // perform an advantageous expansion.
4449   Rewriter.setPostInc(LF.PostIncLoops);
4450 
4451   // This is the type that the user actually needs.
4452   Type *OpTy = LF.OperandValToReplace->getType();
4453   // This will be the type that we'll initially expand to.
4454   Type *Ty = F.getType();
4455   if (!Ty)
4456     // No type known; just expand directly to the ultimate type.
4457     Ty = OpTy;
4458   else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
4459     // Expand directly to the ultimate type if it's the right size.
4460     Ty = OpTy;
4461   // This is the type to do integer arithmetic in.
4462   Type *IntTy = SE.getEffectiveSCEVType(Ty);
4463 
4464   // Build up a list of operands to add together to form the full base.
4465   SmallVector<const SCEV *, 8> Ops;
4466 
4467   // Expand the BaseRegs portion.
4468   for (const SCEV *Reg : F.BaseRegs) {
4469     assert(!Reg->isZero() && "Zero allocated in a base register!");
4470 
4471     // If we're expanding for a post-inc user, make the post-inc adjustment.
4472     PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
4473     Reg = TransformForPostIncUse(Denormalize, Reg,
4474                                  LF.UserInst, LF.OperandValToReplace,
4475                                  Loops, SE, DT);
4476 
4477     Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr)));
4478   }
4479 
4480   // Expand the ScaledReg portion.
4481   Value *ICmpScaledV = nullptr;
4482   if (F.Scale != 0) {
4483     const SCEV *ScaledS = F.ScaledReg;
4484 
4485     // If we're expanding for a post-inc user, make the post-inc adjustment.
4486     PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
4487     ScaledS = TransformForPostIncUse(Denormalize, ScaledS,
4488                                      LF.UserInst, LF.OperandValToReplace,
4489                                      Loops, SE, DT);
4490 
4491     if (LU.Kind == LSRUse::ICmpZero) {
4492       // Expand ScaleReg as if it was part of the base regs.
4493       if (F.Scale == 1)
4494         Ops.push_back(
4495             SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)));
4496       else {
4497         // An interesting way of "folding" with an icmp is to use a negated
4498         // scale, which we'll implement by inserting it into the other operand
4499         // of the icmp.
4500         assert(F.Scale == -1 &&
4501                "The only scale supported by ICmpZero uses is -1!");
4502         ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr);
4503       }
4504     } else {
4505       // Otherwise just expand the scaled register and an explicit scale,
4506       // which is expected to be matched as part of the address.
4507 
4508       // Flush the operand list to suppress SCEVExpander hoisting address modes.
4509       // Unless the addressing mode will not be folded.
4510       if (!Ops.empty() && LU.Kind == LSRUse::Address &&
4511           isAMCompletelyFolded(TTI, LU, F)) {
4512         Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
4513         Ops.clear();
4514         Ops.push_back(SE.getUnknown(FullV));
4515       }
4516       ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr));
4517       if (F.Scale != 1)
4518         ScaledS =
4519             SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale));
4520       Ops.push_back(ScaledS);
4521     }
4522   }
4523 
4524   // Expand the GV portion.
4525   if (F.BaseGV) {
4526     // Flush the operand list to suppress SCEVExpander hoisting.
4527     if (!Ops.empty()) {
4528       Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
4529       Ops.clear();
4530       Ops.push_back(SE.getUnknown(FullV));
4531     }
4532     Ops.push_back(SE.getUnknown(F.BaseGV));
4533   }
4534 
4535   // Flush the operand list to suppress SCEVExpander hoisting of both folded and
4536   // unfolded offsets. LSR assumes they both live next to their uses.
4537   if (!Ops.empty()) {
4538     Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
4539     Ops.clear();
4540     Ops.push_back(SE.getUnknown(FullV));
4541   }
4542 
4543   // Expand the immediate portion.
