1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This transformation analyzes and transforms the induction variables (and
11 // computations derived from them) into forms suitable for efficient execution
12 // on the target.
13 //
14 // This pass performs a strength reduction on array references inside loops that
15 // have as one or more of their components the loop induction variable, it
16 // rewrites expressions to take advantage of scaled-index addressing modes
17 // available on the target, and it performs a variety of other optimizations
18 // related to loop induction variables.
19 //
20 // Terminology note: this code has a lot of handling for "post-increment" or
21 // "post-inc" users. This is not talking about post-increment addressing modes;
22 // it is instead talking about code like this:
23 //
24 //   %i = phi [ 0, %entry ], [ %i.next, %latch ]
25 //   ...
26 //   %i.next = add %i, 1
27 //   %c = icmp eq %i.next, %n
28 //
29 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
30 // it's useful to think about these as the same register, with some uses using
31 // the value of the register before the add and some using it after. In this
32 // example, the icmp is a post-increment user, since it uses %i.next, which is
33 // the value of the induction variable after the increment. The other common
34 // case of post-increment users is users outside the loop.
35 //
36 // TODO: More sophistication in the way Formulae are generated and filtered.
37 //
38 // TODO: Handle multiple loops at a time.
39 //
40 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead
41 //       of a GlobalValue?
42 //
43 // TODO: When truncation is free, truncate ICmp users' operands to make it a
44 //       smaller encoding (on x86 at least).
45 //
46 // TODO: When a negated register is used by an add (such as in a list of
47 //       multiple base registers, or as the increment expression in an addrec),
48 //       we may not actually need both reg and (-1 * reg) in registers; the
49 //       negation can be implemented by using a sub instead of an add. The
50 //       lack of support for taking this into consideration when making
51 //       register pressure decisions is partly worked around by the "Special"
52 //       use kind.
53 //
54 //===----------------------------------------------------------------------===//
55 
56 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h"
57 #include "llvm/ADT/APInt.h"
58 #include "llvm/ADT/DenseMap.h"
59 #include "llvm/ADT/DenseSet.h"
60 #include "llvm/ADT/Hashing.h"
61 #include "llvm/ADT/PointerIntPair.h"
62 #include "llvm/ADT/STLExtras.h"
63 #include "llvm/ADT/SetVector.h"
64 #include "llvm/ADT/SmallBitVector.h"
65 #include "llvm/ADT/SmallPtrSet.h"
66 #include "llvm/ADT/SmallSet.h"
67 #include "llvm/ADT/SmallVector.h"
68 #include "llvm/Analysis/IVUsers.h"
69 #include "llvm/Analysis/LoopInfo.h"
70 #include "llvm/Analysis/LoopPass.h"
71 #include "llvm/Analysis/ScalarEvolution.h"
72 #include "llvm/Analysis/ScalarEvolutionExpander.h"
73 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
74 #include "llvm/Analysis/ScalarEvolutionNormalization.h"
75 #include "llvm/Analysis/TargetTransformInfo.h"
76 #include "llvm/IR/BasicBlock.h"
77 #include "llvm/IR/Constant.h"
78 #include "llvm/IR/Constants.h"
79 #include "llvm/IR/DerivedTypes.h"
80 #include "llvm/IR/Dominators.h"
81 #include "llvm/IR/GlobalValue.h"
82 #include "llvm/IR/IRBuilder.h"
83 #include "llvm/IR/Instruction.h"
84 #include "llvm/IR/Instructions.h"
85 #include "llvm/IR/IntrinsicInst.h"
86 #include "llvm/IR/Module.h"
87 #include "llvm/IR/OperandTraits.h"
88 #include "llvm/IR/Operator.h"
89 #include "llvm/IR/Type.h"
90 #include "llvm/IR/Value.h"
91 #include "llvm/IR/ValueHandle.h"
92 #include "llvm/Pass.h"
93 #include "llvm/Support/Casting.h"
94 #include "llvm/Support/CommandLine.h"
95 #include "llvm/Support/Compiler.h"
96 #include "llvm/Support/Debug.h"
97 #include "llvm/Support/ErrorHandling.h"
98 #include "llvm/Support/MathExtras.h"
99 #include "llvm/Support/raw_ostream.h"
100 #include "llvm/Transforms/Scalar.h"
101 #include "llvm/Transforms/Scalar/LoopPassManager.h"
102 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
103 #include "llvm/Transforms/Utils/Local.h"
104 #include <algorithm>
105 #include <cassert>
106 #include <cstddef>
107 #include <cstdint>
108 #include <cstdlib>
109 #include <iterator>
110 #include <map>
111 #include <tuple>
112 #include <utility>
113 
114 using namespace llvm;
115 
116 #define DEBUG_TYPE "loop-reduce"
117 
118 /// MaxIVUsers is an arbitrary threshold that provides an early opportunitiy for
119 /// bail out. This threshold is far beyond the number of users that LSR can
120 /// conceivably solve, so it should not affect generated code, but catches the
121 /// worst cases before LSR burns too much compile time and stack space.
122 static const unsigned MaxIVUsers = 200;
123 
124 // Temporary flag to cleanup congruent phis after LSR phi expansion.
125 // It's currently disabled until we can determine whether it's truly useful or
126 // not. The flag should be removed after the v3.0 release.
127 // This is now needed for ivchains.
128 static cl::opt<bool> EnablePhiElim(
129   "enable-lsr-phielim", cl::Hidden, cl::init(true),
130   cl::desc("Enable LSR phi elimination"));
131 
132 #ifndef NDEBUG
133 // Stress test IV chain generation.
134 static cl::opt<bool> StressIVChain(
135   "stress-ivchain", cl::Hidden, cl::init(false),
136   cl::desc("Stress test LSR IV chains"));
137 #else
138 static bool StressIVChain = false;
139 #endif
140 
141 namespace {
142 
143 struct MemAccessTy {
144   /// Used in situations where the accessed memory type is unknown.
145   static const unsigned UnknownAddressSpace = ~0u;
146 
147   Type *MemTy;
148   unsigned AddrSpace;
149 
150   MemAccessTy() : MemTy(nullptr), AddrSpace(UnknownAddressSpace) {}
151 
152   MemAccessTy(Type *Ty, unsigned AS) :
153     MemTy(Ty), AddrSpace(AS) {}
154 
155   bool operator==(MemAccessTy Other) const {
156     return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace;
157   }
158 
159   bool operator!=(MemAccessTy Other) const { return !(*this == Other); }
160 
161   static MemAccessTy getUnknown(LLVMContext &Ctx,
162                                 unsigned AS = UnknownAddressSpace) {
163     return MemAccessTy(Type::getVoidTy(Ctx), AS);
164   }
165 };
166 
167 /// This class holds data which is used to order reuse candidates.
168 class RegSortData {
169 public:
170   /// This represents the set of LSRUse indices which reference
171   /// a particular register.
172   SmallBitVector UsedByIndices;
173 
174   void print(raw_ostream &OS) const;
175   void dump() const;
176 };
177 
178 } // end anonymous namespace
179 
180 void RegSortData::print(raw_ostream &OS) const {
181   OS << "[NumUses=" << UsedByIndices.count() << ']';
182 }
183 
184 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
185 LLVM_DUMP_METHOD void RegSortData::dump() const {
186   print(errs()); errs() << '\n';
187 }
188 #endif
189 
190 namespace {
191 
192 /// Map register candidates to information about how they are used.
193 class RegUseTracker {
194   typedef DenseMap<const SCEV *, RegSortData> RegUsesTy;
195 
196   RegUsesTy RegUsesMap;
197   SmallVector<const SCEV *, 16> RegSequence;
198 
199 public:
200   void countRegister(const SCEV *Reg, size_t LUIdx);
201   void dropRegister(const SCEV *Reg, size_t LUIdx);
202   void swapAndDropUse(size_t LUIdx, size_t LastLUIdx);
203 
204   bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
205 
206   const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
207 
208   void clear();
209 
210   typedef SmallVectorImpl<const SCEV *>::iterator iterator;
211   typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator;
212   iterator begin() { return RegSequence.begin(); }
213   iterator end()   { return RegSequence.end(); }
214   const_iterator begin() const { return RegSequence.begin(); }
215   const_iterator end() const   { return RegSequence.end(); }
216 };
217 
218 } // end anonymous namespace
219 
220 void
221 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) {
222   std::pair<RegUsesTy::iterator, bool> Pair =
223     RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
224   RegSortData &RSD = Pair.first->second;
225   if (Pair.second)
226     RegSequence.push_back(Reg);
227   RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
228   RSD.UsedByIndices.set(LUIdx);
229 }
230 
231 void
232 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) {
233   RegUsesTy::iterator It = RegUsesMap.find(Reg);
234   assert(It != RegUsesMap.end());
235   RegSortData &RSD = It->second;
236   assert(RSD.UsedByIndices.size() > LUIdx);
237   RSD.UsedByIndices.reset(LUIdx);
238 }
239 
240 void
241 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) {
242   assert(LUIdx <= LastLUIdx);
243 
244   // Update RegUses. The data structure is not optimized for this purpose;
245   // we must iterate through it and update each of the bit vectors.
246   for (auto &Pair : RegUsesMap) {
247     SmallBitVector &UsedByIndices = Pair.second.UsedByIndices;
248     if (LUIdx < UsedByIndices.size())
249       UsedByIndices[LUIdx] =
250         LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false;
251     UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx));
252   }
253 }
254 
255 bool
256 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
257   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
258   if (I == RegUsesMap.end())
259     return false;
260   const SmallBitVector &UsedByIndices = I->second.UsedByIndices;
261   int i = UsedByIndices.find_first();
262   if (i == -1) return false;
263   if ((size_t)i != LUIdx) return true;
264   return UsedByIndices.find_next(i) != -1;
265 }
266 
267 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
268   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
269   assert(I != RegUsesMap.end() && "Unknown register!");
270   return I->second.UsedByIndices;
271 }
272 
273 void RegUseTracker::clear() {
274   RegUsesMap.clear();
275   RegSequence.clear();
276 }
277 
278 namespace {
279 
280 /// This class holds information that describes a formula for computing
281 /// satisfying a use. It may include broken-out immediates and scaled registers.
282 struct Formula {
283   /// Global base address used for complex addressing.
284   GlobalValue *BaseGV;
285 
286   /// Base offset for complex addressing.
287   int64_t BaseOffset;
288 
289   /// Whether any complex addressing has a base register.
290   bool HasBaseReg;
291 
292   /// The scale of any complex addressing.
293   int64_t Scale;
294 
295   /// The list of "base" registers for this use. When this is non-empty. The
296   /// canonical representation of a formula is
297   /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and
298   /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty().
299   /// #1 enforces that the scaled register is always used when at least two
300   /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2.
301   /// #2 enforces that 1 * reg is reg.
302   /// This invariant can be temporarly broken while building a formula.
303   /// However, every formula inserted into the LSRInstance must be in canonical
304   /// form.
305   SmallVector<const SCEV *, 4> BaseRegs;
306 
307   /// The 'scaled' register for this use. This should be non-null when Scale is
308   /// not zero.
309   const SCEV *ScaledReg;
310 
311   /// An additional constant offset which added near the use. This requires a
312   /// temporary register, but the offset itself can live in an add immediate
313   /// field rather than a register.
314   int64_t UnfoldedOffset;
315 
316   Formula()
317       : BaseGV(nullptr), BaseOffset(0), HasBaseReg(false), Scale(0),
318         ScaledReg(nullptr), UnfoldedOffset(0) {}
319 
320   void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE);
321 
322   bool isCanonical() const;
323 
324   void canonicalize();
325 
326   bool unscale();
327 
328   size_t getNumRegs() const;
329   Type *getType() const;
330 
331   void deleteBaseReg(const SCEV *&S);
332 
333   bool referencesReg(const SCEV *S) const;
334   bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
335                                   const RegUseTracker &RegUses) const;
336 
337   void print(raw_ostream &OS) const;
338   void dump() const;
339 };
340 
341 } // end anonymous namespace
342 
343 /// Recursion helper for initialMatch.
344 static void DoInitialMatch(const SCEV *S, Loop *L,
345                            SmallVectorImpl<const SCEV *> &Good,
346                            SmallVectorImpl<const SCEV *> &Bad,
347                            ScalarEvolution &SE) {
348   // Collect expressions which properly dominate the loop header.
349   if (SE.properlyDominates(S, L->getHeader())) {
350     Good.push_back(S);
351     return;
352   }
353 
354   // Look at add operands.
355   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
356     for (const SCEV *S : Add->operands())
357       DoInitialMatch(S, L, Good, Bad, SE);
358     return;
359   }
360 
361   // Look at addrec operands.
362   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
363     if (!AR->getStart()->isZero() && AR->isAffine()) {
364       DoInitialMatch(AR->getStart(), L, Good, Bad, SE);
365       DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
366                                       AR->getStepRecurrence(SE),
367                                       // FIXME: AR->getNoWrapFlags()
368                                       AR->getLoop(), SCEV::FlagAnyWrap),
369                      L, Good, Bad, SE);
370       return;
371     }
372 
373   // Handle a multiplication by -1 (negation) if it didn't fold.
374   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
375     if (Mul->getOperand(0)->isAllOnesValue()) {
376       SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end());
377       const SCEV *NewMul = SE.getMulExpr(Ops);
378 
379       SmallVector<const SCEV *, 4> MyGood;
380       SmallVector<const SCEV *, 4> MyBad;
381       DoInitialMatch(NewMul, L, MyGood, MyBad, SE);
382       const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
383         SE.getEffectiveSCEVType(NewMul->getType())));
384       for (const SCEV *S : MyGood)
385         Good.push_back(SE.getMulExpr(NegOne, S));
386       for (const SCEV *S : MyBad)
387         Bad.push_back(SE.getMulExpr(NegOne, S));
388       return;
389     }
390 
391   // Ok, we can't do anything interesting. Just stuff the whole thing into a
392   // register and hope for the best.
393   Bad.push_back(S);
394 }
395 
396 /// Incorporate loop-variant parts of S into this Formula, attempting to keep
397 /// all loop-invariant and loop-computable values in a single base register.
398 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) {
399   SmallVector<const SCEV *, 4> Good;
400   SmallVector<const SCEV *, 4> Bad;
401   DoInitialMatch(S, L, Good, Bad, SE);
402   if (!Good.empty()) {
403     const SCEV *Sum = SE.getAddExpr(Good);
404     if (!Sum->isZero())
405       BaseRegs.push_back(Sum);
406     HasBaseReg = true;
407   }
408   if (!Bad.empty()) {
409     const SCEV *Sum = SE.getAddExpr(Bad);
410     if (!Sum->isZero())
411       BaseRegs.push_back(Sum);
412     HasBaseReg = true;
413   }
414   canonicalize();
415 }
416 
417 /// \brief Check whether or not this formula statisfies the canonical
418 /// representation.
419 /// \see Formula::BaseRegs.
420 bool Formula::isCanonical() const {
421   if (ScaledReg)
422     return Scale != 1 || !BaseRegs.empty();
423   return BaseRegs.size() <= 1;
424 }
425 
426 /// \brief Helper method to morph a formula into its canonical representation.
427 /// \see Formula::BaseRegs.
428 /// Every formula having more than one base register, must use the ScaledReg
429 /// field. Otherwise, we would have to do special cases everywhere in LSR
430 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ...
431 /// On the other hand, 1*reg should be canonicalized into reg.
432 void Formula::canonicalize() {
433   if (isCanonical())
434     return;
435   // So far we did not need this case. This is easy to implement but it is
436   // useless to maintain dead code. Beside it could hurt compile time.
437   assert(!BaseRegs.empty() && "1*reg => reg, should not be needed.");
438   // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg.
439   ScaledReg = BaseRegs.back();
440   BaseRegs.pop_back();
441   Scale = 1;
442   size_t BaseRegsSize = BaseRegs.size();
443   size_t Try = 0;
444   // If ScaledReg is an invariant, try to find a variant expression.
445   while (Try < BaseRegsSize && !isa<SCEVAddRecExpr>(ScaledReg))
446     std::swap(ScaledReg, BaseRegs[Try++]);
447 }
448 
449 /// \brief Get rid of the scale in the formula.
450 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2.
451 /// \return true if it was possible to get rid of the scale, false otherwise.
452 /// \note After this operation the formula may not be in the canonical form.
453 bool Formula::unscale() {
454   if (Scale != 1)
455     return false;
456   Scale = 0;
457   BaseRegs.push_back(ScaledReg);
458   ScaledReg = nullptr;
459   return true;
460 }
461 
462 /// Return the total number of register operands used by this formula. This does
463 /// not include register uses implied by non-constant addrec strides.
464 size_t Formula::getNumRegs() const {
465   return !!ScaledReg + BaseRegs.size();
466 }
467 
468 /// Return the type of this formula, if it has one, or null otherwise. This type
469 /// is meaningless except for the bit size.
470 Type *Formula::getType() const {
471   return !BaseRegs.empty() ? BaseRegs.front()->getType() :
472          ScaledReg ? ScaledReg->getType() :
473          BaseGV ? BaseGV->getType() :
474          nullptr;
475 }
476 
477 /// Delete the given base reg from the BaseRegs list.
478 void Formula::deleteBaseReg(const SCEV *&S) {
479   if (&S != &BaseRegs.back())
480     std::swap(S, BaseRegs.back());
481   BaseRegs.pop_back();
482 }
483 
484 /// Test if this formula references the given register.
485 bool Formula::referencesReg(const SCEV *S) const {
486   return S == ScaledReg || is_contained(BaseRegs, S);
487 }
488 
489 /// Test whether this formula uses registers which are used by uses other than
490 /// the use with the given index.
491 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
492                                          const RegUseTracker &RegUses) const {
493   if (ScaledReg)
494     if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
495       return true;
496   for (const SCEV *BaseReg : BaseRegs)
497     if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx))
498       return true;
499   return false;
500 }
501 
502 void Formula::print(raw_ostream &OS) const {
503   bool First = true;
504   if (BaseGV) {
505     if (!First) OS << " + "; else First = false;
506     BaseGV->printAsOperand(OS, /*PrintType=*/false);
507   }
508   if (BaseOffset != 0) {
509     if (!First) OS << " + "; else First = false;
510     OS << BaseOffset;
511   }
512   for (const SCEV *BaseReg : BaseRegs) {
513     if (!First) OS << " + "; else First = false;
514     OS << "reg(" << *BaseReg << ')';
515   }
516   if (HasBaseReg && BaseRegs.empty()) {
517     if (!First) OS << " + "; else First = false;
518     OS << "**error: HasBaseReg**";
519   } else if (!HasBaseReg && !BaseRegs.empty()) {
520     if (!First) OS << " + "; else First = false;
521     OS << "**error: !HasBaseReg**";
522   }
523   if (Scale != 0) {
524     if (!First) OS << " + "; else First = false;
525     OS << Scale << "*reg(";
526     if (ScaledReg)
527       OS << *ScaledReg;
528     else
529       OS << "<unknown>";
530     OS << ')';
531   }
532   if (UnfoldedOffset != 0) {
533     if (!First) OS << " + ";
534     OS << "imm(" << UnfoldedOffset << ')';
535   }
536 }
537 
538 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
539 LLVM_DUMP_METHOD void Formula::dump() const {
540   print(errs()); errs() << '\n';
541 }
542 #endif
543 
544 /// Return true if the given addrec can be sign-extended without changing its
545 /// value.
546 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
547   Type *WideTy =
548     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
549   return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
550 }
551 
552 /// Return true if the given add can be sign-extended without changing its
553 /// value.
554 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
555   Type *WideTy =
556     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
557   return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
558 }
559 
560 /// Return true if the given mul can be sign-extended without changing its
561 /// value.
562 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) {
563   Type *WideTy =
564     IntegerType::get(SE.getContext(),
565                      SE.getTypeSizeInBits(M->getType()) * M->getNumOperands());
566   return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy));
567 }
568 
569 /// Return an expression for LHS /s RHS, if it can be determined and if the
570 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits
571 /// is true, expressions like (X * Y) /s Y are simplified to Y, ignoring that
572 /// the multiplication may overflow, which is useful when the result will be
573 /// used in a context where the most significant bits are ignored.
574 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
575                                 ScalarEvolution &SE,
576                                 bool IgnoreSignificantBits = false) {
577   // Handle the trivial case, which works for any SCEV type.
578   if (LHS == RHS)
579     return SE.getConstant(LHS->getType(), 1);
580 
581   // Handle a few RHS special cases.
582   const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
583   if (RC) {
584     const APInt &RA = RC->getAPInt();
585     // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
586     // some folding.
587     if (RA.isAllOnesValue())
588       return SE.getMulExpr(LHS, RC);
589     // Handle x /s 1 as x.
590     if (RA == 1)
591       return LHS;
592   }
593 
594   // Check for a division of a constant by a constant.
595   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
596     if (!RC)
597       return nullptr;
598     const APInt &LA = C->getAPInt();
599     const APInt &RA = RC->getAPInt();
600     if (LA.srem(RA) != 0)
601       return nullptr;
602     return SE.getConstant(LA.sdiv(RA));
603   }
604 
605   // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
606   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
607     if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) {
608       const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
609                                       IgnoreSignificantBits);
610       if (!Step) return nullptr;
611       const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
612                                        IgnoreSignificantBits);
613       if (!Start) return nullptr;
614       // FlagNW is independent of the start value, step direction, and is
615       // preserved with smaller magnitude steps.
616       // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
617       return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap);
618     }
619     return nullptr;
620   }
621 
622   // Distribute the sdiv over add operands, if the add doesn't overflow.
623   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
624     if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
625       SmallVector<const SCEV *, 8> Ops;
626       for (const SCEV *S : Add->operands()) {
627         const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits);
628         if (!Op) return nullptr;
629         Ops.push_back(Op);
630       }
631       return SE.getAddExpr(Ops);
632     }
633     return nullptr;
634   }
635 
636   // Check for a multiply operand that we can pull RHS out of.
637   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) {
638     if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
639       SmallVector<const SCEV *, 4> Ops;
640       bool Found = false;
641       for (const SCEV *S : Mul->operands()) {
642         if (!Found)
643           if (const SCEV *Q = getExactSDiv(S, RHS, SE,
644                                            IgnoreSignificantBits)) {
645             S = Q;
646             Found = true;
647           }
648         Ops.push_back(S);
649       }
650       return Found ? SE.getMulExpr(Ops) : nullptr;
651     }
652     return nullptr;
653   }
654 
655   // Otherwise we don't know.
656   return nullptr;
657 }
658 
659 /// If S involves the addition of a constant integer value, return that integer
660 /// value, and mutate S to point to a new SCEV with that value excluded.
661 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
662   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
663     if (C->getAPInt().getMinSignedBits() <= 64) {
664       S = SE.getConstant(C->getType(), 0);
665       return C->getValue()->getSExtValue();
666     }
667   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
668     SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
669     int64_t Result = ExtractImmediate(NewOps.front(), SE);
670     if (Result != 0)
671       S = SE.getAddExpr(NewOps);
672     return Result;
673   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
674     SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
675     int64_t Result = ExtractImmediate(NewOps.front(), SE);
676     if (Result != 0)
677       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
678                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
679                            SCEV::FlagAnyWrap);
680     return Result;
681   }
682   return 0;
683 }
684 
685 /// If S involves the addition of a GlobalValue address, return that symbol, and
686 /// mutate S to point to a new SCEV with that value excluded.
