1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This transformation analyzes and transforms the induction variables (and 11 // computations derived from them) into forms suitable for efficient execution 12 // on the target. 13 // 14 // This pass performs a strength reduction on array references inside loops that 15 // have as one or more of their components the loop induction variable, it 16 // rewrites expressions to take advantage of scaled-index addressing modes 17 // available on the target, and it performs a variety of other optimizations 18 // related to loop induction variables. 19 // 20 // Terminology note: this code has a lot of handling for "post-increment" or 21 // "post-inc" users. This is not talking about post-increment addressing modes; 22 // it is instead talking about code like this: 23 // 24 // %i = phi [ 0, %entry ], [ %i.next, %latch ] 25 // ... 26 // %i.next = add %i, 1 27 // %c = icmp eq %i.next, %n 28 // 29 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however 30 // it's useful to think about these as the same register, with some uses using 31 // the value of the register before the add and some using // it after. In this 32 // example, the icmp is a post-increment user, since it uses %i.next, which is 33 // the value of the induction variable after the increment. The other common 34 // case of post-increment users is users outside the loop. 35 // 36 // TODO: More sophistication in the way Formulae are generated and filtered. 37 // 38 // TODO: Handle multiple loops at a time. 39 // 40 // TODO: Should TargetLowering::AddrMode::BaseGV be changed to a ConstantExpr 41 // instead of a GlobalValue? 42 // 43 // TODO: When truncation is free, truncate ICmp users' operands to make it a 44 // smaller encoding (on x86 at least). 45 // 46 // TODO: When a negated register is used by an add (such as in a list of 47 // multiple base registers, or as the increment expression in an addrec), 48 // we may not actually need both reg and (-1 * reg) in registers; the 49 // negation can be implemented by using a sub instead of an add. The 50 // lack of support for taking this into consideration when making 51 // register pressure decisions is partly worked around by the "Special" 52 // use kind. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #define DEBUG_TYPE "loop-reduce" 57 #include "llvm/Transforms/Scalar.h" 58 #include "llvm/Constants.h" 59 #include "llvm/Instructions.h" 60 #include "llvm/IntrinsicInst.h" 61 #include "llvm/DerivedTypes.h" 62 #include "llvm/Analysis/IVUsers.h" 63 #include "llvm/Analysis/Dominators.h" 64 #include "llvm/Analysis/LoopPass.h" 65 #include "llvm/Analysis/ScalarEvolutionExpander.h" 66 #include "llvm/Assembly/Writer.h" 67 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 68 #include "llvm/Transforms/Utils/Local.h" 69 #include "llvm/ADT/SmallBitVector.h" 70 #include "llvm/ADT/SetVector.h" 71 #include "llvm/ADT/DenseSet.h" 72 #include "llvm/Support/Debug.h" 73 #include "llvm/Support/CommandLine.h" 74 #include "llvm/Support/ValueHandle.h" 75 #include "llvm/Support/raw_ostream.h" 76 #include "llvm/Target/TargetLowering.h" 77 #include <algorithm> 78 using namespace llvm; 79 80 static cl::opt<bool> EnableNested( 81 "enable-lsr-nested", cl::Hidden, cl::desc("Enable LSR on nested loops")); 82 83 static cl::opt<bool> EnableRetry( 84 "enable-lsr-retry", cl::Hidden, cl::desc("Enable LSR retry")); 85 86 // Temporary flag to cleanup congruent phis after LSR phi expansion. 87 // It's currently disabled until we can determine whether it's truly useful or 88 // not. The flag should be removed after the v3.0 release. 89 // This is now needed for ivchains. 90 static cl::opt<bool> EnablePhiElim( 91 "enable-lsr-phielim", cl::Hidden, cl::init(true), 92 cl::desc("Enable LSR phi elimination")); 93 94 #ifndef NDEBUG 95 // Stress test IV chain generation. 96 static cl::opt<bool> StressIVChain( 97 "stress-ivchain", cl::Hidden, cl::init(false), 98 cl::desc("Stress test LSR IV chains")); 99 #else 100 static bool StressIVChain = false; 101 #endif 102 103 namespace { 104 105 /// RegSortData - This class holds data which is used to order reuse candidates. 106 class RegSortData { 107 public: 108 /// UsedByIndices - This represents the set of LSRUse indices which reference 109 /// a particular register. 110 SmallBitVector UsedByIndices; 111 112 RegSortData() {} 113 114 void print(raw_ostream &OS) const; 115 void dump() const; 116 }; 117 118 } 119 120 void RegSortData::print(raw_ostream &OS) const { 121 OS << "[NumUses=" << UsedByIndices.count() << ']'; 122 } 123 124 void RegSortData::dump() const { 125 print(errs()); errs() << '\n'; 126 } 127 128 namespace { 129 130 /// RegUseTracker - Map register candidates to information about how they are 131 /// used. 132 class RegUseTracker { 133 typedef DenseMap<const SCEV *, RegSortData> RegUsesTy; 134 135 RegUsesTy RegUsesMap; 136 SmallVector<const SCEV *, 16> RegSequence; 137 138 public: 139 void CountRegister(const SCEV *Reg, size_t LUIdx); 140 void DropRegister(const SCEV *Reg, size_t LUIdx); 141 void SwapAndDropUse(size_t LUIdx, size_t LastLUIdx); 142 143 bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const; 144 145 const SmallBitVector &getUsedByIndices(const SCEV *Reg) const; 146 147 void clear(); 148 149 typedef SmallVectorImpl<const SCEV *>::iterator iterator; 150 typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator; 151 iterator begin() { return RegSequence.begin(); } 152 iterator end() { return RegSequence.end(); } 153 const_iterator begin() const { return RegSequence.begin(); } 154 const_iterator end() const { return RegSequence.end(); } 155 }; 156 157 } 158 159 void 160 RegUseTracker::CountRegister(const SCEV *Reg, size_t LUIdx) { 161 std::pair<RegUsesTy::iterator, bool> Pair = 162 RegUsesMap.insert(std::make_pair(Reg, RegSortData())); 163 RegSortData &RSD = Pair.first->second; 164 if (Pair.second) 165 RegSequence.push_back(Reg); 166 RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1)); 167 RSD.UsedByIndices.set(LUIdx); 168 } 169 170 void 171 RegUseTracker::DropRegister(const SCEV *Reg, size_t LUIdx) { 172 RegUsesTy::iterator It = RegUsesMap.find(Reg); 173 assert(It != RegUsesMap.end()); 174 RegSortData &RSD = It->second; 175 assert(RSD.UsedByIndices.size() > LUIdx); 176 RSD.UsedByIndices.reset(LUIdx); 177 } 178 179 void 180 RegUseTracker::SwapAndDropUse(size_t LUIdx, size_t LastLUIdx) { 181 assert(LUIdx <= LastLUIdx); 182 183 // Update RegUses. The data structure is not optimized for this purpose; 184 // we must iterate through it and update each of the bit vectors. 185 for (RegUsesTy::iterator I = RegUsesMap.begin(), E = RegUsesMap.end(); 186 I != E; ++I) { 187 SmallBitVector &UsedByIndices = I->second.UsedByIndices; 188 if (LUIdx < UsedByIndices.size()) 189 UsedByIndices[LUIdx] = 190 LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : 0; 191 UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx)); 192 } 193 } 194 195 bool 196 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const { 197 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 198 if (I == RegUsesMap.end()) 199 return false; 200 const SmallBitVector &UsedByIndices = I->second.UsedByIndices; 201 int i = UsedByIndices.find_first(); 202 if (i == -1) return false; 203 if ((size_t)i != LUIdx) return true; 204 return UsedByIndices.find_next(i) != -1; 205 } 206 207 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const { 208 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 209 assert(I != RegUsesMap.end() && "Unknown register!"); 210 return I->second.UsedByIndices; 211 } 212 213 void RegUseTracker::clear() { 214 RegUsesMap.clear(); 215 RegSequence.clear(); 216 } 217 218 namespace { 219 220 /// Formula - This class holds information that describes a formula for 221 /// computing satisfying a use. It may include broken-out immediates and scaled 222 /// registers. 223 struct Formula { 224 /// AM - This is used to represent complex addressing, as well as other kinds 225 /// of interesting uses. 226 TargetLowering::AddrMode AM; 227 228 /// BaseRegs - The list of "base" registers for this use. When this is 229 /// non-empty, AM.HasBaseReg should be set to true. 230 SmallVector<const SCEV *, 2> BaseRegs; 231 232 /// ScaledReg - The 'scaled' register for this use. This should be non-null 233 /// when AM.Scale is not zero. 234 const SCEV *ScaledReg; 235 236 /// UnfoldedOffset - An additional constant offset which added near the 237 /// use. This requires a temporary register, but the offset itself can 238 /// live in an add immediate field rather than a register. 239 int64_t UnfoldedOffset; 240 241 Formula() : ScaledReg(0), UnfoldedOffset(0) {} 242 243 void InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE); 244 245 unsigned getNumRegs() const; 246 Type *getType() const; 247 248 void DeleteBaseReg(const SCEV *&S); 249 250 bool referencesReg(const SCEV *S) const; 251 bool hasRegsUsedByUsesOtherThan(size_t LUIdx, 252 const RegUseTracker &RegUses) const; 253 254 void print(raw_ostream &OS) const; 255 void dump() const; 256 }; 257 258 } 259 260 /// DoInitialMatch - Recursion helper for InitialMatch. 261 static void DoInitialMatch(const SCEV *S, Loop *L, 262 SmallVectorImpl<const SCEV *> &Good, 263 SmallVectorImpl<const SCEV *> &Bad, 264 ScalarEvolution &SE) { 265 // Collect expressions which properly dominate the loop header. 266 if (SE.properlyDominates(S, L->getHeader())) { 267 Good.push_back(S); 268 return; 269 } 270 271 // Look at add operands. 272 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 273 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); 274 I != E; ++I) 275 DoInitialMatch(*I, L, Good, Bad, SE); 276 return; 277 } 278 279 // Look at addrec operands. 280 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 281 if (!AR->getStart()->isZero()) { 282 DoInitialMatch(AR->getStart(), L, Good, Bad, SE); 283 DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0), 284 AR->getStepRecurrence(SE), 285 // FIXME: AR->getNoWrapFlags() 286 AR->getLoop(), SCEV::FlagAnyWrap), 287 L, Good, Bad, SE); 288 return; 289 } 290 291 // Handle a multiplication by -1 (negation) if it didn't fold. 292 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) 293 if (Mul->getOperand(0)->isAllOnesValue()) { 294 SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end()); 295 const SCEV *NewMul = SE.getMulExpr(Ops); 296 297 SmallVector<const SCEV *, 4> MyGood; 298 SmallVector<const SCEV *, 4> MyBad; 299 DoInitialMatch(NewMul, L, MyGood, MyBad, SE); 300 const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue( 301 SE.getEffectiveSCEVType(NewMul->getType()))); 302 for (SmallVectorImpl<const SCEV *>::const_iterator I = MyGood.begin(), 303 E = MyGood.end(); I != E; ++I) 304 Good.push_back(SE.getMulExpr(NegOne, *I)); 305 for (SmallVectorImpl<const SCEV *>::const_iterator I = MyBad.begin(), 306 E = MyBad.end(); I != E; ++I) 307 Bad.push_back(SE.getMulExpr(NegOne, *I)); 308 return; 309 } 310 311 // Ok, we can't do anything interesting. Just stuff the whole thing into a 312 // register and hope for the best. 313 Bad.push_back(S); 314 } 315 316 /// InitialMatch - Incorporate loop-variant parts of S into this Formula, 317 /// attempting to keep all loop-invariant and loop-computable values in a 318 /// single base register. 319 void Formula::InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) { 320 SmallVector<const SCEV *, 4> Good; 321 SmallVector<const SCEV *, 4> Bad; 322 DoInitialMatch(S, L, Good, Bad, SE); 323 if (!Good.empty()) { 324 const SCEV *Sum = SE.getAddExpr(Good); 325 if (!Sum->isZero()) 326 BaseRegs.push_back(Sum); 327 AM.HasBaseReg = true; 328 } 329 if (!Bad.empty()) { 330 const SCEV *Sum = SE.getAddExpr(Bad); 331 if (!Sum->isZero()) 332 BaseRegs.push_back(Sum); 333 AM.HasBaseReg = true; 334 } 335 } 336 337 /// getNumRegs - Return the total number of register operands used by this 338 /// formula. This does not include register uses implied by non-constant 339 /// addrec strides. 