1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This transformation analyzes and transforms the induction variables (and 10 // computations derived from them) into forms suitable for efficient execution 11 // on the target. 12 // 13 // This pass performs a strength reduction on array references inside loops that 14 // have as one or more of their components the loop induction variable, it 15 // rewrites expressions to take advantage of scaled-index addressing modes 16 // available on the target, and it performs a variety of other optimizations 17 // related to loop induction variables. 18 // 19 // Terminology note: this code has a lot of handling for "post-increment" or 20 // "post-inc" users. This is not talking about post-increment addressing modes; 21 // it is instead talking about code like this: 22 // 23 // %i = phi [ 0, %entry ], [ %i.next, %latch ] 24 // ... 25 // %i.next = add %i, 1 26 // %c = icmp eq %i.next, %n 27 // 28 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however 29 // it's useful to think about these as the same register, with some uses using 30 // the value of the register before the add and some using it after. In this 31 // example, the icmp is a post-increment user, since it uses %i.next, which is 32 // the value of the induction variable after the increment. The other common 33 // case of post-increment users is users outside the loop. 34 // 35 // TODO: More sophistication in the way Formulae are generated and filtered. 36 // 37 // TODO: Handle multiple loops at a time. 38 // 39 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead 40 // of a GlobalValue? 41 // 42 // TODO: When truncation is free, truncate ICmp users' operands to make it a 43 // smaller encoding (on x86 at least). 44 // 45 // TODO: When a negated register is used by an add (such as in a list of 46 // multiple base registers, or as the increment expression in an addrec), 47 // we may not actually need both reg and (-1 * reg) in registers; the 48 // negation can be implemented by using a sub instead of an add. The 49 // lack of support for taking this into consideration when making 50 // register pressure decisions is partly worked around by the "Special" 51 // use kind. 52 // 53 //===----------------------------------------------------------------------===// 54 55 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h" 56 #include "llvm/ADT/APInt.h" 57 #include "llvm/ADT/DenseMap.h" 58 #include "llvm/ADT/DenseSet.h" 59 #include "llvm/ADT/Hashing.h" 60 #include "llvm/ADT/PointerIntPair.h" 61 #include "llvm/ADT/STLExtras.h" 62 #include "llvm/ADT/SetVector.h" 63 #include "llvm/ADT/SmallBitVector.h" 64 #include "llvm/ADT/SmallPtrSet.h" 65 #include "llvm/ADT/SmallSet.h" 66 #include "llvm/ADT/SmallVector.h" 67 #include "llvm/ADT/iterator_range.h" 68 #include "llvm/Analysis/AssumptionCache.h" 69 #include "llvm/Analysis/IVUsers.h" 70 #include "llvm/Analysis/LoopAnalysisManager.h" 71 #include "llvm/Analysis/LoopInfo.h" 72 #include "llvm/Analysis/LoopPass.h" 73 #include "llvm/Analysis/MemorySSA.h" 74 #include "llvm/Analysis/MemorySSAUpdater.h" 75 #include "llvm/Analysis/ScalarEvolution.h" 76 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 77 #include "llvm/Analysis/ScalarEvolutionNormalization.h" 78 #include "llvm/Analysis/TargetLibraryInfo.h" 79 #include "llvm/Analysis/TargetTransformInfo.h" 80 #include "llvm/Analysis/ValueTracking.h" 81 #include "llvm/Config/llvm-config.h" 82 #include "llvm/IR/BasicBlock.h" 83 #include "llvm/IR/Constant.h" 84 #include "llvm/IR/Constants.h" 85 #include "llvm/IR/DebugInfoMetadata.h" 86 #include "llvm/IR/DerivedTypes.h" 87 #include "llvm/IR/Dominators.h" 88 #include "llvm/IR/GlobalValue.h" 89 #include "llvm/IR/IRBuilder.h" 90 #include "llvm/IR/InstrTypes.h" 91 #include "llvm/IR/Instruction.h" 92 #include "llvm/IR/Instructions.h" 93 #include "llvm/IR/IntrinsicInst.h" 94 #include "llvm/IR/Intrinsics.h" 95 #include "llvm/IR/Module.h" 96 #include "llvm/IR/OperandTraits.h" 97 #include "llvm/IR/Operator.h" 98 #include "llvm/IR/PassManager.h" 99 #include "llvm/IR/Type.h" 100 #include "llvm/IR/Use.h" 101 #include "llvm/IR/User.h" 102 #include "llvm/IR/Value.h" 103 #include "llvm/IR/ValueHandle.h" 104 #include "llvm/InitializePasses.h" 105 #include "llvm/Pass.h" 106 #include "llvm/Support/Casting.h" 107 #include "llvm/Support/CommandLine.h" 108 #include "llvm/Support/Compiler.h" 109 #include "llvm/Support/Debug.h" 110 #include "llvm/Support/ErrorHandling.h" 111 #include "llvm/Support/MathExtras.h" 112 #include "llvm/Support/raw_ostream.h" 113 #include "llvm/Transforms/Scalar.h" 114 #include "llvm/Transforms/Utils.h" 115 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 116 #include "llvm/Transforms/Utils/Local.h" 117 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 118 #include <algorithm> 119 #include <cassert> 120 #include <cstddef> 121 #include <cstdint> 122 #include <cstdlib> 123 #include <iterator> 124 #include <limits> 125 #include <map> 126 #include <numeric> 127 #include <utility> 128 129 using namespace llvm; 130 131 #define DEBUG_TYPE "loop-reduce" 132 133 /// MaxIVUsers is an arbitrary threshold that provides an early opportunity for 134 /// bail out. This threshold is far beyond the number of users that LSR can 135 /// conceivably solve, so it should not affect generated code, but catches the 136 /// worst cases before LSR burns too much compile time and stack space. 137 static const unsigned MaxIVUsers = 200; 138 139 // Temporary flag to cleanup congruent phis after LSR phi expansion. 140 // It's currently disabled until we can determine whether it's truly useful or 141 // not. The flag should be removed after the v3.0 release. 142 // This is now needed for ivchains. 143 static cl::opt<bool> EnablePhiElim( 144 "enable-lsr-phielim", cl::Hidden, cl::init(true), 145 cl::desc("Enable LSR phi elimination")); 146 147 // The flag adds instruction count to solutions cost comparision. 148 static cl::opt<bool> InsnsCost( 149 "lsr-insns-cost", cl::Hidden, cl::init(true), 150 cl::desc("Add instruction count to a LSR cost model")); 151 152 // Flag to choose how to narrow complex lsr solution 153 static cl::opt<bool> LSRExpNarrow( 154 "lsr-exp-narrow", cl::Hidden, cl::init(false), 155 cl::desc("Narrow LSR complex solution using" 156 " expectation of registers number")); 157 158 // Flag to narrow search space by filtering non-optimal formulae with 159 // the same ScaledReg and Scale. 160 static cl::opt<bool> FilterSameScaledReg( 161 "lsr-filter-same-scaled-reg", cl::Hidden, cl::init(true), 162 cl::desc("Narrow LSR search space by filtering non-optimal formulae" 163 " with the same ScaledReg and Scale")); 164 165 static cl::opt<TTI::AddressingModeKind> PreferredAddresingMode( 166 "lsr-preferred-addressing-mode", cl::Hidden, cl::init(TTI::AMK_None), 167 cl::desc("A flag that overrides the target's preferred addressing mode."), 168 cl::values(clEnumValN(TTI::AMK_None, 169 "none", 170 "Don't prefer any addressing mode"), 171 clEnumValN(TTI::AMK_PreIndexed, 172 "preindexed", 173 "Prefer pre-indexed addressing mode"), 174 clEnumValN(TTI::AMK_PostIndexed, 175 "postindexed", 176 "Prefer post-indexed addressing mode"))); 177 178 static cl::opt<unsigned> ComplexityLimit( 179 "lsr-complexity-limit", cl::Hidden, 180 cl::init(std::numeric_limits<uint16_t>::max()), 181 cl::desc("LSR search space complexity limit")); 182 183 static cl::opt<unsigned> SetupCostDepthLimit( 184 "lsr-setupcost-depth-limit", cl::Hidden, cl::init(7), 185 cl::desc("The limit on recursion depth for LSRs setup cost")); 186 187 #ifndef NDEBUG 188 // Stress test IV chain generation. 189 static cl::opt<bool> StressIVChain( 190 "stress-ivchain", cl::Hidden, cl::init(false), 191 cl::desc("Stress test LSR IV chains")); 192 #else 193 static bool StressIVChain = false; 194 #endif 195 196 namespace { 197 198 struct MemAccessTy { 199 /// Used in situations where the accessed memory type is unknown. 200 static const unsigned UnknownAddressSpace = 201 std::numeric_limits<unsigned>::max(); 202 203 Type *MemTy = nullptr; 204 unsigned AddrSpace = UnknownAddressSpace; 205 206 MemAccessTy() = default; 207 MemAccessTy(Type *Ty, unsigned AS) : MemTy(Ty), AddrSpace(AS) {} 208 209 bool operator==(MemAccessTy Other) const { 210 return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace; 211 } 212 213 bool operator!=(MemAccessTy Other) const { return !(*this == Other); } 214 215 static MemAccessTy getUnknown(LLVMContext &Ctx, 216 unsigned AS = UnknownAddressSpace) { 217 return MemAccessTy(Type::getVoidTy(Ctx), AS); 218 } 219 220 Type *getType() { return MemTy; } 221 }; 222 223 /// This class holds data which is used to order reuse candidates. 224 class RegSortData { 225 public: 226 /// This represents the set of LSRUse indices which reference 227 /// a particular register. 228 SmallBitVector UsedByIndices; 229 230 void print(raw_ostream &OS) const; 231 void dump() const; 232 }; 233 234 } // end anonymous namespace 235 236 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 237 void RegSortData::print(raw_ostream &OS) const { 238 OS << "[NumUses=" << UsedByIndices.count() << ']'; 239 } 240 241 LLVM_DUMP_METHOD void RegSortData::dump() const { 242 print(errs()); errs() << '\n'; 243 } 244 #endif 245 246 namespace { 247 248 /// Map register candidates to information about how they are used. 249 class RegUseTracker { 250 using RegUsesTy = DenseMap<const SCEV *, RegSortData>; 251 252 RegUsesTy RegUsesMap; 253 SmallVector<const SCEV *, 16> RegSequence; 254 255 public: 256 void countRegister(const SCEV *Reg, size_t LUIdx); 257 void dropRegister(const SCEV *Reg, size_t LUIdx); 258 void swapAndDropUse(size_t LUIdx, size_t LastLUIdx); 259 260 bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const; 261 262 const SmallBitVector &getUsedByIndices(const SCEV *Reg) const; 263 264 void clear(); 265 266 using iterator = SmallVectorImpl<const SCEV *>::iterator; 267 using const_iterator = SmallVectorImpl<const SCEV *>::const_iterator; 268 269 iterator begin() { return RegSequence.begin(); } 270 iterator end() { return RegSequence.end(); } 271 const_iterator begin() const { return RegSequence.begin(); } 272 const_iterator end() const { return RegSequence.end(); } 273 }; 274 275 } // end anonymous namespace 276 277 void 278 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) { 279 std::pair<RegUsesTy::iterator, bool> Pair = 280 RegUsesMap.insert(std::make_pair(Reg, RegSortData())); 281 RegSortData &RSD = Pair.first->second; 282 if (Pair.second) 283 RegSequence.push_back(Reg); 284 RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1)); 285 RSD.UsedByIndices.set(LUIdx); 286 } 287 288 void 289 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) { 290 RegUsesTy::iterator It = RegUsesMap.find(Reg); 291 assert(It != RegUsesMap.end()); 292 RegSortData &RSD = It->second; 293 assert(RSD.UsedByIndices.size() > LUIdx); 294 RSD.UsedByIndices.reset(LUIdx); 295 } 296 297 void 298 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) { 299 assert(LUIdx <= LastLUIdx); 300 301 // Update RegUses. The data structure is not optimized for this purpose; 302 // we must iterate through it and update each of the bit vectors. 303 for (auto &Pair : RegUsesMap) { 304 SmallBitVector &UsedByIndices = Pair.second.UsedByIndices; 305 if (LUIdx < UsedByIndices.size()) 306 UsedByIndices[LUIdx] = 307 LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false; 308 UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx)); 309 } 310 } 311 312 bool 313 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const { 314 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 315 if (I == RegUsesMap.end()) 316 return false; 317 const SmallBitVector &UsedByIndices = I->second.UsedByIndices; 318 int i = UsedByIndices.find_first(); 319 if (i == -1) return false; 320 if ((size_t)i != LUIdx) return true; 321 return UsedByIndices.find_next(i) != -1; 322 } 323 324 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const { 325 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 326 assert(I != RegUsesMap.end() && "Unknown register!"); 327 return I->second.UsedByIndices; 328 } 329 330 void RegUseTracker::clear() { 331 RegUsesMap.clear(); 332 RegSequence.clear(); 333 } 334 335 namespace { 336 337 /// This class holds information that describes a formula for computing 338 /// satisfying a use. It may include broken-out immediates and scaled registers. 339 struct Formula { 340 /// Global base address used for complex addressing. 341 GlobalValue *BaseGV = nullptr; 342 343 /// Base offset for complex addressing. 344 int64_t BaseOffset = 0; 345 346 /// Whether any complex addressing has a base register. 347 bool HasBaseReg = false; 348 349 /// The scale of any complex addressing. 350 int64_t Scale = 0; 351 352 /// The list of "base" registers for this use. When this is non-empty. The 353 /// canonical representation of a formula is 354 /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and 355 /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty(). 356 /// 3. The reg containing recurrent expr related with currect loop in the 357 /// formula should be put in the ScaledReg. 358 /// #1 enforces that the scaled register is always used when at least two 359 /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2. 360 /// #2 enforces that 1 * reg is reg. 361 /// #3 ensures invariant regs with respect to current loop can be combined 362 /// together in LSR codegen. 363 /// This invariant can be temporarily broken while building a formula. 364 /// However, every formula inserted into the LSRInstance must be in canonical 365 /// form. 366 SmallVector<const SCEV *, 4> BaseRegs; 367 368 /// The 'scaled' register for this use. This should be non-null when Scale is 369 /// not zero. 370 const SCEV *ScaledReg = nullptr; 371 372 /// An additional constant offset which added near the use. This requires a 373 /// temporary register, but the offset itself can live in an add immediate 374 /// field rather than a register. 375 int64_t UnfoldedOffset = 0; 376 377 Formula() = default; 378 379 void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE); 380 381 bool isCanonical(const Loop &L) const; 382 383 void canonicalize(const Loop &L); 384 385 bool unscale(); 386 387 bool hasZeroEnd() const; 388 389 size_t getNumRegs() const; 390 Type *getType() const; 391 392 void deleteBaseReg(const SCEV *&S); 393 394 bool referencesReg(const SCEV *S) const; 395 bool hasRegsUsedByUsesOtherThan(size_t LUIdx, 396 const RegUseTracker &RegUses) const; 397 398 void print(raw_ostream &OS) const; 399 void dump() const; 400 }; 401 402 } // end anonymous namespace 403 404 /// Recursion helper for initialMatch. 405 static void DoInitialMatch(const SCEV *S, Loop *L, 406 SmallVectorImpl<const SCEV *> &Good, 407 SmallVectorImpl<const SCEV *> &Bad, 408 ScalarEvolution &SE) { 409 // Collect expressions which properly dominate the loop header. 410 if (SE.properlyDominates(S, L->getHeader())) { 411 Good.push_back(S); 412 return; 413 } 414 415 // Look at add operands. 416 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 417 for (const SCEV *S : Add->operands()) 418 DoInitialMatch(S, L, Good, Bad, SE); 419 return; 420 } 421 422 // Look at addrec operands. 423 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 424 if (!AR->getStart()->isZero() && AR->isAffine()) { 425 DoInitialMatch(AR->getStart(), L, Good, Bad, SE); 426 DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0), 427 AR->getStepRecurrence(SE), 428 // FIXME: AR->getNoWrapFlags() 429 AR->getLoop(), SCEV::FlagAnyWrap), 430 L, Good, Bad, SE); 431 return; 432 } 433 434 // Handle a multiplication by -1 (negation) if it didn't fold. 435 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) 436 if (Mul->getOperand(0)->isAllOnesValue()) { 437 SmallVector<const SCEV *, 4> Ops(drop_begin(Mul->operands())); 438 const SCEV *NewMul = SE.getMulExpr(Ops); 439 440 SmallVector<const SCEV *, 4> MyGood; 441 SmallVector<const SCEV *, 4> MyBad; 442 DoInitialMatch(NewMul, L, MyGood, MyBad, SE); 443 const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue( 444 SE.getEffectiveSCEVType(NewMul->getType()))); 445 for (const SCEV *S : MyGood) 446 Good.push_back(SE.getMulExpr(NegOne, S)); 447 for (const SCEV *S : MyBad) 448 Bad.push_back(SE.getMulExpr(NegOne, S)); 449 return; 450 } 451 452 // Ok, we can't do anything interesting. Just stuff the whole thing into a 453 // register and hope for the best. 454 Bad.push_back(S); 455 } 456 457 /// Incorporate loop-variant parts of S into this Formula, attempting to keep 458 /// all loop-invariant and loop-computable values in a single base register. 459 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) { 460 SmallVector<const SCEV *, 4> Good; 461 SmallVector<const SCEV *, 4> Bad; 462 DoInitialMatch(S, L, Good, Bad, SE); 463 if (!Good.empty()) { 464 const SCEV *Sum = SE.getAddExpr(Good); 465 if (!Sum->isZero()) 466 BaseRegs.push_back(Sum); 467 HasBaseReg = true; 468 } 469 if (!Bad.empty()) { 470 const SCEV *Sum = SE.getAddExpr(Bad); 471 if (!Sum->isZero()) 472 BaseRegs.push_back(Sum); 473 HasBaseReg = true; 474 } 475 canonicalize(*L); 476 } 477 478 /// Check whether or not this formula satisfies the canonical 479 /// representation. 480 /// \see Formula::BaseRegs. 481 bool Formula::isCanonical(const Loop &L) const { 482 if (!ScaledReg) 483 return BaseRegs.size() <= 1; 484 485 if (Scale != 1) 486 return true; 487 488 if (Scale == 1 && BaseRegs.empty()) 489 return false; 490 491 const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg); 492 if (SAR && SAR->getLoop() == &L) 493 return true; 494 495 // If ScaledReg is not a recurrent expr, or it is but its loop is not current 496 // loop, meanwhile BaseRegs contains a recurrent expr reg related with current 497 // loop, we want to swap the reg in BaseRegs with ScaledReg. 498 auto I = find_if(BaseRegs, [&](const SCEV *S) { 499 return isa<const SCEVAddRecExpr>(S) && 500 (cast<SCEVAddRecExpr>(S)->getLoop() == &L); 501 }); 502 return I == BaseRegs.end(); 503 } 504 505 /// Helper method to morph a formula into its canonical representation. 506 /// \see Formula::BaseRegs. 507 /// Every formula having more than one base register, must use the ScaledReg 508 /// field. Otherwise, we would have to do special cases everywhere in LSR 509 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ... 510 /// On the other hand, 1*reg should be canonicalized into reg. 511 void Formula::canonicalize(const Loop &L) { 512 if (isCanonical(L)) 513 return; 514 // So far we did not need this case. This is easy to implement but it is 515 // useless to maintain dead code. Beside it could hurt compile time. 516 assert(!BaseRegs.empty() && "1*reg => reg, should not be needed."); 517 518 // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg. 519 if (!ScaledReg) { 520 ScaledReg = BaseRegs.pop_back_val(); 521 Scale = 1; 522 } 523 524 // If ScaledReg is an invariant with respect to L, find the reg from 525 // BaseRegs containing the recurrent expr related with Loop L. Swap the 526 // reg with ScaledReg. 527 const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg); 528 if (!SAR || SAR->getLoop() != &L) { 529 auto I = find_if(BaseRegs, [&](const SCEV *S) { 530 return isa<const SCEVAddRecExpr>(S) && 531 (cast<SCEVAddRecExpr>(S)->getLoop() == &L); 532 }); 533 if (I != BaseRegs.end()) 534 std::swap(ScaledReg, *I); 535 } 536 assert(isCanonical(L) && "Failed to canonicalize?"); 537 } 538 539 /// Get rid of the scale in the formula. 540 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2. 541 /// \return true if it was possible to get rid of the scale, false otherwise. 542 /// \note After this operation the formula may not be in the canonical form. 543 bool Formula::unscale() { 544 if (Scale != 1) 545 return false; 546 Scale = 0; 547 BaseRegs.push_back(ScaledReg); 548 ScaledReg = nullptr; 549 return true; 550 } 551 552 bool Formula::hasZeroEnd() const { 553 if (UnfoldedOffset || BaseOffset) 554 return false; 555 if (BaseRegs.size() != 1 || ScaledReg) 556 return false; 557 return true; 558 } 559 560 /// Return the total number of register operands used by this formula. This does 561 /// not include register uses implied by non-constant addrec strides. 562 size_t Formula::getNumRegs() const { 563 return !!ScaledReg + BaseRegs.size(); 564 } 565 566 /// Return the type of this formula, if it has one, or null otherwise. This type 567 /// is meaningless except for the bit size. 568 Type *Formula::getType() const { 569 return !BaseRegs.empty() ? BaseRegs.front()->getType() : 570 ScaledReg ? ScaledReg->getType() : 571 BaseGV ? BaseGV->getType() : 572 nullptr; 573 } 574 575 /// Delete the given base reg from the BaseRegs list. 576 void Formula::deleteBaseReg(const SCEV *&S) { 577 if (&S != &BaseRegs.back()) 578 std::swap(S, BaseRegs.back()); 579 BaseRegs.pop_back(); 580 } 581 582 /// Test if this formula references the given register. 583 bool Formula::referencesReg(const SCEV *S) const { 584 return S == ScaledReg || is_contained(BaseRegs, S); 585 } 586 587 /// Test whether this formula uses registers which are used by uses other than 588 /// the use with the given index. 589 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx, 590 const RegUseTracker &RegUses) const { 591 if (ScaledReg) 592 if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx)) 593 return true; 594 for (const SCEV *BaseReg : BaseRegs) 595 if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx)) 596 return true; 597 return false; 598 } 599 600 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 601 void Formula::print(raw_ostream &OS) const { 602 bool First = true; 603 if (BaseGV) { 604 if (!First) OS << " + "; else First = false; 605 BaseGV->printAsOperand(OS, /*PrintType=*/false); 606 } 607 if (BaseOffset != 0) { 608 if (!First) OS << " + "; else First = false; 609 OS << BaseOffset; 610 } 611 for (const SCEV *BaseReg : BaseRegs) { 612 if (!First) OS << " + "; else First = false; 613 OS << "reg(" << *BaseReg << ')'; 614 } 615 if (HasBaseReg && BaseRegs.empty()) { 616 if (!First) OS << " + "; else First = false; 617 OS << "**error: HasBaseReg**"; 618 } else if (!HasBaseReg && !BaseRegs.empty()) { 619 if (!First) OS << " + "; else First = false; 620 OS << "**error: !HasBaseReg**"; 621 } 622 if (Scale != 0) { 623 if (!First) OS << " + "; else First = false; 624 OS << Scale << "*reg("; 625 if (ScaledReg) 626 OS << *ScaledReg; 627 else 628 OS << "<unknown>"; 629 OS << ')'; 630 } 631 if (UnfoldedOffset != 0) { 632 if (!First) OS << " + "; 633 OS << "imm(" << UnfoldedOffset << ')'; 634 } 635 } 636 637 LLVM_DUMP_METHOD void Formula::dump() const { 638 print(errs()); errs() << '\n'; 639 } 640 #endif 641 642 /// Return true if the given addrec can be sign-extended without changing its 643 /// value. 644 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 645 Type *WideTy = 646 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1); 647 return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy)); 648 } 649 650 /// Return true if the given add can be sign-extended without changing its 651 /// value. 652 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) { 653 Type *WideTy = 654 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1); 655 return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy)); 656 } 657 658 /// Return true if the given mul can be sign-extended without changing its 659 /// value. 660 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) { 661 Type *WideTy = 662 IntegerType::get(SE.getContext(), 663 SE.getTypeSizeInBits(M->getType()) * M->getNumOperands()); 664 return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy)); 665 } 666 667 /// Return an expression for LHS /s RHS, if it can be determined and if the 668 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits 669 /// is true, expressions like (X * Y) /s Y are simplified to X, ignoring that 670 /// the multiplication may overflow, which is useful when the result will be 671 /// used in a context where the most significant bits are ignored. 672 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS, 673 ScalarEvolution &SE, 674 bool IgnoreSignificantBits = false) { 675 // Handle the trivial case, which works for any SCEV type. 676 if (LHS == RHS) 677 return SE.getConstant(LHS->getType(), 1); 678 679 // Handle a few RHS special cases. 680 const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS); 681 if (RC) { 682 const APInt &RA = RC->getAPInt(); 683 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do 684 // some folding. 685 if (RA.isAllOnesValue()) { 686 if (LHS->getType()->isPointerTy()) 687 return nullptr; 688 return SE.getMulExpr(LHS, RC); 689 } 690 // Handle x /s 1 as x. 691 if (RA == 1) 692 return LHS; 693 } 694 695 // Check for a division of a constant by a constant. 696 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) { 697 if (!RC) 698 return nullptr; 699 const APInt &LA = C->getAPInt(); 700 const APInt &RA = RC->getAPInt(); 701 if (LA.srem(RA) != 0) 702 return nullptr; 703 return SE.getConstant(LA.sdiv(RA)); 704 } 705 706 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow. 707 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) { 708 if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) { 709 const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE, 710 IgnoreSignificantBits); 711 if (!Step) return nullptr; 712 const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE, 713 IgnoreSignificantBits); 714 if (!Start) return nullptr; 715 // FlagNW is independent of the start value, step direction, and is 716 // preserved with smaller magnitude steps. 717 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 718 return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap); 719 } 720 return nullptr; 721 } 722 723 // Distribute the sdiv over add operands, if the add doesn't overflow. 724 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) { 725 if (IgnoreSignificantBits || isAddSExtable(Add, SE)) { 726 SmallVector<const SCEV *, 8> Ops; 727 for (const SCEV *S : Add->operands()) { 728 const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits); 729 if (!Op) return nullptr; 730 Ops.push_back(Op); 731 } 732 return SE.getAddExpr(Ops); 733 } 734 return nullptr; 735 } 736 737 // Check for a multiply operand that we can pull RHS out of. 738 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) { 739 if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) { 740 // Handle special case C1*X*Y /s C2*X*Y. 741 if (const SCEVMulExpr *MulRHS = dyn_cast<SCEVMulExpr>(RHS)) { 742 if (IgnoreSignificantBits || isMulSExtable(MulRHS, SE)) { 743 const SCEVConstant *LC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 744 const SCEVConstant *RC = 745 dyn_cast<SCEVConstant>(MulRHS->getOperand(0)); 746 if (LC && RC) { 747 SmallVector<const SCEV *, 4> LOps(drop_begin(Mul->operands())); 748 SmallVector<const SCEV *, 4> ROps(drop_begin(MulRHS->operands())); 749 if (LOps == ROps) 750 return getExactSDiv(LC, RC, SE, IgnoreSignificantBits); 751 } 752 } 753 } 754 755 SmallVector<const SCEV *, 4> Ops; 756 bool Found = false; 757 for (const SCEV *S : Mul->operands()) { 758 if (!Found) 759 if (const SCEV *Q = getExactSDiv(S, RHS, SE, 760 IgnoreSignificantBits)) { 761 S = Q; 762 Found = true; 763 } 764 Ops.push_back(S); 765 } 766 return Found ? SE.getMulExpr(Ops) : nullptr; 767 } 768 return nullptr; 769 } 770 771 // Otherwise we don't know. 772 return nullptr; 773 } 774 775 /// If S involves the addition of a constant integer value, return that integer 776 /// value, and mutate S to point to a new SCEV with that value excluded. 