687 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
688   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
689     if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
690       S = SE.getConstant(GV->getType(), 0);
691       return GV;
692     }
693   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
694     SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
695     GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
696     if (Result)
697       S = SE.getAddExpr(NewOps);
698     return Result;
699   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
700     SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
701     GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
702     if (Result)
703       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
704                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
705                            SCEV::FlagAnyWrap);
706     return Result;
707   }
708   return nullptr;
709 }
710 
711 /// Returns true if the specified instruction is using the specified value as an
712 /// address.
713 static bool isAddressUse(Instruction *Inst, Value *OperandVal) {
714   bool isAddress = isa<LoadInst>(Inst);
715   if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
716     if (SI->getOperand(1) == OperandVal)
717       isAddress = true;
718   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
719     // Addressing modes can also be folded into prefetches and a variety
720     // of intrinsics.
721     switch (II->getIntrinsicID()) {
722       default: break;
723       case Intrinsic::prefetch:
724         if (II->getArgOperand(0) == OperandVal)
725           isAddress = true;
726         break;
727     }
728   }
729   return isAddress;
730 }
731 
732 /// Return the type of the memory being accessed.
733 static MemAccessTy getAccessType(const Instruction *Inst) {
734   MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace);
735   if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
736     AccessTy.MemTy = SI->getOperand(0)->getType();
737     AccessTy.AddrSpace = SI->getPointerAddressSpace();
738   } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
739     AccessTy.AddrSpace = LI->getPointerAddressSpace();
740   }
741 
742   // All pointers have the same requirements, so canonicalize them to an
743   // arbitrary pointer type to minimize variation.
744   if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy))
745     AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
746                                       PTy->getAddressSpace());
747 
748   return AccessTy;
749 }
750 
751 /// Return true if this AddRec is already a phi in its loop.
752 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
753   for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin();
754        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
755     if (SE.isSCEVable(PN->getType()) &&
756         (SE.getEffectiveSCEVType(PN->getType()) ==
757          SE.getEffectiveSCEVType(AR->getType())) &&
758         SE.getSCEV(PN) == AR)
759       return true;
760   }
761   return false;
762 }
763 
764 /// Check if expanding this expression is likely to incur significant cost. This
765 /// is tricky because SCEV doesn't track which expressions are actually computed
766 /// by the current IR.
767 ///
768 /// We currently allow expansion of IV increments that involve adds,
769 /// multiplication by constants, and AddRecs from existing phis.
770 ///
771 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an
772 /// obvious multiple of the UDivExpr.
773 static bool isHighCostExpansion(const SCEV *S,
774                                 SmallPtrSetImpl<const SCEV*> &Processed,
775                                 ScalarEvolution &SE) {
776   // Zero/One operand expressions
777   switch (S->getSCEVType()) {
778   case scUnknown:
779   case scConstant:
780     return false;
781   case scTruncate:
782     return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(),
783                                Processed, SE);
784   case scZeroExtend:
785     return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(),
786                                Processed, SE);
787   case scSignExtend:
788     return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(),
789                                Processed, SE);
790   }
791 
792   if (!Processed.insert(S).second)
793     return false;
794 
795   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
796     for (const SCEV *S : Add->operands()) {
797       if (isHighCostExpansion(S, Processed, SE))
798         return true;
799     }
800     return false;
801   }
802 
803   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
804     if (Mul->getNumOperands() == 2) {
805       // Multiplication by a constant is ok
806       if (isa<SCEVConstant>(Mul->getOperand(0)))
807         return isHighCostExpansion(Mul->getOperand(1), Processed, SE);
808 
809       // If we have the value of one operand, check if an existing
810       // multiplication already generates this expression.
811       if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) {
812         Value *UVal = U->getValue();
813         for (User *UR : UVal->users()) {
814           // If U is a constant, it may be used by a ConstantExpr.
815           Instruction *UI = dyn_cast<Instruction>(UR);
816           if (UI && UI->getOpcode() == Instruction::Mul &&
817               SE.isSCEVable(UI->getType())) {
818             return SE.getSCEV(UI) == Mul;
819           }
820         }
821       }
822     }
823   }
824 
825   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
826     if (isExistingPhi(AR, SE))
827       return false;
828   }
829 
830   // Fow now, consider any other type of expression (div/mul/min/max) high cost.
831   return true;
832 }
833 
834 /// If any of the instructions is the specified set are trivially dead, delete
835 /// them and see if this makes any of their operands subsequently dead.
836 static bool
837 DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) {
838   bool Changed = false;
839 
840   while (!DeadInsts.empty()) {
841     Value *V = DeadInsts.pop_back_val();
842     Instruction *I = dyn_cast_or_null<Instruction>(V);
843 
844     if (!I || !isInstructionTriviallyDead(I))
845       continue;
846 
847     for (Use &O : I->operands())
848       if (Instruction *U = dyn_cast<Instruction>(O)) {
849         O = nullptr;
850         if (U->use_empty())
851           DeadInsts.emplace_back(U);
852       }
853 
854     I->eraseFromParent();
855     Changed = true;
856   }
857 
858   return Changed;
859 }
860 
861 namespace {
862 
863 class LSRUse;
864 
865 } // end anonymous namespace
866 
867 /// \brief Check if the addressing mode defined by \p F is completely
868 /// folded in \p LU at isel time.
869 /// This includes address-mode folding and special icmp tricks.
870 /// This function returns true if \p LU can accommodate what \p F
871 /// defines and up to 1 base + 1 scaled + offset.
872 /// In other words, if \p F has several base registers, this function may
873 /// still return true. Therefore, users still need to account for
874 /// additional base registers and/or unfolded offsets to derive an
875 /// accurate cost model.
876 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
877                                  const LSRUse &LU, const Formula &F);
878 // Get the cost of the scaling factor used in F for LU.
879 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
880                                      const LSRUse &LU, const Formula &F);
881 
882 namespace {
883 
884 /// This class is used to measure and compare candidate formulae.
885 class Cost {
886   /// TODO: Some of these could be merged. Also, a lexical ordering
887   /// isn't always optimal.
888   unsigned NumRegs;
889   unsigned AddRecCost;
890   unsigned NumIVMuls;
891   unsigned NumBaseAdds;
892   unsigned ImmCost;
893   unsigned SetupCost;
894   unsigned ScaleCost;
895 
896 public:
897   Cost()
898     : NumRegs(0), AddRecCost(0), NumIVMuls(0), NumBaseAdds(0), ImmCost(0),
899       SetupCost(0), ScaleCost(0) {}
900 
901   bool operator<(const Cost &Other) const;
902 
903   void Lose();
904 
905 #ifndef NDEBUG
906   // Once any of the metrics loses, they must all remain losers.
907   bool isValid() {
908     return ((NumRegs | AddRecCost | NumIVMuls | NumBaseAdds
909              | ImmCost | SetupCost | ScaleCost) != ~0u)
910       || ((NumRegs & AddRecCost & NumIVMuls & NumBaseAdds
911            & ImmCost & SetupCost & ScaleCost) == ~0u);
912   }
913 #endif
914 
915   bool isLoser() {
916     assert(isValid() && "invalid cost");
917     return NumRegs == ~0u;
918   }
919 
920   void RateFormula(const TargetTransformInfo &TTI,
921                    const Formula &F,
922                    SmallPtrSetImpl<const SCEV *> &Regs,
923                    const DenseSet<const SCEV *> &VisitedRegs,
924                    const Loop *L,
925                    ScalarEvolution &SE, DominatorTree &DT,
926                    const LSRUse &LU,
927                    SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr);
928 
929   void print(raw_ostream &OS) const;
930   void dump() const;
931 
932 private:
933   void RateRegister(const SCEV *Reg,
934                     SmallPtrSetImpl<const SCEV *> &Regs,
935                     const Loop *L,
936                     ScalarEvolution &SE, DominatorTree &DT);
937   void RatePrimaryRegister(const SCEV *Reg,
938                            SmallPtrSetImpl<const SCEV *> &Regs,
939                            const Loop *L,
940                            ScalarEvolution &SE, DominatorTree &DT,
941                            SmallPtrSetImpl<const SCEV *> *LoserRegs);
942 };
943 
944 /// An operand value in an instruction which is to be replaced with some
945 /// equivalent, possibly strength-reduced, replacement.
946 struct LSRFixup {
947   /// The instruction which will be updated.
948   Instruction *UserInst;
949 
950   /// The operand of the instruction which will be replaced. The operand may be
951   /// used more than once; every instance will be replaced.
952   Value *OperandValToReplace;
953 
954   /// If this user is to use the post-incremented value of an induction
955   /// variable, this variable is non-null and holds the loop associated with the
956   /// induction variable.
957   PostIncLoopSet PostIncLoops;
958 
959   /// A constant offset to be added to the LSRUse expression.  This allows
960   /// multiple fixups to share the same LSRUse with different offsets, for
961   /// example in an unrolled loop.
962   int64_t Offset;
963 
964   bool isUseFullyOutsideLoop(const Loop *L) const;
965 
966   LSRFixup();
967 
968   void print(raw_ostream &OS) const;
969   void dump() const;
970 };
971 
972 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted
973 /// SmallVectors of const SCEV*.
974 struct UniquifierDenseMapInfo {
975   static SmallVector<const SCEV *, 4> getEmptyKey() {
976     SmallVector<const SCEV *, 4>  V;
977     V.push_back(reinterpret_cast<const SCEV *>(-1));
978     return V;
979   }
980 
981   static SmallVector<const SCEV *, 4> getTombstoneKey() {
982     SmallVector<const SCEV *, 4> V;
983     V.push_back(reinterpret_cast<const SCEV *>(-2));
984     return V;
985   }
986 
987   static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) {
988     return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
989   }
990 
991   static bool isEqual(const SmallVector<const SCEV *, 4> &LHS,
992                       const SmallVector<const SCEV *, 4> &RHS) {
993     return LHS == RHS;
994   }
995 };
996 
997 /// This class holds the state that LSR keeps for each use in IVUsers, as well
998 /// as uses invented by LSR itself. It includes information about what kinds of
999 /// things can be folded into the user, information about the user itself, and
1000 /// information about how the use may be satisfied.  TODO: Represent multiple
1001 /// users of the same expression in common?
1002 class LSRUse {
1003   DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier;
1004 
1005 public:
1006   /// An enum for a kind of use, indicating what types of scaled and immediate
1007   /// operands it might support.
1008   enum KindType {
1009     Basic,   ///< A normal use, with no folding.
1010     Special, ///< A special case of basic, allowing -1 scales.
1011     Address, ///< An address use; folding according to TargetLowering
1012     ICmpZero ///< An equality icmp with both operands folded into one.
1013     // TODO: Add a generic icmp too?
1014   };
1015 
1016   typedef PointerIntPair<const SCEV *, 2, KindType> SCEVUseKindPair;
1017 
1018   KindType Kind;
1019   MemAccessTy AccessTy;
1020 
1021   /// The list of operands which are to be replaced.
1022   SmallVector<LSRFixup, 8> Fixups;
1023 
1024   /// Keep track of the min and max offsets of the fixups.
1025   int64_t MinOffset;
1026   int64_t MaxOffset;
1027 
1028   /// This records whether all of the fixups using this LSRUse are outside of
1029   /// the loop, in which case some special-case heuristics may be used.
1030   bool AllFixupsOutsideLoop;
1031 
1032   /// RigidFormula is set to true to guarantee that this use will be associated
1033   /// with a single formula--the one that initially matched. Some SCEV
1034   /// expressions cannot be expanded. This allows LSR to consider the registers
1035   /// used by those expressions without the need to expand them later after
1036   /// changing the formula.
1037   bool RigidFormula;
1038 
1039   /// This records the widest use type for any fixup using this
1040   /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max
1041   /// fixup widths to be equivalent, because the narrower one may be relying on
1042   /// the implicit truncation to truncate away bogus bits.
1043   Type *WidestFixupType;
1044 
1045   /// A list of ways to build a value that can satisfy this user.  After the
1046   /// list is populated, one of these is selected heuristically and used to
1047   /// formulate a replacement for OperandValToReplace in UserInst.
1048   SmallVector<Formula, 12> Formulae;
1049 
1050   /// The set of register candidates used by all formulae in this LSRUse.
1051   SmallPtrSet<const SCEV *, 4> Regs;
1052 
1053   LSRUse(KindType K, MemAccessTy AT)
1054       : Kind(K), AccessTy(AT), MinOffset(INT64_MAX), MaxOffset(INT64_MIN),
1055         AllFixupsOutsideLoop(true), RigidFormula(false),
1056         WidestFixupType(nullptr) {}
1057 
1058   LSRFixup &getNewFixup() {
1059     Fixups.push_back(LSRFixup());
1060     return Fixups.back();
1061   }
1062 
1063   void pushFixup(LSRFixup &f) {
1064     Fixups.push_back(f);
1065     if (f.Offset > MaxOffset)
1066       MaxOffset = f.Offset;
1067     if (f.Offset < MinOffset)
1068       MinOffset = f.Offset;
1069   }
1070 
1071   bool HasFormulaWithSameRegs(const Formula &F) const;
1072   bool InsertFormula(const Formula &F);
1073   void DeleteFormula(Formula &F);
1074   void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
1075 
1076   void print(raw_ostream &OS) const;
1077   void dump() const;
1078 };
1079 
1080 } // end anonymous namespace
1081 
1082 /// Tally up interesting quantities from the given register.
1083 void Cost::RateRegister(const SCEV *Reg,
1084                         SmallPtrSetImpl<const SCEV *> &Regs,
1085                         const Loop *L,
1086                         ScalarEvolution &SE, DominatorTree &DT) {
1087   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
1088     // If this is an addrec for another loop, don't second-guess its addrec phi
1089     // nodes. LSR isn't currently smart enough to reason about more than one
1090     // loop at a time. LSR has already run on inner loops, will not run on outer
1091     // loops, and cannot be expected to change sibling loops.
1092     if (AR->getLoop() != L) {
1093       // If the AddRec exists, consider it's register free and leave it alone.
1094       if (isExistingPhi(AR, SE))
1095         return;
1096 
1097       // Otherwise, do not consider this formula at all.
1098       Lose();
1099       return;
1100     }
1101     AddRecCost += 1; /// TODO: This should be a function of the stride.
1102 
1103     // Add the step value register, if it needs one.
1104     // TODO: The non-affine case isn't precisely modeled here.
1105     if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) {
1106       if (!Regs.count(AR->getOperand(1))) {
1107         RateRegister(AR->getOperand(1), Regs, L, SE, DT);
1108         if (isLoser())
1109           return;
1110       }
1111     }
1112   }
1113   ++NumRegs;
1114 
1115   // Rough heuristic; favor registers which don't require extra setup
1116   // instructions in the preheader.
1117   if (!isa<SCEVUnknown>(Reg) &&
1118       !isa<SCEVConstant>(Reg) &&
1119       !(isa<SCEVAddRecExpr>(Reg) &&
1120         (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) ||
1121          isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart()))))
1122     ++SetupCost;
1123 
1124   NumIVMuls += isa<SCEVMulExpr>(Reg) &&
1125                SE.hasComputableLoopEvolution(Reg, L);
1126 }
1127 
1128 /// Record this register in the set. If we haven't seen it before, rate
1129 /// it. Optional LoserRegs provides a way to declare any formula that refers to
1130 /// one of those regs an instant loser.
1131 void Cost::RatePrimaryRegister(const SCEV *Reg,
1132                                SmallPtrSetImpl<const SCEV *> &Regs,
1133                                const Loop *L,
1134                                ScalarEvolution &SE, DominatorTree &DT,
1135                                SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1136   if (LoserRegs && LoserRegs->count(Reg)) {
1137     Lose();
1138     return;
1139   }
1140   if (Regs.insert(Reg).second) {
1141     RateRegister(Reg, Regs, L, SE, DT);
1142     if (LoserRegs && isLoser())
1143       LoserRegs->insert(Reg);
1144   }
1145 }
1146 
1147 void Cost::RateFormula(const TargetTransformInfo &TTI,
1148                        const Formula &F,
1149                        SmallPtrSetImpl<const SCEV *> &Regs,
1150                        const DenseSet<const SCEV *> &VisitedRegs,
1151                        const Loop *L,
1152                        ScalarEvolution &SE, DominatorTree &DT,
1153                        const LSRUse &LU,
1154                        SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1155   assert(F.isCanonical() && "Cost is accurate only for canonical formula");
1156   // Tally up the registers.
1157   if (const SCEV *ScaledReg = F.ScaledReg) {
1158     if (VisitedRegs.count(ScaledReg)) {
1159       Lose();
1160       return;
1161     }
1162     RatePrimaryRegister(ScaledReg, Regs, L, SE, DT, LoserRegs);
1163     if (isLoser())
1164       return;
1165   }
1166   for (const SCEV *BaseReg : F.BaseRegs) {
1167     if (VisitedRegs.count(BaseReg)) {
1168       Lose();
1169       return;
1170     }
1171     RatePrimaryRegister(BaseReg, Regs, L, SE, DT, LoserRegs);
1172     if (isLoser())
1173       return;
1174   }
1175 
1176   // Determine how many (unfolded) adds we'll need inside the loop.
1177   size_t NumBaseParts = F.getNumRegs();
1178   if (NumBaseParts > 1)
1179     // Do not count the base and a possible second register if the target
1180     // allows to fold 2 registers.
1181     NumBaseAdds +=
1182         NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(TTI, LU, F)));
1183   NumBaseAdds += (F.UnfoldedOffset != 0);
1184 
1185   // Accumulate non-free scaling amounts.
1186   ScaleCost += getScalingFactorCost(TTI, LU, F);
1187 
1188   // Tally up the non-zero immediates.
1189   for (const LSRFixup &Fixup : LU.Fixups) {
1190     int64_t O = Fixup.Offset;
1191     int64_t Offset = (uint64_t)O + F.BaseOffset;
1192     if (F.BaseGV)
1193       ImmCost += 64; // Handle symbolic values conservatively.
1194                      // TODO: This should probably be the pointer size.
1195     else if (Offset != 0)
1196       ImmCost += APInt(64, Offset, true).getMinSignedBits();
1197 
1198     // Check with target if this offset with this instruction is
1199     // specifically not supported.
1200     if ((isa<LoadInst>(Fixup.UserInst) || isa<StoreInst>(Fixup.UserInst)) &&
1201         !TTI.isFoldableMemAccessOffset(Fixup.UserInst, Offset))
1202       NumBaseAdds++;
1203   }
1204   assert(isValid() && "invalid cost");
1205 }
1206 
1207 /// Set this cost to a losing value.
1208 void Cost::Lose() {
1209   NumRegs = ~0u;
1210   AddRecCost = ~0u;
1211   NumIVMuls = ~0u;
1212   NumBaseAdds = ~0u;
1213   ImmCost = ~0u;
1214   SetupCost = ~0u;
1215   ScaleCost = ~0u;
1216 }
1217 
1218 /// Choose the lower cost.
1219 bool Cost::operator<(const Cost &Other) const {
1220   return std::tie(NumRegs, AddRecCost, NumIVMuls, NumBaseAdds, ScaleCost,
1221                   ImmCost, SetupCost) <
1222          std::tie(Other.NumRegs, Other.AddRecCost, Other.NumIVMuls,
1223                   Other.NumBaseAdds, Other.ScaleCost, Other.ImmCost,
1224                   Other.SetupCost);
1225 }
1226 
1227 void Cost::print(raw_ostream &OS) const {
1228   OS << NumRegs << " reg" << (NumRegs == 1 ? "" : "s");
1229   if (AddRecCost != 0)
1230     OS << ", with addrec cost " << AddRecCost;
1231   if (NumIVMuls != 0)
1232     OS << ", plus " << NumIVMuls << " IV mul" << (NumIVMuls == 1 ? "" : "s");
1233   if (NumBaseAdds != 0)
1234     OS << ", plus " << NumBaseAdds << " base add"
1235        << (NumBaseAdds == 1 ? "" : "s");
1236   if (ScaleCost != 0)
1237     OS << ", plus " << ScaleCost << " scale cost";
1238   if (ImmCost != 0)
1239     OS << ", plus " << ImmCost << " imm cost";
1240   if (SetupCost != 0)
1241     OS << ", plus " << SetupCost << " setup cost";
1242 }
1243 
1244 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1245 LLVM_DUMP_METHOD void Cost::dump() const {
1246   print(errs()); errs() << '\n';
1247 }
1248 #endif
1249 
1250 LSRFixup::LSRFixup()
1251   : UserInst(nullptr), OperandValToReplace(nullptr),
1252     Offset(0) {}
1253 
1254 /// Test whether this fixup always uses its value outside of the given loop.
1255 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
1256   // PHI nodes use their value in their incoming blocks.
1257   if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
1258     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1259       if (PN->getIncomingValue(i) == OperandValToReplace &&
1260           L->contains(PN->getIncomingBlock(i)))
1261         return false;
1262     return true;
1263   }
1264 
1265   return !L->contains(UserInst);
1266 }
1267 
1268 void LSRFixup::print(raw_ostream &OS) const {
1269   OS << "UserInst=";
1270   // Store is common and interesting enough to be worth special-casing.
1271   if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
1272     OS << "store ";
1273     Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false);
1274   } else if (UserInst->getType()->isVoidTy())
1275     OS << UserInst->getOpcodeName();
1276   else
1277     UserInst->printAsOperand(OS, /*PrintType=*/false);
1278 
1279   OS << ", OperandValToReplace=";
1280   OperandValToReplace->printAsOperand(OS, /*PrintType=*/false);
1281 
1282   for (const Loop *PIL : PostIncLoops) {
1283     OS << ", PostIncLoop=";
1284     PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
1285   }
1286 
1287   if (Offset != 0)
1288     OS << ", Offset=" << Offset;
1289 }
1290 
1291 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1292 LLVM_DUMP_METHOD void LSRFixup::dump() const {
1293   print(errs()); errs() << '\n';
1294 }
1295 #endif
1296 
1297 /// Test whether this use as a formula which has the same registers as the given
1298 /// formula.
1299 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
1300   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1301   if (F.ScaledReg) Key.push_back(F.ScaledReg);
1302   // Unstable sort by host order ok, because this is only used for uniquifying.
1303   std::sort(Key.begin(), Key.end());
1304   return Uniquifier.count(Key);
1305 }
1306 
1307 /// If the given formula has not yet been inserted, add it to the list, and
1308 /// return true. Return false otherwise.  The formula must be in canonical form.
1309 bool LSRUse::InsertFormula(const Formula &F) {
1310   assert(F.isCanonical() && "Invalid canonical representation");
1311 
1312   if (!Formulae.empty() && RigidFormula)
1313     return false;
1314 
1315   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1316   if (F.ScaledReg) Key.push_back(F.ScaledReg);
1317   // Unstable sort by host order ok, because this is only used for uniquifying.
1318   std::sort(Key.begin(), Key.end());
1319 
1320   if (!Uniquifier.insert(Key).second)
1321     return false;
1322 
1323   // Using a register to hold the value of 0 is not profitable.