340 unsigned Formula::getNumRegs() const { 341 return !!ScaledReg + BaseRegs.size(); 342 } 343 344 /// getType - Return the type of this formula, if it has one, or null 345 /// otherwise. This type is meaningless except for the bit size. 346 Type *Formula::getType() const { 347 return !BaseRegs.empty() ? BaseRegs.front()->getType() : 348 ScaledReg ? ScaledReg->getType() : 349 AM.BaseGV ? AM.BaseGV->getType() : 350 0; 351 } 352 353 /// DeleteBaseReg - Delete the given base reg from the BaseRegs list. 354 void Formula::DeleteBaseReg(const SCEV *&S) { 355 if (&S != &BaseRegs.back()) 356 std::swap(S, BaseRegs.back()); 357 BaseRegs.pop_back(); 358 } 359 360 /// referencesReg - Test if this formula references the given register. 361 bool Formula::referencesReg(const SCEV *S) const { 362 return S == ScaledReg || 363 std::find(BaseRegs.begin(), BaseRegs.end(), S) != BaseRegs.end(); 364 } 365 366 /// hasRegsUsedByUsesOtherThan - Test whether this formula uses registers 367 /// which are used by uses other than the use with the given index. 368 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx, 369 const RegUseTracker &RegUses) const { 370 if (ScaledReg) 371 if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx)) 372 return true; 373 for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(), 374 E = BaseRegs.end(); I != E; ++I) 375 if (RegUses.isRegUsedByUsesOtherThan(*I, LUIdx)) 376 return true; 377 return false; 378 } 379 380 void Formula::print(raw_ostream &OS) const { 381 bool First = true; 382 if (AM.BaseGV) { 383 if (!First) OS << " + "; else First = false; 384 WriteAsOperand(OS, AM.BaseGV, /*PrintType=*/false); 385 } 386 if (AM.BaseOffs != 0) { 387 if (!First) OS << " + "; else First = false; 388 OS << AM.BaseOffs; 389 } 390 for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(), 391 E = BaseRegs.end(); I != E; ++I) { 392 if (!First) OS << " + "; else First = false; 393 OS << "reg(" << **I << ')'; 394 } 395 if (AM.HasBaseReg && BaseRegs.empty()) { 396 if (!First) OS << " + "; else First = false; 397 OS << "**error: HasBaseReg**"; 398 } else if (!AM.HasBaseReg && !BaseRegs.empty()) { 399 if (!First) OS << " + "; else First = false; 400 OS << "**error: !HasBaseReg**"; 401 } 402 if (AM.Scale != 0) { 403 if (!First) OS << " + "; else First = false; 404 OS << AM.Scale << "*reg("; 405 if (ScaledReg) 406 OS << *ScaledReg; 407 else 408 OS << "<unknown>"; 409 OS << ')'; 410 } 411 if (UnfoldedOffset != 0) { 412 if (!First) OS << " + "; else First = false; 413 OS << "imm(" << UnfoldedOffset << ')'; 414 } 415 } 416 417 void Formula::dump() const { 418 print(errs()); errs() << '\n'; 419 } 420 421 /// isAddRecSExtable - Return true if the given addrec can be sign-extended 422 /// without changing its value. 423 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 424 Type *WideTy = 425 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1); 426 return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy)); 427 } 428 429 /// isAddSExtable - Return true if the given add can be sign-extended 430 /// without changing its value. 431 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) { 432 Type *WideTy = 433 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1); 434 return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy)); 435 } 436 437 /// isMulSExtable - Return true if the given mul can be sign-extended 438 /// without changing its value. 439 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) { 440 Type *WideTy = 441 IntegerType::get(SE.getContext(), 442 SE.getTypeSizeInBits(M->getType()) * M->getNumOperands()); 443 return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy)); 444 } 445 446 /// getExactSDiv - Return an expression for LHS /s RHS, if it can be determined 447 /// and if the remainder is known to be zero, or null otherwise. If 448 /// IgnoreSignificantBits is true, expressions like (X * Y) /s Y are simplified 449 /// to Y, ignoring that the multiplication may overflow, which is useful when 450 /// the result will be used in a context where the most significant bits are 451 /// ignored. 452 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS, 453 ScalarEvolution &SE, 454 bool IgnoreSignificantBits = false) { 455 // Handle the trivial case, which works for any SCEV type. 456 if (LHS == RHS) 457 return SE.getConstant(LHS->getType(), 1); 458 459 // Handle a few RHS special cases. 460 const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS); 461 if (RC) { 462 const APInt &RA = RC->getValue()->getValue(); 463 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do 464 // some folding. 465 if (RA.isAllOnesValue()) 466 return SE.getMulExpr(LHS, RC); 467 // Handle x /s 1 as x. 468 if (RA == 1) 469 return LHS; 470 } 471 472 // Check for a division of a constant by a constant. 473 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) { 474 if (!RC) 475 return 0; 476 const APInt &LA = C->getValue()->getValue(); 477 const APInt &RA = RC->getValue()->getValue(); 478 if (LA.srem(RA) != 0) 479 return 0; 480 return SE.getConstant(LA.sdiv(RA)); 481 } 482 483 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow. 484 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) { 485 if (IgnoreSignificantBits || isAddRecSExtable(AR, SE)) { 486 const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE, 487 IgnoreSignificantBits); 488 if (!Step) return 0; 489 const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE, 490 IgnoreSignificantBits); 491 if (!Start) return 0; 492 // FlagNW is independent of the start value, step direction, and is 493 // preserved with smaller magnitude steps. 494 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 495 return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap); 496 } 497 return 0; 498 } 499 500 // Distribute the sdiv over add operands, if the add doesn't overflow. 501 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) { 502 if (IgnoreSignificantBits || isAddSExtable(Add, SE)) { 503 SmallVector<const SCEV *, 8> Ops; 504 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); 505 I != E; ++I) { 506 const SCEV *Op = getExactSDiv(*I, RHS, SE, 507 IgnoreSignificantBits); 508 if (!Op) return 0; 509 Ops.push_back(Op); 510 } 511 return SE.getAddExpr(Ops); 512 } 513 return 0; 514 } 515 516 // Check for a multiply operand that we can pull RHS out of. 517 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) { 518 if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) { 519 SmallVector<const SCEV *, 4> Ops; 520 bool Found = false; 521 for (SCEVMulExpr::op_iterator I = Mul->op_begin(), E = Mul->op_end(); 522 I != E; ++I) { 523 const SCEV *S = *I; 524 if (!Found) 525 if (const SCEV *Q = getExactSDiv(S, RHS, SE, 526 IgnoreSignificantBits)) { 527 S = Q; 528 Found = true; 529 } 530 Ops.push_back(S); 531 } 532 return Found ? SE.getMulExpr(Ops) : 0; 533 } 534 return 0; 535 } 536 537 // Otherwise we don't know. 538 return 0; 539 } 540 541 /// ExtractImmediate - If S involves the addition of a constant integer value, 542 /// return that integer value, and mutate S to point to a new SCEV with that 543 /// value excluded. 544 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) { 545 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 546 if (C->getValue()->getValue().getMinSignedBits() <= 64) { 547 S = SE.getConstant(C->getType(), 0); 548 return C->getValue()->getSExtValue(); 549 } 550 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 551 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 552 int64_t Result = ExtractImmediate(NewOps.front(), SE); 553 if (Result != 0) 554 S = SE.getAddExpr(NewOps); 555 return Result; 556 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 557 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 558 int64_t Result = ExtractImmediate(NewOps.front(), SE); 559 if (Result != 0) 560 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 561 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 562 SCEV::FlagAnyWrap); 563 return Result; 564 } 565 return 0; 566 } 567 568 /// ExtractSymbol - If S involves the addition of a GlobalValue address, 569 /// return that symbol, and mutate S to point to a new SCEV with that 570 /// value excluded. 571 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) { 572 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 573 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) { 574 S = SE.getConstant(GV->getType(), 0); 575 return GV; 576 } 577 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 578 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 579 GlobalValue *Result = ExtractSymbol(NewOps.back(), SE); 580 if (Result) 581 S = SE.getAddExpr(NewOps); 582 return Result; 583 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 584 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 585 GlobalValue *Result = ExtractSymbol(NewOps.front(), SE); 586 if (Result) 587 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 588 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 589 SCEV::FlagAnyWrap); 590 return Result; 591 } 592 return 0; 593 } 594 595 /// isAddressUse - Returns true if the specified instruction is using the 596 /// specified value as an address. 597 static bool isAddressUse(Instruction *Inst, Value *OperandVal) { 598 bool isAddress = isa<LoadInst>(Inst); 599 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 600 if (SI->getOperand(1) == OperandVal) 601 isAddress = true; 602 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 603 // Addressing modes can also be folded into prefetches and a variety 604 // of intrinsics. 605 switch (II->getIntrinsicID()) { 606 default: break; 607 case Intrinsic::prefetch: 608 case Intrinsic::x86_sse_storeu_ps: 609 case Intrinsic::x86_sse2_storeu_pd: 610 case Intrinsic::x86_sse2_storeu_dq: 611 case Intrinsic::x86_sse2_storel_dq: 612 if (II->getArgOperand(0) == OperandVal) 613 isAddress = true; 614 break; 615 } 616 } 617 return isAddress; 618 } 619 620 /// getAccessType - Return the type of the memory being accessed. 621 static Type *getAccessType(const Instruction *Inst) { 622 Type *AccessTy = Inst->getType(); 623 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) 624 AccessTy = SI->getOperand(0)->getType(); 625 else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 626 // Addressing modes can also be folded into prefetches and a variety 627 // of intrinsics. 628 switch (II->getIntrinsicID()) { 629 default: break; 630 case Intrinsic::x86_sse_storeu_ps: 631 case Intrinsic::x86_sse2_storeu_pd: 632 case Intrinsic::x86_sse2_storeu_dq: 633 case Intrinsic::x86_sse2_storel_dq: 634 AccessTy = II->getArgOperand(0)->getType(); 635 break; 636 } 637 } 638 639 // All pointers have the same requirements, so canonicalize them to an 640 // arbitrary pointer type to minimize variation. 641 if (PointerType *PTy = dyn_cast<PointerType>(AccessTy)) 642 AccessTy = PointerType::get(IntegerType::get(PTy->getContext(), 1), 643 PTy->getAddressSpace()); 644 645 return AccessTy; 646 } 647 648 /// isExistingPhi - Return true if this AddRec is already a phi in its loop. 649 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 650 for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin(); 651 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 652 if (SE.isSCEVable(PN->getType()) && 653 (SE.getEffectiveSCEVType(PN->getType()) == 654 SE.getEffectiveSCEVType(AR->getType())) && 655 SE.getSCEV(PN) == AR) 656 return true; 657 } 658 return false; 659 } 660 661 /// DeleteTriviallyDeadInstructions - If any of the instructions is the 662 /// specified set are trivially dead, delete them and see if this makes any of 663 /// their operands subsequently dead. 664 static bool 665 DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) { 666 bool Changed = false; 667 668 while (!DeadInsts.empty()) { 669 Instruction *I = dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()); 670 671 if (I == 0 || !isInstructionTriviallyDead(I)) 672 continue; 673 674 for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) 675 if (Instruction *U = dyn_cast<Instruction>(*OI)) { 676 *OI = 0; 677 if (U->use_empty()) 678 DeadInsts.push_back(U); 679 } 680 681 I->eraseFromParent(); 682 Changed = true; 683 } 684 685 return Changed; 686 } 687 688 namespace { 689 690 /// Cost - This class is used to measure and compare candidate formulae. 691 class Cost { 692 /// TODO: Some of these could be merged. Also, a lexical ordering 693 /// isn't always optimal. 