1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This transformation analyzes and transforms the induction variables (and 11 // computations derived from them) into forms suitable for efficient execution 12 // on the target. 13 // 14 // This pass performs a strength reduction on array references inside loops that 15 // have as one or more of their components the loop induction variable, it 16 // rewrites expressions to take advantage of scaled-index addressing modes 17 // available on the target, and it performs a variety of other optimizations 18 // related to loop induction variables. 19 // 20 // Terminology note: this code has a lot of handling for "post-increment" or 21 // "post-inc" users. This is not talking about post-increment addressing modes; 22 // it is instead talking about code like this: 23 // 24 // %i = phi [ 0, %entry ], [ %i.next, %latch ] 25 // ... 26 // %i.next = add %i, 1 27 // %c = icmp eq %i.next, %n 28 // 29 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however 30 // it's useful to think about these as the same register, with some uses using 31 // the value of the register before the add and some using // it after. In this 32 // example, the icmp is a post-increment user, since it uses %i.next, which is 33 // the value of the induction variable after the increment. The other common 34 // case of post-increment users is users outside the loop. 35 // 36 // TODO: More sophistication in the way Formulae are generated and filtered. 37 // 38 // TODO: Handle multiple loops at a time. 39 // 40 // TODO: Should TargetLowering::AddrMode::BaseGV be changed to a ConstantExpr 41 // instead of a GlobalValue? 42 // 43 // TODO: When truncation is free, truncate ICmp users' operands to make it a 44 // smaller encoding (on x86 at least). 45 // 46 // TODO: When a negated register is used by an add (such as in a list of 47 // multiple base registers, or as the increment expression in an addrec), 48 // we may not actually need both reg and (-1 * reg) in registers; the 49 // negation can be implemented by using a sub instead of an add. The 50 // lack of support for taking this into consideration when making 51 // register pressure decisions is partly worked around by the "Special" 52 // use kind. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #define DEBUG_TYPE "loop-reduce" 57 #include "llvm/Transforms/Scalar.h" 58 #include "llvm/Constants.h" 59 #include "llvm/Instructions.h" 60 #include "llvm/IntrinsicInst.h" 61 #include "llvm/DerivedTypes.h" 62 #include "llvm/Analysis/IVUsers.h" 63 #include "llvm/Analysis/Dominators.h" 64 #include "llvm/Analysis/LoopPass.h" 65 #include "llvm/Analysis/ScalarEvolutionExpander.h" 66 #include "llvm/Assembly/Writer.h" 67 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 68 #include "llvm/Transforms/Utils/Local.h" 69 #include "llvm/ADT/SmallBitVector.h" 70 #include "llvm/ADT/SetVector.h" 71 #include "llvm/ADT/DenseSet.h" 72 #include "llvm/Support/Debug.h" 73 #include "llvm/Support/CommandLine.h" 74 #include "llvm/Support/ValueHandle.h" 75 #include "llvm/Support/raw_ostream.h" 76 #include "llvm/Target/TargetLowering.h" 77 #include <algorithm> 78 using namespace llvm; 79 80 /// MaxIVUsers is an arbitrary threshold that provides an early opportunitiy for 81 /// bail out. This threshold is far beyond the number of users that LSR can 82 /// conceivably solve, so it should not affect generated code, but catches the 83 /// worst cases before LSR burns too much compile time and stack space. 84 static const unsigned MaxIVUsers = 200; 85 86 // Temporary flag to cleanup congruent phis after LSR phi expansion. 87 // It's currently disabled until we can determine whether it's truly useful or 88 // not. The flag should be removed after the v3.0 release. 89 // This is now needed for ivchains. 90 static cl::opt<bool> EnablePhiElim( 91 "enable-lsr-phielim", cl::Hidden, cl::init(true), 92 cl::desc("Enable LSR phi elimination")); 93 94 #ifndef NDEBUG 95 // Stress test IV chain generation. 96 static cl::opt<bool> StressIVChain( 97 "stress-ivchain", cl::Hidden, cl::init(false), 98 cl::desc("Stress test LSR IV chains")); 99 #else 100 static bool StressIVChain = false; 101 #endif 102 103 namespace { 104 105 /// RegSortData - This class holds data which is used to order reuse candidates. 106 class RegSortData { 107 public: 108 /// UsedByIndices - This represents the set of LSRUse indices which reference 109 /// a particular register. 110 SmallBitVector UsedByIndices; 111 112 RegSortData() {} 113 114 void print(raw_ostream &OS) const; 115 void dump() const; 116 }; 117 118 } 119 120 void RegSortData::print(raw_ostream &OS) const { 121 OS << "[NumUses=" << UsedByIndices.count() << ']'; 122 } 123 124 void RegSortData::dump() const { 125 print(errs()); errs() << '\n'; 126 } 127 128 namespace { 129 130 /// RegUseTracker - Map register candidates to information about how they are 131 /// used. 132 class RegUseTracker { 133 typedef DenseMap<const SCEV *, RegSortData> RegUsesTy; 134 135 RegUsesTy RegUsesMap; 136 SmallVector<const SCEV *, 16> RegSequence; 137 138 public: 139 void CountRegister(const SCEV *Reg, size_t LUIdx); 140 void DropRegister(const SCEV *Reg, size_t LUIdx); 141 void SwapAndDropUse(size_t LUIdx, size_t LastLUIdx); 142 143 bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const; 144 145 const SmallBitVector &getUsedByIndices(const SCEV *Reg) const; 146 147 void clear(); 148 149 typedef SmallVectorImpl<const SCEV *>::iterator iterator; 150 typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator; 151 iterator begin() { return RegSequence.begin(); } 152 iterator end() { return RegSequence.end(); } 153 const_iterator begin() const { return RegSequence.begin(); } 154 const_iterator end() const { return RegSequence.end(); } 155 }; 156 157 } 158 159 void 160 RegUseTracker::CountRegister(const SCEV *Reg, size_t LUIdx) { 161 std::pair<RegUsesTy::iterator, bool> Pair = 162 RegUsesMap.insert(std::make_pair(Reg, RegSortData())); 163 RegSortData &RSD = Pair.first->second; 164 if (Pair.second) 165 RegSequence.push_back(Reg); 166 RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1)); 167 RSD.UsedByIndices.set(LUIdx); 168 } 169 170 void 171 RegUseTracker::DropRegister(const SCEV *Reg, size_t LUIdx) { 172 RegUsesTy::iterator It = RegUsesMap.find(Reg); 173 assert(It != RegUsesMap.end()); 174 RegSortData &RSD = It->second; 175 assert(RSD.UsedByIndices.size() > LUIdx); 176 RSD.UsedByIndices.reset(LUIdx); 177 } 178 179 void 180 RegUseTracker::SwapAndDropUse(size_t LUIdx, size_t LastLUIdx) { 181 assert(LUIdx <= LastLUIdx); 182 183 // Update RegUses. The data structure is not optimized for this purpose; 184 // we must iterate through it and update each of the bit vectors. 185 for (RegUsesTy::iterator I = RegUsesMap.begin(), E = RegUsesMap.end(); 186 I != E; ++I) { 187 SmallBitVector &UsedByIndices = I->second.UsedByIndices; 188 if (LUIdx < UsedByIndices.size()) 189 UsedByIndices[LUIdx] = 190 LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : 0; 191 UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx)); 192 } 193 } 194 195 bool 196 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const { 197 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 198 if (I == RegUsesMap.end()) 199 return false; 200 const SmallBitVector &UsedByIndices = I->second.UsedByIndices; 201 int i = UsedByIndices.find_first(); 202 if (i == -1) return false; 203 if ((size_t)i != LUIdx) return true; 204 return UsedByIndices.find_next(i) != -1; 205 } 206 207 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const { 208 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 209 assert(I != RegUsesMap.end() && "Unknown register!"); 210 return I->second.UsedByIndices; 211 } 212 213 void RegUseTracker::clear() { 214 RegUsesMap.clear(); 215 RegSequence.clear(); 216 } 217 218 namespace { 219 220 /// Formula - This class holds information that describes a formula for 221 /// computing satisfying a use. It may include broken-out immediates and scaled 222 /// registers. 223 struct Formula { 224 /// AM - This is used to represent complex addressing, as well as other kinds 225 /// of interesting uses. 226 TargetLowering::AddrMode AM; 227 228 /// BaseRegs - The list of "base" registers for this use. When this is 229 /// non-empty, AM.HasBaseReg should be set to true. 230 SmallVector<const SCEV *, 2> BaseRegs; 231 232 /// ScaledReg - The 'scaled' register for this use. This should be non-null 233 /// when AM.Scale is not zero. 234 const SCEV *ScaledReg; 235 236 /// UnfoldedOffset - An additional constant offset which added near the 237 /// use. This requires a temporary register, but the offset itself can 238 /// live in an add immediate field rather than a register. 239 int64_t UnfoldedOffset; 240 241 Formula() : ScaledReg(0), UnfoldedOffset(0) {} 242 243 void InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE); 244 245 unsigned getNumRegs() const; 246 Type *getType() const; 247 248 void DeleteBaseReg(const SCEV *&S); 249 250 bool referencesReg(const SCEV *S) const; 251 bool hasRegsUsedByUsesOtherThan(size_t LUIdx, 252 const RegUseTracker &RegUses) const; 253 254 void print(raw_ostream &OS) const; 255 void dump() const; 256 }; 257 258 } 259 260 /// DoInitialMatch - Recursion helper for InitialMatch. 261 static void DoInitialMatch(const SCEV *S, Loop *L, 262 SmallVectorImpl<const SCEV *> &Good, 263 SmallVectorImpl<const SCEV *> &Bad, 264 ScalarEvolution &SE) { 265 // Collect expressions which properly dominate the loop header. 266 if (SE.properlyDominates(S, L->getHeader())) { 267 Good.push_back(S); 268 return; 269 } 270 271 // Look at add operands. 272 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 273 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); 274 I != E; ++I) 275 DoInitialMatch(*I, L, Good, Bad, SE); 276 return; 277 } 278 279 // Look at addrec operands. 280 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 281 if (!AR->getStart()->isZero()) { 282 DoInitialMatch(AR->getStart(), L, Good, Bad, SE); 283 DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0), 284 AR->getStepRecurrence(SE), 285 // FIXME: AR->getNoWrapFlags() 286 AR->getLoop(), SCEV::FlagAnyWrap), 287 L, Good, Bad, SE); 288 return; 289 } 290 291 // Handle a multiplication by -1 (negation) if it didn't fold. 292 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) 293 if (Mul->getOperand(0)->isAllOnesValue()) { 294 SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end()); 295 const SCEV *NewMul = SE.getMulExpr(Ops); 296 297 SmallVector<const SCEV *, 4> MyGood; 298 SmallVector<const SCEV *, 4> MyBad; 299 DoInitialMatch(NewMul, L, MyGood, MyBad, SE); 300 const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue( 301 SE.getEffectiveSCEVType(NewMul->getType()))); 302 for (SmallVectorImpl<const SCEV *>::const_iterator I = MyGood.begin(), 303 E = MyGood.end(); I != E; ++I) 304 Good.push_back(SE.getMulExpr(NegOne, *I)); 305 for (SmallVectorImpl<const SCEV *>::const_iterator I = MyBad.begin(), 306 E = MyBad.end(); I != E; ++I) 307 Bad.push_back(SE.getMulExpr(NegOne, *I)); 308 return; 309 } 310 311 // Ok, we can't do anything interesting. Just stuff the whole thing into a 312 // register and hope for the best. 313 Bad.push_back(S); 314 } 315 316 /// InitialMatch - Incorporate loop-variant parts of S into this Formula, 317 /// attempting to keep all loop-invariant and loop-computable values in a 318 /// single base register. 319 void Formula::InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) { 320 SmallVector<const SCEV *, 4> Good; 321 SmallVector<const SCEV *, 4> Bad; 322 DoInitialMatch(S, L, Good, Bad, SE); 323 if (!Good.empty()) { 324 const SCEV *Sum = SE.getAddExpr(Good); 325 if (!Sum->isZero()) 326 BaseRegs.push_back(Sum); 327 AM.HasBaseReg = true; 328 } 329 if (!Bad.empty()) { 330 const SCEV *Sum = SE.getAddExpr(Bad); 331 if (!Sum->isZero()) 332 BaseRegs.push_back(Sum); 333 AM.HasBaseReg = true; 334 } 335 } 336 337 /// getNumRegs - Return the total number of register operands used by this 338 /// formula. This does not include register uses implied by non-constant 339 /// addrec strides. 340 unsigned Formula::getNumRegs() const { 341 return !!ScaledReg + BaseRegs.size(); 342 } 343 344 /// getType - Return the type of this formula, if it has one, or null 345 /// otherwise. This type is meaningless except for the bit size. 346 Type *Formula::getType() const { 347 return !BaseRegs.empty() ? BaseRegs.front()->getType() : 348 ScaledReg ? ScaledReg->getType() : 349 AM.BaseGV ? AM.BaseGV->getType() : 350 0; 351 } 352 353 /// DeleteBaseReg - Delete the given base reg from the BaseRegs list. 354 void Formula::DeleteBaseReg(const SCEV *&S) { 355 if (&S != &BaseRegs.back()) 356 std::swap(S, BaseRegs.back()); 357 BaseRegs.pop_back(); 358 } 359 360 /// referencesReg - Test if this formula references the given register. 361 bool Formula::referencesReg(const SCEV *S) const { 362 return S == ScaledReg || 363 std::find(BaseRegs.begin(), BaseRegs.end(), S) != BaseRegs.end(); 364 } 365 366 /// hasRegsUsedByUsesOtherThan - Test whether this formula uses registers 367 /// which are used by uses other than the use with the given index. 368 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx, 369 const RegUseTracker &RegUses) const { 370 if (ScaledReg) 371 if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx)) 372 return true; 373 for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(), 374 E = BaseRegs.end(); I != E; ++I) 375 if (RegUses.isRegUsedByUsesOtherThan(*I, LUIdx)) 376 return true; 377 return false; 378 } 379 380 void Formula::print(raw_ostream &OS) const { 381 bool First = true; 382 if (AM.BaseGV) { 383 if (!First) OS << " + "; else First = false; 384 WriteAsOperand(OS, AM.BaseGV, /*PrintType=*/false); 385 } 386 if (AM.BaseOffs != 0) { 387 if (!First) OS << " + "; else First = false; 388 OS << AM.BaseOffs; 389 } 390 for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(), 391 E = BaseRegs.end(); I != E; ++I) { 392 if (!First) OS << " + "; else First = false; 393 OS << "reg(" << **I << ')'; 394 } 395 if (AM.HasBaseReg && BaseRegs.empty()) { 396 if (!First) OS << " + "; else First = false; 397 OS << "**error: HasBaseReg**"; 398 } else if (!AM.HasBaseReg && !BaseRegs.empty()) { 399 if (!First) OS << " + "; else First = false; 400 OS << "**error: !HasBaseReg**"; 401 } 402 if (AM.Scale != 0) { 403 if (!First) OS << " + "; else First = false; 404 OS << AM.Scale << "*reg("; 405 if (ScaledReg) 406 OS << *ScaledReg; 407 else 408 OS << "<unknown>"; 409 OS << ')'; 410 } 411 if (UnfoldedOffset != 0) { 412 if (!First) OS << " + "; else First = false; 413 OS << "imm(" << UnfoldedOffset << ')'; 414 } 415 } 416 417 void Formula::dump() const { 418 print(errs()); errs() << '\n'; 419 } 420 421 /// isAddRecSExtable - Return true if the given addrec can be sign-extended 422 /// without changing its value. 423 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 424 Type *WideTy = 425 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1); 426 return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy)); 427 } 428 429 /// isAddSExtable - Return true if the given add can be sign-extended 430 /// without changing its value. 431 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) { 432 Type *WideTy = 433 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1); 434 return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy)); 435 } 436 437 /// isMulSExtable - Return true if the given mul can be sign-extended 438 /// without changing its value. 439 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) { 440 Type *WideTy = 441 IntegerType::get(SE.getContext(), 442 SE.getTypeSizeInBits(M->getType()) * M->getNumOperands()); 443 return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy)); 444 } 445 446 /// getExactSDiv - Return an expression for LHS /s RHS, if it can be determined 447 /// and if the remainder is known to be zero, or null otherwise. If 448 /// IgnoreSignificantBits is true, expressions like (X * Y) /s Y are simplified 449 /// to Y, ignoring that the multiplication may overflow, which is useful when 450 /// the result will be used in a context where the most significant bits are 451 /// ignored. 452 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS, 453 ScalarEvolution &SE, 454 bool IgnoreSignificantBits = false) { 455 // Handle the trivial case, which works for any SCEV type. 456 if (LHS == RHS) 457 return SE.getConstant(LHS->getType(), 1); 458 459 // Handle a few RHS special cases. 460 const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS); 461 if (RC) { 462 const APInt &RA = RC->getValue()->getValue(); 463 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do 464 // some folding. 465 if (RA.isAllOnesValue()) 466 return SE.getMulExpr(LHS, RC); 467 // Handle x /s 1 as x. 468 if (RA == 1) 469 return LHS; 470 } 471 472 // Check for a division of a constant by a constant. 473 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) { 474 if (!RC) 475 return 0; 476 const APInt &LA = C->getValue()->getValue(); 477 const APInt &RA = RC->getValue()->getValue(); 478 if (LA.srem(RA) != 0) 479 return 0; 480 return SE.getConstant(LA.sdiv(RA)); 481 } 482 483 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow. 484 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) { 485 if (IgnoreSignificantBits || isAddRecSExtable(AR, SE)) { 486 const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE, 487 IgnoreSignificantBits); 488 if (!Step) return 0; 489 const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE, 490 IgnoreSignificantBits); 491 if (!Start) return 0; 492 // FlagNW is independent of the start value, step direction, and is 493 // preserved with smaller magnitude steps. 494 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 495 return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap); 496 } 497 return 0; 498 } 499 500 // Distribute the sdiv over add operands, if the add doesn't overflow. 501 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) { 502 if (IgnoreSignificantBits || isAddSExtable(Add, SE)) { 503 SmallVector<const SCEV *, 8> Ops; 504 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); 505 I != E; ++I) { 506 const SCEV *Op = getExactSDiv(*I, RHS, SE, 507 IgnoreSignificantBits); 508 if (!Op) return 0; 509 Ops.push_back(Op); 510 } 511 return SE.getAddExpr(Ops); 512 } 513 return 0; 514 } 515 516 // Check for a multiply operand that we can pull RHS out of. 517 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) { 518 if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) { 519 SmallVector<const SCEV *, 4> Ops; 520 bool Found = false; 521 for (SCEVMulExpr::op_iterator I = Mul->op_begin(), E = Mul->op_end(); 522 I != E; ++I) { 523 const SCEV *S = *I; 524 if (!Found) 525 if (const SCEV *Q = getExactSDiv(S, RHS, SE, 526 IgnoreSignificantBits)) { 527 S = Q; 528 Found = true; 529 } 530 Ops.push_back(S); 531 } 532 return Found ? SE.getMulExpr(Ops) : 0; 533 } 534 return 0; 535 } 536 537 // Otherwise we don't know. 538 return 0; 539 } 540 541 /// ExtractImmediate - If S involves the addition of a constant integer value, 542 /// return that integer value, and mutate S to point to a new SCEV with that 543 /// value excluded. 544 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) { 545 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 546 if (C->getValue()->getValue().getMinSignedBits() <= 64) { 547 S = SE.getConstant(C->getType(), 0); 548 return C->getValue()->getSExtValue(); 549 } 550 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 551 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 552 int64_t Result = ExtractImmediate(NewOps.front(), SE); 553 if (Result != 0) 554 S = SE.getAddExpr(NewOps); 555 return Result; 556 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 557 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 558 int64_t Result = ExtractImmediate(NewOps.front(), SE); 559 if (Result != 0) 560 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 561 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 562 SCEV::FlagAnyWrap); 563 return Result; 564 } 565 return 0; 566 } 567 568 /// ExtractSymbol - If S involves the addition of a GlobalValue address, 569 /// return that symbol, and mutate S to point to a new SCEV with that 570 /// value excluded. 571 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) { 572 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 573 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) { 574 S = SE.getConstant(GV->getType(), 0); 575 return GV; 576 } 577 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 578 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 579 GlobalValue *Result = ExtractSymbol(NewOps.back(), SE); 580 if (Result) 581 S = SE.getAddExpr(NewOps); 582 return Result; 583 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 584 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 585 GlobalValue *Result = ExtractSymbol(NewOps.front(), SE); 586 if (Result) 587 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 588 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 589 SCEV::FlagAnyWrap); 590 return Result; 591 } 592 return 0; 593 } 594 595 /// isAddressUse - Returns true if the specified instruction is using the 596 /// specified value as an address. 597 static bool isAddressUse(Instruction *Inst, Value *OperandVal) { 598 bool isAddress = isa<LoadInst>(Inst); 599 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 600 if (SI->getOperand(1) == OperandVal) 601 isAddress = true; 602 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 603 // Addressing modes can also be folded into prefetches and a variety 604 // of intrinsics. 605 switch (II->getIntrinsicID()) { 606 default: break; 607 case Intrinsic::prefetch: 608 case Intrinsic::x86_sse_storeu_ps: 609 case Intrinsic::x86_sse2_storeu_pd: 610 case Intrinsic::x86_sse2_storeu_dq: 611 case Intrinsic::x86_sse2_storel_dq: 612 if (II->getArgOperand(0) == OperandVal) 613 isAddress = true; 614 break; 615 } 616 } 617 return isAddress; 618 } 619 620 /// getAccessType - Return the type of the memory being accessed. 