1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This transformation analyzes and transforms the induction variables (and 11 // computations derived from them) into forms suitable for efficient execution 12 // on the target. 13 // 14 // This pass performs a strength reduction on array references inside loops that 15 // have as one or more of their components the loop induction variable, it 16 // rewrites expressions to take advantage of scaled-index addressing modes 17 // available on the target, and it performs a variety of other optimizations 18 // related to loop induction variables. 19 // 20 // Terminology note: this code has a lot of handling for "post-increment" or 21 // "post-inc" users. This is not talking about post-increment addressing modes; 22 // it is instead talking about code like this: 23 // 24 // %i = phi [ 0, %entry ], [ %i.next, %latch ] 25 // ... 26 // %i.next = add %i, 1 27 // %c = icmp eq %i.next, %n 28 // 29 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however 30 // it's useful to think about these as the same register, with some uses using 31 // the value of the register before the add and some using it after. In this 32 // example, the icmp is a post-increment user, since it uses %i.next, which is 33 // the value of the induction variable after the increment. The other common 34 // case of post-increment users is users outside the loop. 35 // 36 // TODO: More sophistication in the way Formulae are generated and filtered. 37 // 38 // TODO: Handle multiple loops at a time. 39 // 40 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead 41 // of a GlobalValue? 42 // 43 // TODO: When truncation is free, truncate ICmp users' operands to make it a 44 // smaller encoding (on x86 at least). 45 // 46 // TODO: When a negated register is used by an add (such as in a list of 47 // multiple base registers, or as the increment expression in an addrec), 48 // we may not actually need both reg and (-1 * reg) in registers; the 49 // negation can be implemented by using a sub instead of an add. The 50 // lack of support for taking this into consideration when making 51 // register pressure decisions is partly worked around by the "Special" 52 // use kind. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h" 57 #include "llvm/ADT/APInt.h" 58 #include "llvm/ADT/DenseMap.h" 59 #include "llvm/ADT/DenseSet.h" 60 #include "llvm/ADT/Hashing.h" 61 #include "llvm/ADT/PointerIntPair.h" 62 #include "llvm/ADT/STLExtras.h" 63 #include "llvm/ADT/SetVector.h" 64 #include "llvm/ADT/SmallBitVector.h" 65 #include "llvm/ADT/SmallPtrSet.h" 66 #include "llvm/ADT/SmallSet.h" 67 #include "llvm/ADT/SmallVector.h" 68 #include "llvm/ADT/iterator_range.h" 69 #include "llvm/Analysis/IVUsers.h" 70 #include "llvm/Analysis/LoopAnalysisManager.h" 71 #include "llvm/Analysis/LoopInfo.h" 72 #include "llvm/Analysis/LoopPass.h" 73 #include "llvm/Analysis/ScalarEvolution.h" 74 #include "llvm/Analysis/ScalarEvolutionExpander.h" 75 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 76 #include "llvm/Analysis/ScalarEvolutionNormalization.h" 77 #include "llvm/Analysis/TargetTransformInfo.h" 78 #include "llvm/IR/BasicBlock.h" 79 #include "llvm/IR/Constant.h" 80 #include "llvm/IR/Constants.h" 81 #include "llvm/IR/DerivedTypes.h" 82 #include "llvm/IR/Dominators.h" 83 #include "llvm/IR/GlobalValue.h" 84 #include "llvm/IR/IRBuilder.h" 85 #include "llvm/IR/InstrTypes.h" 86 #include "llvm/IR/Instruction.h" 87 #include "llvm/IR/Instructions.h" 88 #include "llvm/IR/IntrinsicInst.h" 89 #include "llvm/IR/Intrinsics.h" 90 #include "llvm/IR/Module.h" 91 #include "llvm/IR/OperandTraits.h" 92 #include "llvm/IR/Operator.h" 93 #include "llvm/IR/PassManager.h" 94 #include "llvm/IR/Type.h" 95 #include "llvm/IR/Use.h" 96 #include "llvm/IR/User.h" 97 #include "llvm/IR/Value.h" 98 #include "llvm/IR/ValueHandle.h" 99 #include "llvm/Pass.h" 100 #include "llvm/Support/Casting.h" 101 #include "llvm/Support/CommandLine.h" 102 #include "llvm/Support/Compiler.h" 103 #include "llvm/Support/Debug.h" 104 #include "llvm/Support/ErrorHandling.h" 105 #include "llvm/Support/MathExtras.h" 106 #include "llvm/Support/raw_ostream.h" 107 #include "llvm/Transforms/Scalar.h" 108 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 109 #include "llvm/Transforms/Utils/Local.h" 110 #include <algorithm> 111 #include <cassert> 112 #include <cstddef> 113 #include <cstdint> 114 #include <cstdlib> 115 #include <iterator> 116 #include <limits> 117 #include <map> 118 #include <utility> 119 120 using namespace llvm; 121 122 #define DEBUG_TYPE "loop-reduce" 123 124 /// MaxIVUsers is an arbitrary threshold that provides an early opportunitiy for 125 /// bail out. This threshold is far beyond the number of users that LSR can 126 /// conceivably solve, so it should not affect generated code, but catches the 127 /// worst cases before LSR burns too much compile time and stack space. 128 static const unsigned MaxIVUsers = 200; 129 130 // Temporary flag to cleanup congruent phis after LSR phi expansion. 131 // It's currently disabled until we can determine whether it's truly useful or 132 // not. The flag should be removed after the v3.0 release. 133 // This is now needed for ivchains. 134 static cl::opt<bool> EnablePhiElim( 135 "enable-lsr-phielim", cl::Hidden, cl::init(true), 136 cl::desc("Enable LSR phi elimination")); 137 138 // The flag adds instruction count to solutions cost comparision. 139 static cl::opt<bool> InsnsCost( 140 "lsr-insns-cost", cl::Hidden, cl::init(true), 141 cl::desc("Add instruction count to a LSR cost model")); 142 143 // Flag to choose how to narrow complex lsr solution 144 static cl::opt<bool> LSRExpNarrow( 145 "lsr-exp-narrow", cl::Hidden, cl::init(false), 146 cl::desc("Narrow LSR complex solution using" 147 " expectation of registers number")); 148 149 // Flag to narrow search space by filtering non-optimal formulae with 150 // the same ScaledReg and Scale. 151 static cl::opt<bool> FilterSameScaledReg( 152 "lsr-filter-same-scaled-reg", cl::Hidden, cl::init(true), 153 cl::desc("Narrow LSR search space by filtering non-optimal formulae" 154 " with the same ScaledReg and Scale")); 155 156 #ifndef NDEBUG 157 // Stress test IV chain generation. 158 static cl::opt<bool> StressIVChain( 159 "stress-ivchain", cl::Hidden, cl::init(false), 160 cl::desc("Stress test LSR IV chains")); 161 #else 162 static bool StressIVChain = false; 163 #endif 164 165 namespace { 166 167 struct MemAccessTy { 168 /// Used in situations where the accessed memory type is unknown. 169 static const unsigned UnknownAddressSpace = 170 std::numeric_limits<unsigned>::max(); 171 172 Type *MemTy = nullptr; 173 unsigned AddrSpace = UnknownAddressSpace; 174 175 MemAccessTy() = default; 176 MemAccessTy(Type *Ty, unsigned AS) : MemTy(Ty), AddrSpace(AS) {} 177 178 bool operator==(MemAccessTy Other) const { 179 return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace; 180 } 181 182 bool operator!=(MemAccessTy Other) const { return !(*this == Other); } 183 184 static MemAccessTy getUnknown(LLVMContext &Ctx, 185 unsigned AS = UnknownAddressSpace) { 186 return MemAccessTy(Type::getVoidTy(Ctx), AS); 187 } 188 }; 189 190 /// This class holds data which is used to order reuse candidates. 191 class RegSortData { 192 public: 193 /// This represents the set of LSRUse indices which reference 194 /// a particular register. 195 SmallBitVector UsedByIndices; 196 197 void print(raw_ostream &OS) const; 198 void dump() const; 199 }; 200 201 } // end anonymous namespace 202 203 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 204 void RegSortData::print(raw_ostream &OS) const { 205 OS << "[NumUses=" << UsedByIndices.count() << ']'; 206 } 207 208 LLVM_DUMP_METHOD void RegSortData::dump() const { 209 print(errs()); errs() << '\n'; 210 } 211 #endif 212 213 namespace { 214 215 /// Map register candidates to information about how they are used. 216 class RegUseTracker { 217 using RegUsesTy = DenseMap<const SCEV *, RegSortData>; 218 219 RegUsesTy RegUsesMap; 220 SmallVector<const SCEV *, 16> RegSequence; 221 222 public: 223 void countRegister(const SCEV *Reg, size_t LUIdx); 224 void dropRegister(const SCEV *Reg, size_t LUIdx); 225 void swapAndDropUse(size_t LUIdx, size_t LastLUIdx); 226 227 bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const; 228 229 const SmallBitVector &getUsedByIndices(const SCEV *Reg) const; 230 231 void clear(); 232 233 using iterator = SmallVectorImpl<const SCEV *>::iterator; 234 using const_iterator = SmallVectorImpl<const SCEV *>::const_iterator; 235 236 iterator begin() { return RegSequence.begin(); } 237 iterator end() { return RegSequence.end(); } 238 const_iterator begin() const { return RegSequence.begin(); } 239 const_iterator end() const { return RegSequence.end(); } 240 }; 241 242 } // end anonymous namespace 243 244 void 245 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) { 246 std::pair<RegUsesTy::iterator, bool> Pair = 247 RegUsesMap.insert(std::make_pair(Reg, RegSortData())); 248 RegSortData &RSD = Pair.first->second; 249 if (Pair.second) 250 RegSequence.push_back(Reg); 251 RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1)); 252 RSD.UsedByIndices.set(LUIdx); 253 } 254 255 void 256 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) { 257 RegUsesTy::iterator It = RegUsesMap.find(Reg); 258 assert(It != RegUsesMap.end()); 259 RegSortData &RSD = It->second; 260 assert(RSD.UsedByIndices.size() > LUIdx); 261 RSD.UsedByIndices.reset(LUIdx); 262 } 263 264 void 265 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) { 266 assert(LUIdx <= LastLUIdx); 267 268 // Update RegUses. The data structure is not optimized for this purpose; 269 // we must iterate through it and update each of the bit vectors. 270 for (auto &Pair : RegUsesMap) { 271 SmallBitVector &UsedByIndices = Pair.second.UsedByIndices; 272 if (LUIdx < UsedByIndices.size()) 273 UsedByIndices[LUIdx] = 274 LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false; 275 UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx)); 276 } 277 } 278 279 bool 280 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const { 281 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 282 if (I == RegUsesMap.end()) 283 return false; 284 const SmallBitVector &UsedByIndices = I->second.UsedByIndices; 285 int i = UsedByIndices.find_first(); 286 if (i == -1) return false; 287 if ((size_t)i != LUIdx) return true; 288 return UsedByIndices.find_next(i) != -1; 289 } 290 291 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const { 292 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 293 assert(I != RegUsesMap.end() && "Unknown register!"); 294 return I->second.UsedByIndices; 295 } 296 297 void RegUseTracker::clear() { 298 RegUsesMap.clear(); 299 RegSequence.clear(); 300 } 301 302 namespace { 303 304 /// This class holds information that describes a formula for computing 305 /// satisfying a use. It may include broken-out immediates and scaled registers. 306 struct Formula { 307 /// Global base address used for complex addressing. 308 GlobalValue *BaseGV = nullptr; 309 310 /// Base offset for complex addressing. 311 int64_t BaseOffset = 0; 312 313 /// Whether any complex addressing has a base register. 314 bool HasBaseReg = false; 315 316 /// The scale of any complex addressing. 317 int64_t Scale = 0; 318 319 /// The list of "base" registers for this use. When this is non-empty. The 320 /// canonical representation of a formula is 321 /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and 322 /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty(). 323 /// 3. The reg containing recurrent expr related with currect loop in the 324 /// formula should be put in the ScaledReg. 325 /// #1 enforces that the scaled register is always used when at least two 326 /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2. 327 /// #2 enforces that 1 * reg is reg. 328 /// #3 ensures invariant regs with respect to current loop can be combined 329 /// together in LSR codegen. 330 /// This invariant can be temporarly broken while building a formula. 331 /// However, every formula inserted into the LSRInstance must be in canonical 332 /// form. 333 SmallVector<const SCEV *, 4> BaseRegs; 334 335 /// The 'scaled' register for this use. This should be non-null when Scale is 336 /// not zero. 337 const SCEV *ScaledReg = nullptr; 338 339 /// An additional constant offset which added near the use. This requires a 340 /// temporary register, but the offset itself can live in an add immediate 341 /// field rather than a register. 342 int64_t UnfoldedOffset = 0; 343 344 Formula() = default; 345 346 void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE); 347 348 bool isCanonical(const Loop &L) const; 349 350 void canonicalize(const Loop &L); 351 352 bool unscale(); 353 354 bool hasZeroEnd() const; 355 356 size_t getNumRegs() const; 357 Type *getType() const; 358 359 void deleteBaseReg(const SCEV *&S); 360 361 bool referencesReg(const SCEV *S) const; 362 bool hasRegsUsedByUsesOtherThan(size_t LUIdx, 363 const RegUseTracker &RegUses) const; 364 365 void print(raw_ostream &OS) const; 366 void dump() const; 367 }; 368 369 } // end anonymous namespace 370 371 /// Recursion helper for initialMatch. 372 static void DoInitialMatch(const SCEV *S, Loop *L, 373 SmallVectorImpl<const SCEV *> &Good, 374 SmallVectorImpl<const SCEV *> &Bad, 375 ScalarEvolution &SE) { 376 // Collect expressions which properly dominate the loop header. 377 if (SE.properlyDominates(S, L->getHeader())) { 378 Good.push_back(S); 379 return; 380 } 381 382 // Look at add operands. 383 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 384 for (const SCEV *S : Add->operands()) 385 DoInitialMatch(S, L, Good, Bad, SE); 386 return; 387 } 388 389 // Look at addrec operands. 390 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 391 if (!AR->getStart()->isZero() && AR->isAffine()) { 392 DoInitialMatch(AR->getStart(), L, Good, Bad, SE); 393 DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0), 394 AR->getStepRecurrence(SE), 395 // FIXME: AR->getNoWrapFlags() 396 AR->getLoop(), SCEV::FlagAnyWrap), 397 L, Good, Bad, SE); 398 return; 399 } 400 401 // Handle a multiplication by -1 (negation) if it didn't fold. 402 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) 403 if (Mul->getOperand(0)->isAllOnesValue()) { 404 SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end()); 405 const SCEV *NewMul = SE.getMulExpr(Ops); 406 407 SmallVector<const SCEV *, 4> MyGood; 408 SmallVector<const SCEV *, 4> MyBad; 409 DoInitialMatch(NewMul, L, MyGood, MyBad, SE); 410 const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue( 411 SE.getEffectiveSCEVType(NewMul->getType()))); 412 for (const SCEV *S : MyGood) 413 Good.push_back(SE.getMulExpr(NegOne, S)); 414 for (const SCEV *S : MyBad) 415 Bad.push_back(SE.getMulExpr(NegOne, S)); 416 return; 417 } 418 419 // Ok, we can't do anything interesting. Just stuff the whole thing into a 420 // register and hope for the best. 421 Bad.push_back(S); 422 } 423 424 /// Incorporate loop-variant parts of S into this Formula, attempting to keep 425 /// all loop-invariant and loop-computable values in a single base register. 426 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) { 427 SmallVector<const SCEV *, 4> Good; 428 SmallVector<const SCEV *, 4> Bad; 429 DoInitialMatch(S, L, Good, Bad, SE); 430 if (!Good.empty()) { 431 const SCEV *Sum = SE.getAddExpr(Good); 432 if (!Sum->isZero()) 433 BaseRegs.push_back(Sum); 434 HasBaseReg = true; 435 } 436 if (!Bad.empty()) { 437 const SCEV *Sum = SE.getAddExpr(Bad); 438 if (!Sum->isZero()) 439 BaseRegs.push_back(Sum); 440 HasBaseReg = true; 441 } 442 canonicalize(*L); 443 } 444 445 /// \brief Check whether or not this formula statisfies the canonical 446 /// representation. 447 /// \see Formula::BaseRegs. 448 bool Formula::isCanonical(const Loop &L) const { 449 if (!ScaledReg) 450 return BaseRegs.size() <= 1; 451 452 if (Scale != 1) 453 return true; 454 455 if (Scale == 1 && BaseRegs.empty()) 456 return false; 457 458 const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg); 459 if (SAR && SAR->getLoop() == &L) 460 return true; 461 462 // If ScaledReg is not a recurrent expr, or it is but its loop is not current 463 // loop, meanwhile BaseRegs contains a recurrent expr reg related with current 464 // loop, we want to swap the reg in BaseRegs with ScaledReg. 465 auto I = 466 find_if(make_range(BaseRegs.begin(), BaseRegs.end()), [&](const SCEV *S) { 467 return isa<const SCEVAddRecExpr>(S) && 468 (cast<SCEVAddRecExpr>(S)->getLoop() == &L); 469 }); 470 return I == BaseRegs.end(); 471 } 472 473 /// \brief Helper method to morph a formula into its canonical representation. 474 /// \see Formula::BaseRegs. 475 /// Every formula having more than one base register, must use the ScaledReg 476 /// field. Otherwise, we would have to do special cases everywhere in LSR 477 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ... 478 /// On the other hand, 1*reg should be canonicalized into reg. 479 void Formula::canonicalize(const Loop &L) { 480 if (isCanonical(L)) 481 return; 482 // So far we did not need this case. This is easy to implement but it is 483 // useless to maintain dead code. Beside it could hurt compile time. 484 assert(!BaseRegs.empty() && "1*reg => reg, should not be needed."); 485 486 // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg. 487 if (!ScaledReg) { 488 ScaledReg = BaseRegs.back(); 489 BaseRegs.pop_back(); 490 Scale = 1; 491 } 492 493 // If ScaledReg is an invariant with respect to L, find the reg from 494 // BaseRegs containing the recurrent expr related with Loop L. Swap the 495 // reg with ScaledReg. 496 const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg); 497 if (!SAR || SAR->getLoop() != &L) { 498 auto I = find_if(make_range(BaseRegs.begin(), BaseRegs.end()), 499 [&](const SCEV *S) { 500 return isa<const SCEVAddRecExpr>(S) && 501 (cast<SCEVAddRecExpr>(S)->getLoop() == &L); 502 }); 503 if (I != BaseRegs.end()) 504 std::swap(ScaledReg, *I); 505 } 506 } 507 508 /// \brief Get rid of the scale in the formula. 509 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2. 510 /// \return true if it was possible to get rid of the scale, false otherwise. 511 /// \note After this operation the formula may not be in the canonical form. 512 bool Formula::unscale() { 513 if (Scale != 1) 514 return false; 515 Scale = 0; 516 BaseRegs.push_back(ScaledReg); 517 ScaledReg = nullptr; 518 return true; 519 } 520 521 bool Formula::hasZeroEnd() const { 522 if (UnfoldedOffset || BaseOffset) 523 return false; 524 if (BaseRegs.size() != 1 || ScaledReg) 525 return false; 526 return true; 527 } 528 529 /// Return the total number of register operands used by this formula. This does 530 /// not include register uses implied by non-constant addrec strides. 531 size_t Formula::getNumRegs() const { 532 return !!ScaledReg + BaseRegs.size(); 533 } 534 535 /// Return the type of this formula, if it has one, or null otherwise. This type 536 /// is meaningless except for the bit size. 537 Type *Formula::getType() const { 538 return !BaseRegs.empty() ? BaseRegs.front()->getType() : 539 ScaledReg ? ScaledReg->getType() : 540 BaseGV ? BaseGV->getType() : 541 nullptr; 542 } 543 544 /// Delete the given base reg from the BaseRegs list. 545 void Formula::deleteBaseReg(const SCEV *&S) { 546 if (&S != &BaseRegs.back()) 547 std::swap(S, BaseRegs.back()); 548 BaseRegs.pop_back(); 549 } 550 551 /// Test if this formula references the given register. 552 bool Formula::referencesReg(const SCEV *S) const { 553 return S == ScaledReg || is_contained(BaseRegs, S); 554 } 555 556 /// Test whether this formula uses registers which are used by uses other than 557 /// the use with the given index. 558 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx, 559 const RegUseTracker &RegUses) const { 560 if (ScaledReg) 561 if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx)) 562 return true; 563 for (const SCEV *BaseReg : BaseRegs) 564 if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx)) 565 return true; 566 return false; 567 } 568 569 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 570 void Formula::print(raw_ostream &OS) const { 571 bool First = true; 572 if (BaseGV) { 573 if (!First) OS << " + "; else First = false; 574 BaseGV->printAsOperand(OS, /*PrintType=*/false); 575 } 576 if (BaseOffset != 0) { 577 if (!First) OS << " + "; else First = false; 578 OS << BaseOffset; 579 } 580 for (const SCEV *BaseReg : BaseRegs) { 581 if (!First) OS << " + "; else First = false; 582 OS << "reg(" << *BaseReg << ')'; 583 } 584 if (HasBaseReg && BaseRegs.empty()) { 585 if (!First) OS << " + "; else First = false; 586 OS << "**error: HasBaseReg**"; 587 } else if (!HasBaseReg && !BaseRegs.empty()) { 588 if (!First) OS << " + "; else First = false; 589 OS << "**error: !HasBaseReg**"; 590 } 591 if (Scale != 0) { 592 if (!First) OS << " + "; else First = false; 593 OS << Scale << "*reg("; 594 if (ScaledReg) 595 OS << *ScaledReg; 596 else 597 OS << "<unknown>"; 598 OS << ')'; 599 } 600 if (UnfoldedOffset != 0) { 601 if (!First) OS << " + "; 602 OS << "imm(" << UnfoldedOffset << ')'; 603 } 604 } 605 606 LLVM_DUMP_METHOD void Formula::dump() const { 607 print(errs()); errs() << '\n'; 608 } 609 #endif 610 611 /// Return true if the given addrec can be sign-extended without changing its 612 /// value. 613 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 614 Type *WideTy = 615 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1); 616 return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy)); 617 } 618 619 /// Return true if the given add can be sign-extended without changing its 620 /// value. 621 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) { 622 Type *WideTy = 623 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1); 624 return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy)); 625 } 626 627 /// Return true if the given mul can be sign-extended without changing its 628 /// value. 629 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) { 630 Type *WideTy = 631 IntegerType::get(SE.getContext(), 632 SE.getTypeSizeInBits(M->getType()) * M->getNumOperands()); 633 return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy)); 634 } 635 636 /// Return an expression for LHS /s RHS, if it can be determined and if the 637 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits 638 /// is true, expressions like (X * Y) /s Y are simplified to Y, ignoring that 639 /// the multiplication may overflow, which is useful when the result will be 640 /// used in a context where the most significant bits are ignored. 641 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS, 642 ScalarEvolution &SE, 643 bool IgnoreSignificantBits = false) { 644 // Handle the trivial case, which works for any SCEV type. 645 if (LHS == RHS) 646 return SE.getConstant(LHS->getType(), 1); 647 648 // Handle a few RHS special cases. 649 const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS); 650 if (RC) { 651 const APInt &RA = RC->getAPInt(); 652 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do 653 // some folding. 654 if (RA.isAllOnesValue()) 655 return SE.getMulExpr(LHS, RC); 656 // Handle x /s 1 as x. 657 if (RA == 1) 658 return LHS; 659 } 660 661 // Check for a division of a constant by a constant. 662 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) { 663 if (!RC) 664 return nullptr; 665 const APInt &LA = C->getAPInt(); 666 const APInt &RA = RC->getAPInt(); 667 if (LA.srem(RA) != 0) 668 return nullptr; 669 return SE.getConstant(LA.sdiv(RA)); 670 } 671 672 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow. 673 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) { 674 if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) { 675 const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE, 676 IgnoreSignificantBits); 677 if (!Step) return nullptr; 678 const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE, 679 IgnoreSignificantBits); 680 if (!Start) return nullptr; 681 // FlagNW is independent of the start value, step direction, and is 682 // preserved with smaller magnitude steps. 683 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 684 return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap); 685 } 686 return nullptr; 687 } 688 689 // Distribute the sdiv over add operands, if the add doesn't overflow. 690 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) { 691 if (IgnoreSignificantBits || isAddSExtable(Add, SE)) { 692 SmallVector<const SCEV *, 8> Ops; 693 for (const SCEV *S : Add->operands()) { 694 const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits); 695 if (!Op) return nullptr; 696 Ops.push_back(Op); 697 } 698 return SE.getAddExpr(Ops); 699 } 700 return nullptr; 701 } 702 703 // Check for a multiply operand that we can pull RHS out of. 704 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) { 705 if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) { 706 SmallVector<const SCEV *, 4> Ops; 707 bool Found = false; 708 for (const SCEV *S : Mul->operands()) { 709 if (!Found) 710 if (const SCEV *Q = getExactSDiv(S, RHS, SE, 711 IgnoreSignificantBits)) { 712 S = Q; 713 Found = true; 714 } 715 Ops.push_back(S); 716 } 717 return Found ? SE.getMulExpr(Ops) : nullptr; 718 } 719 return nullptr; 720 } 721 722 // Otherwise we don't know. 723 return nullptr; 724 } 725 726 /// If S involves the addition of a constant integer value, return that integer 727 /// value, and mutate S to point to a new SCEV with that value excluded. 