1324   assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
1325          "Zero allocated in a scaled register!");
1326 #ifndef NDEBUG
1327   for (const SCEV *BaseReg : F.BaseRegs)
1328     assert(!BaseReg->isZero() && "Zero allocated in a base register!");
1329 #endif
1330 
1331   // Add the formula to the list.
1332   Formulae.push_back(F);
1333 
1334   // Record registers now being used by this use.
1335   Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1336   if (F.ScaledReg)
1337     Regs.insert(F.ScaledReg);
1338 
1339   return true;
1340 }
1341 
1342 /// Remove the given formula from this use's list.
1343 void LSRUse::DeleteFormula(Formula &F) {
1344   if (&F != &Formulae.back())
1345     std::swap(F, Formulae.back());
1346   Formulae.pop_back();
1347 }
1348 
1349 /// Recompute the Regs field, and update RegUses.
1350 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
1351   // Now that we've filtered out some formulae, recompute the Regs set.
1352   SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs);
1353   Regs.clear();
1354   for (const Formula &F : Formulae) {
1355     if (F.ScaledReg) Regs.insert(F.ScaledReg);
1356     Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1357   }
1358 
1359   // Update the RegTracker.
1360   for (const SCEV *S : OldRegs)
1361     if (!Regs.count(S))
1362       RegUses.dropRegister(S, LUIdx);
1363 }
1364 
1365 void LSRUse::print(raw_ostream &OS) const {
1366   OS << "LSR Use: Kind=";
1367   switch (Kind) {
1368   case Basic:    OS << "Basic"; break;
1369   case Special:  OS << "Special"; break;
1370   case ICmpZero: OS << "ICmpZero"; break;
1371   case Address:
1372     OS << "Address of ";
1373     if (AccessTy.MemTy->isPointerTy())
1374       OS << "pointer"; // the full pointer type could be really verbose
1375     else {
1376       OS << *AccessTy.MemTy;
1377     }
1378 
1379     OS << " in addrspace(" << AccessTy.AddrSpace << ')';
1380   }
1381 
1382   OS << ", Offsets={";
1383   bool NeedComma = false;
1384   for (const LSRFixup &Fixup : Fixups) {
1385     if (NeedComma) OS << ',';
1386     OS << Fixup.Offset;
1387     NeedComma = true;
1388   }
1389   OS << '}';
1390 
1391   if (AllFixupsOutsideLoop)
1392     OS << ", all-fixups-outside-loop";
1393 
1394   if (WidestFixupType)
1395     OS << ", widest fixup type: " << *WidestFixupType;
1396 }
1397 
1398 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1399 LLVM_DUMP_METHOD void LSRUse::dump() const {
1400   print(errs()); errs() << '\n';
1401 }
1402 #endif
1403 
1404 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1405                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1406                                  GlobalValue *BaseGV, int64_t BaseOffset,
1407                                  bool HasBaseReg, int64_t Scale) {
1408   switch (Kind) {
1409   case LSRUse::Address:
1410     return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset,
1411                                      HasBaseReg, Scale, AccessTy.AddrSpace);
1412 
1413   case LSRUse::ICmpZero:
1414     // There's not even a target hook for querying whether it would be legal to
1415     // fold a GV into an ICmp.
1416     if (BaseGV)
1417       return false;
1418 
1419     // ICmp only has two operands; don't allow more than two non-trivial parts.
1420     if (Scale != 0 && HasBaseReg && BaseOffset != 0)
1421       return false;
1422 
1423     // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
1424     // putting the scaled register in the other operand of the icmp.
1425     if (Scale != 0 && Scale != -1)
1426       return false;
1427 
1428     // If we have low-level target information, ask the target if it can fold an
1429     // integer immediate on an icmp.
1430     if (BaseOffset != 0) {
1431       // We have one of:
1432       // ICmpZero     BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset
1433       // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset
1434       // Offs is the ICmp immediate.
1435       if (Scale == 0)
1436         // The cast does the right thing with INT64_MIN.
1437         BaseOffset = -(uint64_t)BaseOffset;
1438       return TTI.isLegalICmpImmediate(BaseOffset);
1439     }
1440 
1441     // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg
1442     return true;
1443 
1444   case LSRUse::Basic:
1445     // Only handle single-register values.
1446     return !BaseGV && Scale == 0 && BaseOffset == 0;
1447 
1448   case LSRUse::Special:
1449     // Special case Basic to handle -1 scales.
1450     return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0;
1451   }
1452 
1453   llvm_unreachable("Invalid LSRUse Kind!");
1454 }
1455 
1456 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1457                                  int64_t MinOffset, int64_t MaxOffset,
1458                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1459                                  GlobalValue *BaseGV, int64_t BaseOffset,
1460                                  bool HasBaseReg, int64_t Scale) {
1461   // Check for overflow.
1462   if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) !=
1463       (MinOffset > 0))
1464     return false;
1465   MinOffset = (uint64_t)BaseOffset + MinOffset;
1466   if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) !=
1467       (MaxOffset > 0))
1468     return false;
1469   MaxOffset = (uint64_t)BaseOffset + MaxOffset;
1470 
1471   return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset,
1472                               HasBaseReg, Scale) &&
1473          isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset,
1474                               HasBaseReg, Scale);
1475 }
1476 
1477 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1478                                  int64_t MinOffset, int64_t MaxOffset,
1479                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1480                                  const Formula &F) {
1481   // For the purpose of isAMCompletelyFolded either having a canonical formula
1482   // or a scale not equal to zero is correct.
1483   // Problems may arise from non canonical formulae having a scale == 0.
1484   // Strictly speaking it would best to just rely on canonical formulae.
1485   // However, when we generate the scaled formulae, we first check that the
1486   // scaling factor is profitable before computing the actual ScaledReg for
1487   // compile time sake.
1488   assert((F.isCanonical() || F.Scale != 0));
1489   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1490                               F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale);
1491 }
1492 
1493 /// Test whether we know how to expand the current formula.
1494 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1495                        int64_t MaxOffset, LSRUse::KindType Kind,
1496                        MemAccessTy AccessTy, GlobalValue *BaseGV,
1497                        int64_t BaseOffset, bool HasBaseReg, int64_t Scale) {
1498   // We know how to expand completely foldable formulae.
1499   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1500                               BaseOffset, HasBaseReg, Scale) ||
1501          // Or formulae that use a base register produced by a sum of base
1502          // registers.
1503          (Scale == 1 &&
1504           isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1505                                BaseGV, BaseOffset, true, 0));
1506 }
1507 
1508 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1509                        int64_t MaxOffset, LSRUse::KindType Kind,
1510                        MemAccessTy AccessTy, const Formula &F) {
1511   return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV,
1512                     F.BaseOffset, F.HasBaseReg, F.Scale);
1513 }
1514 
1515 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1516                                  const LSRUse &LU, const Formula &F) {
1517   return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1518                               LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg,
1519                               F.Scale);
1520 }
1521 
1522 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
1523                                      const LSRUse &LU, const Formula &F) {
1524   if (!F.Scale)
1525     return 0;
1526 
1527   // If the use is not completely folded in that instruction, we will have to
1528   // pay an extra cost only for scale != 1.
1529   if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1530                             LU.AccessTy, F))
1531     return F.Scale != 1;
1532 
1533   switch (LU.Kind) {
1534   case LSRUse::Address: {
1535     // Check the scaling factor cost with both the min and max offsets.
1536     int ScaleCostMinOffset = TTI.getScalingFactorCost(
1537         LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg,
1538         F.Scale, LU.AccessTy.AddrSpace);
1539     int ScaleCostMaxOffset = TTI.getScalingFactorCost(
1540         LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg,
1541         F.Scale, LU.AccessTy.AddrSpace);
1542 
1543     assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 &&
1544            "Legal addressing mode has an illegal cost!");
1545     return std::max(ScaleCostMinOffset, ScaleCostMaxOffset);
1546   }
1547   case LSRUse::ICmpZero:
1548   case LSRUse::Basic:
1549   case LSRUse::Special:
1550     // The use is completely folded, i.e., everything is folded into the
1551     // instruction.
1552     return 0;
1553   }
1554 
1555   llvm_unreachable("Invalid LSRUse Kind!");
1556 }
1557 
1558 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1559                              LSRUse::KindType Kind, MemAccessTy AccessTy,
1560                              GlobalValue *BaseGV, int64_t BaseOffset,
1561                              bool HasBaseReg) {
1562   // Fast-path: zero is always foldable.
1563   if (BaseOffset == 0 && !BaseGV) return true;
1564 
1565   // Conservatively, create an address with an immediate and a
1566   // base and a scale.
1567   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1568 
1569   // Canonicalize a scale of 1 to a base register if the formula doesn't
1570   // already have a base register.
1571   if (!HasBaseReg && Scale == 1) {
1572     Scale = 0;
1573     HasBaseReg = true;
1574   }
1575 
1576   return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset,
1577                               HasBaseReg, Scale);
1578 }
1579 
1580 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1581                              ScalarEvolution &SE, int64_t MinOffset,
1582                              int64_t MaxOffset, LSRUse::KindType Kind,
1583                              MemAccessTy AccessTy, const SCEV *S,
1584                              bool HasBaseReg) {
1585   // Fast-path: zero is always foldable.
1586   if (S->isZero()) return true;
1587 
1588   // Conservatively, create an address with an immediate and a
1589   // base and a scale.
1590   int64_t BaseOffset = ExtractImmediate(S, SE);
1591   GlobalValue *BaseGV = ExtractSymbol(S, SE);
1592 
1593   // If there's anything else involved, it's not foldable.
1594   if (!S->isZero()) return false;
1595 
1596   // Fast-path: zero is always foldable.
1597   if (BaseOffset == 0 && !BaseGV) return true;
1598 
1599   // Conservatively, create an address with an immediate and a
1600   // base and a scale.
1601   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1602 
1603   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1604                               BaseOffset, HasBaseReg, Scale);
1605 }
1606 
1607 namespace {
1608 
1609 /// An individual increment in a Chain of IV increments.  Relate an IV user to
1610 /// an expression that computes the IV it uses from the IV used by the previous
1611 /// link in the Chain.
1612 ///
1613 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the
1614 /// original IVOperand. The head of the chain's IVOperand is only valid during
1615 /// chain collection, before LSR replaces IV users. During chain generation,
1616 /// IncExpr can be used to find the new IVOperand that computes the same
1617 /// expression.
1618 struct IVInc {
1619   Instruction *UserInst;
1620   Value* IVOperand;
1621   const SCEV *IncExpr;
1622 
1623   IVInc(Instruction *U, Value *O, const SCEV *E):
1624     UserInst(U), IVOperand(O), IncExpr(E) {}
1625 };
1626 
1627 // The list of IV increments in program order.  We typically add the head of a
1628 // chain without finding subsequent links.
1629 struct IVChain {
1630   SmallVector<IVInc,1> Incs;
1631   const SCEV *ExprBase;
1632 
1633   IVChain() : ExprBase(nullptr) {}
1634 
1635   IVChain(const IVInc &Head, const SCEV *Base)
1636     : Incs(1, Head), ExprBase(Base) {}
1637 
1638   typedef SmallVectorImpl<IVInc>::const_iterator const_iterator;
1639 
1640   // Return the first increment in the chain.
1641   const_iterator begin() const {
1642     assert(!Incs.empty());
1643     return std::next(Incs.begin());
1644   }
1645   const_iterator end() const {
1646     return Incs.end();
1647   }
1648 
1649   // Returns true if this chain contains any increments.
1650   bool hasIncs() const { return Incs.size() >= 2; }
1651 
1652   // Add an IVInc to the end of this chain.
1653   void add(const IVInc &X) { Incs.push_back(X); }
1654 
1655   // Returns the last UserInst in the chain.
1656   Instruction *tailUserInst() const { return Incs.back().UserInst; }
1657 
1658   // Returns true if IncExpr can be profitably added to this chain.
1659   bool isProfitableIncrement(const SCEV *OperExpr,
1660                              const SCEV *IncExpr,
1661                              ScalarEvolution&);
1662 };
1663 
1664 /// Helper for CollectChains to track multiple IV increment uses.  Distinguish
1665 /// between FarUsers that definitely cross IV increments and NearUsers that may
1666 /// be used between IV increments.
1667 struct ChainUsers {
1668   SmallPtrSet<Instruction*, 4> FarUsers;
1669   SmallPtrSet<Instruction*, 4> NearUsers;
1670 };
1671 
1672 /// This class holds state for the main loop strength reduction logic.
1673 class LSRInstance {
1674   IVUsers &IU;
1675   ScalarEvolution &SE;
1676   DominatorTree &DT;
1677   LoopInfo &LI;
1678   const TargetTransformInfo &TTI;
1679   Loop *const L;
1680   bool Changed;
1681 
1682   /// This is the insert position that the current loop's induction variable
1683   /// increment should be placed. In simple loops, this is the latch block's
1684   /// terminator. But in more complicated cases, this is a position which will
1685   /// dominate all the in-loop post-increment users.
1686   Instruction *IVIncInsertPos;
1687 
1688   /// Interesting factors between use strides.
1689   ///
1690   /// We explicitly use a SetVector which contains a SmallSet, instead of the
1691   /// default, a SmallDenseSet, because we need to use the full range of
1692   /// int64_ts, and there's currently no good way of doing that with
1693   /// SmallDenseSet.
1694   SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors;
1695 
1696   /// Interesting use types, to facilitate truncation reuse.
1697   SmallSetVector<Type *, 4> Types;
1698 
1699   /// The list of interesting uses.
1700   SmallVector<LSRUse, 16> Uses;
1701 
1702   /// Track which uses use which register candidates.
1703   RegUseTracker RegUses;
1704 
1705   // Limit the number of chains to avoid quadratic behavior. We don't expect to
1706   // have more than a few IV increment chains in a loop. Missing a Chain falls
1707   // back to normal LSR behavior for those uses.
1708   static const unsigned MaxChains = 8;
1709 
1710   /// IV users can form a chain of IV increments.
1711   SmallVector<IVChain, MaxChains> IVChainVec;
1712 
1713   /// IV users that belong to profitable IVChains.
1714   SmallPtrSet<Use*, MaxChains> IVIncSet;
1715 
1716   void OptimizeShadowIV();
1717   bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
1718   ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
1719   void OptimizeLoopTermCond();
1720 
1721   void ChainInstruction(Instruction *UserInst, Instruction *IVOper,
1722                         SmallVectorImpl<ChainUsers> &ChainUsersVec);
1723   void FinalizeChain(IVChain &Chain);
1724   void CollectChains();
1725   void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
1726                        SmallVectorImpl<WeakVH> &DeadInsts);
1727 
1728   void CollectInterestingTypesAndFactors();
1729   void CollectFixupsAndInitialFormulae();
1730 
1731   // Support for sharing of LSRUses between LSRFixups.
1732   typedef DenseMap<LSRUse::SCEVUseKindPair, size_t> UseMapTy;
1733   UseMapTy UseMap;
1734 
1735   bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
1736                           LSRUse::KindType Kind, MemAccessTy AccessTy);
1737 
1738   std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind,
1739                                     MemAccessTy AccessTy);
1740 
1741   void DeleteUse(LSRUse &LU, size_t LUIdx);
1742 
1743   LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
1744 
1745   void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1746   void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1747   void CountRegisters(const Formula &F, size_t LUIdx);
1748   bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
1749 
1750   void CollectLoopInvariantFixupsAndFormulae();
1751 
1752   void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
1753                               unsigned Depth = 0);
1754 
1755   void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
1756                                   const Formula &Base, unsigned Depth,
1757                                   size_t Idx, bool IsScaledReg = false);
1758   void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
1759   void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
1760                                    const Formula &Base, size_t Idx,
1761                                    bool IsScaledReg = false);
1762   void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1763   void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx,
1764                                    const Formula &Base,
1765                                    const SmallVectorImpl<int64_t> &Worklist,
1766                                    size_t Idx, bool IsScaledReg = false);
1767   void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1768   void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1769   void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1770   void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
1771   void GenerateCrossUseConstantOffsets();
1772   void GenerateAllReuseFormulae();
1773 
1774   void FilterOutUndesirableDedicatedRegisters();
1775 
1776   size_t EstimateSearchSpaceComplexity() const;
1777   void NarrowSearchSpaceByDetectingSupersets();
1778   void NarrowSearchSpaceByCollapsingUnrolledCode();
1779   void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
1780   void NarrowSearchSpaceByPickingWinnerRegs();
1781   void NarrowSearchSpaceUsingHeuristics();
1782 
1783   void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
1784                     Cost &SolutionCost,
1785                     SmallVectorImpl<const Formula *> &Workspace,
1786                     const Cost &CurCost,
1787                     const SmallPtrSet<const SCEV *, 16> &CurRegs,
1788                     DenseSet<const SCEV *> &VisitedRegs) const;
1789   void Solve(SmallVectorImpl<const Formula *> &Solution) const;
1790 
1791   BasicBlock::iterator
1792     HoistInsertPosition(BasicBlock::iterator IP,
1793                         const SmallVectorImpl<Instruction *> &Inputs) const;
1794   BasicBlock::iterator
1795     AdjustInsertPositionForExpand(BasicBlock::iterator IP,
1796                                   const LSRFixup &LF,
1797                                   const LSRUse &LU,
1798                                   SCEVExpander &Rewriter) const;
1799 
1800   Value *Expand(const LSRUse &LU, const LSRFixup &LF,
1801                 const Formula &F,
1802                 BasicBlock::iterator IP,
1803                 SCEVExpander &Rewriter,
1804                 SmallVectorImpl<WeakVH> &DeadInsts) const;
1805   void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF,
1806                      const Formula &F,
1807                      SCEVExpander &Rewriter,
1808                      SmallVectorImpl<WeakVH> &DeadInsts) const;
1809   void Rewrite(const LSRUse &LU, const LSRFixup &LF,
1810                const Formula &F,
1811                SCEVExpander &Rewriter,
1812                SmallVectorImpl<WeakVH> &DeadInsts) const;
1813   void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution);
1814 
1815 public:
1816   LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT,
1817               LoopInfo &LI, const TargetTransformInfo &TTI);
1818 
1819   bool getChanged() const { return Changed; }
1820 
1821   void print_factors_and_types(raw_ostream &OS) const;
1822   void print_fixups(raw_ostream &OS) const;
1823   void print_uses(raw_ostream &OS) const;
1824   void print(raw_ostream &OS) const;
1825   void dump() const;
1826 };
1827 
1828 } // end anonymous namespace
1829 
1830 /// If IV is used in a int-to-float cast inside the loop then try to eliminate
1831 /// the cast operation.
1832 void LSRInstance::OptimizeShadowIV() {
1833   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
1834   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1835     return;
1836 
1837   for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
1838        UI != E; /* empty */) {
1839     IVUsers::const_iterator CandidateUI = UI;
1840     ++UI;
1841     Instruction *ShadowUse = CandidateUI->getUser();
1842     Type *DestTy = nullptr;
1843     bool IsSigned = false;
1844 
1845     /* If shadow use is a int->float cast then insert a second IV
1846        to eliminate this cast.
1847 
1848          for (unsigned i = 0; i < n; ++i)
1849            foo((double)i);
1850 
1851        is transformed into
1852 
1853          double d = 0.0;
1854          for (unsigned i = 0; i < n; ++i, ++d)
1855            foo(d);
1856     */
1857     if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) {
1858       IsSigned = false;
1859       DestTy = UCast->getDestTy();
1860     }
1861     else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) {
1862       IsSigned = true;
1863       DestTy = SCast->getDestTy();
1864     }
1865     if (!DestTy) continue;
1866 
1867     // If target does not support DestTy natively then do not apply
1868     // this transformation.
1869     if (!TTI.isTypeLegal(DestTy)) continue;
1870 
1871     PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
1872     if (!PH) continue;
1873     if (PH->getNumIncomingValues() != 2) continue;
1874 
1875     Type *SrcTy = PH->getType();
1876     int Mantissa = DestTy->getFPMantissaWidth();
1877     if (Mantissa == -1) continue;
1878     if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
1879       continue;
1880 
1881     unsigned Entry, Latch;
1882     if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
1883       Entry = 0;
1884       Latch = 1;
1885     } else {
1886       Entry = 1;
1887       Latch = 0;
1888     }
1889 
1890     ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
1891     if (!Init) continue;
1892     Constant *NewInit = ConstantFP::get(DestTy, IsSigned ?
1893                                         (double)Init->getSExtValue() :
1894                                         (double)Init->getZExtValue());
1895 
1896     BinaryOperator *Incr =
1897       dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
1898     if (!Incr) continue;
1899     if (Incr->getOpcode() != Instruction::Add
1900         && Incr->getOpcode() != Instruction::Sub)
1901       continue;
1902 
1903     /* Initialize new IV, double d = 0.0 in above example. */
1904     ConstantInt *C = nullptr;
1905     if (Incr->getOperand(0) == PH)
1906       C = dyn_cast<ConstantInt>(Incr->getOperand(1));
1907     else if (Incr->getOperand(1) == PH)
1908       C = dyn_cast<ConstantInt>(Incr->getOperand(0));
1909     else
1910       continue;
1911 
1912     if (!C) continue;
1913 
1914     // Ignore negative constants, as the code below doesn't handle them
1915     // correctly. TODO: Remove this restriction.
1916     if (!C->getValue().isStrictlyPositive()) continue;
1917 
1918     /* Add new PHINode. */
1919     PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH);
1920 
1921     /* create new increment. '++d' in above example. */
1922     Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
1923     BinaryOperator *NewIncr =
1924       BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
1925                                Instruction::FAdd : Instruction::FSub,
1926                              NewPH, CFP, "IV.S.next.", Incr);
1927 
1928     NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
1929     NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
1930 
1931     /* Remove cast operation */
1932     ShadowUse->replaceAllUsesWith(NewPH);
1933     ShadowUse->eraseFromParent();
1934     Changed = true;
1935     break;
1936   }
1937 }
1938 
1939 /// If Cond has an operand that is an expression of an IV, set the IV user and
1940 /// stride information and return true, otherwise return false.
1941 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
1942   for (IVStrideUse &U : IU)
1943     if (U.getUser() == Cond) {
1944       // NOTE: we could handle setcc instructions with multiple uses here, but
1945       // InstCombine does it as well for simple uses, it's not clear that it
1946       // occurs enough in real life to handle.
1947       CondUse = &U;
1948       return true;
1949     }
1950   return false;
1951 }
1952 
1953 /// Rewrite the loop's terminating condition if it uses a max computation.
1954 ///
1955 /// This is a narrow solution to a specific, but acute, problem. For loops
1956 /// like this:
1957 ///
1958 ///   i = 0;
1959 ///   do {
1960 ///     p[i] = 0.0;
1961 ///   } while (++i < n);
1962 ///
1963 /// the trip count isn't just 'n', because 'n' might not be positive. And
1964 /// unfortunately this can come up even for loops where the user didn't use
1965 /// a C do-while loop. For example, seemingly well-behaved top-test loops
1966 /// will commonly be lowered like this:
1967 //
1968 ///   if (n > 0) {
1969 ///     i = 0;
1970 ///     do {
1971 ///       p[i] = 0.0;
1972 ///     } while (++i < n);
1973 ///   }
1974 ///
1975 /// and then it's possible for subsequent optimization to obscure the if
1976 /// test in such a way that indvars can't find it.