4544   int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset;
4545   if (Offset != 0) {
4546     if (LU.Kind == LSRUse::ICmpZero) {
4547       // The other interesting way of "folding" with an ICmpZero is to use a
4548       // negated immediate.
4549       if (!ICmpScaledV)
4550         ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset);
4551       else {
4552         Ops.push_back(SE.getUnknown(ICmpScaledV));
4553         ICmpScaledV = ConstantInt::get(IntTy, Offset);
4554       }
4555     } else {
4556       // Just add the immediate values. These again are expected to be matched
4557       // as part of the address.
4558       Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
4559     }
4560   }
4561 
4562   // Expand the unfolded offset portion.
4563   int64_t UnfoldedOffset = F.UnfoldedOffset;
4564   if (UnfoldedOffset != 0) {
4565     // Just add the immediate values.
4566     Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy,
4567                                                        UnfoldedOffset)));
4568   }
4569 
4570   // Emit instructions summing all the operands.
4571   const SCEV *FullS = Ops.empty() ?
4572                       SE.getConstant(IntTy, 0) :
4573                       SE.getAddExpr(Ops);
4574   Value *FullV = Rewriter.expandCodeFor(FullS, Ty);
4575 
4576   // We're done expanding now, so reset the rewriter.
4577   Rewriter.clearPostInc();
4578 
4579   // An ICmpZero Formula represents an ICmp which we're handling as a
4580   // comparison against zero. Now that we've expanded an expression for that
4581   // form, update the ICmp's other operand.
4582   if (LU.Kind == LSRUse::ICmpZero) {
4583     ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
4584     DeadInsts.emplace_back(CI->getOperand(1));
4585     assert(!F.BaseGV && "ICmp does not support folding a global value and "
4586                            "a scale at the same time!");
4587     if (F.Scale == -1) {
4588       if (ICmpScaledV->getType() != OpTy) {
4589         Instruction *Cast =
4590           CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
4591                                                    OpTy, false),
4592                            ICmpScaledV, OpTy, "tmp", CI);
4593         ICmpScaledV = Cast;
4594       }
4595       CI->setOperand(1, ICmpScaledV);
4596     } else {
4597       // A scale of 1 means that the scale has been expanded as part of the
4598       // base regs.
4599       assert((F.Scale == 0 || F.Scale == 1) &&
4600              "ICmp does not support folding a global value and "
4601              "a scale at the same time!");
4602       Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
4603                                            -(uint64_t)Offset);
4604       if (C->getType() != OpTy)
4605         C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4606                                                           OpTy, false),
4607                                   C, OpTy);
4608 
4609       CI->setOperand(1, C);
4610     }
4611   }
4612 
4613   return FullV;
4614 }
4615 
4616 /// Helper for Rewrite. PHI nodes are special because the use of their operands
4617 /// effectively happens in their predecessor blocks, so the expression may need
4618 /// to be expanded in multiple places.
4619 void LSRInstance::RewriteForPHI(PHINode *PN,
4620                                 const LSRUse &LU,
4621                                 const LSRFixup &LF,
4622                                 const Formula &F,
4623                                 SCEVExpander &Rewriter,
4624                                 SmallVectorImpl<WeakVH> &DeadInsts) const {
4625   DenseMap<BasicBlock *, Value *> Inserted;
4626   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
4627     if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
4628       BasicBlock *BB = PN->getIncomingBlock(i);
4629 
4630       // If this is a critical edge, split the edge so that we do not insert
4631       // the code on all predecessor/successor paths.  We do this unless this
4632       // is the canonical backedge for this loop, which complicates post-inc
4633       // users.
4634       if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
4635           !isa<IndirectBrInst>(BB->getTerminator())) {
4636         BasicBlock *Parent = PN->getParent();
4637         Loop *PNLoop = LI.getLoopFor(Parent);
4638         if (!PNLoop || Parent != PNLoop->getHeader()) {
4639           // Split the critical edge.
