1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This transformation analyzes and transforms the induction variables (and
10 // computations derived from them) into forms suitable for efficient execution
11 // on the target.
12 //
13 // This pass performs a strength reduction on array references inside loops that
14 // have as one or more of their components the loop induction variable, it
15 // rewrites expressions to take advantage of scaled-index addressing modes
16 // available on the target, and it performs a variety of other optimizations
17 // related to loop induction variables.
18 //
19 // Terminology note: this code has a lot of handling for "post-increment" or
20 // "post-inc" users. This is not talking about post-increment addressing modes;
21 // it is instead talking about code like this:
22 //
23 //   %i = phi [ 0, %entry ], [ %i.next, %latch ]
24 //   ...
25 //   %i.next = add %i, 1
26 //   %c = icmp eq %i.next, %n
27 //
28 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
29 // it's useful to think about these as the same register, with some uses using
30 // the value of the register before the add and some using it after. In this
31 // example, the icmp is a post-increment user, since it uses %i.next, which is
32 // the value of the induction variable after the increment. The other common
33 // case of post-increment users is users outside the loop.
34 //
35 // TODO: More sophistication in the way Formulae are generated and filtered.
36 //
37 // TODO: Handle multiple loops at a time.
38 //
39 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead
40 //       of a GlobalValue?
41 //
42 // TODO: When truncation is free, truncate ICmp users' operands to make it a
43 //       smaller encoding (on x86 at least).
44 //
45 // TODO: When a negated register is used by an add (such as in a list of
46 //       multiple base registers, or as the increment expression in an addrec),
47 //       we may not actually need both reg and (-1 * reg) in registers; the
48 //       negation can be implemented by using a sub instead of an add. The
49 //       lack of support for taking this into consideration when making
50 //       register pressure decisions is partly worked around by the "Special"
51 //       use kind.
52 //
53 //===----------------------------------------------------------------------===//
54 
55 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h"
56 #include "llvm/ADT/APInt.h"
57 #include "llvm/ADT/DenseMap.h"
58 #include "llvm/ADT/DenseSet.h"
59 #include "llvm/ADT/Hashing.h"
60 #include "llvm/ADT/PointerIntPair.h"
61 #include "llvm/ADT/STLExtras.h"
62 #include "llvm/ADT/SetVector.h"
63 #include "llvm/ADT/SmallBitVector.h"
64 #include "llvm/ADT/SmallPtrSet.h"
65 #include "llvm/ADT/SmallSet.h"
66 #include "llvm/ADT/SmallVector.h"
67 #include "llvm/ADT/iterator_range.h"
68 #include "llvm/Analysis/AssumptionCache.h"
69 #include "llvm/Analysis/IVUsers.h"
70 #include "llvm/Analysis/LoopAnalysisManager.h"
71 #include "llvm/Analysis/LoopInfo.h"
72 #include "llvm/Analysis/LoopPass.h"
73 #include "llvm/Analysis/MemorySSA.h"
74 #include "llvm/Analysis/MemorySSAUpdater.h"
75 #include "llvm/Analysis/ScalarEvolution.h"
76 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
77 #include "llvm/Analysis/ScalarEvolutionNormalization.h"
78 #include "llvm/Analysis/TargetLibraryInfo.h"
79 #include "llvm/Analysis/TargetTransformInfo.h"
80 #include "llvm/Analysis/ValueTracking.h"
81 #include "llvm/Config/llvm-config.h"
82 #include "llvm/IR/BasicBlock.h"
83 #include "llvm/IR/Constant.h"
84 #include "llvm/IR/Constants.h"
85 #include "llvm/IR/DebugInfoMetadata.h"
86 #include "llvm/IR/DerivedTypes.h"
87 #include "llvm/IR/Dominators.h"
88 #include "llvm/IR/GlobalValue.h"
89 #include "llvm/IR/IRBuilder.h"
90 #include "llvm/IR/InstrTypes.h"
91 #include "llvm/IR/Instruction.h"
92 #include "llvm/IR/Instructions.h"
93 #include "llvm/IR/IntrinsicInst.h"
94 #include "llvm/IR/Intrinsics.h"
95 #include "llvm/IR/Module.h"
96 #include "llvm/IR/OperandTraits.h"
97 #include "llvm/IR/Operator.h"
98 #include "llvm/IR/PassManager.h"
99 #include "llvm/IR/Type.h"
100 #include "llvm/IR/Use.h"
101 #include "llvm/IR/User.h"
102 #include "llvm/IR/Value.h"
103 #include "llvm/IR/ValueHandle.h"
104 #include "llvm/InitializePasses.h"
105 #include "llvm/Pass.h"
106 #include "llvm/Support/Casting.h"
107 #include "llvm/Support/CommandLine.h"
108 #include "llvm/Support/Compiler.h"
109 #include "llvm/Support/Debug.h"
110 #include "llvm/Support/ErrorHandling.h"
111 #include "llvm/Support/MathExtras.h"
112 #include "llvm/Support/raw_ostream.h"
113 #include "llvm/Transforms/Scalar.h"
114 #include "llvm/Transforms/Utils.h"
115 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
116 #include "llvm/Transforms/Utils/Local.h"
117 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
118 #include <algorithm>
119 #include <cassert>
120 #include <cstddef>
121 #include <cstdint>
122 #include <cstdlib>
123 #include <iterator>
124 #include <limits>
125 #include <map>
126 #include <numeric>
127 #include <utility>
128 
129 using namespace llvm;
130 
131 #define DEBUG_TYPE "loop-reduce"
132 
133 /// MaxIVUsers is an arbitrary threshold that provides an early opportunity for
134 /// bail out. This threshold is far beyond the number of users that LSR can
135 /// conceivably solve, so it should not affect generated code, but catches the
136 /// worst cases before LSR burns too much compile time and stack space.
137 static const unsigned MaxIVUsers = 200;
138 
139 // Temporary flag to cleanup congruent phis after LSR phi expansion.
140 // It's currently disabled until we can determine whether it's truly useful or
141 // not. The flag should be removed after the v3.0 release.
142 // This is now needed for ivchains.
143 static cl::opt<bool> EnablePhiElim(
144   "enable-lsr-phielim", cl::Hidden, cl::init(true),
145   cl::desc("Enable LSR phi elimination"));
146 
147 // The flag adds instruction count to solutions cost comparision.
148 static cl::opt<bool> InsnsCost(
149   "lsr-insns-cost", cl::Hidden, cl::init(true),
150   cl::desc("Add instruction count to a LSR cost model"));
151 
152 // Flag to choose how to narrow complex lsr solution
153 static cl::opt<bool> LSRExpNarrow(
154   "lsr-exp-narrow", cl::Hidden, cl::init(false),
155   cl::desc("Narrow LSR complex solution using"
156            " expectation of registers number"));
157 
158 // Flag to narrow search space by filtering non-optimal formulae with
159 // the same ScaledReg and Scale.
160 static cl::opt<bool> FilterSameScaledReg(
161     "lsr-filter-same-scaled-reg", cl::Hidden, cl::init(true),
162     cl::desc("Narrow LSR search space by filtering non-optimal formulae"
163              " with the same ScaledReg and Scale"));
164 
165 static cl::opt<TTI::AddressingModeKind> PreferredAddresingMode(
166   "lsr-preferred-addressing-mode", cl::Hidden, cl::init(TTI::AMK_None),
167    cl::desc("A flag that overrides the target's preferred addressing mode."),
168    cl::values(clEnumValN(TTI::AMK_None,
169                          "none",
170                          "Don't prefer any addressing mode"),
171               clEnumValN(TTI::AMK_PreIndexed,
172                          "preindexed",
173                          "Prefer pre-indexed addressing mode"),
174               clEnumValN(TTI::AMK_PostIndexed,
175                          "postindexed",
176                          "Prefer post-indexed addressing mode")));
177 
178 static cl::opt<unsigned> ComplexityLimit(
179   "lsr-complexity-limit", cl::Hidden,
180   cl::init(std::numeric_limits<uint16_t>::max()),
181   cl::desc("LSR search space complexity limit"));
182 
183 static cl::opt<unsigned> SetupCostDepthLimit(
184     "lsr-setupcost-depth-limit", cl::Hidden, cl::init(7),
185     cl::desc("The limit on recursion depth for LSRs setup cost"));
186 
187 #ifndef NDEBUG
188 // Stress test IV chain generation.
189 static cl::opt<bool> StressIVChain(
190   "stress-ivchain", cl::Hidden, cl::init(false),
191   cl::desc("Stress test LSR IV chains"));
192 #else
193 static bool StressIVChain = false;
194 #endif
195 
196 namespace {
197 
198 struct MemAccessTy {
199   /// Used in situations where the accessed memory type is unknown.
200   static const unsigned UnknownAddressSpace =
201       std::numeric_limits<unsigned>::max();
202 
203   Type *MemTy = nullptr;
204   unsigned AddrSpace = UnknownAddressSpace;
205 
206   MemAccessTy() = default;
207   MemAccessTy(Type *Ty, unsigned AS) : MemTy(Ty), AddrSpace(AS) {}
208 
209   bool operator==(MemAccessTy Other) const {
210     return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace;
211   }
212 
213   bool operator!=(MemAccessTy Other) const { return !(*this == Other); }
214 
215   static MemAccessTy getUnknown(LLVMContext &Ctx,
216                                 unsigned AS = UnknownAddressSpace) {
217     return MemAccessTy(Type::getVoidTy(Ctx), AS);
218   }
219 
220   Type *getType() { return MemTy; }
221 };
222 
223 /// This class holds data which is used to order reuse candidates.
224 class RegSortData {
225 public:
226   /// This represents the set of LSRUse indices which reference
227   /// a particular register.
228   SmallBitVector UsedByIndices;
229 
230   void print(raw_ostream &OS) const;
231   void dump() const;
232 };
233 
234 } // end anonymous namespace
235 
236 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
237 void RegSortData::print(raw_ostream &OS) const {
238   OS << "[NumUses=" << UsedByIndices.count() << ']';
239 }
240 
241 LLVM_DUMP_METHOD void RegSortData::dump() const {
242   print(errs()); errs() << '\n';
243 }
244 #endif
245 
246 namespace {
247 
248 /// Map register candidates to information about how they are used.
249 class RegUseTracker {
250   using RegUsesTy = DenseMap<const SCEV *, RegSortData>;
251 
252   RegUsesTy RegUsesMap;
253   SmallVector<const SCEV *, 16> RegSequence;
254 
255 public:
256   void countRegister(const SCEV *Reg, size_t LUIdx);
257   void dropRegister(const SCEV *Reg, size_t LUIdx);
258   void swapAndDropUse(size_t LUIdx, size_t LastLUIdx);
259 
260   bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
261 
262   const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
263 
264   void clear();
265 
266   using iterator = SmallVectorImpl<const SCEV *>::iterator;
267   using const_iterator = SmallVectorImpl<const SCEV *>::const_iterator;
268 
269   iterator begin() { return RegSequence.begin(); }
270   iterator end()   { return RegSequence.end(); }
271   const_iterator begin() const { return RegSequence.begin(); }
272   const_iterator end() const   { return RegSequence.end(); }
273 };
274 
275 } // end anonymous namespace
276 
277 void
278 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) {
279   std::pair<RegUsesTy::iterator, bool> Pair =
280     RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
281   RegSortData &RSD = Pair.first->second;
282   if (Pair.second)
283     RegSequence.push_back(Reg);
284   RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
285   RSD.UsedByIndices.set(LUIdx);
286 }
287 
288 void
289 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) {
290   RegUsesTy::iterator It = RegUsesMap.find(Reg);
291   assert(It != RegUsesMap.end());
292   RegSortData &RSD = It->second;
293   assert(RSD.UsedByIndices.size() > LUIdx);
294   RSD.UsedByIndices.reset(LUIdx);
295 }
296 
297 void
298 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) {
299   assert(LUIdx <= LastLUIdx);
300 
301   // Update RegUses. The data structure is not optimized for this purpose;
302   // we must iterate through it and update each of the bit vectors.
303   for (auto &Pair : RegUsesMap) {
304     SmallBitVector &UsedByIndices = Pair.second.UsedByIndices;
305     if (LUIdx < UsedByIndices.size())
306       UsedByIndices[LUIdx] =
307         LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false;
308     UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx));
309   }
310 }
311 
312 bool
313 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
314   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
315   if (I == RegUsesMap.end())
316     return false;
317   const SmallBitVector &UsedByIndices = I->second.UsedByIndices;
318   int i = UsedByIndices.find_first();
319   if (i == -1) return false;
320   if ((size_t)i != LUIdx) return true;
321   return UsedByIndices.find_next(i) != -1;
322 }
323 
324 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
325   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
326   assert(I != RegUsesMap.end() && "Unknown register!");
327   return I->second.UsedByIndices;
328 }
329 
330 void RegUseTracker::clear() {
331   RegUsesMap.clear();
332   RegSequence.clear();
333 }
334 
335 namespace {
336 
337 /// This class holds information that describes a formula for computing
338 /// satisfying a use. It may include broken-out immediates and scaled registers.
339 struct Formula {
340   /// Global base address used for complex addressing.
341   GlobalValue *BaseGV = nullptr;
342 
343   /// Base offset for complex addressing.
344   int64_t BaseOffset = 0;
345 
346   /// Whether any complex addressing has a base register.
347   bool HasBaseReg = false;
348 
349   /// The scale of any complex addressing.
350   int64_t Scale = 0;
351 
352   /// The list of "base" registers for this use. When this is non-empty. The
353   /// canonical representation of a formula is
354   /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and
355   /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty().
356   /// 3. The reg containing recurrent expr related with currect loop in the
357   /// formula should be put in the ScaledReg.
358   /// #1 enforces that the scaled register is always used when at least two
359   /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2.
360   /// #2 enforces that 1 * reg is reg.
361   /// #3 ensures invariant regs with respect to current loop can be combined
362   /// together in LSR codegen.
363   /// This invariant can be temporarily broken while building a formula.
364   /// However, every formula inserted into the LSRInstance must be in canonical
365   /// form.
366   SmallVector<const SCEV *, 4> BaseRegs;
367 
368   /// The 'scaled' register for this use. This should be non-null when Scale is
369   /// not zero.
370   const SCEV *ScaledReg = nullptr;
371 
372   /// An additional constant offset which added near the use. This requires a
373   /// temporary register, but the offset itself can live in an add immediate
374   /// field rather than a register.
375   int64_t UnfoldedOffset = 0;
376 
377   Formula() = default;
378 
379   void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE);
380 
381   bool isCanonical(const Loop &L) const;
382 
383   void canonicalize(const Loop &L);
384 
385   bool unscale();
386 
387   bool hasZeroEnd() const;
388 
389   size_t getNumRegs() const;
390   Type *getType() const;
391 
392   void deleteBaseReg(const SCEV *&S);
393 
394   bool referencesReg(const SCEV *S) const;
395   bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
396                                   const RegUseTracker &RegUses) const;
397 
398   void print(raw_ostream &OS) const;
399   void dump() const;
400 };
401 
402 } // end anonymous namespace
403 
404 /// Recursion helper for initialMatch.
405 static void DoInitialMatch(const SCEV *S, Loop *L,
406                            SmallVectorImpl<const SCEV *> &Good,
407                            SmallVectorImpl<const SCEV *> &Bad,
408                            ScalarEvolution &SE) {
409   // Collect expressions which properly dominate the loop header.
410   if (SE.properlyDominates(S, L->getHeader())) {
411     Good.push_back(S);
412     return;
413   }
414 
415   // Look at add operands.
416   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
417     for (const SCEV *S : Add->operands())
418       DoInitialMatch(S, L, Good, Bad, SE);
419     return;
420   }
421 
422   // Look at addrec operands.
423   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
424     if (!AR->getStart()->isZero() && AR->isAffine()) {
425       DoInitialMatch(AR->getStart(), L, Good, Bad, SE);
426       DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
427                                       AR->getStepRecurrence(SE),
428                                       // FIXME: AR->getNoWrapFlags()
429                                       AR->getLoop(), SCEV::FlagAnyWrap),
430                      L, Good, Bad, SE);
431       return;
432     }
433 
434   // Handle a multiplication by -1 (negation) if it didn't fold.
435   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
436     if (Mul->getOperand(0)->isAllOnesValue()) {
437       SmallVector<const SCEV *, 4> Ops(drop_begin(Mul->operands()));
438       const SCEV *NewMul = SE.getMulExpr(Ops);
439 
440       SmallVector<const SCEV *, 4> MyGood;
441       SmallVector<const SCEV *, 4> MyBad;
442       DoInitialMatch(NewMul, L, MyGood, MyBad, SE);
443       const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
444         SE.getEffectiveSCEVType(NewMul->getType())));
445       for (const SCEV *S : MyGood)
446         Good.push_back(SE.getMulExpr(NegOne, S));
447       for (const SCEV *S : MyBad)
448         Bad.push_back(SE.getMulExpr(NegOne, S));
449       return;
450     }
451 
452   // Ok, we can't do anything interesting. Just stuff the whole thing into a
453   // register and hope for the best.
454   Bad.push_back(S);
455 }
456 
457 /// Incorporate loop-variant parts of S into this Formula, attempting to keep
458 /// all loop-invariant and loop-computable values in a single base register.
459 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) {
460   SmallVector<const SCEV *, 4> Good;
461   SmallVector<const SCEV *, 4> Bad;
462   DoInitialMatch(S, L, Good, Bad, SE);
463   if (!Good.empty()) {
464     const SCEV *Sum = SE.getAddExpr(Good);
465     if (!Sum->isZero())
466       BaseRegs.push_back(Sum);
467     HasBaseReg = true;
468   }
469   if (!Bad.empty()) {
470     const SCEV *Sum = SE.getAddExpr(Bad);
471     if (!Sum->isZero())
472       BaseRegs.push_back(Sum);
473     HasBaseReg = true;
474   }
475   canonicalize(*L);
476 }
477 
478 /// Check whether or not this formula satisfies the canonical
479 /// representation.
480 /// \see Formula::BaseRegs.
481 bool Formula::isCanonical(const Loop &L) const {
482   if (!ScaledReg)
483     return BaseRegs.size() <= 1;
484 
485   if (Scale != 1)
486     return true;
487 
488   if (Scale == 1 && BaseRegs.empty())
489     return false;
490 
491   const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg);
492   if (SAR && SAR->getLoop() == &L)
493     return true;
494 
495   // If ScaledReg is not a recurrent expr, or it is but its loop is not current
496   // loop, meanwhile BaseRegs contains a recurrent expr reg related with current
497   // loop, we want to swap the reg in BaseRegs with ScaledReg.
498   auto I = find_if(BaseRegs, [&](const SCEV *S) {
499     return isa<const SCEVAddRecExpr>(S) &&
500            (cast<SCEVAddRecExpr>(S)->getLoop() == &L);
501   });
502   return I == BaseRegs.end();
503 }
504 
505 /// Helper method to morph a formula into its canonical representation.
506 /// \see Formula::BaseRegs.
507 /// Every formula having more than one base register, must use the ScaledReg
508 /// field. Otherwise, we would have to do special cases everywhere in LSR
509 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ...
510 /// On the other hand, 1*reg should be canonicalized into reg.
511 void Formula::canonicalize(const Loop &L) {
512   if (isCanonical(L))
513     return;
514   // So far we did not need this case. This is easy to implement but it is
515   // useless to maintain dead code. Beside it could hurt compile time.
516   assert(!BaseRegs.empty() && "1*reg => reg, should not be needed.");
517 
518   // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg.
519   if (!ScaledReg) {
520     ScaledReg = BaseRegs.pop_back_val();
521     Scale = 1;
522   }
523 
524   // If ScaledReg is an invariant with respect to L, find the reg from
525   // BaseRegs containing the recurrent expr related with Loop L. Swap the
526   // reg with ScaledReg.
527   const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg);
528   if (!SAR || SAR->getLoop() != &L) {
529     auto I = find_if(BaseRegs, [&](const SCEV *S) {
530       return isa<const SCEVAddRecExpr>(S) &&
531              (cast<SCEVAddRecExpr>(S)->getLoop() == &L);
532     });
533     if (I != BaseRegs.end())
534       std::swap(ScaledReg, *I);
535   }
536 }
537 
538 /// Get rid of the scale in the formula.
539 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2.
540 /// \return true if it was possible to get rid of the scale, false otherwise.
541 /// \note After this operation the formula may not be in the canonical form.
542 bool Formula::unscale() {
543   if (Scale != 1)
544     return false;
545   Scale = 0;
546   BaseRegs.push_back(ScaledReg);
547   ScaledReg = nullptr;
548   return true;
549 }
550 
551 bool Formula::hasZeroEnd() const {
552   if (UnfoldedOffset || BaseOffset)
553     return false;
554   if (BaseRegs.size() != 1 || ScaledReg)
555     return false;
556   return true;
557 }
558 
559 /// Return the total number of register operands used by this formula. This does
560 /// not include register uses implied by non-constant addrec strides.
561 size_t Formula::getNumRegs() const {
562   return !!ScaledReg + BaseRegs.size();
563 }
564 
565 /// Return the type of this formula, if it has one, or null otherwise. This type
566 /// is meaningless except for the bit size.
567 Type *Formula::getType() const {
568   return !BaseRegs.empty() ? BaseRegs.front()->getType() :
569          ScaledReg ? ScaledReg->getType() :
570          BaseGV ? BaseGV->getType() :
571          nullptr;
572 }
573 
574 /// Delete the given base reg from the BaseRegs list.
575 void Formula::deleteBaseReg(const SCEV *&S) {
576   if (&S != &BaseRegs.back())
577     std::swap(S, BaseRegs.back());
578   BaseRegs.pop_back();
579 }
580 
581 /// Test if this formula references the given register.
582 bool Formula::referencesReg(const SCEV *S) const {
583   return S == ScaledReg || is_contained(BaseRegs, S);
584 }
585 
586 /// Test whether this formula uses registers which are used by uses other than
587 /// the use with the given index.
588 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
589                                          const RegUseTracker &RegUses) const {
590   if (ScaledReg)
591     if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
592       return true;
593   for (const SCEV *BaseReg : BaseRegs)
594     if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx))
595       return true;
596   return false;
597 }
598 
599 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
600 void Formula::print(raw_ostream &OS) const {
601   bool First = true;
602   if (BaseGV) {
603     if (!First) OS << " + "; else First = false;
604     BaseGV->printAsOperand(OS, /*PrintType=*/false);
605   }
606   if (BaseOffset != 0) {
607     if (!First) OS << " + "; else First = false;
608     OS << BaseOffset;
609   }
610   for (const SCEV *BaseReg : BaseRegs) {
611     if (!First) OS << " + "; else First = false;
612     OS << "reg(" << *BaseReg << ')';
613   }
614   if (HasBaseReg && BaseRegs.empty()) {
615     if (!First) OS << " + "; else First = false;
616     OS << "**error: HasBaseReg**";
617   } else if (!HasBaseReg && !BaseRegs.empty()) {
618     if (!First) OS << " + "; else First = false;
619     OS << "**error: !HasBaseReg**";
620   }
621   if (Scale != 0) {
622     if (!First) OS << " + "; else First = false;
623     OS << Scale << "*reg(";
624     if (ScaledReg)
625       OS << *ScaledReg;
626     else
627       OS << "<unknown>";
628     OS << ')';
629   }
630   if (UnfoldedOffset != 0) {
631     if (!First) OS << " + ";
632     OS << "imm(" << UnfoldedOffset << ')';
633   }
634 }
635 
636 LLVM_DUMP_METHOD void Formula::dump() const {
637   print(errs()); errs() << '\n';
638 }
639 #endif
640 
641 /// Return true if the given addrec can be sign-extended without changing its
642 /// value.
643 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
644   Type *WideTy =
645     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
646   return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
647 }
648 
649 /// Return true if the given add can be sign-extended without changing its
650 /// value.
651 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
652   Type *WideTy =
653     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
654   return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
655 }
656 
657 /// Return true if the given mul can be sign-extended without changing its
658 /// value.
659 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) {
660   Type *WideTy =
661     IntegerType::get(SE.getContext(),
662                      SE.getTypeSizeInBits(M->getType()) * M->getNumOperands());
663   return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy));
664 }
665 
666 /// Return an expression for LHS /s RHS, if it can be determined and if the
667 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits
668 /// is true, expressions like (X * Y) /s Y are simplified to Y, ignoring that
669 /// the multiplication may overflow, which is useful when the result will be
670 /// used in a context where the most significant bits are ignored.
671 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
672                                 ScalarEvolution &SE,
673                                 bool IgnoreSignificantBits = false) {
674   // Handle the trivial case, which works for any SCEV type.
675   if (LHS == RHS)
676     return SE.getConstant(LHS->getType(), 1);
677 
678   // Handle a few RHS special cases.
679   const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
680   if (RC) {
681     const APInt &RA = RC->getAPInt();
682     // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
683     // some folding.
684     if (RA.isAllOnesValue())
685       return SE.getMulExpr(LHS, RC);
686     // Handle x /s 1 as x.
687     if (RA == 1)
688       return LHS;
689   }
690 
691   // Check for a division of a constant by a constant.
692   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
693     if (!RC)
694       return nullptr;
695     const APInt &LA = C->getAPInt();
696     const APInt &RA = RC->getAPInt();
697     if (LA.srem(RA) != 0)
698       return nullptr;
699     return SE.getConstant(LA.sdiv(RA));
700   }
701 
702   // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
703   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
704     if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) {
705       const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
706                                       IgnoreSignificantBits);
707       if (!Step) return nullptr;
708       const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
709                                        IgnoreSignificantBits);
710       if (!Start) return nullptr;
711       // FlagNW is independent of the start value, step direction, and is
712       // preserved with smaller magnitude steps.
713       // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
714       return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap);
715     }
716     return nullptr;
717   }
718 
719   // Distribute the sdiv over add operands, if the add doesn't overflow.
720   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
721     if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
722       SmallVector<const SCEV *, 8> Ops;
723       for (const SCEV *S : Add->operands()) {
724         const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits);
725         if (!Op) return nullptr;
726         Ops.push_back(Op);
727       }
728       return SE.getAddExpr(Ops);
729     }
730     return nullptr;
731   }
732 
733   // Check for a multiply operand that we can pull RHS out of.
734   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) {
735     if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
736       SmallVector<const SCEV *, 4> Ops;
737       bool Found = false;
738       for (const SCEV *S : Mul->operands()) {
739         if (!Found)
740           if (const SCEV *Q = getExactSDiv(S, RHS, SE,
741                                            IgnoreSignificantBits)) {
742             S = Q;
743             Found = true;
744           }
745         Ops.push_back(S);
746       }
747       return Found ? SE.getMulExpr(Ops) : nullptr;
748     }
749     return nullptr;
750   }
751 
752   // Otherwise we don't know.
753   return nullptr;
754 }
755 
756 /// If S involves the addition of a constant integer value, return that integer
757 /// value, and mutate S to point to a new SCEV with that value excluded.
758 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
759   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
760     if (C->getAPInt().getMinSignedBits() <= 64) {
761       S = SE.getConstant(C->getType(), 0);
762       return C->getValue()->getSExtValue();
763     }
764   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
765     SmallVector<const SCEV *, 8> NewOps(Add->operands());
766     int64_t Result = ExtractImmediate(NewOps.front(), SE);
767     if (Result != 0)
768       S = SE.getAddExpr(NewOps);
769     return Result;
770   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
771     SmallVector<const SCEV *, 8> NewOps(AR->operands());
772     int64_t Result = ExtractImmediate(NewOps.front(), SE);
773     if (Result != 0)
774       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
775                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
776                            SCEV::FlagAnyWrap);
777     return Result;
778   }
779   return 0;
780 }
781 
782 /// If S involves the addition of a GlobalValue address, return that symbol, and
783 /// mutate S to point to a new SCEV with that value excluded.
784 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
785   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
786     if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
787       S = SE.getConstant(GV->getType(), 0);
788       return GV;
789     }
790   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
791     SmallVector<const SCEV *, 8> NewOps(Add->operands());
792     GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
793     if (Result)
794       S = SE.getAddExpr(NewOps);
795     return Result;
796   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
797     SmallVector<const SCEV *, 8> NewOps(AR->operands());
798     GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
799     if (Result)
800       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
801                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
802                            SCEV::FlagAnyWrap);
803     return Result;
804   }
805   return nullptr;
806 }
807 
808 /// Returns true if the specified instruction is using the specified value as an
809 /// address.
