1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This transformation analyzes and transforms the induction variables (and 10 // computations derived from them) into forms suitable for efficient execution 11 // on the target. 12 // 13 // This pass performs a strength reduction on array references inside loops that 14 // have as one or more of their components the loop induction variable, it 15 // rewrites expressions to take advantage of scaled-index addressing modes 16 // available on the target, and it performs a variety of other optimizations 17 // related to loop induction variables. 18 // 19 // Terminology note: this code has a lot of handling for "post-increment" or 20 // "post-inc" users. This is not talking about post-increment addressing modes; 21 // it is instead talking about code like this: 22 // 23 // %i = phi [ 0, %entry ], [ %i.next, %latch ] 24 // ... 25 // %i.next = add %i, 1 26 // %c = icmp eq %i.next, %n 27 // 28 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however 29 // it's useful to think about these as the same register, with some uses using 30 // the value of the register before the add and some using it after. In this 31 // example, the icmp is a post-increment user, since it uses %i.next, which is 32 // the value of the induction variable after the increment. The other common 33 // case of post-increment users is users outside the loop. 34 // 35 // TODO: More sophistication in the way Formulae are generated and filtered. 36 // 37 // TODO: Handle multiple loops at a time. 38 // 39 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead 40 // of a GlobalValue? 41 // 42 // TODO: When truncation is free, truncate ICmp users' operands to make it a 43 // smaller encoding (on x86 at least). 44 // 45 // TODO: When a negated register is used by an add (such as in a list of 46 // multiple base registers, or as the increment expression in an addrec), 47 // we may not actually need both reg and (-1 * reg) in registers; the 48 // negation can be implemented by using a sub instead of an add. The 49 // lack of support for taking this into consideration when making 50 // register pressure decisions is partly worked around by the "Special" 51 // use kind. 52 // 53 //===----------------------------------------------------------------------===// 54 55 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h" 56 #include "llvm/ADT/APInt.h" 57 #include "llvm/ADT/DenseMap.h" 58 #include "llvm/ADT/DenseSet.h" 59 #include "llvm/ADT/Hashing.h" 60 #include "llvm/ADT/PointerIntPair.h" 61 #include "llvm/ADT/STLExtras.h" 62 #include "llvm/ADT/SetVector.h" 63 #include "llvm/ADT/SmallBitVector.h" 64 #include "llvm/ADT/SmallPtrSet.h" 65 #include "llvm/ADT/SmallSet.h" 66 #include "llvm/ADT/SmallVector.h" 67 #include "llvm/ADT/iterator_range.h" 68 #include "llvm/Analysis/AssumptionCache.h" 69 #include "llvm/Analysis/IVUsers.h" 70 #include "llvm/Analysis/LoopAnalysisManager.h" 71 #include "llvm/Analysis/LoopInfo.h" 72 #include "llvm/Analysis/LoopPass.h" 73 #include "llvm/Analysis/MemorySSA.h" 74 #include "llvm/Analysis/MemorySSAUpdater.h" 75 #include "llvm/Analysis/ScalarEvolution.h" 76 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 77 #include "llvm/Analysis/ScalarEvolutionNormalization.h" 78 #include "llvm/Analysis/TargetLibraryInfo.h" 79 #include "llvm/Analysis/TargetTransformInfo.h" 80 #include "llvm/Analysis/ValueTracking.h" 81 #include "llvm/Config/llvm-config.h" 82 #include "llvm/IR/BasicBlock.h" 83 #include "llvm/IR/Constant.h" 84 #include "llvm/IR/Constants.h" 85 #include "llvm/IR/DebugInfoMetadata.h" 86 #include "llvm/IR/DerivedTypes.h" 87 #include "llvm/IR/Dominators.h" 88 #include "llvm/IR/GlobalValue.h" 89 #include "llvm/IR/IRBuilder.h" 90 #include "llvm/IR/InstrTypes.h" 91 #include "llvm/IR/Instruction.h" 92 #include "llvm/IR/Instructions.h" 93 #include "llvm/IR/IntrinsicInst.h" 94 #include "llvm/IR/Intrinsics.h" 95 #include "llvm/IR/Module.h" 96 #include "llvm/IR/OperandTraits.h" 97 #include "llvm/IR/Operator.h" 98 #include "llvm/IR/PassManager.h" 99 #include "llvm/IR/Type.h" 100 #include "llvm/IR/Use.h" 101 #include "llvm/IR/User.h" 102 #include "llvm/IR/Value.h" 103 #include "llvm/IR/ValueHandle.h" 104 #include "llvm/InitializePasses.h" 105 #include "llvm/Pass.h" 106 #include "llvm/Support/Casting.h" 107 #include "llvm/Support/CommandLine.h" 108 #include "llvm/Support/Compiler.h" 109 #include "llvm/Support/Debug.h" 110 #include "llvm/Support/ErrorHandling.h" 111 #include "llvm/Support/MathExtras.h" 112 #include "llvm/Support/raw_ostream.h" 113 #include "llvm/Transforms/Scalar.h" 114 #include "llvm/Transforms/Utils.h" 115 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 116 #include "llvm/Transforms/Utils/Local.h" 117 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 118 #include <algorithm> 119 #include <cassert> 120 #include <cstddef> 121 #include <cstdint> 122 #include <cstdlib> 123 #include <iterator> 124 #include <limits> 125 #include <map> 126 #include <numeric> 127 #include <utility> 128 129 using namespace llvm; 130 131 #define DEBUG_TYPE "loop-reduce" 132 133 /// MaxIVUsers is an arbitrary threshold that provides an early opportunity for 134 /// bail out. This threshold is far beyond the number of users that LSR can 135 /// conceivably solve, so it should not affect generated code, but catches the 136 /// worst cases before LSR burns too much compile time and stack space. 137 static const unsigned MaxIVUsers = 200; 138 139 // Temporary flag to cleanup congruent phis after LSR phi expansion. 140 // It's currently disabled until we can determine whether it's truly useful or 141 // not. The flag should be removed after the v3.0 release. 142 // This is now needed for ivchains. 143 static cl::opt<bool> EnablePhiElim( 144 "enable-lsr-phielim", cl::Hidden, cl::init(true), 145 cl::desc("Enable LSR phi elimination")); 146 147 // The flag adds instruction count to solutions cost comparision. 148 static cl::opt<bool> InsnsCost( 149 "lsr-insns-cost", cl::Hidden, cl::init(true), 150 cl::desc("Add instruction count to a LSR cost model")); 151 152 // Flag to choose how to narrow complex lsr solution 153 static cl::opt<bool> LSRExpNarrow( 154 "lsr-exp-narrow", cl::Hidden, cl::init(false), 155 cl::desc("Narrow LSR complex solution using" 156 " expectation of registers number")); 157 158 // Flag to narrow search space by filtering non-optimal formulae with 159 // the same ScaledReg and Scale. 160 static cl::opt<bool> FilterSameScaledReg( 161 "lsr-filter-same-scaled-reg", cl::Hidden, cl::init(true), 162 cl::desc("Narrow LSR search space by filtering non-optimal formulae" 163 " with the same ScaledReg and Scale")); 164 165 static cl::opt<TTI::AddressingModeKind> PreferredAddresingMode( 166 "lsr-preferred-addressing-mode", cl::Hidden, cl::init(TTI::AMK_None), 167 cl::desc("A flag that overrides the target's preferred addressing mode."), 168 cl::values(clEnumValN(TTI::AMK_None, 169 "none", 170 "Don't prefer any addressing mode"), 171 clEnumValN(TTI::AMK_PreIndexed, 172 "preindexed", 173 "Prefer pre-indexed addressing mode"), 174 clEnumValN(TTI::AMK_PostIndexed, 175 "postindexed", 176 "Prefer post-indexed addressing mode"))); 177 178 static cl::opt<unsigned> ComplexityLimit( 179 "lsr-complexity-limit", cl::Hidden, 180 cl::init(std::numeric_limits<uint16_t>::max()), 181 cl::desc("LSR search space complexity limit")); 182 183 static cl::opt<unsigned> SetupCostDepthLimit( 184 "lsr-setupcost-depth-limit", cl::Hidden, cl::init(7), 185 cl::desc("The limit on recursion depth for LSRs setup cost")); 186 187 #ifndef NDEBUG 188 // Stress test IV chain generation. 189 static cl::opt<bool> StressIVChain( 190 "stress-ivchain", cl::Hidden, cl::init(false), 191 cl::desc("Stress test LSR IV chains")); 192 #else 193 static bool StressIVChain = false; 194 #endif 195 196 namespace { 197 198 struct MemAccessTy { 199 /// Used in situations where the accessed memory type is unknown. 200 static const unsigned UnknownAddressSpace = 201 std::numeric_limits<unsigned>::max(); 202 203 Type *MemTy = nullptr; 204 unsigned AddrSpace = UnknownAddressSpace; 205 206 MemAccessTy() = default; 207 MemAccessTy(Type *Ty, unsigned AS) : MemTy(Ty), AddrSpace(AS) {} 208 209 bool operator==(MemAccessTy Other) const { 210 return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace; 211 } 212 213 bool operator!=(MemAccessTy Other) const { return !(*this == Other); } 214 215 static MemAccessTy getUnknown(LLVMContext &Ctx, 216 unsigned AS = UnknownAddressSpace) { 217 return MemAccessTy(Type::getVoidTy(Ctx), AS); 218 } 219 220 Type *getType() { return MemTy; } 221 }; 222 223 /// This class holds data which is used to order reuse candidates. 224 class RegSortData { 225 public: 226 /// This represents the set of LSRUse indices which reference 227 /// a particular register. 228 SmallBitVector UsedByIndices; 229 230 void print(raw_ostream &OS) const; 231 void dump() const; 232 }; 233 234 } // end anonymous namespace 235 236 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 237 void RegSortData::print(raw_ostream &OS) const { 238 OS << "[NumUses=" << UsedByIndices.count() << ']'; 239 } 240 241 LLVM_DUMP_METHOD void RegSortData::dump() const { 242 print(errs()); errs() << '\n'; 243 } 244 #endif 245 246 namespace { 247 248 /// Map register candidates to information about how they are used. 249 class RegUseTracker { 250 using RegUsesTy = DenseMap<const SCEV *, RegSortData>; 251 252 RegUsesTy RegUsesMap; 253 SmallVector<const SCEV *, 16> RegSequence; 254 255 public: 256 void countRegister(const SCEV *Reg, size_t LUIdx); 257 void dropRegister(const SCEV *Reg, size_t LUIdx); 258 void swapAndDropUse(size_t LUIdx, size_t LastLUIdx); 259 260 bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const; 261 262 const SmallBitVector &getUsedByIndices(const SCEV *Reg) const; 263 264 void clear(); 265 266 using iterator = SmallVectorImpl<const SCEV *>::iterator; 267 using const_iterator = SmallVectorImpl<const SCEV *>::const_iterator; 268 269 iterator begin() { return RegSequence.begin(); } 270 iterator end() { return RegSequence.end(); } 271 const_iterator begin() const { return RegSequence.begin(); } 272 const_iterator end() const { return RegSequence.end(); } 273 }; 274 275 } // end anonymous namespace 276 277 void 278 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) { 279 std::pair<RegUsesTy::iterator, bool> Pair = 280 RegUsesMap.insert(std::make_pair(Reg, RegSortData())); 281 RegSortData &RSD = Pair.first->second; 282 if (Pair.second) 283 RegSequence.push_back(Reg); 284 RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1)); 285 RSD.UsedByIndices.set(LUIdx); 286 } 287 288 void 289 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) { 290 RegUsesTy::iterator It = RegUsesMap.find(Reg); 291 assert(It != RegUsesMap.end()); 292 RegSortData &RSD = It->second; 293 assert(RSD.UsedByIndices.size() > LUIdx); 294 RSD.UsedByIndices.reset(LUIdx); 295 } 296 297 void 298 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) { 299 assert(LUIdx <= LastLUIdx); 300 301 // Update RegUses. The data structure is not optimized for this purpose; 302 // we must iterate through it and update each of the bit vectors. 303 for (auto &Pair : RegUsesMap) { 304 SmallBitVector &UsedByIndices = Pair.second.UsedByIndices; 305 if (LUIdx < UsedByIndices.size()) 306 UsedByIndices[LUIdx] = 307 LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false; 308 UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx)); 309 } 310 } 311 312 bool 313 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const { 314 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 315 if (I == RegUsesMap.end()) 316 return false; 317 const SmallBitVector &UsedByIndices = I->second.UsedByIndices; 318 int i = UsedByIndices.find_first(); 319 if (i == -1) return false; 320 if ((size_t)i != LUIdx) return true; 321 return UsedByIndices.find_next(i) != -1; 322 } 323 324 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const { 325 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 326 assert(I != RegUsesMap.end() && "Unknown register!"); 327 return I->second.UsedByIndices; 328 } 329 330 void RegUseTracker::clear() { 331 RegUsesMap.clear(); 332 RegSequence.clear(); 333 } 334 335 namespace { 336 337 /// This class holds information that describes a formula for computing 338 /// satisfying a use. It may include broken-out immediates and scaled registers. 339 struct Formula { 340 /// Global base address used for complex addressing. 341 GlobalValue *BaseGV = nullptr; 342 343 /// Base offset for complex addressing. 344 int64_t BaseOffset = 0; 345 346 /// Whether any complex addressing has a base register. 347 bool HasBaseReg = false; 348 349 /// The scale of any complex addressing. 350 int64_t Scale = 0; 351 352 /// The list of "base" registers for this use. When this is non-empty. The 353 /// canonical representation of a formula is 354 /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and 355 /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty(). 356 /// 3. The reg containing recurrent expr related with currect loop in the 357 /// formula should be put in the ScaledReg. 358 /// #1 enforces that the scaled register is always used when at least two 359 /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2. 360 /// #2 enforces that 1 * reg is reg. 361 /// #3 ensures invariant regs with respect to current loop can be combined 362 /// together in LSR codegen. 363 /// This invariant can be temporarily broken while building a formula. 364 /// However, every formula inserted into the LSRInstance must be in canonical 365 /// form. 366 SmallVector<const SCEV *, 4> BaseRegs; 367 368 /// The 'scaled' register for this use. This should be non-null when Scale is 369 /// not zero. 370 const SCEV *ScaledReg = nullptr; 371 372 /// An additional constant offset which added near the use. This requires a 373 /// temporary register, but the offset itself can live in an add immediate 374 /// field rather than a register. 375 int64_t UnfoldedOffset = 0; 376 377 Formula() = default; 378 379 void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE); 380 381 bool isCanonical(const Loop &L) const; 382 383 void canonicalize(const Loop &L); 384 385 bool unscale(); 386 387 bool hasZeroEnd() const; 388 389 size_t getNumRegs() const; 390 Type *getType() const; 391 392 void deleteBaseReg(const SCEV *&S); 393 394 bool referencesReg(const SCEV *S) const; 395 bool hasRegsUsedByUsesOtherThan(size_t LUIdx, 396 const RegUseTracker &RegUses) const; 397 398 void print(raw_ostream &OS) const; 399 void dump() const; 400 }; 401 402 } // end anonymous namespace 403 404 /// Recursion helper for initialMatch. 405 static void DoInitialMatch(const SCEV *S, Loop *L, 406 SmallVectorImpl<const SCEV *> &Good, 407 SmallVectorImpl<const SCEV *> &Bad, 408 ScalarEvolution &SE) { 409 // Collect expressions which properly dominate the loop header. 410 if (SE.properlyDominates(S, L->getHeader())) { 411 Good.push_back(S); 412 return; 413 } 414 415 // Look at add operands. 416 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 417 for (const SCEV *S : Add->operands()) 418 DoInitialMatch(S, L, Good, Bad, SE); 419 return; 420 } 421 422 // Look at addrec operands. 423 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 424 if (!AR->getStart()->isZero() && AR->isAffine()) { 425 DoInitialMatch(AR->getStart(), L, Good, Bad, SE); 426 DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0), 427 AR->getStepRecurrence(SE), 428 // FIXME: AR->getNoWrapFlags() 429 AR->getLoop(), SCEV::FlagAnyWrap), 430 L, Good, Bad, SE); 431 return; 432 } 433 434 // Handle a multiplication by -1 (negation) if it didn't fold. 435 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) 436 if (Mul->getOperand(0)->isAllOnesValue()) { 437 SmallVector<const SCEV *, 4> Ops(drop_begin(Mul->operands())); 438 const SCEV *NewMul = SE.getMulExpr(Ops); 439 440 SmallVector<const SCEV *, 4> MyGood; 441 SmallVector<const SCEV *, 4> MyBad; 442 DoInitialMatch(NewMul, L, MyGood, MyBad, SE); 443 const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue( 444 SE.getEffectiveSCEVType(NewMul->getType()))); 445 for (const SCEV *S : MyGood) 446 Good.push_back(SE.getMulExpr(NegOne, S)); 447 for (const SCEV *S : MyBad) 448 Bad.push_back(SE.getMulExpr(NegOne, S)); 449 return; 450 } 451 452 // Ok, we can't do anything interesting. Just stuff the whole thing into a 453 // register and hope for the best. 454 Bad.push_back(S); 455 } 456 457 /// Incorporate loop-variant parts of S into this Formula, attempting to keep 458 /// all loop-invariant and loop-computable values in a single base register. 459 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) { 460 SmallVector<const SCEV *, 4> Good; 461 SmallVector<const SCEV *, 4> Bad; 462 DoInitialMatch(S, L, Good, Bad, SE); 463 if (!Good.empty()) { 464 const SCEV *Sum = SE.getAddExpr(Good); 465 if (!Sum->isZero()) 466 BaseRegs.push_back(Sum); 467 HasBaseReg = true; 468 } 469 if (!Bad.empty()) { 470 const SCEV *Sum = SE.getAddExpr(Bad); 471 if (!Sum->isZero()) 472 BaseRegs.push_back(Sum); 473 HasBaseReg = true; 474 } 475 canonicalize(*L); 476 } 477 478 /// Check whether or not this formula satisfies the canonical 479 /// representation. 480 /// \see Formula::BaseRegs. 481 bool Formula::isCanonical(const Loop &L) const { 482 if (!ScaledReg) 483 return BaseRegs.size() <= 1; 484 485 if (Scale != 1) 486 return true; 487 488 if (Scale == 1 && BaseRegs.empty()) 489 return false; 490 491 const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg); 492 if (SAR && SAR->getLoop() == &L) 493 return true; 494 495 // If ScaledReg is not a recurrent expr, or it is but its loop is not current 496 // loop, meanwhile BaseRegs contains a recurrent expr reg related with current 497 // loop, we want to swap the reg in BaseRegs with ScaledReg. 498 auto I = find_if(BaseRegs, [&](const SCEV *S) { 499 return isa<const SCEVAddRecExpr>(S) && 500 (cast<SCEVAddRecExpr>(S)->getLoop() == &L); 501 }); 502 return I == BaseRegs.end(); 503 } 504 505 /// Helper method to morph a formula into its canonical representation. 506 /// \see Formula::BaseRegs. 507 /// Every formula having more than one base register, must use the ScaledReg 508 /// field. Otherwise, we would have to do special cases everywhere in LSR 509 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ... 510 /// On the other hand, 1*reg should be canonicalized into reg. 511 void Formula::canonicalize(const Loop &L) { 512 if (isCanonical(L)) 513 return; 514 // So far we did not need this case. This is easy to implement but it is 515 // useless to maintain dead code. Beside it could hurt compile time. 516 assert(!BaseRegs.empty() && "1*reg => reg, should not be needed."); 517 518 // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg. 519 if (!ScaledReg) { 520 ScaledReg = BaseRegs.pop_back_val(); 521 Scale = 1; 522 } 523 524 // If ScaledReg is an invariant with respect to L, find the reg from 525 // BaseRegs containing the recurrent expr related with Loop L. Swap the 526 // reg with ScaledReg. 527 const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg); 528 if (!SAR || SAR->getLoop() != &L) { 529 auto I = find_if(BaseRegs, [&](const SCEV *S) { 530 return isa<const SCEVAddRecExpr>(S) && 531 (cast<SCEVAddRecExpr>(S)->getLoop() == &L); 532 }); 533 if (I != BaseRegs.end()) 534 std::swap(ScaledReg, *I); 535 } 536 } 537 538 /// Get rid of the scale in the formula. 539 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2. 540 /// \return true if it was possible to get rid of the scale, false otherwise. 541 /// \note After this operation the formula may not be in the canonical form. 542 bool Formula::unscale() { 543 if (Scale != 1) 544 return false; 545 Scale = 0; 546 BaseRegs.push_back(ScaledReg); 547 ScaledReg = nullptr; 548 return true; 549 } 550 551 bool Formula::hasZeroEnd() const { 552 if (UnfoldedOffset || BaseOffset) 553 return false; 554 if (BaseRegs.size() != 1 || ScaledReg) 555 return false; 556 return true; 557 } 558 559 /// Return the total number of register operands used by this formula. This does 560 /// not include register uses implied by non-constant addrec strides. 561 size_t Formula::getNumRegs() const { 562 return !!ScaledReg + BaseRegs.size(); 563 } 564 565 /// Return the type of this formula, if it has one, or null otherwise. This type 566 /// is meaningless except for the bit size. 567 Type *Formula::getType() const { 568 return !BaseRegs.empty() ? BaseRegs.front()->getType() : 569 ScaledReg ? ScaledReg->getType() : 570 BaseGV ? BaseGV->getType() : 571 nullptr; 572 } 573 574 /// Delete the given base reg from the BaseRegs list. 575 void Formula::deleteBaseReg(const SCEV *&S) { 576 if (&S != &BaseRegs.back()) 577 std::swap(S, BaseRegs.back()); 578 BaseRegs.pop_back(); 579 } 580 581 /// Test if this formula references the given register. 582 bool Formula::referencesReg(const SCEV *S) const { 583 return S == ScaledReg || is_contained(BaseRegs, S); 584 } 585 586 /// Test whether this formula uses registers which are used by uses other than 587 /// the use with the given index. 588 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx, 589 const RegUseTracker &RegUses) const { 590 if (ScaledReg) 591 if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx)) 592 return true; 593 for (const SCEV *BaseReg : BaseRegs) 594 if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx)) 595 return true; 596 return false; 597 } 598 599 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 600 void Formula::print(raw_ostream &OS) const { 601 bool First = true; 602 if (BaseGV) { 603 if (!First) OS << " + "; else First = false; 604 BaseGV->printAsOperand(OS, /*PrintType=*/false); 605 } 606 if (BaseOffset != 0) { 607 if (!First) OS << " + "; else First = false; 608 OS << BaseOffset; 609 } 610 for (const SCEV *BaseReg : BaseRegs) { 611 if (!First) OS << " + "; else First = false; 612 OS << "reg(" << *BaseReg << ')'; 613 } 614 if (HasBaseReg && BaseRegs.empty()) { 615 if (!First) OS << " + "; else First = false; 616 OS << "**error: HasBaseReg**"; 617 } else if (!HasBaseReg && !BaseRegs.empty()) { 618 if (!First) OS << " + "; else First = false; 619 OS << "**error: !HasBaseReg**"; 620 } 621 if (Scale != 0) { 622 if (!First) OS << " + "; else First = false; 623 OS << Scale << "*reg("; 624 if (ScaledReg) 625 OS << *ScaledReg; 626 else 627 OS << "<unknown>"; 628 OS << ')'; 629 } 630 if (UnfoldedOffset != 0) { 631 if (!First) OS << " + "; 632 OS << "imm(" << UnfoldedOffset << ')'; 633 } 634 } 635 636 LLVM_DUMP_METHOD void Formula::dump() const { 637 print(errs()); errs() << '\n'; 638 } 639 #endif 640 641 /// Return true if the given addrec can be sign-extended without changing its 642 /// value. 643 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 644 Type *WideTy = 645 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1); 646 return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy)); 647 } 648 649 /// Return true if the given add can be sign-extended without changing its 650 /// value. 651 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) { 652 Type *WideTy = 653 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1); 654 return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy)); 655 } 656 657 /// Return true if the given mul can be sign-extended without changing its 658 /// value. 659 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) { 660 Type *WideTy = 661 IntegerType::get(SE.getContext(), 662 SE.getTypeSizeInBits(M->getType()) * M->getNumOperands()); 663 return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy)); 664 } 665 666 /// Return an expression for LHS /s RHS, if it can be determined and if the 667 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits 668 /// is true, expressions like (X * Y) /s Y are simplified to Y, ignoring that 669 /// the multiplication may overflow, which is useful when the result will be 670 /// used in a context where the most significant bits are ignored. 671 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS, 672 ScalarEvolution &SE, 673 bool IgnoreSignificantBits = false) { 674 // Handle the trivial case, which works for any SCEV type. 675 if (LHS == RHS) 676 return SE.getConstant(LHS->getType(), 1); 677 678 // Handle a few RHS special cases. 679 const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS); 680 if (RC) { 681 const APInt &RA = RC->getAPInt(); 682 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do 683 // some folding. 684 if (RA.isAllOnesValue()) 685 return SE.getMulExpr(LHS, RC); 686 // Handle x /s 1 as x. 687 if (RA == 1) 688 return LHS; 689 } 690 691 // Check for a division of a constant by a constant. 692 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) { 693 if (!RC) 694 return nullptr; 695 const APInt &LA = C->getAPInt(); 696 const APInt &RA = RC->getAPInt(); 697 if (LA.srem(RA) != 0) 698 return nullptr; 699 return SE.getConstant(LA.sdiv(RA)); 700 } 701 702 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow. 703 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) { 704 if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) { 705 const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE, 706 IgnoreSignificantBits); 707 if (!Step) return nullptr; 708 const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE, 709 IgnoreSignificantBits); 710 if (!Start) return nullptr; 711 // FlagNW is independent of the start value, step direction, and is 712 // preserved with smaller magnitude steps. 713 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 714 return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap); 715 } 716 return nullptr; 717 } 718 719 // Distribute the sdiv over add operands, if the add doesn't overflow. 720 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) { 721 if (IgnoreSignificantBits || isAddSExtable(Add, SE)) { 722 SmallVector<const SCEV *, 8> Ops; 723 for (const SCEV *S : Add->operands()) { 724 const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits); 725 if (!Op) return nullptr; 726 Ops.push_back(Op); 727 } 728 return SE.getAddExpr(Ops); 729 } 730 return nullptr; 731 } 732 733 // Check for a multiply operand that we can pull RHS out of. 734 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) { 735 if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) { 736 SmallVector<const SCEV *, 4> Ops; 737 bool Found = false; 738 for (const SCEV *S : Mul->operands()) { 739 if (!Found) 740 if (const SCEV *Q = getExactSDiv(S, RHS, SE, 741 IgnoreSignificantBits)) { 742 S = Q; 743 Found = true; 744 } 745 Ops.push_back(S); 746 } 747 return Found ? SE.getMulExpr(Ops) : nullptr; 748 } 749 return nullptr; 750 } 751 752 // Otherwise we don't know. 753 return nullptr; 754 } 755 756 /// If S involves the addition of a constant integer value, return that integer 757 /// value, and mutate S to point to a new SCEV with that value excluded. 758 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) { 759 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 760 if (C->getAPInt().getMinSignedBits() <= 64) { 761 S = SE.getConstant(C->getType(), 0); 762 return C->getValue()->getSExtValue(); 763 } 764 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 765 SmallVector<const SCEV *, 8> NewOps(Add->operands()); 766 int64_t Result = ExtractImmediate(NewOps.front(), SE); 767 if (Result != 0) 768 S = SE.getAddExpr(NewOps); 769 return Result; 770 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 771 SmallVector<const SCEV *, 8> NewOps(AR->operands()); 772 int64_t Result = ExtractImmediate(NewOps.front(), SE); 773 if (Result != 0) 774 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 775 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 776 SCEV::FlagAnyWrap); 777 return Result; 778 } 779 return 0; 780 } 781 782 /// If S involves the addition of a GlobalValue address, return that symbol, and 783 /// mutate S to point to a new SCEV with that value excluded. 