621 static Type *getAccessType(const Instruction *Inst) { 622 Type *AccessTy = Inst->getType(); 623 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) 624 AccessTy = SI->getOperand(0)->getType(); 625 else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 626 // Addressing modes can also be folded into prefetches and a variety 627 // of intrinsics. 628 switch (II->getIntrinsicID()) { 629 default: break; 630 case Intrinsic::x86_sse_storeu_ps: 631 case Intrinsic::x86_sse2_storeu_pd: 632 case Intrinsic::x86_sse2_storeu_dq: 633 case Intrinsic::x86_sse2_storel_dq: 634 AccessTy = II->getArgOperand(0)->getType(); 635 break; 636 } 637 } 638 639 // All pointers have the same requirements, so canonicalize them to an 640 // arbitrary pointer type to minimize variation. 641 if (PointerType *PTy = dyn_cast<PointerType>(AccessTy)) 642 AccessTy = PointerType::get(IntegerType::get(PTy->getContext(), 1), 643 PTy->getAddressSpace()); 644 645 return AccessTy; 646 } 647 648 /// isExistingPhi - Return true if this AddRec is already a phi in its loop. 649 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 650 for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin(); 651 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 652 if (SE.isSCEVable(PN->getType()) && 653 (SE.getEffectiveSCEVType(PN->getType()) == 654 SE.getEffectiveSCEVType(AR->getType())) && 655 SE.getSCEV(PN) == AR) 656 return true; 657 } 658 return false; 659 } 660 661 /// Check if expanding this expression is likely to incur significant cost. This 662 /// is tricky because SCEV doesn't track which expressions are actually computed 663 /// by the current IR. 664 /// 665 /// We currently allow expansion of IV increments that involve adds, 666 /// multiplication by constants, and AddRecs from existing phis. 667 /// 668 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an 669 /// obvious multiple of the UDivExpr. 670 static bool isHighCostExpansion(const SCEV *S, 671 SmallPtrSet<const SCEV*, 8> &Processed, 672 ScalarEvolution &SE) { 673 // Zero/One operand expressions 674 switch (S->getSCEVType()) { 675 case scUnknown: 676 case scConstant: 677 return false; 678 case scTruncate: 679 return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(), 680 Processed, SE); 681 case scZeroExtend: 682 return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(), 683 Processed, SE); 684 case scSignExtend: 685 return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(), 686 Processed, SE); 687 } 688 689 if (!Processed.insert(S)) 690 return false; 691 692 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 693 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); 694 I != E; ++I) { 695 if (isHighCostExpansion(*I, Processed, SE)) 696 return true; 697 } 698 return false; 699 } 700 701 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 702 if (Mul->getNumOperands() == 2) { 703 // Multiplication by a constant is ok 704 if (isa<SCEVConstant>(Mul->getOperand(0))) 705 return isHighCostExpansion(Mul->getOperand(1), Processed, SE); 706 707 // If we have the value of one operand, check if an existing 708 // multiplication already generates this expression. 709 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) { 710 Value *UVal = U->getValue(); 711 for (Value::use_iterator UI = UVal->use_begin(), UE = UVal->use_end(); 712 UI != UE; ++UI) { 713 // If U is a constant, it may be used by a ConstantExpr. 714 Instruction *User = dyn_cast<Instruction>(*UI); 715 if (User && User->getOpcode() == Instruction::Mul 716 && SE.isSCEVable(User->getType())) { 717 return SE.getSCEV(User) == Mul; 718 } 719 } 720 } 721 } 722 } 723 724 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 725 if (isExistingPhi(AR, SE)) 726 return false; 727 } 728 729 // Fow now, consider any other type of expression (div/mul/min/max) high cost. 730 return true; 731 } 732 733 /// DeleteTriviallyDeadInstructions - If any of the instructions is the 734 /// specified set are trivially dead, delete them and see if this makes any of 735 /// their operands subsequently dead. 736 static bool 737 DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) { 738 bool Changed = false; 739 740 while (!DeadInsts.empty()) { 741 Instruction *I = dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()); 742 743 if (I == 0 || !isInstructionTriviallyDead(I)) 744 continue; 745 746 for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) 747 if (Instruction *U = dyn_cast<Instruction>(*OI)) { 748 *OI = 0; 749 if (U->use_empty()) 750 DeadInsts.push_back(U); 751 } 752 753 I->eraseFromParent(); 754 Changed = true; 755 } 756 757 return Changed; 758 } 759 760 namespace { 761 762 /// Cost - This class is used to measure and compare candidate formulae. 763 class Cost { 764 /// TODO: Some of these could be merged. Also, a lexical ordering 765 /// isn't always optimal. 766 unsigned NumRegs; 767 unsigned AddRecCost; 768 unsigned NumIVMuls; 769 unsigned NumBaseAdds; 770 unsigned ImmCost; 771 unsigned SetupCost; 772 773 public: 774 Cost() 775 : NumRegs(0), AddRecCost(0), NumIVMuls(0), NumBaseAdds(0), ImmCost(0), 776 SetupCost(0) {} 777 778 bool operator<(const Cost &Other) const; 779 780 void Loose(); 781 782 #ifndef NDEBUG 783 // Once any of the metrics loses, they must all remain losers. 784 bool isValid() { 785 return ((NumRegs | AddRecCost | NumIVMuls | NumBaseAdds 786 | ImmCost | SetupCost) != ~0u) 787 || ((NumRegs & AddRecCost & NumIVMuls & NumBaseAdds 788 & ImmCost & SetupCost) == ~0u); 789 } 790 #endif 791 792 bool isLoser() { 793 assert(isValid() && "invalid cost"); 794 return NumRegs == ~0u; 795 } 796 797 void RateFormula(const Formula &F, 798 SmallPtrSet<const SCEV *, 16> &Regs, 799 const DenseSet<const SCEV *> &VisitedRegs, 800 const Loop *L, 801 const SmallVectorImpl<int64_t> &Offsets, 802 ScalarEvolution &SE, DominatorTree &DT, 803 SmallPtrSet<const SCEV *, 16> *LoserRegs = 0); 804 805 void print(raw_ostream &OS) const; 806 void dump() const; 807 808 private: 809 void RateRegister(const SCEV *Reg, 810 SmallPtrSet<const SCEV *, 16> &Regs, 811 const Loop *L, 812 ScalarEvolution &SE, DominatorTree &DT); 813 void RatePrimaryRegister(const SCEV *Reg, 814 SmallPtrSet<const SCEV *, 16> &Regs, 815 const Loop *L, 816 ScalarEvolution &SE, DominatorTree &DT, 817 SmallPtrSet<const SCEV *, 16> *LoserRegs); 818 }; 819 820 } 821 822 /// RateRegister - Tally up interesting quantities from the given register. 823 void Cost::RateRegister(const SCEV *Reg, 824 SmallPtrSet<const SCEV *, 16> &Regs, 825 const Loop *L, 826 ScalarEvolution &SE, DominatorTree &DT) { 827 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) { 828 // If this is an addrec for another loop, don't second-guess its addrec phi 829 // nodes. LSR isn't currently smart enough to reason about more than one 830 // loop at a time. LSR has already run on inner loops, will not run on outer 831 // loops, and cannot be expected to change sibling loops. 832 if (AR->getLoop() != L) { 833 // If the AddRec exists, consider it's register free and leave it alone. 834 if (isExistingPhi(AR, SE)) 835 return; 836 837 // Otherwise, do not consider this formula at all. 838 Loose(); 839 return; 840 } 841 AddRecCost += 1; /// TODO: This should be a function of the stride. 842 843 // Add the step value register, if it needs one. 844 // TODO: The non-affine case isn't precisely modeled here. 845 if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) { 846 if (!Regs.count(AR->getOperand(1))) { 847 RateRegister(AR->getOperand(1), Regs, L, SE, DT); 848 if (isLoser()) 849 return; 850 } 851 } 852 } 853 ++NumRegs; 854 855 // Rough heuristic; favor registers which don't require extra setup 856 // instructions in the preheader. 857 if (!isa<SCEVUnknown>(Reg) && 858 !isa<SCEVConstant>(Reg) && 859 !(isa<SCEVAddRecExpr>(Reg) && 860 (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) || 861 isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart())))) 862 ++SetupCost; 863 864 NumIVMuls += isa<SCEVMulExpr>(Reg) && 865 SE.hasComputableLoopEvolution(Reg, L); 866 } 867 868 /// RatePrimaryRegister - Record this register in the set. If we haven't seen it 869 /// before, rate it. Optional LoserRegs provides a way to declare any formula 870 /// that refers to one of those regs an instant loser. 871 void Cost::RatePrimaryRegister(const SCEV *Reg, 872 SmallPtrSet<const SCEV *, 16> &Regs, 873 const Loop *L, 874 ScalarEvolution &SE, DominatorTree &DT, 875 SmallPtrSet<const SCEV *, 16> *LoserRegs) { 876 if (LoserRegs && LoserRegs->count(Reg)) { 877 Loose(); 878 return; 879 } 880 if (Regs.insert(Reg)) { 881 RateRegister(Reg, Regs, L, SE, DT); 882 if (isLoser()) 883 LoserRegs->insert(Reg); 884 } 885 } 886 887 void Cost::RateFormula(const Formula &F, 888 SmallPtrSet<const SCEV *, 16> &Regs, 889 const DenseSet<const SCEV *> &VisitedRegs, 890 const Loop *L, 891 const SmallVectorImpl<int64_t> &Offsets, 892 ScalarEvolution &SE, DominatorTree &DT, 893 SmallPtrSet<const SCEV *, 16> *LoserRegs) { 894 // Tally up the registers. 895 if (const SCEV *ScaledReg = F.ScaledReg) { 896 if (VisitedRegs.count(ScaledReg)) { 897 Loose(); 898 return; 899 } 900 RatePrimaryRegister(ScaledReg, Regs, L, SE, DT, LoserRegs); 901 if (isLoser()) 902 return; 903 } 904 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(), 905 E = F.BaseRegs.end(); I != E; ++I) { 906 const SCEV *BaseReg = *I; 907 if (VisitedRegs.count(BaseReg)) { 908 Loose(); 909 return; 910 } 911 RatePrimaryRegister(BaseReg, Regs, L, SE, DT, LoserRegs); 912 if (isLoser()) 913 return; 914 } 915 916 // Determine how many (unfolded) adds we'll need inside the loop. 917 size_t NumBaseParts = F.BaseRegs.size() + (F.UnfoldedOffset != 0); 918 if (NumBaseParts > 1) 919 NumBaseAdds += NumBaseParts - 1; 920 921 // Tally up the non-zero immediates. 922 for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(), 923 E = Offsets.end(); I != E; ++I) { 924 int64_t Offset = (uint64_t)*I + F.AM.BaseOffs; 925 if (F.AM.BaseGV) 926 ImmCost += 64; // Handle symbolic values conservatively. 927 // TODO: This should probably be the pointer size. 928 else if (Offset != 0) 929 ImmCost += APInt(64, Offset, true).getMinSignedBits(); 930 } 931 assert(isValid() && "invalid cost"); 932 } 933 934 /// Loose - Set this cost to a losing value. 935 void Cost::Loose() { 936 NumRegs = ~0u; 937 AddRecCost = ~0u; 938 NumIVMuls = ~0u; 939 NumBaseAdds = ~0u; 940 ImmCost = ~0u; 941 SetupCost = ~0u; 942 } 943 944 /// operator< - Choose the lower cost. 945 bool Cost::operator<(const Cost &Other) const { 946 if (NumRegs != Other.NumRegs) 947 return NumRegs < Other.NumRegs; 948 if (AddRecCost != Other.AddRecCost) 949 return AddRecCost < Other.AddRecCost; 950 if (NumIVMuls != Other.NumIVMuls) 951 return NumIVMuls < Other.NumIVMuls; 952 if (NumBaseAdds != Other.NumBaseAdds) 953 return NumBaseAdds < Other.NumBaseAdds; 954 if (ImmCost != Other.ImmCost) 955 return ImmCost < Other.ImmCost; 956 if (SetupCost != Other.SetupCost) 957 return SetupCost < Other.SetupCost; 958 return false; 959 } 960 961 void Cost::print(raw_ostream &OS) const { 962 OS << NumRegs << " reg" << (NumRegs == 1 ? "" : "s"); 963 if (AddRecCost != 0) 964 OS << ", with addrec cost " << AddRecCost; 965 if (NumIVMuls != 0) 966 OS << ", plus " << NumIVMuls << " IV mul" << (NumIVMuls == 1 ? "" : "s"); 967 if (NumBaseAdds != 0) 968 OS << ", plus " << NumBaseAdds << " base add" 969 << (NumBaseAdds == 1 ? "" : "s"); 970 if (ImmCost != 0) 971 OS << ", plus " << ImmCost << " imm cost"; 972 if (SetupCost != 0) 973 OS << ", plus " << SetupCost << " setup cost"; 974 } 975 976 void Cost::dump() const { 977 print(errs()); errs() << '\n'; 978 } 979 980 namespace { 981 982 /// LSRFixup - An operand value in an instruction which is to be replaced 983 /// with some equivalent, possibly strength-reduced, replacement. 984 struct LSRFixup { 985 /// UserInst - The instruction which will be updated. 986 Instruction *UserInst; 987 988 /// OperandValToReplace - The operand of the instruction which will 989 /// be replaced. The operand may be used more than once; every instance 990 /// will be replaced. 991 Value *OperandValToReplace; 992 993 /// PostIncLoops - If this user is to use the post-incremented value of an 994 /// induction variable, this variable is non-null and holds the loop 995 /// associated with the induction variable. 996 PostIncLoopSet PostIncLoops; 997 998 /// LUIdx - The index of the LSRUse describing the expression which 999 /// this fixup needs, minus an offset (below). 1000 size_t LUIdx; 1001 1002 /// Offset - A constant offset to be added to the LSRUse expression. 1003 /// This allows multiple fixups to share the same LSRUse with different 1004 /// offsets, for example in an unrolled loop. 1005 int64_t Offset; 1006 1007 bool isUseFullyOutsideLoop(const Loop *L) const; 1008 1009 LSRFixup(); 1010 1011 void print(raw_ostream &OS) const; 1012 void dump() const; 1013 }; 1014 1015 } 1016 1017 LSRFixup::LSRFixup() 1018 : UserInst(0), OperandValToReplace(0), LUIdx(~size_t(0)), Offset(0) {} 1019 1020 /// isUseFullyOutsideLoop - Test whether this fixup always uses its 1021 /// value outside of the given loop. 1022 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const { 1023 // PHI nodes use their value in their incoming blocks. 1024 if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) { 1025 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1026 if (PN->getIncomingValue(i) == OperandValToReplace && 1027 L->contains(PN->getIncomingBlock(i))) 1028 return false; 1029 return true; 1030 } 1031 1032 return !L->contains(UserInst); 1033 } 1034 1035 void LSRFixup::print(raw_ostream &OS) const { 1036 OS << "UserInst="; 1037 // Store is common and interesting enough to be worth special-casing. 1038 if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) { 1039 OS << "store "; 1040 WriteAsOperand(OS, Store->getOperand(0), /*PrintType=*/false); 1041 } else if (UserInst->getType()->isVoidTy()) 1042 OS << UserInst->getOpcodeName(); 1043 else 1044 WriteAsOperand(OS, UserInst, /*PrintType=*/false); 1045 1046 OS << ", OperandValToReplace="; 1047 WriteAsOperand(OS, OperandValToReplace, /*PrintType=*/false); 1048 1049 for (PostIncLoopSet::const_iterator I = PostIncLoops.begin(), 1050 E = PostIncLoops.end(); I != E; ++I) { 1051 OS << ", PostIncLoop="; 1052 WriteAsOperand(OS, (*I)->getHeader(), /*PrintType=*/false); 1053 } 1054 1055 if (LUIdx != ~size_t(0)) 1056 OS << ", LUIdx=" << LUIdx; 1057 1058 if (Offset != 0) 1059 OS << ", Offset=" << Offset; 1060 } 1061 1062 void LSRFixup::dump() const { 1063 print(errs()); errs() << '\n'; 1064 } 1065 1066 namespace { 1067 1068 /// UniquifierDenseMapInfo - A DenseMapInfo implementation for holding 1069 /// DenseMaps and DenseSets of sorted SmallVectors of const SCEV*. 1070 struct UniquifierDenseMapInfo { 1071 static SmallVector<const SCEV *, 2> getEmptyKey() { 1072 SmallVector<const SCEV *, 2> V; 1073 V.push_back(reinterpret_cast<const SCEV *>(-1)); 1074 return V; 1075 } 1076 1077 static SmallVector<const SCEV *, 2> getTombstoneKey() { 1078 SmallVector<const SCEV *, 2> V; 1079 V.push_back(reinterpret_cast<const SCEV *>(-2)); 1080 return V; 1081 } 1082 1083 static unsigned getHashValue(const SmallVector<const SCEV *, 2> &V) { 1084 unsigned Result = 0; 1085 for (SmallVectorImpl<const SCEV *>::const_iterator I = V.begin(), 1086 E = V.end(); I != E; ++I) 1087 Result ^= DenseMapInfo<const SCEV *>::getHashValue(*I); 1088 return Result; 1089 } 1090 1091 static bool isEqual(const SmallVector<const SCEV *, 2> &LHS, 1092 const SmallVector<const SCEV *, 2> &RHS) { 1093 return LHS == RHS; 1094 } 1095 }; 1096 1097 /// LSRUse - This class holds the state that LSR keeps for each use in 1098 /// IVUsers, as well as uses invented by LSR itself. It includes information 1099 /// about what kinds of things can be folded into the user, information about 1100 /// the user itself, and information about how the use may be satisfied. 1101 /// TODO: Represent multiple users of the same expression in common? 1102 class LSRUse { 1103 DenseSet<SmallVector<const SCEV *, 2>, UniquifierDenseMapInfo> Uniquifier; 1104 1105 public: 1106 /// KindType - An enum for a kind of use, indicating what types of 1107 /// scaled and immediate operands it might support. 1108 enum KindType { 1109 Basic, ///< A normal use, with no folding. 1110 Special, ///< A special case of basic, allowing -1 scales. 1111 Address, ///< An address use; folding according to TargetLowering 1112 ICmpZero ///< An equality icmp with both operands folded into one. 1113 // TODO: Add a generic icmp too? 1114 }; 1115 1116 KindType Kind; 1117 Type *AccessTy; 1118 1119 SmallVector<int64_t, 8> Offsets; 1120 int64_t MinOffset; 1121 int64_t MaxOffset; 1122 1123 /// AllFixupsOutsideLoop - This records whether all of the fixups using this 1124 /// LSRUse are outside of the loop, in which case some special-case heuristics 1125 /// may be used. 1126 bool AllFixupsOutsideLoop; 1127 1128 /// WidestFixupType - This records the widest use type for any fixup using 1129 /// this LSRUse. FindUseWithSimilarFormula can't consider uses with different 1130 /// max fixup widths to be equivalent, because the narrower one may be relying 1131 /// on the implicit truncation to truncate away bogus bits. 1132 Type *WidestFixupType; 1133 1134 /// Formulae - A list of ways to build a value that can satisfy this user. 1135 /// After the list is populated, one of these is selected heuristically and 1136 /// used to formulate a replacement for OperandValToReplace in UserInst. 1137 SmallVector<Formula, 12> Formulae; 1138 1139 /// Regs - The set of register candidates used by all formulae in this LSRUse. 1140 SmallPtrSet<const SCEV *, 4> Regs; 1141 1142 LSRUse(KindType K, Type *T) : Kind(K), AccessTy(T), 1143 MinOffset(INT64_MAX), 1144 MaxOffset(INT64_MIN), 1145 AllFixupsOutsideLoop(true), 1146 WidestFixupType(0) {} 1147 1148 bool HasFormulaWithSameRegs(const Formula &F) const; 1149 bool InsertFormula(const Formula &F); 1150 void DeleteFormula(Formula &F); 1151 void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses); 1152 1153 void print(raw_ostream &OS) const; 1154 void dump() const; 1155 }; 1156 1157 } 1158 1159 /// HasFormula - Test whether this use as a formula which has the same 1160 /// registers as the given formula. 1161 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const { 1162 SmallVector<const SCEV *, 2> Key = F.BaseRegs; 1163 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1164 // Unstable sort by host order ok, because this is only used for uniquifying. 1165 std::sort(Key.begin(), Key.end()); 1166 return Uniquifier.count(Key); 1167 } 1168 1169 /// InsertFormula - If the given formula has not yet been inserted, add it to 1170 /// the list, and return true. Return false otherwise. 1171 bool LSRUse::InsertFormula(const Formula &F) { 1172 SmallVector<const SCEV *, 2> Key = F.BaseRegs; 1173 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1174 // Unstable sort by host order ok, because this is only used for uniquifying. 1175 std::sort(Key.begin(), Key.end()); 1176 1177 if (!Uniquifier.insert(Key).second) 1178 return false; 1179 1180 // Using a register to hold the value of 0 is not profitable. 1181 assert((!F.ScaledReg || !F.ScaledReg->isZero()) && 1182 "Zero allocated in a scaled register!"); 1183 #ifndef NDEBUG 1184 for (SmallVectorImpl<const SCEV *>::const_iterator I = 1185 F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) 1186 assert(!(*I)->isZero() && "Zero allocated in a base register!"); 1187 #endif 1188 1189 // Add the formula to the list. 1190 Formulae.push_back(F); 1191 1192 // Record registers now being used by this use. 1193 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1194 1195 return true; 1196 } 1197 1198 /// DeleteFormula - Remove the given formula from this use's list. 1199 void LSRUse::DeleteFormula(Formula &F) { 1200 if (&F != &Formulae.back()) 1201 std::swap(F, Formulae.back()); 1202 Formulae.pop_back(); 1203 } 1204 1205 /// RecomputeRegs - Recompute the Regs field, and update RegUses. 1206 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) { 1207 // Now that we've filtered out some formulae, recompute the Regs set. 1208 SmallPtrSet<const SCEV *, 4> OldRegs = Regs; 1209 Regs.clear(); 1210 for (SmallVectorImpl<Formula>::const_iterator I = Formulae.begin(), 1211 E = Formulae.end(); I != E; ++I) { 1212 const Formula &F = *I; 1213 if (F.ScaledReg) Regs.insert(F.ScaledReg); 1214 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1215 } 1216 1217 // Update the RegTracker. 1218 for (SmallPtrSet<const SCEV *, 4>::iterator I = OldRegs.begin(), 1219 E = OldRegs.end(); I != E; ++I) 1220 if (!Regs.count(*I)) 1221 RegUses.DropRegister(*I, LUIdx); 1222 } 1223 1224 void LSRUse::print(raw_ostream &OS) const { 1225 OS << "LSR Use: Kind="; 1226 switch (Kind) { 1227 case Basic: OS << "Basic"; break; 1228 case Special: OS << "Special"; break; 1229 case ICmpZero: OS << "ICmpZero"; break; 1230 case Address: 1231 OS << "Address of "; 1232 if (AccessTy->isPointerTy()) 1233 OS << "pointer"; // the full pointer type could be really verbose 1234 else 1235 OS << *AccessTy; 1236 } 1237 1238 OS << ", Offsets={"; 1239 for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(), 1240 E = Offsets.end(); I != E; ++I) { 1241 OS << *I; 1242 if (llvm::next(I) != E) 1243 OS << ','; 1244 } 1245 OS << '}'; 1246 1247 if (AllFixupsOutsideLoop) 1248 OS << ", all-fixups-outside-loop"; 1249 1250 if (WidestFixupType) 1251 OS << ", widest fixup type: " << *WidestFixupType; 1252 } 1253 1254 void LSRUse::dump() const { 1255 print(errs()); errs() << '\n'; 1256 } 1257 1258 /// isLegalUse - Test whether the use described by AM is "legal", meaning it can 1259 /// be completely folded into the user instruction at isel time. This includes 1260 /// address-mode folding and special icmp tricks. 1261 static bool isLegalUse(const TargetLowering::AddrMode &AM, 1262 LSRUse::KindType Kind, Type *AccessTy, 1263 const TargetLowering *TLI) { 1264 switch (Kind) { 1265 case LSRUse::Address: 1266 // If we have low-level target information, ask the target if it can 1267 // completely fold this address. 1268 if (TLI) return TLI->isLegalAddressingMode(AM, AccessTy); 1269 1270 // Otherwise, just guess that reg+reg addressing is legal. 