810 static bool isAddressUse(const TargetTransformInfo &TTI,
811                          Instruction *Inst, Value *OperandVal) {
812   bool isAddress = isa<LoadInst>(Inst);
813   if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
814     if (SI->getPointerOperand() == OperandVal)
815       isAddress = true;
816   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
817     // Addressing modes can also be folded into prefetches and a variety
818     // of intrinsics.
819     switch (II->getIntrinsicID()) {
820     case Intrinsic::memset:
821     case Intrinsic::prefetch:
822     case Intrinsic::masked_load:
823       if (II->getArgOperand(0) == OperandVal)
824         isAddress = true;
825       break;
826     case Intrinsic::masked_store:
827       if (II->getArgOperand(1) == OperandVal)
828         isAddress = true;
829       break;
830     case Intrinsic::memmove:
831     case Intrinsic::memcpy:
832       if (II->getArgOperand(0) == OperandVal ||
833           II->getArgOperand(1) == OperandVal)
834         isAddress = true;
835       break;
836     default: {
837       MemIntrinsicInfo IntrInfo;
838       if (TTI.getTgtMemIntrinsic(II, IntrInfo)) {
839         if (IntrInfo.PtrVal == OperandVal)
840           isAddress = true;
841       }
842     }
843     }
844   } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
845     if (RMW->getPointerOperand() == OperandVal)
846       isAddress = true;
847   } else if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
848     if (CmpX->getPointerOperand() == OperandVal)
849       isAddress = true;
850   }
851   return isAddress;
852 }
853 
854 /// Return the type of the memory being accessed.
855 static MemAccessTy getAccessType(const TargetTransformInfo &TTI,
856                                  Instruction *Inst, Value *OperandVal) {
857   MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace);
858   if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
859     AccessTy.MemTy = SI->getOperand(0)->getType();
860     AccessTy.AddrSpace = SI->getPointerAddressSpace();
861   } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
862     AccessTy.AddrSpace = LI->getPointerAddressSpace();
863   } else if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
864     AccessTy.AddrSpace = RMW->getPointerAddressSpace();
865   } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
866     AccessTy.AddrSpace = CmpX->getPointerAddressSpace();
867   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
868     switch (II->getIntrinsicID()) {
869     case Intrinsic::prefetch:
870     case Intrinsic::memset:
871       AccessTy.AddrSpace = II->getArgOperand(0)->getType()->getPointerAddressSpace();
872       AccessTy.MemTy = OperandVal->getType();
873       break;
874     case Intrinsic::memmove:
875     case Intrinsic::memcpy:
876       AccessTy.AddrSpace = OperandVal->getType()->getPointerAddressSpace();
877       AccessTy.MemTy = OperandVal->getType();
878       break;
879     case Intrinsic::masked_load:
880       AccessTy.AddrSpace =
881           II->getArgOperand(0)->getType()->getPointerAddressSpace();
882       break;
883     case Intrinsic::masked_store:
884       AccessTy.MemTy = II->getOperand(0)->getType();
885       AccessTy.AddrSpace =
886           II->getArgOperand(1)->getType()->getPointerAddressSpace();
887       break;
888     default: {
889       MemIntrinsicInfo IntrInfo;
890       if (TTI.getTgtMemIntrinsic(II, IntrInfo) && IntrInfo.PtrVal) {
891         AccessTy.AddrSpace
892           = IntrInfo.PtrVal->getType()->getPointerAddressSpace();
893       }
894 
895       break;
896     }
897     }
898   }
899 
900   // All pointers have the same requirements, so canonicalize them to an
901   // arbitrary pointer type to minimize variation.
902   if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy))
903     AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
904                                       PTy->getAddressSpace());
905 
906   return AccessTy;
907 }
908 
909 /// Return true if this AddRec is already a phi in its loop.
910 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
911   for (PHINode &PN : AR->getLoop()->getHeader()->phis()) {
912     if (SE.isSCEVable(PN.getType()) &&
913         (SE.getEffectiveSCEVType(PN.getType()) ==
914          SE.getEffectiveSCEVType(AR->getType())) &&
915         SE.getSCEV(&PN) == AR)
916       return true;
917   }
918   return false;
919 }
920 
921 /// Check if expanding this expression is likely to incur significant cost. This
922 /// is tricky because SCEV doesn't track which expressions are actually computed
923 /// by the current IR.
924 ///
925 /// We currently allow expansion of IV increments that involve adds,
926 /// multiplication by constants, and AddRecs from existing phis.
927 ///
928 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an
929 /// obvious multiple of the UDivExpr.
930 static bool isHighCostExpansion(const SCEV *S,
931                                 SmallPtrSetImpl<const SCEV*> &Processed,
932                                 ScalarEvolution &SE) {
933   // Zero/One operand expressions
934   switch (S->getSCEVType()) {
935   case scUnknown:
936   case scConstant:
937     return false;
938   case scTruncate:
939     return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(),
940                                Processed, SE);
941   case scZeroExtend:
942     return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(),
943                                Processed, SE);
944   case scSignExtend:
945     return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(),
946                                Processed, SE);
947   default:
948     break;
949   }
950 
951   if (!Processed.insert(S).second)
952     return false;
953 
954   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
955     for (const SCEV *S : Add->operands()) {
956       if (isHighCostExpansion(S, Processed, SE))
957         return true;
958     }
959     return false;
960   }
961 
962   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
963     if (Mul->getNumOperands() == 2) {
964       // Multiplication by a constant is ok
965       if (isa<SCEVConstant>(Mul->getOperand(0)))
966         return isHighCostExpansion(Mul->getOperand(1), Processed, SE);
967 
968       // If we have the value of one operand, check if an existing
969       // multiplication already generates this expression.
970       if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) {
971         Value *UVal = U->getValue();
972         for (User *UR : UVal->users()) {
973           // If U is a constant, it may be used by a ConstantExpr.
974           Instruction *UI = dyn_cast<Instruction>(UR);
975           if (UI && UI->getOpcode() == Instruction::Mul &&
976               SE.isSCEVable(UI->getType())) {
977             return SE.getSCEV(UI) == Mul;
978           }
979         }
980       }
981     }
982   }
983 
984   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
985     if (isExistingPhi(AR, SE))
986       return false;
987   }
988 
989   // Fow now, consider any other type of expression (div/mul/min/max) high cost.
990   return true;
991 }
992 
993 namespace {
994 
995 class LSRUse;
996 
997 } // end anonymous namespace
998 
999 /// Check if the addressing mode defined by \p F is completely
1000 /// folded in \p LU at isel time.
1001 /// This includes address-mode folding and special icmp tricks.
1002 /// This function returns true if \p LU can accommodate what \p F
1003 /// defines and up to 1 base + 1 scaled + offset.
1004 /// In other words, if \p F has several base registers, this function may
1005 /// still return true. Therefore, users still need to account for
1006 /// additional base registers and/or unfolded offsets to derive an
1007 /// accurate cost model.
1008 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1009                                  const LSRUse &LU, const Formula &F);
1010 
1011 // Get the cost of the scaling factor used in F for LU.
1012 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
1013                                      const LSRUse &LU, const Formula &F,
1014                                      const Loop &L);
1015 
1016 namespace {
1017 
1018 /// This class is used to measure and compare candidate formulae.
1019 class Cost {
1020   const Loop *L = nullptr;
1021   ScalarEvolution *SE = nullptr;
1022   const TargetTransformInfo *TTI = nullptr;
1023   TargetTransformInfo::LSRCost C;
1024   TTI::AddressingModeKind AMK = TTI::AMK_None;
1025 
1026 public:
1027   Cost() = delete;
1028   Cost(const Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI,
1029        TTI::AddressingModeKind AMK) :
1030     L(L), SE(&SE), TTI(&TTI), AMK(AMK) {
1031     C.Insns = 0;
1032     C.NumRegs = 0;
1033     C.AddRecCost = 0;
1034     C.NumIVMuls = 0;
1035     C.NumBaseAdds = 0;
1036     C.ImmCost = 0;
1037     C.SetupCost = 0;
1038     C.ScaleCost = 0;
1039   }
1040 
1041   bool isLess(Cost &Other);
1042 
1043   void Lose();
1044 
1045 #ifndef NDEBUG
1046   // Once any of the metrics loses, they must all remain losers.
1047   bool isValid() {
1048     return ((C.Insns | C.NumRegs | C.AddRecCost | C.NumIVMuls | C.NumBaseAdds
1049              | C.ImmCost | C.SetupCost | C.ScaleCost) != ~0u)
1050       || ((C.Insns & C.NumRegs & C.AddRecCost & C.NumIVMuls & C.NumBaseAdds
1051            & C.ImmCost & C.SetupCost & C.ScaleCost) == ~0u);
1052   }
1053 #endif
1054 
1055   bool isLoser() {
1056     assert(isValid() && "invalid cost");
1057     return C.NumRegs == ~0u;
1058   }
1059 
1060   void RateFormula(const Formula &F,
1061                    SmallPtrSetImpl<const SCEV *> &Regs,
1062                    const DenseSet<const SCEV *> &VisitedRegs,
1063                    const LSRUse &LU,
1064                    SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr);
1065 
1066   void print(raw_ostream &OS) const;
1067   void dump() const;
1068 
1069 private:
1070   void RateRegister(const Formula &F, const SCEV *Reg,
1071                     SmallPtrSetImpl<const SCEV *> &Regs);
1072   void RatePrimaryRegister(const Formula &F, const SCEV *Reg,
1073                            SmallPtrSetImpl<const SCEV *> &Regs,
1074                            SmallPtrSetImpl<const SCEV *> *LoserRegs);
1075 };
1076 
1077 /// An operand value in an instruction which is to be replaced with some
1078 /// equivalent, possibly strength-reduced, replacement.
1079 struct LSRFixup {
1080   /// The instruction which will be updated.
1081   Instruction *UserInst = nullptr;
1082 
1083   /// The operand of the instruction which will be replaced. The operand may be
1084   /// used more than once; every instance will be replaced.
1085   Value *OperandValToReplace = nullptr;
1086 
1087   /// If this user is to use the post-incremented value of an induction
1088   /// variable, this set is non-empty and holds the loops associated with the
1089   /// induction variable.
1090   PostIncLoopSet PostIncLoops;
1091 
1092   /// A constant offset to be added to the LSRUse expression.  This allows
1093   /// multiple fixups to share the same LSRUse with different offsets, for
1094   /// example in an unrolled loop.
1095   int64_t Offset = 0;
1096 
1097   LSRFixup() = default;
1098 
1099   bool isUseFullyOutsideLoop(const Loop *L) const;
1100 
1101   void print(raw_ostream &OS) const;
1102   void dump() const;
1103 };
1104 
1105 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted
1106 /// SmallVectors of const SCEV*.
1107 struct UniquifierDenseMapInfo {
1108   static SmallVector<const SCEV *, 4> getEmptyKey() {
1109     SmallVector<const SCEV *, 4>  V;
1110     V.push_back(reinterpret_cast<const SCEV *>(-1));
1111     return V;
1112   }
1113 
1114   static SmallVector<const SCEV *, 4> getTombstoneKey() {
1115     SmallVector<const SCEV *, 4> V;
1116     V.push_back(reinterpret_cast<const SCEV *>(-2));
1117     return V;
1118   }
1119 
1120   static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) {
1121     return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
1122   }
1123 
1124   static bool isEqual(const SmallVector<const SCEV *, 4> &LHS,
1125                       const SmallVector<const SCEV *, 4> &RHS) {
1126     return LHS == RHS;
1127   }
1128 };
1129 
1130 /// This class holds the state that LSR keeps for each use in IVUsers, as well
1131 /// as uses invented by LSR itself. It includes information about what kinds of
1132 /// things can be folded into the user, information about the user itself, and
1133 /// information about how the use may be satisfied.  TODO: Represent multiple
1134 /// users of the same expression in common?
1135 class LSRUse {
1136   DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier;
1137 
1138 public:
1139   /// An enum for a kind of use, indicating what types of scaled and immediate
1140   /// operands it might support.
1141   enum KindType {
1142     Basic,   ///< A normal use, with no folding.
1143     Special, ///< A special case of basic, allowing -1 scales.
1144     Address, ///< An address use; folding according to TargetLowering
1145     ICmpZero ///< An equality icmp with both operands folded into one.
1146     // TODO: Add a generic icmp too?
1147   };
1148 
1149   using SCEVUseKindPair = PointerIntPair<const SCEV *, 2, KindType>;
1150 
1151   KindType Kind;
1152   MemAccessTy AccessTy;
1153 
1154   /// The list of operands which are to be replaced.
1155   SmallVector<LSRFixup, 8> Fixups;
1156 
1157   /// Keep track of the min and max offsets of the fixups.
1158   int64_t MinOffset = std::numeric_limits<int64_t>::max();
1159   int64_t MaxOffset = std::numeric_limits<int64_t>::min();
1160 
1161   /// This records whether all of the fixups using this LSRUse are outside of
1162   /// the loop, in which case some special-case heuristics may be used.
1163   bool AllFixupsOutsideLoop = true;
1164 
1165   /// RigidFormula is set to true to guarantee that this use will be associated
1166   /// with a single formula--the one that initially matched. Some SCEV
1167   /// expressions cannot be expanded. This allows LSR to consider the registers
1168   /// used by those expressions without the need to expand them later after
1169   /// changing the formula.
1170   bool RigidFormula = false;
1171 
1172   /// This records the widest use type for any fixup using this
1173   /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max
1174   /// fixup widths to be equivalent, because the narrower one may be relying on
1175   /// the implicit truncation to truncate away bogus bits.
1176   Type *WidestFixupType = nullptr;
1177 
1178   /// A list of ways to build a value that can satisfy this user.  After the
1179   /// list is populated, one of these is selected heuristically and used to
1180   /// formulate a replacement for OperandValToReplace in UserInst.
1181   SmallVector<Formula, 12> Formulae;
1182 
1183   /// The set of register candidates used by all formulae in this LSRUse.
1184   SmallPtrSet<const SCEV *, 4> Regs;
1185 
1186   LSRUse(KindType K, MemAccessTy AT) : Kind(K), AccessTy(AT) {}
1187 
1188   LSRFixup &getNewFixup() {
1189     Fixups.push_back(LSRFixup());
1190     return Fixups.back();
1191   }
1192 
1193   void pushFixup(LSRFixup &f) {
1194     Fixups.push_back(f);
1195     if (f.Offset > MaxOffset)
1196       MaxOffset = f.Offset;
1197     if (f.Offset < MinOffset)
1198       MinOffset = f.Offset;
1199   }
1200 
1201   bool HasFormulaWithSameRegs(const Formula &F) const;
1202   float getNotSelectedProbability(const SCEV *Reg) const;
1203   bool InsertFormula(const Formula &F, const Loop &L);
1204   void DeleteFormula(Formula &F);
1205   void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
1206 
1207   void print(raw_ostream &OS) const;
1208   void dump() const;
1209 };
1210 
1211 } // end anonymous namespace
1212 
1213 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1214                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1215                                  GlobalValue *BaseGV, int64_t BaseOffset,
1216                                  bool HasBaseReg, int64_t Scale,
1217                                  Instruction *Fixup = nullptr);
1218 
1219 static unsigned getSetupCost(const SCEV *Reg, unsigned Depth) {
1220   if (isa<SCEVUnknown>(Reg) || isa<SCEVConstant>(Reg))
1221     return 1;
1222   if (Depth == 0)
1223     return 0;
1224   if (const auto *S = dyn_cast<SCEVAddRecExpr>(Reg))
1225     return getSetupCost(S->getStart(), Depth - 1);
1226   if (auto S = dyn_cast<SCEVIntegralCastExpr>(Reg))
1227     return getSetupCost(S->getOperand(), Depth - 1);
1228   if (auto S = dyn_cast<SCEVNAryExpr>(Reg))
1229     return std::accumulate(S->op_begin(), S->op_end(), 0,
1230                            [&](unsigned i, const SCEV *Reg) {
1231                              return i + getSetupCost(Reg, Depth - 1);
1232                            });
1233   if (auto S = dyn_cast<SCEVUDivExpr>(Reg))
1234     return getSetupCost(S->getLHS(), Depth - 1) +
1235            getSetupCost(S->getRHS(), Depth - 1);
1236   return 0;
1237 }
1238 
1239 /// Tally up interesting quantities from the given register.
1240 void Cost::RateRegister(const Formula &F, const SCEV *Reg,
1241                         SmallPtrSetImpl<const SCEV *> &Regs) {
1242   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
1243     // If this is an addrec for another loop, it should be an invariant
1244     // with respect to L since L is the innermost loop (at least
1245     // for now LSR only handles innermost loops).
1246     if (AR->getLoop() != L) {
1247       // If the AddRec exists, consider it's register free and leave it alone.
1248       if (isExistingPhi(AR, *SE) && AMK != TTI::AMK_PostIndexed)
1249         return;
1250 
1251       // It is bad to allow LSR for current loop to add induction variables
1252       // for its sibling loops.
1253       if (!AR->getLoop()->contains(L)) {
1254         Lose();
1255         return;
1256       }
1257 
1258       // Otherwise, it will be an invariant with respect to Loop L.
1259       ++C.NumRegs;
1260       return;
1261     }
1262 
1263     unsigned LoopCost = 1;
1264     if (TTI->isIndexedLoadLegal(TTI->MIM_PostInc, AR->getType()) ||
1265         TTI->isIndexedStoreLegal(TTI->MIM_PostInc, AR->getType())) {
1266 
1267       // If the step size matches the base offset, we could use pre-indexed
1268       // addressing.
1269       if (AMK == TTI::AMK_PreIndexed) {
1270         if (auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)))
1271           if (Step->getAPInt() == F.BaseOffset)
1272             LoopCost = 0;
1273       } else if (AMK == TTI::AMK_PostIndexed) {
1274         const SCEV *LoopStep = AR->getStepRecurrence(*SE);
1275         if (isa<SCEVConstant>(LoopStep)) {
1276           const SCEV *LoopStart = AR->getStart();
1277           if (!isa<SCEVConstant>(LoopStart) &&
1278               SE->isLoopInvariant(LoopStart, L))
1279             LoopCost = 0;
1280         }
1281       }
1282     }
1283     C.AddRecCost += LoopCost;
1284 
1285     // Add the step value register, if it needs one.
1286     // TODO: The non-affine case isn't precisely modeled here.
1287     if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) {
1288       if (!Regs.count(AR->getOperand(1))) {
1289         RateRegister(F, AR->getOperand(1), Regs);
1290         if (isLoser())
1291           return;
1292       }
1293     }
1294   }
1295   ++C.NumRegs;
1296 
1297   // Rough heuristic; favor registers which don't require extra setup
1298   // instructions in the preheader.
1299   C.SetupCost += getSetupCost(Reg, SetupCostDepthLimit);
1300   // Ensure we don't, even with the recusion limit, produce invalid costs.
1301   C.SetupCost = std::min<unsigned>(C.SetupCost, 1 << 16);
1302 
1303   C.NumIVMuls += isa<SCEVMulExpr>(Reg) &&
1304                SE->hasComputableLoopEvolution(Reg, L);
1305 }
1306 
1307 /// Record this register in the set. If we haven't seen it before, rate
1308 /// it. Optional LoserRegs provides a way to declare any formula that refers to
1309 /// one of those regs an instant loser.
1310 void Cost::RatePrimaryRegister(const Formula &F, const SCEV *Reg,
1311                                SmallPtrSetImpl<const SCEV *> &Regs,
1312                                SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1313   if (LoserRegs && LoserRegs->count(Reg)) {
1314     Lose();
1315     return;
1316   }
1317   if (Regs.insert(Reg).second) {
1318     RateRegister(F, Reg, Regs);
1319     if (LoserRegs && isLoser())
1320       LoserRegs->insert(Reg);
1321   }
1322 }
1323 
1324 void Cost::RateFormula(const Formula &F,
1325                        SmallPtrSetImpl<const SCEV *> &Regs,
1326                        const DenseSet<const SCEV *> &VisitedRegs,
1327                        const LSRUse &LU,
1328                        SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1329   assert(F.isCanonical(*L) && "Cost is accurate only for canonical formula");
1330   // Tally up the registers.
1331   unsigned PrevAddRecCost = C.AddRecCost;
1332   unsigned PrevNumRegs = C.NumRegs;
1333   unsigned PrevNumBaseAdds = C.NumBaseAdds;
1334   if (const SCEV *ScaledReg = F.ScaledReg) {
1335     if (VisitedRegs.count(ScaledReg)) {
1336       Lose();
1337       return;
1338     }
1339     RatePrimaryRegister(F, ScaledReg, Regs, LoserRegs);
1340     if (isLoser())
1341       return;
1342   }
1343   for (const SCEV *BaseReg : F.BaseRegs) {
1344     if (VisitedRegs.count(BaseReg)) {
1345       Lose();
1346       return;
1347     }
1348     RatePrimaryRegister(F, BaseReg, Regs, LoserRegs);
1349     if (isLoser())
1350       return;
1351   }
1352 
1353   // Determine how many (unfolded) adds we'll need inside the loop.
1354   size_t NumBaseParts = F.getNumRegs();
1355   if (NumBaseParts > 1)
1356     // Do not count the base and a possible second register if the target
1357     // allows to fold 2 registers.
1358     C.NumBaseAdds +=
1359         NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(*TTI, LU, F)));
1360   C.NumBaseAdds += (F.UnfoldedOffset != 0);
1361 
1362   // Accumulate non-free scaling amounts.
1363   C.ScaleCost += getScalingFactorCost(*TTI, LU, F, *L);
1364 
1365   // Tally up the non-zero immediates.
1366   for (const LSRFixup &Fixup : LU.Fixups) {
1367     int64_t O = Fixup.Offset;
1368     int64_t Offset = (uint64_t)O + F.BaseOffset;
1369     if (F.BaseGV)
1370       C.ImmCost += 64; // Handle symbolic values conservatively.
1371                      // TODO: This should probably be the pointer size.
1372     else if (Offset != 0)
1373       C.ImmCost += APInt(64, Offset, true).getMinSignedBits();
1374 
1375     // Check with target if this offset with this instruction is
1376     // specifically not supported.
1377     if (LU.Kind == LSRUse::Address && Offset != 0 &&
1378         !isAMCompletelyFolded(*TTI, LSRUse::Address, LU.AccessTy, F.BaseGV,
1379                               Offset, F.HasBaseReg, F.Scale, Fixup.UserInst))
1380       C.NumBaseAdds++;
1381   }
1382 
1383   // If we don't count instruction cost exit here.
1384   if (!InsnsCost) {
1385     assert(isValid() && "invalid cost");
1386     return;
1387   }
1388 
1389   // Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as
1390   // additional instruction (at least fill).
1391   // TODO: Need distinguish register class?
1392   unsigned TTIRegNum = TTI->getNumberOfRegisters(
1393                        TTI->getRegisterClassForType(false, F.getType())) - 1;
1394   if (C.NumRegs > TTIRegNum) {
1395     // Cost already exceeded TTIRegNum, then only newly added register can add
1396     // new instructions.
1397     if (PrevNumRegs > TTIRegNum)
1398       C.Insns += (C.NumRegs - PrevNumRegs);
1399     else
1400       C.Insns += (C.NumRegs - TTIRegNum);
1401   }
1402 
1403   // If ICmpZero formula ends with not 0, it could not be replaced by
1404   // just add or sub. We'll need to compare final result of AddRec.
1405   // That means we'll need an additional instruction. But if the target can
1406   // macro-fuse a compare with a branch, don't count this extra instruction.
1407   // For -10 + {0, +, 1}:
1408   // i = i + 1;
1409   // cmp i, 10
1410   //
1411   // For {-10, +, 1}:
1412   // i = i + 1;
1413   if (LU.Kind == LSRUse::ICmpZero && !F.hasZeroEnd() &&
1414       !TTI->canMacroFuseCmp())
1415     C.Insns++;
1416   // Each new AddRec adds 1 instruction to calculation.
1417   C.Insns += (C.AddRecCost - PrevAddRecCost);
1418 
1419   // BaseAdds adds instructions for unfolded registers.
1420   if (LU.Kind != LSRUse::ICmpZero)
1421     C.Insns += C.NumBaseAdds - PrevNumBaseAdds;
1422   assert(isValid() && "invalid cost");
1423 }
1424 
1425 /// Set this cost to a losing value.
1426 void Cost::Lose() {
1427   C.Insns = std::numeric_limits<unsigned>::max();
1428   C.NumRegs = std::numeric_limits<unsigned>::max();
1429   C.AddRecCost = std::numeric_limits<unsigned>::max();
1430   C.NumIVMuls = std::numeric_limits<unsigned>::max();
1431   C.NumBaseAdds = std::numeric_limits<unsigned>::max();
1432   C.ImmCost = std::numeric_limits<unsigned>::max();
1433   C.SetupCost = std::numeric_limits<unsigned>::max();
1434   C.ScaleCost = std::numeric_limits<unsigned>::max();
1435 }
1436 
1437 /// Choose the lower cost.
1438 bool Cost::isLess(Cost &Other) {
1439   if (InsnsCost.getNumOccurrences() > 0 && InsnsCost &&
1440       C.Insns != Other.C.Insns)
1441     return C.Insns < Other.C.Insns;
1442   return TTI->isLSRCostLess(C, Other.C);
1443 }
1444 
1445 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1446 void Cost::print(raw_ostream &OS) const {
1447   if (InsnsCost)
1448     OS << C.Insns << " instruction" << (C.Insns == 1 ? " " : "s ");
1449   OS << C.NumRegs << " reg" << (C.NumRegs == 1 ? "" : "s");
1450   if (C.AddRecCost != 0)
1451     OS << ", with addrec cost " << C.AddRecCost;
1452   if (C.NumIVMuls != 0)
1453     OS << ", plus " << C.NumIVMuls << " IV mul"
1454        << (C.NumIVMuls == 1 ? "" : "s");
1455   if (C.NumBaseAdds != 0)
1456     OS << ", plus " << C.NumBaseAdds << " base add"
1457        << (C.NumBaseAdds == 1 ? "" : "s");
1458   if (C.ScaleCost != 0)
1459     OS << ", plus " << C.ScaleCost << " scale cost";
1460   if (C.ImmCost != 0)
1461     OS << ", plus " << C.ImmCost << " imm cost";
1462   if (C.SetupCost != 0)
1463     OS << ", plus " << C.SetupCost << " setup cost";
1464 }
1465 
1466 LLVM_DUMP_METHOD void Cost::dump() const {
1467   print(errs()); errs() << '\n';
1468 }
1469 #endif
1470 
1471 /// Test whether this fixup always uses its value outside of the given loop.
1472 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
1473   // PHI nodes use their value in their incoming blocks.
1474   if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
1475     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1476       if (PN->getIncomingValue(i) == OperandValToReplace &&
1477           L->contains(PN->getIncomingBlock(i)))
1478         return false;
1479     return true;
1480   }
1481 
1482   return !L->contains(UserInst);
1483 }
1484 
1485 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1486 void LSRFixup::print(raw_ostream &OS) const {
1487   OS << "UserInst=";
1488   // Store is common and interesting enough to be worth special-casing.
1489   if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
1490     OS << "store ";
1491     Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false);
1492   } else if (UserInst->getType()->isVoidTy())
1493     OS << UserInst->getOpcodeName();
1494   else
1495     UserInst->printAsOperand(OS, /*PrintType=*/false);
1496 
1497   OS << ", OperandValToReplace=";
1498   OperandValToReplace->printAsOperand(OS, /*PrintType=*/false);
1499 
1500   for (const Loop *PIL : PostIncLoops) {
1501     OS << ", PostIncLoop=";
1502     PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
1503   }
1504 
1505   if (Offset != 0)
1506     OS << ", Offset=" << Offset;
1507 }
1508 
1509 LLVM_DUMP_METHOD void LSRFixup::dump() const {
1510   print(errs()); errs() << '\n';
1511 }
1512 #endif
1513 
1514 /// Test whether this use as a formula which has the same registers as the given
1515 /// formula.
1516 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
1517   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1518   if (F.ScaledReg) Key.push_back(F.ScaledReg);
1519   // Unstable sort by host order ok, because this is only used for uniquifying.
1520   llvm::sort(Key);
1521   return Uniquifier.count(Key);
1522 }
1523 
1524 /// The function returns a probability of selecting formula without Reg.