784 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) { 785 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 786 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) { 787 S = SE.getConstant(GV->getType(), 0); 788 return GV; 789 } 790 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 791 SmallVector<const SCEV *, 8> NewOps(Add->operands()); 792 GlobalValue *Result = ExtractSymbol(NewOps.back(), SE); 793 if (Result) 794 S = SE.getAddExpr(NewOps); 795 return Result; 796 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 797 SmallVector<const SCEV *, 8> NewOps(AR->operands()); 798 GlobalValue *Result = ExtractSymbol(NewOps.front(), SE); 799 if (Result) 800 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 801 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 802 SCEV::FlagAnyWrap); 803 return Result; 804 } 805 return nullptr; 806 } 807 808 /// Returns true if the specified instruction is using the specified value as an 809 /// address. 810 static bool isAddressUse(const TargetTransformInfo &TTI, 811 Instruction *Inst, Value *OperandVal) { 812 bool isAddress = isa<LoadInst>(Inst); 813 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 814 if (SI->getPointerOperand() == OperandVal) 815 isAddress = true; 816 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 817 // Addressing modes can also be folded into prefetches and a variety 818 // of intrinsics. 819 switch (II->getIntrinsicID()) { 820 case Intrinsic::memset: 821 case Intrinsic::prefetch: 822 case Intrinsic::masked_load: 823 if (II->getArgOperand(0) == OperandVal) 824 isAddress = true; 825 break; 826 case Intrinsic::masked_store: 827 if (II->getArgOperand(1) == OperandVal) 828 isAddress = true; 829 break; 830 case Intrinsic::memmove: 831 case Intrinsic::memcpy: 832 if (II->getArgOperand(0) == OperandVal || 833 II->getArgOperand(1) == OperandVal) 834 isAddress = true; 835 break; 836 default: { 837 MemIntrinsicInfo IntrInfo; 838 if (TTI.getTgtMemIntrinsic(II, IntrInfo)) { 839 if (IntrInfo.PtrVal == OperandVal) 840 isAddress = true; 841 } 842 } 843 } 844 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) { 845 if (RMW->getPointerOperand() == OperandVal) 846 isAddress = true; 847 } else if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 848 if (CmpX->getPointerOperand() == OperandVal) 849 isAddress = true; 850 } 851 return isAddress; 852 } 853 854 /// Return the type of the memory being accessed. 855 static MemAccessTy getAccessType(const TargetTransformInfo &TTI, 856 Instruction *Inst, Value *OperandVal) { 857 MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace); 858 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 859 AccessTy.MemTy = SI->getOperand(0)->getType(); 860 AccessTy.AddrSpace = SI->getPointerAddressSpace(); 861 } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 862 AccessTy.AddrSpace = LI->getPointerAddressSpace(); 863 } else if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) { 864 AccessTy.AddrSpace = RMW->getPointerAddressSpace(); 865 } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 866 AccessTy.AddrSpace = CmpX->getPointerAddressSpace(); 867 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 868 switch (II->getIntrinsicID()) { 869 case Intrinsic::prefetch: 870 case Intrinsic::memset: 871 AccessTy.AddrSpace = II->getArgOperand(0)->getType()->getPointerAddressSpace(); 872 AccessTy.MemTy = OperandVal->getType(); 873 break; 874 case Intrinsic::memmove: 875 case Intrinsic::memcpy: 876 AccessTy.AddrSpace = OperandVal->getType()->getPointerAddressSpace(); 877 AccessTy.MemTy = OperandVal->getType(); 878 break; 879 case Intrinsic::masked_load: 880 AccessTy.AddrSpace = 881 II->getArgOperand(0)->getType()->getPointerAddressSpace(); 882 break; 883 case Intrinsic::masked_store: 884 AccessTy.MemTy = II->getOperand(0)->getType(); 885 AccessTy.AddrSpace = 886 II->getArgOperand(1)->getType()->getPointerAddressSpace(); 887 break; 888 default: { 889 MemIntrinsicInfo IntrInfo; 890 if (TTI.getTgtMemIntrinsic(II, IntrInfo) && IntrInfo.PtrVal) { 891 AccessTy.AddrSpace 892 = IntrInfo.PtrVal->getType()->getPointerAddressSpace(); 893 } 894 895 break; 896 } 897 } 898 } 899 900 // All pointers have the same requirements, so canonicalize them to an 901 // arbitrary pointer type to minimize variation. 902 if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy)) 903 AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1), 904 PTy->getAddressSpace()); 905 906 return AccessTy; 907 } 908 909 /// Return true if this AddRec is already a phi in its loop. 910 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 911 for (PHINode &PN : AR->getLoop()->getHeader()->phis()) { 912 if (SE.isSCEVable(PN.getType()) && 913 (SE.getEffectiveSCEVType(PN.getType()) == 914 SE.getEffectiveSCEVType(AR->getType())) && 915 SE.getSCEV(&PN) == AR) 916 return true; 917 } 918 return false; 919 } 920 921 /// Check if expanding this expression is likely to incur significant cost. This 922 /// is tricky because SCEV doesn't track which expressions are actually computed 923 /// by the current IR. 924 /// 925 /// We currently allow expansion of IV increments that involve adds, 926 /// multiplication by constants, and AddRecs from existing phis. 927 /// 928 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an 929 /// obvious multiple of the UDivExpr. 930 static bool isHighCostExpansion(const SCEV *S, 931 SmallPtrSetImpl<const SCEV*> &Processed, 932 ScalarEvolution &SE) { 933 // Zero/One operand expressions 934 switch (S->getSCEVType()) { 935 case scUnknown: 936 case scConstant: 937 return false; 938 case scTruncate: 939 return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(), 940 Processed, SE); 941 case scZeroExtend: 942 return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(), 943 Processed, SE); 944 case scSignExtend: 945 return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(), 946 Processed, SE); 947 default: 948 break; 949 } 950 951 if (!Processed.insert(S).second) 952 return false; 953 954 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 955 for (const SCEV *S : Add->operands()) { 956 if (isHighCostExpansion(S, Processed, SE)) 957 return true; 958 } 959 return false; 960 } 961 962 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 963 if (Mul->getNumOperands() == 2) { 964 // Multiplication by a constant is ok 965 if (isa<SCEVConstant>(Mul->getOperand(0))) 966 return isHighCostExpansion(Mul->getOperand(1), Processed, SE); 967 968 // If we have the value of one operand, check if an existing 969 // multiplication already generates this expression. 970 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) { 971 Value *UVal = U->getValue(); 972 for (User *UR : UVal->users()) { 973 // If U is a constant, it may be used by a ConstantExpr. 974 Instruction *UI = dyn_cast<Instruction>(UR); 975 if (UI && UI->getOpcode() == Instruction::Mul && 976 SE.isSCEVable(UI->getType())) { 977 return SE.getSCEV(UI) == Mul; 978 } 979 } 980 } 981 } 982 } 983 984 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 985 if (isExistingPhi(AR, SE)) 986 return false; 987 } 988 989 // Fow now, consider any other type of expression (div/mul/min/max) high cost. 990 return true; 991 } 992 993 namespace { 994 995 class LSRUse; 996 997 } // end anonymous namespace 998 999 /// Check if the addressing mode defined by \p F is completely 1000 /// folded in \p LU at isel time. 1001 /// This includes address-mode folding and special icmp tricks. 1002 /// This function returns true if \p LU can accommodate what \p F 1003 /// defines and up to 1 base + 1 scaled + offset. 1004 /// In other words, if \p F has several base registers, this function may 1005 /// still return true. Therefore, users still need to account for 1006 /// additional base registers and/or unfolded offsets to derive an 1007 /// accurate cost model. 1008 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1009 const LSRUse &LU, const Formula &F); 1010 1011 // Get the cost of the scaling factor used in F for LU. 1012 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, 1013 const LSRUse &LU, const Formula &F, 1014 const Loop &L); 1015 1016 namespace { 1017 1018 /// This class is used to measure and compare candidate formulae. 1019 class Cost { 1020 const Loop *L = nullptr; 1021 ScalarEvolution *SE = nullptr; 1022 const TargetTransformInfo *TTI = nullptr; 1023 TargetTransformInfo::LSRCost C; 1024 TTI::AddressingModeKind AMK = TTI::AMK_None; 1025 1026 public: 1027 Cost() = delete; 1028 Cost(const Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI, 1029 TTI::AddressingModeKind AMK) : 1030 L(L), SE(&SE), TTI(&TTI), AMK(AMK) { 1031 C.Insns = 0; 1032 C.NumRegs = 0; 1033 C.AddRecCost = 0; 1034 C.NumIVMuls = 0; 1035 C.NumBaseAdds = 0; 1036 C.ImmCost = 0; 1037 C.SetupCost = 0; 1038 C.ScaleCost = 0; 1039 } 1040 1041 bool isLess(Cost &Other); 1042 1043 void Lose(); 1044 1045 #ifndef NDEBUG 1046 // Once any of the metrics loses, they must all remain losers. 1047 bool isValid() { 1048 return ((C.Insns | C.NumRegs | C.AddRecCost | C.NumIVMuls | C.NumBaseAdds 1049 | C.ImmCost | C.SetupCost | C.ScaleCost) != ~0u) 1050 || ((C.Insns & C.NumRegs & C.AddRecCost & C.NumIVMuls & C.NumBaseAdds 1051 & C.ImmCost & C.SetupCost & C.ScaleCost) == ~0u); 1052 } 1053 #endif 1054 1055 bool isLoser() { 1056 assert(isValid() && "invalid cost"); 1057 return C.NumRegs == ~0u; 1058 } 1059 1060 void RateFormula(const Formula &F, 1061 SmallPtrSetImpl<const SCEV *> &Regs, 1062 const DenseSet<const SCEV *> &VisitedRegs, 1063 const LSRUse &LU, 1064 SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr); 1065 1066 void print(raw_ostream &OS) const; 1067 void dump() const; 1068 1069 private: 1070 void RateRegister(const Formula &F, const SCEV *Reg, 1071 SmallPtrSetImpl<const SCEV *> &Regs); 1072 void RatePrimaryRegister(const Formula &F, const SCEV *Reg, 1073 SmallPtrSetImpl<const SCEV *> &Regs, 1074 SmallPtrSetImpl<const SCEV *> *LoserRegs); 1075 }; 1076 1077 /// An operand value in an instruction which is to be replaced with some 1078 /// equivalent, possibly strength-reduced, replacement. 1079 struct LSRFixup { 1080 /// The instruction which will be updated. 1081 Instruction *UserInst = nullptr; 1082 1083 /// The operand of the instruction which will be replaced. The operand may be 1084 /// used more than once; every instance will be replaced. 1085 Value *OperandValToReplace = nullptr; 1086 1087 /// If this user is to use the post-incremented value of an induction 1088 /// variable, this set is non-empty and holds the loops associated with the 1089 /// induction variable. 1090 PostIncLoopSet PostIncLoops; 1091 1092 /// A constant offset to be added to the LSRUse expression. This allows 1093 /// multiple fixups to share the same LSRUse with different offsets, for 1094 /// example in an unrolled loop. 1095 int64_t Offset = 0; 1096 1097 LSRFixup() = default; 1098 1099 bool isUseFullyOutsideLoop(const Loop *L) const; 1100 1101 void print(raw_ostream &OS) const; 1102 void dump() const; 1103 }; 1104 1105 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted 1106 /// SmallVectors of const SCEV*. 1107 struct UniquifierDenseMapInfo { 1108 static SmallVector<const SCEV *, 4> getEmptyKey() { 1109 SmallVector<const SCEV *, 4> V; 1110 V.push_back(reinterpret_cast<const SCEV *>(-1)); 1111 return V; 1112 } 1113 1114 static SmallVector<const SCEV *, 4> getTombstoneKey() { 1115 SmallVector<const SCEV *, 4> V; 1116 V.push_back(reinterpret_cast<const SCEV *>(-2)); 1117 return V; 1118 } 1119 1120 static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) { 1121 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 1122 } 1123 1124 static bool isEqual(const SmallVector<const SCEV *, 4> &LHS, 1125 const SmallVector<const SCEV *, 4> &RHS) { 1126 return LHS == RHS; 1127 } 1128 }; 1129 1130 /// This class holds the state that LSR keeps for each use in IVUsers, as well 1131 /// as uses invented by LSR itself. It includes information about what kinds of 1132 /// things can be folded into the user, information about the user itself, and 1133 /// information about how the use may be satisfied. TODO: Represent multiple 1134 /// users of the same expression in common? 1135 class LSRUse { 1136 DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier; 1137 1138 public: 1139 /// An enum for a kind of use, indicating what types of scaled and immediate 1140 /// operands it might support. 1141 enum KindType { 1142 Basic, ///< A normal use, with no folding. 1143 Special, ///< A special case of basic, allowing -1 scales. 1144 Address, ///< An address use; folding according to TargetLowering 1145 ICmpZero ///< An equality icmp with both operands folded into one. 1146 // TODO: Add a generic icmp too? 1147 }; 1148 1149 using SCEVUseKindPair = PointerIntPair<const SCEV *, 2, KindType>; 1150 1151 KindType Kind; 1152 MemAccessTy AccessTy; 1153 1154 /// The list of operands which are to be replaced. 1155 SmallVector<LSRFixup, 8> Fixups; 1156 1157 /// Keep track of the min and max offsets of the fixups. 1158 int64_t MinOffset = std::numeric_limits<int64_t>::max(); 1159 int64_t MaxOffset = std::numeric_limits<int64_t>::min(); 1160 1161 /// This records whether all of the fixups using this LSRUse are outside of 1162 /// the loop, in which case some special-case heuristics may be used. 1163 bool AllFixupsOutsideLoop = true; 1164 1165 /// RigidFormula is set to true to guarantee that this use will be associated 1166 /// with a single formula--the one that initially matched. Some SCEV 1167 /// expressions cannot be expanded. This allows LSR to consider the registers 1168 /// used by those expressions without the need to expand them later after 1169 /// changing the formula. 1170 bool RigidFormula = false; 1171 1172 /// This records the widest use type for any fixup using this 1173 /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max 1174 /// fixup widths to be equivalent, because the narrower one may be relying on 1175 /// the implicit truncation to truncate away bogus bits. 1176 Type *WidestFixupType = nullptr; 1177 1178 /// A list of ways to build a value that can satisfy this user. After the 1179 /// list is populated, one of these is selected heuristically and used to 1180 /// formulate a replacement for OperandValToReplace in UserInst. 1181 SmallVector<Formula, 12> Formulae; 1182 1183 /// The set of register candidates used by all formulae in this LSRUse. 1184 SmallPtrSet<const SCEV *, 4> Regs; 1185 1186 LSRUse(KindType K, MemAccessTy AT) : Kind(K), AccessTy(AT) {} 1187 1188 LSRFixup &getNewFixup() { 1189 Fixups.push_back(LSRFixup()); 1190 return Fixups.back(); 1191 } 1192 1193 void pushFixup(LSRFixup &f) { 1194 Fixups.push_back(f); 1195 if (f.Offset > MaxOffset) 1196 MaxOffset = f.Offset; 1197 if (f.Offset < MinOffset) 1198 MinOffset = f.Offset; 1199 } 1200 1201 bool HasFormulaWithSameRegs(const Formula &F) const; 1202 float getNotSelectedProbability(const SCEV *Reg) const; 1203 bool InsertFormula(const Formula &F, const Loop &L); 1204 void DeleteFormula(Formula &F); 1205 void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses); 1206 1207 void print(raw_ostream &OS) const; 1208 void dump() const; 1209 }; 1210 1211 } // end anonymous namespace 1212 1213 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1214 LSRUse::KindType Kind, MemAccessTy AccessTy, 1215 GlobalValue *BaseGV, int64_t BaseOffset, 1216 bool HasBaseReg, int64_t Scale, 1217 Instruction *Fixup = nullptr); 1218 1219 static unsigned getSetupCost(const SCEV *Reg, unsigned Depth) { 1220 if (isa<SCEVUnknown>(Reg) || isa<SCEVConstant>(Reg)) 1221 return 1; 1222 if (Depth == 0) 1223 return 0; 1224 if (const auto *S = dyn_cast<SCEVAddRecExpr>(Reg)) 1225 return getSetupCost(S->getStart(), Depth - 1); 1226 if (auto S = dyn_cast<SCEVIntegralCastExpr>(Reg)) 1227 return getSetupCost(S->getOperand(), Depth - 1); 1228 if (auto S = dyn_cast<SCEVNAryExpr>(Reg)) 1229 return std::accumulate(S->op_begin(), S->op_end(), 0, 1230 [&](unsigned i, const SCEV *Reg) { 1231 return i + getSetupCost(Reg, Depth - 1); 1232 }); 1233 if (auto S = dyn_cast<SCEVUDivExpr>(Reg)) 1234 return getSetupCost(S->getLHS(), Depth - 1) + 1235 getSetupCost(S->getRHS(), Depth - 1); 1236 return 0; 1237 } 1238 1239 /// Tally up interesting quantities from the given register. 1240 void Cost::RateRegister(const Formula &F, const SCEV *Reg, 1241 SmallPtrSetImpl<const SCEV *> &Regs) { 1242 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) { 1243 // If this is an addrec for another loop, it should be an invariant 1244 // with respect to L since L is the innermost loop (at least 1245 // for now LSR only handles innermost loops). 1246 if (AR->getLoop() != L) { 1247 // If the AddRec exists, consider it's register free and leave it alone. 1248 if (isExistingPhi(AR, *SE) && AMK != TTI::AMK_PostIndexed) 1249 return; 1250 1251 // It is bad to allow LSR for current loop to add induction variables 1252 // for its sibling loops. 1253 if (!AR->getLoop()->contains(L)) { 1254 Lose(); 1255 return; 1256 } 1257 1258 // Otherwise, it will be an invariant with respect to Loop L. 1259 ++C.NumRegs; 1260 return; 1261 } 1262 1263 unsigned LoopCost = 1; 1264 if (TTI->isIndexedLoadLegal(TTI->MIM_PostInc, AR->getType()) || 1265 TTI->isIndexedStoreLegal(TTI->MIM_PostInc, AR->getType())) { 1266 1267 // If the step size matches the base offset, we could use pre-indexed 1268 // addressing. 1269 if (AMK == TTI::AMK_PreIndexed) { 1270 if (auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE))) 1271 if (Step->getAPInt() == F.BaseOffset) 1272 LoopCost = 0; 1273 } else if (AMK == TTI::AMK_PostIndexed) { 1274 const SCEV *LoopStep = AR->getStepRecurrence(*SE); 1275 if (isa<SCEVConstant>(LoopStep)) { 1276 const SCEV *LoopStart = AR->getStart(); 1277 if (!isa<SCEVConstant>(LoopStart) && 1278 SE->isLoopInvariant(LoopStart, L)) 1279 LoopCost = 0; 1280 } 1281 } 1282 } 1283 C.AddRecCost += LoopCost; 1284 1285 // Add the step value register, if it needs one. 1286 // TODO: The non-affine case isn't precisely modeled here. 1287 if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) { 1288 if (!Regs.count(AR->getOperand(1))) { 1289 RateRegister(F, AR->getOperand(1), Regs); 1290 if (isLoser()) 1291 return; 1292 } 1293 } 1294 } 1295 ++C.NumRegs; 1296 1297 // Rough heuristic; favor registers which don't require extra setup 1298 // instructions in the preheader. 1299 C.SetupCost += getSetupCost(Reg, SetupCostDepthLimit); 1300 // Ensure we don't, even with the recusion limit, produce invalid costs. 1301 C.SetupCost = std::min<unsigned>(C.SetupCost, 1 << 16); 1302 1303 C.NumIVMuls += isa<SCEVMulExpr>(Reg) && 1304 SE->hasComputableLoopEvolution(Reg, L); 1305 } 1306 1307 /// Record this register in the set. If we haven't seen it before, rate 1308 /// it. Optional LoserRegs provides a way to declare any formula that refers to 1309 /// one of those regs an instant loser. 1310 void Cost::RatePrimaryRegister(const Formula &F, const SCEV *Reg, 1311 SmallPtrSetImpl<const SCEV *> &Regs, 1312 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1313 if (LoserRegs && LoserRegs->count(Reg)) { 1314 Lose(); 1315 return; 1316 } 1317 if (Regs.insert(Reg).second) { 1318 RateRegister(F, Reg, Regs); 1319 if (LoserRegs && isLoser()) 1320 LoserRegs->insert(Reg); 1321 } 1322 } 1323 1324 void Cost::RateFormula(const Formula &F, 1325 SmallPtrSetImpl<const SCEV *> &Regs, 1326 const DenseSet<const SCEV *> &VisitedRegs, 1327 const LSRUse &LU, 1328 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1329 assert(F.isCanonical(*L) && "Cost is accurate only for canonical formula"); 1330 // Tally up the registers. 1331 unsigned PrevAddRecCost = C.AddRecCost; 1332 unsigned PrevNumRegs = C.NumRegs; 1333 unsigned PrevNumBaseAdds = C.NumBaseAdds; 1334 if (const SCEV *ScaledReg = F.ScaledReg) { 1335 if (VisitedRegs.count(ScaledReg)) { 1336 Lose(); 1337 return; 1338 } 1339 RatePrimaryRegister(F, ScaledReg, Regs, LoserRegs); 1340 if (isLoser()) 1341 return; 1342 } 1343 for (const SCEV *BaseReg : F.BaseRegs) { 1344 if (VisitedRegs.count(BaseReg)) { 1345 Lose(); 1346 return; 1347 } 1348 RatePrimaryRegister(F, BaseReg, Regs, LoserRegs); 1349 if (isLoser()) 1350 return; 1351 } 1352 1353 // Determine how many (unfolded) adds we'll need inside the loop. 1354 size_t NumBaseParts = F.getNumRegs(); 1355 if (NumBaseParts > 1) 1356 // Do not count the base and a possible second register if the target 1357 // allows to fold 2 registers. 1358 C.NumBaseAdds += 1359 NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(*TTI, LU, F))); 1360 C.NumBaseAdds += (F.UnfoldedOffset != 0); 1361 1362 // Accumulate non-free scaling amounts. 1363 C.ScaleCost += getScalingFactorCost(*TTI, LU, F, *L); 1364 1365 // Tally up the non-zero immediates. 1366 for (const LSRFixup &Fixup : LU.Fixups) { 1367 int64_t O = Fixup.Offset; 1368 int64_t Offset = (uint64_t)O + F.BaseOffset; 1369 if (F.BaseGV) 1370 C.ImmCost += 64; // Handle symbolic values conservatively. 1371 // TODO: This should probably be the pointer size. 1372 else if (Offset != 0) 1373 C.ImmCost += APInt(64, Offset, true).getMinSignedBits(); 1374 1375 // Check with target if this offset with this instruction is 1376 // specifically not supported. 1377 if (LU.Kind == LSRUse::Address && Offset != 0 && 1378 !isAMCompletelyFolded(*TTI, LSRUse::Address, LU.AccessTy, F.BaseGV, 1379 Offset, F.HasBaseReg, F.Scale, Fixup.UserInst)) 1380 C.NumBaseAdds++; 1381 } 1382 1383 // If we don't count instruction cost exit here. 1384 if (!InsnsCost) { 1385 assert(isValid() && "invalid cost"); 1386 return; 1387 } 1388 1389 // Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as 1390 // additional instruction (at least fill). 1391 // TODO: Need distinguish register class? 1392 unsigned TTIRegNum = TTI->getNumberOfRegisters( 1393 TTI->getRegisterClassForType(false, F.getType())) - 1; 1394 if (C.NumRegs > TTIRegNum) { 1395 // Cost already exceeded TTIRegNum, then only newly added register can add 1396 // new instructions. 1397 if (PrevNumRegs > TTIRegNum) 1398 C.Insns += (C.NumRegs - PrevNumRegs); 1399 else 1400 C.Insns += (C.NumRegs - TTIRegNum); 1401 } 1402 1403 // If ICmpZero formula ends with not 0, it could not be replaced by 1404 // just add or sub. We'll need to compare final result of AddRec. 1405 // That means we'll need an additional instruction. But if the target can 1406 // macro-fuse a compare with a branch, don't count this extra instruction. 1407 // For -10 + {0, +, 1}: 1408 // i = i + 1; 1409 // cmp i, 10 1410 // 1411 // For {-10, +, 1}: 1412 // i = i + 1; 1413 if (LU.Kind == LSRUse::ICmpZero && !F.hasZeroEnd() && 1414 !TTI->canMacroFuseCmp()) 1415 C.Insns++; 1416 // Each new AddRec adds 1 instruction to calculation. 1417 C.Insns += (C.AddRecCost - PrevAddRecCost); 1418 1419 // BaseAdds adds instructions for unfolded registers. 1420 if (LU.Kind != LSRUse::ICmpZero) 1421 C.Insns += C.NumBaseAdds - PrevNumBaseAdds; 1422 assert(isValid() && "invalid cost"); 1423 } 1424 1425 /// Set this cost to a losing value. 1426 void Cost::Lose() { 1427 C.Insns = std::numeric_limits<unsigned>::max(); 1428 C.NumRegs = std::numeric_limits<unsigned>::max(); 1429 C.AddRecCost = std::numeric_limits<unsigned>::max(); 1430 C.NumIVMuls = std::numeric_limits<unsigned>::max(); 1431 C.NumBaseAdds = std::numeric_limits<unsigned>::max(); 1432 C.ImmCost = std::numeric_limits<unsigned>::max(); 1433 C.SetupCost = std::numeric_limits<unsigned>::max(); 1434 C.ScaleCost = std::numeric_limits<unsigned>::max(); 1435 } 1436 1437 /// Choose the lower cost. 1438 bool Cost::isLess(Cost &Other) { 1439 if (InsnsCost.getNumOccurrences() > 0 && InsnsCost && 1440 C.Insns != Other.C.Insns) 1441 return C.Insns < Other.C.Insns; 1442 return TTI->isLSRCostLess(C, Other.C); 1443 } 1444 1445 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1446 void Cost::print(raw_ostream &OS) const { 1447 if (InsnsCost) 1448 OS << C.Insns << " instruction" << (C.Insns == 1 ? " " : "s "); 1449 OS << C.NumRegs << " reg" << (C.NumRegs == 1 ? "" : "s"); 1450 if (C.AddRecCost != 0) 1451 OS << ", with addrec cost " << C.AddRecCost; 1452 if (C.NumIVMuls != 0) 1453 OS << ", plus " << C.NumIVMuls << " IV mul" 1454 << (C.NumIVMuls == 1 ? "" : "s"); 1455 if (C.NumBaseAdds != 0) 1456 OS << ", plus " << C.NumBaseAdds << " base add" 1457 << (C.NumBaseAdds == 1 ? "" : "s"); 1458 if (C.ScaleCost != 0) 1459 OS << ", plus " << C.ScaleCost << " scale cost"; 1460 if (C.ImmCost != 0) 1461 OS << ", plus " << C.ImmCost << " imm cost"; 1462 if (C.SetupCost != 0) 1463 OS << ", plus " << C.SetupCost << " setup cost"; 1464 } 1465 1466 LLVM_DUMP_METHOD void Cost::dump() const { 1467 print(errs()); errs() << '\n'; 1468 } 1469 #endif 1470 1471 /// Test whether this fixup always uses its value outside of the given loop. 1472 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const { 1473 // PHI nodes use their value in their incoming blocks. 1474 if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) { 1475 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1476 if (PN->getIncomingValue(i) == OperandValToReplace && 1477 L->contains(PN->getIncomingBlock(i))) 1478 return false; 1479 return true; 1480 } 1481 1482 return !L->contains(UserInst); 1483 } 1484 1485 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1486 void LSRFixup::print(raw_ostream &OS) const { 1487 OS << "UserInst="; 1488 // Store is common and interesting enough to be worth special-casing. 1489 if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) { 1490 OS << "store "; 1491 Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false); 1492 } else if (UserInst->getType()->isVoidTy()) 1493 OS << UserInst->getOpcodeName(); 1494 else 1495 UserInst->printAsOperand(OS, /*PrintType=*/false); 1496 1497 OS << ", OperandValToReplace="; 1498 OperandValToReplace->printAsOperand(OS, /*PrintType=*/false); 1499 1500 for (const Loop *PIL : PostIncLoops) { 1501 OS << ", PostIncLoop="; 1502 PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 1503 } 1504 1505 if (Offset != 0) 1506 OS << ", Offset=" << Offset; 1507 } 1508 1509 LLVM_DUMP_METHOD void LSRFixup::dump() const { 1510 print(errs()); errs() << '\n'; 1511 } 1512 #endif 1513 1514 /// Test whether this use as a formula which has the same registers as the given 1515 /// formula. 1516 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const { 1517 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1518 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1519 // Unstable sort by host order ok, because this is only used for uniquifying. 1520 llvm::sort(Key); 1521 return Uniquifier.count(Key); 1522 } 1523 1524 /// The function returns a probability of selecting formula without Reg. 1525 float LSRUse::getNotSelectedProbability(const SCEV *Reg) const { 1526 unsigned FNum = 0; 1527 for (const Formula &F : Formulae) 1528 if (F.referencesReg(Reg)) 1529 FNum++; 1530 return ((float)(Formulae.size() - FNum)) / Formulae.size(); 1531 } 1532 1533 /// If the given formula has not yet been inserted, add it to the list, and 1534 /// return true. Return false otherwise. The formula must be in canonical form. 1535 bool LSRUse::InsertFormula(const Formula &F, const Loop &L) { 1536 assert(F.isCanonical(L) && "Invalid canonical representation"); 1537 1538 if (!Formulae.empty() && RigidFormula) 1539 return false; 1540 1541 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1542 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1543 // Unstable sort by host order ok, because this is only used for uniquifying. 1544 llvm::sort(Key); 1545 1546 if (!Uniquifier.insert(Key).second) 1547 return false; 1548 1549 // Using a register to hold the value of 0 is not profitable. 