1271 return !AM.BaseGV && AM.BaseOffs == 0 && AM.Scale <= 1; 1272 1273 case LSRUse::ICmpZero: 1274 // There's not even a target hook for querying whether it would be legal to 1275 // fold a GV into an ICmp. 1276 if (AM.BaseGV) 1277 return false; 1278 1279 // ICmp only has two operands; don't allow more than two non-trivial parts. 1280 if (AM.Scale != 0 && AM.HasBaseReg && AM.BaseOffs != 0) 1281 return false; 1282 1283 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by 1284 // putting the scaled register in the other operand of the icmp. 1285 if (AM.Scale != 0 && AM.Scale != -1) 1286 return false; 1287 1288 // If we have low-level target information, ask the target if it can fold an 1289 // integer immediate on an icmp. 1290 if (AM.BaseOffs != 0) { 1291 if (!TLI) 1292 return false; 1293 // We have one of: 1294 // ICmpZero BaseReg + Offset => ICmp BaseReg, -Offset 1295 // ICmpZero -1*ScaleReg + Offset => ICmp ScaleReg, Offset 1296 // Offs is the ICmp immediate. 1297 int64_t Offs = AM.BaseOffs; 1298 if (AM.Scale == 0) 1299 Offs = -(uint64_t)Offs; // The cast does the right thing with INT64_MIN. 1300 return TLI->isLegalICmpImmediate(Offs); 1301 } 1302 1303 // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg 1304 return true; 1305 1306 case LSRUse::Basic: 1307 // Only handle single-register values. 1308 return !AM.BaseGV && AM.Scale == 0 && AM.BaseOffs == 0; 1309 1310 case LSRUse::Special: 1311 // Special case Basic to handle -1 scales. 1312 return !AM.BaseGV && (AM.Scale == 0 || AM.Scale == -1) && AM.BaseOffs == 0; 1313 } 1314 1315 llvm_unreachable("Invalid LSRUse Kind!"); 1316 } 1317 1318 static bool isLegalUse(TargetLowering::AddrMode AM, 1319 int64_t MinOffset, int64_t MaxOffset, 1320 LSRUse::KindType Kind, Type *AccessTy, 1321 const TargetLowering *TLI) { 1322 // Check for overflow. 1323 if (((int64_t)((uint64_t)AM.BaseOffs + MinOffset) > AM.BaseOffs) != 1324 (MinOffset > 0)) 1325 return false; 1326 AM.BaseOffs = (uint64_t)AM.BaseOffs + MinOffset; 1327 if (isLegalUse(AM, Kind, AccessTy, TLI)) { 1328 AM.BaseOffs = (uint64_t)AM.BaseOffs - MinOffset; 1329 // Check for overflow. 1330 if (((int64_t)((uint64_t)AM.BaseOffs + MaxOffset) > AM.BaseOffs) != 1331 (MaxOffset > 0)) 1332 return false; 1333 AM.BaseOffs = (uint64_t)AM.BaseOffs + MaxOffset; 1334 return isLegalUse(AM, Kind, AccessTy, TLI); 1335 } 1336 return false; 1337 } 1338 1339 static bool isAlwaysFoldable(int64_t BaseOffs, 1340 GlobalValue *BaseGV, 1341 bool HasBaseReg, 1342 LSRUse::KindType Kind, Type *AccessTy, 1343 const TargetLowering *TLI) { 1344 // Fast-path: zero is always foldable. 1345 if (BaseOffs == 0 && !BaseGV) return true; 1346 1347 // Conservatively, create an address with an immediate and a 1348 // base and a scale. 1349 TargetLowering::AddrMode AM; 1350 AM.BaseOffs = BaseOffs; 1351 AM.BaseGV = BaseGV; 1352 AM.HasBaseReg = HasBaseReg; 1353 AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1354 1355 // Canonicalize a scale of 1 to a base register if the formula doesn't 1356 // already have a base register. 1357 if (!AM.HasBaseReg && AM.Scale == 1) { 1358 AM.Scale = 0; 1359 AM.HasBaseReg = true; 1360 } 1361 1362 return isLegalUse(AM, Kind, AccessTy, TLI); 1363 } 1364 1365 static bool isAlwaysFoldable(const SCEV *S, 1366 int64_t MinOffset, int64_t MaxOffset, 1367 bool HasBaseReg, 1368 LSRUse::KindType Kind, Type *AccessTy, 1369 const TargetLowering *TLI, 1370 ScalarEvolution &SE) { 1371 // Fast-path: zero is always foldable. 1372 if (S->isZero()) return true; 1373 1374 // Conservatively, create an address with an immediate and a 1375 // base and a scale. 1376 int64_t BaseOffs = ExtractImmediate(S, SE); 1377 GlobalValue *BaseGV = ExtractSymbol(S, SE); 1378 1379 // If there's anything else involved, it's not foldable. 1380 if (!S->isZero()) return false; 1381 1382 // Fast-path: zero is always foldable. 1383 if (BaseOffs == 0 && !BaseGV) return true; 1384 1385 // Conservatively, create an address with an immediate and a 1386 // base and a scale. 1387 TargetLowering::AddrMode AM; 1388 AM.BaseOffs = BaseOffs; 1389 AM.BaseGV = BaseGV; 1390 AM.HasBaseReg = HasBaseReg; 1391 AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1392 1393 return isLegalUse(AM, MinOffset, MaxOffset, Kind, AccessTy, TLI); 1394 } 1395 1396 namespace { 1397 1398 /// UseMapDenseMapInfo - A DenseMapInfo implementation for holding 1399 /// DenseMaps and DenseSets of pairs of const SCEV* and LSRUse::Kind. 1400 struct UseMapDenseMapInfo { 1401 static std::pair<const SCEV *, LSRUse::KindType> getEmptyKey() { 1402 return std::make_pair(reinterpret_cast<const SCEV *>(-1), LSRUse::Basic); 1403 } 1404 1405 static std::pair<const SCEV *, LSRUse::KindType> getTombstoneKey() { 1406 return std::make_pair(reinterpret_cast<const SCEV *>(-2), LSRUse::Basic); 1407 } 1408 1409 static unsigned 1410 getHashValue(const std::pair<const SCEV *, LSRUse::KindType> &V) { 1411 unsigned Result = DenseMapInfo<const SCEV *>::getHashValue(V.first); 1412 Result ^= DenseMapInfo<unsigned>::getHashValue(unsigned(V.second)); 1413 return Result; 1414 } 1415 1416 static bool isEqual(const std::pair<const SCEV *, LSRUse::KindType> &LHS, 1417 const std::pair<const SCEV *, LSRUse::KindType> &RHS) { 1418 return LHS == RHS; 1419 } 1420 }; 1421 1422 /// IVInc - An individual increment in a Chain of IV increments. 1423 /// Relate an IV user to an expression that computes the IV it uses from the IV 1424 /// used by the previous link in the Chain. 1425 /// 1426 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the 1427 /// original IVOperand. The head of the chain's IVOperand is only valid during 1428 /// chain collection, before LSR replaces IV users. During chain generation, 1429 /// IncExpr can be used to find the new IVOperand that computes the same 1430 /// expression. 1431 struct IVInc { 1432 Instruction *UserInst; 1433 Value* IVOperand; 1434 const SCEV *IncExpr; 1435 1436 IVInc(Instruction *U, Value *O, const SCEV *E): 1437 UserInst(U), IVOperand(O), IncExpr(E) {} 1438 }; 1439 1440 // IVChain - The list of IV increments in program order. 1441 // We typically add the head of a chain without finding subsequent links. 1442 struct IVChain { 1443 SmallVector<IVInc,1> Incs; 1444 const SCEV *ExprBase; 1445 1446 IVChain() : ExprBase(0) {} 1447 1448 IVChain(const IVInc &Head, const SCEV *Base) 1449 : Incs(1, Head), ExprBase(Base) {} 1450 1451 typedef SmallVectorImpl<IVInc>::const_iterator const_iterator; 1452 1453 // begin - return the first increment in the chain. 1454 const_iterator begin() const { 1455 assert(!Incs.empty()); 1456 return llvm::next(Incs.begin()); 1457 } 1458 const_iterator end() const { 1459 return Incs.end(); 1460 } 1461 1462 // hasIncs - Returns true if this chain contains any increments. 1463 bool hasIncs() const { return Incs.size() >= 2; } 1464 1465 // add - Add an IVInc to the end of this chain. 1466 void add(const IVInc &X) { Incs.push_back(X); } 1467 1468 // tailUserInst - Returns the last UserInst in the chain. 1469 Instruction *tailUserInst() const { return Incs.back().UserInst; } 1470 1471 // isProfitableIncrement - Returns true if IncExpr can be profitably added to 1472 // this chain. 1473 bool isProfitableIncrement(const SCEV *OperExpr, 1474 const SCEV *IncExpr, 1475 ScalarEvolution&); 1476 }; 1477 1478 /// ChainUsers - Helper for CollectChains to track multiple IV increment uses. 1479 /// Distinguish between FarUsers that definitely cross IV increments and 1480 /// NearUsers that may be used between IV increments. 1481 struct ChainUsers { 1482 SmallPtrSet<Instruction*, 4> FarUsers; 1483 SmallPtrSet<Instruction*, 4> NearUsers; 1484 }; 1485 1486 /// LSRInstance - This class holds state for the main loop strength reduction 1487 /// logic. 1488 class LSRInstance { 1489 IVUsers &IU; 1490 ScalarEvolution &SE; 1491 DominatorTree &DT; 1492 LoopInfo &LI; 1493 const TargetLowering *const TLI; 1494 Loop *const L; 1495 bool Changed; 1496 1497 /// IVIncInsertPos - This is the insert position that the current loop's 1498 /// induction variable increment should be placed. In simple loops, this is 1499 /// the latch block's terminator. But in more complicated cases, this is a 1500 /// position which will dominate all the in-loop post-increment users. 1501 Instruction *IVIncInsertPos; 1502 1503 /// Factors - Interesting factors between use strides. 1504 SmallSetVector<int64_t, 8> Factors; 1505 1506 /// Types - Interesting use types, to facilitate truncation reuse. 1507 SmallSetVector<Type *, 4> Types; 1508 1509 /// Fixups - The list of operands which are to be replaced. 1510 SmallVector<LSRFixup, 16> Fixups; 1511 1512 /// Uses - The list of interesting uses. 1513 SmallVector<LSRUse, 16> Uses; 1514 1515 /// RegUses - Track which uses use which register candidates. 1516 RegUseTracker RegUses; 1517 1518 // Limit the number of chains to avoid quadratic behavior. We don't expect to 1519 // have more than a few IV increment chains in a loop. Missing a Chain falls 1520 // back to normal LSR behavior for those uses. 1521 static const unsigned MaxChains = 8; 1522 1523 /// IVChainVec - IV users can form a chain of IV increments. 1524 SmallVector<IVChain, MaxChains> IVChainVec; 1525 1526 /// IVIncSet - IV users that belong to profitable IVChains. 1527 SmallPtrSet<Use*, MaxChains> IVIncSet; 1528 1529 void OptimizeShadowIV(); 1530 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse); 1531 ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse); 1532 void OptimizeLoopTermCond(); 1533 1534 void ChainInstruction(Instruction *UserInst, Instruction *IVOper, 1535 SmallVectorImpl<ChainUsers> &ChainUsersVec); 1536 void FinalizeChain(IVChain &Chain); 1537 void CollectChains(); 1538 void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 1539 SmallVectorImpl<WeakVH> &DeadInsts); 1540 1541 void CollectInterestingTypesAndFactors(); 1542 void CollectFixupsAndInitialFormulae(); 1543 1544 LSRFixup &getNewFixup() { 1545 Fixups.push_back(LSRFixup()); 1546 return Fixups.back(); 1547 } 1548 1549 // Support for sharing of LSRUses between LSRFixups. 1550 typedef DenseMap<std::pair<const SCEV *, LSRUse::KindType>, 1551 size_t, 1552 UseMapDenseMapInfo> UseMapTy; 1553 UseMapTy UseMap; 1554 1555 bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, 1556 LSRUse::KindType Kind, Type *AccessTy); 1557 1558 std::pair<size_t, int64_t> getUse(const SCEV *&Expr, 1559 LSRUse::KindType Kind, 1560 Type *AccessTy); 1561 1562 void DeleteUse(LSRUse &LU, size_t LUIdx); 1563 1564 LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU); 1565 1566 void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1567 void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1568 void CountRegisters(const Formula &F, size_t LUIdx); 1569 bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F); 1570 1571 void CollectLoopInvariantFixupsAndFormulae(); 1572 1573 void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base, 1574 unsigned Depth = 0); 1575 void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base); 1576 void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1577 void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1578 void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base); 1579 void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base); 1580 void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base); 1581 void GenerateCrossUseConstantOffsets(); 1582 void GenerateAllReuseFormulae(); 1583 1584 void FilterOutUndesirableDedicatedRegisters(); 1585 1586 size_t EstimateSearchSpaceComplexity() const; 1587 void NarrowSearchSpaceByDetectingSupersets(); 1588 void NarrowSearchSpaceByCollapsingUnrolledCode(); 1589 void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 1590 void NarrowSearchSpaceByPickingWinnerRegs(); 1591 void NarrowSearchSpaceUsingHeuristics(); 1592 1593 void SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 1594 Cost &SolutionCost, 1595 SmallVectorImpl<const Formula *> &Workspace, 1596 const Cost &CurCost, 1597 const SmallPtrSet<const SCEV *, 16> &CurRegs, 1598 DenseSet<const SCEV *> &VisitedRegs) const; 1599 void Solve(SmallVectorImpl<const Formula *> &Solution) const; 1600 1601 BasicBlock::iterator 1602 HoistInsertPosition(BasicBlock::iterator IP, 1603 const SmallVectorImpl<Instruction *> &Inputs) const; 1604 BasicBlock::iterator 1605 AdjustInsertPositionForExpand(BasicBlock::iterator IP, 1606 const LSRFixup &LF, 1607 const LSRUse &LU, 1608 SCEVExpander &Rewriter) const; 1609 1610 Value *Expand(const LSRFixup &LF, 1611 const Formula &F, 1612 BasicBlock::iterator IP, 1613 SCEVExpander &Rewriter, 1614 SmallVectorImpl<WeakVH> &DeadInsts) const; 1615 void RewriteForPHI(PHINode *PN, const LSRFixup &LF, 1616 const Formula &F, 1617 SCEVExpander &Rewriter, 1618 SmallVectorImpl<WeakVH> &DeadInsts, 1619 Pass *P) const; 1620 void Rewrite(const LSRFixup &LF, 1621 const Formula &F, 1622 SCEVExpander &Rewriter, 1623 SmallVectorImpl<WeakVH> &DeadInsts, 1624 Pass *P) const; 1625 void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution, 1626 Pass *P); 1627 1628 public: 1629 LSRInstance(const TargetLowering *tli, Loop *l, Pass *P); 1630 1631 bool getChanged() const { return Changed; } 1632 1633 void print_factors_and_types(raw_ostream &OS) const; 1634 void print_fixups(raw_ostream &OS) const; 1635 void print_uses(raw_ostream &OS) const; 1636 void print(raw_ostream &OS) const; 1637 void dump() const; 1638 }; 1639 1640 } 1641 1642 /// OptimizeShadowIV - If IV is used in a int-to-float cast 1643 /// inside the loop then try to eliminate the cast operation. 1644 void LSRInstance::OptimizeShadowIV() { 1645 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 1646 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 1647 return; 1648 1649 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); 1650 UI != E; /* empty */) { 1651 IVUsers::const_iterator CandidateUI = UI; 1652 ++UI; 1653 Instruction *ShadowUse = CandidateUI->getUser(); 1654 Type *DestTy = NULL; 1655 bool IsSigned = false; 1656 1657 /* If shadow use is a int->float cast then insert a second IV 1658 to eliminate this cast. 1659 1660 for (unsigned i = 0; i < n; ++i) 1661 foo((double)i); 1662 1663 is transformed into 1664 1665 double d = 0.0; 1666 for (unsigned i = 0; i < n; ++i, ++d) 1667 foo(d); 1668 */ 1669 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) { 1670 IsSigned = false; 1671 DestTy = UCast->getDestTy(); 1672 } 1673 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) { 1674 IsSigned = true; 1675 DestTy = SCast->getDestTy(); 1676 } 1677 if (!DestTy) continue; 1678 1679 if (TLI) { 1680 // If target does not support DestTy natively then do not apply 1681 // this transformation. 1682 EVT DVT = TLI->getValueType(DestTy); 1683 if (!TLI->isTypeLegal(DVT)) continue; 1684 } 1685 1686 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0)); 1687 if (!PH) continue; 1688 if (PH->getNumIncomingValues() != 2) continue; 1689 1690 Type *SrcTy = PH->getType(); 1691 int Mantissa = DestTy->getFPMantissaWidth(); 1692 if (Mantissa == -1) continue; 1693 if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa) 1694 continue; 1695 1696 unsigned Entry, Latch; 1697 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) { 1698 Entry = 0; 1699 Latch = 1; 1700 } else { 1701 Entry = 1; 1702 Latch = 0; 1703 } 1704 1705 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry)); 1706 if (!Init) continue; 1707 Constant *NewInit = ConstantFP::get(DestTy, IsSigned ? 1708 (double)Init->getSExtValue() : 1709 (double)Init->getZExtValue()); 1710 1711 BinaryOperator *Incr = 1712 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch)); 1713 if (!Incr) continue; 1714 if (Incr->getOpcode() != Instruction::Add 1715 && Incr->getOpcode() != Instruction::Sub) 1716 continue; 1717 1718 /* Initialize new IV, double d = 0.0 in above example. */ 1719 ConstantInt *C = NULL; 1720 if (Incr->getOperand(0) == PH) 1721 C = dyn_cast<ConstantInt>(Incr->getOperand(1)); 1722 else if (Incr->getOperand(1) == PH) 1723 C = dyn_cast<ConstantInt>(Incr->getOperand(0)); 1724 else 1725 continue; 1726 1727 if (!C) continue; 1728 1729 // Ignore negative constants, as the code below doesn't handle them 1730 // correctly. TODO: Remove this restriction. 1731 if (!C->getValue().isStrictlyPositive()) continue; 1732 1733 /* Add new PHINode. */ 1734 PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH); 1735 1736 /* create new increment. '++d' in above example. */ 1737 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue()); 1738 BinaryOperator *NewIncr = 1739 BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ? 1740 Instruction::FAdd : Instruction::FSub, 1741 NewPH, CFP, "IV.S.next.", Incr); 1742 1743 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry)); 1744 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch)); 1745 1746 /* Remove cast operation */ 1747 ShadowUse->replaceAllUsesWith(NewPH); 1748 ShadowUse->eraseFromParent(); 1749 Changed = true; 1750 break; 1751 } 1752 } 1753 1754 /// FindIVUserForCond - If Cond has an operand that is an expression of an IV, 1755 /// set the IV user and stride information and return true, otherwise return 1756 /// false. 1757 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) { 1758 for (IVUsers::iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) 1759 if (UI->getUser() == Cond) { 1760 // NOTE: we could handle setcc instructions with multiple uses here, but 1761 // InstCombine does it as well for simple uses, it's not clear that it 1762 // occurs enough in real life to handle. 1763 CondUse = UI; 1764 return true; 1765 } 1766 return false; 1767 } 1768 1769 /// OptimizeMax - Rewrite the loop's terminating condition if it uses 1770 /// a max computation. 1771 /// 1772 /// This is a narrow solution to a specific, but acute, problem. For loops 1773 /// like this: 1774 /// 1775 /// i = 0; 1776 /// do { 1777 /// p[i] = 0.0; 1778 /// } while (++i < n); 1779 /// 1780 /// the trip count isn't just 'n', because 'n' might not be positive. And 1781 /// unfortunately this can come up even for loops where the user didn't use 1782 /// a C do-while loop. For example, seemingly well-behaved top-test loops 1783 /// will commonly be lowered like this: 1784 // 1785 /// if (n > 0) { 1786 /// i = 0; 1787 /// do { 1788 /// p[i] = 0.0; 1789 /// } while (++i < n); 1790 /// } 1791 /// 1792 /// and then it's possible for subsequent optimization to obscure the if 1793 /// test in such a way that indvars can't find it. 1794 /// 1795 /// When indvars can't find the if test in loops like this, it creates a 1796 /// max expression, which allows it to give the loop a canonical 1797 /// induction variable: 1798 /// 1799 /// i = 0; 1800 /// max = n < 1 ? 1 : n; 1801 /// do { 1802 /// p[i] = 0.0; 1803 /// } while (++i != max); 1804 /// 1805 /// Canonical induction variables are necessary because the loop passes 1806 /// are designed around them. The most obvious example of this is the 1807 /// LoopInfo analysis, which doesn't remember trip count values. It 1808 /// expects to be able to rediscover the trip count each time it is 1809 /// needed, and it does this using a simple analysis that only succeeds if 1810 /// the loop has a canonical induction variable. 1811 /// 1812 /// However, when it comes time to generate code, the maximum operation 1813 /// can be quite costly, especially if it's inside of an outer loop. 1814 /// 1815 /// This function solves this problem by detecting this type of loop and 1816 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting 1817 /// the instructions for the maximum computation. 1818 /// 1819 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) { 1820 // Check that the loop matches the pattern we're looking for. 1821 if (Cond->getPredicate() != CmpInst::ICMP_EQ && 1822 Cond->getPredicate() != CmpInst::ICMP_NE) 1823 return Cond; 1824 1825 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1)); 1826 if (!Sel || !Sel->hasOneUse()) return Cond; 1827 1828 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 1829 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 1830 return Cond; 1831 const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1); 1832 1833 // Add one to the backedge-taken count to get the trip count. 1834 const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount); 1835 if (IterationCount != SE.getSCEV(Sel)) return Cond; 1836 1837 // Check for a max calculation that matches the pattern. There's no check 1838 // for ICMP_ULE here because the comparison would be with zero, which 1839 // isn't interesting. 1840 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1841 const SCEVNAryExpr *Max = 0; 1842 if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) { 1843 Pred = ICmpInst::ICMP_SLE; 1844 Max = S; 1845 } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) { 1846 Pred = ICmpInst::ICMP_SLT; 1847 Max = S; 1848 } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) { 1849 Pred = ICmpInst::ICMP_ULT; 1850 Max = U; 1851 } else { 1852 // No match; bail. 1853 return Cond; 1854 } 1855 1856 // To handle a max with more than two operands, this optimization would 1857 // require additional checking and setup. 1858 if (Max->getNumOperands() != 2) 1859 return Cond; 1860 1861 const SCEV *MaxLHS = Max->getOperand(0); 1862 const SCEV *MaxRHS = Max->getOperand(1); 1863 1864 // ScalarEvolution canonicalizes constants to the left. For < and >, look 1865 // for a comparison with 1. For <= and >=, a comparison with zero. 1866 if (!MaxLHS || 1867 (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One))) 1868 return Cond; 1869 1870 // Check the relevant induction variable for conformance to 1871 // the pattern. 1872 const SCEV *IV = SE.getSCEV(Cond->getOperand(0)); 1873 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV); 1874 if (!AR || !AR->isAffine() || 1875 AR->getStart() != One || 1876 AR->getStepRecurrence(SE) != One) 1877 return Cond; 1878 1879 assert(AR->getLoop() == L && 1880 "Loop condition operand is an addrec in a different loop!"); 1881 1882 // Check the right operand of the select, and remember it, as it will 1883 // be used in the new comparison instruction. 