1525 float LSRUse::getNotSelectedProbability(const SCEV *Reg) const {
1526   unsigned FNum = 0;
1527   for (const Formula &F : Formulae)
1528     if (F.referencesReg(Reg))
1529       FNum++;
1530   return ((float)(Formulae.size() - FNum)) / Formulae.size();
1531 }
1532 
1533 /// If the given formula has not yet been inserted, add it to the list, and
1534 /// return true. Return false otherwise.  The formula must be in canonical form.
1535 bool LSRUse::InsertFormula(const Formula &F, const Loop &L) {
1536   assert(F.isCanonical(L) && "Invalid canonical representation");
1537 
1538   if (!Formulae.empty() && RigidFormula)
1539     return false;
1540 
1541   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1542   if (F.ScaledReg) Key.push_back(F.ScaledReg);
1543   // Unstable sort by host order ok, because this is only used for uniquifying.
1544   llvm::sort(Key);
1545 
1546   if (!Uniquifier.insert(Key).second)
1547     return false;
1548 
1549   // Using a register to hold the value of 0 is not profitable.
1550   assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
1551          "Zero allocated in a scaled register!");
1552 #ifndef NDEBUG
1553   for (const SCEV *BaseReg : F.BaseRegs)
1554     assert(!BaseReg->isZero() && "Zero allocated in a base register!");
1555 #endif
1556 
1557   // Add the formula to the list.
1558   Formulae.push_back(F);
1559 
1560   // Record registers now being used by this use.
1561   Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1562   if (F.ScaledReg)
1563     Regs.insert(F.ScaledReg);
1564 
1565   return true;
1566 }
1567 
1568 /// Remove the given formula from this use's list.
1569 void LSRUse::DeleteFormula(Formula &F) {
1570   if (&F != &Formulae.back())
1571     std::swap(F, Formulae.back());
1572   Formulae.pop_back();
1573 }
1574 
1575 /// Recompute the Regs field, and update RegUses.
1576 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
1577   // Now that we've filtered out some formulae, recompute the Regs set.
1578   SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs);
1579   Regs.clear();
1580   for (const Formula &F : Formulae) {
1581     if (F.ScaledReg) Regs.insert(F.ScaledReg);
1582     Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1583   }
1584 
1585   // Update the RegTracker.
1586   for (const SCEV *S : OldRegs)
1587     if (!Regs.count(S))
1588       RegUses.dropRegister(S, LUIdx);
1589 }
1590 
1591 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1592 void LSRUse::print(raw_ostream &OS) const {
1593   OS << "LSR Use: Kind=";
1594   switch (Kind) {
1595   case Basic:    OS << "Basic"; break;
1596   case Special:  OS << "Special"; break;
1597   case ICmpZero: OS << "ICmpZero"; break;
1598   case Address:
1599     OS << "Address of ";
1600     if (AccessTy.MemTy->isPointerTy())
1601       OS << "pointer"; // the full pointer type could be really verbose
1602     else {
1603       OS << *AccessTy.MemTy;
1604     }
1605 
1606     OS << " in addrspace(" << AccessTy.AddrSpace << ')';
1607   }
1608 
1609   OS << ", Offsets={";
1610   bool NeedComma = false;
1611   for (const LSRFixup &Fixup : Fixups) {
1612     if (NeedComma) OS << ',';
1613     OS << Fixup.Offset;
1614     NeedComma = true;
1615   }
1616   OS << '}';
1617 
1618   if (AllFixupsOutsideLoop)
1619     OS << ", all-fixups-outside-loop";
1620 
1621   if (WidestFixupType)
1622     OS << ", widest fixup type: " << *WidestFixupType;
1623 }
1624 
1625 LLVM_DUMP_METHOD void LSRUse::dump() const {
1626   print(errs()); errs() << '\n';
1627 }
1628 #endif
1629 
1630 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1631                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1632                                  GlobalValue *BaseGV, int64_t BaseOffset,
1633                                  bool HasBaseReg, int64_t Scale,
1634                                  Instruction *Fixup/*= nullptr*/) {
1635   switch (Kind) {
1636   case LSRUse::Address:
1637     return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset,
1638                                      HasBaseReg, Scale, AccessTy.AddrSpace, Fixup);
1639 
1640   case LSRUse::ICmpZero:
1641     // There's not even a target hook for querying whether it would be legal to
1642     // fold a GV into an ICmp.
1643     if (BaseGV)
1644       return false;
1645 
1646     // ICmp only has two operands; don't allow more than two non-trivial parts.
1647     if (Scale != 0 && HasBaseReg && BaseOffset != 0)
1648       return false;
1649 
1650     // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
1651     // putting the scaled register in the other operand of the icmp.
1652     if (Scale != 0 && Scale != -1)
1653       return false;
1654 
1655     // If we have low-level target information, ask the target if it can fold an
1656     // integer immediate on an icmp.
1657     if (BaseOffset != 0) {
1658       // We have one of:
1659       // ICmpZero     BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset
1660       // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset
1661       // Offs is the ICmp immediate.
1662       if (Scale == 0)
1663         // The cast does the right thing with
1664         // std::numeric_limits<int64_t>::min().
1665         BaseOffset = -(uint64_t)BaseOffset;
1666       return TTI.isLegalICmpImmediate(BaseOffset);
1667     }
1668 
1669     // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg
1670     return true;
1671 
1672   case LSRUse::Basic:
1673     // Only handle single-register values.
1674     return !BaseGV && Scale == 0 && BaseOffset == 0;
1675 
1676   case LSRUse::Special:
1677     // Special case Basic to handle -1 scales.
1678     return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0;
1679   }
1680 
1681   llvm_unreachable("Invalid LSRUse Kind!");
1682 }
1683 
1684 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1685                                  int64_t MinOffset, int64_t MaxOffset,
1686                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1687                                  GlobalValue *BaseGV, int64_t BaseOffset,
1688                                  bool HasBaseReg, int64_t Scale) {
1689   // Check for overflow.
1690   if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) !=
1691       (MinOffset > 0))
1692     return false;
1693   MinOffset = (uint64_t)BaseOffset + MinOffset;
1694   if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) !=
1695       (MaxOffset > 0))
1696     return false;
1697   MaxOffset = (uint64_t)BaseOffset + MaxOffset;
1698 
1699   return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset,
1700                               HasBaseReg, Scale) &&
1701          isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset,
1702                               HasBaseReg, Scale);
1703 }
1704 
1705 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1706                                  int64_t MinOffset, int64_t MaxOffset,
1707                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1708                                  const Formula &F, const Loop &L) {
1709   // For the purpose of isAMCompletelyFolded either having a canonical formula
1710   // or a scale not equal to zero is correct.
1711   // Problems may arise from non canonical formulae having a scale == 0.
1712   // Strictly speaking it would best to just rely on canonical formulae.
1713   // However, when we generate the scaled formulae, we first check that the
1714   // scaling factor is profitable before computing the actual ScaledReg for
1715   // compile time sake.
1716   assert((F.isCanonical(L) || F.Scale != 0));
1717   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1718                               F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale);
1719 }
1720 
1721 /// Test whether we know how to expand the current formula.
1722 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1723                        int64_t MaxOffset, LSRUse::KindType Kind,
1724                        MemAccessTy AccessTy, GlobalValue *BaseGV,
1725                        int64_t BaseOffset, bool HasBaseReg, int64_t Scale) {
1726   // We know how to expand completely foldable formulae.
1727   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1728                               BaseOffset, HasBaseReg, Scale) ||
1729          // Or formulae that use a base register produced by a sum of base
1730          // registers.
1731          (Scale == 1 &&
1732           isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1733                                BaseGV, BaseOffset, true, 0));
1734 }
1735 
1736 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1737                        int64_t MaxOffset, LSRUse::KindType Kind,
1738                        MemAccessTy AccessTy, const Formula &F) {
1739   return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV,
1740                     F.BaseOffset, F.HasBaseReg, F.Scale);
1741 }
1742 
1743 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1744                                  const LSRUse &LU, const Formula &F) {
1745   // Target may want to look at the user instructions.
1746   if (LU.Kind == LSRUse::Address && TTI.LSRWithInstrQueries()) {
1747     for (const LSRFixup &Fixup : LU.Fixups)
1748       if (!isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV,
1749                                 (F.BaseOffset + Fixup.Offset), F.HasBaseReg,
1750                                 F.Scale, Fixup.UserInst))
1751         return false;
1752     return true;
1753   }
1754 
1755   return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1756                               LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg,
1757                               F.Scale);
1758 }
1759 
1760 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
1761                                      const LSRUse &LU, const Formula &F,
1762                                      const Loop &L) {
1763   if (!F.Scale)
1764     return 0;
1765 
1766   // If the use is not completely folded in that instruction, we will have to
1767   // pay an extra cost only for scale != 1.
1768   if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1769                             LU.AccessTy, F, L))
1770     return F.Scale != 1;
1771 
1772   switch (LU.Kind) {
1773   case LSRUse::Address: {
1774     // Check the scaling factor cost with both the min and max offsets.
1775     int ScaleCostMinOffset = TTI.getScalingFactorCost(
1776         LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg,
1777         F.Scale, LU.AccessTy.AddrSpace);
1778     int ScaleCostMaxOffset = TTI.getScalingFactorCost(
1779         LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg,
1780         F.Scale, LU.AccessTy.AddrSpace);
1781 
1782     assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 &&
1783            "Legal addressing mode has an illegal cost!");
1784     return std::max(ScaleCostMinOffset, ScaleCostMaxOffset);
1785   }
1786   case LSRUse::ICmpZero:
1787   case LSRUse::Basic:
1788   case LSRUse::Special:
1789     // The use is completely folded, i.e., everything is folded into the
1790     // instruction.
1791     return 0;
1792   }
1793 
1794   llvm_unreachable("Invalid LSRUse Kind!");
1795 }
1796 
1797 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1798                              LSRUse::KindType Kind, MemAccessTy AccessTy,
1799                              GlobalValue *BaseGV, int64_t BaseOffset,
1800                              bool HasBaseReg) {
1801   // Fast-path: zero is always foldable.
1802   if (BaseOffset == 0 && !BaseGV) return true;
1803 
1804   // Conservatively, create an address with an immediate and a
1805   // base and a scale.
1806   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1807 
1808   // Canonicalize a scale of 1 to a base register if the formula doesn't
1809   // already have a base register.
1810   if (!HasBaseReg && Scale == 1) {
1811     Scale = 0;
1812     HasBaseReg = true;
1813   }
1814 
1815   return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset,
1816                               HasBaseReg, Scale);
1817 }
1818 
1819 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1820                              ScalarEvolution &SE, int64_t MinOffset,
1821                              int64_t MaxOffset, LSRUse::KindType Kind,
1822                              MemAccessTy AccessTy, const SCEV *S,
1823                              bool HasBaseReg) {
1824   // Fast-path: zero is always foldable.
1825   if (S->isZero()) return true;
1826 
1827   // Conservatively, create an address with an immediate and a
1828   // base and a scale.
1829   int64_t BaseOffset = ExtractImmediate(S, SE);
1830   GlobalValue *BaseGV = ExtractSymbol(S, SE);
1831 
1832   // If there's anything else involved, it's not foldable.
1833   if (!S->isZero()) return false;
1834 
1835   // Fast-path: zero is always foldable.
1836   if (BaseOffset == 0 && !BaseGV) return true;
1837 
1838   // Conservatively, create an address with an immediate and a
1839   // base and a scale.
1840   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1841 
1842   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1843                               BaseOffset, HasBaseReg, Scale);
1844 }
1845 
1846 namespace {
1847 
1848 /// An individual increment in a Chain of IV increments.  Relate an IV user to
1849 /// an expression that computes the IV it uses from the IV used by the previous
1850 /// link in the Chain.
1851 ///
1852 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the
1853 /// original IVOperand. The head of the chain's IVOperand is only valid during
1854 /// chain collection, before LSR replaces IV users. During chain generation,
1855 /// IncExpr can be used to find the new IVOperand that computes the same
1856 /// expression.
1857 struct IVInc {
1858   Instruction *UserInst;
1859   Value* IVOperand;
1860   const SCEV *IncExpr;
1861 
1862   IVInc(Instruction *U, Value *O, const SCEV *E)
1863       : UserInst(U), IVOperand(O), IncExpr(E) {}
1864 };
1865 
1866 // The list of IV increments in program order.  We typically add the head of a
1867 // chain without finding subsequent links.
1868 struct IVChain {
1869   SmallVector<IVInc, 1> Incs;
1870   const SCEV *ExprBase = nullptr;
1871 
1872   IVChain() = default;
1873   IVChain(const IVInc &Head, const SCEV *Base)
1874       : Incs(1, Head), ExprBase(Base) {}
1875 
1876   using const_iterator = SmallVectorImpl<IVInc>::const_iterator;
1877 
1878   // Return the first increment in the chain.
1879   const_iterator begin() const {
1880     assert(!Incs.empty());
1881     return std::next(Incs.begin());
1882   }
1883   const_iterator end() const {
1884     return Incs.end();
1885   }
1886 
1887   // Returns true if this chain contains any increments.
1888   bool hasIncs() const { return Incs.size() >= 2; }
1889 
1890   // Add an IVInc to the end of this chain.
1891   void add(const IVInc &X) { Incs.push_back(X); }
1892 
1893   // Returns the last UserInst in the chain.
1894   Instruction *tailUserInst() const { return Incs.back().UserInst; }
1895 
1896   // Returns true if IncExpr can be profitably added to this chain.
1897   bool isProfitableIncrement(const SCEV *OperExpr,
1898                              const SCEV *IncExpr,
1899                              ScalarEvolution&);
1900 };
1901 
1902 /// Helper for CollectChains to track multiple IV increment uses.  Distinguish
1903 /// between FarUsers that definitely cross IV increments and NearUsers that may
1904 /// be used between IV increments.
1905 struct ChainUsers {
1906   SmallPtrSet<Instruction*, 4> FarUsers;
1907   SmallPtrSet<Instruction*, 4> NearUsers;
1908 };
1909 
1910 /// This class holds state for the main loop strength reduction logic.
1911 class LSRInstance {
1912   IVUsers &IU;
1913   ScalarEvolution &SE;
1914   DominatorTree &DT;
1915   LoopInfo &LI;
1916   AssumptionCache &AC;
1917   TargetLibraryInfo &TLI;
1918   const TargetTransformInfo &TTI;
1919   Loop *const L;
1920   MemorySSAUpdater *MSSAU;
1921   TTI::AddressingModeKind AMK;
1922   bool Changed = false;
1923 
1924   /// This is the insert position that the current loop's induction variable
1925   /// increment should be placed. In simple loops, this is the latch block's
1926   /// terminator. But in more complicated cases, this is a position which will
1927   /// dominate all the in-loop post-increment users.
1928   Instruction *IVIncInsertPos = nullptr;
1929 
1930   /// Interesting factors between use strides.
1931   ///
1932   /// We explicitly use a SetVector which contains a SmallSet, instead of the
1933   /// default, a SmallDenseSet, because we need to use the full range of
1934   /// int64_ts, and there's currently no good way of doing that with
1935   /// SmallDenseSet.
1936   SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors;
1937 
1938   /// Interesting use types, to facilitate truncation reuse.
1939   SmallSetVector<Type *, 4> Types;
1940 
1941   /// The list of interesting uses.
1942   mutable SmallVector<LSRUse, 16> Uses;
1943 
1944   /// Track which uses use which register candidates.
1945   RegUseTracker RegUses;
1946 
1947   // Limit the number of chains to avoid quadratic behavior. We don't expect to
1948   // have more than a few IV increment chains in a loop. Missing a Chain falls
1949   // back to normal LSR behavior for those uses.
1950   static const unsigned MaxChains = 8;
1951 
1952   /// IV users can form a chain of IV increments.
1953   SmallVector<IVChain, MaxChains> IVChainVec;
1954 
1955   /// IV users that belong to profitable IVChains.
1956   SmallPtrSet<Use*, MaxChains> IVIncSet;
1957 
1958   void OptimizeShadowIV();
1959   bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
1960   ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
1961   void OptimizeLoopTermCond();
1962 
1963   void ChainInstruction(Instruction *UserInst, Instruction *IVOper,
1964                         SmallVectorImpl<ChainUsers> &ChainUsersVec);
1965   void FinalizeChain(IVChain &Chain);
1966   void CollectChains();
1967   void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
1968                        SmallVectorImpl<WeakTrackingVH> &DeadInsts);
1969 
1970   void CollectInterestingTypesAndFactors();
1971   void CollectFixupsAndInitialFormulae();
1972 
1973   // Support for sharing of LSRUses between LSRFixups.
1974   using UseMapTy = DenseMap<LSRUse::SCEVUseKindPair, size_t>;
1975   UseMapTy UseMap;
1976 
1977   bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
1978                           LSRUse::KindType Kind, MemAccessTy AccessTy);
1979 
1980   std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind,
1981                                     MemAccessTy AccessTy);
1982 
1983   void DeleteUse(LSRUse &LU, size_t LUIdx);
1984 
1985   LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
1986 
1987   void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1988   void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1989   void CountRegisters(const Formula &F, size_t LUIdx);
1990   bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
1991 
1992   void CollectLoopInvariantFixupsAndFormulae();
1993 
1994   void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
1995                               unsigned Depth = 0);
1996 
1997   void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
1998                                   const Formula &Base, unsigned Depth,
1999                                   size_t Idx, bool IsScaledReg = false);
2000   void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
2001   void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
2002                                    const Formula &Base, size_t Idx,
2003                                    bool IsScaledReg = false);
2004   void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
2005   void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx,
2006                                    const Formula &Base,
2007                                    const SmallVectorImpl<int64_t> &Worklist,
2008                                    size_t Idx, bool IsScaledReg = false);
2009   void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
2010   void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
2011   void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
2012   void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
2013   void GenerateCrossUseConstantOffsets();
2014   void GenerateAllReuseFormulae();
2015 
2016   void FilterOutUndesirableDedicatedRegisters();
2017 
2018   size_t EstimateSearchSpaceComplexity() const;
2019   void NarrowSearchSpaceByDetectingSupersets();
2020   void NarrowSearchSpaceByCollapsingUnrolledCode();
2021   void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
2022   void NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
2023   void NarrowSearchSpaceByFilterPostInc();
2024   void NarrowSearchSpaceByDeletingCostlyFormulas();
2025   void NarrowSearchSpaceByPickingWinnerRegs();
2026   void NarrowSearchSpaceUsingHeuristics();
2027 
2028   void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
2029                     Cost &SolutionCost,
2030                     SmallVectorImpl<const Formula *> &Workspace,
2031                     const Cost &CurCost,
2032                     const SmallPtrSet<const SCEV *, 16> &CurRegs,
2033                     DenseSet<const SCEV *> &VisitedRegs) const;
2034   void Solve(SmallVectorImpl<const Formula *> &Solution) const;
2035 
2036   BasicBlock::iterator
2037     HoistInsertPosition(BasicBlock::iterator IP,
2038                         const SmallVectorImpl<Instruction *> &Inputs) const;
2039   BasicBlock::iterator
2040     AdjustInsertPositionForExpand(BasicBlock::iterator IP,
2041                                   const LSRFixup &LF,
2042                                   const LSRUse &LU,
2043                                   SCEVExpander &Rewriter) const;
2044 
2045   Value *Expand(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
2046                 BasicBlock::iterator IP, SCEVExpander &Rewriter,
2047                 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2048   void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF,
2049                      const Formula &F, SCEVExpander &Rewriter,
2050                      SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2051   void Rewrite(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
2052                SCEVExpander &Rewriter,
2053                SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2054   void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution);
2055 
2056 public:
2057   LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT,
2058               LoopInfo &LI, const TargetTransformInfo &TTI, AssumptionCache &AC,
2059               TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU);
2060 
2061   bool getChanged() const { return Changed; }
2062 
2063   void print_factors_and_types(raw_ostream &OS) const;
2064   void print_fixups(raw_ostream &OS) const;
2065   void print_uses(raw_ostream &OS) const;
2066   void print(raw_ostream &OS) const;
2067   void dump() const;
2068 };
2069 
2070 } // end anonymous namespace
2071 
2072 /// If IV is used in a int-to-float cast inside the loop then try to eliminate
2073 /// the cast operation.
2074 void LSRInstance::OptimizeShadowIV() {
2075   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
2076   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2077     return;
2078 
2079   for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
2080        UI != E; /* empty */) {
2081     IVUsers::const_iterator CandidateUI = UI;
2082     ++UI;
2083     Instruction *ShadowUse = CandidateUI->getUser();
2084     Type *DestTy = nullptr;
2085     bool IsSigned = false;
2086 
2087     /* If shadow use is a int->float cast then insert a second IV
2088        to eliminate this cast.
2089 
2090          for (unsigned i = 0; i < n; ++i)
2091            foo((double)i);
2092 
2093        is transformed into
2094 
2095          double d = 0.0;
2096          for (unsigned i = 0; i < n; ++i, ++d)
2097            foo(d);
2098     */
2099     if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) {
2100       IsSigned = false;
2101       DestTy = UCast->getDestTy();
2102     }
2103     else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) {
2104       IsSigned = true;
2105       DestTy = SCast->getDestTy();
2106     }
2107     if (!DestTy) continue;
2108 
2109     // If target does not support DestTy natively then do not apply
2110     // this transformation.
2111     if (!TTI.isTypeLegal(DestTy)) continue;
2112 
2113     PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
2114     if (!PH) continue;
2115     if (PH->getNumIncomingValues() != 2) continue;
2116 
2117     // If the calculation in integers overflows, the result in FP type will
2118     // differ. So we only can do this transformation if we are guaranteed to not
2119     // deal with overflowing values
2120     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PH));
2121     if (!AR) continue;
2122     if (IsSigned && !AR->hasNoSignedWrap()) continue;
2123     if (!IsSigned && !AR->hasNoUnsignedWrap()) continue;
2124 
2125     Type *SrcTy = PH->getType();
2126     int Mantissa = DestTy->getFPMantissaWidth();
2127     if (Mantissa == -1) continue;
2128     if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
2129       continue;
2130 
2131     unsigned Entry, Latch;
2132     if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
2133       Entry = 0;
2134       Latch = 1;
2135     } else {
2136       Entry = 1;
2137       Latch = 0;
2138     }
2139 
2140     ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
2141     if (!Init) continue;
2142     Constant *NewInit = ConstantFP::get(DestTy, IsSigned ?
2143                                         (double)Init->getSExtValue() :
2144                                         (double)Init->getZExtValue());
2145 
2146     BinaryOperator *Incr =
2147       dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
2148     if (!Incr) continue;
2149     if (Incr->getOpcode() != Instruction::Add
2150         && Incr->getOpcode() != Instruction::Sub)
2151       continue;
2152 
2153     /* Initialize new IV, double d = 0.0 in above example. */
2154     ConstantInt *C = nullptr;
2155     if (Incr->getOperand(0) == PH)
2156       C = dyn_cast<ConstantInt>(Incr->getOperand(1));
2157     else if (Incr->getOperand(1) == PH)
2158       C = dyn_cast<ConstantInt>(Incr->getOperand(0));
2159     else
2160       continue;
2161 
2162     if (!C) continue;
2163 
2164     // Ignore negative constants, as the code below doesn't handle them
2165     // correctly. TODO: Remove this restriction.
2166     if (!C->getValue().isStrictlyPositive()) continue;
2167 
2168     /* Add new PHINode. */
2169     PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH);
2170 
2171     /* create new increment. '++d' in above example. */
2172     Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
2173     BinaryOperator *NewIncr =
2174       BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
2175                                Instruction::FAdd : Instruction::FSub,
2176                              NewPH, CFP, "IV.S.next.", Incr);
2177 
2178     NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
2179     NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
2180 
2181     /* Remove cast operation */
2182     ShadowUse->replaceAllUsesWith(NewPH);
2183     ShadowUse->eraseFromParent();
2184     Changed = true;
2185     break;
2186   }
2187 }
2188 
2189 /// If Cond has an operand that is an expression of an IV, set the IV user and
2190 /// stride information and return true, otherwise return false.
2191 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
2192   for (IVStrideUse &U : IU)
2193     if (U.getUser() == Cond) {
2194       // NOTE: we could handle setcc instructions with multiple uses here, but
2195       // InstCombine does it as well for simple uses, it's not clear that it
2196       // occurs enough in real life to handle.
2197       CondUse = &U;
2198       return true;
2199     }
2200   return false;
2201 }
2202 
2203 /// Rewrite the loop's terminating condition if it uses a max computation.
2204 ///
2205 /// This is a narrow solution to a specific, but acute, problem. For loops
2206 /// like this:
2207 ///
2208 ///   i = 0;
2209 ///   do {
2210 ///     p[i] = 0.0;
2211 ///   } while (++i < n);
2212 ///
2213 /// the trip count isn't just 'n', because 'n' might not be positive. And
2214 /// unfortunately this can come up even for loops where the user didn't use
2215 /// a C do-while loop. For example, seemingly well-behaved top-test loops
2216 /// will commonly be lowered like this:
2217 ///
2218 ///   if (n > 0) {
2219 ///     i = 0;
2220 ///     do {
2221 ///       p[i] = 0.0;
2222 ///     } while (++i < n);
2223 ///   }
2224 ///
2225 /// and then it's possible for subsequent optimization to obscure the if
2226 /// test in such a way that indvars can't find it.
2227 ///
2228 /// When indvars can't find the if test in loops like this, it creates a
2229 /// max expression, which allows it to give the loop a canonical
2230 /// induction variable:
2231 ///
2232 ///   i = 0;
2233 ///   max = n < 1 ? 1 : n;
2234 ///   do {
2235 ///     p[i] = 0.0;
2236 ///   } while (++i != max);
2237 ///
2238 /// Canonical induction variables are necessary because the loop passes
2239 /// are designed around them. The most obvious example of this is the
2240 /// LoopInfo analysis, which doesn't remember trip count values. It
2241 /// expects to be able to rediscover the trip count each time it is
2242 /// needed, and it does this using a simple analysis that only succeeds if
2243 /// the loop has a canonical induction variable.
2244 ///
2245 /// However, when it comes time to generate code, the maximum operation
2246 /// can be quite costly, especially if it's inside of an outer loop.
2247 ///
2248 /// This function solves this problem by detecting this type of loop and
2249 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
2250 /// the instructions for the maximum computation.
2251 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
2252   // Check that the loop matches the pattern we're looking for.
2253   if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
2254       Cond->getPredicate() != CmpInst::ICMP_NE)
2255     return Cond;
2256 
2257   SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
2258   if (!Sel || !Sel->hasOneUse()) return Cond;
2259 
2260   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
2261   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2262     return Cond;
2263   const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
2264 
2265   // Add one to the backedge-taken count to get the trip count.
2266   const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount);
2267   if (IterationCount != SE.getSCEV(Sel)) return Cond;
2268 
2269   // Check for a max calculation that matches the pattern. There's no check
2270   // for ICMP_ULE here because the comparison would be with zero, which
2271   // isn't interesting.
2272   CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
2273   const SCEVNAryExpr *Max = nullptr;
2274   if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
2275     Pred = ICmpInst::ICMP_SLE;
2276     Max = S;
2277   } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
2278     Pred = ICmpInst::ICMP_SLT;
2279     Max = S;
2280   } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
2281     Pred = ICmpInst::ICMP_ULT;
2282     Max = U;
2283   } else {
2284     // No match; bail.
2285     return Cond;
2286   }
2287 
2288   // To handle a max with more than two operands, this optimization would
2289   // require additional checking and setup.
2290   if (Max->getNumOperands() != 2)
2291     return Cond;
2292 
2293   const SCEV *MaxLHS = Max->getOperand(0);
2294   const SCEV *MaxRHS = Max->getOperand(1);
2295 
2296   // ScalarEvolution canonicalizes constants to the left. For < and >, look
2297   // for a comparison with 1. For <= and >=, a comparison with zero.
2298   if (!MaxLHS ||
2299       (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
2300     return Cond;
2301 
2302   // Check the relevant induction variable for conformance to
2303   // the pattern.
2304   const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
2305   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
2306   if (!AR || !AR->isAffine() ||
2307       AR->getStart() != One ||
2308       AR->getStepRecurrence(SE) != One)
2309     return Cond;
2310 
2311   assert(AR->getLoop() == L &&
2312          "Loop condition operand is an addrec in a different loop!");
2313 
2314   // Check the right operand of the select, and remember it, as it will
2315   // be used in the new comparison instruction.
2316   Value *NewRHS = nullptr;
2317   if (ICmpInst::isTrueWhenEqual(Pred)) {
2318     // Look for n+1, and grab n.