1550 assert((!F.ScaledReg || !F.ScaledReg->isZero()) && 1551 "Zero allocated in a scaled register!"); 1552 #ifndef NDEBUG 1553 for (const SCEV *BaseReg : F.BaseRegs) 1554 assert(!BaseReg->isZero() && "Zero allocated in a base register!"); 1555 #endif 1556 1557 // Add the formula to the list. 1558 Formulae.push_back(F); 1559 1560 // Record registers now being used by this use. 1561 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1562 if (F.ScaledReg) 1563 Regs.insert(F.ScaledReg); 1564 1565 return true; 1566 } 1567 1568 /// Remove the given formula from this use's list. 1569 void LSRUse::DeleteFormula(Formula &F) { 1570 if (&F != &Formulae.back()) 1571 std::swap(F, Formulae.back()); 1572 Formulae.pop_back(); 1573 } 1574 1575 /// Recompute the Regs field, and update RegUses. 1576 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) { 1577 // Now that we've filtered out some formulae, recompute the Regs set. 1578 SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs); 1579 Regs.clear(); 1580 for (const Formula &F : Formulae) { 1581 if (F.ScaledReg) Regs.insert(F.ScaledReg); 1582 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1583 } 1584 1585 // Update the RegTracker. 1586 for (const SCEV *S : OldRegs) 1587 if (!Regs.count(S)) 1588 RegUses.dropRegister(S, LUIdx); 1589 } 1590 1591 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1592 void LSRUse::print(raw_ostream &OS) const { 1593 OS << "LSR Use: Kind="; 1594 switch (Kind) { 1595 case Basic: OS << "Basic"; break; 1596 case Special: OS << "Special"; break; 1597 case ICmpZero: OS << "ICmpZero"; break; 1598 case Address: 1599 OS << "Address of "; 1600 if (AccessTy.MemTy->isPointerTy()) 1601 OS << "pointer"; // the full pointer type could be really verbose 1602 else { 1603 OS << *AccessTy.MemTy; 1604 } 1605 1606 OS << " in addrspace(" << AccessTy.AddrSpace << ')'; 1607 } 1608 1609 OS << ", Offsets={"; 1610 bool NeedComma = false; 1611 for (const LSRFixup &Fixup : Fixups) { 1612 if (NeedComma) OS << ','; 1613 OS << Fixup.Offset; 1614 NeedComma = true; 1615 } 1616 OS << '}'; 1617 1618 if (AllFixupsOutsideLoop) 1619 OS << ", all-fixups-outside-loop"; 1620 1621 if (WidestFixupType) 1622 OS << ", widest fixup type: " << *WidestFixupType; 1623 } 1624 1625 LLVM_DUMP_METHOD void LSRUse::dump() const { 1626 print(errs()); errs() << '\n'; 1627 } 1628 #endif 1629 1630 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1631 LSRUse::KindType Kind, MemAccessTy AccessTy, 1632 GlobalValue *BaseGV, int64_t BaseOffset, 1633 bool HasBaseReg, int64_t Scale, 1634 Instruction *Fixup/*= nullptr*/) { 1635 switch (Kind) { 1636 case LSRUse::Address: 1637 return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset, 1638 HasBaseReg, Scale, AccessTy.AddrSpace, Fixup); 1639 1640 case LSRUse::ICmpZero: 1641 // There's not even a target hook for querying whether it would be legal to 1642 // fold a GV into an ICmp. 1643 if (BaseGV) 1644 return false; 1645 1646 // ICmp only has two operands; don't allow more than two non-trivial parts. 1647 if (Scale != 0 && HasBaseReg && BaseOffset != 0) 1648 return false; 1649 1650 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by 1651 // putting the scaled register in the other operand of the icmp. 1652 if (Scale != 0 && Scale != -1) 1653 return false; 1654 1655 // If we have low-level target information, ask the target if it can fold an 1656 // integer immediate on an icmp. 1657 if (BaseOffset != 0) { 1658 // We have one of: 1659 // ICmpZero BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset 1660 // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset 1661 // Offs is the ICmp immediate. 1662 if (Scale == 0) 1663 // The cast does the right thing with 1664 // std::numeric_limits<int64_t>::min(). 1665 BaseOffset = -(uint64_t)BaseOffset; 1666 return TTI.isLegalICmpImmediate(BaseOffset); 1667 } 1668 1669 // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg 1670 return true; 1671 1672 case LSRUse::Basic: 1673 // Only handle single-register values. 1674 return !BaseGV && Scale == 0 && BaseOffset == 0; 1675 1676 case LSRUse::Special: 1677 // Special case Basic to handle -1 scales. 1678 return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0; 1679 } 1680 1681 llvm_unreachable("Invalid LSRUse Kind!"); 1682 } 1683 1684 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1685 int64_t MinOffset, int64_t MaxOffset, 1686 LSRUse::KindType Kind, MemAccessTy AccessTy, 1687 GlobalValue *BaseGV, int64_t BaseOffset, 1688 bool HasBaseReg, int64_t Scale) { 1689 // Check for overflow. 1690 if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) != 1691 (MinOffset > 0)) 1692 return false; 1693 MinOffset = (uint64_t)BaseOffset + MinOffset; 1694 if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) != 1695 (MaxOffset > 0)) 1696 return false; 1697 MaxOffset = (uint64_t)BaseOffset + MaxOffset; 1698 1699 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset, 1700 HasBaseReg, Scale) && 1701 isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset, 1702 HasBaseReg, Scale); 1703 } 1704 1705 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1706 int64_t MinOffset, int64_t MaxOffset, 1707 LSRUse::KindType Kind, MemAccessTy AccessTy, 1708 const Formula &F, const Loop &L) { 1709 // For the purpose of isAMCompletelyFolded either having a canonical formula 1710 // or a scale not equal to zero is correct. 1711 // Problems may arise from non canonical formulae having a scale == 0. 1712 // Strictly speaking it would best to just rely on canonical formulae. 1713 // However, when we generate the scaled formulae, we first check that the 1714 // scaling factor is profitable before computing the actual ScaledReg for 1715 // compile time sake. 1716 assert((F.isCanonical(L) || F.Scale != 0)); 1717 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1718 F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale); 1719 } 1720 1721 /// Test whether we know how to expand the current formula. 1722 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1723 int64_t MaxOffset, LSRUse::KindType Kind, 1724 MemAccessTy AccessTy, GlobalValue *BaseGV, 1725 int64_t BaseOffset, bool HasBaseReg, int64_t Scale) { 1726 // We know how to expand completely foldable formulae. 1727 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1728 BaseOffset, HasBaseReg, Scale) || 1729 // Or formulae that use a base register produced by a sum of base 1730 // registers. 1731 (Scale == 1 && 1732 isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1733 BaseGV, BaseOffset, true, 0)); 1734 } 1735 1736 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1737 int64_t MaxOffset, LSRUse::KindType Kind, 1738 MemAccessTy AccessTy, const Formula &F) { 1739 return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV, 1740 F.BaseOffset, F.HasBaseReg, F.Scale); 1741 } 1742 1743 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1744 const LSRUse &LU, const Formula &F) { 1745 // Target may want to look at the user instructions. 1746 if (LU.Kind == LSRUse::Address && TTI.LSRWithInstrQueries()) { 1747 for (const LSRFixup &Fixup : LU.Fixups) 1748 if (!isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV, 1749 (F.BaseOffset + Fixup.Offset), F.HasBaseReg, 1750 F.Scale, Fixup.UserInst)) 1751 return false; 1752 return true; 1753 } 1754 1755 return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1756 LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg, 1757 F.Scale); 1758 } 1759 1760 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, 1761 const LSRUse &LU, const Formula &F, 1762 const Loop &L) { 1763 if (!F.Scale) 1764 return 0; 1765 1766 // If the use is not completely folded in that instruction, we will have to 1767 // pay an extra cost only for scale != 1. 1768 if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1769 LU.AccessTy, F, L)) 1770 return F.Scale != 1; 1771 1772 switch (LU.Kind) { 1773 case LSRUse::Address: { 1774 // Check the scaling factor cost with both the min and max offsets. 1775 int ScaleCostMinOffset = TTI.getScalingFactorCost( 1776 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg, 1777 F.Scale, LU.AccessTy.AddrSpace); 1778 int ScaleCostMaxOffset = TTI.getScalingFactorCost( 1779 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg, 1780 F.Scale, LU.AccessTy.AddrSpace); 1781 1782 assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 && 1783 "Legal addressing mode has an illegal cost!"); 1784 return std::max(ScaleCostMinOffset, ScaleCostMaxOffset); 1785 } 1786 case LSRUse::ICmpZero: 1787 case LSRUse::Basic: 1788 case LSRUse::Special: 1789 // The use is completely folded, i.e., everything is folded into the 1790 // instruction. 1791 return 0; 1792 } 1793 1794 llvm_unreachable("Invalid LSRUse Kind!"); 1795 } 1796 1797 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1798 LSRUse::KindType Kind, MemAccessTy AccessTy, 1799 GlobalValue *BaseGV, int64_t BaseOffset, 1800 bool HasBaseReg) { 1801 // Fast-path: zero is always foldable. 1802 if (BaseOffset == 0 && !BaseGV) return true; 1803 1804 // Conservatively, create an address with an immediate and a 1805 // base and a scale. 1806 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1807 1808 // Canonicalize a scale of 1 to a base register if the formula doesn't 1809 // already have a base register. 1810 if (!HasBaseReg && Scale == 1) { 1811 Scale = 0; 1812 HasBaseReg = true; 1813 } 1814 1815 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset, 1816 HasBaseReg, Scale); 1817 } 1818 1819 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1820 ScalarEvolution &SE, int64_t MinOffset, 1821 int64_t MaxOffset, LSRUse::KindType Kind, 1822 MemAccessTy AccessTy, const SCEV *S, 1823 bool HasBaseReg) { 1824 // Fast-path: zero is always foldable. 1825 if (S->isZero()) return true; 1826 1827 // Conservatively, create an address with an immediate and a 1828 // base and a scale. 1829 int64_t BaseOffset = ExtractImmediate(S, SE); 1830 GlobalValue *BaseGV = ExtractSymbol(S, SE); 1831 1832 // If there's anything else involved, it's not foldable. 1833 if (!S->isZero()) return false; 1834 1835 // Fast-path: zero is always foldable. 1836 if (BaseOffset == 0 && !BaseGV) return true; 1837 1838 // Conservatively, create an address with an immediate and a 1839 // base and a scale. 1840 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1841 1842 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1843 BaseOffset, HasBaseReg, Scale); 1844 } 1845 1846 namespace { 1847 1848 /// An individual increment in a Chain of IV increments. Relate an IV user to 1849 /// an expression that computes the IV it uses from the IV used by the previous 1850 /// link in the Chain. 1851 /// 1852 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the 1853 /// original IVOperand. The head of the chain's IVOperand is only valid during 1854 /// chain collection, before LSR replaces IV users. During chain generation, 1855 /// IncExpr can be used to find the new IVOperand that computes the same 1856 /// expression. 1857 struct IVInc { 1858 Instruction *UserInst; 1859 Value* IVOperand; 1860 const SCEV *IncExpr; 1861 1862 IVInc(Instruction *U, Value *O, const SCEV *E) 1863 : UserInst(U), IVOperand(O), IncExpr(E) {} 1864 }; 1865 1866 // The list of IV increments in program order. We typically add the head of a 1867 // chain without finding subsequent links. 1868 struct IVChain { 1869 SmallVector<IVInc, 1> Incs; 1870 const SCEV *ExprBase = nullptr; 1871 1872 IVChain() = default; 1873 IVChain(const IVInc &Head, const SCEV *Base) 1874 : Incs(1, Head), ExprBase(Base) {} 1875 1876 using const_iterator = SmallVectorImpl<IVInc>::const_iterator; 1877 1878 // Return the first increment in the chain. 1879 const_iterator begin() const { 1880 assert(!Incs.empty()); 1881 return std::next(Incs.begin()); 1882 } 1883 const_iterator end() const { 1884 return Incs.end(); 1885 } 1886 1887 // Returns true if this chain contains any increments. 1888 bool hasIncs() const { return Incs.size() >= 2; } 1889 1890 // Add an IVInc to the end of this chain. 1891 void add(const IVInc &X) { Incs.push_back(X); } 1892 1893 // Returns the last UserInst in the chain. 1894 Instruction *tailUserInst() const { return Incs.back().UserInst; } 1895 1896 // Returns true if IncExpr can be profitably added to this chain. 1897 bool isProfitableIncrement(const SCEV *OperExpr, 1898 const SCEV *IncExpr, 1899 ScalarEvolution&); 1900 }; 1901 1902 /// Helper for CollectChains to track multiple IV increment uses. Distinguish 1903 /// between FarUsers that definitely cross IV increments and NearUsers that may 1904 /// be used between IV increments. 1905 struct ChainUsers { 1906 SmallPtrSet<Instruction*, 4> FarUsers; 1907 SmallPtrSet<Instruction*, 4> NearUsers; 1908 }; 1909 1910 /// This class holds state for the main loop strength reduction logic. 1911 class LSRInstance { 1912 IVUsers &IU; 1913 ScalarEvolution &SE; 1914 DominatorTree &DT; 1915 LoopInfo &LI; 1916 AssumptionCache &AC; 1917 TargetLibraryInfo &TLI; 1918 const TargetTransformInfo &TTI; 1919 Loop *const L; 1920 MemorySSAUpdater *MSSAU; 1921 TTI::AddressingModeKind AMK; 1922 bool Changed = false; 1923 1924 /// This is the insert position that the current loop's induction variable 1925 /// increment should be placed. In simple loops, this is the latch block's 1926 /// terminator. But in more complicated cases, this is a position which will 1927 /// dominate all the in-loop post-increment users. 1928 Instruction *IVIncInsertPos = nullptr; 1929 1930 /// Interesting factors between use strides. 1931 /// 1932 /// We explicitly use a SetVector which contains a SmallSet, instead of the 1933 /// default, a SmallDenseSet, because we need to use the full range of 1934 /// int64_ts, and there's currently no good way of doing that with 1935 /// SmallDenseSet. 1936 SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors; 1937 1938 /// Interesting use types, to facilitate truncation reuse. 1939 SmallSetVector<Type *, 4> Types; 1940 1941 /// The list of interesting uses. 1942 mutable SmallVector<LSRUse, 16> Uses; 1943 1944 /// Track which uses use which register candidates. 1945 RegUseTracker RegUses; 1946 1947 // Limit the number of chains to avoid quadratic behavior. We don't expect to 1948 // have more than a few IV increment chains in a loop. Missing a Chain falls 1949 // back to normal LSR behavior for those uses. 1950 static const unsigned MaxChains = 8; 1951 1952 /// IV users can form a chain of IV increments. 1953 SmallVector<IVChain, MaxChains> IVChainVec; 1954 1955 /// IV users that belong to profitable IVChains. 1956 SmallPtrSet<Use*, MaxChains> IVIncSet; 1957 1958 void OptimizeShadowIV(); 1959 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse); 1960 ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse); 1961 void OptimizeLoopTermCond(); 1962 1963 void ChainInstruction(Instruction *UserInst, Instruction *IVOper, 1964 SmallVectorImpl<ChainUsers> &ChainUsersVec); 1965 void FinalizeChain(IVChain &Chain); 1966 void CollectChains(); 1967 void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 1968 SmallVectorImpl<WeakTrackingVH> &DeadInsts); 1969 1970 void CollectInterestingTypesAndFactors(); 1971 void CollectFixupsAndInitialFormulae(); 1972 1973 // Support for sharing of LSRUses between LSRFixups. 1974 using UseMapTy = DenseMap<LSRUse::SCEVUseKindPair, size_t>; 1975 UseMapTy UseMap; 1976 1977 bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, 1978 LSRUse::KindType Kind, MemAccessTy AccessTy); 1979 1980 std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind, 1981 MemAccessTy AccessTy); 1982 1983 void DeleteUse(LSRUse &LU, size_t LUIdx); 1984 1985 LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU); 1986 1987 void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1988 void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1989 void CountRegisters(const Formula &F, size_t LUIdx); 1990 bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F); 1991 1992 void CollectLoopInvariantFixupsAndFormulae(); 1993 1994 void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base, 1995 unsigned Depth = 0); 1996 1997 void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 1998 const Formula &Base, unsigned Depth, 1999 size_t Idx, bool IsScaledReg = false); 2000 void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base); 2001 void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 2002 const Formula &Base, size_t Idx, 2003 bool IsScaledReg = false); 2004 void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 2005 void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx, 2006 const Formula &Base, 2007 const SmallVectorImpl<int64_t> &Worklist, 2008 size_t Idx, bool IsScaledReg = false); 2009 void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 2010 void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base); 2011 void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base); 2012 void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base); 2013 void GenerateCrossUseConstantOffsets(); 2014 void GenerateAllReuseFormulae(); 2015 2016 void FilterOutUndesirableDedicatedRegisters(); 2017 2018 size_t EstimateSearchSpaceComplexity() const; 2019 void NarrowSearchSpaceByDetectingSupersets(); 2020 void NarrowSearchSpaceByCollapsingUnrolledCode(); 2021 void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 2022 void NarrowSearchSpaceByFilterFormulaWithSameScaledReg(); 2023 void NarrowSearchSpaceByFilterPostInc(); 2024 void NarrowSearchSpaceByDeletingCostlyFormulas(); 2025 void NarrowSearchSpaceByPickingWinnerRegs(); 2026 void NarrowSearchSpaceUsingHeuristics(); 2027 2028 void SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 2029 Cost &SolutionCost, 2030 SmallVectorImpl<const Formula *> &Workspace, 2031 const Cost &CurCost, 2032 const SmallPtrSet<const SCEV *, 16> &CurRegs, 2033 DenseSet<const SCEV *> &VisitedRegs) const; 2034 void Solve(SmallVectorImpl<const Formula *> &Solution) const; 2035 2036 BasicBlock::iterator 2037 HoistInsertPosition(BasicBlock::iterator IP, 2038 const SmallVectorImpl<Instruction *> &Inputs) const; 2039 BasicBlock::iterator 2040 AdjustInsertPositionForExpand(BasicBlock::iterator IP, 2041 const LSRFixup &LF, 2042 const LSRUse &LU, 2043 SCEVExpander &Rewriter) const; 2044 2045 Value *Expand(const LSRUse &LU, const LSRFixup &LF, const Formula &F, 2046 BasicBlock::iterator IP, SCEVExpander &Rewriter, 2047 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 2048 void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF, 2049 const Formula &F, SCEVExpander &Rewriter, 2050 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 2051 void Rewrite(const LSRUse &LU, const LSRFixup &LF, const Formula &F, 2052 SCEVExpander &Rewriter, 2053 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 2054 void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution); 2055 2056 public: 2057 LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT, 2058 LoopInfo &LI, const TargetTransformInfo &TTI, AssumptionCache &AC, 2059 TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU); 2060 2061 bool getChanged() const { return Changed; } 2062 2063 void print_factors_and_types(raw_ostream &OS) const; 2064 void print_fixups(raw_ostream &OS) const; 2065 void print_uses(raw_ostream &OS) const; 2066 void print(raw_ostream &OS) const; 2067 void dump() const; 2068 }; 2069 2070 } // end anonymous namespace 2071 2072 /// If IV is used in a int-to-float cast inside the loop then try to eliminate 2073 /// the cast operation. 2074 void LSRInstance::OptimizeShadowIV() { 2075 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 2076 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2077 return; 2078 2079 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); 2080 UI != E; /* empty */) { 2081 IVUsers::const_iterator CandidateUI = UI; 2082 ++UI; 2083 Instruction *ShadowUse = CandidateUI->getUser(); 2084 Type *DestTy = nullptr; 2085 bool IsSigned = false; 2086 2087 /* If shadow use is a int->float cast then insert a second IV 2088 to eliminate this cast. 2089 2090 for (unsigned i = 0; i < n; ++i) 2091 foo((double)i); 2092 2093 is transformed into 2094 2095 double d = 0.0; 2096 for (unsigned i = 0; i < n; ++i, ++d) 2097 foo(d); 2098 */ 2099 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) { 2100 IsSigned = false; 2101 DestTy = UCast->getDestTy(); 2102 } 2103 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) { 2104 IsSigned = true; 2105 DestTy = SCast->getDestTy(); 2106 } 2107 if (!DestTy) continue; 2108 2109 // If target does not support DestTy natively then do not apply 2110 // this transformation. 2111 if (!TTI.isTypeLegal(DestTy)) continue; 2112 2113 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0)); 2114 if (!PH) continue; 2115 if (PH->getNumIncomingValues() != 2) continue; 2116 2117 // If the calculation in integers overflows, the result in FP type will 2118 // differ. So we only can do this transformation if we are guaranteed to not 2119 // deal with overflowing values 2120 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PH)); 2121 if (!AR) continue; 2122 if (IsSigned && !AR->hasNoSignedWrap()) continue; 2123 if (!IsSigned && !AR->hasNoUnsignedWrap()) continue; 2124 2125 Type *SrcTy = PH->getType(); 2126 int Mantissa = DestTy->getFPMantissaWidth(); 2127 if (Mantissa == -1) continue; 2128 if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa) 2129 continue; 2130 2131 unsigned Entry, Latch; 2132 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) { 2133 Entry = 0; 2134 Latch = 1; 2135 } else { 2136 Entry = 1; 2137 Latch = 0; 2138 } 2139 2140 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry)); 2141 if (!Init) continue; 2142 Constant *NewInit = ConstantFP::get(DestTy, IsSigned ? 2143 (double)Init->getSExtValue() : 2144 (double)Init->getZExtValue()); 2145 2146 BinaryOperator *Incr = 2147 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch)); 2148 if (!Incr) continue; 2149 if (Incr->getOpcode() != Instruction::Add 2150 && Incr->getOpcode() != Instruction::Sub) 2151 continue; 2152 2153 /* Initialize new IV, double d = 0.0 in above example. */ 2154 ConstantInt *C = nullptr; 2155 if (Incr->getOperand(0) == PH) 2156 C = dyn_cast<ConstantInt>(Incr->getOperand(1)); 2157 else if (Incr->getOperand(1) == PH) 2158 C = dyn_cast<ConstantInt>(Incr->getOperand(0)); 2159 else 2160 continue; 2161 2162 if (!C) continue; 2163 2164 // Ignore negative constants, as the code below doesn't handle them 2165 // correctly. TODO: Remove this restriction. 2166 if (!C->getValue().isStrictlyPositive()) continue; 2167 2168 /* Add new PHINode. */ 2169 PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH); 2170 2171 /* create new increment. '++d' in above example. */ 2172 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue()); 2173 BinaryOperator *NewIncr = 2174 BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ? 2175 Instruction::FAdd : Instruction::FSub, 2176 NewPH, CFP, "IV.S.next.", Incr); 2177 2178 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry)); 2179 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch)); 2180 2181 /* Remove cast operation */ 2182 ShadowUse->replaceAllUsesWith(NewPH); 2183 ShadowUse->eraseFromParent(); 2184 Changed = true; 2185 break; 2186 } 2187 } 2188 2189 /// If Cond has an operand that is an expression of an IV, set the IV user and 2190 /// stride information and return true, otherwise return false. 2191 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) { 2192 for (IVStrideUse &U : IU) 2193 if (U.getUser() == Cond) { 2194 // NOTE: we could handle setcc instructions with multiple uses here, but 2195 // InstCombine does it as well for simple uses, it's not clear that it 2196 // occurs enough in real life to handle. 2197 CondUse = &U; 2198 return true; 2199 } 2200 return false; 2201 } 2202 2203 /// Rewrite the loop's terminating condition if it uses a max computation. 2204 /// 2205 /// This is a narrow solution to a specific, but acute, problem. For loops 2206 /// like this: 2207 /// 2208 /// i = 0; 2209 /// do { 2210 /// p[i] = 0.0; 2211 /// } while (++i < n); 2212 /// 2213 /// the trip count isn't just 'n', because 'n' might not be positive. And 2214 /// unfortunately this can come up even for loops where the user didn't use 2215 /// a C do-while loop. For example, seemingly well-behaved top-test loops 2216 /// will commonly be lowered like this: 2217 /// 2218 /// if (n > 0) { 2219 /// i = 0; 2220 /// do { 2221 /// p[i] = 0.0; 2222 /// } while (++i < n); 2223 /// } 2224 /// 2225 /// and then it's possible for subsequent optimization to obscure the if 2226 /// test in such a way that indvars can't find it. 2227 /// 2228 /// When indvars can't find the if test in loops like this, it creates a 2229 /// max expression, which allows it to give the loop a canonical 2230 /// induction variable: 2231 /// 2232 /// i = 0; 2233 /// max = n < 1 ? 1 : n; 2234 /// do { 2235 /// p[i] = 0.0; 2236 /// } while (++i != max); 2237 /// 2238 /// Canonical induction variables are necessary because the loop passes 2239 /// are designed around them. The most obvious example of this is the 2240 /// LoopInfo analysis, which doesn't remember trip count values. It 2241 /// expects to be able to rediscover the trip count each time it is 2242 /// needed, and it does this using a simple analysis that only succeeds if 2243 /// the loop has a canonical induction variable. 2244 /// 2245 /// However, when it comes time to generate code, the maximum operation 2246 /// can be quite costly, especially if it's inside of an outer loop. 2247 /// 2248 /// This function solves this problem by detecting this type of loop and 2249 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting 2250 /// the instructions for the maximum computation. 2251 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) { 2252 // Check that the loop matches the pattern we're looking for. 2253 if (Cond->getPredicate() != CmpInst::ICMP_EQ && 2254 Cond->getPredicate() != CmpInst::ICMP_NE) 2255 return Cond; 2256 2257 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1)); 2258 if (!Sel || !Sel->hasOneUse()) return Cond; 2259 2260 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 2261 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2262 return Cond; 2263 const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1); 2264 2265 // Add one to the backedge-taken count to get the trip count. 2266 const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount); 2267 if (IterationCount != SE.getSCEV(Sel)) return Cond; 2268 2269 // Check for a max calculation that matches the pattern. There's no check 2270 // for ICMP_ULE here because the comparison would be with zero, which 2271 // isn't interesting. 2272 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 2273 const SCEVNAryExpr *Max = nullptr; 2274 if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) { 2275 Pred = ICmpInst::ICMP_SLE; 2276 Max = S; 2277 } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) { 2278 Pred = ICmpInst::ICMP_SLT; 2279 Max = S; 2280 } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) { 2281 Pred = ICmpInst::ICMP_ULT; 2282 Max = U; 2283 } else { 2284 // No match; bail. 2285 return Cond; 2286 } 2287 2288 // To handle a max with more than two operands, this optimization would 2289 // require additional checking and setup. 2290 if (Max->getNumOperands() != 2) 2291 return Cond; 2292 2293 const SCEV *MaxLHS = Max->getOperand(0); 2294 const SCEV *MaxRHS = Max->getOperand(1); 2295 2296 // ScalarEvolution canonicalizes constants to the left. For < and >, look 2297 // for a comparison with 1. For <= and >=, a comparison with zero. 2298 if (!MaxLHS || 2299 (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One))) 2300 return Cond; 2301 2302 // Check the relevant induction variable for conformance to 2303 // the pattern. 2304 const SCEV *IV = SE.getSCEV(Cond->getOperand(0)); 2305 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV); 2306 if (!AR || !AR->isAffine() || 2307 AR->getStart() != One || 2308 AR->getStepRecurrence(SE) != One) 2309 return Cond; 2310 2311 assert(AR->getLoop() == L && 2312 "Loop condition operand is an addrec in a different loop!"); 2313 2314 // Check the right operand of the select, and remember it, as it will 2315 // be used in the new comparison instruction. 