4640           BasicBlock *NewBB = nullptr;
4641           if (!Parent->isLandingPad()) {
4642             NewBB = SplitCriticalEdge(BB, Parent,
4643                                       CriticalEdgeSplittingOptions(&DT, &LI)
4644                                           .setMergeIdenticalEdges()
4645                                           .setDontDeleteUselessPHIs());
4646           } else {
4647             SmallVector<BasicBlock*, 2> NewBBs;
4648             SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI);
4649             NewBB = NewBBs[0];
4650           }
4651           // If NewBB==NULL, then SplitCriticalEdge refused to split because all
4652           // phi predecessors are identical. The simple thing to do is skip
4653           // splitting in this case rather than complicate the API.
4654           if (NewBB) {
4655             // If PN is outside of the loop and BB is in the loop, we want to
4656             // move the block to be immediately before the PHI block, not
4657             // immediately after BB.
4658             if (L->contains(BB) && !L->contains(PN))
4659               NewBB->moveBefore(PN->getParent());
4660 
4661             // Splitting the edge can reduce the number of PHI entries we have.
4662             e = PN->getNumIncomingValues();
4663             BB = NewBB;
4664             i = PN->getBasicBlockIndex(BB);
4665           }
4666         }
4667       }
4668 
4669       std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
4670         Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr)));
4671       if (!Pair.second)
4672         PN->setIncomingValue(i, Pair.first->second);
4673       else {
4674         Value *FullV = Expand(LU, LF, F, BB->getTerminator()->getIterator(),
4675                               Rewriter, DeadInsts);
4676 
4677         // If this is reuse-by-noop-cast, insert the noop cast.
4678         Type *OpTy = LF.OperandValToReplace->getType();
4679         if (FullV->getType() != OpTy)
4680           FullV =
4681             CastInst::Create(CastInst::getCastOpcode(FullV, false,
4682                                                      OpTy, false),
4683                              FullV, LF.OperandValToReplace->getType(),
4684                              "tmp", BB->getTerminator());
4685 
4686         PN->setIncomingValue(i, FullV);
4687         Pair.first->second = FullV;
4688       }
4689     }
4690 }
4691 
4692 /// Emit instructions for the leading candidate expression for this LSRUse (this
4693 /// is called "expanding"), and update the UserInst to reference the newly
4694 /// expanded value.
4695 void LSRInstance::Rewrite(const LSRUse &LU,
4696                           const LSRFixup &LF,
4697                           const Formula &F,
4698                           SCEVExpander &Rewriter,
4699                           SmallVectorImpl<WeakVH> &DeadInsts) const {
4700   // First, find an insertion point that dominates UserInst. For PHI nodes,
4701   // find the nearest block which dominates all the relevant uses.
4702   if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
4703     RewriteForPHI(PN, LU, LF, F, Rewriter, DeadInsts);
4704   } else {
4705     Value *FullV =
4706       Expand(LU, LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts);
4707 
4708     // If this is reuse-by-noop-cast, insert the noop cast.
4709     Type *OpTy = LF.OperandValToReplace->getType();
4710     if (FullV->getType() != OpTy) {
4711       Instruction *Cast =
4712         CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
4713                          FullV, OpTy, "tmp", LF.UserInst);
4714       FullV = Cast;
4715     }
4716 
4717     // Update the user. ICmpZero is handled specially here (for now) because
4718     // Expand may have updated one of the operands of the icmp already, and
4719     // its new value may happen to be equal to LF.OperandValToReplace, in
4720     // which case doing replaceUsesOfWith leads to replacing both operands
4721     // with the same value. TODO: Reorganize this.
4722     if (LU.Kind == LSRUse::ICmpZero)
4723       LF.UserInst->setOperand(0, FullV);
4724     else
4725       LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
4726   }
4727 
4728   DeadInsts.emplace_back(LF.OperandValToReplace);
4729 }
4730 
4731 /// Rewrite all the fixup locations with new values, following the chosen
4732 /// solution.