777 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) { 778 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 779 if (C->getAPInt().getMinSignedBits() <= 64) { 780 S = SE.getConstant(C->getType(), 0); 781 return C->getValue()->getSExtValue(); 782 } 783 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 784 SmallVector<const SCEV *, 8> NewOps(Add->operands()); 785 int64_t Result = ExtractImmediate(NewOps.front(), SE); 786 if (Result != 0) 787 S = SE.getAddExpr(NewOps); 788 return Result; 789 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 790 SmallVector<const SCEV *, 8> NewOps(AR->operands()); 791 int64_t Result = ExtractImmediate(NewOps.front(), SE); 792 if (Result != 0) 793 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 794 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 795 SCEV::FlagAnyWrap); 796 return Result; 797 } 798 return 0; 799 } 800 801 /// If S involves the addition of a GlobalValue address, return that symbol, and 802 /// mutate S to point to a new SCEV with that value excluded. 803 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) { 804 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 805 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) { 806 S = SE.getConstant(GV->getType(), 0); 807 return GV; 808 } 809 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 810 SmallVector<const SCEV *, 8> NewOps(Add->operands()); 811 GlobalValue *Result = ExtractSymbol(NewOps.back(), SE); 812 if (Result) 813 S = SE.getAddExpr(NewOps); 814 return Result; 815 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 816 SmallVector<const SCEV *, 8> NewOps(AR->operands()); 817 GlobalValue *Result = ExtractSymbol(NewOps.front(), SE); 818 if (Result) 819 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 820 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 821 SCEV::FlagAnyWrap); 822 return Result; 823 } 824 return nullptr; 825 } 826 827 /// Returns true if the specified instruction is using the specified value as an 828 /// address. 829 static bool isAddressUse(const TargetTransformInfo &TTI, 830 Instruction *Inst, Value *OperandVal) { 831 bool isAddress = isa<LoadInst>(Inst); 832 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 833 if (SI->getPointerOperand() == OperandVal) 834 isAddress = true; 835 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 836 // Addressing modes can also be folded into prefetches and a variety 837 // of intrinsics. 838 switch (II->getIntrinsicID()) { 839 case Intrinsic::memset: 840 case Intrinsic::prefetch: 841 case Intrinsic::masked_load: 842 if (II->getArgOperand(0) == OperandVal) 843 isAddress = true; 844 break; 845 case Intrinsic::masked_store: 846 if (II->getArgOperand(1) == OperandVal) 847 isAddress = true; 848 break; 849 case Intrinsic::memmove: 850 case Intrinsic::memcpy: 851 if (II->getArgOperand(0) == OperandVal || 852 II->getArgOperand(1) == OperandVal) 853 isAddress = true; 854 break; 855 default: { 856 MemIntrinsicInfo IntrInfo; 857 if (TTI.getTgtMemIntrinsic(II, IntrInfo)) { 858 if (IntrInfo.PtrVal == OperandVal) 859 isAddress = true; 860 } 861 } 862 } 863 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) { 864 if (RMW->getPointerOperand() == OperandVal) 865 isAddress = true; 866 } else if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 867 if (CmpX->getPointerOperand() == OperandVal) 868 isAddress = true; 869 } 870 return isAddress; 871 } 872 873 /// Return the type of the memory being accessed. 874 static MemAccessTy getAccessType(const TargetTransformInfo &TTI, 875 Instruction *Inst, Value *OperandVal) { 876 MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace); 877 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 878 AccessTy.MemTy = SI->getOperand(0)->getType(); 879 AccessTy.AddrSpace = SI->getPointerAddressSpace(); 880 } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 881 AccessTy.AddrSpace = LI->getPointerAddressSpace(); 882 } else if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) { 883 AccessTy.AddrSpace = RMW->getPointerAddressSpace(); 884 } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 885 AccessTy.AddrSpace = CmpX->getPointerAddressSpace(); 886 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 887 switch (II->getIntrinsicID()) { 888 case Intrinsic::prefetch: 889 case Intrinsic::memset: 890 AccessTy.AddrSpace = II->getArgOperand(0)->getType()->getPointerAddressSpace(); 891 AccessTy.MemTy = OperandVal->getType(); 892 break; 893 case Intrinsic::memmove: 894 case Intrinsic::memcpy: 895 AccessTy.AddrSpace = OperandVal->getType()->getPointerAddressSpace(); 896 AccessTy.MemTy = OperandVal->getType(); 897 break; 898 case Intrinsic::masked_load: 899 AccessTy.AddrSpace = 900 II->getArgOperand(0)->getType()->getPointerAddressSpace(); 901 break; 902 case Intrinsic::masked_store: 903 AccessTy.MemTy = II->getOperand(0)->getType(); 904 AccessTy.AddrSpace = 905 II->getArgOperand(1)->getType()->getPointerAddressSpace(); 906 break; 907 default: { 908 MemIntrinsicInfo IntrInfo; 909 if (TTI.getTgtMemIntrinsic(II, IntrInfo) && IntrInfo.PtrVal) { 910 AccessTy.AddrSpace 911 = IntrInfo.PtrVal->getType()->getPointerAddressSpace(); 912 } 913 914 break; 915 } 916 } 917 } 918 919 // All pointers have the same requirements, so canonicalize them to an 920 // arbitrary pointer type to minimize variation. 921 if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy)) 922 AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1), 923 PTy->getAddressSpace()); 924 925 return AccessTy; 926 } 927 928 /// Return true if this AddRec is already a phi in its loop. 929 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 930 for (PHINode &PN : AR->getLoop()->getHeader()->phis()) { 931 if (SE.isSCEVable(PN.getType()) && 932 (SE.getEffectiveSCEVType(PN.getType()) == 933 SE.getEffectiveSCEVType(AR->getType())) && 934 SE.getSCEV(&PN) == AR) 935 return true; 936 } 937 return false; 938 } 939 940 /// Check if expanding this expression is likely to incur significant cost. This 941 /// is tricky because SCEV doesn't track which expressions are actually computed 942 /// by the current IR. 943 /// 944 /// We currently allow expansion of IV increments that involve adds, 945 /// multiplication by constants, and AddRecs from existing phis. 946 /// 947 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an 948 /// obvious multiple of the UDivExpr. 949 static bool isHighCostExpansion(const SCEV *S, 950 SmallPtrSetImpl<const SCEV*> &Processed, 951 ScalarEvolution &SE) { 952 // Zero/One operand expressions 953 switch (S->getSCEVType()) { 954 case scUnknown: 955 case scConstant: 956 return false; 957 case scTruncate: 958 return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(), 959 Processed, SE); 960 case scZeroExtend: 961 return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(), 962 Processed, SE); 963 case scSignExtend: 964 return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(), 965 Processed, SE); 966 default: 967 break; 968 } 969 970 if (!Processed.insert(S).second) 971 return false; 972 973 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 974 for (const SCEV *S : Add->operands()) { 975 if (isHighCostExpansion(S, Processed, SE)) 976 return true; 977 } 978 return false; 979 } 980 981 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 982 if (Mul->getNumOperands() == 2) { 983 // Multiplication by a constant is ok 984 if (isa<SCEVConstant>(Mul->getOperand(0))) 985 return isHighCostExpansion(Mul->getOperand(1), Processed, SE); 986 987 // If we have the value of one operand, check if an existing 988 // multiplication already generates this expression. 989 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) { 990 Value *UVal = U->getValue(); 991 for (User *UR : UVal->users()) { 992 // If U is a constant, it may be used by a ConstantExpr. 993 Instruction *UI = dyn_cast<Instruction>(UR); 994 if (UI && UI->getOpcode() == Instruction::Mul && 995 SE.isSCEVable(UI->getType())) { 996 return SE.getSCEV(UI) == Mul; 997 } 998 } 999 } 1000 } 1001 } 1002 1003 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 1004 if (isExistingPhi(AR, SE)) 1005 return false; 1006 } 1007 1008 // Fow now, consider any other type of expression (div/mul/min/max) high cost. 1009 return true; 1010 } 1011 1012 namespace { 1013 1014 class LSRUse; 1015 1016 } // end anonymous namespace 1017 1018 /// Check if the addressing mode defined by \p F is completely 1019 /// folded in \p LU at isel time. 1020 /// This includes address-mode folding and special icmp tricks. 1021 /// This function returns true if \p LU can accommodate what \p F 1022 /// defines and up to 1 base + 1 scaled + offset. 1023 /// In other words, if \p F has several base registers, this function may 1024 /// still return true. Therefore, users still need to account for 1025 /// additional base registers and/or unfolded offsets to derive an 1026 /// accurate cost model. 1027 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1028 const LSRUse &LU, const Formula &F); 1029 1030 // Get the cost of the scaling factor used in F for LU. 1031 static InstructionCost getScalingFactorCost(const TargetTransformInfo &TTI, 1032 const LSRUse &LU, const Formula &F, 1033 const Loop &L); 1034 1035 namespace { 1036 1037 /// This class is used to measure and compare candidate formulae. 1038 class Cost { 1039 const Loop *L = nullptr; 1040 ScalarEvolution *SE = nullptr; 1041 const TargetTransformInfo *TTI = nullptr; 1042 TargetTransformInfo::LSRCost C; 1043 TTI::AddressingModeKind AMK = TTI::AMK_None; 1044 1045 public: 1046 Cost() = delete; 1047 Cost(const Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI, 1048 TTI::AddressingModeKind AMK) : 1049 L(L), SE(&SE), TTI(&TTI), AMK(AMK) { 1050 C.Insns = 0; 1051 C.NumRegs = 0; 1052 C.AddRecCost = 0; 1053 C.NumIVMuls = 0; 1054 C.NumBaseAdds = 0; 1055 C.ImmCost = 0; 1056 C.SetupCost = 0; 1057 C.ScaleCost = 0; 1058 } 1059 1060 bool isLess(Cost &Other); 1061 1062 void Lose(); 1063 1064 #ifndef NDEBUG 1065 // Once any of the metrics loses, they must all remain losers. 1066 bool isValid() { 1067 return ((C.Insns | C.NumRegs | C.AddRecCost | C.NumIVMuls | C.NumBaseAdds 1068 | C.ImmCost | C.SetupCost | C.ScaleCost) != ~0u) 1069 || ((C.Insns & C.NumRegs & C.AddRecCost & C.NumIVMuls & C.NumBaseAdds 1070 & C.ImmCost & C.SetupCost & C.ScaleCost) == ~0u); 1071 } 1072 #endif 1073 1074 bool isLoser() { 1075 assert(isValid() && "invalid cost"); 1076 return C.NumRegs == ~0u; 1077 } 1078 1079 void RateFormula(const Formula &F, 1080 SmallPtrSetImpl<const SCEV *> &Regs, 1081 const DenseSet<const SCEV *> &VisitedRegs, 1082 const LSRUse &LU, 1083 SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr); 1084 1085 void print(raw_ostream &OS) const; 1086 void dump() const; 1087 1088 private: 1089 void RateRegister(const Formula &F, const SCEV *Reg, 1090 SmallPtrSetImpl<const SCEV *> &Regs); 1091 void RatePrimaryRegister(const Formula &F, const SCEV *Reg, 1092 SmallPtrSetImpl<const SCEV *> &Regs, 1093 SmallPtrSetImpl<const SCEV *> *LoserRegs); 1094 }; 1095 1096 /// An operand value in an instruction which is to be replaced with some 1097 /// equivalent, possibly strength-reduced, replacement. 1098 struct LSRFixup { 1099 /// The instruction which will be updated. 1100 Instruction *UserInst = nullptr; 1101 1102 /// The operand of the instruction which will be replaced. The operand may be 1103 /// used more than once; every instance will be replaced. 1104 Value *OperandValToReplace = nullptr; 1105 1106 /// If this user is to use the post-incremented value of an induction 1107 /// variable, this set is non-empty and holds the loops associated with the 1108 /// induction variable. 1109 PostIncLoopSet PostIncLoops; 1110 1111 /// A constant offset to be added to the LSRUse expression. This allows 1112 /// multiple fixups to share the same LSRUse with different offsets, for 1113 /// example in an unrolled loop. 1114 int64_t Offset = 0; 1115 1116 LSRFixup() = default; 1117 1118 bool isUseFullyOutsideLoop(const Loop *L) const; 1119 1120 void print(raw_ostream &OS) const; 1121 void dump() const; 1122 }; 1123 1124 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted 1125 /// SmallVectors of const SCEV*. 1126 struct UniquifierDenseMapInfo { 1127 static SmallVector<const SCEV *, 4> getEmptyKey() { 1128 SmallVector<const SCEV *, 4> V; 1129 V.push_back(reinterpret_cast<const SCEV *>(-1)); 1130 return V; 1131 } 1132 1133 static SmallVector<const SCEV *, 4> getTombstoneKey() { 1134 SmallVector<const SCEV *, 4> V; 1135 V.push_back(reinterpret_cast<const SCEV *>(-2)); 1136 return V; 1137 } 1138 1139 static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) { 1140 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 1141 } 1142 1143 static bool isEqual(const SmallVector<const SCEV *, 4> &LHS, 1144 const SmallVector<const SCEV *, 4> &RHS) { 1145 return LHS == RHS; 1146 } 1147 }; 1148 1149 /// This class holds the state that LSR keeps for each use in IVUsers, as well 1150 /// as uses invented by LSR itself. It includes information about what kinds of 1151 /// things can be folded into the user, information about the user itself, and 1152 /// information about how the use may be satisfied. TODO: Represent multiple 1153 /// users of the same expression in common? 1154 class LSRUse { 1155 DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier; 1156 1157 public: 1158 /// An enum for a kind of use, indicating what types of scaled and immediate 1159 /// operands it might support. 1160 enum KindType { 1161 Basic, ///< A normal use, with no folding. 1162 Special, ///< A special case of basic, allowing -1 scales. 1163 Address, ///< An address use; folding according to TargetLowering 1164 ICmpZero ///< An equality icmp with both operands folded into one. 1165 // TODO: Add a generic icmp too? 1166 }; 1167 1168 using SCEVUseKindPair = PointerIntPair<const SCEV *, 2, KindType>; 1169 1170 KindType Kind; 1171 MemAccessTy AccessTy; 1172 1173 /// The list of operands which are to be replaced. 1174 SmallVector<LSRFixup, 8> Fixups; 1175 1176 /// Keep track of the min and max offsets of the fixups. 1177 int64_t MinOffset = std::numeric_limits<int64_t>::max(); 1178 int64_t MaxOffset = std::numeric_limits<int64_t>::min(); 1179 1180 /// This records whether all of the fixups using this LSRUse are outside of 1181 /// the loop, in which case some special-case heuristics may be used. 1182 bool AllFixupsOutsideLoop = true; 1183 1184 /// RigidFormula is set to true to guarantee that this use will be associated 1185 /// with a single formula--the one that initially matched. Some SCEV 1186 /// expressions cannot be expanded. This allows LSR to consider the registers 1187 /// used by those expressions without the need to expand them later after 1188 /// changing the formula. 1189 bool RigidFormula = false; 1190 1191 /// This records the widest use type for any fixup using this 1192 /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max 1193 /// fixup widths to be equivalent, because the narrower one may be relying on 1194 /// the implicit truncation to truncate away bogus bits. 1195 Type *WidestFixupType = nullptr; 1196 1197 /// A list of ways to build a value that can satisfy this user. After the 1198 /// list is populated, one of these is selected heuristically and used to 1199 /// formulate a replacement for OperandValToReplace in UserInst. 1200 SmallVector<Formula, 12> Formulae; 1201 1202 /// The set of register candidates used by all formulae in this LSRUse. 1203 SmallPtrSet<const SCEV *, 4> Regs; 1204 1205 LSRUse(KindType K, MemAccessTy AT) : Kind(K), AccessTy(AT) {} 1206 1207 LSRFixup &getNewFixup() { 1208 Fixups.push_back(LSRFixup()); 1209 return Fixups.back(); 1210 } 1211 1212 void pushFixup(LSRFixup &f) { 1213 Fixups.push_back(f); 1214 if (f.Offset > MaxOffset) 1215 MaxOffset = f.Offset; 1216 if (f.Offset < MinOffset) 1217 MinOffset = f.Offset; 1218 } 1219 1220 bool HasFormulaWithSameRegs(const Formula &F) const; 1221 float getNotSelectedProbability(const SCEV *Reg) const; 1222 bool InsertFormula(const Formula &F, const Loop &L); 1223 void DeleteFormula(Formula &F); 1224 void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses); 1225 1226 void print(raw_ostream &OS) const; 1227 void dump() const; 1228 }; 1229 1230 } // end anonymous namespace 1231 1232 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1233 LSRUse::KindType Kind, MemAccessTy AccessTy, 1234 GlobalValue *BaseGV, int64_t BaseOffset, 1235 bool HasBaseReg, int64_t Scale, 1236 Instruction *Fixup = nullptr); 1237 1238 static unsigned getSetupCost(const SCEV *Reg, unsigned Depth) { 1239 if (isa<SCEVUnknown>(Reg) || isa<SCEVConstant>(Reg)) 1240 return 1; 1241 if (Depth == 0) 1242 return 0; 1243 if (const auto *S = dyn_cast<SCEVAddRecExpr>(Reg)) 1244 return getSetupCost(S->getStart(), Depth - 1); 1245 if (auto S = dyn_cast<SCEVIntegralCastExpr>(Reg)) 1246 return getSetupCost(S->getOperand(), Depth - 1); 1247 if (auto S = dyn_cast<SCEVNAryExpr>(Reg)) 1248 return std::accumulate(S->op_begin(), S->op_end(), 0, 1249 [&](unsigned i, const SCEV *Reg) { 1250 return i + getSetupCost(Reg, Depth - 1); 1251 }); 1252 if (auto S = dyn_cast<SCEVUDivExpr>(Reg)) 1253 return getSetupCost(S->getLHS(), Depth - 1) + 1254 getSetupCost(S->getRHS(), Depth - 1); 1255 return 0; 1256 } 1257 1258 /// Tally up interesting quantities from the given register. 1259 void Cost::RateRegister(const Formula &F, const SCEV *Reg, 1260 SmallPtrSetImpl<const SCEV *> &Regs) { 1261 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) { 1262 // If this is an addrec for another loop, it should be an invariant 1263 // with respect to L since L is the innermost loop (at least 1264 // for now LSR only handles innermost loops). 1265 if (AR->getLoop() != L) { 1266 // If the AddRec exists, consider it's register free and leave it alone. 1267 if (isExistingPhi(AR, *SE) && AMK != TTI::AMK_PostIndexed) 1268 return; 1269 1270 // It is bad to allow LSR for current loop to add induction variables 1271 // for its sibling loops. 1272 if (!AR->getLoop()->contains(L)) { 1273 Lose(); 1274 return; 1275 } 1276 1277 // Otherwise, it will be an invariant with respect to Loop L. 1278 ++C.NumRegs; 1279 return; 1280 } 1281 1282 unsigned LoopCost = 1; 1283 if (TTI->isIndexedLoadLegal(TTI->MIM_PostInc, AR->getType()) || 1284 TTI->isIndexedStoreLegal(TTI->MIM_PostInc, AR->getType())) { 1285 1286 // If the step size matches the base offset, we could use pre-indexed 1287 // addressing. 1288 if (AMK == TTI::AMK_PreIndexed) { 1289 if (auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE))) 1290 if (Step->getAPInt() == F.BaseOffset) 1291 LoopCost = 0; 1292 } else if (AMK == TTI::AMK_PostIndexed) { 1293 const SCEV *LoopStep = AR->getStepRecurrence(*SE); 1294 if (isa<SCEVConstant>(LoopStep)) { 1295 const SCEV *LoopStart = AR->getStart(); 1296 if (!isa<SCEVConstant>(LoopStart) && 1297 SE->isLoopInvariant(LoopStart, L)) 1298 LoopCost = 0; 1299 } 1300 } 1301 } 1302 C.AddRecCost += LoopCost; 1303 1304 // Add the step value register, if it needs one. 1305 // TODO: The non-affine case isn't precisely modeled here. 1306 if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) { 1307 if (!Regs.count(AR->getOperand(1))) { 1308 RateRegister(F, AR->getOperand(1), Regs); 1309 if (isLoser()) 1310 return; 1311 } 1312 } 1313 } 1314 ++C.NumRegs; 1315 1316 // Rough heuristic; favor registers which don't require extra setup 1317 // instructions in the preheader. 1318 C.SetupCost += getSetupCost(Reg, SetupCostDepthLimit); 1319 // Ensure we don't, even with the recusion limit, produce invalid costs. 1320 C.SetupCost = std::min<unsigned>(C.SetupCost, 1 << 16); 1321 1322 C.NumIVMuls += isa<SCEVMulExpr>(Reg) && 1323 SE->hasComputableLoopEvolution(Reg, L); 1324 } 1325 1326 /// Record this register in the set. If we haven't seen it before, rate 1327 /// it. Optional LoserRegs provides a way to declare any formula that refers to 1328 /// one of those regs an instant loser. 1329 void Cost::RatePrimaryRegister(const Formula &F, const SCEV *Reg, 1330 SmallPtrSetImpl<const SCEV *> &Regs, 1331 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1332 if (LoserRegs && LoserRegs->count(Reg)) { 1333 Lose(); 1334 return; 1335 } 1336 if (Regs.insert(Reg).second) { 1337 RateRegister(F, Reg, Regs); 1338 if (LoserRegs && isLoser()) 1339 LoserRegs->insert(Reg); 1340 } 1341 } 1342 1343 void Cost::RateFormula(const Formula &F, 1344 SmallPtrSetImpl<const SCEV *> &Regs, 1345 const DenseSet<const SCEV *> &VisitedRegs, 1346 const LSRUse &LU, 1347 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1348 assert(F.isCanonical(*L) && "Cost is accurate only for canonical formula"); 1349 // Tally up the registers. 1350 unsigned PrevAddRecCost = C.AddRecCost; 1351 unsigned PrevNumRegs = C.NumRegs; 1352 unsigned PrevNumBaseAdds = C.NumBaseAdds; 1353 if (const SCEV *ScaledReg = F.ScaledReg) { 1354 if (VisitedRegs.count(ScaledReg)) { 1355 Lose(); 1356 return; 1357 } 1358 RatePrimaryRegister(F, ScaledReg, Regs, LoserRegs); 1359 if (isLoser()) 1360 return; 1361 } 1362 for (const SCEV *BaseReg : F.BaseRegs) { 1363 if (VisitedRegs.count(BaseReg)) { 1364 Lose(); 1365 return; 1366 } 1367 RatePrimaryRegister(F, BaseReg, Regs, LoserRegs); 1368 if (isLoser()) 1369 return; 1370 } 1371 1372 // Determine how many (unfolded) adds we'll need inside the loop. 1373 size_t NumBaseParts = F.getNumRegs(); 1374 if (NumBaseParts > 1) 1375 // Do not count the base and a possible second register if the target 1376 // allows to fold 2 registers. 1377 C.NumBaseAdds += 1378 NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(*TTI, LU, F))); 1379 C.NumBaseAdds += (F.UnfoldedOffset != 0); 1380 1381 // Accumulate non-free scaling amounts. 1382 C.ScaleCost += *getScalingFactorCost(*TTI, LU, F, *L).getValue(); 1383 1384 // Tally up the non-zero immediates. 1385 for (const LSRFixup &Fixup : LU.Fixups) { 1386 int64_t O = Fixup.Offset; 1387 int64_t Offset = (uint64_t)O + F.BaseOffset; 1388 if (F.BaseGV) 1389 C.ImmCost += 64; // Handle symbolic values conservatively. 1390 // TODO: This should probably be the pointer size. 1391 else if (Offset != 0) 1392 C.ImmCost += APInt(64, Offset, true).getMinSignedBits(); 1393 1394 // Check with target if this offset with this instruction is 1395 // specifically not supported. 1396 if (LU.Kind == LSRUse::Address && Offset != 0 && 1397 !isAMCompletelyFolded(*TTI, LSRUse::Address, LU.AccessTy, F.BaseGV, 1398 Offset, F.HasBaseReg, F.Scale, Fixup.UserInst)) 1399 C.NumBaseAdds++; 1400 } 1401 1402 // If we don't count instruction cost exit here. 1403 if (!InsnsCost) { 1404 assert(isValid() && "invalid cost"); 1405 return; 1406 } 1407 1408 // Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as 1409 // additional instruction (at least fill). 1410 // TODO: Need distinguish register class? 1411 unsigned TTIRegNum = TTI->getNumberOfRegisters( 1412 TTI->getRegisterClassForType(false, F.getType())) - 1; 1413 if (C.NumRegs > TTIRegNum) { 1414 // Cost already exceeded TTIRegNum, then only newly added register can add 1415 // new instructions. 1416 if (PrevNumRegs > TTIRegNum) 1417 C.Insns += (C.NumRegs - PrevNumRegs); 1418 else 1419 C.Insns += (C.NumRegs - TTIRegNum); 1420 } 1421 1422 // If ICmpZero formula ends with not 0, it could not be replaced by 1423 // just add or sub. We'll need to compare final result of AddRec. 1424 // That means we'll need an additional instruction. But if the target can 1425 // macro-fuse a compare with a branch, don't count this extra instruction. 1426 // For -10 + {0, +, 1}: 1427 // i = i + 1; 1428 // cmp i, 10 1429 // 1430 // For {-10, +, 1}: 1431 // i = i + 1; 1432 if (LU.Kind == LSRUse::ICmpZero && !F.hasZeroEnd() && 1433 !TTI->canMacroFuseCmp()) 1434 C.Insns++; 1435 // Each new AddRec adds 1 instruction to calculation. 1436 C.Insns += (C.AddRecCost - PrevAddRecCost); 1437 1438 // BaseAdds adds instructions for unfolded registers. 1439 if (LU.Kind != LSRUse::ICmpZero) 1440 C.Insns += C.NumBaseAdds - PrevNumBaseAdds; 1441 assert(isValid() && "invalid cost"); 1442 } 1443 1444 /// Set this cost to a losing value. 1445 void Cost::Lose() { 1446 C.Insns = std::numeric_limits<unsigned>::max(); 1447 C.NumRegs = std::numeric_limits<unsigned>::max(); 1448 C.AddRecCost = std::numeric_limits<unsigned>::max(); 1449 C.NumIVMuls = std::numeric_limits<unsigned>::max(); 1450 C.NumBaseAdds = std::numeric_limits<unsigned>::max(); 1451 C.ImmCost = std::numeric_limits<unsigned>::max(); 1452 C.SetupCost = std::numeric_limits<unsigned>::max(); 1453 C.ScaleCost = std::numeric_limits<unsigned>::max(); 1454 } 1455 1456 /// Choose the lower cost. 1457 bool Cost::isLess(Cost &Other) { 1458 if (InsnsCost.getNumOccurrences() > 0 && InsnsCost && 1459 C.Insns != Other.C.Insns) 1460 return C.Insns < Other.C.Insns; 1461 return TTI->isLSRCostLess(C, Other.C); 1462 } 1463 1464 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1465 void Cost::print(raw_ostream &OS) const { 1466 if (InsnsCost) 1467 OS << C.Insns << " instruction" << (C.Insns == 1 ? " " : "s "); 1468 OS << C.NumRegs << " reg" << (C.NumRegs == 1 ? "" : "s"); 1469 if (C.AddRecCost != 0) 1470 OS << ", with addrec cost " << C.AddRecCost; 1471 if (C.NumIVMuls != 0) 1472 OS << ", plus " << C.NumIVMuls << " IV mul" 1473 << (C.NumIVMuls == 1 ? "" : "s"); 1474 if (C.NumBaseAdds != 0) 1475 OS << ", plus " << C.NumBaseAdds << " base add" 1476 << (C.NumBaseAdds == 1 ? "" : "s"); 1477 if (C.ScaleCost != 0) 1478 OS << ", plus " << C.ScaleCost << " scale cost"; 1479 if (C.ImmCost != 0) 1480 OS << ", plus " << C.ImmCost << " imm cost"; 1481 if (C.SetupCost != 0) 1482 OS << ", plus " << C.SetupCost << " setup cost"; 1483 } 1484 1485 LLVM_DUMP_METHOD void Cost::dump() const { 1486 print(errs()); errs() << '\n'; 1487 } 1488 #endif 1489 1490 /// Test whether this fixup always uses its value outside of the given loop. 1491 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const { 1492 // PHI nodes use their value in their incoming blocks. 1493 if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) { 1494 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1495 if (PN->getIncomingValue(i) == OperandValToReplace && 1496 L->contains(PN->getIncomingBlock(i))) 1497 return false; 1498 return true; 1499 } 1500 1501 return !L->contains(UserInst); 1502 } 1503 1504 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1505 void LSRFixup::print(raw_ostream &OS) const { 1506 OS << "UserInst="; 1507 // Store is common and interesting enough to be worth special-casing. 1508 if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) { 1509 OS << "store "; 1510 Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false); 1511 } else if (UserInst->getType()->isVoidTy()) 1512 OS << UserInst->getOpcodeName(); 1513 else 1514 UserInst->printAsOperand(OS, /*PrintType=*/false); 1515 1516 OS << ", OperandValToReplace="; 1517 OperandValToReplace->printAsOperand(OS, /*PrintType=*/false); 1518 1519 for (const Loop *PIL : PostIncLoops) { 1520 OS << ", PostIncLoop="; 1521 PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 1522 } 1523 1524 if (Offset != 0) 1525 OS << ", Offset=" << Offset; 1526 } 1527 1528 LLVM_DUMP_METHOD void LSRFixup::dump() const { 1529 print(errs()); errs() << '\n'; 1530 } 1531 #endif 1532 1533 /// Test whether this use as a formula which has the same registers as the given 1534 /// formula. 1535 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const { 1536 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1537 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1538 // Unstable sort by host order ok, because this is only used for uniquifying. 1539 llvm::sort(Key); 1540 return Uniquifier.count(Key); 1541 } 1542 1543 /// The function returns a probability of selecting formula without Reg. 1544 float LSRUse::getNotSelectedProbability(const SCEV *Reg) const { 1545 unsigned FNum = 0; 1546 for (const Formula &F : Formulae) 1547 if (F.referencesReg(Reg)) 1548 FNum++; 1549 return ((float)(Formulae.size() - FNum)) / Formulae.size(); 1550 } 1551 1552 /// If the given formula has not yet been inserted, add it to the list, and 1553 /// return true. Return false otherwise. The formula must be in canonical form. 1554 bool LSRUse::InsertFormula(const Formula &F, const Loop &L) { 1555 assert(F.isCanonical(L) && "Invalid canonical representation"); 1556 1557 if (!Formulae.empty() && RigidFormula) 1558 return false; 1559 1560 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1561 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1562 // Unstable sort by host order ok, because this is only used for uniquifying. 