728 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) { 729 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 730 if (C->getAPInt().getMinSignedBits() <= 64) { 731 S = SE.getConstant(C->getType(), 0); 732 return C->getValue()->getSExtValue(); 733 } 734 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 735 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 736 int64_t Result = ExtractImmediate(NewOps.front(), SE); 737 if (Result != 0) 738 S = SE.getAddExpr(NewOps); 739 return Result; 740 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 741 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 742 int64_t Result = ExtractImmediate(NewOps.front(), SE); 743 if (Result != 0) 744 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 745 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 746 SCEV::FlagAnyWrap); 747 return Result; 748 } 749 return 0; 750 } 751 752 /// If S involves the addition of a GlobalValue address, return that symbol, and 753 /// mutate S to point to a new SCEV with that value excluded. 754 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) { 755 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 756 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) { 757 S = SE.getConstant(GV->getType(), 0); 758 return GV; 759 } 760 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 761 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 762 GlobalValue *Result = ExtractSymbol(NewOps.back(), SE); 763 if (Result) 764 S = SE.getAddExpr(NewOps); 765 return Result; 766 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 767 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 768 GlobalValue *Result = ExtractSymbol(NewOps.front(), SE); 769 if (Result) 770 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 771 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 772 SCEV::FlagAnyWrap); 773 return Result; 774 } 775 return nullptr; 776 } 777 778 /// Returns true if the specified instruction is using the specified value as an 779 /// address. 780 static bool isAddressUse(const TargetTransformInfo &TTI, 781 Instruction *Inst, Value *OperandVal) { 782 bool isAddress = isa<LoadInst>(Inst); 783 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 784 if (SI->getPointerOperand() == OperandVal) 785 isAddress = true; 786 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 787 // Addressing modes can also be folded into prefetches and a variety 788 // of intrinsics. 789 switch (II->getIntrinsicID()) { 790 case Intrinsic::memset: 791 case Intrinsic::prefetch: 792 if (II->getArgOperand(0) == OperandVal) 793 isAddress = true; 794 break; 795 case Intrinsic::memmove: 796 case Intrinsic::memcpy: 797 if (II->getArgOperand(0) == OperandVal || 798 II->getArgOperand(1) == OperandVal) 799 isAddress = true; 800 break; 801 default: { 802 MemIntrinsicInfo IntrInfo; 803 if (TTI.getTgtMemIntrinsic(II, IntrInfo)) { 804 if (IntrInfo.PtrVal == OperandVal) 805 isAddress = true; 806 } 807 } 808 } 809 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) { 810 if (RMW->getPointerOperand() == OperandVal) 811 isAddress = true; 812 } else if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 813 if (CmpX->getPointerOperand() == OperandVal) 814 isAddress = true; 815 } 816 return isAddress; 817 } 818 819 /// Return the type of the memory being accessed. 820 static MemAccessTy getAccessType(const TargetTransformInfo &TTI, 821 Instruction *Inst) { 822 MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace); 823 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 824 AccessTy.MemTy = SI->getOperand(0)->getType(); 825 AccessTy.AddrSpace = SI->getPointerAddressSpace(); 826 } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 827 AccessTy.AddrSpace = LI->getPointerAddressSpace(); 828 } else if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) { 829 AccessTy.AddrSpace = RMW->getPointerAddressSpace(); 830 } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 831 AccessTy.AddrSpace = CmpX->getPointerAddressSpace(); 832 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 833 switch (II->getIntrinsicID()) { 834 case Intrinsic::prefetch: 835 AccessTy.AddrSpace = II->getArgOperand(0)->getType()->getPointerAddressSpace(); 836 break; 837 default: { 838 MemIntrinsicInfo IntrInfo; 839 if (TTI.getTgtMemIntrinsic(II, IntrInfo) && IntrInfo.PtrVal) { 840 AccessTy.AddrSpace 841 = IntrInfo.PtrVal->getType()->getPointerAddressSpace(); 842 } 843 844 break; 845 } 846 } 847 } 848 849 // All pointers have the same requirements, so canonicalize them to an 850 // arbitrary pointer type to minimize variation. 851 if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy)) 852 AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1), 853 PTy->getAddressSpace()); 854 855 return AccessTy; 856 } 857 858 /// Return true if this AddRec is already a phi in its loop. 859 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 860 for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin(); 861 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 862 if (SE.isSCEVable(PN->getType()) && 863 (SE.getEffectiveSCEVType(PN->getType()) == 864 SE.getEffectiveSCEVType(AR->getType())) && 865 SE.getSCEV(PN) == AR) 866 return true; 867 } 868 return false; 869 } 870 871 /// Check if expanding this expression is likely to incur significant cost. This 872 /// is tricky because SCEV doesn't track which expressions are actually computed 873 /// by the current IR. 874 /// 875 /// We currently allow expansion of IV increments that involve adds, 876 /// multiplication by constants, and AddRecs from existing phis. 877 /// 878 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an 879 /// obvious multiple of the UDivExpr. 880 static bool isHighCostExpansion(const SCEV *S, 881 SmallPtrSetImpl<const SCEV*> &Processed, 882 ScalarEvolution &SE) { 883 // Zero/One operand expressions 884 switch (S->getSCEVType()) { 885 case scUnknown: 886 case scConstant: 887 return false; 888 case scTruncate: 889 return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(), 890 Processed, SE); 891 case scZeroExtend: 892 return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(), 893 Processed, SE); 894 case scSignExtend: 895 return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(), 896 Processed, SE); 897 } 898 899 if (!Processed.insert(S).second) 900 return false; 901 902 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 903 for (const SCEV *S : Add->operands()) { 904 if (isHighCostExpansion(S, Processed, SE)) 905 return true; 906 } 907 return false; 908 } 909 910 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 911 if (Mul->getNumOperands() == 2) { 912 // Multiplication by a constant is ok 913 if (isa<SCEVConstant>(Mul->getOperand(0))) 914 return isHighCostExpansion(Mul->getOperand(1), Processed, SE); 915 916 // If we have the value of one operand, check if an existing 917 // multiplication already generates this expression. 918 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) { 919 Value *UVal = U->getValue(); 920 for (User *UR : UVal->users()) { 921 // If U is a constant, it may be used by a ConstantExpr. 922 Instruction *UI = dyn_cast<Instruction>(UR); 923 if (UI && UI->getOpcode() == Instruction::Mul && 924 SE.isSCEVable(UI->getType())) { 925 return SE.getSCEV(UI) == Mul; 926 } 927 } 928 } 929 } 930 } 931 932 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 933 if (isExistingPhi(AR, SE)) 934 return false; 935 } 936 937 // Fow now, consider any other type of expression (div/mul/min/max) high cost. 938 return true; 939 } 940 941 /// If any of the instructions is the specified set are trivially dead, delete 942 /// them and see if this makes any of their operands subsequently dead. 943 static bool 944 DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 945 bool Changed = false; 946 947 while (!DeadInsts.empty()) { 948 Value *V = DeadInsts.pop_back_val(); 949 Instruction *I = dyn_cast_or_null<Instruction>(V); 950 951 if (!I || !isInstructionTriviallyDead(I)) 952 continue; 953 954 for (Use &O : I->operands()) 955 if (Instruction *U = dyn_cast<Instruction>(O)) { 956 O = nullptr; 957 if (U->use_empty()) 958 DeadInsts.emplace_back(U); 959 } 960 961 I->eraseFromParent(); 962 Changed = true; 963 } 964 965 return Changed; 966 } 967 968 namespace { 969 970 class LSRUse; 971 972 } // end anonymous namespace 973 974 /// \brief Check if the addressing mode defined by \p F is completely 975 /// folded in \p LU at isel time. 976 /// This includes address-mode folding and special icmp tricks. 977 /// This function returns true if \p LU can accommodate what \p F 978 /// defines and up to 1 base + 1 scaled + offset. 979 /// In other words, if \p F has several base registers, this function may 980 /// still return true. Therefore, users still need to account for 981 /// additional base registers and/or unfolded offsets to derive an 982 /// accurate cost model. 983 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 984 const LSRUse &LU, const Formula &F); 985 986 // Get the cost of the scaling factor used in F for LU. 987 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, 988 const LSRUse &LU, const Formula &F, 989 const Loop &L); 990 991 namespace { 992 993 /// This class is used to measure and compare candidate formulae. 994 class Cost { 995 TargetTransformInfo::LSRCost C; 996 997 public: 998 Cost() { 999 C.Insns = 0; 1000 C.NumRegs = 0; 1001 C.AddRecCost = 0; 1002 C.NumIVMuls = 0; 1003 C.NumBaseAdds = 0; 1004 C.ImmCost = 0; 1005 C.SetupCost = 0; 1006 C.ScaleCost = 0; 1007 } 1008 1009 bool isLess(Cost &Other, const TargetTransformInfo &TTI); 1010 1011 void Lose(); 1012 1013 #ifndef NDEBUG 1014 // Once any of the metrics loses, they must all remain losers. 1015 bool isValid() { 1016 return ((C.Insns | C.NumRegs | C.AddRecCost | C.NumIVMuls | C.NumBaseAdds 1017 | C.ImmCost | C.SetupCost | C.ScaleCost) != ~0u) 1018 || ((C.Insns & C.NumRegs & C.AddRecCost & C.NumIVMuls & C.NumBaseAdds 1019 & C.ImmCost & C.SetupCost & C.ScaleCost) == ~0u); 1020 } 1021 #endif 1022 1023 bool isLoser() { 1024 assert(isValid() && "invalid cost"); 1025 return C.NumRegs == ~0u; 1026 } 1027 1028 void RateFormula(const TargetTransformInfo &TTI, 1029 const Formula &F, 1030 SmallPtrSetImpl<const SCEV *> &Regs, 1031 const DenseSet<const SCEV *> &VisitedRegs, 1032 const Loop *L, 1033 ScalarEvolution &SE, DominatorTree &DT, 1034 const LSRUse &LU, 1035 SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr); 1036 1037 void print(raw_ostream &OS) const; 1038 void dump() const; 1039 1040 private: 1041 void RateRegister(const SCEV *Reg, 1042 SmallPtrSetImpl<const SCEV *> &Regs, 1043 const Loop *L, 1044 ScalarEvolution &SE, DominatorTree &DT); 1045 void RatePrimaryRegister(const SCEV *Reg, 1046 SmallPtrSetImpl<const SCEV *> &Regs, 1047 const Loop *L, 1048 ScalarEvolution &SE, DominatorTree &DT, 1049 SmallPtrSetImpl<const SCEV *> *LoserRegs); 1050 }; 1051 1052 /// An operand value in an instruction which is to be replaced with some 1053 /// equivalent, possibly strength-reduced, replacement. 1054 struct LSRFixup { 1055 /// The instruction which will be updated. 1056 Instruction *UserInst = nullptr; 1057 1058 /// The operand of the instruction which will be replaced. The operand may be 1059 /// used more than once; every instance will be replaced. 1060 Value *OperandValToReplace = nullptr; 1061 1062 /// If this user is to use the post-incremented value of an induction 1063 /// variable, this set is non-empty and holds the loops associated with the 1064 /// induction variable. 1065 PostIncLoopSet PostIncLoops; 1066 1067 /// A constant offset to be added to the LSRUse expression. This allows 1068 /// multiple fixups to share the same LSRUse with different offsets, for 1069 /// example in an unrolled loop. 1070 int64_t Offset = 0; 1071 1072 LSRFixup() = default; 1073 1074 bool isUseFullyOutsideLoop(const Loop *L) const; 1075 1076 void print(raw_ostream &OS) const; 1077 void dump() const; 1078 }; 1079 1080 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted 1081 /// SmallVectors of const SCEV*. 1082 struct UniquifierDenseMapInfo { 1083 static SmallVector<const SCEV *, 4> getEmptyKey() { 1084 SmallVector<const SCEV *, 4> V; 1085 V.push_back(reinterpret_cast<const SCEV *>(-1)); 1086 return V; 1087 } 1088 1089 static SmallVector<const SCEV *, 4> getTombstoneKey() { 1090 SmallVector<const SCEV *, 4> V; 1091 V.push_back(reinterpret_cast<const SCEV *>(-2)); 1092 return V; 1093 } 1094 1095 static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) { 1096 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 1097 } 1098 1099 static bool isEqual(const SmallVector<const SCEV *, 4> &LHS, 1100 const SmallVector<const SCEV *, 4> &RHS) { 1101 return LHS == RHS; 1102 } 1103 }; 1104 1105 /// This class holds the state that LSR keeps for each use in IVUsers, as well 1106 /// as uses invented by LSR itself. It includes information about what kinds of 1107 /// things can be folded into the user, information about the user itself, and 1108 /// information about how the use may be satisfied. TODO: Represent multiple 1109 /// users of the same expression in common? 1110 class LSRUse { 1111 DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier; 1112 1113 public: 1114 /// An enum for a kind of use, indicating what types of scaled and immediate 1115 /// operands it might support. 1116 enum KindType { 1117 Basic, ///< A normal use, with no folding. 1118 Special, ///< A special case of basic, allowing -1 scales. 1119 Address, ///< An address use; folding according to TargetLowering 1120 ICmpZero ///< An equality icmp with both operands folded into one. 1121 // TODO: Add a generic icmp too? 1122 }; 1123 1124 using SCEVUseKindPair = PointerIntPair<const SCEV *, 2, KindType>; 1125 1126 KindType Kind; 1127 MemAccessTy AccessTy; 1128 1129 /// The list of operands which are to be replaced. 1130 SmallVector<LSRFixup, 8> Fixups; 1131 1132 /// Keep track of the min and max offsets of the fixups. 1133 int64_t MinOffset = std::numeric_limits<int64_t>::max(); 1134 int64_t MaxOffset = std::numeric_limits<int64_t>::min(); 1135 1136 /// This records whether all of the fixups using this LSRUse are outside of 1137 /// the loop, in which case some special-case heuristics may be used. 1138 bool AllFixupsOutsideLoop = true; 1139 1140 /// RigidFormula is set to true to guarantee that this use will be associated 1141 /// with a single formula--the one that initially matched. Some SCEV 1142 /// expressions cannot be expanded. This allows LSR to consider the registers 1143 /// used by those expressions without the need to expand them later after 1144 /// changing the formula. 1145 bool RigidFormula = false; 1146 1147 /// This records the widest use type for any fixup using this 1148 /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max 1149 /// fixup widths to be equivalent, because the narrower one may be relying on 1150 /// the implicit truncation to truncate away bogus bits. 1151 Type *WidestFixupType = nullptr; 1152 1153 /// A list of ways to build a value that can satisfy this user. After the 1154 /// list is populated, one of these is selected heuristically and used to 1155 /// formulate a replacement for OperandValToReplace in UserInst. 1156 SmallVector<Formula, 12> Formulae; 1157 1158 /// The set of register candidates used by all formulae in this LSRUse. 1159 SmallPtrSet<const SCEV *, 4> Regs; 1160 1161 LSRUse(KindType K, MemAccessTy AT) : Kind(K), AccessTy(AT) {} 1162 1163 LSRFixup &getNewFixup() { 1164 Fixups.push_back(LSRFixup()); 1165 return Fixups.back(); 1166 } 1167 1168 void pushFixup(LSRFixup &f) { 1169 Fixups.push_back(f); 1170 if (f.Offset > MaxOffset) 1171 MaxOffset = f.Offset; 1172 if (f.Offset < MinOffset) 1173 MinOffset = f.Offset; 1174 } 1175 1176 bool HasFormulaWithSameRegs(const Formula &F) const; 1177 float getNotSelectedProbability(const SCEV *Reg) const; 1178 bool InsertFormula(const Formula &F, const Loop &L); 1179 void DeleteFormula(Formula &F); 1180 void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses); 1181 1182 void print(raw_ostream &OS) const; 1183 void dump() const; 1184 }; 1185 1186 } // end anonymous namespace 1187 1188 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1189 LSRUse::KindType Kind, MemAccessTy AccessTy, 1190 GlobalValue *BaseGV, int64_t BaseOffset, 1191 bool HasBaseReg, int64_t Scale, 1192 Instruction *Fixup = nullptr); 1193 1194 /// Tally up interesting quantities from the given register. 1195 void Cost::RateRegister(const SCEV *Reg, 1196 SmallPtrSetImpl<const SCEV *> &Regs, 1197 const Loop *L, 1198 ScalarEvolution &SE, DominatorTree &DT) { 1199 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) { 1200 // If this is an addrec for another loop, it should be an invariant 1201 // with respect to L since L is the innermost loop (at least 1202 // for now LSR only handles innermost loops). 1203 if (AR->getLoop() != L) { 1204 // If the AddRec exists, consider it's register free and leave it alone. 1205 if (isExistingPhi(AR, SE)) 1206 return; 1207 1208 // It is bad to allow LSR for current loop to add induction variables 1209 // for its sibling loops. 1210 if (!AR->getLoop()->contains(L)) { 1211 Lose(); 1212 return; 1213 } 1214 1215 // Otherwise, it will be an invariant with respect to Loop L. 1216 ++C.NumRegs; 1217 return; 1218 } 1219 C.AddRecCost += 1; /// TODO: This should be a function of the stride. 1220 1221 // Add the step value register, if it needs one. 1222 // TODO: The non-affine case isn't precisely modeled here. 1223 if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) { 1224 if (!Regs.count(AR->getOperand(1))) { 1225 RateRegister(AR->getOperand(1), Regs, L, SE, DT); 1226 if (isLoser()) 1227 return; 1228 } 1229 } 1230 } 1231 ++C.NumRegs; 1232 1233 // Rough heuristic; favor registers which don't require extra setup 1234 // instructions in the preheader. 1235 if (!isa<SCEVUnknown>(Reg) && 1236 !isa<SCEVConstant>(Reg) && 1237 !(isa<SCEVAddRecExpr>(Reg) && 1238 (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) || 1239 isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart())))) 1240 ++C.SetupCost; 1241 1242 C.NumIVMuls += isa<SCEVMulExpr>(Reg) && 1243 SE.hasComputableLoopEvolution(Reg, L); 1244 } 1245 1246 /// Record this register in the set. If we haven't seen it before, rate 1247 /// it. Optional LoserRegs provides a way to declare any formula that refers to 1248 /// one of those regs an instant loser. 1249 void Cost::RatePrimaryRegister(const SCEV *Reg, 1250 SmallPtrSetImpl<const SCEV *> &Regs, 1251 const Loop *L, 1252 ScalarEvolution &SE, DominatorTree &DT, 1253 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1254 if (LoserRegs && LoserRegs->count(Reg)) { 1255 Lose(); 1256 return; 1257 } 1258 if (Regs.insert(Reg).second) { 1259 RateRegister(Reg, Regs, L, SE, DT); 1260 if (LoserRegs && isLoser()) 1261 LoserRegs->insert(Reg); 1262 } 1263 } 1264 1265 void Cost::RateFormula(const TargetTransformInfo &TTI, 1266 const Formula &F, 1267 SmallPtrSetImpl<const SCEV *> &Regs, 1268 const DenseSet<const SCEV *> &VisitedRegs, 1269 const Loop *L, 1270 ScalarEvolution &SE, DominatorTree &DT, 1271 const LSRUse &LU, 1272 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1273 assert(F.isCanonical(*L) && "Cost is accurate only for canonical formula"); 1274 // Tally up the registers. 1275 unsigned PrevAddRecCost = C.AddRecCost; 1276 unsigned PrevNumRegs = C.NumRegs; 1277 unsigned PrevNumBaseAdds = C.NumBaseAdds; 1278 if (const SCEV *ScaledReg = F.ScaledReg) { 1279 if (VisitedRegs.count(ScaledReg)) { 1280 Lose(); 1281 return; 1282 } 1283 RatePrimaryRegister(ScaledReg, Regs, L, SE, DT, LoserRegs); 1284 if (isLoser()) 1285 return; 1286 } 1287 for (const SCEV *BaseReg : F.BaseRegs) { 1288 if (VisitedRegs.count(BaseReg)) { 1289 Lose(); 1290 return; 1291 } 1292 RatePrimaryRegister(BaseReg, Regs, L, SE, DT, LoserRegs); 1293 if (isLoser()) 1294 return; 1295 } 1296 1297 // Determine how many (unfolded) adds we'll need inside the loop. 1298 size_t NumBaseParts = F.getNumRegs(); 1299 if (NumBaseParts > 1) 1300 // Do not count the base and a possible second register if the target 1301 // allows to fold 2 registers. 1302 C.NumBaseAdds += 1303 NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(TTI, LU, F))); 1304 C.NumBaseAdds += (F.UnfoldedOffset != 0); 1305 1306 // Accumulate non-free scaling amounts. 1307 C.ScaleCost += getScalingFactorCost(TTI, LU, F, *L); 1308 1309 // Tally up the non-zero immediates. 1310 for (const LSRFixup &Fixup : LU.Fixups) { 1311 int64_t O = Fixup.Offset; 1312 int64_t Offset = (uint64_t)O + F.BaseOffset; 1313 if (F.BaseGV) 1314 C.ImmCost += 64; // Handle symbolic values conservatively. 1315 // TODO: This should probably be the pointer size. 1316 else if (Offset != 0) 1317 C.ImmCost += APInt(64, Offset, true).getMinSignedBits(); 1318 1319 // Check with target if this offset with this instruction is 1320 // specifically not supported. 1321 if (LU.Kind == LSRUse::Address && Offset != 0 && 1322 !isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV, 1323 Offset, F.HasBaseReg, F.Scale, Fixup.UserInst)) 1324 C.NumBaseAdds++; 1325 } 1326 1327 // If we don't count instruction cost exit here. 1328 if (!InsnsCost) { 1329 assert(isValid() && "invalid cost"); 1330 return; 1331 } 1332 1333 // Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as 1334 // additional instruction (at least fill). 1335 unsigned TTIRegNum = TTI.getNumberOfRegisters(false) - 1; 1336 if (C.NumRegs > TTIRegNum) { 1337 // Cost already exceeded TTIRegNum, then only newly added register can add 1338 // new instructions. 1339 if (PrevNumRegs > TTIRegNum) 1340 C.Insns += (C.NumRegs - PrevNumRegs); 1341 else 1342 C.Insns += (C.NumRegs - TTIRegNum); 1343 } 1344 1345 // If ICmpZero formula ends with not 0, it could not be replaced by 1346 // just add or sub. We'll need to compare final result of AddRec. 1347 // That means we'll need an additional instruction. 1348 // For -10 + {0, +, 1}: 1349 // i = i + 1; 1350 // cmp i, 10 1351 // 1352 // For {-10, +, 1}: 1353 // i = i + 1; 1354 if (LU.Kind == LSRUse::ICmpZero && !F.hasZeroEnd()) 1355 C.Insns++; 1356 // Each new AddRec adds 1 instruction to calculation. 1357 C.Insns += (C.AddRecCost - PrevAddRecCost); 1358 1359 // BaseAdds adds instructions for unfolded registers. 1360 if (LU.Kind != LSRUse::ICmpZero) 1361 C.Insns += C.NumBaseAdds - PrevNumBaseAdds; 1362 assert(isValid() && "invalid cost"); 1363 } 1364 1365 /// Set this cost to a losing value. 1366 void Cost::Lose() { 1367 C.Insns = std::numeric_limits<unsigned>::max(); 1368 C.NumRegs = std::numeric_limits<unsigned>::max(); 1369 C.AddRecCost = std::numeric_limits<unsigned>::max(); 1370 C.NumIVMuls = std::numeric_limits<unsigned>::max(); 1371 C.NumBaseAdds = std::numeric_limits<unsigned>::max(); 1372 C.ImmCost = std::numeric_limits<unsigned>::max(); 1373 C.SetupCost = std::numeric_limits<unsigned>::max(); 1374 C.ScaleCost = std::numeric_limits<unsigned>::max(); 1375 } 1376 1377 /// Choose the lower cost. 1378 bool Cost::isLess(Cost &Other, const TargetTransformInfo &TTI) { 1379 if (InsnsCost.getNumOccurrences() > 0 && InsnsCost && 1380 C.Insns != Other.C.Insns) 1381 return C.Insns < Other.C.Insns; 1382 return TTI.isLSRCostLess(C, Other.C); 1383 } 1384 1385 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1386 void Cost::print(raw_ostream &OS) const { 1387 if (InsnsCost) 1388 OS << C.Insns << " instruction" << (C.Insns == 1 ? " " : "s "); 1389 OS << C.NumRegs << " reg" << (C.NumRegs == 1 ? "" : "s"); 1390 if (C.AddRecCost != 0) 1391 OS << ", with addrec cost " << C.AddRecCost; 1392 if (C.NumIVMuls != 0) 1393 OS << ", plus " << C.NumIVMuls << " IV mul" 1394 << (C.NumIVMuls == 1 ? "" : "s"); 1395 if (C.NumBaseAdds != 0) 1396 OS << ", plus " << C.NumBaseAdds << " base add" 1397 << (C.NumBaseAdds == 1 ? "" : "s"); 1398 if (C.ScaleCost != 0) 1399 OS << ", plus " << C.ScaleCost << " scale cost"; 1400 if (C.ImmCost != 0) 1401 OS << ", plus " << C.ImmCost << " imm cost"; 1402 if (C.SetupCost != 0) 1403 OS << ", plus " << C.SetupCost << " setup cost"; 1404 } 1405 1406 LLVM_DUMP_METHOD void Cost::dump() const { 1407 print(errs()); errs() << '\n'; 1408 } 1409 #endif 1410 1411 /// Test whether this fixup always uses its value outside of the given loop. 1412 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const { 1413 // PHI nodes use their value in their incoming blocks. 1414 if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) { 1415 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1416 if (PN->getIncomingValue(i) == OperandValToReplace && 1417 L->contains(PN->getIncomingBlock(i))) 1418 return false; 1419 return true; 1420 } 1421 1422 return !L->contains(UserInst); 1423 } 1424 1425 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1426 void LSRFixup::print(raw_ostream &OS) const { 1427 OS << "UserInst="; 1428 // Store is common and interesting enough to be worth special-casing. 1429 if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) { 1430 OS << "store "; 1431 Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false); 1432 } else if (UserInst->getType()->isVoidTy()) 1433 OS << UserInst->getOpcodeName(); 1434 else 1435 UserInst->printAsOperand(OS, /*PrintType=*/false); 1436 1437 OS << ", OperandValToReplace="; 1438 OperandValToReplace->printAsOperand(OS, /*PrintType=*/false); 1439 1440 for (const Loop *PIL : PostIncLoops) { 1441 OS << ", PostIncLoop="; 1442 PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 1443 } 1444 1445 if (Offset != 0) 1446 OS << ", Offset=" << Offset; 1447 } 1448 1449 LLVM_DUMP_METHOD void LSRFixup::dump() const { 1450 print(errs()); errs() << '\n'; 1451 } 1452 #endif 1453 1454 /// Test whether this use as a formula which has the same registers as the given 1455 /// formula. 