1977 ///
1978 /// When indvars can't find the if test in loops like this, it creates a
1979 /// max expression, which allows it to give the loop a canonical
1980 /// induction variable:
1981 ///
1982 ///   i = 0;
1983 ///   max = n < 1 ? 1 : n;
1984 ///   do {
1985 ///     p[i] = 0.0;
1986 ///   } while (++i != max);
1987 ///
1988 /// Canonical induction variables are necessary because the loop passes
1989 /// are designed around them. The most obvious example of this is the
1990 /// LoopInfo analysis, which doesn't remember trip count values. It
1991 /// expects to be able to rediscover the trip count each time it is
1992 /// needed, and it does this using a simple analysis that only succeeds if
1993 /// the loop has a canonical induction variable.
1994 ///
1995 /// However, when it comes time to generate code, the maximum operation
1996 /// can be quite costly, especially if it's inside of an outer loop.
1997 ///
1998 /// This function solves this problem by detecting this type of loop and
1999 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
2000 /// the instructions for the maximum computation.
2001 ///
2002 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
2003   // Check that the loop matches the pattern we're looking for.
2004   if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
2005       Cond->getPredicate() != CmpInst::ICMP_NE)
2006     return Cond;
2007 
2008   SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
2009   if (!Sel || !Sel->hasOneUse()) return Cond;
2010 
2011   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
2012   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2013     return Cond;
2014   const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
2015 
2016   // Add one to the backedge-taken count to get the trip count.
2017   const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount);
2018   if (IterationCount != SE.getSCEV(Sel)) return Cond;
2019 
2020   // Check for a max calculation that matches the pattern. There's no check
2021   // for ICMP_ULE here because the comparison would be with zero, which
2022   // isn't interesting.
2023   CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
2024   const SCEVNAryExpr *Max = nullptr;
2025   if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
2026     Pred = ICmpInst::ICMP_SLE;
2027     Max = S;
2028   } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
2029     Pred = ICmpInst::ICMP_SLT;
2030     Max = S;
2031   } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
2032     Pred = ICmpInst::ICMP_ULT;
2033     Max = U;
2034   } else {
2035     // No match; bail.
2036     return Cond;
2037   }
2038 
2039   // To handle a max with more than two operands, this optimization would
2040   // require additional checking and setup.
2041   if (Max->getNumOperands() != 2)
2042     return Cond;
2043 
2044   const SCEV *MaxLHS = Max->getOperand(0);
2045   const SCEV *MaxRHS = Max->getOperand(1);
2046 
2047   // ScalarEvolution canonicalizes constants to the left. For < and >, look
2048   // for a comparison with 1. For <= and >=, a comparison with zero.
2049   if (!MaxLHS ||
2050       (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
2051     return Cond;
2052 
2053   // Check the relevant induction variable for conformance to
2054   // the pattern.
2055   const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
2056   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
2057   if (!AR || !AR->isAffine() ||
2058       AR->getStart() != One ||
2059       AR->getStepRecurrence(SE) != One)
2060     return Cond;
2061 
2062   assert(AR->getLoop() == L &&
2063          "Loop condition operand is an addrec in a different loop!");
2064 
2065   // Check the right operand of the select, and remember it, as it will
2066   // be used in the new comparison instruction.
2067   Value *NewRHS = nullptr;
2068   if (ICmpInst::isTrueWhenEqual(Pred)) {
2069     // Look for n+1, and grab n.
2070     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
2071       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2072          if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2073            NewRHS = BO->getOperand(0);
2074     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
2075       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2076         if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2077           NewRHS = BO->getOperand(0);
2078     if (!NewRHS)
2079       return Cond;
2080   } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
2081     NewRHS = Sel->getOperand(1);
2082   else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
2083     NewRHS = Sel->getOperand(2);
2084   else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS))
2085     NewRHS = SU->getValue();
2086   else
2087     // Max doesn't match expected pattern.
2088     return Cond;
2089 
2090   // Determine the new comparison opcode. It may be signed or unsigned,
2091   // and the original comparison may be either equality or inequality.
2092   if (Cond->getPredicate() == CmpInst::ICMP_EQ)
2093     Pred = CmpInst::getInversePredicate(Pred);
2094 
2095   // Ok, everything looks ok to change the condition into an SLT or SGE and
2096   // delete the max calculation.
2097   ICmpInst *NewCond =
2098     new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
2099 
2100   // Delete the max calculation instructions.
2101   Cond->replaceAllUsesWith(NewCond);
2102   CondUse->setUser(NewCond);
2103   Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
2104   Cond->eraseFromParent();
2105   Sel->eraseFromParent();
2106   if (Cmp->use_empty())
2107     Cmp->eraseFromParent();
2108   return NewCond;
2109 }
2110 
2111 /// Change loop terminating condition to use the postinc iv when possible.
2112 void
2113 LSRInstance::OptimizeLoopTermCond() {
2114   SmallPtrSet<Instruction *, 4> PostIncs;
2115 
2116   // We need a different set of heuristics for rotated and non-rotated loops.
2117   // If a loop is rotated then the latch is also the backedge, so inserting
2118   // post-inc expressions just before the latch is ideal. To reduce live ranges
2119   // it also makes sense to rewrite terminating conditions to use post-inc
2120   // expressions.
2121   //
2122   // If the loop is not rotated then the latch is not a backedge; the latch
2123   // check is done in the loop head. Adding post-inc expressions before the
2124   // latch will cause overlapping live-ranges of pre-inc and post-inc expressions
2125   // in the loop body. In this case we do *not* want to use post-inc expressions
2126   // in the latch check, and we want to insert post-inc expressions before
2127   // the backedge.
2128   BasicBlock *LatchBlock = L->getLoopLatch();
2129   SmallVector<BasicBlock*, 8> ExitingBlocks;
2130   L->getExitingBlocks(ExitingBlocks);
2131   if (llvm::all_of(ExitingBlocks, [&LatchBlock](const BasicBlock *BB) {
2132         return LatchBlock != BB;
2133       })) {
2134     // The backedge doesn't exit the loop; treat this as a head-tested loop.
2135     IVIncInsertPos = LatchBlock->getTerminator();
2136     return;
2137   }
2138 
2139   // Otherwise treat this as a rotated loop.
2140   for (BasicBlock *ExitingBlock : ExitingBlocks) {
2141 
2142     // Get the terminating condition for the loop if possible.  If we
2143     // can, we want to change it to use a post-incremented version of its
2144     // induction variable, to allow coalescing the live ranges for the IV into
2145     // one register value.
2146 
2147     BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
2148     if (!TermBr)
2149       continue;
2150     // FIXME: Overly conservative, termination condition could be an 'or' etc..
2151     if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
2152       continue;
2153 
2154     // Search IVUsesByStride to find Cond's IVUse if there is one.
2155     IVStrideUse *CondUse = nullptr;
2156     ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
2157     if (!FindIVUserForCond(Cond, CondUse))
2158       continue;
2159 
2160     // If the trip count is computed in terms of a max (due to ScalarEvolution
2161     // being unable to find a sufficient guard, for example), change the loop
2162     // comparison to use SLT or ULT instead of NE.
2163     // One consequence of doing this now is that it disrupts the count-down
2164     // optimization. That's not always a bad thing though, because in such
2165     // cases it may still be worthwhile to avoid a max.
2166     Cond = OptimizeMax(Cond, CondUse);
2167 
2168     // If this exiting block dominates the latch block, it may also use
2169     // the post-inc value if it won't be shared with other uses.
2170     // Check for dominance.
2171     if (!DT.dominates(ExitingBlock, LatchBlock))
2172       continue;
2173 
2174     // Conservatively avoid trying to use the post-inc value in non-latch
2175     // exits if there may be pre-inc users in intervening blocks.
2176     if (LatchBlock != ExitingBlock)
2177       for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
2178         // Test if the use is reachable from the exiting block. This dominator
2179         // query is a conservative approximation of reachability.
2180         if (&*UI != CondUse &&
2181             !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
2182           // Conservatively assume there may be reuse if the quotient of their
2183           // strides could be a legal scale.
2184           const SCEV *A = IU.getStride(*CondUse, L);
2185           const SCEV *B = IU.getStride(*UI, L);
2186           if (!A || !B) continue;
2187           if (SE.getTypeSizeInBits(A->getType()) !=
2188               SE.getTypeSizeInBits(B->getType())) {
2189             if (SE.getTypeSizeInBits(A->getType()) >
2190                 SE.getTypeSizeInBits(B->getType()))
2191               B = SE.getSignExtendExpr(B, A->getType());
2192             else
2193               A = SE.getSignExtendExpr(A, B->getType());
2194           }
2195           if (const SCEVConstant *D =
2196                 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
2197             const ConstantInt *C = D->getValue();
2198             // Stride of one or negative one can have reuse with non-addresses.
2199             if (C->isOne() || C->isAllOnesValue())
2200               goto decline_post_inc;
2201             // Avoid weird situations.
2202             if (C->getValue().getMinSignedBits() >= 64 ||
2203                 C->getValue().isMinSignedValue())
2204               goto decline_post_inc;
2205             // Check for possible scaled-address reuse.
2206             MemAccessTy AccessTy = getAccessType(UI->getUser());
2207             int64_t Scale = C->getSExtValue();
2208             if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2209                                           /*BaseOffset=*/0,
2210                                           /*HasBaseReg=*/false, Scale,
2211                                           AccessTy.AddrSpace))
2212               goto decline_post_inc;
2213             Scale = -Scale;
2214             if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2215                                           /*BaseOffset=*/0,
2216                                           /*HasBaseReg=*/false, Scale,
2217                                           AccessTy.AddrSpace))
2218               goto decline_post_inc;
2219           }
2220         }
2221 
2222     DEBUG(dbgs() << "  Change loop exiting icmp to use postinc iv: "
2223                  << *Cond << '\n');
2224 
2225     // It's possible for the setcc instruction to be anywhere in the loop, and
2226     // possible for it to have multiple users.  If it is not immediately before
2227     // the exiting block branch, move it.
2228     if (&*++BasicBlock::iterator(Cond) != TermBr) {
2229       if (Cond->hasOneUse()) {
2230         Cond->moveBefore(TermBr);
2231       } else {
2232         // Clone the terminating condition and insert into the loopend.
2233         ICmpInst *OldCond = Cond;
2234         Cond = cast<ICmpInst>(Cond->clone());
2235         Cond->setName(L->getHeader()->getName() + ".termcond");
2236         ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond);
2237 
2238         // Clone the IVUse, as the old use still exists!
2239         CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
2240         TermBr->replaceUsesOfWith(OldCond, Cond);
2241       }
2242     }
2243 
2244     // If we get to here, we know that we can transform the setcc instruction to
2245     // use the post-incremented version of the IV, allowing us to coalesce the
2246     // live ranges for the IV correctly.
2247     CondUse->transformToPostInc(L);
2248     Changed = true;
2249 
2250     PostIncs.insert(Cond);
2251   decline_post_inc:;
2252   }
2253 
2254   // Determine an insertion point for the loop induction variable increment. It
2255   // must dominate all the post-inc comparisons we just set up, and it must
2256   // dominate the loop latch edge.
2257   IVIncInsertPos = L->getLoopLatch()->getTerminator();
2258   for (Instruction *Inst : PostIncs) {
2259     BasicBlock *BB =
2260       DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
2261                                     Inst->getParent());
2262     if (BB == Inst->getParent())
2263       IVIncInsertPos = Inst;
2264     else if (BB != IVIncInsertPos->getParent())
2265       IVIncInsertPos = BB->getTerminator();
2266   }
2267 }
2268 
2269 /// Determine if the given use can accommodate a fixup at the given offset and
2270 /// other details. If so, update the use and return true.
2271 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset,
2272                                      bool HasBaseReg, LSRUse::KindType Kind,
2273                                      MemAccessTy AccessTy) {
2274   int64_t NewMinOffset = LU.MinOffset;
2275   int64_t NewMaxOffset = LU.MaxOffset;
2276   MemAccessTy NewAccessTy = AccessTy;
2277 
2278   // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
2279   // something conservative, however this can pessimize in the case that one of
2280   // the uses will have all its uses outside the loop, for example.
2281   if (LU.Kind != Kind)
2282     return false;
2283 
2284   // Check for a mismatched access type, and fall back conservatively as needed.
2285   // TODO: Be less conservative when the type is similar and can use the same
2286   // addressing modes.
2287   if (Kind == LSRUse::Address) {
2288     if (AccessTy.MemTy != LU.AccessTy.MemTy) {
2289       NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(),
2290                                             AccessTy.AddrSpace);
2291     }
2292   }
2293 
2294   // Conservatively assume HasBaseReg is true for now.
2295   if (NewOffset < LU.MinOffset) {
2296     if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2297                           LU.MaxOffset - NewOffset, HasBaseReg))
2298       return false;
2299     NewMinOffset = NewOffset;
2300   } else if (NewOffset > LU.MaxOffset) {
2301     if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2302                           NewOffset - LU.MinOffset, HasBaseReg))
2303       return false;
2304     NewMaxOffset = NewOffset;
2305   }
2306 
2307   // Update the use.
2308   LU.MinOffset = NewMinOffset;
2309   LU.MaxOffset = NewMaxOffset;
2310   LU.AccessTy = NewAccessTy;
2311   return true;
2312 }
2313 
2314 /// Return an LSRUse index and an offset value for a fixup which needs the given
2315 /// expression, with the given kind and optional access type.  Either reuse an
2316 /// existing use or create a new one, as needed.
2317 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr,
2318                                                LSRUse::KindType Kind,
2319                                                MemAccessTy AccessTy) {
2320   const SCEV *Copy = Expr;
2321   int64_t Offset = ExtractImmediate(Expr, SE);
2322 
2323   // Basic uses can't accept any offset, for example.
2324   if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr,
2325                         Offset, /*HasBaseReg=*/ true)) {
2326     Expr = Copy;
2327     Offset = 0;
2328   }
2329 
2330   std::pair<UseMapTy::iterator, bool> P =
2331     UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0));
2332   if (!P.second) {
2333     // A use already existed with this base.
2334     size_t LUIdx = P.first->second;
2335     LSRUse &LU = Uses[LUIdx];
2336     if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
2337       // Reuse this use.
2338       return std::make_pair(LUIdx, Offset);
2339   }
2340 
2341   // Create a new use.
2342   size_t LUIdx = Uses.size();
2343   P.first->second = LUIdx;
2344   Uses.push_back(LSRUse(Kind, AccessTy));
2345   LSRUse &LU = Uses[LUIdx];
2346 
2347   LU.MinOffset = Offset;
2348   LU.MaxOffset = Offset;
2349   return std::make_pair(LUIdx, Offset);
2350 }
2351 
2352 /// Delete the given use from the Uses list.
2353 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) {
2354   if (&LU != &Uses.back())
2355     std::swap(LU, Uses.back());
2356   Uses.pop_back();
2357 
2358   // Update RegUses.
2359   RegUses.swapAndDropUse(LUIdx, Uses.size());
2360 }
2361 
2362 /// Look for a use distinct from OrigLU which is has a formula that has the same
2363 /// registers as the given formula.
2364 LSRUse *
2365 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
2366                                        const LSRUse &OrigLU) {
2367   // Search all uses for the formula. This could be more clever.
2368   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2369     LSRUse &LU = Uses[LUIdx];
2370     // Check whether this use is close enough to OrigLU, to see whether it's
2371     // worthwhile looking through its formulae.
2372     // Ignore ICmpZero uses because they may contain formulae generated by
2373     // GenerateICmpZeroScales, in which case adding fixup offsets may
2374     // be invalid.
2375     if (&LU != &OrigLU &&
2376         LU.Kind != LSRUse::ICmpZero &&
2377         LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
2378         LU.WidestFixupType == OrigLU.WidestFixupType &&
2379         LU.HasFormulaWithSameRegs(OrigF)) {
2380       // Scan through this use's formulae.
2381       for (const Formula &F : LU.Formulae) {
2382         // Check to see if this formula has the same registers and symbols
2383         // as OrigF.
2384         if (F.BaseRegs == OrigF.BaseRegs &&
2385             F.ScaledReg == OrigF.ScaledReg &&
2386             F.BaseGV == OrigF.BaseGV &&
2387             F.Scale == OrigF.Scale &&
2388             F.UnfoldedOffset == OrigF.UnfoldedOffset) {
2389           if (F.BaseOffset == 0)
2390             return &LU;
2391           // This is the formula where all the registers and symbols matched;
2392           // there aren't going to be any others. Since we declined it, we
2393           // can skip the rest of the formulae and proceed to the next LSRUse.
2394           break;
2395         }
2396       }
2397     }
2398   }
2399 
2400   // Nothing looked good.
2401   return nullptr;
2402 }
2403 
2404 void LSRInstance::CollectInterestingTypesAndFactors() {
2405   SmallSetVector<const SCEV *, 4> Strides;
2406 
2407   // Collect interesting types and strides.
2408   SmallVector<const SCEV *, 4> Worklist;
2409   for (const IVStrideUse &U : IU) {
2410     const SCEV *Expr = IU.getExpr(U);
2411 
2412     // Collect interesting types.
2413     Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
2414 
2415     // Add strides for mentioned loops.
2416     Worklist.push_back(Expr);
2417     do {
2418       const SCEV *S = Worklist.pop_back_val();
2419       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2420         if (AR->getLoop() == L)
2421           Strides.insert(AR->getStepRecurrence(SE));
2422         Worklist.push_back(AR->getStart());
2423       } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2424         Worklist.append(Add->op_begin(), Add->op_end());
2425       }
2426     } while (!Worklist.empty());
2427   }
2428 
2429   // Compute interesting factors from the set of interesting strides.
2430   for (SmallSetVector<const SCEV *, 4>::const_iterator
2431        I = Strides.begin(), E = Strides.end(); I != E; ++I)
2432     for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
2433          std::next(I); NewStrideIter != E; ++NewStrideIter) {
2434       const SCEV *OldStride = *I;
2435       const SCEV *NewStride = *NewStrideIter;
2436 
2437       if (SE.getTypeSizeInBits(OldStride->getType()) !=
2438           SE.getTypeSizeInBits(NewStride->getType())) {
2439         if (SE.getTypeSizeInBits(OldStride->getType()) >
2440             SE.getTypeSizeInBits(NewStride->getType()))
2441           NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
2442         else
2443           OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
2444       }
2445       if (const SCEVConstant *Factor =
2446             dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
2447                                                         SE, true))) {
2448         if (Factor->getAPInt().getMinSignedBits() <= 64)
2449           Factors.insert(Factor->getAPInt().getSExtValue());
2450       } else if (const SCEVConstant *Factor =
2451                    dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
2452                                                                NewStride,
2453                                                                SE, true))) {
2454         if (Factor->getAPInt().getMinSignedBits() <= 64)
2455           Factors.insert(Factor->getAPInt().getSExtValue());
2456       }
2457     }
2458 
2459   // If all uses use the same type, don't bother looking for truncation-based
2460   // reuse.
2461   if (Types.size() == 1)
2462     Types.clear();
2463 
2464   DEBUG(print_factors_and_types(dbgs()));
2465 }
2466 
2467 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in
2468 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to
2469 /// IVStrideUses, we could partially skip this.
2470 static User::op_iterator
2471 findIVOperand(User::op_iterator OI, User::op_iterator OE,
2472               Loop *L, ScalarEvolution &SE) {
2473   for(; OI != OE; ++OI) {
2474     if (Instruction *Oper = dyn_cast<Instruction>(*OI)) {
2475       if (!SE.isSCEVable(Oper->getType()))
2476         continue;
2477 
2478       if (const SCEVAddRecExpr *AR =
2479           dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) {
2480         if (AR->getLoop() == L)
2481           break;
2482       }
2483     }
2484   }
2485   return OI;
2486 }
2487 
2488 /// IVChain logic must consistenctly peek base TruncInst operands, so wrap it in
2489 /// a convenient helper.
2490 static Value *getWideOperand(Value *Oper) {
2491   if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper))
2492     return Trunc->getOperand(0);
2493   return Oper;
2494 }
2495 
2496 /// Return true if we allow an IV chain to include both types.
2497 static bool isCompatibleIVType(Value *LVal, Value *RVal) {
2498   Type *LType = LVal->getType();
2499   Type *RType = RVal->getType();
2500   return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy());
2501 }
2502 
2503 /// Return an approximation of this SCEV expression's "base", or NULL for any
2504 /// constant. Returning the expression itself is conservative. Returning a
2505 /// deeper subexpression is more precise and valid as long as it isn't less
2506 /// complex than another subexpression. For expressions involving multiple
2507 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids
2508 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i],
2509 /// IVInc==b-a.
2510 ///
2511 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost
2512 /// SCEVUnknown, we simply return the rightmost SCEV operand.
2513 static const SCEV *getExprBase(const SCEV *S) {
2514   switch (S->getSCEVType()) {
2515   default: // uncluding scUnknown.
2516     return S;
2517   case scConstant:
2518     return nullptr;
2519   case scTruncate:
2520     return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand());
2521   case scZeroExtend:
2522     return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand());
2523   case scSignExtend:
2524     return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand());
2525   case scAddExpr: {
2526     // Skip over scaled operands (scMulExpr) to follow add operands as long as
2527     // there's nothing more complex.
2528     // FIXME: not sure if we want to recognize negation.
2529     const SCEVAddExpr *Add = cast<SCEVAddExpr>(S);
2530     for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()),
2531            E(Add->op_begin()); I != E; ++I) {
2532       const SCEV *SubExpr = *I;
2533       if (SubExpr->getSCEVType() == scAddExpr)
2534         return getExprBase(SubExpr);
2535 
2536       if (SubExpr->getSCEVType() != scMulExpr)
2537         return SubExpr;
2538     }
2539     return S; // all operands are scaled, be conservative.
2540   }
2541   case scAddRecExpr:
2542     return getExprBase(cast<SCEVAddRecExpr>(S)->getStart());
2543   }
2544 }
2545 
2546 /// Return true if the chain increment is profitable to expand into a loop
2547 /// invariant value, which may require its own register. A profitable chain
2548 /// increment will be an offset relative to the same base. We allow such offsets
2549 /// to potentially be used as chain increment as long as it's not obviously
2550 /// expensive to expand using real instructions.
2551 bool IVChain::isProfitableIncrement(const SCEV *OperExpr,
2552                                     const SCEV *IncExpr,
2553                                     ScalarEvolution &SE) {
2554   // Aggressively form chains when -stress-ivchain.
2555   if (StressIVChain)
2556     return true;
2557 
2558   // Do not replace a constant offset from IV head with a nonconstant IV
2559   // increment.
2560   if (!isa<SCEVConstant>(IncExpr)) {
2561     const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand));
2562     if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr)))
2563       return false;
2564   }
2565 
2566   SmallPtrSet<const SCEV*, 8> Processed;
2567   return !isHighCostExpansion(IncExpr, Processed, SE);
2568 }
2569 
2570 /// Return true if the number of registers needed for the chain is estimated to
2571 /// be less than the number required for the individual IV users. First prohibit
2572 /// any IV users that keep the IV live across increments (the Users set should
2573 /// be empty). Next count the number and type of increments in the chain.