2319     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
2320       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2321          if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2322            NewRHS = BO->getOperand(0);
2323     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
2324       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2325         if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2326           NewRHS = BO->getOperand(0);
2327     if (!NewRHS)
2328       return Cond;
2329   } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
2330     NewRHS = Sel->getOperand(1);
2331   else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
2332     NewRHS = Sel->getOperand(2);
2333   else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS))
2334     NewRHS = SU->getValue();
2335   else
2336     // Max doesn't match expected pattern.
2337     return Cond;
2338 
2339   // Determine the new comparison opcode. It may be signed or unsigned,
2340   // and the original comparison may be either equality or inequality.
2341   if (Cond->getPredicate() == CmpInst::ICMP_EQ)
2342     Pred = CmpInst::getInversePredicate(Pred);
2343 
2344   // Ok, everything looks ok to change the condition into an SLT or SGE and
2345   // delete the max calculation.
2346   ICmpInst *NewCond =
2347     new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
2348 
2349   // Delete the max calculation instructions.
2350   Cond->replaceAllUsesWith(NewCond);
2351   CondUse->setUser(NewCond);
2352   Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
2353   Cond->eraseFromParent();
2354   Sel->eraseFromParent();
2355   if (Cmp->use_empty())
2356     Cmp->eraseFromParent();
2357   return NewCond;
2358 }
2359 
2360 /// Change loop terminating condition to use the postinc iv when possible.
2361 void
2362 LSRInstance::OptimizeLoopTermCond() {
2363   SmallPtrSet<Instruction *, 4> PostIncs;
2364 
2365   // We need a different set of heuristics for rotated and non-rotated loops.
2366   // If a loop is rotated then the latch is also the backedge, so inserting
2367   // post-inc expressions just before the latch is ideal. To reduce live ranges
2368   // it also makes sense to rewrite terminating conditions to use post-inc
2369   // expressions.
2370   //
2371   // If the loop is not rotated then the latch is not a backedge; the latch
2372   // check is done in the loop head. Adding post-inc expressions before the
2373   // latch will cause overlapping live-ranges of pre-inc and post-inc expressions
2374   // in the loop body. In this case we do *not* want to use post-inc expressions
2375   // in the latch check, and we want to insert post-inc expressions before
2376   // the backedge.
2377   BasicBlock *LatchBlock = L->getLoopLatch();
2378   SmallVector<BasicBlock*, 8> ExitingBlocks;
2379   L->getExitingBlocks(ExitingBlocks);
2380   if (llvm::all_of(ExitingBlocks, [&LatchBlock](const BasicBlock *BB) {
2381         return LatchBlock != BB;
2382       })) {
2383     // The backedge doesn't exit the loop; treat this as a head-tested loop.
2384     IVIncInsertPos = LatchBlock->getTerminator();
2385     return;
2386   }
2387 
2388   // Otherwise treat this as a rotated loop.
2389   for (BasicBlock *ExitingBlock : ExitingBlocks) {
2390     // Get the terminating condition for the loop if possible.  If we
2391     // can, we want to change it to use a post-incremented version of its
2392     // induction variable, to allow coalescing the live ranges for the IV into
2393     // one register value.
2394 
2395     BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
2396     if (!TermBr)
2397       continue;
2398     // FIXME: Overly conservative, termination condition could be an 'or' etc..
2399     if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
2400       continue;
2401 
2402     // Search IVUsesByStride to find Cond's IVUse if there is one.
2403     IVStrideUse *CondUse = nullptr;
2404     ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
2405     if (!FindIVUserForCond(Cond, CondUse))
2406       continue;
2407 
2408     // If the trip count is computed in terms of a max (due to ScalarEvolution
2409     // being unable to find a sufficient guard, for example), change the loop
2410     // comparison to use SLT or ULT instead of NE.
2411     // One consequence of doing this now is that it disrupts the count-down
2412     // optimization. That's not always a bad thing though, because in such
2413     // cases it may still be worthwhile to avoid a max.
2414     Cond = OptimizeMax(Cond, CondUse);
2415 
2416     // If this exiting block dominates the latch block, it may also use
2417     // the post-inc value if it won't be shared with other uses.
2418     // Check for dominance.
2419     if (!DT.dominates(ExitingBlock, LatchBlock))
2420       continue;
2421 
2422     // Conservatively avoid trying to use the post-inc value in non-latch
2423     // exits if there may be pre-inc users in intervening blocks.
2424     if (LatchBlock != ExitingBlock)
2425       for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
2426         // Test if the use is reachable from the exiting block. This dominator
2427         // query is a conservative approximation of reachability.
2428         if (&*UI != CondUse &&
2429             !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
2430           // Conservatively assume there may be reuse if the quotient of their
2431           // strides could be a legal scale.
2432           const SCEV *A = IU.getStride(*CondUse, L);
2433           const SCEV *B = IU.getStride(*UI, L);
2434           if (!A || !B) continue;
2435           if (SE.getTypeSizeInBits(A->getType()) !=
2436               SE.getTypeSizeInBits(B->getType())) {
2437             if (SE.getTypeSizeInBits(A->getType()) >
2438                 SE.getTypeSizeInBits(B->getType()))
2439               B = SE.getSignExtendExpr(B, A->getType());
2440             else
2441               A = SE.getSignExtendExpr(A, B->getType());
2442           }
2443           if (const SCEVConstant *D =
2444                 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
2445             const ConstantInt *C = D->getValue();
2446             // Stride of one or negative one can have reuse with non-addresses.
2447             if (C->isOne() || C->isMinusOne())
2448               goto decline_post_inc;
2449             // Avoid weird situations.
2450             if (C->getValue().getMinSignedBits() >= 64 ||
2451                 C->getValue().isMinSignedValue())
2452               goto decline_post_inc;
2453             // Check for possible scaled-address reuse.
2454             if (isAddressUse(TTI, UI->getUser(), UI->getOperandValToReplace())) {
2455               MemAccessTy AccessTy = getAccessType(
2456                   TTI, UI->getUser(), UI->getOperandValToReplace());
2457               int64_t Scale = C->getSExtValue();
2458               if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2459                                             /*BaseOffset=*/0,
2460                                             /*HasBaseReg=*/false, Scale,
2461                                             AccessTy.AddrSpace))
2462                 goto decline_post_inc;
2463               Scale = -Scale;
2464               if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2465                                             /*BaseOffset=*/0,
2466                                             /*HasBaseReg=*/false, Scale,
2467                                             AccessTy.AddrSpace))
2468                 goto decline_post_inc;
2469             }
2470           }
2471         }
2472 
2473     LLVM_DEBUG(dbgs() << "  Change loop exiting icmp to use postinc iv: "
2474                       << *Cond << '\n');
2475 
2476     // It's possible for the setcc instruction to be anywhere in the loop, and
2477     // possible for it to have multiple users.  If it is not immediately before
2478     // the exiting block branch, move it.
2479     if (&*++BasicBlock::iterator(Cond) != TermBr) {
2480       if (Cond->hasOneUse()) {
2481         Cond->moveBefore(TermBr);
2482       } else {
2483         // Clone the terminating condition and insert into the loopend.
2484         ICmpInst *OldCond = Cond;
2485         Cond = cast<ICmpInst>(Cond->clone());
2486         Cond->setName(L->getHeader()->getName() + ".termcond");
2487         ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond);
2488 
2489         // Clone the IVUse, as the old use still exists!
2490         CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
2491         TermBr->replaceUsesOfWith(OldCond, Cond);
2492       }
2493     }
2494 
2495     // If we get to here, we know that we can transform the setcc instruction to
2496     // use the post-incremented version of the IV, allowing us to coalesce the
2497     // live ranges for the IV correctly.
2498     CondUse->transformToPostInc(L);
2499     Changed = true;
2500 
2501     PostIncs.insert(Cond);
2502   decline_post_inc:;
2503   }
2504 
2505   // Determine an insertion point for the loop induction variable increment. It
2506   // must dominate all the post-inc comparisons we just set up, and it must
2507   // dominate the loop latch edge.
2508   IVIncInsertPos = L->getLoopLatch()->getTerminator();
2509   for (Instruction *Inst : PostIncs) {
2510     BasicBlock *BB =
2511       DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
2512                                     Inst->getParent());
2513     if (BB == Inst->getParent())
2514       IVIncInsertPos = Inst;
2515     else if (BB != IVIncInsertPos->getParent())
2516       IVIncInsertPos = BB->getTerminator();
2517   }
2518 }
2519 
2520 /// Determine if the given use can accommodate a fixup at the given offset and
2521 /// other details. If so, update the use and return true.
2522 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset,
2523                                      bool HasBaseReg, LSRUse::KindType Kind,
2524                                      MemAccessTy AccessTy) {
2525   int64_t NewMinOffset = LU.MinOffset;
2526   int64_t NewMaxOffset = LU.MaxOffset;
2527   MemAccessTy NewAccessTy = AccessTy;
2528 
2529   // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
2530   // something conservative, however this can pessimize in the case that one of
2531   // the uses will have all its uses outside the loop, for example.
2532   if (LU.Kind != Kind)
2533     return false;
2534 
2535   // Check for a mismatched access type, and fall back conservatively as needed.
2536   // TODO: Be less conservative when the type is similar and can use the same
2537   // addressing modes.
2538   if (Kind == LSRUse::Address) {
2539     if (AccessTy.MemTy != LU.AccessTy.MemTy) {
2540       NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(),
2541                                             AccessTy.AddrSpace);
2542     }
2543   }
2544 
2545   // Conservatively assume HasBaseReg is true for now.
2546   if (NewOffset < LU.MinOffset) {
2547     if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2548                           LU.MaxOffset - NewOffset, HasBaseReg))
2549       return false;
2550     NewMinOffset = NewOffset;
2551   } else if (NewOffset > LU.MaxOffset) {
2552     if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2553                           NewOffset - LU.MinOffset, HasBaseReg))
2554       return false;
2555     NewMaxOffset = NewOffset;
2556   }
2557 
2558   // Update the use.
2559   LU.MinOffset = NewMinOffset;
2560   LU.MaxOffset = NewMaxOffset;
2561   LU.AccessTy = NewAccessTy;
2562   return true;
2563 }
2564 
2565 /// Return an LSRUse index and an offset value for a fixup which needs the given
2566 /// expression, with the given kind and optional access type.  Either reuse an
2567 /// existing use or create a new one, as needed.
2568 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr,
2569                                                LSRUse::KindType Kind,
2570                                                MemAccessTy AccessTy) {
2571   const SCEV *Copy = Expr;
2572   int64_t Offset = ExtractImmediate(Expr, SE);
2573 
2574   // Basic uses can't accept any offset, for example.
2575   if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr,
2576                         Offset, /*HasBaseReg=*/ true)) {
2577     Expr = Copy;
2578     Offset = 0;
2579   }
2580 
2581   std::pair<UseMapTy::iterator, bool> P =
2582     UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0));
2583   if (!P.second) {
2584     // A use already existed with this base.
2585     size_t LUIdx = P.first->second;
2586     LSRUse &LU = Uses[LUIdx];
2587     if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
2588       // Reuse this use.
2589       return std::make_pair(LUIdx, Offset);
2590   }
2591 
2592   // Create a new use.
2593   size_t LUIdx = Uses.size();
2594   P.first->second = LUIdx;
2595   Uses.push_back(LSRUse(Kind, AccessTy));
2596   LSRUse &LU = Uses[LUIdx];
2597 
2598   LU.MinOffset = Offset;
2599   LU.MaxOffset = Offset;
2600   return std::make_pair(LUIdx, Offset);
2601 }
2602 
2603 /// Delete the given use from the Uses list.
2604 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) {
2605   if (&LU != &Uses.back())
2606     std::swap(LU, Uses.back());
2607   Uses.pop_back();
2608 
2609   // Update RegUses.
2610   RegUses.swapAndDropUse(LUIdx, Uses.size());
2611 }
2612 
2613 /// Look for a use distinct from OrigLU which is has a formula that has the same
2614 /// registers as the given formula.
2615 LSRUse *
2616 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
2617                                        const LSRUse &OrigLU) {
2618   // Search all uses for the formula. This could be more clever.
2619   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2620     LSRUse &LU = Uses[LUIdx];
2621     // Check whether this use is close enough to OrigLU, to see whether it's
2622     // worthwhile looking through its formulae.
2623     // Ignore ICmpZero uses because they may contain formulae generated by
2624     // GenerateICmpZeroScales, in which case adding fixup offsets may
2625     // be invalid.
2626     if (&LU != &OrigLU &&
2627         LU.Kind != LSRUse::ICmpZero &&
2628         LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
2629         LU.WidestFixupType == OrigLU.WidestFixupType &&
2630         LU.HasFormulaWithSameRegs(OrigF)) {
2631       // Scan through this use's formulae.
2632       for (const Formula &F : LU.Formulae) {
2633         // Check to see if this formula has the same registers and symbols
2634         // as OrigF.
2635         if (F.BaseRegs == OrigF.BaseRegs &&
2636             F.ScaledReg == OrigF.ScaledReg &&
2637             F.BaseGV == OrigF.BaseGV &&
2638             F.Scale == OrigF.Scale &&
2639             F.UnfoldedOffset == OrigF.UnfoldedOffset) {
2640           if (F.BaseOffset == 0)
2641             return &LU;
2642           // This is the formula where all the registers and symbols matched;
2643           // there aren't going to be any others. Since we declined it, we
2644           // can skip the rest of the formulae and proceed to the next LSRUse.
2645           break;
2646         }
2647       }
2648     }
2649   }
2650 
2651   // Nothing looked good.
2652   return nullptr;
2653 }
2654 
2655 void LSRInstance::CollectInterestingTypesAndFactors() {
2656   SmallSetVector<const SCEV *, 4> Strides;
2657 
2658   // Collect interesting types and strides.
2659   SmallVector<const SCEV *, 4> Worklist;
2660   for (const IVStrideUse &U : IU) {
2661     const SCEV *Expr = IU.getExpr(U);
2662 
2663     // Collect interesting types.
2664     Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
2665 
2666     // Add strides for mentioned loops.
2667     Worklist.push_back(Expr);
2668     do {
2669       const SCEV *S = Worklist.pop_back_val();
2670       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2671         if (AR->getLoop() == L)
2672           Strides.insert(AR->getStepRecurrence(SE));
2673         Worklist.push_back(AR->getStart());
2674       } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2675         Worklist.append(Add->op_begin(), Add->op_end());
2676       }
2677     } while (!Worklist.empty());
2678   }
2679 
2680   // Compute interesting factors from the set of interesting strides.
2681   for (SmallSetVector<const SCEV *, 4>::const_iterator
2682        I = Strides.begin(), E = Strides.end(); I != E; ++I)
2683     for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
2684          std::next(I); NewStrideIter != E; ++NewStrideIter) {
2685       const SCEV *OldStride = *I;
2686       const SCEV *NewStride = *NewStrideIter;
2687 
2688       if (SE.getTypeSizeInBits(OldStride->getType()) !=
2689           SE.getTypeSizeInBits(NewStride->getType())) {
2690         if (SE.getTypeSizeInBits(OldStride->getType()) >
2691             SE.getTypeSizeInBits(NewStride->getType()))
2692           NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
2693         else
2694           OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
2695       }
2696       if (const SCEVConstant *Factor =
2697             dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
2698                                                         SE, true))) {
2699         if (Factor->getAPInt().getMinSignedBits() <= 64)
2700           Factors.insert(Factor->getAPInt().getSExtValue());
2701       } else if (const SCEVConstant *Factor =
2702                    dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
2703                                                                NewStride,
2704                                                                SE, true))) {
2705         if (Factor->getAPInt().getMinSignedBits() <= 64)
2706           Factors.insert(Factor->getAPInt().getSExtValue());
2707       }
2708     }
2709 
2710   // If all uses use the same type, don't bother looking for truncation-based
2711   // reuse.
2712   if (Types.size() == 1)
2713     Types.clear();
2714 
2715   LLVM_DEBUG(print_factors_and_types(dbgs()));
2716 }
2717 
2718 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in
2719 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to
2720 /// IVStrideUses, we could partially skip this.
2721 static User::op_iterator
2722 findIVOperand(User::op_iterator OI, User::op_iterator OE,
2723               Loop *L, ScalarEvolution &SE) {
2724   for(; OI != OE; ++OI) {
2725     if (Instruction *Oper = dyn_cast<Instruction>(*OI)) {
2726       if (!SE.isSCEVable(Oper->getType()))
2727         continue;
2728 
2729       if (const SCEVAddRecExpr *AR =
2730           dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) {
2731         if (AR->getLoop() == L)
2732           break;
2733       }
2734     }
2735   }
2736   return OI;
2737 }
2738 
2739 /// IVChain logic must consistently peek base TruncInst operands, so wrap it in
2740 /// a convenient helper.
2741 static Value *getWideOperand(Value *Oper) {
2742   if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper))
2743     return Trunc->getOperand(0);
2744   return Oper;
2745 }
2746 
2747 /// Return true if we allow an IV chain to include both types.
2748 static bool isCompatibleIVType(Value *LVal, Value *RVal) {
2749   Type *LType = LVal->getType();
2750   Type *RType = RVal->getType();
2751   return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy() &&
2752                               // Different address spaces means (possibly)
2753                               // different types of the pointer implementation,
2754                               // e.g. i16 vs i32 so disallow that.
2755                               (LType->getPointerAddressSpace() ==
2756                                RType->getPointerAddressSpace()));
2757 }
2758 
2759 /// Return an approximation of this SCEV expression's "base", or NULL for any
2760 /// constant. Returning the expression itself is conservative. Returning a
2761 /// deeper subexpression is more precise and valid as long as it isn't less
2762 /// complex than another subexpression. For expressions involving multiple
2763 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids
2764 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i],
2765 /// IVInc==b-a.
2766 ///
2767 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost
2768 /// SCEVUnknown, we simply return the rightmost SCEV operand.
2769 static const SCEV *getExprBase(const SCEV *S) {
2770   switch (S->getSCEVType()) {
2771   default: // uncluding scUnknown.
2772     return S;
2773   case scConstant:
2774     return nullptr;
2775   case scTruncate:
2776     return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand());
2777   case scZeroExtend:
2778     return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand());
2779   case scSignExtend:
2780     return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand());
2781   case scAddExpr: {
2782     // Skip over scaled operands (scMulExpr) to follow add operands as long as
2783     // there's nothing more complex.
2784     // FIXME: not sure if we want to recognize negation.
2785     const SCEVAddExpr *Add = cast<SCEVAddExpr>(S);
2786     for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()),
2787            E(Add->op_begin()); I != E; ++I) {
2788       const SCEV *SubExpr = *I;
2789       if (SubExpr->getSCEVType() == scAddExpr)
2790         return getExprBase(SubExpr);
2791 
2792       if (SubExpr->getSCEVType() != scMulExpr)
2793         return SubExpr;
2794     }
2795     return S; // all operands are scaled, be conservative.
2796   }
2797   case scAddRecExpr:
2798     return getExprBase(cast<SCEVAddRecExpr>(S)->getStart());
2799   }
2800   llvm_unreachable("Unknown SCEV kind!");
2801 }
2802 
2803 /// Return true if the chain increment is profitable to expand into a loop
2804 /// invariant value, which may require its own register. A profitable chain
2805 /// increment will be an offset relative to the same base. We allow such offsets
2806 /// to potentially be used as chain increment as long as it's not obviously
2807 /// expensive to expand using real instructions.
2808 bool IVChain::isProfitableIncrement(const SCEV *OperExpr,
2809                                     const SCEV *IncExpr,
2810                                     ScalarEvolution &SE) {
2811   // Aggressively form chains when -stress-ivchain.
2812   if (StressIVChain)
2813     return true;
2814 
2815   // Do not replace a constant offset from IV head with a nonconstant IV
2816   // increment.
2817   if (!isa<SCEVConstant>(IncExpr)) {
2818     const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand));
2819     if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr)))
2820       return false;
2821   }
2822 
2823   SmallPtrSet<const SCEV*, 8> Processed;
2824   return !isHighCostExpansion(IncExpr, Processed, SE);
2825 }
2826 
2827 /// Return true if the number of registers needed for the chain is estimated to
2828 /// be less than the number required for the individual IV users. First prohibit
2829 /// any IV users that keep the IV live across increments (the Users set should
2830 /// be empty). Next count the number and type of increments in the chain.
2831 ///
2832 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't
2833 /// effectively use postinc addressing modes. Only consider it profitable it the
2834 /// increments can be computed in fewer registers when chained.
2835 ///
2836 /// TODO: Consider IVInc free if it's already used in another chains.
2837 static bool isProfitableChain(IVChain &Chain,
2838                               SmallPtrSetImpl<Instruction *> &Users,
2839                               ScalarEvolution &SE,
2840                               const TargetTransformInfo &TTI) {
2841   if (StressIVChain)
2842     return true;
2843 
2844   if (!Chain.hasIncs())
2845     return false;
2846 
2847   if (!Users.empty()) {
2848     LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n";
2849                for (Instruction *Inst
2850                     : Users) { dbgs() << "  " << *Inst << "\n"; });
2851     return false;
2852   }
2853   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
2854 
2855   // The chain itself may require a register, so intialize cost to 1.
2856   int cost = 1;
2857 
2858   // A complete chain likely eliminates the need for keeping the original IV in
2859   // a register. LSR does not currently know how to form a complete chain unless
2860   // the header phi already exists.
2861   if (isa<PHINode>(Chain.tailUserInst())
2862       && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) {
2863     --cost;
2864   }
2865   const SCEV *LastIncExpr = nullptr;
2866   unsigned NumConstIncrements = 0;
2867   unsigned NumVarIncrements = 0;
2868   unsigned NumReusedIncrements = 0;
2869 
2870   if (TTI.isProfitableLSRChainElement(Chain.Incs[0].UserInst))
2871     return true;
2872 
2873   for (const IVInc &Inc : Chain) {
2874     if (TTI.isProfitableLSRChainElement(Inc.UserInst))
2875       return true;
2876     if (Inc.IncExpr->isZero())
2877       continue;
2878 
2879     // Incrementing by zero or some constant is neutral. We assume constants can
2880     // be folded into an addressing mode or an add's immediate operand.
2881     if (isa<SCEVConstant>(Inc.IncExpr)) {
2882       ++NumConstIncrements;
2883       continue;
2884     }
2885 
2886     if (Inc.IncExpr == LastIncExpr)
2887       ++NumReusedIncrements;
2888     else
2889       ++NumVarIncrements;
2890 
2891     LastIncExpr = Inc.IncExpr;
2892   }
2893   // An IV chain with a single increment is handled by LSR's postinc
2894   // uses. However, a chain with multiple increments requires keeping the IV's
2895   // value live longer than it needs to be if chained.
2896   if (NumConstIncrements > 1)
2897     --cost;
2898 
2899   // Materializing increment expressions in the preheader that didn't exist in
2900   // the original code may cost a register. For example, sign-extended array
2901   // indices can produce ridiculous increments like this:
2902   // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64)))
2903   cost += NumVarIncrements;
2904 
2905   // Reusing variable increments likely saves a register to hold the multiple of
2906   // the stride.
2907   cost -= NumReusedIncrements;
2908 
2909   LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost
2910                     << "\n");
2911 
2912   return cost < 0;
2913 }
2914 
2915 /// Add this IV user to an existing chain or make it the head of a new chain.
2916 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper,
2917                                    SmallVectorImpl<ChainUsers> &ChainUsersVec) {
2918   // When IVs are used as types of varying widths, they are generally converted
2919   // to a wider type with some uses remaining narrow under a (free) trunc.
2920   Value *const NextIV = getWideOperand(IVOper);
2921   const SCEV *const OperExpr = SE.getSCEV(NextIV);
2922   const SCEV *const OperExprBase = getExprBase(OperExpr);
2923 
2924   // Visit all existing chains. Check if its IVOper can be computed as a
2925   // profitable loop invariant increment from the last link in the Chain.
2926   unsigned ChainIdx = 0, NChains = IVChainVec.size();
2927   const SCEV *LastIncExpr = nullptr;
2928   for (; ChainIdx < NChains; ++ChainIdx) {
2929     IVChain &Chain = IVChainVec[ChainIdx];
2930 
2931     // Prune the solution space aggressively by checking that both IV operands
2932     // are expressions that operate on the same unscaled SCEVUnknown. This
2933     // "base" will be canceled by the subsequent getMinusSCEV call. Checking
2934     // first avoids creating extra SCEV expressions.
2935     if (!StressIVChain && Chain.ExprBase != OperExprBase)
2936       continue;
2937 
2938     Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand);
2939     if (!isCompatibleIVType(PrevIV, NextIV))
2940       continue;
2941 
2942     // A phi node terminates a chain.
2943     if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst()))
2944       continue;
2945 
2946     // The increment must be loop-invariant so it can be kept in a register.
2947     const SCEV *PrevExpr = SE.getSCEV(PrevIV);
2948     const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr);
2949     if (!SE.isLoopInvariant(IncExpr, L))
2950       continue;
2951 
2952     if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) {
2953       LastIncExpr = IncExpr;
2954       break;
2955     }
2956   }
2957   // If we haven't found a chain, create a new one, unless we hit the max. Don't
2958   // bother for phi nodes, because they must be last in the chain.
2959   if (ChainIdx == NChains) {
2960     if (isa<PHINode>(UserInst))
2961       return;
2962     if (NChains >= MaxChains && !StressIVChain) {
2963       LLVM_DEBUG(dbgs() << "IV Chain Limit\n");
2964       return;
2965     }
2966     LastIncExpr = OperExpr;
2967     // IVUsers may have skipped over sign/zero extensions. We don't currently
2968     // attempt to form chains involving extensions unless they can be hoisted
2969     // into this loop's AddRec.
2970     if (!isa<SCEVAddRecExpr>(LastIncExpr))
2971       return;
2972     ++NChains;
2973     IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr),
2974                                  OperExprBase));
2975     ChainUsersVec.resize(NChains);
2976     LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst
2977                       << ") IV=" << *LastIncExpr << "\n");
2978   } else {
2979     LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << "  Inc: (" << *UserInst
2980                       << ") IV+" << *LastIncExpr << "\n");
2981     // Add this IV user to the end of the chain.
2982     IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr));
2983   }
2984   IVChain &Chain = IVChainVec[ChainIdx];
2985 
2986   SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers;
2987   // This chain's NearUsers become FarUsers.
2988   if (!LastIncExpr->isZero()) {
2989     ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(),
2990                                             NearUsers.end());
2991     NearUsers.clear();
2992   }
2993 
2994   // All other uses of IVOperand become near uses of the chain.
2995   // We currently ignore intermediate values within SCEV expressions, assuming
2996   // they will eventually be used be the current chain, or can be computed
2997   // from one of the chain increments. To be more precise we could
2998   // transitively follow its user and only add leaf IV users to the set.
2999   for (User *U : IVOper->users()) {
3000     Instruction *OtherUse = dyn_cast<Instruction>(U);
3001     if (!OtherUse)
3002       continue;
3003     // Uses in the chain will no longer be uses if the chain is formed.
3004     // Include the head of the chain in this iteration (not Chain.begin()).
3005     IVChain::const_iterator IncIter = Chain.Incs.begin();
3006     IVChain::const_iterator IncEnd = Chain.Incs.end();
3007     for( ; IncIter != IncEnd; ++IncIter) {
3008       if (IncIter->UserInst == OtherUse)
3009         break;
3010     }
3011     if (IncIter != IncEnd)
3012       continue;
3013 
3014     if (SE.isSCEVable(OtherUse->getType())
3015         && !isa<SCEVUnknown>(SE.getSCEV(OtherUse))
3016         && IU.isIVUserOrOperand(OtherUse)) {
3017       continue;
3018     }
3019     NearUsers.insert(OtherUse);
3020   }
3021 
3022   // Since this user is part of the chain, it's no longer considered a use
3023   // of the chain.
3024   ChainUsersVec[ChainIdx].FarUsers.erase(UserInst);
3025 }
3026 
3027 /// Populate the vector of Chains.
3028 ///
3029 /// This decreases ILP at the architecture level. Targets with ample registers,
3030 /// multiple memory ports, and no register renaming probably don't want
3031 /// this. However, such targets should probably disable LSR altogether.
3032 ///
3033 /// The job of LSR is to make a reasonable choice of induction variables across
3034 /// the loop. Subsequent passes can easily "unchain" computation exposing more
3035 /// ILP *within the loop* if the target wants it.