4733 void LSRInstance::ImplementSolution(
4734     const SmallVectorImpl<const Formula *> &Solution) {
4735   // Keep track of instructions we may have made dead, so that
4736   // we can remove them after we are done working.
4737   SmallVector<WeakVH, 16> DeadInsts;
4738 
4739   SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(),
4740                         "lsr");
4741 #ifndef NDEBUG
4742   Rewriter.setDebugType(DEBUG_TYPE);
4743 #endif
4744   Rewriter.disableCanonicalMode();
4745   Rewriter.enableLSRMode();
4746   Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
4747 
4748   // Mark phi nodes that terminate chains so the expander tries to reuse them.
4749   for (const IVChain &Chain : IVChainVec) {
4750     if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst()))
4751       Rewriter.setChainedPhi(PN);
4752   }
4753 
4754   // Expand the new value definitions and update the users.
4755   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx)
4756     for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) {
4757       Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], Rewriter, DeadInsts);
4758       Changed = true;
4759     }
4760 
4761   for (const IVChain &Chain : IVChainVec) {
4762     GenerateIVChain(Chain, Rewriter, DeadInsts);
4763     Changed = true;
4764   }
4765   // Clean up after ourselves. This must be done before deleting any
4766   // instructions.
4767   Rewriter.clear();
4768 
4769   Changed |= DeleteTriviallyDeadInstructions(DeadInsts);
4770 }
4771 
4772 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE,
4773                          DominatorTree &DT, LoopInfo &LI,
4774                          const TargetTransformInfo &TTI)
4775     : IU(IU), SE(SE), DT(DT), LI(LI), TTI(TTI), L(L), Changed(false),
4776       IVIncInsertPos(nullptr) {
4777   // If LoopSimplify form is not available, stay out of trouble.
4778   if (!L->isLoopSimplifyForm())
4779     return;
4780 
4781   // If there's no interesting work to be done, bail early.
4782   if (IU.empty()) return;
4783 
4784   // If there's too much analysis to be done, bail early. We won't be able to
4785   // model the problem anyway.
4786   unsigned NumUsers = 0;
4787   for (const IVStrideUse &U : IU) {
4788     if (++NumUsers > MaxIVUsers) {
4789       (void)U;
4790       DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U << "\n");
4791       return;
4792     }
4793     // Bail out if we have a PHI on an EHPad that gets a value from a
4794     // CatchSwitchInst.  Because the CatchSwitchInst cannot be split, there is
4795     // no good place to stick any instructions.
4796     if (auto *PN = dyn_cast<PHINode>(U.getUser())) {
4797        auto *FirstNonPHI = PN->getParent()->getFirstNonPHI();
4798        if (isa<FuncletPadInst>(FirstNonPHI) ||
4799            isa<CatchSwitchInst>(FirstNonPHI))
4800          for (BasicBlock *PredBB : PN->blocks())
4801            if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI()))
4802              return;
4803     }
4804   }
4805 
4806 #ifndef NDEBUG
4807   // All dominating loops must have preheaders, or SCEVExpander may not be able
4808   // to materialize an AddRecExpr whose Start is an outer AddRecExpr.
4809   //
4810   // IVUsers analysis should only create users that are dominated by simple loop
4811   // headers. Since this loop should dominate all of its users, its user list
4812   // should be empty if this loop itself is not within a simple loop nest.
4813   for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader());
4814        Rung; Rung = Rung->getIDom()) {
4815     BasicBlock *BB = Rung->getBlock();
4816     const Loop *DomLoop = LI.getLoopFor(BB);
4817     if (DomLoop && DomLoop->getHeader() == BB) {
4818       assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest");
4819     }
4820   }
4821 #endif // DEBUG
4822 
4823   DEBUG(dbgs() << "\nLSR on loop ";
4824         L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false);
4825         dbgs() << ":\n");
4826 
4827   // First, perform some low-level loop optimizations.
4828   OptimizeShadowIV();
4829   OptimizeLoopTermCond();
4830 
4831   // If loop preparation eliminates all interesting IV users, bail.