2574 ///
2575 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't
2576 /// effectively use postinc addressing modes. Only consider it profitable it the
2577 /// increments can be computed in fewer registers when chained.
2578 ///
2579 /// TODO: Consider IVInc free if it's already used in another chains.
2580 static bool
2581 isProfitableChain(IVChain &Chain, SmallPtrSetImpl<Instruction*> &Users,
2582                   ScalarEvolution &SE, const TargetTransformInfo &TTI) {
2583   if (StressIVChain)
2584     return true;
2585 
2586   if (!Chain.hasIncs())
2587     return false;
2588 
2589   if (!Users.empty()) {
2590     DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n";
2591           for (Instruction *Inst : Users) {
2592             dbgs() << "  " << *Inst << "\n";
2593           });
2594     return false;
2595   }
2596   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
2597 
2598   // The chain itself may require a register, so intialize cost to 1.
2599   int cost = 1;
2600 
2601   // A complete chain likely eliminates the need for keeping the original IV in
2602   // a register. LSR does not currently know how to form a complete chain unless
2603   // the header phi already exists.
2604   if (isa<PHINode>(Chain.tailUserInst())
2605       && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) {
2606     --cost;
2607   }
2608   const SCEV *LastIncExpr = nullptr;
2609   unsigned NumConstIncrements = 0;
2610   unsigned NumVarIncrements = 0;
2611   unsigned NumReusedIncrements = 0;
2612   for (const IVInc &Inc : Chain) {
2613     if (Inc.IncExpr->isZero())
2614       continue;
2615 
2616     // Incrementing by zero or some constant is neutral. We assume constants can
2617     // be folded into an addressing mode or an add's immediate operand.
2618     if (isa<SCEVConstant>(Inc.IncExpr)) {
2619       ++NumConstIncrements;
2620       continue;
2621     }
2622 
2623     if (Inc.IncExpr == LastIncExpr)
2624       ++NumReusedIncrements;
2625     else
2626       ++NumVarIncrements;
2627 
2628     LastIncExpr = Inc.IncExpr;
2629   }
2630   // An IV chain with a single increment is handled by LSR's postinc
2631   // uses. However, a chain with multiple increments requires keeping the IV's
2632   // value live longer than it needs to be if chained.
2633   if (NumConstIncrements > 1)
2634     --cost;
2635 
2636   // Materializing increment expressions in the preheader that didn't exist in
2637   // the original code may cost a register. For example, sign-extended array
2638   // indices can produce ridiculous increments like this:
2639   // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64)))
2640   cost += NumVarIncrements;
2641 
2642   // Reusing variable increments likely saves a register to hold the multiple of
2643   // the stride.
2644   cost -= NumReusedIncrements;
2645 
2646   DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost
2647                << "\n");
2648 
2649   return cost < 0;
2650 }
2651 
2652 /// Add this IV user to an existing chain or make it the head of a new chain.
2653 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper,
2654                                    SmallVectorImpl<ChainUsers> &ChainUsersVec) {
2655   // When IVs are used as types of varying widths, they are generally converted
2656   // to a wider type with some uses remaining narrow under a (free) trunc.
2657   Value *const NextIV = getWideOperand(IVOper);
2658   const SCEV *const OperExpr = SE.getSCEV(NextIV);
2659   const SCEV *const OperExprBase = getExprBase(OperExpr);
2660 
2661   // Visit all existing chains. Check if its IVOper can be computed as a
2662   // profitable loop invariant increment from the last link in the Chain.
2663   unsigned ChainIdx = 0, NChains = IVChainVec.size();
2664   const SCEV *LastIncExpr = nullptr;
2665   for (; ChainIdx < NChains; ++ChainIdx) {
2666     IVChain &Chain = IVChainVec[ChainIdx];
2667 
2668     // Prune the solution space aggressively by checking that both IV operands
2669     // are expressions that operate on the same unscaled SCEVUnknown. This
2670     // "base" will be canceled by the subsequent getMinusSCEV call. Checking
2671     // first avoids creating extra SCEV expressions.
2672     if (!StressIVChain && Chain.ExprBase != OperExprBase)
2673       continue;
2674 
2675     Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand);
2676     if (!isCompatibleIVType(PrevIV, NextIV))
2677       continue;
2678 
2679     // A phi node terminates a chain.
2680     if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst()))
2681       continue;
2682 
2683     // The increment must be loop-invariant so it can be kept in a register.
2684     const SCEV *PrevExpr = SE.getSCEV(PrevIV);
2685     const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr);
2686     if (!SE.isLoopInvariant(IncExpr, L))
2687       continue;
2688 
2689     if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) {
2690       LastIncExpr = IncExpr;
2691       break;
2692     }
2693   }
2694   // If we haven't found a chain, create a new one, unless we hit the max. Don't
2695   // bother for phi nodes, because they must be last in the chain.
2696   if (ChainIdx == NChains) {
2697     if (isa<PHINode>(UserInst))
2698       return;
2699     if (NChains >= MaxChains && !StressIVChain) {
2700       DEBUG(dbgs() << "IV Chain Limit\n");
2701       return;
2702     }
2703     LastIncExpr = OperExpr;
2704     // IVUsers may have skipped over sign/zero extensions. We don't currently
2705     // attempt to form chains involving extensions unless they can be hoisted
2706     // into this loop's AddRec.
2707     if (!isa<SCEVAddRecExpr>(LastIncExpr))
2708       return;
2709     ++NChains;
2710     IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr),
2711                                  OperExprBase));
2712     ChainUsersVec.resize(NChains);
2713     DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst
2714                  << ") IV=" << *LastIncExpr << "\n");
2715   } else {
2716     DEBUG(dbgs() << "IV Chain#" << ChainIdx << "  Inc: (" << *UserInst
2717                  << ") IV+" << *LastIncExpr << "\n");
2718     // Add this IV user to the end of the chain.
2719     IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr));
2720   }
2721   IVChain &Chain = IVChainVec[ChainIdx];
2722 
2723   SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers;
2724   // This chain's NearUsers become FarUsers.
2725   if (!LastIncExpr->isZero()) {
2726     ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(),
2727                                             NearUsers.end());
2728     NearUsers.clear();
2729   }
2730 
2731   // All other uses of IVOperand become near uses of the chain.
2732   // We currently ignore intermediate values within SCEV expressions, assuming
2733   // they will eventually be used be the current chain, or can be computed
2734   // from one of the chain increments. To be more precise we could
2735   // transitively follow its user and only add leaf IV users to the set.
2736   for (User *U : IVOper->users()) {
2737     Instruction *OtherUse = dyn_cast<Instruction>(U);
2738     if (!OtherUse)
2739       continue;
2740     // Uses in the chain will no longer be uses if the chain is formed.
2741     // Include the head of the chain in this iteration (not Chain.begin()).
2742     IVChain::const_iterator IncIter = Chain.Incs.begin();
2743     IVChain::const_iterator IncEnd = Chain.Incs.end();
2744     for( ; IncIter != IncEnd; ++IncIter) {
2745       if (IncIter->UserInst == OtherUse)
2746         break;
2747     }
2748     if (IncIter != IncEnd)
2749       continue;
2750 
2751     if (SE.isSCEVable(OtherUse->getType())
2752         && !isa<SCEVUnknown>(SE.getSCEV(OtherUse))
2753         && IU.isIVUserOrOperand(OtherUse)) {
2754       continue;
2755     }
2756     NearUsers.insert(OtherUse);
2757   }
2758 
2759   // Since this user is part of the chain, it's no longer considered a use
2760   // of the chain.
2761   ChainUsersVec[ChainIdx].FarUsers.erase(UserInst);
2762 }
2763 
2764 /// Populate the vector of Chains.
2765 ///
2766 /// This decreases ILP at the architecture level. Targets with ample registers,
2767 /// multiple memory ports, and no register renaming probably don't want
2768 /// this. However, such targets should probably disable LSR altogether.
2769 ///
2770 /// The job of LSR is to make a reasonable choice of induction variables across
2771 /// the loop. Subsequent passes can easily "unchain" computation exposing more
2772 /// ILP *within the loop* if the target wants it.
2773 ///
2774 /// Finding the best IV chain is potentially a scheduling problem. Since LSR
2775 /// will not reorder memory operations, it will recognize this as a chain, but
2776 /// will generate redundant IV increments. Ideally this would be corrected later
2777 /// by a smart scheduler:
2778 ///        = A[i]
2779 ///        = A[i+x]
2780 /// A[i]   =
2781 /// A[i+x] =
2782 ///
2783 /// TODO: Walk the entire domtree within this loop, not just the path to the
2784 /// loop latch. This will discover chains on side paths, but requires
2785 /// maintaining multiple copies of the Chains state.
2786 void LSRInstance::CollectChains() {
2787   DEBUG(dbgs() << "Collecting IV Chains.\n");
2788   SmallVector<ChainUsers, 8> ChainUsersVec;
2789 
2790   SmallVector<BasicBlock *,8> LatchPath;
2791   BasicBlock *LoopHeader = L->getHeader();
2792   for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch());
2793        Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) {
2794     LatchPath.push_back(Rung->getBlock());
2795   }
2796   LatchPath.push_back(LoopHeader);
2797 
2798   // Walk the instruction stream from the loop header to the loop latch.
2799   for (BasicBlock *BB : reverse(LatchPath)) {
2800     for (Instruction &I : *BB) {
2801       // Skip instructions that weren't seen by IVUsers analysis.
2802       if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I))
2803         continue;
2804 
2805       // Ignore users that are part of a SCEV expression. This way we only
2806       // consider leaf IV Users. This effectively rediscovers a portion of
2807       // IVUsers analysis but in program order this time.
2808       if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I)))
2809         continue;
2810 
2811       // Remove this instruction from any NearUsers set it may be in.
2812       for (unsigned ChainIdx = 0, NChains = IVChainVec.size();
2813            ChainIdx < NChains; ++ChainIdx) {
2814         ChainUsersVec[ChainIdx].NearUsers.erase(&I);
2815       }
2816       // Search for operands that can be chained.
2817       SmallPtrSet<Instruction*, 4> UniqueOperands;
2818       User::op_iterator IVOpEnd = I.op_end();
2819       User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE);
2820       while (IVOpIter != IVOpEnd) {
2821         Instruction *IVOpInst = cast<Instruction>(*IVOpIter);
2822         if (UniqueOperands.insert(IVOpInst).second)
2823           ChainInstruction(&I, IVOpInst, ChainUsersVec);
2824         IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
2825       }
2826     } // Continue walking down the instructions.
2827   } // Continue walking down the domtree.
2828   // Visit phi backedges to determine if the chain can generate the IV postinc.
2829   for (BasicBlock::iterator I = L->getHeader()->begin();
2830        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
2831     if (!SE.isSCEVable(PN->getType()))
2832       continue;
2833 
2834     Instruction *IncV =
2835       dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch()));
2836     if (IncV)
2837       ChainInstruction(PN, IncV, ChainUsersVec);
2838   }
2839   // Remove any unprofitable chains.
2840   unsigned ChainIdx = 0;
2841   for (unsigned UsersIdx = 0, NChains = IVChainVec.size();
2842        UsersIdx < NChains; ++UsersIdx) {
2843     if (!isProfitableChain(IVChainVec[UsersIdx],
2844                            ChainUsersVec[UsersIdx].FarUsers, SE, TTI))
2845       continue;
2846     // Preserve the chain at UsesIdx.
2847     if (ChainIdx != UsersIdx)
2848       IVChainVec[ChainIdx] = IVChainVec[UsersIdx];
2849     FinalizeChain(IVChainVec[ChainIdx]);
2850     ++ChainIdx;
2851   }
2852   IVChainVec.resize(ChainIdx);
2853 }
2854 
2855 void LSRInstance::FinalizeChain(IVChain &Chain) {
2856   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
2857   DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n");
2858 
2859   for (const IVInc &Inc : Chain) {
2860     DEBUG(dbgs() << "        Inc: " << *Inc.UserInst << "\n");
2861     auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand);
2862     assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand");
2863     IVIncSet.insert(UseI);
2864   }
2865 }
2866 
2867 /// Return true if the IVInc can be folded into an addressing mode.
2868 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst,
2869                              Value *Operand, const TargetTransformInfo &TTI) {
2870   const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr);
2871   if (!IncConst || !isAddressUse(UserInst, Operand))
2872     return false;
2873 
2874   if (IncConst->getAPInt().getMinSignedBits() > 64)
2875     return false;
2876 
2877   MemAccessTy AccessTy = getAccessType(UserInst);
2878   int64_t IncOffset = IncConst->getValue()->getSExtValue();
2879   if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr,
2880                         IncOffset, /*HaseBaseReg=*/false))
2881     return false;
2882 
2883   return true;
2884 }
2885 
2886 /// Generate an add or subtract for each IVInc in a chain to materialize the IV
2887 /// user's operand from the previous IV user's operand.
2888 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
2889                                   SmallVectorImpl<WeakVH> &DeadInsts) {
2890   // Find the new IVOperand for the head of the chain. It may have been replaced
2891   // by LSR.
2892   const IVInc &Head = Chain.Incs[0];
2893   User::op_iterator IVOpEnd = Head.UserInst->op_end();
2894   // findIVOperand returns IVOpEnd if it can no longer find a valid IV user.
2895   User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(),
2896                                              IVOpEnd, L, SE);
2897   Value *IVSrc = nullptr;
2898   while (IVOpIter != IVOpEnd) {
2899     IVSrc = getWideOperand(*IVOpIter);
2900 
2901     // If this operand computes the expression that the chain needs, we may use
2902     // it. (Check this after setting IVSrc which is used below.)
2903     //
2904     // Note that if Head.IncExpr is wider than IVSrc, then this phi is too
2905     // narrow for the chain, so we can no longer use it. We do allow using a
2906     // wider phi, assuming the LSR checked for free truncation. In that case we
2907     // should already have a truncate on this operand such that
2908     // getSCEV(IVSrc) == IncExpr.
2909     if (SE.getSCEV(*IVOpIter) == Head.IncExpr
2910         || SE.getSCEV(IVSrc) == Head.IncExpr) {
2911       break;
2912     }
2913     IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
2914   }
2915   if (IVOpIter == IVOpEnd) {
2916     // Gracefully give up on this chain.
2917     DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n");
2918     return;
2919   }
2920 
2921   DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n");
2922   Type *IVTy = IVSrc->getType();
2923   Type *IntTy = SE.getEffectiveSCEVType(IVTy);
2924   const SCEV *LeftOverExpr = nullptr;
2925   for (const IVInc &Inc : Chain) {
2926     Instruction *InsertPt = Inc.UserInst;
2927     if (isa<PHINode>(InsertPt))
2928       InsertPt = L->getLoopLatch()->getTerminator();
2929 
2930     // IVOper will replace the current IV User's operand. IVSrc is the IV
2931     // value currently held in a register.
2932     Value *IVOper = IVSrc;
2933     if (!Inc.IncExpr->isZero()) {
2934       // IncExpr was the result of subtraction of two narrow values, so must
2935       // be signed.
2936       const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy);
2937       LeftOverExpr = LeftOverExpr ?
2938         SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr;
2939     }
2940     if (LeftOverExpr && !LeftOverExpr->isZero()) {
2941       // Expand the IV increment.
2942       Rewriter.clearPostInc();
2943       Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt);
2944       const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc),
2945                                              SE.getUnknown(IncV));
2946       IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt);
2947 
2948       // If an IV increment can't be folded, use it as the next IV value.
2949       if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) {
2950         assert(IVTy == IVOper->getType() && "inconsistent IV increment type");
2951         IVSrc = IVOper;
2952         LeftOverExpr = nullptr;
2953       }
2954     }
2955     Type *OperTy = Inc.IVOperand->getType();
2956     if (IVTy != OperTy) {
2957       assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) &&
2958              "cannot extend a chained IV");
2959       IRBuilder<> Builder(InsertPt);
2960       IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain");
2961     }
2962     Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper);
2963     DeadInsts.emplace_back(Inc.IVOperand);
2964   }
2965   // If LSR created a new, wider phi, we may also replace its postinc. We only
2966   // do this if we also found a wide value for the head of the chain.
2967   if (isa<PHINode>(Chain.tailUserInst())) {
2968     for (BasicBlock::iterator I = L->getHeader()->begin();
2969          PHINode *Phi = dyn_cast<PHINode>(I); ++I) {
2970       if (!isCompatibleIVType(Phi, IVSrc))
2971         continue;
2972       Instruction *PostIncV = dyn_cast<Instruction>(
2973         Phi->getIncomingValueForBlock(L->getLoopLatch()));
2974       if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc)))
2975         continue;
2976       Value *IVOper = IVSrc;
2977       Type *PostIncTy = PostIncV->getType();
2978       if (IVTy != PostIncTy) {
2979         assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types");
2980         IRBuilder<> Builder(L->getLoopLatch()->getTerminator());
2981         Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc());
2982         IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain");
2983       }
2984       Phi->replaceUsesOfWith(PostIncV, IVOper);
2985       DeadInsts.emplace_back(PostIncV);
2986     }
2987   }
2988 }
2989 
2990 void LSRInstance::CollectFixupsAndInitialFormulae() {
2991   for (const IVStrideUse &U : IU) {
2992     Instruction *UserInst = U.getUser();
2993     // Skip IV users that are part of profitable IV Chains.
2994     User::op_iterator UseI =
2995         find(UserInst->operands(), U.getOperandValToReplace());
2996     assert(UseI != UserInst->op_end() && "cannot find IV operand");
2997     if (IVIncSet.count(UseI)) {
2998       DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n');
2999       continue;
3000     }
3001 
3002     LSRUse::KindType Kind = LSRUse::Basic;
3003     MemAccessTy AccessTy;
3004     if (isAddressUse(UserInst, U.getOperandValToReplace())) {
3005       Kind = LSRUse::Address;
3006       AccessTy = getAccessType(UserInst);
3007     }
3008 
3009     const SCEV *S = IU.getExpr(U);
3010     PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops();
3011 
3012     // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
3013     // (N - i == 0), and this allows (N - i) to be the expression that we work
3014     // with rather than just N or i, so we can consider the register
3015     // requirements for both N and i at the same time. Limiting this code to
3016     // equality icmps is not a problem because all interesting loops use
3017     // equality icmps, thanks to IndVarSimplify.
3018     if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst))
3019       if (CI->isEquality()) {
3020         // Swap the operands if needed to put the OperandValToReplace on the
3021         // left, for consistency.
3022         Value *NV = CI->getOperand(1);
3023         if (NV == U.getOperandValToReplace()) {
3024           CI->setOperand(1, CI->getOperand(0));
3025           CI->setOperand(0, NV);
3026           NV = CI->getOperand(1);
3027           Changed = true;
3028         }
3029 
3030         // x == y  -->  x - y == 0
3031         const SCEV *N = SE.getSCEV(NV);
3032         if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) {
3033           // S is normalized, so normalize N before folding it into S
3034           // to keep the result normalized.
3035           N = TransformForPostIncUse(Normalize, N, CI, nullptr,
3036                                      TmpPostIncLoops, SE, DT);
3037           Kind = LSRUse::ICmpZero;
3038           S = SE.getMinusSCEV(N, S);
3039         }
3040 
3041         // -1 and the negations of all interesting strides (except the negation
3042         // of -1) are now also interesting.
3043         for (size_t i = 0, e = Factors.size(); i != e; ++i)
3044           if (Factors[i] != -1)
3045             Factors.insert(-(uint64_t)Factors[i]);
3046         Factors.insert(-1);
3047       }
3048 
3049     // Get or create an LSRUse.
3050     std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
3051     size_t LUIdx = P.first;
3052     int64_t Offset = P.second;
3053     LSRUse &LU = Uses[LUIdx];
3054 
3055     // Record the fixup.
3056     LSRFixup &LF = LU.getNewFixup();
3057     LF.UserInst = UserInst;
3058     LF.OperandValToReplace = U.getOperandValToReplace();
3059     LF.PostIncLoops = TmpPostIncLoops;
3060     LF.Offset = Offset;
3061     LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3062 
3063     if (!LU.WidestFixupType ||
3064         SE.getTypeSizeInBits(LU.WidestFixupType) <
3065         SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3066       LU.WidestFixupType = LF.OperandValToReplace->getType();
3067 
3068     // If this is the first use of this LSRUse, give it a formula.
3069     if (LU.Formulae.empty()) {
3070       InsertInitialFormula(S, LU, LUIdx);
3071       CountRegisters(LU.Formulae.back(), LUIdx);
3072     }
3073   }
3074 
3075   DEBUG(print_fixups(dbgs()));
3076 }
3077 
3078 /// Insert a formula for the given expression into the given use, separating out
3079 /// loop-variant portions from loop-invariant and loop-computable portions.
3080 void
3081 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
3082   // Mark uses whose expressions cannot be expanded.
3083   if (!isSafeToExpand(S, SE))
3084     LU.RigidFormula = true;
3085 
3086   Formula F;
3087   F.initialMatch(S, L, SE);
3088   bool Inserted = InsertFormula(LU, LUIdx, F);
3089   assert(Inserted && "Initial formula already exists!"); (void)Inserted;
3090 }
3091 
3092 /// Insert a simple single-register formula for the given expression into the
3093 /// given use.
3094 void
3095 LSRInstance::InsertSupplementalFormula(const SCEV *S,
3096                                        LSRUse &LU, size_t LUIdx) {
3097   Formula F;
3098   F.BaseRegs.push_back(S);
3099   F.HasBaseReg = true;
3100   bool Inserted = InsertFormula(LU, LUIdx, F);
3101   assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
3102 }
3103 
3104 /// Note which registers are used by the given formula, updating RegUses.
3105 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
3106   if (F.ScaledReg)
3107     RegUses.countRegister(F.ScaledReg, LUIdx);
3108   for (const SCEV *BaseReg : F.BaseRegs)
3109     RegUses.countRegister(BaseReg, LUIdx);
3110 }
3111 
3112 /// If the given formula has not yet been inserted, add it to the list, and
3113 /// return true. Return false otherwise.
3114 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
3115   // Do not insert formula that we will not be able to expand.
3116   assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) &&
3117          "Formula is illegal");
3118   if (!LU.InsertFormula(F))
3119     return false;
3120 
3121   CountRegisters(F, LUIdx);
3122   return true;
3123 }
3124 
3125 /// Check for other uses of loop-invariant values which we're tracking. These
3126 /// other uses will pin these values in registers, making them less profitable
3127 /// for elimination.
3128 /// TODO: This currently misses non-constant addrec step registers.
3129 /// TODO: Should this give more weight to users inside the loop?
3130 void
3131 LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
3132   SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
3133   SmallPtrSet<const SCEV *, 32> Visited;
3134 
3135   while (!Worklist.empty()) {
3136     const SCEV *S = Worklist.pop_back_val();
3137 
3138     // Don't process the same SCEV twice
3139     if (!Visited.insert(S).second)
3140       continue;
3141 
3142     if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
3143       Worklist.append(N->op_begin(), N->op_end());
3144     else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
3145       Worklist.push_back(C->getOperand());
3146     else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
3147       Worklist.push_back(D->getLHS());
3148       Worklist.push_back(D->getRHS());
3149     } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) {
3150       const Value *V = US->getValue();
3151       if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
3152         // Look for instructions defined outside the loop.