1456 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const { 1457 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1458 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1459 // Unstable sort by host order ok, because this is only used for uniquifying. 1460 std::sort(Key.begin(), Key.end()); 1461 return Uniquifier.count(Key); 1462 } 1463 1464 /// The function returns a probability of selecting formula without Reg. 1465 float LSRUse::getNotSelectedProbability(const SCEV *Reg) const { 1466 unsigned FNum = 0; 1467 for (const Formula &F : Formulae) 1468 if (F.referencesReg(Reg)) 1469 FNum++; 1470 return ((float)(Formulae.size() - FNum)) / Formulae.size(); 1471 } 1472 1473 /// If the given formula has not yet been inserted, add it to the list, and 1474 /// return true. Return false otherwise. The formula must be in canonical form. 1475 bool LSRUse::InsertFormula(const Formula &F, const Loop &L) { 1476 assert(F.isCanonical(L) && "Invalid canonical representation"); 1477 1478 if (!Formulae.empty() && RigidFormula) 1479 return false; 1480 1481 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1482 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1483 // Unstable sort by host order ok, because this is only used for uniquifying. 1484 std::sort(Key.begin(), Key.end()); 1485 1486 if (!Uniquifier.insert(Key).second) 1487 return false; 1488 1489 // Using a register to hold the value of 0 is not profitable. 1490 assert((!F.ScaledReg || !F.ScaledReg->isZero()) && 1491 "Zero allocated in a scaled register!"); 1492 #ifndef NDEBUG 1493 for (const SCEV *BaseReg : F.BaseRegs) 1494 assert(!BaseReg->isZero() && "Zero allocated in a base register!"); 1495 #endif 1496 1497 // Add the formula to the list. 1498 Formulae.push_back(F); 1499 1500 // Record registers now being used by this use. 1501 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1502 if (F.ScaledReg) 1503 Regs.insert(F.ScaledReg); 1504 1505 return true; 1506 } 1507 1508 /// Remove the given formula from this use's list. 1509 void LSRUse::DeleteFormula(Formula &F) { 1510 if (&F != &Formulae.back()) 1511 std::swap(F, Formulae.back()); 1512 Formulae.pop_back(); 1513 } 1514 1515 /// Recompute the Regs field, and update RegUses. 1516 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) { 1517 // Now that we've filtered out some formulae, recompute the Regs set. 1518 SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs); 1519 Regs.clear(); 1520 for (const Formula &F : Formulae) { 1521 if (F.ScaledReg) Regs.insert(F.ScaledReg); 1522 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1523 } 1524 1525 // Update the RegTracker. 1526 for (const SCEV *S : OldRegs) 1527 if (!Regs.count(S)) 1528 RegUses.dropRegister(S, LUIdx); 1529 } 1530 1531 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1532 void LSRUse::print(raw_ostream &OS) const { 1533 OS << "LSR Use: Kind="; 1534 switch (Kind) { 1535 case Basic: OS << "Basic"; break; 1536 case Special: OS << "Special"; break; 1537 case ICmpZero: OS << "ICmpZero"; break; 1538 case Address: 1539 OS << "Address of "; 1540 if (AccessTy.MemTy->isPointerTy()) 1541 OS << "pointer"; // the full pointer type could be really verbose 1542 else { 1543 OS << *AccessTy.MemTy; 1544 } 1545 1546 OS << " in addrspace(" << AccessTy.AddrSpace << ')'; 1547 } 1548 1549 OS << ", Offsets={"; 1550 bool NeedComma = false; 1551 for (const LSRFixup &Fixup : Fixups) { 1552 if (NeedComma) OS << ','; 1553 OS << Fixup.Offset; 1554 NeedComma = true; 1555 } 1556 OS << '}'; 1557 1558 if (AllFixupsOutsideLoop) 1559 OS << ", all-fixups-outside-loop"; 1560 1561 if (WidestFixupType) 1562 OS << ", widest fixup type: " << *WidestFixupType; 1563 } 1564 1565 LLVM_DUMP_METHOD void LSRUse::dump() const { 1566 print(errs()); errs() << '\n'; 1567 } 1568 #endif 1569 1570 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1571 LSRUse::KindType Kind, MemAccessTy AccessTy, 1572 GlobalValue *BaseGV, int64_t BaseOffset, 1573 bool HasBaseReg, int64_t Scale, 1574 Instruction *Fixup/*= nullptr*/) { 1575 switch (Kind) { 1576 case LSRUse::Address: 1577 return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset, 1578 HasBaseReg, Scale, AccessTy.AddrSpace, Fixup); 1579 1580 case LSRUse::ICmpZero: 1581 // There's not even a target hook for querying whether it would be legal to 1582 // fold a GV into an ICmp. 1583 if (BaseGV) 1584 return false; 1585 1586 // ICmp only has two operands; don't allow more than two non-trivial parts. 1587 if (Scale != 0 && HasBaseReg && BaseOffset != 0) 1588 return false; 1589 1590 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by 1591 // putting the scaled register in the other operand of the icmp. 1592 if (Scale != 0 && Scale != -1) 1593 return false; 1594 1595 // If we have low-level target information, ask the target if it can fold an 1596 // integer immediate on an icmp. 1597 if (BaseOffset != 0) { 1598 // We have one of: 1599 // ICmpZero BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset 1600 // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset 1601 // Offs is the ICmp immediate. 1602 if (Scale == 0) 1603 // The cast does the right thing with 1604 // std::numeric_limits<int64_t>::min(). 1605 BaseOffset = -(uint64_t)BaseOffset; 1606 return TTI.isLegalICmpImmediate(BaseOffset); 1607 } 1608 1609 // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg 1610 return true; 1611 1612 case LSRUse::Basic: 1613 // Only handle single-register values. 1614 return !BaseGV && Scale == 0 && BaseOffset == 0; 1615 1616 case LSRUse::Special: 1617 // Special case Basic to handle -1 scales. 1618 return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0; 1619 } 1620 1621 llvm_unreachable("Invalid LSRUse Kind!"); 1622 } 1623 1624 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1625 int64_t MinOffset, int64_t MaxOffset, 1626 LSRUse::KindType Kind, MemAccessTy AccessTy, 1627 GlobalValue *BaseGV, int64_t BaseOffset, 1628 bool HasBaseReg, int64_t Scale) { 1629 // Check for overflow. 1630 if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) != 1631 (MinOffset > 0)) 1632 return false; 1633 MinOffset = (uint64_t)BaseOffset + MinOffset; 1634 if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) != 1635 (MaxOffset > 0)) 1636 return false; 1637 MaxOffset = (uint64_t)BaseOffset + MaxOffset; 1638 1639 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset, 1640 HasBaseReg, Scale) && 1641 isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset, 1642 HasBaseReg, Scale); 1643 } 1644 1645 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1646 int64_t MinOffset, int64_t MaxOffset, 1647 LSRUse::KindType Kind, MemAccessTy AccessTy, 1648 const Formula &F, const Loop &L) { 1649 // For the purpose of isAMCompletelyFolded either having a canonical formula 1650 // or a scale not equal to zero is correct. 1651 // Problems may arise from non canonical formulae having a scale == 0. 1652 // Strictly speaking it would best to just rely on canonical formulae. 1653 // However, when we generate the scaled formulae, we first check that the 1654 // scaling factor is profitable before computing the actual ScaledReg for 1655 // compile time sake. 1656 assert((F.isCanonical(L) || F.Scale != 0)); 1657 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1658 F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale); 1659 } 1660 1661 /// Test whether we know how to expand the current formula. 1662 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1663 int64_t MaxOffset, LSRUse::KindType Kind, 1664 MemAccessTy AccessTy, GlobalValue *BaseGV, 1665 int64_t BaseOffset, bool HasBaseReg, int64_t Scale) { 1666 // We know how to expand completely foldable formulae. 1667 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1668 BaseOffset, HasBaseReg, Scale) || 1669 // Or formulae that use a base register produced by a sum of base 1670 // registers. 1671 (Scale == 1 && 1672 isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1673 BaseGV, BaseOffset, true, 0)); 1674 } 1675 1676 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1677 int64_t MaxOffset, LSRUse::KindType Kind, 1678 MemAccessTy AccessTy, const Formula &F) { 1679 return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV, 1680 F.BaseOffset, F.HasBaseReg, F.Scale); 1681 } 1682 1683 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1684 const LSRUse &LU, const Formula &F) { 1685 // Target may want to look at the user instructions. 1686 if (LU.Kind == LSRUse::Address && TTI.LSRWithInstrQueries()) { 1687 for (const LSRFixup &Fixup : LU.Fixups) 1688 if (!isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV, 1689 (F.BaseOffset + Fixup.Offset), F.HasBaseReg, 1690 F.Scale, Fixup.UserInst)) 1691 return false; 1692 return true; 1693 } 1694 1695 return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1696 LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg, 1697 F.Scale); 1698 } 1699 1700 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, 1701 const LSRUse &LU, const Formula &F, 1702 const Loop &L) { 1703 if (!F.Scale) 1704 return 0; 1705 1706 // If the use is not completely folded in that instruction, we will have to 1707 // pay an extra cost only for scale != 1. 1708 if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1709 LU.AccessTy, F, L)) 1710 return F.Scale != 1; 1711 1712 switch (LU.Kind) { 1713 case LSRUse::Address: { 1714 // Check the scaling factor cost with both the min and max offsets. 1715 int ScaleCostMinOffset = TTI.getScalingFactorCost( 1716 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg, 1717 F.Scale, LU.AccessTy.AddrSpace); 1718 int ScaleCostMaxOffset = TTI.getScalingFactorCost( 1719 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg, 1720 F.Scale, LU.AccessTy.AddrSpace); 1721 1722 assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 && 1723 "Legal addressing mode has an illegal cost!"); 1724 return std::max(ScaleCostMinOffset, ScaleCostMaxOffset); 1725 } 1726 case LSRUse::ICmpZero: 1727 case LSRUse::Basic: 1728 case LSRUse::Special: 1729 // The use is completely folded, i.e., everything is folded into the 1730 // instruction. 1731 return 0; 1732 } 1733 1734 llvm_unreachable("Invalid LSRUse Kind!"); 1735 } 1736 1737 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1738 LSRUse::KindType Kind, MemAccessTy AccessTy, 1739 GlobalValue *BaseGV, int64_t BaseOffset, 1740 bool HasBaseReg) { 1741 // Fast-path: zero is always foldable. 1742 if (BaseOffset == 0 && !BaseGV) return true; 1743 1744 // Conservatively, create an address with an immediate and a 1745 // base and a scale. 1746 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1747 1748 // Canonicalize a scale of 1 to a base register if the formula doesn't 1749 // already have a base register. 1750 if (!HasBaseReg && Scale == 1) { 1751 Scale = 0; 1752 HasBaseReg = true; 1753 } 1754 1755 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset, 1756 HasBaseReg, Scale); 1757 } 1758 1759 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1760 ScalarEvolution &SE, int64_t MinOffset, 1761 int64_t MaxOffset, LSRUse::KindType Kind, 1762 MemAccessTy AccessTy, const SCEV *S, 1763 bool HasBaseReg) { 1764 // Fast-path: zero is always foldable. 1765 if (S->isZero()) return true; 1766 1767 // Conservatively, create an address with an immediate and a 1768 // base and a scale. 1769 int64_t BaseOffset = ExtractImmediate(S, SE); 1770 GlobalValue *BaseGV = ExtractSymbol(S, SE); 1771 1772 // If there's anything else involved, it's not foldable. 1773 if (!S->isZero()) return false; 1774 1775 // Fast-path: zero is always foldable. 1776 if (BaseOffset == 0 && !BaseGV) return true; 1777 1778 // Conservatively, create an address with an immediate and a 1779 // base and a scale. 1780 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1781 1782 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1783 BaseOffset, HasBaseReg, Scale); 1784 } 1785 1786 namespace { 1787 1788 /// An individual increment in a Chain of IV increments. Relate an IV user to 1789 /// an expression that computes the IV it uses from the IV used by the previous 1790 /// link in the Chain. 1791 /// 1792 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the 1793 /// original IVOperand. The head of the chain's IVOperand is only valid during 1794 /// chain collection, before LSR replaces IV users. During chain generation, 1795 /// IncExpr can be used to find the new IVOperand that computes the same 1796 /// expression. 1797 struct IVInc { 1798 Instruction *UserInst; 1799 Value* IVOperand; 1800 const SCEV *IncExpr; 1801 1802 IVInc(Instruction *U, Value *O, const SCEV *E) 1803 : UserInst(U), IVOperand(O), IncExpr(E) {} 1804 }; 1805 1806 // The list of IV increments in program order. We typically add the head of a 1807 // chain without finding subsequent links. 1808 struct IVChain { 1809 SmallVector<IVInc, 1> Incs; 1810 const SCEV *ExprBase = nullptr; 1811 1812 IVChain() = default; 1813 IVChain(const IVInc &Head, const SCEV *Base) 1814 : Incs(1, Head), ExprBase(Base) {} 1815 1816 using const_iterator = SmallVectorImpl<IVInc>::const_iterator; 1817 1818 // Return the first increment in the chain. 1819 const_iterator begin() const { 1820 assert(!Incs.empty()); 1821 return std::next(Incs.begin()); 1822 } 1823 const_iterator end() const { 1824 return Incs.end(); 1825 } 1826 1827 // Returns true if this chain contains any increments. 1828 bool hasIncs() const { return Incs.size() >= 2; } 1829 1830 // Add an IVInc to the end of this chain. 1831 void add(const IVInc &X) { Incs.push_back(X); } 1832 1833 // Returns the last UserInst in the chain. 1834 Instruction *tailUserInst() const { return Incs.back().UserInst; } 1835 1836 // Returns true if IncExpr can be profitably added to this chain. 1837 bool isProfitableIncrement(const SCEV *OperExpr, 1838 const SCEV *IncExpr, 1839 ScalarEvolution&); 1840 }; 1841 1842 /// Helper for CollectChains to track multiple IV increment uses. Distinguish 1843 /// between FarUsers that definitely cross IV increments and NearUsers that may 1844 /// be used between IV increments. 1845 struct ChainUsers { 1846 SmallPtrSet<Instruction*, 4> FarUsers; 1847 SmallPtrSet<Instruction*, 4> NearUsers; 1848 }; 1849 1850 /// This class holds state for the main loop strength reduction logic. 1851 class LSRInstance { 1852 IVUsers &IU; 1853 ScalarEvolution &SE; 1854 DominatorTree &DT; 1855 LoopInfo &LI; 1856 const TargetTransformInfo &TTI; 1857 Loop *const L; 1858 bool Changed = false; 1859 1860 /// This is the insert position that the current loop's induction variable 1861 /// increment should be placed. In simple loops, this is the latch block's 1862 /// terminator. But in more complicated cases, this is a position which will 1863 /// dominate all the in-loop post-increment users. 1864 Instruction *IVIncInsertPos = nullptr; 1865 1866 /// Interesting factors between use strides. 1867 /// 1868 /// We explicitly use a SetVector which contains a SmallSet, instead of the 1869 /// default, a SmallDenseSet, because we need to use the full range of 1870 /// int64_ts, and there's currently no good way of doing that with 1871 /// SmallDenseSet. 1872 SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors; 1873 1874 /// Interesting use types, to facilitate truncation reuse. 1875 SmallSetVector<Type *, 4> Types; 1876 1877 /// The list of interesting uses. 1878 SmallVector<LSRUse, 16> Uses; 1879 1880 /// Track which uses use which register candidates. 1881 RegUseTracker RegUses; 1882 1883 // Limit the number of chains to avoid quadratic behavior. We don't expect to 1884 // have more than a few IV increment chains in a loop. Missing a Chain falls 1885 // back to normal LSR behavior for those uses. 1886 static const unsigned MaxChains = 8; 1887 1888 /// IV users can form a chain of IV increments. 1889 SmallVector<IVChain, MaxChains> IVChainVec; 1890 1891 /// IV users that belong to profitable IVChains. 1892 SmallPtrSet<Use*, MaxChains> IVIncSet; 1893 1894 void OptimizeShadowIV(); 1895 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse); 1896 ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse); 1897 void OptimizeLoopTermCond(); 1898 1899 void ChainInstruction(Instruction *UserInst, Instruction *IVOper, 1900 SmallVectorImpl<ChainUsers> &ChainUsersVec); 1901 void FinalizeChain(IVChain &Chain); 1902 void CollectChains(); 1903 void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 1904 SmallVectorImpl<WeakTrackingVH> &DeadInsts); 1905 1906 void CollectInterestingTypesAndFactors(); 1907 void CollectFixupsAndInitialFormulae(); 1908 1909 // Support for sharing of LSRUses between LSRFixups. 1910 using UseMapTy = DenseMap<LSRUse::SCEVUseKindPair, size_t>; 1911 UseMapTy UseMap; 1912 1913 bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, 1914 LSRUse::KindType Kind, MemAccessTy AccessTy); 1915 1916 std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind, 1917 MemAccessTy AccessTy); 1918 1919 void DeleteUse(LSRUse &LU, size_t LUIdx); 1920 1921 LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU); 1922 1923 void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1924 void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1925 void CountRegisters(const Formula &F, size_t LUIdx); 1926 bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F); 1927 1928 void CollectLoopInvariantFixupsAndFormulae(); 1929 1930 void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base, 1931 unsigned Depth = 0); 1932 1933 void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 1934 const Formula &Base, unsigned Depth, 1935 size_t Idx, bool IsScaledReg = false); 1936 void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base); 1937 void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 1938 const Formula &Base, size_t Idx, 1939 bool IsScaledReg = false); 1940 void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1941 void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx, 1942 const Formula &Base, 1943 const SmallVectorImpl<int64_t> &Worklist, 1944 size_t Idx, bool IsScaledReg = false); 1945 void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1946 void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base); 1947 void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base); 1948 void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base); 1949 void GenerateCrossUseConstantOffsets(); 1950 void GenerateAllReuseFormulae(); 1951 1952 void FilterOutUndesirableDedicatedRegisters(); 1953 1954 size_t EstimateSearchSpaceComplexity() const; 1955 void NarrowSearchSpaceByDetectingSupersets(); 1956 void NarrowSearchSpaceByCollapsingUnrolledCode(); 1957 void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 1958 void NarrowSearchSpaceByFilterFormulaWithSameScaledReg(); 1959 void NarrowSearchSpaceByDeletingCostlyFormulas(); 1960 void NarrowSearchSpaceByPickingWinnerRegs(); 1961 void NarrowSearchSpaceUsingHeuristics(); 1962 1963 void SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 1964 Cost &SolutionCost, 1965 SmallVectorImpl<const Formula *> &Workspace, 1966 const Cost &CurCost, 1967 const SmallPtrSet<const SCEV *, 16> &CurRegs, 1968 DenseSet<const SCEV *> &VisitedRegs) const; 1969 void Solve(SmallVectorImpl<const Formula *> &Solution) const; 1970 1971 BasicBlock::iterator 1972 HoistInsertPosition(BasicBlock::iterator IP, 1973 const SmallVectorImpl<Instruction *> &Inputs) const; 1974 BasicBlock::iterator 1975 AdjustInsertPositionForExpand(BasicBlock::iterator IP, 1976 const LSRFixup &LF, 1977 const LSRUse &LU, 1978 SCEVExpander &Rewriter) const; 1979 1980 Value *Expand(const LSRUse &LU, const LSRFixup &LF, const Formula &F, 1981 BasicBlock::iterator IP, SCEVExpander &Rewriter, 1982 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 1983 void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF, 1984 const Formula &F, SCEVExpander &Rewriter, 1985 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 1986 void Rewrite(const LSRUse &LU, const LSRFixup &LF, const Formula &F, 1987 SCEVExpander &Rewriter, 1988 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 1989 void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution); 1990 1991 public: 1992 LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT, 1993 LoopInfo &LI, const TargetTransformInfo &TTI); 1994 1995 bool getChanged() const { return Changed; } 1996 1997 void print_factors_and_types(raw_ostream &OS) const; 1998 void print_fixups(raw_ostream &OS) const; 1999 void print_uses(raw_ostream &OS) const; 2000 void print(raw_ostream &OS) const; 2001 void dump() const; 2002 }; 2003 2004 } // end anonymous namespace 2005 2006 /// If IV is used in a int-to-float cast inside the loop then try to eliminate 2007 /// the cast operation. 2008 void LSRInstance::OptimizeShadowIV() { 2009 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 2010 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2011 return; 2012 2013 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); 2014 UI != E; /* empty */) { 2015 IVUsers::const_iterator CandidateUI = UI; 2016 ++UI; 2017 Instruction *ShadowUse = CandidateUI->getUser(); 2018 Type *DestTy = nullptr; 2019 bool IsSigned = false; 2020 2021 /* If shadow use is a int->float cast then insert a second IV 2022 to eliminate this cast. 2023 2024 for (unsigned i = 0; i < n; ++i) 2025 foo((double)i); 2026 2027 is transformed into 2028 2029 double d = 0.0; 2030 for (unsigned i = 0; i < n; ++i, ++d) 2031 foo(d); 2032 */ 2033 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) { 2034 IsSigned = false; 2035 DestTy = UCast->getDestTy(); 2036 } 2037 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) { 2038 IsSigned = true; 2039 DestTy = SCast->getDestTy(); 2040 } 2041 if (!DestTy) continue; 2042 2043 // If target does not support DestTy natively then do not apply 2044 // this transformation. 2045 if (!TTI.isTypeLegal(DestTy)) continue; 2046 2047 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0)); 2048 if (!PH) continue; 2049 if (PH->getNumIncomingValues() != 2) continue; 2050 2051 // If the calculation in integers overflows, the result in FP type will 2052 // differ. So we only can do this transformation if we are guaranteed to not 2053 // deal with overflowing values 2054 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PH)); 2055 if (!AR) continue; 2056 if (IsSigned && !AR->hasNoSignedWrap()) continue; 2057 if (!IsSigned && !AR->hasNoUnsignedWrap()) continue; 2058 2059 Type *SrcTy = PH->getType(); 2060 int Mantissa = DestTy->getFPMantissaWidth(); 2061 if (Mantissa == -1) continue; 2062 if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa) 2063 continue; 2064 2065 unsigned Entry, Latch; 2066 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) { 2067 Entry = 0; 2068 Latch = 1; 2069 } else { 2070 Entry = 1; 2071 Latch = 0; 2072 } 2073 2074 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry)); 2075 if (!Init) continue; 2076 Constant *NewInit = ConstantFP::get(DestTy, IsSigned ? 2077 (double)Init->getSExtValue() : 2078 (double)Init->getZExtValue()); 2079 2080 BinaryOperator *Incr = 2081 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch)); 2082 if (!Incr) continue; 2083 if (Incr->getOpcode() != Instruction::Add 2084 && Incr->getOpcode() != Instruction::Sub) 2085 continue; 2086 2087 /* Initialize new IV, double d = 0.0 in above example. */ 2088 ConstantInt *C = nullptr; 2089 if (Incr->getOperand(0) == PH) 2090 C = dyn_cast<ConstantInt>(Incr->getOperand(1)); 2091 else if (Incr->getOperand(1) == PH) 2092 C = dyn_cast<ConstantInt>(Incr->getOperand(0)); 2093 else 2094 continue; 2095 2096 if (!C) continue; 2097 2098 // Ignore negative constants, as the code below doesn't handle them 2099 // correctly. TODO: Remove this restriction. 2100 if (!C->getValue().isStrictlyPositive()) continue; 2101 2102 /* Add new PHINode. */ 2103 PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH); 2104 2105 /* create new increment. '++d' in above example. */ 2106 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue()); 2107 BinaryOperator *NewIncr = 2108 BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ? 2109 Instruction::FAdd : Instruction::FSub, 2110 NewPH, CFP, "IV.S.next.", Incr); 2111 2112 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry)); 2113 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch)); 2114 2115 /* Remove cast operation */ 2116 ShadowUse->replaceAllUsesWith(NewPH); 2117 ShadowUse->eraseFromParent(); 2118 Changed = true; 2119 break; 2120 } 2121 } 2122 2123 /// If Cond has an operand that is an expression of an IV, set the IV user and 2124 /// stride information and return true, otherwise return false. 2125 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) { 2126 for (IVStrideUse &U : IU) 2127 if (U.getUser() == Cond) { 2128 // NOTE: we could handle setcc instructions with multiple uses here, but 2129 // InstCombine does it as well for simple uses, it's not clear that it 2130 // occurs enough in real life to handle. 2131 CondUse = &U; 2132 return true; 2133 } 2134 return false; 2135 } 2136 2137 /// Rewrite the loop's terminating condition if it uses a max computation. 