1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This transformation analyzes and transforms the induction variables (and
11 // computations derived from them) into forms suitable for efficient execution
12 // on the target.
13 //
14 // This pass performs a strength reduction on array references inside loops that
15 // have as one or more of their components the loop induction variable, it
16 // rewrites expressions to take advantage of scaled-index addressing modes
17 // available on the target, and it performs a variety of other optimizations
18 // related to loop induction variables.
19 //
20 // Terminology note: this code has a lot of handling for "post-increment" or
21 // "post-inc" users. This is not talking about post-increment addressing modes;
22 // it is instead talking about code like this:
23 //
24 //   %i = phi [ 0, %entry ], [ %i.next, %latch ]
25 //   ...
26 //   %i.next = add %i, 1
27 //   %c = icmp eq %i.next, %n
28 //
29 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
30 // it's useful to think about these as the same register, with some uses using
31 // the value of the register before the add and some using it after. In this
32 // example, the icmp is a post-increment user, since it uses %i.next, which is
33 // the value of the induction variable after the increment. The other common
34 // case of post-increment users is users outside the loop.
35 //
36 // TODO: More sophistication in the way Formulae are generated and filtered.
37 //
38 // TODO: Handle multiple loops at a time.
39 //
40 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead
41 //       of a GlobalValue?
42 //
43 // TODO: When truncation is free, truncate ICmp users' operands to make it a
44 //       smaller encoding (on x86 at least).
45 //
46 // TODO: When a negated register is used by an add (such as in a list of
47 //       multiple base registers, or as the increment expression in an addrec),
48 //       we may not actually need both reg and (-1 * reg) in registers; the
49 //       negation can be implemented by using a sub instead of an add. The
50 //       lack of support for taking this into consideration when making
51 //       register pressure decisions is partly worked around by the "Special"
52 //       use kind.
53 //
54 //===----------------------------------------------------------------------===//
55 
56 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h"
57 #include "llvm/ADT/APInt.h"
58 #include "llvm/ADT/DenseMap.h"
59 #include "llvm/ADT/DenseSet.h"
60 #include "llvm/ADT/Hashing.h"
61 #include "llvm/ADT/PointerIntPair.h"
62 #include "llvm/ADT/STLExtras.h"
63 #include "llvm/ADT/SetVector.h"
64 #include "llvm/ADT/SmallBitVector.h"
65 #include "llvm/ADT/SmallPtrSet.h"
66 #include "llvm/ADT/SmallSet.h"
67 #include "llvm/ADT/SmallVector.h"
68 #include "llvm/ADT/iterator_range.h"
69 #include "llvm/Analysis/IVUsers.h"
70 #include "llvm/Analysis/LoopAnalysisManager.h"
71 #include "llvm/Analysis/LoopInfo.h"
72 #include "llvm/Analysis/LoopPass.h"
73 #include "llvm/Analysis/ScalarEvolution.h"
74 #include "llvm/Analysis/ScalarEvolutionExpander.h"
75 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
76 #include "llvm/Analysis/ScalarEvolutionNormalization.h"
77 #include "llvm/Analysis/TargetTransformInfo.h"
78 #include "llvm/IR/BasicBlock.h"
79 #include "llvm/IR/Constant.h"
80 #include "llvm/IR/Constants.h"
81 #include "llvm/IR/DerivedTypes.h"
82 #include "llvm/IR/Dominators.h"
83 #include "llvm/IR/GlobalValue.h"
84 #include "llvm/IR/IRBuilder.h"
85 #include "llvm/IR/InstrTypes.h"
86 #include "llvm/IR/Instruction.h"
87 #include "llvm/IR/Instructions.h"
88 #include "llvm/IR/IntrinsicInst.h"
89 #include "llvm/IR/Intrinsics.h"
90 #include "llvm/IR/Module.h"
91 #include "llvm/IR/OperandTraits.h"
92 #include "llvm/IR/Operator.h"
93 #include "llvm/IR/PassManager.h"
94 #include "llvm/IR/Type.h"
95 #include "llvm/IR/Use.h"
96 #include "llvm/IR/User.h"
97 #include "llvm/IR/Value.h"
98 #include "llvm/IR/ValueHandle.h"
99 #include "llvm/Pass.h"
100 #include "llvm/Support/Casting.h"
101 #include "llvm/Support/CommandLine.h"
102 #include "llvm/Support/Compiler.h"
103 #include "llvm/Support/Debug.h"
104 #include "llvm/Support/ErrorHandling.h"
105 #include "llvm/Support/MathExtras.h"
106 #include "llvm/Support/raw_ostream.h"
107 #include "llvm/Transforms/Scalar.h"
108 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
109 #include "llvm/Transforms/Utils/Local.h"
110 #include <algorithm>
111 #include <cassert>
112 #include <cstddef>
113 #include <cstdint>
114 #include <cstdlib>
115 #include <iterator>
116 #include <limits>
117 #include <map>
118 #include <utility>
119 
120 using namespace llvm;
121 
122 #define DEBUG_TYPE "loop-reduce"
123 
124 /// MaxIVUsers is an arbitrary threshold that provides an early opportunitiy for
125 /// bail out. This threshold is far beyond the number of users that LSR can
126 /// conceivably solve, so it should not affect generated code, but catches the
127 /// worst cases before LSR burns too much compile time and stack space.
128 static const unsigned MaxIVUsers = 200;
129 
130 // Temporary flag to cleanup congruent phis after LSR phi expansion.
131 // It's currently disabled until we can determine whether it's truly useful or
132 // not. The flag should be removed after the v3.0 release.
133 // This is now needed for ivchains.
134 static cl::opt<bool> EnablePhiElim(
135   "enable-lsr-phielim", cl::Hidden, cl::init(true),
136   cl::desc("Enable LSR phi elimination"));
137 
138 // The flag adds instruction count to solutions cost comparision.
139 static cl::opt<bool> InsnsCost(
140   "lsr-insns-cost", cl::Hidden, cl::init(true),
141   cl::desc("Add instruction count to a LSR cost model"));
142 
143 // Flag to choose how to narrow complex lsr solution
144 static cl::opt<bool> LSRExpNarrow(
145   "lsr-exp-narrow", cl::Hidden, cl::init(false),
146   cl::desc("Narrow LSR complex solution using"
147            " expectation of registers number"));
148 
149 // Flag to narrow search space by filtering non-optimal formulae with
150 // the same ScaledReg and Scale.
151 static cl::opt<bool> FilterSameScaledReg(
152     "lsr-filter-same-scaled-reg", cl::Hidden, cl::init(true),
153     cl::desc("Narrow LSR search space by filtering non-optimal formulae"
154              " with the same ScaledReg and Scale"));
155 
156 #ifndef NDEBUG
157 // Stress test IV chain generation.
158 static cl::opt<bool> StressIVChain(
159   "stress-ivchain", cl::Hidden, cl::init(false),
160   cl::desc("Stress test LSR IV chains"));
161 #else
162 static bool StressIVChain = false;
163 #endif
164 
165 namespace {
166 
167 struct MemAccessTy {
168   /// Used in situations where the accessed memory type is unknown.
169   static const unsigned UnknownAddressSpace =
170       std::numeric_limits<unsigned>::max();
171 
172   Type *MemTy = nullptr;
173   unsigned AddrSpace = UnknownAddressSpace;
174 
175   MemAccessTy() = default;
176   MemAccessTy(Type *Ty, unsigned AS) : MemTy(Ty), AddrSpace(AS) {}
177 
178   bool operator==(MemAccessTy Other) const {
179     return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace;
180   }
181 
182   bool operator!=(MemAccessTy Other) const { return !(*this == Other); }
183 
184   static MemAccessTy getUnknown(LLVMContext &Ctx,
185                                 unsigned AS = UnknownAddressSpace) {
186     return MemAccessTy(Type::getVoidTy(Ctx), AS);
187   }
188 };
189 
190 /// This class holds data which is used to order reuse candidates.
191 class RegSortData {
192 public:
193   /// This represents the set of LSRUse indices which reference
194   /// a particular register.
195   SmallBitVector UsedByIndices;
196 
197   void print(raw_ostream &OS) const;
198   void dump() const;
199 };
200 
201 } // end anonymous namespace
202 
203 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
204 void RegSortData::print(raw_ostream &OS) const {
205   OS << "[NumUses=" << UsedByIndices.count() << ']';
206 }
207 
208 LLVM_DUMP_METHOD void RegSortData::dump() const {
209   print(errs()); errs() << '\n';
210 }
211 #endif
212 
213 namespace {
214 
215 /// Map register candidates to information about how they are used.
216 class RegUseTracker {
217   using RegUsesTy = DenseMap<const SCEV *, RegSortData>;
218 
219   RegUsesTy RegUsesMap;
220   SmallVector<const SCEV *, 16> RegSequence;
221 
222 public:
223   void countRegister(const SCEV *Reg, size_t LUIdx);
224   void dropRegister(const SCEV *Reg, size_t LUIdx);
225   void swapAndDropUse(size_t LUIdx, size_t LastLUIdx);
226 
227   bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
228 
229   const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
230 
231   void clear();
232 
233   using iterator = SmallVectorImpl<const SCEV *>::iterator;
234   using const_iterator = SmallVectorImpl<const SCEV *>::const_iterator;
235 
236   iterator begin() { return RegSequence.begin(); }
237   iterator end()   { return RegSequence.end(); }
238   const_iterator begin() const { return RegSequence.begin(); }
239   const_iterator end() const   { return RegSequence.end(); }
240 };
241 
242 } // end anonymous namespace
243 
244 void
245 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) {
246   std::pair<RegUsesTy::iterator, bool> Pair =
247     RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
248   RegSortData &RSD = Pair.first->second;
249   if (Pair.second)
250     RegSequence.push_back(Reg);
251   RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
252   RSD.UsedByIndices.set(LUIdx);
253 }
254 
255 void
256 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) {
257   RegUsesTy::iterator It = RegUsesMap.find(Reg);
258   assert(It != RegUsesMap.end());
259   RegSortData &RSD = It->second;
260   assert(RSD.UsedByIndices.size() > LUIdx);
261   RSD.UsedByIndices.reset(LUIdx);
262 }
263 
264 void
265 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) {
266   assert(LUIdx <= LastLUIdx);
267 
268   // Update RegUses. The data structure is not optimized for this purpose;
269   // we must iterate through it and update each of the bit vectors.
270   for (auto &Pair : RegUsesMap) {
271     SmallBitVector &UsedByIndices = Pair.second.UsedByIndices;
272     if (LUIdx < UsedByIndices.size())
273       UsedByIndices[LUIdx] =
274         LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false;
275     UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx));
276   }
277 }
278 
279 bool
280 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
281   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
282   if (I == RegUsesMap.end())
283     return false;
284   const SmallBitVector &UsedByIndices = I->second.UsedByIndices;
285   int i = UsedByIndices.find_first();
286   if (i == -1) return false;
287   if ((size_t)i != LUIdx) return true;
288   return UsedByIndices.find_next(i) != -1;
289 }
290 
291 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
292   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
293   assert(I != RegUsesMap.end() && "Unknown register!");
294   return I->second.UsedByIndices;
295 }
296 
297 void RegUseTracker::clear() {
298   RegUsesMap.clear();
299   RegSequence.clear();
300 }
301 
302 namespace {
303 
304 /// This class holds information that describes a formula for computing
305 /// satisfying a use. It may include broken-out immediates and scaled registers.
306 struct Formula {
307   /// Global base address used for complex addressing.
308   GlobalValue *BaseGV = nullptr;
309 
310   /// Base offset for complex addressing.
311   int64_t BaseOffset = 0;
312 
313   /// Whether any complex addressing has a base register.
314   bool HasBaseReg = false;
315 
316   /// The scale of any complex addressing.
317   int64_t Scale = 0;
318 
319   /// The list of "base" registers for this use. When this is non-empty. The
320   /// canonical representation of a formula is
321   /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and
322   /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty().
323   /// 3. The reg containing recurrent expr related with currect loop in the
324   /// formula should be put in the ScaledReg.
325   /// #1 enforces that the scaled register is always used when at least two
326   /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2.
327   /// #2 enforces that 1 * reg is reg.
328   /// #3 ensures invariant regs with respect to current loop can be combined
329   /// together in LSR codegen.
330   /// This invariant can be temporarly broken while building a formula.
331   /// However, every formula inserted into the LSRInstance must be in canonical
332   /// form.
333   SmallVector<const SCEV *, 4> BaseRegs;
334 
335   /// The 'scaled' register for this use. This should be non-null when Scale is
336   /// not zero.
337   const SCEV *ScaledReg = nullptr;
338 
339   /// An additional constant offset which added near the use. This requires a
340   /// temporary register, but the offset itself can live in an add immediate
341   /// field rather than a register.
342   int64_t UnfoldedOffset = 0;
343 
344   Formula() = default;
345 
346   void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE);
347 
348   bool isCanonical(const Loop &L) const;
349 
350   void canonicalize(const Loop &L);
351 
352   bool unscale();
353 
354   bool hasZeroEnd() const;
355 
356   size_t getNumRegs() const;
357   Type *getType() const;
358 
359   void deleteBaseReg(const SCEV *&S);
360 
361   bool referencesReg(const SCEV *S) const;
362   bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
363                                   const RegUseTracker &RegUses) const;
364 
365   void print(raw_ostream &OS) const;
366   void dump() const;
367 };
368 
369 } // end anonymous namespace
370 
371 /// Recursion helper for initialMatch.
372 static void DoInitialMatch(const SCEV *S, Loop *L,
373                            SmallVectorImpl<const SCEV *> &Good,
374                            SmallVectorImpl<const SCEV *> &Bad,
375                            ScalarEvolution &SE) {
376   // Collect expressions which properly dominate the loop header.
377   if (SE.properlyDominates(S, L->getHeader())) {
378     Good.push_back(S);
379     return;
380   }
381 
382   // Look at add operands.
383   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
384     for (const SCEV *S : Add->operands())
385       DoInitialMatch(S, L, Good, Bad, SE);
386     return;
387   }
388 
389   // Look at addrec operands.
390   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
391     if (!AR->getStart()->isZero() && AR->isAffine()) {
392       DoInitialMatch(AR->getStart(), L, Good, Bad, SE);
393       DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
394                                       AR->getStepRecurrence(SE),
395                                       // FIXME: AR->getNoWrapFlags()
396                                       AR->getLoop(), SCEV::FlagAnyWrap),
397                      L, Good, Bad, SE);
398       return;
399     }
400 
401   // Handle a multiplication by -1 (negation) if it didn't fold.
402   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
403     if (Mul->getOperand(0)->isAllOnesValue()) {
404       SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end());
405       const SCEV *NewMul = SE.getMulExpr(Ops);
406 
407       SmallVector<const SCEV *, 4> MyGood;
408       SmallVector<const SCEV *, 4> MyBad;
409       DoInitialMatch(NewMul, L, MyGood, MyBad, SE);
410       const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
411         SE.getEffectiveSCEVType(NewMul->getType())));
412       for (const SCEV *S : MyGood)
413         Good.push_back(SE.getMulExpr(NegOne, S));
414       for (const SCEV *S : MyBad)
415         Bad.push_back(SE.getMulExpr(NegOne, S));
416       return;
417     }
418 
419   // Ok, we can't do anything interesting. Just stuff the whole thing into a
420   // register and hope for the best.
421   Bad.push_back(S);
422 }
423 
424 /// Incorporate loop-variant parts of S into this Formula, attempting to keep
425 /// all loop-invariant and loop-computable values in a single base register.
426 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) {
427   SmallVector<const SCEV *, 4> Good;
428   SmallVector<const SCEV *, 4> Bad;
429   DoInitialMatch(S, L, Good, Bad, SE);
430   if (!Good.empty()) {
431     const SCEV *Sum = SE.getAddExpr(Good);
432     if (!Sum->isZero())
433       BaseRegs.push_back(Sum);
434     HasBaseReg = true;
435   }
436   if (!Bad.empty()) {
437     const SCEV *Sum = SE.getAddExpr(Bad);
438     if (!Sum->isZero())
439       BaseRegs.push_back(Sum);
440     HasBaseReg = true;
441   }
442   canonicalize(*L);
443 }
444 
445 /// \brief Check whether or not this formula statisfies the canonical
446 /// representation.
447 /// \see Formula::BaseRegs.
448 bool Formula::isCanonical(const Loop &L) const {
449   if (!ScaledReg)
450     return BaseRegs.size() <= 1;
451 
452   if (Scale != 1)
453     return true;
454 
455   if (Scale == 1 && BaseRegs.empty())
456     return false;
457 
458   const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg);
459   if (SAR && SAR->getLoop() == &L)
460     return true;
461 
462   // If ScaledReg is not a recurrent expr, or it is but its loop is not current
463   // loop, meanwhile BaseRegs contains a recurrent expr reg related with current
464   // loop, we want to swap the reg in BaseRegs with ScaledReg.
465   auto I =
466       find_if(make_range(BaseRegs.begin(), BaseRegs.end()), [&](const SCEV *S) {
467         return isa<const SCEVAddRecExpr>(S) &&
468                (cast<SCEVAddRecExpr>(S)->getLoop() == &L);
469       });
470   return I == BaseRegs.end();
471 }
472 
473 /// \brief Helper method to morph a formula into its canonical representation.
474 /// \see Formula::BaseRegs.
475 /// Every formula having more than one base register, must use the ScaledReg
476 /// field. Otherwise, we would have to do special cases everywhere in LSR
477 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ...
478 /// On the other hand, 1*reg should be canonicalized into reg.
479 void Formula::canonicalize(const Loop &L) {
480   if (isCanonical(L))
481     return;
482   // So far we did not need this case. This is easy to implement but it is
483   // useless to maintain dead code. Beside it could hurt compile time.
484   assert(!BaseRegs.empty() && "1*reg => reg, should not be needed.");
485 
486   // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg.
487   if (!ScaledReg) {
488     ScaledReg = BaseRegs.back();
489     BaseRegs.pop_back();
490     Scale = 1;
491   }
492 
493   // If ScaledReg is an invariant with respect to L, find the reg from
494   // BaseRegs containing the recurrent expr related with Loop L. Swap the
495   // reg with ScaledReg.
496   const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg);
497   if (!SAR || SAR->getLoop() != &L) {
498     auto I = find_if(make_range(BaseRegs.begin(), BaseRegs.end()),
499                      [&](const SCEV *S) {
500                        return isa<const SCEVAddRecExpr>(S) &&
501                               (cast<SCEVAddRecExpr>(S)->getLoop() == &L);
502                      });
503     if (I != BaseRegs.end())
504       std::swap(ScaledReg, *I);
505   }
506 }
507 
508 /// \brief Get rid of the scale in the formula.
509 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2.
510 /// \return true if it was possible to get rid of the scale, false otherwise.
511 /// \note After this operation the formula may not be in the canonical form.
512 bool Formula::unscale() {
513   if (Scale != 1)
514     return false;
515   Scale = 0;
516   BaseRegs.push_back(ScaledReg);
517   ScaledReg = nullptr;
518   return true;
519 }
520 
521 bool Formula::hasZeroEnd() const {
522   if (UnfoldedOffset || BaseOffset)
523     return false;
524   if (BaseRegs.size() != 1 || ScaledReg)
525     return false;
526   return true;
527 }
528 
529 /// Return the total number of register operands used by this formula. This does
530 /// not include register uses implied by non-constant addrec strides.
531 size_t Formula::getNumRegs() const {
532   return !!ScaledReg + BaseRegs.size();
533 }
534 
535 /// Return the type of this formula, if it has one, or null otherwise. This type
536 /// is meaningless except for the bit size.
537 Type *Formula::getType() const {
538   return !BaseRegs.empty() ? BaseRegs.front()->getType() :
539          ScaledReg ? ScaledReg->getType() :
540          BaseGV ? BaseGV->getType() :
541          nullptr;
542 }
543 
544 /// Delete the given base reg from the BaseRegs list.
545 void Formula::deleteBaseReg(const SCEV *&S) {
546   if (&S != &BaseRegs.back())
547     std::swap(S, BaseRegs.back());
548   BaseRegs.pop_back();
549 }
550 
551 /// Test if this formula references the given register.
552 bool Formula::referencesReg(const SCEV *S) const {
553   return S == ScaledReg || is_contained(BaseRegs, S);
554 }
555 
556 /// Test whether this formula uses registers which are used by uses other than
557 /// the use with the given index.
558 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
559                                          const RegUseTracker &RegUses) const {
560   if (ScaledReg)
561     if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
562       return true;
563   for (const SCEV *BaseReg : BaseRegs)
564     if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx))
565       return true;
566   return false;
567 }
568 
569 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
570 void Formula::print(raw_ostream &OS) const {
571   bool First = true;
572   if (BaseGV) {
573     if (!First) OS << " + "; else First = false;
574     BaseGV->printAsOperand(OS, /*PrintType=*/false);
575   }
576   if (BaseOffset != 0) {
577     if (!First) OS << " + "; else First = false;
578     OS << BaseOffset;
579   }
580   for (const SCEV *BaseReg : BaseRegs) {
581     if (!First) OS << " + "; else First = false;
582     OS << "reg(" << *BaseReg << ')';
583   }
584   if (HasBaseReg && BaseRegs.empty()) {
585     if (!First) OS << " + "; else First = false;
586     OS << "**error: HasBaseReg**";
587   } else if (!HasBaseReg && !BaseRegs.empty()) {
588     if (!First) OS << " + "; else First = false;
589     OS << "**error: !HasBaseReg**";
590   }
591   if (Scale != 0) {
592     if (!First) OS << " + "; else First = false;
593     OS << Scale << "*reg(";
594     if (ScaledReg)
595       OS << *ScaledReg;
596     else
597       OS << "<unknown>";
598     OS << ')';
599   }
600   if (UnfoldedOffset != 0) {
601     if (!First) OS << " + ";
602     OS << "imm(" << UnfoldedOffset << ')';
603   }
604 }
605 
606 LLVM_DUMP_METHOD void Formula::dump() const {
607   print(errs()); errs() << '\n';
608 }
609 #endif
610 
611 /// Return true if the given addrec can be sign-extended without changing its
612 /// value.
613 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
614   Type *WideTy =
615     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
616   return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
617 }
618 
619 /// Return true if the given add can be sign-extended without changing its
620 /// value.
621 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
622   Type *WideTy =
623     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
624   return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
625 }
626 
627 /// Return true if the given mul can be sign-extended without changing its
628 /// value.
629 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) {
630   Type *WideTy =
631     IntegerType::get(SE.getContext(),
632                      SE.getTypeSizeInBits(M->getType()) * M->getNumOperands());
633   return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy));
634 }
635 
636 /// Return an expression for LHS /s RHS, if it can be determined and if the
637 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits
638 /// is true, expressions like (X * Y) /s Y are simplified to Y, ignoring that
639 /// the multiplication may overflow, which is useful when the result will be
640 /// used in a context where the most significant bits are ignored.
641 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
642                                 ScalarEvolution &SE,
643                                 bool IgnoreSignificantBits = false) {
644   // Handle the trivial case, which works for any SCEV type.
645   if (LHS == RHS)
646     return SE.getConstant(LHS->getType(), 1);
647 
648   // Handle a few RHS special cases.
649   const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
650   if (RC) {
651     const APInt &RA = RC->getAPInt();
652     // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
653     // some folding.
654     if (RA.isAllOnesValue())
655       return SE.getMulExpr(LHS, RC);
656     // Handle x /s 1 as x.
657     if (RA == 1)
658       return LHS;
659   }
660 
661   // Check for a division of a constant by a constant.
662   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
663     if (!RC)
664       return nullptr;
665     const APInt &LA = C->getAPInt();
666     const APInt &RA = RC->getAPInt();
667     if (LA.srem(RA) != 0)
668       return nullptr;
669     return SE.getConstant(LA.sdiv(RA));
670   }
671 
672   // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
673   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
674     if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) {
675       const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
676                                       IgnoreSignificantBits);
677       if (!Step) return nullptr;
678       const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
679                                        IgnoreSignificantBits);
680       if (!Start) return nullptr;
681       // FlagNW is independent of the start value, step direction, and is
682       // preserved with smaller magnitude steps.
683       // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
684       return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap);
685     }
686     return nullptr;
687   }
688 
689   // Distribute the sdiv over add operands, if the add doesn't overflow.
690   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
691     if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
692       SmallVector<const SCEV *, 8> Ops;
693       for (const SCEV *S : Add->operands()) {
694         const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits);
695         if (!Op) return nullptr;
696         Ops.push_back(Op);
697       }
698       return SE.getAddExpr(Ops);
699     }
700     return nullptr;
701   }
702 
703   // Check for a multiply operand that we can pull RHS out of.
704   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) {
705     if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
706       SmallVector<const SCEV *, 4> Ops;
707       bool Found = false;
708       for (const SCEV *S : Mul->operands()) {
709         if (!Found)
710           if (const SCEV *Q = getExactSDiv(S, RHS, SE,
711                                            IgnoreSignificantBits)) {
712             S = Q;
713             Found = true;
714           }
715         Ops.push_back(S);
716       }
717       return Found ? SE.getMulExpr(Ops) : nullptr;
718     }
719     return nullptr;
720   }
721 
722   // Otherwise we don't know.
723   return nullptr;
724 }
725 
726 /// If S involves the addition of a constant integer value, return that integer
727 /// value, and mutate S to point to a new SCEV with that value excluded.