694 unsigned NumRegs; 695 unsigned AddRecCost; 696 unsigned NumIVMuls; 697 unsigned NumBaseAdds; 698 unsigned ImmCost; 699 unsigned SetupCost; 700 701 public: 702 Cost() 703 : NumRegs(0), AddRecCost(0), NumIVMuls(0), NumBaseAdds(0), ImmCost(0), 704 SetupCost(0) {} 705 706 bool operator<(const Cost &Other) const; 707 708 void Loose(); 709 710 #ifndef NDEBUG 711 // Once any of the metrics loses, they must all remain losers. 712 bool isValid() { 713 return ((NumRegs | AddRecCost | NumIVMuls | NumBaseAdds 714 | ImmCost | SetupCost) != ~0u) 715 || ((NumRegs & AddRecCost & NumIVMuls & NumBaseAdds 716 & ImmCost & SetupCost) == ~0u); 717 } 718 #endif 719 720 bool isLoser() { 721 assert(isValid() && "invalid cost"); 722 return NumRegs == ~0u; 723 } 724 725 void RateFormula(const Formula &F, 726 SmallPtrSet<const SCEV *, 16> &Regs, 727 const DenseSet<const SCEV *> &VisitedRegs, 728 const Loop *L, 729 const SmallVectorImpl<int64_t> &Offsets, 730 ScalarEvolution &SE, DominatorTree &DT, 731 SmallPtrSet<const SCEV *, 16> *LoserRegs = 0); 732 733 void print(raw_ostream &OS) const; 734 void dump() const; 735 736 private: 737 void RateRegister(const SCEV *Reg, 738 SmallPtrSet<const SCEV *, 16> &Regs, 739 const Loop *L, 740 ScalarEvolution &SE, DominatorTree &DT); 741 void RatePrimaryRegister(const SCEV *Reg, 742 SmallPtrSet<const SCEV *, 16> &Regs, 743 const Loop *L, 744 ScalarEvolution &SE, DominatorTree &DT, 745 SmallPtrSet<const SCEV *, 16> *LoserRegs); 746 }; 747 748 } 749 750 /// RateRegister - Tally up interesting quantities from the given register. 751 void Cost::RateRegister(const SCEV *Reg, 752 SmallPtrSet<const SCEV *, 16> &Regs, 753 const Loop *L, 754 ScalarEvolution &SE, DominatorTree &DT) { 755 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) { 756 if (AR->getLoop() == L) 757 AddRecCost += 1; /// TODO: This should be a function of the stride. 758 759 // If this is an addrec for another loop, don't second-guess its addrec phi 760 // nodes. LSR isn't currently smart enough to reason about more than one 761 // loop at a time. LSR has either already run on inner loops, will not run 762 // on other loops, and cannot be expected to change sibling loops. If the 763 // AddRec exists, consider it's register free and leave it alone. Otherwise, 764 // do not consider this formula at all. 765 else if (!EnableNested || L->contains(AR->getLoop()) || 766 (!AR->getLoop()->contains(L) && 767 DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))) { 768 if (isExistingPhi(AR, SE)) 769 return; 770 771 // For !EnableNested, never rewrite IVs in other loops. 772 if (!EnableNested) { 773 Loose(); 774 return; 775 } 776 // If this isn't one of the addrecs that the loop already has, it 777 // would require a costly new phi and add. TODO: This isn't 778 // precisely modeled right now. 779 ++NumBaseAdds; 780 if (!Regs.count(AR->getStart())) { 781 RateRegister(AR->getStart(), Regs, L, SE, DT); 782 if (isLoser()) 783 return; 784 } 785 } 786 787 // Add the step value register, if it needs one. 788 // TODO: The non-affine case isn't precisely modeled here. 789 if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) { 790 if (!Regs.count(AR->getOperand(1))) { 791 RateRegister(AR->getOperand(1), Regs, L, SE, DT); 792 if (isLoser()) 793 return; 794 } 795 } 796 } 797 ++NumRegs; 798 799 // Rough heuristic; favor registers which don't require extra setup 800 // instructions in the preheader. 801 if (!isa<SCEVUnknown>(Reg) && 802 !isa<SCEVConstant>(Reg) && 803 !(isa<SCEVAddRecExpr>(Reg) && 804 (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) || 805 isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart())))) 806 ++SetupCost; 807 808 NumIVMuls += isa<SCEVMulExpr>(Reg) && 809 SE.hasComputableLoopEvolution(Reg, L); 810 } 811 812 /// RatePrimaryRegister - Record this register in the set. If we haven't seen it 813 /// before, rate it. Optional LoserRegs provides a way to declare any formula 814 /// that refers to one of those regs an instant loser. 815 void Cost::RatePrimaryRegister(const SCEV *Reg, 816 SmallPtrSet<const SCEV *, 16> &Regs, 817 const Loop *L, 818 ScalarEvolution &SE, DominatorTree &DT, 819 SmallPtrSet<const SCEV *, 16> *LoserRegs) { 820 if (LoserRegs && LoserRegs->count(Reg)) { 821 Loose(); 822 return; 823 } 824 if (Regs.insert(Reg)) { 825 RateRegister(Reg, Regs, L, SE, DT); 826 if (isLoser()) 827 LoserRegs->insert(Reg); 828 } 829 } 830 831 void Cost::RateFormula(const Formula &F, 832 SmallPtrSet<const SCEV *, 16> &Regs, 833 const DenseSet<const SCEV *> &VisitedRegs, 834 const Loop *L, 835 const SmallVectorImpl<int64_t> &Offsets, 836 ScalarEvolution &SE, DominatorTree &DT, 837 SmallPtrSet<const SCEV *, 16> *LoserRegs) { 838 // Tally up the registers. 839 if (const SCEV *ScaledReg = F.ScaledReg) { 840 if (VisitedRegs.count(ScaledReg)) { 841 Loose(); 842 return; 843 } 844 RatePrimaryRegister(ScaledReg, Regs, L, SE, DT, LoserRegs); 845 if (isLoser()) 846 return; 847 } 848 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(), 849 E = F.BaseRegs.end(); I != E; ++I) { 850 const SCEV *BaseReg = *I; 851 if (VisitedRegs.count(BaseReg)) { 852 Loose(); 853 return; 854 } 855 RatePrimaryRegister(BaseReg, Regs, L, SE, DT, LoserRegs); 856 if (isLoser()) 857 return; 858 } 859 860 // Determine how many (unfolded) adds we'll need inside the loop. 861 size_t NumBaseParts = F.BaseRegs.size() + (F.UnfoldedOffset != 0); 862 if (NumBaseParts > 1) 863 NumBaseAdds += NumBaseParts - 1; 864 865 // Tally up the non-zero immediates. 866 for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(), 867 E = Offsets.end(); I != E; ++I) { 868 int64_t Offset = (uint64_t)*I + F.AM.BaseOffs; 869 if (F.AM.BaseGV) 870 ImmCost += 64; // Handle symbolic values conservatively. 871 // TODO: This should probably be the pointer size. 872 else if (Offset != 0) 873 ImmCost += APInt(64, Offset, true).getMinSignedBits(); 874 } 875 assert(isValid() && "invalid cost"); 876 } 877 878 /// Loose - Set this cost to a losing value. 879 void Cost::Loose() { 880 NumRegs = ~0u; 881 AddRecCost = ~0u; 882 NumIVMuls = ~0u; 883 NumBaseAdds = ~0u; 884 ImmCost = ~0u; 885 SetupCost = ~0u; 886 } 887 888 /// operator< - Choose the lower cost. 889 bool Cost::operator<(const Cost &Other) const { 890 if (NumRegs != Other.NumRegs) 891 return NumRegs < Other.NumRegs; 892 if (AddRecCost != Other.AddRecCost) 893 return AddRecCost < Other.AddRecCost; 894 if (NumIVMuls != Other.NumIVMuls) 895 return NumIVMuls < Other.NumIVMuls; 896 if (NumBaseAdds != Other.NumBaseAdds) 897 return NumBaseAdds < Other.NumBaseAdds; 898 if (ImmCost != Other.ImmCost) 899 return ImmCost < Other.ImmCost; 900 if (SetupCost != Other.SetupCost) 901 return SetupCost < Other.SetupCost; 902 return false; 903 } 904 905 void Cost::print(raw_ostream &OS) const { 906 OS << NumRegs << " reg" << (NumRegs == 1 ? "" : "s"); 907 if (AddRecCost != 0) 908 OS << ", with addrec cost " << AddRecCost; 909 if (NumIVMuls != 0) 910 OS << ", plus " << NumIVMuls << " IV mul" << (NumIVMuls == 1 ? "" : "s"); 911 if (NumBaseAdds != 0) 912 OS << ", plus " << NumBaseAdds << " base add" 913 << (NumBaseAdds == 1 ? "" : "s"); 914 if (ImmCost != 0) 915 OS << ", plus " << ImmCost << " imm cost"; 916 if (SetupCost != 0) 917 OS << ", plus " << SetupCost << " setup cost"; 918 } 919 920 void Cost::dump() const { 921 print(errs()); errs() << '\n'; 922 } 923 924 namespace { 925 926 /// LSRFixup - An operand value in an instruction which is to be replaced 927 /// with some equivalent, possibly strength-reduced, replacement. 928 struct LSRFixup { 929 /// UserInst - The instruction which will be updated. 930 Instruction *UserInst; 931 932 /// OperandValToReplace - The operand of the instruction which will 933 /// be replaced. The operand may be used more than once; every instance 934 /// will be replaced. 935 Value *OperandValToReplace; 936 937 /// PostIncLoops - If this user is to use the post-incremented value of an 938 /// induction variable, this variable is non-null and holds the loop 939 /// associated with the induction variable. 940 PostIncLoopSet PostIncLoops; 941 942 /// LUIdx - The index of the LSRUse describing the expression which 943 /// this fixup needs, minus an offset (below). 944 size_t LUIdx; 945 946 /// Offset - A constant offset to be added to the LSRUse expression. 947 /// This allows multiple fixups to share the same LSRUse with different 948 /// offsets, for example in an unrolled loop. 949 int64_t Offset; 950 951 bool isUseFullyOutsideLoop(const Loop *L) const; 952 953 LSRFixup(); 954 955 void print(raw_ostream &OS) const; 956 void dump() const; 957 }; 958 959 } 960 961 LSRFixup::LSRFixup() 962 : UserInst(0), OperandValToReplace(0), LUIdx(~size_t(0)), Offset(0) {} 963 964 /// isUseFullyOutsideLoop - Test whether this fixup always uses its 965 /// value outside of the given loop. 966 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const { 967 // PHI nodes use their value in their incoming blocks. 968 if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) { 969 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 970 if (PN->getIncomingValue(i) == OperandValToReplace && 971 L->contains(PN->getIncomingBlock(i))) 972 return false; 973 return true; 974 } 975 976 return !L->contains(UserInst); 977 } 978 979 void LSRFixup::print(raw_ostream &OS) const { 980 OS << "UserInst="; 981 // Store is common and interesting enough to be worth special-casing. 982 if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) { 983 OS << "store "; 984 WriteAsOperand(OS, Store->getOperand(0), /*PrintType=*/false); 985 } else if (UserInst->getType()->isVoidTy()) 986 OS << UserInst->getOpcodeName(); 987 else 988 WriteAsOperand(OS, UserInst, /*PrintType=*/false); 989 990 OS << ", OperandValToReplace="; 991 WriteAsOperand(OS, OperandValToReplace, /*PrintType=*/false); 992 993 for (PostIncLoopSet::const_iterator I = PostIncLoops.begin(), 994 E = PostIncLoops.end(); I != E; ++I) { 995 OS << ", PostIncLoop="; 996 WriteAsOperand(OS, (*I)->getHeader(), /*PrintType=*/false); 997 } 998 999 if (LUIdx != ~size_t(0)) 1000 OS << ", LUIdx=" << LUIdx; 1001 1002 if (Offset != 0) 1003 OS << ", Offset=" << Offset; 1004 } 1005 1006 void LSRFixup::dump() const { 1007 print(errs()); errs() << '\n'; 1008 } 1009 1010 namespace { 1011 1012 /// UniquifierDenseMapInfo - A DenseMapInfo implementation for holding 1013 /// DenseMaps and DenseSets of sorted SmallVectors of const SCEV*. 1014 struct UniquifierDenseMapInfo { 1015 static SmallVector<const SCEV *, 2> getEmptyKey() { 1016 SmallVector<const SCEV *, 2> V; 1017 V.push_back(reinterpret_cast<const SCEV *>(-1)); 1018 return V; 1019 } 1020 1021 static SmallVector<const SCEV *, 2> getTombstoneKey() { 1022 SmallVector<const SCEV *, 2> V; 1023 V.push_back(reinterpret_cast<const SCEV *>(-2)); 1024 return V; 1025 } 1026 1027 static unsigned getHashValue(const SmallVector<const SCEV *, 2> &V) { 1028 unsigned Result = 0; 1029 for (SmallVectorImpl<const SCEV *>::const_iterator I = V.begin(), 1030 E = V.end(); I != E; ++I) 1031 Result ^= DenseMapInfo<const SCEV *>::getHashValue(*I); 1032 return Result; 1033 } 1034 1035 static bool isEqual(const SmallVector<const SCEV *, 2> &LHS, 1036 const SmallVector<const SCEV *, 2> &RHS) { 1037 return LHS == RHS; 1038 } 1039 }; 1040 1041 /// LSRUse - This class holds the state that LSR keeps for each use in 1042 /// IVUsers, as well as uses invented by LSR itself. It includes information 1043 /// about what kinds of things can be folded into the user, information about 1044 /// the user itself, and information about how the use may be satisfied. 1045 /// TODO: Represent multiple users of the same expression in common? 1046 class LSRUse { 1047 DenseSet<SmallVector<const SCEV *, 2>, UniquifierDenseMapInfo> Uniquifier; 1048 1049 public: 1050 /// KindType - An enum for a kind of use, indicating what types of 1051 /// scaled and immediate operands it might support. 1052 enum KindType { 1053 Basic, ///< A normal use, with no folding. 1054 Special, ///< A special case of basic, allowing -1 scales. 