3036 ///
3037 /// Finding the best IV chain is potentially a scheduling problem. Since LSR
3038 /// will not reorder memory operations, it will recognize this as a chain, but
3039 /// will generate redundant IV increments. Ideally this would be corrected later
3040 /// by a smart scheduler:
3041 ///        = A[i]
3042 ///        = A[i+x]
3043 /// A[i]   =
3044 /// A[i+x] =
3045 ///
3046 /// TODO: Walk the entire domtree within this loop, not just the path to the
3047 /// loop latch. This will discover chains on side paths, but requires
3048 /// maintaining multiple copies of the Chains state.
3049 void LSRInstance::CollectChains() {
3050   LLVM_DEBUG(dbgs() << "Collecting IV Chains.\n");
3051   SmallVector<ChainUsers, 8> ChainUsersVec;
3052 
3053   SmallVector<BasicBlock *,8> LatchPath;
3054   BasicBlock *LoopHeader = L->getHeader();
3055   for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch());
3056        Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) {
3057     LatchPath.push_back(Rung->getBlock());
3058   }
3059   LatchPath.push_back(LoopHeader);
3060 
3061   // Walk the instruction stream from the loop header to the loop latch.
3062   for (BasicBlock *BB : reverse(LatchPath)) {
3063     for (Instruction &I : *BB) {
3064       // Skip instructions that weren't seen by IVUsers analysis.
3065       if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I))
3066         continue;
3067 
3068       // Ignore users that are part of a SCEV expression. This way we only
3069       // consider leaf IV Users. This effectively rediscovers a portion of
3070       // IVUsers analysis but in program order this time.
3071       if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I)))
3072           continue;
3073 
3074       // Remove this instruction from any NearUsers set it may be in.
3075       for (unsigned ChainIdx = 0, NChains = IVChainVec.size();
3076            ChainIdx < NChains; ++ChainIdx) {
3077         ChainUsersVec[ChainIdx].NearUsers.erase(&I);
3078       }
3079       // Search for operands that can be chained.
3080       SmallPtrSet<Instruction*, 4> UniqueOperands;
3081       User::op_iterator IVOpEnd = I.op_end();
3082       User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE);
3083       while (IVOpIter != IVOpEnd) {
3084         Instruction *IVOpInst = cast<Instruction>(*IVOpIter);
3085         if (UniqueOperands.insert(IVOpInst).second)
3086           ChainInstruction(&I, IVOpInst, ChainUsersVec);
3087         IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
3088       }
3089     } // Continue walking down the instructions.
3090   } // Continue walking down the domtree.
3091   // Visit phi backedges to determine if the chain can generate the IV postinc.
3092   for (PHINode &PN : L->getHeader()->phis()) {
3093     if (!SE.isSCEVable(PN.getType()))
3094       continue;
3095 
3096     Instruction *IncV =
3097         dyn_cast<Instruction>(PN.getIncomingValueForBlock(L->getLoopLatch()));
3098     if (IncV)
3099       ChainInstruction(&PN, IncV, ChainUsersVec);
3100   }
3101   // Remove any unprofitable chains.
3102   unsigned ChainIdx = 0;
3103   for (unsigned UsersIdx = 0, NChains = IVChainVec.size();
3104        UsersIdx < NChains; ++UsersIdx) {
3105     if (!isProfitableChain(IVChainVec[UsersIdx],
3106                            ChainUsersVec[UsersIdx].FarUsers, SE, TTI))
3107       continue;
3108     // Preserve the chain at UsesIdx.
3109     if (ChainIdx != UsersIdx)
3110       IVChainVec[ChainIdx] = IVChainVec[UsersIdx];
3111     FinalizeChain(IVChainVec[ChainIdx]);
3112     ++ChainIdx;
3113   }
3114   IVChainVec.resize(ChainIdx);
3115 }
3116 
3117 void LSRInstance::FinalizeChain(IVChain &Chain) {
3118   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
3119   LLVM_DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n");
3120 
3121   for (const IVInc &Inc : Chain) {
3122     LLVM_DEBUG(dbgs() << "        Inc: " << *Inc.UserInst << "\n");
3123     auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand);
3124     assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand");
3125     IVIncSet.insert(UseI);
3126   }
3127 }
3128 
3129 /// Return true if the IVInc can be folded into an addressing mode.
3130 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst,
3131                              Value *Operand, const TargetTransformInfo &TTI) {
3132   const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr);
3133   if (!IncConst || !isAddressUse(TTI, UserInst, Operand))
3134     return false;
3135 
3136   if (IncConst->getAPInt().getMinSignedBits() > 64)
3137     return false;
3138 
3139   MemAccessTy AccessTy = getAccessType(TTI, UserInst, Operand);
3140   int64_t IncOffset = IncConst->getValue()->getSExtValue();
3141   if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr,
3142                         IncOffset, /*HasBaseReg=*/false))
3143     return false;
3144 
3145   return true;
3146 }
3147 
3148 /// Generate an add or subtract for each IVInc in a chain to materialize the IV
3149 /// user's operand from the previous IV user's operand.
3150 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
3151                                   SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
3152   // Find the new IVOperand for the head of the chain. It may have been replaced
3153   // by LSR.
3154   const IVInc &Head = Chain.Incs[0];
3155   User::op_iterator IVOpEnd = Head.UserInst->op_end();
3156   // findIVOperand returns IVOpEnd if it can no longer find a valid IV user.
3157   User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(),
3158                                              IVOpEnd, L, SE);
3159   Value *IVSrc = nullptr;
3160   while (IVOpIter != IVOpEnd) {
3161     IVSrc = getWideOperand(*IVOpIter);
3162 
3163     // If this operand computes the expression that the chain needs, we may use
3164     // it. (Check this after setting IVSrc which is used below.)
3165     //
3166     // Note that if Head.IncExpr is wider than IVSrc, then this phi is too
3167     // narrow for the chain, so we can no longer use it. We do allow using a
3168     // wider phi, assuming the LSR checked for free truncation. In that case we
3169     // should already have a truncate on this operand such that
3170     // getSCEV(IVSrc) == IncExpr.
3171     if (SE.getSCEV(*IVOpIter) == Head.IncExpr
3172         || SE.getSCEV(IVSrc) == Head.IncExpr) {
3173       break;
3174     }
3175     IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
3176   }
3177   if (IVOpIter == IVOpEnd) {
3178     // Gracefully give up on this chain.
3179     LLVM_DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n");
3180     return;
3181   }
3182   assert(IVSrc && "Failed to find IV chain source");
3183 
3184   LLVM_DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n");
3185   Type *IVTy = IVSrc->getType();
3186   Type *IntTy = SE.getEffectiveSCEVType(IVTy);
3187   const SCEV *LeftOverExpr = nullptr;
3188   for (const IVInc &Inc : Chain) {
3189     Instruction *InsertPt = Inc.UserInst;
3190     if (isa<PHINode>(InsertPt))
3191       InsertPt = L->getLoopLatch()->getTerminator();
3192 
3193     // IVOper will replace the current IV User's operand. IVSrc is the IV
3194     // value currently held in a register.
3195     Value *IVOper = IVSrc;
3196     if (!Inc.IncExpr->isZero()) {
3197       // IncExpr was the result of subtraction of two narrow values, so must
3198       // be signed.
3199       const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy);
3200       LeftOverExpr = LeftOverExpr ?
3201         SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr;
3202     }
3203     if (LeftOverExpr && !LeftOverExpr->isZero()) {
3204       // Expand the IV increment.
3205       Rewriter.clearPostInc();
3206       Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt);
3207       const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc),
3208                                              SE.getUnknown(IncV));
3209       IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt);
3210 
3211       // If an IV increment can't be folded, use it as the next IV value.
3212       if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) {
3213         assert(IVTy == IVOper->getType() && "inconsistent IV increment type");
3214         IVSrc = IVOper;
3215         LeftOverExpr = nullptr;
3216       }
3217     }
3218     Type *OperTy = Inc.IVOperand->getType();
3219     if (IVTy != OperTy) {
3220       assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) &&
3221              "cannot extend a chained IV");
3222       IRBuilder<> Builder(InsertPt);
3223       IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain");
3224     }
3225     Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper);
3226     if (auto *OperandIsInstr = dyn_cast<Instruction>(Inc.IVOperand))
3227       DeadInsts.emplace_back(OperandIsInstr);
3228   }
3229   // If LSR created a new, wider phi, we may also replace its postinc. We only
3230   // do this if we also found a wide value for the head of the chain.
3231   if (isa<PHINode>(Chain.tailUserInst())) {
3232     for (PHINode &Phi : L->getHeader()->phis()) {
3233       if (!isCompatibleIVType(&Phi, IVSrc))
3234         continue;
3235       Instruction *PostIncV = dyn_cast<Instruction>(
3236           Phi.getIncomingValueForBlock(L->getLoopLatch()));
3237       if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc)))
3238         continue;
3239       Value *IVOper = IVSrc;
3240       Type *PostIncTy = PostIncV->getType();
3241       if (IVTy != PostIncTy) {
3242         assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types");
3243         IRBuilder<> Builder(L->getLoopLatch()->getTerminator());
3244         Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc());
3245         IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain");
3246       }
3247       Phi.replaceUsesOfWith(PostIncV, IVOper);
3248       DeadInsts.emplace_back(PostIncV);
3249     }
3250   }
3251 }
3252 
3253 void LSRInstance::CollectFixupsAndInitialFormulae() {
3254   BranchInst *ExitBranch = nullptr;
3255   bool SaveCmp = TTI.canSaveCmp(L, &ExitBranch, &SE, &LI, &DT, &AC, &TLI);
3256 
3257   for (const IVStrideUse &U : IU) {
3258     Instruction *UserInst = U.getUser();
3259     // Skip IV users that are part of profitable IV Chains.
3260     User::op_iterator UseI =
3261         find(UserInst->operands(), U.getOperandValToReplace());
3262     assert(UseI != UserInst->op_end() && "cannot find IV operand");
3263     if (IVIncSet.count(UseI)) {
3264       LLVM_DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n');
3265       continue;
3266     }
3267 
3268     LSRUse::KindType Kind = LSRUse::Basic;
3269     MemAccessTy AccessTy;
3270     if (isAddressUse(TTI, UserInst, U.getOperandValToReplace())) {
3271       Kind = LSRUse::Address;
3272       AccessTy = getAccessType(TTI, UserInst, U.getOperandValToReplace());
3273     }
3274 
3275     const SCEV *S = IU.getExpr(U);
3276     PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops();
3277 
3278     // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
3279     // (N - i == 0), and this allows (N - i) to be the expression that we work
3280     // with rather than just N or i, so we can consider the register
3281     // requirements for both N and i at the same time. Limiting this code to
3282     // equality icmps is not a problem because all interesting loops use
3283     // equality icmps, thanks to IndVarSimplify.
3284     if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst)) {
3285       // If CI can be saved in some target, like replaced inside hardware loop
3286       // in PowerPC, no need to generate initial formulae for it.
3287       if (SaveCmp && CI == dyn_cast<ICmpInst>(ExitBranch->getCondition()))
3288         continue;
3289       if (CI->isEquality()) {
3290         // Swap the operands if needed to put the OperandValToReplace on the
3291         // left, for consistency.
3292         Value *NV = CI->getOperand(1);
3293         if (NV == U.getOperandValToReplace()) {
3294           CI->setOperand(1, CI->getOperand(0));
3295           CI->setOperand(0, NV);
3296           NV = CI->getOperand(1);
3297           Changed = true;
3298         }
3299 
3300         // x == y  -->  x - y == 0
3301         const SCEV *N = SE.getSCEV(NV);
3302         if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) {
3303           // S is normalized, so normalize N before folding it into S
3304           // to keep the result normalized.
3305           N = normalizeForPostIncUse(N, TmpPostIncLoops, SE);
3306           Kind = LSRUse::ICmpZero;
3307           S = SE.getMinusSCEV(N, S);
3308         }
3309 
3310         // -1 and the negations of all interesting strides (except the negation
3311         // of -1) are now also interesting.
3312         for (size_t i = 0, e = Factors.size(); i != e; ++i)
3313           if (Factors[i] != -1)
3314             Factors.insert(-(uint64_t)Factors[i]);
3315         Factors.insert(-1);
3316       }
3317     }
3318 
3319     // Get or create an LSRUse.
3320     std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
3321     size_t LUIdx = P.first;
3322     int64_t Offset = P.second;
3323     LSRUse &LU = Uses[LUIdx];
3324 
3325     // Record the fixup.
3326     LSRFixup &LF = LU.getNewFixup();
3327     LF.UserInst = UserInst;
3328     LF.OperandValToReplace = U.getOperandValToReplace();
3329     LF.PostIncLoops = TmpPostIncLoops;
3330     LF.Offset = Offset;
3331     LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3332 
3333     if (!LU.WidestFixupType ||
3334         SE.getTypeSizeInBits(LU.WidestFixupType) <
3335         SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3336       LU.WidestFixupType = LF.OperandValToReplace->getType();
3337 
3338     // If this is the first use of this LSRUse, give it a formula.
3339     if (LU.Formulae.empty()) {
3340       InsertInitialFormula(S, LU, LUIdx);
3341       CountRegisters(LU.Formulae.back(), LUIdx);
3342     }
3343   }
3344 
3345   LLVM_DEBUG(print_fixups(dbgs()));
3346 }
3347 
3348 /// Insert a formula for the given expression into the given use, separating out
3349 /// loop-variant portions from loop-invariant and loop-computable portions.
3350 void
3351 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
3352   // Mark uses whose expressions cannot be expanded.
3353   if (!isSafeToExpand(S, SE))
3354     LU.RigidFormula = true;
3355 
3356   Formula F;
3357   F.initialMatch(S, L, SE);
3358   bool Inserted = InsertFormula(LU, LUIdx, F);
3359   assert(Inserted && "Initial formula already exists!"); (void)Inserted;
3360 }
3361 
3362 /// Insert a simple single-register formula for the given expression into the
3363 /// given use.
3364 void
3365 LSRInstance::InsertSupplementalFormula(const SCEV *S,
3366                                        LSRUse &LU, size_t LUIdx) {
3367   Formula F;
3368   F.BaseRegs.push_back(S);
3369   F.HasBaseReg = true;
3370   bool Inserted = InsertFormula(LU, LUIdx, F);
3371   assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
3372 }
3373 
3374 /// Note which registers are used by the given formula, updating RegUses.
3375 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
3376   if (F.ScaledReg)
3377     RegUses.countRegister(F.ScaledReg, LUIdx);
3378   for (const SCEV *BaseReg : F.BaseRegs)
3379     RegUses.countRegister(BaseReg, LUIdx);
3380 }
3381 
3382 /// If the given formula has not yet been inserted, add it to the list, and
3383 /// return true. Return false otherwise.
3384 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
3385   // Do not insert formula that we will not be able to expand.
3386   assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) &&
3387          "Formula is illegal");
3388 
3389   if (!LU.InsertFormula(F, *L))
3390     return false;
3391 
3392   CountRegisters(F, LUIdx);
3393   return true;
3394 }
3395 
3396 /// Check for other uses of loop-invariant values which we're tracking. These
3397 /// other uses will pin these values in registers, making them less profitable
3398 /// for elimination.
3399 /// TODO: This currently misses non-constant addrec step registers.
3400 /// TODO: Should this give more weight to users inside the loop?
3401 void
3402 LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
3403   SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
3404   SmallPtrSet<const SCEV *, 32> Visited;
3405 
3406   while (!Worklist.empty()) {
3407     const SCEV *S = Worklist.pop_back_val();
3408 
3409     // Don't process the same SCEV twice
3410     if (!Visited.insert(S).second)
3411       continue;
3412 
3413     if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
3414       Worklist.append(N->op_begin(), N->op_end());
3415     else if (const SCEVIntegralCastExpr *C = dyn_cast<SCEVIntegralCastExpr>(S))
3416       Worklist.push_back(C->getOperand());
3417     else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
3418       Worklist.push_back(D->getLHS());
3419       Worklist.push_back(D->getRHS());
3420     } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) {
3421       const Value *V = US->getValue();
3422       if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
3423         // Look for instructions defined outside the loop.
3424         if (L->contains(Inst)) continue;
3425       } else if (isa<UndefValue>(V))
3426         // Undef doesn't have a live range, so it doesn't matter.
3427         continue;
3428       for (const Use &U : V->uses()) {
3429         const Instruction *UserInst = dyn_cast<Instruction>(U.getUser());
3430         // Ignore non-instructions.
3431         if (!UserInst)
3432           continue;
3433         // Don't bother if the instruction is an EHPad.
3434         if (UserInst->isEHPad())
3435           continue;
3436         // Ignore instructions in other functions (as can happen with
3437         // Constants).
3438         if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
3439           continue;
3440         // Ignore instructions not dominated by the loop.
3441         const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
3442           UserInst->getParent() :
3443           cast<PHINode>(UserInst)->getIncomingBlock(
3444             PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
3445         if (!DT.dominates(L->getHeader(), UseBB))
3446           continue;
3447         // Don't bother if the instruction is in a BB which ends in an EHPad.
3448         if (UseBB->getTerminator()->isEHPad())
3449           continue;
3450         // Don't bother rewriting PHIs in catchswitch blocks.
3451         if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator()))
3452           continue;
3453         // Ignore uses which are part of other SCEV expressions, to avoid
3454         // analyzing them multiple times.
3455         if (SE.isSCEVable(UserInst->getType())) {
3456           const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
3457           // If the user is a no-op, look through to its uses.
3458           if (!isa<SCEVUnknown>(UserS))
3459             continue;
3460           if (UserS == US) {
3461             Worklist.push_back(
3462               SE.getUnknown(const_cast<Instruction *>(UserInst)));
3463             continue;
3464           }
3465         }
3466         // Ignore icmp instructions which are already being analyzed.
3467         if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
3468           unsigned OtherIdx = !U.getOperandNo();
3469           Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
3470           if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L))
3471             continue;
3472         }
3473 
3474         std::pair<size_t, int64_t> P = getUse(
3475             S, LSRUse::Basic, MemAccessTy());
3476         size_t LUIdx = P.first;
3477         int64_t Offset = P.second;
3478         LSRUse &LU = Uses[LUIdx];
3479         LSRFixup &LF = LU.getNewFixup();
3480         LF.UserInst = const_cast<Instruction *>(UserInst);
3481         LF.OperandValToReplace = U;
3482         LF.Offset = Offset;
3483         LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3484         if (!LU.WidestFixupType ||
3485             SE.getTypeSizeInBits(LU.WidestFixupType) <
3486             SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3487           LU.WidestFixupType = LF.OperandValToReplace->getType();
3488         InsertSupplementalFormula(US, LU, LUIdx);
3489         CountRegisters(LU.Formulae.back(), Uses.size() - 1);
3490         break;
3491       }
3492     }
3493   }
3494 }
3495 
3496 /// Split S into subexpressions which can be pulled out into separate
3497 /// registers. If C is non-null, multiply each subexpression by C.
3498 ///
3499 /// Return remainder expression after factoring the subexpressions captured by
3500 /// Ops. If Ops is complete, return NULL.
3501 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C,
3502                                    SmallVectorImpl<const SCEV *> &Ops,
3503                                    const Loop *L,
3504                                    ScalarEvolution &SE,
3505                                    unsigned Depth = 0) {
3506   // Arbitrarily cap recursion to protect compile time.
3507   if (Depth >= 3)
3508     return S;
3509 
3510   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3511     // Break out add operands.
3512     for (const SCEV *S : Add->operands()) {
3513       const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1);
3514       if (Remainder)
3515         Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3516     }
3517     return nullptr;
3518   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
3519     // Split a non-zero base out of an addrec.
3520     if (AR->getStart()->isZero() || !AR->isAffine())
3521       return S;
3522 
3523     const SCEV *Remainder = CollectSubexprs(AR->getStart(),
3524                                             C, Ops, L, SE, Depth+1);
3525     // Split the non-zero AddRec unless it is part of a nested recurrence that
3526     // does not pertain to this loop.
3527     if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) {
3528       Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3529       Remainder = nullptr;
3530     }
3531     if (Remainder != AR->getStart()) {
3532       if (!Remainder)
3533         Remainder = SE.getConstant(AR->getType(), 0);
3534       return SE.getAddRecExpr(Remainder,
3535                               AR->getStepRecurrence(SE),
3536                               AR->getLoop(),
3537                               //FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
3538                               SCEV::FlagAnyWrap);
3539     }
3540   } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3541     // Break (C * (a + b + c)) into C*a + C*b + C*c.
3542     if (Mul->getNumOperands() != 2)
3543       return S;
3544     if (const SCEVConstant *Op0 =
3545         dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3546       C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0;
3547       const SCEV *Remainder =
3548         CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1);
3549       if (Remainder)
3550         Ops.push_back(SE.getMulExpr(C, Remainder));
3551       return nullptr;
3552     }
3553   }
3554   return S;
3555 }
3556 
3557 /// Return true if the SCEV represents a value that may end up as a
3558 /// post-increment operation.
3559 static bool mayUsePostIncMode(const TargetTransformInfo &TTI,
3560                               LSRUse &LU, const SCEV *S, const Loop *L,
3561                               ScalarEvolution &SE) {
3562   if (LU.Kind != LSRUse::Address ||
3563       !LU.AccessTy.getType()->isIntOrIntVectorTy())
3564     return false;
3565   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S);
3566   if (!AR)
3567     return false;
3568   const SCEV *LoopStep = AR->getStepRecurrence(SE);
3569   if (!isa<SCEVConstant>(LoopStep))
3570     return false;
3571   // Check if a post-indexed load/store can be used.
3572   if (TTI.isIndexedLoadLegal(TTI.MIM_PostInc, AR->getType()) ||
3573       TTI.isIndexedStoreLegal(TTI.MIM_PostInc, AR->getType())) {
3574     const SCEV *LoopStart = AR->getStart();
3575     if (!isa<SCEVConstant>(LoopStart) && SE.isLoopInvariant(LoopStart, L))
3576       return true;
3577   }
3578   return false;
3579 }
3580 
3581 /// Helper function for LSRInstance::GenerateReassociations.
3582 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
3583                                              const Formula &Base,
3584                                              unsigned Depth, size_t Idx,
3585                                              bool IsScaledReg) {
3586   const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3587   // Don't generate reassociations for the base register of a value that
3588   // may generate a post-increment operator. The reason is that the
3589   // reassociations cause extra base+register formula to be created,
3590   // and possibly chosen, but the post-increment is more efficient.
3591   if (AMK == TTI::AMK_PostIndexed && mayUsePostIncMode(TTI, LU, BaseReg, L, SE))
3592     return;
3593   SmallVector<const SCEV *, 8> AddOps;
3594   const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE);
3595   if (Remainder)
3596     AddOps.push_back(Remainder);
3597 
3598   if (AddOps.size() == 1)
3599     return;
3600 
3601   for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
3602                                                      JE = AddOps.end();
3603        J != JE; ++J) {
3604     // Loop-variant "unknown" values are uninteresting; we won't be able to
3605     // do anything meaningful with them.
3606     if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L))
3607       continue;
3608 
3609     // Don't pull a constant into a register if the constant could be folded
3610     // into an immediate field.
3611     if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3612                          LU.AccessTy, *J, Base.getNumRegs() > 1))
3613       continue;
3614 
3615     // Collect all operands except *J.
3616     SmallVector<const SCEV *, 8> InnerAddOps(
3617         ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J);
3618     InnerAddOps.append(std::next(J),
3619                        ((const SmallVector<const SCEV *, 8> &)AddOps).end());
3620 
3621     // Don't leave just a constant behind in a register if the constant could
3622     // be folded into an immediate field.
3623     if (InnerAddOps.size() == 1 &&
3624         isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3625                          LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1))
3626       continue;
3627 
3628     const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
3629     if (InnerSum->isZero())
3630       continue;
3631     Formula F = Base;
3632 
3633     // Add the remaining pieces of the add back into the new formula.
3634     const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum);
3635     if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 &&
3636         TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3637                                 InnerSumSC->getValue()->getZExtValue())) {
3638       F.UnfoldedOffset =
3639           (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue();
3640       if (IsScaledReg)
3641         F.ScaledReg = nullptr;
3642       else
3643         F.BaseRegs.erase(F.BaseRegs.begin() + Idx);
3644     } else if (IsScaledReg)
3645       F.ScaledReg = InnerSum;
3646     else
3647       F.BaseRegs[Idx] = InnerSum;
3648 
3649     // Add J as its own register, or an unfolded immediate.
3650     const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J);
3651     if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 &&
3652         TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3653                                 SC->getValue()->getZExtValue()))
3654       F.UnfoldedOffset =
3655           (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue();
3656     else
3657       F.BaseRegs.push_back(*J);
3658     // We may have changed the number of register in base regs, adjust the
3659     // formula accordingly.
3660     F.canonicalize(*L);
3661 
3662     if (InsertFormula(LU, LUIdx, F))
3663       // If that formula hadn't been seen before, recurse to find more like
3664       // it.
3665       // Add check on Log16(AddOps.size()) - same as Log2_32(AddOps.size()) >> 2)
3666       // Because just Depth is not enough to bound compile time.
3667       // This means that every time AddOps.size() is greater 16^x we will add
3668       // x to Depth.
3669       GenerateReassociations(LU, LUIdx, LU.Formulae.back(),
3670                              Depth + 1 + (Log2_32(AddOps.size()) >> 2));
3671   }
3672 }
3673 
3674 /// Split out subexpressions from adds and the bases of addrecs.
3675 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
3676                                          Formula Base, unsigned Depth) {
3677   assert(Base.isCanonical(*L) && "Input must be in the canonical form");
3678   // Arbitrarily cap recursion to protect compile time.
3679   if (Depth >= 3)
3680     return;
3681 
3682   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3683     GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i);
3684 
3685   if (Base.Scale == 1)
3686     GenerateReassociationsImpl(LU, LUIdx, Base, Depth,
3687                                /* Idx */ -1, /* IsScaledReg */ true);
3688 }
3689 
3690 ///  Generate a formula consisting of all of the loop-dominating registers added
3691 /// into a single register.
3692 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
3693                                        Formula Base) {
3694   // This method is only interesting on a plurality of registers.
3695   if (Base.BaseRegs.size() + (Base.Scale == 1) +
3696       (Base.UnfoldedOffset != 0) <= 1)
3697     return;
3698 
3699   // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before
3700   // processing the formula.
3701   Base.unscale();
3702   SmallVector<const SCEV *, 4> Ops;
3703   Formula NewBase = Base;
3704   NewBase.BaseRegs.clear();
3705   Type *CombinedIntegerType = nullptr;
3706   for (const SCEV *BaseReg : Base.BaseRegs) {
3707     if (SE.properlyDominates(BaseReg, L->getHeader()) &&
3708         !SE.hasComputableLoopEvolution(BaseReg, L)) {
3709       if (!CombinedIntegerType)
3710         CombinedIntegerType = SE.getEffectiveSCEVType(BaseReg->getType());
3711       Ops.push_back(BaseReg);
3712     }
3713     else
3714       NewBase.BaseRegs.push_back(BaseReg);
3715   }
3716 
3717   // If no register is relevant, we're done.
3718   if (Ops.size() == 0)
3719     return;
3720 
3721   // Utility function for generating the required variants of the combined
3722   // registers.
3723   auto GenerateFormula = [&](const SCEV *Sum) {
3724     Formula F = NewBase;
3725 
3726     // TODO: If Sum is zero, it probably means ScalarEvolution missed an
3727     // opportunity to fold something. For now, just ignore such cases
3728     // rather than proceed with zero in a register.
3729     if (Sum->isZero())
3730       return;
3731 
3732     F.BaseRegs.push_back(Sum);
3733     F.canonicalize(*L);
3734     (void)InsertFormula(LU, LUIdx, F);
3735   };
3736 
3737   // If we collected at least two registers, generate a formula combining them.
3738   if (Ops.size() > 1) {
3739     SmallVector<const SCEV *, 4> OpsCopy(Ops); // Don't let SE modify Ops.
3740     GenerateFormula(SE.getAddExpr(OpsCopy));
3741   }
3742 
3743   // If we have an unfolded offset, generate a formula combining it with the
3744   // registers collected.
3745   if (NewBase.UnfoldedOffset) {
3746     assert(CombinedIntegerType && "Missing a type for the unfolded offset");
3747     Ops.push_back(SE.getConstant(CombinedIntegerType, NewBase.UnfoldedOffset,
3748                                  true));
3749     NewBase.UnfoldedOffset = 0;
3750     GenerateFormula(SE.getAddExpr(Ops));
3751   }
3752 }
3753 
3754 /// Helper function for LSRInstance::GenerateSymbolicOffsets.