2316 Value *NewRHS = nullptr; 2317 if (ICmpInst::isTrueWhenEqual(Pred)) { 2318 // Look for n+1, and grab n. 2319 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1))) 2320 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2321 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2322 NewRHS = BO->getOperand(0); 2323 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2))) 2324 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2325 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2326 NewRHS = BO->getOperand(0); 2327 if (!NewRHS) 2328 return Cond; 2329 } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS) 2330 NewRHS = Sel->getOperand(1); 2331 else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS) 2332 NewRHS = Sel->getOperand(2); 2333 else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS)) 2334 NewRHS = SU->getValue(); 2335 else 2336 // Max doesn't match expected pattern. 2337 return Cond; 2338 2339 // Determine the new comparison opcode. It may be signed or unsigned, 2340 // and the original comparison may be either equality or inequality. 2341 if (Cond->getPredicate() == CmpInst::ICMP_EQ) 2342 Pred = CmpInst::getInversePredicate(Pred); 2343 2344 // Ok, everything looks ok to change the condition into an SLT or SGE and 2345 // delete the max calculation. 2346 ICmpInst *NewCond = 2347 new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp"); 2348 2349 // Delete the max calculation instructions. 2350 Cond->replaceAllUsesWith(NewCond); 2351 CondUse->setUser(NewCond); 2352 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0)); 2353 Cond->eraseFromParent(); 2354 Sel->eraseFromParent(); 2355 if (Cmp->use_empty()) 2356 Cmp->eraseFromParent(); 2357 return NewCond; 2358 } 2359 2360 /// Change loop terminating condition to use the postinc iv when possible. 2361 void 2362 LSRInstance::OptimizeLoopTermCond() { 2363 SmallPtrSet<Instruction *, 4> PostIncs; 2364 2365 // We need a different set of heuristics for rotated and non-rotated loops. 2366 // If a loop is rotated then the latch is also the backedge, so inserting 2367 // post-inc expressions just before the latch is ideal. To reduce live ranges 2368 // it also makes sense to rewrite terminating conditions to use post-inc 2369 // expressions. 2370 // 2371 // If the loop is not rotated then the latch is not a backedge; the latch 2372 // check is done in the loop head. Adding post-inc expressions before the 2373 // latch will cause overlapping live-ranges of pre-inc and post-inc expressions 2374 // in the loop body. In this case we do *not* want to use post-inc expressions 2375 // in the latch check, and we want to insert post-inc expressions before 2376 // the backedge. 2377 BasicBlock *LatchBlock = L->getLoopLatch(); 2378 SmallVector<BasicBlock*, 8> ExitingBlocks; 2379 L->getExitingBlocks(ExitingBlocks); 2380 if (llvm::all_of(ExitingBlocks, [&LatchBlock](const BasicBlock *BB) { 2381 return LatchBlock != BB; 2382 })) { 2383 // The backedge doesn't exit the loop; treat this as a head-tested loop. 2384 IVIncInsertPos = LatchBlock->getTerminator(); 2385 return; 2386 } 2387 2388 // Otherwise treat this as a rotated loop. 2389 for (BasicBlock *ExitingBlock : ExitingBlocks) { 2390 // Get the terminating condition for the loop if possible. If we 2391 // can, we want to change it to use a post-incremented version of its 2392 // induction variable, to allow coalescing the live ranges for the IV into 2393 // one register value. 2394 2395 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 2396 if (!TermBr) 2397 continue; 2398 // FIXME: Overly conservative, termination condition could be an 'or' etc.. 2399 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition())) 2400 continue; 2401 2402 // Search IVUsesByStride to find Cond's IVUse if there is one. 2403 IVStrideUse *CondUse = nullptr; 2404 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition()); 2405 if (!FindIVUserForCond(Cond, CondUse)) 2406 continue; 2407 2408 // If the trip count is computed in terms of a max (due to ScalarEvolution 2409 // being unable to find a sufficient guard, for example), change the loop 2410 // comparison to use SLT or ULT instead of NE. 2411 // One consequence of doing this now is that it disrupts the count-down 2412 // optimization. That's not always a bad thing though, because in such 2413 // cases it may still be worthwhile to avoid a max. 2414 Cond = OptimizeMax(Cond, CondUse); 2415 2416 // If this exiting block dominates the latch block, it may also use 2417 // the post-inc value if it won't be shared with other uses. 2418 // Check for dominance. 2419 if (!DT.dominates(ExitingBlock, LatchBlock)) 2420 continue; 2421 2422 // Conservatively avoid trying to use the post-inc value in non-latch 2423 // exits if there may be pre-inc users in intervening blocks. 2424 if (LatchBlock != ExitingBlock) 2425 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) 2426 // Test if the use is reachable from the exiting block. This dominator 2427 // query is a conservative approximation of reachability. 2428 if (&*UI != CondUse && 2429 !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) { 2430 // Conservatively assume there may be reuse if the quotient of their 2431 // strides could be a legal scale. 2432 const SCEV *A = IU.getStride(*CondUse, L); 2433 const SCEV *B = IU.getStride(*UI, L); 2434 if (!A || !B) continue; 2435 if (SE.getTypeSizeInBits(A->getType()) != 2436 SE.getTypeSizeInBits(B->getType())) { 2437 if (SE.getTypeSizeInBits(A->getType()) > 2438 SE.getTypeSizeInBits(B->getType())) 2439 B = SE.getSignExtendExpr(B, A->getType()); 2440 else 2441 A = SE.getSignExtendExpr(A, B->getType()); 2442 } 2443 if (const SCEVConstant *D = 2444 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) { 2445 const ConstantInt *C = D->getValue(); 2446 // Stride of one or negative one can have reuse with non-addresses. 2447 if (C->isOne() || C->isMinusOne()) 2448 goto decline_post_inc; 2449 // Avoid weird situations. 2450 if (C->getValue().getMinSignedBits() >= 64 || 2451 C->getValue().isMinSignedValue()) 2452 goto decline_post_inc; 2453 // Check for possible scaled-address reuse. 2454 if (isAddressUse(TTI, UI->getUser(), UI->getOperandValToReplace())) { 2455 MemAccessTy AccessTy = getAccessType( 2456 TTI, UI->getUser(), UI->getOperandValToReplace()); 2457 int64_t Scale = C->getSExtValue(); 2458 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2459 /*BaseOffset=*/0, 2460 /*HasBaseReg=*/false, Scale, 2461 AccessTy.AddrSpace)) 2462 goto decline_post_inc; 2463 Scale = -Scale; 2464 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2465 /*BaseOffset=*/0, 2466 /*HasBaseReg=*/false, Scale, 2467 AccessTy.AddrSpace)) 2468 goto decline_post_inc; 2469 } 2470 } 2471 } 2472 2473 LLVM_DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: " 2474 << *Cond << '\n'); 2475 2476 // It's possible for the setcc instruction to be anywhere in the loop, and 2477 // possible for it to have multiple users. If it is not immediately before 2478 // the exiting block branch, move it. 2479 if (&*++BasicBlock::iterator(Cond) != TermBr) { 2480 if (Cond->hasOneUse()) { 2481 Cond->moveBefore(TermBr); 2482 } else { 2483 // Clone the terminating condition and insert into the loopend. 2484 ICmpInst *OldCond = Cond; 2485 Cond = cast<ICmpInst>(Cond->clone()); 2486 Cond->setName(L->getHeader()->getName() + ".termcond"); 2487 ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond); 2488 2489 // Clone the IVUse, as the old use still exists! 2490 CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace()); 2491 TermBr->replaceUsesOfWith(OldCond, Cond); 2492 } 2493 } 2494 2495 // If we get to here, we know that we can transform the setcc instruction to 2496 // use the post-incremented version of the IV, allowing us to coalesce the 2497 // live ranges for the IV correctly. 2498 CondUse->transformToPostInc(L); 2499 Changed = true; 2500 2501 PostIncs.insert(Cond); 2502 decline_post_inc:; 2503 } 2504 2505 // Determine an insertion point for the loop induction variable increment. It 2506 // must dominate all the post-inc comparisons we just set up, and it must 2507 // dominate the loop latch edge. 2508 IVIncInsertPos = L->getLoopLatch()->getTerminator(); 2509 for (Instruction *Inst : PostIncs) { 2510 BasicBlock *BB = 2511 DT.findNearestCommonDominator(IVIncInsertPos->getParent(), 2512 Inst->getParent()); 2513 if (BB == Inst->getParent()) 2514 IVIncInsertPos = Inst; 2515 else if (BB != IVIncInsertPos->getParent()) 2516 IVIncInsertPos = BB->getTerminator(); 2517 } 2518 } 2519 2520 /// Determine if the given use can accommodate a fixup at the given offset and 2521 /// other details. If so, update the use and return true. 2522 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, 2523 bool HasBaseReg, LSRUse::KindType Kind, 2524 MemAccessTy AccessTy) { 2525 int64_t NewMinOffset = LU.MinOffset; 2526 int64_t NewMaxOffset = LU.MaxOffset; 2527 MemAccessTy NewAccessTy = AccessTy; 2528 2529 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to 2530 // something conservative, however this can pessimize in the case that one of 2531 // the uses will have all its uses outside the loop, for example. 2532 if (LU.Kind != Kind) 2533 return false; 2534 2535 // Check for a mismatched access type, and fall back conservatively as needed. 2536 // TODO: Be less conservative when the type is similar and can use the same 2537 // addressing modes. 2538 if (Kind == LSRUse::Address) { 2539 if (AccessTy.MemTy != LU.AccessTy.MemTy) { 2540 NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(), 2541 AccessTy.AddrSpace); 2542 } 2543 } 2544 2545 // Conservatively assume HasBaseReg is true for now. 2546 if (NewOffset < LU.MinOffset) { 2547 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2548 LU.MaxOffset - NewOffset, HasBaseReg)) 2549 return false; 2550 NewMinOffset = NewOffset; 2551 } else if (NewOffset > LU.MaxOffset) { 2552 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2553 NewOffset - LU.MinOffset, HasBaseReg)) 2554 return false; 2555 NewMaxOffset = NewOffset; 2556 } 2557 2558 // Update the use. 2559 LU.MinOffset = NewMinOffset; 2560 LU.MaxOffset = NewMaxOffset; 2561 LU.AccessTy = NewAccessTy; 2562 return true; 2563 } 2564 2565 /// Return an LSRUse index and an offset value for a fixup which needs the given 2566 /// expression, with the given kind and optional access type. Either reuse an 2567 /// existing use or create a new one, as needed. 2568 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr, 2569 LSRUse::KindType Kind, 2570 MemAccessTy AccessTy) { 2571 const SCEV *Copy = Expr; 2572 int64_t Offset = ExtractImmediate(Expr, SE); 2573 2574 // Basic uses can't accept any offset, for example. 2575 if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr, 2576 Offset, /*HasBaseReg=*/ true)) { 2577 Expr = Copy; 2578 Offset = 0; 2579 } 2580 2581 std::pair<UseMapTy::iterator, bool> P = 2582 UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0)); 2583 if (!P.second) { 2584 // A use already existed with this base. 2585 size_t LUIdx = P.first->second; 2586 LSRUse &LU = Uses[LUIdx]; 2587 if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy)) 2588 // Reuse this use. 2589 return std::make_pair(LUIdx, Offset); 2590 } 2591 2592 // Create a new use. 2593 size_t LUIdx = Uses.size(); 2594 P.first->second = LUIdx; 2595 Uses.push_back(LSRUse(Kind, AccessTy)); 2596 LSRUse &LU = Uses[LUIdx]; 2597 2598 LU.MinOffset = Offset; 2599 LU.MaxOffset = Offset; 2600 return std::make_pair(LUIdx, Offset); 2601 } 2602 2603 /// Delete the given use from the Uses list. 2604 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) { 2605 if (&LU != &Uses.back()) 2606 std::swap(LU, Uses.back()); 2607 Uses.pop_back(); 2608 2609 // Update RegUses. 2610 RegUses.swapAndDropUse(LUIdx, Uses.size()); 2611 } 2612 2613 /// Look for a use distinct from OrigLU which is has a formula that has the same 2614 /// registers as the given formula. 2615 LSRUse * 2616 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF, 2617 const LSRUse &OrigLU) { 2618 // Search all uses for the formula. This could be more clever. 2619 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 2620 LSRUse &LU = Uses[LUIdx]; 2621 // Check whether this use is close enough to OrigLU, to see whether it's 2622 // worthwhile looking through its formulae. 2623 // Ignore ICmpZero uses because they may contain formulae generated by 2624 // GenerateICmpZeroScales, in which case adding fixup offsets may 2625 // be invalid. 2626 if (&LU != &OrigLU && 2627 LU.Kind != LSRUse::ICmpZero && 2628 LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy && 2629 LU.WidestFixupType == OrigLU.WidestFixupType && 2630 LU.HasFormulaWithSameRegs(OrigF)) { 2631 // Scan through this use's formulae. 2632 for (const Formula &F : LU.Formulae) { 2633 // Check to see if this formula has the same registers and symbols 2634 // as OrigF. 2635 if (F.BaseRegs == OrigF.BaseRegs && 2636 F.ScaledReg == OrigF.ScaledReg && 2637 F.BaseGV == OrigF.BaseGV && 2638 F.Scale == OrigF.Scale && 2639 F.UnfoldedOffset == OrigF.UnfoldedOffset) { 2640 if (F.BaseOffset == 0) 2641 return &LU; 2642 // This is the formula where all the registers and symbols matched; 2643 // there aren't going to be any others. Since we declined it, we 2644 // can skip the rest of the formulae and proceed to the next LSRUse. 2645 break; 2646 } 2647 } 2648 } 2649 } 2650 2651 // Nothing looked good. 2652 return nullptr; 2653 } 2654 2655 void LSRInstance::CollectInterestingTypesAndFactors() { 2656 SmallSetVector<const SCEV *, 4> Strides; 2657 2658 // Collect interesting types and strides. 2659 SmallVector<const SCEV *, 4> Worklist; 2660 for (const IVStrideUse &U : IU) { 2661 const SCEV *Expr = IU.getExpr(U); 2662 2663 // Collect interesting types. 2664 Types.insert(SE.getEffectiveSCEVType(Expr->getType())); 2665 2666 // Add strides for mentioned loops. 2667 Worklist.push_back(Expr); 2668 do { 2669 const SCEV *S = Worklist.pop_back_val(); 2670 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2671 if (AR->getLoop() == L) 2672 Strides.insert(AR->getStepRecurrence(SE)); 2673 Worklist.push_back(AR->getStart()); 2674 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2675 Worklist.append(Add->op_begin(), Add->op_end()); 2676 } 2677 } while (!Worklist.empty()); 2678 } 2679 2680 // Compute interesting factors from the set of interesting strides. 2681 for (SmallSetVector<const SCEV *, 4>::const_iterator 2682 I = Strides.begin(), E = Strides.end(); I != E; ++I) 2683 for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter = 2684 std::next(I); NewStrideIter != E; ++NewStrideIter) { 2685 const SCEV *OldStride = *I; 2686 const SCEV *NewStride = *NewStrideIter; 2687 2688 if (SE.getTypeSizeInBits(OldStride->getType()) != 2689 SE.getTypeSizeInBits(NewStride->getType())) { 2690 if (SE.getTypeSizeInBits(OldStride->getType()) > 2691 SE.getTypeSizeInBits(NewStride->getType())) 2692 NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType()); 2693 else 2694 OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType()); 2695 } 2696 if (const SCEVConstant *Factor = 2697 dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride, 2698 SE, true))) { 2699 if (Factor->getAPInt().getMinSignedBits() <= 64) 2700 Factors.insert(Factor->getAPInt().getSExtValue()); 2701 } else if (const SCEVConstant *Factor = 2702 dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride, 2703 NewStride, 2704 SE, true))) { 2705 if (Factor->getAPInt().getMinSignedBits() <= 64) 2706 Factors.insert(Factor->getAPInt().getSExtValue()); 2707 } 2708 } 2709 2710 // If all uses use the same type, don't bother looking for truncation-based 2711 // reuse. 2712 if (Types.size() == 1) 2713 Types.clear(); 2714 2715 LLVM_DEBUG(print_factors_and_types(dbgs())); 2716 } 2717 2718 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in 2719 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to 2720 /// IVStrideUses, we could partially skip this. 2721 static User::op_iterator 2722 findIVOperand(User::op_iterator OI, User::op_iterator OE, 2723 Loop *L, ScalarEvolution &SE) { 2724 for(; OI != OE; ++OI) { 2725 if (Instruction *Oper = dyn_cast<Instruction>(*OI)) { 2726 if (!SE.isSCEVable(Oper->getType())) 2727 continue; 2728 2729 if (const SCEVAddRecExpr *AR = 2730 dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) { 2731 if (AR->getLoop() == L) 2732 break; 2733 } 2734 } 2735 } 2736 return OI; 2737 } 2738 2739 /// IVChain logic must consistently peek base TruncInst operands, so wrap it in 2740 /// a convenient helper. 2741 static Value *getWideOperand(Value *Oper) { 2742 if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper)) 2743 return Trunc->getOperand(0); 2744 return Oper; 2745 } 2746 2747 /// Return true if we allow an IV chain to include both types. 2748 static bool isCompatibleIVType(Value *LVal, Value *RVal) { 2749 Type *LType = LVal->getType(); 2750 Type *RType = RVal->getType(); 2751 return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy() && 2752 // Different address spaces means (possibly) 2753 // different types of the pointer implementation, 2754 // e.g. i16 vs i32 so disallow that. 2755 (LType->getPointerAddressSpace() == 2756 RType->getPointerAddressSpace())); 2757 } 2758 2759 /// Return an approximation of this SCEV expression's "base", or NULL for any 2760 /// constant. Returning the expression itself is conservative. Returning a 2761 /// deeper subexpression is more precise and valid as long as it isn't less 2762 /// complex than another subexpression. For expressions involving multiple 2763 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids 2764 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i], 2765 /// IVInc==b-a. 2766 /// 2767 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost 2768 /// SCEVUnknown, we simply return the rightmost SCEV operand. 2769 static const SCEV *getExprBase(const SCEV *S) { 2770 switch (S->getSCEVType()) { 2771 default: // uncluding scUnknown. 2772 return S; 2773 case scConstant: 2774 return nullptr; 2775 case scTruncate: 2776 return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand()); 2777 case scZeroExtend: 2778 return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand()); 2779 case scSignExtend: 2780 return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand()); 2781 case scAddExpr: { 2782 // Skip over scaled operands (scMulExpr) to follow add operands as long as 2783 // there's nothing more complex. 2784 // FIXME: not sure if we want to recognize negation. 2785 const SCEVAddExpr *Add = cast<SCEVAddExpr>(S); 2786 for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()), 2787 E(Add->op_begin()); I != E; ++I) { 2788 const SCEV *SubExpr = *I; 2789 if (SubExpr->getSCEVType() == scAddExpr) 2790 return getExprBase(SubExpr); 2791 2792 if (SubExpr->getSCEVType() != scMulExpr) 2793 return SubExpr; 2794 } 2795 return S; // all operands are scaled, be conservative. 2796 } 2797 case scAddRecExpr: 2798 return getExprBase(cast<SCEVAddRecExpr>(S)->getStart()); 2799 } 2800 llvm_unreachable("Unknown SCEV kind!"); 2801 } 2802 2803 /// Return true if the chain increment is profitable to expand into a loop 2804 /// invariant value, which may require its own register. A profitable chain 2805 /// increment will be an offset relative to the same base. We allow such offsets 2806 /// to potentially be used as chain increment as long as it's not obviously 2807 /// expensive to expand using real instructions. 2808 bool IVChain::isProfitableIncrement(const SCEV *OperExpr, 2809 const SCEV *IncExpr, 2810 ScalarEvolution &SE) { 2811 // Aggressively form chains when -stress-ivchain. 2812 if (StressIVChain) 2813 return true; 2814 2815 // Do not replace a constant offset from IV head with a nonconstant IV 2816 // increment. 2817 if (!isa<SCEVConstant>(IncExpr)) { 2818 const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand)); 2819 if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr))) 2820 return false; 2821 } 2822 2823 SmallPtrSet<const SCEV*, 8> Processed; 2824 return !isHighCostExpansion(IncExpr, Processed, SE); 2825 } 2826 2827 /// Return true if the number of registers needed for the chain is estimated to 2828 /// be less than the number required for the individual IV users. First prohibit 2829 /// any IV users that keep the IV live across increments (the Users set should 2830 /// be empty). Next count the number and type of increments in the chain. 2831 /// 2832 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't 2833 /// effectively use postinc addressing modes. Only consider it profitable it the 2834 /// increments can be computed in fewer registers when chained. 2835 /// 2836 /// TODO: Consider IVInc free if it's already used in another chains. 2837 static bool isProfitableChain(IVChain &Chain, 2838 SmallPtrSetImpl<Instruction *> &Users, 2839 ScalarEvolution &SE, 2840 const TargetTransformInfo &TTI) { 2841 if (StressIVChain) 2842 return true; 2843 2844 if (!Chain.hasIncs()) 2845 return false; 2846 2847 if (!Users.empty()) { 2848 LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n"; 2849 for (Instruction *Inst 2850 : Users) { dbgs() << " " << *Inst << "\n"; }); 2851 return false; 2852 } 2853 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 2854 2855 // The chain itself may require a register, so intialize cost to 1. 2856 int cost = 1; 2857 2858 // A complete chain likely eliminates the need for keeping the original IV in 2859 // a register. LSR does not currently know how to form a complete chain unless 2860 // the header phi already exists. 2861 if (isa<PHINode>(Chain.tailUserInst()) 2862 && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) { 2863 --cost; 2864 } 2865 const SCEV *LastIncExpr = nullptr; 2866 unsigned NumConstIncrements = 0; 2867 unsigned NumVarIncrements = 0; 2868 unsigned NumReusedIncrements = 0; 2869 2870 if (TTI.isProfitableLSRChainElement(Chain.Incs[0].UserInst)) 2871 return true; 2872 2873 for (const IVInc &Inc : Chain) { 2874 if (TTI.isProfitableLSRChainElement(Inc.UserInst)) 2875 return true; 2876 if (Inc.IncExpr->isZero()) 2877 continue; 2878 2879 // Incrementing by zero or some constant is neutral. We assume constants can 2880 // be folded into an addressing mode or an add's immediate operand. 2881 if (isa<SCEVConstant>(Inc.IncExpr)) { 2882 ++NumConstIncrements; 2883 continue; 2884 } 2885 2886 if (Inc.IncExpr == LastIncExpr) 2887 ++NumReusedIncrements; 2888 else 2889 ++NumVarIncrements; 2890 2891 LastIncExpr = Inc.IncExpr; 2892 } 2893 // An IV chain with a single increment is handled by LSR's postinc 2894 // uses. However, a chain with multiple increments requires keeping the IV's 2895 // value live longer than it needs to be if chained. 2896 if (NumConstIncrements > 1) 2897 --cost; 2898 2899 // Materializing increment expressions in the preheader that didn't exist in 2900 // the original code may cost a register. For example, sign-extended array 2901 // indices can produce ridiculous increments like this: 2902 // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64))) 2903 cost += NumVarIncrements; 2904 2905 // Reusing variable increments likely saves a register to hold the multiple of 2906 // the stride. 2907 cost -= NumReusedIncrements; 2908 2909 LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost 2910 << "\n"); 2911 2912 return cost < 0; 2913 } 2914 2915 /// Add this IV user to an existing chain or make it the head of a new chain. 2916 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper, 2917 SmallVectorImpl<ChainUsers> &ChainUsersVec) { 2918 // When IVs are used as types of varying widths, they are generally converted 2919 // to a wider type with some uses remaining narrow under a (free) trunc. 2920 Value *const NextIV = getWideOperand(IVOper); 2921 const SCEV *const OperExpr = SE.getSCEV(NextIV); 2922 const SCEV *const OperExprBase = getExprBase(OperExpr); 2923 2924 // Visit all existing chains. Check if its IVOper can be computed as a 2925 // profitable loop invariant increment from the last link in the Chain. 2926 unsigned ChainIdx = 0, NChains = IVChainVec.size(); 2927 const SCEV *LastIncExpr = nullptr; 2928 for (; ChainIdx < NChains; ++ChainIdx) { 2929 IVChain &Chain = IVChainVec[ChainIdx]; 2930 2931 // Prune the solution space aggressively by checking that both IV operands 2932 // are expressions that operate on the same unscaled SCEVUnknown. This 2933 // "base" will be canceled by the subsequent getMinusSCEV call. Checking 2934 // first avoids creating extra SCEV expressions. 2935 if (!StressIVChain && Chain.ExprBase != OperExprBase) 2936 continue; 2937 2938 Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand); 2939 if (!isCompatibleIVType(PrevIV, NextIV)) 2940 continue; 2941 2942 // A phi node terminates a chain. 2943 if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst())) 2944 continue; 2945 2946 // The increment must be loop-invariant so it can be kept in a register. 2947 const SCEV *PrevExpr = SE.getSCEV(PrevIV); 2948 const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr); 2949 if (!SE.isLoopInvariant(IncExpr, L)) 2950 continue; 2951 2952 if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) { 2953 LastIncExpr = IncExpr; 2954 break; 2955 } 2956 } 2957 // If we haven't found a chain, create a new one, unless we hit the max. Don't 2958 // bother for phi nodes, because they must be last in the chain. 2959 if (ChainIdx == NChains) { 2960 if (isa<PHINode>(UserInst)) 2961 return; 2962 if (NChains >= MaxChains && !StressIVChain) { 2963 LLVM_DEBUG(dbgs() << "IV Chain Limit\n"); 2964 return; 2965 } 2966 LastIncExpr = OperExpr; 2967 // IVUsers may have skipped over sign/zero extensions. We don't currently 2968 // attempt to form chains involving extensions unless they can be hoisted 2969 // into this loop's AddRec. 2970 if (!isa<SCEVAddRecExpr>(LastIncExpr)) 2971 return; 2972 ++NChains; 2973 IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr), 2974 OperExprBase)); 2975 ChainUsersVec.resize(NChains); 2976 LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst 2977 << ") IV=" << *LastIncExpr << "\n"); 2978 } else { 2979 LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Inc: (" << *UserInst 2980 << ") IV+" << *LastIncExpr << "\n"); 2981 // Add this IV user to the end of the chain. 2982 IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr)); 2983 } 2984 IVChain &Chain = IVChainVec[ChainIdx]; 2985 2986 SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers; 2987 // This chain's NearUsers become FarUsers. 2988 if (!LastIncExpr->isZero()) { 2989 ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(), 2990 NearUsers.end()); 2991 NearUsers.clear(); 2992 } 2993 2994 // All other uses of IVOperand become near uses of the chain. 2995 // We currently ignore intermediate values within SCEV expressions, assuming 2996 // they will eventually be used be the current chain, or can be computed 2997 // from one of the chain increments. To be more precise we could 2998 // transitively follow its user and only add leaf IV users to the set. 2999 for (User *U : IVOper->users()) { 3000 Instruction *OtherUse = dyn_cast<Instruction>(U); 3001 if (!OtherUse) 3002 continue; 3003 // Uses in the chain will no longer be uses if the chain is formed. 3004 // Include the head of the chain in this iteration (not Chain.begin()). 3005 IVChain::const_iterator IncIter = Chain.Incs.begin(); 3006 IVChain::const_iterator IncEnd = Chain.Incs.end(); 3007 for( ; IncIter != IncEnd; ++IncIter) { 3008 if (IncIter->UserInst == OtherUse) 3009 break; 3010 } 3011 if (IncIter != IncEnd) 3012 continue; 3013 3014 if (SE.isSCEVable(OtherUse->getType()) 3015 && !isa<SCEVUnknown>(SE.getSCEV(OtherUse)) 3016 && IU.isIVUserOrOperand(OtherUse)) { 3017 continue; 3018 } 3019 NearUsers.insert(OtherUse); 3020 } 3021 3022 // Since this user is part of the chain, it's no longer considered a use 3023 // of the chain. 