2138 /// 2139 /// This is a narrow solution to a specific, but acute, problem. For loops 2140 /// like this: 2141 /// 2142 /// i = 0; 2143 /// do { 2144 /// p[i] = 0.0; 2145 /// } while (++i < n); 2146 /// 2147 /// the trip count isn't just 'n', because 'n' might not be positive. And 2148 /// unfortunately this can come up even for loops where the user didn't use 2149 /// a C do-while loop. For example, seemingly well-behaved top-test loops 2150 /// will commonly be lowered like this: 2151 /// 2152 /// if (n > 0) { 2153 /// i = 0; 2154 /// do { 2155 /// p[i] = 0.0; 2156 /// } while (++i < n); 2157 /// } 2158 /// 2159 /// and then it's possible for subsequent optimization to obscure the if 2160 /// test in such a way that indvars can't find it. 2161 /// 2162 /// When indvars can't find the if test in loops like this, it creates a 2163 /// max expression, which allows it to give the loop a canonical 2164 /// induction variable: 2165 /// 2166 /// i = 0; 2167 /// max = n < 1 ? 1 : n; 2168 /// do { 2169 /// p[i] = 0.0; 2170 /// } while (++i != max); 2171 /// 2172 /// Canonical induction variables are necessary because the loop passes 2173 /// are designed around them. The most obvious example of this is the 2174 /// LoopInfo analysis, which doesn't remember trip count values. It 2175 /// expects to be able to rediscover the trip count each time it is 2176 /// needed, and it does this using a simple analysis that only succeeds if 2177 /// the loop has a canonical induction variable. 2178 /// 2179 /// However, when it comes time to generate code, the maximum operation 2180 /// can be quite costly, especially if it's inside of an outer loop. 2181 /// 2182 /// This function solves this problem by detecting this type of loop and 2183 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting 2184 /// the instructions for the maximum computation. 2185 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) { 2186 // Check that the loop matches the pattern we're looking for. 2187 if (Cond->getPredicate() != CmpInst::ICMP_EQ && 2188 Cond->getPredicate() != CmpInst::ICMP_NE) 2189 return Cond; 2190 2191 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1)); 2192 if (!Sel || !Sel->hasOneUse()) return Cond; 2193 2194 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 2195 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2196 return Cond; 2197 const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1); 2198 2199 // Add one to the backedge-taken count to get the trip count. 2200 const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount); 2201 if (IterationCount != SE.getSCEV(Sel)) return Cond; 2202 2203 // Check for a max calculation that matches the pattern. There's no check 2204 // for ICMP_ULE here because the comparison would be with zero, which 2205 // isn't interesting. 2206 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 2207 const SCEVNAryExpr *Max = nullptr; 2208 if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) { 2209 Pred = ICmpInst::ICMP_SLE; 2210 Max = S; 2211 } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) { 2212 Pred = ICmpInst::ICMP_SLT; 2213 Max = S; 2214 } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) { 2215 Pred = ICmpInst::ICMP_ULT; 2216 Max = U; 2217 } else { 2218 // No match; bail. 2219 return Cond; 2220 } 2221 2222 // To handle a max with more than two operands, this optimization would 2223 // require additional checking and setup. 2224 if (Max->getNumOperands() != 2) 2225 return Cond; 2226 2227 const SCEV *MaxLHS = Max->getOperand(0); 2228 const SCEV *MaxRHS = Max->getOperand(1); 2229 2230 // ScalarEvolution canonicalizes constants to the left. For < and >, look 2231 // for a comparison with 1. For <= and >=, a comparison with zero. 2232 if (!MaxLHS || 2233 (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One))) 2234 return Cond; 2235 2236 // Check the relevant induction variable for conformance to 2237 // the pattern. 2238 const SCEV *IV = SE.getSCEV(Cond->getOperand(0)); 2239 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV); 2240 if (!AR || !AR->isAffine() || 2241 AR->getStart() != One || 2242 AR->getStepRecurrence(SE) != One) 2243 return Cond; 2244 2245 assert(AR->getLoop() == L && 2246 "Loop condition operand is an addrec in a different loop!"); 2247 2248 // Check the right operand of the select, and remember it, as it will 2249 // be used in the new comparison instruction. 2250 Value *NewRHS = nullptr; 2251 if (ICmpInst::isTrueWhenEqual(Pred)) { 2252 // Look for n+1, and grab n. 2253 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1))) 2254 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2255 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2256 NewRHS = BO->getOperand(0); 2257 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2))) 2258 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2259 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2260 NewRHS = BO->getOperand(0); 2261 if (!NewRHS) 2262 return Cond; 2263 } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS) 2264 NewRHS = Sel->getOperand(1); 2265 else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS) 2266 NewRHS = Sel->getOperand(2); 2267 else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS)) 2268 NewRHS = SU->getValue(); 2269 else 2270 // Max doesn't match expected pattern. 2271 return Cond; 2272 2273 // Determine the new comparison opcode. It may be signed or unsigned, 2274 // and the original comparison may be either equality or inequality. 2275 if (Cond->getPredicate() == CmpInst::ICMP_EQ) 2276 Pred = CmpInst::getInversePredicate(Pred); 2277 2278 // Ok, everything looks ok to change the condition into an SLT or SGE and 2279 // delete the max calculation. 2280 ICmpInst *NewCond = 2281 new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp"); 2282 2283 // Delete the max calculation instructions. 2284 Cond->replaceAllUsesWith(NewCond); 2285 CondUse->setUser(NewCond); 2286 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0)); 2287 Cond->eraseFromParent(); 2288 Sel->eraseFromParent(); 2289 if (Cmp->use_empty()) 2290 Cmp->eraseFromParent(); 2291 return NewCond; 2292 } 2293 2294 /// Change loop terminating condition to use the postinc iv when possible. 2295 void 2296 LSRInstance::OptimizeLoopTermCond() { 2297 SmallPtrSet<Instruction *, 4> PostIncs; 2298 2299 // We need a different set of heuristics for rotated and non-rotated loops. 2300 // If a loop is rotated then the latch is also the backedge, so inserting 2301 // post-inc expressions just before the latch is ideal. To reduce live ranges 2302 // it also makes sense to rewrite terminating conditions to use post-inc 2303 // expressions. 2304 // 2305 // If the loop is not rotated then the latch is not a backedge; the latch 2306 // check is done in the loop head. Adding post-inc expressions before the 2307 // latch will cause overlapping live-ranges of pre-inc and post-inc expressions 2308 // in the loop body. In this case we do *not* want to use post-inc expressions 2309 // in the latch check, and we want to insert post-inc expressions before 2310 // the backedge. 2311 BasicBlock *LatchBlock = L->getLoopLatch(); 2312 SmallVector<BasicBlock*, 8> ExitingBlocks; 2313 L->getExitingBlocks(ExitingBlocks); 2314 if (llvm::all_of(ExitingBlocks, [&LatchBlock](const BasicBlock *BB) { 2315 return LatchBlock != BB; 2316 })) { 2317 // The backedge doesn't exit the loop; treat this as a head-tested loop. 2318 IVIncInsertPos = LatchBlock->getTerminator(); 2319 return; 2320 } 2321 2322 // Otherwise treat this as a rotated loop. 2323 for (BasicBlock *ExitingBlock : ExitingBlocks) { 2324 // Get the terminating condition for the loop if possible. If we 2325 // can, we want to change it to use a post-incremented version of its 2326 // induction variable, to allow coalescing the live ranges for the IV into 2327 // one register value. 2328 2329 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 2330 if (!TermBr) 2331 continue; 2332 // FIXME: Overly conservative, termination condition could be an 'or' etc.. 2333 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition())) 2334 continue; 2335 2336 // Search IVUsesByStride to find Cond's IVUse if there is one. 2337 IVStrideUse *CondUse = nullptr; 2338 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition()); 2339 if (!FindIVUserForCond(Cond, CondUse)) 2340 continue; 2341 2342 // If the trip count is computed in terms of a max (due to ScalarEvolution 2343 // being unable to find a sufficient guard, for example), change the loop 2344 // comparison to use SLT or ULT instead of NE. 2345 // One consequence of doing this now is that it disrupts the count-down 2346 // optimization. That's not always a bad thing though, because in such 2347 // cases it may still be worthwhile to avoid a max. 2348 Cond = OptimizeMax(Cond, CondUse); 2349 2350 // If this exiting block dominates the latch block, it may also use 2351 // the post-inc value if it won't be shared with other uses. 2352 // Check for dominance. 2353 if (!DT.dominates(ExitingBlock, LatchBlock)) 2354 continue; 2355 2356 // Conservatively avoid trying to use the post-inc value in non-latch 2357 // exits if there may be pre-inc users in intervening blocks. 2358 if (LatchBlock != ExitingBlock) 2359 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) 2360 // Test if the use is reachable from the exiting block. This dominator 2361 // query is a conservative approximation of reachability. 2362 if (&*UI != CondUse && 2363 !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) { 2364 // Conservatively assume there may be reuse if the quotient of their 2365 // strides could be a legal scale. 2366 const SCEV *A = IU.getStride(*CondUse, L); 2367 const SCEV *B = IU.getStride(*UI, L); 2368 if (!A || !B) continue; 2369 if (SE.getTypeSizeInBits(A->getType()) != 2370 SE.getTypeSizeInBits(B->getType())) { 2371 if (SE.getTypeSizeInBits(A->getType()) > 2372 SE.getTypeSizeInBits(B->getType())) 2373 B = SE.getSignExtendExpr(B, A->getType()); 2374 else 2375 A = SE.getSignExtendExpr(A, B->getType()); 2376 } 2377 if (const SCEVConstant *D = 2378 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) { 2379 const ConstantInt *C = D->getValue(); 2380 // Stride of one or negative one can have reuse with non-addresses. 2381 if (C->isOne() || C->isMinusOne()) 2382 goto decline_post_inc; 2383 // Avoid weird situations. 2384 if (C->getValue().getMinSignedBits() >= 64 || 2385 C->getValue().isMinSignedValue()) 2386 goto decline_post_inc; 2387 // Check for possible scaled-address reuse. 2388 MemAccessTy AccessTy = getAccessType(TTI, UI->getUser()); 2389 int64_t Scale = C->getSExtValue(); 2390 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2391 /*BaseOffset=*/0, 2392 /*HasBaseReg=*/false, Scale, 2393 AccessTy.AddrSpace)) 2394 goto decline_post_inc; 2395 Scale = -Scale; 2396 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2397 /*BaseOffset=*/0, 2398 /*HasBaseReg=*/false, Scale, 2399 AccessTy.AddrSpace)) 2400 goto decline_post_inc; 2401 } 2402 } 2403 2404 DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: " 2405 << *Cond << '\n'); 2406 2407 // It's possible for the setcc instruction to be anywhere in the loop, and 2408 // possible for it to have multiple users. If it is not immediately before 2409 // the exiting block branch, move it. 2410 if (&*++BasicBlock::iterator(Cond) != TermBr) { 2411 if (Cond->hasOneUse()) { 2412 Cond->moveBefore(TermBr); 2413 } else { 2414 // Clone the terminating condition and insert into the loopend. 2415 ICmpInst *OldCond = Cond; 2416 Cond = cast<ICmpInst>(Cond->clone()); 2417 Cond->setName(L->getHeader()->getName() + ".termcond"); 2418 ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond); 2419 2420 // Clone the IVUse, as the old use still exists! 2421 CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace()); 2422 TermBr->replaceUsesOfWith(OldCond, Cond); 2423 } 2424 } 2425 2426 // If we get to here, we know that we can transform the setcc instruction to 2427 // use the post-incremented version of the IV, allowing us to coalesce the 2428 // live ranges for the IV correctly. 2429 CondUse->transformToPostInc(L); 2430 Changed = true; 2431 2432 PostIncs.insert(Cond); 2433 decline_post_inc:; 2434 } 2435 2436 // Determine an insertion point for the loop induction variable increment. It 2437 // must dominate all the post-inc comparisons we just set up, and it must 2438 // dominate the loop latch edge. 2439 IVIncInsertPos = L->getLoopLatch()->getTerminator(); 2440 for (Instruction *Inst : PostIncs) { 2441 BasicBlock *BB = 2442 DT.findNearestCommonDominator(IVIncInsertPos->getParent(), 2443 Inst->getParent()); 2444 if (BB == Inst->getParent()) 2445 IVIncInsertPos = Inst; 2446 else if (BB != IVIncInsertPos->getParent()) 2447 IVIncInsertPos = BB->getTerminator(); 2448 } 2449 } 2450 2451 /// Determine if the given use can accommodate a fixup at the given offset and 2452 /// other details. If so, update the use and return true. 2453 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, 2454 bool HasBaseReg, LSRUse::KindType Kind, 2455 MemAccessTy AccessTy) { 2456 int64_t NewMinOffset = LU.MinOffset; 2457 int64_t NewMaxOffset = LU.MaxOffset; 2458 MemAccessTy NewAccessTy = AccessTy; 2459 2460 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to 2461 // something conservative, however this can pessimize in the case that one of 2462 // the uses will have all its uses outside the loop, for example. 2463 if (LU.Kind != Kind) 2464 return false; 2465 2466 // Check for a mismatched access type, and fall back conservatively as needed. 2467 // TODO: Be less conservative when the type is similar and can use the same 2468 // addressing modes. 2469 if (Kind == LSRUse::Address) { 2470 if (AccessTy.MemTy != LU.AccessTy.MemTy) { 2471 NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(), 2472 AccessTy.AddrSpace); 2473 } 2474 } 2475 2476 // Conservatively assume HasBaseReg is true for now. 2477 if (NewOffset < LU.MinOffset) { 2478 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2479 LU.MaxOffset - NewOffset, HasBaseReg)) 2480 return false; 2481 NewMinOffset = NewOffset; 2482 } else if (NewOffset > LU.MaxOffset) { 2483 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2484 NewOffset - LU.MinOffset, HasBaseReg)) 2485 return false; 2486 NewMaxOffset = NewOffset; 2487 } 2488 2489 // Update the use. 2490 LU.MinOffset = NewMinOffset; 2491 LU.MaxOffset = NewMaxOffset; 2492 LU.AccessTy = NewAccessTy; 2493 return true; 2494 } 2495 2496 /// Return an LSRUse index and an offset value for a fixup which needs the given 2497 /// expression, with the given kind and optional access type. Either reuse an 2498 /// existing use or create a new one, as needed. 2499 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr, 2500 LSRUse::KindType Kind, 2501 MemAccessTy AccessTy) { 2502 const SCEV *Copy = Expr; 2503 int64_t Offset = ExtractImmediate(Expr, SE); 2504 2505 // Basic uses can't accept any offset, for example. 2506 if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr, 2507 Offset, /*HasBaseReg=*/ true)) { 2508 Expr = Copy; 2509 Offset = 0; 2510 } 2511 2512 std::pair<UseMapTy::iterator, bool> P = 2513 UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0)); 2514 if (!P.second) { 2515 // A use already existed with this base. 2516 size_t LUIdx = P.first->second; 2517 LSRUse &LU = Uses[LUIdx]; 2518 if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy)) 2519 // Reuse this use. 2520 return std::make_pair(LUIdx, Offset); 2521 } 2522 2523 // Create a new use. 2524 size_t LUIdx = Uses.size(); 2525 P.first->second = LUIdx; 2526 Uses.push_back(LSRUse(Kind, AccessTy)); 2527 LSRUse &LU = Uses[LUIdx]; 2528 2529 LU.MinOffset = Offset; 2530 LU.MaxOffset = Offset; 2531 return std::make_pair(LUIdx, Offset); 2532 } 2533 2534 /// Delete the given use from the Uses list. 2535 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) { 2536 if (&LU != &Uses.back()) 2537 std::swap(LU, Uses.back()); 2538 Uses.pop_back(); 2539 2540 // Update RegUses. 2541 RegUses.swapAndDropUse(LUIdx, Uses.size()); 2542 } 2543 2544 /// Look for a use distinct from OrigLU which is has a formula that has the same 2545 /// registers as the given formula. 2546 LSRUse * 2547 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF, 2548 const LSRUse &OrigLU) { 2549 // Search all uses for the formula. This could be more clever. 2550 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 2551 LSRUse &LU = Uses[LUIdx]; 2552 // Check whether this use is close enough to OrigLU, to see whether it's 2553 // worthwhile looking through its formulae. 2554 // Ignore ICmpZero uses because they may contain formulae generated by 2555 // GenerateICmpZeroScales, in which case adding fixup offsets may 2556 // be invalid. 2557 if (&LU != &OrigLU && 2558 LU.Kind != LSRUse::ICmpZero && 2559 LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy && 2560 LU.WidestFixupType == OrigLU.WidestFixupType && 2561 LU.HasFormulaWithSameRegs(OrigF)) { 2562 // Scan through this use's formulae. 2563 for (const Formula &F : LU.Formulae) { 2564 // Check to see if this formula has the same registers and symbols 2565 // as OrigF. 2566 if (F.BaseRegs == OrigF.BaseRegs && 2567 F.ScaledReg == OrigF.ScaledReg && 2568 F.BaseGV == OrigF.BaseGV && 2569 F.Scale == OrigF.Scale && 2570 F.UnfoldedOffset == OrigF.UnfoldedOffset) { 2571 if (F.BaseOffset == 0) 2572 return &LU; 2573 // This is the formula where all the registers and symbols matched; 2574 // there aren't going to be any others. Since we declined it, we 2575 // can skip the rest of the formulae and proceed to the next LSRUse. 2576 break; 2577 } 2578 } 2579 } 2580 } 2581 2582 // Nothing looked good. 2583 return nullptr; 2584 } 2585 2586 void LSRInstance::CollectInterestingTypesAndFactors() { 2587 SmallSetVector<const SCEV *, 4> Strides; 2588 2589 // Collect interesting types and strides. 2590 SmallVector<const SCEV *, 4> Worklist; 2591 for (const IVStrideUse &U : IU) { 2592 const SCEV *Expr = IU.getExpr(U); 2593 2594 // Collect interesting types. 2595 Types.insert(SE.getEffectiveSCEVType(Expr->getType())); 2596 2597 // Add strides for mentioned loops. 2598 Worklist.push_back(Expr); 2599 do { 2600 const SCEV *S = Worklist.pop_back_val(); 2601 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2602 if (AR->getLoop() == L) 2603 Strides.insert(AR->getStepRecurrence(SE)); 2604 Worklist.push_back(AR->getStart()); 2605 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2606 Worklist.append(Add->op_begin(), Add->op_end()); 2607 } 2608 } while (!Worklist.empty()); 2609 } 2610 2611 // Compute interesting factors from the set of interesting strides. 2612 for (SmallSetVector<const SCEV *, 4>::const_iterator 2613 I = Strides.begin(), E = Strides.end(); I != E; ++I) 2614 for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter = 2615 std::next(I); NewStrideIter != E; ++NewStrideIter) { 2616 const SCEV *OldStride = *I; 2617 const SCEV *NewStride = *NewStrideIter; 2618 2619 if (SE.getTypeSizeInBits(OldStride->getType()) != 2620 SE.getTypeSizeInBits(NewStride->getType())) { 2621 if (SE.getTypeSizeInBits(OldStride->getType()) > 2622 SE.getTypeSizeInBits(NewStride->getType())) 2623 NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType()); 2624 else 2625 OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType()); 2626 } 2627 if (const SCEVConstant *Factor = 2628 dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride, 2629 SE, true))) { 2630 if (Factor->getAPInt().getMinSignedBits() <= 64) 2631 Factors.insert(Factor->getAPInt().getSExtValue()); 2632 } else if (const SCEVConstant *Factor = 2633 dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride, 2634 NewStride, 2635 SE, true))) { 2636 if (Factor->getAPInt().getMinSignedBits() <= 64) 2637 Factors.insert(Factor->getAPInt().getSExtValue()); 2638 } 2639 } 2640 2641 // If all uses use the same type, don't bother looking for truncation-based 2642 // reuse. 2643 if (Types.size() == 1) 2644 Types.clear(); 2645 2646 DEBUG(print_factors_and_types(dbgs())); 2647 } 2648 2649 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in 2650 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to 2651 /// IVStrideUses, we could partially skip this. 2652 static User::op_iterator 2653 findIVOperand(User::op_iterator OI, User::op_iterator OE, 2654 Loop *L, ScalarEvolution &SE) { 2655 for(; OI != OE; ++OI) { 2656 if (Instruction *Oper = dyn_cast<Instruction>(*OI)) { 2657 if (!SE.isSCEVable(Oper->getType())) 2658 continue; 2659 2660 if (const SCEVAddRecExpr *AR = 2661 dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) { 2662 if (AR->getLoop() == L) 2663 break; 2664 } 2665 } 2666 } 2667 return OI; 2668 } 2669 2670 /// IVChain logic must consistenctly peek base TruncInst operands, so wrap it in 2671 /// a convenient helper. 2672 static Value *getWideOperand(Value *Oper) { 2673 if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper)) 2674 return Trunc->getOperand(0); 2675 return Oper; 2676 } 2677 2678 /// Return true if we allow an IV chain to include both types. 2679 static bool isCompatibleIVType(Value *LVal, Value *RVal) { 2680 Type *LType = LVal->getType(); 2681 Type *RType = RVal->getType(); 2682 return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy() && 2683 // Different address spaces means (possibly) 2684 // different types of the pointer implementation, 2685 // e.g. i16 vs i32 so disallow that. 2686 (LType->getPointerAddressSpace() == 2687 RType->getPointerAddressSpace())); 2688 } 2689 2690 /// Return an approximation of this SCEV expression's "base", or NULL for any 2691 /// constant. Returning the expression itself is conservative. Returning a 2692 /// deeper subexpression is more precise and valid as long as it isn't less 2693 /// complex than another subexpression. For expressions involving multiple 2694 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids 2695 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i], 2696 /// IVInc==b-a. 2697 /// 2698 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost 2699 /// SCEVUnknown, we simply return the rightmost SCEV operand. 2700 static const SCEV *getExprBase(const SCEV *S) { 2701 switch (S->getSCEVType()) { 2702 default: // uncluding scUnknown. 2703 return S; 2704 case scConstant: 2705 return nullptr; 2706 case scTruncate: 2707 return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand()); 2708 case scZeroExtend: 2709 return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand()); 2710 case scSignExtend: 2711 return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand()); 2712 case scAddExpr: { 2713 // Skip over scaled operands (scMulExpr) to follow add operands as long as 2714 // there's nothing more complex. 2715 // FIXME: not sure if we want to recognize negation. 2716 const SCEVAddExpr *Add = cast<SCEVAddExpr>(S); 2717 for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()), 2718 E(Add->op_begin()); I != E; ++I) { 2719 const SCEV *SubExpr = *I; 2720 if (SubExpr->getSCEVType() == scAddExpr) 2721 return getExprBase(SubExpr); 2722 2723 if (SubExpr->getSCEVType() != scMulExpr) 2724 return SubExpr; 2725 } 2726 return S; // all operands are scaled, be conservative. 2727 } 2728 case scAddRecExpr: 2729 return getExprBase(cast<SCEVAddRecExpr>(S)->getStart()); 2730 } 2731 } 2732 2733 /// Return true if the chain increment is profitable to expand into a loop 2734 /// invariant value, which may require its own register. A profitable chain 2735 /// increment will be an offset relative to the same base. We allow such offsets 2736 /// to potentially be used as chain increment as long as it's not obviously 2737 /// expensive to expand using real instructions. 2738 bool IVChain::isProfitableIncrement(const SCEV *OperExpr, 2739 const SCEV *IncExpr, 2740 ScalarEvolution &SE) { 2741 // Aggressively form chains when -stress-ivchain. 2742 if (StressIVChain) 2743 return true; 2744 2745 // Do not replace a constant offset from IV head with a nonconstant IV 2746 // increment. 2747 if (!isa<SCEVConstant>(IncExpr)) { 2748 const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand)); 2749 if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr))) 2750 return false; 2751 } 2752 2753 SmallPtrSet<const SCEV*, 8> Processed; 2754 return !isHighCostExpansion(IncExpr, Processed, SE); 2755 } 2756 2757 /// Return true if the number of registers needed for the chain is estimated to 2758 /// be less than the number required for the individual IV users. First prohibit 2759 /// any IV users that keep the IV live across increments (the Users set should 2760 /// be empty). Next count the number and type of increments in the chain. 2761 /// 2762 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't 2763 /// effectively use postinc addressing modes. Only consider it profitable it the 2764 /// increments can be computed in fewer registers when chained. 2765 /// 2766 /// TODO: Consider IVInc free if it's already used in another chains. 2767 static bool 2768 isProfitableChain(IVChain &Chain, SmallPtrSetImpl<Instruction*> &Users, 2769 ScalarEvolution &SE, const TargetTransformInfo &TTI) { 2770 if (StressIVChain) 2771 return true; 2772 2773 if (!Chain.hasIncs()) 2774 return false; 2775 2776 if (!Users.empty()) { 2777 DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n"; 2778 for (Instruction *Inst : Users) { 2779 dbgs() << " " << *Inst << "\n"; 2780 }); 2781 return false; 2782 } 2783 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 2784 2785 // The chain itself may require a register, so intialize cost to 1. 