1055 Address, ///< An address use; folding according to TargetLowering 1056 ICmpZero ///< An equality icmp with both operands folded into one. 1057 // TODO: Add a generic icmp too? 1058 }; 1059 1060 KindType Kind; 1061 Type *AccessTy; 1062 1063 SmallVector<int64_t, 8> Offsets; 1064 int64_t MinOffset; 1065 int64_t MaxOffset; 1066 1067 /// AllFixupsOutsideLoop - This records whether all of the fixups using this 1068 /// LSRUse are outside of the loop, in which case some special-case heuristics 1069 /// may be used. 1070 bool AllFixupsOutsideLoop; 1071 1072 /// WidestFixupType - This records the widest use type for any fixup using 1073 /// this LSRUse. FindUseWithSimilarFormula can't consider uses with different 1074 /// max fixup widths to be equivalent, because the narrower one may be relying 1075 /// on the implicit truncation to truncate away bogus bits. 1076 Type *WidestFixupType; 1077 1078 /// Formulae - A list of ways to build a value that can satisfy this user. 1079 /// After the list is populated, one of these is selected heuristically and 1080 /// used to formulate a replacement for OperandValToReplace in UserInst. 1081 SmallVector<Formula, 12> Formulae; 1082 1083 /// Regs - The set of register candidates used by all formulae in this LSRUse. 1084 SmallPtrSet<const SCEV *, 4> Regs; 1085 1086 LSRUse(KindType K, Type *T) : Kind(K), AccessTy(T), 1087 MinOffset(INT64_MAX), 1088 MaxOffset(INT64_MIN), 1089 AllFixupsOutsideLoop(true), 1090 WidestFixupType(0) {} 1091 1092 bool HasFormulaWithSameRegs(const Formula &F) const; 1093 bool InsertFormula(const Formula &F); 1094 void DeleteFormula(Formula &F); 1095 void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses); 1096 1097 void print(raw_ostream &OS) const; 1098 void dump() const; 1099 }; 1100 1101 } 1102 1103 /// HasFormula - Test whether this use as a formula which has the same 1104 /// registers as the given formula. 1105 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const { 1106 SmallVector<const SCEV *, 2> Key = F.BaseRegs; 1107 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1108 // Unstable sort by host order ok, because this is only used for uniquifying. 1109 std::sort(Key.begin(), Key.end()); 1110 return Uniquifier.count(Key); 1111 } 1112 1113 /// InsertFormula - If the given formula has not yet been inserted, add it to 1114 /// the list, and return true. Return false otherwise. 1115 bool LSRUse::InsertFormula(const Formula &F) { 1116 SmallVector<const SCEV *, 2> Key = F.BaseRegs; 1117 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1118 // Unstable sort by host order ok, because this is only used for uniquifying. 1119 std::sort(Key.begin(), Key.end()); 1120 1121 if (!Uniquifier.insert(Key).second) 1122 return false; 1123 1124 // Using a register to hold the value of 0 is not profitable. 1125 assert((!F.ScaledReg || !F.ScaledReg->isZero()) && 1126 "Zero allocated in a scaled register!"); 1127 #ifndef NDEBUG 1128 for (SmallVectorImpl<const SCEV *>::const_iterator I = 1129 F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) 1130 assert(!(*I)->isZero() && "Zero allocated in a base register!"); 1131 #endif 1132 1133 // Add the formula to the list. 1134 Formulae.push_back(F); 1135 1136 // Record registers now being used by this use. 1137 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1138 1139 return true; 1140 } 1141 1142 /// DeleteFormula - Remove the given formula from this use's list. 1143 void LSRUse::DeleteFormula(Formula &F) { 1144 if (&F != &Formulae.back()) 1145 std::swap(F, Formulae.back()); 1146 Formulae.pop_back(); 1147 } 1148 1149 /// RecomputeRegs - Recompute the Regs field, and update RegUses. 1150 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) { 1151 // Now that we've filtered out some formulae, recompute the Regs set. 1152 SmallPtrSet<const SCEV *, 4> OldRegs = Regs; 1153 Regs.clear(); 1154 for (SmallVectorImpl<Formula>::const_iterator I = Formulae.begin(), 1155 E = Formulae.end(); I != E; ++I) { 1156 const Formula &F = *I; 1157 if (F.ScaledReg) Regs.insert(F.ScaledReg); 1158 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1159 } 1160 1161 // Update the RegTracker. 1162 for (SmallPtrSet<const SCEV *, 4>::iterator I = OldRegs.begin(), 1163 E = OldRegs.end(); I != E; ++I) 1164 if (!Regs.count(*I)) 1165 RegUses.DropRegister(*I, LUIdx); 1166 } 1167 1168 void LSRUse::print(raw_ostream &OS) const { 1169 OS << "LSR Use: Kind="; 1170 switch (Kind) { 1171 case Basic: OS << "Basic"; break; 1172 case Special: OS << "Special"; break; 1173 case ICmpZero: OS << "ICmpZero"; break; 1174 case Address: 1175 OS << "Address of "; 1176 if (AccessTy->isPointerTy()) 1177 OS << "pointer"; // the full pointer type could be really verbose 1178 else 1179 OS << *AccessTy; 1180 } 1181 1182 OS << ", Offsets={"; 1183 for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(), 1184 E = Offsets.end(); I != E; ++I) { 1185 OS << *I; 1186 if (llvm::next(I) != E) 1187 OS << ','; 1188 } 1189 OS << '}'; 1190 1191 if (AllFixupsOutsideLoop) 1192 OS << ", all-fixups-outside-loop"; 1193 1194 if (WidestFixupType) 1195 OS << ", widest fixup type: " << *WidestFixupType; 1196 } 1197 1198 void LSRUse::dump() const { 1199 print(errs()); errs() << '\n'; 1200 } 1201 1202 /// isLegalUse - Test whether the use described by AM is "legal", meaning it can 1203 /// be completely folded into the user instruction at isel time. This includes 1204 /// address-mode folding and special icmp tricks. 1205 static bool isLegalUse(const TargetLowering::AddrMode &AM, 1206 LSRUse::KindType Kind, Type *AccessTy, 1207 const TargetLowering *TLI) { 1208 switch (Kind) { 1209 case LSRUse::Address: 1210 // If we have low-level target information, ask the target if it can 1211 // completely fold this address. 1212 if (TLI) return TLI->isLegalAddressingMode(AM, AccessTy); 1213 1214 // Otherwise, just guess that reg+reg addressing is legal. 1215 return !AM.BaseGV && AM.BaseOffs == 0 && AM.Scale <= 1; 1216 1217 case LSRUse::ICmpZero: 1218 // There's not even a target hook for querying whether it would be legal to 1219 // fold a GV into an ICmp. 1220 if (AM.BaseGV) 1221 return false; 1222 1223 // ICmp only has two operands; don't allow more than two non-trivial parts. 1224 if (AM.Scale != 0 && AM.HasBaseReg && AM.BaseOffs != 0) 1225 return false; 1226 1227 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by 1228 // putting the scaled register in the other operand of the icmp. 1229 if (AM.Scale != 0 && AM.Scale != -1) 1230 return false; 1231 1232 // If we have low-level target information, ask the target if it can fold an 1233 // integer immediate on an icmp. 1234 if (AM.BaseOffs != 0) { 1235 if (TLI) return TLI->isLegalICmpImmediate(-(uint64_t)AM.BaseOffs); 1236 return false; 1237 } 1238 1239 return true; 1240 1241 case LSRUse::Basic: 1242 // Only handle single-register values. 1243 return !AM.BaseGV && AM.Scale == 0 && AM.BaseOffs == 0; 1244 1245 case LSRUse::Special: 1246 // Only handle -1 scales, or no scale. 1247 return AM.Scale == 0 || AM.Scale == -1; 1248 } 1249 1250 return false; 1251 } 1252 1253 static bool isLegalUse(TargetLowering::AddrMode AM, 1254 int64_t MinOffset, int64_t MaxOffset, 1255 LSRUse::KindType Kind, Type *AccessTy, 1256 const TargetLowering *TLI) { 1257 // Check for overflow. 1258 if (((int64_t)((uint64_t)AM.BaseOffs + MinOffset) > AM.BaseOffs) != 1259 (MinOffset > 0)) 1260 return false; 1261 AM.BaseOffs = (uint64_t)AM.BaseOffs + MinOffset; 1262 if (isLegalUse(AM, Kind, AccessTy, TLI)) { 1263 AM.BaseOffs = (uint64_t)AM.BaseOffs - MinOffset; 1264 // Check for overflow. 1265 if (((int64_t)((uint64_t)AM.BaseOffs + MaxOffset) > AM.BaseOffs) != 1266 (MaxOffset > 0)) 1267 return false; 1268 AM.BaseOffs = (uint64_t)AM.BaseOffs + MaxOffset; 1269 return isLegalUse(AM, Kind, AccessTy, TLI); 1270 } 1271 return false; 1272 } 1273 1274 static bool isAlwaysFoldable(int64_t BaseOffs, 1275 GlobalValue *BaseGV, 1276 bool HasBaseReg, 1277 LSRUse::KindType Kind, Type *AccessTy, 1278 const TargetLowering *TLI) { 1279 // Fast-path: zero is always foldable. 1280 if (BaseOffs == 0 && !BaseGV) return true; 1281 1282 // Conservatively, create an address with an immediate and a 1283 // base and a scale. 1284 TargetLowering::AddrMode AM; 1285 AM.BaseOffs = BaseOffs; 1286 AM.BaseGV = BaseGV; 1287 AM.HasBaseReg = HasBaseReg; 1288 AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1289 1290 // Canonicalize a scale of 1 to a base register if the formula doesn't 1291 // already have a base register. 1292 if (!AM.HasBaseReg && AM.Scale == 1) { 1293 AM.Scale = 0; 1294 AM.HasBaseReg = true; 1295 } 1296 1297 return isLegalUse(AM, Kind, AccessTy, TLI); 1298 } 1299 1300 static bool isAlwaysFoldable(const SCEV *S, 1301 int64_t MinOffset, int64_t MaxOffset, 1302 bool HasBaseReg, 1303 LSRUse::KindType Kind, Type *AccessTy, 1304 const TargetLowering *TLI, 1305 ScalarEvolution &SE) { 1306 // Fast-path: zero is always foldable. 1307 if (S->isZero()) return true; 1308 1309 // Conservatively, create an address with an immediate and a 1310 // base and a scale. 1311 int64_t BaseOffs = ExtractImmediate(S, SE); 1312 GlobalValue *BaseGV = ExtractSymbol(S, SE); 1313 1314 // If there's anything else involved, it's not foldable. 1315 if (!S->isZero()) return false; 1316 1317 // Fast-path: zero is always foldable. 1318 if (BaseOffs == 0 && !BaseGV) return true; 1319 1320 // Conservatively, create an address with an immediate and a 1321 // base and a scale. 1322 TargetLowering::AddrMode AM; 1323 AM.BaseOffs = BaseOffs; 1324 AM.BaseGV = BaseGV; 1325 AM.HasBaseReg = HasBaseReg; 1326 AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1327 1328 return isLegalUse(AM, MinOffset, MaxOffset, Kind, AccessTy, TLI); 1329 } 1330 1331 namespace { 1332 1333 /// UseMapDenseMapInfo - A DenseMapInfo implementation for holding 1334 /// DenseMaps and DenseSets of pairs of const SCEV* and LSRUse::Kind. 1335 struct UseMapDenseMapInfo { 1336 static std::pair<const SCEV *, LSRUse::KindType> getEmptyKey() { 1337 return std::make_pair(reinterpret_cast<const SCEV *>(-1), LSRUse::Basic); 1338 } 1339 1340 static std::pair<const SCEV *, LSRUse::KindType> getTombstoneKey() { 1341 return std::make_pair(reinterpret_cast<const SCEV *>(-2), LSRUse::Basic); 1342 } 1343 1344 static unsigned 1345 getHashValue(const std::pair<const SCEV *, LSRUse::KindType> &V) { 1346 unsigned Result = DenseMapInfo<const SCEV *>::getHashValue(V.first); 1347 Result ^= DenseMapInfo<unsigned>::getHashValue(unsigned(V.second)); 1348 return Result; 1349 } 1350 1351 static bool isEqual(const std::pair<const SCEV *, LSRUse::KindType> &LHS, 1352 const std::pair<const SCEV *, LSRUse::KindType> &RHS) { 1353 return LHS == RHS; 1354 } 1355 }; 1356 1357 /// IVInc - An individual increment in a Chain of IV increments. 1358 /// Relate an IV user to an expression that computes the IV it uses from the IV 1359 /// used by the previous link in the Chain. 1360 /// 1361 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the 1362 /// original IVOperand. The head of the chain's IVOperand is only valid during 1363 /// chain collection, before LSR replaces IV users. During chain generation, 1364 /// IncExpr can be used to find the new IVOperand that computes the same 1365 /// expression. 1366 struct IVInc { 1367 Instruction *UserInst; 1368 Value* IVOperand; 1369 const SCEV *IncExpr; 1370 1371 IVInc(Instruction *U, Value *O, const SCEV *E): 1372 UserInst(U), IVOperand(O), IncExpr(E) {} 1373 }; 1374 1375 // IVChain - The list of IV increments in program order. 1376 // We typically add the head of a chain without finding subsequent links. 1377 typedef SmallVector<IVInc,1> IVChain; 1378 1379 /// ChainUsers - Helper for CollectChains to track multiple IV increment uses. 1380 /// Distinguish between FarUsers that definitely cross IV increments and 1381 /// NearUsers that may be used between IV increments. 1382 struct ChainUsers { 1383 SmallPtrSet<Instruction*, 4> FarUsers; 1384 SmallPtrSet<Instruction*, 4> NearUsers; 1385 }; 1386 1387 /// LSRInstance - This class holds state for the main loop strength reduction 1388 /// logic. 1389 class LSRInstance { 1390 IVUsers &IU; 1391 ScalarEvolution &SE; 1392 DominatorTree &DT; 1393 LoopInfo &LI; 1394 const TargetLowering *const TLI; 1395 Loop *const L; 1396 bool Changed; 1397 1398 /// IVIncInsertPos - This is the insert position that the current loop's 1399 /// induction variable increment should be placed. In simple loops, this is 1400 /// the latch block's terminator. But in more complicated cases, this is a 1401 /// position which will dominate all the in-loop post-increment users. 