728 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
729   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
730     if (C->getAPInt().getMinSignedBits() <= 64) {
731       S = SE.getConstant(C->getType(), 0);
732       return C->getValue()->getSExtValue();
733     }
734   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
735     SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
736     int64_t Result = ExtractImmediate(NewOps.front(), SE);
737     if (Result != 0)
738       S = SE.getAddExpr(NewOps);
739     return Result;
740   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
741     SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
742     int64_t Result = ExtractImmediate(NewOps.front(), SE);
743     if (Result != 0)
744       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
745                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
746                            SCEV::FlagAnyWrap);
747     return Result;
748   }
749   return 0;
750 }
751 
752 /// If S involves the addition of a GlobalValue address, return that symbol, and
753 /// mutate S to point to a new SCEV with that value excluded.
754 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
755   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
756     if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
757       S = SE.getConstant(GV->getType(), 0);
758       return GV;
759     }
760   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
761     SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
762     GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
763     if (Result)
764       S = SE.getAddExpr(NewOps);
765     return Result;
766   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
767     SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
768     GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
769     if (Result)
770       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
771                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
772                            SCEV::FlagAnyWrap);
773     return Result;
774   }
775   return nullptr;
776 }
777 
778 /// Returns true if the specified instruction is using the specified value as an
779 /// address.
780 static bool isAddressUse(const TargetTransformInfo &TTI,
781                          Instruction *Inst, Value *OperandVal) {
782   bool isAddress = isa<LoadInst>(Inst);
783   if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
784     if (SI->getPointerOperand() == OperandVal)
785       isAddress = true;
786   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
787     // Addressing modes can also be folded into prefetches and a variety
788     // of intrinsics.
789     switch (II->getIntrinsicID()) {
790     case Intrinsic::memset:
791     case Intrinsic::prefetch:
792       if (II->getArgOperand(0) == OperandVal)
793         isAddress = true;
794       break;
795     case Intrinsic::memmove:
796     case Intrinsic::memcpy:
797       if (II->getArgOperand(0) == OperandVal ||
798           II->getArgOperand(1) == OperandVal)
799         isAddress = true;
800       break;
801     default: {
802       MemIntrinsicInfo IntrInfo;
803       if (TTI.getTgtMemIntrinsic(II, IntrInfo)) {
804         if (IntrInfo.PtrVal == OperandVal)
805           isAddress = true;
806       }
807     }
808     }
809   } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
810     if (RMW->getPointerOperand() == OperandVal)
811       isAddress = true;
812   } else if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
813     if (CmpX->getPointerOperand() == OperandVal)
814       isAddress = true;
815   }
816   return isAddress;
817 }
818 
819 /// Return the type of the memory being accessed.
820 static MemAccessTy getAccessType(const TargetTransformInfo &TTI,
821                                  Instruction *Inst) {
822   MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace);
823   if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
824     AccessTy.MemTy = SI->getOperand(0)->getType();
825     AccessTy.AddrSpace = SI->getPointerAddressSpace();
826   } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
827     AccessTy.AddrSpace = LI->getPointerAddressSpace();
828   } else if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
829     AccessTy.AddrSpace = RMW->getPointerAddressSpace();
830   } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
831     AccessTy.AddrSpace = CmpX->getPointerAddressSpace();
832   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
833     switch (II->getIntrinsicID()) {
834     case Intrinsic::prefetch:
835       AccessTy.AddrSpace = II->getArgOperand(0)->getType()->getPointerAddressSpace();
836       break;
837     default: {
838       MemIntrinsicInfo IntrInfo;
839       if (TTI.getTgtMemIntrinsic(II, IntrInfo) && IntrInfo.PtrVal) {
840         AccessTy.AddrSpace
841           = IntrInfo.PtrVal->getType()->getPointerAddressSpace();
842       }
843 
844       break;
845     }
846     }
847   }
848 
849   // All pointers have the same requirements, so canonicalize them to an
850   // arbitrary pointer type to minimize variation.
851   if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy))
852     AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
853                                       PTy->getAddressSpace());
854 
855   return AccessTy;
856 }
857 
858 /// Return true if this AddRec is already a phi in its loop.
859 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
860   for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin();
861        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
862     if (SE.isSCEVable(PN->getType()) &&
863         (SE.getEffectiveSCEVType(PN->getType()) ==
864          SE.getEffectiveSCEVType(AR->getType())) &&
865         SE.getSCEV(PN) == AR)
866       return true;
867   }
868   return false;
869 }
870 
871 /// Check if expanding this expression is likely to incur significant cost. This
872 /// is tricky because SCEV doesn't track which expressions are actually computed
873 /// by the current IR.
874 ///
875 /// We currently allow expansion of IV increments that involve adds,
876 /// multiplication by constants, and AddRecs from existing phis.
877 ///
878 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an
879 /// obvious multiple of the UDivExpr.
880 static bool isHighCostExpansion(const SCEV *S,
881                                 SmallPtrSetImpl<const SCEV*> &Processed,
882                                 ScalarEvolution &SE) {
883   // Zero/One operand expressions
884   switch (S->getSCEVType()) {
885   case scUnknown:
886   case scConstant:
887     return false;
888   case scTruncate:
889     return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(),
890                                Processed, SE);
891   case scZeroExtend:
892     return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(),
893                                Processed, SE);
894   case scSignExtend:
895     return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(),
896                                Processed, SE);
897   }
898 
899   if (!Processed.insert(S).second)
900     return false;
901 
902   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
903     for (const SCEV *S : Add->operands()) {
904       if (isHighCostExpansion(S, Processed, SE))
905         return true;
906     }
907     return false;
908   }
909 
910   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
911     if (Mul->getNumOperands() == 2) {
912       // Multiplication by a constant is ok
913       if (isa<SCEVConstant>(Mul->getOperand(0)))
914         return isHighCostExpansion(Mul->getOperand(1), Processed, SE);
915 
916       // If we have the value of one operand, check if an existing
917       // multiplication already generates this expression.
918       if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) {
919         Value *UVal = U->getValue();
920         for (User *UR : UVal->users()) {
921           // If U is a constant, it may be used by a ConstantExpr.
922           Instruction *UI = dyn_cast<Instruction>(UR);
923           if (UI && UI->getOpcode() == Instruction::Mul &&
924               SE.isSCEVable(UI->getType())) {
925             return SE.getSCEV(UI) == Mul;
926           }
927         }
928       }
929     }
930   }
931 
932   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
933     if (isExistingPhi(AR, SE))
934       return false;
935   }
936 
937   // Fow now, consider any other type of expression (div/mul/min/max) high cost.
938   return true;
939 }
940 
941 /// If any of the instructions is the specified set are trivially dead, delete
942 /// them and see if this makes any of their operands subsequently dead.
943 static bool
944 DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
945   bool Changed = false;
946 
947   while (!DeadInsts.empty()) {
948     Value *V = DeadInsts.pop_back_val();
949     Instruction *I = dyn_cast_or_null<Instruction>(V);
950 
951     if (!I || !isInstructionTriviallyDead(I))
952       continue;
953 
954     for (Use &O : I->operands())
955       if (Instruction *U = dyn_cast<Instruction>(O)) {
956         O = nullptr;
957         if (U->use_empty())
958           DeadInsts.emplace_back(U);
959       }
960 
961     I->eraseFromParent();
962     Changed = true;
963   }
964 
965   return Changed;
966 }
967 
968 namespace {
969 
970 class LSRUse;
971 
972 } // end anonymous namespace
973 
974 /// \brief Check if the addressing mode defined by \p F is completely
975 /// folded in \p LU at isel time.
976 /// This includes address-mode folding and special icmp tricks.
977 /// This function returns true if \p LU can accommodate what \p F
978 /// defines and up to 1 base + 1 scaled + offset.
979 /// In other words, if \p F has several base registers, this function may
980 /// still return true. Therefore, users still need to account for
981 /// additional base registers and/or unfolded offsets to derive an
982 /// accurate cost model.
983 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
984                                  const LSRUse &LU, const Formula &F);
985 
986 // Get the cost of the scaling factor used in F for LU.
987 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
988                                      const LSRUse &LU, const Formula &F,
989                                      const Loop &L);
990 
991 namespace {
992 
993 /// This class is used to measure and compare candidate formulae.
994 class Cost {
995   TargetTransformInfo::LSRCost C;
996 
997 public:
998   Cost() {
999     C.Insns = 0;
1000     C.NumRegs = 0;
1001     C.AddRecCost = 0;
1002     C.NumIVMuls = 0;
1003     C.NumBaseAdds = 0;
1004     C.ImmCost = 0;
1005     C.SetupCost = 0;
1006     C.ScaleCost = 0;
1007   }
1008 
1009   bool isLess(Cost &Other, const TargetTransformInfo &TTI);
1010 
1011   void Lose();
1012 
1013 #ifndef NDEBUG
1014   // Once any of the metrics loses, they must all remain losers.
1015   bool isValid() {
1016     return ((C.Insns | C.NumRegs | C.AddRecCost | C.NumIVMuls | C.NumBaseAdds
1017              | C.ImmCost | C.SetupCost | C.ScaleCost) != ~0u)
1018       || ((C.Insns & C.NumRegs & C.AddRecCost & C.NumIVMuls & C.NumBaseAdds
1019            & C.ImmCost & C.SetupCost & C.ScaleCost) == ~0u);
1020   }
1021 #endif
1022 
1023   bool isLoser() {
1024     assert(isValid() && "invalid cost");
1025     return C.NumRegs == ~0u;
1026   }
1027 
1028   void RateFormula(const TargetTransformInfo &TTI,
1029                    const Formula &F,
1030                    SmallPtrSetImpl<const SCEV *> &Regs,
1031                    const DenseSet<const SCEV *> &VisitedRegs,
1032                    const Loop *L,
1033                    ScalarEvolution &SE, DominatorTree &DT,
1034                    const LSRUse &LU,
1035                    SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr);
1036 
1037   void print(raw_ostream &OS) const;
1038   void dump() const;
1039 
1040 private:
1041   void RateRegister(const SCEV *Reg,
1042                     SmallPtrSetImpl<const SCEV *> &Regs,
1043                     const Loop *L,
1044                     ScalarEvolution &SE, DominatorTree &DT);
1045   void RatePrimaryRegister(const SCEV *Reg,
1046                            SmallPtrSetImpl<const SCEV *> &Regs,
1047                            const Loop *L,
1048                            ScalarEvolution &SE, DominatorTree &DT,
1049                            SmallPtrSetImpl<const SCEV *> *LoserRegs);
1050 };
1051 
1052 /// An operand value in an instruction which is to be replaced with some
1053 /// equivalent, possibly strength-reduced, replacement.
1054 struct LSRFixup {
1055   /// The instruction which will be updated.
1056   Instruction *UserInst = nullptr;
1057 
1058   /// The operand of the instruction which will be replaced. The operand may be
1059   /// used more than once; every instance will be replaced.
1060   Value *OperandValToReplace = nullptr;
1061 
1062   /// If this user is to use the post-incremented value of an induction
1063   /// variable, this set is non-empty and holds the loops associated with the
1064   /// induction variable.
1065   PostIncLoopSet PostIncLoops;
1066 
1067   /// A constant offset to be added to the LSRUse expression.  This allows
1068   /// multiple fixups to share the same LSRUse with different offsets, for
1069   /// example in an unrolled loop.
1070   int64_t Offset = 0;
1071 
1072   LSRFixup() = default;
1073 
1074   bool isUseFullyOutsideLoop(const Loop *L) const;
1075 
1076   void print(raw_ostream &OS) const;
1077   void dump() const;
1078 };
1079 
1080 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted
1081 /// SmallVectors of const SCEV*.
1082 struct UniquifierDenseMapInfo {
1083   static SmallVector<const SCEV *, 4> getEmptyKey() {
1084     SmallVector<const SCEV *, 4>  V;
1085     V.push_back(reinterpret_cast<const SCEV *>(-1));
1086     return V;
1087   }
1088 
1089   static SmallVector<const SCEV *, 4> getTombstoneKey() {
1090     SmallVector<const SCEV *, 4> V;
1091     V.push_back(reinterpret_cast<const SCEV *>(-2));
1092     return V;
1093   }
1094 
1095   static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) {
1096     return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
1097   }
1098 
1099   static bool isEqual(const SmallVector<const SCEV *, 4> &LHS,
1100                       const SmallVector<const SCEV *, 4> &RHS) {
1101     return LHS == RHS;
1102   }
1103 };
1104 
1105 /// This class holds the state that LSR keeps for each use in IVUsers, as well
1106 /// as uses invented by LSR itself. It includes information about what kinds of
1107 /// things can be folded into the user, information about the user itself, and
1108 /// information about how the use may be satisfied.  TODO: Represent multiple
1109 /// users of the same expression in common?
1110 class LSRUse {
1111   DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier;
1112 
1113 public:
1114   /// An enum for a kind of use, indicating what types of scaled and immediate
1115   /// operands it might support.
1116   enum KindType {
1117     Basic,   ///< A normal use, with no folding.
1118     Special, ///< A special case of basic, allowing -1 scales.
1119     Address, ///< An address use; folding according to TargetLowering
1120     ICmpZero ///< An equality icmp with both operands folded into one.
1121     // TODO: Add a generic icmp too?
1122   };
1123 
1124   using SCEVUseKindPair = PointerIntPair<const SCEV *, 2, KindType>;
1125 
1126   KindType Kind;
1127   MemAccessTy AccessTy;
1128 
1129   /// The list of operands which are to be replaced.
1130   SmallVector<LSRFixup, 8> Fixups;
1131 
1132   /// Keep track of the min and max offsets of the fixups.
1133   int64_t MinOffset = std::numeric_limits<int64_t>::max();
1134   int64_t MaxOffset = std::numeric_limits<int64_t>::min();
1135 
1136   /// This records whether all of the fixups using this LSRUse are outside of
1137   /// the loop, in which case some special-case heuristics may be used.
1138   bool AllFixupsOutsideLoop = true;
1139 
1140   /// RigidFormula is set to true to guarantee that this use will be associated
1141   /// with a single formula--the one that initially matched. Some SCEV
1142   /// expressions cannot be expanded. This allows LSR to consider the registers
1143   /// used by those expressions without the need to expand them later after
1144   /// changing the formula.
1145   bool RigidFormula = false;
1146 
1147   /// This records the widest use type for any fixup using this
1148   /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max
1149   /// fixup widths to be equivalent, because the narrower one may be relying on
1150   /// the implicit truncation to truncate away bogus bits.
1151   Type *WidestFixupType = nullptr;
1152 
1153   /// A list of ways to build a value that can satisfy this user.  After the
1154   /// list is populated, one of these is selected heuristically and used to
1155   /// formulate a replacement for OperandValToReplace in UserInst.
1156   SmallVector<Formula, 12> Formulae;
1157 
1158   /// The set of register candidates used by all formulae in this LSRUse.
1159   SmallPtrSet<const SCEV *, 4> Regs;
1160 
1161   LSRUse(KindType K, MemAccessTy AT) : Kind(K), AccessTy(AT) {}
1162 
1163   LSRFixup &getNewFixup() {
1164     Fixups.push_back(LSRFixup());
1165     return Fixups.back();
1166   }
1167 
1168   void pushFixup(LSRFixup &f) {
1169     Fixups.push_back(f);
1170     if (f.Offset > MaxOffset)
1171       MaxOffset = f.Offset;
1172     if (f.Offset < MinOffset)
1173       MinOffset = f.Offset;
1174   }
1175 
1176   bool HasFormulaWithSameRegs(const Formula &F) const;
1177   float getNotSelectedProbability(const SCEV *Reg) const;
1178   bool InsertFormula(const Formula &F, const Loop &L);
1179   void DeleteFormula(Formula &F);
1180   void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
1181 
1182   void print(raw_ostream &OS) const;
1183   void dump() const;
1184 };
1185 
1186 } // end anonymous namespace
1187 
1188 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1189                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1190                                  GlobalValue *BaseGV, int64_t BaseOffset,
1191                                  bool HasBaseReg, int64_t Scale,
1192                                  Instruction *Fixup = nullptr);
1193 
1194 /// Tally up interesting quantities from the given register.
1195 void Cost::RateRegister(const SCEV *Reg,
1196                         SmallPtrSetImpl<const SCEV *> &Regs,
1197                         const Loop *L,
1198                         ScalarEvolution &SE, DominatorTree &DT) {
1199   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
1200     // If this is an addrec for another loop, it should be an invariant
1201     // with respect to L since L is the innermost loop (at least
1202     // for now LSR only handles innermost loops).
1203     if (AR->getLoop() != L) {
1204       // If the AddRec exists, consider it's register free and leave it alone.
1205       if (isExistingPhi(AR, SE))
1206         return;
1207 
1208       // It is bad to allow LSR for current loop to add induction variables
1209       // for its sibling loops.
1210       if (!AR->getLoop()->contains(L)) {
1211         Lose();
1212         return;
1213       }
1214 
1215       // Otherwise, it will be an invariant with respect to Loop L.
1216       ++C.NumRegs;
1217       return;
1218     }
1219     C.AddRecCost += 1; /// TODO: This should be a function of the stride.
1220 
1221     // Add the step value register, if it needs one.
1222     // TODO: The non-affine case isn't precisely modeled here.
1223     if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) {
1224       if (!Regs.count(AR->getOperand(1))) {
1225         RateRegister(AR->getOperand(1), Regs, L, SE, DT);
1226         if (isLoser())
1227           return;
1228       }
1229     }
1230   }
1231   ++C.NumRegs;
1232 
1233   // Rough heuristic; favor registers which don't require extra setup
1234   // instructions in the preheader.
1235   if (!isa<SCEVUnknown>(Reg) &&
1236       !isa<SCEVConstant>(Reg) &&
1237       !(isa<SCEVAddRecExpr>(Reg) &&
1238         (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) ||
1239          isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart()))))
1240     ++C.SetupCost;
1241 
1242   C.NumIVMuls += isa<SCEVMulExpr>(Reg) &&
1243                SE.hasComputableLoopEvolution(Reg, L);
1244 }
1245 
1246 /// Record this register in the set. If we haven't seen it before, rate
1247 /// it. Optional LoserRegs provides a way to declare any formula that refers to
1248 /// one of those regs an instant loser.
1249 void Cost::RatePrimaryRegister(const SCEV *Reg,
1250                                SmallPtrSetImpl<const SCEV *> &Regs,
1251                                const Loop *L,
1252                                ScalarEvolution &SE, DominatorTree &DT,
1253                                SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1254   if (LoserRegs && LoserRegs->count(Reg)) {
1255     Lose();
1256     return;
1257   }
1258   if (Regs.insert(Reg).second) {
1259     RateRegister(Reg, Regs, L, SE, DT);
1260     if (LoserRegs && isLoser())
1261       LoserRegs->insert(Reg);
1262   }
1263 }
1264 
1265 void Cost::RateFormula(const TargetTransformInfo &TTI,
1266                        const Formula &F,
1267                        SmallPtrSetImpl<const SCEV *> &Regs,
1268                        const DenseSet<const SCEV *> &VisitedRegs,
1269                        const Loop *L,
1270                        ScalarEvolution &SE, DominatorTree &DT,
1271                        const LSRUse &LU,
1272                        SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1273   assert(F.isCanonical(*L) && "Cost is accurate only for canonical formula");
1274   // Tally up the registers.
1275   unsigned PrevAddRecCost = C.AddRecCost;
1276   unsigned PrevNumRegs = C.NumRegs;
1277   unsigned PrevNumBaseAdds = C.NumBaseAdds;
1278   if (const SCEV *ScaledReg = F.ScaledReg) {
1279     if (VisitedRegs.count(ScaledReg)) {
1280       Lose();
1281       return;
1282     }
1283     RatePrimaryRegister(ScaledReg, Regs, L, SE, DT, LoserRegs);
1284     if (isLoser())
1285       return;
1286   }
1287   for (const SCEV *BaseReg : F.BaseRegs) {
1288     if (VisitedRegs.count(BaseReg)) {
1289       Lose();
1290       return;
1291     }
1292     RatePrimaryRegister(BaseReg, Regs, L, SE, DT, LoserRegs);
1293     if (isLoser())
1294       return;
1295   }
1296 
1297   // Determine how many (unfolded) adds we'll need inside the loop.
1298   size_t NumBaseParts = F.getNumRegs();
1299   if (NumBaseParts > 1)
1300     // Do not count the base and a possible second register if the target
1301     // allows to fold 2 registers.
1302     C.NumBaseAdds +=
1303         NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(TTI, LU, F)));
1304   C.NumBaseAdds += (F.UnfoldedOffset != 0);
1305 
1306   // Accumulate non-free scaling amounts.
1307   C.ScaleCost += getScalingFactorCost(TTI, LU, F, *L);
1308 
1309   // Tally up the non-zero immediates.
1310   for (const LSRFixup &Fixup : LU.Fixups) {
1311     int64_t O = Fixup.Offset;
1312     int64_t Offset = (uint64_t)O + F.BaseOffset;
1313     if (F.BaseGV)
1314       C.ImmCost += 64; // Handle symbolic values conservatively.
1315                      // TODO: This should probably be the pointer size.
1316     else if (Offset != 0)
1317       C.ImmCost += APInt(64, Offset, true).getMinSignedBits();
1318 
1319     // Check with target if this offset with this instruction is
1320     // specifically not supported.
1321     if (LU.Kind == LSRUse::Address && Offset != 0 &&
1322         !isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV,
1323                               Offset, F.HasBaseReg, F.Scale, Fixup.UserInst))
1324       C.NumBaseAdds++;
1325   }
1326 
1327   // If we don't count instruction cost exit here.
1328   if (!InsnsCost) {
1329     assert(isValid() && "invalid cost");
1330     return;
1331   }
1332 
1333   // Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as
1334   // additional instruction (at least fill).
1335   unsigned TTIRegNum = TTI.getNumberOfRegisters(false) - 1;
1336   if (C.NumRegs > TTIRegNum) {
1337     // Cost already exceeded TTIRegNum, then only newly added register can add
1338     // new instructions.
1339     if (PrevNumRegs > TTIRegNum)
1340       C.Insns += (C.NumRegs - PrevNumRegs);
1341     else
1342       C.Insns += (C.NumRegs - TTIRegNum);
1343   }
1344 
1345   // If ICmpZero formula ends with not 0, it could not be replaced by
1346   // just add or sub. We'll need to compare final result of AddRec.
1347   // That means we'll need an additional instruction.
1348   // For -10 + {0, +, 1}:
1349   // i = i + 1;
1350   // cmp i, 10
1351   //
1352   // For {-10, +, 1}:
1353   // i = i + 1;
1354   if (LU.Kind == LSRUse::ICmpZero && !F.hasZeroEnd())
1355     C.Insns++;
1356   // Each new AddRec adds 1 instruction to calculation.
1357   C.Insns += (C.AddRecCost - PrevAddRecCost);
1358 
1359   // BaseAdds adds instructions for unfolded registers.
1360   if (LU.Kind != LSRUse::ICmpZero)
1361     C.Insns += C.NumBaseAdds - PrevNumBaseAdds;
1362   assert(isValid() && "invalid cost");
1363 }
1364 
1365 /// Set this cost to a losing value.
1366 void Cost::Lose() {
1367   C.Insns = std::numeric_limits<unsigned>::max();
1368   C.NumRegs = std::numeric_limits<unsigned>::max();
1369   C.AddRecCost = std::numeric_limits<unsigned>::max();
1370   C.NumIVMuls = std::numeric_limits<unsigned>::max();
1371   C.NumBaseAdds = std::numeric_limits<unsigned>::max();
1372   C.ImmCost = std::numeric_limits<unsigned>::max();
1373   C.SetupCost = std::numeric_limits<unsigned>::max();
1374   C.ScaleCost = std::numeric_limits<unsigned>::max();
1375 }
1376 
1377 /// Choose the lower cost.
1378 bool Cost::isLess(Cost &Other, const TargetTransformInfo &TTI) {
1379   if (InsnsCost.getNumOccurrences() > 0 && InsnsCost &&
1380       C.Insns != Other.C.Insns)
1381     return C.Insns < Other.C.Insns;
1382   return TTI.isLSRCostLess(C, Other.C);
1383 }
1384 
1385 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1386 void Cost::print(raw_ostream &OS) const {
1387   if (InsnsCost)
1388     OS << C.Insns << " instruction" << (C.Insns == 1 ? " " : "s ");
1389   OS << C.NumRegs << " reg" << (C.NumRegs == 1 ? "" : "s");
1390   if (C.AddRecCost != 0)
1391     OS << ", with addrec cost " << C.AddRecCost;
1392   if (C.NumIVMuls != 0)
1393     OS << ", plus " << C.NumIVMuls << " IV mul"
1394        << (C.NumIVMuls == 1 ? "" : "s");
1395   if (C.NumBaseAdds != 0)
1396     OS << ", plus " << C.NumBaseAdds << " base add"
1397        << (C.NumBaseAdds == 1 ? "" : "s");
1398   if (C.ScaleCost != 0)
1399     OS << ", plus " << C.ScaleCost << " scale cost";
1400   if (C.ImmCost != 0)
1401     OS << ", plus " << C.ImmCost << " imm cost";
1402   if (C.SetupCost != 0)
1403     OS << ", plus " << C.SetupCost << " setup cost";
1404 }
1405 
1406 LLVM_DUMP_METHOD void Cost::dump() const {
1407   print(errs()); errs() << '\n';
1408 }
1409 #endif
1410 
1411 /// Test whether this fixup always uses its value outside of the given loop.
1412 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
1413   // PHI nodes use their value in their incoming blocks.