2786 int cost = 1; 2787 2788 // A complete chain likely eliminates the need for keeping the original IV in 2789 // a register. LSR does not currently know how to form a complete chain unless 2790 // the header phi already exists. 2791 if (isa<PHINode>(Chain.tailUserInst()) 2792 && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) { 2793 --cost; 2794 } 2795 const SCEV *LastIncExpr = nullptr; 2796 unsigned NumConstIncrements = 0; 2797 unsigned NumVarIncrements = 0; 2798 unsigned NumReusedIncrements = 0; 2799 for (const IVInc &Inc : Chain) { 2800 if (Inc.IncExpr->isZero()) 2801 continue; 2802 2803 // Incrementing by zero or some constant is neutral. We assume constants can 2804 // be folded into an addressing mode or an add's immediate operand. 2805 if (isa<SCEVConstant>(Inc.IncExpr)) { 2806 ++NumConstIncrements; 2807 continue; 2808 } 2809 2810 if (Inc.IncExpr == LastIncExpr) 2811 ++NumReusedIncrements; 2812 else 2813 ++NumVarIncrements; 2814 2815 LastIncExpr = Inc.IncExpr; 2816 } 2817 // An IV chain with a single increment is handled by LSR's postinc 2818 // uses. However, a chain with multiple increments requires keeping the IV's 2819 // value live longer than it needs to be if chained. 2820 if (NumConstIncrements > 1) 2821 --cost; 2822 2823 // Materializing increment expressions in the preheader that didn't exist in 2824 // the original code may cost a register. For example, sign-extended array 2825 // indices can produce ridiculous increments like this: 2826 // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64))) 2827 cost += NumVarIncrements; 2828 2829 // Reusing variable increments likely saves a register to hold the multiple of 2830 // the stride. 2831 cost -= NumReusedIncrements; 2832 2833 DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost 2834 << "\n"); 2835 2836 return cost < 0; 2837 } 2838 2839 /// Add this IV user to an existing chain or make it the head of a new chain. 2840 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper, 2841 SmallVectorImpl<ChainUsers> &ChainUsersVec) { 2842 // When IVs are used as types of varying widths, they are generally converted 2843 // to a wider type with some uses remaining narrow under a (free) trunc. 2844 Value *const NextIV = getWideOperand(IVOper); 2845 const SCEV *const OperExpr = SE.getSCEV(NextIV); 2846 const SCEV *const OperExprBase = getExprBase(OperExpr); 2847 2848 // Visit all existing chains. Check if its IVOper can be computed as a 2849 // profitable loop invariant increment from the last link in the Chain. 2850 unsigned ChainIdx = 0, NChains = IVChainVec.size(); 2851 const SCEV *LastIncExpr = nullptr; 2852 for (; ChainIdx < NChains; ++ChainIdx) { 2853 IVChain &Chain = IVChainVec[ChainIdx]; 2854 2855 // Prune the solution space aggressively by checking that both IV operands 2856 // are expressions that operate on the same unscaled SCEVUnknown. This 2857 // "base" will be canceled by the subsequent getMinusSCEV call. Checking 2858 // first avoids creating extra SCEV expressions. 2859 if (!StressIVChain && Chain.ExprBase != OperExprBase) 2860 continue; 2861 2862 Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand); 2863 if (!isCompatibleIVType(PrevIV, NextIV)) 2864 continue; 2865 2866 // A phi node terminates a chain. 2867 if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst())) 2868 continue; 2869 2870 // The increment must be loop-invariant so it can be kept in a register. 2871 const SCEV *PrevExpr = SE.getSCEV(PrevIV); 2872 const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr); 2873 if (!SE.isLoopInvariant(IncExpr, L)) 2874 continue; 2875 2876 if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) { 2877 LastIncExpr = IncExpr; 2878 break; 2879 } 2880 } 2881 // If we haven't found a chain, create a new one, unless we hit the max. Don't 2882 // bother for phi nodes, because they must be last in the chain. 2883 if (ChainIdx == NChains) { 2884 if (isa<PHINode>(UserInst)) 2885 return; 2886 if (NChains >= MaxChains && !StressIVChain) { 2887 DEBUG(dbgs() << "IV Chain Limit\n"); 2888 return; 2889 } 2890 LastIncExpr = OperExpr; 2891 // IVUsers may have skipped over sign/zero extensions. We don't currently 2892 // attempt to form chains involving extensions unless they can be hoisted 2893 // into this loop's AddRec. 2894 if (!isa<SCEVAddRecExpr>(LastIncExpr)) 2895 return; 2896 ++NChains; 2897 IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr), 2898 OperExprBase)); 2899 ChainUsersVec.resize(NChains); 2900 DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst 2901 << ") IV=" << *LastIncExpr << "\n"); 2902 } else { 2903 DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Inc: (" << *UserInst 2904 << ") IV+" << *LastIncExpr << "\n"); 2905 // Add this IV user to the end of the chain. 2906 IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr)); 2907 } 2908 IVChain &Chain = IVChainVec[ChainIdx]; 2909 2910 SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers; 2911 // This chain's NearUsers become FarUsers. 2912 if (!LastIncExpr->isZero()) { 2913 ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(), 2914 NearUsers.end()); 2915 NearUsers.clear(); 2916 } 2917 2918 // All other uses of IVOperand become near uses of the chain. 2919 // We currently ignore intermediate values within SCEV expressions, assuming 2920 // they will eventually be used be the current chain, or can be computed 2921 // from one of the chain increments. To be more precise we could 2922 // transitively follow its user and only add leaf IV users to the set. 2923 for (User *U : IVOper->users()) { 2924 Instruction *OtherUse = dyn_cast<Instruction>(U); 2925 if (!OtherUse) 2926 continue; 2927 // Uses in the chain will no longer be uses if the chain is formed. 2928 // Include the head of the chain in this iteration (not Chain.begin()). 2929 IVChain::const_iterator IncIter = Chain.Incs.begin(); 2930 IVChain::const_iterator IncEnd = Chain.Incs.end(); 2931 for( ; IncIter != IncEnd; ++IncIter) { 2932 if (IncIter->UserInst == OtherUse) 2933 break; 2934 } 2935 if (IncIter != IncEnd) 2936 continue; 2937 2938 if (SE.isSCEVable(OtherUse->getType()) 2939 && !isa<SCEVUnknown>(SE.getSCEV(OtherUse)) 2940 && IU.isIVUserOrOperand(OtherUse)) { 2941 continue; 2942 } 2943 NearUsers.insert(OtherUse); 2944 } 2945 2946 // Since this user is part of the chain, it's no longer considered a use 2947 // of the chain. 2948 ChainUsersVec[ChainIdx].FarUsers.erase(UserInst); 2949 } 2950 2951 /// Populate the vector of Chains. 2952 /// 2953 /// This decreases ILP at the architecture level. Targets with ample registers, 2954 /// multiple memory ports, and no register renaming probably don't want 2955 /// this. However, such targets should probably disable LSR altogether. 2956 /// 2957 /// The job of LSR is to make a reasonable choice of induction variables across 2958 /// the loop. Subsequent passes can easily "unchain" computation exposing more 2959 /// ILP *within the loop* if the target wants it. 2960 /// 2961 /// Finding the best IV chain is potentially a scheduling problem. Since LSR 2962 /// will not reorder memory operations, it will recognize this as a chain, but 2963 /// will generate redundant IV increments. Ideally this would be corrected later 2964 /// by a smart scheduler: 2965 /// = A[i] 2966 /// = A[i+x] 2967 /// A[i] = 2968 /// A[i+x] = 2969 /// 2970 /// TODO: Walk the entire domtree within this loop, not just the path to the 2971 /// loop latch. This will discover chains on side paths, but requires 2972 /// maintaining multiple copies of the Chains state. 2973 void LSRInstance::CollectChains() { 2974 DEBUG(dbgs() << "Collecting IV Chains.\n"); 2975 SmallVector<ChainUsers, 8> ChainUsersVec; 2976 2977 SmallVector<BasicBlock *,8> LatchPath; 2978 BasicBlock *LoopHeader = L->getHeader(); 2979 for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch()); 2980 Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) { 2981 LatchPath.push_back(Rung->getBlock()); 2982 } 2983 LatchPath.push_back(LoopHeader); 2984 2985 // Walk the instruction stream from the loop header to the loop latch. 2986 for (BasicBlock *BB : reverse(LatchPath)) { 2987 for (Instruction &I : *BB) { 2988 // Skip instructions that weren't seen by IVUsers analysis. 2989 if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I)) 2990 continue; 2991 2992 // Ignore users that are part of a SCEV expression. This way we only 2993 // consider leaf IV Users. This effectively rediscovers a portion of 2994 // IVUsers analysis but in program order this time. 2995 if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I))) 2996 continue; 2997 2998 // Remove this instruction from any NearUsers set it may be in. 2999 for (unsigned ChainIdx = 0, NChains = IVChainVec.size(); 3000 ChainIdx < NChains; ++ChainIdx) { 3001 ChainUsersVec[ChainIdx].NearUsers.erase(&I); 3002 } 3003 // Search for operands that can be chained. 3004 SmallPtrSet<Instruction*, 4> UniqueOperands; 3005 User::op_iterator IVOpEnd = I.op_end(); 3006 User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE); 3007 while (IVOpIter != IVOpEnd) { 3008 Instruction *IVOpInst = cast<Instruction>(*IVOpIter); 3009 if (UniqueOperands.insert(IVOpInst).second) 3010 ChainInstruction(&I, IVOpInst, ChainUsersVec); 3011 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 3012 } 3013 } // Continue walking down the instructions. 3014 } // Continue walking down the domtree. 3015 // Visit phi backedges to determine if the chain can generate the IV postinc. 3016 for (BasicBlock::iterator I = L->getHeader()->begin(); 3017 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 3018 if (!SE.isSCEVable(PN->getType())) 3019 continue; 3020 3021 Instruction *IncV = 3022 dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch())); 3023 if (IncV) 3024 ChainInstruction(PN, IncV, ChainUsersVec); 3025 } 3026 // Remove any unprofitable chains. 3027 unsigned ChainIdx = 0; 3028 for (unsigned UsersIdx = 0, NChains = IVChainVec.size(); 3029 UsersIdx < NChains; ++UsersIdx) { 3030 if (!isProfitableChain(IVChainVec[UsersIdx], 3031 ChainUsersVec[UsersIdx].FarUsers, SE, TTI)) 3032 continue; 3033 // Preserve the chain at UsesIdx. 3034 if (ChainIdx != UsersIdx) 3035 IVChainVec[ChainIdx] = IVChainVec[UsersIdx]; 3036 FinalizeChain(IVChainVec[ChainIdx]); 3037 ++ChainIdx; 3038 } 3039 IVChainVec.resize(ChainIdx); 3040 } 3041 3042 void LSRInstance::FinalizeChain(IVChain &Chain) { 3043 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 3044 DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n"); 3045 3046 for (const IVInc &Inc : Chain) { 3047 DEBUG(dbgs() << " Inc: " << *Inc.UserInst << "\n"); 3048 auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand); 3049 assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand"); 3050 IVIncSet.insert(UseI); 3051 } 3052 } 3053 3054 /// Return true if the IVInc can be folded into an addressing mode. 3055 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst, 3056 Value *Operand, const TargetTransformInfo &TTI) { 3057 const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr); 3058 if (!IncConst || !isAddressUse(TTI, UserInst, Operand)) 3059 return false; 3060 3061 if (IncConst->getAPInt().getMinSignedBits() > 64) 3062 return false; 3063 3064 MemAccessTy AccessTy = getAccessType(TTI, UserInst); 3065 int64_t IncOffset = IncConst->getValue()->getSExtValue(); 3066 if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr, 3067 IncOffset, /*HaseBaseReg=*/false)) 3068 return false; 3069 3070 return true; 3071 } 3072 3073 /// Generate an add or subtract for each IVInc in a chain to materialize the IV 3074 /// user's operand from the previous IV user's operand. 3075 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 3076 SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 3077 // Find the new IVOperand for the head of the chain. It may have been replaced 3078 // by LSR. 3079 const IVInc &Head = Chain.Incs[0]; 3080 User::op_iterator IVOpEnd = Head.UserInst->op_end(); 3081 // findIVOperand returns IVOpEnd if it can no longer find a valid IV user. 3082 User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(), 3083 IVOpEnd, L, SE); 3084 Value *IVSrc = nullptr; 3085 while (IVOpIter != IVOpEnd) { 3086 IVSrc = getWideOperand(*IVOpIter); 3087 3088 // If this operand computes the expression that the chain needs, we may use 3089 // it. (Check this after setting IVSrc which is used below.) 3090 // 3091 // Note that if Head.IncExpr is wider than IVSrc, then this phi is too 3092 // narrow for the chain, so we can no longer use it. We do allow using a 3093 // wider phi, assuming the LSR checked for free truncation. In that case we 3094 // should already have a truncate on this operand such that 3095 // getSCEV(IVSrc) == IncExpr. 3096 if (SE.getSCEV(*IVOpIter) == Head.IncExpr 3097 || SE.getSCEV(IVSrc) == Head.IncExpr) { 3098 break; 3099 } 3100 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 3101 } 3102 if (IVOpIter == IVOpEnd) { 3103 // Gracefully give up on this chain. 3104 DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n"); 3105 return; 3106 } 3107 3108 DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n"); 3109 Type *IVTy = IVSrc->getType(); 3110 Type *IntTy = SE.getEffectiveSCEVType(IVTy); 3111 const SCEV *LeftOverExpr = nullptr; 3112 for (const IVInc &Inc : Chain) { 3113 Instruction *InsertPt = Inc.UserInst; 3114 if (isa<PHINode>(InsertPt)) 3115 InsertPt = L->getLoopLatch()->getTerminator(); 3116 3117 // IVOper will replace the current IV User's operand. IVSrc is the IV 3118 // value currently held in a register. 3119 Value *IVOper = IVSrc; 3120 if (!Inc.IncExpr->isZero()) { 3121 // IncExpr was the result of subtraction of two narrow values, so must 3122 // be signed. 3123 const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy); 3124 LeftOverExpr = LeftOverExpr ? 3125 SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr; 3126 } 3127 if (LeftOverExpr && !LeftOverExpr->isZero()) { 3128 // Expand the IV increment. 3129 Rewriter.clearPostInc(); 3130 Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt); 3131 const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc), 3132 SE.getUnknown(IncV)); 3133 IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt); 3134 3135 // If an IV increment can't be folded, use it as the next IV value. 3136 if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) { 3137 assert(IVTy == IVOper->getType() && "inconsistent IV increment type"); 3138 IVSrc = IVOper; 3139 LeftOverExpr = nullptr; 3140 } 3141 } 3142 Type *OperTy = Inc.IVOperand->getType(); 3143 if (IVTy != OperTy) { 3144 assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) && 3145 "cannot extend a chained IV"); 3146 IRBuilder<> Builder(InsertPt); 3147 IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain"); 3148 } 3149 Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper); 3150 DeadInsts.emplace_back(Inc.IVOperand); 3151 } 3152 // If LSR created a new, wider phi, we may also replace its postinc. We only 3153 // do this if we also found a wide value for the head of the chain. 3154 if (isa<PHINode>(Chain.tailUserInst())) { 3155 for (BasicBlock::iterator I = L->getHeader()->begin(); 3156 PHINode *Phi = dyn_cast<PHINode>(I); ++I) { 3157 if (!isCompatibleIVType(Phi, IVSrc)) 3158 continue; 3159 Instruction *PostIncV = dyn_cast<Instruction>( 3160 Phi->getIncomingValueForBlock(L->getLoopLatch())); 3161 if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc))) 3162 continue; 3163 Value *IVOper = IVSrc; 3164 Type *PostIncTy = PostIncV->getType(); 3165 if (IVTy != PostIncTy) { 3166 assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types"); 3167 IRBuilder<> Builder(L->getLoopLatch()->getTerminator()); 3168 Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc()); 3169 IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain"); 3170 } 3171 Phi->replaceUsesOfWith(PostIncV, IVOper); 3172 DeadInsts.emplace_back(PostIncV); 3173 } 3174 } 3175 } 3176 3177 void LSRInstance::CollectFixupsAndInitialFormulae() { 3178 for (const IVStrideUse &U : IU) { 3179 Instruction *UserInst = U.getUser(); 3180 // Skip IV users that are part of profitable IV Chains. 3181 User::op_iterator UseI = 3182 find(UserInst->operands(), U.getOperandValToReplace()); 3183 assert(UseI != UserInst->op_end() && "cannot find IV operand"); 3184 if (IVIncSet.count(UseI)) { 3185 DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n'); 3186 continue; 3187 } 3188 3189 LSRUse::KindType Kind = LSRUse::Basic; 3190 MemAccessTy AccessTy; 3191 if (isAddressUse(TTI, UserInst, U.getOperandValToReplace())) { 3192 Kind = LSRUse::Address; 3193 AccessTy = getAccessType(TTI, UserInst); 3194 } 3195 3196 const SCEV *S = IU.getExpr(U); 3197 PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops(); 3198 3199 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as 3200 // (N - i == 0), and this allows (N - i) to be the expression that we work 3201 // with rather than just N or i, so we can consider the register 3202 // requirements for both N and i at the same time. Limiting this code to 3203 // equality icmps is not a problem because all interesting loops use 3204 // equality icmps, thanks to IndVarSimplify. 3205 if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst)) 3206 if (CI->isEquality()) { 3207 // Swap the operands if needed to put the OperandValToReplace on the 3208 // left, for consistency. 3209 Value *NV = CI->getOperand(1); 3210 if (NV == U.getOperandValToReplace()) { 3211 CI->setOperand(1, CI->getOperand(0)); 3212 CI->setOperand(0, NV); 3213 NV = CI->getOperand(1); 3214 Changed = true; 3215 } 3216 3217 // x == y --> x - y == 0 3218 const SCEV *N = SE.getSCEV(NV); 3219 if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) { 3220 // S is normalized, so normalize N before folding it into S 3221 // to keep the result normalized. 3222 N = normalizeForPostIncUse(N, TmpPostIncLoops, SE); 3223 Kind = LSRUse::ICmpZero; 3224 S = SE.getMinusSCEV(N, S); 3225 } 3226 3227 // -1 and the negations of all interesting strides (except the negation 3228 // of -1) are now also interesting. 3229 for (size_t i = 0, e = Factors.size(); i != e; ++i) 3230 if (Factors[i] != -1) 3231 Factors.insert(-(uint64_t)Factors[i]); 3232 Factors.insert(-1); 3233 } 3234 3235 // Get or create an LSRUse. 3236 std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy); 3237 size_t LUIdx = P.first; 3238 int64_t Offset = P.second; 3239 LSRUse &LU = Uses[LUIdx]; 3240 3241 // Record the fixup. 3242 LSRFixup &LF = LU.getNewFixup(); 3243 LF.UserInst = UserInst; 3244 LF.OperandValToReplace = U.getOperandValToReplace(); 3245 LF.PostIncLoops = TmpPostIncLoops; 3246 LF.Offset = Offset; 3247 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3248 3249 if (!LU.WidestFixupType || 3250 SE.getTypeSizeInBits(LU.WidestFixupType) < 3251 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3252 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3253 3254 // If this is the first use of this LSRUse, give it a formula. 3255 if (LU.Formulae.empty()) { 3256 InsertInitialFormula(S, LU, LUIdx); 3257 CountRegisters(LU.Formulae.back(), LUIdx); 3258 } 3259 } 3260 3261 DEBUG(print_fixups(dbgs())); 3262 } 3263 3264 /// Insert a formula for the given expression into the given use, separating out 3265 /// loop-variant portions from loop-invariant and loop-computable portions. 3266 void 3267 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) { 3268 // Mark uses whose expressions cannot be expanded. 3269 if (!isSafeToExpand(S, SE)) 3270 LU.RigidFormula = true; 3271 3272 Formula F; 3273 F.initialMatch(S, L, SE); 3274 bool Inserted = InsertFormula(LU, LUIdx, F); 3275 assert(Inserted && "Initial formula already exists!"); (void)Inserted; 3276 } 3277 3278 /// Insert a simple single-register formula for the given expression into the 3279 /// given use. 3280 void 3281 LSRInstance::InsertSupplementalFormula(const SCEV *S, 3282 LSRUse &LU, size_t LUIdx) { 3283 Formula F; 3284 F.BaseRegs.push_back(S); 3285 F.HasBaseReg = true; 3286 bool Inserted = InsertFormula(LU, LUIdx, F); 3287 assert(Inserted && "Supplemental formula already exists!"); (void)Inserted; 3288 } 3289 3290 /// Note which registers are used by the given formula, updating RegUses. 3291 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) { 3292 if (F.ScaledReg) 3293 RegUses.countRegister(F.ScaledReg, LUIdx); 3294 for (const SCEV *BaseReg : F.BaseRegs) 3295 RegUses.countRegister(BaseReg, LUIdx); 3296 } 3297 3298 /// If the given formula has not yet been inserted, add it to the list, and 3299 /// return true. Return false otherwise. 3300 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) { 3301 // Do not insert formula that we will not be able to expand. 3302 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) && 3303 "Formula is illegal"); 3304 3305 if (!LU.InsertFormula(F, *L)) 3306 return false; 3307 3308 CountRegisters(F, LUIdx); 3309 return true; 3310 } 3311 3312 /// Check for other uses of loop-invariant values which we're tracking. These 3313 /// other uses will pin these values in registers, making them less profitable 3314 /// for elimination. 3315 /// TODO: This currently misses non-constant addrec step registers. 3316 /// TODO: Should this give more weight to users inside the loop? 3317 void 3318 LSRInstance::CollectLoopInvariantFixupsAndFormulae() { 3319 SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end()); 3320 SmallPtrSet<const SCEV *, 32> Visited; 3321 3322 while (!Worklist.empty()) { 3323 const SCEV *S = Worklist.pop_back_val(); 3324 3325 // Don't process the same SCEV twice 3326 if (!Visited.insert(S).second) 3327 continue; 3328 3329 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) 3330 Worklist.append(N->op_begin(), N->op_end()); 3331 else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) 3332 Worklist.push_back(C->getOperand()); 3333 else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 3334 Worklist.push_back(D->getLHS()); 3335 Worklist.push_back(D->getRHS()); 3336 } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) { 3337 const Value *V = US->getValue(); 3338 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 3339 // Look for instructions defined outside the loop. 3340 if (L->contains(Inst)) continue; 3341 } else if (isa<UndefValue>(V)) 3342 // Undef doesn't have a live range, so it doesn't matter. 3343 continue; 3344 for (const Use &U : V->uses()) { 3345 const Instruction *UserInst = dyn_cast<Instruction>(U.getUser()); 3346 // Ignore non-instructions. 3347 if (!UserInst) 3348 continue; 3349 // Ignore instructions in other functions (as can happen with 3350 // Constants). 3351 if (UserInst->getParent()->getParent() != L->getHeader()->getParent()) 3352 continue; 3353 // Ignore instructions not dominated by the loop. 3354 const BasicBlock *UseBB = !isa<PHINode>(UserInst) ? 3355 UserInst->getParent() : 3356 cast<PHINode>(UserInst)->getIncomingBlock( 3357 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 3358 if (!DT.dominates(L->getHeader(), UseBB)) 3359 continue; 3360 // Don't bother if the instruction is in a BB which ends in an EHPad. 3361 if (UseBB->getTerminator()->isEHPad()) 3362 continue; 3363 // Don't bother rewriting PHIs in catchswitch blocks. 3364 if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator())) 3365 continue; 3366 // Ignore uses which are part of other SCEV expressions, to avoid 3367 // analyzing them multiple times. 3368 if (SE.isSCEVable(UserInst->getType())) { 3369 const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst)); 3370 // If the user is a no-op, look through to its uses. 3371 if (!isa<SCEVUnknown>(UserS)) 3372 continue; 3373 if (UserS == US) { 3374 Worklist.push_back( 3375 SE.getUnknown(const_cast<Instruction *>(UserInst))); 3376 continue; 3377 } 3378 } 3379 // Ignore icmp instructions which are already being analyzed. 3380 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) { 3381 unsigned OtherIdx = !U.getOperandNo(); 3382 Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx)); 3383 if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L)) 3384 continue; 3385 } 3386 3387 std::pair<size_t, int64_t> P = getUse( 3388 S, LSRUse::Basic, MemAccessTy()); 3389 size_t LUIdx = P.first; 3390 int64_t Offset = P.second; 3391 LSRUse &LU = Uses[LUIdx]; 3392 LSRFixup &LF = LU.getNewFixup(); 3393 LF.UserInst = const_cast<Instruction *>(UserInst); 3394 LF.OperandValToReplace = U; 3395 LF.Offset = Offset; 3396 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3397 if (!LU.WidestFixupType || 3398 SE.getTypeSizeInBits(LU.WidestFixupType) < 3399 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3400 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3401 InsertSupplementalFormula(US, LU, LUIdx); 3402 CountRegisters(LU.Formulae.back(), Uses.size() - 1); 3403 break; 3404 } 3405 } 3406 } 3407 } 3408 3409 /// Split S into subexpressions which can be pulled out into separate 3410 /// registers. If C is non-null, multiply each subexpression by C. 3411 /// 3412 /// Return remainder expression after factoring the subexpressions captured by 3413 /// Ops. If Ops is complete, return NULL. 3414 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C, 3415 SmallVectorImpl<const SCEV *> &Ops, 3416 const Loop *L, 3417 ScalarEvolution &SE, 3418 unsigned Depth = 0) { 3419 // Arbitrarily cap recursion to protect compile time. 3420 if (Depth >= 3) 3421 return S; 3422 3423 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3424 // Break out add operands. 