3153         if (L->contains(Inst)) continue;
3154       } else if (isa<UndefValue>(V))
3155         // Undef doesn't have a live range, so it doesn't matter.
3156         continue;
3157       for (const Use &U : V->uses()) {
3158         const Instruction *UserInst = dyn_cast<Instruction>(U.getUser());
3159         // Ignore non-instructions.
3160         if (!UserInst)
3161           continue;
3162         // Ignore instructions in other functions (as can happen with
3163         // Constants).
3164         if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
3165           continue;
3166         // Ignore instructions not dominated by the loop.
3167         const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
3168           UserInst->getParent() :
3169           cast<PHINode>(UserInst)->getIncomingBlock(
3170             PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
3171         if (!DT.dominates(L->getHeader(), UseBB))
3172           continue;
3173         // Don't bother if the instruction is in a BB which ends in an EHPad.
3174         if (UseBB->getTerminator()->isEHPad())
3175           continue;
3176         // Don't bother rewriting PHIs in catchswitch blocks.
3177         if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator()))
3178           continue;
3179         // Ignore uses which are part of other SCEV expressions, to avoid
3180         // analyzing them multiple times.
3181         if (SE.isSCEVable(UserInst->getType())) {
3182           const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
3183           // If the user is a no-op, look through to its uses.
3184           if (!isa<SCEVUnknown>(UserS))
3185             continue;
3186           if (UserS == US) {
3187             Worklist.push_back(
3188               SE.getUnknown(const_cast<Instruction *>(UserInst)));
3189             continue;
3190           }
3191         }
3192         // Ignore icmp instructions which are already being analyzed.
3193         if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
3194           unsigned OtherIdx = !U.getOperandNo();
3195           Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
3196           if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L))
3197             continue;
3198         }
3199 
3200         std::pair<size_t, int64_t> P = getUse(
3201             S, LSRUse::Basic, MemAccessTy());
3202         size_t LUIdx = P.first;
3203         int64_t Offset = P.second;
3204         LSRUse &LU = Uses[LUIdx];
3205         LSRFixup &LF = LU.getNewFixup();
3206         LF.UserInst = const_cast<Instruction *>(UserInst);
3207         LF.OperandValToReplace = U;
3208         LF.Offset = Offset;
3209         LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3210         if (!LU.WidestFixupType ||
3211             SE.getTypeSizeInBits(LU.WidestFixupType) <
3212             SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3213           LU.WidestFixupType = LF.OperandValToReplace->getType();
3214         InsertSupplementalFormula(US, LU, LUIdx);
3215         CountRegisters(LU.Formulae.back(), Uses.size() - 1);
3216         break;
3217       }
3218     }
3219   }
3220 }
3221 
3222 /// Split S into subexpressions which can be pulled out into separate
3223 /// registers. If C is non-null, multiply each subexpression by C.
3224 ///
3225 /// Return remainder expression after factoring the subexpressions captured by
3226 /// Ops. If Ops is complete, return NULL.
3227 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C,
3228                                    SmallVectorImpl<const SCEV *> &Ops,
3229                                    const Loop *L,
3230                                    ScalarEvolution &SE,
3231                                    unsigned Depth = 0) {
3232   // Arbitrarily cap recursion to protect compile time.
3233   if (Depth >= 3)
3234     return S;
3235 
3236   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3237     // Break out add operands.
3238     for (const SCEV *S : Add->operands()) {
3239       const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1);
3240       if (Remainder)
3241         Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3242     }
3243     return nullptr;
3244   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
3245     // Split a non-zero base out of an addrec.
3246     if (AR->getStart()->isZero() || !AR->isAffine())
3247       return S;
3248 
3249     const SCEV *Remainder = CollectSubexprs(AR->getStart(),
3250                                             C, Ops, L, SE, Depth+1);
3251     // Split the non-zero AddRec unless it is part of a nested recurrence that
3252     // does not pertain to this loop.
3253     if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) {
3254       Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3255       Remainder = nullptr;
3256     }
3257     if (Remainder != AR->getStart()) {
3258       if (!Remainder)
3259         Remainder = SE.getConstant(AR->getType(), 0);
3260       return SE.getAddRecExpr(Remainder,
3261                               AR->getStepRecurrence(SE),
3262                               AR->getLoop(),
3263                               //FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
3264                               SCEV::FlagAnyWrap);
3265     }
3266   } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3267     // Break (C * (a + b + c)) into C*a + C*b + C*c.
3268     if (Mul->getNumOperands() != 2)
3269       return S;
3270     if (const SCEVConstant *Op0 =
3271         dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3272       C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0;
3273       const SCEV *Remainder =
3274         CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1);
3275       if (Remainder)
3276         Ops.push_back(SE.getMulExpr(C, Remainder));
3277       return nullptr;
3278     }
3279   }
3280   return S;
3281 }
3282 
3283 /// \brief Helper function for LSRInstance::GenerateReassociations.
3284 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
3285                                              const Formula &Base,
3286                                              unsigned Depth, size_t Idx,
3287                                              bool IsScaledReg) {
3288   const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3289   SmallVector<const SCEV *, 8> AddOps;
3290   const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE);
3291   if (Remainder)
3292     AddOps.push_back(Remainder);
3293 
3294   if (AddOps.size() == 1)
3295     return;
3296 
3297   for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
3298                                                      JE = AddOps.end();
3299        J != JE; ++J) {
3300 
3301     // Loop-variant "unknown" values are uninteresting; we won't be able to
3302     // do anything meaningful with them.
3303     if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L))
3304       continue;
3305 
3306     // Don't pull a constant into a register if the constant could be folded
3307     // into an immediate field.
3308     if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3309                          LU.AccessTy, *J, Base.getNumRegs() > 1))
3310       continue;
3311 
3312     // Collect all operands except *J.
3313     SmallVector<const SCEV *, 8> InnerAddOps(
3314         ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J);
3315     InnerAddOps.append(std::next(J),
3316                        ((const SmallVector<const SCEV *, 8> &)AddOps).end());
3317 
3318     // Don't leave just a constant behind in a register if the constant could
3319     // be folded into an immediate field.
3320     if (InnerAddOps.size() == 1 &&
3321         isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3322                          LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1))
3323       continue;
3324 
3325     const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
3326     if (InnerSum->isZero())
3327       continue;
3328     Formula F = Base;
3329 
3330     // Add the remaining pieces of the add back into the new formula.
3331     const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum);
3332     if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 &&
3333         TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3334                                 InnerSumSC->getValue()->getZExtValue())) {
3335       F.UnfoldedOffset =
3336           (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue();
3337       if (IsScaledReg)
3338         F.ScaledReg = nullptr;
3339       else
3340         F.BaseRegs.erase(F.BaseRegs.begin() + Idx);
3341     } else if (IsScaledReg)
3342       F.ScaledReg = InnerSum;
3343     else
3344       F.BaseRegs[Idx] = InnerSum;
3345 
3346     // Add J as its own register, or an unfolded immediate.
3347     const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J);
3348     if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 &&
3349         TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3350                                 SC->getValue()->getZExtValue()))
3351       F.UnfoldedOffset =
3352           (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue();
3353     else
3354       F.BaseRegs.push_back(*J);
3355     // We may have changed the number of register in base regs, adjust the
3356     // formula accordingly.
3357     F.canonicalize();
3358 
3359     if (InsertFormula(LU, LUIdx, F))
3360       // If that formula hadn't been seen before, recurse to find more like
3361       // it.
3362       GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth + 1);
3363   }
3364 }
3365 
3366 /// Split out subexpressions from adds and the bases of addrecs.
3367 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
3368                                          Formula Base, unsigned Depth) {
3369   assert(Base.isCanonical() && "Input must be in the canonical form");
3370   // Arbitrarily cap recursion to protect compile time.
3371   if (Depth >= 3)
3372     return;
3373 
3374   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3375     GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i);
3376 
3377   if (Base.Scale == 1)
3378     GenerateReassociationsImpl(LU, LUIdx, Base, Depth,
3379                                /* Idx */ -1, /* IsScaledReg */ true);
3380 }
3381 
3382 ///  Generate a formula consisting of all of the loop-dominating registers added
3383 /// into a single register.
3384 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
3385                                        Formula Base) {
3386   // This method is only interesting on a plurality of registers.
3387   if (Base.BaseRegs.size() + (Base.Scale == 1) <= 1)
3388     return;
3389 
3390   // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before
3391   // processing the formula.
3392   Base.unscale();
3393   Formula F = Base;
3394   F.BaseRegs.clear();
3395   SmallVector<const SCEV *, 4> Ops;
3396   for (const SCEV *BaseReg : Base.BaseRegs) {
3397     if (SE.properlyDominates(BaseReg, L->getHeader()) &&
3398         !SE.hasComputableLoopEvolution(BaseReg, L))
3399       Ops.push_back(BaseReg);
3400     else
3401       F.BaseRegs.push_back(BaseReg);
3402   }
3403   if (Ops.size() > 1) {
3404     const SCEV *Sum = SE.getAddExpr(Ops);
3405     // TODO: If Sum is zero, it probably means ScalarEvolution missed an
3406     // opportunity to fold something. For now, just ignore such cases
3407     // rather than proceed with zero in a register.
3408     if (!Sum->isZero()) {
3409       F.BaseRegs.push_back(Sum);
3410       F.canonicalize();
3411       (void)InsertFormula(LU, LUIdx, F);
3412     }
3413   }
3414 }
3415 
3416 /// \brief Helper function for LSRInstance::GenerateSymbolicOffsets.
3417 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
3418                                               const Formula &Base, size_t Idx,
3419                                               bool IsScaledReg) {
3420   const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3421   GlobalValue *GV = ExtractSymbol(G, SE);
3422   if (G->isZero() || !GV)
3423     return;
3424   Formula F = Base;
3425   F.BaseGV = GV;
3426   if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3427     return;
3428   if (IsScaledReg)
3429     F.ScaledReg = G;
3430   else
3431     F.BaseRegs[Idx] = G;
3432   (void)InsertFormula(LU, LUIdx, F);
3433 }
3434 
3435 /// Generate reuse formulae using symbolic offsets.
3436 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
3437                                           Formula Base) {
3438   // We can't add a symbolic offset if the address already contains one.
3439   if (Base.BaseGV) return;
3440 
3441   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3442     GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i);
3443   if (Base.Scale == 1)
3444     GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1,
3445                                 /* IsScaledReg */ true);
3446 }
3447 
3448 /// \brief Helper function for LSRInstance::GenerateConstantOffsets.
3449 void LSRInstance::GenerateConstantOffsetsImpl(
3450     LSRUse &LU, unsigned LUIdx, const Formula &Base,
3451     const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) {
3452   const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3453   for (int64_t Offset : Worklist) {
3454     Formula F = Base;
3455     F.BaseOffset = (uint64_t)Base.BaseOffset - Offset;
3456     if (isLegalUse(TTI, LU.MinOffset - Offset, LU.MaxOffset - Offset, LU.Kind,
3457                    LU.AccessTy, F)) {
3458       // Add the offset to the base register.
3459       const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G);
3460       // If it cancelled out, drop the base register, otherwise update it.
3461       if (NewG->isZero()) {
3462         if (IsScaledReg) {
3463           F.Scale = 0;
3464           F.ScaledReg = nullptr;
3465         } else
3466           F.deleteBaseReg(F.BaseRegs[Idx]);
3467         F.canonicalize();
3468       } else if (IsScaledReg)
3469         F.ScaledReg = NewG;
3470       else
3471         F.BaseRegs[Idx] = NewG;
3472 
3473       (void)InsertFormula(LU, LUIdx, F);
3474     }
3475   }
3476 
3477   int64_t Imm = ExtractImmediate(G, SE);
3478   if (G->isZero() || Imm == 0)
3479     return;
3480   Formula F = Base;
3481   F.BaseOffset = (uint64_t)F.BaseOffset + Imm;
3482   if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3483     return;
3484   if (IsScaledReg)
3485     F.ScaledReg = G;
3486   else
3487     F.BaseRegs[Idx] = G;
3488   (void)InsertFormula(LU, LUIdx, F);
3489 }
3490 
3491 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
3492 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
3493                                           Formula Base) {
3494   // TODO: For now, just add the min and max offset, because it usually isn't
3495   // worthwhile looking at everything inbetween.
3496   SmallVector<int64_t, 2> Worklist;
3497   Worklist.push_back(LU.MinOffset);
3498   if (LU.MaxOffset != LU.MinOffset)
3499     Worklist.push_back(LU.MaxOffset);
3500 
3501   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3502     GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i);
3503   if (Base.Scale == 1)
3504     GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1,
3505                                 /* IsScaledReg */ true);
3506 }
3507 
3508 /// For ICmpZero, check to see if we can scale up the comparison. For example, x
3509 /// == y -> x*c == y*c.
3510 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
3511                                          Formula Base) {
3512   if (LU.Kind != LSRUse::ICmpZero) return;
3513 
3514   // Determine the integer type for the base formula.
3515   Type *IntTy = Base.getType();
3516   if (!IntTy) return;
3517   if (SE.getTypeSizeInBits(IntTy) > 64) return;
3518 
3519   // Don't do this if there is more than one offset.
3520   if (LU.MinOffset != LU.MaxOffset) return;
3521 
3522   assert(!Base.BaseGV && "ICmpZero use is not legal!");
3523 
3524   // Check each interesting stride.
3525   for (int64_t Factor : Factors) {
3526     // Check that the multiplication doesn't overflow.
3527     if (Base.BaseOffset == INT64_MIN && Factor == -1)
3528       continue;
3529     int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor;
3530     if (NewBaseOffset / Factor != Base.BaseOffset)
3531       continue;
3532     // If the offset will be truncated at this use, check that it is in bounds.
3533     if (!IntTy->isPointerTy() &&
3534         !ConstantInt::isValueValidForType(IntTy, NewBaseOffset))
3535       continue;
3536 
3537     // Check that multiplying with the use offset doesn't overflow.
3538     int64_t Offset = LU.MinOffset;
3539     if (Offset == INT64_MIN && Factor == -1)
3540       continue;
3541     Offset = (uint64_t)Offset * Factor;
3542     if (Offset / Factor != LU.MinOffset)
3543       continue;
3544     // If the offset will be truncated at this use, check that it is in bounds.
3545     if (!IntTy->isPointerTy() &&
3546         !ConstantInt::isValueValidForType(IntTy, Offset))
3547       continue;
3548 
3549     Formula F = Base;
3550     F.BaseOffset = NewBaseOffset;
3551 
3552     // Check that this scale is legal.
3553     if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F))
3554       continue;
3555 
3556     // Compensate for the use having MinOffset built into it.
3557     F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset;
3558 
3559     const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3560 
3561     // Check that multiplying with each base register doesn't overflow.
3562     for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
3563       F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
3564       if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
3565         goto next;
3566     }
3567 
3568     // Check that multiplying with the scaled register doesn't overflow.
3569     if (F.ScaledReg) {
3570       F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
3571       if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
3572         continue;
3573     }
3574 
3575     // Check that multiplying with the unfolded offset doesn't overflow.
3576     if (F.UnfoldedOffset != 0) {
3577       if (F.UnfoldedOffset == INT64_MIN && Factor == -1)
3578         continue;
3579       F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor;
3580       if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset)
3581         continue;
3582       // If the offset will be truncated, check that it is in bounds.
3583       if (!IntTy->isPointerTy() &&
3584           !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset))
3585         continue;
3586     }
3587 
3588     // If we make it here and it's legal, add it.
3589     (void)InsertFormula(LU, LUIdx, F);
3590   next:;
3591   }
3592 }
3593 
3594 /// Generate stride factor reuse formulae by making use of scaled-offset address
3595 /// modes, for example.
3596 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
3597   // Determine the integer type for the base formula.
3598   Type *IntTy = Base.getType();
3599   if (!IntTy) return;
3600 
3601   // If this Formula already has a scaled register, we can't add another one.
3602   // Try to unscale the formula to generate a better scale.
3603   if (Base.Scale != 0 && !Base.unscale())
3604     return;
3605 
3606   assert(Base.Scale == 0 && "unscale did not did its job!");
3607 
3608   // Check each interesting stride.
3609   for (int64_t Factor : Factors) {
3610     Base.Scale = Factor;
3611     Base.HasBaseReg = Base.BaseRegs.size() > 1;
3612     // Check whether this scale is going to be legal.
3613     if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
3614                     Base)) {
3615       // As a special-case, handle special out-of-loop Basic users specially.
3616       // TODO: Reconsider this special case.
3617       if (LU.Kind == LSRUse::Basic &&
3618           isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special,
3619                      LU.AccessTy, Base) &&
3620           LU.AllFixupsOutsideLoop)
3621         LU.Kind = LSRUse::Special;
3622       else
3623         continue;
3624     }
3625     // For an ICmpZero, negating a solitary base register won't lead to
3626     // new solutions.
3627     if (LU.Kind == LSRUse::ICmpZero &&
3628         !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV)
3629       continue;
3630     // For each addrec base reg, apply the scale, if possible.
3631     for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3632       if (const SCEVAddRecExpr *AR =
3633             dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i])) {
3634         const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3635         if (FactorS->isZero())
3636           continue;
3637         // Divide out the factor, ignoring high bits, since we'll be
3638         // scaling the value back up in the end.
3639         if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) {
3640           // TODO: This could be optimized to avoid all the copying.
3641           Formula F = Base;
3642           F.ScaledReg = Quotient;
3643           F.deleteBaseReg(F.BaseRegs[i]);
3644           // The canonical representation of 1*reg is reg, which is already in
3645           // Base. In that case, do not try to insert the formula, it will be
3646           // rejected anyway.
3647           if (F.Scale == 1 && F.BaseRegs.empty())
3648             continue;
3649           (void)InsertFormula(LU, LUIdx, F);
3650         }
3651       }
3652   }
3653 }
3654 
3655 /// Generate reuse formulae from different IV types.
3656 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
3657   // Don't bother truncating symbolic values.
3658   if (Base.BaseGV) return;
3659 
3660   // Determine the integer type for the base formula.
3661   Type *DstTy = Base.getType();
3662   if (!DstTy) return;
3663   DstTy = SE.getEffectiveSCEVType(DstTy);
3664 
3665   for (Type *SrcTy : Types) {
3666     if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) {
3667       Formula F = Base;
3668 
3669       if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy);
3670       for (const SCEV *&BaseReg : F.BaseRegs)
3671         BaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy);
3672 
3673       // TODO: This assumes we've done basic processing on all uses and
3674       // have an idea what the register usage is.
3675       if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
3676         continue;
3677 
3678       (void)InsertFormula(LU, LUIdx, F);
3679     }
3680   }
3681 }
3682 
3683 namespace {
3684 
3685 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer
3686 /// modifications so that the search phase doesn't have to worry about the data
3687 /// structures moving underneath it.
3688 struct WorkItem {
3689   size_t LUIdx;
3690   int64_t Imm;
3691   const SCEV *OrigReg;
3692 
3693   WorkItem(size_t LI, int64_t I, const SCEV *R)
3694     : LUIdx(LI), Imm(I), OrigReg(R) {}
3695 
3696   void print(raw_ostream &OS) const;
3697   void dump() const;
3698 };
3699 
3700 } // end anonymous namespace
3701 
3702 void WorkItem::print(raw_ostream &OS) const {
3703   OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
3704      << " , add offset " << Imm;
3705 }
3706 
3707 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3708 LLVM_DUMP_METHOD void WorkItem::dump() const {
3709   print(errs()); errs() << '\n';
3710 }
3711 #endif
3712 
3713 /// Look for registers which are a constant distance apart and try to form reuse
3714 /// opportunities between them.
3715 void LSRInstance::GenerateCrossUseConstantOffsets() {
3716   // Group the registers by their value without any added constant offset.
3717   typedef std::map<int64_t, const SCEV *> ImmMapTy;
3718   DenseMap<const SCEV *, ImmMapTy> Map;
3719   DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
3720   SmallVector<const SCEV *, 8> Sequence;
3721   for (const SCEV *Use : RegUses) {
3722     const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify.
3723     int64_t Imm = ExtractImmediate(Reg, SE);
3724     auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy()));
3725     if (Pair.second)
3726       Sequence.push_back(Reg);
3727     Pair.first->second.insert(std::make_pair(Imm, Use));
3728     UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use);
3729   }
3730 
3731   // Now examine each set of registers with the same base value. Build up
3732   // a list of work to do and do the work in a separate step so that we're
3733   // not adding formulae and register counts while we're searching.
3734   SmallVector<WorkItem, 32> WorkItems;
3735   SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
3736   for (const SCEV *Reg : Sequence) {
3737     const ImmMapTy &Imms = Map.find(Reg)->second;
3738 
3739     // It's not worthwhile looking for reuse if there's only one offset.
3740     if (Imms.size() == 1)
3741       continue;
3742 
3743     DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
3744           for (const auto &Entry : Imms)
3745             dbgs() << ' ' << Entry.first;
3746           dbgs() << '\n');
3747 
3748     // Examine each offset.
3749     for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
3750          J != JE; ++J) {
3751       const SCEV *OrigReg = J->second;
3752 
3753       int64_t JImm = J->first;
3754       const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
3755 
3756       if (!isa<SCEVConstant>(OrigReg) &&
3757           UsedByIndicesMap[Reg].count() == 1) {
3758         DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n');
3759         continue;
3760       }
3761 
3762       // Conservatively examine offsets between this orig reg a few selected
3763       // other orig regs.
3764       ImmMapTy::const_iterator OtherImms[] = {
3765         Imms.begin(), std::prev(Imms.end()),
3766         Imms.lower_bound((Imms.begin()->first + std::prev(Imms.end())->first) /
3767                          2)
3768       };
3769       for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
3770         ImmMapTy::const_iterator M = OtherImms[i];
3771         if (M == J || M == JE) continue;
3772 
3773         // Compute the difference between the two.
3774         int64_t Imm = (uint64_t)JImm - M->first;
3775         for (int LUIdx = UsedByIndices.find_first(); LUIdx != -1;
3776              LUIdx = UsedByIndices.find_next(LUIdx))
3777           // Make a memo of this use, offset, and register tuple.
3778           if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second)
3779             WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
3780       }
3781     }
3782   }
3783 
3784   Map.clear();
3785   Sequence.clear();
3786   UsedByIndicesMap.clear();
3787   UniqueItems.clear();
3788 
3789   // Now iterate through the worklist and add new formulae.
3790   for (const WorkItem &WI : WorkItems) {
3791     size_t LUIdx = WI.LUIdx;
3792     LSRUse &LU = Uses[LUIdx];
3793     int64_t Imm = WI.Imm;
3794     const SCEV *OrigReg = WI.OrigReg;
3795 
3796     Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
3797     const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
3798     unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
3799 
3800     // TODO: Use a more targeted data structure.
3801     for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
3802       Formula F = LU.Formulae[L];
3803       // FIXME: The code for the scaled and unscaled registers looks
3804       // very similar but slightly different. Investigate if they
3805       // could be merged. That way, we would not have to unscale the
3806       // Formula.