1414   if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
1415     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1416       if (PN->getIncomingValue(i) == OperandValToReplace &&
1417           L->contains(PN->getIncomingBlock(i)))
1418         return false;
1419     return true;
1420   }
1421 
1422   return !L->contains(UserInst);
1423 }
1424 
1425 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1426 void LSRFixup::print(raw_ostream &OS) const {
1427   OS << "UserInst=";
1428   // Store is common and interesting enough to be worth special-casing.
1429   if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
1430     OS << "store ";
1431     Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false);
1432   } else if (UserInst->getType()->isVoidTy())
1433     OS << UserInst->getOpcodeName();
1434   else
1435     UserInst->printAsOperand(OS, /*PrintType=*/false);
1436 
1437   OS << ", OperandValToReplace=";
1438   OperandValToReplace->printAsOperand(OS, /*PrintType=*/false);
1439 
1440   for (const Loop *PIL : PostIncLoops) {
1441     OS << ", PostIncLoop=";
1442     PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
1443   }
1444 
1445   if (Offset != 0)
1446     OS << ", Offset=" << Offset;
1447 }
1448 
1449 LLVM_DUMP_METHOD void LSRFixup::dump() const {
1450   print(errs()); errs() << '\n';
1451 }
1452 #endif
1453 
1454 /// Test whether this use as a formula which has the same registers as the given
1455 /// formula.
1456 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
1457   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1458   if (F.ScaledReg) Key.push_back(F.ScaledReg);
1459   // Unstable sort by host order ok, because this is only used for uniquifying.
1460   std::sort(Key.begin(), Key.end());
1461   return Uniquifier.count(Key);
1462 }
1463 
1464 /// The function returns a probability of selecting formula without Reg.
1465 float LSRUse::getNotSelectedProbability(const SCEV *Reg) const {
1466   unsigned FNum = 0;
1467   for (const Formula &F : Formulae)
1468     if (F.referencesReg(Reg))
1469       FNum++;
1470   return ((float)(Formulae.size() - FNum)) / Formulae.size();
1471 }
1472 
1473 /// If the given formula has not yet been inserted, add it to the list, and
1474 /// return true. Return false otherwise.  The formula must be in canonical form.
1475 bool LSRUse::InsertFormula(const Formula &F, const Loop &L) {
1476   assert(F.isCanonical(L) && "Invalid canonical representation");
1477 
1478   if (!Formulae.empty() && RigidFormula)
1479     return false;
1480 
1481   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1482   if (F.ScaledReg) Key.push_back(F.ScaledReg);
1483   // Unstable sort by host order ok, because this is only used for uniquifying.
1484   std::sort(Key.begin(), Key.end());
1485 
1486   if (!Uniquifier.insert(Key).second)
1487     return false;
1488 
1489   // Using a register to hold the value of 0 is not profitable.
1490   assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
1491          "Zero allocated in a scaled register!");
1492 #ifndef NDEBUG
1493   for (const SCEV *BaseReg : F.BaseRegs)
1494     assert(!BaseReg->isZero() && "Zero allocated in a base register!");
1495 #endif
1496 
1497   // Add the formula to the list.
1498   Formulae.push_back(F);
1499 
1500   // Record registers now being used by this use.
1501   Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1502   if (F.ScaledReg)
1503     Regs.insert(F.ScaledReg);
1504 
1505   return true;
1506 }
1507 
1508 /// Remove the given formula from this use's list.
1509 void LSRUse::DeleteFormula(Formula &F) {
1510   if (&F != &Formulae.back())
1511     std::swap(F, Formulae.back());
1512   Formulae.pop_back();
1513 }
1514 
1515 /// Recompute the Regs field, and update RegUses.
1516 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
1517   // Now that we've filtered out some formulae, recompute the Regs set.
1518   SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs);
1519   Regs.clear();
1520   for (const Formula &F : Formulae) {
1521     if (F.ScaledReg) Regs.insert(F.ScaledReg);
1522     Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1523   }
1524 
1525   // Update the RegTracker.
1526   for (const SCEV *S : OldRegs)
1527     if (!Regs.count(S))
1528       RegUses.dropRegister(S, LUIdx);
1529 }
1530 
1531 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1532 void LSRUse::print(raw_ostream &OS) const {
1533   OS << "LSR Use: Kind=";
1534   switch (Kind) {
1535   case Basic:    OS << "Basic"; break;
1536   case Special:  OS << "Special"; break;
1537   case ICmpZero: OS << "ICmpZero"; break;
1538   case Address:
1539     OS << "Address of ";
1540     if (AccessTy.MemTy->isPointerTy())
1541       OS << "pointer"; // the full pointer type could be really verbose
1542     else {
1543       OS << *AccessTy.MemTy;
1544     }
1545 
1546     OS << " in addrspace(" << AccessTy.AddrSpace << ')';
1547   }
1548 
1549   OS << ", Offsets={";
1550   bool NeedComma = false;
1551   for (const LSRFixup &Fixup : Fixups) {
1552     if (NeedComma) OS << ',';
1553     OS << Fixup.Offset;
1554     NeedComma = true;
1555   }
1556   OS << '}';
1557 
1558   if (AllFixupsOutsideLoop)
1559     OS << ", all-fixups-outside-loop";
1560 
1561   if (WidestFixupType)
1562     OS << ", widest fixup type: " << *WidestFixupType;
1563 }
1564 
1565 LLVM_DUMP_METHOD void LSRUse::dump() const {
1566   print(errs()); errs() << '\n';
1567 }
1568 #endif
1569 
1570 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1571                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1572                                  GlobalValue *BaseGV, int64_t BaseOffset,
1573                                  bool HasBaseReg, int64_t Scale,
1574                                  Instruction *Fixup/*= nullptr*/) {
1575   switch (Kind) {
1576   case LSRUse::Address:
1577     return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset,
1578                                      HasBaseReg, Scale, AccessTy.AddrSpace, Fixup);
1579 
1580   case LSRUse::ICmpZero:
1581     // There's not even a target hook for querying whether it would be legal to
1582     // fold a GV into an ICmp.
1583     if (BaseGV)
1584       return false;
1585 
1586     // ICmp only has two operands; don't allow more than two non-trivial parts.
1587     if (Scale != 0 && HasBaseReg && BaseOffset != 0)
1588       return false;
1589 
1590     // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
1591     // putting the scaled register in the other operand of the icmp.
1592     if (Scale != 0 && Scale != -1)
1593       return false;
1594 
1595     // If we have low-level target information, ask the target if it can fold an
1596     // integer immediate on an icmp.
1597     if (BaseOffset != 0) {
1598       // We have one of:
1599       // ICmpZero     BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset
1600       // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset
1601       // Offs is the ICmp immediate.
1602       if (Scale == 0)
1603         // The cast does the right thing with
1604         // std::numeric_limits<int64_t>::min().
1605         BaseOffset = -(uint64_t)BaseOffset;
1606       return TTI.isLegalICmpImmediate(BaseOffset);
1607     }
1608 
1609     // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg
1610     return true;
1611 
1612   case LSRUse::Basic:
1613     // Only handle single-register values.
1614     return !BaseGV && Scale == 0 && BaseOffset == 0;
1615 
1616   case LSRUse::Special:
1617     // Special case Basic to handle -1 scales.
1618     return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0;
1619   }
1620 
1621   llvm_unreachable("Invalid LSRUse Kind!");
1622 }
1623 
1624 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1625                                  int64_t MinOffset, int64_t MaxOffset,
1626                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1627                                  GlobalValue *BaseGV, int64_t BaseOffset,
1628                                  bool HasBaseReg, int64_t Scale) {
1629   // Check for overflow.
1630   if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) !=
1631       (MinOffset > 0))
1632     return false;
1633   MinOffset = (uint64_t)BaseOffset + MinOffset;
1634   if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) !=
1635       (MaxOffset > 0))
1636     return false;
1637   MaxOffset = (uint64_t)BaseOffset + MaxOffset;
1638 
1639   return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset,
1640                               HasBaseReg, Scale) &&
1641          isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset,
1642                               HasBaseReg, Scale);
1643 }
1644 
1645 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1646                                  int64_t MinOffset, int64_t MaxOffset,
1647                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1648                                  const Formula &F, const Loop &L) {
1649   // For the purpose of isAMCompletelyFolded either having a canonical formula
1650   // or a scale not equal to zero is correct.
1651   // Problems may arise from non canonical formulae having a scale == 0.
1652   // Strictly speaking it would best to just rely on canonical formulae.
1653   // However, when we generate the scaled formulae, we first check that the
1654   // scaling factor is profitable before computing the actual ScaledReg for
1655   // compile time sake.
1656   assert((F.isCanonical(L) || F.Scale != 0));
1657   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1658                               F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale);
1659 }
1660 
1661 /// Test whether we know how to expand the current formula.
1662 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1663                        int64_t MaxOffset, LSRUse::KindType Kind,
1664                        MemAccessTy AccessTy, GlobalValue *BaseGV,
1665                        int64_t BaseOffset, bool HasBaseReg, int64_t Scale) {
1666   // We know how to expand completely foldable formulae.
1667   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1668                               BaseOffset, HasBaseReg, Scale) ||
1669          // Or formulae that use a base register produced by a sum of base
1670          // registers.
1671          (Scale == 1 &&
1672           isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1673                                BaseGV, BaseOffset, true, 0));
1674 }
1675 
1676 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1677                        int64_t MaxOffset, LSRUse::KindType Kind,
1678                        MemAccessTy AccessTy, const Formula &F) {
1679   return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV,
1680                     F.BaseOffset, F.HasBaseReg, F.Scale);
1681 }
1682 
1683 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1684                                  const LSRUse &LU, const Formula &F) {
1685   // Target may want to look at the user instructions.
1686   if (LU.Kind == LSRUse::Address && TTI.LSRWithInstrQueries()) {
1687     for (const LSRFixup &Fixup : LU.Fixups)
1688       if (!isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV,
1689                                 (F.BaseOffset + Fixup.Offset), F.HasBaseReg,
1690                                 F.Scale, Fixup.UserInst))
1691         return false;
1692     return true;
1693   }
1694 
1695   return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1696                               LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg,
1697                               F.Scale);
1698 }
1699 
1700 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
1701                                      const LSRUse &LU, const Formula &F,
1702                                      const Loop &L) {
1703   if (!F.Scale)
1704     return 0;
1705 
1706   // If the use is not completely folded in that instruction, we will have to
1707   // pay an extra cost only for scale != 1.
1708   if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1709                             LU.AccessTy, F, L))
1710     return F.Scale != 1;
1711 
1712   switch (LU.Kind) {
1713   case LSRUse::Address: {
1714     // Check the scaling factor cost with both the min and max offsets.
1715     int ScaleCostMinOffset = TTI.getScalingFactorCost(
1716         LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg,
1717         F.Scale, LU.AccessTy.AddrSpace);
1718     int ScaleCostMaxOffset = TTI.getScalingFactorCost(
1719         LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg,
1720         F.Scale, LU.AccessTy.AddrSpace);
1721 
1722     assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 &&
1723            "Legal addressing mode has an illegal cost!");
1724     return std::max(ScaleCostMinOffset, ScaleCostMaxOffset);
1725   }
1726   case LSRUse::ICmpZero:
1727   case LSRUse::Basic:
1728   case LSRUse::Special:
1729     // The use is completely folded, i.e., everything is folded into the
1730     // instruction.
1731     return 0;
1732   }
1733 
1734   llvm_unreachable("Invalid LSRUse Kind!");
1735 }
1736 
1737 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1738                              LSRUse::KindType Kind, MemAccessTy AccessTy,
1739                              GlobalValue *BaseGV, int64_t BaseOffset,
1740                              bool HasBaseReg) {
1741   // Fast-path: zero is always foldable.
1742   if (BaseOffset == 0 && !BaseGV) return true;
1743 
1744   // Conservatively, create an address with an immediate and a
1745   // base and a scale.
1746   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1747 
1748   // Canonicalize a scale of 1 to a base register if the formula doesn't
1749   // already have a base register.
1750   if (!HasBaseReg && Scale == 1) {
1751     Scale = 0;
1752     HasBaseReg = true;
1753   }
1754 
1755   return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset,
1756                               HasBaseReg, Scale);
1757 }
1758 
1759 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1760                              ScalarEvolution &SE, int64_t MinOffset,
1761                              int64_t MaxOffset, LSRUse::KindType Kind,
1762                              MemAccessTy AccessTy, const SCEV *S,
1763                              bool HasBaseReg) {
1764   // Fast-path: zero is always foldable.
1765   if (S->isZero()) return true;
1766 
1767   // Conservatively, create an address with an immediate and a
1768   // base and a scale.
1769   int64_t BaseOffset = ExtractImmediate(S, SE);
1770   GlobalValue *BaseGV = ExtractSymbol(S, SE);
1771 
1772   // If there's anything else involved, it's not foldable.
1773   if (!S->isZero()) return false;
1774 
1775   // Fast-path: zero is always foldable.
1776   if (BaseOffset == 0 && !BaseGV) return true;
1777 
1778   // Conservatively, create an address with an immediate and a
1779   // base and a scale.
1780   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1781 
1782   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1783                               BaseOffset, HasBaseReg, Scale);
1784 }
1785 
1786 namespace {
1787 
1788 /// An individual increment in a Chain of IV increments.  Relate an IV user to
1789 /// an expression that computes the IV it uses from the IV used by the previous
1790 /// link in the Chain.
1791 ///
1792 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the
1793 /// original IVOperand. The head of the chain's IVOperand is only valid during
1794 /// chain collection, before LSR replaces IV users. During chain generation,
1795 /// IncExpr can be used to find the new IVOperand that computes the same
1796 /// expression.
1797 struct IVInc {
1798   Instruction *UserInst;
1799   Value* IVOperand;
1800   const SCEV *IncExpr;
1801 
1802   IVInc(Instruction *U, Value *O, const SCEV *E)
1803       : UserInst(U), IVOperand(O), IncExpr(E) {}
1804 };
1805 
1806 // The list of IV increments in program order.  We typically add the head of a
1807 // chain without finding subsequent links.
1808 struct IVChain {
1809   SmallVector<IVInc, 1> Incs;
1810   const SCEV *ExprBase = nullptr;
1811 
1812   IVChain() = default;
1813   IVChain(const IVInc &Head, const SCEV *Base)
1814       : Incs(1, Head), ExprBase(Base) {}
1815 
1816   using const_iterator = SmallVectorImpl<IVInc>::const_iterator;
1817 
1818   // Return the first increment in the chain.
1819   const_iterator begin() const {
1820     assert(!Incs.empty());
1821     return std::next(Incs.begin());
1822   }
1823   const_iterator end() const {
1824     return Incs.end();
1825   }
1826 
1827   // Returns true if this chain contains any increments.
1828   bool hasIncs() const { return Incs.size() >= 2; }
1829 
1830   // Add an IVInc to the end of this chain.
1831   void add(const IVInc &X) { Incs.push_back(X); }
1832 
1833   // Returns the last UserInst in the chain.
1834   Instruction *tailUserInst() const { return Incs.back().UserInst; }
1835 
1836   // Returns true if IncExpr can be profitably added to this chain.
1837   bool isProfitableIncrement(const SCEV *OperExpr,
1838                              const SCEV *IncExpr,
1839                              ScalarEvolution&);
1840 };
1841 
1842 /// Helper for CollectChains to track multiple IV increment uses.  Distinguish
1843 /// between FarUsers that definitely cross IV increments and NearUsers that may
1844 /// be used between IV increments.
1845 struct ChainUsers {
1846   SmallPtrSet<Instruction*, 4> FarUsers;
1847   SmallPtrSet<Instruction*, 4> NearUsers;
1848 };
1849 
1850 /// This class holds state for the main loop strength reduction logic.
1851 class LSRInstance {
1852   IVUsers &IU;
1853   ScalarEvolution &SE;
1854   DominatorTree &DT;
1855   LoopInfo &LI;
1856   const TargetTransformInfo &TTI;
1857   Loop *const L;
1858   bool Changed = false;
1859 
1860   /// This is the insert position that the current loop's induction variable
1861   /// increment should be placed. In simple loops, this is the latch block's
1862   /// terminator. But in more complicated cases, this is a position which will
1863   /// dominate all the in-loop post-increment users.
1864   Instruction *IVIncInsertPos = nullptr;
1865 
1866   /// Interesting factors between use strides.
1867   ///
1868   /// We explicitly use a SetVector which contains a SmallSet, instead of the
1869   /// default, a SmallDenseSet, because we need to use the full range of
1870   /// int64_ts, and there's currently no good way of doing that with
1871   /// SmallDenseSet.
1872   SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors;
1873 
1874   /// Interesting use types, to facilitate truncation reuse.
1875   SmallSetVector<Type *, 4> Types;
1876 
1877   /// The list of interesting uses.
1878   SmallVector<LSRUse, 16> Uses;
1879 
1880   /// Track which uses use which register candidates.
1881   RegUseTracker RegUses;
1882 
1883   // Limit the number of chains to avoid quadratic behavior. We don't expect to
1884   // have more than a few IV increment chains in a loop. Missing a Chain falls
1885   // back to normal LSR behavior for those uses.
1886   static const unsigned MaxChains = 8;
1887 
1888   /// IV users can form a chain of IV increments.
1889   SmallVector<IVChain, MaxChains> IVChainVec;
1890 
1891   /// IV users that belong to profitable IVChains.
1892   SmallPtrSet<Use*, MaxChains> IVIncSet;
1893 
1894   void OptimizeShadowIV();
1895   bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
1896   ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
1897   void OptimizeLoopTermCond();
1898 
1899   void ChainInstruction(Instruction *UserInst, Instruction *IVOper,
1900                         SmallVectorImpl<ChainUsers> &ChainUsersVec);
1901   void FinalizeChain(IVChain &Chain);
1902   void CollectChains();
1903   void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
1904                        SmallVectorImpl<WeakTrackingVH> &DeadInsts);
1905 
1906   void CollectInterestingTypesAndFactors();
1907   void CollectFixupsAndInitialFormulae();
1908 
1909   // Support for sharing of LSRUses between LSRFixups.
1910   using UseMapTy = DenseMap<LSRUse::SCEVUseKindPair, size_t>;
1911   UseMapTy UseMap;
1912 
1913   bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
1914                           LSRUse::KindType Kind, MemAccessTy AccessTy);
1915 
1916   std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind,
1917                                     MemAccessTy AccessTy);
1918 
1919   void DeleteUse(LSRUse &LU, size_t LUIdx);
1920 
1921   LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
1922 
1923   void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1924   void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1925   void CountRegisters(const Formula &F, size_t LUIdx);
1926   bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
1927 
1928   void CollectLoopInvariantFixupsAndFormulae();
1929 
1930   void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
1931                               unsigned Depth = 0);
1932 
1933   void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
1934                                   const Formula &Base, unsigned Depth,
1935                                   size_t Idx, bool IsScaledReg = false);
1936   void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
1937   void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
1938                                    const Formula &Base, size_t Idx,
1939                                    bool IsScaledReg = false);
1940   void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1941   void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx,
1942                                    const Formula &Base,
1943                                    const SmallVectorImpl<int64_t> &Worklist,
1944                                    size_t Idx, bool IsScaledReg = false);
1945   void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1946   void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1947   void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1948   void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
1949   void GenerateCrossUseConstantOffsets();
1950   void GenerateAllReuseFormulae();
1951 
1952   void FilterOutUndesirableDedicatedRegisters();
1953 
1954   size_t EstimateSearchSpaceComplexity() const;
1955   void NarrowSearchSpaceByDetectingSupersets();
1956   void NarrowSearchSpaceByCollapsingUnrolledCode();
1957   void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
1958   void NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
1959   void NarrowSearchSpaceByDeletingCostlyFormulas();
1960   void NarrowSearchSpaceByPickingWinnerRegs();
1961   void NarrowSearchSpaceUsingHeuristics();
1962 
1963   void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
1964                     Cost &SolutionCost,
1965                     SmallVectorImpl<const Formula *> &Workspace,
1966                     const Cost &CurCost,
1967                     const SmallPtrSet<const SCEV *, 16> &CurRegs,
1968                     DenseSet<const SCEV *> &VisitedRegs) const;
1969   void Solve(SmallVectorImpl<const Formula *> &Solution) const;
1970 
1971   BasicBlock::iterator
1972     HoistInsertPosition(BasicBlock::iterator IP,
1973                         const SmallVectorImpl<Instruction *> &Inputs) const;
1974   BasicBlock::iterator
1975     AdjustInsertPositionForExpand(BasicBlock::iterator IP,
1976                                   const LSRFixup &LF,
1977                                   const LSRUse &LU,
1978                                   SCEVExpander &Rewriter) const;
1979 
1980   Value *Expand(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
1981                 BasicBlock::iterator IP, SCEVExpander &Rewriter,
1982                 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
1983   void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF,
1984                      const Formula &F, SCEVExpander &Rewriter,
1985                      SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
1986   void Rewrite(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
1987                SCEVExpander &Rewriter,
1988                SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
1989   void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution);
1990 
1991 public:
1992   LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT,
1993               LoopInfo &LI, const TargetTransformInfo &TTI);
1994 
1995   bool getChanged() const { return Changed; }
1996 
1997   void print_factors_and_types(raw_ostream &OS) const;
1998   void print_fixups(raw_ostream &OS) const;
1999   void print_uses(raw_ostream &OS) const;
2000   void print(raw_ostream &OS) const;
2001   void dump() const;
2002 };
2003 
2004 } // end anonymous namespace
2005 
2006 /// If IV is used in a int-to-float cast inside the loop then try to eliminate
2007 /// the cast operation.
2008 void LSRInstance::OptimizeShadowIV() {
2009   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
2010   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2011     return;
2012 
2013   for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
2014        UI != E; /* empty */) {
2015     IVUsers::const_iterator CandidateUI = UI;
2016     ++UI;
2017     Instruction *ShadowUse = CandidateUI->getUser();
2018     Type *DestTy = nullptr;
2019     bool IsSigned = false;
2020 
2021     /* If shadow use is a int->float cast then insert a second IV
2022        to eliminate this cast.
2023 
2024          for (unsigned i = 0; i < n; ++i)
2025            foo((double)i);
2026 
2027        is transformed into
2028 
2029          double d = 0.0;
2030          for (unsigned i = 0; i < n; ++i, ++d)
2031            foo(d);
2032     */
2033     if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) {
2034       IsSigned = false;
2035       DestTy = UCast->getDestTy();
2036     }
2037     else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) {
2038       IsSigned = true;
2039       DestTy = SCast->getDestTy();
2040     }
2041     if (!DestTy) continue;
2042 
2043     // If target does not support DestTy natively then do not apply
2044     // this transformation.
2045     if (!TTI.isTypeLegal(DestTy)) continue;
2046 
2047     PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
2048     if (!PH) continue;
2049     if (PH->getNumIncomingValues() != 2) continue;
2050 
2051     // If the calculation in integers overflows, the result in FP type will
2052     // differ. So we only can do this transformation if we are guaranteed to not
2053     // deal with overflowing values
2054     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PH));
2055     if (!AR) continue;
2056     if (IsSigned && !AR->hasNoSignedWrap()) continue;
2057     if (!IsSigned && !AR->hasNoUnsignedWrap()) continue;
2058 
2059     Type *SrcTy = PH->getType();
2060     int Mantissa = DestTy->getFPMantissaWidth();
2061     if (Mantissa == -1) continue;
2062     if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
2063       continue;
2064 
2065     unsigned Entry, Latch;
2066     if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
2067       Entry = 0;
2068       Latch = 1;
2069     } else {
2070       Entry = 1;
2071       Latch = 0;
2072     }
2073 
2074     ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
2075     if (!Init) continue;
2076     Constant *NewInit = ConstantFP::get(DestTy, IsSigned ?
2077                                         (double)Init->getSExtValue() :
2078                                         (double)Init->getZExtValue());
2079 
2080     BinaryOperator *Incr =
2081       dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
2082     if (!Incr) continue;
2083     if (Incr->getOpcode() != Instruction::Add
2084         && Incr->getOpcode() != Instruction::Sub)
2085       continue;
2086 
2087     /* Initialize new IV, double d = 0.0 in above example. */
2088     ConstantInt *C = nullptr;
2089     if (Incr->getOperand(0) == PH)
2090       C = dyn_cast<ConstantInt>(Incr->getOperand(1));
2091     else if (Incr->getOperand(1) == PH)
2092       C = dyn_cast<ConstantInt>(Incr->getOperand(0));
2093     else
2094       continue;
2095 
2096     if (!C) continue;
2097 
2098     // Ignore negative constants, as the code below doesn't handle them
2099     // correctly. TODO: Remove this restriction.
2100     if (!C->getValue().isStrictlyPositive()) continue;
2101 
2102     /* Add new PHINode. */
2103     PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH);
2104 
2105     /* create new increment. '++d' in above example. */
2106     Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
2107     BinaryOperator *NewIncr =
2108       BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
2109                                Instruction::FAdd : Instruction::FSub,
2110                              NewPH, CFP, "IV.S.next.", Incr);
2111 
2112     NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
2113     NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
2114 
2115     /* Remove cast operation */
2116     ShadowUse->replaceAllUsesWith(NewPH);
2117     ShadowUse->eraseFromParent();
2118     Changed = true;
2119     break;
2120   }
2121 }
2122 
2123 /// If Cond has an operand that is an expression of an IV, set the IV user and
2124 /// stride information and return true, otherwise return false.
2125 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
2126   for (IVStrideUse &U : IU)
2127     if (U.getUser() == Cond) {
2128       // NOTE: we could handle setcc instructions with multiple uses here, but
2129       // InstCombine does it as well for simple uses, it's not clear that it
2130       // occurs enough in real life to handle.