1402 Instruction *IVIncInsertPos; 1403 1404 /// Factors - Interesting factors between use strides. 1405 SmallSetVector<int64_t, 8> Factors; 1406 1407 /// Types - Interesting use types, to facilitate truncation reuse. 1408 SmallSetVector<Type *, 4> Types; 1409 1410 /// Fixups - The list of operands which are to be replaced. 1411 SmallVector<LSRFixup, 16> Fixups; 1412 1413 /// Uses - The list of interesting uses. 1414 SmallVector<LSRUse, 16> Uses; 1415 1416 /// RegUses - Track which uses use which register candidates. 1417 RegUseTracker RegUses; 1418 1419 // Limit the number of chains to avoid quadratic behavior. We don't expect to 1420 // have more than a few IV increment chains in a loop. Missing a Chain falls 1421 // back to normal LSR behavior for those uses. 1422 static const unsigned MaxChains = 8; 1423 1424 /// IVChainVec - IV users can form a chain of IV increments. 1425 SmallVector<IVChain, MaxChains> IVChainVec; 1426 1427 /// IVIncSet - IV users that belong to profitable IVChains. 1428 SmallPtrSet<Use*, MaxChains> IVIncSet; 1429 1430 void OptimizeShadowIV(); 1431 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse); 1432 ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse); 1433 void OptimizeLoopTermCond(); 1434 1435 void ChainInstruction(Instruction *UserInst, Instruction *IVOper, 1436 SmallVectorImpl<ChainUsers> &ChainUsersVec); 1437 void FinalizeChain(IVChain &Chain); 1438 void CollectChains(); 1439 void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 1440 SmallVectorImpl<WeakVH> &DeadInsts); 1441 1442 void CollectInterestingTypesAndFactors(); 1443 void CollectFixupsAndInitialFormulae(); 1444 1445 LSRFixup &getNewFixup() { 1446 Fixups.push_back(LSRFixup()); 1447 return Fixups.back(); 1448 } 1449 1450 // Support for sharing of LSRUses between LSRFixups. 1451 typedef DenseMap<std::pair<const SCEV *, LSRUse::KindType>, 1452 size_t, 1453 UseMapDenseMapInfo> UseMapTy; 1454 UseMapTy UseMap; 1455 1456 bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, 1457 LSRUse::KindType Kind, Type *AccessTy); 1458 1459 std::pair<size_t, int64_t> getUse(const SCEV *&Expr, 1460 LSRUse::KindType Kind, 1461 Type *AccessTy); 1462 1463 void DeleteUse(LSRUse &LU, size_t LUIdx); 1464 1465 LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU); 1466 1467 void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1468 void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1469 void CountRegisters(const Formula &F, size_t LUIdx); 1470 bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F); 1471 1472 void CollectLoopInvariantFixupsAndFormulae(); 1473 1474 void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base, 1475 unsigned Depth = 0); 1476 void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base); 1477 void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1478 void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1479 void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base); 1480 void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base); 1481 void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base); 1482 void GenerateCrossUseConstantOffsets(); 1483 void GenerateAllReuseFormulae(); 1484 1485 void FilterOutUndesirableDedicatedRegisters(); 1486 1487 size_t EstimateSearchSpaceComplexity() const; 1488 void NarrowSearchSpaceByDetectingSupersets(); 1489 void NarrowSearchSpaceByCollapsingUnrolledCode(); 1490 void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 1491 void NarrowSearchSpaceByPickingWinnerRegs(); 1492 void NarrowSearchSpaceUsingHeuristics(); 1493 1494 void SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 1495 Cost &SolutionCost, 1496 SmallVectorImpl<const Formula *> &Workspace, 1497 const Cost &CurCost, 1498 const SmallPtrSet<const SCEV *, 16> &CurRegs, 1499 DenseSet<const SCEV *> &VisitedRegs) const; 1500 void Solve(SmallVectorImpl<const Formula *> &Solution) const; 1501 1502 BasicBlock::iterator 1503 HoistInsertPosition(BasicBlock::iterator IP, 1504 const SmallVectorImpl<Instruction *> &Inputs) const; 1505 BasicBlock::iterator AdjustInsertPositionForExpand(BasicBlock::iterator IP, 1506 const LSRFixup &LF, 1507 const LSRUse &LU) const; 1508 1509 Value *Expand(const LSRFixup &LF, 1510 const Formula &F, 1511 BasicBlock::iterator IP, 1512 SCEVExpander &Rewriter, 1513 SmallVectorImpl<WeakVH> &DeadInsts) const; 1514 void RewriteForPHI(PHINode *PN, const LSRFixup &LF, 1515 const Formula &F, 1516 SCEVExpander &Rewriter, 1517 SmallVectorImpl<WeakVH> &DeadInsts, 1518 Pass *P) const; 1519 void Rewrite(const LSRFixup &LF, 1520 const Formula &F, 1521 SCEVExpander &Rewriter, 1522 SmallVectorImpl<WeakVH> &DeadInsts, 1523 Pass *P) const; 1524 void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution, 1525 Pass *P); 1526 1527 public: 1528 LSRInstance(const TargetLowering *tli, Loop *l, Pass *P); 1529 1530 bool getChanged() const { return Changed; } 1531 1532 void print_factors_and_types(raw_ostream &OS) const; 1533 void print_fixups(raw_ostream &OS) const; 1534 void print_uses(raw_ostream &OS) const; 1535 void print(raw_ostream &OS) const; 1536 void dump() const; 1537 }; 1538 1539 } 1540 1541 /// OptimizeShadowIV - If IV is used in a int-to-float cast 1542 /// inside the loop then try to eliminate the cast operation. 1543 void LSRInstance::OptimizeShadowIV() { 1544 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 1545 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 1546 return; 1547 1548 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); 1549 UI != E; /* empty */) { 1550 IVUsers::const_iterator CandidateUI = UI; 1551 ++UI; 1552 Instruction *ShadowUse = CandidateUI->getUser(); 1553 Type *DestTy = NULL; 1554 bool IsSigned = false; 1555 1556 /* If shadow use is a int->float cast then insert a second IV 1557 to eliminate this cast. 1558 1559 for (unsigned i = 0; i < n; ++i) 1560 foo((double)i); 1561 1562 is transformed into 1563 1564 double d = 0.0; 1565 for (unsigned i = 0; i < n; ++i, ++d) 1566 foo(d); 1567 */ 1568 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) { 1569 IsSigned = false; 1570 DestTy = UCast->getDestTy(); 1571 } 1572 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) { 1573 IsSigned = true; 1574 DestTy = SCast->getDestTy(); 1575 } 1576 if (!DestTy) continue; 1577 1578 if (TLI) { 1579 // If target does not support DestTy natively then do not apply 1580 // this transformation. 1581 EVT DVT = TLI->getValueType(DestTy); 1582 if (!TLI->isTypeLegal(DVT)) continue; 1583 } 1584 1585 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0)); 1586 if (!PH) continue; 1587 if (PH->getNumIncomingValues() != 2) continue; 1588 1589 Type *SrcTy = PH->getType(); 1590 int Mantissa = DestTy->getFPMantissaWidth(); 1591 if (Mantissa == -1) continue; 1592 if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa) 1593 continue; 1594 1595 unsigned Entry, Latch; 1596 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) { 1597 Entry = 0; 1598 Latch = 1; 1599 } else { 1600 Entry = 1; 1601 Latch = 0; 1602 } 1603 1604 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry)); 1605 if (!Init) continue; 1606 Constant *NewInit = ConstantFP::get(DestTy, IsSigned ? 1607 (double)Init->getSExtValue() : 1608 (double)Init->getZExtValue()); 1609 1610 BinaryOperator *Incr = 1611 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch)); 1612 if (!Incr) continue; 1613 if (Incr->getOpcode() != Instruction::Add 1614 && Incr->getOpcode() != Instruction::Sub) 1615 continue; 1616 1617 /* Initialize new IV, double d = 0.0 in above example. */ 1618 ConstantInt *C = NULL; 1619 if (Incr->getOperand(0) == PH) 1620 C = dyn_cast<ConstantInt>(Incr->getOperand(1)); 1621 else if (Incr->getOperand(1) == PH) 1622 C = dyn_cast<ConstantInt>(Incr->getOperand(0)); 1623 else 1624 continue; 1625 1626 if (!C) continue; 1627 1628 // Ignore negative constants, as the code below doesn't handle them 1629 // correctly. TODO: Remove this restriction. 1630 if (!C->getValue().isStrictlyPositive()) continue; 1631 1632 /* Add new PHINode. */ 1633 PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH); 1634 1635 /* create new increment. '++d' in above example. */ 1636 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue()); 1637 BinaryOperator *NewIncr = 1638 BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ? 1639 Instruction::FAdd : Instruction::FSub, 1640 NewPH, CFP, "IV.S.next.", Incr); 1641 1642 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry)); 1643 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch)); 1644 1645 /* Remove cast operation */ 1646 ShadowUse->replaceAllUsesWith(NewPH); 1647 ShadowUse->eraseFromParent(); 1648 Changed = true; 1649 break; 1650 } 1651 } 1652 1653 /// FindIVUserForCond - If Cond has an operand that is an expression of an IV, 1654 /// set the IV user and stride information and return true, otherwise return 1655 /// false. 1656 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) { 1657 for (IVUsers::iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) 1658 if (UI->getUser() == Cond) { 1659 // NOTE: we could handle setcc instructions with multiple uses here, but 1660 // InstCombine does it as well for simple uses, it's not clear that it 1661 // occurs enough in real life to handle. 1662 CondUse = UI; 1663 return true; 1664 } 1665 return false; 1666 } 1667 1668 /// OptimizeMax - Rewrite the loop's terminating condition if it uses 1669 /// a max computation. 1670 /// 1671 /// This is a narrow solution to a specific, but acute, problem. For loops 1672 /// like this: 1673 /// 1674 /// i = 0; 1675 /// do { 1676 /// p[i] = 0.0; 1677 /// } while (++i < n); 1678 /// 1679 /// the trip count isn't just 'n', because 'n' might not be positive. And 1680 /// unfortunately this can come up even for loops where the user didn't use 1681 /// a C do-while loop. For example, seemingly well-behaved top-test loops 1682 /// will commonly be lowered like this: 1683 // 1684 /// if (n > 0) { 1685 /// i = 0; 1686 /// do { 1687 /// p[i] = 0.0; 1688 /// } while (++i < n); 1689 /// } 1690 /// 1691 /// and then it's possible for subsequent optimization to obscure the if 1692 /// test in such a way that indvars can't find it. 1693 /// 1694 /// When indvars can't find the if test in loops like this, it creates a 1695 /// max expression, which allows it to give the loop a canonical 1696 /// induction variable: 1697 /// 1698 /// i = 0; 1699 /// max = n < 1 ? 1 : n; 1700 /// do { 1701 /// p[i] = 0.0; 1702 /// } while (++i != max); 1703 /// 1704 /// Canonical induction variables are necessary because the loop passes 1705 /// are designed around them. The most obvious example of this is the 1706 /// LoopInfo analysis, which doesn't remember trip count values. It 1707 /// expects to be able to rediscover the trip count each time it is 1708 /// needed, and it does this using a simple analysis that only succeeds if 1709 /// the loop has a canonical induction variable. 1710 /// 1711 /// However, when it comes time to generate code, the maximum operation 1712 /// can be quite costly, especially if it's inside of an outer loop. 1713 /// 1714 /// This function solves this problem by detecting this type of loop and 1715 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting 1716 /// the instructions for the maximum computation. 1717 /// 1718 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) { 1719 // Check that the loop matches the pattern we're looking for. 1720 if (Cond->getPredicate() != CmpInst::ICMP_EQ && 1721 Cond->getPredicate() != CmpInst::ICMP_NE) 1722 return Cond; 1723 1724 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1)); 1725 if (!Sel || !Sel->hasOneUse()) return Cond; 1726 1727 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 1728 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 1729 return Cond; 1730 const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1); 1731 1732 // Add one to the backedge-taken count to get the trip count. 1733 const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount); 1734 if (IterationCount != SE.getSCEV(Sel)) return Cond; 1735 1736 // Check for a max calculation that matches the pattern. There's no check 1737 // for ICMP_ULE here because the comparison would be with zero, which 1738 // isn't interesting. 