3807       F.unscale();
3808       // Use the immediate in the scaled register.
3809       if (F.ScaledReg == OrigReg) {
3810         int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale;
3811         // Don't create 50 + reg(-50).
3812         if (F.referencesReg(SE.getSCEV(
3813                    ConstantInt::get(IntTy, -(uint64_t)Offset))))
3814           continue;
3815         Formula NewF = F;
3816         NewF.BaseOffset = Offset;
3817         if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
3818                         NewF))
3819           continue;
3820         NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
3821 
3822         // If the new scale is a constant in a register, and adding the constant
3823         // value to the immediate would produce a value closer to zero than the
3824         // immediate itself, then the formula isn't worthwhile.
3825         if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
3826           if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) &&
3827               (C->getAPInt().abs() * APInt(BitWidth, F.Scale))
3828                   .ule(std::abs(NewF.BaseOffset)))
3829             continue;
3830 
3831         // OK, looks good.
3832         NewF.canonicalize();
3833         (void)InsertFormula(LU, LUIdx, NewF);
3834       } else {
3835         // Use the immediate in a base register.
3836         for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
3837           const SCEV *BaseReg = F.BaseRegs[N];
3838           if (BaseReg != OrigReg)
3839             continue;
3840           Formula NewF = F;
3841           NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm;
3842           if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset,
3843                           LU.Kind, LU.AccessTy, NewF)) {
3844             if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm))
3845               continue;
3846             NewF = F;
3847             NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm;
3848           }
3849           NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
3850 
3851           // If the new formula has a constant in a register, and adding the
3852           // constant value to the immediate would produce a value closer to
3853           // zero than the immediate itself, then the formula isn't worthwhile.
3854           for (const SCEV *NewReg : NewF.BaseRegs)
3855             if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg))
3856               if ((C->getAPInt() + NewF.BaseOffset)
3857                       .abs()
3858                       .slt(std::abs(NewF.BaseOffset)) &&
3859                   (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >=
3860                       countTrailingZeros<uint64_t>(NewF.BaseOffset))
3861                 goto skip_formula;
3862 
3863           // Ok, looks good.
3864           NewF.canonicalize();
3865           (void)InsertFormula(LU, LUIdx, NewF);
3866           break;
3867         skip_formula:;
3868         }
3869       }
3870     }
3871   }
3872 }
3873 
3874 /// Generate formulae for each use.
3875 void
3876 LSRInstance::GenerateAllReuseFormulae() {
3877   // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
3878   // queries are more precise.
3879   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3880     LSRUse &LU = Uses[LUIdx];
3881     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3882       GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
3883     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3884       GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
3885   }
3886   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3887     LSRUse &LU = Uses[LUIdx];
3888     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3889       GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
3890     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3891       GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
3892     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3893       GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
3894     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3895       GenerateScales(LU, LUIdx, LU.Formulae[i]);
3896   }
3897   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3898     LSRUse &LU = Uses[LUIdx];
3899     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3900       GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
3901   }
3902 
3903   GenerateCrossUseConstantOffsets();
3904 
3905   DEBUG(dbgs() << "\n"
3906                   "After generating reuse formulae:\n";
3907         print_uses(dbgs()));
3908 }
3909 
3910 /// If there are multiple formulae with the same set of registers used
3911 /// by other uses, pick the best one and delete the others.
3912 void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
3913   DenseSet<const SCEV *> VisitedRegs;
3914   SmallPtrSet<const SCEV *, 16> Regs;
3915   SmallPtrSet<const SCEV *, 16> LoserRegs;
3916 #ifndef NDEBUG
3917   bool ChangedFormulae = false;
3918 #endif
3919 
3920   // Collect the best formula for each unique set of shared registers. This
3921   // is reset for each use.
3922   typedef DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>
3923     BestFormulaeTy;
3924   BestFormulaeTy BestFormulae;
3925 
3926   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3927     LSRUse &LU = Uses[LUIdx];
3928     DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n');
3929 
3930     bool Any = false;
3931     for (size_t FIdx = 0, NumForms = LU.Formulae.size();
3932          FIdx != NumForms; ++FIdx) {
3933       Formula &F = LU.Formulae[FIdx];
3934 
3935       // Some formulas are instant losers. For example, they may depend on
3936       // nonexistent AddRecs from other loops. These need to be filtered
3937       // immediately, otherwise heuristics could choose them over others leading
3938       // to an unsatisfactory solution. Passing LoserRegs into RateFormula here
3939       // avoids the need to recompute this information across formulae using the
3940       // same bad AddRec. Passing LoserRegs is also essential unless we remove
3941       // the corresponding bad register from the Regs set.
3942       Cost CostF;
3943       Regs.clear();
3944       CostF.RateFormula(TTI, F, Regs, VisitedRegs, L, SE, DT, LU, &LoserRegs);
3945       if (CostF.isLoser()) {
3946         // During initial formula generation, undesirable formulae are generated
3947         // by uses within other loops that have some non-trivial address mode or
3948         // use the postinc form of the IV. LSR needs to provide these formulae
3949         // as the basis of rediscovering the desired formula that uses an AddRec
3950         // corresponding to the existing phi. Once all formulae have been
3951         // generated, these initial losers may be pruned.
3952         DEBUG(dbgs() << "  Filtering loser "; F.print(dbgs());
3953               dbgs() << "\n");
3954       }
3955       else {
3956         SmallVector<const SCEV *, 4> Key;
3957         for (const SCEV *Reg : F.BaseRegs) {
3958           if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
3959             Key.push_back(Reg);
3960         }
3961         if (F.ScaledReg &&
3962             RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
3963           Key.push_back(F.ScaledReg);
3964         // Unstable sort by host order ok, because this is only used for
3965         // uniquifying.
3966         std::sort(Key.begin(), Key.end());
3967 
3968         std::pair<BestFormulaeTy::const_iterator, bool> P =
3969           BestFormulae.insert(std::make_pair(Key, FIdx));
3970         if (P.second)
3971           continue;
3972 
3973         Formula &Best = LU.Formulae[P.first->second];
3974 
3975         Cost CostBest;
3976         Regs.clear();
3977         CostBest.RateFormula(TTI, Best, Regs, VisitedRegs, L, SE, DT, LU);
3978         if (CostF < CostBest)
3979           std::swap(F, Best);
3980         DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
3981               dbgs() << "\n"
3982                         "    in favor of formula "; Best.print(dbgs());
3983               dbgs() << '\n');
3984       }
3985 #ifndef NDEBUG
3986       ChangedFormulae = true;
3987 #endif
3988       LU.DeleteFormula(F);
3989       --FIdx;
3990       --NumForms;
3991       Any = true;
3992     }
3993 
3994     // Now that we've filtered out some formulae, recompute the Regs set.
3995     if (Any)
3996       LU.RecomputeRegs(LUIdx, RegUses);
3997 
3998     // Reset this to prepare for the next use.
3999     BestFormulae.clear();
4000   }
4001 
4002   DEBUG(if (ChangedFormulae) {
4003           dbgs() << "\n"
4004                     "After filtering out undesirable candidates:\n";
4005           print_uses(dbgs());
4006         });
4007 }
4008 
4009 // This is a rough guess that seems to work fairly well.
4010 static const size_t ComplexityLimit = UINT16_MAX;
4011 
4012 /// Estimate the worst-case number of solutions the solver might have to
4013 /// consider. It almost never considers this many solutions because it prune the
4014 /// search space, but the pruning isn't always sufficient.
4015 size_t LSRInstance::EstimateSearchSpaceComplexity() const {
4016   size_t Power = 1;
4017   for (const LSRUse &LU : Uses) {
4018     size_t FSize = LU.Formulae.size();
4019     if (FSize >= ComplexityLimit) {
4020       Power = ComplexityLimit;
4021       break;
4022     }
4023     Power *= FSize;
4024     if (Power >= ComplexityLimit)
4025       break;
4026   }
4027   return Power;
4028 }
4029 
4030 /// When one formula uses a superset of the registers of another formula, it
4031 /// won't help reduce register pressure (though it may not necessarily hurt
4032 /// register pressure); remove it to simplify the system.
4033 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
4034   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4035     DEBUG(dbgs() << "The search space is too complex.\n");
4036 
4037     DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
4038                     "which use a superset of registers used by other "
4039                     "formulae.\n");
4040 
4041     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4042       LSRUse &LU = Uses[LUIdx];
4043       bool Any = false;
4044       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4045         Formula &F = LU.Formulae[i];
4046         // Look for a formula with a constant or GV in a register. If the use
4047         // also has a formula with that same value in an immediate field,
4048         // delete the one that uses a register.
4049         for (SmallVectorImpl<const SCEV *>::const_iterator
4050              I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
4051           if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
4052             Formula NewF = F;
4053             NewF.BaseOffset += C->getValue()->getSExtValue();
4054             NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4055                                 (I - F.BaseRegs.begin()));
4056             if (LU.HasFormulaWithSameRegs(NewF)) {
4057               DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
4058               LU.DeleteFormula(F);
4059               --i;
4060               --e;
4061               Any = true;
4062               break;
4063             }
4064           } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
4065             if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
4066               if (!F.BaseGV) {
4067                 Formula NewF = F;
4068                 NewF.BaseGV = GV;
4069                 NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4070                                     (I - F.BaseRegs.begin()));
4071                 if (LU.HasFormulaWithSameRegs(NewF)) {
4072                   DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4073                         dbgs() << '\n');
4074                   LU.DeleteFormula(F);
4075                   --i;
4076                   --e;
4077                   Any = true;
4078                   break;
4079                 }
4080               }
4081           }
4082         }
4083       }
4084       if (Any)
4085         LU.RecomputeRegs(LUIdx, RegUses);
4086     }
4087 
4088     DEBUG(dbgs() << "After pre-selection:\n";
4089           print_uses(dbgs()));
4090   }
4091 }
4092 
4093 /// When there are many registers for expressions like A, A+1, A+2, etc.,
4094 /// allocate a single register for them.
4095 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
4096   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4097     return;
4098 
4099   DEBUG(dbgs() << "The search space is too complex.\n"
4100                   "Narrowing the search space by assuming that uses separated "
4101                   "by a constant offset will use the same registers.\n");
4102 
4103   // This is especially useful for unrolled loops.
4104 
4105   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4106     LSRUse &LU = Uses[LUIdx];
4107     for (const Formula &F : LU.Formulae) {
4108       if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1))
4109         continue;
4110 
4111       LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU);
4112       if (!LUThatHas)
4113         continue;
4114 
4115       if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false,
4116                               LU.Kind, LU.AccessTy))
4117         continue;
4118 
4119       DEBUG(dbgs() << "  Deleting use "; LU.print(dbgs()); dbgs() << '\n');
4120 
4121       LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
4122 
4123       // Transfer the fixups of LU to LUThatHas.
4124       for (LSRFixup &Fixup : LU.Fixups) {
4125         Fixup.Offset += F.BaseOffset;
4126         LUThatHas->pushFixup(Fixup);
4127         DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n');
4128       }
4129 
4130       // Delete formulae from the new use which are no longer legal.
4131       bool Any = false;
4132       for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
4133         Formula &F = LUThatHas->Formulae[i];
4134         if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset,
4135                         LUThatHas->Kind, LUThatHas->AccessTy, F)) {
4136           DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4137                 dbgs() << '\n');
4138           LUThatHas->DeleteFormula(F);
4139           --i;
4140           --e;
4141           Any = true;
4142         }
4143       }
4144 
4145       if (Any)
4146         LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
4147 
4148       // Delete the old use.
4149       DeleteUse(LU, LUIdx);
4150       --LUIdx;
4151       --NumUses;
4152       break;
4153     }
4154   }
4155 
4156   DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4157 }
4158 
4159 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that
4160 /// we've done more filtering, as it may be able to find more formulae to
4161 /// eliminate.
4162 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){
4163   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4164     DEBUG(dbgs() << "The search space is too complex.\n");
4165 
4166     DEBUG(dbgs() << "Narrowing the search space by re-filtering out "
4167                     "undesirable dedicated registers.\n");
4168 
4169     FilterOutUndesirableDedicatedRegisters();
4170 
4171     DEBUG(dbgs() << "After pre-selection:\n";
4172           print_uses(dbgs()));
4173   }
4174 }
4175 
4176 /// Pick a register which seems likely to be profitable, and then in any use
4177 /// which has any reference to that register, delete all formulae which do not
4178 /// reference that register.
4179 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() {
4180   // With all other options exhausted, loop until the system is simple
4181   // enough to handle.
4182   SmallPtrSet<const SCEV *, 4> Taken;
4183   while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4184     // Ok, we have too many of formulae on our hands to conveniently handle.
4185     // Use a rough heuristic to thin out the list.
4186     DEBUG(dbgs() << "The search space is too complex.\n");
4187 
4188     // Pick the register which is used by the most LSRUses, which is likely
4189     // to be a good reuse register candidate.
4190     const SCEV *Best = nullptr;
4191     unsigned BestNum = 0;
4192     for (const SCEV *Reg : RegUses) {
4193       if (Taken.count(Reg))
4194         continue;
4195       if (!Best) {
4196         Best = Reg;
4197         BestNum = RegUses.getUsedByIndices(Reg).count();
4198       } else {
4199         unsigned Count = RegUses.getUsedByIndices(Reg).count();
4200         if (Count > BestNum) {
4201           Best = Reg;
4202           BestNum = Count;
4203         }
4204       }
4205     }
4206 
4207     DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
4208                  << " will yield profitable reuse.\n");
4209     Taken.insert(Best);
4210 
4211     // In any use with formulae which references this register, delete formulae
4212     // which don't reference it.
4213     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4214       LSRUse &LU = Uses[LUIdx];
4215       if (!LU.Regs.count(Best)) continue;
4216 
4217       bool Any = false;
4218       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4219         Formula &F = LU.Formulae[i];
4220         if (!F.referencesReg(Best)) {
4221           DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
4222           LU.DeleteFormula(F);
4223           --e;
4224           --i;
4225           Any = true;
4226           assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
4227           continue;
4228         }
4229       }
4230 
4231       if (Any)
4232         LU.RecomputeRegs(LUIdx, RegUses);
4233     }
4234 
4235     DEBUG(dbgs() << "After pre-selection:\n";
4236           print_uses(dbgs()));
4237   }
4238 }
4239 
4240 /// If there are an extraordinary number of formulae to choose from, use some
4241 /// rough heuristics to prune down the number of formulae. This keeps the main
4242 /// solver from taking an extraordinary amount of time in some worst-case
4243 /// scenarios.
4244 void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
4245   NarrowSearchSpaceByDetectingSupersets();
4246   NarrowSearchSpaceByCollapsingUnrolledCode();
4247   NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
4248   NarrowSearchSpaceByPickingWinnerRegs();
4249 }
4250 
4251 /// This is the recursive solver.
4252 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
4253                                Cost &SolutionCost,
4254                                SmallVectorImpl<const Formula *> &Workspace,
4255                                const Cost &CurCost,
4256                                const SmallPtrSet<const SCEV *, 16> &CurRegs,
4257                                DenseSet<const SCEV *> &VisitedRegs) const {
4258   // Some ideas:
4259   //  - prune more:
4260   //    - use more aggressive filtering
4261   //    - sort the formula so that the most profitable solutions are found first
4262   //    - sort the uses too
4263   //  - search faster:
4264   //    - don't compute a cost, and then compare. compare while computing a cost
4265   //      and bail early.
4266   //    - track register sets with SmallBitVector
4267 
4268   const LSRUse &LU = Uses[Workspace.size()];
4269 
4270   // If this use references any register that's already a part of the
4271   // in-progress solution, consider it a requirement that a formula must
4272   // reference that register in order to be considered. This prunes out
4273   // unprofitable searching.
4274   SmallSetVector<const SCEV *, 4> ReqRegs;
4275   for (const SCEV *S : CurRegs)
4276     if (LU.Regs.count(S))
4277       ReqRegs.insert(S);
4278 
4279   SmallPtrSet<const SCEV *, 16> NewRegs;
4280   Cost NewCost;
4281   for (const Formula &F : LU.Formulae) {
4282     // Ignore formulae which may not be ideal in terms of register reuse of
4283     // ReqRegs.  The formula should use all required registers before
4284     // introducing new ones.
4285     int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size());
4286     for (const SCEV *Reg : ReqRegs) {
4287       if ((F.ScaledReg && F.ScaledReg == Reg) ||
4288           is_contained(F.BaseRegs, Reg)) {
4289         --NumReqRegsToFind;
4290         if (NumReqRegsToFind == 0)
4291           break;
4292       }
4293     }
4294     if (NumReqRegsToFind != 0) {
4295       // If none of the formulae satisfied the required registers, then we could
4296       // clear ReqRegs and try again. Currently, we simply give up in this case.
4297       continue;
4298     }
4299 
4300     // Evaluate the cost of the current formula. If it's already worse than
4301     // the current best, prune the search at that point.
4302     NewCost = CurCost;
4303     NewRegs = CurRegs;
4304     NewCost.RateFormula(TTI, F, NewRegs, VisitedRegs, L, SE, DT, LU);
4305     if (NewCost < SolutionCost) {
4306       Workspace.push_back(&F);
4307       if (Workspace.size() != Uses.size()) {
4308         SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
4309                      NewRegs, VisitedRegs);
4310         if (F.getNumRegs() == 1 && Workspace.size() == 1)
4311           VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
4312       } else {
4313         DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
4314               dbgs() << ".\n Regs:";
4315               for (const SCEV *S : NewRegs)
4316                 dbgs() << ' ' << *S;
4317               dbgs() << '\n');
4318 
4319         SolutionCost = NewCost;
4320         Solution = Workspace;
4321       }
4322       Workspace.pop_back();
4323     }
4324   }
4325 }
4326 
4327 /// Choose one formula from each use. Return the results in the given Solution
4328 /// vector.
4329 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
4330   SmallVector<const Formula *, 8> Workspace;
4331   Cost SolutionCost;
4332   SolutionCost.Lose();
4333   Cost CurCost;
4334   SmallPtrSet<const SCEV *, 16> CurRegs;
4335   DenseSet<const SCEV *> VisitedRegs;
4336   Workspace.reserve(Uses.size());
4337 
4338   // SolveRecurse does all the work.
4339   SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
4340                CurRegs, VisitedRegs);
4341   if (Solution.empty()) {
4342     DEBUG(dbgs() << "\nNo Satisfactory Solution\n");
4343     return;
4344   }
4345 
4346   // Ok, we've now made all our decisions.
4347   DEBUG(dbgs() << "\n"
4348                   "The chosen solution requires "; SolutionCost.print(dbgs());
4349         dbgs() << ":\n";
4350         for (size_t i = 0, e = Uses.size(); i != e; ++i) {
4351           dbgs() << "  ";
4352           Uses[i].print(dbgs());
4353           dbgs() << "\n"
4354                     "    ";
4355           Solution[i]->print(dbgs());
4356           dbgs() << '\n';
4357         });
4358 
4359   assert(Solution.size() == Uses.size() && "Malformed solution!");
4360 }
4361 
4362 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as
4363 /// we can go while still being dominated by the input positions. This helps
4364 /// canonicalize the insert position, which encourages sharing.
4365 BasicBlock::iterator
4366 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
4367                                  const SmallVectorImpl<Instruction *> &Inputs)
4368                                                                          const {
4369   Instruction *Tentative = &*IP;
4370   while (true) {
4371     bool AllDominate = true;
4372     Instruction *BetterPos = nullptr;
4373     // Don't bother attempting to insert before a catchswitch, their basic block
4374     // cannot have other non-PHI instructions.
4375     if (isa<CatchSwitchInst>(Tentative))
4376       return IP;
4377 
4378     for (Instruction *Inst : Inputs) {
4379       if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
4380         AllDominate = false;
4381         break;
4382       }
4383       // Attempt to find an insert position in the middle of the block,
4384       // instead of at the end, so that it can be used for other expansions.
4385       if (Tentative->getParent() == Inst->getParent() &&
4386           (!BetterPos || !DT.dominates(Inst, BetterPos)))
4387         BetterPos = &*std::next(BasicBlock::iterator(Inst));
4388     }
4389     if (!AllDominate)
4390       break;
4391     if (BetterPos)
4392       IP = BetterPos->getIterator();
4393     else
4394       IP = Tentative->getIterator();
4395 
4396     const Loop *IPLoop = LI.getLoopFor(IP->getParent());
4397     unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
4398 
4399     BasicBlock *IDom;
4400     for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) {
4401       if (!Rung) return IP;
4402       Rung = Rung->getIDom();
4403       if (!Rung) return IP;
4404       IDom = Rung->getBlock();
4405 
4406       // Don't climb into a loop though.
4407       const Loop *IDomLoop = LI.getLoopFor(IDom);
4408       unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
4409       if (IDomDepth <= IPLoopDepth &&
4410           (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
4411         break;
4412     }
4413 
4414     Tentative = IDom->getTerminator();
4415   }
4416 
4417   return IP;
4418 }
4419 
4420 /// Determine an input position which will be dominated by the operands and
4421 /// which will dominate the result.
4422 BasicBlock::iterator
4423 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP,
4424                                            const LSRFixup &LF,
4425                                            const LSRUse &LU,
4426                                            SCEVExpander &Rewriter) const {
4427   // Collect some instructions which must be dominated by the
4428   // expanding replacement. These must be dominated by any operands that
4429   // will be required in the expansion.
4430   SmallVector<Instruction *, 4> Inputs;
4431   if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
4432     Inputs.push_back(I);
4433   if (LU.Kind == LSRUse::ICmpZero)
4434     if (Instruction *I =
4435           dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
4436       Inputs.push_back(I);
4437   if (LF.PostIncLoops.count(L)) {
4438     if (LF.isUseFullyOutsideLoop(L))
4439       Inputs.push_back(L->getLoopLatch()->getTerminator());
4440     else
4441       Inputs.push_back(IVIncInsertPos);
4442   }
4443   // The expansion must also be dominated by the increment positions of any
4444   // loops it for which it is using post-inc mode.
4445   for (const Loop *PIL : LF.PostIncLoops) {
4446     if (PIL == L) continue;
4447 
4448     // Be dominated by the loop exit.
4449     SmallVector<BasicBlock *, 4> ExitingBlocks;
4450     PIL->getExitingBlocks(ExitingBlocks);
4451     if (!ExitingBlocks.empty()) {
4452       BasicBlock *BB = ExitingBlocks[0];
4453       for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
4454         BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
4455       Inputs.push_back(BB->getTerminator());
4456     }
4457   }
4458 
4459   assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad()
4460          && !isa<DbgInfoIntrinsic>(LowestIP) &&
4461          "Insertion point must be a normal instruction");
4462 
4463   // Then, climb up the immediate dominator tree as far as we can go while
4464   // still being dominated by the input positions.
4465   BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs);
4466 
4467   // Don't insert instructions before PHI nodes.
4468   while (isa<PHINode>(IP)) ++IP;
4469 
4470   // Ignore landingpad instructions.
4471   while (IP->isEHPad()) ++IP;
4472 
4473   // Ignore debug intrinsics.