1884 Value *NewRHS = 0; 1885 if (ICmpInst::isTrueWhenEqual(Pred)) { 1886 // Look for n+1, and grab n. 1887 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1))) 1888 if (isa<ConstantInt>(BO->getOperand(1)) && 1889 cast<ConstantInt>(BO->getOperand(1))->isOne() && 1890 SE.getSCEV(BO->getOperand(0)) == MaxRHS) 1891 NewRHS = BO->getOperand(0); 1892 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2))) 1893 if (isa<ConstantInt>(BO->getOperand(1)) && 1894 cast<ConstantInt>(BO->getOperand(1))->isOne() && 1895 SE.getSCEV(BO->getOperand(0)) == MaxRHS) 1896 NewRHS = BO->getOperand(0); 1897 if (!NewRHS) 1898 return Cond; 1899 } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS) 1900 NewRHS = Sel->getOperand(1); 1901 else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS) 1902 NewRHS = Sel->getOperand(2); 1903 else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS)) 1904 NewRHS = SU->getValue(); 1905 else 1906 // Max doesn't match expected pattern. 1907 return Cond; 1908 1909 // Determine the new comparison opcode. It may be signed or unsigned, 1910 // and the original comparison may be either equality or inequality. 1911 if (Cond->getPredicate() == CmpInst::ICMP_EQ) 1912 Pred = CmpInst::getInversePredicate(Pred); 1913 1914 // Ok, everything looks ok to change the condition into an SLT or SGE and 1915 // delete the max calculation. 1916 ICmpInst *NewCond = 1917 new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp"); 1918 1919 // Delete the max calculation instructions. 1920 Cond->replaceAllUsesWith(NewCond); 1921 CondUse->setUser(NewCond); 1922 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0)); 1923 Cond->eraseFromParent(); 1924 Sel->eraseFromParent(); 1925 if (Cmp->use_empty()) 1926 Cmp->eraseFromParent(); 1927 return NewCond; 1928 } 1929 1930 /// OptimizeLoopTermCond - Change loop terminating condition to use the 1931 /// postinc iv when possible. 1932 void 1933 LSRInstance::OptimizeLoopTermCond() { 1934 SmallPtrSet<Instruction *, 4> PostIncs; 1935 1936 BasicBlock *LatchBlock = L->getLoopLatch(); 1937 SmallVector<BasicBlock*, 8> ExitingBlocks; 1938 L->getExitingBlocks(ExitingBlocks); 1939 1940 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 1941 BasicBlock *ExitingBlock = ExitingBlocks[i]; 1942 1943 // Get the terminating condition for the loop if possible. If we 1944 // can, we want to change it to use a post-incremented version of its 1945 // induction variable, to allow coalescing the live ranges for the IV into 1946 // one register value. 1947 1948 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 1949 if (!TermBr) 1950 continue; 1951 // FIXME: Overly conservative, termination condition could be an 'or' etc.. 1952 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition())) 1953 continue; 1954 1955 // Search IVUsesByStride to find Cond's IVUse if there is one. 1956 IVStrideUse *CondUse = 0; 1957 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition()); 1958 if (!FindIVUserForCond(Cond, CondUse)) 1959 continue; 1960 1961 // If the trip count is computed in terms of a max (due to ScalarEvolution 1962 // being unable to find a sufficient guard, for example), change the loop 1963 // comparison to use SLT or ULT instead of NE. 1964 // One consequence of doing this now is that it disrupts the count-down 1965 // optimization. That's not always a bad thing though, because in such 1966 // cases it may still be worthwhile to avoid a max. 1967 Cond = OptimizeMax(Cond, CondUse); 1968 1969 // If this exiting block dominates the latch block, it may also use 1970 // the post-inc value if it won't be shared with other uses. 1971 // Check for dominance. 1972 if (!DT.dominates(ExitingBlock, LatchBlock)) 1973 continue; 1974 1975 // Conservatively avoid trying to use the post-inc value in non-latch 1976 // exits if there may be pre-inc users in intervening blocks. 1977 if (LatchBlock != ExitingBlock) 1978 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) 1979 // Test if the use is reachable from the exiting block. This dominator 1980 // query is a conservative approximation of reachability. 1981 if (&*UI != CondUse && 1982 !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) { 1983 // Conservatively assume there may be reuse if the quotient of their 1984 // strides could be a legal scale. 1985 const SCEV *A = IU.getStride(*CondUse, L); 1986 const SCEV *B = IU.getStride(*UI, L); 1987 if (!A || !B) continue; 1988 if (SE.getTypeSizeInBits(A->getType()) != 1989 SE.getTypeSizeInBits(B->getType())) { 1990 if (SE.getTypeSizeInBits(A->getType()) > 1991 SE.getTypeSizeInBits(B->getType())) 1992 B = SE.getSignExtendExpr(B, A->getType()); 1993 else 1994 A = SE.getSignExtendExpr(A, B->getType()); 1995 } 1996 if (const SCEVConstant *D = 1997 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) { 1998 const ConstantInt *C = D->getValue(); 1999 // Stride of one or negative one can have reuse with non-addresses. 2000 if (C->isOne() || C->isAllOnesValue()) 2001 goto decline_post_inc; 2002 // Avoid weird situations. 2003 if (C->getValue().getMinSignedBits() >= 64 || 2004 C->getValue().isMinSignedValue()) 2005 goto decline_post_inc; 2006 // Without TLI, assume that any stride might be valid, and so any 2007 // use might be shared. 2008 if (!TLI) 2009 goto decline_post_inc; 2010 // Check for possible scaled-address reuse. 2011 Type *AccessTy = getAccessType(UI->getUser()); 2012 TargetLowering::AddrMode AM; 2013 AM.Scale = C->getSExtValue(); 2014 if (TLI->isLegalAddressingMode(AM, AccessTy)) 2015 goto decline_post_inc; 2016 AM.Scale = -AM.Scale; 2017 if (TLI->isLegalAddressingMode(AM, AccessTy)) 2018 goto decline_post_inc; 2019 } 2020 } 2021 2022 DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: " 2023 << *Cond << '\n'); 2024 2025 // It's possible for the setcc instruction to be anywhere in the loop, and 2026 // possible for it to have multiple users. If it is not immediately before 2027 // the exiting block branch, move it. 2028 if (&*++BasicBlock::iterator(Cond) != TermBr) { 2029 if (Cond->hasOneUse()) { 2030 Cond->moveBefore(TermBr); 2031 } else { 2032 // Clone the terminating condition and insert into the loopend. 2033 ICmpInst *OldCond = Cond; 2034 Cond = cast<ICmpInst>(Cond->clone()); 2035 Cond->setName(L->getHeader()->getName() + ".termcond"); 2036 ExitingBlock->getInstList().insert(TermBr, Cond); 2037 2038 // Clone the IVUse, as the old use still exists! 2039 CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace()); 2040 TermBr->replaceUsesOfWith(OldCond, Cond); 2041 } 2042 } 2043 2044 // If we get to here, we know that we can transform the setcc instruction to 2045 // use the post-incremented version of the IV, allowing us to coalesce the 2046 // live ranges for the IV correctly. 2047 CondUse->transformToPostInc(L); 2048 Changed = true; 2049 2050 PostIncs.insert(Cond); 2051 decline_post_inc:; 2052 } 2053 2054 // Determine an insertion point for the loop induction variable increment. It 2055 // must dominate all the post-inc comparisons we just set up, and it must 2056 // dominate the loop latch edge. 2057 IVIncInsertPos = L->getLoopLatch()->getTerminator(); 2058 for (SmallPtrSet<Instruction *, 4>::const_iterator I = PostIncs.begin(), 2059 E = PostIncs.end(); I != E; ++I) { 2060 BasicBlock *BB = 2061 DT.findNearestCommonDominator(IVIncInsertPos->getParent(), 2062 (*I)->getParent()); 2063 if (BB == (*I)->getParent()) 2064 IVIncInsertPos = *I; 2065 else if (BB != IVIncInsertPos->getParent()) 2066 IVIncInsertPos = BB->getTerminator(); 2067 } 2068 } 2069 2070 /// reconcileNewOffset - Determine if the given use can accommodate a fixup 2071 /// at the given offset and other details. If so, update the use and 2072 /// return true. 2073 bool 2074 LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, 2075 LSRUse::KindType Kind, Type *AccessTy) { 2076 int64_t NewMinOffset = LU.MinOffset; 2077 int64_t NewMaxOffset = LU.MaxOffset; 2078 Type *NewAccessTy = AccessTy; 2079 2080 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to 2081 // something conservative, however this can pessimize in the case that one of 2082 // the uses will have all its uses outside the loop, for example. 2083 if (LU.Kind != Kind) 2084 return false; 2085 // Conservatively assume HasBaseReg is true for now. 2086 if (NewOffset < LU.MinOffset) { 2087 if (!isAlwaysFoldable(LU.MaxOffset - NewOffset, 0, HasBaseReg, 2088 Kind, AccessTy, TLI)) 2089 return false; 2090 NewMinOffset = NewOffset; 2091 } else if (NewOffset > LU.MaxOffset) { 2092 if (!isAlwaysFoldable(NewOffset - LU.MinOffset, 0, HasBaseReg, 2093 Kind, AccessTy, TLI)) 2094 return false; 2095 NewMaxOffset = NewOffset; 2096 } 2097 // Check for a mismatched access type, and fall back conservatively as needed. 2098 // TODO: Be less conservative when the type is similar and can use the same 2099 // addressing modes. 2100 if (Kind == LSRUse::Address && AccessTy != LU.AccessTy) 2101 NewAccessTy = Type::getVoidTy(AccessTy->getContext()); 2102 2103 // Update the use. 2104 LU.MinOffset = NewMinOffset; 2105 LU.MaxOffset = NewMaxOffset; 2106 LU.AccessTy = NewAccessTy; 2107 if (NewOffset != LU.Offsets.back()) 2108 LU.Offsets.push_back(NewOffset); 2109 return true; 2110 } 2111 2112 /// getUse - Return an LSRUse index and an offset value for a fixup which 2113 /// needs the given expression, with the given kind and optional access type. 2114 /// Either reuse an existing use or create a new one, as needed. 2115 std::pair<size_t, int64_t> 2116 LSRInstance::getUse(const SCEV *&Expr, 2117 LSRUse::KindType Kind, Type *AccessTy) { 2118 const SCEV *Copy = Expr; 2119 int64_t Offset = ExtractImmediate(Expr, SE); 2120 2121 // Basic uses can't accept any offset, for example. 2122 if (!isAlwaysFoldable(Offset, 0, /*HasBaseReg=*/true, Kind, AccessTy, TLI)) { 2123 Expr = Copy; 2124 Offset = 0; 2125 } 2126 2127 std::pair<UseMapTy::iterator, bool> P = 2128 UseMap.insert(std::make_pair(std::make_pair(Expr, Kind), 0)); 2129 if (!P.second) { 2130 // A use already existed with this base. 2131 size_t LUIdx = P.first->second; 2132 LSRUse &LU = Uses[LUIdx]; 2133 if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy)) 2134 // Reuse this use. 2135 return std::make_pair(LUIdx, Offset); 2136 } 2137 2138 // Create a new use. 2139 size_t LUIdx = Uses.size(); 2140 P.first->second = LUIdx; 2141 Uses.push_back(LSRUse(Kind, AccessTy)); 2142 LSRUse &LU = Uses[LUIdx]; 2143 2144 // We don't need to track redundant offsets, but we don't need to go out 2145 // of our way here to avoid them. 2146 if (LU.Offsets.empty() || Offset != LU.Offsets.back()) 2147 LU.Offsets.push_back(Offset); 2148 2149 LU.MinOffset = Offset; 2150 LU.MaxOffset = Offset; 2151 return std::make_pair(LUIdx, Offset); 2152 } 2153 2154 /// DeleteUse - Delete the given use from the Uses list. 2155 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) { 2156 if (&LU != &Uses.back()) 2157 std::swap(LU, Uses.back()); 2158 Uses.pop_back(); 2159 2160 // Update RegUses. 2161 RegUses.SwapAndDropUse(LUIdx, Uses.size()); 2162 } 2163 2164 /// FindUseWithFormula - Look for a use distinct from OrigLU which is has 2165 /// a formula that has the same registers as the given formula. 2166 LSRUse * 2167 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF, 2168 const LSRUse &OrigLU) { 2169 // Search all uses for the formula. This could be more clever. 2170 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 2171 LSRUse &LU = Uses[LUIdx]; 2172 // Check whether this use is close enough to OrigLU, to see whether it's 2173 // worthwhile looking through its formulae. 2174 // Ignore ICmpZero uses because they may contain formulae generated by 2175 // GenerateICmpZeroScales, in which case adding fixup offsets may 2176 // be invalid. 2177 if (&LU != &OrigLU && 2178 LU.Kind != LSRUse::ICmpZero && 2179 LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy && 2180 LU.WidestFixupType == OrigLU.WidestFixupType && 2181 LU.HasFormulaWithSameRegs(OrigF)) { 2182 // Scan through this use's formulae. 2183 for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(), 2184 E = LU.Formulae.end(); I != E; ++I) { 2185 const Formula &F = *I; 2186 // Check to see if this formula has the same registers and symbols 2187 // as OrigF. 2188 if (F.BaseRegs == OrigF.BaseRegs && 2189 F.ScaledReg == OrigF.ScaledReg && 2190 F.AM.BaseGV == OrigF.AM.BaseGV && 2191 F.AM.Scale == OrigF.AM.Scale && 2192 F.UnfoldedOffset == OrigF.UnfoldedOffset) { 2193 if (F.AM.BaseOffs == 0) 2194 return &LU; 2195 // This is the formula where all the registers and symbols matched; 2196 // there aren't going to be any others. Since we declined it, we 2197 // can skip the rest of the formulae and proceed to the next LSRUse. 2198 break; 2199 } 2200 } 2201 } 2202 } 2203 2204 // Nothing looked good. 2205 return 0; 2206 } 2207 2208 void LSRInstance::CollectInterestingTypesAndFactors() { 2209 SmallSetVector<const SCEV *, 4> Strides; 2210 2211 // Collect interesting types and strides. 2212 SmallVector<const SCEV *, 4> Worklist; 2213 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) { 2214 const SCEV *Expr = IU.getExpr(*UI); 2215 2216 // Collect interesting types. 2217 Types.insert(SE.getEffectiveSCEVType(Expr->getType())); 2218 2219 // Add strides for mentioned loops. 2220 Worklist.push_back(Expr); 2221 do { 2222 const SCEV *S = Worklist.pop_back_val(); 2223 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2224 if (AR->getLoop() == L) 2225 Strides.insert(AR->getStepRecurrence(SE)); 2226 Worklist.push_back(AR->getStart()); 2227 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2228 Worklist.append(Add->op_begin(), Add->op_end()); 2229 } 2230 } while (!Worklist.empty()); 2231 } 2232 2233 // Compute interesting factors from the set of interesting strides. 2234 for (SmallSetVector<const SCEV *, 4>::const_iterator 2235 I = Strides.begin(), E = Strides.end(); I != E; ++I) 2236 for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter = 2237 llvm::next(I); NewStrideIter != E; ++NewStrideIter) { 2238 const SCEV *OldStride = *I; 2239 const SCEV *NewStride = *NewStrideIter; 2240 2241 if (SE.getTypeSizeInBits(OldStride->getType()) != 2242 SE.getTypeSizeInBits(NewStride->getType())) { 2243 if (SE.getTypeSizeInBits(OldStride->getType()) > 2244 SE.getTypeSizeInBits(NewStride->getType())) 2245 NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType()); 2246 else 2247 OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType()); 2248 } 2249 if (const SCEVConstant *Factor = 2250 dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride, 2251 SE, true))) { 2252 if (Factor->getValue()->getValue().getMinSignedBits() <= 64) 2253 Factors.insert(Factor->getValue()->getValue().getSExtValue()); 2254 } else if (const SCEVConstant *Factor = 2255 dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride, 2256 NewStride, 2257 SE, true))) { 2258 if (Factor->getValue()->getValue().getMinSignedBits() <= 64) 2259 Factors.insert(Factor->getValue()->getValue().getSExtValue()); 2260 } 2261 } 2262 2263 // If all uses use the same type, don't bother looking for truncation-based 2264 // reuse. 2265 if (Types.size() == 1) 2266 Types.clear(); 2267 2268 DEBUG(print_factors_and_types(dbgs())); 2269 } 2270 2271 /// findIVOperand - Helper for CollectChains that finds an IV operand (computed 2272 /// by an AddRec in this loop) within [OI,OE) or returns OE. If IVUsers mapped 2273 /// Instructions to IVStrideUses, we could partially skip this. 2274 static User::op_iterator 2275 findIVOperand(User::op_iterator OI, User::op_iterator OE, 2276 Loop *L, ScalarEvolution &SE) { 2277 for(; OI != OE; ++OI) { 2278 if (Instruction *Oper = dyn_cast<Instruction>(*OI)) { 2279 if (!SE.isSCEVable(Oper->getType())) 2280 continue; 2281 2282 if (const SCEVAddRecExpr *AR = 2283 dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) { 2284 if (AR->getLoop() == L) 2285 break; 2286 } 2287 } 2288 } 2289 return OI; 2290 } 2291 2292 /// getWideOperand - IVChain logic must consistenctly peek base TruncInst 2293 /// operands, so wrap it in a convenient helper. 2294 static Value *getWideOperand(Value *Oper) { 2295 if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper)) 2296 return Trunc->getOperand(0); 2297 return Oper; 2298 } 2299 2300 /// isCompatibleIVType - Return true if we allow an IV chain to include both 2301 /// types. 2302 static bool isCompatibleIVType(Value *LVal, Value *RVal) { 2303 Type *LType = LVal->getType(); 2304 Type *RType = RVal->getType(); 2305 return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy()); 2306 } 2307 2308 /// getExprBase - Return an approximation of this SCEV expression's "base", or 2309 /// NULL for any constant. Returning the expression itself is 2310 /// conservative. Returning a deeper subexpression is more precise and valid as 2311 /// long as it isn't less complex than another subexpression. For expressions 2312 /// involving multiple unscaled values, we need to return the pointer-type 2313 /// SCEVUnknown. This avoids forming chains across objects, such as: 2314 /// PrevOper==a[i], IVOper==b[i], IVInc==b-a. 2315 /// 2316 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost 2317 /// SCEVUnknown, we simply return the rightmost SCEV operand. 2318 static const SCEV *getExprBase(const SCEV *S) { 2319 switch (S->getSCEVType()) { 2320 default: // uncluding scUnknown. 2321 return S; 2322 case scConstant: 2323 return 0; 2324 case scTruncate: 2325 return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand()); 2326 case scZeroExtend: 2327 return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand()); 2328 case scSignExtend: 2329 return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand()); 2330 case scAddExpr: { 2331 // Skip over scaled operands (scMulExpr) to follow add operands as long as 2332 // there's nothing more complex. 2333 // FIXME: not sure if we want to recognize negation. 2334 const SCEVAddExpr *Add = cast<SCEVAddExpr>(S); 2335 for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()), 2336 E(Add->op_begin()); I != E; ++I) { 2337 const SCEV *SubExpr = *I; 2338 if (SubExpr->getSCEVType() == scAddExpr) 2339 return getExprBase(SubExpr); 2340 2341 if (SubExpr->getSCEVType() != scMulExpr) 2342 return SubExpr; 2343 } 2344 return S; // all operands are scaled, be conservative. 2345 } 2346 case scAddRecExpr: 2347 return getExprBase(cast<SCEVAddRecExpr>(S)->getStart()); 2348 } 2349 } 2350 2351 /// Return true if the chain increment is profitable to expand into a loop 2352 /// invariant value, which may require its own register. A profitable chain 2353 /// increment will be an offset relative to the same base. We allow such offsets 2354 /// to potentially be used as chain increment as long as it's not obviously 2355 /// expensive to expand using real instructions. 2356 bool IVChain::isProfitableIncrement(const SCEV *OperExpr, 2357 const SCEV *IncExpr, 2358 ScalarEvolution &SE) { 2359 // Aggressively form chains when -stress-ivchain. 2360 if (StressIVChain) 2361 return true; 2362 2363 // Do not replace a constant offset from IV head with a nonconstant IV 2364 // increment. 2365 if (!isa<SCEVConstant>(IncExpr)) { 2366 const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand)); 2367 if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr))) 2368 return 0; 2369 } 2370 2371 SmallPtrSet<const SCEV*, 8> Processed; 2372 return !isHighCostExpansion(IncExpr, Processed, SE); 2373 } 2374 2375 /// Return true if the number of registers needed for the chain is estimated to 2376 /// be less than the number required for the individual IV users. First prohibit 2377 /// any IV users that keep the IV live across increments (the Users set should 2378 /// be empty). Next count the number and type of increments in the chain. 2379 /// 2380 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't 2381 /// effectively use postinc addressing modes. Only consider it profitable it the 2382 /// increments can be computed in fewer registers when chained. 2383 /// 2384 /// TODO: Consider IVInc free if it's already used in another chains. 2385 static bool 2386 isProfitableChain(IVChain &Chain, SmallPtrSet<Instruction*, 4> &Users, 2387 ScalarEvolution &SE, const TargetLowering *TLI) { 2388 if (StressIVChain) 2389 return true; 2390 2391 if (!Chain.hasIncs()) 2392 return false; 2393 2394 if (!Users.empty()) { 2395 DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n"; 2396 for (SmallPtrSet<Instruction*, 4>::const_iterator I = Users.begin(), 2397 E = Users.end(); I != E; ++I) { 2398 dbgs() << " " << **I << "\n"; 2399 }); 2400 return false; 2401 } 2402 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 2403 2404 // The chain itself may require a register, so intialize cost to 1. 2405 int cost = 1; 2406 2407 // A complete chain likely eliminates the need for keeping the original IV in 2408 // a register. LSR does not currently know how to form a complete chain unless 2409 // the header phi already exists. 2410 if (isa<PHINode>(Chain.tailUserInst()) 2411 && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) { 2412 --cost; 2413 } 2414 const SCEV *LastIncExpr = 0; 2415 unsigned NumConstIncrements = 0; 2416 unsigned NumVarIncrements = 0; 2417 unsigned NumReusedIncrements = 0; 2418 for (IVChain::const_iterator I = Chain.begin(), E = Chain.end(); 2419 I != E; ++I) { 2420 2421 if (I->IncExpr->isZero()) 2422 continue; 2423 2424 // Incrementing by zero or some constant is neutral. We assume constants can 2425 // be folded into an addressing mode or an add's immediate operand. 2426 if (isa<SCEVConstant>(I->IncExpr)) { 2427 ++NumConstIncrements; 2428 continue; 2429 } 2430 2431 if (I->IncExpr == LastIncExpr) 2432 ++NumReusedIncrements; 2433 else 2434 ++NumVarIncrements; 2435 2436 LastIncExpr = I->IncExpr; 2437 } 2438 // An IV chain with a single increment is handled by LSR's postinc 2439 // uses. However, a chain with multiple increments requires keeping the IV's 2440 // value live longer than it needs to be if chained. 2441 if (NumConstIncrements > 1) 2442 --cost; 2443 2444 // Materializing increment expressions in the preheader that didn't exist in 2445 // the original code may cost a register. For example, sign-extended array 2446 // indices can produce ridiculous increments like this: 2447 // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64))) 2448 cost += NumVarIncrements; 2449 2450 // Reusing variable increments likely saves a register to hold the multiple of 2451 // the stride. 