2131       CondUse = &U;
2132       return true;
2133     }
2134   return false;
2135 }
2136 
2137 /// Rewrite the loop's terminating condition if it uses a max computation.
2138 ///
2139 /// This is a narrow solution to a specific, but acute, problem. For loops
2140 /// like this:
2141 ///
2142 ///   i = 0;
2143 ///   do {
2144 ///     p[i] = 0.0;
2145 ///   } while (++i < n);
2146 ///
2147 /// the trip count isn't just 'n', because 'n' might not be positive. And
2148 /// unfortunately this can come up even for loops where the user didn't use
2149 /// a C do-while loop. For example, seemingly well-behaved top-test loops
2150 /// will commonly be lowered like this:
2151 ///
2152 ///   if (n > 0) {
2153 ///     i = 0;
2154 ///     do {
2155 ///       p[i] = 0.0;
2156 ///     } while (++i < n);
2157 ///   }
2158 ///
2159 /// and then it's possible for subsequent optimization to obscure the if
2160 /// test in such a way that indvars can't find it.
2161 ///
2162 /// When indvars can't find the if test in loops like this, it creates a
2163 /// max expression, which allows it to give the loop a canonical
2164 /// induction variable:
2165 ///
2166 ///   i = 0;
2167 ///   max = n < 1 ? 1 : n;
2168 ///   do {
2169 ///     p[i] = 0.0;
2170 ///   } while (++i != max);
2171 ///
2172 /// Canonical induction variables are necessary because the loop passes
2173 /// are designed around them. The most obvious example of this is the
2174 /// LoopInfo analysis, which doesn't remember trip count values. It
2175 /// expects to be able to rediscover the trip count each time it is
2176 /// needed, and it does this using a simple analysis that only succeeds if
2177 /// the loop has a canonical induction variable.
2178 ///
2179 /// However, when it comes time to generate code, the maximum operation
2180 /// can be quite costly, especially if it's inside of an outer loop.
2181 ///
2182 /// This function solves this problem by detecting this type of loop and
2183 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
2184 /// the instructions for the maximum computation.
2185 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
2186   // Check that the loop matches the pattern we're looking for.
2187   if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
2188       Cond->getPredicate() != CmpInst::ICMP_NE)
2189     return Cond;
2190 
2191   SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
2192   if (!Sel || !Sel->hasOneUse()) return Cond;
2193 
2194   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
2195   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2196     return Cond;
2197   const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
2198 
2199   // Add one to the backedge-taken count to get the trip count.
2200   const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount);
2201   if (IterationCount != SE.getSCEV(Sel)) return Cond;
2202 
2203   // Check for a max calculation that matches the pattern. There's no check
2204   // for ICMP_ULE here because the comparison would be with zero, which
2205   // isn't interesting.
2206   CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
2207   const SCEVNAryExpr *Max = nullptr;
2208   if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
2209     Pred = ICmpInst::ICMP_SLE;
2210     Max = S;
2211   } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
2212     Pred = ICmpInst::ICMP_SLT;
2213     Max = S;
2214   } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
2215     Pred = ICmpInst::ICMP_ULT;
2216     Max = U;
2217   } else {
2218     // No match; bail.
2219     return Cond;
2220   }
2221 
2222   // To handle a max with more than two operands, this optimization would
2223   // require additional checking and setup.
2224   if (Max->getNumOperands() != 2)
2225     return Cond;
2226 
2227   const SCEV *MaxLHS = Max->getOperand(0);
2228   const SCEV *MaxRHS = Max->getOperand(1);
2229 
2230   // ScalarEvolution canonicalizes constants to the left. For < and >, look
2231   // for a comparison with 1. For <= and >=, a comparison with zero.
2232   if (!MaxLHS ||
2233       (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
2234     return Cond;
2235 
2236   // Check the relevant induction variable for conformance to
2237   // the pattern.
2238   const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
2239   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
2240   if (!AR || !AR->isAffine() ||
2241       AR->getStart() != One ||
2242       AR->getStepRecurrence(SE) != One)
2243     return Cond;
2244 
2245   assert(AR->getLoop() == L &&
2246          "Loop condition operand is an addrec in a different loop!");
2247 
2248   // Check the right operand of the select, and remember it, as it will
2249   // be used in the new comparison instruction.
2250   Value *NewRHS = nullptr;
2251   if (ICmpInst::isTrueWhenEqual(Pred)) {
2252     // Look for n+1, and grab n.
2253     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
2254       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2255          if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2256            NewRHS = BO->getOperand(0);
2257     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
2258       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2259         if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2260           NewRHS = BO->getOperand(0);
2261     if (!NewRHS)
2262       return Cond;
2263   } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
2264     NewRHS = Sel->getOperand(1);
2265   else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
2266     NewRHS = Sel->getOperand(2);
2267   else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS))
2268     NewRHS = SU->getValue();
2269   else
2270     // Max doesn't match expected pattern.
2271     return Cond;
2272 
2273   // Determine the new comparison opcode. It may be signed or unsigned,
2274   // and the original comparison may be either equality or inequality.
2275   if (Cond->getPredicate() == CmpInst::ICMP_EQ)
2276     Pred = CmpInst::getInversePredicate(Pred);
2277 
2278   // Ok, everything looks ok to change the condition into an SLT or SGE and
2279   // delete the max calculation.
2280   ICmpInst *NewCond =
2281     new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
2282 
2283   // Delete the max calculation instructions.
2284   Cond->replaceAllUsesWith(NewCond);
2285   CondUse->setUser(NewCond);
2286   Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
2287   Cond->eraseFromParent();
2288   Sel->eraseFromParent();
2289   if (Cmp->use_empty())
2290     Cmp->eraseFromParent();
2291   return NewCond;
2292 }
2293 
2294 /// Change loop terminating condition to use the postinc iv when possible.
2295 void
2296 LSRInstance::OptimizeLoopTermCond() {
2297   SmallPtrSet<Instruction *, 4> PostIncs;
2298 
2299   // We need a different set of heuristics for rotated and non-rotated loops.
2300   // If a loop is rotated then the latch is also the backedge, so inserting
2301   // post-inc expressions just before the latch is ideal. To reduce live ranges
2302   // it also makes sense to rewrite terminating conditions to use post-inc
2303   // expressions.
2304   //
2305   // If the loop is not rotated then the latch is not a backedge; the latch
2306   // check is done in the loop head. Adding post-inc expressions before the
2307   // latch will cause overlapping live-ranges of pre-inc and post-inc expressions
2308   // in the loop body. In this case we do *not* want to use post-inc expressions
2309   // in the latch check, and we want to insert post-inc expressions before
2310   // the backedge.
2311   BasicBlock *LatchBlock = L->getLoopLatch();
2312   SmallVector<BasicBlock*, 8> ExitingBlocks;
2313   L->getExitingBlocks(ExitingBlocks);
2314   if (llvm::all_of(ExitingBlocks, [&LatchBlock](const BasicBlock *BB) {
2315         return LatchBlock != BB;
2316       })) {
2317     // The backedge doesn't exit the loop; treat this as a head-tested loop.
2318     IVIncInsertPos = LatchBlock->getTerminator();
2319     return;
2320   }
2321 
2322   // Otherwise treat this as a rotated loop.
2323   for (BasicBlock *ExitingBlock : ExitingBlocks) {
2324     // Get the terminating condition for the loop if possible.  If we
2325     // can, we want to change it to use a post-incremented version of its
2326     // induction variable, to allow coalescing the live ranges for the IV into
2327     // one register value.
2328 
2329     BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
2330     if (!TermBr)
2331       continue;
2332     // FIXME: Overly conservative, termination condition could be an 'or' etc..
2333     if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
2334       continue;
2335 
2336     // Search IVUsesByStride to find Cond's IVUse if there is one.
2337     IVStrideUse *CondUse = nullptr;
2338     ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
2339     if (!FindIVUserForCond(Cond, CondUse))
2340       continue;
2341 
2342     // If the trip count is computed in terms of a max (due to ScalarEvolution
2343     // being unable to find a sufficient guard, for example), change the loop
2344     // comparison to use SLT or ULT instead of NE.
2345     // One consequence of doing this now is that it disrupts the count-down
2346     // optimization. That's not always a bad thing though, because in such
2347     // cases it may still be worthwhile to avoid a max.
2348     Cond = OptimizeMax(Cond, CondUse);
2349 
2350     // If this exiting block dominates the latch block, it may also use
2351     // the post-inc value if it won't be shared with other uses.
2352     // Check for dominance.
2353     if (!DT.dominates(ExitingBlock, LatchBlock))
2354       continue;
2355 
2356     // Conservatively avoid trying to use the post-inc value in non-latch
2357     // exits if there may be pre-inc users in intervening blocks.
2358     if (LatchBlock != ExitingBlock)
2359       for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
2360         // Test if the use is reachable from the exiting block. This dominator
2361         // query is a conservative approximation of reachability.
2362         if (&*UI != CondUse &&
2363             !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
2364           // Conservatively assume there may be reuse if the quotient of their
2365           // strides could be a legal scale.
2366           const SCEV *A = IU.getStride(*CondUse, L);
2367           const SCEV *B = IU.getStride(*UI, L);
2368           if (!A || !B) continue;
2369           if (SE.getTypeSizeInBits(A->getType()) !=
2370               SE.getTypeSizeInBits(B->getType())) {
2371             if (SE.getTypeSizeInBits(A->getType()) >
2372                 SE.getTypeSizeInBits(B->getType()))
2373               B = SE.getSignExtendExpr(B, A->getType());
2374             else
2375               A = SE.getSignExtendExpr(A, B->getType());
2376           }
2377           if (const SCEVConstant *D =
2378                 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
2379             const ConstantInt *C = D->getValue();
2380             // Stride of one or negative one can have reuse with non-addresses.
2381             if (C->isOne() || C->isMinusOne())
2382               goto decline_post_inc;
2383             // Avoid weird situations.
2384             if (C->getValue().getMinSignedBits() >= 64 ||
2385                 C->getValue().isMinSignedValue())
2386               goto decline_post_inc;
2387             // Check for possible scaled-address reuse.
2388             MemAccessTy AccessTy = getAccessType(TTI, UI->getUser());
2389             int64_t Scale = C->getSExtValue();
2390             if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2391                                           /*BaseOffset=*/0,
2392                                           /*HasBaseReg=*/false, Scale,
2393                                           AccessTy.AddrSpace))
2394               goto decline_post_inc;
2395             Scale = -Scale;
2396             if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2397                                           /*BaseOffset=*/0,
2398                                           /*HasBaseReg=*/false, Scale,
2399                                           AccessTy.AddrSpace))
2400               goto decline_post_inc;
2401           }
2402         }
2403 
2404     DEBUG(dbgs() << "  Change loop exiting icmp to use postinc iv: "
2405                  << *Cond << '\n');
2406 
2407     // It's possible for the setcc instruction to be anywhere in the loop, and
2408     // possible for it to have multiple users.  If it is not immediately before
2409     // the exiting block branch, move it.
2410     if (&*++BasicBlock::iterator(Cond) != TermBr) {
2411       if (Cond->hasOneUse()) {
2412         Cond->moveBefore(TermBr);
2413       } else {
2414         // Clone the terminating condition and insert into the loopend.
2415         ICmpInst *OldCond = Cond;
2416         Cond = cast<ICmpInst>(Cond->clone());
2417         Cond->setName(L->getHeader()->getName() + ".termcond");
2418         ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond);
2419 
2420         // Clone the IVUse, as the old use still exists!
2421         CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
2422         TermBr->replaceUsesOfWith(OldCond, Cond);
2423       }
2424     }
2425 
2426     // If we get to here, we know that we can transform the setcc instruction to
2427     // use the post-incremented version of the IV, allowing us to coalesce the
2428     // live ranges for the IV correctly.
2429     CondUse->transformToPostInc(L);
2430     Changed = true;
2431 
2432     PostIncs.insert(Cond);
2433   decline_post_inc:;
2434   }
2435 
2436   // Determine an insertion point for the loop induction variable increment. It
2437   // must dominate all the post-inc comparisons we just set up, and it must
2438   // dominate the loop latch edge.
2439   IVIncInsertPos = L->getLoopLatch()->getTerminator();
2440   for (Instruction *Inst : PostIncs) {
2441     BasicBlock *BB =
2442       DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
2443                                     Inst->getParent());
2444     if (BB == Inst->getParent())
2445       IVIncInsertPos = Inst;
2446     else if (BB != IVIncInsertPos->getParent())
2447       IVIncInsertPos = BB->getTerminator();
2448   }
2449 }
2450 
2451 /// Determine if the given use can accommodate a fixup at the given offset and
2452 /// other details. If so, update the use and return true.
2453 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset,
2454                                      bool HasBaseReg, LSRUse::KindType Kind,
2455                                      MemAccessTy AccessTy) {
2456   int64_t NewMinOffset = LU.MinOffset;
2457   int64_t NewMaxOffset = LU.MaxOffset;
2458   MemAccessTy NewAccessTy = AccessTy;
2459 
2460   // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
2461   // something conservative, however this can pessimize in the case that one of
2462   // the uses will have all its uses outside the loop, for example.
2463   if (LU.Kind != Kind)
2464     return false;
2465 
2466   // Check for a mismatched access type, and fall back conservatively as needed.
2467   // TODO: Be less conservative when the type is similar and can use the same
2468   // addressing modes.
2469   if (Kind == LSRUse::Address) {
2470     if (AccessTy.MemTy != LU.AccessTy.MemTy) {
2471       NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(),
2472                                             AccessTy.AddrSpace);
2473     }
2474   }
2475 
2476   // Conservatively assume HasBaseReg is true for now.
2477   if (NewOffset < LU.MinOffset) {
2478     if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2479                           LU.MaxOffset - NewOffset, HasBaseReg))
2480       return false;
2481     NewMinOffset = NewOffset;
2482   } else if (NewOffset > LU.MaxOffset) {
2483     if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2484                           NewOffset - LU.MinOffset, HasBaseReg))
2485       return false;
2486     NewMaxOffset = NewOffset;
2487   }
2488 
2489   // Update the use.
2490   LU.MinOffset = NewMinOffset;
2491   LU.MaxOffset = NewMaxOffset;
2492   LU.AccessTy = NewAccessTy;
2493   return true;
2494 }
2495 
2496 /// Return an LSRUse index and an offset value for a fixup which needs the given
2497 /// expression, with the given kind and optional access type.  Either reuse an
2498 /// existing use or create a new one, as needed.
2499 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr,
2500                                                LSRUse::KindType Kind,
2501                                                MemAccessTy AccessTy) {
2502   const SCEV *Copy = Expr;
2503   int64_t Offset = ExtractImmediate(Expr, SE);
2504 
2505   // Basic uses can't accept any offset, for example.
2506   if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr,
2507                         Offset, /*HasBaseReg=*/ true)) {
2508     Expr = Copy;
2509     Offset = 0;
2510   }
2511 
2512   std::pair<UseMapTy::iterator, bool> P =
2513     UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0));
2514   if (!P.second) {
2515     // A use already existed with this base.
2516     size_t LUIdx = P.first->second;
2517     LSRUse &LU = Uses[LUIdx];
2518     if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
2519       // Reuse this use.
2520       return std::make_pair(LUIdx, Offset);
2521   }
2522 
2523   // Create a new use.
2524   size_t LUIdx = Uses.size();
2525   P.first->second = LUIdx;
2526   Uses.push_back(LSRUse(Kind, AccessTy));
2527   LSRUse &LU = Uses[LUIdx];
2528 
2529   LU.MinOffset = Offset;
2530   LU.MaxOffset = Offset;
2531   return std::make_pair(LUIdx, Offset);
2532 }
2533 
2534 /// Delete the given use from the Uses list.
2535 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) {
2536   if (&LU != &Uses.back())
2537     std::swap(LU, Uses.back());
2538   Uses.pop_back();
2539 
2540   // Update RegUses.
2541   RegUses.swapAndDropUse(LUIdx, Uses.size());
2542 }
2543 
2544 /// Look for a use distinct from OrigLU which is has a formula that has the same
2545 /// registers as the given formula.
2546 LSRUse *
2547 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
2548                                        const LSRUse &OrigLU) {
2549   // Search all uses for the formula. This could be more clever.
2550   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2551     LSRUse &LU = Uses[LUIdx];
2552     // Check whether this use is close enough to OrigLU, to see whether it's
2553     // worthwhile looking through its formulae.
2554     // Ignore ICmpZero uses because they may contain formulae generated by
2555     // GenerateICmpZeroScales, in which case adding fixup offsets may
2556     // be invalid.
2557     if (&LU != &OrigLU &&
2558         LU.Kind != LSRUse::ICmpZero &&
2559         LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
2560         LU.WidestFixupType == OrigLU.WidestFixupType &&
2561         LU.HasFormulaWithSameRegs(OrigF)) {
2562       // Scan through this use's formulae.
2563       for (const Formula &F : LU.Formulae) {
2564         // Check to see if this formula has the same registers and symbols
2565         // as OrigF.
2566         if (F.BaseRegs == OrigF.BaseRegs &&
2567             F.ScaledReg == OrigF.ScaledReg &&
2568             F.BaseGV == OrigF.BaseGV &&
2569             F.Scale == OrigF.Scale &&
2570             F.UnfoldedOffset == OrigF.UnfoldedOffset) {
2571           if (F.BaseOffset == 0)
2572             return &LU;
2573           // This is the formula where all the registers and symbols matched;
2574           // there aren't going to be any others. Since we declined it, we
2575           // can skip the rest of the formulae and proceed to the next LSRUse.
2576           break;
2577         }
2578       }
2579     }
2580   }
2581 
2582   // Nothing looked good.
2583   return nullptr;
2584 }
2585 
2586 void LSRInstance::CollectInterestingTypesAndFactors() {
2587   SmallSetVector<const SCEV *, 4> Strides;
2588 
2589   // Collect interesting types and strides.
2590   SmallVector<const SCEV *, 4> Worklist;
2591   for (const IVStrideUse &U : IU) {
2592     const SCEV *Expr = IU.getExpr(U);
2593 
2594     // Collect interesting types.
2595     Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
2596 
2597     // Add strides for mentioned loops.
2598     Worklist.push_back(Expr);
2599     do {
2600       const SCEV *S = Worklist.pop_back_val();
2601       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2602         if (AR->getLoop() == L)
2603           Strides.insert(AR->getStepRecurrence(SE));
2604         Worklist.push_back(AR->getStart());
2605       } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2606         Worklist.append(Add->op_begin(), Add->op_end());
2607       }
2608     } while (!Worklist.empty());
2609   }
2610 
2611   // Compute interesting factors from the set of interesting strides.
2612   for (SmallSetVector<const SCEV *, 4>::const_iterator
2613        I = Strides.begin(), E = Strides.end(); I != E; ++I)
2614     for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
2615          std::next(I); NewStrideIter != E; ++NewStrideIter) {
2616       const SCEV *OldStride = *I;
2617       const SCEV *NewStride = *NewStrideIter;
2618 
2619       if (SE.getTypeSizeInBits(OldStride->getType()) !=
2620           SE.getTypeSizeInBits(NewStride->getType())) {
2621         if (SE.getTypeSizeInBits(OldStride->getType()) >
2622             SE.getTypeSizeInBits(NewStride->getType()))
2623           NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
2624         else
2625           OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
2626       }
2627       if (const SCEVConstant *Factor =
2628             dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
2629                                                         SE, true))) {
2630         if (Factor->getAPInt().getMinSignedBits() <= 64)
2631           Factors.insert(Factor->getAPInt().getSExtValue());
2632       } else if (const SCEVConstant *Factor =
2633                    dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
2634                                                                NewStride,
2635                                                                SE, true))) {
2636         if (Factor->getAPInt().getMinSignedBits() <= 64)
2637           Factors.insert(Factor->getAPInt().getSExtValue());
2638       }
2639     }
2640 
2641   // If all uses use the same type, don't bother looking for truncation-based
2642   // reuse.
2643   if (Types.size() == 1)
2644     Types.clear();
2645 
2646   DEBUG(print_factors_and_types(dbgs()));
2647 }
2648 
2649 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in
2650 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to
2651 /// IVStrideUses, we could partially skip this.
2652 static User::op_iterator
2653 findIVOperand(User::op_iterator OI, User::op_iterator OE,
2654               Loop *L, ScalarEvolution &SE) {
2655   for(; OI != OE; ++OI) {
2656     if (Instruction *Oper = dyn_cast<Instruction>(*OI)) {
2657       if (!SE.isSCEVable(Oper->getType()))
2658         continue;
2659 
2660       if (const SCEVAddRecExpr *AR =
2661           dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) {
2662         if (AR->getLoop() == L)
2663           break;
2664       }
2665     }
2666   }
2667   return OI;
2668 }
2669 
2670 /// IVChain logic must consistenctly peek base TruncInst operands, so wrap it in
2671 /// a convenient helper.
2672 static Value *getWideOperand(Value *Oper) {
2673   if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper))
2674     return Trunc->getOperand(0);
2675   return Oper;
2676 }
2677 
2678 /// Return true if we allow an IV chain to include both types.
2679 static bool isCompatibleIVType(Value *LVal, Value *RVal) {
2680   Type *LType = LVal->getType();
2681   Type *RType = RVal->getType();
2682   return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy() &&
2683                               // Different address spaces means (possibly)
2684                               // different types of the pointer implementation,
2685                               // e.g. i16 vs i32 so disallow that.
2686                               (LType->getPointerAddressSpace() ==
2687                                RType->getPointerAddressSpace()));
2688 }
2689 
2690 /// Return an approximation of this SCEV expression's "base", or NULL for any
2691 /// constant. Returning the expression itself is conservative. Returning a
2692 /// deeper subexpression is more precise and valid as long as it isn't less
2693 /// complex than another subexpression. For expressions involving multiple
2694 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids
2695 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i],
2696 /// IVInc==b-a.
2697 ///
2698 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost
2699 /// SCEVUnknown, we simply return the rightmost SCEV operand.
2700 static const SCEV *getExprBase(const SCEV *S) {
2701   switch (S->getSCEVType()) {
2702   default: // uncluding scUnknown.
2703     return S;
2704   case scConstant:
2705     return nullptr;
2706   case scTruncate:
2707     return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand());
2708   case scZeroExtend:
2709     return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand());
2710   case scSignExtend:
2711     return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand());
2712   case scAddExpr: {
2713     // Skip over scaled operands (scMulExpr) to follow add operands as long as
2714     // there's nothing more complex.
2715     // FIXME: not sure if we want to recognize negation.
2716     const SCEVAddExpr *Add = cast<SCEVAddExpr>(S);
2717     for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()),
2718            E(Add->op_begin()); I != E; ++I) {
2719       const SCEV *SubExpr = *I;
2720       if (SubExpr->getSCEVType() == scAddExpr)
2721         return getExprBase(SubExpr);
2722 
2723       if (SubExpr->getSCEVType() != scMulExpr)
2724         return SubExpr;
2725     }
2726     return S; // all operands are scaled, be conservative.
2727   }
2728   case scAddRecExpr:
2729     return getExprBase(cast<SCEVAddRecExpr>(S)->getStart());
2730   }
2731 }
2732 
2733 /// Return true if the chain increment is profitable to expand into a loop
2734 /// invariant value, which may require its own register. A profitable chain
2735 /// increment will be an offset relative to the same base. We allow such offsets
2736 /// to potentially be used as chain increment as long as it's not obviously
2737 /// expensive to expand using real instructions.
2738 bool IVChain::isProfitableIncrement(const SCEV *OperExpr,
2739                                     const SCEV *IncExpr,
2740                                     ScalarEvolution &SE) {
2741   // Aggressively form chains when -stress-ivchain.
2742   if (StressIVChain)
2743     return true;
2744 
2745   // Do not replace a constant offset from IV head with a nonconstant IV
2746   // increment.
2747   if (!isa<SCEVConstant>(IncExpr)) {
2748     const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand));
2749     if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr)))
2750       return false;
2751   }
2752 
2753   SmallPtrSet<const SCEV*, 8> Processed;
2754   return !isHighCostExpansion(IncExpr, Processed, SE);
2755 }
2756 
2757 /// Return true if the number of registers needed for the chain is estimated to
2758 /// be less than the number required for the individual IV users. First prohibit
2759 /// any IV users that keep the IV live across increments (the Users set should
2760 /// be empty). Next count the number and type of increments in the chain.
2761 ///
2762 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't
2763 /// effectively use postinc addressing modes. Only consider it profitable it the
2764 /// increments can be computed in fewer registers when chained.
2765 ///
2766 /// TODO: Consider IVInc free if it's already used in another chains.
2767 static bool
2768 isProfitableChain(IVChain &Chain, SmallPtrSetImpl<Instruction*> &Users,
2769                   ScalarEvolution &SE, const TargetTransformInfo &TTI) {
2770   if (StressIVChain)
2771     return true;
2772 
2773   if (!Chain.hasIncs())
2774     return false;
2775 
2776   if (!Users.empty()) {
2777     DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n";
2778           for (Instruction *Inst : Users) {
2779             dbgs() << "  " << *Inst << "\n";
2780           });
2781     return false;
2782   }
2783   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
2784 
2785   // The chain itself may require a register, so intialize cost to 1.
2786   int cost = 1;
2787 
2788   // A complete chain likely eliminates the need for keeping the original IV in
2789   // a register. LSR does not currently know how to form a complete chain unless
2790   // the header phi already exists.