1563 llvm::sort(Key); 1564 1565 if (!Uniquifier.insert(Key).second) 1566 return false; 1567 1568 // Using a register to hold the value of 0 is not profitable. 1569 assert((!F.ScaledReg || !F.ScaledReg->isZero()) && 1570 "Zero allocated in a scaled register!"); 1571 #ifndef NDEBUG 1572 for (const SCEV *BaseReg : F.BaseRegs) 1573 assert(!BaseReg->isZero() && "Zero allocated in a base register!"); 1574 #endif 1575 1576 // Add the formula to the list. 1577 Formulae.push_back(F); 1578 1579 // Record registers now being used by this use. 1580 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1581 if (F.ScaledReg) 1582 Regs.insert(F.ScaledReg); 1583 1584 return true; 1585 } 1586 1587 /// Remove the given formula from this use's list. 1588 void LSRUse::DeleteFormula(Formula &F) { 1589 if (&F != &Formulae.back()) 1590 std::swap(F, Formulae.back()); 1591 Formulae.pop_back(); 1592 } 1593 1594 /// Recompute the Regs field, and update RegUses. 1595 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) { 1596 // Now that we've filtered out some formulae, recompute the Regs set. 1597 SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs); 1598 Regs.clear(); 1599 for (const Formula &F : Formulae) { 1600 if (F.ScaledReg) Regs.insert(F.ScaledReg); 1601 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1602 } 1603 1604 // Update the RegTracker. 1605 for (const SCEV *S : OldRegs) 1606 if (!Regs.count(S)) 1607 RegUses.dropRegister(S, LUIdx); 1608 } 1609 1610 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1611 void LSRUse::print(raw_ostream &OS) const { 1612 OS << "LSR Use: Kind="; 1613 switch (Kind) { 1614 case Basic: OS << "Basic"; break; 1615 case Special: OS << "Special"; break; 1616 case ICmpZero: OS << "ICmpZero"; break; 1617 case Address: 1618 OS << "Address of "; 1619 if (AccessTy.MemTy->isPointerTy()) 1620 OS << "pointer"; // the full pointer type could be really verbose 1621 else { 1622 OS << *AccessTy.MemTy; 1623 } 1624 1625 OS << " in addrspace(" << AccessTy.AddrSpace << ')'; 1626 } 1627 1628 OS << ", Offsets={"; 1629 bool NeedComma = false; 1630 for (const LSRFixup &Fixup : Fixups) { 1631 if (NeedComma) OS << ','; 1632 OS << Fixup.Offset; 1633 NeedComma = true; 1634 } 1635 OS << '}'; 1636 1637 if (AllFixupsOutsideLoop) 1638 OS << ", all-fixups-outside-loop"; 1639 1640 if (WidestFixupType) 1641 OS << ", widest fixup type: " << *WidestFixupType; 1642 } 1643 1644 LLVM_DUMP_METHOD void LSRUse::dump() const { 1645 print(errs()); errs() << '\n'; 1646 } 1647 #endif 1648 1649 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1650 LSRUse::KindType Kind, MemAccessTy AccessTy, 1651 GlobalValue *BaseGV, int64_t BaseOffset, 1652 bool HasBaseReg, int64_t Scale, 1653 Instruction *Fixup/*= nullptr*/) { 1654 switch (Kind) { 1655 case LSRUse::Address: 1656 return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset, 1657 HasBaseReg, Scale, AccessTy.AddrSpace, Fixup); 1658 1659 case LSRUse::ICmpZero: 1660 // There's not even a target hook for querying whether it would be legal to 1661 // fold a GV into an ICmp. 1662 if (BaseGV) 1663 return false; 1664 1665 // ICmp only has two operands; don't allow more than two non-trivial parts. 1666 if (Scale != 0 && HasBaseReg && BaseOffset != 0) 1667 return false; 1668 1669 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by 1670 // putting the scaled register in the other operand of the icmp. 1671 if (Scale != 0 && Scale != -1) 1672 return false; 1673 1674 // If we have low-level target information, ask the target if it can fold an 1675 // integer immediate on an icmp. 1676 if (BaseOffset != 0) { 1677 // We have one of: 1678 // ICmpZero BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset 1679 // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset 1680 // Offs is the ICmp immediate. 1681 if (Scale == 0) 1682 // The cast does the right thing with 1683 // std::numeric_limits<int64_t>::min(). 1684 BaseOffset = -(uint64_t)BaseOffset; 1685 return TTI.isLegalICmpImmediate(BaseOffset); 1686 } 1687 1688 // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg 1689 return true; 1690 1691 case LSRUse::Basic: 1692 // Only handle single-register values. 1693 return !BaseGV && Scale == 0 && BaseOffset == 0; 1694 1695 case LSRUse::Special: 1696 // Special case Basic to handle -1 scales. 1697 return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0; 1698 } 1699 1700 llvm_unreachable("Invalid LSRUse Kind!"); 1701 } 1702 1703 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1704 int64_t MinOffset, int64_t MaxOffset, 1705 LSRUse::KindType Kind, MemAccessTy AccessTy, 1706 GlobalValue *BaseGV, int64_t BaseOffset, 1707 bool HasBaseReg, int64_t Scale) { 1708 // Check for overflow. 1709 if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) != 1710 (MinOffset > 0)) 1711 return false; 1712 MinOffset = (uint64_t)BaseOffset + MinOffset; 1713 if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) != 1714 (MaxOffset > 0)) 1715 return false; 1716 MaxOffset = (uint64_t)BaseOffset + MaxOffset; 1717 1718 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset, 1719 HasBaseReg, Scale) && 1720 isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset, 1721 HasBaseReg, Scale); 1722 } 1723 1724 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1725 int64_t MinOffset, int64_t MaxOffset, 1726 LSRUse::KindType Kind, MemAccessTy AccessTy, 1727 const Formula &F, const Loop &L) { 1728 // For the purpose of isAMCompletelyFolded either having a canonical formula 1729 // or a scale not equal to zero is correct. 1730 // Problems may arise from non canonical formulae having a scale == 0. 1731 // Strictly speaking it would best to just rely on canonical formulae. 1732 // However, when we generate the scaled formulae, we first check that the 1733 // scaling factor is profitable before computing the actual ScaledReg for 1734 // compile time sake. 1735 assert((F.isCanonical(L) || F.Scale != 0)); 1736 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1737 F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale); 1738 } 1739 1740 /// Test whether we know how to expand the current formula. 1741 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1742 int64_t MaxOffset, LSRUse::KindType Kind, 1743 MemAccessTy AccessTy, GlobalValue *BaseGV, 1744 int64_t BaseOffset, bool HasBaseReg, int64_t Scale) { 1745 // We know how to expand completely foldable formulae. 1746 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1747 BaseOffset, HasBaseReg, Scale) || 1748 // Or formulae that use a base register produced by a sum of base 1749 // registers. 1750 (Scale == 1 && 1751 isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1752 BaseGV, BaseOffset, true, 0)); 1753 } 1754 1755 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1756 int64_t MaxOffset, LSRUse::KindType Kind, 1757 MemAccessTy AccessTy, const Formula &F) { 1758 return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV, 1759 F.BaseOffset, F.HasBaseReg, F.Scale); 1760 } 1761 1762 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1763 const LSRUse &LU, const Formula &F) { 1764 // Target may want to look at the user instructions. 1765 if (LU.Kind == LSRUse::Address && TTI.LSRWithInstrQueries()) { 1766 for (const LSRFixup &Fixup : LU.Fixups) 1767 if (!isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV, 1768 (F.BaseOffset + Fixup.Offset), F.HasBaseReg, 1769 F.Scale, Fixup.UserInst)) 1770 return false; 1771 return true; 1772 } 1773 1774 return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1775 LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg, 1776 F.Scale); 1777 } 1778 1779 static InstructionCost getScalingFactorCost(const TargetTransformInfo &TTI, 1780 const LSRUse &LU, const Formula &F, 1781 const Loop &L) { 1782 if (!F.Scale) 1783 return 0; 1784 1785 // If the use is not completely folded in that instruction, we will have to 1786 // pay an extra cost only for scale != 1. 1787 if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1788 LU.AccessTy, F, L)) 1789 return F.Scale != 1; 1790 1791 switch (LU.Kind) { 1792 case LSRUse::Address: { 1793 // Check the scaling factor cost with both the min and max offsets. 1794 InstructionCost ScaleCostMinOffset = TTI.getScalingFactorCost( 1795 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg, 1796 F.Scale, LU.AccessTy.AddrSpace); 1797 InstructionCost ScaleCostMaxOffset = TTI.getScalingFactorCost( 1798 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg, 1799 F.Scale, LU.AccessTy.AddrSpace); 1800 1801 assert(ScaleCostMinOffset.isValid() && ScaleCostMaxOffset.isValid() && 1802 "Legal addressing mode has an illegal cost!"); 1803 return std::max(ScaleCostMinOffset, ScaleCostMaxOffset); 1804 } 1805 case LSRUse::ICmpZero: 1806 case LSRUse::Basic: 1807 case LSRUse::Special: 1808 // The use is completely folded, i.e., everything is folded into the 1809 // instruction. 1810 return 0; 1811 } 1812 1813 llvm_unreachable("Invalid LSRUse Kind!"); 1814 } 1815 1816 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1817 LSRUse::KindType Kind, MemAccessTy AccessTy, 1818 GlobalValue *BaseGV, int64_t BaseOffset, 1819 bool HasBaseReg) { 1820 // Fast-path: zero is always foldable. 1821 if (BaseOffset == 0 && !BaseGV) return true; 1822 1823 // Conservatively, create an address with an immediate and a 1824 // base and a scale. 1825 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1826 1827 // Canonicalize a scale of 1 to a base register if the formula doesn't 1828 // already have a base register. 1829 if (!HasBaseReg && Scale == 1) { 1830 Scale = 0; 1831 HasBaseReg = true; 1832 } 1833 1834 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset, 1835 HasBaseReg, Scale); 1836 } 1837 1838 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1839 ScalarEvolution &SE, int64_t MinOffset, 1840 int64_t MaxOffset, LSRUse::KindType Kind, 1841 MemAccessTy AccessTy, const SCEV *S, 1842 bool HasBaseReg) { 1843 // Fast-path: zero is always foldable. 1844 if (S->isZero()) return true; 1845 1846 // Conservatively, create an address with an immediate and a 1847 // base and a scale. 1848 int64_t BaseOffset = ExtractImmediate(S, SE); 1849 GlobalValue *BaseGV = ExtractSymbol(S, SE); 1850 1851 // If there's anything else involved, it's not foldable. 1852 if (!S->isZero()) return false; 1853 1854 // Fast-path: zero is always foldable. 1855 if (BaseOffset == 0 && !BaseGV) return true; 1856 1857 // Conservatively, create an address with an immediate and a 1858 // base and a scale. 1859 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1860 1861 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1862 BaseOffset, HasBaseReg, Scale); 1863 } 1864 1865 namespace { 1866 1867 /// An individual increment in a Chain of IV increments. Relate an IV user to 1868 /// an expression that computes the IV it uses from the IV used by the previous 1869 /// link in the Chain. 1870 /// 1871 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the 1872 /// original IVOperand. The head of the chain's IVOperand is only valid during 1873 /// chain collection, before LSR replaces IV users. During chain generation, 1874 /// IncExpr can be used to find the new IVOperand that computes the same 1875 /// expression. 1876 struct IVInc { 1877 Instruction *UserInst; 1878 Value* IVOperand; 1879 const SCEV *IncExpr; 1880 1881 IVInc(Instruction *U, Value *O, const SCEV *E) 1882 : UserInst(U), IVOperand(O), IncExpr(E) {} 1883 }; 1884 1885 // The list of IV increments in program order. We typically add the head of a 1886 // chain without finding subsequent links. 1887 struct IVChain { 1888 SmallVector<IVInc, 1> Incs; 1889 const SCEV *ExprBase = nullptr; 1890 1891 IVChain() = default; 1892 IVChain(const IVInc &Head, const SCEV *Base) 1893 : Incs(1, Head), ExprBase(Base) {} 1894 1895 using const_iterator = SmallVectorImpl<IVInc>::const_iterator; 1896 1897 // Return the first increment in the chain. 1898 const_iterator begin() const { 1899 assert(!Incs.empty()); 1900 return std::next(Incs.begin()); 1901 } 1902 const_iterator end() const { 1903 return Incs.end(); 1904 } 1905 1906 // Returns true if this chain contains any increments. 1907 bool hasIncs() const { return Incs.size() >= 2; } 1908 1909 // Add an IVInc to the end of this chain. 1910 void add(const IVInc &X) { Incs.push_back(X); } 1911 1912 // Returns the last UserInst in the chain. 1913 Instruction *tailUserInst() const { return Incs.back().UserInst; } 1914 1915 // Returns true if IncExpr can be profitably added to this chain. 1916 bool isProfitableIncrement(const SCEV *OperExpr, 1917 const SCEV *IncExpr, 1918 ScalarEvolution&); 1919 }; 1920 1921 /// Helper for CollectChains to track multiple IV increment uses. Distinguish 1922 /// between FarUsers that definitely cross IV increments and NearUsers that may 1923 /// be used between IV increments. 1924 struct ChainUsers { 1925 SmallPtrSet<Instruction*, 4> FarUsers; 1926 SmallPtrSet<Instruction*, 4> NearUsers; 1927 }; 1928 1929 /// This class holds state for the main loop strength reduction logic. 1930 class LSRInstance { 1931 IVUsers &IU; 1932 ScalarEvolution &SE; 1933 DominatorTree &DT; 1934 LoopInfo &LI; 1935 AssumptionCache &AC; 1936 TargetLibraryInfo &TLI; 1937 const TargetTransformInfo &TTI; 1938 Loop *const L; 1939 MemorySSAUpdater *MSSAU; 1940 TTI::AddressingModeKind AMK; 1941 bool Changed = false; 1942 1943 /// This is the insert position that the current loop's induction variable 1944 /// increment should be placed. In simple loops, this is the latch block's 1945 /// terminator. But in more complicated cases, this is a position which will 1946 /// dominate all the in-loop post-increment users. 1947 Instruction *IVIncInsertPos = nullptr; 1948 1949 /// Interesting factors between use strides. 1950 /// 1951 /// We explicitly use a SetVector which contains a SmallSet, instead of the 1952 /// default, a SmallDenseSet, because we need to use the full range of 1953 /// int64_ts, and there's currently no good way of doing that with 1954 /// SmallDenseSet. 1955 SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors; 1956 1957 /// Interesting use types, to facilitate truncation reuse. 1958 SmallSetVector<Type *, 4> Types; 1959 1960 /// The list of interesting uses. 1961 mutable SmallVector<LSRUse, 16> Uses; 1962 1963 /// Track which uses use which register candidates. 1964 RegUseTracker RegUses; 1965 1966 // Limit the number of chains to avoid quadratic behavior. We don't expect to 1967 // have more than a few IV increment chains in a loop. Missing a Chain falls 1968 // back to normal LSR behavior for those uses. 1969 static const unsigned MaxChains = 8; 1970 1971 /// IV users can form a chain of IV increments. 1972 SmallVector<IVChain, MaxChains> IVChainVec; 1973 1974 /// IV users that belong to profitable IVChains. 1975 SmallPtrSet<Use*, MaxChains> IVIncSet; 1976 1977 void OptimizeShadowIV(); 1978 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse); 1979 ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse); 1980 void OptimizeLoopTermCond(); 1981 1982 void ChainInstruction(Instruction *UserInst, Instruction *IVOper, 1983 SmallVectorImpl<ChainUsers> &ChainUsersVec); 1984 void FinalizeChain(IVChain &Chain); 1985 void CollectChains(); 1986 void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 1987 SmallVectorImpl<WeakTrackingVH> &DeadInsts); 1988 1989 void CollectInterestingTypesAndFactors(); 1990 void CollectFixupsAndInitialFormulae(); 1991 1992 // Support for sharing of LSRUses between LSRFixups. 1993 using UseMapTy = DenseMap<LSRUse::SCEVUseKindPair, size_t>; 1994 UseMapTy UseMap; 1995 1996 bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, 1997 LSRUse::KindType Kind, MemAccessTy AccessTy); 1998 1999 std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind, 2000 MemAccessTy AccessTy); 2001 2002 void DeleteUse(LSRUse &LU, size_t LUIdx); 2003 2004 LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU); 2005 2006 void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 2007 void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 2008 void CountRegisters(const Formula &F, size_t LUIdx); 2009 bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F); 2010 2011 void CollectLoopInvariantFixupsAndFormulae(); 2012 2013 void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base, 2014 unsigned Depth = 0); 2015 2016 void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 2017 const Formula &Base, unsigned Depth, 2018 size_t Idx, bool IsScaledReg = false); 2019 void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base); 2020 void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 2021 const Formula &Base, size_t Idx, 2022 bool IsScaledReg = false); 2023 void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 2024 void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx, 2025 const Formula &Base, 2026 const SmallVectorImpl<int64_t> &Worklist, 2027 size_t Idx, bool IsScaledReg = false); 2028 void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 2029 void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base); 2030 void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base); 2031 void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base); 2032 void GenerateCrossUseConstantOffsets(); 2033 void GenerateAllReuseFormulae(); 2034 2035 void FilterOutUndesirableDedicatedRegisters(); 2036 2037 size_t EstimateSearchSpaceComplexity() const; 2038 void NarrowSearchSpaceByDetectingSupersets(); 2039 void NarrowSearchSpaceByCollapsingUnrolledCode(); 2040 void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 2041 void NarrowSearchSpaceByFilterFormulaWithSameScaledReg(); 2042 void NarrowSearchSpaceByFilterPostInc(); 2043 void NarrowSearchSpaceByDeletingCostlyFormulas(); 2044 void NarrowSearchSpaceByPickingWinnerRegs(); 2045 void NarrowSearchSpaceUsingHeuristics(); 2046 2047 void SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 2048 Cost &SolutionCost, 2049 SmallVectorImpl<const Formula *> &Workspace, 2050 const Cost &CurCost, 2051 const SmallPtrSet<const SCEV *, 16> &CurRegs, 2052 DenseSet<const SCEV *> &VisitedRegs) const; 2053 void Solve(SmallVectorImpl<const Formula *> &Solution) const; 2054 2055 BasicBlock::iterator 2056 HoistInsertPosition(BasicBlock::iterator IP, 2057 const SmallVectorImpl<Instruction *> &Inputs) const; 2058 BasicBlock::iterator 2059 AdjustInsertPositionForExpand(BasicBlock::iterator IP, 2060 const LSRFixup &LF, 2061 const LSRUse &LU, 2062 SCEVExpander &Rewriter) const; 2063 2064 Value *Expand(const LSRUse &LU, const LSRFixup &LF, const Formula &F, 2065 BasicBlock::iterator IP, SCEVExpander &Rewriter, 2066 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 2067 void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF, 2068 const Formula &F, SCEVExpander &Rewriter, 2069 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 2070 void Rewrite(const LSRUse &LU, const LSRFixup &LF, const Formula &F, 2071 SCEVExpander &Rewriter, 2072 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 2073 void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution); 2074 2075 public: 2076 LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT, 2077 LoopInfo &LI, const TargetTransformInfo &TTI, AssumptionCache &AC, 2078 TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU); 2079 2080 bool getChanged() const { return Changed; } 2081 2082 void print_factors_and_types(raw_ostream &OS) const; 2083 void print_fixups(raw_ostream &OS) const; 2084 void print_uses(raw_ostream &OS) const; 2085 void print(raw_ostream &OS) const; 2086 void dump() const; 2087 }; 2088 2089 } // end anonymous namespace 2090 2091 /// If IV is used in a int-to-float cast inside the loop then try to eliminate 2092 /// the cast operation. 2093 void LSRInstance::OptimizeShadowIV() { 2094 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 2095 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2096 return; 2097 2098 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); 2099 UI != E; /* empty */) { 2100 IVUsers::const_iterator CandidateUI = UI; 2101 ++UI; 2102 Instruction *ShadowUse = CandidateUI->getUser(); 2103 Type *DestTy = nullptr; 2104 bool IsSigned = false; 2105 2106 /* If shadow use is a int->float cast then insert a second IV 2107 to eliminate this cast. 2108 2109 for (unsigned i = 0; i < n; ++i) 2110 foo((double)i); 2111 2112 is transformed into 2113 2114 double d = 0.0; 2115 for (unsigned i = 0; i < n; ++i, ++d) 2116 foo(d); 2117 */ 2118 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) { 2119 IsSigned = false; 2120 DestTy = UCast->getDestTy(); 2121 } 2122 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) { 2123 IsSigned = true; 2124 DestTy = SCast->getDestTy(); 2125 } 2126 if (!DestTy) continue; 2127 2128 // If target does not support DestTy natively then do not apply 2129 // this transformation. 2130 if (!TTI.isTypeLegal(DestTy)) continue; 2131 2132 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0)); 2133 if (!PH) continue; 2134 if (PH->getNumIncomingValues() != 2) continue; 2135 2136 // If the calculation in integers overflows, the result in FP type will 2137 // differ. So we only can do this transformation if we are guaranteed to not 2138 // deal with overflowing values 2139 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PH)); 2140 if (!AR) continue; 2141 if (IsSigned && !AR->hasNoSignedWrap()) continue; 2142 if (!IsSigned && !AR->hasNoUnsignedWrap()) continue; 2143 2144 Type *SrcTy = PH->getType(); 2145 int Mantissa = DestTy->getFPMantissaWidth(); 2146 if (Mantissa == -1) continue; 2147 if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa) 2148 continue; 2149 2150 unsigned Entry, Latch; 2151 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) { 2152 Entry = 0; 2153 Latch = 1; 2154 } else { 2155 Entry = 1; 2156 Latch = 0; 2157 } 2158 2159 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry)); 2160 if (!Init) continue; 2161 Constant *NewInit = ConstantFP::get(DestTy, IsSigned ? 2162 (double)Init->getSExtValue() : 2163 (double)Init->getZExtValue()); 2164 2165 BinaryOperator *Incr = 2166 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch)); 2167 if (!Incr) continue; 2168 if (Incr->getOpcode() != Instruction::Add 2169 && Incr->getOpcode() != Instruction::Sub) 2170 continue; 2171 2172 /* Initialize new IV, double d = 0.0 in above example. */ 2173 ConstantInt *C = nullptr; 2174 if (Incr->getOperand(0) == PH) 2175 C = dyn_cast<ConstantInt>(Incr->getOperand(1)); 2176 else if (Incr->getOperand(1) == PH) 2177 C = dyn_cast<ConstantInt>(Incr->getOperand(0)); 2178 else 2179 continue; 2180 2181 if (!C) continue; 2182 2183 // Ignore negative constants, as the code below doesn't handle them 2184 // correctly. TODO: Remove this restriction. 2185 if (!C->getValue().isStrictlyPositive()) continue; 2186 2187 /* Add new PHINode. */ 2188 PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH); 2189 2190 /* create new increment. '++d' in above example. */ 2191 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue()); 2192 BinaryOperator *NewIncr = 2193 BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ? 2194 Instruction::FAdd : Instruction::FSub, 2195 NewPH, CFP, "IV.S.next.", Incr); 2196 2197 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry)); 2198 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch)); 2199 2200 /* Remove cast operation */ 2201 ShadowUse->replaceAllUsesWith(NewPH); 2202 ShadowUse->eraseFromParent(); 2203 Changed = true; 2204 break; 2205 } 2206 } 2207 2208 /// If Cond has an operand that is an expression of an IV, set the IV user and 2209 /// stride information and return true, otherwise return false. 2210 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) { 2211 for (IVStrideUse &U : IU) 2212 if (U.getUser() == Cond) { 2213 // NOTE: we could handle setcc instructions with multiple uses here, but 2214 // InstCombine does it as well for simple uses, it's not clear that it 2215 // occurs enough in real life to handle. 2216 CondUse = &U; 2217 return true; 2218 } 2219 return false; 2220 } 2221 2222 /// Rewrite the loop's terminating condition if it uses a max computation. 2223 /// 2224 /// This is a narrow solution to a specific, but acute, problem. For loops 2225 /// like this: 2226 /// 2227 /// i = 0; 2228 /// do { 2229 /// p[i] = 0.0; 2230 /// } while (++i < n); 2231 /// 2232 /// the trip count isn't just 'n', because 'n' might not be positive. And 2233 /// unfortunately this can come up even for loops where the user didn't use 2234 /// a C do-while loop. For example, seemingly well-behaved top-test loops 2235 /// will commonly be lowered like this: 2236 /// 2237 /// if (n > 0) { 2238 /// i = 0; 2239 /// do { 2240 /// p[i] = 0.0; 2241 /// } while (++i < n); 2242 /// } 2243 /// 2244 /// and then it's possible for subsequent optimization to obscure the if 2245 /// test in such a way that indvars can't find it. 2246 /// 2247 /// When indvars can't find the if test in loops like this, it creates a 2248 /// max expression, which allows it to give the loop a canonical 2249 /// induction variable: 2250 /// 2251 /// i = 0; 2252 /// max = n < 1 ? 1 : n; 2253 /// do { 2254 /// p[i] = 0.0; 2255 /// } while (++i != max); 2256 /// 2257 /// Canonical induction variables are necessary because the loop passes 2258 /// are designed around them. The most obvious example of this is the 2259 /// LoopInfo analysis, which doesn't remember trip count values. It 2260 /// expects to be able to rediscover the trip count each time it is 2261 /// needed, and it does this using a simple analysis that only succeeds if 2262 /// the loop has a canonical induction variable. 2263 /// 2264 /// However, when it comes time to generate code, the maximum operation 2265 /// can be quite costly, especially if it's inside of an outer loop. 2266 /// 2267 /// This function solves this problem by detecting this type of loop and 2268 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting 2269 /// the instructions for the maximum computation. 2270 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) { 2271 // Check that the loop matches the pattern we're looking for. 2272 if (Cond->getPredicate() != CmpInst::ICMP_EQ && 2273 Cond->getPredicate() != CmpInst::ICMP_NE) 2274 return Cond; 2275 2276 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1)); 2277 if (!Sel || !Sel->hasOneUse()) return Cond; 2278 2279 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 2280 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2281 return Cond; 2282 const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1); 2283 2284 // Add one to the backedge-taken count to get the trip count. 2285 const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount); 2286 if (IterationCount != SE.getSCEV(Sel)) return Cond; 2287 2288 // Check for a max calculation that matches the pattern. There's no check 2289 // for ICMP_ULE here because the comparison would be with zero, which 2290 // isn't interesting. 2291 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 2292 const SCEVNAryExpr *Max = nullptr; 2293 if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) { 2294 Pred = ICmpInst::ICMP_SLE; 2295 Max = S; 2296 } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) { 2297 Pred = ICmpInst::ICMP_SLT; 2298 Max = S; 2299 } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) { 2300 Pred = ICmpInst::ICMP_ULT; 2301 Max = U; 2302 } else { 2303 // No match; bail. 2304 return Cond; 2305 } 2306 2307 // To handle a max with more than two operands, this optimization would 2308 // require additional checking and setup. 2309 if (Max->getNumOperands() != 2) 2310 return Cond; 2311 2312 const SCEV *MaxLHS = Max->getOperand(0); 2313 const SCEV *MaxRHS = Max->getOperand(1); 2314 2315 // ScalarEvolution canonicalizes constants to the left. For < and >, look 2316 // for a comparison with 1. For <= and >=, a comparison with zero. 2317 if (!MaxLHS || 2318 (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One))) 2319 return Cond; 2320 2321 // Check the relevant induction variable for conformance to 2322 // the pattern. 