3024 ChainUsersVec[ChainIdx].FarUsers.erase(UserInst); 3025 } 3026 3027 /// Populate the vector of Chains. 3028 /// 3029 /// This decreases ILP at the architecture level. Targets with ample registers, 3030 /// multiple memory ports, and no register renaming probably don't want 3031 /// this. However, such targets should probably disable LSR altogether. 3032 /// 3033 /// The job of LSR is to make a reasonable choice of induction variables across 3034 /// the loop. Subsequent passes can easily "unchain" computation exposing more 3035 /// ILP *within the loop* if the target wants it. 3036 /// 3037 /// Finding the best IV chain is potentially a scheduling problem. Since LSR 3038 /// will not reorder memory operations, it will recognize this as a chain, but 3039 /// will generate redundant IV increments. Ideally this would be corrected later 3040 /// by a smart scheduler: 3041 /// = A[i] 3042 /// = A[i+x] 3043 /// A[i] = 3044 /// A[i+x] = 3045 /// 3046 /// TODO: Walk the entire domtree within this loop, not just the path to the 3047 /// loop latch. This will discover chains on side paths, but requires 3048 /// maintaining multiple copies of the Chains state. 3049 void LSRInstance::CollectChains() { 3050 LLVM_DEBUG(dbgs() << "Collecting IV Chains.\n"); 3051 SmallVector<ChainUsers, 8> ChainUsersVec; 3052 3053 SmallVector<BasicBlock *,8> LatchPath; 3054 BasicBlock *LoopHeader = L->getHeader(); 3055 for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch()); 3056 Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) { 3057 LatchPath.push_back(Rung->getBlock()); 3058 } 3059 LatchPath.push_back(LoopHeader); 3060 3061 // Walk the instruction stream from the loop header to the loop latch. 3062 for (BasicBlock *BB : reverse(LatchPath)) { 3063 for (Instruction &I : *BB) { 3064 // Skip instructions that weren't seen by IVUsers analysis. 3065 if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I)) 3066 continue; 3067 3068 // Ignore users that are part of a SCEV expression. This way we only 3069 // consider leaf IV Users. This effectively rediscovers a portion of 3070 // IVUsers analysis but in program order this time. 3071 if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I))) 3072 continue; 3073 3074 // Remove this instruction from any NearUsers set it may be in. 3075 for (unsigned ChainIdx = 0, NChains = IVChainVec.size(); 3076 ChainIdx < NChains; ++ChainIdx) { 3077 ChainUsersVec[ChainIdx].NearUsers.erase(&I); 3078 } 3079 // Search for operands that can be chained. 3080 SmallPtrSet<Instruction*, 4> UniqueOperands; 3081 User::op_iterator IVOpEnd = I.op_end(); 3082 User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE); 3083 while (IVOpIter != IVOpEnd) { 3084 Instruction *IVOpInst = cast<Instruction>(*IVOpIter); 3085 if (UniqueOperands.insert(IVOpInst).second) 3086 ChainInstruction(&I, IVOpInst, ChainUsersVec); 3087 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 3088 } 3089 } // Continue walking down the instructions. 3090 } // Continue walking down the domtree. 3091 // Visit phi backedges to determine if the chain can generate the IV postinc. 3092 for (PHINode &PN : L->getHeader()->phis()) { 3093 if (!SE.isSCEVable(PN.getType())) 3094 continue; 3095 3096 Instruction *IncV = 3097 dyn_cast<Instruction>(PN.getIncomingValueForBlock(L->getLoopLatch())); 3098 if (IncV) 3099 ChainInstruction(&PN, IncV, ChainUsersVec); 3100 } 3101 // Remove any unprofitable chains. 3102 unsigned ChainIdx = 0; 3103 for (unsigned UsersIdx = 0, NChains = IVChainVec.size(); 3104 UsersIdx < NChains; ++UsersIdx) { 3105 if (!isProfitableChain(IVChainVec[UsersIdx], 3106 ChainUsersVec[UsersIdx].FarUsers, SE, TTI)) 3107 continue; 3108 // Preserve the chain at UsesIdx. 3109 if (ChainIdx != UsersIdx) 3110 IVChainVec[ChainIdx] = IVChainVec[UsersIdx]; 3111 FinalizeChain(IVChainVec[ChainIdx]); 3112 ++ChainIdx; 3113 } 3114 IVChainVec.resize(ChainIdx); 3115 } 3116 3117 void LSRInstance::FinalizeChain(IVChain &Chain) { 3118 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 3119 LLVM_DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n"); 3120 3121 for (const IVInc &Inc : Chain) { 3122 LLVM_DEBUG(dbgs() << " Inc: " << *Inc.UserInst << "\n"); 3123 auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand); 3124 assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand"); 3125 IVIncSet.insert(UseI); 3126 } 3127 } 3128 3129 /// Return true if the IVInc can be folded into an addressing mode. 3130 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst, 3131 Value *Operand, const TargetTransformInfo &TTI) { 3132 const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr); 3133 if (!IncConst || !isAddressUse(TTI, UserInst, Operand)) 3134 return false; 3135 3136 if (IncConst->getAPInt().getMinSignedBits() > 64) 3137 return false; 3138 3139 MemAccessTy AccessTy = getAccessType(TTI, UserInst, Operand); 3140 int64_t IncOffset = IncConst->getValue()->getSExtValue(); 3141 if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr, 3142 IncOffset, /*HasBaseReg=*/false)) 3143 return false; 3144 3145 return true; 3146 } 3147 3148 /// Generate an add or subtract for each IVInc in a chain to materialize the IV 3149 /// user's operand from the previous IV user's operand. 3150 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 3151 SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 3152 // Find the new IVOperand for the head of the chain. It may have been replaced 3153 // by LSR. 3154 const IVInc &Head = Chain.Incs[0]; 3155 User::op_iterator IVOpEnd = Head.UserInst->op_end(); 3156 // findIVOperand returns IVOpEnd if it can no longer find a valid IV user. 3157 User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(), 3158 IVOpEnd, L, SE); 3159 Value *IVSrc = nullptr; 3160 while (IVOpIter != IVOpEnd) { 3161 IVSrc = getWideOperand(*IVOpIter); 3162 3163 // If this operand computes the expression that the chain needs, we may use 3164 // it. (Check this after setting IVSrc which is used below.) 3165 // 3166 // Note that if Head.IncExpr is wider than IVSrc, then this phi is too 3167 // narrow for the chain, so we can no longer use it. We do allow using a 3168 // wider phi, assuming the LSR checked for free truncation. In that case we 3169 // should already have a truncate on this operand such that 3170 // getSCEV(IVSrc) == IncExpr. 3171 if (SE.getSCEV(*IVOpIter) == Head.IncExpr 3172 || SE.getSCEV(IVSrc) == Head.IncExpr) { 3173 break; 3174 } 3175 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 3176 } 3177 if (IVOpIter == IVOpEnd) { 3178 // Gracefully give up on this chain. 3179 LLVM_DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n"); 3180 return; 3181 } 3182 assert(IVSrc && "Failed to find IV chain source"); 3183 3184 LLVM_DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n"); 3185 Type *IVTy = IVSrc->getType(); 3186 Type *IntTy = SE.getEffectiveSCEVType(IVTy); 3187 const SCEV *LeftOverExpr = nullptr; 3188 for (const IVInc &Inc : Chain) { 3189 Instruction *InsertPt = Inc.UserInst; 3190 if (isa<PHINode>(InsertPt)) 3191 InsertPt = L->getLoopLatch()->getTerminator(); 3192 3193 // IVOper will replace the current IV User's operand. IVSrc is the IV 3194 // value currently held in a register. 3195 Value *IVOper = IVSrc; 3196 if (!Inc.IncExpr->isZero()) { 3197 // IncExpr was the result of subtraction of two narrow values, so must 3198 // be signed. 3199 const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy); 3200 LeftOverExpr = LeftOverExpr ? 3201 SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr; 3202 } 3203 if (LeftOverExpr && !LeftOverExpr->isZero()) { 3204 // Expand the IV increment. 3205 Rewriter.clearPostInc(); 3206 Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt); 3207 const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc), 3208 SE.getUnknown(IncV)); 3209 IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt); 3210 3211 // If an IV increment can't be folded, use it as the next IV value. 3212 if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) { 3213 assert(IVTy == IVOper->getType() && "inconsistent IV increment type"); 3214 IVSrc = IVOper; 3215 LeftOverExpr = nullptr; 3216 } 3217 } 3218 Type *OperTy = Inc.IVOperand->getType(); 3219 if (IVTy != OperTy) { 3220 assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) && 3221 "cannot extend a chained IV"); 3222 IRBuilder<> Builder(InsertPt); 3223 IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain"); 3224 } 3225 Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper); 3226 if (auto *OperandIsInstr = dyn_cast<Instruction>(Inc.IVOperand)) 3227 DeadInsts.emplace_back(OperandIsInstr); 3228 } 3229 // If LSR created a new, wider phi, we may also replace its postinc. We only 3230 // do this if we also found a wide value for the head of the chain. 3231 if (isa<PHINode>(Chain.tailUserInst())) { 3232 for (PHINode &Phi : L->getHeader()->phis()) { 3233 if (!isCompatibleIVType(&Phi, IVSrc)) 3234 continue; 3235 Instruction *PostIncV = dyn_cast<Instruction>( 3236 Phi.getIncomingValueForBlock(L->getLoopLatch())); 3237 if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc))) 3238 continue; 3239 Value *IVOper = IVSrc; 3240 Type *PostIncTy = PostIncV->getType(); 3241 if (IVTy != PostIncTy) { 3242 assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types"); 3243 IRBuilder<> Builder(L->getLoopLatch()->getTerminator()); 3244 Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc()); 3245 IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain"); 3246 } 3247 Phi.replaceUsesOfWith(PostIncV, IVOper); 3248 DeadInsts.emplace_back(PostIncV); 3249 } 3250 } 3251 } 3252 3253 void LSRInstance::CollectFixupsAndInitialFormulae() { 3254 BranchInst *ExitBranch = nullptr; 3255 bool SaveCmp = TTI.canSaveCmp(L, &ExitBranch, &SE, &LI, &DT, &AC, &TLI); 3256 3257 for (const IVStrideUse &U : IU) { 3258 Instruction *UserInst = U.getUser(); 3259 // Skip IV users that are part of profitable IV Chains. 3260 User::op_iterator UseI = 3261 find(UserInst->operands(), U.getOperandValToReplace()); 3262 assert(UseI != UserInst->op_end() && "cannot find IV operand"); 3263 if (IVIncSet.count(UseI)) { 3264 LLVM_DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n'); 3265 continue; 3266 } 3267 3268 LSRUse::KindType Kind = LSRUse::Basic; 3269 MemAccessTy AccessTy; 3270 if (isAddressUse(TTI, UserInst, U.getOperandValToReplace())) { 3271 Kind = LSRUse::Address; 3272 AccessTy = getAccessType(TTI, UserInst, U.getOperandValToReplace()); 3273 } 3274 3275 const SCEV *S = IU.getExpr(U); 3276 PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops(); 3277 3278 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as 3279 // (N - i == 0), and this allows (N - i) to be the expression that we work 3280 // with rather than just N or i, so we can consider the register 3281 // requirements for both N and i at the same time. Limiting this code to 3282 // equality icmps is not a problem because all interesting loops use 3283 // equality icmps, thanks to IndVarSimplify. 3284 if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst)) { 3285 // If CI can be saved in some target, like replaced inside hardware loop 3286 // in PowerPC, no need to generate initial formulae for it. 3287 if (SaveCmp && CI == dyn_cast<ICmpInst>(ExitBranch->getCondition())) 3288 continue; 3289 if (CI->isEquality()) { 3290 // Swap the operands if needed to put the OperandValToReplace on the 3291 // left, for consistency. 3292 Value *NV = CI->getOperand(1); 3293 if (NV == U.getOperandValToReplace()) { 3294 CI->setOperand(1, CI->getOperand(0)); 3295 CI->setOperand(0, NV); 3296 NV = CI->getOperand(1); 3297 Changed = true; 3298 } 3299 3300 // x == y --> x - y == 0 3301 const SCEV *N = SE.getSCEV(NV); 3302 if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) { 3303 // S is normalized, so normalize N before folding it into S 3304 // to keep the result normalized. 3305 N = normalizeForPostIncUse(N, TmpPostIncLoops, SE); 3306 Kind = LSRUse::ICmpZero; 3307 S = SE.getMinusSCEV(N, S); 3308 } 3309 3310 // -1 and the negations of all interesting strides (except the negation 3311 // of -1) are now also interesting. 3312 for (size_t i = 0, e = Factors.size(); i != e; ++i) 3313 if (Factors[i] != -1) 3314 Factors.insert(-(uint64_t)Factors[i]); 3315 Factors.insert(-1); 3316 } 3317 } 3318 3319 // Get or create an LSRUse. 3320 std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy); 3321 size_t LUIdx = P.first; 3322 int64_t Offset = P.second; 3323 LSRUse &LU = Uses[LUIdx]; 3324 3325 // Record the fixup. 3326 LSRFixup &LF = LU.getNewFixup(); 3327 LF.UserInst = UserInst; 3328 LF.OperandValToReplace = U.getOperandValToReplace(); 3329 LF.PostIncLoops = TmpPostIncLoops; 3330 LF.Offset = Offset; 3331 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3332 3333 if (!LU.WidestFixupType || 3334 SE.getTypeSizeInBits(LU.WidestFixupType) < 3335 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3336 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3337 3338 // If this is the first use of this LSRUse, give it a formula. 3339 if (LU.Formulae.empty()) { 3340 InsertInitialFormula(S, LU, LUIdx); 3341 CountRegisters(LU.Formulae.back(), LUIdx); 3342 } 3343 } 3344 3345 LLVM_DEBUG(print_fixups(dbgs())); 3346 } 3347 3348 /// Insert a formula for the given expression into the given use, separating out 3349 /// loop-variant portions from loop-invariant and loop-computable portions. 3350 void 3351 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) { 3352 // Mark uses whose expressions cannot be expanded. 3353 if (!isSafeToExpand(S, SE)) 3354 LU.RigidFormula = true; 3355 3356 Formula F; 3357 F.initialMatch(S, L, SE); 3358 bool Inserted = InsertFormula(LU, LUIdx, F); 3359 assert(Inserted && "Initial formula already exists!"); (void)Inserted; 3360 } 3361 3362 /// Insert a simple single-register formula for the given expression into the 3363 /// given use. 3364 void 3365 LSRInstance::InsertSupplementalFormula(const SCEV *S, 3366 LSRUse &LU, size_t LUIdx) { 3367 Formula F; 3368 F.BaseRegs.push_back(S); 3369 F.HasBaseReg = true; 3370 bool Inserted = InsertFormula(LU, LUIdx, F); 3371 assert(Inserted && "Supplemental formula already exists!"); (void)Inserted; 3372 } 3373 3374 /// Note which registers are used by the given formula, updating RegUses. 3375 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) { 3376 if (F.ScaledReg) 3377 RegUses.countRegister(F.ScaledReg, LUIdx); 3378 for (const SCEV *BaseReg : F.BaseRegs) 3379 RegUses.countRegister(BaseReg, LUIdx); 3380 } 3381 3382 /// If the given formula has not yet been inserted, add it to the list, and 3383 /// return true. Return false otherwise. 3384 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) { 3385 // Do not insert formula that we will not be able to expand. 3386 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) && 3387 "Formula is illegal"); 3388 3389 if (!LU.InsertFormula(F, *L)) 3390 return false; 3391 3392 CountRegisters(F, LUIdx); 3393 return true; 3394 } 3395 3396 /// Check for other uses of loop-invariant values which we're tracking. These 3397 /// other uses will pin these values in registers, making them less profitable 3398 /// for elimination. 3399 /// TODO: This currently misses non-constant addrec step registers. 3400 /// TODO: Should this give more weight to users inside the loop? 3401 void 3402 LSRInstance::CollectLoopInvariantFixupsAndFormulae() { 3403 SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end()); 3404 SmallPtrSet<const SCEV *, 32> Visited; 3405 3406 while (!Worklist.empty()) { 3407 const SCEV *S = Worklist.pop_back_val(); 3408 3409 // Don't process the same SCEV twice 3410 if (!Visited.insert(S).second) 3411 continue; 3412 3413 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) 3414 Worklist.append(N->op_begin(), N->op_end()); 3415 else if (const SCEVIntegralCastExpr *C = dyn_cast<SCEVIntegralCastExpr>(S)) 3416 Worklist.push_back(C->getOperand()); 3417 else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 3418 Worklist.push_back(D->getLHS()); 3419 Worklist.push_back(D->getRHS()); 3420 } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) { 3421 const Value *V = US->getValue(); 3422 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 3423 // Look for instructions defined outside the loop. 3424 if (L->contains(Inst)) continue; 3425 } else if (isa<UndefValue>(V)) 3426 // Undef doesn't have a live range, so it doesn't matter. 3427 continue; 3428 for (const Use &U : V->uses()) { 3429 const Instruction *UserInst = dyn_cast<Instruction>(U.getUser()); 3430 // Ignore non-instructions. 3431 if (!UserInst) 3432 continue; 3433 // Don't bother if the instruction is an EHPad. 3434 if (UserInst->isEHPad()) 3435 continue; 3436 // Ignore instructions in other functions (as can happen with 3437 // Constants). 3438 if (UserInst->getParent()->getParent() != L->getHeader()->getParent()) 3439 continue; 3440 // Ignore instructions not dominated by the loop. 3441 const BasicBlock *UseBB = !isa<PHINode>(UserInst) ? 3442 UserInst->getParent() : 3443 cast<PHINode>(UserInst)->getIncomingBlock( 3444 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 3445 if (!DT.dominates(L->getHeader(), UseBB)) 3446 continue; 3447 // Don't bother if the instruction is in a BB which ends in an EHPad. 3448 if (UseBB->getTerminator()->isEHPad()) 3449 continue; 3450 // Don't bother rewriting PHIs in catchswitch blocks. 3451 if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator())) 3452 continue; 3453 // Ignore uses which are part of other SCEV expressions, to avoid 3454 // analyzing them multiple times. 3455 if (SE.isSCEVable(UserInst->getType())) { 3456 const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst)); 3457 // If the user is a no-op, look through to its uses. 3458 if (!isa<SCEVUnknown>(UserS)) 3459 continue; 3460 if (UserS == US) { 3461 Worklist.push_back( 3462 SE.getUnknown(const_cast<Instruction *>(UserInst))); 3463 continue; 3464 } 3465 } 3466 // Ignore icmp instructions which are already being analyzed. 3467 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) { 3468 unsigned OtherIdx = !U.getOperandNo(); 3469 Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx)); 3470 if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L)) 3471 continue; 3472 } 3473 3474 std::pair<size_t, int64_t> P = getUse( 3475 S, LSRUse::Basic, MemAccessTy()); 3476 size_t LUIdx = P.first; 3477 int64_t Offset = P.second; 3478 LSRUse &LU = Uses[LUIdx]; 3479 LSRFixup &LF = LU.getNewFixup(); 3480 LF.UserInst = const_cast<Instruction *>(UserInst); 3481 LF.OperandValToReplace = U; 3482 LF.Offset = Offset; 3483 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3484 if (!LU.WidestFixupType || 3485 SE.getTypeSizeInBits(LU.WidestFixupType) < 3486 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3487 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3488 InsertSupplementalFormula(US, LU, LUIdx); 3489 CountRegisters(LU.Formulae.back(), Uses.size() - 1); 3490 break; 3491 } 3492 } 3493 } 3494 } 3495 3496 /// Split S into subexpressions which can be pulled out into separate 3497 /// registers. If C is non-null, multiply each subexpression by C. 3498 /// 3499 /// Return remainder expression after factoring the subexpressions captured by 3500 /// Ops. If Ops is complete, return NULL. 3501 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C, 3502 SmallVectorImpl<const SCEV *> &Ops, 3503 const Loop *L, 3504 ScalarEvolution &SE, 3505 unsigned Depth = 0) { 3506 // Arbitrarily cap recursion to protect compile time. 3507 if (Depth >= 3) 3508 return S; 3509 3510 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3511 // Break out add operands. 3512 for (const SCEV *S : Add->operands()) { 3513 const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1); 3514 if (Remainder) 3515 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3516 } 3517 return nullptr; 3518 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 3519 // Split a non-zero base out of an addrec. 3520 if (AR->getStart()->isZero() || !AR->isAffine()) 3521 return S; 3522 3523 const SCEV *Remainder = CollectSubexprs(AR->getStart(), 3524 C, Ops, L, SE, Depth+1); 3525 // Split the non-zero AddRec unless it is part of a nested recurrence that 3526 // does not pertain to this loop. 3527 if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) { 3528 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3529 Remainder = nullptr; 3530 } 3531 if (Remainder != AR->getStart()) { 3532 if (!Remainder) 3533 Remainder = SE.getConstant(AR->getType(), 0); 3534 return SE.getAddRecExpr(Remainder, 3535 AR->getStepRecurrence(SE), 3536 AR->getLoop(), 3537 //FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 3538 SCEV::FlagAnyWrap); 3539 } 3540 } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3541 // Break (C * (a + b + c)) into C*a + C*b + C*c. 3542 if (Mul->getNumOperands() != 2) 3543 return S; 3544 if (const SCEVConstant *Op0 = 3545 dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3546 C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0; 3547 const SCEV *Remainder = 3548 CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1); 3549 if (Remainder) 3550 Ops.push_back(SE.getMulExpr(C, Remainder)); 3551 return nullptr; 3552 } 3553 } 3554 return S; 3555 } 3556 3557 /// Return true if the SCEV represents a value that may end up as a 3558 /// post-increment operation. 3559 static bool mayUsePostIncMode(const TargetTransformInfo &TTI, 3560 LSRUse &LU, const SCEV *S, const Loop *L, 3561 ScalarEvolution &SE) { 3562 if (LU.Kind != LSRUse::Address || 3563 !LU.AccessTy.getType()->isIntOrIntVectorTy()) 3564 return false; 3565 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S); 3566 if (!AR) 3567 return false; 3568 const SCEV *LoopStep = AR->getStepRecurrence(SE); 3569 if (!isa<SCEVConstant>(LoopStep)) 3570 return false; 3571 // Check if a post-indexed load/store can be used. 3572 if (TTI.isIndexedLoadLegal(TTI.MIM_PostInc, AR->getType()) || 3573 TTI.isIndexedStoreLegal(TTI.MIM_PostInc, AR->getType())) { 3574 const SCEV *LoopStart = AR->getStart(); 3575 if (!isa<SCEVConstant>(LoopStart) && SE.isLoopInvariant(LoopStart, L)) 3576 return true; 3577 } 3578 return false; 3579 } 3580 3581 /// Helper function for LSRInstance::GenerateReassociations. 3582 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 3583 const Formula &Base, 3584 unsigned Depth, size_t Idx, 3585 bool IsScaledReg) { 3586 const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3587 // Don't generate reassociations for the base register of a value that 3588 // may generate a post-increment operator. The reason is that the 3589 // reassociations cause extra base+register formula to be created, 3590 // and possibly chosen, but the post-increment is more efficient. 3591 if (AMK == TTI::AMK_PostIndexed && mayUsePostIncMode(TTI, LU, BaseReg, L, SE)) 3592 return; 3593 SmallVector<const SCEV *, 8> AddOps; 3594 const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE); 3595 if (Remainder) 3596 AddOps.push_back(Remainder); 3597 3598 if (AddOps.size() == 1) 3599 return; 3600 3601 for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(), 3602 JE = AddOps.end(); 3603 J != JE; ++J) { 3604 // Loop-variant "unknown" values are uninteresting; we won't be able to 3605 // do anything meaningful with them. 3606 if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L)) 3607 continue; 3608 3609 // Don't pull a constant into a register if the constant could be folded 3610 // into an immediate field. 3611 if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3612 LU.AccessTy, *J, Base.getNumRegs() > 1)) 3613 continue; 3614 3615 // Collect all operands except *J. 3616 SmallVector<const SCEV *, 8> InnerAddOps( 3617 ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J); 3618 InnerAddOps.append(std::next(J), 3619 ((const SmallVector<const SCEV *, 8> &)AddOps).end()); 3620 3621 // Don't leave just a constant behind in a register if the constant could 3622 // be folded into an immediate field. 3623 if (InnerAddOps.size() == 1 && 3624 isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3625 LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1)) 3626 continue; 3627 3628 const SCEV *InnerSum = SE.getAddExpr(InnerAddOps); 3629 if (InnerSum->isZero()) 3630 continue; 3631 Formula F = Base; 3632 3633 // Add the remaining pieces of the add back into the new formula. 3634 const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum); 3635 if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 && 3636 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3637 InnerSumSC->getValue()->getZExtValue())) { 3638 F.UnfoldedOffset = 3639 (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue(); 3640 if (IsScaledReg) 3641 F.ScaledReg = nullptr; 3642 else 3643 F.BaseRegs.erase(F.BaseRegs.begin() + Idx); 3644 } else if (IsScaledReg) 3645 F.ScaledReg = InnerSum; 3646 else 3647 F.BaseRegs[Idx] = InnerSum; 3648 3649 // Add J as its own register, or an unfolded immediate. 3650 const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J); 3651 if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 && 3652 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3653 SC->getValue()->getZExtValue())) 3654 F.UnfoldedOffset = 3655 (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue(); 3656 else 3657 F.BaseRegs.push_back(*J); 3658 // We may have changed the number of register in base regs, adjust the 3659 // formula accordingly. 3660 F.canonicalize(*L); 3661 3662 if (InsertFormula(LU, LUIdx, F)) 3663 // If that formula hadn't been seen before, recurse to find more like 3664 // it. 3665 // Add check on Log16(AddOps.size()) - same as Log2_32(AddOps.size()) >> 2) 3666 // Because just Depth is not enough to bound compile time. 3667 // This means that every time AddOps.size() is greater 16^x we will add 3668 // x to Depth. 3669 GenerateReassociations(LU, LUIdx, LU.Formulae.back(), 3670 Depth + 1 + (Log2_32(AddOps.size()) >> 2)); 3671 } 3672 } 3673 3674 /// Split out subexpressions from adds and the bases of addrecs. 3675 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx, 3676 Formula Base, unsigned Depth) { 3677 assert(Base.isCanonical(*L) && "Input must be in the canonical form"); 3678 // Arbitrarily cap recursion to protect compile time. 3679 if (Depth >= 3) 3680 return; 3681 3682 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3683 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i); 3684 3685 if (Base.Scale == 1) 3686 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, 3687 /* Idx */ -1, /* IsScaledReg */ true); 3688 } 3689 3690 /// Generate a formula consisting of all of the loop-dominating registers added 3691 /// into a single register. 3692 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx, 3693 Formula Base) { 3694 // This method is only interesting on a plurality of registers. 3695 if (Base.BaseRegs.size() + (Base.Scale == 1) + 3696 (Base.UnfoldedOffset != 0) <= 1) 3697 return; 3698 3699 // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before 3700 // processing the formula. 3701 Base.unscale(); 3702 SmallVector<const SCEV *, 4> Ops; 3703 Formula NewBase = Base; 3704 NewBase.BaseRegs.clear(); 3705 Type *CombinedIntegerType = nullptr; 3706 for (const SCEV *BaseReg : Base.BaseRegs) { 3707 if (SE.properlyDominates(BaseReg, L->getHeader()) && 3708 !SE.hasComputableLoopEvolution(BaseReg, L)) { 3709 if (!CombinedIntegerType) 3710 CombinedIntegerType = SE.getEffectiveSCEVType(BaseReg->getType()); 3711 Ops.push_back(BaseReg); 3712 } 3713 else 3714 NewBase.BaseRegs.push_back(BaseReg); 3715 } 3716 3717 // If no register is relevant, we're done. 3718 if (Ops.size() == 0) 3719 return; 3720 3721 // Utility function for generating the required variants of the combined 3722 // registers. 