1739 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1740 const SCEVNAryExpr *Max = 0; 1741 if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) { 1742 Pred = ICmpInst::ICMP_SLE; 1743 Max = S; 1744 } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) { 1745 Pred = ICmpInst::ICMP_SLT; 1746 Max = S; 1747 } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) { 1748 Pred = ICmpInst::ICMP_ULT; 1749 Max = U; 1750 } else { 1751 // No match; bail. 1752 return Cond; 1753 } 1754 1755 // To handle a max with more than two operands, this optimization would 1756 // require additional checking and setup. 1757 if (Max->getNumOperands() != 2) 1758 return Cond; 1759 1760 const SCEV *MaxLHS = Max->getOperand(0); 1761 const SCEV *MaxRHS = Max->getOperand(1); 1762 1763 // ScalarEvolution canonicalizes constants to the left. For < and >, look 1764 // for a comparison with 1. For <= and >=, a comparison with zero. 1765 if (!MaxLHS || 1766 (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One))) 1767 return Cond; 1768 1769 // Check the relevant induction variable for conformance to 1770 // the pattern. 1771 const SCEV *IV = SE.getSCEV(Cond->getOperand(0)); 1772 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV); 1773 if (!AR || !AR->isAffine() || 1774 AR->getStart() != One || 1775 AR->getStepRecurrence(SE) != One) 1776 return Cond; 1777 1778 assert(AR->getLoop() == L && 1779 "Loop condition operand is an addrec in a different loop!"); 1780 1781 // Check the right operand of the select, and remember it, as it will 1782 // be used in the new comparison instruction. 1783 Value *NewRHS = 0; 1784 if (ICmpInst::isTrueWhenEqual(Pred)) { 1785 // Look for n+1, and grab n. 1786 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1))) 1787 if (isa<ConstantInt>(BO->getOperand(1)) && 1788 cast<ConstantInt>(BO->getOperand(1))->isOne() && 1789 SE.getSCEV(BO->getOperand(0)) == MaxRHS) 1790 NewRHS = BO->getOperand(0); 1791 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2))) 1792 if (isa<ConstantInt>(BO->getOperand(1)) && 1793 cast<ConstantInt>(BO->getOperand(1))->isOne() && 1794 SE.getSCEV(BO->getOperand(0)) == MaxRHS) 1795 NewRHS = BO->getOperand(0); 1796 if (!NewRHS) 1797 return Cond; 1798 } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS) 1799 NewRHS = Sel->getOperand(1); 1800 else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS) 1801 NewRHS = Sel->getOperand(2); 1802 else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS)) 1803 NewRHS = SU->getValue(); 1804 else 1805 // Max doesn't match expected pattern. 1806 return Cond; 1807 1808 // Determine the new comparison opcode. It may be signed or unsigned, 1809 // and the original comparison may be either equality or inequality. 1810 if (Cond->getPredicate() == CmpInst::ICMP_EQ) 1811 Pred = CmpInst::getInversePredicate(Pred); 1812 1813 // Ok, everything looks ok to change the condition into an SLT or SGE and 1814 // delete the max calculation. 1815 ICmpInst *NewCond = 1816 new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp"); 1817 1818 // Delete the max calculation instructions. 1819 Cond->replaceAllUsesWith(NewCond); 1820 CondUse->setUser(NewCond); 1821 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0)); 1822 Cond->eraseFromParent(); 1823 Sel->eraseFromParent(); 1824 if (Cmp->use_empty()) 1825 Cmp->eraseFromParent(); 1826 return NewCond; 1827 } 1828 1829 /// OptimizeLoopTermCond - Change loop terminating condition to use the 1830 /// postinc iv when possible. 1831 void 1832 LSRInstance::OptimizeLoopTermCond() { 1833 SmallPtrSet<Instruction *, 4> PostIncs; 1834 1835 BasicBlock *LatchBlock = L->getLoopLatch(); 1836 SmallVector<BasicBlock*, 8> ExitingBlocks; 1837 L->getExitingBlocks(ExitingBlocks); 1838 1839 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 1840 BasicBlock *ExitingBlock = ExitingBlocks[i]; 1841 1842 // Get the terminating condition for the loop if possible. If we 1843 // can, we want to change it to use a post-incremented version of its 1844 // induction variable, to allow coalescing the live ranges for the IV into 1845 // one register value. 1846 1847 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 1848 if (!TermBr) 1849 continue; 1850 // FIXME: Overly conservative, termination condition could be an 'or' etc.. 1851 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition())) 1852 continue; 1853 1854 // Search IVUsesByStride to find Cond's IVUse if there is one. 1855 IVStrideUse *CondUse = 0; 1856 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition()); 1857 if (!FindIVUserForCond(Cond, CondUse)) 1858 continue; 1859 1860 // If the trip count is computed in terms of a max (due to ScalarEvolution 1861 // being unable to find a sufficient guard, for example), change the loop 1862 // comparison to use SLT or ULT instead of NE. 1863 // One consequence of doing this now is that it disrupts the count-down 1864 // optimization. That's not always a bad thing though, because in such 1865 // cases it may still be worthwhile to avoid a max. 1866 Cond = OptimizeMax(Cond, CondUse); 1867 1868 // If this exiting block dominates the latch block, it may also use 1869 // the post-inc value if it won't be shared with other uses. 1870 // Check for dominance. 1871 if (!DT.dominates(ExitingBlock, LatchBlock)) 1872 continue; 1873 1874 // Conservatively avoid trying to use the post-inc value in non-latch 1875 // exits if there may be pre-inc users in intervening blocks. 1876 if (LatchBlock != ExitingBlock) 1877 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) 1878 // Test if the use is reachable from the exiting block. This dominator 1879 // query is a conservative approximation of reachability. 1880 if (&*UI != CondUse && 1881 !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) { 1882 // Conservatively assume there may be reuse if the quotient of their 1883 // strides could be a legal scale. 1884 const SCEV *A = IU.getStride(*CondUse, L); 1885 const SCEV *B = IU.getStride(*UI, L); 1886 if (!A || !B) continue; 1887 if (SE.getTypeSizeInBits(A->getType()) != 1888 SE.getTypeSizeInBits(B->getType())) { 1889 if (SE.getTypeSizeInBits(A->getType()) > 1890 SE.getTypeSizeInBits(B->getType())) 1891 B = SE.getSignExtendExpr(B, A->getType()); 1892 else 1893 A = SE.getSignExtendExpr(A, B->getType()); 1894 } 1895 if (const SCEVConstant *D = 1896 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) { 1897 const ConstantInt *C = D->getValue(); 1898 // Stride of one or negative one can have reuse with non-addresses. 1899 if (C->isOne() || C->isAllOnesValue()) 1900 goto decline_post_inc; 1901 // Avoid weird situations. 1902 if (C->getValue().getMinSignedBits() >= 64 || 1903 C->getValue().isMinSignedValue()) 1904 goto decline_post_inc; 1905 // Without TLI, assume that any stride might be valid, and so any 1906 // use might be shared. 1907 if (!TLI) 1908 goto decline_post_inc; 1909 // Check for possible scaled-address reuse. 1910 Type *AccessTy = getAccessType(UI->getUser()); 1911 TargetLowering::AddrMode AM; 1912 AM.Scale = C->getSExtValue(); 1913 if (TLI->isLegalAddressingMode(AM, AccessTy)) 1914 goto decline_post_inc; 1915 AM.Scale = -AM.Scale; 1916 if (TLI->isLegalAddressingMode(AM, AccessTy)) 1917 goto decline_post_inc; 1918 } 1919 } 1920 1921 DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: " 1922 << *Cond << '\n'); 1923 1924 // It's possible for the setcc instruction to be anywhere in the loop, and 1925 // possible for it to have multiple users. If it is not immediately before 1926 // the exiting block branch, move it. 1927 if (&*++BasicBlock::iterator(Cond) != TermBr) { 1928 if (Cond->hasOneUse()) { 1929 Cond->moveBefore(TermBr); 1930 } else { 1931 // Clone the terminating condition and insert into the loopend. 1932 ICmpInst *OldCond = Cond; 1933 Cond = cast<ICmpInst>(Cond->clone()); 1934 Cond->setName(L->getHeader()->getName() + ".termcond"); 1935 ExitingBlock->getInstList().insert(TermBr, Cond); 1936 1937 // Clone the IVUse, as the old use still exists! 1938 CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace()); 1939 TermBr->replaceUsesOfWith(OldCond, Cond); 1940 } 1941 } 1942 1943 // If we get to here, we know that we can transform the setcc instruction to 1944 // use the post-incremented version of the IV, allowing us to coalesce the 1945 // live ranges for the IV correctly. 1946 CondUse->transformToPostInc(L); 1947 Changed = true; 1948 1949 PostIncs.insert(Cond); 1950 decline_post_inc:; 1951 } 1952 1953 // Determine an insertion point for the loop induction variable increment. It 1954 // must dominate all the post-inc comparisons we just set up, and it must 1955 // dominate the loop latch edge. 1956 IVIncInsertPos = L->getLoopLatch()->getTerminator(); 1957 for (SmallPtrSet<Instruction *, 4>::const_iterator I = PostIncs.begin(), 1958 E = PostIncs.end(); I != E; ++I) { 1959 BasicBlock *BB = 1960 DT.findNearestCommonDominator(IVIncInsertPos->getParent(), 1961 (*I)->getParent()); 1962 if (BB == (*I)->getParent()) 1963 IVIncInsertPos = *I; 1964 else if (BB != IVIncInsertPos->getParent()) 1965 IVIncInsertPos = BB->getTerminator(); 1966 } 1967 } 1968 1969 /// reconcileNewOffset - Determine if the given use can accommodate a fixup 1970 /// at the given offset and other details. If so, update the use and 1971 /// return true. 1972 bool 1973 LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, 1974 LSRUse::KindType Kind, Type *AccessTy) { 1975 int64_t NewMinOffset = LU.MinOffset; 1976 int64_t NewMaxOffset = LU.MaxOffset; 1977 Type *NewAccessTy = AccessTy; 1978 1979 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to 1980 // something conservative, however this can pessimize in the case that one of 1981 // the uses will have all its uses outside the loop, for example. 1982 if (LU.Kind != Kind) 1983 return false; 1984 // Conservatively assume HasBaseReg is true for now. 1985 if (NewOffset < LU.MinOffset) { 1986 if (!isAlwaysFoldable(LU.MaxOffset - NewOffset, 0, HasBaseReg, 1987 Kind, AccessTy, TLI)) 1988 return false; 1989 NewMinOffset = NewOffset; 1990 } else if (NewOffset > LU.MaxOffset) { 1991 if (!isAlwaysFoldable(NewOffset - LU.MinOffset, 0, HasBaseReg, 1992 Kind, AccessTy, TLI)) 1993 return false; 1994 NewMaxOffset = NewOffset; 1995 } 1996 // Check for a mismatched access type, and fall back conservatively as needed. 1997 // TODO: Be less conservative when the type is similar and can use the same 1998 // addressing modes. 1999 if (Kind == LSRUse::Address && AccessTy != LU.AccessTy) 2000 NewAccessTy = Type::getVoidTy(AccessTy->getContext()); 2001 2002 // Update the use. 2003 LU.MinOffset = NewMinOffset; 2004 LU.MaxOffset = NewMaxOffset; 2005 LU.AccessTy = NewAccessTy; 2006 if (NewOffset != LU.Offsets.back()) 2007 LU.Offsets.push_back(NewOffset); 2008 return true; 2009 } 2010 2011 /// getUse - Return an LSRUse index and an offset value for a fixup which 2012 /// needs the given expression, with the given kind and optional access type. 2013 /// Either reuse an existing use or create a new one, as needed. 2014 std::pair<size_t, int64_t> 2015 LSRInstance::getUse(const SCEV *&Expr, 2016 LSRUse::KindType Kind, Type *AccessTy) { 2017 const SCEV *Copy = Expr; 2018 int64_t Offset = ExtractImmediate(Expr, SE); 2019 2020 // Basic uses can't accept any offset, for example. 2021 if (!isAlwaysFoldable(Offset, 0, /*HasBaseReg=*/true, Kind, AccessTy, TLI)) { 2022 Expr = Copy; 2023 Offset = 0; 2024 } 2025 2026 std::pair<UseMapTy::iterator, bool> P = 2027 UseMap.insert(std::make_pair(std::make_pair(Expr, Kind), 0)); 2028 if (!P.second) { 2029 // A use already existed with this base. 2030 size_t LUIdx = P.first->second; 2031 LSRUse &LU = Uses[LUIdx]; 2032 if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy)) 2033 // Reuse this use. 2034 return std::make_pair(LUIdx, Offset); 2035 } 2036 2037 // Create a new use. 2038 size_t LUIdx = Uses.size(); 2039 P.first->second = LUIdx; 2040 Uses.push_back(LSRUse(Kind, AccessTy)); 2041 LSRUse &LU = Uses[LUIdx]; 2042 2043 // We don't need to track redundant offsets, but we don't need to go out 2044 // of our way here to avoid them. 2045 if (LU.Offsets.empty() || Offset != LU.Offsets.back()) 2046 LU.Offsets.push_back(Offset); 2047 2048 LU.MinOffset = Offset; 2049 LU.MaxOffset = Offset; 2050 return std::make_pair(LUIdx, Offset); 2051 } 2052 2053 /// DeleteUse - Delete the given use from the Uses list. 2054 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) { 2055 if (&LU != &Uses.back()) 2056 std::swap(LU, Uses.back()); 2057 Uses.pop_back(); 2058 2059 // Update RegUses. 