2452 cost -= NumReusedIncrements; 2453 2454 DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost 2455 << "\n"); 2456 2457 return cost < 0; 2458 } 2459 2460 /// ChainInstruction - Add this IV user to an existing chain or make it the head 2461 /// of a new chain. 2462 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper, 2463 SmallVectorImpl<ChainUsers> &ChainUsersVec) { 2464 // When IVs are used as types of varying widths, they are generally converted 2465 // to a wider type with some uses remaining narrow under a (free) trunc. 2466 Value *const NextIV = getWideOperand(IVOper); 2467 const SCEV *const OperExpr = SE.getSCEV(NextIV); 2468 const SCEV *const OperExprBase = getExprBase(OperExpr); 2469 2470 // Visit all existing chains. Check if its IVOper can be computed as a 2471 // profitable loop invariant increment from the last link in the Chain. 2472 unsigned ChainIdx = 0, NChains = IVChainVec.size(); 2473 const SCEV *LastIncExpr = 0; 2474 for (; ChainIdx < NChains; ++ChainIdx) { 2475 IVChain &Chain = IVChainVec[ChainIdx]; 2476 2477 // Prune the solution space aggressively by checking that both IV operands 2478 // are expressions that operate on the same unscaled SCEVUnknown. This 2479 // "base" will be canceled by the subsequent getMinusSCEV call. Checking 2480 // first avoids creating extra SCEV expressions. 2481 if (!StressIVChain && Chain.ExprBase != OperExprBase) 2482 continue; 2483 2484 Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand); 2485 if (!isCompatibleIVType(PrevIV, NextIV)) 2486 continue; 2487 2488 // A phi node terminates a chain. 2489 if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst())) 2490 continue; 2491 2492 // The increment must be loop-invariant so it can be kept in a register. 2493 const SCEV *PrevExpr = SE.getSCEV(PrevIV); 2494 const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr); 2495 if (!SE.isLoopInvariant(IncExpr, L)) 2496 continue; 2497 2498 if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) { 2499 LastIncExpr = IncExpr; 2500 break; 2501 } 2502 } 2503 // If we haven't found a chain, create a new one, unless we hit the max. Don't 2504 // bother for phi nodes, because they must be last in the chain. 2505 if (ChainIdx == NChains) { 2506 if (isa<PHINode>(UserInst)) 2507 return; 2508 if (NChains >= MaxChains && !StressIVChain) { 2509 DEBUG(dbgs() << "IV Chain Limit\n"); 2510 return; 2511 } 2512 LastIncExpr = OperExpr; 2513 // IVUsers may have skipped over sign/zero extensions. We don't currently 2514 // attempt to form chains involving extensions unless they can be hoisted 2515 // into this loop's AddRec. 2516 if (!isa<SCEVAddRecExpr>(LastIncExpr)) 2517 return; 2518 ++NChains; 2519 IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr), 2520 OperExprBase)); 2521 ChainUsersVec.resize(NChains); 2522 DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst 2523 << ") IV=" << *LastIncExpr << "\n"); 2524 } else { 2525 DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Inc: (" << *UserInst 2526 << ") IV+" << *LastIncExpr << "\n"); 2527 // Add this IV user to the end of the chain. 2528 IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr)); 2529 } 2530 2531 SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers; 2532 // This chain's NearUsers become FarUsers. 2533 if (!LastIncExpr->isZero()) { 2534 ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(), 2535 NearUsers.end()); 2536 NearUsers.clear(); 2537 } 2538 2539 // All other uses of IVOperand become near uses of the chain. 2540 // We currently ignore intermediate values within SCEV expressions, assuming 2541 // they will eventually be used be the current chain, or can be computed 2542 // from one of the chain increments. To be more precise we could 2543 // transitively follow its user and only add leaf IV users to the set. 2544 for (Value::use_iterator UseIter = IVOper->use_begin(), 2545 UseEnd = IVOper->use_end(); UseIter != UseEnd; ++UseIter) { 2546 Instruction *OtherUse = dyn_cast<Instruction>(*UseIter); 2547 if (!OtherUse || OtherUse == UserInst) 2548 continue; 2549 if (SE.isSCEVable(OtherUse->getType()) 2550 && !isa<SCEVUnknown>(SE.getSCEV(OtherUse)) 2551 && IU.isIVUserOrOperand(OtherUse)) { 2552 continue; 2553 } 2554 NearUsers.insert(OtherUse); 2555 } 2556 2557 // Since this user is part of the chain, it's no longer considered a use 2558 // of the chain. 2559 ChainUsersVec[ChainIdx].FarUsers.erase(UserInst); 2560 } 2561 2562 /// CollectChains - Populate the vector of Chains. 2563 /// 2564 /// This decreases ILP at the architecture level. Targets with ample registers, 2565 /// multiple memory ports, and no register renaming probably don't want 2566 /// this. However, such targets should probably disable LSR altogether. 2567 /// 2568 /// The job of LSR is to make a reasonable choice of induction variables across 2569 /// the loop. Subsequent passes can easily "unchain" computation exposing more 2570 /// ILP *within the loop* if the target wants it. 2571 /// 2572 /// Finding the best IV chain is potentially a scheduling problem. Since LSR 2573 /// will not reorder memory operations, it will recognize this as a chain, but 2574 /// will generate redundant IV increments. Ideally this would be corrected later 2575 /// by a smart scheduler: 2576 /// = A[i] 2577 /// = A[i+x] 2578 /// A[i] = 2579 /// A[i+x] = 2580 /// 2581 /// TODO: Walk the entire domtree within this loop, not just the path to the 2582 /// loop latch. This will discover chains on side paths, but requires 2583 /// maintaining multiple copies of the Chains state. 2584 void LSRInstance::CollectChains() { 2585 DEBUG(dbgs() << "Collecting IV Chains.\n"); 2586 SmallVector<ChainUsers, 8> ChainUsersVec; 2587 2588 SmallVector<BasicBlock *,8> LatchPath; 2589 BasicBlock *LoopHeader = L->getHeader(); 2590 for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch()); 2591 Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) { 2592 LatchPath.push_back(Rung->getBlock()); 2593 } 2594 LatchPath.push_back(LoopHeader); 2595 2596 // Walk the instruction stream from the loop header to the loop latch. 2597 for (SmallVectorImpl<BasicBlock *>::reverse_iterator 2598 BBIter = LatchPath.rbegin(), BBEnd = LatchPath.rend(); 2599 BBIter != BBEnd; ++BBIter) { 2600 for (BasicBlock::iterator I = (*BBIter)->begin(), E = (*BBIter)->end(); 2601 I != E; ++I) { 2602 // Skip instructions that weren't seen by IVUsers analysis. 2603 if (isa<PHINode>(I) || !IU.isIVUserOrOperand(I)) 2604 continue; 2605 2606 // Ignore users that are part of a SCEV expression. This way we only 2607 // consider leaf IV Users. This effectively rediscovers a portion of 2608 // IVUsers analysis but in program order this time. 2609 if (SE.isSCEVable(I->getType()) && !isa<SCEVUnknown>(SE.getSCEV(I))) 2610 continue; 2611 2612 // Remove this instruction from any NearUsers set it may be in. 2613 for (unsigned ChainIdx = 0, NChains = IVChainVec.size(); 2614 ChainIdx < NChains; ++ChainIdx) { 2615 ChainUsersVec[ChainIdx].NearUsers.erase(I); 2616 } 2617 // Search for operands that can be chained. 2618 SmallPtrSet<Instruction*, 4> UniqueOperands; 2619 User::op_iterator IVOpEnd = I->op_end(); 2620 User::op_iterator IVOpIter = findIVOperand(I->op_begin(), IVOpEnd, L, SE); 2621 while (IVOpIter != IVOpEnd) { 2622 Instruction *IVOpInst = cast<Instruction>(*IVOpIter); 2623 if (UniqueOperands.insert(IVOpInst)) 2624 ChainInstruction(I, IVOpInst, ChainUsersVec); 2625 IVOpIter = findIVOperand(llvm::next(IVOpIter), IVOpEnd, L, SE); 2626 } 2627 } // Continue walking down the instructions. 2628 } // Continue walking down the domtree. 2629 // Visit phi backedges to determine if the chain can generate the IV postinc. 2630 for (BasicBlock::iterator I = L->getHeader()->begin(); 2631 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 2632 if (!SE.isSCEVable(PN->getType())) 2633 continue; 2634 2635 Instruction *IncV = 2636 dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch())); 2637 if (IncV) 2638 ChainInstruction(PN, IncV, ChainUsersVec); 2639 } 2640 // Remove any unprofitable chains. 2641 unsigned ChainIdx = 0; 2642 for (unsigned UsersIdx = 0, NChains = IVChainVec.size(); 2643 UsersIdx < NChains; ++UsersIdx) { 2644 if (!isProfitableChain(IVChainVec[UsersIdx], 2645 ChainUsersVec[UsersIdx].FarUsers, SE, TLI)) 2646 continue; 2647 // Preserve the chain at UsesIdx. 2648 if (ChainIdx != UsersIdx) 2649 IVChainVec[ChainIdx] = IVChainVec[UsersIdx]; 2650 FinalizeChain(IVChainVec[ChainIdx]); 2651 ++ChainIdx; 2652 } 2653 IVChainVec.resize(ChainIdx); 2654 } 2655 2656 void LSRInstance::FinalizeChain(IVChain &Chain) { 2657 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 2658 DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n"); 2659 2660 for (IVChain::const_iterator I = Chain.begin(), E = Chain.end(); 2661 I != E; ++I) { 2662 DEBUG(dbgs() << " Inc: " << *I->UserInst << "\n"); 2663 User::op_iterator UseI = 2664 std::find(I->UserInst->op_begin(), I->UserInst->op_end(), I->IVOperand); 2665 assert(UseI != I->UserInst->op_end() && "cannot find IV operand"); 2666 IVIncSet.insert(UseI); 2667 } 2668 } 2669 2670 /// Return true if the IVInc can be folded into an addressing mode. 2671 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst, 2672 Value *Operand, const TargetLowering *TLI) { 2673 const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr); 2674 if (!IncConst || !isAddressUse(UserInst, Operand)) 2675 return false; 2676 2677 if (IncConst->getValue()->getValue().getMinSignedBits() > 64) 2678 return false; 2679 2680 int64_t IncOffset = IncConst->getValue()->getSExtValue(); 2681 if (!isAlwaysFoldable(IncOffset, /*BaseGV=*/0, /*HaseBaseReg=*/false, 2682 LSRUse::Address, getAccessType(UserInst), TLI)) 2683 return false; 2684 2685 return true; 2686 } 2687 2688 /// GenerateIVChains - Generate an add or subtract for each IVInc in a chain to 2689 /// materialize the IV user's operand from the previous IV user's operand. 2690 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 2691 SmallVectorImpl<WeakVH> &DeadInsts) { 2692 // Find the new IVOperand for the head of the chain. It may have been replaced 2693 // by LSR. 2694 const IVInc &Head = Chain.Incs[0]; 2695 User::op_iterator IVOpEnd = Head.UserInst->op_end(); 2696 User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(), 2697 IVOpEnd, L, SE); 2698 Value *IVSrc = 0; 2699 while (IVOpIter != IVOpEnd) { 2700 IVSrc = getWideOperand(*IVOpIter); 2701 2702 // If this operand computes the expression that the chain needs, we may use 2703 // it. (Check this after setting IVSrc which is used below.) 2704 // 2705 // Note that if Head.IncExpr is wider than IVSrc, then this phi is too 2706 // narrow for the chain, so we can no longer use it. We do allow using a 2707 // wider phi, assuming the LSR checked for free truncation. In that case we 2708 // should already have a truncate on this operand such that 2709 // getSCEV(IVSrc) == IncExpr. 2710 if (SE.getSCEV(*IVOpIter) == Head.IncExpr 2711 || SE.getSCEV(IVSrc) == Head.IncExpr) { 2712 break; 2713 } 2714 IVOpIter = findIVOperand(llvm::next(IVOpIter), IVOpEnd, L, SE); 2715 } 2716 if (IVOpIter == IVOpEnd) { 2717 // Gracefully give up on this chain. 2718 DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n"); 2719 return; 2720 } 2721 2722 DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n"); 2723 Type *IVTy = IVSrc->getType(); 2724 Type *IntTy = SE.getEffectiveSCEVType(IVTy); 2725 const SCEV *LeftOverExpr = 0; 2726 for (IVChain::const_iterator IncI = Chain.begin(), 2727 IncE = Chain.end(); IncI != IncE; ++IncI) { 2728 2729 Instruction *InsertPt = IncI->UserInst; 2730 if (isa<PHINode>(InsertPt)) 2731 InsertPt = L->getLoopLatch()->getTerminator(); 2732 2733 // IVOper will replace the current IV User's operand. IVSrc is the IV 2734 // value currently held in a register. 2735 Value *IVOper = IVSrc; 2736 if (!IncI->IncExpr->isZero()) { 2737 // IncExpr was the result of subtraction of two narrow values, so must 2738 // be signed. 2739 const SCEV *IncExpr = SE.getNoopOrSignExtend(IncI->IncExpr, IntTy); 2740 LeftOverExpr = LeftOverExpr ? 2741 SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr; 2742 } 2743 if (LeftOverExpr && !LeftOverExpr->isZero()) { 2744 // Expand the IV increment. 2745 Rewriter.clearPostInc(); 2746 Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt); 2747 const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc), 2748 SE.getUnknown(IncV)); 2749 IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt); 2750 2751 // If an IV increment can't be folded, use it as the next IV value. 2752 if (!canFoldIVIncExpr(LeftOverExpr, IncI->UserInst, IncI->IVOperand, 2753 TLI)) { 2754 assert(IVTy == IVOper->getType() && "inconsistent IV increment type"); 2755 IVSrc = IVOper; 2756 LeftOverExpr = 0; 2757 } 2758 } 2759 Type *OperTy = IncI->IVOperand->getType(); 2760 if (IVTy != OperTy) { 2761 assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) && 2762 "cannot extend a chained IV"); 2763 IRBuilder<> Builder(InsertPt); 2764 IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain"); 2765 } 2766 IncI->UserInst->replaceUsesOfWith(IncI->IVOperand, IVOper); 2767 DeadInsts.push_back(IncI->IVOperand); 2768 } 2769 // If LSR created a new, wider phi, we may also replace its postinc. We only 2770 // do this if we also found a wide value for the head of the chain. 2771 if (isa<PHINode>(Chain.tailUserInst())) { 2772 for (BasicBlock::iterator I = L->getHeader()->begin(); 2773 PHINode *Phi = dyn_cast<PHINode>(I); ++I) { 2774 if (!isCompatibleIVType(Phi, IVSrc)) 2775 continue; 2776 Instruction *PostIncV = dyn_cast<Instruction>( 2777 Phi->getIncomingValueForBlock(L->getLoopLatch())); 2778 if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc))) 2779 continue; 2780 Value *IVOper = IVSrc; 2781 Type *PostIncTy = PostIncV->getType(); 2782 if (IVTy != PostIncTy) { 2783 assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types"); 2784 IRBuilder<> Builder(L->getLoopLatch()->getTerminator()); 2785 Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc()); 2786 IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain"); 2787 } 2788 Phi->replaceUsesOfWith(PostIncV, IVOper); 2789 DeadInsts.push_back(PostIncV); 2790 } 2791 } 2792 } 2793 2794 void LSRInstance::CollectFixupsAndInitialFormulae() { 2795 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) { 2796 Instruction *UserInst = UI->getUser(); 2797 // Skip IV users that are part of profitable IV Chains. 2798 User::op_iterator UseI = std::find(UserInst->op_begin(), UserInst->op_end(), 2799 UI->getOperandValToReplace()); 2800 assert(UseI != UserInst->op_end() && "cannot find IV operand"); 2801 if (IVIncSet.count(UseI)) 2802 continue; 2803 2804 // Record the uses. 2805 LSRFixup &LF = getNewFixup(); 2806 LF.UserInst = UserInst; 2807 LF.OperandValToReplace = UI->getOperandValToReplace(); 2808 LF.PostIncLoops = UI->getPostIncLoops(); 2809 2810 LSRUse::KindType Kind = LSRUse::Basic; 2811 Type *AccessTy = 0; 2812 if (isAddressUse(LF.UserInst, LF.OperandValToReplace)) { 2813 Kind = LSRUse::Address; 2814 AccessTy = getAccessType(LF.UserInst); 2815 } 2816 2817 const SCEV *S = IU.getExpr(*UI); 2818 2819 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as 2820 // (N - i == 0), and this allows (N - i) to be the expression that we work 2821 // with rather than just N or i, so we can consider the register 2822 // requirements for both N and i at the same time. Limiting this code to 2823 // equality icmps is not a problem because all interesting loops use 2824 // equality icmps, thanks to IndVarSimplify. 2825 if (ICmpInst *CI = dyn_cast<ICmpInst>(LF.UserInst)) 2826 if (CI->isEquality()) { 2827 // Swap the operands if needed to put the OperandValToReplace on the 2828 // left, for consistency. 2829 Value *NV = CI->getOperand(1); 2830 if (NV == LF.OperandValToReplace) { 2831 CI->setOperand(1, CI->getOperand(0)); 2832 CI->setOperand(0, NV); 2833 NV = CI->getOperand(1); 2834 Changed = true; 2835 } 2836 2837 // x == y --> x - y == 0 2838 const SCEV *N = SE.getSCEV(NV); 2839 if (SE.isLoopInvariant(N, L) && isSafeToExpand(N)) { 2840 // S is normalized, so normalize N before folding it into S 2841 // to keep the result normalized. 2842 N = TransformForPostIncUse(Normalize, N, CI, 0, 2843 LF.PostIncLoops, SE, DT); 2844 Kind = LSRUse::ICmpZero; 2845 S = SE.getMinusSCEV(N, S); 2846 } 2847 2848 // -1 and the negations of all interesting strides (except the negation 2849 // of -1) are now also interesting. 2850 for (size_t i = 0, e = Factors.size(); i != e; ++i) 2851 if (Factors[i] != -1) 2852 Factors.insert(-(uint64_t)Factors[i]); 2853 Factors.insert(-1); 2854 } 2855 2856 // Set up the initial formula for this use. 2857 std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy); 2858 LF.LUIdx = P.first; 2859 LF.Offset = P.second; 2860 LSRUse &LU = Uses[LF.LUIdx]; 2861 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 2862 if (!LU.WidestFixupType || 2863 SE.getTypeSizeInBits(LU.WidestFixupType) < 2864 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 2865 LU.WidestFixupType = LF.OperandValToReplace->getType(); 2866 2867 // If this is the first use of this LSRUse, give it a formula. 2868 if (LU.Formulae.empty()) { 2869 InsertInitialFormula(S, LU, LF.LUIdx); 2870 CountRegisters(LU.Formulae.back(), LF.LUIdx); 2871 } 2872 } 2873 2874 DEBUG(print_fixups(dbgs())); 2875 } 2876 2877 /// InsertInitialFormula - Insert a formula for the given expression into 2878 /// the given use, separating out loop-variant portions from loop-invariant 2879 /// and loop-computable portions. 2880 void 2881 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) { 2882 Formula F; 2883 F.InitialMatch(S, L, SE); 2884 bool Inserted = InsertFormula(LU, LUIdx, F); 2885 assert(Inserted && "Initial formula already exists!"); (void)Inserted; 2886 } 2887 2888 /// InsertSupplementalFormula - Insert a simple single-register formula for 2889 /// the given expression into the given use. 2890 void 2891 LSRInstance::InsertSupplementalFormula(const SCEV *S, 2892 LSRUse &LU, size_t LUIdx) { 2893 Formula F; 2894 F.BaseRegs.push_back(S); 2895 F.AM.HasBaseReg = true; 2896 bool Inserted = InsertFormula(LU, LUIdx, F); 2897 assert(Inserted && "Supplemental formula already exists!"); (void)Inserted; 2898 } 2899 2900 /// CountRegisters - Note which registers are used by the given formula, 2901 /// updating RegUses. 2902 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) { 2903 if (F.ScaledReg) 2904 RegUses.CountRegister(F.ScaledReg, LUIdx); 2905 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(), 2906 E = F.BaseRegs.end(); I != E; ++I) 2907 RegUses.CountRegister(*I, LUIdx); 2908 } 2909 2910 /// InsertFormula - If the given formula has not yet been inserted, add it to 2911 /// the list, and return true. Return false otherwise. 2912 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) { 2913 if (!LU.InsertFormula(F)) 2914 return false; 2915 2916 CountRegisters(F, LUIdx); 2917 return true; 2918 } 2919 2920 /// CollectLoopInvariantFixupsAndFormulae - Check for other uses of 2921 /// loop-invariant values which we're tracking. These other uses will pin these 2922 /// values in registers, making them less profitable for elimination. 2923 /// TODO: This currently misses non-constant addrec step registers. 2924 /// TODO: Should this give more weight to users inside the loop? 2925 void 2926 LSRInstance::CollectLoopInvariantFixupsAndFormulae() { 2927 SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end()); 2928 SmallPtrSet<const SCEV *, 8> Inserted; 2929 2930 while (!Worklist.empty()) { 2931 const SCEV *S = Worklist.pop_back_val(); 2932 2933 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) 2934 Worklist.append(N->op_begin(), N->op_end()); 2935 else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) 2936 Worklist.push_back(C->getOperand()); 2937 else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 2938 Worklist.push_back(D->getLHS()); 2939 Worklist.push_back(D->getRHS()); 2940 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 2941 if (!Inserted.insert(U)) continue; 2942 const Value *V = U->getValue(); 2943 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 2944 // Look for instructions defined outside the loop. 2945 if (L->contains(Inst)) continue; 2946 } else if (isa<UndefValue>(V)) 2947 // Undef doesn't have a live range, so it doesn't matter. 2948 continue; 2949 for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end(); 2950 UI != UE; ++UI) { 2951 const Instruction *UserInst = dyn_cast<Instruction>(*UI); 2952 // Ignore non-instructions. 2953 if (!UserInst) 2954 continue; 2955 // Ignore instructions in other functions (as can happen with 2956 // Constants). 2957 if (UserInst->getParent()->getParent() != L->getHeader()->getParent()) 2958 continue; 2959 // Ignore instructions not dominated by the loop. 2960 const BasicBlock *UseBB = !isa<PHINode>(UserInst) ? 2961 UserInst->getParent() : 2962 cast<PHINode>(UserInst)->getIncomingBlock( 2963 PHINode::getIncomingValueNumForOperand(UI.getOperandNo())); 2964 if (!DT.dominates(L->getHeader(), UseBB)) 2965 continue; 2966 // Ignore uses which are part of other SCEV expressions, to avoid 2967 // analyzing them multiple times. 2968 if (SE.isSCEVable(UserInst->getType())) { 2969 const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst)); 2970 // If the user is a no-op, look through to its uses. 2971 if (!isa<SCEVUnknown>(UserS)) 2972 continue; 2973 if (UserS == U) { 2974 Worklist.push_back( 2975 SE.getUnknown(const_cast<Instruction *>(UserInst))); 2976 continue; 2977 } 2978 } 2979 // Ignore icmp instructions which are already being analyzed. 