2791   if (isa<PHINode>(Chain.tailUserInst())
2792       && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) {
2793     --cost;
2794   }
2795   const SCEV *LastIncExpr = nullptr;
2796   unsigned NumConstIncrements = 0;
2797   unsigned NumVarIncrements = 0;
2798   unsigned NumReusedIncrements = 0;
2799   for (const IVInc &Inc : Chain) {
2800     if (Inc.IncExpr->isZero())
2801       continue;
2802 
2803     // Incrementing by zero or some constant is neutral. We assume constants can
2804     // be folded into an addressing mode or an add's immediate operand.
2805     if (isa<SCEVConstant>(Inc.IncExpr)) {
2806       ++NumConstIncrements;
2807       continue;
2808     }
2809 
2810     if (Inc.IncExpr == LastIncExpr)
2811       ++NumReusedIncrements;
2812     else
2813       ++NumVarIncrements;
2814 
2815     LastIncExpr = Inc.IncExpr;
2816   }
2817   // An IV chain with a single increment is handled by LSR's postinc
2818   // uses. However, a chain with multiple increments requires keeping the IV's
2819   // value live longer than it needs to be if chained.
2820   if (NumConstIncrements > 1)
2821     --cost;
2822 
2823   // Materializing increment expressions in the preheader that didn't exist in
2824   // the original code may cost a register. For example, sign-extended array
2825   // indices can produce ridiculous increments like this:
2826   // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64)))
2827   cost += NumVarIncrements;
2828 
2829   // Reusing variable increments likely saves a register to hold the multiple of
2830   // the stride.
2831   cost -= NumReusedIncrements;
2832 
2833   DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost
2834                << "\n");
2835 
2836   return cost < 0;
2837 }
2838 
2839 /// Add this IV user to an existing chain or make it the head of a new chain.
2840 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper,
2841                                    SmallVectorImpl<ChainUsers> &ChainUsersVec) {
2842   // When IVs are used as types of varying widths, they are generally converted
2843   // to a wider type with some uses remaining narrow under a (free) trunc.
2844   Value *const NextIV = getWideOperand(IVOper);
2845   const SCEV *const OperExpr = SE.getSCEV(NextIV);
2846   const SCEV *const OperExprBase = getExprBase(OperExpr);
2847 
2848   // Visit all existing chains. Check if its IVOper can be computed as a
2849   // profitable loop invariant increment from the last link in the Chain.
2850   unsigned ChainIdx = 0, NChains = IVChainVec.size();
2851   const SCEV *LastIncExpr = nullptr;
2852   for (; ChainIdx < NChains; ++ChainIdx) {
2853     IVChain &Chain = IVChainVec[ChainIdx];
2854 
2855     // Prune the solution space aggressively by checking that both IV operands
2856     // are expressions that operate on the same unscaled SCEVUnknown. This
2857     // "base" will be canceled by the subsequent getMinusSCEV call. Checking
2858     // first avoids creating extra SCEV expressions.
2859     if (!StressIVChain && Chain.ExprBase != OperExprBase)
2860       continue;
2861 
2862     Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand);
2863     if (!isCompatibleIVType(PrevIV, NextIV))
2864       continue;
2865 
2866     // A phi node terminates a chain.
2867     if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst()))
2868       continue;
2869 
2870     // The increment must be loop-invariant so it can be kept in a register.
2871     const SCEV *PrevExpr = SE.getSCEV(PrevIV);
2872     const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr);
2873     if (!SE.isLoopInvariant(IncExpr, L))
2874       continue;
2875 
2876     if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) {
2877       LastIncExpr = IncExpr;
2878       break;
2879     }
2880   }
2881   // If we haven't found a chain, create a new one, unless we hit the max. Don't
2882   // bother for phi nodes, because they must be last in the chain.
2883   if (ChainIdx == NChains) {
2884     if (isa<PHINode>(UserInst))
2885       return;
2886     if (NChains >= MaxChains && !StressIVChain) {
2887       DEBUG(dbgs() << "IV Chain Limit\n");
2888       return;
2889     }
2890     LastIncExpr = OperExpr;
2891     // IVUsers may have skipped over sign/zero extensions. We don't currently
2892     // attempt to form chains involving extensions unless they can be hoisted
2893     // into this loop's AddRec.
2894     if (!isa<SCEVAddRecExpr>(LastIncExpr))
2895       return;
2896     ++NChains;
2897     IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr),
2898                                  OperExprBase));
2899     ChainUsersVec.resize(NChains);
2900     DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst
2901                  << ") IV=" << *LastIncExpr << "\n");
2902   } else {
2903     DEBUG(dbgs() << "IV Chain#" << ChainIdx << "  Inc: (" << *UserInst
2904                  << ") IV+" << *LastIncExpr << "\n");
2905     // Add this IV user to the end of the chain.
2906     IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr));
2907   }
2908   IVChain &Chain = IVChainVec[ChainIdx];
2909 
2910   SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers;
2911   // This chain's NearUsers become FarUsers.
2912   if (!LastIncExpr->isZero()) {
2913     ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(),
2914                                             NearUsers.end());
2915     NearUsers.clear();
2916   }
2917 
2918   // All other uses of IVOperand become near uses of the chain.
2919   // We currently ignore intermediate values within SCEV expressions, assuming
2920   // they will eventually be used be the current chain, or can be computed
2921   // from one of the chain increments. To be more precise we could
2922   // transitively follow its user and only add leaf IV users to the set.
2923   for (User *U : IVOper->users()) {
2924     Instruction *OtherUse = dyn_cast<Instruction>(U);
2925     if (!OtherUse)
2926       continue;
2927     // Uses in the chain will no longer be uses if the chain is formed.
2928     // Include the head of the chain in this iteration (not Chain.begin()).
2929     IVChain::const_iterator IncIter = Chain.Incs.begin();
2930     IVChain::const_iterator IncEnd = Chain.Incs.end();
2931     for( ; IncIter != IncEnd; ++IncIter) {
2932       if (IncIter->UserInst == OtherUse)
2933         break;
2934     }
2935     if (IncIter != IncEnd)
2936       continue;
2937 
2938     if (SE.isSCEVable(OtherUse->getType())
2939         && !isa<SCEVUnknown>(SE.getSCEV(OtherUse))
2940         && IU.isIVUserOrOperand(OtherUse)) {
2941       continue;
2942     }
2943     NearUsers.insert(OtherUse);
2944   }
2945 
2946   // Since this user is part of the chain, it's no longer considered a use
2947   // of the chain.
2948   ChainUsersVec[ChainIdx].FarUsers.erase(UserInst);
2949 }
2950 
2951 /// Populate the vector of Chains.
2952 ///
2953 /// This decreases ILP at the architecture level. Targets with ample registers,
2954 /// multiple memory ports, and no register renaming probably don't want
2955 /// this. However, such targets should probably disable LSR altogether.
2956 ///
2957 /// The job of LSR is to make a reasonable choice of induction variables across
2958 /// the loop. Subsequent passes can easily "unchain" computation exposing more
2959 /// ILP *within the loop* if the target wants it.
2960 ///
2961 /// Finding the best IV chain is potentially a scheduling problem. Since LSR
2962 /// will not reorder memory operations, it will recognize this as a chain, but
2963 /// will generate redundant IV increments. Ideally this would be corrected later
2964 /// by a smart scheduler:
2965 ///        = A[i]
2966 ///        = A[i+x]
2967 /// A[i]   =
2968 /// A[i+x] =
2969 ///
2970 /// TODO: Walk the entire domtree within this loop, not just the path to the
2971 /// loop latch. This will discover chains on side paths, but requires
2972 /// maintaining multiple copies of the Chains state.
2973 void LSRInstance::CollectChains() {
2974   DEBUG(dbgs() << "Collecting IV Chains.\n");
2975   SmallVector<ChainUsers, 8> ChainUsersVec;
2976 
2977   SmallVector<BasicBlock *,8> LatchPath;
2978   BasicBlock *LoopHeader = L->getHeader();
2979   for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch());
2980        Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) {
2981     LatchPath.push_back(Rung->getBlock());
2982   }
2983   LatchPath.push_back(LoopHeader);
2984 
2985   // Walk the instruction stream from the loop header to the loop latch.
2986   for (BasicBlock *BB : reverse(LatchPath)) {
2987     for (Instruction &I : *BB) {
2988       // Skip instructions that weren't seen by IVUsers analysis.
2989       if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I))
2990         continue;
2991 
2992       // Ignore users that are part of a SCEV expression. This way we only
2993       // consider leaf IV Users. This effectively rediscovers a portion of
2994       // IVUsers analysis but in program order this time.
2995       if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I)))
2996           continue;
2997 
2998       // Remove this instruction from any NearUsers set it may be in.
2999       for (unsigned ChainIdx = 0, NChains = IVChainVec.size();
3000            ChainIdx < NChains; ++ChainIdx) {
3001         ChainUsersVec[ChainIdx].NearUsers.erase(&I);
3002       }
3003       // Search for operands that can be chained.
3004       SmallPtrSet<Instruction*, 4> UniqueOperands;
3005       User::op_iterator IVOpEnd = I.op_end();
3006       User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE);
3007       while (IVOpIter != IVOpEnd) {
3008         Instruction *IVOpInst = cast<Instruction>(*IVOpIter);
3009         if (UniqueOperands.insert(IVOpInst).second)
3010           ChainInstruction(&I, IVOpInst, ChainUsersVec);
3011         IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
3012       }
3013     } // Continue walking down the instructions.
3014   } // Continue walking down the domtree.
3015   // Visit phi backedges to determine if the chain can generate the IV postinc.
3016   for (BasicBlock::iterator I = L->getHeader()->begin();
3017        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
3018     if (!SE.isSCEVable(PN->getType()))
3019       continue;
3020 
3021     Instruction *IncV =
3022       dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch()));
3023     if (IncV)
3024       ChainInstruction(PN, IncV, ChainUsersVec);
3025   }
3026   // Remove any unprofitable chains.
3027   unsigned ChainIdx = 0;
3028   for (unsigned UsersIdx = 0, NChains = IVChainVec.size();
3029        UsersIdx < NChains; ++UsersIdx) {
3030     if (!isProfitableChain(IVChainVec[UsersIdx],
3031                            ChainUsersVec[UsersIdx].FarUsers, SE, TTI))
3032       continue;
3033     // Preserve the chain at UsesIdx.
3034     if (ChainIdx != UsersIdx)
3035       IVChainVec[ChainIdx] = IVChainVec[UsersIdx];
3036     FinalizeChain(IVChainVec[ChainIdx]);
3037     ++ChainIdx;
3038   }
3039   IVChainVec.resize(ChainIdx);
3040 }
3041 
3042 void LSRInstance::FinalizeChain(IVChain &Chain) {
3043   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
3044   DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n");
3045 
3046   for (const IVInc &Inc : Chain) {
3047     DEBUG(dbgs() << "        Inc: " << *Inc.UserInst << "\n");
3048     auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand);
3049     assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand");
3050     IVIncSet.insert(UseI);
3051   }
3052 }
3053 
3054 /// Return true if the IVInc can be folded into an addressing mode.
3055 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst,
3056                              Value *Operand, const TargetTransformInfo &TTI) {
3057   const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr);
3058   if (!IncConst || !isAddressUse(TTI, UserInst, Operand))
3059     return false;
3060 
3061   if (IncConst->getAPInt().getMinSignedBits() > 64)
3062     return false;
3063 
3064   MemAccessTy AccessTy = getAccessType(TTI, UserInst);
3065   int64_t IncOffset = IncConst->getValue()->getSExtValue();
3066   if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr,
3067                         IncOffset, /*HaseBaseReg=*/false))
3068     return false;
3069 
3070   return true;
3071 }
3072 
3073 /// Generate an add or subtract for each IVInc in a chain to materialize the IV
3074 /// user's operand from the previous IV user's operand.
3075 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
3076                                   SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
3077   // Find the new IVOperand for the head of the chain. It may have been replaced
3078   // by LSR.
3079   const IVInc &Head = Chain.Incs[0];
3080   User::op_iterator IVOpEnd = Head.UserInst->op_end();
3081   // findIVOperand returns IVOpEnd if it can no longer find a valid IV user.
3082   User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(),
3083                                              IVOpEnd, L, SE);
3084   Value *IVSrc = nullptr;
3085   while (IVOpIter != IVOpEnd) {
3086     IVSrc = getWideOperand(*IVOpIter);
3087 
3088     // If this operand computes the expression that the chain needs, we may use
3089     // it. (Check this after setting IVSrc which is used below.)
3090     //
3091     // Note that if Head.IncExpr is wider than IVSrc, then this phi is too
3092     // narrow for the chain, so we can no longer use it. We do allow using a
3093     // wider phi, assuming the LSR checked for free truncation. In that case we
3094     // should already have a truncate on this operand such that
3095     // getSCEV(IVSrc) == IncExpr.
3096     if (SE.getSCEV(*IVOpIter) == Head.IncExpr
3097         || SE.getSCEV(IVSrc) == Head.IncExpr) {
3098       break;
3099     }
3100     IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
3101   }
3102   if (IVOpIter == IVOpEnd) {
3103     // Gracefully give up on this chain.
3104     DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n");
3105     return;
3106   }
3107 
3108   DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n");
3109   Type *IVTy = IVSrc->getType();
3110   Type *IntTy = SE.getEffectiveSCEVType(IVTy);
3111   const SCEV *LeftOverExpr = nullptr;
3112   for (const IVInc &Inc : Chain) {
3113     Instruction *InsertPt = Inc.UserInst;
3114     if (isa<PHINode>(InsertPt))
3115       InsertPt = L->getLoopLatch()->getTerminator();
3116 
3117     // IVOper will replace the current IV User's operand. IVSrc is the IV
3118     // value currently held in a register.
3119     Value *IVOper = IVSrc;
3120     if (!Inc.IncExpr->isZero()) {
3121       // IncExpr was the result of subtraction of two narrow values, so must
3122       // be signed.
3123       const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy);
3124       LeftOverExpr = LeftOverExpr ?
3125         SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr;
3126     }
3127     if (LeftOverExpr && !LeftOverExpr->isZero()) {
3128       // Expand the IV increment.
3129       Rewriter.clearPostInc();
3130       Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt);
3131       const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc),
3132                                              SE.getUnknown(IncV));
3133       IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt);
3134 
3135       // If an IV increment can't be folded, use it as the next IV value.
3136       if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) {
3137         assert(IVTy == IVOper->getType() && "inconsistent IV increment type");
3138         IVSrc = IVOper;
3139         LeftOverExpr = nullptr;
3140       }
3141     }
3142     Type *OperTy = Inc.IVOperand->getType();
3143     if (IVTy != OperTy) {
3144       assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) &&
3145              "cannot extend a chained IV");
3146       IRBuilder<> Builder(InsertPt);
3147       IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain");
3148     }
3149     Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper);
3150     DeadInsts.emplace_back(Inc.IVOperand);
3151   }
3152   // If LSR created a new, wider phi, we may also replace its postinc. We only
3153   // do this if we also found a wide value for the head of the chain.
3154   if (isa<PHINode>(Chain.tailUserInst())) {
3155     for (BasicBlock::iterator I = L->getHeader()->begin();
3156          PHINode *Phi = dyn_cast<PHINode>(I); ++I) {
3157       if (!isCompatibleIVType(Phi, IVSrc))
3158         continue;
3159       Instruction *PostIncV = dyn_cast<Instruction>(
3160         Phi->getIncomingValueForBlock(L->getLoopLatch()));
3161       if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc)))
3162         continue;
3163       Value *IVOper = IVSrc;
3164       Type *PostIncTy = PostIncV->getType();
3165       if (IVTy != PostIncTy) {
3166         assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types");
3167         IRBuilder<> Builder(L->getLoopLatch()->getTerminator());
3168         Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc());
3169         IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain");
3170       }
3171       Phi->replaceUsesOfWith(PostIncV, IVOper);
3172       DeadInsts.emplace_back(PostIncV);
3173     }
3174   }
3175 }
3176 
3177 void LSRInstance::CollectFixupsAndInitialFormulae() {
3178   for (const IVStrideUse &U : IU) {
3179     Instruction *UserInst = U.getUser();
3180     // Skip IV users that are part of profitable IV Chains.
3181     User::op_iterator UseI =
3182         find(UserInst->operands(), U.getOperandValToReplace());
3183     assert(UseI != UserInst->op_end() && "cannot find IV operand");
3184     if (IVIncSet.count(UseI)) {
3185       DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n');
3186       continue;
3187     }
3188 
3189     LSRUse::KindType Kind = LSRUse::Basic;
3190     MemAccessTy AccessTy;
3191     if (isAddressUse(TTI, UserInst, U.getOperandValToReplace())) {
3192       Kind = LSRUse::Address;
3193       AccessTy = getAccessType(TTI, UserInst);
3194     }
3195 
3196     const SCEV *S = IU.getExpr(U);
3197     PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops();
3198 
3199     // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
3200     // (N - i == 0), and this allows (N - i) to be the expression that we work
3201     // with rather than just N or i, so we can consider the register
3202     // requirements for both N and i at the same time. Limiting this code to
3203     // equality icmps is not a problem because all interesting loops use
3204     // equality icmps, thanks to IndVarSimplify.
3205     if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst))
3206       if (CI->isEquality()) {
3207         // Swap the operands if needed to put the OperandValToReplace on the
3208         // left, for consistency.
3209         Value *NV = CI->getOperand(1);
3210         if (NV == U.getOperandValToReplace()) {
3211           CI->setOperand(1, CI->getOperand(0));
3212           CI->setOperand(0, NV);
3213           NV = CI->getOperand(1);
3214           Changed = true;
3215         }
3216 
3217         // x == y  -->  x - y == 0
3218         const SCEV *N = SE.getSCEV(NV);
3219         if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) {
3220           // S is normalized, so normalize N before folding it into S
3221           // to keep the result normalized.
3222           N = normalizeForPostIncUse(N, TmpPostIncLoops, SE);
3223           Kind = LSRUse::ICmpZero;
3224           S = SE.getMinusSCEV(N, S);
3225         }
3226 
3227         // -1 and the negations of all interesting strides (except the negation
3228         // of -1) are now also interesting.
3229         for (size_t i = 0, e = Factors.size(); i != e; ++i)
3230           if (Factors[i] != -1)
3231             Factors.insert(-(uint64_t)Factors[i]);
3232         Factors.insert(-1);
3233       }
3234 
3235     // Get or create an LSRUse.
3236     std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
3237     size_t LUIdx = P.first;
3238     int64_t Offset = P.second;
3239     LSRUse &LU = Uses[LUIdx];
3240 
3241     // Record the fixup.
3242     LSRFixup &LF = LU.getNewFixup();
3243     LF.UserInst = UserInst;
3244     LF.OperandValToReplace = U.getOperandValToReplace();
3245     LF.PostIncLoops = TmpPostIncLoops;
3246     LF.Offset = Offset;
3247     LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3248 
3249     if (!LU.WidestFixupType ||
3250         SE.getTypeSizeInBits(LU.WidestFixupType) <
3251         SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3252       LU.WidestFixupType = LF.OperandValToReplace->getType();
3253 
3254     // If this is the first use of this LSRUse, give it a formula.
3255     if (LU.Formulae.empty()) {
3256       InsertInitialFormula(S, LU, LUIdx);
3257       CountRegisters(LU.Formulae.back(), LUIdx);
3258     }
3259   }
3260 
3261   DEBUG(print_fixups(dbgs()));
3262 }
3263 
3264 /// Insert a formula for the given expression into the given use, separating out
3265 /// loop-variant portions from loop-invariant and loop-computable portions.
3266 void
3267 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
3268   // Mark uses whose expressions cannot be expanded.
3269   if (!isSafeToExpand(S, SE))
3270     LU.RigidFormula = true;
3271 
3272   Formula F;
3273   F.initialMatch(S, L, SE);
3274   bool Inserted = InsertFormula(LU, LUIdx, F);
3275   assert(Inserted && "Initial formula already exists!"); (void)Inserted;
3276 }
3277 
3278 /// Insert a simple single-register formula for the given expression into the
3279 /// given use.
3280 void
3281 LSRInstance::InsertSupplementalFormula(const SCEV *S,
3282                                        LSRUse &LU, size_t LUIdx) {
3283   Formula F;
3284   F.BaseRegs.push_back(S);
3285   F.HasBaseReg = true;
3286   bool Inserted = InsertFormula(LU, LUIdx, F);
3287   assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
3288 }
3289 
3290 /// Note which registers are used by the given formula, updating RegUses.
3291 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
3292   if (F.ScaledReg)
3293     RegUses.countRegister(F.ScaledReg, LUIdx);
3294   for (const SCEV *BaseReg : F.BaseRegs)
3295     RegUses.countRegister(BaseReg, LUIdx);
3296 }
3297 
3298 /// If the given formula has not yet been inserted, add it to the list, and
3299 /// return true. Return false otherwise.
3300 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
3301   // Do not insert formula that we will not be able to expand.
3302   assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) &&
3303          "Formula is illegal");
3304 
3305   if (!LU.InsertFormula(F, *L))
3306     return false;
3307 
3308   CountRegisters(F, LUIdx);
3309   return true;
3310 }
3311 
3312 /// Check for other uses of loop-invariant values which we're tracking. These
3313 /// other uses will pin these values in registers, making them less profitable
3314 /// for elimination.
3315 /// TODO: This currently misses non-constant addrec step registers.
3316 /// TODO: Should this give more weight to users inside the loop?
3317 void
3318 LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
3319   SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
3320   SmallPtrSet<const SCEV *, 32> Visited;
3321 
3322   while (!Worklist.empty()) {
3323     const SCEV *S = Worklist.pop_back_val();
3324 
3325     // Don't process the same SCEV twice
3326     if (!Visited.insert(S).second)
3327       continue;
3328 
3329     if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
3330       Worklist.append(N->op_begin(), N->op_end());
3331     else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
3332       Worklist.push_back(C->getOperand());
3333     else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
3334       Worklist.push_back(D->getLHS());
3335       Worklist.push_back(D->getRHS());
3336     } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) {
3337       const Value *V = US->getValue();
3338       if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
3339         // Look for instructions defined outside the loop.
3340         if (L->contains(Inst)) continue;
3341       } else if (isa<UndefValue>(V))
3342         // Undef doesn't have a live range, so it doesn't matter.
3343         continue;
3344       for (const Use &U : V->uses()) {
3345         const Instruction *UserInst = dyn_cast<Instruction>(U.getUser());
3346         // Ignore non-instructions.
3347         if (!UserInst)
3348           continue;
3349         // Ignore instructions in other functions (as can happen with
3350         // Constants).
3351         if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
3352           continue;
3353         // Ignore instructions not dominated by the loop.
3354         const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
3355           UserInst->getParent() :
3356           cast<PHINode>(UserInst)->getIncomingBlock(
3357             PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
3358         if (!DT.dominates(L->getHeader(), UseBB))
3359           continue;
3360         // Don't bother if the instruction is in a BB which ends in an EHPad.
3361         if (UseBB->getTerminator()->isEHPad())
3362           continue;
3363         // Don't bother rewriting PHIs in catchswitch blocks.
3364         if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator()))
3365           continue;
3366         // Ignore uses which are part of other SCEV expressions, to avoid
3367         // analyzing them multiple times.
3368         if (SE.isSCEVable(UserInst->getType())) {
3369           const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
3370           // If the user is a no-op, look through to its uses.
3371           if (!isa<SCEVUnknown>(UserS))
3372             continue;
3373           if (UserS == US) {
3374             Worklist.push_back(
3375               SE.getUnknown(const_cast<Instruction *>(UserInst)));
3376             continue;
3377           }
3378         }
3379         // Ignore icmp instructions which are already being analyzed.
3380         if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
3381           unsigned OtherIdx = !U.getOperandNo();
3382           Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
3383           if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L))
3384             continue;
3385         }
3386 
3387         std::pair<size_t, int64_t> P = getUse(
3388             S, LSRUse::Basic, MemAccessTy());
3389         size_t LUIdx = P.first;
3390         int64_t Offset = P.second;
3391         LSRUse &LU = Uses[LUIdx];
3392         LSRFixup &LF = LU.getNewFixup();
3393         LF.UserInst = const_cast<Instruction *>(UserInst);
3394         LF.OperandValToReplace = U;
3395         LF.Offset = Offset;
3396         LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3397         if (!LU.WidestFixupType ||
3398             SE.getTypeSizeInBits(LU.WidestFixupType) <
3399             SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3400           LU.WidestFixupType = LF.OperandValToReplace->getType();
3401         InsertSupplementalFormula(US, LU, LUIdx);
3402         CountRegisters(LU.Formulae.back(), Uses.size() - 1);
3403         break;
3404       }
3405     }
3406   }
3407 }
3408 
3409 /// Split S into subexpressions which can be pulled out into separate
3410 /// registers. If C is non-null, multiply each subexpression by C.
3411 ///
3412 /// Return remainder expression after factoring the subexpressions captured by
3413 /// Ops. If Ops is complete, return NULL.
3414 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C,
3415                                    SmallVectorImpl<const SCEV *> &Ops,
3416                                    const Loop *L,
3417                                    ScalarEvolution &SE,
3418                                    unsigned Depth = 0) {
3419   // Arbitrarily cap recursion to protect compile time.
3420   if (Depth >= 3)
3421     return S;
3422 
3423   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3424     // Break out add operands.
3425     for (const SCEV *S : Add->operands()) {
3426       const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1);
3427       if (Remainder)
3428         Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3429     }
3430     return nullptr;
3431   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
3432     // Split a non-zero base out of an addrec.