3755 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
3756                                               const Formula &Base, size_t Idx,
3757                                               bool IsScaledReg) {
3758   const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3759   GlobalValue *GV = ExtractSymbol(G, SE);
3760   if (G->isZero() || !GV)
3761     return;
3762   Formula F = Base;
3763   F.BaseGV = GV;
3764   if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3765     return;
3766   if (IsScaledReg)
3767     F.ScaledReg = G;
3768   else
3769     F.BaseRegs[Idx] = G;
3770   (void)InsertFormula(LU, LUIdx, F);
3771 }
3772 
3773 /// Generate reuse formulae using symbolic offsets.
3774 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
3775                                           Formula Base) {
3776   // We can't add a symbolic offset if the address already contains one.
3777   if (Base.BaseGV) return;
3778 
3779   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3780     GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i);
3781   if (Base.Scale == 1)
3782     GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1,
3783                                 /* IsScaledReg */ true);
3784 }
3785 
3786 /// Helper function for LSRInstance::GenerateConstantOffsets.
3787 void LSRInstance::GenerateConstantOffsetsImpl(
3788     LSRUse &LU, unsigned LUIdx, const Formula &Base,
3789     const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) {
3790 
3791   auto GenerateOffset = [&](const SCEV *G, int64_t Offset) {
3792     Formula F = Base;
3793     F.BaseOffset = (uint64_t)Base.BaseOffset - Offset;
3794 
3795     if (isLegalUse(TTI, LU.MinOffset - Offset, LU.MaxOffset - Offset, LU.Kind,
3796                    LU.AccessTy, F)) {
3797       // Add the offset to the base register.
3798       const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G);
3799       // If it cancelled out, drop the base register, otherwise update it.
3800       if (NewG->isZero()) {
3801         if (IsScaledReg) {
3802           F.Scale = 0;
3803           F.ScaledReg = nullptr;
3804         } else
3805           F.deleteBaseReg(F.BaseRegs[Idx]);
3806         F.canonicalize(*L);
3807       } else if (IsScaledReg)
3808         F.ScaledReg = NewG;
3809       else
3810         F.BaseRegs[Idx] = NewG;
3811 
3812       (void)InsertFormula(LU, LUIdx, F);
3813     }
3814   };
3815 
3816   const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3817 
3818   // With constant offsets and constant steps, we can generate pre-inc
3819   // accesses by having the offset equal the step. So, for access #0 with a
3820   // step of 8, we generate a G - 8 base which would require the first access
3821   // to be ((G - 8) + 8),+,8. The pre-indexed access then updates the pointer
3822   // for itself and hopefully becomes the base for other accesses. This means
3823   // means that a single pre-indexed access can be generated to become the new
3824   // base pointer for each iteration of the loop, resulting in no extra add/sub
3825   // instructions for pointer updating.
3826   if (AMK == TTI::AMK_PreIndexed && LU.Kind == LSRUse::Address) {
3827     if (auto *GAR = dyn_cast<SCEVAddRecExpr>(G)) {
3828       if (auto *StepRec =
3829           dyn_cast<SCEVConstant>(GAR->getStepRecurrence(SE))) {
3830         const APInt &StepInt = StepRec->getAPInt();
3831         int64_t Step = StepInt.isNegative() ?
3832           StepInt.getSExtValue() : StepInt.getZExtValue();
3833 
3834         for (int64_t Offset : Worklist) {
3835           Offset -= Step;
3836           GenerateOffset(G, Offset);
3837         }
3838       }
3839     }
3840   }
3841   for (int64_t Offset : Worklist)
3842     GenerateOffset(G, Offset);
3843 
3844   int64_t Imm = ExtractImmediate(G, SE);
3845   if (G->isZero() || Imm == 0)
3846     return;
3847   Formula F = Base;
3848   F.BaseOffset = (uint64_t)F.BaseOffset + Imm;
3849   if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3850     return;
3851   if (IsScaledReg) {
3852     F.ScaledReg = G;
3853   } else {
3854     F.BaseRegs[Idx] = G;
3855     // We may generate non canonical Formula if G is a recurrent expr reg
3856     // related with current loop while F.ScaledReg is not.
3857     F.canonicalize(*L);
3858   }
3859   (void)InsertFormula(LU, LUIdx, F);
3860 }
3861 
3862 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
3863 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
3864                                           Formula Base) {
3865   // TODO: For now, just add the min and max offset, because it usually isn't
3866   // worthwhile looking at everything inbetween.
3867   SmallVector<int64_t, 2> Worklist;
3868   Worklist.push_back(LU.MinOffset);
3869   if (LU.MaxOffset != LU.MinOffset)
3870     Worklist.push_back(LU.MaxOffset);
3871 
3872   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3873     GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i);
3874   if (Base.Scale == 1)
3875     GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1,
3876                                 /* IsScaledReg */ true);
3877 }
3878 
3879 /// For ICmpZero, check to see if we can scale up the comparison. For example, x
3880 /// == y -> x*c == y*c.
3881 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
3882                                          Formula Base) {
3883   if (LU.Kind != LSRUse::ICmpZero) return;
3884 
3885   // Determine the integer type for the base formula.
3886   Type *IntTy = Base.getType();
3887   if (!IntTy) return;
3888   if (SE.getTypeSizeInBits(IntTy) > 64) return;
3889 
3890   // Don't do this if there is more than one offset.
3891   if (LU.MinOffset != LU.MaxOffset) return;
3892 
3893   // Check if transformation is valid. It is illegal to multiply pointer.
3894   if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy())
3895     return;
3896   for (const SCEV *BaseReg : Base.BaseRegs)
3897     if (BaseReg->getType()->isPointerTy())
3898       return;
3899   assert(!Base.BaseGV && "ICmpZero use is not legal!");
3900 
3901   // Check each interesting stride.
3902   for (int64_t Factor : Factors) {
3903     // Check that the multiplication doesn't overflow.
3904     if (Base.BaseOffset == std::numeric_limits<int64_t>::min() && Factor == -1)
3905       continue;
3906     int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor;
3907     if (NewBaseOffset / Factor != Base.BaseOffset)
3908       continue;
3909     // If the offset will be truncated at this use, check that it is in bounds.
3910     if (!IntTy->isPointerTy() &&
3911         !ConstantInt::isValueValidForType(IntTy, NewBaseOffset))
3912       continue;
3913 
3914     // Check that multiplying with the use offset doesn't overflow.
3915     int64_t Offset = LU.MinOffset;
3916     if (Offset == std::numeric_limits<int64_t>::min() && Factor == -1)
3917       continue;
3918     Offset = (uint64_t)Offset * Factor;
3919     if (Offset / Factor != LU.MinOffset)
3920       continue;
3921     // If the offset will be truncated at this use, check that it is in bounds.
3922     if (!IntTy->isPointerTy() &&
3923         !ConstantInt::isValueValidForType(IntTy, Offset))
3924       continue;
3925 
3926     Formula F = Base;
3927     F.BaseOffset = NewBaseOffset;
3928 
3929     // Check that this scale is legal.
3930     if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F))
3931       continue;
3932 
3933     // Compensate for the use having MinOffset built into it.
3934     F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset;
3935 
3936     const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3937 
3938     // Check that multiplying with each base register doesn't overflow.
3939     for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
3940       F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
3941       if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
3942         goto next;
3943     }
3944 
3945     // Check that multiplying with the scaled register doesn't overflow.
3946     if (F.ScaledReg) {
3947       F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
3948       if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
3949         continue;
3950     }
3951 
3952     // Check that multiplying with the unfolded offset doesn't overflow.
3953     if (F.UnfoldedOffset != 0) {
3954       if (F.UnfoldedOffset == std::numeric_limits<int64_t>::min() &&
3955           Factor == -1)
3956         continue;
3957       F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor;
3958       if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset)
3959         continue;
3960       // If the offset will be truncated, check that it is in bounds.
3961       if (!IntTy->isPointerTy() &&
3962           !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset))
3963         continue;
3964     }
3965 
3966     // If we make it here and it's legal, add it.
3967     (void)InsertFormula(LU, LUIdx, F);
3968   next:;
3969   }
3970 }
3971 
3972 /// Generate stride factor reuse formulae by making use of scaled-offset address
3973 /// modes, for example.
3974 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
3975   // Determine the integer type for the base formula.
3976   Type *IntTy = Base.getType();
3977   if (!IntTy) return;
3978 
3979   // If this Formula already has a scaled register, we can't add another one.
3980   // Try to unscale the formula to generate a better scale.
3981   if (Base.Scale != 0 && !Base.unscale())
3982     return;
3983 
3984   assert(Base.Scale == 0 && "unscale did not did its job!");
3985 
3986   // Check each interesting stride.
3987   for (int64_t Factor : Factors) {
3988     Base.Scale = Factor;
3989     Base.HasBaseReg = Base.BaseRegs.size() > 1;
3990     // Check whether this scale is going to be legal.
3991     if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
3992                     Base)) {
3993       // As a special-case, handle special out-of-loop Basic users specially.
3994       // TODO: Reconsider this special case.
3995       if (LU.Kind == LSRUse::Basic &&
3996           isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special,
3997                      LU.AccessTy, Base) &&
3998           LU.AllFixupsOutsideLoop)
3999         LU.Kind = LSRUse::Special;
4000       else
4001         continue;
4002     }
4003     // For an ICmpZero, negating a solitary base register won't lead to
4004     // new solutions.
4005     if (LU.Kind == LSRUse::ICmpZero &&
4006         !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV)
4007       continue;
4008     // For each addrec base reg, if its loop is current loop, apply the scale.
4009     for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
4010       const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i]);
4011       if (AR && (AR->getLoop() == L || LU.AllFixupsOutsideLoop)) {
4012         const SCEV *FactorS = SE.getConstant(IntTy, Factor);
4013         if (FactorS->isZero())
4014           continue;
4015         // Divide out the factor, ignoring high bits, since we'll be
4016         // scaling the value back up in the end.
4017         if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) {
4018           // TODO: This could be optimized to avoid all the copying.
4019           Formula F = Base;
4020           F.ScaledReg = Quotient;
4021           F.deleteBaseReg(F.BaseRegs[i]);
4022           // The canonical representation of 1*reg is reg, which is already in
4023           // Base. In that case, do not try to insert the formula, it will be
4024           // rejected anyway.
4025           if (F.Scale == 1 && (F.BaseRegs.empty() ||
4026                                (AR->getLoop() != L && LU.AllFixupsOutsideLoop)))
4027             continue;
4028           // If AllFixupsOutsideLoop is true and F.Scale is 1, we may generate
4029           // non canonical Formula with ScaledReg's loop not being L.
4030           if (F.Scale == 1 && LU.AllFixupsOutsideLoop)
4031             F.canonicalize(*L);
4032           (void)InsertFormula(LU, LUIdx, F);
4033         }
4034       }
4035     }
4036   }
4037 }
4038 
4039 /// Generate reuse formulae from different IV types.
4040 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
4041   // Don't bother truncating symbolic values.
4042   if (Base.BaseGV) return;
4043 
4044   // Determine the integer type for the base formula.
4045   Type *DstTy = Base.getType();
4046   if (!DstTy) return;
4047   DstTy = SE.getEffectiveSCEVType(DstTy);
4048 
4049   for (Type *SrcTy : Types) {
4050     if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) {
4051       Formula F = Base;
4052 
4053       // Sometimes SCEV is able to prove zero during ext transform. It may
4054       // happen if SCEV did not do all possible transforms while creating the
4055       // initial node (maybe due to depth limitations), but it can do them while
4056       // taking ext.
4057       if (F.ScaledReg) {
4058         const SCEV *NewScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy);
4059         if (NewScaledReg->isZero())
4060          continue;
4061         F.ScaledReg = NewScaledReg;
4062       }
4063       bool HasZeroBaseReg = false;
4064       for (const SCEV *&BaseReg : F.BaseRegs) {
4065         const SCEV *NewBaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy);
4066         if (NewBaseReg->isZero()) {
4067           HasZeroBaseReg = true;
4068           break;
4069         }
4070         BaseReg = NewBaseReg;
4071       }
4072       if (HasZeroBaseReg)
4073         continue;
4074 
4075       // TODO: This assumes we've done basic processing on all uses and
4076       // have an idea what the register usage is.
4077       if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
4078         continue;
4079 
4080       F.canonicalize(*L);
4081       (void)InsertFormula(LU, LUIdx, F);
4082     }
4083   }
4084 }
4085 
4086 namespace {
4087 
4088 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer
4089 /// modifications so that the search phase doesn't have to worry about the data
4090 /// structures moving underneath it.
4091 struct WorkItem {
4092   size_t LUIdx;
4093   int64_t Imm;
4094   const SCEV *OrigReg;
4095 
4096   WorkItem(size_t LI, int64_t I, const SCEV *R)
4097       : LUIdx(LI), Imm(I), OrigReg(R) {}
4098 
4099   void print(raw_ostream &OS) const;
4100   void dump() const;
4101 };
4102 
4103 } // end anonymous namespace
4104 
4105 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4106 void WorkItem::print(raw_ostream &OS) const {
4107   OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
4108      << " , add offset " << Imm;
4109 }
4110 
4111 LLVM_DUMP_METHOD void WorkItem::dump() const {
4112   print(errs()); errs() << '\n';
4113 }
4114 #endif
4115 
4116 /// Look for registers which are a constant distance apart and try to form reuse
4117 /// opportunities between them.
4118 void LSRInstance::GenerateCrossUseConstantOffsets() {
4119   // Group the registers by their value without any added constant offset.
4120   using ImmMapTy = std::map<int64_t, const SCEV *>;
4121 
4122   DenseMap<const SCEV *, ImmMapTy> Map;
4123   DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
4124   SmallVector<const SCEV *, 8> Sequence;
4125   for (const SCEV *Use : RegUses) {
4126     const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify.
4127     int64_t Imm = ExtractImmediate(Reg, SE);
4128     auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy()));
4129     if (Pair.second)
4130       Sequence.push_back(Reg);
4131     Pair.first->second.insert(std::make_pair(Imm, Use));
4132     UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use);
4133   }
4134 
4135   // Now examine each set of registers with the same base value. Build up
4136   // a list of work to do and do the work in a separate step so that we're
4137   // not adding formulae and register counts while we're searching.
4138   SmallVector<WorkItem, 32> WorkItems;
4139   SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
4140   for (const SCEV *Reg : Sequence) {
4141     const ImmMapTy &Imms = Map.find(Reg)->second;
4142 
4143     // It's not worthwhile looking for reuse if there's only one offset.
4144     if (Imms.size() == 1)
4145       continue;
4146 
4147     LLVM_DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
4148                for (const auto &Entry
4149                     : Imms) dbgs()
4150                << ' ' << Entry.first;
4151                dbgs() << '\n');
4152 
4153     // Examine each offset.
4154     for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
4155          J != JE; ++J) {
4156       const SCEV *OrigReg = J->second;
4157 
4158       int64_t JImm = J->first;
4159       const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
4160 
4161       if (!isa<SCEVConstant>(OrigReg) &&
4162           UsedByIndicesMap[Reg].count() == 1) {
4163         LLVM_DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg
4164                           << '\n');
4165         continue;
4166       }
4167 
4168       // Conservatively examine offsets between this orig reg a few selected
4169       // other orig regs.
4170       int64_t First = Imms.begin()->first;
4171       int64_t Last = std::prev(Imms.end())->first;
4172       // Compute (First + Last)  / 2 without overflow using the fact that
4173       // First + Last = 2 * (First + Last) + (First ^ Last).
4174       int64_t Avg = (First & Last) + ((First ^ Last) >> 1);
4175       // If the result is negative and First is odd and Last even (or vice versa),
4176       // we rounded towards -inf. Add 1 in that case, to round towards 0.
4177       Avg = Avg + ((First ^ Last) & ((uint64_t)Avg >> 63));
4178       ImmMapTy::const_iterator OtherImms[] = {
4179           Imms.begin(), std::prev(Imms.end()),
4180          Imms.lower_bound(Avg)};
4181       for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
4182         ImmMapTy::const_iterator M = OtherImms[i];
4183         if (M == J || M == JE) continue;
4184 
4185         // Compute the difference between the two.
4186         int64_t Imm = (uint64_t)JImm - M->first;
4187         for (unsigned LUIdx : UsedByIndices.set_bits())
4188           // Make a memo of this use, offset, and register tuple.
4189           if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second)
4190             WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
4191       }
4192     }
4193   }
4194 
4195   Map.clear();
4196   Sequence.clear();
4197   UsedByIndicesMap.clear();
4198   UniqueItems.clear();
4199 
4200   // Now iterate through the worklist and add new formulae.
4201   for (const WorkItem &WI : WorkItems) {
4202     size_t LUIdx = WI.LUIdx;
4203     LSRUse &LU = Uses[LUIdx];
4204     int64_t Imm = WI.Imm;
4205     const SCEV *OrigReg = WI.OrigReg;
4206 
4207     Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
4208     const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
4209     unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
4210 
4211     // TODO: Use a more targeted data structure.
4212     for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
4213       Formula F = LU.Formulae[L];
4214       // FIXME: The code for the scaled and unscaled registers looks
4215       // very similar but slightly different. Investigate if they
4216       // could be merged. That way, we would not have to unscale the
4217       // Formula.
4218       F.unscale();
4219       // Use the immediate in the scaled register.
4220       if (F.ScaledReg == OrigReg) {
4221         int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale;
4222         // Don't create 50 + reg(-50).
4223         if (F.referencesReg(SE.getSCEV(
4224                    ConstantInt::get(IntTy, -(uint64_t)Offset))))
4225           continue;
4226         Formula NewF = F;
4227         NewF.BaseOffset = Offset;
4228         if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
4229                         NewF))
4230           continue;
4231         NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
4232 
4233         // If the new scale is a constant in a register, and adding the constant
4234         // value to the immediate would produce a value closer to zero than the
4235         // immediate itself, then the formula isn't worthwhile.
4236         if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
4237           if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) &&
4238               (C->getAPInt().abs() * APInt(BitWidth, F.Scale))
4239                   .ule(std::abs(NewF.BaseOffset)))
4240             continue;
4241 
4242         // OK, looks good.
4243         NewF.canonicalize(*this->L);
4244         (void)InsertFormula(LU, LUIdx, NewF);
4245       } else {
4246         // Use the immediate in a base register.
4247         for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
4248           const SCEV *BaseReg = F.BaseRegs[N];
4249           if (BaseReg != OrigReg)
4250             continue;
4251           Formula NewF = F;
4252           NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm;
4253           if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset,
4254                           LU.Kind, LU.AccessTy, NewF)) {
4255             if (AMK == TTI::AMK_PostIndexed &&
4256                 mayUsePostIncMode(TTI, LU, OrigReg, this->L, SE))
4257               continue;
4258             if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm))
4259               continue;
4260             NewF = F;
4261             NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm;
4262           }
4263           NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
4264 
4265           // If the new formula has a constant in a register, and adding the
4266           // constant value to the immediate would produce a value closer to
4267           // zero than the immediate itself, then the formula isn't worthwhile.
4268           for (const SCEV *NewReg : NewF.BaseRegs)
4269             if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg))
4270               if ((C->getAPInt() + NewF.BaseOffset)
4271                       .abs()
4272                       .slt(std::abs(NewF.BaseOffset)) &&
4273                   (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >=
4274                       countTrailingZeros<uint64_t>(NewF.BaseOffset))
4275                 goto skip_formula;
4276 
4277           // Ok, looks good.
4278           NewF.canonicalize(*this->L);
4279           (void)InsertFormula(LU, LUIdx, NewF);
4280           break;
4281         skip_formula:;
4282         }
4283       }
4284     }
4285   }
4286 }
4287 
4288 /// Generate formulae for each use.
4289 void
4290 LSRInstance::GenerateAllReuseFormulae() {
4291   // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
4292   // queries are more precise.
4293   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4294     LSRUse &LU = Uses[LUIdx];
4295     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4296       GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
4297     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4298       GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
4299   }
4300   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4301     LSRUse &LU = Uses[LUIdx];
4302     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4303       GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
4304     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4305       GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
4306     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4307       GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
4308     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4309       GenerateScales(LU, LUIdx, LU.Formulae[i]);
4310   }
4311   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4312     LSRUse &LU = Uses[LUIdx];
4313     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4314       GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
4315   }
4316 
4317   GenerateCrossUseConstantOffsets();
4318 
4319   LLVM_DEBUG(dbgs() << "\n"
4320                        "After generating reuse formulae:\n";
4321              print_uses(dbgs()));
4322 }
4323 
4324 /// If there are multiple formulae with the same set of registers used
4325 /// by other uses, pick the best one and delete the others.
4326 void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
4327   DenseSet<const SCEV *> VisitedRegs;
4328   SmallPtrSet<const SCEV *, 16> Regs;
4329   SmallPtrSet<const SCEV *, 16> LoserRegs;
4330 #ifndef NDEBUG
4331   bool ChangedFormulae = false;
4332 #endif
4333 
4334   // Collect the best formula for each unique set of shared registers. This
4335   // is reset for each use.
4336   using BestFormulaeTy =
4337       DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>;
4338 
4339   BestFormulaeTy BestFormulae;
4340 
4341   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4342     LSRUse &LU = Uses[LUIdx];
4343     LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs());
4344                dbgs() << '\n');
4345 
4346     bool Any = false;
4347     for (size_t FIdx = 0, NumForms = LU.Formulae.size();
4348          FIdx != NumForms; ++FIdx) {
4349       Formula &F = LU.Formulae[FIdx];
4350 
4351       // Some formulas are instant losers. For example, they may depend on
4352       // nonexistent AddRecs from other loops. These need to be filtered
4353       // immediately, otherwise heuristics could choose them over others leading
4354       // to an unsatisfactory solution. Passing LoserRegs into RateFormula here
4355       // avoids the need to recompute this information across formulae using the
4356       // same bad AddRec. Passing LoserRegs is also essential unless we remove
4357       // the corresponding bad register from the Regs set.
4358       Cost CostF(L, SE, TTI, AMK);
4359       Regs.clear();
4360       CostF.RateFormula(F, Regs, VisitedRegs, LU, &LoserRegs);
4361       if (CostF.isLoser()) {
4362         // During initial formula generation, undesirable formulae are generated
4363         // by uses within other loops that have some non-trivial address mode or
4364         // use the postinc form of the IV. LSR needs to provide these formulae
4365         // as the basis of rediscovering the desired formula that uses an AddRec
4366         // corresponding to the existing phi. Once all formulae have been
4367         // generated, these initial losers may be pruned.
4368         LLVM_DEBUG(dbgs() << "  Filtering loser "; F.print(dbgs());
4369                    dbgs() << "\n");
4370       }
4371       else {
4372         SmallVector<const SCEV *, 4> Key;
4373         for (const SCEV *Reg : F.BaseRegs) {
4374           if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
4375             Key.push_back(Reg);
4376         }
4377         if (F.ScaledReg &&
4378             RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
4379           Key.push_back(F.ScaledReg);
4380         // Unstable sort by host order ok, because this is only used for
4381         // uniquifying.
4382         llvm::sort(Key);
4383 
4384         std::pair<BestFormulaeTy::const_iterator, bool> P =
4385           BestFormulae.insert(std::make_pair(Key, FIdx));
4386         if (P.second)
4387           continue;
4388 
4389         Formula &Best = LU.Formulae[P.first->second];
4390 
4391         Cost CostBest(L, SE, TTI, AMK);
4392         Regs.clear();
4393         CostBest.RateFormula(Best, Regs, VisitedRegs, LU);
4394         if (CostF.isLess(CostBest))
4395           std::swap(F, Best);
4396         LLVM_DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
4397                    dbgs() << "\n"
4398                              "    in favor of formula ";
4399                    Best.print(dbgs()); dbgs() << '\n');
4400       }
4401 #ifndef NDEBUG
4402       ChangedFormulae = true;
4403 #endif
4404       LU.DeleteFormula(F);
4405       --FIdx;
4406       --NumForms;
4407       Any = true;
4408     }
4409 
4410     // Now that we've filtered out some formulae, recompute the Regs set.
4411     if (Any)
4412       LU.RecomputeRegs(LUIdx, RegUses);
4413 
4414     // Reset this to prepare for the next use.
4415     BestFormulae.clear();
4416   }
4417 
4418   LLVM_DEBUG(if (ChangedFormulae) {
4419     dbgs() << "\n"
4420               "After filtering out undesirable candidates:\n";
4421     print_uses(dbgs());
4422   });
4423 }
4424 
4425 /// Estimate the worst-case number of solutions the solver might have to
4426 /// consider. It almost never considers this many solutions because it prune the
4427 /// search space, but the pruning isn't always sufficient.
4428 size_t LSRInstance::EstimateSearchSpaceComplexity() const {
4429   size_t Power = 1;
4430   for (const LSRUse &LU : Uses) {
4431     size_t FSize = LU.Formulae.size();
4432     if (FSize >= ComplexityLimit) {
4433       Power = ComplexityLimit;
4434       break;
4435     }
4436     Power *= FSize;
4437     if (Power >= ComplexityLimit)
4438       break;
4439   }
4440   return Power;
4441 }
4442 
4443 /// When one formula uses a superset of the registers of another formula, it
4444 /// won't help reduce register pressure (though it may not necessarily hurt
4445 /// register pressure); remove it to simplify the system.
4446 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
4447   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4448     LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4449 
4450     LLVM_DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
4451                          "which use a superset of registers used by other "
4452                          "formulae.\n");
4453 
4454     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4455       LSRUse &LU = Uses[LUIdx];
4456       bool Any = false;
4457       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4458         Formula &F = LU.Formulae[i];
4459         // Look for a formula with a constant or GV in a register. If the use
4460         // also has a formula with that same value in an immediate field,
4461         // delete the one that uses a register.
4462         for (SmallVectorImpl<const SCEV *>::const_iterator
4463              I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
4464           if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
4465             Formula NewF = F;
4466             //FIXME: Formulas should store bitwidth to do wrapping properly.
4467             //       See PR41034.
4468             NewF.BaseOffset += (uint64_t)C->getValue()->getSExtValue();
4469             NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4470                                 (I - F.BaseRegs.begin()));
4471             if (LU.HasFormulaWithSameRegs(NewF)) {
4472               LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4473                          dbgs() << '\n');
4474               LU.DeleteFormula(F);
4475               --i;
4476               --e;
4477               Any = true;
4478               break;
4479             }
4480           } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
4481             if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
4482               if (!F.BaseGV) {
4483                 Formula NewF = F;
4484                 NewF.BaseGV = GV;
4485                 NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4486                                     (I - F.BaseRegs.begin()));
4487                 if (LU.HasFormulaWithSameRegs(NewF)) {
4488                   LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4489                              dbgs() << '\n');
4490                   LU.DeleteFormula(F);
4491                   --i;
4492                   --e;
4493                   Any = true;
4494                   break;
4495                 }
4496               }
4497           }
4498         }
4499       }
4500       if (Any)
4501         LU.RecomputeRegs(LUIdx, RegUses);
4502     }
4503 
4504     LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4505   }
4506 }
4507 
4508 /// When there are many registers for expressions like A, A+1, A+2, etc.,
4509 /// allocate a single register for them.
4510 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
4511   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4512     return;
4513 
4514   LLVM_DEBUG(
4515       dbgs() << "The search space is too complex.\n"
4516                 "Narrowing the search space by assuming that uses separated "
4517                 "by a constant offset will use the same registers.\n");
4518 
4519   // This is especially useful for unrolled loops.
4520 
4521   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4522     LSRUse &LU = Uses[LUIdx];
4523     for (const Formula &F : LU.Formulae) {
4524       if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1))
4525         continue;
4526 
4527       LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU);
4528       if (!LUThatHas)
4529         continue;
4530 
4531       if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false,
4532                               LU.Kind, LU.AccessTy))
4533         continue;
4534 
4535       LLVM_DEBUG(dbgs() << "  Deleting use "; LU.print(dbgs()); dbgs() << '\n');
4536 
4537       LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
4538 
4539       // Transfer the fixups of LU to LUThatHas.
4540       for (LSRFixup &Fixup : LU.Fixups) {
4541         Fixup.Offset += F.BaseOffset;
4542         LUThatHas->pushFixup(Fixup);
4543         LLVM_DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n');
4544       }
4545 
4546       // Delete formulae from the new use which are no longer legal.