3425 for (const SCEV *S : Add->operands()) { 3426 const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1); 3427 if (Remainder) 3428 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3429 } 3430 return nullptr; 3431 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 3432 // Split a non-zero base out of an addrec. 3433 if (AR->getStart()->isZero() || !AR->isAffine()) 3434 return S; 3435 3436 const SCEV *Remainder = CollectSubexprs(AR->getStart(), 3437 C, Ops, L, SE, Depth+1); 3438 // Split the non-zero AddRec unless it is part of a nested recurrence that 3439 // does not pertain to this loop. 3440 if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) { 3441 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3442 Remainder = nullptr; 3443 } 3444 if (Remainder != AR->getStart()) { 3445 if (!Remainder) 3446 Remainder = SE.getConstant(AR->getType(), 0); 3447 return SE.getAddRecExpr(Remainder, 3448 AR->getStepRecurrence(SE), 3449 AR->getLoop(), 3450 //FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 3451 SCEV::FlagAnyWrap); 3452 } 3453 } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3454 // Break (C * (a + b + c)) into C*a + C*b + C*c. 3455 if (Mul->getNumOperands() != 2) 3456 return S; 3457 if (const SCEVConstant *Op0 = 3458 dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3459 C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0; 3460 const SCEV *Remainder = 3461 CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1); 3462 if (Remainder) 3463 Ops.push_back(SE.getMulExpr(C, Remainder)); 3464 return nullptr; 3465 } 3466 } 3467 return S; 3468 } 3469 3470 /// \brief Helper function for LSRInstance::GenerateReassociations. 3471 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 3472 const Formula &Base, 3473 unsigned Depth, size_t Idx, 3474 bool IsScaledReg) { 3475 const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3476 SmallVector<const SCEV *, 8> AddOps; 3477 const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE); 3478 if (Remainder) 3479 AddOps.push_back(Remainder); 3480 3481 if (AddOps.size() == 1) 3482 return; 3483 3484 for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(), 3485 JE = AddOps.end(); 3486 J != JE; ++J) { 3487 // Loop-variant "unknown" values are uninteresting; we won't be able to 3488 // do anything meaningful with them. 3489 if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L)) 3490 continue; 3491 3492 // Don't pull a constant into a register if the constant could be folded 3493 // into an immediate field. 3494 if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3495 LU.AccessTy, *J, Base.getNumRegs() > 1)) 3496 continue; 3497 3498 // Collect all operands except *J. 3499 SmallVector<const SCEV *, 8> InnerAddOps( 3500 ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J); 3501 InnerAddOps.append(std::next(J), 3502 ((const SmallVector<const SCEV *, 8> &)AddOps).end()); 3503 3504 // Don't leave just a constant behind in a register if the constant could 3505 // be folded into an immediate field. 3506 if (InnerAddOps.size() == 1 && 3507 isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3508 LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1)) 3509 continue; 3510 3511 const SCEV *InnerSum = SE.getAddExpr(InnerAddOps); 3512 if (InnerSum->isZero()) 3513 continue; 3514 Formula F = Base; 3515 3516 // Add the remaining pieces of the add back into the new formula. 3517 const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum); 3518 if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 && 3519 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3520 InnerSumSC->getValue()->getZExtValue())) { 3521 F.UnfoldedOffset = 3522 (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue(); 3523 if (IsScaledReg) 3524 F.ScaledReg = nullptr; 3525 else 3526 F.BaseRegs.erase(F.BaseRegs.begin() + Idx); 3527 } else if (IsScaledReg) 3528 F.ScaledReg = InnerSum; 3529 else 3530 F.BaseRegs[Idx] = InnerSum; 3531 3532 // Add J as its own register, or an unfolded immediate. 3533 const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J); 3534 if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 && 3535 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3536 SC->getValue()->getZExtValue())) 3537 F.UnfoldedOffset = 3538 (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue(); 3539 else 3540 F.BaseRegs.push_back(*J); 3541 // We may have changed the number of register in base regs, adjust the 3542 // formula accordingly. 3543 F.canonicalize(*L); 3544 3545 if (InsertFormula(LU, LUIdx, F)) 3546 // If that formula hadn't been seen before, recurse to find more like 3547 // it. 3548 GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth + 1); 3549 } 3550 } 3551 3552 /// Split out subexpressions from adds and the bases of addrecs. 3553 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx, 3554 Formula Base, unsigned Depth) { 3555 assert(Base.isCanonical(*L) && "Input must be in the canonical form"); 3556 // Arbitrarily cap recursion to protect compile time. 3557 if (Depth >= 3) 3558 return; 3559 3560 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3561 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i); 3562 3563 if (Base.Scale == 1) 3564 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, 3565 /* Idx */ -1, /* IsScaledReg */ true); 3566 } 3567 3568 /// Generate a formula consisting of all of the loop-dominating registers added 3569 /// into a single register. 3570 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx, 3571 Formula Base) { 3572 // This method is only interesting on a plurality of registers. 3573 if (Base.BaseRegs.size() + (Base.Scale == 1) <= 1) 3574 return; 3575 3576 // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before 3577 // processing the formula. 3578 Base.unscale(); 3579 Formula F = Base; 3580 F.BaseRegs.clear(); 3581 SmallVector<const SCEV *, 4> Ops; 3582 for (const SCEV *BaseReg : Base.BaseRegs) { 3583 if (SE.properlyDominates(BaseReg, L->getHeader()) && 3584 !SE.hasComputableLoopEvolution(BaseReg, L)) 3585 Ops.push_back(BaseReg); 3586 else 3587 F.BaseRegs.push_back(BaseReg); 3588 } 3589 if (Ops.size() > 1) { 3590 const SCEV *Sum = SE.getAddExpr(Ops); 3591 // TODO: If Sum is zero, it probably means ScalarEvolution missed an 3592 // opportunity to fold something. For now, just ignore such cases 3593 // rather than proceed with zero in a register. 3594 if (!Sum->isZero()) { 3595 F.BaseRegs.push_back(Sum); 3596 F.canonicalize(*L); 3597 (void)InsertFormula(LU, LUIdx, F); 3598 } 3599 } 3600 } 3601 3602 /// \brief Helper function for LSRInstance::GenerateSymbolicOffsets. 3603 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 3604 const Formula &Base, size_t Idx, 3605 bool IsScaledReg) { 3606 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3607 GlobalValue *GV = ExtractSymbol(G, SE); 3608 if (G->isZero() || !GV) 3609 return; 3610 Formula F = Base; 3611 F.BaseGV = GV; 3612 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3613 return; 3614 if (IsScaledReg) 3615 F.ScaledReg = G; 3616 else 3617 F.BaseRegs[Idx] = G; 3618 (void)InsertFormula(LU, LUIdx, F); 3619 } 3620 3621 /// Generate reuse formulae using symbolic offsets. 3622 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, 3623 Formula Base) { 3624 // We can't add a symbolic offset if the address already contains one. 3625 if (Base.BaseGV) return; 3626 3627 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3628 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i); 3629 if (Base.Scale == 1) 3630 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1, 3631 /* IsScaledReg */ true); 3632 } 3633 3634 /// \brief Helper function for LSRInstance::GenerateConstantOffsets. 3635 void LSRInstance::GenerateConstantOffsetsImpl( 3636 LSRUse &LU, unsigned LUIdx, const Formula &Base, 3637 const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) { 3638 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3639 for (int64_t Offset : Worklist) { 3640 Formula F = Base; 3641 F.BaseOffset = (uint64_t)Base.BaseOffset - Offset; 3642 if (isLegalUse(TTI, LU.MinOffset - Offset, LU.MaxOffset - Offset, LU.Kind, 3643 LU.AccessTy, F)) { 3644 // Add the offset to the base register. 3645 const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G); 3646 // If it cancelled out, drop the base register, otherwise update it. 3647 if (NewG->isZero()) { 3648 if (IsScaledReg) { 3649 F.Scale = 0; 3650 F.ScaledReg = nullptr; 3651 } else 3652 F.deleteBaseReg(F.BaseRegs[Idx]); 3653 F.canonicalize(*L); 3654 } else if (IsScaledReg) 3655 F.ScaledReg = NewG; 3656 else 3657 F.BaseRegs[Idx] = NewG; 3658 3659 (void)InsertFormula(LU, LUIdx, F); 3660 } 3661 } 3662 3663 int64_t Imm = ExtractImmediate(G, SE); 3664 if (G->isZero() || Imm == 0) 3665 return; 3666 Formula F = Base; 3667 F.BaseOffset = (uint64_t)F.BaseOffset + Imm; 3668 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3669 return; 3670 if (IsScaledReg) 3671 F.ScaledReg = G; 3672 else 3673 F.BaseRegs[Idx] = G; 3674 (void)InsertFormula(LU, LUIdx, F); 3675 } 3676 3677 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets. 3678 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, 3679 Formula Base) { 3680 // TODO: For now, just add the min and max offset, because it usually isn't 3681 // worthwhile looking at everything inbetween. 3682 SmallVector<int64_t, 2> Worklist; 3683 Worklist.push_back(LU.MinOffset); 3684 if (LU.MaxOffset != LU.MinOffset) 3685 Worklist.push_back(LU.MaxOffset); 3686 3687 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3688 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i); 3689 if (Base.Scale == 1) 3690 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1, 3691 /* IsScaledReg */ true); 3692 } 3693 3694 /// For ICmpZero, check to see if we can scale up the comparison. For example, x 3695 /// == y -> x*c == y*c. 3696 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, 3697 Formula Base) { 3698 if (LU.Kind != LSRUse::ICmpZero) return; 3699 3700 // Determine the integer type for the base formula. 3701 Type *IntTy = Base.getType(); 3702 if (!IntTy) return; 3703 if (SE.getTypeSizeInBits(IntTy) > 64) return; 3704 3705 // Don't do this if there is more than one offset. 3706 if (LU.MinOffset != LU.MaxOffset) return; 3707 3708 // Check if transformation is valid. It is illegal to multiply pointer. 3709 if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy()) 3710 return; 3711 for (const SCEV *BaseReg : Base.BaseRegs) 3712 if (BaseReg->getType()->isPointerTy()) 3713 return; 3714 assert(!Base.BaseGV && "ICmpZero use is not legal!"); 3715 3716 // Check each interesting stride. 3717 for (int64_t Factor : Factors) { 3718 // Check that the multiplication doesn't overflow. 3719 if (Base.BaseOffset == std::numeric_limits<int64_t>::min() && Factor == -1) 3720 continue; 3721 int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor; 3722 if (NewBaseOffset / Factor != Base.BaseOffset) 3723 continue; 3724 // If the offset will be truncated at this use, check that it is in bounds. 3725 if (!IntTy->isPointerTy() && 3726 !ConstantInt::isValueValidForType(IntTy, NewBaseOffset)) 3727 continue; 3728 3729 // Check that multiplying with the use offset doesn't overflow. 3730 int64_t Offset = LU.MinOffset; 3731 if (Offset == std::numeric_limits<int64_t>::min() && Factor == -1) 3732 continue; 3733 Offset = (uint64_t)Offset * Factor; 3734 if (Offset / Factor != LU.MinOffset) 3735 continue; 3736 // If the offset will be truncated at this use, check that it is in bounds. 3737 if (!IntTy->isPointerTy() && 3738 !ConstantInt::isValueValidForType(IntTy, Offset)) 3739 continue; 3740 3741 Formula F = Base; 3742 F.BaseOffset = NewBaseOffset; 3743 3744 // Check that this scale is legal. 3745 if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F)) 3746 continue; 3747 3748 // Compensate for the use having MinOffset built into it. 3749 F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset; 3750 3751 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3752 3753 // Check that multiplying with each base register doesn't overflow. 3754 for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) { 3755 F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS); 3756 if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i]) 3757 goto next; 3758 } 3759 3760 // Check that multiplying with the scaled register doesn't overflow. 3761 if (F.ScaledReg) { 3762 F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS); 3763 if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg) 3764 continue; 3765 } 3766 3767 // Check that multiplying with the unfolded offset doesn't overflow. 3768 if (F.UnfoldedOffset != 0) { 3769 if (F.UnfoldedOffset == std::numeric_limits<int64_t>::min() && 3770 Factor == -1) 3771 continue; 3772 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor; 3773 if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset) 3774 continue; 3775 // If the offset will be truncated, check that it is in bounds. 3776 if (!IntTy->isPointerTy() && 3777 !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset)) 3778 continue; 3779 } 3780 3781 // If we make it here and it's legal, add it. 3782 (void)InsertFormula(LU, LUIdx, F); 3783 next:; 3784 } 3785 } 3786 3787 /// Generate stride factor reuse formulae by making use of scaled-offset address 3788 /// modes, for example. 3789 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) { 3790 // Determine the integer type for the base formula. 3791 Type *IntTy = Base.getType(); 3792 if (!IntTy) return; 3793 3794 // If this Formula already has a scaled register, we can't add another one. 3795 // Try to unscale the formula to generate a better scale. 3796 if (Base.Scale != 0 && !Base.unscale()) 3797 return; 3798 3799 assert(Base.Scale == 0 && "unscale did not did its job!"); 3800 3801 // Check each interesting stride. 3802 for (int64_t Factor : Factors) { 3803 Base.Scale = Factor; 3804 Base.HasBaseReg = Base.BaseRegs.size() > 1; 3805 // Check whether this scale is going to be legal. 3806 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 3807 Base)) { 3808 // As a special-case, handle special out-of-loop Basic users specially. 3809 // TODO: Reconsider this special case. 3810 if (LU.Kind == LSRUse::Basic && 3811 isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special, 3812 LU.AccessTy, Base) && 3813 LU.AllFixupsOutsideLoop) 3814 LU.Kind = LSRUse::Special; 3815 else 3816 continue; 3817 } 3818 // For an ICmpZero, negating a solitary base register won't lead to 3819 // new solutions. 3820 if (LU.Kind == LSRUse::ICmpZero && 3821 !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV) 3822 continue; 3823 // For each addrec base reg, if its loop is current loop, apply the scale. 3824 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { 3825 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i]); 3826 if (AR && (AR->getLoop() == L || LU.AllFixupsOutsideLoop)) { 3827 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3828 if (FactorS->isZero()) 3829 continue; 3830 // Divide out the factor, ignoring high bits, since we'll be 3831 // scaling the value back up in the end. 3832 if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) { 3833 // TODO: This could be optimized to avoid all the copying. 3834 Formula F = Base; 3835 F.ScaledReg = Quotient; 3836 F.deleteBaseReg(F.BaseRegs[i]); 3837 // The canonical representation of 1*reg is reg, which is already in 3838 // Base. In that case, do not try to insert the formula, it will be 3839 // rejected anyway. 3840 if (F.Scale == 1 && (F.BaseRegs.empty() || 3841 (AR->getLoop() != L && LU.AllFixupsOutsideLoop))) 3842 continue; 3843 // If AllFixupsOutsideLoop is true and F.Scale is 1, we may generate 3844 // non canonical Formula with ScaledReg's loop not being L. 3845 if (F.Scale == 1 && LU.AllFixupsOutsideLoop) 3846 F.canonicalize(*L); 3847 (void)InsertFormula(LU, LUIdx, F); 3848 } 3849 } 3850 } 3851 } 3852 } 3853 3854 /// Generate reuse formulae from different IV types. 3855 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) { 3856 // Don't bother truncating symbolic values. 3857 if (Base.BaseGV) return; 3858 3859 // Determine the integer type for the base formula. 3860 Type *DstTy = Base.getType(); 3861 if (!DstTy) return; 3862 DstTy = SE.getEffectiveSCEVType(DstTy); 3863 3864 for (Type *SrcTy : Types) { 3865 if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) { 3866 Formula F = Base; 3867 3868 if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy); 3869 for (const SCEV *&BaseReg : F.BaseRegs) 3870 BaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy); 3871 3872 // TODO: This assumes we've done basic processing on all uses and 3873 // have an idea what the register usage is. 3874 if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses)) 3875 continue; 3876 3877 F.canonicalize(*L); 3878 (void)InsertFormula(LU, LUIdx, F); 3879 } 3880 } 3881 } 3882 3883 namespace { 3884 3885 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer 3886 /// modifications so that the search phase doesn't have to worry about the data 3887 /// structures moving underneath it. 3888 struct WorkItem { 3889 size_t LUIdx; 3890 int64_t Imm; 3891 const SCEV *OrigReg; 3892 3893 WorkItem(size_t LI, int64_t I, const SCEV *R) 3894 : LUIdx(LI), Imm(I), OrigReg(R) {} 3895 3896 void print(raw_ostream &OS) const; 3897 void dump() const; 3898 }; 3899 3900 } // end anonymous namespace 3901 3902 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 3903 void WorkItem::print(raw_ostream &OS) const { 3904 OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx 3905 << " , add offset " << Imm; 3906 } 3907 3908 LLVM_DUMP_METHOD void WorkItem::dump() const { 3909 print(errs()); errs() << '\n'; 3910 } 3911 #endif 3912 3913 /// Look for registers which are a constant distance apart and try to form reuse 3914 /// opportunities between them. 3915 void LSRInstance::GenerateCrossUseConstantOffsets() { 3916 // Group the registers by their value without any added constant offset. 3917 using ImmMapTy = std::map<int64_t, const SCEV *>; 3918 3919 DenseMap<const SCEV *, ImmMapTy> Map; 3920 DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap; 3921 SmallVector<const SCEV *, 8> Sequence; 3922 for (const SCEV *Use : RegUses) { 3923 const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify. 3924 int64_t Imm = ExtractImmediate(Reg, SE); 3925 auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy())); 3926 if (Pair.second) 3927 Sequence.push_back(Reg); 3928 Pair.first->second.insert(std::make_pair(Imm, Use)); 3929 UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use); 3930 } 3931 3932 // Now examine each set of registers with the same base value. Build up 3933 // a list of work to do and do the work in a separate step so that we're 3934 // not adding formulae and register counts while we're searching. 3935 SmallVector<WorkItem, 32> WorkItems; 3936 SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems; 3937 for (const SCEV *Reg : Sequence) { 3938 const ImmMapTy &Imms = Map.find(Reg)->second; 3939 3940 // It's not worthwhile looking for reuse if there's only one offset. 3941 if (Imms.size() == 1) 3942 continue; 3943 3944 DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':'; 3945 for (const auto &Entry : Imms) 3946 dbgs() << ' ' << Entry.first; 3947 dbgs() << '\n'); 3948 3949 // Examine each offset. 3950 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); 3951 J != JE; ++J) { 3952 const SCEV *OrigReg = J->second; 3953 3954 int64_t JImm = J->first; 3955 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg); 3956 3957 if (!isa<SCEVConstant>(OrigReg) && 3958 UsedByIndicesMap[Reg].count() == 1) { 3959 DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n'); 3960 continue; 3961 } 3962 3963 // Conservatively examine offsets between this orig reg a few selected 3964 // other orig regs. 3965 ImmMapTy::const_iterator OtherImms[] = { 3966 Imms.begin(), std::prev(Imms.end()), 3967 Imms.lower_bound((Imms.begin()->first + std::prev(Imms.end())->first) / 3968 2) 3969 }; 3970 for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) { 3971 ImmMapTy::const_iterator M = OtherImms[i]; 3972 if (M == J || M == JE) continue; 3973 3974 // Compute the difference between the two. 3975 int64_t Imm = (uint64_t)JImm - M->first; 3976 for (unsigned LUIdx : UsedByIndices.set_bits()) 3977 // Make a memo of this use, offset, and register tuple. 3978 if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second) 3979 WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg)); 3980 } 3981 } 3982 } 3983 3984 Map.clear(); 3985 Sequence.clear(); 3986 UsedByIndicesMap.clear(); 3987 UniqueItems.clear(); 3988 3989 // Now iterate through the worklist and add new formulae. 3990 for (const WorkItem &WI : WorkItems) { 3991 size_t LUIdx = WI.LUIdx; 3992 LSRUse &LU = Uses[LUIdx]; 3993 int64_t Imm = WI.Imm; 3994 const SCEV *OrigReg = WI.OrigReg; 3995 3996 Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType()); 3997 const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm)); 3998 unsigned BitWidth = SE.getTypeSizeInBits(IntTy); 3999 4000 // TODO: Use a more targeted data structure. 4001 for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) { 4002 Formula F = LU.Formulae[L]; 4003 // FIXME: The code for the scaled and unscaled registers looks 4004 // very similar but slightly different. Investigate if they 4005 // could be merged. That way, we would not have to unscale the 4006 // Formula. 4007 F.unscale(); 4008 // Use the immediate in the scaled register. 4009 if (F.ScaledReg == OrigReg) { 4010 int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale; 4011 // Don't create 50 + reg(-50). 4012 if (F.referencesReg(SE.getSCEV( 4013 ConstantInt::get(IntTy, -(uint64_t)Offset)))) 4014 continue; 4015 Formula NewF = F; 4016 NewF.BaseOffset = Offset; 4017 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 4018 NewF)) 4019 continue; 4020 NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg); 4021 4022 // If the new scale is a constant in a register, and adding the constant 4023 // value to the immediate would produce a value closer to zero than the 4024 // immediate itself, then the formula isn't worthwhile. 4025 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg)) 4026 if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) && 4027 (C->getAPInt().abs() * APInt(BitWidth, F.Scale)) 4028 .ule(std::abs(NewF.BaseOffset))) 4029 continue; 4030 4031 // OK, looks good. 4032 NewF.canonicalize(*this->L); 4033 (void)InsertFormula(LU, LUIdx, NewF); 4034 } else { 4035 // Use the immediate in a base register. 4036 for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) { 4037 const SCEV *BaseReg = F.BaseRegs[N]; 4038 if (BaseReg != OrigReg) 4039 continue; 4040 Formula NewF = F; 4041 NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm; 4042 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, 4043 LU.Kind, LU.AccessTy, NewF)) { 4044 if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm)) 4045 continue; 4046 NewF = F; 4047 NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm; 4048 } 4049 NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg); 4050 4051 // If the new formula has a constant in a register, and adding the 4052 // constant value to the immediate would produce a value closer to 4053 // zero than the immediate itself, then the formula isn't worthwhile. 4054 for (const SCEV *NewReg : NewF.BaseRegs) 4055 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg)) 4056 if ((C->getAPInt() + NewF.BaseOffset) 4057 .abs() 4058 .slt(std::abs(NewF.BaseOffset)) && 4059 (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >= 4060 countTrailingZeros<uint64_t>(NewF.BaseOffset)) 4061 goto skip_formula; 4062 4063 // Ok, looks good. 4064 NewF.canonicalize(*this->L); 4065 (void)InsertFormula(LU, LUIdx, NewF); 4066 break; 4067 skip_formula:; 4068 } 4069 } 4070 } 4071 } 4072 } 4073 4074 /// Generate formulae for each use. 4075 void 4076 LSRInstance::GenerateAllReuseFormulae() { 4077 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan 4078 // queries are more precise. 4079 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4080 LSRUse &LU = Uses[LUIdx]; 4081 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4082 GenerateReassociations(LU, LUIdx, LU.Formulae[i]); 4083 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4084 GenerateCombinations(LU, LUIdx, LU.Formulae[i]); 4085 } 4086 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4087 LSRUse &LU = Uses[LUIdx]; 4088 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4089 GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]); 4090 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4091 GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]); 4092 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4093 GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]); 4094 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4095 GenerateScales(LU, LUIdx, LU.Formulae[i]); 4096 } 4097 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4098 LSRUse &LU = Uses[LUIdx]; 4099 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4100 GenerateTruncates(LU, LUIdx, LU.Formulae[i]); 4101 } 4102 4103 GenerateCrossUseConstantOffsets(); 4104 4105 DEBUG(dbgs() << "\n" 4106 "After generating reuse formulae:\n"; 4107 print_uses(dbgs())); 4108 } 4109 4110 /// If there are multiple formulae with the same set of registers used 4111 /// by other uses, pick the best one and delete the others. 