3433     if (AR->getStart()->isZero() || !AR->isAffine())
3434       return S;
3435 
3436     const SCEV *Remainder = CollectSubexprs(AR->getStart(),
3437                                             C, Ops, L, SE, Depth+1);
3438     // Split the non-zero AddRec unless it is part of a nested recurrence that
3439     // does not pertain to this loop.
3440     if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) {
3441       Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3442       Remainder = nullptr;
3443     }
3444     if (Remainder != AR->getStart()) {
3445       if (!Remainder)
3446         Remainder = SE.getConstant(AR->getType(), 0);
3447       return SE.getAddRecExpr(Remainder,
3448                               AR->getStepRecurrence(SE),
3449                               AR->getLoop(),
3450                               //FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
3451                               SCEV::FlagAnyWrap);
3452     }
3453   } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3454     // Break (C * (a + b + c)) into C*a + C*b + C*c.
3455     if (Mul->getNumOperands() != 2)
3456       return S;
3457     if (const SCEVConstant *Op0 =
3458         dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3459       C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0;
3460       const SCEV *Remainder =
3461         CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1);
3462       if (Remainder)
3463         Ops.push_back(SE.getMulExpr(C, Remainder));
3464       return nullptr;
3465     }
3466   }
3467   return S;
3468 }
3469 
3470 /// \brief Helper function for LSRInstance::GenerateReassociations.
3471 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
3472                                              const Formula &Base,
3473                                              unsigned Depth, size_t Idx,
3474                                              bool IsScaledReg) {
3475   const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3476   SmallVector<const SCEV *, 8> AddOps;
3477   const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE);
3478   if (Remainder)
3479     AddOps.push_back(Remainder);
3480 
3481   if (AddOps.size() == 1)
3482     return;
3483 
3484   for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
3485                                                      JE = AddOps.end();
3486        J != JE; ++J) {
3487     // Loop-variant "unknown" values are uninteresting; we won't be able to
3488     // do anything meaningful with them.
3489     if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L))
3490       continue;
3491 
3492     // Don't pull a constant into a register if the constant could be folded
3493     // into an immediate field.
3494     if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3495                          LU.AccessTy, *J, Base.getNumRegs() > 1))
3496       continue;
3497 
3498     // Collect all operands except *J.
3499     SmallVector<const SCEV *, 8> InnerAddOps(
3500         ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J);
3501     InnerAddOps.append(std::next(J),
3502                        ((const SmallVector<const SCEV *, 8> &)AddOps).end());
3503 
3504     // Don't leave just a constant behind in a register if the constant could
3505     // be folded into an immediate field.
3506     if (InnerAddOps.size() == 1 &&
3507         isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3508                          LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1))
3509       continue;
3510 
3511     const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
3512     if (InnerSum->isZero())
3513       continue;
3514     Formula F = Base;
3515 
3516     // Add the remaining pieces of the add back into the new formula.
3517     const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum);
3518     if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 &&
3519         TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3520                                 InnerSumSC->getValue()->getZExtValue())) {
3521       F.UnfoldedOffset =
3522           (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue();
3523       if (IsScaledReg)
3524         F.ScaledReg = nullptr;
3525       else
3526         F.BaseRegs.erase(F.BaseRegs.begin() + Idx);
3527     } else if (IsScaledReg)
3528       F.ScaledReg = InnerSum;
3529     else
3530       F.BaseRegs[Idx] = InnerSum;
3531 
3532     // Add J as its own register, or an unfolded immediate.
3533     const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J);
3534     if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 &&
3535         TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3536                                 SC->getValue()->getZExtValue()))
3537       F.UnfoldedOffset =
3538           (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue();
3539     else
3540       F.BaseRegs.push_back(*J);
3541     // We may have changed the number of register in base regs, adjust the
3542     // formula accordingly.
3543     F.canonicalize(*L);
3544 
3545     if (InsertFormula(LU, LUIdx, F))
3546       // If that formula hadn't been seen before, recurse to find more like
3547       // it.
3548       GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth + 1);
3549   }
3550 }
3551 
3552 /// Split out subexpressions from adds and the bases of addrecs.
3553 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
3554                                          Formula Base, unsigned Depth) {
3555   assert(Base.isCanonical(*L) && "Input must be in the canonical form");
3556   // Arbitrarily cap recursion to protect compile time.
3557   if (Depth >= 3)
3558     return;
3559 
3560   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3561     GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i);
3562 
3563   if (Base.Scale == 1)
3564     GenerateReassociationsImpl(LU, LUIdx, Base, Depth,
3565                                /* Idx */ -1, /* IsScaledReg */ true);
3566 }
3567 
3568 ///  Generate a formula consisting of all of the loop-dominating registers added
3569 /// into a single register.
3570 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
3571                                        Formula Base) {
3572   // This method is only interesting on a plurality of registers.
3573   if (Base.BaseRegs.size() + (Base.Scale == 1) <= 1)
3574     return;
3575 
3576   // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before
3577   // processing the formula.
3578   Base.unscale();
3579   Formula F = Base;
3580   F.BaseRegs.clear();
3581   SmallVector<const SCEV *, 4> Ops;
3582   for (const SCEV *BaseReg : Base.BaseRegs) {
3583     if (SE.properlyDominates(BaseReg, L->getHeader()) &&
3584         !SE.hasComputableLoopEvolution(BaseReg, L))
3585       Ops.push_back(BaseReg);
3586     else
3587       F.BaseRegs.push_back(BaseReg);
3588   }
3589   if (Ops.size() > 1) {
3590     const SCEV *Sum = SE.getAddExpr(Ops);
3591     // TODO: If Sum is zero, it probably means ScalarEvolution missed an
3592     // opportunity to fold something. For now, just ignore such cases
3593     // rather than proceed with zero in a register.
3594     if (!Sum->isZero()) {
3595       F.BaseRegs.push_back(Sum);
3596       F.canonicalize(*L);
3597       (void)InsertFormula(LU, LUIdx, F);
3598     }
3599   }
3600 }
3601 
3602 /// \brief Helper function for LSRInstance::GenerateSymbolicOffsets.
3603 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
3604                                               const Formula &Base, size_t Idx,
3605                                               bool IsScaledReg) {
3606   const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3607   GlobalValue *GV = ExtractSymbol(G, SE);
3608   if (G->isZero() || !GV)
3609     return;
3610   Formula F = Base;
3611   F.BaseGV = GV;
3612   if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3613     return;
3614   if (IsScaledReg)
3615     F.ScaledReg = G;
3616   else
3617     F.BaseRegs[Idx] = G;
3618   (void)InsertFormula(LU, LUIdx, F);
3619 }
3620 
3621 /// Generate reuse formulae using symbolic offsets.
3622 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
3623                                           Formula Base) {
3624   // We can't add a symbolic offset if the address already contains one.
3625   if (Base.BaseGV) return;
3626 
3627   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3628     GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i);
3629   if (Base.Scale == 1)
3630     GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1,
3631                                 /* IsScaledReg */ true);
3632 }
3633 
3634 /// \brief Helper function for LSRInstance::GenerateConstantOffsets.
3635 void LSRInstance::GenerateConstantOffsetsImpl(
3636     LSRUse &LU, unsigned LUIdx, const Formula &Base,
3637     const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) {
3638   const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3639   for (int64_t Offset : Worklist) {
3640     Formula F = Base;
3641     F.BaseOffset = (uint64_t)Base.BaseOffset - Offset;
3642     if (isLegalUse(TTI, LU.MinOffset - Offset, LU.MaxOffset - Offset, LU.Kind,
3643                    LU.AccessTy, F)) {
3644       // Add the offset to the base register.
3645       const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G);
3646       // If it cancelled out, drop the base register, otherwise update it.
3647       if (NewG->isZero()) {
3648         if (IsScaledReg) {
3649           F.Scale = 0;
3650           F.ScaledReg = nullptr;
3651         } else
3652           F.deleteBaseReg(F.BaseRegs[Idx]);
3653         F.canonicalize(*L);
3654       } else if (IsScaledReg)
3655         F.ScaledReg = NewG;
3656       else
3657         F.BaseRegs[Idx] = NewG;
3658 
3659       (void)InsertFormula(LU, LUIdx, F);
3660     }
3661   }
3662 
3663   int64_t Imm = ExtractImmediate(G, SE);
3664   if (G->isZero() || Imm == 0)
3665     return;
3666   Formula F = Base;
3667   F.BaseOffset = (uint64_t)F.BaseOffset + Imm;
3668   if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3669     return;
3670   if (IsScaledReg)
3671     F.ScaledReg = G;
3672   else
3673     F.BaseRegs[Idx] = G;
3674   (void)InsertFormula(LU, LUIdx, F);
3675 }
3676 
3677 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
3678 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
3679                                           Formula Base) {
3680   // TODO: For now, just add the min and max offset, because it usually isn't
3681   // worthwhile looking at everything inbetween.
3682   SmallVector<int64_t, 2> Worklist;
3683   Worklist.push_back(LU.MinOffset);
3684   if (LU.MaxOffset != LU.MinOffset)
3685     Worklist.push_back(LU.MaxOffset);
3686 
3687   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3688     GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i);
3689   if (Base.Scale == 1)
3690     GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1,
3691                                 /* IsScaledReg */ true);
3692 }
3693 
3694 /// For ICmpZero, check to see if we can scale up the comparison. For example, x
3695 /// == y -> x*c == y*c.
3696 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
3697                                          Formula Base) {
3698   if (LU.Kind != LSRUse::ICmpZero) return;
3699 
3700   // Determine the integer type for the base formula.
3701   Type *IntTy = Base.getType();
3702   if (!IntTy) return;
3703   if (SE.getTypeSizeInBits(IntTy) > 64) return;
3704 
3705   // Don't do this if there is more than one offset.
3706   if (LU.MinOffset != LU.MaxOffset) return;
3707 
3708   // Check if transformation is valid. It is illegal to multiply pointer.
3709   if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy())
3710     return;
3711   for (const SCEV *BaseReg : Base.BaseRegs)
3712     if (BaseReg->getType()->isPointerTy())
3713       return;
3714   assert(!Base.BaseGV && "ICmpZero use is not legal!");
3715 
3716   // Check each interesting stride.
3717   for (int64_t Factor : Factors) {
3718     // Check that the multiplication doesn't overflow.
3719     if (Base.BaseOffset == std::numeric_limits<int64_t>::min() && Factor == -1)
3720       continue;
3721     int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor;
3722     if (NewBaseOffset / Factor != Base.BaseOffset)
3723       continue;
3724     // If the offset will be truncated at this use, check that it is in bounds.
3725     if (!IntTy->isPointerTy() &&
3726         !ConstantInt::isValueValidForType(IntTy, NewBaseOffset))
3727       continue;
3728 
3729     // Check that multiplying with the use offset doesn't overflow.
3730     int64_t Offset = LU.MinOffset;
3731     if (Offset == std::numeric_limits<int64_t>::min() && Factor == -1)
3732       continue;
3733     Offset = (uint64_t)Offset * Factor;
3734     if (Offset / Factor != LU.MinOffset)
3735       continue;
3736     // If the offset will be truncated at this use, check that it is in bounds.
3737     if (!IntTy->isPointerTy() &&
3738         !ConstantInt::isValueValidForType(IntTy, Offset))
3739       continue;
3740 
3741     Formula F = Base;
3742     F.BaseOffset = NewBaseOffset;
3743 
3744     // Check that this scale is legal.
3745     if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F))
3746       continue;
3747 
3748     // Compensate for the use having MinOffset built into it.
3749     F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset;
3750 
3751     const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3752 
3753     // Check that multiplying with each base register doesn't overflow.
3754     for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
3755       F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
3756       if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
3757         goto next;
3758     }
3759 
3760     // Check that multiplying with the scaled register doesn't overflow.
3761     if (F.ScaledReg) {
3762       F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
3763       if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
3764         continue;
3765     }
3766 
3767     // Check that multiplying with the unfolded offset doesn't overflow.
3768     if (F.UnfoldedOffset != 0) {
3769       if (F.UnfoldedOffset == std::numeric_limits<int64_t>::min() &&
3770           Factor == -1)
3771         continue;
3772       F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor;
3773       if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset)
3774         continue;
3775       // If the offset will be truncated, check that it is in bounds.
3776       if (!IntTy->isPointerTy() &&
3777           !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset))
3778         continue;
3779     }
3780 
3781     // If we make it here and it's legal, add it.
3782     (void)InsertFormula(LU, LUIdx, F);
3783   next:;
3784   }
3785 }
3786 
3787 /// Generate stride factor reuse formulae by making use of scaled-offset address
3788 /// modes, for example.
3789 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
3790   // Determine the integer type for the base formula.
3791   Type *IntTy = Base.getType();
3792   if (!IntTy) return;
3793 
3794   // If this Formula already has a scaled register, we can't add another one.
3795   // Try to unscale the formula to generate a better scale.
3796   if (Base.Scale != 0 && !Base.unscale())
3797     return;
3798 
3799   assert(Base.Scale == 0 && "unscale did not did its job!");
3800 
3801   // Check each interesting stride.
3802   for (int64_t Factor : Factors) {
3803     Base.Scale = Factor;
3804     Base.HasBaseReg = Base.BaseRegs.size() > 1;
3805     // Check whether this scale is going to be legal.
3806     if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
3807                     Base)) {
3808       // As a special-case, handle special out-of-loop Basic users specially.
3809       // TODO: Reconsider this special case.
3810       if (LU.Kind == LSRUse::Basic &&
3811           isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special,
3812                      LU.AccessTy, Base) &&
3813           LU.AllFixupsOutsideLoop)
3814         LU.Kind = LSRUse::Special;
3815       else
3816         continue;
3817     }
3818     // For an ICmpZero, negating a solitary base register won't lead to
3819     // new solutions.
3820     if (LU.Kind == LSRUse::ICmpZero &&
3821         !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV)
3822       continue;
3823     // For each addrec base reg, if its loop is current loop, apply the scale.
3824     for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
3825       const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i]);
3826       if (AR && (AR->getLoop() == L || LU.AllFixupsOutsideLoop)) {
3827         const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3828         if (FactorS->isZero())
3829           continue;
3830         // Divide out the factor, ignoring high bits, since we'll be
3831         // scaling the value back up in the end.
3832         if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) {
3833           // TODO: This could be optimized to avoid all the copying.
3834           Formula F = Base;
3835           F.ScaledReg = Quotient;
3836           F.deleteBaseReg(F.BaseRegs[i]);
3837           // The canonical representation of 1*reg is reg, which is already in
3838           // Base. In that case, do not try to insert the formula, it will be
3839           // rejected anyway.
3840           if (F.Scale == 1 && (F.BaseRegs.empty() ||
3841                                (AR->getLoop() != L && LU.AllFixupsOutsideLoop)))
3842             continue;
3843           // If AllFixupsOutsideLoop is true and F.Scale is 1, we may generate
3844           // non canonical Formula with ScaledReg's loop not being L.
3845           if (F.Scale == 1 && LU.AllFixupsOutsideLoop)
3846             F.canonicalize(*L);
3847           (void)InsertFormula(LU, LUIdx, F);
3848         }
3849       }
3850     }
3851   }
3852 }
3853 
3854 /// Generate reuse formulae from different IV types.
3855 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
3856   // Don't bother truncating symbolic values.
3857   if (Base.BaseGV) return;
3858 
3859   // Determine the integer type for the base formula.
3860   Type *DstTy = Base.getType();
3861   if (!DstTy) return;
3862   DstTy = SE.getEffectiveSCEVType(DstTy);
3863 
3864   for (Type *SrcTy : Types) {
3865     if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) {
3866       Formula F = Base;
3867 
3868       if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy);
3869       for (const SCEV *&BaseReg : F.BaseRegs)
3870         BaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy);
3871 
3872       // TODO: This assumes we've done basic processing on all uses and
3873       // have an idea what the register usage is.
3874       if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
3875         continue;
3876 
3877       F.canonicalize(*L);
3878       (void)InsertFormula(LU, LUIdx, F);
3879     }
3880   }
3881 }
3882 
3883 namespace {
3884 
3885 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer
3886 /// modifications so that the search phase doesn't have to worry about the data
3887 /// structures moving underneath it.
3888 struct WorkItem {
3889   size_t LUIdx;
3890   int64_t Imm;
3891   const SCEV *OrigReg;
3892 
3893   WorkItem(size_t LI, int64_t I, const SCEV *R)
3894       : LUIdx(LI), Imm(I), OrigReg(R) {}
3895 
3896   void print(raw_ostream &OS) const;
3897   void dump() const;
3898 };
3899 
3900 } // end anonymous namespace
3901 
3902 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3903 void WorkItem::print(raw_ostream &OS) const {
3904   OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
3905      << " , add offset " << Imm;
3906 }
3907 
3908 LLVM_DUMP_METHOD void WorkItem::dump() const {
3909   print(errs()); errs() << '\n';
3910 }
3911 #endif
3912 
3913 /// Look for registers which are a constant distance apart and try to form reuse
3914 /// opportunities between them.
3915 void LSRInstance::GenerateCrossUseConstantOffsets() {
3916   // Group the registers by their value without any added constant offset.
3917   using ImmMapTy = std::map<int64_t, const SCEV *>;
3918 
3919   DenseMap<const SCEV *, ImmMapTy> Map;
3920   DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
3921   SmallVector<const SCEV *, 8> Sequence;
3922   for (const SCEV *Use : RegUses) {
3923     const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify.
3924     int64_t Imm = ExtractImmediate(Reg, SE);
3925     auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy()));
3926     if (Pair.second)
3927       Sequence.push_back(Reg);
3928     Pair.first->second.insert(std::make_pair(Imm, Use));
3929     UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use);
3930   }
3931 
3932   // Now examine each set of registers with the same base value. Build up
3933   // a list of work to do and do the work in a separate step so that we're
3934   // not adding formulae and register counts while we're searching.
3935   SmallVector<WorkItem, 32> WorkItems;
3936   SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
3937   for (const SCEV *Reg : Sequence) {
3938     const ImmMapTy &Imms = Map.find(Reg)->second;
3939 
3940     // It's not worthwhile looking for reuse if there's only one offset.
3941     if (Imms.size() == 1)
3942       continue;
3943 
3944     DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
3945           for (const auto &Entry : Imms)
3946             dbgs() << ' ' << Entry.first;
3947           dbgs() << '\n');
3948 
3949     // Examine each offset.
3950     for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
3951          J != JE; ++J) {
3952       const SCEV *OrigReg = J->second;
3953 
3954       int64_t JImm = J->first;
3955       const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
3956 
3957       if (!isa<SCEVConstant>(OrigReg) &&
3958           UsedByIndicesMap[Reg].count() == 1) {
3959         DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n');
3960         continue;
3961       }
3962 
3963       // Conservatively examine offsets between this orig reg a few selected
3964       // other orig regs.
3965       ImmMapTy::const_iterator OtherImms[] = {
3966         Imms.begin(), std::prev(Imms.end()),
3967         Imms.lower_bound((Imms.begin()->first + std::prev(Imms.end())->first) /
3968                          2)
3969       };
3970       for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
3971         ImmMapTy::const_iterator M = OtherImms[i];
3972         if (M == J || M == JE) continue;
3973 
3974         // Compute the difference between the two.
3975         int64_t Imm = (uint64_t)JImm - M->first;
3976         for (unsigned LUIdx : UsedByIndices.set_bits())
3977           // Make a memo of this use, offset, and register tuple.
3978           if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second)
3979             WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
3980       }
3981     }
3982   }
3983 
3984   Map.clear();
3985   Sequence.clear();
3986   UsedByIndicesMap.clear();
3987   UniqueItems.clear();
3988 
3989   // Now iterate through the worklist and add new formulae.
3990   for (const WorkItem &WI : WorkItems) {
3991     size_t LUIdx = WI.LUIdx;
3992     LSRUse &LU = Uses[LUIdx];
3993     int64_t Imm = WI.Imm;
3994     const SCEV *OrigReg = WI.OrigReg;
3995 
3996     Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
3997     const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
3998     unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
3999 
4000     // TODO: Use a more targeted data structure.
4001     for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
4002       Formula F = LU.Formulae[L];
4003       // FIXME: The code for the scaled and unscaled registers looks
4004       // very similar but slightly different. Investigate if they
4005       // could be merged. That way, we would not have to unscale the
4006       // Formula.
4007       F.unscale();
4008       // Use the immediate in the scaled register.
4009       if (F.ScaledReg == OrigReg) {
4010         int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale;
4011         // Don't create 50 + reg(-50).
4012         if (F.referencesReg(SE.getSCEV(
4013                    ConstantInt::get(IntTy, -(uint64_t)Offset))))
4014           continue;
4015         Formula NewF = F;
4016         NewF.BaseOffset = Offset;
4017         if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
4018                         NewF))
4019           continue;
4020         NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
4021 
4022         // If the new scale is a constant in a register, and adding the constant
4023         // value to the immediate would produce a value closer to zero than the
4024         // immediate itself, then the formula isn't worthwhile.
4025         if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
4026           if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) &&
4027               (C->getAPInt().abs() * APInt(BitWidth, F.Scale))
4028                   .ule(std::abs(NewF.BaseOffset)))
4029             continue;
4030 
4031         // OK, looks good.
4032         NewF.canonicalize(*this->L);
4033         (void)InsertFormula(LU, LUIdx, NewF);
4034       } else {
4035         // Use the immediate in a base register.
4036         for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
4037           const SCEV *BaseReg = F.BaseRegs[N];
4038           if (BaseReg != OrigReg)
4039             continue;
4040           Formula NewF = F;
4041           NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm;
4042           if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset,
4043                           LU.Kind, LU.AccessTy, NewF)) {
4044             if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm))
4045               continue;
4046             NewF = F;
4047             NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm;
4048           }
4049           NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
4050 
4051           // If the new formula has a constant in a register, and adding the
4052           // constant value to the immediate would produce a value closer to
4053           // zero than the immediate itself, then the formula isn't worthwhile.
4054           for (const SCEV *NewReg : NewF.BaseRegs)
4055             if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg))
4056               if ((C->getAPInt() + NewF.BaseOffset)
4057                       .abs()
4058                       .slt(std::abs(NewF.BaseOffset)) &&
4059                   (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >=
4060                       countTrailingZeros<uint64_t>(NewF.BaseOffset))
4061                 goto skip_formula;
4062 
4063           // Ok, looks good.
4064           NewF.canonicalize(*this->L);
4065           (void)InsertFormula(LU, LUIdx, NewF);
4066           break;
4067         skip_formula:;
4068         }
4069       }
4070     }
4071   }
4072 }
4073 
4074 /// Generate formulae for each use.
4075 void
4076 LSRInstance::GenerateAllReuseFormulae() {
4077   // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
4078   // queries are more precise.
4079   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4080     LSRUse &LU = Uses[LUIdx];
4081     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4082       GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
4083     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4084       GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
4085   }
4086   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4087     LSRUse &LU = Uses[LUIdx];
4088     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4089       GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
4090     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4091       GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
4092     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4093       GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
4094     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4095       GenerateScales(LU, LUIdx, LU.Formulae[i]);
4096   }
4097   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4098     LSRUse &LU = Uses[LUIdx];
4099     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4100       GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
4101   }
4102 
4103   GenerateCrossUseConstantOffsets();
4104 
4105   DEBUG(dbgs() << "\n"
4106                   "After generating reuse formulae:\n";
4107         print_uses(dbgs()));
4108 }
4109 
4110 /// If there are multiple formulae with the same set of registers used
4111 /// by other uses, pick the best one and delete the others.
4112 void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
4113   DenseSet<const SCEV *> VisitedRegs;
4114   SmallPtrSet<const SCEV *, 16> Regs;
4115   SmallPtrSet<const SCEV *, 16> LoserRegs;
4116 #ifndef NDEBUG
4117   bool ChangedFormulae = false;
4118 #endif
4119 
4120   // Collect the best formula for each unique set of shared registers. This
4121   // is reset for each use.
4122   using BestFormulaeTy =
4123       DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>;
4124 
4125   BestFormulaeTy BestFormulae;
4126 
4127   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4128     LSRUse &LU = Uses[LUIdx];
4129     DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n');
4130 
4131     bool Any = false;
4132     for (size_t FIdx = 0, NumForms = LU.Formulae.size();
4133          FIdx != NumForms; ++FIdx) {
4134       Formula &F = LU.Formulae[FIdx];
4135 
4136       // Some formulas are instant losers. For example, they may depend on
4137       // nonexistent AddRecs from other loops. These need to be filtered
4138       // immediately, otherwise heuristics could choose them over others leading
4139       // to an unsatisfactory solution. Passing LoserRegs into RateFormula here
4140       // avoids the need to recompute this information across formulae using the
4141       // same bad AddRec. Passing LoserRegs is also essential unless we remove
4142       // the corresponding bad register from the Regs set.
4143       Cost CostF;
4144       Regs.clear();
4145       CostF.RateFormula(TTI, F, Regs, VisitedRegs, L, SE, DT, LU, &LoserRegs);
4146       if (CostF.isLoser()) {
4147         // During initial formula generation, undesirable formulae are generated
4148         // by uses within other loops that have some non-trivial address mode or
4149         // use the postinc form of the IV. LSR needs to provide these formulae
4150         // as the basis of rediscovering the desired formula that uses an AddRec
4151         // corresponding to the existing phi. Once all formulae have been
4152         // generated, these initial losers may be pruned.
4153         DEBUG(dbgs() << "  Filtering loser "; F.print(dbgs());
4154               dbgs() << "\n");
4155       }
4156       else {
4157         SmallVector<const SCEV *, 4> Key;
4158         for (const SCEV *Reg : F.BaseRegs) {
4159           if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
4160             Key.push_back(Reg);
4161         }
4162         if (F.ScaledReg &&
4163             RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
4164           Key.push_back(F.ScaledReg);
4165         // Unstable sort by host order ok, because this is only used for
4166         // uniquifying.