4547       bool Any = false;
4548       for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
4549         Formula &F = LUThatHas->Formulae[i];
4550         if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset,
4551                         LUThatHas->Kind, LUThatHas->AccessTy, F)) {
4552           LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
4553           LUThatHas->DeleteFormula(F);
4554           --i;
4555           --e;
4556           Any = true;
4557         }
4558       }
4559 
4560       if (Any)
4561         LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
4562 
4563       // Delete the old use.
4564       DeleteUse(LU, LUIdx);
4565       --LUIdx;
4566       --NumUses;
4567       break;
4568     }
4569   }
4570 
4571   LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4572 }
4573 
4574 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that
4575 /// we've done more filtering, as it may be able to find more formulae to
4576 /// eliminate.
4577 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){
4578   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4579     LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4580 
4581     LLVM_DEBUG(dbgs() << "Narrowing the search space by re-filtering out "
4582                          "undesirable dedicated registers.\n");
4583 
4584     FilterOutUndesirableDedicatedRegisters();
4585 
4586     LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4587   }
4588 }
4589 
4590 /// If a LSRUse has multiple formulae with the same ScaledReg and Scale.
4591 /// Pick the best one and delete the others.
4592 /// This narrowing heuristic is to keep as many formulae with different
4593 /// Scale and ScaledReg pair as possible while narrowing the search space.
4594 /// The benefit is that it is more likely to find out a better solution
4595 /// from a formulae set with more Scale and ScaledReg variations than
4596 /// a formulae set with the same Scale and ScaledReg. The picking winner
4597 /// reg heuristic will often keep the formulae with the same Scale and
4598 /// ScaledReg and filter others, and we want to avoid that if possible.
4599 void LSRInstance::NarrowSearchSpaceByFilterFormulaWithSameScaledReg() {
4600   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4601     return;
4602 
4603   LLVM_DEBUG(
4604       dbgs() << "The search space is too complex.\n"
4605                 "Narrowing the search space by choosing the best Formula "
4606                 "from the Formulae with the same Scale and ScaledReg.\n");
4607 
4608   // Map the "Scale * ScaledReg" pair to the best formula of current LSRUse.
4609   using BestFormulaeTy = DenseMap<std::pair<const SCEV *, int64_t>, size_t>;
4610 
4611   BestFormulaeTy BestFormulae;
4612 #ifndef NDEBUG
4613   bool ChangedFormulae = false;
4614 #endif
4615   DenseSet<const SCEV *> VisitedRegs;
4616   SmallPtrSet<const SCEV *, 16> Regs;
4617 
4618   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4619     LSRUse &LU = Uses[LUIdx];
4620     LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs());
4621                dbgs() << '\n');
4622 
4623     // Return true if Formula FA is better than Formula FB.
4624     auto IsBetterThan = [&](Formula &FA, Formula &FB) {
4625       // First we will try to choose the Formula with fewer new registers.
4626       // For a register used by current Formula, the more the register is
4627       // shared among LSRUses, the less we increase the register number
4628       // counter of the formula.
4629       size_t FARegNum = 0;
4630       for (const SCEV *Reg : FA.BaseRegs) {
4631         const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg);
4632         FARegNum += (NumUses - UsedByIndices.count() + 1);
4633       }
4634       size_t FBRegNum = 0;
4635       for (const SCEV *Reg : FB.BaseRegs) {
4636         const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg);
4637         FBRegNum += (NumUses - UsedByIndices.count() + 1);
4638       }
4639       if (FARegNum != FBRegNum)
4640         return FARegNum < FBRegNum;
4641 
4642       // If the new register numbers are the same, choose the Formula with
4643       // less Cost.
4644       Cost CostFA(L, SE, TTI, AMK);
4645       Cost CostFB(L, SE, TTI, AMK);
4646       Regs.clear();
4647       CostFA.RateFormula(FA, Regs, VisitedRegs, LU);
4648       Regs.clear();
4649       CostFB.RateFormula(FB, Regs, VisitedRegs, LU);
4650       return CostFA.isLess(CostFB);
4651     };
4652 
4653     bool Any = false;
4654     for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms;
4655          ++FIdx) {
4656       Formula &F = LU.Formulae[FIdx];
4657       if (!F.ScaledReg)
4658         continue;
4659       auto P = BestFormulae.insert({{F.ScaledReg, F.Scale}, FIdx});
4660       if (P.second)
4661         continue;
4662 
4663       Formula &Best = LU.Formulae[P.first->second];
4664       if (IsBetterThan(F, Best))
4665         std::swap(F, Best);
4666       LLVM_DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
4667                  dbgs() << "\n"
4668                            "    in favor of formula ";
4669                  Best.print(dbgs()); dbgs() << '\n');
4670 #ifndef NDEBUG
4671       ChangedFormulae = true;
4672 #endif
4673       LU.DeleteFormula(F);
4674       --FIdx;
4675       --NumForms;
4676       Any = true;
4677     }
4678     if (Any)
4679       LU.RecomputeRegs(LUIdx, RegUses);
4680 
4681     // Reset this to prepare for the next use.
4682     BestFormulae.clear();
4683   }
4684 
4685   LLVM_DEBUG(if (ChangedFormulae) {
4686     dbgs() << "\n"
4687               "After filtering out undesirable candidates:\n";
4688     print_uses(dbgs());
4689   });
4690 }
4691 
4692 /// If we are over the complexity limit, filter out any post-inc prefering
4693 /// variables to only post-inc values.
4694 void LSRInstance::NarrowSearchSpaceByFilterPostInc() {
4695   if (AMK != TTI::AMK_PostIndexed)
4696     return;
4697   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4698     return;
4699 
4700   LLVM_DEBUG(dbgs() << "The search space is too complex.\n"
4701                        "Narrowing the search space by choosing the lowest "
4702                        "register Formula for PostInc Uses.\n");
4703 
4704   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4705     LSRUse &LU = Uses[LUIdx];
4706 
4707     if (LU.Kind != LSRUse::Address)
4708       continue;
4709     if (!TTI.isIndexedLoadLegal(TTI.MIM_PostInc, LU.AccessTy.getType()) &&
4710         !TTI.isIndexedStoreLegal(TTI.MIM_PostInc, LU.AccessTy.getType()))
4711       continue;
4712 
4713     size_t MinRegs = std::numeric_limits<size_t>::max();
4714     for (const Formula &F : LU.Formulae)
4715       MinRegs = std::min(F.getNumRegs(), MinRegs);
4716 
4717     bool Any = false;
4718     for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms;
4719          ++FIdx) {
4720       Formula &F = LU.Formulae[FIdx];
4721       if (F.getNumRegs() > MinRegs) {
4722         LLVM_DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
4723                    dbgs() << "\n");
4724         LU.DeleteFormula(F);
4725         --FIdx;
4726         --NumForms;
4727         Any = true;
4728       }
4729     }
4730     if (Any)
4731       LU.RecomputeRegs(LUIdx, RegUses);
4732 
4733     if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4734       break;
4735   }
4736 
4737   LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4738 }
4739 
4740 /// The function delete formulas with high registers number expectation.
4741 /// Assuming we don't know the value of each formula (already delete
4742 /// all inefficient), generate probability of not selecting for each
4743 /// register.
4744 /// For example,
4745 /// Use1:
4746 ///  reg(a) + reg({0,+,1})
4747 ///  reg(a) + reg({-1,+,1}) + 1
4748 ///  reg({a,+,1})
4749 /// Use2:
4750 ///  reg(b) + reg({0,+,1})
4751 ///  reg(b) + reg({-1,+,1}) + 1
4752 ///  reg({b,+,1})
4753 /// Use3:
4754 ///  reg(c) + reg(b) + reg({0,+,1})
4755 ///  reg(c) + reg({b,+,1})
4756 ///
4757 /// Probability of not selecting
4758 ///                 Use1   Use2    Use3
4759 /// reg(a)         (1/3) *   1   *   1
4760 /// reg(b)           1   * (1/3) * (1/2)
4761 /// reg({0,+,1})   (2/3) * (2/3) * (1/2)
4762 /// reg({-1,+,1})  (2/3) * (2/3) *   1
4763 /// reg({a,+,1})   (2/3) *   1   *   1
4764 /// reg({b,+,1})     1   * (2/3) * (2/3)
4765 /// reg(c)           1   *   1   *   0
4766 ///
4767 /// Now count registers number mathematical expectation for each formula:
4768 /// Note that for each use we exclude probability if not selecting for the use.
4769 /// For example for Use1 probability for reg(a) would be just 1 * 1 (excluding
4770 /// probabilty 1/3 of not selecting for Use1).
4771 /// Use1:
4772 ///  reg(a) + reg({0,+,1})          1 + 1/3       -- to be deleted
4773 ///  reg(a) + reg({-1,+,1}) + 1     1 + 4/9       -- to be deleted
4774 ///  reg({a,+,1})                   1
4775 /// Use2:
4776 ///  reg(b) + reg({0,+,1})          1/2 + 1/3     -- to be deleted
4777 ///  reg(b) + reg({-1,+,1}) + 1     1/2 + 2/3     -- to be deleted
4778 ///  reg({b,+,1})                   2/3
4779 /// Use3:
4780 ///  reg(c) + reg(b) + reg({0,+,1}) 1 + 1/3 + 4/9 -- to be deleted
4781 ///  reg(c) + reg({b,+,1})          1 + 2/3
4782 void LSRInstance::NarrowSearchSpaceByDeletingCostlyFormulas() {
4783   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4784     return;
4785   // Ok, we have too many of formulae on our hands to conveniently handle.
4786   // Use a rough heuristic to thin out the list.
4787 
4788   // Set of Regs wich will be 100% used in final solution.
4789   // Used in each formula of a solution (in example above this is reg(c)).
4790   // We can skip them in calculations.
4791   SmallPtrSet<const SCEV *, 4> UniqRegs;
4792   LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4793 
4794   // Map each register to probability of not selecting
4795   DenseMap <const SCEV *, float> RegNumMap;
4796   for (const SCEV *Reg : RegUses) {
4797     if (UniqRegs.count(Reg))
4798       continue;
4799     float PNotSel = 1;
4800     for (const LSRUse &LU : Uses) {
4801       if (!LU.Regs.count(Reg))
4802         continue;
4803       float P = LU.getNotSelectedProbability(Reg);
4804       if (P != 0.0)
4805         PNotSel *= P;
4806       else
4807         UniqRegs.insert(Reg);
4808     }
4809     RegNumMap.insert(std::make_pair(Reg, PNotSel));
4810   }
4811 
4812   LLVM_DEBUG(
4813       dbgs() << "Narrowing the search space by deleting costly formulas\n");
4814 
4815   // Delete formulas where registers number expectation is high.
4816   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4817     LSRUse &LU = Uses[LUIdx];
4818     // If nothing to delete - continue.
4819     if (LU.Formulae.size() < 2)
4820       continue;
4821     // This is temporary solution to test performance. Float should be
4822     // replaced with round independent type (based on integers) to avoid
4823     // different results for different target builds.
4824     float FMinRegNum = LU.Formulae[0].getNumRegs();
4825     float FMinARegNum = LU.Formulae[0].getNumRegs();
4826     size_t MinIdx = 0;
4827     for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4828       Formula &F = LU.Formulae[i];
4829       float FRegNum = 0;
4830       float FARegNum = 0;
4831       for (const SCEV *BaseReg : F.BaseRegs) {
4832         if (UniqRegs.count(BaseReg))
4833           continue;
4834         FRegNum += RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg);
4835         if (isa<SCEVAddRecExpr>(BaseReg))
4836           FARegNum +=
4837               RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg);
4838       }
4839       if (const SCEV *ScaledReg = F.ScaledReg) {
4840         if (!UniqRegs.count(ScaledReg)) {
4841           FRegNum +=
4842               RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg);
4843           if (isa<SCEVAddRecExpr>(ScaledReg))
4844             FARegNum +=
4845                 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg);
4846         }
4847       }
4848       if (FMinRegNum > FRegNum ||
4849           (FMinRegNum == FRegNum && FMinARegNum > FARegNum)) {
4850         FMinRegNum = FRegNum;
4851         FMinARegNum = FARegNum;
4852         MinIdx = i;
4853       }
4854     }
4855     LLVM_DEBUG(dbgs() << "  The formula "; LU.Formulae[MinIdx].print(dbgs());
4856                dbgs() << " with min reg num " << FMinRegNum << '\n');
4857     if (MinIdx != 0)
4858       std::swap(LU.Formulae[MinIdx], LU.Formulae[0]);
4859     while (LU.Formulae.size() != 1) {
4860       LLVM_DEBUG(dbgs() << "  Deleting "; LU.Formulae.back().print(dbgs());
4861                  dbgs() << '\n');
4862       LU.Formulae.pop_back();
4863     }
4864     LU.RecomputeRegs(LUIdx, RegUses);
4865     assert(LU.Formulae.size() == 1 && "Should be exactly 1 min regs formula");
4866     Formula &F = LU.Formulae[0];
4867     LLVM_DEBUG(dbgs() << "  Leaving only "; F.print(dbgs()); dbgs() << '\n');
4868     // When we choose the formula, the regs become unique.
4869     UniqRegs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
4870     if (F.ScaledReg)
4871       UniqRegs.insert(F.ScaledReg);
4872   }
4873   LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4874 }
4875 
4876 /// Pick a register which seems likely to be profitable, and then in any use
4877 /// which has any reference to that register, delete all formulae which do not
4878 /// reference that register.
4879 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() {
4880   // With all other options exhausted, loop until the system is simple
4881   // enough to handle.
4882   SmallPtrSet<const SCEV *, 4> Taken;
4883   while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4884     // Ok, we have too many of formulae on our hands to conveniently handle.
4885     // Use a rough heuristic to thin out the list.
4886     LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4887 
4888     // Pick the register which is used by the most LSRUses, which is likely
4889     // to be a good reuse register candidate.
4890     const SCEV *Best = nullptr;
4891     unsigned BestNum = 0;
4892     for (const SCEV *Reg : RegUses) {
4893       if (Taken.count(Reg))
4894         continue;
4895       if (!Best) {
4896         Best = Reg;
4897         BestNum = RegUses.getUsedByIndices(Reg).count();
4898       } else {
4899         unsigned Count = RegUses.getUsedByIndices(Reg).count();
4900         if (Count > BestNum) {
4901           Best = Reg;
4902           BestNum = Count;
4903         }
4904       }
4905     }
4906     assert(Best && "Failed to find best LSRUse candidate");
4907 
4908     LLVM_DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
4909                       << " will yield profitable reuse.\n");
4910     Taken.insert(Best);
4911 
4912     // In any use with formulae which references this register, delete formulae
4913     // which don't reference it.
4914     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4915       LSRUse &LU = Uses[LUIdx];
4916       if (!LU.Regs.count(Best)) continue;
4917 
4918       bool Any = false;
4919       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4920         Formula &F = LU.Formulae[i];
4921         if (!F.referencesReg(Best)) {
4922           LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
4923           LU.DeleteFormula(F);
4924           --e;
4925           --i;
4926           Any = true;
4927           assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
4928           continue;
4929         }
4930       }
4931 
4932       if (Any)
4933         LU.RecomputeRegs(LUIdx, RegUses);
4934     }
4935 
4936     LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4937   }
4938 }
4939 
4940 /// If there are an extraordinary number of formulae to choose from, use some
4941 /// rough heuristics to prune down the number of formulae. This keeps the main
4942 /// solver from taking an extraordinary amount of time in some worst-case
4943 /// scenarios.
4944 void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
4945   NarrowSearchSpaceByDetectingSupersets();
4946   NarrowSearchSpaceByCollapsingUnrolledCode();
4947   NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
4948   if (FilterSameScaledReg)
4949     NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
4950   NarrowSearchSpaceByFilterPostInc();
4951   if (LSRExpNarrow)
4952     NarrowSearchSpaceByDeletingCostlyFormulas();
4953   else
4954     NarrowSearchSpaceByPickingWinnerRegs();
4955 }
4956 
4957 /// This is the recursive solver.
4958 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
4959                                Cost &SolutionCost,
4960                                SmallVectorImpl<const Formula *> &Workspace,
4961                                const Cost &CurCost,
4962                                const SmallPtrSet<const SCEV *, 16> &CurRegs,
4963                                DenseSet<const SCEV *> &VisitedRegs) const {
4964   // Some ideas:
4965   //  - prune more:
4966   //    - use more aggressive filtering
4967   //    - sort the formula so that the most profitable solutions are found first
4968   //    - sort the uses too
4969   //  - search faster:
4970   //    - don't compute a cost, and then compare. compare while computing a cost
4971   //      and bail early.
4972   //    - track register sets with SmallBitVector
4973 
4974   const LSRUse &LU = Uses[Workspace.size()];
4975 
4976   // If this use references any register that's already a part of the
4977   // in-progress solution, consider it a requirement that a formula must
4978   // reference that register in order to be considered. This prunes out
4979   // unprofitable searching.
4980   SmallSetVector<const SCEV *, 4> ReqRegs;
4981   for (const SCEV *S : CurRegs)
4982     if (LU.Regs.count(S))
4983       ReqRegs.insert(S);
4984 
4985   SmallPtrSet<const SCEV *, 16> NewRegs;
4986   Cost NewCost(L, SE, TTI, AMK);
4987   for (const Formula &F : LU.Formulae) {
4988     // Ignore formulae which may not be ideal in terms of register reuse of
4989     // ReqRegs.  The formula should use all required registers before
4990     // introducing new ones.
4991     // This can sometimes (notably when trying to favour postinc) lead to
4992     // sub-optimial decisions. There it is best left to the cost modelling to
4993     // get correct.
4994     if (AMK != TTI::AMK_PostIndexed || LU.Kind != LSRUse::Address) {
4995       int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size());
4996       for (const SCEV *Reg : ReqRegs) {
4997         if ((F.ScaledReg && F.ScaledReg == Reg) ||
4998             is_contained(F.BaseRegs, Reg)) {
4999           --NumReqRegsToFind;
5000           if (NumReqRegsToFind == 0)
5001             break;
5002         }
5003       }
5004       if (NumReqRegsToFind != 0) {
5005         // If none of the formulae satisfied the required registers, then we could
5006         // clear ReqRegs and try again. Currently, we simply give up in this case.
5007         continue;
5008       }
5009     }
5010 
5011     // Evaluate the cost of the current formula. If it's already worse than
5012     // the current best, prune the search at that point.
5013     NewCost = CurCost;
5014     NewRegs = CurRegs;
5015     NewCost.RateFormula(F, NewRegs, VisitedRegs, LU);
5016     if (NewCost.isLess(SolutionCost)) {
5017       Workspace.push_back(&F);
5018       if (Workspace.size() != Uses.size()) {
5019         SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
5020                      NewRegs, VisitedRegs);
5021         if (F.getNumRegs() == 1 && Workspace.size() == 1)
5022           VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
5023       } else {
5024         LLVM_DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
5025                    dbgs() << ".\nRegs:\n";
5026                    for (const SCEV *S : NewRegs) dbgs()
5027                       << "- " << *S << "\n";
5028                    dbgs() << '\n');
5029 
5030         SolutionCost = NewCost;
5031         Solution = Workspace;
5032       }
5033       Workspace.pop_back();
5034     }
5035   }
5036 }
5037 
5038 /// Choose one formula from each use. Return the results in the given Solution
5039 /// vector.
5040 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
5041   SmallVector<const Formula *, 8> Workspace;
5042   Cost SolutionCost(L, SE, TTI, AMK);
5043   SolutionCost.Lose();
5044   Cost CurCost(L, SE, TTI, AMK);
5045   SmallPtrSet<const SCEV *, 16> CurRegs;
5046   DenseSet<const SCEV *> VisitedRegs;
5047   Workspace.reserve(Uses.size());
5048 
5049   // SolveRecurse does all the work.
5050   SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
5051                CurRegs, VisitedRegs);
5052   if (Solution.empty()) {
5053     LLVM_DEBUG(dbgs() << "\nNo Satisfactory Solution\n");
5054     return;
5055   }
5056 
5057   // Ok, we've now made all our decisions.
5058   LLVM_DEBUG(dbgs() << "\n"
5059                        "The chosen solution requires ";
5060              SolutionCost.print(dbgs()); dbgs() << ":\n";
5061              for (size_t i = 0, e = Uses.size(); i != e; ++i) {
5062                dbgs() << "  ";
5063                Uses[i].print(dbgs());
5064                dbgs() << "\n"
5065                          "    ";
5066                Solution[i]->print(dbgs());
5067                dbgs() << '\n';
5068              });
5069 
5070   assert(Solution.size() == Uses.size() && "Malformed solution!");
5071 }
5072 
5073 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as
5074 /// we can go while still being dominated by the input positions. This helps
5075 /// canonicalize the insert position, which encourages sharing.
5076 BasicBlock::iterator
5077 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
5078                                  const SmallVectorImpl<Instruction *> &Inputs)
5079                                                                          const {
5080   Instruction *Tentative = &*IP;
5081   while (true) {
5082     bool AllDominate = true;
5083     Instruction *BetterPos = nullptr;
5084     // Don't bother attempting to insert before a catchswitch, their basic block
5085     // cannot have other non-PHI instructions.
5086     if (isa<CatchSwitchInst>(Tentative))
5087       return IP;
5088 
5089     for (Instruction *Inst : Inputs) {
5090       if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
5091         AllDominate = false;
5092         break;
5093       }
5094       // Attempt to find an insert position in the middle of the block,
5095       // instead of at the end, so that it can be used for other expansions.
5096       if (Tentative->getParent() == Inst->getParent() &&
5097           (!BetterPos || !DT.dominates(Inst, BetterPos)))
5098         BetterPos = &*std::next(BasicBlock::iterator(Inst));
5099     }
5100     if (!AllDominate)
5101       break;
5102     if (BetterPos)
5103       IP = BetterPos->getIterator();
5104     else
5105       IP = Tentative->getIterator();
5106 
5107     const Loop *IPLoop = LI.getLoopFor(IP->getParent());
5108     unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
5109 
5110     BasicBlock *IDom;
5111     for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) {
5112       if (!Rung) return IP;
5113       Rung = Rung->getIDom();
5114       if (!Rung) return IP;
5115       IDom = Rung->getBlock();
5116 
5117       // Don't climb into a loop though.
5118       const Loop *IDomLoop = LI.getLoopFor(IDom);
5119       unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
5120       if (IDomDepth <= IPLoopDepth &&
5121           (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
5122         break;
5123     }
5124 
5125     Tentative = IDom->getTerminator();
5126   }
5127 
5128   return IP;
5129 }
5130 
5131 /// Determine an input position which will be dominated by the operands and
5132 /// which will dominate the result.
5133 BasicBlock::iterator
5134 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP,
5135                                            const LSRFixup &LF,
5136                                            const LSRUse &LU,
5137                                            SCEVExpander &Rewriter) const {
5138   // Collect some instructions which must be dominated by the
5139   // expanding replacement. These must be dominated by any operands that
5140   // will be required in the expansion.
5141   SmallVector<Instruction *, 4> Inputs;
5142   if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
5143     Inputs.push_back(I);
5144   if (LU.Kind == LSRUse::ICmpZero)
5145     if (Instruction *I =
5146           dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
5147       Inputs.push_back(I);
5148   if (LF.PostIncLoops.count(L)) {
5149     if (LF.isUseFullyOutsideLoop(L))
5150       Inputs.push_back(L->getLoopLatch()->getTerminator());
5151     else
5152       Inputs.push_back(IVIncInsertPos);
5153   }
5154   // The expansion must also be dominated by the increment positions of any
5155   // loops it for which it is using post-inc mode.
5156   for (const Loop *PIL : LF.PostIncLoops) {
5157     if (PIL == L) continue;
5158 
5159     // Be dominated by the loop exit.
5160     SmallVector<BasicBlock *, 4> ExitingBlocks;
5161     PIL->getExitingBlocks(ExitingBlocks);
5162     if (!ExitingBlocks.empty()) {
5163       BasicBlock *BB = ExitingBlocks[0];
5164       for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
5165         BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
5166       Inputs.push_back(BB->getTerminator());
5167     }
5168   }
5169 
5170   assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad()
5171          && !isa<DbgInfoIntrinsic>(LowestIP) &&
5172          "Insertion point must be a normal instruction");
5173 
5174   // Then, climb up the immediate dominator tree as far as we can go while
5175   // still being dominated by the input positions.
5176   BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs);
5177 
5178   // Don't insert instructions before PHI nodes.
5179   while (isa<PHINode>(IP)) ++IP;
5180 
5181   // Ignore landingpad instructions.
5182   while (IP->isEHPad()) ++IP;
5183 
5184   // Ignore debug intrinsics.
5185   while (isa<DbgInfoIntrinsic>(IP)) ++IP;
5186 
5187   // Set IP below instructions recently inserted by SCEVExpander. This keeps the
5188   // IP consistent across expansions and allows the previously inserted
5189   // instructions to be reused by subsequent expansion.
5190   while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP)
5191     ++IP;
5192 
5193   return IP;
5194 }
5195 
5196 /// Emit instructions for the leading candidate expression for this LSRUse (this
5197 /// is called "expanding").
5198 Value *LSRInstance::Expand(const LSRUse &LU, const LSRFixup &LF,
5199                            const Formula &F, BasicBlock::iterator IP,
5200                            SCEVExpander &Rewriter,
5201                            SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5202   if (LU.RigidFormula)
5203     return LF.OperandValToReplace;
5204 
5205   // Determine an input position which will be dominated by the operands and
5206   // which will dominate the result.
5207   IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter);
5208   Rewriter.setInsertPoint(&*IP);
5209 
5210   // Inform the Rewriter if we have a post-increment use, so that it can
5211   // perform an advantageous expansion.
5212   Rewriter.setPostInc(LF.PostIncLoops);
5213 
5214   // This is the type that the user actually needs.
5215   Type *OpTy = LF.OperandValToReplace->getType();
5216   // This will be the type that we'll initially expand to.
5217   Type *Ty = F.getType();
5218   if (!Ty)
5219     // No type known; just expand directly to the ultimate type.
5220     Ty = OpTy;
5221   else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
5222     // Expand directly to the ultimate type if it's the right size.
5223     Ty = OpTy;
5224   // This is the type to do integer arithmetic in.
5225   Type *IntTy = SE.getEffectiveSCEVType(Ty);
5226 
5227   // Build up a list of operands to add together to form the full base.
5228   SmallVector<const SCEV *, 8> Ops;
5229 
5230   // Expand the BaseRegs portion.
5231   for (const SCEV *Reg : F.BaseRegs) {
5232     assert(!Reg->isZero() && "Zero allocated in a base register!");
5233 
5234     // If we're expanding for a post-inc user, make the post-inc adjustment.
5235     Reg = denormalizeForPostIncUse(Reg, LF.PostIncLoops, SE);
5236     Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr)));
5237   }
5238 
5239   // Expand the ScaledReg portion.
5240   Value *ICmpScaledV = nullptr;
5241   if (F.Scale != 0) {
5242     const SCEV *ScaledS = F.ScaledReg;
5243 
5244     // If we're expanding for a post-inc user, make the post-inc adjustment.
5245     PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
5246     ScaledS = denormalizeForPostIncUse(ScaledS, Loops, SE);
5247 
5248     if (LU.Kind == LSRUse::ICmpZero) {
5249       // Expand ScaleReg as if it was part of the base regs.
5250       if (F.Scale == 1)
5251         Ops.push_back(
5252             SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)));
5253       else {
5254         // An interesting way of "folding" with an icmp is to use a negated
5255         // scale, which we'll implement by inserting it into the other operand
5256         // of the icmp.
5257         assert(F.Scale == -1 &&
5258                "The only scale supported by ICmpZero uses is -1!");
5259         ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr);
5260       }
5261     } else {
5262       // Otherwise just expand the scaled register and an explicit scale,
5263       // which is expected to be matched as part of the address.
5264 
5265       // Flush the operand list to suppress SCEVExpander hoisting address modes.
5266       // Unless the addressing mode will not be folded.
5267       if (!Ops.empty() && LU.Kind == LSRUse::Address &&
5268           isAMCompletelyFolded(TTI, LU, F)) {
5269         Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), nullptr);
5270         Ops.clear();
5271         Ops.push_back(SE.getUnknown(FullV));
5272       }
5273       ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr));
5274       if (F.Scale != 1)
5275         ScaledS =
5276             SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale));
5277       Ops.push_back(ScaledS);
5278     }
5279   }
5280 
5281   // Expand the GV portion.
5282   if (F.BaseGV) {
5283     // Flush the operand list to suppress SCEVExpander hoisting.