2323 const SCEV *IV = SE.getSCEV(Cond->getOperand(0)); 2324 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV); 2325 if (!AR || !AR->isAffine() || 2326 AR->getStart() != One || 2327 AR->getStepRecurrence(SE) != One) 2328 return Cond; 2329 2330 assert(AR->getLoop() == L && 2331 "Loop condition operand is an addrec in a different loop!"); 2332 2333 // Check the right operand of the select, and remember it, as it will 2334 // be used in the new comparison instruction. 2335 Value *NewRHS = nullptr; 2336 if (ICmpInst::isTrueWhenEqual(Pred)) { 2337 // Look for n+1, and grab n. 2338 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1))) 2339 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2340 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2341 NewRHS = BO->getOperand(0); 2342 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2))) 2343 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2344 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2345 NewRHS = BO->getOperand(0); 2346 if (!NewRHS) 2347 return Cond; 2348 } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS) 2349 NewRHS = Sel->getOperand(1); 2350 else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS) 2351 NewRHS = Sel->getOperand(2); 2352 else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS)) 2353 NewRHS = SU->getValue(); 2354 else 2355 // Max doesn't match expected pattern. 2356 return Cond; 2357 2358 // Determine the new comparison opcode. It may be signed or unsigned, 2359 // and the original comparison may be either equality or inequality. 2360 if (Cond->getPredicate() == CmpInst::ICMP_EQ) 2361 Pred = CmpInst::getInversePredicate(Pred); 2362 2363 // Ok, everything looks ok to change the condition into an SLT or SGE and 2364 // delete the max calculation. 2365 ICmpInst *NewCond = 2366 new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp"); 2367 2368 // Delete the max calculation instructions. 2369 NewCond->setDebugLoc(Cond->getDebugLoc()); 2370 Cond->replaceAllUsesWith(NewCond); 2371 CondUse->setUser(NewCond); 2372 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0)); 2373 Cond->eraseFromParent(); 2374 Sel->eraseFromParent(); 2375 if (Cmp->use_empty()) 2376 Cmp->eraseFromParent(); 2377 return NewCond; 2378 } 2379 2380 /// Change loop terminating condition to use the postinc iv when possible. 2381 void 2382 LSRInstance::OptimizeLoopTermCond() { 2383 SmallPtrSet<Instruction *, 4> PostIncs; 2384 2385 // We need a different set of heuristics for rotated and non-rotated loops. 2386 // If a loop is rotated then the latch is also the backedge, so inserting 2387 // post-inc expressions just before the latch is ideal. To reduce live ranges 2388 // it also makes sense to rewrite terminating conditions to use post-inc 2389 // expressions. 2390 // 2391 // If the loop is not rotated then the latch is not a backedge; the latch 2392 // check is done in the loop head. Adding post-inc expressions before the 2393 // latch will cause overlapping live-ranges of pre-inc and post-inc expressions 2394 // in the loop body. In this case we do *not* want to use post-inc expressions 2395 // in the latch check, and we want to insert post-inc expressions before 2396 // the backedge. 2397 BasicBlock *LatchBlock = L->getLoopLatch(); 2398 SmallVector<BasicBlock*, 8> ExitingBlocks; 2399 L->getExitingBlocks(ExitingBlocks); 2400 if (llvm::all_of(ExitingBlocks, [&LatchBlock](const BasicBlock *BB) { 2401 return LatchBlock != BB; 2402 })) { 2403 // The backedge doesn't exit the loop; treat this as a head-tested loop. 2404 IVIncInsertPos = LatchBlock->getTerminator(); 2405 return; 2406 } 2407 2408 // Otherwise treat this as a rotated loop. 2409 for (BasicBlock *ExitingBlock : ExitingBlocks) { 2410 // Get the terminating condition for the loop if possible. If we 2411 // can, we want to change it to use a post-incremented version of its 2412 // induction variable, to allow coalescing the live ranges for the IV into 2413 // one register value. 2414 2415 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 2416 if (!TermBr) 2417 continue; 2418 // FIXME: Overly conservative, termination condition could be an 'or' etc.. 2419 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition())) 2420 continue; 2421 2422 // Search IVUsesByStride to find Cond's IVUse if there is one. 2423 IVStrideUse *CondUse = nullptr; 2424 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition()); 2425 if (!FindIVUserForCond(Cond, CondUse)) 2426 continue; 2427 2428 // If the trip count is computed in terms of a max (due to ScalarEvolution 2429 // being unable to find a sufficient guard, for example), change the loop 2430 // comparison to use SLT or ULT instead of NE. 2431 // One consequence of doing this now is that it disrupts the count-down 2432 // optimization. That's not always a bad thing though, because in such 2433 // cases it may still be worthwhile to avoid a max. 2434 Cond = OptimizeMax(Cond, CondUse); 2435 2436 // If this exiting block dominates the latch block, it may also use 2437 // the post-inc value if it won't be shared with other uses. 2438 // Check for dominance. 2439 if (!DT.dominates(ExitingBlock, LatchBlock)) 2440 continue; 2441 2442 // Conservatively avoid trying to use the post-inc value in non-latch 2443 // exits if there may be pre-inc users in intervening blocks. 2444 if (LatchBlock != ExitingBlock) 2445 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) 2446 // Test if the use is reachable from the exiting block. This dominator 2447 // query is a conservative approximation of reachability. 2448 if (&*UI != CondUse && 2449 !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) { 2450 // Conservatively assume there may be reuse if the quotient of their 2451 // strides could be a legal scale. 2452 const SCEV *A = IU.getStride(*CondUse, L); 2453 const SCEV *B = IU.getStride(*UI, L); 2454 if (!A || !B) continue; 2455 if (SE.getTypeSizeInBits(A->getType()) != 2456 SE.getTypeSizeInBits(B->getType())) { 2457 if (SE.getTypeSizeInBits(A->getType()) > 2458 SE.getTypeSizeInBits(B->getType())) 2459 B = SE.getSignExtendExpr(B, A->getType()); 2460 else 2461 A = SE.getSignExtendExpr(A, B->getType()); 2462 } 2463 if (const SCEVConstant *D = 2464 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) { 2465 const ConstantInt *C = D->getValue(); 2466 // Stride of one or negative one can have reuse with non-addresses. 2467 if (C->isOne() || C->isMinusOne()) 2468 goto decline_post_inc; 2469 // Avoid weird situations. 2470 if (C->getValue().getMinSignedBits() >= 64 || 2471 C->getValue().isMinSignedValue()) 2472 goto decline_post_inc; 2473 // Check for possible scaled-address reuse. 2474 if (isAddressUse(TTI, UI->getUser(), UI->getOperandValToReplace())) { 2475 MemAccessTy AccessTy = getAccessType( 2476 TTI, UI->getUser(), UI->getOperandValToReplace()); 2477 int64_t Scale = C->getSExtValue(); 2478 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2479 /*BaseOffset=*/0, 2480 /*HasBaseReg=*/false, Scale, 2481 AccessTy.AddrSpace)) 2482 goto decline_post_inc; 2483 Scale = -Scale; 2484 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2485 /*BaseOffset=*/0, 2486 /*HasBaseReg=*/false, Scale, 2487 AccessTy.AddrSpace)) 2488 goto decline_post_inc; 2489 } 2490 } 2491 } 2492 2493 LLVM_DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: " 2494 << *Cond << '\n'); 2495 2496 // It's possible for the setcc instruction to be anywhere in the loop, and 2497 // possible for it to have multiple users. If it is not immediately before 2498 // the exiting block branch, move it. 2499 if (Cond->getNextNonDebugInstruction() != TermBr) { 2500 if (Cond->hasOneUse()) { 2501 Cond->moveBefore(TermBr); 2502 } else { 2503 // Clone the terminating condition and insert into the loopend. 2504 ICmpInst *OldCond = Cond; 2505 Cond = cast<ICmpInst>(Cond->clone()); 2506 Cond->setName(L->getHeader()->getName() + ".termcond"); 2507 ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond); 2508 2509 // Clone the IVUse, as the old use still exists! 2510 CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace()); 2511 TermBr->replaceUsesOfWith(OldCond, Cond); 2512 } 2513 } 2514 2515 // If we get to here, we know that we can transform the setcc instruction to 2516 // use the post-incremented version of the IV, allowing us to coalesce the 2517 // live ranges for the IV correctly. 2518 CondUse->transformToPostInc(L); 2519 Changed = true; 2520 2521 PostIncs.insert(Cond); 2522 decline_post_inc:; 2523 } 2524 2525 // Determine an insertion point for the loop induction variable increment. It 2526 // must dominate all the post-inc comparisons we just set up, and it must 2527 // dominate the loop latch edge. 2528 IVIncInsertPos = L->getLoopLatch()->getTerminator(); 2529 for (Instruction *Inst : PostIncs) { 2530 BasicBlock *BB = 2531 DT.findNearestCommonDominator(IVIncInsertPos->getParent(), 2532 Inst->getParent()); 2533 if (BB == Inst->getParent()) 2534 IVIncInsertPos = Inst; 2535 else if (BB != IVIncInsertPos->getParent()) 2536 IVIncInsertPos = BB->getTerminator(); 2537 } 2538 } 2539 2540 /// Determine if the given use can accommodate a fixup at the given offset and 2541 /// other details. If so, update the use and return true. 2542 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, 2543 bool HasBaseReg, LSRUse::KindType Kind, 2544 MemAccessTy AccessTy) { 2545 int64_t NewMinOffset = LU.MinOffset; 2546 int64_t NewMaxOffset = LU.MaxOffset; 2547 MemAccessTy NewAccessTy = AccessTy; 2548 2549 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to 2550 // something conservative, however this can pessimize in the case that one of 2551 // the uses will have all its uses outside the loop, for example. 2552 if (LU.Kind != Kind) 2553 return false; 2554 2555 // Check for a mismatched access type, and fall back conservatively as needed. 2556 // TODO: Be less conservative when the type is similar and can use the same 2557 // addressing modes. 2558 if (Kind == LSRUse::Address) { 2559 if (AccessTy.MemTy != LU.AccessTy.MemTy) { 2560 NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(), 2561 AccessTy.AddrSpace); 2562 } 2563 } 2564 2565 // Conservatively assume HasBaseReg is true for now. 2566 if (NewOffset < LU.MinOffset) { 2567 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2568 LU.MaxOffset - NewOffset, HasBaseReg)) 2569 return false; 2570 NewMinOffset = NewOffset; 2571 } else if (NewOffset > LU.MaxOffset) { 2572 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2573 NewOffset - LU.MinOffset, HasBaseReg)) 2574 return false; 2575 NewMaxOffset = NewOffset; 2576 } 2577 2578 // Update the use. 2579 LU.MinOffset = NewMinOffset; 2580 LU.MaxOffset = NewMaxOffset; 2581 LU.AccessTy = NewAccessTy; 2582 return true; 2583 } 2584 2585 /// Return an LSRUse index and an offset value for a fixup which needs the given 2586 /// expression, with the given kind and optional access type. Either reuse an 2587 /// existing use or create a new one, as needed. 2588 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr, 2589 LSRUse::KindType Kind, 2590 MemAccessTy AccessTy) { 2591 const SCEV *Copy = Expr; 2592 int64_t Offset = ExtractImmediate(Expr, SE); 2593 2594 // Basic uses can't accept any offset, for example. 2595 if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr, 2596 Offset, /*HasBaseReg=*/ true)) { 2597 Expr = Copy; 2598 Offset = 0; 2599 } 2600 2601 std::pair<UseMapTy::iterator, bool> P = 2602 UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0)); 2603 if (!P.second) { 2604 // A use already existed with this base. 2605 size_t LUIdx = P.first->second; 2606 LSRUse &LU = Uses[LUIdx]; 2607 if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy)) 2608 // Reuse this use. 2609 return std::make_pair(LUIdx, Offset); 2610 } 2611 2612 // Create a new use. 2613 size_t LUIdx = Uses.size(); 2614 P.first->second = LUIdx; 2615 Uses.push_back(LSRUse(Kind, AccessTy)); 2616 LSRUse &LU = Uses[LUIdx]; 2617 2618 LU.MinOffset = Offset; 2619 LU.MaxOffset = Offset; 2620 return std::make_pair(LUIdx, Offset); 2621 } 2622 2623 /// Delete the given use from the Uses list. 2624 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) { 2625 if (&LU != &Uses.back()) 2626 std::swap(LU, Uses.back()); 2627 Uses.pop_back(); 2628 2629 // Update RegUses. 2630 RegUses.swapAndDropUse(LUIdx, Uses.size()); 2631 } 2632 2633 /// Look for a use distinct from OrigLU which is has a formula that has the same 2634 /// registers as the given formula. 2635 LSRUse * 2636 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF, 2637 const LSRUse &OrigLU) { 2638 // Search all uses for the formula. This could be more clever. 2639 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 2640 LSRUse &LU = Uses[LUIdx]; 2641 // Check whether this use is close enough to OrigLU, to see whether it's 2642 // worthwhile looking through its formulae. 2643 // Ignore ICmpZero uses because they may contain formulae generated by 2644 // GenerateICmpZeroScales, in which case adding fixup offsets may 2645 // be invalid. 2646 if (&LU != &OrigLU && 2647 LU.Kind != LSRUse::ICmpZero && 2648 LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy && 2649 LU.WidestFixupType == OrigLU.WidestFixupType && 2650 LU.HasFormulaWithSameRegs(OrigF)) { 2651 // Scan through this use's formulae. 2652 for (const Formula &F : LU.Formulae) { 2653 // Check to see if this formula has the same registers and symbols 2654 // as OrigF. 2655 if (F.BaseRegs == OrigF.BaseRegs && 2656 F.ScaledReg == OrigF.ScaledReg && 2657 F.BaseGV == OrigF.BaseGV && 2658 F.Scale == OrigF.Scale && 2659 F.UnfoldedOffset == OrigF.UnfoldedOffset) { 2660 if (F.BaseOffset == 0) 2661 return &LU; 2662 // This is the formula where all the registers and symbols matched; 2663 // there aren't going to be any others. Since we declined it, we 2664 // can skip the rest of the formulae and proceed to the next LSRUse. 2665 break; 2666 } 2667 } 2668 } 2669 } 2670 2671 // Nothing looked good. 2672 return nullptr; 2673 } 2674 2675 void LSRInstance::CollectInterestingTypesAndFactors() { 2676 SmallSetVector<const SCEV *, 4> Strides; 2677 2678 // Collect interesting types and strides. 2679 SmallVector<const SCEV *, 4> Worklist; 2680 for (const IVStrideUse &U : IU) { 2681 const SCEV *Expr = IU.getExpr(U); 2682 2683 // Collect interesting types. 2684 Types.insert(SE.getEffectiveSCEVType(Expr->getType())); 2685 2686 // Add strides for mentioned loops. 2687 Worklist.push_back(Expr); 2688 do { 2689 const SCEV *S = Worklist.pop_back_val(); 2690 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2691 if (AR->getLoop() == L) 2692 Strides.insert(AR->getStepRecurrence(SE)); 2693 Worklist.push_back(AR->getStart()); 2694 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2695 Worklist.append(Add->op_begin(), Add->op_end()); 2696 } 2697 } while (!Worklist.empty()); 2698 } 2699 2700 // Compute interesting factors from the set of interesting strides. 2701 for (SmallSetVector<const SCEV *, 4>::const_iterator 2702 I = Strides.begin(), E = Strides.end(); I != E; ++I) 2703 for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter = 2704 std::next(I); NewStrideIter != E; ++NewStrideIter) { 2705 const SCEV *OldStride = *I; 2706 const SCEV *NewStride = *NewStrideIter; 2707 2708 if (SE.getTypeSizeInBits(OldStride->getType()) != 2709 SE.getTypeSizeInBits(NewStride->getType())) { 2710 if (SE.getTypeSizeInBits(OldStride->getType()) > 2711 SE.getTypeSizeInBits(NewStride->getType())) 2712 NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType()); 2713 else 2714 OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType()); 2715 } 2716 if (const SCEVConstant *Factor = 2717 dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride, 2718 SE, true))) { 2719 if (Factor->getAPInt().getMinSignedBits() <= 64 && !Factor->isZero()) 2720 Factors.insert(Factor->getAPInt().getSExtValue()); 2721 } else if (const SCEVConstant *Factor = 2722 dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride, 2723 NewStride, 2724 SE, true))) { 2725 if (Factor->getAPInt().getMinSignedBits() <= 64 && !Factor->isZero()) 2726 Factors.insert(Factor->getAPInt().getSExtValue()); 2727 } 2728 } 2729 2730 // If all uses use the same type, don't bother looking for truncation-based 2731 // reuse. 2732 if (Types.size() == 1) 2733 Types.clear(); 2734 2735 LLVM_DEBUG(print_factors_and_types(dbgs())); 2736 } 2737 2738 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in 2739 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to 2740 /// IVStrideUses, we could partially skip this. 2741 static User::op_iterator 2742 findIVOperand(User::op_iterator OI, User::op_iterator OE, 2743 Loop *L, ScalarEvolution &SE) { 2744 for(; OI != OE; ++OI) { 2745 if (Instruction *Oper = dyn_cast<Instruction>(*OI)) { 2746 if (!SE.isSCEVable(Oper->getType())) 2747 continue; 2748 2749 if (const SCEVAddRecExpr *AR = 2750 dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) { 2751 if (AR->getLoop() == L) 2752 break; 2753 } 2754 } 2755 } 2756 return OI; 2757 } 2758 2759 /// IVChain logic must consistently peek base TruncInst operands, so wrap it in 2760 /// a convenient helper. 2761 static Value *getWideOperand(Value *Oper) { 2762 if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper)) 2763 return Trunc->getOperand(0); 2764 return Oper; 2765 } 2766 2767 /// Return true if we allow an IV chain to include both types. 2768 static bool isCompatibleIVType(Value *LVal, Value *RVal) { 2769 Type *LType = LVal->getType(); 2770 Type *RType = RVal->getType(); 2771 return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy() && 2772 // Different address spaces means (possibly) 2773 // different types of the pointer implementation, 2774 // e.g. i16 vs i32 so disallow that. 2775 (LType->getPointerAddressSpace() == 2776 RType->getPointerAddressSpace())); 2777 } 2778 2779 /// Return an approximation of this SCEV expression's "base", or NULL for any 2780 /// constant. Returning the expression itself is conservative. Returning a 2781 /// deeper subexpression is more precise and valid as long as it isn't less 2782 /// complex than another subexpression. For expressions involving multiple 2783 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids 2784 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i], 2785 /// IVInc==b-a. 2786 /// 2787 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost 2788 /// SCEVUnknown, we simply return the rightmost SCEV operand. 2789 static const SCEV *getExprBase(const SCEV *S) { 2790 switch (S->getSCEVType()) { 2791 default: // uncluding scUnknown. 2792 return S; 2793 case scConstant: 2794 return nullptr; 2795 case scTruncate: 2796 return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand()); 2797 case scZeroExtend: 2798 return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand()); 2799 case scSignExtend: 2800 return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand()); 2801 case scAddExpr: { 2802 // Skip over scaled operands (scMulExpr) to follow add operands as long as 2803 // there's nothing more complex. 2804 // FIXME: not sure if we want to recognize negation. 2805 const SCEVAddExpr *Add = cast<SCEVAddExpr>(S); 2806 for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()), 2807 E(Add->op_begin()); I != E; ++I) { 2808 const SCEV *SubExpr = *I; 2809 if (SubExpr->getSCEVType() == scAddExpr) 2810 return getExprBase(SubExpr); 2811 2812 if (SubExpr->getSCEVType() != scMulExpr) 2813 return SubExpr; 2814 } 2815 return S; // all operands are scaled, be conservative. 2816 } 2817 case scAddRecExpr: 2818 return getExprBase(cast<SCEVAddRecExpr>(S)->getStart()); 2819 } 2820 llvm_unreachable("Unknown SCEV kind!"); 2821 } 2822 2823 /// Return true if the chain increment is profitable to expand into a loop 2824 /// invariant value, which may require its own register. A profitable chain 2825 /// increment will be an offset relative to the same base. We allow such offsets 2826 /// to potentially be used as chain increment as long as it's not obviously 2827 /// expensive to expand using real instructions. 2828 bool IVChain::isProfitableIncrement(const SCEV *OperExpr, 2829 const SCEV *IncExpr, 2830 ScalarEvolution &SE) { 2831 // Aggressively form chains when -stress-ivchain. 2832 if (StressIVChain) 2833 return true; 2834 2835 // Do not replace a constant offset from IV head with a nonconstant IV 2836 // increment. 2837 if (!isa<SCEVConstant>(IncExpr)) { 2838 const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand)); 2839 if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr))) 2840 return false; 2841 } 2842 2843 SmallPtrSet<const SCEV*, 8> Processed; 2844 return !isHighCostExpansion(IncExpr, Processed, SE); 2845 } 2846 2847 /// Return true if the number of registers needed for the chain is estimated to 2848 /// be less than the number required for the individual IV users. First prohibit 2849 /// any IV users that keep the IV live across increments (the Users set should 2850 /// be empty). Next count the number and type of increments in the chain. 2851 /// 2852 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't 2853 /// effectively use postinc addressing modes. Only consider it profitable it the 2854 /// increments can be computed in fewer registers when chained. 2855 /// 2856 /// TODO: Consider IVInc free if it's already used in another chains. 2857 static bool isProfitableChain(IVChain &Chain, 2858 SmallPtrSetImpl<Instruction *> &Users, 2859 ScalarEvolution &SE, 2860 const TargetTransformInfo &TTI) { 2861 if (StressIVChain) 2862 return true; 2863 2864 if (!Chain.hasIncs()) 2865 return false; 2866 2867 if (!Users.empty()) { 2868 LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n"; 2869 for (Instruction *Inst 2870 : Users) { dbgs() << " " << *Inst << "\n"; }); 2871 return false; 2872 } 2873 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 2874 2875 // The chain itself may require a register, so intialize cost to 1. 2876 int cost = 1; 2877 2878 // A complete chain likely eliminates the need for keeping the original IV in 2879 // a register. LSR does not currently know how to form a complete chain unless 2880 // the header phi already exists. 2881 if (isa<PHINode>(Chain.tailUserInst()) 2882 && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) { 2883 --cost; 2884 } 2885 const SCEV *LastIncExpr = nullptr; 2886 unsigned NumConstIncrements = 0; 2887 unsigned NumVarIncrements = 0; 2888 unsigned NumReusedIncrements = 0; 2889 2890 if (TTI.isProfitableLSRChainElement(Chain.Incs[0].UserInst)) 2891 return true; 2892 2893 for (const IVInc &Inc : Chain) { 2894 if (TTI.isProfitableLSRChainElement(Inc.UserInst)) 2895 return true; 2896 if (Inc.IncExpr->isZero()) 2897 continue; 2898 2899 // Incrementing by zero or some constant is neutral. We assume constants can 2900 // be folded into an addressing mode or an add's immediate operand. 2901 if (isa<SCEVConstant>(Inc.IncExpr)) { 2902 ++NumConstIncrements; 2903 continue; 2904 } 2905 2906 if (Inc.IncExpr == LastIncExpr) 2907 ++NumReusedIncrements; 2908 else 2909 ++NumVarIncrements; 2910 2911 LastIncExpr = Inc.IncExpr; 2912 } 2913 // An IV chain with a single increment is handled by LSR's postinc 2914 // uses. However, a chain with multiple increments requires keeping the IV's 2915 // value live longer than it needs to be if chained. 2916 if (NumConstIncrements > 1) 2917 --cost; 2918 2919 // Materializing increment expressions in the preheader that didn't exist in 2920 // the original code may cost a register. For example, sign-extended array 2921 // indices can produce ridiculous increments like this: 2922 // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64))) 2923 cost += NumVarIncrements; 2924 2925 // Reusing variable increments likely saves a register to hold the multiple of 2926 // the stride. 2927 cost -= NumReusedIncrements; 2928 2929 LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost 2930 << "\n"); 2931 2932 return cost < 0; 2933 } 2934 2935 /// Add this IV user to an existing chain or make it the head of a new chain. 2936 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper, 2937 SmallVectorImpl<ChainUsers> &ChainUsersVec) { 2938 // When IVs are used as types of varying widths, they are generally converted 2939 // to a wider type with some uses remaining narrow under a (free) trunc. 2940 Value *const NextIV = getWideOperand(IVOper); 2941 const SCEV *const OperExpr = SE.getSCEV(NextIV); 2942 const SCEV *const OperExprBase = getExprBase(OperExpr); 2943 2944 // Visit all existing chains. Check if its IVOper can be computed as a 2945 // profitable loop invariant increment from the last link in the Chain. 2946 unsigned ChainIdx = 0, NChains = IVChainVec.size(); 2947 const SCEV *LastIncExpr = nullptr; 2948 for (; ChainIdx < NChains; ++ChainIdx) { 2949 IVChain &Chain = IVChainVec[ChainIdx]; 2950 2951 // Prune the solution space aggressively by checking that both IV operands 2952 // are expressions that operate on the same unscaled SCEVUnknown. This 2953 // "base" will be canceled by the subsequent getMinusSCEV call. Checking 2954 // first avoids creating extra SCEV expressions. 2955 if (!StressIVChain && Chain.ExprBase != OperExprBase) 2956 continue; 2957 2958 Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand); 2959 if (!isCompatibleIVType(PrevIV, NextIV)) 2960 continue; 2961 2962 // A phi node terminates a chain. 2963 if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst())) 2964 continue; 2965 2966 // The increment must be loop-invariant so it can be kept in a register. 2967 const SCEV *PrevExpr = SE.getSCEV(PrevIV); 2968 const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr); 2969 if (isa<SCEVCouldNotCompute>(IncExpr) || !SE.isLoopInvariant(IncExpr, L)) 2970 continue; 2971 2972 if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) { 2973 LastIncExpr = IncExpr; 2974 break; 2975 } 2976 } 2977 // If we haven't found a chain, create a new one, unless we hit the max. Don't 2978 // bother for phi nodes, because they must be last in the chain. 2979 if (ChainIdx == NChains) { 2980 if (isa<PHINode>(UserInst)) 2981 return; 2982 if (NChains >= MaxChains && !StressIVChain) { 2983 LLVM_DEBUG(dbgs() << "IV Chain Limit\n"); 2984 return; 2985 } 2986 LastIncExpr = OperExpr; 2987 // IVUsers may have skipped over sign/zero extensions. We don't currently 2988 // attempt to form chains involving extensions unless they can be hoisted 2989 // into this loop's AddRec. 2990 if (!isa<SCEVAddRecExpr>(LastIncExpr)) 2991 return; 2992 ++NChains; 2993 IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr), 2994 OperExprBase)); 2995 ChainUsersVec.resize(NChains); 2996 LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst 2997 << ") IV=" << *LastIncExpr << "\n"); 2998 } else { 2999 LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Inc: (" << *UserInst 3000 << ") IV+" << *LastIncExpr << "\n"); 3001 // Add this IV user to the end of the chain. 3002 IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr)); 3003 } 3004 IVChain &Chain = IVChainVec[ChainIdx]; 3005 3006 SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers; 3007 // This chain's NearUsers become FarUsers. 3008 if (!LastIncExpr->isZero()) { 3009 ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(), 3010 NearUsers.end()); 3011 NearUsers.clear(); 3012 } 3013 3014 // All other uses of IVOperand become near uses of the chain. 3015 // We currently ignore intermediate values within SCEV expressions, assuming 3016 // they will eventually be used be the current chain, or can be computed 3017 // from one of the chain increments. To be more precise we could 3018 // transitively follow its user and only add leaf IV users to the set. 3019 for (User *U : IVOper->users()) { 3020 Instruction *OtherUse = dyn_cast<Instruction>(U); 3021 if (!OtherUse) 3022 continue; 3023 // Uses in the chain will no longer be uses if the chain is formed. 3024 // Include the head of the chain in this iteration (not Chain.begin()). 