2980 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) { 2981 unsigned OtherIdx = !UI.getOperandNo(); 2982 Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx)); 2983 if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L)) 2984 continue; 2985 } 2986 2987 LSRFixup &LF = getNewFixup(); 2988 LF.UserInst = const_cast<Instruction *>(UserInst); 2989 LF.OperandValToReplace = UI.getUse(); 2990 std::pair<size_t, int64_t> P = getUse(S, LSRUse::Basic, 0); 2991 LF.LUIdx = P.first; 2992 LF.Offset = P.second; 2993 LSRUse &LU = Uses[LF.LUIdx]; 2994 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 2995 if (!LU.WidestFixupType || 2996 SE.getTypeSizeInBits(LU.WidestFixupType) < 2997 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 2998 LU.WidestFixupType = LF.OperandValToReplace->getType(); 2999 InsertSupplementalFormula(U, LU, LF.LUIdx); 3000 CountRegisters(LU.Formulae.back(), Uses.size() - 1); 3001 break; 3002 } 3003 } 3004 } 3005 } 3006 3007 /// CollectSubexprs - Split S into subexpressions which can be pulled out into 3008 /// separate registers. If C is non-null, multiply each subexpression by C. 3009 /// 3010 /// Return remainder expression after factoring the subexpressions captured by 3011 /// Ops. If Ops is complete, return NULL. 3012 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C, 3013 SmallVectorImpl<const SCEV *> &Ops, 3014 const Loop *L, 3015 ScalarEvolution &SE, 3016 unsigned Depth = 0) { 3017 // Arbitrarily cap recursion to protect compile time. 3018 if (Depth >= 3) 3019 return S; 3020 3021 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3022 // Break out add operands. 3023 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); 3024 I != E; ++I) { 3025 const SCEV *Remainder = CollectSubexprs(*I, C, Ops, L, SE, Depth+1); 3026 if (Remainder) 3027 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3028 } 3029 return NULL; 3030 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 3031 // Split a non-zero base out of an addrec. 3032 if (AR->getStart()->isZero()) 3033 return S; 3034 3035 const SCEV *Remainder = CollectSubexprs(AR->getStart(), 3036 C, Ops, L, SE, Depth+1); 3037 // Split the non-zero AddRec unless it is part of a nested recurrence that 3038 // does not pertain to this loop. 3039 if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) { 3040 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3041 Remainder = NULL; 3042 } 3043 if (Remainder != AR->getStart()) { 3044 if (!Remainder) 3045 Remainder = SE.getConstant(AR->getType(), 0); 3046 return SE.getAddRecExpr(Remainder, 3047 AR->getStepRecurrence(SE), 3048 AR->getLoop(), 3049 //FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 3050 SCEV::FlagAnyWrap); 3051 } 3052 } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3053 // Break (C * (a + b + c)) into C*a + C*b + C*c. 3054 if (Mul->getNumOperands() != 2) 3055 return S; 3056 if (const SCEVConstant *Op0 = 3057 dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3058 C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0; 3059 const SCEV *Remainder = 3060 CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1); 3061 if (Remainder) 3062 Ops.push_back(SE.getMulExpr(C, Remainder)); 3063 return NULL; 3064 } 3065 } 3066 return S; 3067 } 3068 3069 /// GenerateReassociations - Split out subexpressions from adds and the bases of 3070 /// addrecs. 3071 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx, 3072 Formula Base, 3073 unsigned Depth) { 3074 // Arbitrarily cap recursion to protect compile time. 3075 if (Depth >= 3) return; 3076 3077 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { 3078 const SCEV *BaseReg = Base.BaseRegs[i]; 3079 3080 SmallVector<const SCEV *, 8> AddOps; 3081 const SCEV *Remainder = CollectSubexprs(BaseReg, 0, AddOps, L, SE); 3082 if (Remainder) 3083 AddOps.push_back(Remainder); 3084 3085 if (AddOps.size() == 1) continue; 3086 3087 for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(), 3088 JE = AddOps.end(); J != JE; ++J) { 3089 3090 // Loop-variant "unknown" values are uninteresting; we won't be able to 3091 // do anything meaningful with them. 3092 if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L)) 3093 continue; 3094 3095 // Don't pull a constant into a register if the constant could be folded 3096 // into an immediate field. 3097 if (isAlwaysFoldable(*J, LU.MinOffset, LU.MaxOffset, 3098 Base.getNumRegs() > 1, 3099 LU.Kind, LU.AccessTy, TLI, SE)) 3100 continue; 3101 3102 // Collect all operands except *J. 3103 SmallVector<const SCEV *, 8> InnerAddOps 3104 (((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J); 3105 InnerAddOps.append 3106 (llvm::next(J), ((const SmallVector<const SCEV *, 8> &)AddOps).end()); 3107 3108 // Don't leave just a constant behind in a register if the constant could 3109 // be folded into an immediate field. 3110 if (InnerAddOps.size() == 1 && 3111 isAlwaysFoldable(InnerAddOps[0], LU.MinOffset, LU.MaxOffset, 3112 Base.getNumRegs() > 1, 3113 LU.Kind, LU.AccessTy, TLI, SE)) 3114 continue; 3115 3116 const SCEV *InnerSum = SE.getAddExpr(InnerAddOps); 3117 if (InnerSum->isZero()) 3118 continue; 3119 Formula F = Base; 3120 3121 // Add the remaining pieces of the add back into the new formula. 3122 const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum); 3123 if (TLI && InnerSumSC && 3124 SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 && 3125 TLI->isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3126 InnerSumSC->getValue()->getZExtValue())) { 3127 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset + 3128 InnerSumSC->getValue()->getZExtValue(); 3129 F.BaseRegs.erase(F.BaseRegs.begin() + i); 3130 } else 3131 F.BaseRegs[i] = InnerSum; 3132 3133 // Add J as its own register, or an unfolded immediate. 3134 const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J); 3135 if (TLI && SC && SE.getTypeSizeInBits(SC->getType()) <= 64 && 3136 TLI->isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3137 SC->getValue()->getZExtValue())) 3138 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset + 3139 SC->getValue()->getZExtValue(); 3140 else 3141 F.BaseRegs.push_back(*J); 3142 3143 if (InsertFormula(LU, LUIdx, F)) 3144 // If that formula hadn't been seen before, recurse to find more like 3145 // it. 3146 GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth+1); 3147 } 3148 } 3149 } 3150 3151 /// GenerateCombinations - Generate a formula consisting of all of the 3152 /// loop-dominating registers added into a single register. 3153 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx, 3154 Formula Base) { 3155 // This method is only interesting on a plurality of registers. 3156 if (Base.BaseRegs.size() <= 1) return; 3157 3158 Formula F = Base; 3159 F.BaseRegs.clear(); 3160 SmallVector<const SCEV *, 4> Ops; 3161 for (SmallVectorImpl<const SCEV *>::const_iterator 3162 I = Base.BaseRegs.begin(), E = Base.BaseRegs.end(); I != E; ++I) { 3163 const SCEV *BaseReg = *I; 3164 if (SE.properlyDominates(BaseReg, L->getHeader()) && 3165 !SE.hasComputableLoopEvolution(BaseReg, L)) 3166 Ops.push_back(BaseReg); 3167 else 3168 F.BaseRegs.push_back(BaseReg); 3169 } 3170 if (Ops.size() > 1) { 3171 const SCEV *Sum = SE.getAddExpr(Ops); 3172 // TODO: If Sum is zero, it probably means ScalarEvolution missed an 3173 // opportunity to fold something. For now, just ignore such cases 3174 // rather than proceed with zero in a register. 3175 if (!Sum->isZero()) { 3176 F.BaseRegs.push_back(Sum); 3177 (void)InsertFormula(LU, LUIdx, F); 3178 } 3179 } 3180 } 3181 3182 /// GenerateSymbolicOffsets - Generate reuse formulae using symbolic offsets. 3183 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, 3184 Formula Base) { 3185 // We can't add a symbolic offset if the address already contains one. 3186 if (Base.AM.BaseGV) return; 3187 3188 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { 3189 const SCEV *G = Base.BaseRegs[i]; 3190 GlobalValue *GV = ExtractSymbol(G, SE); 3191 if (G->isZero() || !GV) 3192 continue; 3193 Formula F = Base; 3194 F.AM.BaseGV = GV; 3195 if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset, 3196 LU.Kind, LU.AccessTy, TLI)) 3197 continue; 3198 F.BaseRegs[i] = G; 3199 (void)InsertFormula(LU, LUIdx, F); 3200 } 3201 } 3202 3203 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets. 3204 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, 3205 Formula Base) { 3206 // TODO: For now, just add the min and max offset, because it usually isn't 3207 // worthwhile looking at everything inbetween. 3208 SmallVector<int64_t, 2> Worklist; 3209 Worklist.push_back(LU.MinOffset); 3210 if (LU.MaxOffset != LU.MinOffset) 3211 Worklist.push_back(LU.MaxOffset); 3212 3213 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { 3214 const SCEV *G = Base.BaseRegs[i]; 3215 3216 for (SmallVectorImpl<int64_t>::const_iterator I = Worklist.begin(), 3217 E = Worklist.end(); I != E; ++I) { 3218 Formula F = Base; 3219 F.AM.BaseOffs = (uint64_t)Base.AM.BaseOffs - *I; 3220 if (isLegalUse(F.AM, LU.MinOffset - *I, LU.MaxOffset - *I, 3221 LU.Kind, LU.AccessTy, TLI)) { 3222 // Add the offset to the base register. 3223 const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), *I), G); 3224 // If it cancelled out, drop the base register, otherwise update it. 3225 if (NewG->isZero()) { 3226 std::swap(F.BaseRegs[i], F.BaseRegs.back()); 3227 F.BaseRegs.pop_back(); 3228 } else 3229 F.BaseRegs[i] = NewG; 3230 3231 (void)InsertFormula(LU, LUIdx, F); 3232 } 3233 } 3234 3235 int64_t Imm = ExtractImmediate(G, SE); 3236 if (G->isZero() || Imm == 0) 3237 continue; 3238 Formula F = Base; 3239 F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Imm; 3240 if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset, 3241 LU.Kind, LU.AccessTy, TLI)) 3242 continue; 3243 F.BaseRegs[i] = G; 3244 (void)InsertFormula(LU, LUIdx, F); 3245 } 3246 } 3247 3248 /// GenerateICmpZeroScales - For ICmpZero, check to see if we can scale up 3249 /// the comparison. For example, x == y -> x*c == y*c. 3250 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, 3251 Formula Base) { 3252 if (LU.Kind != LSRUse::ICmpZero) return; 3253 3254 // Determine the integer type for the base formula. 3255 Type *IntTy = Base.getType(); 3256 if (!IntTy) return; 3257 if (SE.getTypeSizeInBits(IntTy) > 64) return; 3258 3259 // Don't do this if there is more than one offset. 3260 if (LU.MinOffset != LU.MaxOffset) return; 3261 3262 assert(!Base.AM.BaseGV && "ICmpZero use is not legal!"); 3263 3264 // Check each interesting stride. 3265 for (SmallSetVector<int64_t, 8>::const_iterator 3266 I = Factors.begin(), E = Factors.end(); I != E; ++I) { 3267 int64_t Factor = *I; 3268 3269 // Check that the multiplication doesn't overflow. 3270 if (Base.AM.BaseOffs == INT64_MIN && Factor == -1) 3271 continue; 3272 int64_t NewBaseOffs = (uint64_t)Base.AM.BaseOffs * Factor; 3273 if (NewBaseOffs / Factor != Base.AM.BaseOffs) 3274 continue; 3275 3276 // Check that multiplying with the use offset doesn't overflow. 3277 int64_t Offset = LU.MinOffset; 3278 if (Offset == INT64_MIN && Factor == -1) 3279 continue; 3280 Offset = (uint64_t)Offset * Factor; 3281 if (Offset / Factor != LU.MinOffset) 3282 continue; 3283 3284 Formula F = Base; 3285 F.AM.BaseOffs = NewBaseOffs; 3286 3287 // Check that this scale is legal. 3288 if (!isLegalUse(F.AM, Offset, Offset, LU.Kind, LU.AccessTy, TLI)) 3289 continue; 3290 3291 // Compensate for the use having MinOffset built into it. 3292 F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Offset - LU.MinOffset; 3293 3294 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3295 3296 // Check that multiplying with each base register doesn't overflow. 3297 for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) { 3298 F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS); 3299 if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i]) 3300 goto next; 3301 } 3302 3303 // Check that multiplying with the scaled register doesn't overflow. 3304 if (F.ScaledReg) { 3305 F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS); 3306 if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg) 3307 continue; 3308 } 3309 3310 // Check that multiplying with the unfolded offset doesn't overflow. 3311 if (F.UnfoldedOffset != 0) { 3312 if (F.UnfoldedOffset == INT64_MIN && Factor == -1) 3313 continue; 3314 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor; 3315 if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset) 3316 continue; 3317 } 3318 3319 // If we make it here and it's legal, add it. 3320 (void)InsertFormula(LU, LUIdx, F); 3321 next:; 3322 } 3323 } 3324 3325 /// GenerateScales - Generate stride factor reuse formulae by making use of 3326 /// scaled-offset address modes, for example. 3327 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) { 3328 // Determine the integer type for the base formula. 3329 Type *IntTy = Base.getType(); 3330 if (!IntTy) return; 3331 3332 // If this Formula already has a scaled register, we can't add another one. 3333 if (Base.AM.Scale != 0) return; 3334 3335 // Check each interesting stride. 3336 for (SmallSetVector<int64_t, 8>::const_iterator 3337 I = Factors.begin(), E = Factors.end(); I != E; ++I) { 3338 int64_t Factor = *I; 3339 3340 Base.AM.Scale = Factor; 3341 Base.AM.HasBaseReg = Base.BaseRegs.size() > 1; 3342 // Check whether this scale is going to be legal. 3343 if (!isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset, 3344 LU.Kind, LU.AccessTy, TLI)) { 3345 // As a special-case, handle special out-of-loop Basic users specially. 3346 // TODO: Reconsider this special case. 3347 if (LU.Kind == LSRUse::Basic && 3348 isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset, 3349 LSRUse::Special, LU.AccessTy, TLI) && 3350 LU.AllFixupsOutsideLoop) 3351 LU.Kind = LSRUse::Special; 3352 else 3353 continue; 3354 } 3355 // For an ICmpZero, negating a solitary base register won't lead to 3356 // new solutions. 3357 if (LU.Kind == LSRUse::ICmpZero && 3358 !Base.AM.HasBaseReg && Base.AM.BaseOffs == 0 && !Base.AM.BaseGV) 3359 continue; 3360 // For each addrec base reg, apply the scale, if possible. 3361 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3362 if (const SCEVAddRecExpr *AR = 3363 dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i])) { 3364 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3365 if (FactorS->isZero()) 3366 continue; 3367 // Divide out the factor, ignoring high bits, since we'll be 3368 // scaling the value back up in the end. 3369 if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) { 3370 // TODO: This could be optimized to avoid all the copying. 3371 Formula F = Base; 3372 F.ScaledReg = Quotient; 3373 F.DeleteBaseReg(F.BaseRegs[i]); 3374 (void)InsertFormula(LU, LUIdx, F); 3375 } 3376 } 3377 } 3378 } 3379 3380 /// GenerateTruncates - Generate reuse formulae from different IV types. 3381 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) { 3382 // This requires TargetLowering to tell us which truncates are free. 3383 if (!TLI) return; 3384 3385 // Don't bother truncating symbolic values. 3386 if (Base.AM.BaseGV) return; 3387 3388 // Determine the integer type for the base formula. 3389 Type *DstTy = Base.getType(); 3390 if (!DstTy) return; 3391 DstTy = SE.getEffectiveSCEVType(DstTy); 3392 3393 for (SmallSetVector<Type *, 4>::const_iterator 3394 I = Types.begin(), E = Types.end(); I != E; ++I) { 3395 Type *SrcTy = *I; 3396 if (SrcTy != DstTy && TLI->isTruncateFree(SrcTy, DstTy)) { 3397 Formula F = Base; 3398 3399 if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, *I); 3400 for (SmallVectorImpl<const SCEV *>::iterator J = F.BaseRegs.begin(), 3401 JE = F.BaseRegs.end(); J != JE; ++J) 3402 *J = SE.getAnyExtendExpr(*J, SrcTy); 3403 3404 // TODO: This assumes we've done basic processing on all uses and 3405 // have an idea what the register usage is. 3406 if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses)) 3407 continue; 3408 3409 (void)InsertFormula(LU, LUIdx, F); 3410 } 3411 } 3412 } 3413 3414 namespace { 3415 3416 /// WorkItem - Helper class for GenerateCrossUseConstantOffsets. It's used to 3417 /// defer modifications so that the search phase doesn't have to worry about 3418 /// the data structures moving underneath it. 3419 struct WorkItem { 3420 size_t LUIdx; 3421 int64_t Imm; 3422 const SCEV *OrigReg; 3423 3424 WorkItem(size_t LI, int64_t I, const SCEV *R) 3425 : LUIdx(LI), Imm(I), OrigReg(R) {} 3426 3427 void print(raw_ostream &OS) const; 3428 void dump() const; 3429 }; 3430 3431 } 3432 3433 void WorkItem::print(raw_ostream &OS) const { 3434 OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx 3435 << " , add offset " << Imm; 3436 } 3437 3438 void WorkItem::dump() const { 3439 print(errs()); errs() << '\n'; 3440 } 3441 3442 /// GenerateCrossUseConstantOffsets - Look for registers which are a constant 3443 /// distance apart and try to form reuse opportunities between them. 3444 void LSRInstance::GenerateCrossUseConstantOffsets() { 3445 // Group the registers by their value without any added constant offset. 3446 typedef std::map<int64_t, const SCEV *> ImmMapTy; 3447 typedef DenseMap<const SCEV *, ImmMapTy> RegMapTy; 3448 RegMapTy Map; 3449 DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap; 3450 SmallVector<const SCEV *, 8> Sequence; 3451 for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end(); 3452 I != E; ++I) { 3453 const SCEV *Reg = *I; 3454 int64_t Imm = ExtractImmediate(Reg, SE); 3455 std::pair<RegMapTy::iterator, bool> Pair = 3456 Map.insert(std::make_pair(Reg, ImmMapTy())); 3457 if (Pair.second) 3458 Sequence.push_back(Reg); 3459 Pair.first->second.insert(std::make_pair(Imm, *I)); 3460 UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(*I); 3461 } 3462 3463 // Now examine each set of registers with the same base value. Build up 3464 // a list of work to do and do the work in a separate step so that we're 3465 // not adding formulae and register counts while we're searching. 3466 SmallVector<WorkItem, 32> WorkItems; 3467 SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems; 3468 for (SmallVectorImpl<const SCEV *>::const_iterator I = Sequence.begin(), 3469 E = Sequence.end(); I != E; ++I) { 3470 const SCEV *Reg = *I; 3471 const ImmMapTy &Imms = Map.find(Reg)->second; 3472 3473 // It's not worthwhile looking for reuse if there's only one offset. 3474 if (Imms.size() == 1) 3475 continue; 3476 3477 DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':'; 3478 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); 3479 J != JE; ++J) 3480 dbgs() << ' ' << J->first; 3481 dbgs() << '\n'); 3482 3483 // Examine each offset. 3484 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); 3485 J != JE; ++J) { 3486 const SCEV *OrigReg = J->second; 3487 3488 int64_t JImm = J->first; 3489 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg); 3490 3491 if (!isa<SCEVConstant>(OrigReg) && 3492 UsedByIndicesMap[Reg].count() == 1) { 3493 DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n'); 3494 continue; 3495 } 3496 3497 // Conservatively examine offsets between this orig reg a few selected 3498 // other orig regs. 3499 ImmMapTy::const_iterator OtherImms[] = { 3500 Imms.begin(), prior(Imms.end()), 3501 Imms.lower_bound((Imms.begin()->first + prior(Imms.end())->first) / 2) 3502 }; 3503 for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) { 3504 ImmMapTy::const_iterator M = OtherImms[i]; 3505 if (M == J || M == JE) continue; 3506 3507 // Compute the difference between the two. 3508 int64_t Imm = (uint64_t)JImm - M->first; 3509 for (int LUIdx = UsedByIndices.find_first(); LUIdx != -1; 3510 LUIdx = UsedByIndices.find_next(LUIdx)) 3511 // Make a memo of this use, offset, and register tuple. 3512 if (UniqueItems.insert(std::make_pair(LUIdx, Imm))) 3513 WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg)); 3514 } 3515 } 3516 } 3517 3518 Map.clear(); 3519 Sequence.clear(); 3520 UsedByIndicesMap.clear(); 3521 UniqueItems.clear(); 3522 3523 // Now iterate through the worklist and add new formulae. 3524 for (SmallVectorImpl<WorkItem>::const_iterator I = WorkItems.begin(), 3525 E = WorkItems.end(); I != E; ++I) { 3526 const WorkItem &WI = *I; 3527 size_t LUIdx = WI.LUIdx; 3528 LSRUse &LU = Uses[LUIdx]; 3529 int64_t Imm = WI.Imm; 3530 const SCEV *OrigReg = WI.OrigReg; 3531 3532 Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType()); 3533 const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm)); 3534 unsigned BitWidth = SE.getTypeSizeInBits(IntTy); 3535 3536 // TODO: Use a more targeted data structure. 3537 for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) { 3538 const Formula &F = LU.Formulae[L]; 3539 // Use the immediate in the scaled register. 3540 if (F.ScaledReg == OrigReg) { 3541 int64_t Offs = (uint64_t)F.AM.BaseOffs + 3542 Imm * (uint64_t)F.AM.Scale; 3543 // Don't create 50 + reg(-50). 3544 if (F.referencesReg(SE.getSCEV( 3545 ConstantInt::get(IntTy, -(uint64_t)Offs)))) 3546 continue; 3547 Formula NewF = F; 3548 NewF.AM.BaseOffs = Offs; 3549 if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset, 3550 LU.Kind, LU.AccessTy, TLI)) 3551 continue; 3552 NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg); 3553 3554 // If the new scale is a constant in a register, and adding the constant 3555 // value to the immediate would produce a value closer to zero than the 3556 // immediate itself, then the formula isn't worthwhile. 3557 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg)) 3558 if (C->getValue()->isNegative() != 3559 (NewF.AM.BaseOffs < 0) && 3560 (C->getValue()->getValue().abs() * APInt(BitWidth, F.AM.Scale)) 3561 .ule(abs64(NewF.AM.BaseOffs))) 3562 continue; 3563 3564 // OK, looks good. 3565 (void)InsertFormula(LU, LUIdx, NewF); 3566 } else { 3567 // Use the immediate in a base register. 3568 for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) { 3569 const SCEV *BaseReg = F.BaseRegs[N]; 3570 if (BaseReg != OrigReg) 3571 continue; 3572 Formula NewF = F; 3573 NewF.AM.BaseOffs = (uint64_t)NewF.AM.BaseOffs + Imm; 3574 if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset, 3575 LU.Kind, LU.AccessTy, TLI)) { 3576 if (!TLI || 3577 !TLI->isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm)) 3578 continue; 3579 NewF = F; 3580 NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm; 3581 } 3582 NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg); 3583 3584 // If the new formula has a constant in a register, and adding the 3585 // constant value to the immediate would produce a value closer to 3586 // zero than the immediate itself, then the formula isn't worthwhile. 