4167         std::sort(Key.begin(), Key.end());
4168 
4169         std::pair<BestFormulaeTy::const_iterator, bool> P =
4170           BestFormulae.insert(std::make_pair(Key, FIdx));
4171         if (P.second)
4172           continue;
4173 
4174         Formula &Best = LU.Formulae[P.first->second];
4175 
4176         Cost CostBest;
4177         Regs.clear();
4178         CostBest.RateFormula(TTI, Best, Regs, VisitedRegs, L, SE, DT, LU);
4179         if (CostF.isLess(CostBest, TTI))
4180           std::swap(F, Best);
4181         DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
4182               dbgs() << "\n"
4183                         "    in favor of formula "; Best.print(dbgs());
4184               dbgs() << '\n');
4185       }
4186 #ifndef NDEBUG
4187       ChangedFormulae = true;
4188 #endif
4189       LU.DeleteFormula(F);
4190       --FIdx;
4191       --NumForms;
4192       Any = true;
4193     }
4194 
4195     // Now that we've filtered out some formulae, recompute the Regs set.
4196     if (Any)
4197       LU.RecomputeRegs(LUIdx, RegUses);
4198 
4199     // Reset this to prepare for the next use.
4200     BestFormulae.clear();
4201   }
4202 
4203   DEBUG(if (ChangedFormulae) {
4204           dbgs() << "\n"
4205                     "After filtering out undesirable candidates:\n";
4206           print_uses(dbgs());
4207         });
4208 }
4209 
4210 // This is a rough guess that seems to work fairly well.
4211 static const size_t ComplexityLimit = std::numeric_limits<uint16_t>::max();
4212 
4213 /// Estimate the worst-case number of solutions the solver might have to
4214 /// consider. It almost never considers this many solutions because it prune the
4215 /// search space, but the pruning isn't always sufficient.
4216 size_t LSRInstance::EstimateSearchSpaceComplexity() const {
4217   size_t Power = 1;
4218   for (const LSRUse &LU : Uses) {
4219     size_t FSize = LU.Formulae.size();
4220     if (FSize >= ComplexityLimit) {
4221       Power = ComplexityLimit;
4222       break;
4223     }
4224     Power *= FSize;
4225     if (Power >= ComplexityLimit)
4226       break;
4227   }
4228   return Power;
4229 }
4230 
4231 /// When one formula uses a superset of the registers of another formula, it
4232 /// won't help reduce register pressure (though it may not necessarily hurt
4233 /// register pressure); remove it to simplify the system.
4234 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
4235   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4236     DEBUG(dbgs() << "The search space is too complex.\n");
4237 
4238     DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
4239                     "which use a superset of registers used by other "
4240                     "formulae.\n");
4241 
4242     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4243       LSRUse &LU = Uses[LUIdx];
4244       bool Any = false;
4245       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4246         Formula &F = LU.Formulae[i];
4247         // Look for a formula with a constant or GV in a register. If the use
4248         // also has a formula with that same value in an immediate field,
4249         // delete the one that uses a register.
4250         for (SmallVectorImpl<const SCEV *>::const_iterator
4251              I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
4252           if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
4253             Formula NewF = F;
4254             NewF.BaseOffset += C->getValue()->getSExtValue();
4255             NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4256                                 (I - F.BaseRegs.begin()));
4257             if (LU.HasFormulaWithSameRegs(NewF)) {
4258               DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
4259               LU.DeleteFormula(F);
4260               --i;
4261               --e;
4262               Any = true;
4263               break;
4264             }
4265           } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
4266             if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
4267               if (!F.BaseGV) {
4268                 Formula NewF = F;
4269                 NewF.BaseGV = GV;
4270                 NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4271                                     (I - F.BaseRegs.begin()));
4272                 if (LU.HasFormulaWithSameRegs(NewF)) {
4273                   DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4274                         dbgs() << '\n');
4275                   LU.DeleteFormula(F);
4276                   --i;
4277                   --e;
4278                   Any = true;
4279                   break;
4280                 }
4281               }
4282           }
4283         }
4284       }
4285       if (Any)
4286         LU.RecomputeRegs(LUIdx, RegUses);
4287     }
4288 
4289     DEBUG(dbgs() << "After pre-selection:\n";
4290           print_uses(dbgs()));
4291   }
4292 }
4293 
4294 /// When there are many registers for expressions like A, A+1, A+2, etc.,
4295 /// allocate a single register for them.
4296 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
4297   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4298     return;
4299 
4300   DEBUG(dbgs() << "The search space is too complex.\n"
4301                   "Narrowing the search space by assuming that uses separated "
4302                   "by a constant offset will use the same registers.\n");
4303 
4304   // This is especially useful for unrolled loops.
4305 
4306   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4307     LSRUse &LU = Uses[LUIdx];
4308     for (const Formula &F : LU.Formulae) {
4309       if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1))
4310         continue;
4311 
4312       LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU);
4313       if (!LUThatHas)
4314         continue;
4315 
4316       if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false,
4317                               LU.Kind, LU.AccessTy))
4318         continue;
4319 
4320       DEBUG(dbgs() << "  Deleting use "; LU.print(dbgs()); dbgs() << '\n');
4321 
4322       LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
4323 
4324       // Transfer the fixups of LU to LUThatHas.
4325       for (LSRFixup &Fixup : LU.Fixups) {
4326         Fixup.Offset += F.BaseOffset;
4327         LUThatHas->pushFixup(Fixup);
4328         DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n');
4329       }
4330 
4331       // Delete formulae from the new use which are no longer legal.
4332       bool Any = false;
4333       for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
4334         Formula &F = LUThatHas->Formulae[i];
4335         if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset,
4336                         LUThatHas->Kind, LUThatHas->AccessTy, F)) {
4337           DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4338                 dbgs() << '\n');
4339           LUThatHas->DeleteFormula(F);
4340           --i;
4341           --e;
4342           Any = true;
4343         }
4344       }
4345 
4346       if (Any)
4347         LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
4348 
4349       // Delete the old use.
4350       DeleteUse(LU, LUIdx);
4351       --LUIdx;
4352       --NumUses;
4353       break;
4354     }
4355   }
4356 
4357   DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4358 }
4359 
4360 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that
4361 /// we've done more filtering, as it may be able to find more formulae to
4362 /// eliminate.
4363 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){
4364   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4365     DEBUG(dbgs() << "The search space is too complex.\n");
4366 
4367     DEBUG(dbgs() << "Narrowing the search space by re-filtering out "
4368                     "undesirable dedicated registers.\n");
4369 
4370     FilterOutUndesirableDedicatedRegisters();
4371 
4372     DEBUG(dbgs() << "After pre-selection:\n";
4373           print_uses(dbgs()));
4374   }
4375 }
4376 
4377 /// If a LSRUse has multiple formulae with the same ScaledReg and Scale.
4378 /// Pick the best one and delete the others.
4379 /// This narrowing heuristic is to keep as many formulae with different
4380 /// Scale and ScaledReg pair as possible while narrowing the search space.
4381 /// The benefit is that it is more likely to find out a better solution
4382 /// from a formulae set with more Scale and ScaledReg variations than
4383 /// a formulae set with the same Scale and ScaledReg. The picking winner
4384 /// reg heurstic will often keep the formulae with the same Scale and
4385 /// ScaledReg and filter others, and we want to avoid that if possible.
4386 void LSRInstance::NarrowSearchSpaceByFilterFormulaWithSameScaledReg() {
4387   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4388     return;
4389 
4390   DEBUG(dbgs() << "The search space is too complex.\n"
4391                   "Narrowing the search space by choosing the best Formula "
4392                   "from the Formulae with the same Scale and ScaledReg.\n");
4393 
4394   // Map the "Scale * ScaledReg" pair to the best formula of current LSRUse.
4395   using BestFormulaeTy = DenseMap<std::pair<const SCEV *, int64_t>, size_t>;
4396 
4397   BestFormulaeTy BestFormulae;
4398 #ifndef NDEBUG
4399   bool ChangedFormulae = false;
4400 #endif
4401   DenseSet<const SCEV *> VisitedRegs;
4402   SmallPtrSet<const SCEV *, 16> Regs;
4403 
4404   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4405     LSRUse &LU = Uses[LUIdx];
4406     DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n');
4407 
4408     // Return true if Formula FA is better than Formula FB.
4409     auto IsBetterThan = [&](Formula &FA, Formula &FB) {
4410       // First we will try to choose the Formula with fewer new registers.
4411       // For a register used by current Formula, the more the register is
4412       // shared among LSRUses, the less we increase the register number
4413       // counter of the formula.
4414       size_t FARegNum = 0;
4415       for (const SCEV *Reg : FA.BaseRegs) {
4416         const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg);
4417         FARegNum += (NumUses - UsedByIndices.count() + 1);
4418       }
4419       size_t FBRegNum = 0;
4420       for (const SCEV *Reg : FB.BaseRegs) {
4421         const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg);
4422         FBRegNum += (NumUses - UsedByIndices.count() + 1);
4423       }
4424       if (FARegNum != FBRegNum)
4425         return FARegNum < FBRegNum;
4426 
4427       // If the new register numbers are the same, choose the Formula with
4428       // less Cost.
4429       Cost CostFA, CostFB;
4430       Regs.clear();
4431       CostFA.RateFormula(TTI, FA, Regs, VisitedRegs, L, SE, DT, LU);
4432       Regs.clear();
4433       CostFB.RateFormula(TTI, FB, Regs, VisitedRegs, L, SE, DT, LU);
4434       return CostFA.isLess(CostFB, TTI);
4435     };
4436 
4437     bool Any = false;
4438     for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms;
4439          ++FIdx) {
4440       Formula &F = LU.Formulae[FIdx];
4441       if (!F.ScaledReg)
4442         continue;
4443       auto P = BestFormulae.insert({{F.ScaledReg, F.Scale}, FIdx});
4444       if (P.second)
4445         continue;
4446 
4447       Formula &Best = LU.Formulae[P.first->second];
4448       if (IsBetterThan(F, Best))
4449         std::swap(F, Best);
4450       DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
4451             dbgs() << "\n"
4452                       "    in favor of formula ";
4453             Best.print(dbgs()); dbgs() << '\n');
4454 #ifndef NDEBUG
4455       ChangedFormulae = true;
4456 #endif
4457       LU.DeleteFormula(F);
4458       --FIdx;
4459       --NumForms;
4460       Any = true;
4461     }
4462     if (Any)
4463       LU.RecomputeRegs(LUIdx, RegUses);
4464 
4465     // Reset this to prepare for the next use.
4466     BestFormulae.clear();
4467   }
4468 
4469   DEBUG(if (ChangedFormulae) {
4470     dbgs() << "\n"
4471               "After filtering out undesirable candidates:\n";
4472     print_uses(dbgs());
4473   });
4474 }
4475 
4476 /// The function delete formulas with high registers number expectation.
4477 /// Assuming we don't know the value of each formula (already delete
4478 /// all inefficient), generate probability of not selecting for each
4479 /// register.
4480 /// For example,
4481 /// Use1:
4482 ///  reg(a) + reg({0,+,1})
4483 ///  reg(a) + reg({-1,+,1}) + 1
4484 ///  reg({a,+,1})
4485 /// Use2:
4486 ///  reg(b) + reg({0,+,1})
4487 ///  reg(b) + reg({-1,+,1}) + 1
4488 ///  reg({b,+,1})
4489 /// Use3:
4490 ///  reg(c) + reg(b) + reg({0,+,1})
4491 ///  reg(c) + reg({b,+,1})
4492 ///
4493 /// Probability of not selecting
4494 ///                 Use1   Use2    Use3
4495 /// reg(a)         (1/3) *   1   *   1
4496 /// reg(b)           1   * (1/3) * (1/2)
4497 /// reg({0,+,1})   (2/3) * (2/3) * (1/2)
4498 /// reg({-1,+,1})  (2/3) * (2/3) *   1
4499 /// reg({a,+,1})   (2/3) *   1   *   1
4500 /// reg({b,+,1})     1   * (2/3) * (2/3)
4501 /// reg(c)           1   *   1   *   0
4502 ///
4503 /// Now count registers number mathematical expectation for each formula:
4504 /// Note that for each use we exclude probability if not selecting for the use.
4505 /// For example for Use1 probability for reg(a) would be just 1 * 1 (excluding
4506 /// probabilty 1/3 of not selecting for Use1).
4507 /// Use1:
4508 ///  reg(a) + reg({0,+,1})          1 + 1/3       -- to be deleted
4509 ///  reg(a) + reg({-1,+,1}) + 1     1 + 4/9       -- to be deleted
4510 ///  reg({a,+,1})                   1
4511 /// Use2:
4512 ///  reg(b) + reg({0,+,1})          1/2 + 1/3     -- to be deleted
4513 ///  reg(b) + reg({-1,+,1}) + 1     1/2 + 2/3     -- to be deleted
4514 ///  reg({b,+,1})                   2/3
4515 /// Use3:
4516 ///  reg(c) + reg(b) + reg({0,+,1}) 1 + 1/3 + 4/9 -- to be deleted
4517 ///  reg(c) + reg({b,+,1})          1 + 2/3
4518 void LSRInstance::NarrowSearchSpaceByDeletingCostlyFormulas() {
4519   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4520     return;
4521   // Ok, we have too many of formulae on our hands to conveniently handle.
4522   // Use a rough heuristic to thin out the list.
4523 
4524   // Set of Regs wich will be 100% used in final solution.
4525   // Used in each formula of a solution (in example above this is reg(c)).
4526   // We can skip them in calculations.
4527   SmallPtrSet<const SCEV *, 4> UniqRegs;
4528   DEBUG(dbgs() << "The search space is too complex.\n");
4529 
4530   // Map each register to probability of not selecting
4531   DenseMap <const SCEV *, float> RegNumMap;
4532   for (const SCEV *Reg : RegUses) {
4533     if (UniqRegs.count(Reg))
4534       continue;
4535     float PNotSel = 1;
4536     for (const LSRUse &LU : Uses) {
4537       if (!LU.Regs.count(Reg))
4538         continue;
4539       float P = LU.getNotSelectedProbability(Reg);
4540       if (P != 0.0)
4541         PNotSel *= P;
4542       else
4543         UniqRegs.insert(Reg);
4544     }
4545     RegNumMap.insert(std::make_pair(Reg, PNotSel));
4546   }
4547 
4548   DEBUG(dbgs() << "Narrowing the search space by deleting costly formulas\n");
4549 
4550   // Delete formulas where registers number expectation is high.
4551   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4552     LSRUse &LU = Uses[LUIdx];
4553     // If nothing to delete - continue.
4554     if (LU.Formulae.size() < 2)
4555       continue;
4556     // This is temporary solution to test performance. Float should be
4557     // replaced with round independent type (based on integers) to avoid
4558     // different results for different target builds.
4559     float FMinRegNum = LU.Formulae[0].getNumRegs();
4560     float FMinARegNum = LU.Formulae[0].getNumRegs();
4561     size_t MinIdx = 0;
4562     for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4563       Formula &F = LU.Formulae[i];
4564       float FRegNum = 0;
4565       float FARegNum = 0;
4566       for (const SCEV *BaseReg : F.BaseRegs) {
4567         if (UniqRegs.count(BaseReg))
4568           continue;
4569         FRegNum += RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg);
4570         if (isa<SCEVAddRecExpr>(BaseReg))
4571           FARegNum +=
4572               RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg);
4573       }
4574       if (const SCEV *ScaledReg = F.ScaledReg) {
4575         if (!UniqRegs.count(ScaledReg)) {
4576           FRegNum +=
4577               RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg);
4578           if (isa<SCEVAddRecExpr>(ScaledReg))
4579             FARegNum +=
4580                 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg);
4581         }
4582       }
4583       if (FMinRegNum > FRegNum ||
4584           (FMinRegNum == FRegNum && FMinARegNum > FARegNum)) {
4585         FMinRegNum = FRegNum;
4586         FMinARegNum = FARegNum;
4587         MinIdx = i;
4588       }
4589     }
4590     DEBUG(dbgs() << "  The formula "; LU.Formulae[MinIdx].print(dbgs());
4591           dbgs() << " with min reg num " << FMinRegNum << '\n');
4592     if (MinIdx != 0)
4593       std::swap(LU.Formulae[MinIdx], LU.Formulae[0]);
4594     while (LU.Formulae.size() != 1) {
4595       DEBUG(dbgs() << "  Deleting "; LU.Formulae.back().print(dbgs());
4596             dbgs() << '\n');
4597       LU.Formulae.pop_back();
4598     }
4599     LU.RecomputeRegs(LUIdx, RegUses);
4600     assert(LU.Formulae.size() == 1 && "Should be exactly 1 min regs formula");
4601     Formula &F = LU.Formulae[0];
4602     DEBUG(dbgs() << "  Leaving only "; F.print(dbgs()); dbgs() << '\n');
4603     // When we choose the formula, the regs become unique.
4604     UniqRegs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
4605     if (F.ScaledReg)
4606       UniqRegs.insert(F.ScaledReg);
4607   }
4608   DEBUG(dbgs() << "After pre-selection:\n";
4609   print_uses(dbgs()));
4610 }
4611 
4612 /// Pick a register which seems likely to be profitable, and then in any use
4613 /// which has any reference to that register, delete all formulae which do not
4614 /// reference that register.
4615 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() {
4616   // With all other options exhausted, loop until the system is simple
4617   // enough to handle.
4618   SmallPtrSet<const SCEV *, 4> Taken;
4619   while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4620     // Ok, we have too many of formulae on our hands to conveniently handle.
4621     // Use a rough heuristic to thin out the list.
4622     DEBUG(dbgs() << "The search space is too complex.\n");
4623 
4624     // Pick the register which is used by the most LSRUses, which is likely
4625     // to be a good reuse register candidate.
4626     const SCEV *Best = nullptr;
4627     unsigned BestNum = 0;
4628     for (const SCEV *Reg : RegUses) {
4629       if (Taken.count(Reg))
4630         continue;
4631       if (!Best) {
4632         Best = Reg;
4633         BestNum = RegUses.getUsedByIndices(Reg).count();
4634       } else {
4635         unsigned Count = RegUses.getUsedByIndices(Reg).count();
4636         if (Count > BestNum) {
4637           Best = Reg;
4638           BestNum = Count;
4639         }
4640       }
4641     }
4642 
4643     DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
4644                  << " will yield profitable reuse.\n");
4645     Taken.insert(Best);
4646 
4647     // In any use with formulae which references this register, delete formulae
4648     // which don't reference it.
4649     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4650       LSRUse &LU = Uses[LUIdx];
4651       if (!LU.Regs.count(Best)) continue;
4652 
4653       bool Any = false;
4654       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4655         Formula &F = LU.Formulae[i];
4656         if (!F.referencesReg(Best)) {
4657           DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
4658           LU.DeleteFormula(F);
4659           --e;
4660           --i;
4661           Any = true;
4662           assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
4663           continue;
4664         }
4665       }
4666 
4667       if (Any)
4668         LU.RecomputeRegs(LUIdx, RegUses);
4669     }
4670 
4671     DEBUG(dbgs() << "After pre-selection:\n";
4672           print_uses(dbgs()));
4673   }
4674 }
4675 
4676 /// If there are an extraordinary number of formulae to choose from, use some
4677 /// rough heuristics to prune down the number of formulae. This keeps the main
4678 /// solver from taking an extraordinary amount of time in some worst-case
4679 /// scenarios.
4680 void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
4681   NarrowSearchSpaceByDetectingSupersets();
4682   NarrowSearchSpaceByCollapsingUnrolledCode();
4683   NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
4684   if (FilterSameScaledReg)
4685     NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
4686   if (LSRExpNarrow)
4687     NarrowSearchSpaceByDeletingCostlyFormulas();
4688   else
4689     NarrowSearchSpaceByPickingWinnerRegs();
4690 }
4691 
4692 /// This is the recursive solver.
4693 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
4694                                Cost &SolutionCost,
4695                                SmallVectorImpl<const Formula *> &Workspace,
4696                                const Cost &CurCost,
4697                                const SmallPtrSet<const SCEV *, 16> &CurRegs,
4698                                DenseSet<const SCEV *> &VisitedRegs) const {
4699   // Some ideas:
4700   //  - prune more:
4701   //    - use more aggressive filtering
4702   //    - sort the formula so that the most profitable solutions are found first
4703   //    - sort the uses too
4704   //  - search faster:
4705   //    - don't compute a cost, and then compare. compare while computing a cost
4706   //      and bail early.
4707   //    - track register sets with SmallBitVector
4708 
4709   const LSRUse &LU = Uses[Workspace.size()];
4710 
4711   // If this use references any register that's already a part of the
4712   // in-progress solution, consider it a requirement that a formula must
4713   // reference that register in order to be considered. This prunes out
4714   // unprofitable searching.
4715   SmallSetVector<const SCEV *, 4> ReqRegs;
4716   for (const SCEV *S : CurRegs)
4717     if (LU.Regs.count(S))
4718       ReqRegs.insert(S);
4719 
4720   SmallPtrSet<const SCEV *, 16> NewRegs;
4721   Cost NewCost;
4722   for (const Formula &F : LU.Formulae) {
4723     // Ignore formulae which may not be ideal in terms of register reuse of
4724     // ReqRegs.  The formula should use all required registers before
4725     // introducing new ones.
4726     int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size());
4727     for (const SCEV *Reg : ReqRegs) {
4728       if ((F.ScaledReg && F.ScaledReg == Reg) ||
4729           is_contained(F.BaseRegs, Reg)) {
4730         --NumReqRegsToFind;
4731         if (NumReqRegsToFind == 0)
4732           break;
4733       }
4734     }
4735     if (NumReqRegsToFind != 0) {
4736       // If none of the formulae satisfied the required registers, then we could
4737       // clear ReqRegs and try again. Currently, we simply give up in this case.
4738       continue;
4739     }
4740 
4741     // Evaluate the cost of the current formula. If it's already worse than
4742     // the current best, prune the search at that point.
4743     NewCost = CurCost;
4744     NewRegs = CurRegs;
4745     NewCost.RateFormula(TTI, F, NewRegs, VisitedRegs, L, SE, DT, LU);
4746     if (NewCost.isLess(SolutionCost, TTI)) {
4747       Workspace.push_back(&F);
4748       if (Workspace.size() != Uses.size()) {
4749         SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
4750                      NewRegs, VisitedRegs);
4751         if (F.getNumRegs() == 1 && Workspace.size() == 1)
4752           VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
4753       } else {
4754         DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
4755               dbgs() << ".\n Regs:";
4756               for (const SCEV *S : NewRegs)
4757                 dbgs() << ' ' << *S;
4758               dbgs() << '\n');
4759 
4760         SolutionCost = NewCost;
4761         Solution = Workspace;
4762       }
4763       Workspace.pop_back();
4764     }
4765   }
4766 }
4767 
4768 /// Choose one formula from each use. Return the results in the given Solution
4769 /// vector.
4770 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
4771   SmallVector<const Formula *, 8> Workspace;
4772   Cost SolutionCost;
4773   SolutionCost.Lose();
4774   Cost CurCost;
4775   SmallPtrSet<const SCEV *, 16> CurRegs;
4776   DenseSet<const SCEV *> VisitedRegs;
4777   Workspace.reserve(Uses.size());
4778 
4779   // SolveRecurse does all the work.
4780   SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
4781                CurRegs, VisitedRegs);
4782   if (Solution.empty()) {
4783     DEBUG(dbgs() << "\nNo Satisfactory Solution\n");
4784     return;
4785   }
4786 
4787   // Ok, we've now made all our decisions.
4788   DEBUG(dbgs() << "\n"
4789                   "The chosen solution requires "; SolutionCost.print(dbgs());
4790         dbgs() << ":\n";
4791         for (size_t i = 0, e = Uses.size(); i != e; ++i) {
4792           dbgs() << "  ";
4793           Uses[i].print(dbgs());
4794           dbgs() << "\n"
4795                     "    ";
4796           Solution[i]->print(dbgs());
4797           dbgs() << '\n';
4798         });
4799 
4800   assert(Solution.size() == Uses.size() && "Malformed solution!");
4801 }
4802 
4803 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as
4804 /// we can go while still being dominated by the input positions. This helps
4805 /// canonicalize the insert position, which encourages sharing.
4806 BasicBlock::iterator
4807 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
4808                                  const SmallVectorImpl<Instruction *> &Inputs)
4809                                                                          const {
4810   Instruction *Tentative = &*IP;
4811   while (true) {
4812     bool AllDominate = true;
4813     Instruction *BetterPos = nullptr;
4814     // Don't bother attempting to insert before a catchswitch, their basic block
4815     // cannot have other non-PHI instructions.
4816     if (isa<CatchSwitchInst>(Tentative))
4817       return IP;
4818 
4819     for (Instruction *Inst : Inputs) {
4820       if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
4821         AllDominate = false;
4822         break;
4823       }
4824       // Attempt to find an insert position in the middle of the block,
4825       // instead of at the end, so that it can be used for other expansions.