2060 RegUses.SwapAndDropUse(LUIdx, Uses.size()); 2061 } 2062 2063 /// FindUseWithFormula - Look for a use distinct from OrigLU which is has 2064 /// a formula that has the same registers as the given formula. 2065 LSRUse * 2066 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF, 2067 const LSRUse &OrigLU) { 2068 // Search all uses for the formula. This could be more clever. 2069 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 2070 LSRUse &LU = Uses[LUIdx]; 2071 // Check whether this use is close enough to OrigLU, to see whether it's 2072 // worthwhile looking through its formulae. 2073 // Ignore ICmpZero uses because they may contain formulae generated by 2074 // GenerateICmpZeroScales, in which case adding fixup offsets may 2075 // be invalid. 2076 if (&LU != &OrigLU && 2077 LU.Kind != LSRUse::ICmpZero && 2078 LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy && 2079 LU.WidestFixupType == OrigLU.WidestFixupType && 2080 LU.HasFormulaWithSameRegs(OrigF)) { 2081 // Scan through this use's formulae. 2082 for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(), 2083 E = LU.Formulae.end(); I != E; ++I) { 2084 const Formula &F = *I; 2085 // Check to see if this formula has the same registers and symbols 2086 // as OrigF. 2087 if (F.BaseRegs == OrigF.BaseRegs && 2088 F.ScaledReg == OrigF.ScaledReg && 2089 F.AM.BaseGV == OrigF.AM.BaseGV && 2090 F.AM.Scale == OrigF.AM.Scale && 2091 F.UnfoldedOffset == OrigF.UnfoldedOffset) { 2092 if (F.AM.BaseOffs == 0) 2093 return &LU; 2094 // This is the formula where all the registers and symbols matched; 2095 // there aren't going to be any others. Since we declined it, we 2096 // can skip the rest of the formulae and procede to the next LSRUse. 2097 break; 2098 } 2099 } 2100 } 2101 } 2102 2103 // Nothing looked good. 2104 return 0; 2105 } 2106 2107 void LSRInstance::CollectInterestingTypesAndFactors() { 2108 SmallSetVector<const SCEV *, 4> Strides; 2109 2110 // Collect interesting types and strides. 2111 SmallVector<const SCEV *, 4> Worklist; 2112 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) { 2113 const SCEV *Expr = IU.getExpr(*UI); 2114 2115 // Collect interesting types. 2116 Types.insert(SE.getEffectiveSCEVType(Expr->getType())); 2117 2118 // Add strides for mentioned loops. 2119 Worklist.push_back(Expr); 2120 do { 2121 const SCEV *S = Worklist.pop_back_val(); 2122 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2123 if (EnableNested || AR->getLoop() == L) 2124 Strides.insert(AR->getStepRecurrence(SE)); 2125 Worklist.push_back(AR->getStart()); 2126 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2127 Worklist.append(Add->op_begin(), Add->op_end()); 2128 } 2129 } while (!Worklist.empty()); 2130 } 2131 2132 // Compute interesting factors from the set of interesting strides. 2133 for (SmallSetVector<const SCEV *, 4>::const_iterator 2134 I = Strides.begin(), E = Strides.end(); I != E; ++I) 2135 for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter = 2136 llvm::next(I); NewStrideIter != E; ++NewStrideIter) { 2137 const SCEV *OldStride = *I; 2138 const SCEV *NewStride = *NewStrideIter; 2139 2140 if (SE.getTypeSizeInBits(OldStride->getType()) != 2141 SE.getTypeSizeInBits(NewStride->getType())) { 2142 if (SE.getTypeSizeInBits(OldStride->getType()) > 2143 SE.getTypeSizeInBits(NewStride->getType())) 2144 NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType()); 2145 else 2146 OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType()); 2147 } 2148 if (const SCEVConstant *Factor = 2149 dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride, 2150 SE, true))) { 2151 if (Factor->getValue()->getValue().getMinSignedBits() <= 64) 2152 Factors.insert(Factor->getValue()->getValue().getSExtValue()); 2153 } else if (const SCEVConstant *Factor = 2154 dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride, 2155 NewStride, 2156 SE, true))) { 2157 if (Factor->getValue()->getValue().getMinSignedBits() <= 64) 2158 Factors.insert(Factor->getValue()->getValue().getSExtValue()); 2159 } 2160 } 2161 2162 // If all uses use the same type, don't bother looking for truncation-based 2163 // reuse. 2164 if (Types.size() == 1) 2165 Types.clear(); 2166 2167 DEBUG(print_factors_and_types(dbgs())); 2168 } 2169 2170 /// findIVOperand - Helper for CollectChains that finds an IV operand (computed 2171 /// by an AddRec in this loop) within [OI,OE) or returns OE. If IVUsers mapped 2172 /// Instructions to IVStrideUses, we could partially skip this. 2173 static User::op_iterator 2174 findIVOperand(User::op_iterator OI, User::op_iterator OE, 2175 Loop *L, ScalarEvolution &SE) { 2176 for(; OI != OE; ++OI) { 2177 if (Instruction *Oper = dyn_cast<Instruction>(*OI)) { 2178 if (!SE.isSCEVable(Oper->getType())) 2179 continue; 2180 2181 if (const SCEVAddRecExpr *AR = 2182 dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) { 2183 if (AR->getLoop() == L) 2184 break; 2185 } 2186 } 2187 } 2188 return OI; 2189 } 2190 2191 /// getWideOperand - IVChain logic must consistenctly peek base TruncInst 2192 /// operands, so wrap it in a convenient helper. 2193 static Value *getWideOperand(Value *Oper) { 2194 if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper)) 2195 return Trunc->getOperand(0); 2196 return Oper; 2197 } 2198 2199 /// isCompatibleIVType - Return true if we allow an IV chain to include both 2200 /// types. 2201 static bool isCompatibleIVType(Value *LVal, Value *RVal) { 2202 Type *LType = LVal->getType(); 2203 Type *RType = RVal->getType(); 2204 return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy()); 2205 } 2206 2207 /// Return true if the chain increment is profitable to expand into a loop 2208 /// invariant value, which may require its own register. A profitable chain 2209 /// increment will be an offset relative to the same base. We allow such offsets 2210 /// to potentially be used as chain increment as long as it's not obviously 2211 /// expensive to expand using real instructions. 2212 static const SCEV * 2213 getProfitableChainIncrement(Value *NextIV, Value *PrevIV, 2214 const IVChain &Chain, Loop *L, 2215 ScalarEvolution &SE, const TargetLowering *TLI) { 2216 const SCEV *IncExpr = SE.getMinusSCEV(SE.getSCEV(NextIV), SE.getSCEV(PrevIV)); 2217 if (!SE.isLoopInvariant(IncExpr, L)) 2218 return 0; 2219 2220 // We are not able to expand an increment unless it is loop invariant, 2221 // however, the following checks are purely for profitability. 2222 if (StressIVChain) 2223 return IncExpr; 2224 2225 // Unimplemented 2226 return 0; 2227 } 2228 2229 /// Return true if the number of registers needed for the chain is estimated to 2230 /// be less than the number required for the individual IV users. First prohibit 2231 /// any IV users that keep the IV live across increments (the Users set should 2232 /// be empty). Next count the number and type of increments in the chain. 2233 /// 2234 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't 2235 /// effectively use postinc addressing modes. Only consider it profitable it the 2236 /// increments can be computed in fewer registers when chained. 2237 /// 2238 /// TODO: Consider IVInc free if it's already used in another chains. 2239 static bool 2240 isProfitableChain(IVChain &Chain, SmallPtrSet<Instruction*, 4> &Users, 2241 ScalarEvolution &SE, const TargetLowering *TLI) { 2242 if (StressIVChain) 2243 return true; 2244 2245 // Unimplemented 2246 return false; 2247 } 2248 2249 /// ChainInstruction - Add this IV user to an existing chain or make it the head 2250 /// of a new chain. 2251 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper, 2252 SmallVectorImpl<ChainUsers> &ChainUsersVec) { 2253 // When IVs are used as types of varying widths, they are generally converted 2254 // to a wider type with some uses remaining narrow under a (free) trunc. 2255 Value *NextIV = getWideOperand(IVOper); 2256 2257 // Visit all existing chains. Check if its IVOper can be computed as a 2258 // profitable loop invariant increment from the last link in the Chain. 2259 unsigned ChainIdx = 0, NChains = IVChainVec.size(); 2260 const SCEV *LastIncExpr = 0; 2261 for (; ChainIdx < NChains; ++ChainIdx) { 2262 Value *PrevIV = getWideOperand(IVChainVec[ChainIdx].back().IVOperand); 2263 if (!isCompatibleIVType(PrevIV, NextIV)) 2264 continue; 2265 2266 // A phi nodes terminates a chain. 2267 if (isa<PHINode>(UserInst) 2268 && isa<PHINode>(IVChainVec[ChainIdx].back().UserInst)) 2269 continue; 2270 2271 if (const SCEV *IncExpr = 2272 getProfitableChainIncrement(NextIV, PrevIV, IVChainVec[ChainIdx], 2273 L, SE, TLI)) { 2274 LastIncExpr = IncExpr; 2275 break; 2276 } 2277 } 2278 // If we haven't found a chain, create a new one, unless we hit the max. Don't 2279 // bother for phi nodes, because they must be last in the chain. 2280 if (ChainIdx == NChains) { 2281 if (isa<PHINode>(UserInst)) 2282 return; 2283 if (NChains >= MaxChains && !StressIVChain) { 2284 DEBUG(dbgs() << "IV Chain Limit\n"); 2285 return; 2286 } 2287 ++NChains; 2288 IVChainVec.resize(NChains); 2289 ChainUsersVec.resize(NChains); 2290 LastIncExpr = SE.getSCEV(NextIV); 2291 assert(isa<SCEVAddRecExpr>(LastIncExpr) && "expect recurrence at IV user"); 2292 DEBUG(dbgs() << "IV Head: (" << *UserInst << ") IV=" << *LastIncExpr 2293 << "\n"); 2294 } 2295 else 2296 DEBUG(dbgs() << "IV Inc: (" << *UserInst << ") IV+" << *LastIncExpr 2297 << "\n"); 2298 2299 // Add this IV user to the end of the chain. 2300 IVChainVec[ChainIdx].push_back(IVInc(UserInst, IVOper, LastIncExpr)); 2301 2302 SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers; 2303 // This chain's NearUsers become FarUsers. 2304 if (!LastIncExpr->isZero()) { 2305 ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(), 2306 NearUsers.end()); 2307 NearUsers.clear(); 2308 } 2309 2310 // All other uses of IVOperand become near uses of the chain. 2311 // We currently ignore intermediate values within SCEV expressions, assuming 2312 // they will eventually be used be the current chain, or can be computed 2313 // from one of the chain increments. To be more precise we could 2314 // transitively follow its user and only add leaf IV users to the set. 2315 for (Value::use_iterator UseIter = IVOper->use_begin(), 2316 UseEnd = IVOper->use_end(); UseIter != UseEnd; ++UseIter) { 2317 Instruction *OtherUse = dyn_cast<Instruction>(*UseIter); 2318 if (SE.isSCEVable(OtherUse->getType()) 2319 && !isa<SCEVUnknown>(SE.getSCEV(OtherUse)) 2320 && IU.isIVUserOrOperand(OtherUse)) { 2321 continue; 2322 } 2323 if (OtherUse && OtherUse != UserInst) 2324 NearUsers.insert(OtherUse); 2325 } 2326 2327 // Since this user is part of the chain, it's no longer considered a use 2328 // of the chain. 2329 ChainUsersVec[ChainIdx].FarUsers.erase(UserInst); 2330 } 2331 2332 /// CollectChains - Populate the vector of Chains. 2333 /// 2334 /// This decreases ILP at the architecture level. Targets with ample registers, 2335 /// multiple memory ports, and no register renaming probably don't want 2336 /// this. However, such targets should probably disable LSR altogether. 2337 /// 2338 /// The job of LSR is to make a reasonable choice of induction variables across 2339 /// the loop. Subsequent passes can easily "unchain" computation exposing more 2340 /// ILP *within the loop* if the target wants it. 2341 /// 2342 /// Finding the best IV chain is potentially a scheduling problem. Since LSR 2343 /// will not reorder memory operations, it will recognize this as a chain, but 2344 /// will generate redundant IV increments. Ideally this would be corrected later 2345 /// by a smart scheduler: 2346 /// = A[i] 2347 /// = A[i+x] 2348 /// A[i] = 2349 /// A[i+x] = 2350 /// 2351 /// TODO: Walk the entire domtree within this loop, not just the path to the 2352 /// loop latch. This will discover chains on side paths, but requires 2353 /// maintaining multiple copies of the Chains state. 