3723 auto GenerateFormula = [&](const SCEV *Sum) { 3724 Formula F = NewBase; 3725 3726 // TODO: If Sum is zero, it probably means ScalarEvolution missed an 3727 // opportunity to fold something. For now, just ignore such cases 3728 // rather than proceed with zero in a register. 3729 if (Sum->isZero()) 3730 return; 3731 3732 F.BaseRegs.push_back(Sum); 3733 F.canonicalize(*L); 3734 (void)InsertFormula(LU, LUIdx, F); 3735 }; 3736 3737 // If we collected at least two registers, generate a formula combining them. 3738 if (Ops.size() > 1) { 3739 SmallVector<const SCEV *, 4> OpsCopy(Ops); // Don't let SE modify Ops. 3740 GenerateFormula(SE.getAddExpr(OpsCopy)); 3741 } 3742 3743 // If we have an unfolded offset, generate a formula combining it with the 3744 // registers collected. 3745 if (NewBase.UnfoldedOffset) { 3746 assert(CombinedIntegerType && "Missing a type for the unfolded offset"); 3747 Ops.push_back(SE.getConstant(CombinedIntegerType, NewBase.UnfoldedOffset, 3748 true)); 3749 NewBase.UnfoldedOffset = 0; 3750 GenerateFormula(SE.getAddExpr(Ops)); 3751 } 3752 } 3753 3754 /// Helper function for LSRInstance::GenerateSymbolicOffsets. 3755 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 3756 const Formula &Base, size_t Idx, 3757 bool IsScaledReg) { 3758 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3759 GlobalValue *GV = ExtractSymbol(G, SE); 3760 if (G->isZero() || !GV) 3761 return; 3762 Formula F = Base; 3763 F.BaseGV = GV; 3764 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3765 return; 3766 if (IsScaledReg) 3767 F.ScaledReg = G; 3768 else 3769 F.BaseRegs[Idx] = G; 3770 (void)InsertFormula(LU, LUIdx, F); 3771 } 3772 3773 /// Generate reuse formulae using symbolic offsets. 3774 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, 3775 Formula Base) { 3776 // We can't add a symbolic offset if the address already contains one. 3777 if (Base.BaseGV) return; 3778 3779 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3780 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i); 3781 if (Base.Scale == 1) 3782 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1, 3783 /* IsScaledReg */ true); 3784 } 3785 3786 /// Helper function for LSRInstance::GenerateConstantOffsets. 3787 void LSRInstance::GenerateConstantOffsetsImpl( 3788 LSRUse &LU, unsigned LUIdx, const Formula &Base, 3789 const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) { 3790 3791 auto GenerateOffset = [&](const SCEV *G, int64_t Offset) { 3792 Formula F = Base; 3793 F.BaseOffset = (uint64_t)Base.BaseOffset - Offset; 3794 3795 if (isLegalUse(TTI, LU.MinOffset - Offset, LU.MaxOffset - Offset, LU.Kind, 3796 LU.AccessTy, F)) { 3797 // Add the offset to the base register. 3798 const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G); 3799 // If it cancelled out, drop the base register, otherwise update it. 3800 if (NewG->isZero()) { 3801 if (IsScaledReg) { 3802 F.Scale = 0; 3803 F.ScaledReg = nullptr; 3804 } else 3805 F.deleteBaseReg(F.BaseRegs[Idx]); 3806 F.canonicalize(*L); 3807 } else if (IsScaledReg) 3808 F.ScaledReg = NewG; 3809 else 3810 F.BaseRegs[Idx] = NewG; 3811 3812 (void)InsertFormula(LU, LUIdx, F); 3813 } 3814 }; 3815 3816 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3817 3818 // With constant offsets and constant steps, we can generate pre-inc 3819 // accesses by having the offset equal the step. So, for access #0 with a 3820 // step of 8, we generate a G - 8 base which would require the first access 3821 // to be ((G - 8) + 8),+,8. The pre-indexed access then updates the pointer 3822 // for itself and hopefully becomes the base for other accesses. This means 3823 // means that a single pre-indexed access can be generated to become the new 3824 // base pointer for each iteration of the loop, resulting in no extra add/sub 3825 // instructions for pointer updating. 3826 if (AMK == TTI::AMK_PreIndexed && LU.Kind == LSRUse::Address) { 3827 if (auto *GAR = dyn_cast<SCEVAddRecExpr>(G)) { 3828 if (auto *StepRec = 3829 dyn_cast<SCEVConstant>(GAR->getStepRecurrence(SE))) { 3830 const APInt &StepInt = StepRec->getAPInt(); 3831 int64_t Step = StepInt.isNegative() ? 3832 StepInt.getSExtValue() : StepInt.getZExtValue(); 3833 3834 for (int64_t Offset : Worklist) { 3835 Offset -= Step; 3836 GenerateOffset(G, Offset); 3837 } 3838 } 3839 } 3840 } 3841 for (int64_t Offset : Worklist) 3842 GenerateOffset(G, Offset); 3843 3844 int64_t Imm = ExtractImmediate(G, SE); 3845 if (G->isZero() || Imm == 0) 3846 return; 3847 Formula F = Base; 3848 F.BaseOffset = (uint64_t)F.BaseOffset + Imm; 3849 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3850 return; 3851 if (IsScaledReg) { 3852 F.ScaledReg = G; 3853 } else { 3854 F.BaseRegs[Idx] = G; 3855 // We may generate non canonical Formula if G is a recurrent expr reg 3856 // related with current loop while F.ScaledReg is not. 3857 F.canonicalize(*L); 3858 } 3859 (void)InsertFormula(LU, LUIdx, F); 3860 } 3861 3862 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets. 3863 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, 3864 Formula Base) { 3865 // TODO: For now, just add the min and max offset, because it usually isn't 3866 // worthwhile looking at everything inbetween. 3867 SmallVector<int64_t, 2> Worklist; 3868 Worklist.push_back(LU.MinOffset); 3869 if (LU.MaxOffset != LU.MinOffset) 3870 Worklist.push_back(LU.MaxOffset); 3871 3872 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3873 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i); 3874 if (Base.Scale == 1) 3875 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1, 3876 /* IsScaledReg */ true); 3877 } 3878 3879 /// For ICmpZero, check to see if we can scale up the comparison. For example, x 3880 /// == y -> x*c == y*c. 3881 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, 3882 Formula Base) { 3883 if (LU.Kind != LSRUse::ICmpZero) return; 3884 3885 // Determine the integer type for the base formula. 3886 Type *IntTy = Base.getType(); 3887 if (!IntTy) return; 3888 if (SE.getTypeSizeInBits(IntTy) > 64) return; 3889 3890 // Don't do this if there is more than one offset. 3891 if (LU.MinOffset != LU.MaxOffset) return; 3892 3893 // Check if transformation is valid. It is illegal to multiply pointer. 3894 if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy()) 3895 return; 3896 for (const SCEV *BaseReg : Base.BaseRegs) 3897 if (BaseReg->getType()->isPointerTy()) 3898 return; 3899 assert(!Base.BaseGV && "ICmpZero use is not legal!"); 3900 3901 // Check each interesting stride. 3902 for (int64_t Factor : Factors) { 3903 // Check that the multiplication doesn't overflow. 3904 if (Base.BaseOffset == std::numeric_limits<int64_t>::min() && Factor == -1) 3905 continue; 3906 int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor; 3907 if (NewBaseOffset / Factor != Base.BaseOffset) 3908 continue; 3909 // If the offset will be truncated at this use, check that it is in bounds. 3910 if (!IntTy->isPointerTy() && 3911 !ConstantInt::isValueValidForType(IntTy, NewBaseOffset)) 3912 continue; 3913 3914 // Check that multiplying with the use offset doesn't overflow. 3915 int64_t Offset = LU.MinOffset; 3916 if (Offset == std::numeric_limits<int64_t>::min() && Factor == -1) 3917 continue; 3918 Offset = (uint64_t)Offset * Factor; 3919 if (Offset / Factor != LU.MinOffset) 3920 continue; 3921 // If the offset will be truncated at this use, check that it is in bounds. 3922 if (!IntTy->isPointerTy() && 3923 !ConstantInt::isValueValidForType(IntTy, Offset)) 3924 continue; 3925 3926 Formula F = Base; 3927 F.BaseOffset = NewBaseOffset; 3928 3929 // Check that this scale is legal. 3930 if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F)) 3931 continue; 3932 3933 // Compensate for the use having MinOffset built into it. 3934 F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset; 3935 3936 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3937 3938 // Check that multiplying with each base register doesn't overflow. 3939 for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) { 3940 F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS); 3941 if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i]) 3942 goto next; 3943 } 3944 3945 // Check that multiplying with the scaled register doesn't overflow. 3946 if (F.ScaledReg) { 3947 F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS); 3948 if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg) 3949 continue; 3950 } 3951 3952 // Check that multiplying with the unfolded offset doesn't overflow. 3953 if (F.UnfoldedOffset != 0) { 3954 if (F.UnfoldedOffset == std::numeric_limits<int64_t>::min() && 3955 Factor == -1) 3956 continue; 3957 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor; 3958 if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset) 3959 continue; 3960 // If the offset will be truncated, check that it is in bounds. 3961 if (!IntTy->isPointerTy() && 3962 !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset)) 3963 continue; 3964 } 3965 3966 // If we make it here and it's legal, add it. 3967 (void)InsertFormula(LU, LUIdx, F); 3968 next:; 3969 } 3970 } 3971 3972 /// Generate stride factor reuse formulae by making use of scaled-offset address 3973 /// modes, for example. 3974 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) { 3975 // Determine the integer type for the base formula. 3976 Type *IntTy = Base.getType(); 3977 if (!IntTy) return; 3978 3979 // If this Formula already has a scaled register, we can't add another one. 3980 // Try to unscale the formula to generate a better scale. 3981 if (Base.Scale != 0 && !Base.unscale()) 3982 return; 3983 3984 assert(Base.Scale == 0 && "unscale did not did its job!"); 3985 3986 // Check each interesting stride. 3987 for (int64_t Factor : Factors) { 3988 Base.Scale = Factor; 3989 Base.HasBaseReg = Base.BaseRegs.size() > 1; 3990 // Check whether this scale is going to be legal. 3991 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 3992 Base)) { 3993 // As a special-case, handle special out-of-loop Basic users specially. 3994 // TODO: Reconsider this special case. 3995 if (LU.Kind == LSRUse::Basic && 3996 isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special, 3997 LU.AccessTy, Base) && 3998 LU.AllFixupsOutsideLoop) 3999 LU.Kind = LSRUse::Special; 4000 else 4001 continue; 4002 } 4003 // For an ICmpZero, negating a solitary base register won't lead to 4004 // new solutions. 4005 if (LU.Kind == LSRUse::ICmpZero && 4006 !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV) 4007 continue; 4008 // For each addrec base reg, if its loop is current loop, apply the scale. 4009 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { 4010 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i]); 4011 if (AR && (AR->getLoop() == L || LU.AllFixupsOutsideLoop)) { 4012 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 4013 if (FactorS->isZero()) 4014 continue; 4015 // Divide out the factor, ignoring high bits, since we'll be 4016 // scaling the value back up in the end. 4017 if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) { 4018 // TODO: This could be optimized to avoid all the copying. 4019 Formula F = Base; 4020 F.ScaledReg = Quotient; 4021 F.deleteBaseReg(F.BaseRegs[i]); 4022 // The canonical representation of 1*reg is reg, which is already in 4023 // Base. In that case, do not try to insert the formula, it will be 4024 // rejected anyway. 4025 if (F.Scale == 1 && (F.BaseRegs.empty() || 4026 (AR->getLoop() != L && LU.AllFixupsOutsideLoop))) 4027 continue; 4028 // If AllFixupsOutsideLoop is true and F.Scale is 1, we may generate 4029 // non canonical Formula with ScaledReg's loop not being L. 4030 if (F.Scale == 1 && LU.AllFixupsOutsideLoop) 4031 F.canonicalize(*L); 4032 (void)InsertFormula(LU, LUIdx, F); 4033 } 4034 } 4035 } 4036 } 4037 } 4038 4039 /// Generate reuse formulae from different IV types. 4040 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) { 4041 // Don't bother truncating symbolic values. 4042 if (Base.BaseGV) return; 4043 4044 // Determine the integer type for the base formula. 4045 Type *DstTy = Base.getType(); 4046 if (!DstTy) return; 4047 DstTy = SE.getEffectiveSCEVType(DstTy); 4048 4049 for (Type *SrcTy : Types) { 4050 if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) { 4051 Formula F = Base; 4052 4053 // Sometimes SCEV is able to prove zero during ext transform. It may 4054 // happen if SCEV did not do all possible transforms while creating the 4055 // initial node (maybe due to depth limitations), but it can do them while 4056 // taking ext. 4057 if (F.ScaledReg) { 4058 const SCEV *NewScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy); 4059 if (NewScaledReg->isZero()) 4060 continue; 4061 F.ScaledReg = NewScaledReg; 4062 } 4063 bool HasZeroBaseReg = false; 4064 for (const SCEV *&BaseReg : F.BaseRegs) { 4065 const SCEV *NewBaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy); 4066 if (NewBaseReg->isZero()) { 4067 HasZeroBaseReg = true; 4068 break; 4069 } 4070 BaseReg = NewBaseReg; 4071 } 4072 if (HasZeroBaseReg) 4073 continue; 4074 4075 // TODO: This assumes we've done basic processing on all uses and 4076 // have an idea what the register usage is. 4077 if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses)) 4078 continue; 4079 4080 F.canonicalize(*L); 4081 (void)InsertFormula(LU, LUIdx, F); 4082 } 4083 } 4084 } 4085 4086 namespace { 4087 4088 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer 4089 /// modifications so that the search phase doesn't have to worry about the data 4090 /// structures moving underneath it. 4091 struct WorkItem { 4092 size_t LUIdx; 4093 int64_t Imm; 4094 const SCEV *OrigReg; 4095 4096 WorkItem(size_t LI, int64_t I, const SCEV *R) 4097 : LUIdx(LI), Imm(I), OrigReg(R) {} 4098 4099 void print(raw_ostream &OS) const; 4100 void dump() const; 4101 }; 4102 4103 } // end anonymous namespace 4104 4105 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 4106 void WorkItem::print(raw_ostream &OS) const { 4107 OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx 4108 << " , add offset " << Imm; 4109 } 4110 4111 LLVM_DUMP_METHOD void WorkItem::dump() const { 4112 print(errs()); errs() << '\n'; 4113 } 4114 #endif 4115 4116 /// Look for registers which are a constant distance apart and try to form reuse 4117 /// opportunities between them. 4118 void LSRInstance::GenerateCrossUseConstantOffsets() { 4119 // Group the registers by their value without any added constant offset. 4120 using ImmMapTy = std::map<int64_t, const SCEV *>; 4121 4122 DenseMap<const SCEV *, ImmMapTy> Map; 4123 DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap; 4124 SmallVector<const SCEV *, 8> Sequence; 4125 for (const SCEV *Use : RegUses) { 4126 const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify. 4127 int64_t Imm = ExtractImmediate(Reg, SE); 4128 auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy())); 4129 if (Pair.second) 4130 Sequence.push_back(Reg); 4131 Pair.first->second.insert(std::make_pair(Imm, Use)); 4132 UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use); 4133 } 4134 4135 // Now examine each set of registers with the same base value. Build up 4136 // a list of work to do and do the work in a separate step so that we're 4137 // not adding formulae and register counts while we're searching. 4138 SmallVector<WorkItem, 32> WorkItems; 4139 SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems; 4140 for (const SCEV *Reg : Sequence) { 4141 const ImmMapTy &Imms = Map.find(Reg)->second; 4142 4143 // It's not worthwhile looking for reuse if there's only one offset. 4144 if (Imms.size() == 1) 4145 continue; 4146 4147 LLVM_DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':'; 4148 for (const auto &Entry 4149 : Imms) dbgs() 4150 << ' ' << Entry.first; 4151 dbgs() << '\n'); 4152 4153 // Examine each offset. 4154 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); 4155 J != JE; ++J) { 4156 const SCEV *OrigReg = J->second; 4157 4158 int64_t JImm = J->first; 4159 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg); 4160 4161 if (!isa<SCEVConstant>(OrigReg) && 4162 UsedByIndicesMap[Reg].count() == 1) { 4163 LLVM_DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg 4164 << '\n'); 4165 continue; 4166 } 4167 4168 // Conservatively examine offsets between this orig reg a few selected 4169 // other orig regs. 4170 int64_t First = Imms.begin()->first; 4171 int64_t Last = std::prev(Imms.end())->first; 4172 // Compute (First + Last) / 2 without overflow using the fact that 4173 // First + Last = 2 * (First + Last) + (First ^ Last). 4174 int64_t Avg = (First & Last) + ((First ^ Last) >> 1); 4175 // If the result is negative and First is odd and Last even (or vice versa), 4176 // we rounded towards -inf. Add 1 in that case, to round towards 0. 4177 Avg = Avg + ((First ^ Last) & ((uint64_t)Avg >> 63)); 4178 ImmMapTy::const_iterator OtherImms[] = { 4179 Imms.begin(), std::prev(Imms.end()), 4180 Imms.lower_bound(Avg)}; 4181 for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) { 4182 ImmMapTy::const_iterator M = OtherImms[i]; 4183 if (M == J || M == JE) continue; 4184 4185 // Compute the difference between the two. 4186 int64_t Imm = (uint64_t)JImm - M->first; 4187 for (unsigned LUIdx : UsedByIndices.set_bits()) 4188 // Make a memo of this use, offset, and register tuple. 4189 if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second) 4190 WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg)); 4191 } 4192 } 4193 } 4194 4195 Map.clear(); 4196 Sequence.clear(); 4197 UsedByIndicesMap.clear(); 4198 UniqueItems.clear(); 4199 4200 // Now iterate through the worklist and add new formulae. 4201 for (const WorkItem &WI : WorkItems) { 4202 size_t LUIdx = WI.LUIdx; 4203 LSRUse &LU = Uses[LUIdx]; 4204 int64_t Imm = WI.Imm; 4205 const SCEV *OrigReg = WI.OrigReg; 4206 4207 Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType()); 4208 const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm)); 4209 unsigned BitWidth = SE.getTypeSizeInBits(IntTy); 4210 4211 // TODO: Use a more targeted data structure. 4212 for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) { 4213 Formula F = LU.Formulae[L]; 4214 // FIXME: The code for the scaled and unscaled registers looks 4215 // very similar but slightly different. Investigate if they 4216 // could be merged. That way, we would not have to unscale the 4217 // Formula. 4218 F.unscale(); 4219 // Use the immediate in the scaled register. 4220 if (F.ScaledReg == OrigReg) { 4221 int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale; 4222 // Don't create 50 + reg(-50). 4223 if (F.referencesReg(SE.getSCEV( 4224 ConstantInt::get(IntTy, -(uint64_t)Offset)))) 4225 continue; 4226 Formula NewF = F; 4227 NewF.BaseOffset = Offset; 4228 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 4229 NewF)) 4230 continue; 4231 NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg); 4232 4233 // If the new scale is a constant in a register, and adding the constant 4234 // value to the immediate would produce a value closer to zero than the 4235 // immediate itself, then the formula isn't worthwhile. 4236 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg)) 4237 if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) && 4238 (C->getAPInt().abs() * APInt(BitWidth, F.Scale)) 4239 .ule(std::abs(NewF.BaseOffset))) 4240 continue; 4241 4242 // OK, looks good. 4243 NewF.canonicalize(*this->L); 4244 (void)InsertFormula(LU, LUIdx, NewF); 4245 } else { 4246 // Use the immediate in a base register. 4247 for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) { 4248 const SCEV *BaseReg = F.BaseRegs[N]; 4249 if (BaseReg != OrigReg) 4250 continue; 4251 Formula NewF = F; 4252 NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm; 4253 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, 4254 LU.Kind, LU.AccessTy, NewF)) { 4255 if (AMK == TTI::AMK_PostIndexed && 4256 mayUsePostIncMode(TTI, LU, OrigReg, this->L, SE)) 4257 continue; 4258 if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm)) 4259 continue; 4260 NewF = F; 4261 NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm; 4262 } 4263 NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg); 4264 4265 // If the new formula has a constant in a register, and adding the 4266 // constant value to the immediate would produce a value closer to 4267 // zero than the immediate itself, then the formula isn't worthwhile. 4268 for (const SCEV *NewReg : NewF.BaseRegs) 4269 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg)) 4270 if ((C->getAPInt() + NewF.BaseOffset) 4271 .abs() 4272 .slt(std::abs(NewF.BaseOffset)) && 4273 (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >= 4274 countTrailingZeros<uint64_t>(NewF.BaseOffset)) 4275 goto skip_formula; 4276 4277 // Ok, looks good. 4278 NewF.canonicalize(*this->L); 4279 (void)InsertFormula(LU, LUIdx, NewF); 4280 break; 4281 skip_formula:; 4282 } 4283 } 4284 } 4285 } 4286 } 4287 4288 /// Generate formulae for each use. 4289 void 4290 LSRInstance::GenerateAllReuseFormulae() { 4291 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan 4292 // queries are more precise. 4293 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4294 LSRUse &LU = Uses[LUIdx]; 4295 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4296 GenerateReassociations(LU, LUIdx, LU.Formulae[i]); 4297 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4298 GenerateCombinations(LU, LUIdx, LU.Formulae[i]); 4299 } 4300 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4301 LSRUse &LU = Uses[LUIdx]; 4302 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4303 GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]); 4304 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4305 GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]); 4306 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4307 GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]); 4308 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4309 GenerateScales(LU, LUIdx, LU.Formulae[i]); 4310 } 4311 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4312 LSRUse &LU = Uses[LUIdx]; 4313 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4314 GenerateTruncates(LU, LUIdx, LU.Formulae[i]); 4315 } 4316 4317 GenerateCrossUseConstantOffsets(); 4318 4319 LLVM_DEBUG(dbgs() << "\n" 4320 "After generating reuse formulae:\n"; 4321 print_uses(dbgs())); 4322 } 4323 4324 /// If there are multiple formulae with the same set of registers used 4325 /// by other uses, pick the best one and delete the others. 4326 void LSRInstance::FilterOutUndesirableDedicatedRegisters() { 4327 DenseSet<const SCEV *> VisitedRegs; 4328 SmallPtrSet<const SCEV *, 16> Regs; 4329 SmallPtrSet<const SCEV *, 16> LoserRegs; 4330 #ifndef NDEBUG 4331 bool ChangedFormulae = false; 4332 #endif 4333 4334 // Collect the best formula for each unique set of shared registers. This 4335 // is reset for each use. 4336 using BestFormulaeTy = 4337 DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>; 4338 4339 BestFormulaeTy BestFormulae; 4340 4341 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4342 LSRUse &LU = Uses[LUIdx]; 4343 LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); 4344 dbgs() << '\n'); 4345 4346 bool Any = false; 4347 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); 4348 FIdx != NumForms; ++FIdx) { 4349 Formula &F = LU.Formulae[FIdx]; 4350 4351 // Some formulas are instant losers. For example, they may depend on 4352 // nonexistent AddRecs from other loops. These need to be filtered 4353 // immediately, otherwise heuristics could choose them over others leading 4354 // to an unsatisfactory solution. Passing LoserRegs into RateFormula here 4355 // avoids the need to recompute this information across formulae using the 4356 // same bad AddRec. Passing LoserRegs is also essential unless we remove 4357 // the corresponding bad register from the Regs set. 4358 Cost CostF(L, SE, TTI, AMK); 4359 Regs.clear(); 4360 CostF.RateFormula(F, Regs, VisitedRegs, LU, &LoserRegs); 4361 if (CostF.isLoser()) { 4362 // During initial formula generation, undesirable formulae are generated 4363 // by uses within other loops that have some non-trivial address mode or 4364 // use the postinc form of the IV. LSR needs to provide these formulae 4365 // as the basis of rediscovering the desired formula that uses an AddRec 4366 // corresponding to the existing phi. Once all formulae have been 4367 // generated, these initial losers may be pruned. 4368 LLVM_DEBUG(dbgs() << " Filtering loser "; F.print(dbgs()); 4369 dbgs() << "\n"); 4370 } 4371 else { 4372 SmallVector<const SCEV *, 4> Key; 4373 for (const SCEV *Reg : F.BaseRegs) { 4374 if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx)) 4375 Key.push_back(Reg); 4376 } 4377 if (F.ScaledReg && 4378 RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx)) 4379 Key.push_back(F.ScaledReg); 4380 // Unstable sort by host order ok, because this is only used for 4381 // uniquifying. 4382 llvm::sort(Key); 4383 4384 std::pair<BestFormulaeTy::const_iterator, bool> P = 4385 BestFormulae.insert(std::make_pair(Key, FIdx)); 4386 if (P.second) 4387 continue; 4388 4389 Formula &Best = LU.Formulae[P.first->second]; 4390 4391 Cost CostBest(L, SE, TTI, AMK); 4392 Regs.clear(); 4393 CostBest.RateFormula(Best, Regs, VisitedRegs, LU); 4394 if (CostF.isLess(CostBest)) 4395 std::swap(F, Best); 4396 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 4397 dbgs() << "\n" 4398 " in favor of formula "; 4399 Best.print(dbgs()); dbgs() << '\n'); 4400 } 4401 #ifndef NDEBUG 4402 ChangedFormulae = true; 4403 #endif 4404 LU.DeleteFormula(F); 4405 --FIdx; 4406 --NumForms; 4407 Any = true; 4408 } 4409 4410 // Now that we've filtered out some formulae, recompute the Regs set. 4411 if (Any) 4412 LU.RecomputeRegs(LUIdx, RegUses); 4413 4414 // Reset this to prepare for the next use. 4415 BestFormulae.clear(); 4416 } 4417 4418 LLVM_DEBUG(if (ChangedFormulae) { 4419 dbgs() << "\n" 4420 "After filtering out undesirable candidates:\n"; 4421 print_uses(dbgs()); 4422 }); 4423 } 4424 4425 /// Estimate the worst-case number of solutions the solver might have to 4426 /// consider. It almost never considers this many solutions because it prune the 4427 /// search space, but the pruning isn't always sufficient. 4428 size_t LSRInstance::EstimateSearchSpaceComplexity() const { 4429 size_t Power = 1; 4430 for (const LSRUse &LU : Uses) { 4431 size_t FSize = LU.Formulae.size(); 4432 if (FSize >= ComplexityLimit) { 4433 Power = ComplexityLimit; 4434 break; 4435 } 4436 Power *= FSize; 4437 if (Power >= ComplexityLimit) 4438 break; 4439 } 4440 return Power; 4441 } 4442 4443 /// When one formula uses a superset of the registers of another formula, it 4444 /// won't help reduce register pressure (though it may not necessarily hurt 4445 /// register pressure); remove it to simplify the system. 4446 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() { 4447 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4448 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4449 4450 LLVM_DEBUG(dbgs() << "Narrowing the search space by eliminating formulae " 4451 "which use a superset of registers used by other " 4452 "formulae.\n"); 4453 4454 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4455 LSRUse &LU = Uses[LUIdx]; 4456 bool Any = false; 4457 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4458 Formula &F = LU.Formulae[i]; 4459 // Look for a formula with a constant or GV in a register. If the use 4460 // also has a formula with that same value in an immediate field, 4461 // delete the one that uses a register. 4462 for (SmallVectorImpl<const SCEV *>::const_iterator 4463 I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) { 4464 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) { 4465 Formula NewF = F; 4466 //FIXME: Formulas should store bitwidth to do wrapping properly. 4467 // See PR41034. 