5284     if (!Ops.empty()) {
5285       Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
5286       Ops.clear();
5287       Ops.push_back(SE.getUnknown(FullV));
5288     }
5289     Ops.push_back(SE.getUnknown(F.BaseGV));
5290   }
5291 
5292   // Flush the operand list to suppress SCEVExpander hoisting of both folded and
5293   // unfolded offsets. LSR assumes they both live next to their uses.
5294   if (!Ops.empty()) {
5295     Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
5296     Ops.clear();
5297     Ops.push_back(SE.getUnknown(FullV));
5298   }
5299 
5300   // Expand the immediate portion.
5301   int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset;
5302   if (Offset != 0) {
5303     if (LU.Kind == LSRUse::ICmpZero) {
5304       // The other interesting way of "folding" with an ICmpZero is to use a
5305       // negated immediate.
5306       if (!ICmpScaledV)
5307         ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset);
5308       else {
5309         Ops.push_back(SE.getUnknown(ICmpScaledV));
5310         ICmpScaledV = ConstantInt::get(IntTy, Offset);
5311       }
5312     } else {
5313       // Just add the immediate values. These again are expected to be matched
5314       // as part of the address.
5315       Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
5316     }
5317   }
5318 
5319   // Expand the unfolded offset portion.
5320   int64_t UnfoldedOffset = F.UnfoldedOffset;
5321   if (UnfoldedOffset != 0) {
5322     // Just add the immediate values.
5323     Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy,
5324                                                        UnfoldedOffset)));
5325   }
5326 
5327   // Emit instructions summing all the operands.
5328   const SCEV *FullS = Ops.empty() ?
5329                       SE.getConstant(IntTy, 0) :
5330                       SE.getAddExpr(Ops);
5331   Value *FullV = Rewriter.expandCodeFor(FullS, Ty);
5332 
5333   // We're done expanding now, so reset the rewriter.
5334   Rewriter.clearPostInc();
5335 
5336   // An ICmpZero Formula represents an ICmp which we're handling as a
5337   // comparison against zero. Now that we've expanded an expression for that
5338   // form, update the ICmp's other operand.
5339   if (LU.Kind == LSRUse::ICmpZero) {
5340     ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
5341     if (auto *OperandIsInstr = dyn_cast<Instruction>(CI->getOperand(1)))
5342       DeadInsts.emplace_back(OperandIsInstr);
5343     assert(!F.BaseGV && "ICmp does not support folding a global value and "
5344                            "a scale at the same time!");
5345     if (F.Scale == -1) {
5346       if (ICmpScaledV->getType() != OpTy) {
5347         Instruction *Cast =
5348           CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
5349                                                    OpTy, false),
5350                            ICmpScaledV, OpTy, "tmp", CI);
5351         ICmpScaledV = Cast;
5352       }
5353       CI->setOperand(1, ICmpScaledV);
5354     } else {
5355       // A scale of 1 means that the scale has been expanded as part of the
5356       // base regs.
5357       assert((F.Scale == 0 || F.Scale == 1) &&
5358              "ICmp does not support folding a global value and "
5359              "a scale at the same time!");
5360       Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
5361                                            -(uint64_t)Offset);
5362       if (C->getType() != OpTy)
5363         C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
5364                                                           OpTy, false),
5365                                   C, OpTy);
5366 
5367       CI->setOperand(1, C);
5368     }
5369   }
5370 
5371   return FullV;
5372 }
5373 
5374 /// Helper for Rewrite. PHI nodes are special because the use of their operands
5375 /// effectively happens in their predecessor blocks, so the expression may need
5376 /// to be expanded in multiple places.
5377 void LSRInstance::RewriteForPHI(
5378     PHINode *PN, const LSRUse &LU, const LSRFixup &LF, const Formula &F,
5379     SCEVExpander &Rewriter, SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5380   DenseMap<BasicBlock *, Value *> Inserted;
5381   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
5382     if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
5383       bool needUpdateFixups = false;
5384       BasicBlock *BB = PN->getIncomingBlock(i);
5385 
5386       // If this is a critical edge, split the edge so that we do not insert
5387       // the code on all predecessor/successor paths.  We do this unless this
5388       // is the canonical backedge for this loop, which complicates post-inc
5389       // users.
5390       if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
5391           !isa<IndirectBrInst>(BB->getTerminator()) &&
5392           !isa<CatchSwitchInst>(BB->getTerminator())) {
5393         BasicBlock *Parent = PN->getParent();
5394         Loop *PNLoop = LI.getLoopFor(Parent);
5395         if (!PNLoop || Parent != PNLoop->getHeader()) {
5396           // Split the critical edge.
5397           BasicBlock *NewBB = nullptr;
5398           if (!Parent->isLandingPad()) {
5399             NewBB =
5400                 SplitCriticalEdge(BB, Parent,
5401                                   CriticalEdgeSplittingOptions(&DT, &LI, MSSAU)
5402                                       .setMergeIdenticalEdges()
5403                                       .setKeepOneInputPHIs());
5404           } else {
5405             SmallVector<BasicBlock*, 2> NewBBs;
5406             SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI);
5407             NewBB = NewBBs[0];
5408           }
5409           // If NewBB==NULL, then SplitCriticalEdge refused to split because all
5410           // phi predecessors are identical. The simple thing to do is skip
5411           // splitting in this case rather than complicate the API.
5412           if (NewBB) {
5413             // If PN is outside of the loop and BB is in the loop, we want to
5414             // move the block to be immediately before the PHI block, not
5415             // immediately after BB.
5416             if (L->contains(BB) && !L->contains(PN))
5417               NewBB->moveBefore(PN->getParent());
5418 
5419             // Splitting the edge can reduce the number of PHI entries we have.
5420             e = PN->getNumIncomingValues();
5421             BB = NewBB;
5422             i = PN->getBasicBlockIndex(BB);
5423 
5424             needUpdateFixups = true;
5425           }
5426         }
5427       }
5428 
5429       std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
5430         Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr)));
5431       if (!Pair.second)
5432         PN->setIncomingValue(i, Pair.first->second);
5433       else {
5434         Value *FullV = Expand(LU, LF, F, BB->getTerminator()->getIterator(),
5435                               Rewriter, DeadInsts);
5436 
5437         // If this is reuse-by-noop-cast, insert the noop cast.
5438         Type *OpTy = LF.OperandValToReplace->getType();
5439         if (FullV->getType() != OpTy)
5440           FullV =
5441             CastInst::Create(CastInst::getCastOpcode(FullV, false,
5442                                                      OpTy, false),
5443                              FullV, LF.OperandValToReplace->getType(),
5444                              "tmp", BB->getTerminator());
5445 
5446         PN->setIncomingValue(i, FullV);
5447         Pair.first->second = FullV;
5448       }
5449 
5450       // If LSR splits critical edge and phi node has other pending
5451       // fixup operands, we need to update those pending fixups. Otherwise
5452       // formulae will not be implemented completely and some instructions
5453       // will not be eliminated.
5454       if (needUpdateFixups) {
5455         for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx)
5456           for (LSRFixup &Fixup : Uses[LUIdx].Fixups)
5457             // If fixup is supposed to rewrite some operand in the phi
5458             // that was just updated, it may be already moved to
5459             // another phi node. Such fixup requires update.
5460             if (Fixup.UserInst == PN) {
5461               // Check if the operand we try to replace still exists in the
5462               // original phi.
5463               bool foundInOriginalPHI = false;
5464               for (const auto &val : PN->incoming_values())
5465                 if (val == Fixup.OperandValToReplace) {
5466                   foundInOriginalPHI = true;
5467                   break;
5468                 }
5469 
5470               // If fixup operand found in original PHI - nothing to do.
5471               if (foundInOriginalPHI)
5472                 continue;
5473 
5474               // Otherwise it might be moved to another PHI and requires update.
5475               // If fixup operand not found in any of the incoming blocks that
5476               // means we have already rewritten it - nothing to do.
5477               for (const auto &Block : PN->blocks())
5478                 for (BasicBlock::iterator I = Block->begin(); isa<PHINode>(I);
5479                      ++I) {
5480                   PHINode *NewPN = cast<PHINode>(I);
5481                   for (const auto &val : NewPN->incoming_values())
5482                     if (val == Fixup.OperandValToReplace)
5483                       Fixup.UserInst = NewPN;
5484                 }
5485             }
5486       }
5487     }
5488 }
5489 
5490 /// Emit instructions for the leading candidate expression for this LSRUse (this
5491 /// is called "expanding"), and update the UserInst to reference the newly
5492 /// expanded value.
5493 void LSRInstance::Rewrite(const LSRUse &LU, const LSRFixup &LF,
5494                           const Formula &F, SCEVExpander &Rewriter,
5495                           SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5496   // First, find an insertion point that dominates UserInst. For PHI nodes,
5497   // find the nearest block which dominates all the relevant uses.
5498   if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
5499     RewriteForPHI(PN, LU, LF, F, Rewriter, DeadInsts);
5500   } else {
5501     Value *FullV =
5502       Expand(LU, LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts);
5503 
5504     // If this is reuse-by-noop-cast, insert the noop cast.
5505     Type *OpTy = LF.OperandValToReplace->getType();
5506     if (FullV->getType() != OpTy) {
5507       Instruction *Cast =
5508         CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
5509                          FullV, OpTy, "tmp", LF.UserInst);
5510       FullV = Cast;
5511     }
5512 
5513     // Update the user. ICmpZero is handled specially here (for now) because
5514     // Expand may have updated one of the operands of the icmp already, and
5515     // its new value may happen to be equal to LF.OperandValToReplace, in
5516     // which case doing replaceUsesOfWith leads to replacing both operands
5517     // with the same value. TODO: Reorganize this.
5518     if (LU.Kind == LSRUse::ICmpZero)
5519       LF.UserInst->setOperand(0, FullV);
5520     else
5521       LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
5522   }
5523 
5524   if (auto *OperandIsInstr = dyn_cast<Instruction>(LF.OperandValToReplace))
5525     DeadInsts.emplace_back(OperandIsInstr);
5526 }
5527 
5528 /// Rewrite all the fixup locations with new values, following the chosen
5529 /// solution.
5530 void LSRInstance::ImplementSolution(
5531     const SmallVectorImpl<const Formula *> &Solution) {
5532   // Keep track of instructions we may have made dead, so that
5533   // we can remove them after we are done working.
5534   SmallVector<WeakTrackingVH, 16> DeadInsts;
5535 
5536   SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(), "lsr",
5537                         false);
5538 #ifndef NDEBUG
5539   Rewriter.setDebugType(DEBUG_TYPE);
5540 #endif
5541   Rewriter.disableCanonicalMode();
5542   Rewriter.enableLSRMode();
5543   Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
5544 
5545   // Mark phi nodes that terminate chains so the expander tries to reuse them.
5546   for (const IVChain &Chain : IVChainVec) {
5547     if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst()))
5548       Rewriter.setChainedPhi(PN);
5549   }
5550 
5551   // Expand the new value definitions and update the users.
5552   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx)
5553     for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) {
5554       Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], Rewriter, DeadInsts);
5555       Changed = true;
5556     }
5557 
5558   for (const IVChain &Chain : IVChainVec) {
5559     GenerateIVChain(Chain, Rewriter, DeadInsts);
5560     Changed = true;
5561   }
5562   // Clean up after ourselves. This must be done before deleting any
5563   // instructions.
5564   Rewriter.clear();
5565 
5566   Changed |= RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts,
5567                                                                   &TLI, MSSAU);
5568 
5569   // In our cost analysis above, we assume that each addrec consumes exactly
5570   // one register, and arrange to have increments inserted just before the
5571   // latch to maximimize the chance this is true.  However, if we reused
5572   // existing IVs, we now need to move the increments to match our
5573   // expectations.  Otherwise, our cost modeling results in us having a
5574   // chosen a non-optimal result for the actual schedule.  (And yes, this
5575   // scheduling decision does impact later codegen.)
5576   for (PHINode &PN : L->getHeader()->phis()) {
5577     BinaryOperator *BO = nullptr;
5578     Value *Start = nullptr, *Step = nullptr;
5579     if (!matchSimpleRecurrence(&PN, BO, Start, Step))
5580       continue;
5581 
5582     switch (BO->getOpcode()) {
5583     case Instruction::Sub:
5584       if (BO->getOperand(0) != &PN)
5585         // sub is non-commutative - match handling elsewhere in LSR
5586         continue;
5587       break;
5588     case Instruction::Add:
5589       break;
5590     default:
5591       continue;
5592     };
5593 
5594     if (!isa<Constant>(Step))
5595       // If not a constant step, might increase register pressure
5596       // (We assume constants have been canonicalized to RHS)
5597       continue;
5598 
5599     if (BO->getParent() == IVIncInsertPos->getParent())
5600       // Only bother moving across blocks.  Isel can handle block local case.
5601       continue;
5602 
5603     // Can we legally schedule inc at the desired point?
5604     if (!llvm::all_of(BO->uses(),
5605                       [&](Use &U) {return DT.dominates(IVIncInsertPos, U);}))
5606       continue;
5607     BO->moveBefore(IVIncInsertPos);
5608     Changed = true;
5609   }
5610 
5611 
5612 }
5613 
5614 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE,
5615                          DominatorTree &DT, LoopInfo &LI,
5616                          const TargetTransformInfo &TTI, AssumptionCache &AC,
5617                          TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU)
5618     : IU(IU), SE(SE), DT(DT), LI(LI), AC(AC), TLI(TLI), TTI(TTI), L(L),
5619       MSSAU(MSSAU), AMK(PreferredAddresingMode.getNumOccurrences() > 0 ?
5620         PreferredAddresingMode : TTI.getPreferredAddressingMode(L, &SE)) {
5621   // If LoopSimplify form is not available, stay out of trouble.
5622   if (!L->isLoopSimplifyForm())
5623     return;
5624 
5625   // If there's no interesting work to be done, bail early.
5626   if (IU.empty()) return;
5627 
5628   // If there's too much analysis to be done, bail early. We won't be able to
5629   // model the problem anyway.
5630   unsigned NumUsers = 0;
5631   for (const IVStrideUse &U : IU) {
5632     if (++NumUsers > MaxIVUsers) {
5633       (void)U;
5634       LLVM_DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U
5635                         << "\n");
5636       return;
5637     }
5638     // Bail out if we have a PHI on an EHPad that gets a value from a
5639     // CatchSwitchInst.  Because the CatchSwitchInst cannot be split, there is
5640     // no good place to stick any instructions.
5641     if (auto *PN = dyn_cast<PHINode>(U.getUser())) {
5642        auto *FirstNonPHI = PN->getParent()->getFirstNonPHI();
5643        if (isa<FuncletPadInst>(FirstNonPHI) ||
5644            isa<CatchSwitchInst>(FirstNonPHI))
5645          for (BasicBlock *PredBB : PN->blocks())
5646            if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI()))
5647              return;
5648     }
5649   }
5650 
5651 #ifndef NDEBUG
5652   // All dominating loops must have preheaders, or SCEVExpander may not be able
5653   // to materialize an AddRecExpr whose Start is an outer AddRecExpr.
5654   //
5655   // IVUsers analysis should only create users that are dominated by simple loop
5656   // headers. Since this loop should dominate all of its users, its user list
5657   // should be empty if this loop itself is not within a simple loop nest.
5658   for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader());
5659        Rung; Rung = Rung->getIDom()) {
5660     BasicBlock *BB = Rung->getBlock();
5661     const Loop *DomLoop = LI.getLoopFor(BB);
5662     if (DomLoop && DomLoop->getHeader() == BB) {
5663       assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest");
5664     }
5665   }
5666 #endif // DEBUG
5667 
5668   LLVM_DEBUG(dbgs() << "\nLSR on loop ";
5669              L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false);
5670              dbgs() << ":\n");
5671 
5672   // First, perform some low-level loop optimizations.
5673   OptimizeShadowIV();
5674   OptimizeLoopTermCond();
5675 
5676   // If loop preparation eliminates all interesting IV users, bail.
5677   if (IU.empty()) return;
5678 
5679   // Skip nested loops until we can model them better with formulae.
5680   if (!L->isInnermost()) {
5681     LLVM_DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n");
5682     return;
5683   }
5684 
5685   // Start collecting data and preparing for the solver.
5686   // If number of registers is not the major cost, we cannot benefit from the
5687   // current profitable chain optimization which is based on number of
5688   // registers.
5689   // FIXME: add profitable chain optimization for other kinds major cost, for
5690   // example number of instructions.
5691   if (TTI.isNumRegsMajorCostOfLSR() || StressIVChain)
5692     CollectChains();
5693   CollectInterestingTypesAndFactors();
5694   CollectFixupsAndInitialFormulae();
5695   CollectLoopInvariantFixupsAndFormulae();
5696 
5697   if (Uses.empty())
5698     return;
5699 
5700   LLVM_DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
5701              print_uses(dbgs()));
5702 
5703   // Now use the reuse data to generate a bunch of interesting ways
5704   // to formulate the values needed for the uses.
5705   GenerateAllReuseFormulae();
5706 
5707   FilterOutUndesirableDedicatedRegisters();
5708   NarrowSearchSpaceUsingHeuristics();
5709 
5710   SmallVector<const Formula *, 8> Solution;
5711   Solve(Solution);
5712 
5713   // Release memory that is no longer needed.
5714   Factors.clear();
5715   Types.clear();
5716   RegUses.clear();
5717 
5718   if (Solution.empty())
5719     return;
5720 
5721 #ifndef NDEBUG
5722   // Formulae should be legal.
5723   for (const LSRUse &LU : Uses) {
5724     for (const Formula &F : LU.Formulae)
5725       assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
5726                         F) && "Illegal formula generated!");
5727   };
5728 #endif
5729 
5730   // Now that we've decided what we want, make it so.
5731   ImplementSolution(Solution);
5732 }
5733 
5734 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
5735 void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
5736   if (Factors.empty() && Types.empty()) return;
5737 
5738   OS << "LSR has identified the following interesting factors and types: ";
5739   bool First = true;
5740 
5741   for (int64_t Factor : Factors) {
5742     if (!First) OS << ", ";
5743     First = false;
5744     OS << '*' << Factor;
5745   }
5746 
5747   for (Type *Ty : Types) {
5748     if (!First) OS << ", ";
5749     First = false;
5750     OS << '(' << *Ty << ')';
5751   }
5752   OS << '\n';
5753 }
5754 
5755 void LSRInstance::print_fixups(raw_ostream &OS) const {
5756   OS << "LSR is examining the following fixup sites:\n";
5757   for (const LSRUse &LU : Uses)
5758     for (const LSRFixup &LF : LU.Fixups) {
5759       dbgs() << "  ";
5760       LF.print(OS);
5761       OS << '\n';
5762     }
5763 }
5764 
5765 void LSRInstance::print_uses(raw_ostream &OS) const {
5766   OS << "LSR is examining the following uses:\n";
5767   for (const LSRUse &LU : Uses) {
5768     dbgs() << "  ";
5769     LU.print(OS);
5770     OS << '\n';
5771     for (const Formula &F : LU.Formulae) {
5772       OS << "    ";
5773       F.print(OS);
5774       OS << '\n';
5775     }
5776   }
5777 }
5778 
5779 void LSRInstance::print(raw_ostream &OS) const {
5780   print_factors_and_types(OS);
5781   print_fixups(OS);
5782   print_uses(OS);
5783 }
5784 
5785 LLVM_DUMP_METHOD void LSRInstance::dump() const {
5786   print(errs()); errs() << '\n';
5787 }
5788 #endif
5789 
5790 namespace {
5791 
5792 class LoopStrengthReduce : public LoopPass {
5793 public:
5794   static char ID; // Pass ID, replacement for typeid
5795 
5796   LoopStrengthReduce();
5797 
5798 private:
5799   bool runOnLoop(Loop *L, LPPassManager &LPM) override;
5800   void getAnalysisUsage(AnalysisUsage &AU) const override;
5801 };
5802 
5803 } // end anonymous namespace
5804 
5805 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) {
5806   initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
5807 }
5808 
5809 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
5810   // We split critical edges, so we change the CFG.  However, we do update
5811   // many analyses if they are around.
5812   AU.addPreservedID(LoopSimplifyID);
5813 
5814   AU.addRequired<LoopInfoWrapperPass>();
5815   AU.addPreserved<LoopInfoWrapperPass>();
5816   AU.addRequiredID(LoopSimplifyID);
5817   AU.addRequired<DominatorTreeWrapperPass>();
5818   AU.addPreserved<DominatorTreeWrapperPass>();
5819   AU.addRequired<ScalarEvolutionWrapperPass>();
5820   AU.addPreserved<ScalarEvolutionWrapperPass>();
5821   AU.addRequired<AssumptionCacheTracker>();
5822   AU.addRequired<TargetLibraryInfoWrapperPass>();
5823   // Requiring LoopSimplify a second time here prevents IVUsers from running
5824   // twice, since LoopSimplify was invalidated by running ScalarEvolution.
5825   AU.addRequiredID(LoopSimplifyID);
5826   AU.addRequired<IVUsersWrapperPass>();
5827   AU.addPreserved<IVUsersWrapperPass>();
5828   AU.addRequired<TargetTransformInfoWrapperPass>();
5829   AU.addPreserved<MemorySSAWrapperPass>();
5830 }
5831 
5832 using EqualValues = SmallVector<std::tuple<WeakVH, int64_t>, 4>;
5833 using EqualValuesMap =
5834     DenseMap<DbgValueInst *, SmallVector<std::pair<unsigned, EqualValues>>>;
5835 using LocationMap =
5836     DenseMap<DbgValueInst *, std::pair<DIExpression *, Metadata *>>;
5837 
5838 static void DbgGatherEqualValues(Loop *L, ScalarEvolution &SE,
5839                                  EqualValuesMap &DbgValueToEqualSet,
5840                                  LocationMap &DbgValueToLocation) {
5841   for (auto &B : L->getBlocks()) {
5842     for (auto &I : *B) {
5843       auto DVI = dyn_cast<DbgValueInst>(&I);
5844       if (!DVI)
5845         continue;
5846       for (unsigned Idx = 0; Idx < DVI->getNumVariableLocationOps(); ++Idx) {
5847         // TODO: We can duplicate results if the same arg appears more than
5848         // once.
5849         Value *V = DVI->getVariableLocationOp(Idx);
5850         if (!V || !SE.isSCEVable(V->getType()))
5851           continue;
5852         auto DbgValueSCEV = SE.getSCEV(V);
5853         EqualValues EqSet;
5854         for (PHINode &Phi : L->getHeader()->phis()) {
5855           if (V->getType() != Phi.getType())
5856             continue;
5857           if (!SE.isSCEVable(Phi.getType()))
5858             continue;
5859           auto PhiSCEV = SE.getSCEV(&Phi);
5860           Optional<APInt> Offset =
5861               SE.computeConstantDifference(DbgValueSCEV, PhiSCEV);
5862           if (Offset && Offset->getMinSignedBits() <= 64)
5863             EqSet.emplace_back(
5864                 std::make_tuple(&Phi, Offset.getValue().getSExtValue()));
5865         }
5866         DbgValueToEqualSet[DVI].push_back({Idx, std::move(EqSet)});
5867         // If we fall back to using this raw location, at least one location op
5868         // must be dead. A DIArgList will automatically undef arguments when
5869         // they become unavailable, but a ValueAsMetadata will not; since we
5870         // know the value should be undef, we use the undef value directly here.
5871         Metadata *RawLocation =
5872             DVI->hasArgList() ? DVI->getRawLocation()
5873                               : ValueAsMetadata::get(UndefValue::get(
5874                                     DVI->getVariableLocationOp(0)->getType()));
5875         DbgValueToLocation[DVI] = {DVI->getExpression(), RawLocation};
5876       }
5877     }
5878   }
5879 }
5880 
5881 static void DbgApplyEqualValues(EqualValuesMap &DbgValueToEqualSet,
5882                                 LocationMap &DbgValueToLocation) {
5883   for (auto A : DbgValueToEqualSet) {
5884     auto *DVI = A.first;
5885     // Only update those that are now undef.
5886     if (!DVI->isUndef())
5887       continue;
5888     // The dbg.value may have had its value or expression changed during LSR by
5889     // a failed salvage attempt; refresh them from the map.
5890     auto *DbgDIExpr = DbgValueToLocation[DVI].first;
5891     DVI->setRawLocation(DbgValueToLocation[DVI].second);
5892     DVI->setExpression(DbgDIExpr);
5893     assert(DVI->isUndef() && "dbg.value with non-undef location should not "
5894                              "have been modified by LSR.");
5895     for (auto IdxEV : A.second) {
5896       unsigned Idx = IdxEV.first;
5897       for (auto EV : IdxEV.second) {
5898         auto EVHandle = std::get<WeakVH>(EV);
5899         if (!EVHandle)
5900           continue;
5901         int64_t Offset = std::get<int64_t>(EV);
5902         DVI->replaceVariableLocationOp(Idx, EVHandle);
5903         if (Offset) {
5904           SmallVector<uint64_t, 8> Ops;
5905           DIExpression::appendOffset(Ops, Offset);
5906           DbgDIExpr = DIExpression::appendOpsToArg(DbgDIExpr, Ops, Idx, true);
5907         }
5908         DVI->setExpression(DbgDIExpr);
5909         break;
5910       }
5911     }
5912   }
5913 }
5914 
5915 static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE,
5916                                DominatorTree &DT, LoopInfo &LI,
5917                                const TargetTransformInfo &TTI,
5918                                AssumptionCache &AC, TargetLibraryInfo &TLI,
5919                                MemorySSA *MSSA) {
5920 
5921   bool Changed = false;
5922   std::unique_ptr<MemorySSAUpdater> MSSAU;
5923   if (MSSA)
5924     MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
5925 
5926   // Run the main LSR transformation.
5927   Changed |=
5928       LSRInstance(L, IU, SE, DT, LI, TTI, AC, TLI, MSSAU.get()).getChanged();
5929 
5930   // Debug preservation - before we start removing anything create equivalence
5931   // sets for the llvm.dbg.value intrinsics.
5932   EqualValuesMap DbgValueToEqualSet;
5933   LocationMap DbgValueToLocation;
5934   DbgGatherEqualValues(L, SE, DbgValueToEqualSet, DbgValueToLocation);
5935 
5936   // Remove any extra phis created by processing inner loops.
5937   Changed |= DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get());
5938   if (EnablePhiElim && L->isLoopSimplifyForm()) {
5939     SmallVector<WeakTrackingVH, 16> DeadInsts;
5940     const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
5941     SCEVExpander Rewriter(SE, DL, "lsr", false);
5942 #ifndef NDEBUG
5943     Rewriter.setDebugType(DEBUG_TYPE);
5944 #endif
5945     unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI);
5946     if (numFolded) {
5947       Changed = true;
5948       RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts, &TLI,
5949                                                            MSSAU.get());
5950       DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get());
5951     }
5952   }
5953 
5954   DbgApplyEqualValues(DbgValueToEqualSet, DbgValueToLocation);
5955 
5956   return Changed;
5957 }
5958 
5959 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
5960   if (skipLoop(L))
5961     return false;
5962 
5963   auto &IU = getAnalysis<IVUsersWrapperPass>().getIU();
5964   auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
5965   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
5966   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
5967   const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
5968       *L->getHeader()->getParent());
5969   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
5970       *L->getHeader()->getParent());
5971   auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
5972       *L->getHeader()->getParent());
5973   auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>();
5974   MemorySSA *MSSA = nullptr;
5975   if (MSSAAnalysis)
5976     MSSA = &MSSAAnalysis->getMSSA();
5977   return ReduceLoopStrength(L, IU, SE, DT, LI, TTI, AC, TLI, MSSA);
5978 }
5979 
5980 PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM,
5981                                               LoopStandardAnalysisResults &AR,
5982                                               LPMUpdater &) {
5983   if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE,
5984                           AR.DT, AR.LI, AR.TTI, AR.AC, AR.TLI, AR.MSSA))
5985     return PreservedAnalyses::all();
5986 
5987   auto PA = getLoopPassPreservedAnalyses();
5988   if (AR.MSSA)
5989     PA.preserve<MemorySSAAnalysis>();
5990   return PA;
5991 }
5992 
5993 char LoopStrengthReduce::ID = 0;
5994 
5995 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce",
5996                       "Loop Strength Reduction", false, false)
5997 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
5998 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
5999 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
6000 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass)
6001 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
6002 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
6003 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce",
6004                     "Loop Strength Reduction", false, false)
6005 
6006 Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); }
6007