4832   if (IU.empty()) return;
4833 
4834   // Skip nested loops until we can model them better with formulae.
4835   if (!L->empty()) {
4836     DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n");
4837     return;
4838   }
4839 
4840   // Start collecting data and preparing for the solver.
4841   CollectChains();
4842   CollectInterestingTypesAndFactors();
4843   CollectFixupsAndInitialFormulae();
4844   CollectLoopInvariantFixupsAndFormulae();
4845 
4846   assert(!Uses.empty() && "IVUsers reported at least one use");
4847   DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
4848         print_uses(dbgs()));
4849 
4850   // Now use the reuse data to generate a bunch of interesting ways
4851   // to formulate the values needed for the uses.
4852   GenerateAllReuseFormulae();
4853 
4854   FilterOutUndesirableDedicatedRegisters();
4855   NarrowSearchSpaceUsingHeuristics();
4856 
4857   SmallVector<const Formula *, 8> Solution;
4858   Solve(Solution);
4859 
4860   // Release memory that is no longer needed.
4861   Factors.clear();
4862   Types.clear();
4863   RegUses.clear();
4864 
4865   if (Solution.empty())
4866     return;
4867 
4868 #ifndef NDEBUG
4869   // Formulae should be legal.
4870   for (const LSRUse &LU : Uses) {
4871     for (const Formula &F : LU.Formulae)
4872       assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
4873                         F) && "Illegal formula generated!");
4874   };
4875 #endif
4876 
4877   // Now that we've decided what we want, make it so.
4878   ImplementSolution(Solution);
4879 }
4880 
4881 void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
4882   if (Factors.empty() && Types.empty()) return;
4883 
4884   OS << "LSR has identified the following interesting factors and types: ";
4885   bool First = true;
4886 
4887   for (int64_t Factor : Factors) {
4888     if (!First) OS << ", ";
4889     First = false;
4890     OS << '*' << Factor;
4891   }
4892 
4893   for (Type *Ty : Types) {
4894     if (!First) OS << ", ";
4895     First = false;
4896     OS << '(' << *Ty << ')';
4897   }
4898   OS << '\n';
4899 }
4900 
4901 void LSRInstance::print_fixups(raw_ostream &OS) const {
4902   OS << "LSR is examining the following fixup sites:\n";
4903   for (const LSRUse &LU : Uses)
4904     for (const LSRFixup &LF : LU.Fixups) {
4905       dbgs() << "  ";
4906       LF.print(OS);
4907       OS << '\n';
4908     }
4909 }
4910 
4911 void LSRInstance::print_uses(raw_ostream &OS) const {
4912   OS << "LSR is examining the following uses:\n";
4913   for (const LSRUse &LU : Uses) {
4914     dbgs() << "  ";
4915     LU.print(OS);
4916     OS << '\n';
4917     for (const Formula &F : LU.Formulae) {
4918       OS << "    ";
4919       F.print(OS);
4920       OS << '\n';
4921     }
4922   }
4923 }
4924 
4925 void LSRInstance::print(raw_ostream &OS) const {
4926   print_factors_and_types(OS);
4927   print_fixups(OS);
4928   print_uses(OS);
4929 }
4930 
4931 LLVM_DUMP_METHOD
4932 void LSRInstance::dump() const {
4933   print(errs()); errs() << '\n';
4934 }
4935 
4936 namespace {
4937 
4938 class LoopStrengthReduce : public LoopPass {
4939 public:
4940   static char ID; // Pass ID, replacement for typeid
4941   LoopStrengthReduce();
4942 
4943 private:
4944   bool runOnLoop(Loop *L, LPPassManager &LPM) override;
4945   void getAnalysisUsage(AnalysisUsage &AU) const override;
4946 };
4947 }
4948 
4949 char LoopStrengthReduce::ID = 0;
4950 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce",
4951                       "Loop Strength Reduction", false, false)
4952 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
4953 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
4954 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
4955 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass)
4956 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
4957 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
4958 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce",
4959                     "Loop Strength Reduction", false, false)
4960 
4961 Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); }
4962 
4963 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) {
4964   initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
4965 }
4966 
4967 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
4968   // We split critical edges, so we change the CFG.  However, we do update
4969   // many analyses if they are around.