3025 IVChain::const_iterator IncIter = Chain.Incs.begin(); 3026 IVChain::const_iterator IncEnd = Chain.Incs.end(); 3027 for( ; IncIter != IncEnd; ++IncIter) { 3028 if (IncIter->UserInst == OtherUse) 3029 break; 3030 } 3031 if (IncIter != IncEnd) 3032 continue; 3033 3034 if (SE.isSCEVable(OtherUse->getType()) 3035 && !isa<SCEVUnknown>(SE.getSCEV(OtherUse)) 3036 && IU.isIVUserOrOperand(OtherUse)) { 3037 continue; 3038 } 3039 NearUsers.insert(OtherUse); 3040 } 3041 3042 // Since this user is part of the chain, it's no longer considered a use 3043 // of the chain. 3044 ChainUsersVec[ChainIdx].FarUsers.erase(UserInst); 3045 } 3046 3047 /// Populate the vector of Chains. 3048 /// 3049 /// This decreases ILP at the architecture level. Targets with ample registers, 3050 /// multiple memory ports, and no register renaming probably don't want 3051 /// this. However, such targets should probably disable LSR altogether. 3052 /// 3053 /// The job of LSR is to make a reasonable choice of induction variables across 3054 /// the loop. Subsequent passes can easily "unchain" computation exposing more 3055 /// ILP *within the loop* if the target wants it. 3056 /// 3057 /// Finding the best IV chain is potentially a scheduling problem. Since LSR 3058 /// will not reorder memory operations, it will recognize this as a chain, but 3059 /// will generate redundant IV increments. Ideally this would be corrected later 3060 /// by a smart scheduler: 3061 /// = A[i] 3062 /// = A[i+x] 3063 /// A[i] = 3064 /// A[i+x] = 3065 /// 3066 /// TODO: Walk the entire domtree within this loop, not just the path to the 3067 /// loop latch. This will discover chains on side paths, but requires 3068 /// maintaining multiple copies of the Chains state. 3069 void LSRInstance::CollectChains() { 3070 LLVM_DEBUG(dbgs() << "Collecting IV Chains.\n"); 3071 SmallVector<ChainUsers, 8> ChainUsersVec; 3072 3073 SmallVector<BasicBlock *,8> LatchPath; 3074 BasicBlock *LoopHeader = L->getHeader(); 3075 for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch()); 3076 Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) { 3077 LatchPath.push_back(Rung->getBlock()); 3078 } 3079 LatchPath.push_back(LoopHeader); 3080 3081 // Walk the instruction stream from the loop header to the loop latch. 3082 for (BasicBlock *BB : reverse(LatchPath)) { 3083 for (Instruction &I : *BB) { 3084 // Skip instructions that weren't seen by IVUsers analysis. 3085 if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I)) 3086 continue; 3087 3088 // Ignore users that are part of a SCEV expression. This way we only 3089 // consider leaf IV Users. This effectively rediscovers a portion of 3090 // IVUsers analysis but in program order this time. 3091 if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I))) 3092 continue; 3093 3094 // Remove this instruction from any NearUsers set it may be in. 3095 for (unsigned ChainIdx = 0, NChains = IVChainVec.size(); 3096 ChainIdx < NChains; ++ChainIdx) { 3097 ChainUsersVec[ChainIdx].NearUsers.erase(&I); 3098 } 3099 // Search for operands that can be chained. 3100 SmallPtrSet<Instruction*, 4> UniqueOperands; 3101 User::op_iterator IVOpEnd = I.op_end(); 3102 User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE); 3103 while (IVOpIter != IVOpEnd) { 3104 Instruction *IVOpInst = cast<Instruction>(*IVOpIter); 3105 if (UniqueOperands.insert(IVOpInst).second) 3106 ChainInstruction(&I, IVOpInst, ChainUsersVec); 3107 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 3108 } 3109 } // Continue walking down the instructions. 3110 } // Continue walking down the domtree. 3111 // Visit phi backedges to determine if the chain can generate the IV postinc. 3112 for (PHINode &PN : L->getHeader()->phis()) { 3113 if (!SE.isSCEVable(PN.getType())) 3114 continue; 3115 3116 Instruction *IncV = 3117 dyn_cast<Instruction>(PN.getIncomingValueForBlock(L->getLoopLatch())); 3118 if (IncV) 3119 ChainInstruction(&PN, IncV, ChainUsersVec); 3120 } 3121 // Remove any unprofitable chains. 3122 unsigned ChainIdx = 0; 3123 for (unsigned UsersIdx = 0, NChains = IVChainVec.size(); 3124 UsersIdx < NChains; ++UsersIdx) { 3125 if (!isProfitableChain(IVChainVec[UsersIdx], 3126 ChainUsersVec[UsersIdx].FarUsers, SE, TTI)) 3127 continue; 3128 // Preserve the chain at UsesIdx. 3129 if (ChainIdx != UsersIdx) 3130 IVChainVec[ChainIdx] = IVChainVec[UsersIdx]; 3131 FinalizeChain(IVChainVec[ChainIdx]); 3132 ++ChainIdx; 3133 } 3134 IVChainVec.resize(ChainIdx); 3135 } 3136 3137 void LSRInstance::FinalizeChain(IVChain &Chain) { 3138 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 3139 LLVM_DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n"); 3140 3141 for (const IVInc &Inc : Chain) { 3142 LLVM_DEBUG(dbgs() << " Inc: " << *Inc.UserInst << "\n"); 3143 auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand); 3144 assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand"); 3145 IVIncSet.insert(UseI); 3146 } 3147 } 3148 3149 /// Return true if the IVInc can be folded into an addressing mode. 3150 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst, 3151 Value *Operand, const TargetTransformInfo &TTI) { 3152 const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr); 3153 if (!IncConst || !isAddressUse(TTI, UserInst, Operand)) 3154 return false; 3155 3156 if (IncConst->getAPInt().getMinSignedBits() > 64) 3157 return false; 3158 3159 MemAccessTy AccessTy = getAccessType(TTI, UserInst, Operand); 3160 int64_t IncOffset = IncConst->getValue()->getSExtValue(); 3161 if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr, 3162 IncOffset, /*HasBaseReg=*/false)) 3163 return false; 3164 3165 return true; 3166 } 3167 3168 /// Generate an add or subtract for each IVInc in a chain to materialize the IV 3169 /// user's operand from the previous IV user's operand. 3170 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 3171 SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 3172 // Find the new IVOperand for the head of the chain. It may have been replaced 3173 // by LSR. 3174 const IVInc &Head = Chain.Incs[0]; 3175 User::op_iterator IVOpEnd = Head.UserInst->op_end(); 3176 // findIVOperand returns IVOpEnd if it can no longer find a valid IV user. 3177 User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(), 3178 IVOpEnd, L, SE); 3179 Value *IVSrc = nullptr; 3180 while (IVOpIter != IVOpEnd) { 3181 IVSrc = getWideOperand(*IVOpIter); 3182 3183 // If this operand computes the expression that the chain needs, we may use 3184 // it. (Check this after setting IVSrc which is used below.) 3185 // 3186 // Note that if Head.IncExpr is wider than IVSrc, then this phi is too 3187 // narrow for the chain, so we can no longer use it. We do allow using a 3188 // wider phi, assuming the LSR checked for free truncation. In that case we 3189 // should already have a truncate on this operand such that 3190 // getSCEV(IVSrc) == IncExpr. 3191 if (SE.getSCEV(*IVOpIter) == Head.IncExpr 3192 || SE.getSCEV(IVSrc) == Head.IncExpr) { 3193 break; 3194 } 3195 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 3196 } 3197 if (IVOpIter == IVOpEnd) { 3198 // Gracefully give up on this chain. 3199 LLVM_DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n"); 3200 return; 3201 } 3202 assert(IVSrc && "Failed to find IV chain source"); 3203 3204 LLVM_DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n"); 3205 Type *IVTy = IVSrc->getType(); 3206 Type *IntTy = SE.getEffectiveSCEVType(IVTy); 3207 const SCEV *LeftOverExpr = nullptr; 3208 for (const IVInc &Inc : Chain) { 3209 Instruction *InsertPt = Inc.UserInst; 3210 if (isa<PHINode>(InsertPt)) 3211 InsertPt = L->getLoopLatch()->getTerminator(); 3212 3213 // IVOper will replace the current IV User's operand. IVSrc is the IV 3214 // value currently held in a register. 3215 Value *IVOper = IVSrc; 3216 if (!Inc.IncExpr->isZero()) { 3217 // IncExpr was the result of subtraction of two narrow values, so must 3218 // be signed. 3219 const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy); 3220 LeftOverExpr = LeftOverExpr ? 3221 SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr; 3222 } 3223 if (LeftOverExpr && !LeftOverExpr->isZero()) { 3224 // Expand the IV increment. 3225 Rewriter.clearPostInc(); 3226 Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt); 3227 const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc), 3228 SE.getUnknown(IncV)); 3229 IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt); 3230 3231 // If an IV increment can't be folded, use it as the next IV value. 3232 if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) { 3233 assert(IVTy == IVOper->getType() && "inconsistent IV increment type"); 3234 IVSrc = IVOper; 3235 LeftOverExpr = nullptr; 3236 } 3237 } 3238 Type *OperTy = Inc.IVOperand->getType(); 3239 if (IVTy != OperTy) { 3240 assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) && 3241 "cannot extend a chained IV"); 3242 IRBuilder<> Builder(InsertPt); 3243 IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain"); 3244 } 3245 Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper); 3246 if (auto *OperandIsInstr = dyn_cast<Instruction>(Inc.IVOperand)) 3247 DeadInsts.emplace_back(OperandIsInstr); 3248 } 3249 // If LSR created a new, wider phi, we may also replace its postinc. We only 3250 // do this if we also found a wide value for the head of the chain. 3251 if (isa<PHINode>(Chain.tailUserInst())) { 3252 for (PHINode &Phi : L->getHeader()->phis()) { 3253 if (!isCompatibleIVType(&Phi, IVSrc)) 3254 continue; 3255 Instruction *PostIncV = dyn_cast<Instruction>( 3256 Phi.getIncomingValueForBlock(L->getLoopLatch())); 3257 if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc))) 3258 continue; 3259 Value *IVOper = IVSrc; 3260 Type *PostIncTy = PostIncV->getType(); 3261 if (IVTy != PostIncTy) { 3262 assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types"); 3263 IRBuilder<> Builder(L->getLoopLatch()->getTerminator()); 3264 Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc()); 3265 IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain"); 3266 } 3267 Phi.replaceUsesOfWith(PostIncV, IVOper); 3268 DeadInsts.emplace_back(PostIncV); 3269 } 3270 } 3271 } 3272 3273 void LSRInstance::CollectFixupsAndInitialFormulae() { 3274 BranchInst *ExitBranch = nullptr; 3275 bool SaveCmp = TTI.canSaveCmp(L, &ExitBranch, &SE, &LI, &DT, &AC, &TLI); 3276 3277 for (const IVStrideUse &U : IU) { 3278 Instruction *UserInst = U.getUser(); 3279 // Skip IV users that are part of profitable IV Chains. 3280 User::op_iterator UseI = 3281 find(UserInst->operands(), U.getOperandValToReplace()); 3282 assert(UseI != UserInst->op_end() && "cannot find IV operand"); 3283 if (IVIncSet.count(UseI)) { 3284 LLVM_DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n'); 3285 continue; 3286 } 3287 3288 LSRUse::KindType Kind = LSRUse::Basic; 3289 MemAccessTy AccessTy; 3290 if (isAddressUse(TTI, UserInst, U.getOperandValToReplace())) { 3291 Kind = LSRUse::Address; 3292 AccessTy = getAccessType(TTI, UserInst, U.getOperandValToReplace()); 3293 } 3294 3295 const SCEV *S = IU.getExpr(U); 3296 PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops(); 3297 3298 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as 3299 // (N - i == 0), and this allows (N - i) to be the expression that we work 3300 // with rather than just N or i, so we can consider the register 3301 // requirements for both N and i at the same time. Limiting this code to 3302 // equality icmps is not a problem because all interesting loops use 3303 // equality icmps, thanks to IndVarSimplify. 3304 if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst)) { 3305 // If CI can be saved in some target, like replaced inside hardware loop 3306 // in PowerPC, no need to generate initial formulae for it. 3307 if (SaveCmp && CI == dyn_cast<ICmpInst>(ExitBranch->getCondition())) 3308 continue; 3309 if (CI->isEquality()) { 3310 // Swap the operands if needed to put the OperandValToReplace on the 3311 // left, for consistency. 3312 Value *NV = CI->getOperand(1); 3313 if (NV == U.getOperandValToReplace()) { 3314 CI->setOperand(1, CI->getOperand(0)); 3315 CI->setOperand(0, NV); 3316 NV = CI->getOperand(1); 3317 Changed = true; 3318 } 3319 3320 // x == y --> x - y == 0 3321 const SCEV *N = SE.getSCEV(NV); 3322 if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE) && 3323 (!NV->getType()->isPointerTy() || 3324 SE.getPointerBase(N) == SE.getPointerBase(S))) { 3325 // S is normalized, so normalize N before folding it into S 3326 // to keep the result normalized. 3327 N = normalizeForPostIncUse(N, TmpPostIncLoops, SE); 3328 Kind = LSRUse::ICmpZero; 3329 S = SE.getMinusSCEV(N, S); 3330 } 3331 3332 // -1 and the negations of all interesting strides (except the negation 3333 // of -1) are now also interesting. 3334 for (size_t i = 0, e = Factors.size(); i != e; ++i) 3335 if (Factors[i] != -1) 3336 Factors.insert(-(uint64_t)Factors[i]); 3337 Factors.insert(-1); 3338 } 3339 } 3340 3341 // Get or create an LSRUse. 3342 std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy); 3343 size_t LUIdx = P.first; 3344 int64_t Offset = P.second; 3345 LSRUse &LU = Uses[LUIdx]; 3346 3347 // Record the fixup. 3348 LSRFixup &LF = LU.getNewFixup(); 3349 LF.UserInst = UserInst; 3350 LF.OperandValToReplace = U.getOperandValToReplace(); 3351 LF.PostIncLoops = TmpPostIncLoops; 3352 LF.Offset = Offset; 3353 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3354 3355 if (!LU.WidestFixupType || 3356 SE.getTypeSizeInBits(LU.WidestFixupType) < 3357 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3358 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3359 3360 // If this is the first use of this LSRUse, give it a formula. 3361 if (LU.Formulae.empty()) { 3362 InsertInitialFormula(S, LU, LUIdx); 3363 CountRegisters(LU.Formulae.back(), LUIdx); 3364 } 3365 } 3366 3367 LLVM_DEBUG(print_fixups(dbgs())); 3368 } 3369 3370 /// Insert a formula for the given expression into the given use, separating out 3371 /// loop-variant portions from loop-invariant and loop-computable portions. 3372 void 3373 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) { 3374 // Mark uses whose expressions cannot be expanded. 3375 if (!isSafeToExpand(S, SE)) 3376 LU.RigidFormula = true; 3377 3378 Formula F; 3379 F.initialMatch(S, L, SE); 3380 bool Inserted = InsertFormula(LU, LUIdx, F); 3381 assert(Inserted && "Initial formula already exists!"); (void)Inserted; 3382 } 3383 3384 /// Insert a simple single-register formula for the given expression into the 3385 /// given use. 3386 void 3387 LSRInstance::InsertSupplementalFormula(const SCEV *S, 3388 LSRUse &LU, size_t LUIdx) { 3389 Formula F; 3390 F.BaseRegs.push_back(S); 3391 F.HasBaseReg = true; 3392 bool Inserted = InsertFormula(LU, LUIdx, F); 3393 assert(Inserted && "Supplemental formula already exists!"); (void)Inserted; 3394 } 3395 3396 /// Note which registers are used by the given formula, updating RegUses. 3397 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) { 3398 if (F.ScaledReg) 3399 RegUses.countRegister(F.ScaledReg, LUIdx); 3400 for (const SCEV *BaseReg : F.BaseRegs) 3401 RegUses.countRegister(BaseReg, LUIdx); 3402 } 3403 3404 /// If the given formula has not yet been inserted, add it to the list, and 3405 /// return true. Return false otherwise. 3406 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) { 3407 // Do not insert formula that we will not be able to expand. 3408 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) && 3409 "Formula is illegal"); 3410 3411 if (!LU.InsertFormula(F, *L)) 3412 return false; 3413 3414 CountRegisters(F, LUIdx); 3415 return true; 3416 } 3417 3418 /// Check for other uses of loop-invariant values which we're tracking. These 3419 /// other uses will pin these values in registers, making them less profitable 3420 /// for elimination. 3421 /// TODO: This currently misses non-constant addrec step registers. 3422 /// TODO: Should this give more weight to users inside the loop? 3423 void 3424 LSRInstance::CollectLoopInvariantFixupsAndFormulae() { 3425 SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end()); 3426 SmallPtrSet<const SCEV *, 32> Visited; 3427 3428 while (!Worklist.empty()) { 3429 const SCEV *S = Worklist.pop_back_val(); 3430 3431 // Don't process the same SCEV twice 3432 if (!Visited.insert(S).second) 3433 continue; 3434 3435 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) 3436 Worklist.append(N->op_begin(), N->op_end()); 3437 else if (const SCEVIntegralCastExpr *C = dyn_cast<SCEVIntegralCastExpr>(S)) 3438 Worklist.push_back(C->getOperand()); 3439 else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 3440 Worklist.push_back(D->getLHS()); 3441 Worklist.push_back(D->getRHS()); 3442 } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) { 3443 const Value *V = US->getValue(); 3444 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 3445 // Look for instructions defined outside the loop. 3446 if (L->contains(Inst)) continue; 3447 } else if (isa<UndefValue>(V)) 3448 // Undef doesn't have a live range, so it doesn't matter. 3449 continue; 3450 for (const Use &U : V->uses()) { 3451 const Instruction *UserInst = dyn_cast<Instruction>(U.getUser()); 3452 // Ignore non-instructions. 3453 if (!UserInst) 3454 continue; 3455 // Don't bother if the instruction is an EHPad. 3456 if (UserInst->isEHPad()) 3457 continue; 3458 // Ignore instructions in other functions (as can happen with 3459 // Constants). 3460 if (UserInst->getParent()->getParent() != L->getHeader()->getParent()) 3461 continue; 3462 // Ignore instructions not dominated by the loop. 3463 const BasicBlock *UseBB = !isa<PHINode>(UserInst) ? 3464 UserInst->getParent() : 3465 cast<PHINode>(UserInst)->getIncomingBlock( 3466 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 3467 if (!DT.dominates(L->getHeader(), UseBB)) 3468 continue; 3469 // Don't bother if the instruction is in a BB which ends in an EHPad. 3470 if (UseBB->getTerminator()->isEHPad()) 3471 continue; 3472 // Don't bother rewriting PHIs in catchswitch blocks. 3473 if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator())) 3474 continue; 3475 // Ignore uses which are part of other SCEV expressions, to avoid 3476 // analyzing them multiple times. 3477 if (SE.isSCEVable(UserInst->getType())) { 3478 const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst)); 3479 // If the user is a no-op, look through to its uses. 3480 if (!isa<SCEVUnknown>(UserS)) 3481 continue; 3482 if (UserS == US) { 3483 Worklist.push_back( 3484 SE.getUnknown(const_cast<Instruction *>(UserInst))); 3485 continue; 3486 } 3487 } 3488 // Ignore icmp instructions which are already being analyzed. 3489 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) { 3490 unsigned OtherIdx = !U.getOperandNo(); 3491 Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx)); 3492 if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L)) 3493 continue; 3494 } 3495 3496 std::pair<size_t, int64_t> P = getUse( 3497 S, LSRUse::Basic, MemAccessTy()); 3498 size_t LUIdx = P.first; 3499 int64_t Offset = P.second; 3500 LSRUse &LU = Uses[LUIdx]; 3501 LSRFixup &LF = LU.getNewFixup(); 3502 LF.UserInst = const_cast<Instruction *>(UserInst); 3503 LF.OperandValToReplace = U; 3504 LF.Offset = Offset; 3505 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3506 if (!LU.WidestFixupType || 3507 SE.getTypeSizeInBits(LU.WidestFixupType) < 3508 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3509 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3510 InsertSupplementalFormula(US, LU, LUIdx); 3511 CountRegisters(LU.Formulae.back(), Uses.size() - 1); 3512 break; 3513 } 3514 } 3515 } 3516 } 3517 3518 /// Split S into subexpressions which can be pulled out into separate 3519 /// registers. If C is non-null, multiply each subexpression by C. 3520 /// 3521 /// Return remainder expression after factoring the subexpressions captured by 3522 /// Ops. If Ops is complete, return NULL. 3523 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C, 3524 SmallVectorImpl<const SCEV *> &Ops, 3525 const Loop *L, 3526 ScalarEvolution &SE, 3527 unsigned Depth = 0) { 3528 // Arbitrarily cap recursion to protect compile time. 3529 if (Depth >= 3) 3530 return S; 3531 3532 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3533 // Break out add operands. 3534 for (const SCEV *S : Add->operands()) { 3535 const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1); 3536 if (Remainder) 3537 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3538 } 3539 return nullptr; 3540 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 3541 // Split a non-zero base out of an addrec. 3542 if (AR->getStart()->isZero() || !AR->isAffine()) 3543 return S; 3544 3545 const SCEV *Remainder = CollectSubexprs(AR->getStart(), 3546 C, Ops, L, SE, Depth+1); 3547 // Split the non-zero AddRec unless it is part of a nested recurrence that 3548 // does not pertain to this loop. 3549 if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) { 3550 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3551 Remainder = nullptr; 3552 } 3553 if (Remainder != AR->getStart()) { 3554 if (!Remainder) 3555 Remainder = SE.getConstant(AR->getType(), 0); 3556 return SE.getAddRecExpr(Remainder, 3557 AR->getStepRecurrence(SE), 3558 AR->getLoop(), 3559 //FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 3560 SCEV::FlagAnyWrap); 3561 } 3562 } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3563 // Break (C * (a + b + c)) into C*a + C*b + C*c. 3564 if (Mul->getNumOperands() != 2) 3565 return S; 3566 if (const SCEVConstant *Op0 = 3567 dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3568 C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0; 3569 const SCEV *Remainder = 3570 CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1); 3571 if (Remainder) 3572 Ops.push_back(SE.getMulExpr(C, Remainder)); 3573 return nullptr; 3574 } 3575 } 3576 return S; 3577 } 3578 3579 /// Return true if the SCEV represents a value that may end up as a 3580 /// post-increment operation. 3581 static bool mayUsePostIncMode(const TargetTransformInfo &TTI, 3582 LSRUse &LU, const SCEV *S, const Loop *L, 3583 ScalarEvolution &SE) { 3584 if (LU.Kind != LSRUse::Address || 3585 !LU.AccessTy.getType()->isIntOrIntVectorTy()) 3586 return false; 3587 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S); 3588 if (!AR) 3589 return false; 3590 const SCEV *LoopStep = AR->getStepRecurrence(SE); 3591 if (!isa<SCEVConstant>(LoopStep)) 3592 return false; 3593 // Check if a post-indexed load/store can be used. 3594 if (TTI.isIndexedLoadLegal(TTI.MIM_PostInc, AR->getType()) || 3595 TTI.isIndexedStoreLegal(TTI.MIM_PostInc, AR->getType())) { 3596 const SCEV *LoopStart = AR->getStart(); 3597 if (!isa<SCEVConstant>(LoopStart) && SE.isLoopInvariant(LoopStart, L)) 3598 return true; 3599 } 3600 return false; 3601 } 3602 3603 /// Helper function for LSRInstance::GenerateReassociations. 3604 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 3605 const Formula &Base, 3606 unsigned Depth, size_t Idx, 3607 bool IsScaledReg) { 3608 const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3609 // Don't generate reassociations for the base register of a value that 3610 // may generate a post-increment operator. The reason is that the 3611 // reassociations cause extra base+register formula to be created, 3612 // and possibly chosen, but the post-increment is more efficient. 3613 if (AMK == TTI::AMK_PostIndexed && mayUsePostIncMode(TTI, LU, BaseReg, L, SE)) 3614 return; 3615 SmallVector<const SCEV *, 8> AddOps; 3616 const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE); 3617 if (Remainder) 3618 AddOps.push_back(Remainder); 3619 3620 if (AddOps.size() == 1) 3621 return; 3622 3623 for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(), 3624 JE = AddOps.end(); 3625 J != JE; ++J) { 3626 // Loop-variant "unknown" values are uninteresting; we won't be able to 3627 // do anything meaningful with them. 3628 if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L)) 3629 continue; 3630 3631 // Don't pull a constant into a register if the constant could be folded 3632 // into an immediate field. 3633 if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3634 LU.AccessTy, *J, Base.getNumRegs() > 1)) 3635 continue; 3636 3637 // Collect all operands except *J. 3638 SmallVector<const SCEV *, 8> InnerAddOps( 3639 ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J); 3640 InnerAddOps.append(std::next(J), 3641 ((const SmallVector<const SCEV *, 8> &)AddOps).end()); 3642 3643 // Don't leave just a constant behind in a register if the constant could 3644 // be folded into an immediate field. 3645 if (InnerAddOps.size() == 1 && 3646 isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3647 LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1)) 3648 continue; 3649 3650 const SCEV *InnerSum = SE.getAddExpr(InnerAddOps); 3651 if (InnerSum->isZero()) 3652 continue; 3653 Formula F = Base; 3654 3655 // Add the remaining pieces of the add back into the new formula. 3656 const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum); 3657 if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 && 3658 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3659 InnerSumSC->getValue()->getZExtValue())) { 3660 F.UnfoldedOffset = 3661 (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue(); 3662 if (IsScaledReg) 3663 F.ScaledReg = nullptr; 3664 else 3665 F.BaseRegs.erase(F.BaseRegs.begin() + Idx); 3666 } else if (IsScaledReg) 3667 F.ScaledReg = InnerSum; 3668 else 3669 F.BaseRegs[Idx] = InnerSum; 3670 3671 // Add J as its own register, or an unfolded immediate. 3672 const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J); 3673 if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 && 3674 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3675 SC->getValue()->getZExtValue())) 3676 F.UnfoldedOffset = 3677 (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue(); 3678 else 3679 F.BaseRegs.push_back(*J); 3680 // We may have changed the number of register in base regs, adjust the 3681 // formula accordingly. 3682 F.canonicalize(*L); 3683 3684 if (InsertFormula(LU, LUIdx, F)) 3685 // If that formula hadn't been seen before, recurse to find more like 3686 // it. 3687 // Add check on Log16(AddOps.size()) - same as Log2_32(AddOps.size()) >> 2) 3688 // Because just Depth is not enough to bound compile time. 3689 // This means that every time AddOps.size() is greater 16^x we will add 3690 // x to Depth. 3691 GenerateReassociations(LU, LUIdx, LU.Formulae.back(), 3692 Depth + 1 + (Log2_32(AddOps.size()) >> 2)); 3693 } 3694 } 3695 3696 /// Split out subexpressions from adds and the bases of addrecs. 3697 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx, 3698 Formula Base, unsigned Depth) { 3699 assert(Base.isCanonical(*L) && "Input must be in the canonical form"); 3700 // Arbitrarily cap recursion to protect compile time. 3701 if (Depth >= 3) 3702 return; 3703 3704 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3705 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i); 3706 3707 if (Base.Scale == 1) 3708 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, 3709 /* Idx */ -1, /* IsScaledReg */ true); 3710 } 3711 3712 /// Generate a formula consisting of all of the loop-dominating registers added 3713 /// into a single register. 3714 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx, 3715 Formula Base) { 3716 // This method is only interesting on a plurality of registers. 3717 if (Base.BaseRegs.size() + (Base.Scale == 1) + 3718 (Base.UnfoldedOffset != 0) <= 1) 3719 return; 3720 3721 // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before 3722 // processing the formula. 3723 Base.unscale(); 3724 SmallVector<const SCEV *, 4> Ops; 3725 Formula NewBase = Base; 3726 NewBase.BaseRegs.clear(); 3727 Type *CombinedIntegerType = nullptr; 3728 for (const SCEV *BaseReg : Base.BaseRegs) { 3729 if (SE.properlyDominates(BaseReg, L->getHeader()) && 3730 !SE.hasComputableLoopEvolution(BaseReg, L)) { 3731 if (!CombinedIntegerType) 3732 CombinedIntegerType = SE.getEffectiveSCEVType(BaseReg->getType()); 3733 Ops.push_back(BaseReg); 3734 } 3735 else 3736 NewBase.BaseRegs.push_back(BaseReg); 3737 } 3738 3739 // If no register is relevant, we're done. 3740 if (Ops.size() == 0) 3741 return; 3742 3743 // Utility function for generating the required variants of the combined 3744 // registers. 