4468 NewF.BaseOffset += (uint64_t)C->getValue()->getSExtValue(); 4469 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4470 (I - F.BaseRegs.begin())); 4471 if (LU.HasFormulaWithSameRegs(NewF)) { 4472 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4473 dbgs() << '\n'); 4474 LU.DeleteFormula(F); 4475 --i; 4476 --e; 4477 Any = true; 4478 break; 4479 } 4480 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) { 4481 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) 4482 if (!F.BaseGV) { 4483 Formula NewF = F; 4484 NewF.BaseGV = GV; 4485 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4486 (I - F.BaseRegs.begin())); 4487 if (LU.HasFormulaWithSameRegs(NewF)) { 4488 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4489 dbgs() << '\n'); 4490 LU.DeleteFormula(F); 4491 --i; 4492 --e; 4493 Any = true; 4494 break; 4495 } 4496 } 4497 } 4498 } 4499 } 4500 if (Any) 4501 LU.RecomputeRegs(LUIdx, RegUses); 4502 } 4503 4504 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4505 } 4506 } 4507 4508 /// When there are many registers for expressions like A, A+1, A+2, etc., 4509 /// allocate a single register for them. 4510 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() { 4511 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4512 return; 4513 4514 LLVM_DEBUG( 4515 dbgs() << "The search space is too complex.\n" 4516 "Narrowing the search space by assuming that uses separated " 4517 "by a constant offset will use the same registers.\n"); 4518 4519 // This is especially useful for unrolled loops. 4520 4521 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4522 LSRUse &LU = Uses[LUIdx]; 4523 for (const Formula &F : LU.Formulae) { 4524 if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1)) 4525 continue; 4526 4527 LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU); 4528 if (!LUThatHas) 4529 continue; 4530 4531 if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false, 4532 LU.Kind, LU.AccessTy)) 4533 continue; 4534 4535 LLVM_DEBUG(dbgs() << " Deleting use "; LU.print(dbgs()); dbgs() << '\n'); 4536 4537 LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop; 4538 4539 // Transfer the fixups of LU to LUThatHas. 4540 for (LSRFixup &Fixup : LU.Fixups) { 4541 Fixup.Offset += F.BaseOffset; 4542 LUThatHas->pushFixup(Fixup); 4543 LLVM_DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n'); 4544 } 4545 4546 // Delete formulae from the new use which are no longer legal. 4547 bool Any = false; 4548 for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) { 4549 Formula &F = LUThatHas->Formulae[i]; 4550 if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset, 4551 LUThatHas->Kind, LUThatHas->AccessTy, F)) { 4552 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4553 LUThatHas->DeleteFormula(F); 4554 --i; 4555 --e; 4556 Any = true; 4557 } 4558 } 4559 4560 if (Any) 4561 LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses); 4562 4563 // Delete the old use. 4564 DeleteUse(LU, LUIdx); 4565 --LUIdx; 4566 --NumUses; 4567 break; 4568 } 4569 } 4570 4571 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4572 } 4573 4574 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that 4575 /// we've done more filtering, as it may be able to find more formulae to 4576 /// eliminate. 4577 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){ 4578 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4579 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4580 4581 LLVM_DEBUG(dbgs() << "Narrowing the search space by re-filtering out " 4582 "undesirable dedicated registers.\n"); 4583 4584 FilterOutUndesirableDedicatedRegisters(); 4585 4586 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4587 } 4588 } 4589 4590 /// If a LSRUse has multiple formulae with the same ScaledReg and Scale. 4591 /// Pick the best one and delete the others. 4592 /// This narrowing heuristic is to keep as many formulae with different 4593 /// Scale and ScaledReg pair as possible while narrowing the search space. 4594 /// The benefit is that it is more likely to find out a better solution 4595 /// from a formulae set with more Scale and ScaledReg variations than 4596 /// a formulae set with the same Scale and ScaledReg. The picking winner 4597 /// reg heuristic will often keep the formulae with the same Scale and 4598 /// ScaledReg and filter others, and we want to avoid that if possible. 4599 void LSRInstance::NarrowSearchSpaceByFilterFormulaWithSameScaledReg() { 4600 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4601 return; 4602 4603 LLVM_DEBUG( 4604 dbgs() << "The search space is too complex.\n" 4605 "Narrowing the search space by choosing the best Formula " 4606 "from the Formulae with the same Scale and ScaledReg.\n"); 4607 4608 // Map the "Scale * ScaledReg" pair to the best formula of current LSRUse. 4609 using BestFormulaeTy = DenseMap<std::pair<const SCEV *, int64_t>, size_t>; 4610 4611 BestFormulaeTy BestFormulae; 4612 #ifndef NDEBUG 4613 bool ChangedFormulae = false; 4614 #endif 4615 DenseSet<const SCEV *> VisitedRegs; 4616 SmallPtrSet<const SCEV *, 16> Regs; 4617 4618 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4619 LSRUse &LU = Uses[LUIdx]; 4620 LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); 4621 dbgs() << '\n'); 4622 4623 // Return true if Formula FA is better than Formula FB. 4624 auto IsBetterThan = [&](Formula &FA, Formula &FB) { 4625 // First we will try to choose the Formula with fewer new registers. 4626 // For a register used by current Formula, the more the register is 4627 // shared among LSRUses, the less we increase the register number 4628 // counter of the formula. 4629 size_t FARegNum = 0; 4630 for (const SCEV *Reg : FA.BaseRegs) { 4631 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg); 4632 FARegNum += (NumUses - UsedByIndices.count() + 1); 4633 } 4634 size_t FBRegNum = 0; 4635 for (const SCEV *Reg : FB.BaseRegs) { 4636 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg); 4637 FBRegNum += (NumUses - UsedByIndices.count() + 1); 4638 } 4639 if (FARegNum != FBRegNum) 4640 return FARegNum < FBRegNum; 4641 4642 // If the new register numbers are the same, choose the Formula with 4643 // less Cost. 4644 Cost CostFA(L, SE, TTI, AMK); 4645 Cost CostFB(L, SE, TTI, AMK); 4646 Regs.clear(); 4647 CostFA.RateFormula(FA, Regs, VisitedRegs, LU); 4648 Regs.clear(); 4649 CostFB.RateFormula(FB, Regs, VisitedRegs, LU); 4650 return CostFA.isLess(CostFB); 4651 }; 4652 4653 bool Any = false; 4654 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms; 4655 ++FIdx) { 4656 Formula &F = LU.Formulae[FIdx]; 4657 if (!F.ScaledReg) 4658 continue; 4659 auto P = BestFormulae.insert({{F.ScaledReg, F.Scale}, FIdx}); 4660 if (P.second) 4661 continue; 4662 4663 Formula &Best = LU.Formulae[P.first->second]; 4664 if (IsBetterThan(F, Best)) 4665 std::swap(F, Best); 4666 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 4667 dbgs() << "\n" 4668 " in favor of formula "; 4669 Best.print(dbgs()); dbgs() << '\n'); 4670 #ifndef NDEBUG 4671 ChangedFormulae = true; 4672 #endif 4673 LU.DeleteFormula(F); 4674 --FIdx; 4675 --NumForms; 4676 Any = true; 4677 } 4678 if (Any) 4679 LU.RecomputeRegs(LUIdx, RegUses); 4680 4681 // Reset this to prepare for the next use. 4682 BestFormulae.clear(); 4683 } 4684 4685 LLVM_DEBUG(if (ChangedFormulae) { 4686 dbgs() << "\n" 4687 "After filtering out undesirable candidates:\n"; 4688 print_uses(dbgs()); 4689 }); 4690 } 4691 4692 /// If we are over the complexity limit, filter out any post-inc prefering 4693 /// variables to only post-inc values. 4694 void LSRInstance::NarrowSearchSpaceByFilterPostInc() { 4695 if (AMK != TTI::AMK_PostIndexed) 4696 return; 4697 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4698 return; 4699 4700 LLVM_DEBUG(dbgs() << "The search space is too complex.\n" 4701 "Narrowing the search space by choosing the lowest " 4702 "register Formula for PostInc Uses.\n"); 4703 4704 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4705 LSRUse &LU = Uses[LUIdx]; 4706 4707 if (LU.Kind != LSRUse::Address) 4708 continue; 4709 if (!TTI.isIndexedLoadLegal(TTI.MIM_PostInc, LU.AccessTy.getType()) && 4710 !TTI.isIndexedStoreLegal(TTI.MIM_PostInc, LU.AccessTy.getType())) 4711 continue; 4712 4713 size_t MinRegs = std::numeric_limits<size_t>::max(); 4714 for (const Formula &F : LU.Formulae) 4715 MinRegs = std::min(F.getNumRegs(), MinRegs); 4716 4717 bool Any = false; 4718 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms; 4719 ++FIdx) { 4720 Formula &F = LU.Formulae[FIdx]; 4721 if (F.getNumRegs() > MinRegs) { 4722 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 4723 dbgs() << "\n"); 4724 LU.DeleteFormula(F); 4725 --FIdx; 4726 --NumForms; 4727 Any = true; 4728 } 4729 } 4730 if (Any) 4731 LU.RecomputeRegs(LUIdx, RegUses); 4732 4733 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4734 break; 4735 } 4736 4737 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4738 } 4739 4740 /// The function delete formulas with high registers number expectation. 4741 /// Assuming we don't know the value of each formula (already delete 4742 /// all inefficient), generate probability of not selecting for each 4743 /// register. 4744 /// For example, 4745 /// Use1: 4746 /// reg(a) + reg({0,+,1}) 4747 /// reg(a) + reg({-1,+,1}) + 1 4748 /// reg({a,+,1}) 4749 /// Use2: 4750 /// reg(b) + reg({0,+,1}) 4751 /// reg(b) + reg({-1,+,1}) + 1 4752 /// reg({b,+,1}) 4753 /// Use3: 4754 /// reg(c) + reg(b) + reg({0,+,1}) 4755 /// reg(c) + reg({b,+,1}) 4756 /// 4757 /// Probability of not selecting 4758 /// Use1 Use2 Use3 4759 /// reg(a) (1/3) * 1 * 1 4760 /// reg(b) 1 * (1/3) * (1/2) 4761 /// reg({0,+,1}) (2/3) * (2/3) * (1/2) 4762 /// reg({-1,+,1}) (2/3) * (2/3) * 1 4763 /// reg({a,+,1}) (2/3) * 1 * 1 4764 /// reg({b,+,1}) 1 * (2/3) * (2/3) 4765 /// reg(c) 1 * 1 * 0 4766 /// 4767 /// Now count registers number mathematical expectation for each formula: 4768 /// Note that for each use we exclude probability if not selecting for the use. 4769 /// For example for Use1 probability for reg(a) would be just 1 * 1 (excluding 4770 /// probabilty 1/3 of not selecting for Use1). 4771 /// Use1: 4772 /// reg(a) + reg({0,+,1}) 1 + 1/3 -- to be deleted 4773 /// reg(a) + reg({-1,+,1}) + 1 1 + 4/9 -- to be deleted 4774 /// reg({a,+,1}) 1 4775 /// Use2: 4776 /// reg(b) + reg({0,+,1}) 1/2 + 1/3 -- to be deleted 4777 /// reg(b) + reg({-1,+,1}) + 1 1/2 + 2/3 -- to be deleted 4778 /// reg({b,+,1}) 2/3 4779 /// Use3: 4780 /// reg(c) + reg(b) + reg({0,+,1}) 1 + 1/3 + 4/9 -- to be deleted 4781 /// reg(c) + reg({b,+,1}) 1 + 2/3 4782 void LSRInstance::NarrowSearchSpaceByDeletingCostlyFormulas() { 4783 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4784 return; 4785 // Ok, we have too many of formulae on our hands to conveniently handle. 4786 // Use a rough heuristic to thin out the list. 4787 4788 // Set of Regs wich will be 100% used in final solution. 4789 // Used in each formula of a solution (in example above this is reg(c)). 4790 // We can skip them in calculations. 4791 SmallPtrSet<const SCEV *, 4> UniqRegs; 4792 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4793 4794 // Map each register to probability of not selecting 4795 DenseMap <const SCEV *, float> RegNumMap; 4796 for (const SCEV *Reg : RegUses) { 4797 if (UniqRegs.count(Reg)) 4798 continue; 4799 float PNotSel = 1; 4800 for (const LSRUse &LU : Uses) { 4801 if (!LU.Regs.count(Reg)) 4802 continue; 4803 float P = LU.getNotSelectedProbability(Reg); 4804 if (P != 0.0) 4805 PNotSel *= P; 4806 else 4807 UniqRegs.insert(Reg); 4808 } 4809 RegNumMap.insert(std::make_pair(Reg, PNotSel)); 4810 } 4811 4812 LLVM_DEBUG( 4813 dbgs() << "Narrowing the search space by deleting costly formulas\n"); 4814 4815 // Delete formulas where registers number expectation is high. 4816 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4817 LSRUse &LU = Uses[LUIdx]; 4818 // If nothing to delete - continue. 4819 if (LU.Formulae.size() < 2) 4820 continue; 4821 // This is temporary solution to test performance. Float should be 4822 // replaced with round independent type (based on integers) to avoid 4823 // different results for different target builds. 4824 float FMinRegNum = LU.Formulae[0].getNumRegs(); 4825 float FMinARegNum = LU.Formulae[0].getNumRegs(); 4826 size_t MinIdx = 0; 4827 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4828 Formula &F = LU.Formulae[i]; 4829 float FRegNum = 0; 4830 float FARegNum = 0; 4831 for (const SCEV *BaseReg : F.BaseRegs) { 4832 if (UniqRegs.count(BaseReg)) 4833 continue; 4834 FRegNum += RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg); 4835 if (isa<SCEVAddRecExpr>(BaseReg)) 4836 FARegNum += 4837 RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg); 4838 } 4839 if (const SCEV *ScaledReg = F.ScaledReg) { 4840 if (!UniqRegs.count(ScaledReg)) { 4841 FRegNum += 4842 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg); 4843 if (isa<SCEVAddRecExpr>(ScaledReg)) 4844 FARegNum += 4845 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg); 4846 } 4847 } 4848 if (FMinRegNum > FRegNum || 4849 (FMinRegNum == FRegNum && FMinARegNum > FARegNum)) { 4850 FMinRegNum = FRegNum; 4851 FMinARegNum = FARegNum; 4852 MinIdx = i; 4853 } 4854 } 4855 LLVM_DEBUG(dbgs() << " The formula "; LU.Formulae[MinIdx].print(dbgs()); 4856 dbgs() << " with min reg num " << FMinRegNum << '\n'); 4857 if (MinIdx != 0) 4858 std::swap(LU.Formulae[MinIdx], LU.Formulae[0]); 4859 while (LU.Formulae.size() != 1) { 4860 LLVM_DEBUG(dbgs() << " Deleting "; LU.Formulae.back().print(dbgs()); 4861 dbgs() << '\n'); 4862 LU.Formulae.pop_back(); 4863 } 4864 LU.RecomputeRegs(LUIdx, RegUses); 4865 assert(LU.Formulae.size() == 1 && "Should be exactly 1 min regs formula"); 4866 Formula &F = LU.Formulae[0]; 4867 LLVM_DEBUG(dbgs() << " Leaving only "; F.print(dbgs()); dbgs() << '\n'); 4868 // When we choose the formula, the regs become unique. 4869 UniqRegs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 4870 if (F.ScaledReg) 4871 UniqRegs.insert(F.ScaledReg); 4872 } 4873 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4874 } 4875 4876 /// Pick a register which seems likely to be profitable, and then in any use 4877 /// which has any reference to that register, delete all formulae which do not 4878 /// reference that register. 4879 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() { 4880 // With all other options exhausted, loop until the system is simple 4881 // enough to handle. 4882 SmallPtrSet<const SCEV *, 4> Taken; 4883 while (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4884 // Ok, we have too many of formulae on our hands to conveniently handle. 4885 // Use a rough heuristic to thin out the list. 4886 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4887 4888 // Pick the register which is used by the most LSRUses, which is likely 4889 // to be a good reuse register candidate. 4890 const SCEV *Best = nullptr; 4891 unsigned BestNum = 0; 4892 for (const SCEV *Reg : RegUses) { 4893 if (Taken.count(Reg)) 4894 continue; 4895 if (!Best) { 4896 Best = Reg; 4897 BestNum = RegUses.getUsedByIndices(Reg).count(); 4898 } else { 4899 unsigned Count = RegUses.getUsedByIndices(Reg).count(); 4900 if (Count > BestNum) { 4901 Best = Reg; 4902 BestNum = Count; 4903 } 4904 } 4905 } 4906 assert(Best && "Failed to find best LSRUse candidate"); 4907 4908 LLVM_DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best 4909 << " will yield profitable reuse.\n"); 4910 Taken.insert(Best); 4911 4912 // In any use with formulae which references this register, delete formulae 4913 // which don't reference it. 4914 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4915 LSRUse &LU = Uses[LUIdx]; 4916 if (!LU.Regs.count(Best)) continue; 4917 4918 bool Any = false; 4919 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4920 Formula &F = LU.Formulae[i]; 4921 if (!F.referencesReg(Best)) { 4922 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4923 LU.DeleteFormula(F); 4924 --e; 4925 --i; 4926 Any = true; 4927 assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?"); 4928 continue; 4929 } 4930 } 4931 4932 if (Any) 4933 LU.RecomputeRegs(LUIdx, RegUses); 4934 } 4935 4936 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4937 } 4938 } 4939 4940 /// If there are an extraordinary number of formulae to choose from, use some 4941 /// rough heuristics to prune down the number of formulae. This keeps the main 4942 /// solver from taking an extraordinary amount of time in some worst-case 4943 /// scenarios. 4944 void LSRInstance::NarrowSearchSpaceUsingHeuristics() { 4945 NarrowSearchSpaceByDetectingSupersets(); 4946 NarrowSearchSpaceByCollapsingUnrolledCode(); 4947 NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 4948 if (FilterSameScaledReg) 4949 NarrowSearchSpaceByFilterFormulaWithSameScaledReg(); 4950 NarrowSearchSpaceByFilterPostInc(); 4951 if (LSRExpNarrow) 4952 NarrowSearchSpaceByDeletingCostlyFormulas(); 4953 else 4954 NarrowSearchSpaceByPickingWinnerRegs(); 4955 } 4956 4957 /// This is the recursive solver. 4958 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 4959 Cost &SolutionCost, 4960 SmallVectorImpl<const Formula *> &Workspace, 4961 const Cost &CurCost, 4962 const SmallPtrSet<const SCEV *, 16> &CurRegs, 4963 DenseSet<const SCEV *> &VisitedRegs) const { 4964 // Some ideas: 4965 // - prune more: 4966 // - use more aggressive filtering 4967 // - sort the formula so that the most profitable solutions are found first 4968 // - sort the uses too 4969 // - search faster: 4970 // - don't compute a cost, and then compare. compare while computing a cost 4971 // and bail early. 4972 // - track register sets with SmallBitVector 4973 4974 const LSRUse &LU = Uses[Workspace.size()]; 4975 4976 // If this use references any register that's already a part of the 4977 // in-progress solution, consider it a requirement that a formula must 4978 // reference that register in order to be considered. This prunes out 4979 // unprofitable searching. 4980 SmallSetVector<const SCEV *, 4> ReqRegs; 4981 for (const SCEV *S : CurRegs) 4982 if (LU.Regs.count(S)) 4983 ReqRegs.insert(S); 4984 4985 SmallPtrSet<const SCEV *, 16> NewRegs; 4986 Cost NewCost(L, SE, TTI, AMK); 4987 for (const Formula &F : LU.Formulae) { 4988 // Ignore formulae which may not be ideal in terms of register reuse of 4989 // ReqRegs. The formula should use all required registers before 4990 // introducing new ones. 4991 // This can sometimes (notably when trying to favour postinc) lead to 4992 // sub-optimial decisions. There it is best left to the cost modelling to 4993 // get correct. 4994 if (AMK != TTI::AMK_PostIndexed || LU.Kind != LSRUse::Address) { 4995 int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size()); 4996 for (const SCEV *Reg : ReqRegs) { 4997 if ((F.ScaledReg && F.ScaledReg == Reg) || 4998 is_contained(F.BaseRegs, Reg)) { 4999 --NumReqRegsToFind; 5000 if (NumReqRegsToFind == 0) 5001 break; 5002 } 5003 } 5004 if (NumReqRegsToFind != 0) { 5005 // If none of the formulae satisfied the required registers, then we could 5006 // clear ReqRegs and try again. Currently, we simply give up in this case. 5007 continue; 5008 } 5009 } 5010 5011 // Evaluate the cost of the current formula. If it's already worse than 5012 // the current best, prune the search at that point. 5013 NewCost = CurCost; 5014 NewRegs = CurRegs; 5015 NewCost.RateFormula(F, NewRegs, VisitedRegs, LU); 5016 if (NewCost.isLess(SolutionCost)) { 5017 Workspace.push_back(&F); 5018 if (Workspace.size() != Uses.size()) { 5019 SolveRecurse(Solution, SolutionCost, Workspace, NewCost, 5020 NewRegs, VisitedRegs); 5021 if (F.getNumRegs() == 1 && Workspace.size() == 1) 5022 VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]); 5023 } else { 5024 LLVM_DEBUG(dbgs() << "New best at "; NewCost.print(dbgs()); 5025 dbgs() << ".\nRegs:\n"; 5026 for (const SCEV *S : NewRegs) dbgs() 5027 << "- " << *S << "\n"; 5028 dbgs() << '\n'); 5029 5030 SolutionCost = NewCost; 5031 Solution = Workspace; 5032 } 5033 Workspace.pop_back(); 5034 } 5035 } 5036 } 5037 5038 /// Choose one formula from each use. Return the results in the given Solution 5039 /// vector. 5040 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const { 5041 SmallVector<const Formula *, 8> Workspace; 5042 Cost SolutionCost(L, SE, TTI, AMK); 5043 SolutionCost.Lose(); 5044 Cost CurCost(L, SE, TTI, AMK); 5045 SmallPtrSet<const SCEV *, 16> CurRegs; 5046 DenseSet<const SCEV *> VisitedRegs; 5047 Workspace.reserve(Uses.size()); 5048 5049 // SolveRecurse does all the work. 5050 SolveRecurse(Solution, SolutionCost, Workspace, CurCost, 5051 CurRegs, VisitedRegs); 5052 if (Solution.empty()) { 5053 LLVM_DEBUG(dbgs() << "\nNo Satisfactory Solution\n"); 5054 return; 5055 } 5056 5057 // Ok, we've now made all our decisions. 5058 LLVM_DEBUG(dbgs() << "\n" 5059 "The chosen solution requires "; 5060 SolutionCost.print(dbgs()); dbgs() << ":\n"; 5061 for (size_t i = 0, e = Uses.size(); i != e; ++i) { 5062 dbgs() << " "; 5063 Uses[i].print(dbgs()); 5064 dbgs() << "\n" 5065 " "; 5066 Solution[i]->print(dbgs()); 5067 dbgs() << '\n'; 5068 }); 5069 5070 assert(Solution.size() == Uses.size() && "Malformed solution!"); 5071 } 5072 5073 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as 5074 /// we can go while still being dominated by the input positions. This helps 5075 /// canonicalize the insert position, which encourages sharing. 5076 BasicBlock::iterator 5077 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP, 5078 const SmallVectorImpl<Instruction *> &Inputs) 5079 const { 5080 Instruction *Tentative = &*IP; 5081 while (true) { 5082 bool AllDominate = true; 5083 Instruction *BetterPos = nullptr; 5084 // Don't bother attempting to insert before a catchswitch, their basic block 5085 // cannot have other non-PHI instructions. 5086 if (isa<CatchSwitchInst>(Tentative)) 5087 return IP; 5088 5089 for (Instruction *Inst : Inputs) { 5090 if (Inst == Tentative || !DT.dominates(Inst, Tentative)) { 5091 AllDominate = false; 5092 break; 5093 } 5094 // Attempt to find an insert position in the middle of the block, 5095 // instead of at the end, so that it can be used for other expansions. 5096 if (Tentative->getParent() == Inst->getParent() && 5097 (!BetterPos || !DT.dominates(Inst, BetterPos))) 5098 BetterPos = &*std::next(BasicBlock::iterator(Inst)); 5099 } 5100 if (!AllDominate) 5101 break; 5102 if (BetterPos) 5103 IP = BetterPos->getIterator(); 5104 else 5105 IP = Tentative->getIterator(); 5106 5107 const Loop *IPLoop = LI.getLoopFor(IP->getParent()); 5108 unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0; 5109 5110 BasicBlock *IDom; 5111 for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) { 5112 if (!Rung) return IP; 5113 Rung = Rung->getIDom(); 5114 if (!Rung) return IP; 5115 IDom = Rung->getBlock(); 5116 5117 // Don't climb into a loop though. 5118 const Loop *IDomLoop = LI.getLoopFor(IDom); 5119 unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0; 5120 if (IDomDepth <= IPLoopDepth && 5121 (IDomDepth != IPLoopDepth || IDomLoop == IPLoop)) 5122 break; 5123 } 5124 5125 Tentative = IDom->getTerminator(); 5126 } 5127 5128 return IP; 5129 } 5130 5131 /// Determine an input position which will be dominated by the operands and 5132 /// which will dominate the result. 5133 BasicBlock::iterator 5134 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP, 5135 const LSRFixup &LF, 5136 const LSRUse &LU, 5137 SCEVExpander &Rewriter) const { 5138 // Collect some instructions which must be dominated by the 5139 // expanding replacement. These must be dominated by any operands that 5140 // will be required in the expansion. 5141 SmallVector<Instruction *, 4> Inputs; 5142 if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace)) 5143 Inputs.push_back(I); 5144 if (LU.Kind == LSRUse::ICmpZero) 5145 if (Instruction *I = 5146 dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1))) 5147 Inputs.push_back(I); 5148 if (LF.PostIncLoops.count(L)) { 5149 if (LF.isUseFullyOutsideLoop(L)) 5150 Inputs.push_back(L->getLoopLatch()->getTerminator()); 5151 else 5152 Inputs.push_back(IVIncInsertPos); 5153 } 5154 // The expansion must also be dominated by the increment positions of any 5155 // loops it for which it is using post-inc mode. 5156 for (const Loop *PIL : LF.PostIncLoops) { 5157 if (PIL == L) continue; 5158 5159 // Be dominated by the loop exit. 5160 SmallVector<BasicBlock *, 4> ExitingBlocks; 5161 PIL->getExitingBlocks(ExitingBlocks); 5162 if (!ExitingBlocks.empty()) { 5163 BasicBlock *BB = ExitingBlocks[0]; 5164 for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i) 5165 BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]); 5166 Inputs.push_back(BB->getTerminator()); 5167 } 5168 } 5169 5170 assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad() 5171 && !isa<DbgInfoIntrinsic>(LowestIP) && 5172 "Insertion point must be a normal instruction"); 5173 5174 // Then, climb up the immediate dominator tree as far as we can go while 5175 // still being dominated by the input positions. 5176 BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs); 5177 5178 // Don't insert instructions before PHI nodes. 5179 while (isa<PHINode>(IP)) ++IP; 5180 5181 // Ignore landingpad instructions. 5182 while (IP->isEHPad()) ++IP; 5183 5184 // Ignore debug intrinsics. 5185 while (isa<DbgInfoIntrinsic>(IP)) ++IP; 5186 5187 // Set IP below instructions recently inserted by SCEVExpander. This keeps the 5188 // IP consistent across expansions and allows the previously inserted 5189 // instructions to be reused by subsequent expansion. 5190 while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP) 5191 ++IP; 5192 5193 return IP; 5194 } 5195 5196 /// Emit instructions for the leading candidate expression for this LSRUse (this 5197 /// is called "expanding"). 5198 Value *LSRInstance::Expand(const LSRUse &LU, const LSRFixup &LF, 5199 const Formula &F, BasicBlock::iterator IP, 5200 SCEVExpander &Rewriter, 5201 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5202 if (LU.RigidFormula) 5203 return LF.OperandValToReplace; 5204 5205 // Determine an input position which will be dominated by the operands and 5206 // which will dominate the result. 5207 IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter); 5208 Rewriter.setInsertPoint(&*IP); 5209 5210 // Inform the Rewriter if we have a post-increment use, so that it can 5211 // perform an advantageous expansion. 5212 Rewriter.setPostInc(LF.PostIncLoops); 5213 5214 // This is the type that the user actually needs. 5215 Type *OpTy = LF.OperandValToReplace->getType(); 5216 // This will be the type that we'll initially expand to. 5217 Type *Ty = F.getType(); 5218 if (!Ty) 5219 // No type known; just expand directly to the ultimate type. 5220 Ty = OpTy; 5221 else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy)) 5222 // Expand directly to the ultimate type if it's the right size. 5223 Ty = OpTy; 5224 // This is the type to do integer arithmetic in. 5225 Type *IntTy = SE.getEffectiveSCEVType(Ty); 5226 5227 // Build up a list of operands to add together to form the full base. 5228 SmallVector<const SCEV *, 8> Ops; 5229 5230 // Expand the BaseRegs portion. 5231 for (const SCEV *Reg : F.BaseRegs) { 5232 assert(!Reg->isZero() && "Zero allocated in a base register!"); 5233 5234 // If we're expanding for a post-inc user, make the post-inc adjustment. 5235 Reg = denormalizeForPostIncUse(Reg, LF.PostIncLoops, SE); 5236 Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr))); 5237 } 5238 5239 // Expand the ScaledReg portion. 5240 Value *ICmpScaledV = nullptr; 5241 if (F.Scale != 0) { 5242 const SCEV *ScaledS = F.ScaledReg; 5243 5244 // If we're expanding for a post-inc user, make the post-inc adjustment. 