3587 for (SmallVectorImpl<const SCEV *>::const_iterator 3588 J = NewF.BaseRegs.begin(), JE = NewF.BaseRegs.end(); 3589 J != JE; ++J) 3590 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*J)) 3591 if ((C->getValue()->getValue() + NewF.AM.BaseOffs).abs().slt( 3592 abs64(NewF.AM.BaseOffs)) && 3593 (C->getValue()->getValue() + 3594 NewF.AM.BaseOffs).countTrailingZeros() >= 3595 CountTrailingZeros_64(NewF.AM.BaseOffs)) 3596 goto skip_formula; 3597 3598 // Ok, looks good. 3599 (void)InsertFormula(LU, LUIdx, NewF); 3600 break; 3601 skip_formula:; 3602 } 3603 } 3604 } 3605 } 3606 } 3607 3608 /// GenerateAllReuseFormulae - Generate formulae for each use. 3609 void 3610 LSRInstance::GenerateAllReuseFormulae() { 3611 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan 3612 // queries are more precise. 3613 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3614 LSRUse &LU = Uses[LUIdx]; 3615 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3616 GenerateReassociations(LU, LUIdx, LU.Formulae[i]); 3617 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3618 GenerateCombinations(LU, LUIdx, LU.Formulae[i]); 3619 } 3620 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3621 LSRUse &LU = Uses[LUIdx]; 3622 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3623 GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]); 3624 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3625 GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]); 3626 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3627 GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]); 3628 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3629 GenerateScales(LU, LUIdx, LU.Formulae[i]); 3630 } 3631 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3632 LSRUse &LU = Uses[LUIdx]; 3633 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3634 GenerateTruncates(LU, LUIdx, LU.Formulae[i]); 3635 } 3636 3637 GenerateCrossUseConstantOffsets(); 3638 3639 DEBUG(dbgs() << "\n" 3640 "After generating reuse formulae:\n"; 3641 print_uses(dbgs())); 3642 } 3643 3644 /// If there are multiple formulae with the same set of registers used 3645 /// by other uses, pick the best one and delete the others. 3646 void LSRInstance::FilterOutUndesirableDedicatedRegisters() { 3647 DenseSet<const SCEV *> VisitedRegs; 3648 SmallPtrSet<const SCEV *, 16> Regs; 3649 SmallPtrSet<const SCEV *, 16> LoserRegs; 3650 #ifndef NDEBUG 3651 bool ChangedFormulae = false; 3652 #endif 3653 3654 // Collect the best formula for each unique set of shared registers. This 3655 // is reset for each use. 3656 typedef DenseMap<SmallVector<const SCEV *, 2>, size_t, UniquifierDenseMapInfo> 3657 BestFormulaeTy; 3658 BestFormulaeTy BestFormulae; 3659 3660 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3661 LSRUse &LU = Uses[LUIdx]; 3662 DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n'); 3663 3664 bool Any = false; 3665 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); 3666 FIdx != NumForms; ++FIdx) { 3667 Formula &F = LU.Formulae[FIdx]; 3668 3669 // Some formulas are instant losers. For example, they may depend on 3670 // nonexistent AddRecs from other loops. These need to be filtered 3671 // immediately, otherwise heuristics could choose them over others leading 3672 // to an unsatisfactory solution. Passing LoserRegs into RateFormula here 3673 // avoids the need to recompute this information across formulae using the 3674 // same bad AddRec. Passing LoserRegs is also essential unless we remove 3675 // the corresponding bad register from the Regs set. 3676 Cost CostF; 3677 Regs.clear(); 3678 CostF.RateFormula(F, Regs, VisitedRegs, L, LU.Offsets, SE, DT, 3679 &LoserRegs); 3680 if (CostF.isLoser()) { 3681 // During initial formula generation, undesirable formulae are generated 3682 // by uses within other loops that have some non-trivial address mode or 3683 // use the postinc form of the IV. LSR needs to provide these formulae 3684 // as the basis of rediscovering the desired formula that uses an AddRec 3685 // corresponding to the existing phi. Once all formulae have been 3686 // generated, these initial losers may be pruned. 3687 DEBUG(dbgs() << " Filtering loser "; F.print(dbgs()); 3688 dbgs() << "\n"); 3689 } 3690 else { 3691 SmallVector<const SCEV *, 2> Key; 3692 for (SmallVectorImpl<const SCEV *>::const_iterator J = F.BaseRegs.begin(), 3693 JE = F.BaseRegs.end(); J != JE; ++J) { 3694 const SCEV *Reg = *J; 3695 if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx)) 3696 Key.push_back(Reg); 3697 } 3698 if (F.ScaledReg && 3699 RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx)) 3700 Key.push_back(F.ScaledReg); 3701 // Unstable sort by host order ok, because this is only used for 3702 // uniquifying. 3703 std::sort(Key.begin(), Key.end()); 3704 3705 std::pair<BestFormulaeTy::const_iterator, bool> P = 3706 BestFormulae.insert(std::make_pair(Key, FIdx)); 3707 if (P.second) 3708 continue; 3709 3710 Formula &Best = LU.Formulae[P.first->second]; 3711 3712 Cost CostBest; 3713 Regs.clear(); 3714 CostBest.RateFormula(Best, Regs, VisitedRegs, L, LU.Offsets, SE, DT); 3715 if (CostF < CostBest) 3716 std::swap(F, Best); 3717 DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 3718 dbgs() << "\n" 3719 " in favor of formula "; Best.print(dbgs()); 3720 dbgs() << '\n'); 3721 } 3722 #ifndef NDEBUG 3723 ChangedFormulae = true; 3724 #endif 3725 LU.DeleteFormula(F); 3726 --FIdx; 3727 --NumForms; 3728 Any = true; 3729 } 3730 3731 // Now that we've filtered out some formulae, recompute the Regs set. 3732 if (Any) 3733 LU.RecomputeRegs(LUIdx, RegUses); 3734 3735 // Reset this to prepare for the next use. 3736 BestFormulae.clear(); 3737 } 3738 3739 DEBUG(if (ChangedFormulae) { 3740 dbgs() << "\n" 3741 "After filtering out undesirable candidates:\n"; 3742 print_uses(dbgs()); 3743 }); 3744 } 3745 3746 // This is a rough guess that seems to work fairly well. 3747 static const size_t ComplexityLimit = UINT16_MAX; 3748 3749 /// EstimateSearchSpaceComplexity - Estimate the worst-case number of 3750 /// solutions the solver might have to consider. It almost never considers 3751 /// this many solutions because it prune the search space, but the pruning 3752 /// isn't always sufficient. 3753 size_t LSRInstance::EstimateSearchSpaceComplexity() const { 3754 size_t Power = 1; 3755 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(), 3756 E = Uses.end(); I != E; ++I) { 3757 size_t FSize = I->Formulae.size(); 3758 if (FSize >= ComplexityLimit) { 3759 Power = ComplexityLimit; 3760 break; 3761 } 3762 Power *= FSize; 3763 if (Power >= ComplexityLimit) 3764 break; 3765 } 3766 return Power; 3767 } 3768 3769 /// NarrowSearchSpaceByDetectingSupersets - When one formula uses a superset 3770 /// of the registers of another formula, it won't help reduce register 3771 /// pressure (though it may not necessarily hurt register pressure); remove 3772 /// it to simplify the system. 3773 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() { 3774 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 3775 DEBUG(dbgs() << "The search space is too complex.\n"); 3776 3777 DEBUG(dbgs() << "Narrowing the search space by eliminating formulae " 3778 "which use a superset of registers used by other " 3779 "formulae.\n"); 3780 3781 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3782 LSRUse &LU = Uses[LUIdx]; 3783 bool Any = false; 3784 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 3785 Formula &F = LU.Formulae[i]; 3786 // Look for a formula with a constant or GV in a register. If the use 3787 // also has a formula with that same value in an immediate field, 3788 // delete the one that uses a register. 3789 for (SmallVectorImpl<const SCEV *>::const_iterator 3790 I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) { 3791 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) { 3792 Formula NewF = F; 3793 NewF.AM.BaseOffs += C->getValue()->getSExtValue(); 3794 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 3795 (I - F.BaseRegs.begin())); 3796 if (LU.HasFormulaWithSameRegs(NewF)) { 3797 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 3798 LU.DeleteFormula(F); 3799 --i; 3800 --e; 3801 Any = true; 3802 break; 3803 } 3804 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) { 3805 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) 3806 if (!F.AM.BaseGV) { 3807 Formula NewF = F; 3808 NewF.AM.BaseGV = GV; 3809 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 3810 (I - F.BaseRegs.begin())); 3811 if (LU.HasFormulaWithSameRegs(NewF)) { 3812 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 3813 dbgs() << '\n'); 3814 LU.DeleteFormula(F); 3815 --i; 3816 --e; 3817 Any = true; 3818 break; 3819 } 3820 } 3821 } 3822 } 3823 } 3824 if (Any) 3825 LU.RecomputeRegs(LUIdx, RegUses); 3826 } 3827 3828 DEBUG(dbgs() << "After pre-selection:\n"; 3829 print_uses(dbgs())); 3830 } 3831 } 3832 3833 /// NarrowSearchSpaceByCollapsingUnrolledCode - When there are many registers 3834 /// for expressions like A, A+1, A+2, etc., allocate a single register for 3835 /// them. 3836 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() { 3837 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 3838 DEBUG(dbgs() << "The search space is too complex.\n"); 3839 3840 DEBUG(dbgs() << "Narrowing the search space by assuming that uses " 3841 "separated by a constant offset will use the same " 3842 "registers.\n"); 3843 3844 // This is especially useful for unrolled loops. 3845 3846 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3847 LSRUse &LU = Uses[LUIdx]; 3848 for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(), 3849 E = LU.Formulae.end(); I != E; ++I) { 3850 const Formula &F = *I; 3851 if (F.AM.BaseOffs != 0 && F.AM.Scale == 0) { 3852 if (LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU)) { 3853 if (reconcileNewOffset(*LUThatHas, F.AM.BaseOffs, 3854 /*HasBaseReg=*/false, 3855 LU.Kind, LU.AccessTy)) { 3856 DEBUG(dbgs() << " Deleting use "; LU.print(dbgs()); 3857 dbgs() << '\n'); 3858 3859 LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop; 3860 3861 // Update the relocs to reference the new use. 3862 for (SmallVectorImpl<LSRFixup>::iterator I = Fixups.begin(), 3863 E = Fixups.end(); I != E; ++I) { 3864 LSRFixup &Fixup = *I; 3865 if (Fixup.LUIdx == LUIdx) { 3866 Fixup.LUIdx = LUThatHas - &Uses.front(); 3867 Fixup.Offset += F.AM.BaseOffs; 3868 // Add the new offset to LUThatHas' offset list. 3869 if (LUThatHas->Offsets.back() != Fixup.Offset) { 3870 LUThatHas->Offsets.push_back(Fixup.Offset); 3871 if (Fixup.Offset > LUThatHas->MaxOffset) 3872 LUThatHas->MaxOffset = Fixup.Offset; 3873 if (Fixup.Offset < LUThatHas->MinOffset) 3874 LUThatHas->MinOffset = Fixup.Offset; 3875 } 3876 DEBUG(dbgs() << "New fixup has offset " 3877 << Fixup.Offset << '\n'); 3878 } 3879 if (Fixup.LUIdx == NumUses-1) 3880 Fixup.LUIdx = LUIdx; 3881 } 3882 3883 // Delete formulae from the new use which are no longer legal. 3884 bool Any = false; 3885 for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) { 3886 Formula &F = LUThatHas->Formulae[i]; 3887 if (!isLegalUse(F.AM, 3888 LUThatHas->MinOffset, LUThatHas->MaxOffset, 3889 LUThatHas->Kind, LUThatHas->AccessTy, TLI)) { 3890 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 3891 dbgs() << '\n'); 3892 LUThatHas->DeleteFormula(F); 3893 --i; 3894 --e; 3895 Any = true; 3896 } 3897 } 3898 if (Any) 3899 LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses); 3900 3901 // Delete the old use. 3902 DeleteUse(LU, LUIdx); 3903 --LUIdx; 3904 --NumUses; 3905 break; 3906 } 3907 } 3908 } 3909 } 3910 } 3911 3912 DEBUG(dbgs() << "After pre-selection:\n"; 3913 print_uses(dbgs())); 3914 } 3915 } 3916 3917 /// NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters - Call 3918 /// FilterOutUndesirableDedicatedRegisters again, if necessary, now that 3919 /// we've done more filtering, as it may be able to find more formulae to 3920 /// eliminate. 3921 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){ 3922 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 3923 DEBUG(dbgs() << "The search space is too complex.\n"); 3924 3925 DEBUG(dbgs() << "Narrowing the search space by re-filtering out " 3926 "undesirable dedicated registers.\n"); 3927 3928 FilterOutUndesirableDedicatedRegisters(); 3929 3930 DEBUG(dbgs() << "After pre-selection:\n"; 3931 print_uses(dbgs())); 3932 } 3933 } 3934 3935 /// NarrowSearchSpaceByPickingWinnerRegs - Pick a register which seems likely 3936 /// to be profitable, and then in any use which has any reference to that 3937 /// register, delete all formulae which do not reference that register. 3938 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() { 3939 // With all other options exhausted, loop until the system is simple 3940 // enough to handle. 3941 SmallPtrSet<const SCEV *, 4> Taken; 3942 while (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 3943 // Ok, we have too many of formulae on our hands to conveniently handle. 3944 // Use a rough heuristic to thin out the list. 3945 DEBUG(dbgs() << "The search space is too complex.\n"); 3946 3947 // Pick the register which is used by the most LSRUses, which is likely 3948 // to be a good reuse register candidate. 3949 const SCEV *Best = 0; 3950 unsigned BestNum = 0; 3951 for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end(); 3952 I != E; ++I) { 3953 const SCEV *Reg = *I; 3954 if (Taken.count(Reg)) 3955 continue; 3956 if (!Best) 3957 Best = Reg; 3958 else { 3959 unsigned Count = RegUses.getUsedByIndices(Reg).count(); 3960 if (Count > BestNum) { 3961 Best = Reg; 3962 BestNum = Count; 3963 } 3964 } 3965 } 3966 3967 DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best 3968 << " will yield profitable reuse.\n"); 3969 Taken.insert(Best); 3970 3971 // In any use with formulae which references this register, delete formulae 3972 // which don't reference it. 3973 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3974 LSRUse &LU = Uses[LUIdx]; 3975 if (!LU.Regs.count(Best)) continue; 3976 3977 bool Any = false; 3978 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 3979 Formula &F = LU.Formulae[i]; 3980 if (!F.referencesReg(Best)) { 3981 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 3982 LU.DeleteFormula(F); 3983 --e; 3984 --i; 3985 Any = true; 3986 assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?"); 3987 continue; 3988 } 3989 } 3990 3991 if (Any) 3992 LU.RecomputeRegs(LUIdx, RegUses); 3993 } 3994 3995 DEBUG(dbgs() << "After pre-selection:\n"; 3996 print_uses(dbgs())); 3997 } 3998 } 3999 4000 /// NarrowSearchSpaceUsingHeuristics - If there are an extraordinary number of 4001 /// formulae to choose from, use some rough heuristics to prune down the number 4002 /// of formulae. This keeps the main solver from taking an extraordinary amount 4003 /// of time in some worst-case scenarios. 4004 void LSRInstance::NarrowSearchSpaceUsingHeuristics() { 4005 NarrowSearchSpaceByDetectingSupersets(); 4006 NarrowSearchSpaceByCollapsingUnrolledCode(); 4007 NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 4008 NarrowSearchSpaceByPickingWinnerRegs(); 4009 } 4010 4011 /// SolveRecurse - This is the recursive solver. 4012 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 4013 Cost &SolutionCost, 4014 SmallVectorImpl<const Formula *> &Workspace, 4015 const Cost &CurCost, 4016 const SmallPtrSet<const SCEV *, 16> &CurRegs, 4017 DenseSet<const SCEV *> &VisitedRegs) const { 4018 // Some ideas: 4019 // - prune more: 4020 // - use more aggressive filtering 4021 // - sort the formula so that the most profitable solutions are found first 4022 // - sort the uses too 4023 // - search faster: 4024 // - don't compute a cost, and then compare. compare while computing a cost 4025 // and bail early. 4026 // - track register sets with SmallBitVector 4027 4028 const LSRUse &LU = Uses[Workspace.size()]; 4029 4030 // If this use references any register that's already a part of the 4031 // in-progress solution, consider it a requirement that a formula must 4032 // reference that register in order to be considered. This prunes out 4033 // unprofitable searching. 4034 SmallSetVector<const SCEV *, 4> ReqRegs; 4035 for (SmallPtrSet<const SCEV *, 16>::const_iterator I = CurRegs.begin(), 4036 E = CurRegs.end(); I != E; ++I) 4037 if (LU.Regs.count(*I)) 4038 ReqRegs.insert(*I); 4039 4040 SmallPtrSet<const SCEV *, 16> NewRegs; 4041 Cost NewCost; 4042 for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(), 4043 E = LU.Formulae.end(); I != E; ++I) { 4044 const Formula &F = *I; 4045 4046 // Ignore formulae which do not use any of the required registers. 4047 bool SatisfiedReqReg = true; 4048 for (SmallSetVector<const SCEV *, 4>::const_iterator J = ReqRegs.begin(), 4049 JE = ReqRegs.end(); J != JE; ++J) { 4050 const SCEV *Reg = *J; 4051 if ((!F.ScaledReg || F.ScaledReg != Reg) && 4052 std::find(F.BaseRegs.begin(), F.BaseRegs.end(), Reg) == 4053 F.BaseRegs.end()) { 4054 SatisfiedReqReg = false; 4055 break; 4056 } 4057 } 4058 if (!SatisfiedReqReg) { 4059 // If none of the formulae satisfied the required registers, then we could 4060 // clear ReqRegs and try again. Currently, we simply give up in this case. 4061 continue; 4062 } 4063 4064 // Evaluate the cost of the current formula. If it's already worse than 4065 // the current best, prune the search at that point. 4066 NewCost = CurCost; 4067 NewRegs = CurRegs; 4068 NewCost.RateFormula(F, NewRegs, VisitedRegs, L, LU.Offsets, SE, DT); 4069 if (NewCost < SolutionCost) { 4070 Workspace.push_back(&F); 4071 if (Workspace.size() != Uses.size()) { 4072 SolveRecurse(Solution, SolutionCost, Workspace, NewCost, 4073 NewRegs, VisitedRegs); 4074 if (F.getNumRegs() == 1 && Workspace.size() == 1) 4075 VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]); 4076 } else { 4077 DEBUG(dbgs() << "New best at "; NewCost.print(dbgs()); 4078 dbgs() << ".\n Regs:"; 4079 for (SmallPtrSet<const SCEV *, 16>::const_iterator 4080 I = NewRegs.begin(), E = NewRegs.end(); I != E; ++I) 4081 dbgs() << ' ' << **I; 4082 dbgs() << '\n'); 4083 4084 SolutionCost = NewCost; 4085 Solution = Workspace; 4086 } 4087 Workspace.pop_back(); 4088 } 4089 } 4090 } 4091 4092 /// Solve - Choose one formula from each use. Return the results in the given 4093 /// Solution vector. 4094 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const { 4095 SmallVector<const Formula *, 8> Workspace; 4096 Cost SolutionCost; 4097 SolutionCost.Loose(); 4098 Cost CurCost; 4099 SmallPtrSet<const SCEV *, 16> CurRegs; 4100 DenseSet<const SCEV *> VisitedRegs; 4101 Workspace.reserve(Uses.size()); 4102 4103 // SolveRecurse does all the work. 4104 SolveRecurse(Solution, SolutionCost, Workspace, CurCost, 4105 CurRegs, VisitedRegs); 4106 if (Solution.empty()) { 4107 DEBUG(dbgs() << "\nNo Satisfactory Solution\n"); 4108 return; 4109 } 4110 4111 // Ok, we've now made all our decisions. 4112 DEBUG(dbgs() << "\n" 4113 "The chosen solution requires "; SolutionCost.print(dbgs()); 4114 dbgs() << ":\n"; 4115 for (size_t i = 0, e = Uses.size(); i != e; ++i) { 4116 dbgs() << " "; 4117 Uses[i].print(dbgs()); 4118 dbgs() << "\n" 4119 " "; 4120 Solution[i]->print(dbgs()); 4121 dbgs() << '\n'; 4122 }); 4123 4124 assert(Solution.size() == Uses.size() && "Malformed solution!"); 4125 } 4126 4127 /// HoistInsertPosition - Helper for AdjustInsertPositionForExpand. Climb up 4128 /// the dominator tree far as we can go while still being dominated by the 4129 /// input positions. This helps canonicalize the insert position, which 4130 /// encourages sharing. 4131 BasicBlock::iterator 4132 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP, 4133 const SmallVectorImpl<Instruction *> &Inputs) 4134 const { 4135 for (;;) { 4136 const Loop *IPLoop = LI.getLoopFor(IP->getParent()); 4137 unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0; 4138 4139 BasicBlock *IDom; 4140 for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) { 4141 if (!Rung) return IP; 4142 Rung = Rung->getIDom(); 4143 if (!Rung) return IP; 4144 IDom = Rung->getBlock(); 4145 4146 // Don't climb into a loop though. 4147 const Loop *IDomLoop = LI.getLoopFor(IDom); 4148 unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0; 4149 if (IDomDepth <= IPLoopDepth && 4150 (IDomDepth != IPLoopDepth || IDomLoop == IPLoop)) 4151 break; 4152 } 4153 4154 bool AllDominate = true; 4155 Instruction *BetterPos = 0; 4156 Instruction *Tentative = IDom->getTerminator(); 4157 for (SmallVectorImpl<Instruction *>::const_iterator I = Inputs.begin(), 4158 E = Inputs.end(); I != E; ++I) { 4159 Instruction *Inst = *I; 4160 if (Inst == Tentative || !DT.dominates(Inst, Tentative)) { 4161 AllDominate = false; 4162 break; 4163 } 4164 // Attempt to find an insert position in the middle of the block, 4165 // instead of at the end, so that it can be used for other expansions. 4166 if (IDom == Inst->getParent() && 4167 (!BetterPos || !DT.dominates(Inst, BetterPos))) 4168 BetterPos = llvm::next(BasicBlock::iterator(Inst)); 4169 } 4170 if (!AllDominate) 4171 break; 4172 if (BetterPos) 4173 IP = BetterPos; 4174 else 4175 IP = Tentative; 4176 } 4177 4178 return IP; 4179 } 4180 4181 /// AdjustInsertPositionForExpand - Determine an input position which will be 4182 /// dominated by the operands and which will dominate the result. 4183 BasicBlock::iterator 4184 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP, 4185 const LSRFixup &LF, 4186 const LSRUse &LU, 4187 SCEVExpander &Rewriter) const { 4188 // Collect some instructions which must be dominated by the 4189 // expanding replacement. These must be dominated by any operands that 4190 // will be required in the expansion. 