3745 auto GenerateFormula = [&](const SCEV *Sum) { 3746 Formula F = NewBase; 3747 3748 // TODO: If Sum is zero, it probably means ScalarEvolution missed an 3749 // opportunity to fold something. For now, just ignore such cases 3750 // rather than proceed with zero in a register. 3751 if (Sum->isZero()) 3752 return; 3753 3754 F.BaseRegs.push_back(Sum); 3755 F.canonicalize(*L); 3756 (void)InsertFormula(LU, LUIdx, F); 3757 }; 3758 3759 // If we collected at least two registers, generate a formula combining them. 3760 if (Ops.size() > 1) { 3761 SmallVector<const SCEV *, 4> OpsCopy(Ops); // Don't let SE modify Ops. 3762 GenerateFormula(SE.getAddExpr(OpsCopy)); 3763 } 3764 3765 // If we have an unfolded offset, generate a formula combining it with the 3766 // registers collected. 3767 if (NewBase.UnfoldedOffset) { 3768 assert(CombinedIntegerType && "Missing a type for the unfolded offset"); 3769 Ops.push_back(SE.getConstant(CombinedIntegerType, NewBase.UnfoldedOffset, 3770 true)); 3771 NewBase.UnfoldedOffset = 0; 3772 GenerateFormula(SE.getAddExpr(Ops)); 3773 } 3774 } 3775 3776 /// Helper function for LSRInstance::GenerateSymbolicOffsets. 3777 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 3778 const Formula &Base, size_t Idx, 3779 bool IsScaledReg) { 3780 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3781 GlobalValue *GV = ExtractSymbol(G, SE); 3782 if (G->isZero() || !GV) 3783 return; 3784 Formula F = Base; 3785 F.BaseGV = GV; 3786 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3787 return; 3788 if (IsScaledReg) 3789 F.ScaledReg = G; 3790 else 3791 F.BaseRegs[Idx] = G; 3792 (void)InsertFormula(LU, LUIdx, F); 3793 } 3794 3795 /// Generate reuse formulae using symbolic offsets. 3796 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, 3797 Formula Base) { 3798 // We can't add a symbolic offset if the address already contains one. 3799 if (Base.BaseGV) return; 3800 3801 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3802 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i); 3803 if (Base.Scale == 1) 3804 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1, 3805 /* IsScaledReg */ true); 3806 } 3807 3808 /// Helper function for LSRInstance::GenerateConstantOffsets. 3809 void LSRInstance::GenerateConstantOffsetsImpl( 3810 LSRUse &LU, unsigned LUIdx, const Formula &Base, 3811 const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) { 3812 3813 auto GenerateOffset = [&](const SCEV *G, int64_t Offset) { 3814 Formula F = Base; 3815 F.BaseOffset = (uint64_t)Base.BaseOffset - Offset; 3816 3817 if (isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) { 3818 // Add the offset to the base register. 3819 const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G); 3820 // If it cancelled out, drop the base register, otherwise update it. 3821 if (NewG->isZero()) { 3822 if (IsScaledReg) { 3823 F.Scale = 0; 3824 F.ScaledReg = nullptr; 3825 } else 3826 F.deleteBaseReg(F.BaseRegs[Idx]); 3827 F.canonicalize(*L); 3828 } else if (IsScaledReg) 3829 F.ScaledReg = NewG; 3830 else 3831 F.BaseRegs[Idx] = NewG; 3832 3833 (void)InsertFormula(LU, LUIdx, F); 3834 } 3835 }; 3836 3837 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3838 3839 // With constant offsets and constant steps, we can generate pre-inc 3840 // accesses by having the offset equal the step. So, for access #0 with a 3841 // step of 8, we generate a G - 8 base which would require the first access 3842 // to be ((G - 8) + 8),+,8. The pre-indexed access then updates the pointer 3843 // for itself and hopefully becomes the base for other accesses. This means 3844 // means that a single pre-indexed access can be generated to become the new 3845 // base pointer for each iteration of the loop, resulting in no extra add/sub 3846 // instructions for pointer updating. 3847 if (AMK == TTI::AMK_PreIndexed && LU.Kind == LSRUse::Address) { 3848 if (auto *GAR = dyn_cast<SCEVAddRecExpr>(G)) { 3849 if (auto *StepRec = 3850 dyn_cast<SCEVConstant>(GAR->getStepRecurrence(SE))) { 3851 const APInt &StepInt = StepRec->getAPInt(); 3852 int64_t Step = StepInt.isNegative() ? 3853 StepInt.getSExtValue() : StepInt.getZExtValue(); 3854 3855 for (int64_t Offset : Worklist) { 3856 Offset -= Step; 3857 GenerateOffset(G, Offset); 3858 } 3859 } 3860 } 3861 } 3862 for (int64_t Offset : Worklist) 3863 GenerateOffset(G, Offset); 3864 3865 int64_t Imm = ExtractImmediate(G, SE); 3866 if (G->isZero() || Imm == 0) 3867 return; 3868 Formula F = Base; 3869 F.BaseOffset = (uint64_t)F.BaseOffset + Imm; 3870 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3871 return; 3872 if (IsScaledReg) { 3873 F.ScaledReg = G; 3874 } else { 3875 F.BaseRegs[Idx] = G; 3876 // We may generate non canonical Formula if G is a recurrent expr reg 3877 // related with current loop while F.ScaledReg is not. 3878 F.canonicalize(*L); 3879 } 3880 (void)InsertFormula(LU, LUIdx, F); 3881 } 3882 3883 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets. 3884 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, 3885 Formula Base) { 3886 // TODO: For now, just add the min and max offset, because it usually isn't 3887 // worthwhile looking at everything inbetween. 3888 SmallVector<int64_t, 2> Worklist; 3889 Worklist.push_back(LU.MinOffset); 3890 if (LU.MaxOffset != LU.MinOffset) 3891 Worklist.push_back(LU.MaxOffset); 3892 3893 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3894 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i); 3895 if (Base.Scale == 1) 3896 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1, 3897 /* IsScaledReg */ true); 3898 } 3899 3900 /// For ICmpZero, check to see if we can scale up the comparison. For example, x 3901 /// == y -> x*c == y*c. 3902 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, 3903 Formula Base) { 3904 if (LU.Kind != LSRUse::ICmpZero) return; 3905 3906 // Determine the integer type for the base formula. 3907 Type *IntTy = Base.getType(); 3908 if (!IntTy) return; 3909 if (SE.getTypeSizeInBits(IntTy) > 64) return; 3910 3911 // Don't do this if there is more than one offset. 3912 if (LU.MinOffset != LU.MaxOffset) return; 3913 3914 // Check if transformation is valid. It is illegal to multiply pointer. 3915 if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy()) 3916 return; 3917 for (const SCEV *BaseReg : Base.BaseRegs) 3918 if (BaseReg->getType()->isPointerTy()) 3919 return; 3920 assert(!Base.BaseGV && "ICmpZero use is not legal!"); 3921 3922 // Check each interesting stride. 3923 for (int64_t Factor : Factors) { 3924 // Check that the multiplication doesn't overflow. 3925 if (Base.BaseOffset == std::numeric_limits<int64_t>::min() && Factor == -1) 3926 continue; 3927 int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor; 3928 assert(Factor != 0 && "Zero factor not expected!"); 3929 if (NewBaseOffset / Factor != Base.BaseOffset) 3930 continue; 3931 // If the offset will be truncated at this use, check that it is in bounds. 3932 if (!IntTy->isPointerTy() && 3933 !ConstantInt::isValueValidForType(IntTy, NewBaseOffset)) 3934 continue; 3935 3936 // Check that multiplying with the use offset doesn't overflow. 3937 int64_t Offset = LU.MinOffset; 3938 if (Offset == std::numeric_limits<int64_t>::min() && Factor == -1) 3939 continue; 3940 Offset = (uint64_t)Offset * Factor; 3941 if (Offset / Factor != LU.MinOffset) 3942 continue; 3943 // If the offset will be truncated at this use, check that it is in bounds. 3944 if (!IntTy->isPointerTy() && 3945 !ConstantInt::isValueValidForType(IntTy, Offset)) 3946 continue; 3947 3948 Formula F = Base; 3949 F.BaseOffset = NewBaseOffset; 3950 3951 // Check that this scale is legal. 3952 if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F)) 3953 continue; 3954 3955 // Compensate for the use having MinOffset built into it. 3956 F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset; 3957 3958 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3959 3960 // Check that multiplying with each base register doesn't overflow. 3961 for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) { 3962 F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS); 3963 if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i]) 3964 goto next; 3965 } 3966 3967 // Check that multiplying with the scaled register doesn't overflow. 3968 if (F.ScaledReg) { 3969 F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS); 3970 if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg) 3971 continue; 3972 } 3973 3974 // Check that multiplying with the unfolded offset doesn't overflow. 3975 if (F.UnfoldedOffset != 0) { 3976 if (F.UnfoldedOffset == std::numeric_limits<int64_t>::min() && 3977 Factor == -1) 3978 continue; 3979 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor; 3980 if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset) 3981 continue; 3982 // If the offset will be truncated, check that it is in bounds. 3983 if (!IntTy->isPointerTy() && 3984 !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset)) 3985 continue; 3986 } 3987 3988 // If we make it here and it's legal, add it. 3989 (void)InsertFormula(LU, LUIdx, F); 3990 next:; 3991 } 3992 } 3993 3994 /// Generate stride factor reuse formulae by making use of scaled-offset address 3995 /// modes, for example. 3996 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) { 3997 // Determine the integer type for the base formula. 3998 Type *IntTy = Base.getType(); 3999 if (!IntTy) return; 4000 4001 // If this Formula already has a scaled register, we can't add another one. 4002 // Try to unscale the formula to generate a better scale. 4003 if (Base.Scale != 0 && !Base.unscale()) 4004 return; 4005 4006 assert(Base.Scale == 0 && "unscale did not did its job!"); 4007 4008 // Check each interesting stride. 4009 for (int64_t Factor : Factors) { 4010 Base.Scale = Factor; 4011 Base.HasBaseReg = Base.BaseRegs.size() > 1; 4012 // Check whether this scale is going to be legal. 4013 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 4014 Base)) { 4015 // As a special-case, handle special out-of-loop Basic users specially. 4016 // TODO: Reconsider this special case. 4017 if (LU.Kind == LSRUse::Basic && 4018 isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special, 4019 LU.AccessTy, Base) && 4020 LU.AllFixupsOutsideLoop) 4021 LU.Kind = LSRUse::Special; 4022 else 4023 continue; 4024 } 4025 // For an ICmpZero, negating a solitary base register won't lead to 4026 // new solutions. 4027 if (LU.Kind == LSRUse::ICmpZero && 4028 !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV) 4029 continue; 4030 // For each addrec base reg, if its loop is current loop, apply the scale. 4031 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { 4032 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i]); 4033 if (AR && (AR->getLoop() == L || LU.AllFixupsOutsideLoop)) { 4034 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 4035 if (FactorS->isZero()) 4036 continue; 4037 // Divide out the factor, ignoring high bits, since we'll be 4038 // scaling the value back up in the end. 4039 if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) { 4040 // TODO: This could be optimized to avoid all the copying. 4041 Formula F = Base; 4042 F.ScaledReg = Quotient; 4043 F.deleteBaseReg(F.BaseRegs[i]); 4044 // The canonical representation of 1*reg is reg, which is already in 4045 // Base. In that case, do not try to insert the formula, it will be 4046 // rejected anyway. 4047 if (F.Scale == 1 && (F.BaseRegs.empty() || 4048 (AR->getLoop() != L && LU.AllFixupsOutsideLoop))) 4049 continue; 4050 // If AllFixupsOutsideLoop is true and F.Scale is 1, we may generate 4051 // non canonical Formula with ScaledReg's loop not being L. 4052 if (F.Scale == 1 && LU.AllFixupsOutsideLoop) 4053 F.canonicalize(*L); 4054 (void)InsertFormula(LU, LUIdx, F); 4055 } 4056 } 4057 } 4058 } 4059 } 4060 4061 /// Generate reuse formulae from different IV types. 4062 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) { 4063 // Don't bother truncating symbolic values. 4064 if (Base.BaseGV) return; 4065 4066 // Determine the integer type for the base formula. 4067 Type *DstTy = Base.getType(); 4068 if (!DstTy) return; 4069 if (DstTy->isPointerTy()) 4070 return; 4071 4072 for (Type *SrcTy : Types) { 4073 if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) { 4074 Formula F = Base; 4075 4076 // Sometimes SCEV is able to prove zero during ext transform. It may 4077 // happen if SCEV did not do all possible transforms while creating the 4078 // initial node (maybe due to depth limitations), but it can do them while 4079 // taking ext. 4080 if (F.ScaledReg) { 4081 const SCEV *NewScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy); 4082 if (NewScaledReg->isZero()) 4083 continue; 4084 F.ScaledReg = NewScaledReg; 4085 } 4086 bool HasZeroBaseReg = false; 4087 for (const SCEV *&BaseReg : F.BaseRegs) { 4088 const SCEV *NewBaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy); 4089 if (NewBaseReg->isZero()) { 4090 HasZeroBaseReg = true; 4091 break; 4092 } 4093 BaseReg = NewBaseReg; 4094 } 4095 if (HasZeroBaseReg) 4096 continue; 4097 4098 // TODO: This assumes we've done basic processing on all uses and 4099 // have an idea what the register usage is. 4100 if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses)) 4101 continue; 4102 4103 F.canonicalize(*L); 4104 (void)InsertFormula(LU, LUIdx, F); 4105 } 4106 } 4107 } 4108 4109 namespace { 4110 4111 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer 4112 /// modifications so that the search phase doesn't have to worry about the data 4113 /// structures moving underneath it. 4114 struct WorkItem { 4115 size_t LUIdx; 4116 int64_t Imm; 4117 const SCEV *OrigReg; 4118 4119 WorkItem(size_t LI, int64_t I, const SCEV *R) 4120 : LUIdx(LI), Imm(I), OrigReg(R) {} 4121 4122 void print(raw_ostream &OS) const; 4123 void dump() const; 4124 }; 4125 4126 } // end anonymous namespace 4127 4128 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 4129 void WorkItem::print(raw_ostream &OS) const { 4130 OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx 4131 << " , add offset " << Imm; 4132 } 4133 4134 LLVM_DUMP_METHOD void WorkItem::dump() const { 4135 print(errs()); errs() << '\n'; 4136 } 4137 #endif 4138 4139 /// Look for registers which are a constant distance apart and try to form reuse 4140 /// opportunities between them. 4141 void LSRInstance::GenerateCrossUseConstantOffsets() { 4142 // Group the registers by their value without any added constant offset. 4143 using ImmMapTy = std::map<int64_t, const SCEV *>; 4144 4145 DenseMap<const SCEV *, ImmMapTy> Map; 4146 DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap; 4147 SmallVector<const SCEV *, 8> Sequence; 4148 for (const SCEV *Use : RegUses) { 4149 const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify. 4150 int64_t Imm = ExtractImmediate(Reg, SE); 4151 auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy())); 4152 if (Pair.second) 4153 Sequence.push_back(Reg); 4154 Pair.first->second.insert(std::make_pair(Imm, Use)); 4155 UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use); 4156 } 4157 4158 // Now examine each set of registers with the same base value. Build up 4159 // a list of work to do and do the work in a separate step so that we're 4160 // not adding formulae and register counts while we're searching. 4161 SmallVector<WorkItem, 32> WorkItems; 4162 SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems; 4163 for (const SCEV *Reg : Sequence) { 4164 const ImmMapTy &Imms = Map.find(Reg)->second; 4165 4166 // It's not worthwhile looking for reuse if there's only one offset. 4167 if (Imms.size() == 1) 4168 continue; 4169 4170 LLVM_DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':'; 4171 for (const auto &Entry 4172 : Imms) dbgs() 4173 << ' ' << Entry.first; 4174 dbgs() << '\n'); 4175 4176 // Examine each offset. 4177 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); 4178 J != JE; ++J) { 4179 const SCEV *OrigReg = J->second; 4180 4181 int64_t JImm = J->first; 4182 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg); 4183 4184 if (!isa<SCEVConstant>(OrigReg) && 4185 UsedByIndicesMap[Reg].count() == 1) { 4186 LLVM_DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg 4187 << '\n'); 4188 continue; 4189 } 4190 4191 // Conservatively examine offsets between this orig reg a few selected 4192 // other orig regs. 4193 int64_t First = Imms.begin()->first; 4194 int64_t Last = std::prev(Imms.end())->first; 4195 // Compute (First + Last) / 2 without overflow using the fact that 4196 // First + Last = 2 * (First + Last) + (First ^ Last). 4197 int64_t Avg = (First & Last) + ((First ^ Last) >> 1); 4198 // If the result is negative and First is odd and Last even (or vice versa), 4199 // we rounded towards -inf. Add 1 in that case, to round towards 0. 4200 Avg = Avg + ((First ^ Last) & ((uint64_t)Avg >> 63)); 4201 ImmMapTy::const_iterator OtherImms[] = { 4202 Imms.begin(), std::prev(Imms.end()), 4203 Imms.lower_bound(Avg)}; 4204 for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) { 4205 ImmMapTy::const_iterator M = OtherImms[i]; 4206 if (M == J || M == JE) continue; 4207 4208 // Compute the difference between the two. 4209 int64_t Imm = (uint64_t)JImm - M->first; 4210 for (unsigned LUIdx : UsedByIndices.set_bits()) 4211 // Make a memo of this use, offset, and register tuple. 4212 if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second) 4213 WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg)); 4214 } 4215 } 4216 } 4217 4218 Map.clear(); 4219 Sequence.clear(); 4220 UsedByIndicesMap.clear(); 4221 UniqueItems.clear(); 4222 4223 // Now iterate through the worklist and add new formulae. 4224 for (const WorkItem &WI : WorkItems) { 4225 size_t LUIdx = WI.LUIdx; 4226 LSRUse &LU = Uses[LUIdx]; 4227 int64_t Imm = WI.Imm; 4228 const SCEV *OrigReg = WI.OrigReg; 4229 4230 Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType()); 4231 const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm)); 4232 unsigned BitWidth = SE.getTypeSizeInBits(IntTy); 4233 4234 // TODO: Use a more targeted data structure. 4235 for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) { 4236 Formula F = LU.Formulae[L]; 4237 // FIXME: The code for the scaled and unscaled registers looks 4238 // very similar but slightly different. Investigate if they 4239 // could be merged. That way, we would not have to unscale the 4240 // Formula. 4241 F.unscale(); 4242 // Use the immediate in the scaled register. 4243 if (F.ScaledReg == OrigReg) { 4244 int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale; 4245 // Don't create 50 + reg(-50). 4246 if (F.referencesReg(SE.getSCEV( 4247 ConstantInt::get(IntTy, -(uint64_t)Offset)))) 4248 continue; 4249 Formula NewF = F; 4250 NewF.BaseOffset = Offset; 4251 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 4252 NewF)) 4253 continue; 4254 NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg); 4255 4256 // If the new scale is a constant in a register, and adding the constant 4257 // value to the immediate would produce a value closer to zero than the 4258 // immediate itself, then the formula isn't worthwhile. 4259 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg)) 4260 if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) && 4261 (C->getAPInt().abs() * APInt(BitWidth, F.Scale)) 4262 .ule(std::abs(NewF.BaseOffset))) 4263 continue; 4264 4265 // OK, looks good. 4266 NewF.canonicalize(*this->L); 4267 (void)InsertFormula(LU, LUIdx, NewF); 4268 } else { 4269 // Use the immediate in a base register. 4270 for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) { 4271 const SCEV *BaseReg = F.BaseRegs[N]; 4272 if (BaseReg != OrigReg) 4273 continue; 4274 Formula NewF = F; 4275 NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm; 4276 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, 4277 LU.Kind, LU.AccessTy, NewF)) { 4278 if (AMK == TTI::AMK_PostIndexed && 4279 mayUsePostIncMode(TTI, LU, OrigReg, this->L, SE)) 4280 continue; 4281 if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm)) 4282 continue; 4283 NewF = F; 4284 NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm; 4285 } 4286 NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg); 4287 4288 // If the new formula has a constant in a register, and adding the 4289 // constant value to the immediate would produce a value closer to 4290 // zero than the immediate itself, then the formula isn't worthwhile. 4291 for (const SCEV *NewReg : NewF.BaseRegs) 4292 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg)) 4293 if ((C->getAPInt() + NewF.BaseOffset) 4294 .abs() 4295 .slt(std::abs(NewF.BaseOffset)) && 4296 (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >= 4297 countTrailingZeros<uint64_t>(NewF.BaseOffset)) 4298 goto skip_formula; 4299 4300 // Ok, looks good. 4301 NewF.canonicalize(*this->L); 4302 (void)InsertFormula(LU, LUIdx, NewF); 4303 break; 4304 skip_formula:; 4305 } 4306 } 4307 } 4308 } 4309 } 4310 4311 /// Generate formulae for each use. 4312 void 4313 LSRInstance::GenerateAllReuseFormulae() { 4314 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan 4315 // queries are more precise. 4316 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4317 LSRUse &LU = Uses[LUIdx]; 4318 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4319 GenerateReassociations(LU, LUIdx, LU.Formulae[i]); 4320 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4321 GenerateCombinations(LU, LUIdx, LU.Formulae[i]); 4322 } 4323 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4324 LSRUse &LU = Uses[LUIdx]; 4325 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4326 GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]); 4327 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4328 GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]); 4329 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4330 GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]); 4331 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4332 GenerateScales(LU, LUIdx, LU.Formulae[i]); 4333 } 4334 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4335 LSRUse &LU = Uses[LUIdx]; 4336 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4337 GenerateTruncates(LU, LUIdx, LU.Formulae[i]); 4338 } 4339 4340 GenerateCrossUseConstantOffsets(); 4341 4342 LLVM_DEBUG(dbgs() << "\n" 4343 "After generating reuse formulae:\n"; 4344 print_uses(dbgs())); 4345 } 4346 4347 /// If there are multiple formulae with the same set of registers used 4348 /// by other uses, pick the best one and delete the others. 4349 void LSRInstance::FilterOutUndesirableDedicatedRegisters() { 4350 DenseSet<const SCEV *> VisitedRegs; 4351 SmallPtrSet<const SCEV *, 16> Regs; 4352 SmallPtrSet<const SCEV *, 16> LoserRegs; 4353 #ifndef NDEBUG 4354 bool ChangedFormulae = false; 4355 #endif 4356 4357 // Collect the best formula for each unique set of shared registers. This 4358 // is reset for each use. 4359 using BestFormulaeTy = 4360 DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>; 4361 4362 BestFormulaeTy BestFormulae; 4363 4364 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4365 LSRUse &LU = Uses[LUIdx]; 4366 LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); 4367 dbgs() << '\n'); 4368 4369 bool Any = false; 4370 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); 4371 FIdx != NumForms; ++FIdx) { 4372 Formula &F = LU.Formulae[FIdx]; 4373 4374 // Some formulas are instant losers. For example, they may depend on 4375 // nonexistent AddRecs from other loops. These need to be filtered 4376 // immediately, otherwise heuristics could choose them over others leading 4377 // to an unsatisfactory solution. Passing LoserRegs into RateFormula here 4378 // avoids the need to recompute this information across formulae using the 4379 // same bad AddRec. Passing LoserRegs is also essential unless we remove 4380 // the corresponding bad register from the Regs set. 4381 Cost CostF(L, SE, TTI, AMK); 4382 Regs.clear(); 4383 CostF.RateFormula(F, Regs, VisitedRegs, LU, &LoserRegs); 4384 if (CostF.isLoser()) { 4385 // During initial formula generation, undesirable formulae are generated 4386 // by uses within other loops that have some non-trivial address mode or 4387 // use the postinc form of the IV. LSR needs to provide these formulae 4388 // as the basis of rediscovering the desired formula that uses an AddRec 4389 // corresponding to the existing phi. Once all formulae have been 4390 // generated, these initial losers may be pruned. 4391 LLVM_DEBUG(dbgs() << " Filtering loser "; F.print(dbgs()); 4392 dbgs() << "\n"); 4393 } 4394 else { 4395 SmallVector<const SCEV *, 4> Key; 4396 for (const SCEV *Reg : F.BaseRegs) { 4397 if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx)) 4398 Key.push_back(Reg); 4399 } 4400 if (F.ScaledReg && 4401 RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx)) 4402 Key.push_back(F.ScaledReg); 4403 // Unstable sort by host order ok, because this is only used for 4404 // uniquifying. 4405 llvm::sort(Key); 4406 4407 std::pair<BestFormulaeTy::const_iterator, bool> P = 4408 BestFormulae.insert(std::make_pair(Key, FIdx)); 4409 if (P.second) 4410 continue; 4411 4412 Formula &Best = LU.Formulae[P.first->second]; 4413 4414 Cost CostBest(L, SE, TTI, AMK); 4415 Regs.clear(); 4416 CostBest.RateFormula(Best, Regs, VisitedRegs, LU); 4417 if (CostF.isLess(CostBest)) 4418 std::swap(F, Best); 4419 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 4420 dbgs() << "\n" 4421 " in favor of formula "; 4422 Best.print(dbgs()); dbgs() << '\n'); 4423 } 4424 #ifndef NDEBUG 4425 ChangedFormulae = true; 4426 #endif 4427 LU.DeleteFormula(F); 4428 --FIdx; 4429 --NumForms; 4430 Any = true; 4431 } 4432 4433 // Now that we've filtered out some formulae, recompute the Regs set. 4434 if (Any) 4435 LU.RecomputeRegs(LUIdx, RegUses); 4436 4437 // Reset this to prepare for the next use. 4438 BestFormulae.clear(); 4439 } 4440 4441 LLVM_DEBUG(if (ChangedFormulae) { 4442 dbgs() << "\n" 4443 "After filtering out undesirable candidates:\n"; 4444 print_uses(dbgs()); 4445 }); 4446 } 4447 4448 /// Estimate the worst-case number of solutions the solver might have to 4449 /// consider. It almost never considers this many solutions because it prune the 4450 /// search space, but the pruning isn't always sufficient. 4451 size_t LSRInstance::EstimateSearchSpaceComplexity() const { 4452 size_t Power = 1; 4453 for (const LSRUse &LU : Uses) { 4454 size_t FSize = LU.Formulae.size(); 4455 if (FSize >= ComplexityLimit) { 4456 Power = ComplexityLimit; 4457 break; 4458 } 4459 Power *= FSize; 4460 if (Power >= ComplexityLimit) 4461 break; 4462 } 4463 return Power; 4464 } 4465 4466 /// When one formula uses a superset of the registers of another formula, it 4467 /// won't help reduce register pressure (though it may not necessarily hurt 4468 /// register pressure); remove it to simplify the system. 4469 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() { 4470 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4471 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4472 4473 LLVM_DEBUG(dbgs() << "Narrowing the search space by eliminating formulae " 4474 "which use a superset of registers used by other " 4475 "formulae.\n"); 4476 4477 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4478 LSRUse &LU = Uses[LUIdx]; 4479 bool Any = false; 4480 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4481 Formula &F = LU.Formulae[i]; 4482 // Look for a formula with a constant or GV in a register. If the use 4483 // also has a formula with that same value in an immediate field, 4484 // delete the one that uses a register. 4485 for (SmallVectorImpl<const SCEV *>::const_iterator 4486 I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) { 4487 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) { 4488 Formula NewF = F; 4489 //FIXME: Formulas should store bitwidth to do wrapping properly. 