4112 void LSRInstance::FilterOutUndesirableDedicatedRegisters() { 4113 DenseSet<const SCEV *> VisitedRegs; 4114 SmallPtrSet<const SCEV *, 16> Regs; 4115 SmallPtrSet<const SCEV *, 16> LoserRegs; 4116 #ifndef NDEBUG 4117 bool ChangedFormulae = false; 4118 #endif 4119 4120 // Collect the best formula for each unique set of shared registers. This 4121 // is reset for each use. 4122 using BestFormulaeTy = 4123 DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>; 4124 4125 BestFormulaeTy BestFormulae; 4126 4127 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4128 LSRUse &LU = Uses[LUIdx]; 4129 DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n'); 4130 4131 bool Any = false; 4132 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); 4133 FIdx != NumForms; ++FIdx) { 4134 Formula &F = LU.Formulae[FIdx]; 4135 4136 // Some formulas are instant losers. For example, they may depend on 4137 // nonexistent AddRecs from other loops. These need to be filtered 4138 // immediately, otherwise heuristics could choose them over others leading 4139 // to an unsatisfactory solution. Passing LoserRegs into RateFormula here 4140 // avoids the need to recompute this information across formulae using the 4141 // same bad AddRec. Passing LoserRegs is also essential unless we remove 4142 // the corresponding bad register from the Regs set. 4143 Cost CostF; 4144 Regs.clear(); 4145 CostF.RateFormula(TTI, F, Regs, VisitedRegs, L, SE, DT, LU, &LoserRegs); 4146 if (CostF.isLoser()) { 4147 // During initial formula generation, undesirable formulae are generated 4148 // by uses within other loops that have some non-trivial address mode or 4149 // use the postinc form of the IV. LSR needs to provide these formulae 4150 // as the basis of rediscovering the desired formula that uses an AddRec 4151 // corresponding to the existing phi. Once all formulae have been 4152 // generated, these initial losers may be pruned. 4153 DEBUG(dbgs() << " Filtering loser "; F.print(dbgs()); 4154 dbgs() << "\n"); 4155 } 4156 else { 4157 SmallVector<const SCEV *, 4> Key; 4158 for (const SCEV *Reg : F.BaseRegs) { 4159 if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx)) 4160 Key.push_back(Reg); 4161 } 4162 if (F.ScaledReg && 4163 RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx)) 4164 Key.push_back(F.ScaledReg); 4165 // Unstable sort by host order ok, because this is only used for 4166 // uniquifying. 4167 std::sort(Key.begin(), Key.end()); 4168 4169 std::pair<BestFormulaeTy::const_iterator, bool> P = 4170 BestFormulae.insert(std::make_pair(Key, FIdx)); 4171 if (P.second) 4172 continue; 4173 4174 Formula &Best = LU.Formulae[P.first->second]; 4175 4176 Cost CostBest; 4177 Regs.clear(); 4178 CostBest.RateFormula(TTI, Best, Regs, VisitedRegs, L, SE, DT, LU); 4179 if (CostF.isLess(CostBest, TTI)) 4180 std::swap(F, Best); 4181 DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 4182 dbgs() << "\n" 4183 " in favor of formula "; Best.print(dbgs()); 4184 dbgs() << '\n'); 4185 } 4186 #ifndef NDEBUG 4187 ChangedFormulae = true; 4188 #endif 4189 LU.DeleteFormula(F); 4190 --FIdx; 4191 --NumForms; 4192 Any = true; 4193 } 4194 4195 // Now that we've filtered out some formulae, recompute the Regs set. 4196 if (Any) 4197 LU.RecomputeRegs(LUIdx, RegUses); 4198 4199 // Reset this to prepare for the next use. 4200 BestFormulae.clear(); 4201 } 4202 4203 DEBUG(if (ChangedFormulae) { 4204 dbgs() << "\n" 4205 "After filtering out undesirable candidates:\n"; 4206 print_uses(dbgs()); 4207 }); 4208 } 4209 4210 // This is a rough guess that seems to work fairly well. 4211 static const size_t ComplexityLimit = std::numeric_limits<uint16_t>::max(); 4212 4213 /// Estimate the worst-case number of solutions the solver might have to 4214 /// consider. It almost never considers this many solutions because it prune the 4215 /// search space, but the pruning isn't always sufficient. 4216 size_t LSRInstance::EstimateSearchSpaceComplexity() const { 4217 size_t Power = 1; 4218 for (const LSRUse &LU : Uses) { 4219 size_t FSize = LU.Formulae.size(); 4220 if (FSize >= ComplexityLimit) { 4221 Power = ComplexityLimit; 4222 break; 4223 } 4224 Power *= FSize; 4225 if (Power >= ComplexityLimit) 4226 break; 4227 } 4228 return Power; 4229 } 4230 4231 /// When one formula uses a superset of the registers of another formula, it 4232 /// won't help reduce register pressure (though it may not necessarily hurt 4233 /// register pressure); remove it to simplify the system. 4234 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() { 4235 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4236 DEBUG(dbgs() << "The search space is too complex.\n"); 4237 4238 DEBUG(dbgs() << "Narrowing the search space by eliminating formulae " 4239 "which use a superset of registers used by other " 4240 "formulae.\n"); 4241 4242 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4243 LSRUse &LU = Uses[LUIdx]; 4244 bool Any = false; 4245 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4246 Formula &F = LU.Formulae[i]; 4247 // Look for a formula with a constant or GV in a register. If the use 4248 // also has a formula with that same value in an immediate field, 4249 // delete the one that uses a register. 4250 for (SmallVectorImpl<const SCEV *>::const_iterator 4251 I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) { 4252 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) { 4253 Formula NewF = F; 4254 NewF.BaseOffset += C->getValue()->getSExtValue(); 4255 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4256 (I - F.BaseRegs.begin())); 4257 if (LU.HasFormulaWithSameRegs(NewF)) { 4258 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4259 LU.DeleteFormula(F); 4260 --i; 4261 --e; 4262 Any = true; 4263 break; 4264 } 4265 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) { 4266 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) 4267 if (!F.BaseGV) { 4268 Formula NewF = F; 4269 NewF.BaseGV = GV; 4270 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4271 (I - F.BaseRegs.begin())); 4272 if (LU.HasFormulaWithSameRegs(NewF)) { 4273 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4274 dbgs() << '\n'); 4275 LU.DeleteFormula(F); 4276 --i; 4277 --e; 4278 Any = true; 4279 break; 4280 } 4281 } 4282 } 4283 } 4284 } 4285 if (Any) 4286 LU.RecomputeRegs(LUIdx, RegUses); 4287 } 4288 4289 DEBUG(dbgs() << "After pre-selection:\n"; 4290 print_uses(dbgs())); 4291 } 4292 } 4293 4294 /// When there are many registers for expressions like A, A+1, A+2, etc., 4295 /// allocate a single register for them. 4296 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() { 4297 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4298 return; 4299 4300 DEBUG(dbgs() << "The search space is too complex.\n" 4301 "Narrowing the search space by assuming that uses separated " 4302 "by a constant offset will use the same registers.\n"); 4303 4304 // This is especially useful for unrolled loops. 4305 4306 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4307 LSRUse &LU = Uses[LUIdx]; 4308 for (const Formula &F : LU.Formulae) { 4309 if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1)) 4310 continue; 4311 4312 LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU); 4313 if (!LUThatHas) 4314 continue; 4315 4316 if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false, 4317 LU.Kind, LU.AccessTy)) 4318 continue; 4319 4320 DEBUG(dbgs() << " Deleting use "; LU.print(dbgs()); dbgs() << '\n'); 4321 4322 LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop; 4323 4324 // Transfer the fixups of LU to LUThatHas. 4325 for (LSRFixup &Fixup : LU.Fixups) { 4326 Fixup.Offset += F.BaseOffset; 4327 LUThatHas->pushFixup(Fixup); 4328 DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n'); 4329 } 4330 4331 // Delete formulae from the new use which are no longer legal. 4332 bool Any = false; 4333 for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) { 4334 Formula &F = LUThatHas->Formulae[i]; 4335 if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset, 4336 LUThatHas->Kind, LUThatHas->AccessTy, F)) { 4337 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4338 dbgs() << '\n'); 4339 LUThatHas->DeleteFormula(F); 4340 --i; 4341 --e; 4342 Any = true; 4343 } 4344 } 4345 4346 if (Any) 4347 LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses); 4348 4349 // Delete the old use. 4350 DeleteUse(LU, LUIdx); 4351 --LUIdx; 4352 --NumUses; 4353 break; 4354 } 4355 } 4356 4357 DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4358 } 4359 4360 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that 4361 /// we've done more filtering, as it may be able to find more formulae to 4362 /// eliminate. 4363 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){ 4364 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4365 DEBUG(dbgs() << "The search space is too complex.\n"); 4366 4367 DEBUG(dbgs() << "Narrowing the search space by re-filtering out " 4368 "undesirable dedicated registers.\n"); 4369 4370 FilterOutUndesirableDedicatedRegisters(); 4371 4372 DEBUG(dbgs() << "After pre-selection:\n"; 4373 print_uses(dbgs())); 4374 } 4375 } 4376 4377 /// If a LSRUse has multiple formulae with the same ScaledReg and Scale. 4378 /// Pick the best one and delete the others. 4379 /// This narrowing heuristic is to keep as many formulae with different 4380 /// Scale and ScaledReg pair as possible while narrowing the search space. 4381 /// The benefit is that it is more likely to find out a better solution 4382 /// from a formulae set with more Scale and ScaledReg variations than 4383 /// a formulae set with the same Scale and ScaledReg. The picking winner 4384 /// reg heurstic will often keep the formulae with the same Scale and 4385 /// ScaledReg and filter others, and we want to avoid that if possible. 4386 void LSRInstance::NarrowSearchSpaceByFilterFormulaWithSameScaledReg() { 4387 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4388 return; 4389 4390 DEBUG(dbgs() << "The search space is too complex.\n" 4391 "Narrowing the search space by choosing the best Formula " 4392 "from the Formulae with the same Scale and ScaledReg.\n"); 4393 4394 // Map the "Scale * ScaledReg" pair to the best formula of current LSRUse. 4395 using BestFormulaeTy = DenseMap<std::pair<const SCEV *, int64_t>, size_t>; 4396 4397 BestFormulaeTy BestFormulae; 4398 #ifndef NDEBUG 4399 bool ChangedFormulae = false; 4400 #endif 4401 DenseSet<const SCEV *> VisitedRegs; 4402 SmallPtrSet<const SCEV *, 16> Regs; 4403 4404 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4405 LSRUse &LU = Uses[LUIdx]; 4406 DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n'); 4407 4408 // Return true if Formula FA is better than Formula FB. 4409 auto IsBetterThan = [&](Formula &FA, Formula &FB) { 4410 // First we will try to choose the Formula with fewer new registers. 4411 // For a register used by current Formula, the more the register is 4412 // shared among LSRUses, the less we increase the register number 4413 // counter of the formula. 4414 size_t FARegNum = 0; 4415 for (const SCEV *Reg : FA.BaseRegs) { 4416 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg); 4417 FARegNum += (NumUses - UsedByIndices.count() + 1); 4418 } 4419 size_t FBRegNum = 0; 4420 for (const SCEV *Reg : FB.BaseRegs) { 4421 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg); 4422 FBRegNum += (NumUses - UsedByIndices.count() + 1); 4423 } 4424 if (FARegNum != FBRegNum) 4425 return FARegNum < FBRegNum; 4426 4427 // If the new register numbers are the same, choose the Formula with 4428 // less Cost. 4429 Cost CostFA, CostFB; 4430 Regs.clear(); 4431 CostFA.RateFormula(TTI, FA, Regs, VisitedRegs, L, SE, DT, LU); 4432 Regs.clear(); 4433 CostFB.RateFormula(TTI, FB, Regs, VisitedRegs, L, SE, DT, LU); 4434 return CostFA.isLess(CostFB, TTI); 4435 }; 4436 4437 bool Any = false; 4438 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms; 4439 ++FIdx) { 4440 Formula &F = LU.Formulae[FIdx]; 4441 if (!F.ScaledReg) 4442 continue; 4443 auto P = BestFormulae.insert({{F.ScaledReg, F.Scale}, FIdx}); 4444 if (P.second) 4445 continue; 4446 4447 Formula &Best = LU.Formulae[P.first->second]; 4448 if (IsBetterThan(F, Best)) 4449 std::swap(F, Best); 4450 DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 4451 dbgs() << "\n" 4452 " in favor of formula "; 4453 Best.print(dbgs()); dbgs() << '\n'); 4454 #ifndef NDEBUG 4455 ChangedFormulae = true; 4456 #endif 4457 LU.DeleteFormula(F); 4458 --FIdx; 4459 --NumForms; 4460 Any = true; 4461 } 4462 if (Any) 4463 LU.RecomputeRegs(LUIdx, RegUses); 4464 4465 // Reset this to prepare for the next use. 4466 BestFormulae.clear(); 4467 } 4468 4469 DEBUG(if (ChangedFormulae) { 4470 dbgs() << "\n" 4471 "After filtering out undesirable candidates:\n"; 4472 print_uses(dbgs()); 4473 }); 4474 } 4475 4476 /// The function delete formulas with high registers number expectation. 4477 /// Assuming we don't know the value of each formula (already delete 4478 /// all inefficient), generate probability of not selecting for each 4479 /// register. 4480 /// For example, 4481 /// Use1: 4482 /// reg(a) + reg({0,+,1}) 4483 /// reg(a) + reg({-1,+,1}) + 1 4484 /// reg({a,+,1}) 4485 /// Use2: 4486 /// reg(b) + reg({0,+,1}) 4487 /// reg(b) + reg({-1,+,1}) + 1 4488 /// reg({b,+,1}) 4489 /// Use3: 4490 /// reg(c) + reg(b) + reg({0,+,1}) 4491 /// reg(c) + reg({b,+,1}) 4492 /// 4493 /// Probability of not selecting 4494 /// Use1 Use2 Use3 4495 /// reg(a) (1/3) * 1 * 1 4496 /// reg(b) 1 * (1/3) * (1/2) 4497 /// reg({0,+,1}) (2/3) * (2/3) * (1/2) 4498 /// reg({-1,+,1}) (2/3) * (2/3) * 1 4499 /// reg({a,+,1}) (2/3) * 1 * 1 4500 /// reg({b,+,1}) 1 * (2/3) * (2/3) 4501 /// reg(c) 1 * 1 * 0 4502 /// 4503 /// Now count registers number mathematical expectation for each formula: 4504 /// Note that for each use we exclude probability if not selecting for the use. 4505 /// For example for Use1 probability for reg(a) would be just 1 * 1 (excluding 4506 /// probabilty 1/3 of not selecting for Use1). 4507 /// Use1: 4508 /// reg(a) + reg({0,+,1}) 1 + 1/3 -- to be deleted 4509 /// reg(a) + reg({-1,+,1}) + 1 1 + 4/9 -- to be deleted 4510 /// reg({a,+,1}) 1 4511 /// Use2: 4512 /// reg(b) + reg({0,+,1}) 1/2 + 1/3 -- to be deleted 4513 /// reg(b) + reg({-1,+,1}) + 1 1/2 + 2/3 -- to be deleted 4514 /// reg({b,+,1}) 2/3 4515 /// Use3: 4516 /// reg(c) + reg(b) + reg({0,+,1}) 1 + 1/3 + 4/9 -- to be deleted 4517 /// reg(c) + reg({b,+,1}) 1 + 2/3 4518 void LSRInstance::NarrowSearchSpaceByDeletingCostlyFormulas() { 4519 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4520 return; 4521 // Ok, we have too many of formulae on our hands to conveniently handle. 4522 // Use a rough heuristic to thin out the list. 4523 4524 // Set of Regs wich will be 100% used in final solution. 4525 // Used in each formula of a solution (in example above this is reg(c)). 4526 // We can skip them in calculations. 4527 SmallPtrSet<const SCEV *, 4> UniqRegs; 4528 DEBUG(dbgs() << "The search space is too complex.\n"); 4529 4530 // Map each register to probability of not selecting 4531 DenseMap <const SCEV *, float> RegNumMap; 4532 for (const SCEV *Reg : RegUses) { 4533 if (UniqRegs.count(Reg)) 4534 continue; 4535 float PNotSel = 1; 4536 for (const LSRUse &LU : Uses) { 4537 if (!LU.Regs.count(Reg)) 4538 continue; 4539 float P = LU.getNotSelectedProbability(Reg); 4540 if (P != 0.0) 4541 PNotSel *= P; 4542 else 4543 UniqRegs.insert(Reg); 4544 } 4545 RegNumMap.insert(std::make_pair(Reg, PNotSel)); 4546 } 4547 4548 DEBUG(dbgs() << "Narrowing the search space by deleting costly formulas\n"); 4549 4550 // Delete formulas where registers number expectation is high. 4551 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4552 LSRUse &LU = Uses[LUIdx]; 4553 // If nothing to delete - continue. 4554 if (LU.Formulae.size() < 2) 4555 continue; 4556 // This is temporary solution to test performance. Float should be 4557 // replaced with round independent type (based on integers) to avoid 4558 // different results for different target builds. 4559 float FMinRegNum = LU.Formulae[0].getNumRegs(); 4560 float FMinARegNum = LU.Formulae[0].getNumRegs(); 4561 size_t MinIdx = 0; 4562 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4563 Formula &F = LU.Formulae[i]; 4564 float FRegNum = 0; 4565 float FARegNum = 0; 4566 for (const SCEV *BaseReg : F.BaseRegs) { 4567 if (UniqRegs.count(BaseReg)) 4568 continue; 4569 FRegNum += RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg); 4570 if (isa<SCEVAddRecExpr>(BaseReg)) 4571 FARegNum += 4572 RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg); 4573 } 4574 if (const SCEV *ScaledReg = F.ScaledReg) { 4575 if (!UniqRegs.count(ScaledReg)) { 4576 FRegNum += 4577 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg); 4578 if (isa<SCEVAddRecExpr>(ScaledReg)) 4579 FARegNum += 4580 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg); 4581 } 4582 } 4583 if (FMinRegNum > FRegNum || 4584 (FMinRegNum == FRegNum && FMinARegNum > FARegNum)) { 4585 FMinRegNum = FRegNum; 4586 FMinARegNum = FARegNum; 4587 MinIdx = i; 4588 } 4589 } 4590 DEBUG(dbgs() << " The formula "; LU.Formulae[MinIdx].print(dbgs()); 4591 dbgs() << " with min reg num " << FMinRegNum << '\n'); 4592 if (MinIdx != 0) 4593 std::swap(LU.Formulae[MinIdx], LU.Formulae[0]); 4594 while (LU.Formulae.size() != 1) { 4595 DEBUG(dbgs() << " Deleting "; LU.Formulae.back().print(dbgs()); 4596 dbgs() << '\n'); 4597 LU.Formulae.pop_back(); 4598 } 4599 LU.RecomputeRegs(LUIdx, RegUses); 4600 assert(LU.Formulae.size() == 1 && "Should be exactly 1 min regs formula"); 4601 Formula &F = LU.Formulae[0]; 4602 DEBUG(dbgs() << " Leaving only "; F.print(dbgs()); dbgs() << '\n'); 4603 // When we choose the formula, the regs become unique. 4604 UniqRegs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 4605 if (F.ScaledReg) 4606 UniqRegs.insert(F.ScaledReg); 4607 } 4608 DEBUG(dbgs() << "After pre-selection:\n"; 4609 print_uses(dbgs())); 4610 } 4611 4612 /// Pick a register which seems likely to be profitable, and then in any use 4613 /// which has any reference to that register, delete all formulae which do not 4614 /// reference that register. 4615 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() { 4616 // With all other options exhausted, loop until the system is simple 4617 // enough to handle. 4618 SmallPtrSet<const SCEV *, 4> Taken; 4619 while (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4620 // Ok, we have too many of formulae on our hands to conveniently handle. 4621 // Use a rough heuristic to thin out the list. 4622 DEBUG(dbgs() << "The search space is too complex.\n"); 4623 4624 // Pick the register which is used by the most LSRUses, which is likely 4625 // to be a good reuse register candidate. 4626 const SCEV *Best = nullptr; 4627 unsigned BestNum = 0; 4628 for (const SCEV *Reg : RegUses) { 4629 if (Taken.count(Reg)) 4630 continue; 4631 if (!Best) { 4632 Best = Reg; 4633 BestNum = RegUses.getUsedByIndices(Reg).count(); 4634 } else { 4635 unsigned Count = RegUses.getUsedByIndices(Reg).count(); 4636 if (Count > BestNum) { 4637 Best = Reg; 4638 BestNum = Count; 4639 } 4640 } 4641 } 4642 4643 DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best 4644 << " will yield profitable reuse.\n"); 4645 Taken.insert(Best); 4646 4647 // In any use with formulae which references this register, delete formulae 4648 // which don't reference it. 4649 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4650 LSRUse &LU = Uses[LUIdx]; 4651 if (!LU.Regs.count(Best)) continue; 4652 4653 bool Any = false; 4654 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4655 Formula &F = LU.Formulae[i]; 4656 if (!F.referencesReg(Best)) { 4657 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4658 LU.DeleteFormula(F); 4659 --e; 4660 --i; 4661 Any = true; 4662 assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?"); 4663 continue; 4664 } 4665 } 4666 4667 if (Any) 4668 LU.RecomputeRegs(LUIdx, RegUses); 4669 } 4670 4671 DEBUG(dbgs() << "After pre-selection:\n"; 4672 print_uses(dbgs())); 4673 } 4674 } 4675 4676 /// If there are an extraordinary number of formulae to choose from, use some 4677 /// rough heuristics to prune down the number of formulae. This keeps the main 4678 /// solver from taking an extraordinary amount of time in some worst-case 4679 /// scenarios. 4680 void LSRInstance::NarrowSearchSpaceUsingHeuristics() { 4681 NarrowSearchSpaceByDetectingSupersets(); 4682 NarrowSearchSpaceByCollapsingUnrolledCode(); 4683 NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 4684 if (FilterSameScaledReg) 4685 NarrowSearchSpaceByFilterFormulaWithSameScaledReg(); 4686 if (LSRExpNarrow) 4687 NarrowSearchSpaceByDeletingCostlyFormulas(); 4688 else 4689 NarrowSearchSpaceByPickingWinnerRegs(); 4690 } 4691 4692 /// This is the recursive solver. 4693 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 4694 Cost &SolutionCost, 4695 SmallVectorImpl<const Formula *> &Workspace, 4696 const Cost &CurCost, 4697 const SmallPtrSet<const SCEV *, 16> &CurRegs, 4698 DenseSet<const SCEV *> &VisitedRegs) const { 4699 // Some ideas: 4700 // - prune more: 4701 // - use more aggressive filtering 4702 // - sort the formula so that the most profitable solutions are found first 4703 // - sort the uses too 4704 // - search faster: 4705 // - don't compute a cost, and then compare. compare while computing a cost 4706 // and bail early. 4707 // - track register sets with SmallBitVector 4708 4709 const LSRUse &LU = Uses[Workspace.size()]; 4710 4711 // If this use references any register that's already a part of the 4712 // in-progress solution, consider it a requirement that a formula must 4713 // reference that register in order to be considered. This prunes out 4714 // unprofitable searching. 4715 SmallSetVector<const SCEV *, 4> ReqRegs; 4716 for (const SCEV *S : CurRegs) 4717 if (LU.Regs.count(S)) 4718 ReqRegs.insert(S); 4719 4720 SmallPtrSet<const SCEV *, 16> NewRegs; 4721 Cost NewCost; 4722 for (const Formula &F : LU.Formulae) { 4723 // Ignore formulae which may not be ideal in terms of register reuse of 4724 // ReqRegs. The formula should use all required registers before 4725 // introducing new ones. 4726 int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size()); 4727 for (const SCEV *Reg : ReqRegs) { 4728 if ((F.ScaledReg && F.ScaledReg == Reg) || 4729 is_contained(F.BaseRegs, Reg)) { 4730 --NumReqRegsToFind; 4731 if (NumReqRegsToFind == 0) 4732 break; 4733 } 4734 } 4735 if (NumReqRegsToFind != 0) { 4736 // If none of the formulae satisfied the required registers, then we could 4737 // clear ReqRegs and try again. Currently, we simply give up in this case. 4738 continue; 4739 } 4740 4741 // Evaluate the cost of the current formula. If it's already worse than 4742 // the current best, prune the search at that point. 4743 NewCost = CurCost; 4744 NewRegs = CurRegs; 4745 NewCost.RateFormula(TTI, F, NewRegs, VisitedRegs, L, SE, DT, LU); 4746 if (NewCost.isLess(SolutionCost, TTI)) { 4747 Workspace.push_back(&F); 4748 if (Workspace.size() != Uses.size()) { 4749 SolveRecurse(Solution, SolutionCost, Workspace, NewCost, 4750 NewRegs, VisitedRegs); 4751 if (F.getNumRegs() == 1 && Workspace.size() == 1) 4752 VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]); 4753 } else { 4754 DEBUG(dbgs() << "New best at "; NewCost.print(dbgs()); 4755 dbgs() << ".\n Regs:"; 4756 for (const SCEV *S : NewRegs) 4757 dbgs() << ' ' << *S; 4758 dbgs() << '\n'); 4759 4760 SolutionCost = NewCost; 4761 Solution = Workspace; 4762 } 4763 Workspace.pop_back(); 4764 } 4765 } 4766 } 4767 4768 /// Choose one formula from each use. Return the results in the given Solution 4769 /// vector. 4770 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const { 4771 SmallVector<const Formula *, 8> Workspace; 4772 Cost SolutionCost; 4773 SolutionCost.Lose(); 4774 Cost CurCost; 4775 SmallPtrSet<const SCEV *, 16> CurRegs; 4776 DenseSet<const SCEV *> VisitedRegs; 4777 Workspace.reserve(Uses.size()); 4778 4779 // SolveRecurse does all the work. 4780 SolveRecurse(Solution, SolutionCost, Workspace, CurCost, 4781 CurRegs, VisitedRegs); 4782 if (Solution.empty()) { 4783 DEBUG(dbgs() << "\nNo Satisfactory Solution\n"); 4784 return; 4785 } 4786 4787 // Ok, we've now made all our decisions. 4788 DEBUG(dbgs() << "\n" 4789 "The chosen solution requires "; SolutionCost.print(dbgs()); 4790 dbgs() << ":\n"; 4791 for (size_t i = 0, e = Uses.size(); i != e; ++i) { 4792 dbgs() << " "; 4793 Uses[i].print(dbgs()); 4794 dbgs() << "\n" 4795 " "; 4796 Solution[i]->print(dbgs()); 4797 dbgs() << '\n'; 4798 }); 4799 4800 assert(Solution.size() == Uses.size() && "Malformed solution!"); 4801 } 4802 4803 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as 4804 /// we can go while still being dominated by the input positions. This helps 4805 /// canonicalize the insert position, which encourages sharing. 4806 BasicBlock::iterator 4807 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP, 4808 const SmallVectorImpl<Instruction *> &Inputs) 4809 const { 4810 Instruction *Tentative = &*IP; 4811 while (true) { 4812 bool AllDominate = true; 4813 Instruction *BetterPos = nullptr; 4814 // Don't bother attempting to insert before a catchswitch, their basic block 4815 // cannot have other non-PHI instructions. 4816 if (isa<CatchSwitchInst>(Tentative)) 4817 return IP; 4818 4819 for (Instruction *Inst : Inputs) { 4820 if (Inst == Tentative || !DT.dominates(Inst, Tentative)) { 4821 AllDominate = false; 4822 break; 4823 } 4824 // Attempt to find an insert position in the middle of the block, 4825 // instead of at the end, so that it can be used for other expansions. 