4191 SmallVector<Instruction *, 4> Inputs; 4192 if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace)) 4193 Inputs.push_back(I); 4194 if (LU.Kind == LSRUse::ICmpZero) 4195 if (Instruction *I = 4196 dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1))) 4197 Inputs.push_back(I); 4198 if (LF.PostIncLoops.count(L)) { 4199 if (LF.isUseFullyOutsideLoop(L)) 4200 Inputs.push_back(L->getLoopLatch()->getTerminator()); 4201 else 4202 Inputs.push_back(IVIncInsertPos); 4203 } 4204 // The expansion must also be dominated by the increment positions of any 4205 // loops it for which it is using post-inc mode. 4206 for (PostIncLoopSet::const_iterator I = LF.PostIncLoops.begin(), 4207 E = LF.PostIncLoops.end(); I != E; ++I) { 4208 const Loop *PIL = *I; 4209 if (PIL == L) continue; 4210 4211 // Be dominated by the loop exit. 4212 SmallVector<BasicBlock *, 4> ExitingBlocks; 4213 PIL->getExitingBlocks(ExitingBlocks); 4214 if (!ExitingBlocks.empty()) { 4215 BasicBlock *BB = ExitingBlocks[0]; 4216 for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i) 4217 BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]); 4218 Inputs.push_back(BB->getTerminator()); 4219 } 4220 } 4221 4222 assert(!isa<PHINode>(LowestIP) && !isa<LandingPadInst>(LowestIP) 4223 && !isa<DbgInfoIntrinsic>(LowestIP) && 4224 "Insertion point must be a normal instruction"); 4225 4226 // Then, climb up the immediate dominator tree as far as we can go while 4227 // still being dominated by the input positions. 4228 BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs); 4229 4230 // Don't insert instructions before PHI nodes. 4231 while (isa<PHINode>(IP)) ++IP; 4232 4233 // Ignore landingpad instructions. 4234 while (isa<LandingPadInst>(IP)) ++IP; 4235 4236 // Ignore debug intrinsics. 4237 while (isa<DbgInfoIntrinsic>(IP)) ++IP; 4238 4239 // Set IP below instructions recently inserted by SCEVExpander. This keeps the 4240 // IP consistent across expansions and allows the previously inserted 4241 // instructions to be reused by subsequent expansion. 4242 while (Rewriter.isInsertedInstruction(IP) && IP != LowestIP) ++IP; 4243 4244 return IP; 4245 } 4246 4247 /// Expand - Emit instructions for the leading candidate expression for this 4248 /// LSRUse (this is called "expanding"). 4249 Value *LSRInstance::Expand(const LSRFixup &LF, 4250 const Formula &F, 4251 BasicBlock::iterator IP, 4252 SCEVExpander &Rewriter, 4253 SmallVectorImpl<WeakVH> &DeadInsts) const { 4254 const LSRUse &LU = Uses[LF.LUIdx]; 4255 4256 // Determine an input position which will be dominated by the operands and 4257 // which will dominate the result. 4258 IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter); 4259 4260 // Inform the Rewriter if we have a post-increment use, so that it can 4261 // perform an advantageous expansion. 4262 Rewriter.setPostInc(LF.PostIncLoops); 4263 4264 // This is the type that the user actually needs. 4265 Type *OpTy = LF.OperandValToReplace->getType(); 4266 // This will be the type that we'll initially expand to. 4267 Type *Ty = F.getType(); 4268 if (!Ty) 4269 // No type known; just expand directly to the ultimate type. 4270 Ty = OpTy; 4271 else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy)) 4272 // Expand directly to the ultimate type if it's the right size. 4273 Ty = OpTy; 4274 // This is the type to do integer arithmetic in. 4275 Type *IntTy = SE.getEffectiveSCEVType(Ty); 4276 4277 // Build up a list of operands to add together to form the full base. 4278 SmallVector<const SCEV *, 8> Ops; 4279 4280 // Expand the BaseRegs portion. 4281 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(), 4282 E = F.BaseRegs.end(); I != E; ++I) { 4283 const SCEV *Reg = *I; 4284 assert(!Reg->isZero() && "Zero allocated in a base register!"); 4285 4286 // If we're expanding for a post-inc user, make the post-inc adjustment. 4287 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 4288 Reg = TransformForPostIncUse(Denormalize, Reg, 4289 LF.UserInst, LF.OperandValToReplace, 4290 Loops, SE, DT); 4291 4292 Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, 0, IP))); 4293 } 4294 4295 // Expand the ScaledReg portion. 4296 Value *ICmpScaledV = 0; 4297 if (F.AM.Scale != 0) { 4298 const SCEV *ScaledS = F.ScaledReg; 4299 4300 // If we're expanding for a post-inc user, make the post-inc adjustment. 4301 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 4302 ScaledS = TransformForPostIncUse(Denormalize, ScaledS, 4303 LF.UserInst, LF.OperandValToReplace, 4304 Loops, SE, DT); 4305 4306 if (LU.Kind == LSRUse::ICmpZero) { 4307 // An interesting way of "folding" with an icmp is to use a negated 4308 // scale, which we'll implement by inserting it into the other operand 4309 // of the icmp. 4310 assert(F.AM.Scale == -1 && 4311 "The only scale supported by ICmpZero uses is -1!"); 4312 ICmpScaledV = Rewriter.expandCodeFor(ScaledS, 0, IP); 4313 } else { 4314 // Otherwise just expand the scaled register and an explicit scale, 4315 // which is expected to be matched as part of the address. 4316 4317 // Flush the operand list to suppress SCEVExpander hoisting address modes. 4318 if (!Ops.empty() && LU.Kind == LSRUse::Address) { 4319 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP); 4320 Ops.clear(); 4321 Ops.push_back(SE.getUnknown(FullV)); 4322 } 4323 ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, 0, IP)); 4324 ScaledS = SE.getMulExpr(ScaledS, 4325 SE.getConstant(ScaledS->getType(), F.AM.Scale)); 4326 Ops.push_back(ScaledS); 4327 } 4328 } 4329 4330 // Expand the GV portion. 4331 if (F.AM.BaseGV) { 4332 // Flush the operand list to suppress SCEVExpander hoisting. 4333 if (!Ops.empty()) { 4334 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP); 4335 Ops.clear(); 4336 Ops.push_back(SE.getUnknown(FullV)); 4337 } 4338 Ops.push_back(SE.getUnknown(F.AM.BaseGV)); 4339 } 4340 4341 // Flush the operand list to suppress SCEVExpander hoisting of both folded and 4342 // unfolded offsets. LSR assumes they both live next to their uses. 4343 if (!Ops.empty()) { 4344 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP); 4345 Ops.clear(); 4346 Ops.push_back(SE.getUnknown(FullV)); 4347 } 4348 4349 // Expand the immediate portion. 4350 int64_t Offset = (uint64_t)F.AM.BaseOffs + LF.Offset; 4351 if (Offset != 0) { 4352 if (LU.Kind == LSRUse::ICmpZero) { 4353 // The other interesting way of "folding" with an ICmpZero is to use a 4354 // negated immediate. 4355 if (!ICmpScaledV) 4356 ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset); 4357 else { 4358 Ops.push_back(SE.getUnknown(ICmpScaledV)); 4359 ICmpScaledV = ConstantInt::get(IntTy, Offset); 4360 } 4361 } else { 4362 // Just add the immediate values. These again are expected to be matched 4363 // as part of the address. 4364 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset))); 4365 } 4366 } 4367 4368 // Expand the unfolded offset portion. 4369 int64_t UnfoldedOffset = F.UnfoldedOffset; 4370 if (UnfoldedOffset != 0) { 4371 // Just add the immediate values. 4372 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, 4373 UnfoldedOffset))); 4374 } 4375 4376 // Emit instructions summing all the operands. 4377 const SCEV *FullS = Ops.empty() ? 4378 SE.getConstant(IntTy, 0) : 4379 SE.getAddExpr(Ops); 4380 Value *FullV = Rewriter.expandCodeFor(FullS, Ty, IP); 4381 4382 // We're done expanding now, so reset the rewriter. 4383 Rewriter.clearPostInc(); 4384 4385 // An ICmpZero Formula represents an ICmp which we're handling as a 4386 // comparison against zero. Now that we've expanded an expression for that 4387 // form, update the ICmp's other operand. 4388 if (LU.Kind == LSRUse::ICmpZero) { 4389 ICmpInst *CI = cast<ICmpInst>(LF.UserInst); 4390 DeadInsts.push_back(CI->getOperand(1)); 4391 assert(!F.AM.BaseGV && "ICmp does not support folding a global value and " 4392 "a scale at the same time!"); 4393 if (F.AM.Scale == -1) { 4394 if (ICmpScaledV->getType() != OpTy) { 4395 Instruction *Cast = 4396 CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false, 4397 OpTy, false), 4398 ICmpScaledV, OpTy, "tmp", CI); 4399 ICmpScaledV = Cast; 4400 } 4401 CI->setOperand(1, ICmpScaledV); 4402 } else { 4403 assert(F.AM.Scale == 0 && 4404 "ICmp does not support folding a global value and " 4405 "a scale at the same time!"); 4406 Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy), 4407 -(uint64_t)Offset); 4408 if (C->getType() != OpTy) 4409 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 4410 OpTy, false), 4411 C, OpTy); 4412 4413 CI->setOperand(1, C); 4414 } 4415 } 4416 4417 return FullV; 4418 } 4419 4420 /// RewriteForPHI - Helper for Rewrite. PHI nodes are special because the use 4421 /// of their operands effectively happens in their predecessor blocks, so the 4422 /// expression may need to be expanded in multiple places. 4423 void LSRInstance::RewriteForPHI(PHINode *PN, 4424 const LSRFixup &LF, 4425 const Formula &F, 4426 SCEVExpander &Rewriter, 4427 SmallVectorImpl<WeakVH> &DeadInsts, 4428 Pass *P) const { 4429 DenseMap<BasicBlock *, Value *> Inserted; 4430 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 4431 if (PN->getIncomingValue(i) == LF.OperandValToReplace) { 4432 BasicBlock *BB = PN->getIncomingBlock(i); 4433 4434 // If this is a critical edge, split the edge so that we do not insert 4435 // the code on all predecessor/successor paths. We do this unless this 4436 // is the canonical backedge for this loop, which complicates post-inc 4437 // users. 4438 if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 && 4439 !isa<IndirectBrInst>(BB->getTerminator())) { 4440 BasicBlock *Parent = PN->getParent(); 4441 Loop *PNLoop = LI.getLoopFor(Parent); 4442 if (!PNLoop || Parent != PNLoop->getHeader()) { 4443 // Split the critical edge. 4444 BasicBlock *NewBB = 0; 4445 if (!Parent->isLandingPad()) { 4446 NewBB = SplitCriticalEdge(BB, Parent, P, 4447 /*MergeIdenticalEdges=*/true, 4448 /*DontDeleteUselessPhis=*/true); 4449 } else { 4450 SmallVector<BasicBlock*, 2> NewBBs; 4451 SplitLandingPadPredecessors(Parent, BB, "", "", P, NewBBs); 4452 NewBB = NewBBs[0]; 4453 } 4454 4455 // If PN is outside of the loop and BB is in the loop, we want to 4456 // move the block to be immediately before the PHI block, not 4457 // immediately after BB. 4458 if (L->contains(BB) && !L->contains(PN)) 4459 NewBB->moveBefore(PN->getParent()); 4460 4461 // Splitting the edge can reduce the number of PHI entries we have. 4462 e = PN->getNumIncomingValues(); 4463 BB = NewBB; 4464 i = PN->getBasicBlockIndex(BB); 4465 } 4466 } 4467 4468 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair = 4469 Inserted.insert(std::make_pair(BB, static_cast<Value *>(0))); 4470 if (!Pair.second) 4471 PN->setIncomingValue(i, Pair.first->second); 4472 else { 4473 Value *FullV = Expand(LF, F, BB->getTerminator(), Rewriter, DeadInsts); 4474 4475 // If this is reuse-by-noop-cast, insert the noop cast. 4476 Type *OpTy = LF.OperandValToReplace->getType(); 4477 if (FullV->getType() != OpTy) 4478 FullV = 4479 CastInst::Create(CastInst::getCastOpcode(FullV, false, 4480 OpTy, false), 4481 FullV, LF.OperandValToReplace->getType(), 4482 "tmp", BB->getTerminator()); 4483 4484 PN->setIncomingValue(i, FullV); 4485 Pair.first->second = FullV; 4486 } 4487 } 4488 } 4489 4490 /// Rewrite - Emit instructions for the leading candidate expression for this 4491 /// LSRUse (this is called "expanding"), and update the UserInst to reference 4492 /// the newly expanded value. 4493 void LSRInstance::Rewrite(const LSRFixup &LF, 4494 const Formula &F, 4495 SCEVExpander &Rewriter, 4496 SmallVectorImpl<WeakVH> &DeadInsts, 4497 Pass *P) const { 4498 // First, find an insertion point that dominates UserInst. For PHI nodes, 4499 // find the nearest block which dominates all the relevant uses. 4500 if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) { 4501 RewriteForPHI(PN, LF, F, Rewriter, DeadInsts, P); 4502 } else { 4503 Value *FullV = Expand(LF, F, LF.UserInst, Rewriter, DeadInsts); 4504 4505 // If this is reuse-by-noop-cast, insert the noop cast. 4506 Type *OpTy = LF.OperandValToReplace->getType(); 4507 if (FullV->getType() != OpTy) { 4508 Instruction *Cast = 4509 CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false), 4510 FullV, OpTy, "tmp", LF.UserInst); 4511 FullV = Cast; 4512 } 4513 4514 // Update the user. ICmpZero is handled specially here (for now) because 4515 // Expand may have updated one of the operands of the icmp already, and 4516 // its new value may happen to be equal to LF.OperandValToReplace, in 4517 // which case doing replaceUsesOfWith leads to replacing both operands 4518 // with the same value. TODO: Reorganize this. 4519 if (Uses[LF.LUIdx].Kind == LSRUse::ICmpZero) 4520 LF.UserInst->setOperand(0, FullV); 4521 else 4522 LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV); 4523 } 4524 4525 DeadInsts.push_back(LF.OperandValToReplace); 4526 } 4527 4528 /// ImplementSolution - Rewrite all the fixup locations with new values, 4529 /// following the chosen solution. 4530 void 4531 LSRInstance::ImplementSolution(const SmallVectorImpl<const Formula *> &Solution, 4532 Pass *P) { 4533 // Keep track of instructions we may have made dead, so that 4534 // we can remove them after we are done working. 4535 SmallVector<WeakVH, 16> DeadInsts; 4536 4537 SCEVExpander Rewriter(SE, "lsr"); 4538 #ifndef NDEBUG 4539 Rewriter.setDebugType(DEBUG_TYPE); 4540 #endif 4541 Rewriter.disableCanonicalMode(); 4542 Rewriter.enableLSRMode(); 4543 Rewriter.setIVIncInsertPos(L, IVIncInsertPos); 4544 4545 // Mark phi nodes that terminate chains so the expander tries to reuse them. 4546 for (SmallVectorImpl<IVChain>::const_iterator ChainI = IVChainVec.begin(), 4547 ChainE = IVChainVec.end(); ChainI != ChainE; ++ChainI) { 4548 if (PHINode *PN = dyn_cast<PHINode>(ChainI->tailUserInst())) 4549 Rewriter.setChainedPhi(PN); 4550 } 4551 4552 // Expand the new value definitions and update the users. 4553 for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(), 4554 E = Fixups.end(); I != E; ++I) { 4555 const LSRFixup &Fixup = *I; 4556 4557 Rewrite(Fixup, *Solution[Fixup.LUIdx], Rewriter, DeadInsts, P); 4558 4559 Changed = true; 4560 } 4561 4562 for (SmallVectorImpl<IVChain>::const_iterator ChainI = IVChainVec.begin(), 4563 ChainE = IVChainVec.end(); ChainI != ChainE; ++ChainI) { 4564 GenerateIVChain(*ChainI, Rewriter, DeadInsts); 4565 Changed = true; 4566 } 4567 // Clean up after ourselves. This must be done before deleting any 4568 // instructions. 4569 Rewriter.clear(); 4570 4571 Changed |= DeleteTriviallyDeadInstructions(DeadInsts); 4572 } 4573 4574 LSRInstance::LSRInstance(const TargetLowering *tli, Loop *l, Pass *P) 4575 : IU(P->getAnalysis<IVUsers>()), 4576 SE(P->getAnalysis<ScalarEvolution>()), 4577 DT(P->getAnalysis<DominatorTree>()), 4578 LI(P->getAnalysis<LoopInfo>()), 4579 TLI(tli), L(l), Changed(false), IVIncInsertPos(0) { 4580 4581 // If LoopSimplify form is not available, stay out of trouble. 4582 if (!L->isLoopSimplifyForm()) 4583 return; 4584 4585 // If there's no interesting work to be done, bail early. 4586 if (IU.empty()) return; 4587 4588 // If there's too much analysis to be done, bail early. We won't be able to 4589 // model the problem anyway. 4590 unsigned NumUsers = 0; 4591 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) { 4592 if (++NumUsers > MaxIVUsers) { 4593 DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << *L 4594 << "\n"); 4595 return; 4596 } 4597 } 4598 4599 #ifndef NDEBUG 4600 // All dominating loops must have preheaders, or SCEVExpander may not be able 4601 // to materialize an AddRecExpr whose Start is an outer AddRecExpr. 4602 // 4603 // IVUsers analysis should only create users that are dominated by simple loop 4604 // headers. Since this loop should dominate all of its users, its user list 4605 // should be empty if this loop itself is not within a simple loop nest. 4606 for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader()); 4607 Rung; Rung = Rung->getIDom()) { 4608 BasicBlock *BB = Rung->getBlock(); 4609 const Loop *DomLoop = LI.getLoopFor(BB); 4610 if (DomLoop && DomLoop->getHeader() == BB) { 4611 assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest"); 4612 } 4613 } 4614 #endif // DEBUG 4615 4616 DEBUG(dbgs() << "\nLSR on loop "; 4617 WriteAsOperand(dbgs(), L->getHeader(), /*PrintType=*/false); 4618 dbgs() << ":\n"); 4619 4620 // First, perform some low-level loop optimizations. 4621 OptimizeShadowIV(); 4622 OptimizeLoopTermCond(); 4623 4624 // If loop preparation eliminates all interesting IV users, bail. 4625 if (IU.empty()) return; 4626 4627 // Skip nested loops until we can model them better with formulae. 4628 if (!L->empty()) { 4629 DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n"); 4630 return; 4631 } 4632 4633 // Start collecting data and preparing for the solver. 4634 CollectChains(); 4635 CollectInterestingTypesAndFactors(); 4636 CollectFixupsAndInitialFormulae(); 4637 CollectLoopInvariantFixupsAndFormulae(); 4638 4639 assert(!Uses.empty() && "IVUsers reported at least one use"); 4640 DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n"; 4641 print_uses(dbgs())); 4642 4643 // Now use the reuse data to generate a bunch of interesting ways 4644 // to formulate the values needed for the uses. 4645 GenerateAllReuseFormulae(); 4646 4647 FilterOutUndesirableDedicatedRegisters(); 4648 NarrowSearchSpaceUsingHeuristics(); 4649 4650 SmallVector<const Formula *, 8> Solution; 4651 Solve(Solution); 4652 4653 // Release memory that is no longer needed. 4654 Factors.clear(); 4655 Types.clear(); 4656 RegUses.clear(); 4657 4658 if (Solution.empty()) 4659 return; 4660 4661 #ifndef NDEBUG 4662 // Formulae should be legal. 4663 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(), 4664 E = Uses.end(); I != E; ++I) { 4665 const LSRUse &LU = *I; 4666 for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(), 4667 JE = LU.Formulae.end(); J != JE; ++J) 4668 assert(isLegalUse(J->AM, LU.MinOffset, LU.MaxOffset, 4669 LU.Kind, LU.AccessTy, TLI) && 4670 "Illegal formula generated!"); 4671 }; 4672 #endif 4673 4674 // Now that we've decided what we want, make it so. 4675 ImplementSolution(Solution, P); 4676 } 4677 4678 void LSRInstance::print_factors_and_types(raw_ostream &OS) const { 4679 if (Factors.empty() && Types.empty()) return; 4680 4681 OS << "LSR has identified the following interesting factors and types: "; 4682 bool First = true; 4683 4684 for (SmallSetVector<int64_t, 8>::const_iterator 4685 I = Factors.begin(), E = Factors.end(); I != E; ++I) { 4686 if (!First) OS << ", "; 4687 First = false; 4688 OS << '*' << *I; 4689 } 4690 4691 for (SmallSetVector<Type *, 4>::const_iterator 4692 I = Types.begin(), E = Types.end(); I != E; ++I) { 4693 if (!First) OS << ", "; 4694 First = false; 4695 OS << '(' << **I << ')'; 4696 } 4697 OS << '\n'; 4698 } 4699 4700 void LSRInstance::print_fixups(raw_ostream &OS) const { 4701 OS << "LSR is examining the following fixup sites:\n"; 4702 for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(), 4703 E = Fixups.end(); I != E; ++I) { 4704 dbgs() << " "; 4705 I->print(OS); 4706 OS << '\n'; 4707 } 4708 } 4709 4710 void LSRInstance::print_uses(raw_ostream &OS) const { 4711 OS << "LSR is examining the following uses:\n"; 4712 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(), 4713 E = Uses.end(); I != E; ++I) { 4714 const LSRUse &LU = *I; 4715 dbgs() << " "; 4716 LU.print(OS); 4717 OS << '\n'; 4718 for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(), 4719 JE = LU.Formulae.end(); J != JE; ++J) { 4720 OS << " "; 4721 J->print(OS); 4722 OS << '\n'; 4723 } 4724 } 4725 } 4726 4727 void LSRInstance::print(raw_ostream &OS) const { 4728 print_factors_and_types(OS); 4729 print_fixups(OS); 4730 print_uses(OS); 4731 } 4732 4733 void LSRInstance::dump() const { 4734 print(errs()); errs() << '\n'; 4735 } 4736 4737 namespace { 4738 4739 class LoopStrengthReduce : public LoopPass { 4740 /// TLI - Keep a pointer of a TargetLowering to consult for determining 4741 /// transformation profitability. 4742 const TargetLowering *const TLI; 4743 4744 public: 4745 static char ID; // Pass ID, replacement for typeid 4746 explicit LoopStrengthReduce(const TargetLowering *tli = 0); 4747 4748 private: 4749 bool runOnLoop(Loop *L, LPPassManager &LPM); 4750 void getAnalysisUsage(AnalysisUsage &AU) const; 4751 }; 4752 4753 } 4754 4755 char LoopStrengthReduce::ID = 0; 4756 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce", 4757 "Loop Strength Reduction", false, false) 4758 INITIALIZE_PASS_DEPENDENCY(DominatorTree) 4759 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 4760 INITIALIZE_PASS_DEPENDENCY(IVUsers) 4761 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 4762 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 4763 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce", 4764 "Loop Strength Reduction", false, false) 4765 4766 4767 Pass *llvm::createLoopStrengthReducePass(const TargetLowering *TLI) { 4768 return new LoopStrengthReduce(TLI); 4769 } 4770 4771 LoopStrengthReduce::LoopStrengthReduce(const TargetLowering *tli) 4772 : LoopPass(ID), TLI(tli) { 4773 initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry()); 4774 } 4775 4776 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const { 4777 // We split critical edges, so we change the CFG. However, we do update 4778 // many analyses if they are around. 4779 AU.addPreservedID(LoopSimplifyID); 4780 4781 AU.addRequired<LoopInfo>(); 4782 AU.addPreserved<LoopInfo>(); 4783 AU.addRequiredID(LoopSimplifyID); 4784 AU.addRequired<DominatorTree>(); 4785 AU.addPreserved<DominatorTree>(); 4786 AU.addRequired<ScalarEvolution>(); 4787 AU.addPreserved<ScalarEvolution>(); 4788 // Requiring LoopSimplify a second time here prevents IVUsers from running 4789 // twice, since LoopSimplify was invalidated by running ScalarEvolution. 4790 AU.addRequiredID(LoopSimplifyID); 4791 AU.addRequired<IVUsers>(); 4792 AU.addPreserved<IVUsers>(); 4793 } 4794 4795 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) { 4796 bool Changed = false; 4797 4798 // Run the main LSR transformation. 4799 Changed |= LSRInstance(TLI, L, this).getChanged(); 4800 4801 // Remove any extra phis created by processing inner loops. 4802 Changed |= DeleteDeadPHIs(L->getHeader()); 4803 if (EnablePhiElim) { 4804 SmallVector<WeakVH, 16> DeadInsts; 4805 SCEVExpander Rewriter(getAnalysis<ScalarEvolution>(), "lsr"); 4806 #ifndef NDEBUG 4807 Rewriter.setDebugType(DEBUG_TYPE); 4808 #endif 4809 unsigned numFolded = Rewriter. 4810 replaceCongruentIVs(L, &getAnalysis<DominatorTree>(), DeadInsts, TLI); 4811 if (numFolded) { 4812 Changed = true; 4813 DeleteTriviallyDeadInstructions(DeadInsts); 4814 DeleteDeadPHIs(L->getHeader()); 4815 } 4816 } 4817 return Changed; 4818 } 4819