5245 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 5246 ScaledS = denormalizeForPostIncUse(ScaledS, Loops, SE); 5247 5248 if (LU.Kind == LSRUse::ICmpZero) { 5249 // Expand ScaleReg as if it was part of the base regs. 5250 if (F.Scale == 1) 5251 Ops.push_back( 5252 SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr))); 5253 else { 5254 // An interesting way of "folding" with an icmp is to use a negated 5255 // scale, which we'll implement by inserting it into the other operand 5256 // of the icmp. 5257 assert(F.Scale == -1 && 5258 "The only scale supported by ICmpZero uses is -1!"); 5259 ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr); 5260 } 5261 } else { 5262 // Otherwise just expand the scaled register and an explicit scale, 5263 // which is expected to be matched as part of the address. 5264 5265 // Flush the operand list to suppress SCEVExpander hoisting address modes. 5266 // Unless the addressing mode will not be folded. 5267 if (!Ops.empty() && LU.Kind == LSRUse::Address && 5268 isAMCompletelyFolded(TTI, LU, F)) { 5269 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), nullptr); 5270 Ops.clear(); 5271 Ops.push_back(SE.getUnknown(FullV)); 5272 } 5273 ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)); 5274 if (F.Scale != 1) 5275 ScaledS = 5276 SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale)); 5277 Ops.push_back(ScaledS); 5278 } 5279 } 5280 5281 // Expand the GV portion. 5282 if (F.BaseGV) { 5283 // Flush the operand list to suppress SCEVExpander hoisting. 5284 if (!Ops.empty()) { 5285 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 5286 Ops.clear(); 5287 Ops.push_back(SE.getUnknown(FullV)); 5288 } 5289 Ops.push_back(SE.getUnknown(F.BaseGV)); 5290 } 5291 5292 // Flush the operand list to suppress SCEVExpander hoisting of both folded and 5293 // unfolded offsets. LSR assumes they both live next to their uses. 5294 if (!Ops.empty()) { 5295 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 5296 Ops.clear(); 5297 Ops.push_back(SE.getUnknown(FullV)); 5298 } 5299 5300 // Expand the immediate portion. 5301 int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset; 5302 if (Offset != 0) { 5303 if (LU.Kind == LSRUse::ICmpZero) { 5304 // The other interesting way of "folding" with an ICmpZero is to use a 5305 // negated immediate. 5306 if (!ICmpScaledV) 5307 ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset); 5308 else { 5309 Ops.push_back(SE.getUnknown(ICmpScaledV)); 5310 ICmpScaledV = ConstantInt::get(IntTy, Offset); 5311 } 5312 } else { 5313 // Just add the immediate values. These again are expected to be matched 5314 // as part of the address. 5315 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset))); 5316 } 5317 } 5318 5319 // Expand the unfolded offset portion. 5320 int64_t UnfoldedOffset = F.UnfoldedOffset; 5321 if (UnfoldedOffset != 0) { 5322 // Just add the immediate values. 5323 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, 5324 UnfoldedOffset))); 5325 } 5326 5327 // Emit instructions summing all the operands. 5328 const SCEV *FullS = Ops.empty() ? 5329 SE.getConstant(IntTy, 0) : 5330 SE.getAddExpr(Ops); 5331 Value *FullV = Rewriter.expandCodeFor(FullS, Ty); 5332 5333 // We're done expanding now, so reset the rewriter. 5334 Rewriter.clearPostInc(); 5335 5336 // An ICmpZero Formula represents an ICmp which we're handling as a 5337 // comparison against zero. Now that we've expanded an expression for that 5338 // form, update the ICmp's other operand. 5339 if (LU.Kind == LSRUse::ICmpZero) { 5340 ICmpInst *CI = cast<ICmpInst>(LF.UserInst); 5341 if (auto *OperandIsInstr = dyn_cast<Instruction>(CI->getOperand(1))) 5342 DeadInsts.emplace_back(OperandIsInstr); 5343 assert(!F.BaseGV && "ICmp does not support folding a global value and " 5344 "a scale at the same time!"); 5345 if (F.Scale == -1) { 5346 if (ICmpScaledV->getType() != OpTy) { 5347 Instruction *Cast = 5348 CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false, 5349 OpTy, false), 5350 ICmpScaledV, OpTy, "tmp", CI); 5351 ICmpScaledV = Cast; 5352 } 5353 CI->setOperand(1, ICmpScaledV); 5354 } else { 5355 // A scale of 1 means that the scale has been expanded as part of the 5356 // base regs. 5357 assert((F.Scale == 0 || F.Scale == 1) && 5358 "ICmp does not support folding a global value and " 5359 "a scale at the same time!"); 5360 Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy), 5361 -(uint64_t)Offset); 5362 if (C->getType() != OpTy) 5363 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 5364 OpTy, false), 5365 C, OpTy); 5366 5367 CI->setOperand(1, C); 5368 } 5369 } 5370 5371 return FullV; 5372 } 5373 5374 /// Helper for Rewrite. PHI nodes are special because the use of their operands 5375 /// effectively happens in their predecessor blocks, so the expression may need 5376 /// to be expanded in multiple places. 5377 void LSRInstance::RewriteForPHI( 5378 PHINode *PN, const LSRUse &LU, const LSRFixup &LF, const Formula &F, 5379 SCEVExpander &Rewriter, SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5380 DenseMap<BasicBlock *, Value *> Inserted; 5381 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 5382 if (PN->getIncomingValue(i) == LF.OperandValToReplace) { 5383 bool needUpdateFixups = false; 5384 BasicBlock *BB = PN->getIncomingBlock(i); 5385 5386 // If this is a critical edge, split the edge so that we do not insert 5387 // the code on all predecessor/successor paths. We do this unless this 5388 // is the canonical backedge for this loop, which complicates post-inc 5389 // users. 5390 if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 && 5391 !isa<IndirectBrInst>(BB->getTerminator()) && 5392 !isa<CatchSwitchInst>(BB->getTerminator())) { 5393 BasicBlock *Parent = PN->getParent(); 5394 Loop *PNLoop = LI.getLoopFor(Parent); 5395 if (!PNLoop || Parent != PNLoop->getHeader()) { 5396 // Split the critical edge. 5397 BasicBlock *NewBB = nullptr; 5398 if (!Parent->isLandingPad()) { 5399 NewBB = 5400 SplitCriticalEdge(BB, Parent, 5401 CriticalEdgeSplittingOptions(&DT, &LI, MSSAU) 5402 .setMergeIdenticalEdges() 5403 .setKeepOneInputPHIs()); 5404 } else { 5405 SmallVector<BasicBlock*, 2> NewBBs; 5406 SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI); 5407 NewBB = NewBBs[0]; 5408 } 5409 // If NewBB==NULL, then SplitCriticalEdge refused to split because all 5410 // phi predecessors are identical. The simple thing to do is skip 5411 // splitting in this case rather than complicate the API. 5412 if (NewBB) { 5413 // If PN is outside of the loop and BB is in the loop, we want to 5414 // move the block to be immediately before the PHI block, not 5415 // immediately after BB. 5416 if (L->contains(BB) && !L->contains(PN)) 5417 NewBB->moveBefore(PN->getParent()); 5418 5419 // Splitting the edge can reduce the number of PHI entries we have. 5420 e = PN->getNumIncomingValues(); 5421 BB = NewBB; 5422 i = PN->getBasicBlockIndex(BB); 5423 5424 needUpdateFixups = true; 5425 } 5426 } 5427 } 5428 5429 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair = 5430 Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr))); 5431 if (!Pair.second) 5432 PN->setIncomingValue(i, Pair.first->second); 5433 else { 5434 Value *FullV = Expand(LU, LF, F, BB->getTerminator()->getIterator(), 5435 Rewriter, DeadInsts); 5436 5437 // If this is reuse-by-noop-cast, insert the noop cast. 5438 Type *OpTy = LF.OperandValToReplace->getType(); 5439 if (FullV->getType() != OpTy) 5440 FullV = 5441 CastInst::Create(CastInst::getCastOpcode(FullV, false, 5442 OpTy, false), 5443 FullV, LF.OperandValToReplace->getType(), 5444 "tmp", BB->getTerminator()); 5445 5446 PN->setIncomingValue(i, FullV); 5447 Pair.first->second = FullV; 5448 } 5449 5450 // If LSR splits critical edge and phi node has other pending 5451 // fixup operands, we need to update those pending fixups. Otherwise 5452 // formulae will not be implemented completely and some instructions 5453 // will not be eliminated. 5454 if (needUpdateFixups) { 5455 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) 5456 for (LSRFixup &Fixup : Uses[LUIdx].Fixups) 5457 // If fixup is supposed to rewrite some operand in the phi 5458 // that was just updated, it may be already moved to 5459 // another phi node. Such fixup requires update. 5460 if (Fixup.UserInst == PN) { 5461 // Check if the operand we try to replace still exists in the 5462 // original phi. 5463 bool foundInOriginalPHI = false; 5464 for (const auto &val : PN->incoming_values()) 5465 if (val == Fixup.OperandValToReplace) { 5466 foundInOriginalPHI = true; 5467 break; 5468 } 5469 5470 // If fixup operand found in original PHI - nothing to do. 5471 if (foundInOriginalPHI) 5472 continue; 5473 5474 // Otherwise it might be moved to another PHI and requires update. 5475 // If fixup operand not found in any of the incoming blocks that 5476 // means we have already rewritten it - nothing to do. 5477 for (const auto &Block : PN->blocks()) 5478 for (BasicBlock::iterator I = Block->begin(); isa<PHINode>(I); 5479 ++I) { 5480 PHINode *NewPN = cast<PHINode>(I); 5481 for (const auto &val : NewPN->incoming_values()) 5482 if (val == Fixup.OperandValToReplace) 5483 Fixup.UserInst = NewPN; 5484 } 5485 } 5486 } 5487 } 5488 } 5489 5490 /// Emit instructions for the leading candidate expression for this LSRUse (this 5491 /// is called "expanding"), and update the UserInst to reference the newly 5492 /// expanded value. 5493 void LSRInstance::Rewrite(const LSRUse &LU, const LSRFixup &LF, 5494 const Formula &F, SCEVExpander &Rewriter, 5495 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5496 // First, find an insertion point that dominates UserInst. For PHI nodes, 5497 // find the nearest block which dominates all the relevant uses. 5498 if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) { 5499 RewriteForPHI(PN, LU, LF, F, Rewriter, DeadInsts); 5500 } else { 5501 Value *FullV = 5502 Expand(LU, LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts); 5503 5504 // If this is reuse-by-noop-cast, insert the noop cast. 5505 Type *OpTy = LF.OperandValToReplace->getType(); 5506 if (FullV->getType() != OpTy) { 5507 Instruction *Cast = 5508 CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false), 5509 FullV, OpTy, "tmp", LF.UserInst); 5510 FullV = Cast; 5511 } 5512 5513 // Update the user. ICmpZero is handled specially here (for now) because 5514 // Expand may have updated one of the operands of the icmp already, and 5515 // its new value may happen to be equal to LF.OperandValToReplace, in 5516 // which case doing replaceUsesOfWith leads to replacing both operands 5517 // with the same value. TODO: Reorganize this. 5518 if (LU.Kind == LSRUse::ICmpZero) 5519 LF.UserInst->setOperand(0, FullV); 5520 else 5521 LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV); 5522 } 5523 5524 if (auto *OperandIsInstr = dyn_cast<Instruction>(LF.OperandValToReplace)) 5525 DeadInsts.emplace_back(OperandIsInstr); 5526 } 5527 5528 /// Rewrite all the fixup locations with new values, following the chosen 5529 /// solution. 5530 void LSRInstance::ImplementSolution( 5531 const SmallVectorImpl<const Formula *> &Solution) { 5532 // Keep track of instructions we may have made dead, so that 5533 // we can remove them after we are done working. 5534 SmallVector<WeakTrackingVH, 16> DeadInsts; 5535 5536 SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(), "lsr", 5537 false); 5538 #ifndef NDEBUG 5539 Rewriter.setDebugType(DEBUG_TYPE); 5540 #endif 5541 Rewriter.disableCanonicalMode(); 5542 Rewriter.enableLSRMode(); 5543 Rewriter.setIVIncInsertPos(L, IVIncInsertPos); 5544 5545 // Mark phi nodes that terminate chains so the expander tries to reuse them. 5546 for (const IVChain &Chain : IVChainVec) { 5547 if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst())) 5548 Rewriter.setChainedPhi(PN); 5549 } 5550 5551 // Expand the new value definitions and update the users. 5552 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) 5553 for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) { 5554 Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], Rewriter, DeadInsts); 5555 Changed = true; 5556 } 5557 5558 for (const IVChain &Chain : IVChainVec) { 5559 GenerateIVChain(Chain, Rewriter, DeadInsts); 5560 Changed = true; 5561 } 5562 // Clean up after ourselves. This must be done before deleting any 5563 // instructions. 5564 Rewriter.clear(); 5565 5566 Changed |= RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts, 5567 &TLI, MSSAU); 5568 5569 // In our cost analysis above, we assume that each addrec consumes exactly 5570 // one register, and arrange to have increments inserted just before the 5571 // latch to maximimize the chance this is true. However, if we reused 5572 // existing IVs, we now need to move the increments to match our 5573 // expectations. Otherwise, our cost modeling results in us having a 5574 // chosen a non-optimal result for the actual schedule. (And yes, this 5575 // scheduling decision does impact later codegen.) 5576 for (PHINode &PN : L->getHeader()->phis()) { 5577 BinaryOperator *BO = nullptr; 5578 Value *Start = nullptr, *Step = nullptr; 5579 if (!matchSimpleRecurrence(&PN, BO, Start, Step)) 5580 continue; 5581 5582 switch (BO->getOpcode()) { 5583 case Instruction::Sub: 5584 if (BO->getOperand(0) != &PN) 5585 // sub is non-commutative - match handling elsewhere in LSR 5586 continue; 5587 break; 5588 case Instruction::Add: 5589 break; 5590 default: 5591 continue; 5592 }; 5593 5594 if (!isa<Constant>(Step)) 5595 // If not a constant step, might increase register pressure 5596 // (We assume constants have been canonicalized to RHS) 5597 continue; 5598 5599 if (BO->getParent() == IVIncInsertPos->getParent()) 5600 // Only bother moving across blocks. Isel can handle block local case. 5601 continue; 5602 5603 // Can we legally schedule inc at the desired point? 5604 if (!llvm::all_of(BO->uses(), 5605 [&](Use &U) {return DT.dominates(IVIncInsertPos, U);})) 5606 continue; 5607 BO->moveBefore(IVIncInsertPos); 5608 Changed = true; 5609 } 5610 5611 5612 } 5613 5614 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, 5615 DominatorTree &DT, LoopInfo &LI, 5616 const TargetTransformInfo &TTI, AssumptionCache &AC, 5617 TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU) 5618 : IU(IU), SE(SE), DT(DT), LI(LI), AC(AC), TLI(TLI), TTI(TTI), L(L), 5619 MSSAU(MSSAU), AMK(PreferredAddresingMode.getNumOccurrences() > 0 ? 5620 PreferredAddresingMode : TTI.getPreferredAddressingMode(L, &SE)) { 5621 // If LoopSimplify form is not available, stay out of trouble. 5622 if (!L->isLoopSimplifyForm()) 5623 return; 5624 5625 // If there's no interesting work to be done, bail early. 5626 if (IU.empty()) return; 5627 5628 // If there's too much analysis to be done, bail early. We won't be able to 5629 // model the problem anyway. 5630 unsigned NumUsers = 0; 5631 for (const IVStrideUse &U : IU) { 5632 if (++NumUsers > MaxIVUsers) { 5633 (void)U; 5634 LLVM_DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U 5635 << "\n"); 5636 return; 5637 } 5638 // Bail out if we have a PHI on an EHPad that gets a value from a 5639 // CatchSwitchInst. Because the CatchSwitchInst cannot be split, there is 5640 // no good place to stick any instructions. 5641 if (auto *PN = dyn_cast<PHINode>(U.getUser())) { 5642 auto *FirstNonPHI = PN->getParent()->getFirstNonPHI(); 5643 if (isa<FuncletPadInst>(FirstNonPHI) || 5644 isa<CatchSwitchInst>(FirstNonPHI)) 5645 for (BasicBlock *PredBB : PN->blocks()) 5646 if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI())) 5647 return; 5648 } 5649 } 5650 5651 #ifndef NDEBUG 5652 // All dominating loops must have preheaders, or SCEVExpander may not be able 5653 // to materialize an AddRecExpr whose Start is an outer AddRecExpr. 5654 // 5655 // IVUsers analysis should only create users that are dominated by simple loop 5656 // headers. Since this loop should dominate all of its users, its user list 5657 // should be empty if this loop itself is not within a simple loop nest. 5658 for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader()); 5659 Rung; Rung = Rung->getIDom()) { 5660 BasicBlock *BB = Rung->getBlock(); 5661 const Loop *DomLoop = LI.getLoopFor(BB); 5662 if (DomLoop && DomLoop->getHeader() == BB) { 5663 assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest"); 5664 } 5665 } 5666 #endif // DEBUG 5667 5668 LLVM_DEBUG(dbgs() << "\nLSR on loop "; 5669 L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false); 5670 dbgs() << ":\n"); 5671 5672 // First, perform some low-level loop optimizations. 5673 OptimizeShadowIV(); 5674 OptimizeLoopTermCond(); 5675 5676 // If loop preparation eliminates all interesting IV users, bail. 5677 if (IU.empty()) return; 5678 5679 // Skip nested loops until we can model them better with formulae. 5680 if (!L->isInnermost()) { 5681 LLVM_DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n"); 5682 return; 5683 } 5684 5685 // Start collecting data and preparing for the solver. 5686 // If number of registers is not the major cost, we cannot benefit from the 5687 // current profitable chain optimization which is based on number of 5688 // registers. 5689 // FIXME: add profitable chain optimization for other kinds major cost, for 5690 // example number of instructions. 5691 if (TTI.isNumRegsMajorCostOfLSR() || StressIVChain) 5692 CollectChains(); 5693 CollectInterestingTypesAndFactors(); 5694 CollectFixupsAndInitialFormulae(); 5695 CollectLoopInvariantFixupsAndFormulae(); 5696 5697 if (Uses.empty()) 5698 return; 5699 5700 LLVM_DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n"; 5701 print_uses(dbgs())); 5702 5703 // Now use the reuse data to generate a bunch of interesting ways 5704 // to formulate the values needed for the uses. 5705 GenerateAllReuseFormulae(); 5706 5707 FilterOutUndesirableDedicatedRegisters(); 5708 NarrowSearchSpaceUsingHeuristics(); 5709 5710 SmallVector<const Formula *, 8> Solution; 5711 Solve(Solution); 5712 5713 // Release memory that is no longer needed. 5714 Factors.clear(); 5715 Types.clear(); 5716 RegUses.clear(); 5717 5718 if (Solution.empty()) 5719 return; 5720 5721 #ifndef NDEBUG 5722 // Formulae should be legal. 5723 for (const LSRUse &LU : Uses) { 5724 for (const Formula &F : LU.Formulae) 5725 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 5726 F) && "Illegal formula generated!"); 5727 }; 5728 #endif 5729 5730 // Now that we've decided what we want, make it so. 5731 ImplementSolution(Solution); 5732 } 5733 5734 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 5735 void LSRInstance::print_factors_and_types(raw_ostream &OS) const { 5736 if (Factors.empty() && Types.empty()) return; 5737 5738 OS << "LSR has identified the following interesting factors and types: "; 5739 bool First = true; 5740 5741 for (int64_t Factor : Factors) { 5742 if (!First) OS << ", "; 5743 First = false; 5744 OS << '*' << Factor; 5745 } 5746 5747 for (Type *Ty : Types) { 5748 if (!First) OS << ", "; 5749 First = false; 5750 OS << '(' << *Ty << ')'; 5751 } 5752 OS << '\n'; 5753 } 5754 5755 void LSRInstance::print_fixups(raw_ostream &OS) const { 5756 OS << "LSR is examining the following fixup sites:\n"; 5757 for (const LSRUse &LU : Uses) 5758 for (const LSRFixup &LF : LU.Fixups) { 5759 dbgs() << " "; 5760 LF.print(OS); 5761 OS << '\n'; 5762 } 5763 } 5764 5765 void LSRInstance::print_uses(raw_ostream &OS) const { 5766 OS << "LSR is examining the following uses:\n"; 5767 for (const LSRUse &LU : Uses) { 5768 dbgs() << " "; 5769 LU.print(OS); 5770 OS << '\n'; 5771 for (const Formula &F : LU.Formulae) { 5772 OS << " "; 5773 F.print(OS); 5774 OS << '\n'; 5775 } 5776 } 5777 } 5778 5779 void LSRInstance::print(raw_ostream &OS) const { 5780 print_factors_and_types(OS); 5781 print_fixups(OS); 5782 print_uses(OS); 5783 } 5784 5785 LLVM_DUMP_METHOD void LSRInstance::dump() const { 5786 print(errs()); errs() << '\n'; 5787 } 5788 #endif 5789 5790 namespace { 5791 5792 class LoopStrengthReduce : public LoopPass { 5793 public: 5794 static char ID; // Pass ID, replacement for typeid 5795 5796 LoopStrengthReduce(); 5797 5798 private: 5799 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 5800 void getAnalysisUsage(AnalysisUsage &AU) const override; 5801 }; 5802 5803 } // end anonymous namespace 5804 5805 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) { 5806 initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry()); 5807 } 5808 5809 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const { 5810 // We split critical edges, so we change the CFG. However, we do update 5811 // many analyses if they are around. 5812 AU.addPreservedID(LoopSimplifyID); 5813 5814 AU.addRequired<LoopInfoWrapperPass>(); 5815 AU.addPreserved<LoopInfoWrapperPass>(); 5816 AU.addRequiredID(LoopSimplifyID); 5817 AU.addRequired<DominatorTreeWrapperPass>(); 5818 AU.addPreserved<DominatorTreeWrapperPass>(); 5819 AU.addRequired<ScalarEvolutionWrapperPass>(); 5820 AU.addPreserved<ScalarEvolutionWrapperPass>(); 5821 AU.addRequired<AssumptionCacheTracker>(); 5822 AU.addRequired<TargetLibraryInfoWrapperPass>(); 5823 // Requiring LoopSimplify a second time here prevents IVUsers from running 5824 // twice, since LoopSimplify was invalidated by running ScalarEvolution. 5825 AU.addRequiredID(LoopSimplifyID); 5826 AU.addRequired<IVUsersWrapperPass>(); 5827 AU.addPreserved<IVUsersWrapperPass>(); 5828 AU.addRequired<TargetTransformInfoWrapperPass>(); 5829 AU.addPreserved<MemorySSAWrapperPass>(); 5830 } 5831 5832 using EqualValues = SmallVector<std::tuple<WeakVH, int64_t>, 4>; 5833 using EqualValuesMap = 5834 DenseMap<DbgValueInst *, SmallVector<std::pair<unsigned, EqualValues>>>; 5835 using LocationMap = 5836 DenseMap<DbgValueInst *, std::pair<DIExpression *, Metadata *>>; 5837 5838 static void DbgGatherEqualValues(Loop *L, ScalarEvolution &SE, 5839 EqualValuesMap &DbgValueToEqualSet, 5840 LocationMap &DbgValueToLocation) { 5841 for (auto &B : L->getBlocks()) { 5842 for (auto &I : *B) { 5843 auto DVI = dyn_cast<DbgValueInst>(&I); 5844 if (!DVI) 5845 continue; 5846 for (unsigned Idx = 0; Idx < DVI->getNumVariableLocationOps(); ++Idx) { 5847 // TODO: We can duplicate results if the same arg appears more than 5848 // once. 5849 Value *V = DVI->getVariableLocationOp(Idx); 5850 if (!V || !SE.isSCEVable(V->getType())) 5851 continue; 5852 auto DbgValueSCEV = SE.getSCEV(V); 5853 EqualValues EqSet; 5854 for (PHINode &Phi : L->getHeader()->phis()) { 5855 if (V->getType() != Phi.getType()) 5856 continue; 5857 if (!SE.isSCEVable(Phi.getType())) 5858 continue; 5859 auto PhiSCEV = SE.getSCEV(&Phi); 5860 Optional<APInt> Offset = 5861 SE.computeConstantDifference(DbgValueSCEV, PhiSCEV); 5862 if (Offset && Offset->getMinSignedBits() <= 64) 5863 EqSet.emplace_back( 5864 std::make_tuple(&Phi, Offset.getValue().getSExtValue())); 5865 } 5866 DbgValueToEqualSet[DVI].push_back({Idx, std::move(EqSet)}); 5867 // If we fall back to using this raw location, at least one location op 5868 // must be dead. A DIArgList will automatically undef arguments when 5869 // they become unavailable, but a ValueAsMetadata will not; since we 5870 // know the value should be undef, we use the undef value directly here. 5871 Metadata *RawLocation = 5872 DVI->hasArgList() ? DVI->getRawLocation() 5873 : ValueAsMetadata::get(UndefValue::get( 5874 DVI->getVariableLocationOp(0)->getType())); 5875 DbgValueToLocation[DVI] = {DVI->getExpression(), RawLocation}; 5876 } 5877 } 5878 } 5879 } 5880 5881 static void DbgApplyEqualValues(EqualValuesMap &DbgValueToEqualSet, 5882 LocationMap &DbgValueToLocation) { 5883 for (auto A : DbgValueToEqualSet) { 5884 auto *DVI = A.first; 5885 // Only update those that are now undef. 5886 if (!DVI->isUndef()) 5887 continue; 5888 // The dbg.value may have had its value or expression changed during LSR by 5889 // a failed salvage attempt; refresh them from the map. 5890 auto *DbgDIExpr = DbgValueToLocation[DVI].first; 5891 DVI->setRawLocation(DbgValueToLocation[DVI].second); 5892 DVI->setExpression(DbgDIExpr); 5893 assert(DVI->isUndef() && "dbg.value with non-undef location should not " 5894 "have been modified by LSR."); 5895 for (auto IdxEV : A.second) { 5896 unsigned Idx = IdxEV.first; 5897 for (auto EV : IdxEV.second) { 5898 auto EVHandle = std::get<WeakVH>(EV); 5899 if (!EVHandle) 5900 continue; 5901 int64_t Offset = std::get<int64_t>(EV); 5902 DVI->replaceVariableLocationOp(Idx, EVHandle); 5903 if (Offset) { 5904 SmallVector<uint64_t, 8> Ops; 5905 DIExpression::appendOffset(Ops, Offset); 5906 DbgDIExpr = DIExpression::appendOpsToArg(DbgDIExpr, Ops, Idx, true); 5907 } 5908 DVI->setExpression(DbgDIExpr); 5909 break; 5910 } 5911 } 5912 } 5913 } 5914 5915 static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE, 5916 DominatorTree &DT, LoopInfo &LI, 5917 const TargetTransformInfo &TTI, 5918 AssumptionCache &AC, TargetLibraryInfo &TLI, 5919 MemorySSA *MSSA) { 5920 5921 bool Changed = false; 5922 std::unique_ptr<MemorySSAUpdater> MSSAU; 5923 if (MSSA) 5924 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 5925 5926 // Run the main LSR transformation. 5927 Changed |= 5928 LSRInstance(L, IU, SE, DT, LI, TTI, AC, TLI, MSSAU.get()).getChanged(); 5929 5930 // Debug preservation - before we start removing anything create equivalence 5931 // sets for the llvm.dbg.value intrinsics. 5932 EqualValuesMap DbgValueToEqualSet; 5933 LocationMap DbgValueToLocation; 5934 DbgGatherEqualValues(L, SE, DbgValueToEqualSet, DbgValueToLocation); 5935 5936 // Remove any extra phis created by processing inner loops. 5937 Changed |= DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get()); 5938 if (EnablePhiElim && L->isLoopSimplifyForm()) { 5939 SmallVector<WeakTrackingVH, 16> DeadInsts; 5940 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 5941 SCEVExpander Rewriter(SE, DL, "lsr", false); 5942 #ifndef NDEBUG 5943 Rewriter.setDebugType(DEBUG_TYPE); 5944 #endif 5945 unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI); 5946 if (numFolded) { 5947 Changed = true; 5948 RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts, &TLI, 5949 MSSAU.get()); 5950 DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get()); 5951 } 5952 } 5953 5954 DbgApplyEqualValues(DbgValueToEqualSet, DbgValueToLocation); 5955 5956 return Changed; 5957 } 5958 5959 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) { 5960 if (skipLoop(L)) 5961 return false; 5962 5963 auto &IU = getAnalysis<IVUsersWrapperPass>().getIU(); 5964 auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 5965 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 5966 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 5967 const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI( 5968 *L->getHeader()->getParent()); 5969 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache( 5970 *L->getHeader()->getParent()); 5971 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI( 5972 *L->getHeader()->getParent()); 5973 auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>(); 5974 MemorySSA *MSSA = nullptr; 5975 if (MSSAAnalysis) 5976 MSSA = &MSSAAnalysis->getMSSA(); 5977 return ReduceLoopStrength(L, IU, SE, DT, LI, TTI, AC, TLI, MSSA); 5978 } 5979 5980 PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM, 5981 LoopStandardAnalysisResults &AR, 5982 LPMUpdater &) { 5983 if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE, 5984 AR.DT, AR.LI, AR.TTI, AR.AC, AR.TLI, AR.MSSA)) 5985 return PreservedAnalyses::all(); 5986 5987 auto PA = getLoopPassPreservedAnalyses(); 5988 if (AR.MSSA) 5989 PA.preserve<MemorySSAAnalysis>(); 5990 return PA; 5991 } 5992 5993 char LoopStrengthReduce::ID = 0; 5994 5995 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce", 5996 "Loop Strength Reduction", false, false) 5997 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 5998 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 5999 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 6000 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass) 6001 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 6002 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 6003 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce", 6004 "Loop Strength Reduction", false, false) 6005 6006 Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); } 6007