4826       if (Tentative->getParent() == Inst->getParent() &&
4827           (!BetterPos || !DT.dominates(Inst, BetterPos)))
4828         BetterPos = &*std::next(BasicBlock::iterator(Inst));
4829     }
4830     if (!AllDominate)
4831       break;
4832     if (BetterPos)
4833       IP = BetterPos->getIterator();
4834     else
4835       IP = Tentative->getIterator();
4836 
4837     const Loop *IPLoop = LI.getLoopFor(IP->getParent());
4838     unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
4839 
4840     BasicBlock *IDom;
4841     for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) {
4842       if (!Rung) return IP;
4843       Rung = Rung->getIDom();
4844       if (!Rung) return IP;
4845       IDom = Rung->getBlock();
4846 
4847       // Don't climb into a loop though.
4848       const Loop *IDomLoop = LI.getLoopFor(IDom);
4849       unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
4850       if (IDomDepth <= IPLoopDepth &&
4851           (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
4852         break;
4853     }
4854 
4855     Tentative = IDom->getTerminator();
4856   }
4857 
4858   return IP;
4859 }
4860 
4861 /// Determine an input position which will be dominated by the operands and
4862 /// which will dominate the result.
4863 BasicBlock::iterator
4864 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP,
4865                                            const LSRFixup &LF,
4866                                            const LSRUse &LU,
4867                                            SCEVExpander &Rewriter) const {
4868   // Collect some instructions which must be dominated by the
4869   // expanding replacement. These must be dominated by any operands that
4870   // will be required in the expansion.
4871   SmallVector<Instruction *, 4> Inputs;
4872   if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
4873     Inputs.push_back(I);
4874   if (LU.Kind == LSRUse::ICmpZero)
4875     if (Instruction *I =
4876           dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
4877       Inputs.push_back(I);
4878   if (LF.PostIncLoops.count(L)) {
4879     if (LF.isUseFullyOutsideLoop(L))
4880       Inputs.push_back(L->getLoopLatch()->getTerminator());
4881     else
4882       Inputs.push_back(IVIncInsertPos);
4883   }
4884   // The expansion must also be dominated by the increment positions of any
4885   // loops it for which it is using post-inc mode.
4886   for (const Loop *PIL : LF.PostIncLoops) {
4887     if (PIL == L) continue;
4888 
4889     // Be dominated by the loop exit.
4890     SmallVector<BasicBlock *, 4> ExitingBlocks;
4891     PIL->getExitingBlocks(ExitingBlocks);
4892     if (!ExitingBlocks.empty()) {
4893       BasicBlock *BB = ExitingBlocks[0];
4894       for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
4895         BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
4896       Inputs.push_back(BB->getTerminator());
4897     }
4898   }
4899 
4900   assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad()
4901          && !isa<DbgInfoIntrinsic>(LowestIP) &&
4902          "Insertion point must be a normal instruction");
4903 
4904   // Then, climb up the immediate dominator tree as far as we can go while
4905   // still being dominated by the input positions.
4906   BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs);
4907 
4908   // Don't insert instructions before PHI nodes.
4909   while (isa<PHINode>(IP)) ++IP;
4910 
4911   // Ignore landingpad instructions.
4912   while (IP->isEHPad()) ++IP;
4913 
4914   // Ignore debug intrinsics.
4915   while (isa<DbgInfoIntrinsic>(IP)) ++IP;
4916 
4917   // Set IP below instructions recently inserted by SCEVExpander. This keeps the
4918   // IP consistent across expansions and allows the previously inserted
4919   // instructions to be reused by subsequent expansion.
4920   while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP)
4921     ++IP;
4922 
4923   return IP;
4924 }
4925 
4926 /// Emit instructions for the leading candidate expression for this LSRUse (this
4927 /// is called "expanding").
4928 Value *LSRInstance::Expand(const LSRUse &LU, const LSRFixup &LF,
4929                            const Formula &F, BasicBlock::iterator IP,
4930                            SCEVExpander &Rewriter,
4931                            SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
4932   if (LU.RigidFormula)
4933     return LF.OperandValToReplace;
4934 
4935   // Determine an input position which will be dominated by the operands and
4936   // which will dominate the result.
4937   IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter);
4938   Rewriter.setInsertPoint(&*IP);
4939 
4940   // Inform the Rewriter if we have a post-increment use, so that it can
4941   // perform an advantageous expansion.
4942   Rewriter.setPostInc(LF.PostIncLoops);
4943 
4944   // This is the type that the user actually needs.
4945   Type *OpTy = LF.OperandValToReplace->getType();
4946   // This will be the type that we'll initially expand to.
4947   Type *Ty = F.getType();
4948   if (!Ty)
4949     // No type known; just expand directly to the ultimate type.
4950     Ty = OpTy;
4951   else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
4952     // Expand directly to the ultimate type if it's the right size.
4953     Ty = OpTy;
4954   // This is the type to do integer arithmetic in.
4955   Type *IntTy = SE.getEffectiveSCEVType(Ty);
4956 
4957   // Build up a list of operands to add together to form the full base.
4958   SmallVector<const SCEV *, 8> Ops;
4959 
4960   // Expand the BaseRegs portion.
4961   for (const SCEV *Reg : F.BaseRegs) {
4962     assert(!Reg->isZero() && "Zero allocated in a base register!");
4963 
4964     // If we're expanding for a post-inc user, make the post-inc adjustment.
4965     Reg = denormalizeForPostIncUse(Reg, LF.PostIncLoops, SE);
4966     Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr)));
4967   }
4968 
4969   // Expand the ScaledReg portion.
4970   Value *ICmpScaledV = nullptr;
4971   if (F.Scale != 0) {
4972     const SCEV *ScaledS = F.ScaledReg;
4973 
4974     // If we're expanding for a post-inc user, make the post-inc adjustment.
4975     PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
4976     ScaledS = denormalizeForPostIncUse(ScaledS, Loops, SE);
4977 
4978     if (LU.Kind == LSRUse::ICmpZero) {
4979       // Expand ScaleReg as if it was part of the base regs.
4980       if (F.Scale == 1)
4981         Ops.push_back(
4982             SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)));
4983       else {
4984         // An interesting way of "folding" with an icmp is to use a negated
4985         // scale, which we'll implement by inserting it into the other operand
4986         // of the icmp.
4987         assert(F.Scale == -1 &&
4988                "The only scale supported by ICmpZero uses is -1!");
4989         ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr);
4990       }
4991     } else {
4992       // Otherwise just expand the scaled register and an explicit scale,
4993       // which is expected to be matched as part of the address.
4994 
4995       // Flush the operand list to suppress SCEVExpander hoisting address modes.
4996       // Unless the addressing mode will not be folded.
4997       if (!Ops.empty() && LU.Kind == LSRUse::Address &&
4998           isAMCompletelyFolded(TTI, LU, F)) {
4999         Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
5000         Ops.clear();
5001         Ops.push_back(SE.getUnknown(FullV));
5002       }
5003       ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr));
5004       if (F.Scale != 1)
5005         ScaledS =
5006             SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale));
5007       Ops.push_back(ScaledS);
5008     }
5009   }
5010 
5011   // Expand the GV portion.
5012   if (F.BaseGV) {
5013     // Flush the operand list to suppress SCEVExpander hoisting.
5014     if (!Ops.empty()) {
5015       Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
5016       Ops.clear();
5017       Ops.push_back(SE.getUnknown(FullV));
5018     }
5019     Ops.push_back(SE.getUnknown(F.BaseGV));
5020   }
5021 
5022   // Flush the operand list to suppress SCEVExpander hoisting of both folded and
5023   // unfolded offsets. LSR assumes they both live next to their uses.
5024   if (!Ops.empty()) {
5025     Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
5026     Ops.clear();
5027     Ops.push_back(SE.getUnknown(FullV));
5028   }
5029 
5030   // Expand the immediate portion.
5031   int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset;
5032   if (Offset != 0) {
5033     if (LU.Kind == LSRUse::ICmpZero) {
5034       // The other interesting way of "folding" with an ICmpZero is to use a
5035       // negated immediate.
5036       if (!ICmpScaledV)
5037         ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset);
5038       else {
5039         Ops.push_back(SE.getUnknown(ICmpScaledV));
5040         ICmpScaledV = ConstantInt::get(IntTy, Offset);
5041       }
5042     } else {
5043       // Just add the immediate values. These again are expected to be matched
5044       // as part of the address.
5045       Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
5046     }
5047   }
5048 
5049   // Expand the unfolded offset portion.
5050   int64_t UnfoldedOffset = F.UnfoldedOffset;
5051   if (UnfoldedOffset != 0) {
5052     // Just add the immediate values.
5053     Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy,
5054                                                        UnfoldedOffset)));
5055   }
5056 
5057   // Emit instructions summing all the operands.
5058   const SCEV *FullS = Ops.empty() ?
5059                       SE.getConstant(IntTy, 0) :
5060                       SE.getAddExpr(Ops);
5061   Value *FullV = Rewriter.expandCodeFor(FullS, Ty);
5062 
5063   // We're done expanding now, so reset the rewriter.
5064   Rewriter.clearPostInc();
5065 
5066   // An ICmpZero Formula represents an ICmp which we're handling as a
5067   // comparison against zero. Now that we've expanded an expression for that
5068   // form, update the ICmp's other operand.
5069   if (LU.Kind == LSRUse::ICmpZero) {
5070     ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
5071     DeadInsts.emplace_back(CI->getOperand(1));
5072     assert(!F.BaseGV && "ICmp does not support folding a global value and "
5073                            "a scale at the same time!");
5074     if (F.Scale == -1) {
5075       if (ICmpScaledV->getType() != OpTy) {
5076         Instruction *Cast =
5077           CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
5078                                                    OpTy, false),
5079                            ICmpScaledV, OpTy, "tmp", CI);
5080         ICmpScaledV = Cast;
5081       }
5082       CI->setOperand(1, ICmpScaledV);
5083     } else {
5084       // A scale of 1 means that the scale has been expanded as part of the
5085       // base regs.
5086       assert((F.Scale == 0 || F.Scale == 1) &&
5087              "ICmp does not support folding a global value and "
5088              "a scale at the same time!");
5089       Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
5090                                            -(uint64_t)Offset);
5091       if (C->getType() != OpTy)
5092         C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
5093                                                           OpTy, false),
5094                                   C, OpTy);
5095 
5096       CI->setOperand(1, C);
5097     }
5098   }
5099 
5100   return FullV;
5101 }
5102 
5103 /// Helper for Rewrite. PHI nodes are special because the use of their operands
5104 /// effectively happens in their predecessor blocks, so the expression may need
5105 /// to be expanded in multiple places.
5106 void LSRInstance::RewriteForPHI(
5107     PHINode *PN, const LSRUse &LU, const LSRFixup &LF, const Formula &F,
5108     SCEVExpander &Rewriter, SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5109   DenseMap<BasicBlock *, Value *> Inserted;
5110   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
5111     if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
5112       BasicBlock *BB = PN->getIncomingBlock(i);
5113 
5114       // If this is a critical edge, split the edge so that we do not insert
5115       // the code on all predecessor/successor paths.  We do this unless this
5116       // is the canonical backedge for this loop, which complicates post-inc
5117       // users.
5118       if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
5119           !isa<IndirectBrInst>(BB->getTerminator()) &&
5120           !isa<CatchSwitchInst>(BB->getTerminator())) {
5121         BasicBlock *Parent = PN->getParent();
5122         Loop *PNLoop = LI.getLoopFor(Parent);
5123         if (!PNLoop || Parent != PNLoop->getHeader()) {
5124           // Split the critical edge.
5125           BasicBlock *NewBB = nullptr;
5126           if (!Parent->isLandingPad()) {
5127             NewBB = SplitCriticalEdge(BB, Parent,
5128                                       CriticalEdgeSplittingOptions(&DT, &LI)
5129                                           .setMergeIdenticalEdges()
5130                                           .setDontDeleteUselessPHIs());
5131           } else {
5132             SmallVector<BasicBlock*, 2> NewBBs;
5133             SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI);
5134             NewBB = NewBBs[0];
5135           }
5136           // If NewBB==NULL, then SplitCriticalEdge refused to split because all
5137           // phi predecessors are identical. The simple thing to do is skip
5138           // splitting in this case rather than complicate the API.
5139           if (NewBB) {
5140             // If PN is outside of the loop and BB is in the loop, we want to
5141             // move the block to be immediately before the PHI block, not
5142             // immediately after BB.
5143             if (L->contains(BB) && !L->contains(PN))
5144               NewBB->moveBefore(PN->getParent());
5145 
5146             // Splitting the edge can reduce the number of PHI entries we have.
5147             e = PN->getNumIncomingValues();
5148             BB = NewBB;
5149             i = PN->getBasicBlockIndex(BB);
5150           }
5151         }
5152       }
5153 
5154       std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
5155         Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr)));
5156       if (!Pair.second)
5157         PN->setIncomingValue(i, Pair.first->second);
5158       else {
5159         Value *FullV = Expand(LU, LF, F, BB->getTerminator()->getIterator(),
5160                               Rewriter, DeadInsts);
5161 
5162         // If this is reuse-by-noop-cast, insert the noop cast.
5163         Type *OpTy = LF.OperandValToReplace->getType();
5164         if (FullV->getType() != OpTy)
5165           FullV =
5166             CastInst::Create(CastInst::getCastOpcode(FullV, false,
5167                                                      OpTy, false),
5168                              FullV, LF.OperandValToReplace->getType(),
5169                              "tmp", BB->getTerminator());
5170 
5171         PN->setIncomingValue(i, FullV);
5172         Pair.first->second = FullV;
5173       }
5174     }
5175 }
5176 
5177 /// Emit instructions for the leading candidate expression for this LSRUse (this
5178 /// is called "expanding"), and update the UserInst to reference the newly
5179 /// expanded value.
5180 void LSRInstance::Rewrite(const LSRUse &LU, const LSRFixup &LF,
5181                           const Formula &F, SCEVExpander &Rewriter,
5182                           SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5183   // First, find an insertion point that dominates UserInst. For PHI nodes,
5184   // find the nearest block which dominates all the relevant uses.
5185   if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
5186     RewriteForPHI(PN, LU, LF, F, Rewriter, DeadInsts);
5187   } else {
5188     Value *FullV =
5189       Expand(LU, LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts);
5190 
5191     // If this is reuse-by-noop-cast, insert the noop cast.
5192     Type *OpTy = LF.OperandValToReplace->getType();
5193     if (FullV->getType() != OpTy) {
5194       Instruction *Cast =
5195         CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
5196                          FullV, OpTy, "tmp", LF.UserInst);
5197       FullV = Cast;
5198     }
5199 
5200     // Update the user. ICmpZero is handled specially here (for now) because
5201     // Expand may have updated one of the operands of the icmp already, and
5202     // its new value may happen to be equal to LF.OperandValToReplace, in
5203     // which case doing replaceUsesOfWith leads to replacing both operands
5204     // with the same value. TODO: Reorganize this.
5205     if (LU.Kind == LSRUse::ICmpZero)
5206       LF.UserInst->setOperand(0, FullV);
5207     else
5208       LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
5209   }
5210 
5211   DeadInsts.emplace_back(LF.OperandValToReplace);
5212 }
5213 
5214 /// Rewrite all the fixup locations with new values, following the chosen
5215 /// solution.
5216 void LSRInstance::ImplementSolution(
5217     const SmallVectorImpl<const Formula *> &Solution) {
5218   // Keep track of instructions we may have made dead, so that
5219   // we can remove them after we are done working.
5220   SmallVector<WeakTrackingVH, 16> DeadInsts;
5221 
5222   SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(),
5223                         "lsr");
5224 #ifndef NDEBUG
5225   Rewriter.setDebugType(DEBUG_TYPE);
5226 #endif
5227   Rewriter.disableCanonicalMode();
5228   Rewriter.enableLSRMode();
5229   Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
5230 
5231   // Mark phi nodes that terminate chains so the expander tries to reuse them.
5232   for (const IVChain &Chain : IVChainVec) {
5233     if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst()))
5234       Rewriter.setChainedPhi(PN);
5235   }
5236 
5237   // Expand the new value definitions and update the users.
5238   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx)
5239     for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) {
5240       Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], Rewriter, DeadInsts);
5241       Changed = true;
5242     }
5243 
5244   for (const IVChain &Chain : IVChainVec) {
5245     GenerateIVChain(Chain, Rewriter, DeadInsts);
5246     Changed = true;
5247   }
5248   // Clean up after ourselves. This must be done before deleting any
5249   // instructions.
5250   Rewriter.clear();
5251 
5252   Changed |= DeleteTriviallyDeadInstructions(DeadInsts);
5253 }
5254 
5255 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE,
5256                          DominatorTree &DT, LoopInfo &LI,
5257                          const TargetTransformInfo &TTI)
5258     : IU(IU), SE(SE), DT(DT), LI(LI), TTI(TTI), L(L) {
5259   // If LoopSimplify form is not available, stay out of trouble.
5260   if (!L->isLoopSimplifyForm())
5261     return;
5262 
5263   // If there's no interesting work to be done, bail early.
5264   if (IU.empty()) return;
5265 
5266   // If there's too much analysis to be done, bail early. We won't be able to
5267   // model the problem anyway.
5268   unsigned NumUsers = 0;
5269   for (const IVStrideUse &U : IU) {
5270     if (++NumUsers > MaxIVUsers) {
5271       (void)U;
5272       DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U << "\n");
5273       return;
5274     }
5275     // Bail out if we have a PHI on an EHPad that gets a value from a
5276     // CatchSwitchInst.  Because the CatchSwitchInst cannot be split, there is
5277     // no good place to stick any instructions.
5278     if (auto *PN = dyn_cast<PHINode>(U.getUser())) {
5279        auto *FirstNonPHI = PN->getParent()->getFirstNonPHI();
5280        if (isa<FuncletPadInst>(FirstNonPHI) ||
5281            isa<CatchSwitchInst>(FirstNonPHI))
5282          for (BasicBlock *PredBB : PN->blocks())
5283            if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI()))
5284              return;
5285     }
5286   }
5287 
5288 #ifndef NDEBUG
5289   // All dominating loops must have preheaders, or SCEVExpander may not be able
5290   // to materialize an AddRecExpr whose Start is an outer AddRecExpr.
5291   //
5292   // IVUsers analysis should only create users that are dominated by simple loop
5293   // headers. Since this loop should dominate all of its users, its user list
5294   // should be empty if this loop itself is not within a simple loop nest.
5295   for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader());
5296        Rung; Rung = Rung->getIDom()) {
5297     BasicBlock *BB = Rung->getBlock();
5298     const Loop *DomLoop = LI.getLoopFor(BB);
5299     if (DomLoop && DomLoop->getHeader() == BB) {
5300       assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest");
5301     }
5302   }
5303 #endif // DEBUG
5304 
5305   DEBUG(dbgs() << "\nLSR on loop ";
5306         L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false);
5307         dbgs() << ":\n");
5308 
5309   // First, perform some low-level loop optimizations.
5310   OptimizeShadowIV();
5311   OptimizeLoopTermCond();
5312 
5313   // If loop preparation eliminates all interesting IV users, bail.
5314   if (IU.empty()) return;
5315 
5316   // Skip nested loops until we can model them better with formulae.
5317   if (!L->empty()) {
5318     DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n");
5319     return;
5320   }
5321 
5322   // Start collecting data and preparing for the solver.
5323   CollectChains();
5324   CollectInterestingTypesAndFactors();
5325   CollectFixupsAndInitialFormulae();
5326   CollectLoopInvariantFixupsAndFormulae();
5327 
5328   assert(!Uses.empty() && "IVUsers reported at least one use");
5329   DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
5330         print_uses(dbgs()));
5331 
5332   // Now use the reuse data to generate a bunch of interesting ways
5333   // to formulate the values needed for the uses.
5334   GenerateAllReuseFormulae();
5335 
5336   FilterOutUndesirableDedicatedRegisters();
5337   NarrowSearchSpaceUsingHeuristics();
5338 
5339   SmallVector<const Formula *, 8> Solution;
5340   Solve(Solution);
5341 
5342   // Release memory that is no longer needed.
5343   Factors.clear();
5344   Types.clear();
5345   RegUses.clear();
5346 
5347   if (Solution.empty())
5348     return;
5349 
5350 #ifndef NDEBUG
5351   // Formulae should be legal.
5352   for (const LSRUse &LU : Uses) {
5353     for (const Formula &F : LU.Formulae)
5354       assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
5355                         F) && "Illegal formula generated!");
5356   };
5357 #endif
5358 
5359   // Now that we've decided what we want, make it so.
5360   ImplementSolution(Solution);
5361 }
5362 
5363 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
5364 void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
5365   if (Factors.empty() && Types.empty()) return;
5366 
5367   OS << "LSR has identified the following interesting factors and types: ";
5368   bool First = true;
5369 
5370   for (int64_t Factor : Factors) {
5371     if (!First) OS << ", ";
5372     First = false;
5373     OS << '*' << Factor;
5374   }
5375 
5376   for (Type *Ty : Types) {
5377     if (!First) OS << ", ";
5378     First = false;
5379     OS << '(' << *Ty << ')';
5380   }
5381   OS << '\n';
5382 }
5383 
5384 void LSRInstance::print_fixups(raw_ostream &OS) const {
5385   OS << "LSR is examining the following fixup sites:\n";
5386   for (const LSRUse &LU : Uses)
5387     for (const LSRFixup &LF : LU.Fixups) {
5388       dbgs() << "  ";
5389       LF.print(OS);
5390       OS << '\n';
5391     }
5392 }
5393 
5394 void LSRInstance::print_uses(raw_ostream &OS) const {
5395   OS << "LSR is examining the following uses:\n";
5396   for (const LSRUse &LU : Uses) {
5397     dbgs() << "  ";
5398     LU.print(OS);
5399     OS << '\n';
5400     for (const Formula &F : LU.Formulae) {
5401       OS << "    ";
5402       F.print(OS);
5403       OS << '\n';
5404     }
5405   }
5406 }
5407 
5408 void LSRInstance::print(raw_ostream &OS) const {
5409   print_factors_and_types(OS);
5410   print_fixups(OS);
5411   print_uses(OS);
5412 }
5413 
5414 LLVM_DUMP_METHOD void LSRInstance::dump() const {
5415   print(errs()); errs() << '\n';
5416 }
5417 #endif
5418 
5419 namespace {
5420 
5421 class LoopStrengthReduce : public LoopPass {
5422 public:
5423   static char ID; // Pass ID, replacement for typeid
5424 
5425   LoopStrengthReduce();
5426 
5427 private:
5428   bool runOnLoop(Loop *L, LPPassManager &LPM) override;
5429   void getAnalysisUsage(AnalysisUsage &AU) const override;
5430 };
5431 
5432 } // end anonymous namespace
5433 
5434 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) {
5435   initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
5436 }
5437 
5438 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
5439   // We split critical edges, so we change the CFG.  However, we do update
5440   // many analyses if they are around.
5441   AU.addPreservedID(LoopSimplifyID);
5442 
5443   AU.addRequired<LoopInfoWrapperPass>();
5444   AU.addPreserved<LoopInfoWrapperPass>();
5445   AU.addRequiredID(LoopSimplifyID);
5446   AU.addRequired<DominatorTreeWrapperPass>();
5447   AU.addPreserved<DominatorTreeWrapperPass>();
5448   AU.addRequired<ScalarEvolutionWrapperPass>();
5449   AU.addPreserved<ScalarEvolutionWrapperPass>();
5450   // Requiring LoopSimplify a second time here prevents IVUsers from running
5451   // twice, since LoopSimplify was invalidated by running ScalarEvolution.
5452   AU.addRequiredID(LoopSimplifyID);
5453   AU.addRequired<IVUsersWrapperPass>();
5454   AU.addPreserved<IVUsersWrapperPass>();
5455   AU.addRequired<TargetTransformInfoWrapperPass>();
5456 }
5457 
5458 static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE,
5459                                DominatorTree &DT, LoopInfo &LI,
5460                                const TargetTransformInfo &TTI) {
5461   bool Changed = false;
5462 
5463   // Run the main LSR transformation.
5464   Changed |= LSRInstance(L, IU, SE, DT, LI, TTI).getChanged();
5465 
5466   // Remove any extra phis created by processing inner loops.
5467   Changed |= DeleteDeadPHIs(L->getHeader());
5468   if (EnablePhiElim && L->isLoopSimplifyForm()) {
5469     SmallVector<WeakTrackingVH, 16> DeadInsts;
5470     const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
5471     SCEVExpander Rewriter(SE, DL, "lsr");
5472 #ifndef NDEBUG
5473     Rewriter.setDebugType(DEBUG_TYPE);
5474 #endif
5475     unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI);
5476     if (numFolded) {
5477       Changed = true;
5478       DeleteTriviallyDeadInstructions(DeadInsts);
5479       DeleteDeadPHIs(L->getHeader());
5480     }
5481   }
5482   return Changed;
5483 }
5484 
5485 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
5486   if (skipLoop(L))
5487     return false;
5488 
5489   auto &IU = getAnalysis<IVUsersWrapperPass>().getIU();
5490   auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
5491   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
5492   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
5493   const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
5494       *L->getHeader()->getParent());
5495   return ReduceLoopStrength(L, IU, SE, DT, LI, TTI);
5496 }
5497 
5498 PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM,
5499                                               LoopStandardAnalysisResults &AR,
5500                                               LPMUpdater &) {
5501   if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE,
5502                           AR.DT, AR.LI, AR.TTI))
5503     return PreservedAnalyses::all();
5504 
5505   return getLoopPassPreservedAnalyses();
5506 }
5507 
5508 char LoopStrengthReduce::ID = 0;
5509 
5510 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce",
5511                       "Loop Strength Reduction", false, false)
5512 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
5513 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
5514 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
5515 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass)
5516 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
5517 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
5518 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce",
5519                     "Loop Strength Reduction", false, false)
5520 
5521 Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); }
5522