4490 // See PR41034. 4491 NewF.BaseOffset += (uint64_t)C->getValue()->getSExtValue(); 4492 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4493 (I - F.BaseRegs.begin())); 4494 if (LU.HasFormulaWithSameRegs(NewF)) { 4495 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4496 dbgs() << '\n'); 4497 LU.DeleteFormula(F); 4498 --i; 4499 --e; 4500 Any = true; 4501 break; 4502 } 4503 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) { 4504 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) 4505 if (!F.BaseGV) { 4506 Formula NewF = F; 4507 NewF.BaseGV = GV; 4508 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4509 (I - F.BaseRegs.begin())); 4510 if (LU.HasFormulaWithSameRegs(NewF)) { 4511 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4512 dbgs() << '\n'); 4513 LU.DeleteFormula(F); 4514 --i; 4515 --e; 4516 Any = true; 4517 break; 4518 } 4519 } 4520 } 4521 } 4522 } 4523 if (Any) 4524 LU.RecomputeRegs(LUIdx, RegUses); 4525 } 4526 4527 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4528 } 4529 } 4530 4531 /// When there are many registers for expressions like A, A+1, A+2, etc., 4532 /// allocate a single register for them. 4533 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() { 4534 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4535 return; 4536 4537 LLVM_DEBUG( 4538 dbgs() << "The search space is too complex.\n" 4539 "Narrowing the search space by assuming that uses separated " 4540 "by a constant offset will use the same registers.\n"); 4541 4542 // This is especially useful for unrolled loops. 4543 4544 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4545 LSRUse &LU = Uses[LUIdx]; 4546 for (const Formula &F : LU.Formulae) { 4547 if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1)) 4548 continue; 4549 4550 LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU); 4551 if (!LUThatHas) 4552 continue; 4553 4554 if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false, 4555 LU.Kind, LU.AccessTy)) 4556 continue; 4557 4558 LLVM_DEBUG(dbgs() << " Deleting use "; LU.print(dbgs()); dbgs() << '\n'); 4559 4560 LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop; 4561 4562 // Transfer the fixups of LU to LUThatHas. 4563 for (LSRFixup &Fixup : LU.Fixups) { 4564 Fixup.Offset += F.BaseOffset; 4565 LUThatHas->pushFixup(Fixup); 4566 LLVM_DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n'); 4567 } 4568 4569 // Delete formulae from the new use which are no longer legal. 4570 bool Any = false; 4571 for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) { 4572 Formula &F = LUThatHas->Formulae[i]; 4573 if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset, 4574 LUThatHas->Kind, LUThatHas->AccessTy, F)) { 4575 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4576 LUThatHas->DeleteFormula(F); 4577 --i; 4578 --e; 4579 Any = true; 4580 } 4581 } 4582 4583 if (Any) 4584 LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses); 4585 4586 // Delete the old use. 4587 DeleteUse(LU, LUIdx); 4588 --LUIdx; 4589 --NumUses; 4590 break; 4591 } 4592 } 4593 4594 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4595 } 4596 4597 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that 4598 /// we've done more filtering, as it may be able to find more formulae to 4599 /// eliminate. 4600 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){ 4601 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4602 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4603 4604 LLVM_DEBUG(dbgs() << "Narrowing the search space by re-filtering out " 4605 "undesirable dedicated registers.\n"); 4606 4607 FilterOutUndesirableDedicatedRegisters(); 4608 4609 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4610 } 4611 } 4612 4613 /// If a LSRUse has multiple formulae with the same ScaledReg and Scale. 4614 /// Pick the best one and delete the others. 4615 /// This narrowing heuristic is to keep as many formulae with different 4616 /// Scale and ScaledReg pair as possible while narrowing the search space. 4617 /// The benefit is that it is more likely to find out a better solution 4618 /// from a formulae set with more Scale and ScaledReg variations than 4619 /// a formulae set with the same Scale and ScaledReg. The picking winner 4620 /// reg heuristic will often keep the formulae with the same Scale and 4621 /// ScaledReg and filter others, and we want to avoid that if possible. 4622 void LSRInstance::NarrowSearchSpaceByFilterFormulaWithSameScaledReg() { 4623 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4624 return; 4625 4626 LLVM_DEBUG( 4627 dbgs() << "The search space is too complex.\n" 4628 "Narrowing the search space by choosing the best Formula " 4629 "from the Formulae with the same Scale and ScaledReg.\n"); 4630 4631 // Map the "Scale * ScaledReg" pair to the best formula of current LSRUse. 4632 using BestFormulaeTy = DenseMap<std::pair<const SCEV *, int64_t>, size_t>; 4633 4634 BestFormulaeTy BestFormulae; 4635 #ifndef NDEBUG 4636 bool ChangedFormulae = false; 4637 #endif 4638 DenseSet<const SCEV *> VisitedRegs; 4639 SmallPtrSet<const SCEV *, 16> Regs; 4640 4641 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4642 LSRUse &LU = Uses[LUIdx]; 4643 LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); 4644 dbgs() << '\n'); 4645 4646 // Return true if Formula FA is better than Formula FB. 4647 auto IsBetterThan = [&](Formula &FA, Formula &FB) { 4648 // First we will try to choose the Formula with fewer new registers. 4649 // For a register used by current Formula, the more the register is 4650 // shared among LSRUses, the less we increase the register number 4651 // counter of the formula. 4652 size_t FARegNum = 0; 4653 for (const SCEV *Reg : FA.BaseRegs) { 4654 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg); 4655 FARegNum += (NumUses - UsedByIndices.count() + 1); 4656 } 4657 size_t FBRegNum = 0; 4658 for (const SCEV *Reg : FB.BaseRegs) { 4659 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg); 4660 FBRegNum += (NumUses - UsedByIndices.count() + 1); 4661 } 4662 if (FARegNum != FBRegNum) 4663 return FARegNum < FBRegNum; 4664 4665 // If the new register numbers are the same, choose the Formula with 4666 // less Cost. 4667 Cost CostFA(L, SE, TTI, AMK); 4668 Cost CostFB(L, SE, TTI, AMK); 4669 Regs.clear(); 4670 CostFA.RateFormula(FA, Regs, VisitedRegs, LU); 4671 Regs.clear(); 4672 CostFB.RateFormula(FB, Regs, VisitedRegs, LU); 4673 return CostFA.isLess(CostFB); 4674 }; 4675 4676 bool Any = false; 4677 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms; 4678 ++FIdx) { 4679 Formula &F = LU.Formulae[FIdx]; 4680 if (!F.ScaledReg) 4681 continue; 4682 auto P = BestFormulae.insert({{F.ScaledReg, F.Scale}, FIdx}); 4683 if (P.second) 4684 continue; 4685 4686 Formula &Best = LU.Formulae[P.first->second]; 4687 if (IsBetterThan(F, Best)) 4688 std::swap(F, Best); 4689 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 4690 dbgs() << "\n" 4691 " in favor of formula "; 4692 Best.print(dbgs()); dbgs() << '\n'); 4693 #ifndef NDEBUG 4694 ChangedFormulae = true; 4695 #endif 4696 LU.DeleteFormula(F); 4697 --FIdx; 4698 --NumForms; 4699 Any = true; 4700 } 4701 if (Any) 4702 LU.RecomputeRegs(LUIdx, RegUses); 4703 4704 // Reset this to prepare for the next use. 4705 BestFormulae.clear(); 4706 } 4707 4708 LLVM_DEBUG(if (ChangedFormulae) { 4709 dbgs() << "\n" 4710 "After filtering out undesirable candidates:\n"; 4711 print_uses(dbgs()); 4712 }); 4713 } 4714 4715 /// If we are over the complexity limit, filter out any post-inc prefering 4716 /// variables to only post-inc values. 4717 void LSRInstance::NarrowSearchSpaceByFilterPostInc() { 4718 if (AMK != TTI::AMK_PostIndexed) 4719 return; 4720 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4721 return; 4722 4723 LLVM_DEBUG(dbgs() << "The search space is too complex.\n" 4724 "Narrowing the search space by choosing the lowest " 4725 "register Formula for PostInc Uses.\n"); 4726 4727 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4728 LSRUse &LU = Uses[LUIdx]; 4729 4730 if (LU.Kind != LSRUse::Address) 4731 continue; 4732 if (!TTI.isIndexedLoadLegal(TTI.MIM_PostInc, LU.AccessTy.getType()) && 4733 !TTI.isIndexedStoreLegal(TTI.MIM_PostInc, LU.AccessTy.getType())) 4734 continue; 4735 4736 size_t MinRegs = std::numeric_limits<size_t>::max(); 4737 for (const Formula &F : LU.Formulae) 4738 MinRegs = std::min(F.getNumRegs(), MinRegs); 4739 4740 bool Any = false; 4741 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms; 4742 ++FIdx) { 4743 Formula &F = LU.Formulae[FIdx]; 4744 if (F.getNumRegs() > MinRegs) { 4745 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 4746 dbgs() << "\n"); 4747 LU.DeleteFormula(F); 4748 --FIdx; 4749 --NumForms; 4750 Any = true; 4751 } 4752 } 4753 if (Any) 4754 LU.RecomputeRegs(LUIdx, RegUses); 4755 4756 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4757 break; 4758 } 4759 4760 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4761 } 4762 4763 /// The function delete formulas with high registers number expectation. 4764 /// Assuming we don't know the value of each formula (already delete 4765 /// all inefficient), generate probability of not selecting for each 4766 /// register. 4767 /// For example, 4768 /// Use1: 4769 /// reg(a) + reg({0,+,1}) 4770 /// reg(a) + reg({-1,+,1}) + 1 4771 /// reg({a,+,1}) 4772 /// Use2: 4773 /// reg(b) + reg({0,+,1}) 4774 /// reg(b) + reg({-1,+,1}) + 1 4775 /// reg({b,+,1}) 4776 /// Use3: 4777 /// reg(c) + reg(b) + reg({0,+,1}) 4778 /// reg(c) + reg({b,+,1}) 4779 /// 4780 /// Probability of not selecting 4781 /// Use1 Use2 Use3 4782 /// reg(a) (1/3) * 1 * 1 4783 /// reg(b) 1 * (1/3) * (1/2) 4784 /// reg({0,+,1}) (2/3) * (2/3) * (1/2) 4785 /// reg({-1,+,1}) (2/3) * (2/3) * 1 4786 /// reg({a,+,1}) (2/3) * 1 * 1 4787 /// reg({b,+,1}) 1 * (2/3) * (2/3) 4788 /// reg(c) 1 * 1 * 0 4789 /// 4790 /// Now count registers number mathematical expectation for each formula: 4791 /// Note that for each use we exclude probability if not selecting for the use. 4792 /// For example for Use1 probability for reg(a) would be just 1 * 1 (excluding 4793 /// probabilty 1/3 of not selecting for Use1). 4794 /// Use1: 4795 /// reg(a) + reg({0,+,1}) 1 + 1/3 -- to be deleted 4796 /// reg(a) + reg({-1,+,1}) + 1 1 + 4/9 -- to be deleted 4797 /// reg({a,+,1}) 1 4798 /// Use2: 4799 /// reg(b) + reg({0,+,1}) 1/2 + 1/3 -- to be deleted 4800 /// reg(b) + reg({-1,+,1}) + 1 1/2 + 2/3 -- to be deleted 4801 /// reg({b,+,1}) 2/3 4802 /// Use3: 4803 /// reg(c) + reg(b) + reg({0,+,1}) 1 + 1/3 + 4/9 -- to be deleted 4804 /// reg(c) + reg({b,+,1}) 1 + 2/3 4805 void LSRInstance::NarrowSearchSpaceByDeletingCostlyFormulas() { 4806 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4807 return; 4808 // Ok, we have too many of formulae on our hands to conveniently handle. 4809 // Use a rough heuristic to thin out the list. 4810 4811 // Set of Regs wich will be 100% used in final solution. 4812 // Used in each formula of a solution (in example above this is reg(c)). 4813 // We can skip them in calculations. 4814 SmallPtrSet<const SCEV *, 4> UniqRegs; 4815 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4816 4817 // Map each register to probability of not selecting 4818 DenseMap <const SCEV *, float> RegNumMap; 4819 for (const SCEV *Reg : RegUses) { 4820 if (UniqRegs.count(Reg)) 4821 continue; 4822 float PNotSel = 1; 4823 for (const LSRUse &LU : Uses) { 4824 if (!LU.Regs.count(Reg)) 4825 continue; 4826 float P = LU.getNotSelectedProbability(Reg); 4827 if (P != 0.0) 4828 PNotSel *= P; 4829 else 4830 UniqRegs.insert(Reg); 4831 } 4832 RegNumMap.insert(std::make_pair(Reg, PNotSel)); 4833 } 4834 4835 LLVM_DEBUG( 4836 dbgs() << "Narrowing the search space by deleting costly formulas\n"); 4837 4838 // Delete formulas where registers number expectation is high. 4839 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4840 LSRUse &LU = Uses[LUIdx]; 4841 // If nothing to delete - continue. 4842 if (LU.Formulae.size() < 2) 4843 continue; 4844 // This is temporary solution to test performance. Float should be 4845 // replaced with round independent type (based on integers) to avoid 4846 // different results for different target builds. 4847 float FMinRegNum = LU.Formulae[0].getNumRegs(); 4848 float FMinARegNum = LU.Formulae[0].getNumRegs(); 4849 size_t MinIdx = 0; 4850 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4851 Formula &F = LU.Formulae[i]; 4852 float FRegNum = 0; 4853 float FARegNum = 0; 4854 for (const SCEV *BaseReg : F.BaseRegs) { 4855 if (UniqRegs.count(BaseReg)) 4856 continue; 4857 FRegNum += RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg); 4858 if (isa<SCEVAddRecExpr>(BaseReg)) 4859 FARegNum += 4860 RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg); 4861 } 4862 if (const SCEV *ScaledReg = F.ScaledReg) { 4863 if (!UniqRegs.count(ScaledReg)) { 4864 FRegNum += 4865 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg); 4866 if (isa<SCEVAddRecExpr>(ScaledReg)) 4867 FARegNum += 4868 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg); 4869 } 4870 } 4871 if (FMinRegNum > FRegNum || 4872 (FMinRegNum == FRegNum && FMinARegNum > FARegNum)) { 4873 FMinRegNum = FRegNum; 4874 FMinARegNum = FARegNum; 4875 MinIdx = i; 4876 } 4877 } 4878 LLVM_DEBUG(dbgs() << " The formula "; LU.Formulae[MinIdx].print(dbgs()); 4879 dbgs() << " with min reg num " << FMinRegNum << '\n'); 4880 if (MinIdx != 0) 4881 std::swap(LU.Formulae[MinIdx], LU.Formulae[0]); 4882 while (LU.Formulae.size() != 1) { 4883 LLVM_DEBUG(dbgs() << " Deleting "; LU.Formulae.back().print(dbgs()); 4884 dbgs() << '\n'); 4885 LU.Formulae.pop_back(); 4886 } 4887 LU.RecomputeRegs(LUIdx, RegUses); 4888 assert(LU.Formulae.size() == 1 && "Should be exactly 1 min regs formula"); 4889 Formula &F = LU.Formulae[0]; 4890 LLVM_DEBUG(dbgs() << " Leaving only "; F.print(dbgs()); dbgs() << '\n'); 4891 // When we choose the formula, the regs become unique. 4892 UniqRegs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 4893 if (F.ScaledReg) 4894 UniqRegs.insert(F.ScaledReg); 4895 } 4896 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4897 } 4898 4899 /// Pick a register which seems likely to be profitable, and then in any use 4900 /// which has any reference to that register, delete all formulae which do not 4901 /// reference that register. 4902 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() { 4903 // With all other options exhausted, loop until the system is simple 4904 // enough to handle. 4905 SmallPtrSet<const SCEV *, 4> Taken; 4906 while (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4907 // Ok, we have too many of formulae on our hands to conveniently handle. 4908 // Use a rough heuristic to thin out the list. 4909 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4910 4911 // Pick the register which is used by the most LSRUses, which is likely 4912 // to be a good reuse register candidate. 4913 const SCEV *Best = nullptr; 4914 unsigned BestNum = 0; 4915 for (const SCEV *Reg : RegUses) { 4916 if (Taken.count(Reg)) 4917 continue; 4918 if (!Best) { 4919 Best = Reg; 4920 BestNum = RegUses.getUsedByIndices(Reg).count(); 4921 } else { 4922 unsigned Count = RegUses.getUsedByIndices(Reg).count(); 4923 if (Count > BestNum) { 4924 Best = Reg; 4925 BestNum = Count; 4926 } 4927 } 4928 } 4929 assert(Best && "Failed to find best LSRUse candidate"); 4930 4931 LLVM_DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best 4932 << " will yield profitable reuse.\n"); 4933 Taken.insert(Best); 4934 4935 // In any use with formulae which references this register, delete formulae 4936 // which don't reference it. 4937 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4938 LSRUse &LU = Uses[LUIdx]; 4939 if (!LU.Regs.count(Best)) continue; 4940 4941 bool Any = false; 4942 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4943 Formula &F = LU.Formulae[i]; 4944 if (!F.referencesReg(Best)) { 4945 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4946 LU.DeleteFormula(F); 4947 --e; 4948 --i; 4949 Any = true; 4950 assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?"); 4951 continue; 4952 } 4953 } 4954 4955 if (Any) 4956 LU.RecomputeRegs(LUIdx, RegUses); 4957 } 4958 4959 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4960 } 4961 } 4962 4963 /// If there are an extraordinary number of formulae to choose from, use some 4964 /// rough heuristics to prune down the number of formulae. This keeps the main 4965 /// solver from taking an extraordinary amount of time in some worst-case 4966 /// scenarios. 4967 void LSRInstance::NarrowSearchSpaceUsingHeuristics() { 4968 NarrowSearchSpaceByDetectingSupersets(); 4969 NarrowSearchSpaceByCollapsingUnrolledCode(); 4970 NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 4971 if (FilterSameScaledReg) 4972 NarrowSearchSpaceByFilterFormulaWithSameScaledReg(); 4973 NarrowSearchSpaceByFilterPostInc(); 4974 if (LSRExpNarrow) 4975 NarrowSearchSpaceByDeletingCostlyFormulas(); 4976 else 4977 NarrowSearchSpaceByPickingWinnerRegs(); 4978 } 4979 4980 /// This is the recursive solver. 4981 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 4982 Cost &SolutionCost, 4983 SmallVectorImpl<const Formula *> &Workspace, 4984 const Cost &CurCost, 4985 const SmallPtrSet<const SCEV *, 16> &CurRegs, 4986 DenseSet<const SCEV *> &VisitedRegs) const { 4987 // Some ideas: 4988 // - prune more: 4989 // - use more aggressive filtering 4990 // - sort the formula so that the most profitable solutions are found first 4991 // - sort the uses too 4992 // - search faster: 4993 // - don't compute a cost, and then compare. compare while computing a cost 4994 // and bail early. 4995 // - track register sets with SmallBitVector 4996 4997 const LSRUse &LU = Uses[Workspace.size()]; 4998 4999 // If this use references any register that's already a part of the 5000 // in-progress solution, consider it a requirement that a formula must 5001 // reference that register in order to be considered. This prunes out 5002 // unprofitable searching. 5003 SmallSetVector<const SCEV *, 4> ReqRegs; 5004 for (const SCEV *S : CurRegs) 5005 if (LU.Regs.count(S)) 5006 ReqRegs.insert(S); 5007 5008 SmallPtrSet<const SCEV *, 16> NewRegs; 5009 Cost NewCost(L, SE, TTI, AMK); 5010 for (const Formula &F : LU.Formulae) { 5011 // Ignore formulae which may not be ideal in terms of register reuse of 5012 // ReqRegs. The formula should use all required registers before 5013 // introducing new ones. 5014 // This can sometimes (notably when trying to favour postinc) lead to 5015 // sub-optimial decisions. There it is best left to the cost modelling to 5016 // get correct. 5017 if (AMK != TTI::AMK_PostIndexed || LU.Kind != LSRUse::Address) { 5018 int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size()); 5019 for (const SCEV *Reg : ReqRegs) { 5020 if ((F.ScaledReg && F.ScaledReg == Reg) || 5021 is_contained(F.BaseRegs, Reg)) { 5022 --NumReqRegsToFind; 5023 if (NumReqRegsToFind == 0) 5024 break; 5025 } 5026 } 5027 if (NumReqRegsToFind != 0) { 5028 // If none of the formulae satisfied the required registers, then we could 5029 // clear ReqRegs and try again. Currently, we simply give up in this case. 5030 continue; 5031 } 5032 } 5033 5034 // Evaluate the cost of the current formula. If it's already worse than 5035 // the current best, prune the search at that point. 5036 NewCost = CurCost; 5037 NewRegs = CurRegs; 5038 NewCost.RateFormula(F, NewRegs, VisitedRegs, LU); 5039 if (NewCost.isLess(SolutionCost)) { 5040 Workspace.push_back(&F); 5041 if (Workspace.size() != Uses.size()) { 5042 SolveRecurse(Solution, SolutionCost, Workspace, NewCost, 5043 NewRegs, VisitedRegs); 5044 if (F.getNumRegs() == 1 && Workspace.size() == 1) 5045 VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]); 5046 } else { 5047 LLVM_DEBUG(dbgs() << "New best at "; NewCost.print(dbgs()); 5048 dbgs() << ".\nRegs:\n"; 5049 for (const SCEV *S : NewRegs) dbgs() 5050 << "- " << *S << "\n"; 5051 dbgs() << '\n'); 5052 5053 SolutionCost = NewCost; 5054 Solution = Workspace; 5055 } 5056 Workspace.pop_back(); 5057 } 5058 } 5059 } 5060 5061 /// Choose one formula from each use. Return the results in the given Solution 5062 /// vector. 5063 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const { 5064 SmallVector<const Formula *, 8> Workspace; 5065 Cost SolutionCost(L, SE, TTI, AMK); 5066 SolutionCost.Lose(); 5067 Cost CurCost(L, SE, TTI, AMK); 5068 SmallPtrSet<const SCEV *, 16> CurRegs; 5069 DenseSet<const SCEV *> VisitedRegs; 5070 Workspace.reserve(Uses.size()); 5071 5072 // SolveRecurse does all the work. 5073 SolveRecurse(Solution, SolutionCost, Workspace, CurCost, 5074 CurRegs, VisitedRegs); 5075 if (Solution.empty()) { 5076 LLVM_DEBUG(dbgs() << "\nNo Satisfactory Solution\n"); 5077 return; 5078 } 5079 5080 // Ok, we've now made all our decisions. 5081 LLVM_DEBUG(dbgs() << "\n" 5082 "The chosen solution requires "; 5083 SolutionCost.print(dbgs()); dbgs() << ":\n"; 5084 for (size_t i = 0, e = Uses.size(); i != e; ++i) { 5085 dbgs() << " "; 5086 Uses[i].print(dbgs()); 5087 dbgs() << "\n" 5088 " "; 5089 Solution[i]->print(dbgs()); 5090 dbgs() << '\n'; 5091 }); 5092 5093 assert(Solution.size() == Uses.size() && "Malformed solution!"); 5094 } 5095 5096 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as 5097 /// we can go while still being dominated by the input positions. This helps 5098 /// canonicalize the insert position, which encourages sharing. 5099 BasicBlock::iterator 5100 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP, 5101 const SmallVectorImpl<Instruction *> &Inputs) 5102 const { 5103 Instruction *Tentative = &*IP; 5104 while (true) { 5105 bool AllDominate = true; 5106 Instruction *BetterPos = nullptr; 5107 // Don't bother attempting to insert before a catchswitch, their basic block 5108 // cannot have other non-PHI instructions. 5109 if (isa<CatchSwitchInst>(Tentative)) 5110 return IP; 5111 5112 for (Instruction *Inst : Inputs) { 5113 if (Inst == Tentative || !DT.dominates(Inst, Tentative)) { 5114 AllDominate = false; 5115 break; 5116 } 5117 // Attempt to find an insert position in the middle of the block, 5118 // instead of at the end, so that it can be used for other expansions. 5119 if (Tentative->getParent() == Inst->getParent() && 5120 (!BetterPos || !DT.dominates(Inst, BetterPos))) 5121 BetterPos = &*std::next(BasicBlock::iterator(Inst)); 5122 } 5123 if (!AllDominate) 5124 break; 5125 if (BetterPos) 5126 IP = BetterPos->getIterator(); 5127 else 5128 IP = Tentative->getIterator(); 5129 5130 const Loop *IPLoop = LI.getLoopFor(IP->getParent()); 5131 unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0; 5132 5133 BasicBlock *IDom; 5134 for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) { 5135 if (!Rung) return IP; 5136 Rung = Rung->getIDom(); 5137 if (!Rung) return IP; 5138 IDom = Rung->getBlock(); 5139 5140 // Don't climb into a loop though. 5141 const Loop *IDomLoop = LI.getLoopFor(IDom); 5142 unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0; 5143 if (IDomDepth <= IPLoopDepth && 5144 (IDomDepth != IPLoopDepth || IDomLoop == IPLoop)) 5145 break; 5146 } 5147 5148 Tentative = IDom->getTerminator(); 5149 } 5150 5151 return IP; 5152 } 5153 5154 /// Determine an input position which will be dominated by the operands and 5155 /// which will dominate the result. 5156 BasicBlock::iterator 5157 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP, 5158 const LSRFixup &LF, 5159 const LSRUse &LU, 5160 SCEVExpander &Rewriter) const { 5161 // Collect some instructions which must be dominated by the 5162 // expanding replacement. These must be dominated by any operands that 5163 // will be required in the expansion. 5164 SmallVector<Instruction *, 4> Inputs; 5165 if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace)) 5166 Inputs.push_back(I); 5167 if (LU.Kind == LSRUse::ICmpZero) 5168 if (Instruction *I = 5169 dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1))) 5170 Inputs.push_back(I); 5171 if (LF.PostIncLoops.count(L)) { 5172 if (LF.isUseFullyOutsideLoop(L)) 5173 Inputs.push_back(L->getLoopLatch()->getTerminator()); 5174 else 5175 Inputs.push_back(IVIncInsertPos); 5176 } 5177 // The expansion must also be dominated by the increment positions of any 5178 // loops it for which it is using post-inc mode. 5179 for (const Loop *PIL : LF.PostIncLoops) { 5180 if (PIL == L) continue; 5181 5182 // Be dominated by the loop exit. 5183 SmallVector<BasicBlock *, 4> ExitingBlocks; 5184 PIL->getExitingBlocks(ExitingBlocks); 5185 if (!ExitingBlocks.empty()) { 5186 BasicBlock *BB = ExitingBlocks[0]; 5187 for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i) 5188 BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]); 5189 Inputs.push_back(BB->getTerminator()); 5190 } 5191 } 5192 5193 assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad() 5194 && !isa<DbgInfoIntrinsic>(LowestIP) && 5195 "Insertion point must be a normal instruction"); 5196 5197 // Then, climb up the immediate dominator tree as far as we can go while 5198 // still being dominated by the input positions. 5199 BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs); 5200 5201 // Don't insert instructions before PHI nodes. 5202 while (isa<PHINode>(IP)) ++IP; 5203 5204 // Ignore landingpad instructions. 5205 while (IP->isEHPad()) ++IP; 5206 5207 // Ignore debug intrinsics. 5208 while (isa<DbgInfoIntrinsic>(IP)) ++IP; 5209 5210 // Set IP below instructions recently inserted by SCEVExpander. This keeps the 5211 // IP consistent across expansions and allows the previously inserted 5212 // instructions to be reused by subsequent expansion. 5213 while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP) 5214 ++IP; 5215 5216 return IP; 5217 } 5218 5219 /// Emit instructions for the leading candidate expression for this LSRUse (this 5220 /// is called "expanding"). 5221 Value *LSRInstance::Expand(const LSRUse &LU, const LSRFixup &LF, 5222 const Formula &F, BasicBlock::iterator IP, 5223 SCEVExpander &Rewriter, 5224 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5225 if (LU.RigidFormula) 5226 return LF.OperandValToReplace; 5227 5228 // Determine an input position which will be dominated by the operands and 5229 // which will dominate the result. 5230 IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter); 5231 Rewriter.setInsertPoint(&*IP); 5232 5233 // Inform the Rewriter if we have a post-increment use, so that it can 5234 // perform an advantageous expansion. 5235 Rewriter.setPostInc(LF.PostIncLoops); 5236 5237 // This is the type that the user actually needs. 5238 Type *OpTy = LF.OperandValToReplace->getType(); 5239 // This will be the type that we'll initially expand to. 5240 Type *Ty = F.getType(); 5241 if (!Ty) 5242 // No type known; just expand directly to the ultimate type. 5243 Ty = OpTy; 5244 else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy)) 5245 // Expand directly to the ultimate type if it's the right size. 5246 Ty = OpTy; 5247 // This is the type to do integer arithmetic in. 5248 Type *IntTy = SE.getEffectiveSCEVType(Ty); 5249 5250 // Build up a list of operands to add together to form the full base. 5251 SmallVector<const SCEV *, 8> Ops; 5252 5253 // Expand the BaseRegs portion. 5254 for (const SCEV *Reg : F.BaseRegs) { 5255 assert(!Reg->isZero() && "Zero allocated in a base register!"); 5256 5257 // If we're expanding for a post-inc user, make the post-inc adjustment. 5258 Reg = denormalizeForPostIncUse(Reg, LF.PostIncLoops, SE); 5259 Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr))); 5260 } 5261 5262 // Expand the ScaledReg portion. 5263 Value *ICmpScaledV = nullptr; 5264 if (F.Scale != 0) { 5265 const SCEV *ScaledS = F.ScaledReg; 5266 5267 // If we're expanding for a post-inc user, make the post-inc adjustment. 