4970   AU.addPreservedID(LoopSimplifyID);
4971 
4972   AU.addRequired<LoopInfoWrapperPass>();
4973   AU.addPreserved<LoopInfoWrapperPass>();
4974   AU.addRequiredID(LoopSimplifyID);
4975   AU.addRequired<DominatorTreeWrapperPass>();
4976   AU.addPreserved<DominatorTreeWrapperPass>();
4977   AU.addRequired<ScalarEvolutionWrapperPass>();
4978   AU.addPreserved<ScalarEvolutionWrapperPass>();
4979   // Requiring LoopSimplify a second time here prevents IVUsers from running
4980   // twice, since LoopSimplify was invalidated by running ScalarEvolution.
4981   AU.addRequiredID(LoopSimplifyID);
4982   AU.addRequired<IVUsersWrapperPass>();
4983   AU.addPreserved<IVUsersWrapperPass>();
4984   AU.addRequired<TargetTransformInfoWrapperPass>();
4985 }
4986 
4987 static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE,
4988                                DominatorTree &DT, LoopInfo &LI,
4989                                const TargetTransformInfo &TTI) {
4990   bool Changed = false;
4991 
4992   // Run the main LSR transformation.
4993   Changed |= LSRInstance(L, IU, SE, DT, LI, TTI).getChanged();
4994 
4995   // Remove any extra phis created by processing inner loops.
4996   Changed |= DeleteDeadPHIs(L->getHeader());
4997   if (EnablePhiElim && L->isLoopSimplifyForm()) {
4998     SmallVector<WeakVH, 16> DeadInsts;
4999     const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
5000     SCEVExpander Rewriter(SE, DL, "lsr");
5001 #ifndef NDEBUG
5002     Rewriter.setDebugType(DEBUG_TYPE);
5003 #endif
5004     unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI);
5005     if (numFolded) {
5006       Changed = true;
5007       DeleteTriviallyDeadInstructions(DeadInsts);
5008       DeleteDeadPHIs(L->getHeader());
5009     }
5010   }
5011   return Changed;
5012 }
5013 
5014 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
5015   if (skipLoop(L))
5016     return false;
5017 
5018   auto &IU = getAnalysis<IVUsersWrapperPass>().getIU();
5019   auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
5020   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
5021   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
5022   const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
5023       *L->getHeader()->getParent());
5024   return ReduceLoopStrength(L, IU, SE, DT, LI, TTI);
5025 }
5026 
5027 PreservedAnalyses LoopStrengthReducePass::run(Loop &L,
5028                                               LoopAnalysisManager &AM) {
5029   const auto &FAM =
5030       AM.getResult<FunctionAnalysisManagerLoopProxy>(L).getManager();
5031   Function *F = L.getHeader()->getParent();
5032 
5033   auto &IU = AM.getResult<IVUsersAnalysis>(L);
5034   auto *SE = FAM.getCachedResult<ScalarEvolutionAnalysis>(*F);
5035   auto *DT = FAM.getCachedResult<DominatorTreeAnalysis>(*F);
5036   auto *LI = FAM.getCachedResult<LoopAnalysis>(*F);
5037   auto *TTI = FAM.getCachedResult<TargetIRAnalysis>(*F);
5038   assert((SE && DT && LI && TTI) &&
5039          "Analyses for Loop Strength Reduce not available");
5040 
5041   if (!ReduceLoopStrength(&L, IU, *SE, *DT, *LI, *TTI))
5042     return PreservedAnalyses::all();
5043 
5044   return getLoopPassPreservedAnalyses();
5045 }
5046