4474   while (isa<DbgInfoIntrinsic>(IP)) ++IP;
4475 
4476   // Set IP below instructions recently inserted by SCEVExpander. This keeps the
4477   // IP consistent across expansions and allows the previously inserted
4478   // instructions to be reused by subsequent expansion.
4479   while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP)
4480     ++IP;
4481 
4482   return IP;
4483 }
4484 
4485 /// Emit instructions for the leading candidate expression for this LSRUse (this
4486 /// is called "expanding").
4487 Value *LSRInstance::Expand(const LSRUse &LU,
4488                            const LSRFixup &LF,
4489                            const Formula &F,
4490                            BasicBlock::iterator IP,
4491                            SCEVExpander &Rewriter,
4492                            SmallVectorImpl<WeakVH> &DeadInsts) const {
4493   if (LU.RigidFormula)
4494     return LF.OperandValToReplace;
4495 
4496   // Determine an input position which will be dominated by the operands and
4497   // which will dominate the result.
4498   IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter);
4499   Rewriter.setInsertPoint(&*IP);
4500 
4501   // Inform the Rewriter if we have a post-increment use, so that it can
4502   // perform an advantageous expansion.
4503   Rewriter.setPostInc(LF.PostIncLoops);
4504 
4505   // This is the type that the user actually needs.
4506   Type *OpTy = LF.OperandValToReplace->getType();
4507   // This will be the type that we'll initially expand to.
4508   Type *Ty = F.getType();
4509   if (!Ty)
4510     // No type known; just expand directly to the ultimate type.
4511     Ty = OpTy;
4512   else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
4513     // Expand directly to the ultimate type if it's the right size.
4514     Ty = OpTy;
4515   // This is the type to do integer arithmetic in.
4516   Type *IntTy = SE.getEffectiveSCEVType(Ty);
4517 
4518   // Build up a list of operands to add together to form the full base.
4519   SmallVector<const SCEV *, 8> Ops;
4520 
4521   // Expand the BaseRegs portion.
4522   for (const SCEV *Reg : F.BaseRegs) {
4523     assert(!Reg->isZero() && "Zero allocated in a base register!");
4524 
4525     // If we're expanding for a post-inc user, make the post-inc adjustment.
4526     PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
4527     Reg = TransformForPostIncUse(Denormalize, Reg,
4528                                  LF.UserInst, LF.OperandValToReplace,
4529                                  Loops, SE, DT);
4530 
4531     Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr)));
4532   }
4533 
4534   // Expand the ScaledReg portion.
4535   Value *ICmpScaledV = nullptr;
4536   if (F.Scale != 0) {
4537     const SCEV *ScaledS = F.ScaledReg;
4538 
4539     // If we're expanding for a post-inc user, make the post-inc adjustment.
4540     PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
4541     ScaledS = TransformForPostIncUse(Denormalize, ScaledS,
4542                                      LF.UserInst, LF.OperandValToReplace,
4543                                      Loops, SE, DT);
4544 
4545     if (LU.Kind == LSRUse::ICmpZero) {
4546       // Expand ScaleReg as if it was part of the base regs.
4547       if (F.Scale == 1)
4548         Ops.push_back(
4549             SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)));
4550       else {
4551         // An interesting way of "folding" with an icmp is to use a negated
4552         // scale, which we'll implement by inserting it into the other operand
4553         // of the icmp.
4554         assert(F.Scale == -1 &&
4555                "The only scale supported by ICmpZero uses is -1!");
4556         ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr);
4557       }
4558     } else {
4559       // Otherwise just expand the scaled register and an explicit scale,
4560       // which is expected to be matched as part of the address.
4561 
4562       // Flush the operand list to suppress SCEVExpander hoisting address modes.
4563       // Unless the addressing mode will not be folded.
4564       if (!Ops.empty() && LU.Kind == LSRUse::Address &&
4565           isAMCompletelyFolded(TTI, LU, F)) {
4566         Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
4567         Ops.clear();
4568         Ops.push_back(SE.getUnknown(FullV));
4569       }
4570       ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr));
4571       if (F.Scale != 1)
4572         ScaledS =
4573             SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale));
4574       Ops.push_back(ScaledS);
4575     }
4576   }
4577 
4578   // Expand the GV portion.
4579   if (F.BaseGV) {
4580     // Flush the operand list to suppress SCEVExpander hoisting.
4581     if (!Ops.empty()) {
4582       Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
4583       Ops.clear();
4584       Ops.push_back(SE.getUnknown(FullV));
4585     }
4586     Ops.push_back(SE.getUnknown(F.BaseGV));
4587   }
4588 
4589   // Flush the operand list to suppress SCEVExpander hoisting of both folded and
4590   // unfolded offsets. LSR assumes they both live next to their uses.
4591   if (!Ops.empty()) {
4592     Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
4593     Ops.clear();
4594     Ops.push_back(SE.getUnknown(FullV));
4595   }
4596 
4597   // Expand the immediate portion.
4598   int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset;
4599   if (Offset != 0) {
4600     if (LU.Kind == LSRUse::ICmpZero) {
4601       // The other interesting way of "folding" with an ICmpZero is to use a
4602       // negated immediate.
4603       if (!ICmpScaledV)
4604         ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset);
4605       else {
4606         Ops.push_back(SE.getUnknown(ICmpScaledV));
4607         ICmpScaledV = ConstantInt::get(IntTy, Offset);
4608       }
4609     } else {
4610       // Just add the immediate values. These again are expected to be matched
4611       // as part of the address.
4612       Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
4613     }
4614   }
4615 
4616   // Expand the unfolded offset portion.
4617   int64_t UnfoldedOffset = F.UnfoldedOffset;
4618   if (UnfoldedOffset != 0) {
4619     // Just add the immediate values.
4620     Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy,
4621                                                        UnfoldedOffset)));
4622   }
4623 
4624   // Emit instructions summing all the operands.
4625   const SCEV *FullS = Ops.empty() ?
4626                       SE.getConstant(IntTy, 0) :
4627                       SE.getAddExpr(Ops);
4628   Value *FullV = Rewriter.expandCodeFor(FullS, Ty);
4629 
4630   // We're done expanding now, so reset the rewriter.
4631   Rewriter.clearPostInc();
4632 
4633   // An ICmpZero Formula represents an ICmp which we're handling as a
4634   // comparison against zero. Now that we've expanded an expression for that
4635   // form, update the ICmp's other operand.
4636   if (LU.Kind == LSRUse::ICmpZero) {
4637     ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
4638     DeadInsts.emplace_back(CI->getOperand(1));
4639     assert(!F.BaseGV && "ICmp does not support folding a global value and "
4640                            "a scale at the same time!");
4641     if (F.Scale == -1) {
4642       if (ICmpScaledV->getType() != OpTy) {
4643         Instruction *Cast =
4644           CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
4645                                                    OpTy, false),
4646                            ICmpScaledV, OpTy, "tmp", CI);
4647         ICmpScaledV = Cast;
4648       }
4649       CI->setOperand(1, ICmpScaledV);
4650     } else {
4651       // A scale of 1 means that the scale has been expanded as part of the
4652       // base regs.
4653       assert((F.Scale == 0 || F.Scale == 1) &&
4654              "ICmp does not support folding a global value and "
4655              "a scale at the same time!");
4656       Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
4657                                            -(uint64_t)Offset);
4658       if (C->getType() != OpTy)
4659         C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4660                                                           OpTy, false),
4661                                   C, OpTy);
4662 
4663       CI->setOperand(1, C);
4664     }
4665   }
4666 
4667   return FullV;
4668 }
4669 
4670 /// Helper for Rewrite. PHI nodes are special because the use of their operands
4671 /// effectively happens in their predecessor blocks, so the expression may need
4672 /// to be expanded in multiple places.
4673 void LSRInstance::RewriteForPHI(PHINode *PN,
4674                                 const LSRUse &LU,
4675                                 const LSRFixup &LF,
4676                                 const Formula &F,
4677                                 SCEVExpander &Rewriter,
4678                                 SmallVectorImpl<WeakVH> &DeadInsts) const {
4679   DenseMap<BasicBlock *, Value *> Inserted;
4680   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
4681     if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
4682       BasicBlock *BB = PN->getIncomingBlock(i);
4683 
4684       // If this is a critical edge, split the edge so that we do not insert
4685       // the code on all predecessor/successor paths.  We do this unless this
4686       // is the canonical backedge for this loop, which complicates post-inc
4687       // users.
4688       if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
4689           !isa<IndirectBrInst>(BB->getTerminator()) &&
4690           !isa<CatchSwitchInst>(BB->getTerminator())) {
4691         BasicBlock *Parent = PN->getParent();
4692         Loop *PNLoop = LI.getLoopFor(Parent);
4693         if (!PNLoop || Parent != PNLoop->getHeader()) {
4694           // Split the critical edge.
4695           BasicBlock *NewBB = nullptr;
4696           if (!Parent->isLandingPad()) {
4697             NewBB = SplitCriticalEdge(BB, Parent,
4698                                       CriticalEdgeSplittingOptions(&DT, &LI)
4699                                           .setMergeIdenticalEdges()
4700                                           .setDontDeleteUselessPHIs());
4701           } else {
4702             SmallVector<BasicBlock*, 2> NewBBs;
4703             SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI);
4704             NewBB = NewBBs[0];
4705           }
4706           // If NewBB==NULL, then SplitCriticalEdge refused to split because all
4707           // phi predecessors are identical. The simple thing to do is skip
4708           // splitting in this case rather than complicate the API.
4709           if (NewBB) {
4710             // If PN is outside of the loop and BB is in the loop, we want to
4711             // move the block to be immediately before the PHI block, not
4712             // immediately after BB.
4713             if (L->contains(BB) && !L->contains(PN))
4714               NewBB->moveBefore(PN->getParent());
4715 
4716             // Splitting the edge can reduce the number of PHI entries we have.
4717             e = PN->getNumIncomingValues();
4718             BB = NewBB;
4719             i = PN->getBasicBlockIndex(BB);
4720           }
4721         }
4722       }
4723 
4724       std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
4725         Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr)));
4726       if (!Pair.second)
4727         PN->setIncomingValue(i, Pair.first->second);
4728       else {
4729         Value *FullV = Expand(LU, LF, F, BB->getTerminator()->getIterator(),
4730                               Rewriter, DeadInsts);
4731 
4732         // If this is reuse-by-noop-cast, insert the noop cast.
4733         Type *OpTy = LF.OperandValToReplace->getType();
4734         if (FullV->getType() != OpTy)
4735           FullV =
4736             CastInst::Create(CastInst::getCastOpcode(FullV, false,
4737                                                      OpTy, false),
4738                              FullV, LF.OperandValToReplace->getType(),
4739                              "tmp", BB->getTerminator());
4740 
4741         PN->setIncomingValue(i, FullV);
4742         Pair.first->second = FullV;
4743       }
4744     }
4745 }
4746 
4747 /// Emit instructions for the leading candidate expression for this LSRUse (this
4748 /// is called "expanding"), and update the UserInst to reference the newly
4749 /// expanded value.
4750 void LSRInstance::Rewrite(const LSRUse &LU,
4751                           const LSRFixup &LF,
4752                           const Formula &F,
4753                           SCEVExpander &Rewriter,
4754                           SmallVectorImpl<WeakVH> &DeadInsts) const {
4755   // First, find an insertion point that dominates UserInst. For PHI nodes,
4756   // find the nearest block which dominates all the relevant uses.
4757   if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
4758     RewriteForPHI(PN, LU, LF, F, Rewriter, DeadInsts);
4759   } else {
4760     Value *FullV =
4761       Expand(LU, LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts);
4762 
4763     // If this is reuse-by-noop-cast, insert the noop cast.
4764     Type *OpTy = LF.OperandValToReplace->getType();
4765     if (FullV->getType() != OpTy) {
4766       Instruction *Cast =
4767         CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
4768                          FullV, OpTy, "tmp", LF.UserInst);
4769       FullV = Cast;
4770     }
4771 
4772     // Update the user. ICmpZero is handled specially here (for now) because
4773     // Expand may have updated one of the operands of the icmp already, and
4774     // its new value may happen to be equal to LF.OperandValToReplace, in
4775     // which case doing replaceUsesOfWith leads to replacing both operands
4776     // with the same value. TODO: Reorganize this.
4777     if (LU.Kind == LSRUse::ICmpZero)
4778       LF.UserInst->setOperand(0, FullV);
4779     else
4780       LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
4781   }
4782 
4783   DeadInsts.emplace_back(LF.OperandValToReplace);
4784 }
4785 
4786 /// Rewrite all the fixup locations with new values, following the chosen
4787 /// solution.
4788 void LSRInstance::ImplementSolution(
4789     const SmallVectorImpl<const Formula *> &Solution) {
4790   // Keep track of instructions we may have made dead, so that
4791   // we can remove them after we are done working.
4792   SmallVector<WeakVH, 16> DeadInsts;
4793 
4794   SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(),
4795                         "lsr");
4796 #ifndef NDEBUG
4797   Rewriter.setDebugType(DEBUG_TYPE);
4798 #endif
4799   Rewriter.disableCanonicalMode();
4800   Rewriter.enableLSRMode();
4801   Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
4802 
4803   // Mark phi nodes that terminate chains so the expander tries to reuse them.
4804   for (const IVChain &Chain : IVChainVec) {
4805     if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst()))
4806       Rewriter.setChainedPhi(PN);
4807   }
4808 
4809   // Expand the new value definitions and update the users.
4810   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx)
4811     for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) {
4812       Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], Rewriter, DeadInsts);
4813       Changed = true;
4814     }
4815 
4816   for (const IVChain &Chain : IVChainVec) {
4817     GenerateIVChain(Chain, Rewriter, DeadInsts);
4818     Changed = true;
4819   }
4820   // Clean up after ourselves. This must be done before deleting any
4821   // instructions.
4822   Rewriter.clear();
4823 
4824   Changed |= DeleteTriviallyDeadInstructions(DeadInsts);
4825 }
4826 
4827 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE,
4828                          DominatorTree &DT, LoopInfo &LI,
4829                          const TargetTransformInfo &TTI)
4830     : IU(IU), SE(SE), DT(DT), LI(LI), TTI(TTI), L(L), Changed(false),
4831       IVIncInsertPos(nullptr) {
4832   // If LoopSimplify form is not available, stay out of trouble.
4833   if (!L->isLoopSimplifyForm())
4834     return;
4835 
4836   // If there's no interesting work to be done, bail early.
4837   if (IU.empty()) return;
4838 
4839   // If there's too much analysis to be done, bail early. We won't be able to
4840   // model the problem anyway.
4841   unsigned NumUsers = 0;
4842   for (const IVStrideUse &U : IU) {
4843     if (++NumUsers > MaxIVUsers) {
4844       (void)U;
4845       DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U << "\n");
4846       return;
4847     }
4848     // Bail out if we have a PHI on an EHPad that gets a value from a
4849     // CatchSwitchInst.  Because the CatchSwitchInst cannot be split, there is
4850     // no good place to stick any instructions.
4851     if (auto *PN = dyn_cast<PHINode>(U.getUser())) {
4852        auto *FirstNonPHI = PN->getParent()->getFirstNonPHI();
4853        if (isa<FuncletPadInst>(FirstNonPHI) ||
4854            isa<CatchSwitchInst>(FirstNonPHI))
4855          for (BasicBlock *PredBB : PN->blocks())
4856            if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI()))
4857              return;
4858     }
4859   }
4860 
4861 #ifndef NDEBUG
4862   // All dominating loops must have preheaders, or SCEVExpander may not be able
4863   // to materialize an AddRecExpr whose Start is an outer AddRecExpr.
4864   //
4865   // IVUsers analysis should only create users that are dominated by simple loop
4866   // headers. Since this loop should dominate all of its users, its user list
4867   // should be empty if this loop itself is not within a simple loop nest.
4868   for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader());
4869        Rung; Rung = Rung->getIDom()) {
4870     BasicBlock *BB = Rung->getBlock();
4871     const Loop *DomLoop = LI.getLoopFor(BB);
4872     if (DomLoop && DomLoop->getHeader() == BB) {
4873       assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest");
4874     }
4875   }
4876 #endif // DEBUG
4877 
4878   DEBUG(dbgs() << "\nLSR on loop ";
4879         L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false);
4880         dbgs() << ":\n");
4881 
4882   // First, perform some low-level loop optimizations.
4883   OptimizeShadowIV();
4884   OptimizeLoopTermCond();
4885 
4886   // If loop preparation eliminates all interesting IV users, bail.
4887   if (IU.empty()) return;
4888 
4889   // Skip nested loops until we can model them better with formulae.
4890   if (!L->empty()) {
4891     DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n");
4892     return;
4893   }
4894 
4895   // Start collecting data and preparing for the solver.
4896   CollectChains();
4897   CollectInterestingTypesAndFactors();
4898   CollectFixupsAndInitialFormulae();
4899   CollectLoopInvariantFixupsAndFormulae();
4900 
4901   assert(!Uses.empty() && "IVUsers reported at least one use");
4902   DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
4903         print_uses(dbgs()));
4904 
4905   // Now use the reuse data to generate a bunch of interesting ways
4906   // to formulate the values needed for the uses.
4907   GenerateAllReuseFormulae();
4908 
4909   FilterOutUndesirableDedicatedRegisters();
4910   NarrowSearchSpaceUsingHeuristics();
4911 
4912   SmallVector<const Formula *, 8> Solution;
4913   Solve(Solution);
4914 
4915   // Release memory that is no longer needed.
4916   Factors.clear();
4917   Types.clear();
4918   RegUses.clear();
4919 
4920   if (Solution.empty())
4921     return;
4922 
4923 #ifndef NDEBUG
4924   // Formulae should be legal.
4925   for (const LSRUse &LU : Uses) {
4926     for (const Formula &F : LU.Formulae)
4927       assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
4928                         F) && "Illegal formula generated!");
4929   };
4930 #endif
4931 
4932   // Now that we've decided what we want, make it so.
4933   ImplementSolution(Solution);
4934 }
4935 
4936 void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
4937   if (Factors.empty() && Types.empty()) return;
4938 
4939   OS << "LSR has identified the following interesting factors and types: ";
4940   bool First = true;
4941 
4942   for (int64_t Factor : Factors) {
4943     if (!First) OS << ", ";
4944     First = false;
4945     OS << '*' << Factor;
4946   }
4947 
4948   for (Type *Ty : Types) {
4949     if (!First) OS << ", ";
4950     First = false;
4951     OS << '(' << *Ty << ')';
4952   }
4953   OS << '\n';
4954 }
4955 
4956 void LSRInstance::print_fixups(raw_ostream &OS) const {
4957   OS << "LSR is examining the following fixup sites:\n";
4958   for (const LSRUse &LU : Uses)
4959     for (const LSRFixup &LF : LU.Fixups) {
4960       dbgs() << "  ";
4961       LF.print(OS);
4962       OS << '\n';
4963     }
4964 }
4965 
4966 void LSRInstance::print_uses(raw_ostream &OS) const {
4967   OS << "LSR is examining the following uses:\n";
4968   for (const LSRUse &LU : Uses) {
4969     dbgs() << "  ";
4970     LU.print(OS);
4971     OS << '\n';
4972     for (const Formula &F : LU.Formulae) {
4973       OS << "    ";
4974       F.print(OS);
4975       OS << '\n';
4976     }
4977   }
4978 }
4979 
4980 void LSRInstance::print(raw_ostream &OS) const {
4981   print_factors_and_types(OS);
4982   print_fixups(OS);
4983   print_uses(OS);
4984 }
4985 
4986 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4987 LLVM_DUMP_METHOD void LSRInstance::dump() const {
4988   print(errs()); errs() << '\n';
4989 }
4990 #endif
4991 
4992 namespace {
4993 
4994 class LoopStrengthReduce : public LoopPass {
4995 public:
4996   static char ID; // Pass ID, replacement for typeid
4997 
4998   LoopStrengthReduce();
4999 
5000 private:
5001   bool runOnLoop(Loop *L, LPPassManager &LPM) override;
5002   void getAnalysisUsage(AnalysisUsage &AU) const override;
5003 };
5004 
5005 } // end anonymous namespace
5006 
5007 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) {
5008   initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
5009 }
5010 
5011 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
5012   // We split critical edges, so we change the CFG.  However, we do update
5013   // many analyses if they are around.
5014   AU.addPreservedID(LoopSimplifyID);
5015 
5016   AU.addRequired<LoopInfoWrapperPass>();
5017   AU.addPreserved<LoopInfoWrapperPass>();
5018   AU.addRequiredID(LoopSimplifyID);
5019   AU.addRequired<DominatorTreeWrapperPass>();
5020   AU.addPreserved<DominatorTreeWrapperPass>();
5021   AU.addRequired<ScalarEvolutionWrapperPass>();
5022   AU.addPreserved<ScalarEvolutionWrapperPass>();
5023   // Requiring LoopSimplify a second time here prevents IVUsers from running
5024   // twice, since LoopSimplify was invalidated by running ScalarEvolution.
5025   AU.addRequiredID(LoopSimplifyID);
5026   AU.addRequired<IVUsersWrapperPass>();
5027   AU.addPreserved<IVUsersWrapperPass>();
5028   AU.addRequired<TargetTransformInfoWrapperPass>();
5029 }
5030 
5031 static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE,
5032                                DominatorTree &DT, LoopInfo &LI,
5033                                const TargetTransformInfo &TTI) {
5034   bool Changed = false;
5035 
5036   // Run the main LSR transformation.
5037   Changed |= LSRInstance(L, IU, SE, DT, LI, TTI).getChanged();
5038 
5039   // Remove any extra phis created by processing inner loops.
5040   Changed |= DeleteDeadPHIs(L->getHeader());
5041   if (EnablePhiElim && L->isLoopSimplifyForm()) {
5042     SmallVector<WeakVH, 16> DeadInsts;
5043     const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
5044     SCEVExpander Rewriter(SE, DL, "lsr");
5045 #ifndef NDEBUG
5046     Rewriter.setDebugType(DEBUG_TYPE);
5047 #endif
5048     unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI);
5049     if (numFolded) {
5050       Changed = true;
5051       DeleteTriviallyDeadInstructions(DeadInsts);
5052       DeleteDeadPHIs(L->getHeader());
5053     }
5054   }
5055   return Changed;
5056 }
5057 
5058 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
5059   if (skipLoop(L))
5060     return false;
5061 
5062   auto &IU = getAnalysis<IVUsersWrapperPass>().getIU();
5063   auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
5064   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
5065   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
5066   const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
5067       *L->getHeader()->getParent());
5068   return ReduceLoopStrength(L, IU, SE, DT, LI, TTI);
5069 }
5070 
5071 PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM,
5072                                               LoopStandardAnalysisResults &AR,
5073                                               LPMUpdater &) {
5074   if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE,
5075                           AR.DT, AR.LI, AR.TTI))
5076     return PreservedAnalyses::all();
5077 
5078   return getLoopPassPreservedAnalyses();
5079 }
5080 
5081 char LoopStrengthReduce::ID = 0;
5082 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce",
5083                       "Loop Strength Reduction", false, false)
5084 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
5085 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
5086 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
5087 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass)
5088 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
5089 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
5090 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce",
5091                     "Loop Strength Reduction", false, false)
5092 
5093 Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); }
5094