5268 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 5269 ScaledS = denormalizeForPostIncUse(ScaledS, Loops, SE); 5270 5271 if (LU.Kind == LSRUse::ICmpZero) { 5272 // Expand ScaleReg as if it was part of the base regs. 5273 if (F.Scale == 1) 5274 Ops.push_back( 5275 SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr))); 5276 else { 5277 // An interesting way of "folding" with an icmp is to use a negated 5278 // scale, which we'll implement by inserting it into the other operand 5279 // of the icmp. 5280 assert(F.Scale == -1 && 5281 "The only scale supported by ICmpZero uses is -1!"); 5282 ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr); 5283 } 5284 } else { 5285 // Otherwise just expand the scaled register and an explicit scale, 5286 // which is expected to be matched as part of the address. 5287 5288 // Flush the operand list to suppress SCEVExpander hoisting address modes. 5289 // Unless the addressing mode will not be folded. 5290 if (!Ops.empty() && LU.Kind == LSRUse::Address && 5291 isAMCompletelyFolded(TTI, LU, F)) { 5292 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), nullptr); 5293 Ops.clear(); 5294 Ops.push_back(SE.getUnknown(FullV)); 5295 } 5296 ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)); 5297 if (F.Scale != 1) 5298 ScaledS = 5299 SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale)); 5300 Ops.push_back(ScaledS); 5301 } 5302 } 5303 5304 // Expand the GV portion. 5305 if (F.BaseGV) { 5306 // Flush the operand list to suppress SCEVExpander hoisting. 5307 if (!Ops.empty()) { 5308 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), IntTy); 5309 Ops.clear(); 5310 Ops.push_back(SE.getUnknown(FullV)); 5311 } 5312 Ops.push_back(SE.getUnknown(F.BaseGV)); 5313 } 5314 5315 // Flush the operand list to suppress SCEVExpander hoisting of both folded and 5316 // unfolded offsets. LSR assumes they both live next to their uses. 5317 if (!Ops.empty()) { 5318 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 5319 Ops.clear(); 5320 Ops.push_back(SE.getUnknown(FullV)); 5321 } 5322 5323 // Expand the immediate portion. 5324 int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset; 5325 if (Offset != 0) { 5326 if (LU.Kind == LSRUse::ICmpZero) { 5327 // The other interesting way of "folding" with an ICmpZero is to use a 5328 // negated immediate. 5329 if (!ICmpScaledV) 5330 ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset); 5331 else { 5332 Ops.push_back(SE.getUnknown(ICmpScaledV)); 5333 ICmpScaledV = ConstantInt::get(IntTy, Offset); 5334 } 5335 } else { 5336 // Just add the immediate values. These again are expected to be matched 5337 // as part of the address. 5338 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset))); 5339 } 5340 } 5341 5342 // Expand the unfolded offset portion. 5343 int64_t UnfoldedOffset = F.UnfoldedOffset; 5344 if (UnfoldedOffset != 0) { 5345 // Just add the immediate values. 5346 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, 5347 UnfoldedOffset))); 5348 } 5349 5350 // Emit instructions summing all the operands. 5351 const SCEV *FullS = Ops.empty() ? 5352 SE.getConstant(IntTy, 0) : 5353 SE.getAddExpr(Ops); 5354 Value *FullV = Rewriter.expandCodeFor(FullS, Ty); 5355 5356 // We're done expanding now, so reset the rewriter. 5357 Rewriter.clearPostInc(); 5358 5359 // An ICmpZero Formula represents an ICmp which we're handling as a 5360 // comparison against zero. Now that we've expanded an expression for that 5361 // form, update the ICmp's other operand. 5362 if (LU.Kind == LSRUse::ICmpZero) { 5363 ICmpInst *CI = cast<ICmpInst>(LF.UserInst); 5364 if (auto *OperandIsInstr = dyn_cast<Instruction>(CI->getOperand(1))) 5365 DeadInsts.emplace_back(OperandIsInstr); 5366 assert(!F.BaseGV && "ICmp does not support folding a global value and " 5367 "a scale at the same time!"); 5368 if (F.Scale == -1) { 5369 if (ICmpScaledV->getType() != OpTy) { 5370 Instruction *Cast = 5371 CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false, 5372 OpTy, false), 5373 ICmpScaledV, OpTy, "tmp", CI); 5374 ICmpScaledV = Cast; 5375 } 5376 CI->setOperand(1, ICmpScaledV); 5377 } else { 5378 // A scale of 1 means that the scale has been expanded as part of the 5379 // base regs. 5380 assert((F.Scale == 0 || F.Scale == 1) && 5381 "ICmp does not support folding a global value and " 5382 "a scale at the same time!"); 5383 Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy), 5384 -(uint64_t)Offset); 5385 if (C->getType() != OpTy) 5386 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 5387 OpTy, false), 5388 C, OpTy); 5389 5390 CI->setOperand(1, C); 5391 } 5392 } 5393 5394 return FullV; 5395 } 5396 5397 /// Helper for Rewrite. PHI nodes are special because the use of their operands 5398 /// effectively happens in their predecessor blocks, so the expression may need 5399 /// to be expanded in multiple places. 5400 void LSRInstance::RewriteForPHI( 5401 PHINode *PN, const LSRUse &LU, const LSRFixup &LF, const Formula &F, 5402 SCEVExpander &Rewriter, SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5403 DenseMap<BasicBlock *, Value *> Inserted; 5404 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 5405 if (PN->getIncomingValue(i) == LF.OperandValToReplace) { 5406 bool needUpdateFixups = false; 5407 BasicBlock *BB = PN->getIncomingBlock(i); 5408 5409 // If this is a critical edge, split the edge so that we do not insert 5410 // the code on all predecessor/successor paths. We do this unless this 5411 // is the canonical backedge for this loop, which complicates post-inc 5412 // users. 5413 if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 && 5414 !isa<IndirectBrInst>(BB->getTerminator()) && 5415 !isa<CatchSwitchInst>(BB->getTerminator())) { 5416 BasicBlock *Parent = PN->getParent(); 5417 Loop *PNLoop = LI.getLoopFor(Parent); 5418 if (!PNLoop || Parent != PNLoop->getHeader()) { 5419 // Split the critical edge. 5420 BasicBlock *NewBB = nullptr; 5421 if (!Parent->isLandingPad()) { 5422 NewBB = 5423 SplitCriticalEdge(BB, Parent, 5424 CriticalEdgeSplittingOptions(&DT, &LI, MSSAU) 5425 .setMergeIdenticalEdges() 5426 .setKeepOneInputPHIs()); 5427 } else { 5428 SmallVector<BasicBlock*, 2> NewBBs; 5429 SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI); 5430 NewBB = NewBBs[0]; 5431 } 5432 // If NewBB==NULL, then SplitCriticalEdge refused to split because all 5433 // phi predecessors are identical. The simple thing to do is skip 5434 // splitting in this case rather than complicate the API. 5435 if (NewBB) { 5436 // If PN is outside of the loop and BB is in the loop, we want to 5437 // move the block to be immediately before the PHI block, not 5438 // immediately after BB. 5439 if (L->contains(BB) && !L->contains(PN)) 5440 NewBB->moveBefore(PN->getParent()); 5441 5442 // Splitting the edge can reduce the number of PHI entries we have. 5443 e = PN->getNumIncomingValues(); 5444 BB = NewBB; 5445 i = PN->getBasicBlockIndex(BB); 5446 5447 needUpdateFixups = true; 5448 } 5449 } 5450 } 5451 5452 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair = 5453 Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr))); 5454 if (!Pair.second) 5455 PN->setIncomingValue(i, Pair.first->second); 5456 else { 5457 Value *FullV = Expand(LU, LF, F, BB->getTerminator()->getIterator(), 5458 Rewriter, DeadInsts); 5459 5460 // If this is reuse-by-noop-cast, insert the noop cast. 5461 Type *OpTy = LF.OperandValToReplace->getType(); 5462 if (FullV->getType() != OpTy) 5463 FullV = 5464 CastInst::Create(CastInst::getCastOpcode(FullV, false, 5465 OpTy, false), 5466 FullV, LF.OperandValToReplace->getType(), 5467 "tmp", BB->getTerminator()); 5468 5469 PN->setIncomingValue(i, FullV); 5470 Pair.first->second = FullV; 5471 } 5472 5473 // If LSR splits critical edge and phi node has other pending 5474 // fixup operands, we need to update those pending fixups. Otherwise 5475 // formulae will not be implemented completely and some instructions 5476 // will not be eliminated. 5477 if (needUpdateFixups) { 5478 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) 5479 for (LSRFixup &Fixup : Uses[LUIdx].Fixups) 5480 // If fixup is supposed to rewrite some operand in the phi 5481 // that was just updated, it may be already moved to 5482 // another phi node. Such fixup requires update. 5483 if (Fixup.UserInst == PN) { 5484 // Check if the operand we try to replace still exists in the 5485 // original phi. 5486 bool foundInOriginalPHI = false; 5487 for (const auto &val : PN->incoming_values()) 5488 if (val == Fixup.OperandValToReplace) { 5489 foundInOriginalPHI = true; 5490 break; 5491 } 5492 5493 // If fixup operand found in original PHI - nothing to do. 5494 if (foundInOriginalPHI) 5495 continue; 5496 5497 // Otherwise it might be moved to another PHI and requires update. 5498 // If fixup operand not found in any of the incoming blocks that 5499 // means we have already rewritten it - nothing to do. 5500 for (const auto &Block : PN->blocks()) 5501 for (BasicBlock::iterator I = Block->begin(); isa<PHINode>(I); 5502 ++I) { 5503 PHINode *NewPN = cast<PHINode>(I); 5504 for (const auto &val : NewPN->incoming_values()) 5505 if (val == Fixup.OperandValToReplace) 5506 Fixup.UserInst = NewPN; 5507 } 5508 } 5509 } 5510 } 5511 } 5512 5513 /// Emit instructions for the leading candidate expression for this LSRUse (this 5514 /// is called "expanding"), and update the UserInst to reference the newly 5515 /// expanded value. 5516 void LSRInstance::Rewrite(const LSRUse &LU, const LSRFixup &LF, 5517 const Formula &F, SCEVExpander &Rewriter, 5518 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5519 // First, find an insertion point that dominates UserInst. For PHI nodes, 5520 // find the nearest block which dominates all the relevant uses. 5521 if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) { 5522 RewriteForPHI(PN, LU, LF, F, Rewriter, DeadInsts); 5523 } else { 5524 Value *FullV = 5525 Expand(LU, LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts); 5526 5527 // If this is reuse-by-noop-cast, insert the noop cast. 5528 Type *OpTy = LF.OperandValToReplace->getType(); 5529 if (FullV->getType() != OpTy) { 5530 Instruction *Cast = 5531 CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false), 5532 FullV, OpTy, "tmp", LF.UserInst); 5533 FullV = Cast; 5534 } 5535 5536 // Update the user. ICmpZero is handled specially here (for now) because 5537 // Expand may have updated one of the operands of the icmp already, and 5538 // its new value may happen to be equal to LF.OperandValToReplace, in 5539 // which case doing replaceUsesOfWith leads to replacing both operands 5540 // with the same value. TODO: Reorganize this. 5541 if (LU.Kind == LSRUse::ICmpZero) 5542 LF.UserInst->setOperand(0, FullV); 5543 else 5544 LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV); 5545 } 5546 5547 if (auto *OperandIsInstr = dyn_cast<Instruction>(LF.OperandValToReplace)) 5548 DeadInsts.emplace_back(OperandIsInstr); 5549 } 5550 5551 /// Rewrite all the fixup locations with new values, following the chosen 5552 /// solution. 5553 void LSRInstance::ImplementSolution( 5554 const SmallVectorImpl<const Formula *> &Solution) { 5555 // Keep track of instructions we may have made dead, so that 5556 // we can remove them after we are done working. 5557 SmallVector<WeakTrackingVH, 16> DeadInsts; 5558 5559 SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(), "lsr", 5560 false); 5561 #ifndef NDEBUG 5562 Rewriter.setDebugType(DEBUG_TYPE); 5563 #endif 5564 Rewriter.disableCanonicalMode(); 5565 Rewriter.enableLSRMode(); 5566 Rewriter.setIVIncInsertPos(L, IVIncInsertPos); 5567 5568 // Mark phi nodes that terminate chains so the expander tries to reuse them. 5569 for (const IVChain &Chain : IVChainVec) { 5570 if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst())) 5571 Rewriter.setChainedPhi(PN); 5572 } 5573 5574 // Expand the new value definitions and update the users. 5575 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) 5576 for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) { 5577 Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], Rewriter, DeadInsts); 5578 Changed = true; 5579 } 5580 5581 for (const IVChain &Chain : IVChainVec) { 5582 GenerateIVChain(Chain, Rewriter, DeadInsts); 5583 Changed = true; 5584 } 5585 // Clean up after ourselves. This must be done before deleting any 5586 // instructions. 5587 Rewriter.clear(); 5588 5589 Changed |= RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts, 5590 &TLI, MSSAU); 5591 5592 // In our cost analysis above, we assume that each addrec consumes exactly 5593 // one register, and arrange to have increments inserted just before the 5594 // latch to maximimize the chance this is true. However, if we reused 5595 // existing IVs, we now need to move the increments to match our 5596 // expectations. Otherwise, our cost modeling results in us having a 5597 // chosen a non-optimal result for the actual schedule. (And yes, this 5598 // scheduling decision does impact later codegen.) 5599 for (PHINode &PN : L->getHeader()->phis()) { 5600 BinaryOperator *BO = nullptr; 5601 Value *Start = nullptr, *Step = nullptr; 5602 if (!matchSimpleRecurrence(&PN, BO, Start, Step)) 5603 continue; 5604 5605 switch (BO->getOpcode()) { 5606 case Instruction::Sub: 5607 if (BO->getOperand(0) != &PN) 5608 // sub is non-commutative - match handling elsewhere in LSR 5609 continue; 5610 break; 5611 case Instruction::Add: 5612 break; 5613 default: 5614 continue; 5615 }; 5616 5617 if (!isa<Constant>(Step)) 5618 // If not a constant step, might increase register pressure 5619 // (We assume constants have been canonicalized to RHS) 5620 continue; 5621 5622 if (BO->getParent() == IVIncInsertPos->getParent()) 5623 // Only bother moving across blocks. Isel can handle block local case. 5624 continue; 5625 5626 // Can we legally schedule inc at the desired point? 5627 if (!llvm::all_of(BO->uses(), 5628 [&](Use &U) {return DT.dominates(IVIncInsertPos, U);})) 5629 continue; 5630 BO->moveBefore(IVIncInsertPos); 5631 Changed = true; 5632 } 5633 5634 5635 } 5636 5637 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, 5638 DominatorTree &DT, LoopInfo &LI, 5639 const TargetTransformInfo &TTI, AssumptionCache &AC, 5640 TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU) 5641 : IU(IU), SE(SE), DT(DT), LI(LI), AC(AC), TLI(TLI), TTI(TTI), L(L), 5642 MSSAU(MSSAU), AMK(PreferredAddresingMode.getNumOccurrences() > 0 ? 5643 PreferredAddresingMode : TTI.getPreferredAddressingMode(L, &SE)) { 5644 // If LoopSimplify form is not available, stay out of trouble. 5645 if (!L->isLoopSimplifyForm()) 5646 return; 5647 5648 // If there's no interesting work to be done, bail early. 5649 if (IU.empty()) return; 5650 5651 // If there's too much analysis to be done, bail early. We won't be able to 5652 // model the problem anyway. 5653 unsigned NumUsers = 0; 5654 for (const IVStrideUse &U : IU) { 5655 if (++NumUsers > MaxIVUsers) { 5656 (void)U; 5657 LLVM_DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U 5658 << "\n"); 5659 return; 5660 } 5661 // Bail out if we have a PHI on an EHPad that gets a value from a 5662 // CatchSwitchInst. Because the CatchSwitchInst cannot be split, there is 5663 // no good place to stick any instructions. 5664 if (auto *PN = dyn_cast<PHINode>(U.getUser())) { 5665 auto *FirstNonPHI = PN->getParent()->getFirstNonPHI(); 5666 if (isa<FuncletPadInst>(FirstNonPHI) || 5667 isa<CatchSwitchInst>(FirstNonPHI)) 5668 for (BasicBlock *PredBB : PN->blocks()) 5669 if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI())) 5670 return; 5671 } 5672 } 5673 5674 #ifndef NDEBUG 5675 // All dominating loops must have preheaders, or SCEVExpander may not be able 5676 // to materialize an AddRecExpr whose Start is an outer AddRecExpr. 5677 // 5678 // IVUsers analysis should only create users that are dominated by simple loop 5679 // headers. Since this loop should dominate all of its users, its user list 5680 // should be empty if this loop itself is not within a simple loop nest. 5681 for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader()); 5682 Rung; Rung = Rung->getIDom()) { 5683 BasicBlock *BB = Rung->getBlock(); 5684 const Loop *DomLoop = LI.getLoopFor(BB); 5685 if (DomLoop && DomLoop->getHeader() == BB) { 5686 assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest"); 5687 } 5688 } 5689 #endif // DEBUG 5690 5691 LLVM_DEBUG(dbgs() << "\nLSR on loop "; 5692 L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false); 5693 dbgs() << ":\n"); 5694 5695 // First, perform some low-level loop optimizations. 5696 OptimizeShadowIV(); 5697 OptimizeLoopTermCond(); 5698 5699 // If loop preparation eliminates all interesting IV users, bail. 5700 if (IU.empty()) return; 5701 5702 // Skip nested loops until we can model them better with formulae. 5703 if (!L->isInnermost()) { 5704 LLVM_DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n"); 5705 return; 5706 } 5707 5708 // Start collecting data and preparing for the solver. 5709 // If number of registers is not the major cost, we cannot benefit from the 5710 // current profitable chain optimization which is based on number of 5711 // registers. 5712 // FIXME: add profitable chain optimization for other kinds major cost, for 5713 // example number of instructions. 5714 if (TTI.isNumRegsMajorCostOfLSR() || StressIVChain) 5715 CollectChains(); 5716 CollectInterestingTypesAndFactors(); 5717 CollectFixupsAndInitialFormulae(); 5718 CollectLoopInvariantFixupsAndFormulae(); 5719 5720 if (Uses.empty()) 5721 return; 5722 5723 LLVM_DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n"; 5724 print_uses(dbgs())); 5725 5726 // Now use the reuse data to generate a bunch of interesting ways 5727 // to formulate the values needed for the uses. 5728 GenerateAllReuseFormulae(); 5729 5730 FilterOutUndesirableDedicatedRegisters(); 5731 NarrowSearchSpaceUsingHeuristics(); 5732 5733 SmallVector<const Formula *, 8> Solution; 5734 Solve(Solution); 5735 5736 // Release memory that is no longer needed. 5737 Factors.clear(); 5738 Types.clear(); 5739 RegUses.clear(); 5740 5741 if (Solution.empty()) 5742 return; 5743 5744 #ifndef NDEBUG 5745 // Formulae should be legal. 5746 for (const LSRUse &LU : Uses) { 5747 for (const Formula &F : LU.Formulae) 5748 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 5749 F) && "Illegal formula generated!"); 5750 }; 5751 #endif 5752 5753 // Now that we've decided what we want, make it so. 5754 ImplementSolution(Solution); 5755 } 5756 5757 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 5758 void LSRInstance::print_factors_and_types(raw_ostream &OS) const { 5759 if (Factors.empty() && Types.empty()) return; 5760 5761 OS << "LSR has identified the following interesting factors and types: "; 5762 bool First = true; 5763 5764 for (int64_t Factor : Factors) { 5765 if (!First) OS << ", "; 5766 First = false; 5767 OS << '*' << Factor; 5768 } 5769 5770 for (Type *Ty : Types) { 5771 if (!First) OS << ", "; 5772 First = false; 5773 OS << '(' << *Ty << ')'; 5774 } 5775 OS << '\n'; 5776 } 5777 5778 void LSRInstance::print_fixups(raw_ostream &OS) const { 5779 OS << "LSR is examining the following fixup sites:\n"; 5780 for (const LSRUse &LU : Uses) 5781 for (const LSRFixup &LF : LU.Fixups) { 5782 dbgs() << " "; 5783 LF.print(OS); 5784 OS << '\n'; 5785 } 5786 } 5787 5788 void LSRInstance::print_uses(raw_ostream &OS) const { 5789 OS << "LSR is examining the following uses:\n"; 5790 for (const LSRUse &LU : Uses) { 5791 dbgs() << " "; 5792 LU.print(OS); 5793 OS << '\n'; 5794 for (const Formula &F : LU.Formulae) { 5795 OS << " "; 5796 F.print(OS); 5797 OS << '\n'; 5798 } 5799 } 5800 } 5801 5802 void LSRInstance::print(raw_ostream &OS) const { 5803 print_factors_and_types(OS); 5804 print_fixups(OS); 5805 print_uses(OS); 5806 } 5807 5808 LLVM_DUMP_METHOD void LSRInstance::dump() const { 5809 print(errs()); errs() << '\n'; 5810 } 5811 #endif 5812 5813 namespace { 5814 5815 class LoopStrengthReduce : public LoopPass { 5816 public: 5817 static char ID; // Pass ID, replacement for typeid 5818 5819 LoopStrengthReduce(); 5820 5821 private: 5822 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 5823 void getAnalysisUsage(AnalysisUsage &AU) const override; 5824 }; 5825 5826 } // end anonymous namespace 5827 5828 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) { 5829 initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry()); 5830 } 5831 5832 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const { 5833 // We split critical edges, so we change the CFG. However, we do update 5834 // many analyses if they are around. 5835 AU.addPreservedID(LoopSimplifyID); 5836 5837 AU.addRequired<LoopInfoWrapperPass>(); 5838 AU.addPreserved<LoopInfoWrapperPass>(); 5839 AU.addRequiredID(LoopSimplifyID); 5840 AU.addRequired<DominatorTreeWrapperPass>(); 5841 AU.addPreserved<DominatorTreeWrapperPass>(); 5842 AU.addRequired<ScalarEvolutionWrapperPass>(); 5843 AU.addPreserved<ScalarEvolutionWrapperPass>(); 5844 AU.addRequired<AssumptionCacheTracker>(); 5845 AU.addRequired<TargetLibraryInfoWrapperPass>(); 5846 // Requiring LoopSimplify a second time here prevents IVUsers from running 5847 // twice, since LoopSimplify was invalidated by running ScalarEvolution. 5848 AU.addRequiredID(LoopSimplifyID); 5849 AU.addRequired<IVUsersWrapperPass>(); 5850 AU.addPreserved<IVUsersWrapperPass>(); 5851 AU.addRequired<TargetTransformInfoWrapperPass>(); 5852 AU.addPreserved<MemorySSAWrapperPass>(); 5853 } 5854 5855 using EqualValues = SmallVector<std::tuple<WeakVH, int64_t>, 4>; 5856 using EqualValuesMap = 5857 DenseMap<DbgValueInst *, SmallVector<std::pair<unsigned, EqualValues>>>; 5858 using LocationMap = 5859 DenseMap<DbgValueInst *, std::pair<DIExpression *, Metadata *>>; 5860 5861 static void DbgGatherEqualValues(Loop *L, ScalarEvolution &SE, 5862 EqualValuesMap &DbgValueToEqualSet, 5863 LocationMap &DbgValueToLocation) { 5864 for (auto &B : L->getBlocks()) { 5865 for (auto &I : *B) { 5866 auto DVI = dyn_cast<DbgValueInst>(&I); 5867 if (!DVI) 5868 continue; 5869 for (unsigned Idx = 0; Idx < DVI->getNumVariableLocationOps(); ++Idx) { 5870 // TODO: We can duplicate results if the same arg appears more than 5871 // once. 5872 Value *V = DVI->getVariableLocationOp(Idx); 5873 if (!V || !SE.isSCEVable(V->getType())) 5874 continue; 5875 auto DbgValueSCEV = SE.getSCEV(V); 5876 EqualValues EqSet; 5877 for (PHINode &Phi : L->getHeader()->phis()) { 5878 if (V->getType() != Phi.getType()) 5879 continue; 5880 if (!SE.isSCEVable(Phi.getType())) 5881 continue; 5882 auto PhiSCEV = SE.getSCEV(&Phi); 5883 Optional<APInt> Offset = 5884 SE.computeConstantDifference(DbgValueSCEV, PhiSCEV); 5885 if (Offset && Offset->getMinSignedBits() <= 64) 5886 EqSet.emplace_back( 5887 std::make_tuple(&Phi, Offset.getValue().getSExtValue())); 5888 } 5889 DbgValueToEqualSet[DVI].push_back({Idx, std::move(EqSet)}); 5890 // If we fall back to using this raw location, at least one location op 5891 // must be dead. A DIArgList will automatically undef arguments when 5892 // they become unavailable, but a ValueAsMetadata will not; since we 5893 // know the value should be undef, we use the undef value directly here. 5894 Metadata *RawLocation = 5895 DVI->hasArgList() ? DVI->getRawLocation() 5896 : ValueAsMetadata::get(UndefValue::get( 5897 DVI->getVariableLocationOp(0)->getType())); 5898 DbgValueToLocation[DVI] = {DVI->getExpression(), RawLocation}; 5899 } 5900 } 5901 } 5902 } 5903 5904 static void DbgApplyEqualValues(EqualValuesMap &DbgValueToEqualSet, 5905 LocationMap &DbgValueToLocation) { 5906 for (auto A : DbgValueToEqualSet) { 5907 auto *DVI = A.first; 5908 // Only update those that are now undef. 5909 if (!DVI->isUndef()) 5910 continue; 5911 // The dbg.value may have had its value or expression changed during LSR by 5912 // a failed salvage attempt; refresh them from the map. 5913 auto *DbgDIExpr = DbgValueToLocation[DVI].first; 5914 DVI->setRawLocation(DbgValueToLocation[DVI].second); 5915 DVI->setExpression(DbgDIExpr); 5916 assert(DVI->isUndef() && "dbg.value with non-undef location should not " 5917 "have been modified by LSR."); 5918 for (auto IdxEV : A.second) { 5919 unsigned Idx = IdxEV.first; 5920 for (auto EV : IdxEV.second) { 5921 auto EVHandle = std::get<WeakVH>(EV); 5922 if (!EVHandle) 5923 continue; 5924 int64_t Offset = std::get<int64_t>(EV); 5925 DVI->replaceVariableLocationOp(Idx, EVHandle); 5926 if (Offset) { 5927 SmallVector<uint64_t, 8> Ops; 5928 DIExpression::appendOffset(Ops, Offset); 5929 DbgDIExpr = DIExpression::appendOpsToArg(DbgDIExpr, Ops, Idx, true); 5930 } 5931 DVI->setExpression(DbgDIExpr); 5932 break; 5933 } 5934 } 5935 } 5936 } 5937 5938 static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE, 5939 DominatorTree &DT, LoopInfo &LI, 5940 const TargetTransformInfo &TTI, 5941 AssumptionCache &AC, TargetLibraryInfo &TLI, 5942 MemorySSA *MSSA) { 5943 5944 bool Changed = false; 5945 std::unique_ptr<MemorySSAUpdater> MSSAU; 5946 if (MSSA) 5947 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 5948 5949 // Run the main LSR transformation. 5950 Changed |= 5951 LSRInstance(L, IU, SE, DT, LI, TTI, AC, TLI, MSSAU.get()).getChanged(); 5952 5953 // Debug preservation - before we start removing anything create equivalence 5954 // sets for the llvm.dbg.value intrinsics. 5955 EqualValuesMap DbgValueToEqualSet; 5956 LocationMap DbgValueToLocation; 5957 DbgGatherEqualValues(L, SE, DbgValueToEqualSet, DbgValueToLocation); 5958 5959 // Remove any extra phis created by processing inner loops. 5960 Changed |= DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get()); 5961 if (EnablePhiElim && L->isLoopSimplifyForm()) { 5962 SmallVector<WeakTrackingVH, 16> DeadInsts; 5963 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 5964 SCEVExpander Rewriter(SE, DL, "lsr", false); 5965 #ifndef NDEBUG 5966 Rewriter.setDebugType(DEBUG_TYPE); 5967 #endif 5968 unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI); 5969 if (numFolded) { 5970 Changed = true; 5971 RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts, &TLI, 5972 MSSAU.get()); 5973 DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get()); 5974 } 5975 } 5976 5977 DbgApplyEqualValues(DbgValueToEqualSet, DbgValueToLocation); 5978 5979 return Changed; 5980 } 5981 5982 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) { 5983 if (skipLoop(L)) 5984 return false; 5985 5986 auto &IU = getAnalysis<IVUsersWrapperPass>().getIU(); 5987 auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 5988 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 5989 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 5990 const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI( 5991 *L->getHeader()->getParent()); 5992 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache( 5993 *L->getHeader()->getParent()); 5994 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI( 5995 *L->getHeader()->getParent()); 5996 auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>(); 5997 MemorySSA *MSSA = nullptr; 5998 if (MSSAAnalysis) 5999 MSSA = &MSSAAnalysis->getMSSA(); 6000 return ReduceLoopStrength(L, IU, SE, DT, LI, TTI, AC, TLI, MSSA); 6001 } 6002 6003 PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM, 6004 LoopStandardAnalysisResults &AR, 6005 LPMUpdater &) { 6006 if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE, 6007 AR.DT, AR.LI, AR.TTI, AR.AC, AR.TLI, AR.MSSA)) 6008 return PreservedAnalyses::all(); 6009 6010 auto PA = getLoopPassPreservedAnalyses(); 6011 if (AR.MSSA) 6012 PA.preserve<MemorySSAAnalysis>(); 6013 return PA; 6014 } 6015 6016 char LoopStrengthReduce::ID = 0; 6017 6018 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce", 6019 "Loop Strength Reduction", false, false) 6020 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 6021 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 6022 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 6023 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass) 6024 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 6025 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 6026 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce", 6027 "Loop Strength Reduction", false, false) 6028 6029 Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); } 6030