4826 if (Tentative->getParent() == Inst->getParent() && 4827 (!BetterPos || !DT.dominates(Inst, BetterPos))) 4828 BetterPos = &*std::next(BasicBlock::iterator(Inst)); 4829 } 4830 if (!AllDominate) 4831 break; 4832 if (BetterPos) 4833 IP = BetterPos->getIterator(); 4834 else 4835 IP = Tentative->getIterator(); 4836 4837 const Loop *IPLoop = LI.getLoopFor(IP->getParent()); 4838 unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0; 4839 4840 BasicBlock *IDom; 4841 for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) { 4842 if (!Rung) return IP; 4843 Rung = Rung->getIDom(); 4844 if (!Rung) return IP; 4845 IDom = Rung->getBlock(); 4846 4847 // Don't climb into a loop though. 4848 const Loop *IDomLoop = LI.getLoopFor(IDom); 4849 unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0; 4850 if (IDomDepth <= IPLoopDepth && 4851 (IDomDepth != IPLoopDepth || IDomLoop == IPLoop)) 4852 break; 4853 } 4854 4855 Tentative = IDom->getTerminator(); 4856 } 4857 4858 return IP; 4859 } 4860 4861 /// Determine an input position which will be dominated by the operands and 4862 /// which will dominate the result. 4863 BasicBlock::iterator 4864 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP, 4865 const LSRFixup &LF, 4866 const LSRUse &LU, 4867 SCEVExpander &Rewriter) const { 4868 // Collect some instructions which must be dominated by the 4869 // expanding replacement. These must be dominated by any operands that 4870 // will be required in the expansion. 4871 SmallVector<Instruction *, 4> Inputs; 4872 if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace)) 4873 Inputs.push_back(I); 4874 if (LU.Kind == LSRUse::ICmpZero) 4875 if (Instruction *I = 4876 dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1))) 4877 Inputs.push_back(I); 4878 if (LF.PostIncLoops.count(L)) { 4879 if (LF.isUseFullyOutsideLoop(L)) 4880 Inputs.push_back(L->getLoopLatch()->getTerminator()); 4881 else 4882 Inputs.push_back(IVIncInsertPos); 4883 } 4884 // The expansion must also be dominated by the increment positions of any 4885 // loops it for which it is using post-inc mode. 4886 for (const Loop *PIL : LF.PostIncLoops) { 4887 if (PIL == L) continue; 4888 4889 // Be dominated by the loop exit. 4890 SmallVector<BasicBlock *, 4> ExitingBlocks; 4891 PIL->getExitingBlocks(ExitingBlocks); 4892 if (!ExitingBlocks.empty()) { 4893 BasicBlock *BB = ExitingBlocks[0]; 4894 for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i) 4895 BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]); 4896 Inputs.push_back(BB->getTerminator()); 4897 } 4898 } 4899 4900 assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad() 4901 && !isa<DbgInfoIntrinsic>(LowestIP) && 4902 "Insertion point must be a normal instruction"); 4903 4904 // Then, climb up the immediate dominator tree as far as we can go while 4905 // still being dominated by the input positions. 4906 BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs); 4907 4908 // Don't insert instructions before PHI nodes. 4909 while (isa<PHINode>(IP)) ++IP; 4910 4911 // Ignore landingpad instructions. 4912 while (IP->isEHPad()) ++IP; 4913 4914 // Ignore debug intrinsics. 4915 while (isa<DbgInfoIntrinsic>(IP)) ++IP; 4916 4917 // Set IP below instructions recently inserted by SCEVExpander. This keeps the 4918 // IP consistent across expansions and allows the previously inserted 4919 // instructions to be reused by subsequent expansion. 4920 while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP) 4921 ++IP; 4922 4923 return IP; 4924 } 4925 4926 /// Emit instructions for the leading candidate expression for this LSRUse (this 4927 /// is called "expanding"). 4928 Value *LSRInstance::Expand(const LSRUse &LU, const LSRFixup &LF, 4929 const Formula &F, BasicBlock::iterator IP, 4930 SCEVExpander &Rewriter, 4931 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 4932 if (LU.RigidFormula) 4933 return LF.OperandValToReplace; 4934 4935 // Determine an input position which will be dominated by the operands and 4936 // which will dominate the result. 4937 IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter); 4938 Rewriter.setInsertPoint(&*IP); 4939 4940 // Inform the Rewriter if we have a post-increment use, so that it can 4941 // perform an advantageous expansion. 4942 Rewriter.setPostInc(LF.PostIncLoops); 4943 4944 // This is the type that the user actually needs. 4945 Type *OpTy = LF.OperandValToReplace->getType(); 4946 // This will be the type that we'll initially expand to. 4947 Type *Ty = F.getType(); 4948 if (!Ty) 4949 // No type known; just expand directly to the ultimate type. 4950 Ty = OpTy; 4951 else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy)) 4952 // Expand directly to the ultimate type if it's the right size. 4953 Ty = OpTy; 4954 // This is the type to do integer arithmetic in. 4955 Type *IntTy = SE.getEffectiveSCEVType(Ty); 4956 4957 // Build up a list of operands to add together to form the full base. 4958 SmallVector<const SCEV *, 8> Ops; 4959 4960 // Expand the BaseRegs portion. 4961 for (const SCEV *Reg : F.BaseRegs) { 4962 assert(!Reg->isZero() && "Zero allocated in a base register!"); 4963 4964 // If we're expanding for a post-inc user, make the post-inc adjustment. 4965 Reg = denormalizeForPostIncUse(Reg, LF.PostIncLoops, SE); 4966 Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr))); 4967 } 4968 4969 // Expand the ScaledReg portion. 4970 Value *ICmpScaledV = nullptr; 4971 if (F.Scale != 0) { 4972 const SCEV *ScaledS = F.ScaledReg; 4973 4974 // If we're expanding for a post-inc user, make the post-inc adjustment. 4975 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 4976 ScaledS = denormalizeForPostIncUse(ScaledS, Loops, SE); 4977 4978 if (LU.Kind == LSRUse::ICmpZero) { 4979 // Expand ScaleReg as if it was part of the base regs. 4980 if (F.Scale == 1) 4981 Ops.push_back( 4982 SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr))); 4983 else { 4984 // An interesting way of "folding" with an icmp is to use a negated 4985 // scale, which we'll implement by inserting it into the other operand 4986 // of the icmp. 4987 assert(F.Scale == -1 && 4988 "The only scale supported by ICmpZero uses is -1!"); 4989 ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr); 4990 } 4991 } else { 4992 // Otherwise just expand the scaled register and an explicit scale, 4993 // which is expected to be matched as part of the address. 4994 4995 // Flush the operand list to suppress SCEVExpander hoisting address modes. 4996 // Unless the addressing mode will not be folded. 4997 if (!Ops.empty() && LU.Kind == LSRUse::Address && 4998 isAMCompletelyFolded(TTI, LU, F)) { 4999 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 5000 Ops.clear(); 5001 Ops.push_back(SE.getUnknown(FullV)); 5002 } 5003 ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)); 5004 if (F.Scale != 1) 5005 ScaledS = 5006 SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale)); 5007 Ops.push_back(ScaledS); 5008 } 5009 } 5010 5011 // Expand the GV portion. 5012 if (F.BaseGV) { 5013 // Flush the operand list to suppress SCEVExpander hoisting. 5014 if (!Ops.empty()) { 5015 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 5016 Ops.clear(); 5017 Ops.push_back(SE.getUnknown(FullV)); 5018 } 5019 Ops.push_back(SE.getUnknown(F.BaseGV)); 5020 } 5021 5022 // Flush the operand list to suppress SCEVExpander hoisting of both folded and 5023 // unfolded offsets. LSR assumes they both live next to their uses. 5024 if (!Ops.empty()) { 5025 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 5026 Ops.clear(); 5027 Ops.push_back(SE.getUnknown(FullV)); 5028 } 5029 5030 // Expand the immediate portion. 5031 int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset; 5032 if (Offset != 0) { 5033 if (LU.Kind == LSRUse::ICmpZero) { 5034 // The other interesting way of "folding" with an ICmpZero is to use a 5035 // negated immediate. 5036 if (!ICmpScaledV) 5037 ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset); 5038 else { 5039 Ops.push_back(SE.getUnknown(ICmpScaledV)); 5040 ICmpScaledV = ConstantInt::get(IntTy, Offset); 5041 } 5042 } else { 5043 // Just add the immediate values. These again are expected to be matched 5044 // as part of the address. 5045 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset))); 5046 } 5047 } 5048 5049 // Expand the unfolded offset portion. 5050 int64_t UnfoldedOffset = F.UnfoldedOffset; 5051 if (UnfoldedOffset != 0) { 5052 // Just add the immediate values. 5053 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, 5054 UnfoldedOffset))); 5055 } 5056 5057 // Emit instructions summing all the operands. 5058 const SCEV *FullS = Ops.empty() ? 5059 SE.getConstant(IntTy, 0) : 5060 SE.getAddExpr(Ops); 5061 Value *FullV = Rewriter.expandCodeFor(FullS, Ty); 5062 5063 // We're done expanding now, so reset the rewriter. 5064 Rewriter.clearPostInc(); 5065 5066 // An ICmpZero Formula represents an ICmp which we're handling as a 5067 // comparison against zero. Now that we've expanded an expression for that 5068 // form, update the ICmp's other operand. 5069 if (LU.Kind == LSRUse::ICmpZero) { 5070 ICmpInst *CI = cast<ICmpInst>(LF.UserInst); 5071 DeadInsts.emplace_back(CI->getOperand(1)); 5072 assert(!F.BaseGV && "ICmp does not support folding a global value and " 5073 "a scale at the same time!"); 5074 if (F.Scale == -1) { 5075 if (ICmpScaledV->getType() != OpTy) { 5076 Instruction *Cast = 5077 CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false, 5078 OpTy, false), 5079 ICmpScaledV, OpTy, "tmp", CI); 5080 ICmpScaledV = Cast; 5081 } 5082 CI->setOperand(1, ICmpScaledV); 5083 } else { 5084 // A scale of 1 means that the scale has been expanded as part of the 5085 // base regs. 5086 assert((F.Scale == 0 || F.Scale == 1) && 5087 "ICmp does not support folding a global value and " 5088 "a scale at the same time!"); 5089 Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy), 5090 -(uint64_t)Offset); 5091 if (C->getType() != OpTy) 5092 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 5093 OpTy, false), 5094 C, OpTy); 5095 5096 CI->setOperand(1, C); 5097 } 5098 } 5099 5100 return FullV; 5101 } 5102 5103 /// Helper for Rewrite. PHI nodes are special because the use of their operands 5104 /// effectively happens in their predecessor blocks, so the expression may need 5105 /// to be expanded in multiple places. 5106 void LSRInstance::RewriteForPHI( 5107 PHINode *PN, const LSRUse &LU, const LSRFixup &LF, const Formula &F, 5108 SCEVExpander &Rewriter, SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5109 DenseMap<BasicBlock *, Value *> Inserted; 5110 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 5111 if (PN->getIncomingValue(i) == LF.OperandValToReplace) { 5112 BasicBlock *BB = PN->getIncomingBlock(i); 5113 5114 // If this is a critical edge, split the edge so that we do not insert 5115 // the code on all predecessor/successor paths. We do this unless this 5116 // is the canonical backedge for this loop, which complicates post-inc 5117 // users. 5118 if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 && 5119 !isa<IndirectBrInst>(BB->getTerminator()) && 5120 !isa<CatchSwitchInst>(BB->getTerminator())) { 5121 BasicBlock *Parent = PN->getParent(); 5122 Loop *PNLoop = LI.getLoopFor(Parent); 5123 if (!PNLoop || Parent != PNLoop->getHeader()) { 5124 // Split the critical edge. 5125 BasicBlock *NewBB = nullptr; 5126 if (!Parent->isLandingPad()) { 5127 NewBB = SplitCriticalEdge(BB, Parent, 5128 CriticalEdgeSplittingOptions(&DT, &LI) 5129 .setMergeIdenticalEdges() 5130 .setDontDeleteUselessPHIs()); 5131 } else { 5132 SmallVector<BasicBlock*, 2> NewBBs; 5133 SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI); 5134 NewBB = NewBBs[0]; 5135 } 5136 // If NewBB==NULL, then SplitCriticalEdge refused to split because all 5137 // phi predecessors are identical. The simple thing to do is skip 5138 // splitting in this case rather than complicate the API. 5139 if (NewBB) { 5140 // If PN is outside of the loop and BB is in the loop, we want to 5141 // move the block to be immediately before the PHI block, not 5142 // immediately after BB. 5143 if (L->contains(BB) && !L->contains(PN)) 5144 NewBB->moveBefore(PN->getParent()); 5145 5146 // Splitting the edge can reduce the number of PHI entries we have. 5147 e = PN->getNumIncomingValues(); 5148 BB = NewBB; 5149 i = PN->getBasicBlockIndex(BB); 5150 } 5151 } 5152 } 5153 5154 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair = 5155 Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr))); 5156 if (!Pair.second) 5157 PN->setIncomingValue(i, Pair.first->second); 5158 else { 5159 Value *FullV = Expand(LU, LF, F, BB->getTerminator()->getIterator(), 5160 Rewriter, DeadInsts); 5161 5162 // If this is reuse-by-noop-cast, insert the noop cast. 5163 Type *OpTy = LF.OperandValToReplace->getType(); 5164 if (FullV->getType() != OpTy) 5165 FullV = 5166 CastInst::Create(CastInst::getCastOpcode(FullV, false, 5167 OpTy, false), 5168 FullV, LF.OperandValToReplace->getType(), 5169 "tmp", BB->getTerminator()); 5170 5171 PN->setIncomingValue(i, FullV); 5172 Pair.first->second = FullV; 5173 } 5174 } 5175 } 5176 5177 /// Emit instructions for the leading candidate expression for this LSRUse (this 5178 /// is called "expanding"), and update the UserInst to reference the newly 5179 /// expanded value. 5180 void LSRInstance::Rewrite(const LSRUse &LU, const LSRFixup &LF, 5181 const Formula &F, SCEVExpander &Rewriter, 5182 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5183 // First, find an insertion point that dominates UserInst. For PHI nodes, 5184 // find the nearest block which dominates all the relevant uses. 5185 if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) { 5186 RewriteForPHI(PN, LU, LF, F, Rewriter, DeadInsts); 5187 } else { 5188 Value *FullV = 5189 Expand(LU, LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts); 5190 5191 // If this is reuse-by-noop-cast, insert the noop cast. 5192 Type *OpTy = LF.OperandValToReplace->getType(); 5193 if (FullV->getType() != OpTy) { 5194 Instruction *Cast = 5195 CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false), 5196 FullV, OpTy, "tmp", LF.UserInst); 5197 FullV = Cast; 5198 } 5199 5200 // Update the user. ICmpZero is handled specially here (for now) because 5201 // Expand may have updated one of the operands of the icmp already, and 5202 // its new value may happen to be equal to LF.OperandValToReplace, in 5203 // which case doing replaceUsesOfWith leads to replacing both operands 5204 // with the same value. TODO: Reorganize this. 5205 if (LU.Kind == LSRUse::ICmpZero) 5206 LF.UserInst->setOperand(0, FullV); 5207 else 5208 LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV); 5209 } 5210 5211 DeadInsts.emplace_back(LF.OperandValToReplace); 5212 } 5213 5214 /// Rewrite all the fixup locations with new values, following the chosen 5215 /// solution. 5216 void LSRInstance::ImplementSolution( 5217 const SmallVectorImpl<const Formula *> &Solution) { 5218 // Keep track of instructions we may have made dead, so that 5219 // we can remove them after we are done working. 5220 SmallVector<WeakTrackingVH, 16> DeadInsts; 5221 5222 SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(), 5223 "lsr"); 5224 #ifndef NDEBUG 5225 Rewriter.setDebugType(DEBUG_TYPE); 5226 #endif 5227 Rewriter.disableCanonicalMode(); 5228 Rewriter.enableLSRMode(); 5229 Rewriter.setIVIncInsertPos(L, IVIncInsertPos); 5230 5231 // Mark phi nodes that terminate chains so the expander tries to reuse them. 5232 for (const IVChain &Chain : IVChainVec) { 5233 if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst())) 5234 Rewriter.setChainedPhi(PN); 5235 } 5236 5237 // Expand the new value definitions and update the users. 5238 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) 5239 for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) { 5240 Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], Rewriter, DeadInsts); 5241 Changed = true; 5242 } 5243 5244 for (const IVChain &Chain : IVChainVec) { 5245 GenerateIVChain(Chain, Rewriter, DeadInsts); 5246 Changed = true; 5247 } 5248 // Clean up after ourselves. This must be done before deleting any 5249 // instructions. 5250 Rewriter.clear(); 5251 5252 Changed |= DeleteTriviallyDeadInstructions(DeadInsts); 5253 } 5254 5255 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, 5256 DominatorTree &DT, LoopInfo &LI, 5257 const TargetTransformInfo &TTI) 5258 : IU(IU), SE(SE), DT(DT), LI(LI), TTI(TTI), L(L) { 5259 // If LoopSimplify form is not available, stay out of trouble. 5260 if (!L->isLoopSimplifyForm()) 5261 return; 5262 5263 // If there's no interesting work to be done, bail early. 5264 if (IU.empty()) return; 5265 5266 // If there's too much analysis to be done, bail early. We won't be able to 5267 // model the problem anyway. 5268 unsigned NumUsers = 0; 5269 for (const IVStrideUse &U : IU) { 5270 if (++NumUsers > MaxIVUsers) { 5271 (void)U; 5272 DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U << "\n"); 5273 return; 5274 } 5275 // Bail out if we have a PHI on an EHPad that gets a value from a 5276 // CatchSwitchInst. Because the CatchSwitchInst cannot be split, there is 5277 // no good place to stick any instructions. 5278 if (auto *PN = dyn_cast<PHINode>(U.getUser())) { 5279 auto *FirstNonPHI = PN->getParent()->getFirstNonPHI(); 5280 if (isa<FuncletPadInst>(FirstNonPHI) || 5281 isa<CatchSwitchInst>(FirstNonPHI)) 5282 for (BasicBlock *PredBB : PN->blocks()) 5283 if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI())) 5284 return; 5285 } 5286 } 5287 5288 #ifndef NDEBUG 5289 // All dominating loops must have preheaders, or SCEVExpander may not be able 5290 // to materialize an AddRecExpr whose Start is an outer AddRecExpr. 5291 // 5292 // IVUsers analysis should only create users that are dominated by simple loop 5293 // headers. Since this loop should dominate all of its users, its user list 5294 // should be empty if this loop itself is not within a simple loop nest. 5295 for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader()); 5296 Rung; Rung = Rung->getIDom()) { 5297 BasicBlock *BB = Rung->getBlock(); 5298 const Loop *DomLoop = LI.getLoopFor(BB); 5299 if (DomLoop && DomLoop->getHeader() == BB) { 5300 assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest"); 5301 } 5302 } 5303 #endif // DEBUG 5304 5305 DEBUG(dbgs() << "\nLSR on loop "; 5306 L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false); 5307 dbgs() << ":\n"); 5308 5309 // First, perform some low-level loop optimizations. 5310 OptimizeShadowIV(); 5311 OptimizeLoopTermCond(); 5312 5313 // If loop preparation eliminates all interesting IV users, bail. 5314 if (IU.empty()) return; 5315 5316 // Skip nested loops until we can model them better with formulae. 5317 if (!L->empty()) { 5318 DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n"); 5319 return; 5320 } 5321 5322 // Start collecting data and preparing for the solver. 5323 CollectChains(); 5324 CollectInterestingTypesAndFactors(); 5325 CollectFixupsAndInitialFormulae(); 5326 CollectLoopInvariantFixupsAndFormulae(); 5327 5328 assert(!Uses.empty() && "IVUsers reported at least one use"); 5329 DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n"; 5330 print_uses(dbgs())); 5331 5332 // Now use the reuse data to generate a bunch of interesting ways 5333 // to formulate the values needed for the uses. 5334 GenerateAllReuseFormulae(); 5335 5336 FilterOutUndesirableDedicatedRegisters(); 5337 NarrowSearchSpaceUsingHeuristics(); 5338 5339 SmallVector<const Formula *, 8> Solution; 5340 Solve(Solution); 5341 5342 // Release memory that is no longer needed. 5343 Factors.clear(); 5344 Types.clear(); 5345 RegUses.clear(); 5346 5347 if (Solution.empty()) 5348 return; 5349 5350 #ifndef NDEBUG 5351 // Formulae should be legal. 5352 for (const LSRUse &LU : Uses) { 5353 for (const Formula &F : LU.Formulae) 5354 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 5355 F) && "Illegal formula generated!"); 5356 }; 5357 #endif 5358 5359 // Now that we've decided what we want, make it so. 5360 ImplementSolution(Solution); 5361 } 5362 5363 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 5364 void LSRInstance::print_factors_and_types(raw_ostream &OS) const { 5365 if (Factors.empty() && Types.empty()) return; 5366 5367 OS << "LSR has identified the following interesting factors and types: "; 5368 bool First = true; 5369 5370 for (int64_t Factor : Factors) { 5371 if (!First) OS << ", "; 5372 First = false; 5373 OS << '*' << Factor; 5374 } 5375 5376 for (Type *Ty : Types) { 5377 if (!First) OS << ", "; 5378 First = false; 5379 OS << '(' << *Ty << ')'; 5380 } 5381 OS << '\n'; 5382 } 5383 5384 void LSRInstance::print_fixups(raw_ostream &OS) const { 5385 OS << "LSR is examining the following fixup sites:\n"; 5386 for (const LSRUse &LU : Uses) 5387 for (const LSRFixup &LF : LU.Fixups) { 5388 dbgs() << " "; 5389 LF.print(OS); 5390 OS << '\n'; 5391 } 5392 } 5393 5394 void LSRInstance::print_uses(raw_ostream &OS) const { 5395 OS << "LSR is examining the following uses:\n"; 5396 for (const LSRUse &LU : Uses) { 5397 dbgs() << " "; 5398 LU.print(OS); 5399 OS << '\n'; 5400 for (const Formula &F : LU.Formulae) { 5401 OS << " "; 5402 F.print(OS); 5403 OS << '\n'; 5404 } 5405 } 5406 } 5407 5408 void LSRInstance::print(raw_ostream &OS) const { 5409 print_factors_and_types(OS); 5410 print_fixups(OS); 5411 print_uses(OS); 5412 } 5413 5414 LLVM_DUMP_METHOD void LSRInstance::dump() const { 5415 print(errs()); errs() << '\n'; 5416 } 5417 #endif 5418 5419 namespace { 5420 5421 class LoopStrengthReduce : public LoopPass { 5422 public: 5423 static char ID; // Pass ID, replacement for typeid 5424 5425 LoopStrengthReduce(); 5426 5427 private: 5428 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 5429 void getAnalysisUsage(AnalysisUsage &AU) const override; 5430 }; 5431 5432 } // end anonymous namespace 5433 5434 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) { 5435 initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry()); 5436 } 5437 5438 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const { 5439 // We split critical edges, so we change the CFG. However, we do update 5440 // many analyses if they are around. 5441 AU.addPreservedID(LoopSimplifyID); 5442 5443 AU.addRequired<LoopInfoWrapperPass>(); 5444 AU.addPreserved<LoopInfoWrapperPass>(); 5445 AU.addRequiredID(LoopSimplifyID); 5446 AU.addRequired<DominatorTreeWrapperPass>(); 5447 AU.addPreserved<DominatorTreeWrapperPass>(); 5448 AU.addRequired<ScalarEvolutionWrapperPass>(); 5449 AU.addPreserved<ScalarEvolutionWrapperPass>(); 5450 // Requiring LoopSimplify a second time here prevents IVUsers from running 5451 // twice, since LoopSimplify was invalidated by running ScalarEvolution. 5452 AU.addRequiredID(LoopSimplifyID); 5453 AU.addRequired<IVUsersWrapperPass>(); 5454 AU.addPreserved<IVUsersWrapperPass>(); 5455 AU.addRequired<TargetTransformInfoWrapperPass>(); 5456 } 5457 5458 static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE, 5459 DominatorTree &DT, LoopInfo &LI, 5460 const TargetTransformInfo &TTI) { 5461 bool Changed = false; 5462 5463 // Run the main LSR transformation. 5464 Changed |= LSRInstance(L, IU, SE, DT, LI, TTI).getChanged(); 5465 5466 // Remove any extra phis created by processing inner loops. 5467 Changed |= DeleteDeadPHIs(L->getHeader()); 5468 if (EnablePhiElim && L->isLoopSimplifyForm()) { 5469 SmallVector<WeakTrackingVH, 16> DeadInsts; 5470 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 5471 SCEVExpander Rewriter(SE, DL, "lsr"); 5472 #ifndef NDEBUG 5473 Rewriter.setDebugType(DEBUG_TYPE); 5474 #endif 5475 unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI); 5476 if (numFolded) { 5477 Changed = true; 5478 DeleteTriviallyDeadInstructions(DeadInsts); 5479 DeleteDeadPHIs(L->getHeader()); 5480 } 5481 } 5482 return Changed; 5483 } 5484 5485 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) { 5486 if (skipLoop(L)) 5487 return false; 5488 5489 auto &IU = getAnalysis<IVUsersWrapperPass>().getIU(); 5490 auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 5491 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 5492 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 5493 const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI( 5494 *L->getHeader()->getParent()); 5495 return ReduceLoopStrength(L, IU, SE, DT, LI, TTI); 5496 } 5497 5498 PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM, 5499 LoopStandardAnalysisResults &AR, 5500 LPMUpdater &) { 5501 if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE, 5502 AR.DT, AR.LI, AR.TTI)) 5503 return PreservedAnalyses::all(); 5504 5505 return getLoopPassPreservedAnalyses(); 5506 } 5507 5508 char LoopStrengthReduce::ID = 0; 5509 5510 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce", 5511 "Loop Strength Reduction", false, false) 5512 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 5513 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 5514 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 5515 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass) 5516 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 5517 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 5518 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce", 5519 "Loop Strength Reduction", false, false) 5520 5521 Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); } 5522