2354 void LSRInstance::CollectChains() { 2355 SmallVector<ChainUsers, 8> ChainUsersVec; 2356 2357 SmallVector<BasicBlock *,8> LatchPath; 2358 BasicBlock *LoopHeader = L->getHeader(); 2359 for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch()); 2360 Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) { 2361 LatchPath.push_back(Rung->getBlock()); 2362 } 2363 LatchPath.push_back(LoopHeader); 2364 2365 // Walk the instruction stream from the loop header to the loop latch. 2366 for (SmallVectorImpl<BasicBlock *>::reverse_iterator 2367 BBIter = LatchPath.rbegin(), BBEnd = LatchPath.rend(); 2368 BBIter != BBEnd; ++BBIter) { 2369 for (BasicBlock::iterator I = (*BBIter)->begin(), E = (*BBIter)->end(); 2370 I != E; ++I) { 2371 // Skip instructions that weren't seen by IVUsers analysis. 2372 if (isa<PHINode>(I) || !IU.isIVUserOrOperand(I)) 2373 continue; 2374 2375 // Ignore users that are part of a SCEV expression. This way we only 2376 // consider leaf IV Users. This effectively rediscovers a portion of 2377 // IVUsers analysis but in program order this time. 2378 if (SE.isSCEVable(I->getType()) && !isa<SCEVUnknown>(SE.getSCEV(I))) 2379 continue; 2380 2381 // Remove this instruction from any NearUsers set it may be in. 2382 for (unsigned ChainIdx = 0, NChains = IVChainVec.size(); 2383 ChainIdx < NChains; ++ChainIdx) { 2384 ChainUsersVec[ChainIdx].NearUsers.erase(I); 2385 } 2386 // Search for operands that can be chained. 2387 SmallPtrSet<Instruction*, 4> UniqueOperands; 2388 User::op_iterator IVOpEnd = I->op_end(); 2389 User::op_iterator IVOpIter = findIVOperand(I->op_begin(), IVOpEnd, L, SE); 2390 while (IVOpIter != IVOpEnd) { 2391 Instruction *IVOpInst = cast<Instruction>(*IVOpIter); 2392 if (UniqueOperands.insert(IVOpInst)) 2393 ChainInstruction(I, IVOpInst, ChainUsersVec); 2394 IVOpIter = findIVOperand(llvm::next(IVOpIter), IVOpEnd, L, SE); 2395 } 2396 } // Continue walking down the instructions. 2397 } // Continue walking down the domtree. 2398 // Visit phi backedges to determine if the chain can generate the IV postinc. 2399 for (BasicBlock::iterator I = L->getHeader()->begin(); 2400 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 2401 if (!SE.isSCEVable(PN->getType())) 2402 continue; 2403 2404 Instruction *IncV = 2405 dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch())); 2406 if (IncV) 2407 ChainInstruction(PN, IncV, ChainUsersVec); 2408 } 2409 // Remove any unprofitable chains. 2410 unsigned ChainIdx = 0; 2411 for (unsigned UsersIdx = 0, NChains = IVChainVec.size(); 2412 UsersIdx < NChains; ++UsersIdx) { 2413 if (!isProfitableChain(IVChainVec[UsersIdx], 2414 ChainUsersVec[UsersIdx].FarUsers, SE, TLI)) 2415 continue; 2416 // Preserve the chain at UsesIdx. 2417 if (ChainIdx != UsersIdx) 2418 IVChainVec[ChainIdx] = IVChainVec[UsersIdx]; 2419 FinalizeChain(IVChainVec[ChainIdx]); 2420 ++ChainIdx; 2421 } 2422 IVChainVec.resize(ChainIdx); 2423 } 2424 2425 void LSRInstance::FinalizeChain(IVChain &Chain) { 2426 assert(!Chain.empty() && "empty IV chains are not allowed"); 2427 DEBUG(dbgs() << "Final Chain: " << *Chain[0].UserInst << "\n"); 2428 2429 for (IVChain::const_iterator I = llvm::next(Chain.begin()), E = Chain.end(); 2430 I != E; ++I) { 2431 DEBUG(dbgs() << " Inc: " << *I->UserInst << "\n"); 2432 User::op_iterator UseI = 2433 std::find(I->UserInst->op_begin(), I->UserInst->op_end(), I->IVOperand); 2434 assert(UseI != I->UserInst->op_end() && "cannot find IV operand"); 2435 IVIncSet.insert(UseI); 2436 } 2437 } 2438 2439 /// Return true if the IVInc can be folded into an addressing mode. 2440 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst, 2441 Value *Operand, const TargetLowering *TLI) { 2442 const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr); 2443 if (!IncConst || !isAddressUse(UserInst, Operand)) 2444 return false; 2445 2446 if (IncConst->getValue()->getValue().getMinSignedBits() > 64) 2447 return false; 2448 2449 int64_t IncOffset = IncConst->getValue()->getSExtValue(); 2450 if (!isAlwaysFoldable(IncOffset, /*BaseGV=*/0, /*HaseBaseReg=*/false, 2451 LSRUse::Address, getAccessType(UserInst), TLI)) 2452 return false; 2453 2454 return true; 2455 } 2456 2457 /// GenerateIVChains - Generate an add or subtract for each IVInc in a chain to 2458 /// materialize the IV user's operand from the previous IV user's operand. 2459 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 2460 SmallVectorImpl<WeakVH> &DeadInsts) { 2461 // Find the new IVOperand for the head of the chain. It may have been replaced 2462 // by LSR. 2463 const IVInc &Head = Chain[0]; 2464 User::op_iterator IVOpEnd = Head.UserInst->op_end(); 2465 User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(), 2466 IVOpEnd, L, SE); 2467 Value *IVSrc = 0; 2468 while (IVOpIter != IVOpEnd) { 2469 IVSrc = getWideOperand(*IVOpIter); 2470 2471 // If this operand computes the expression that the chain needs, we may use 2472 // it. (Check this after setting IVSrc which is used below.) 2473 // 2474 // Note that if Head.IncExpr is wider than IVSrc, then this phi is too 2475 // narrow for the chain, so we can no longer use it. We do allow using a 2476 // wider phi, assuming the LSR checked for free truncation. In that case we 2477 // should already have a truncate on this operand such that 2478 // getSCEV(IVSrc) == IncExpr. 2479 if (SE.getSCEV(*IVOpIter) == Head.IncExpr 2480 || SE.getSCEV(IVSrc) == Head.IncExpr) { 2481 break; 2482 } 2483 IVOpIter = findIVOperand(llvm::next(IVOpIter), IVOpEnd, L, SE); 2484 } 2485 if (IVOpIter == IVOpEnd) { 2486 // Gracefully give up on this chain. 2487 DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n"); 2488 return; 2489 } 2490 2491 DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n"); 2492 Type *IVTy = IVSrc->getType(); 2493 Type *IntTy = SE.getEffectiveSCEVType(IVTy); 2494 const SCEV *LeftOverExpr = 0; 2495 for (IVChain::const_iterator IncI = llvm::next(Chain.begin()), 2496 IncE = Chain.end(); IncI != IncE; ++IncI) { 2497 2498 Instruction *InsertPt = IncI->UserInst; 2499 if (isa<PHINode>(InsertPt)) 2500 InsertPt = L->getLoopLatch()->getTerminator(); 2501 2502 // IVOper will replace the current IV User's operand. IVSrc is the IV 2503 // value currently held in a register. 2504 Value *IVOper = IVSrc; 2505 if (!IncI->IncExpr->isZero()) { 2506 // IncExpr was the result of subtraction of two narrow values, so must 2507 // be signed. 2508 const SCEV *IncExpr = SE.getNoopOrSignExtend(IncI->IncExpr, IntTy); 2509 LeftOverExpr = LeftOverExpr ? 2510 SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr; 2511 } 2512 if (LeftOverExpr && !LeftOverExpr->isZero()) { 2513 // Expand the IV increment. 2514 Rewriter.clearPostInc(); 2515 Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt); 2516 const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc), 2517 SE.getUnknown(IncV)); 2518 IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt); 2519 2520 // If an IV increment can't be folded, use it as the next IV value. 2521 if (!canFoldIVIncExpr(LeftOverExpr, IncI->UserInst, IncI->IVOperand, 2522 TLI)) { 2523 assert(IVTy == IVOper->getType() && "inconsistent IV increment type"); 2524 IVSrc = IVOper; 2525 LeftOverExpr = 0; 2526 } 2527 } 2528 Type *OperTy = IncI->IVOperand->getType(); 2529 if (IVTy != OperTy) { 2530 assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) && 2531 "cannot extend a chained IV"); 2532 IRBuilder<> Builder(InsertPt); 2533 IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain"); 2534 } 2535 IncI->UserInst->replaceUsesOfWith(IncI->IVOperand, IVOper); 2536 DeadInsts.push_back(IncI->IVOperand); 2537 } 2538 // If LSR created a new, wider phi, we may also replace its postinc. We only 2539 // do this if we also found a wide value for the head of the chain. 2540 if (isa<PHINode>(Chain.back().UserInst)) { 2541 for (BasicBlock::iterator I = L->getHeader()->begin(); 2542 PHINode *Phi = dyn_cast<PHINode>(I); ++I) { 2543 if (!isCompatibleIVType(Phi, IVSrc)) 2544 continue; 2545 Instruction *PostIncV = dyn_cast<Instruction>( 2546 Phi->getIncomingValueForBlock(L->getLoopLatch())); 2547 if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc))) 2548 continue; 2549 Value *IVOper = IVSrc; 2550 Type *PostIncTy = PostIncV->getType(); 2551 if (IVTy != PostIncTy) { 2552 assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types"); 2553 IRBuilder<> Builder(L->getLoopLatch()->getTerminator()); 2554 Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc()); 2555 IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain"); 2556 } 2557 Phi->replaceUsesOfWith(PostIncV, IVOper); 2558 DeadInsts.push_back(PostIncV); 2559 } 2560 } 2561 } 2562 2563 void LSRInstance::CollectFixupsAndInitialFormulae() { 2564 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) { 2565 Instruction *UserInst = UI->getUser(); 2566 // Skip IV users that are part of profitable IV Chains. 2567 User::op_iterator UseI = std::find(UserInst->op_begin(), UserInst->op_end(), 2568 UI->getOperandValToReplace()); 2569 assert(UseI != UserInst->op_end() && "cannot find IV operand"); 2570 if (IVIncSet.count(UseI)) 2571 continue; 2572 2573 // Record the uses. 2574 LSRFixup &LF = getNewFixup(); 2575 LF.UserInst = UserInst; 2576 LF.OperandValToReplace = UI->getOperandValToReplace(); 2577 LF.PostIncLoops = UI->getPostIncLoops(); 2578 2579 LSRUse::KindType Kind = LSRUse::Basic; 2580 Type *AccessTy = 0; 2581 if (isAddressUse(LF.UserInst, LF.OperandValToReplace)) { 2582 Kind = LSRUse::Address; 2583 AccessTy = getAccessType(LF.UserInst); 2584 } 2585 2586 const SCEV *S = IU.getExpr(*UI); 2587 2588 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as 2589 // (N - i == 0), and this allows (N - i) to be the expression that we work 2590 // with rather than just N or i, so we can consider the register 2591 // requirements for both N and i at the same time. Limiting this code to 2592 // equality icmps is not a problem because all interesting loops use 2593 // equality icmps, thanks to IndVarSimplify. 2594 if (ICmpInst *CI = dyn_cast<ICmpInst>(LF.UserInst)) 2595 if (CI->isEquality()) { 2596 // Swap the operands if needed to put the OperandValToReplace on the 2597 // left, for consistency. 2598 Value *NV = CI->getOperand(1); 2599 if (NV == LF.OperandValToReplace) { 2600 CI->setOperand(1, CI->getOperand(0)); 2601 CI->setOperand(0, NV); 2602 NV = CI->getOperand(1); 2603 Changed = true; 2604 } 2605 2606 // x == y --> x - y == 0 2607 const SCEV *N = SE.getSCEV(NV); 2608 if (SE.isLoopInvariant(N, L)) { 2609 // S is normalized, so normalize N before folding it into S 2610 // to keep the result normalized. 2611 N = TransformForPostIncUse(Normalize, N, CI, 0, 2612 LF.PostIncLoops, SE, DT); 2613 Kind = LSRUse::ICmpZero; 2614 S = SE.getMinusSCEV(N, S); 2615 } 2616 2617 // -1 and the negations of all interesting strides (except the negation 2618 // of -1) are now also interesting. 2619 for (size_t i = 0, e = Factors.size(); i != e; ++i) 2620 if (Factors[i] != -1) 2621 Factors.insert(-(uint64_t)Factors[i]); 2622 Factors.insert(-1); 2623 } 2624 2625 // Set up the initial formula for this use. 2626 std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy); 2627 LF.LUIdx = P.first; 2628 LF.Offset = P.second; 2629 LSRUse &LU = Uses[LF.LUIdx]; 2630 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 2631 if (!LU.WidestFixupType || 2632 SE.getTypeSizeInBits(LU.WidestFixupType) < 2633 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 2634 LU.WidestFixupType = LF.OperandValToReplace->getType(); 2635 2636 // If this is the first use of this LSRUse, give it a formula. 2637 if (LU.Formulae.empty()) { 2638 InsertInitialFormula(S, LU, LF.LUIdx); 2639 CountRegisters(LU.Formulae.back(), LF.LUIdx); 2640 } 2641 } 2642 2643 DEBUG(print_fixups(dbgs())); 2644 } 2645 2646 /// InsertInitialFormula - Insert a formula for the given expression into 2647 /// the given use, separating out loop-variant portions from loop-invariant 2648 /// and loop-computable portions. 2649 void 2650 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) { 2651 Formula F; 2652 F.InitialMatch(S, L, SE); 2653 bool Inserted = InsertFormula(LU, LUIdx, F); 2654 assert(Inserted && "Initial formula already exists!"); (void)Inserted; 2655 } 2656 2657 /// InsertSupplementalFormula - Insert a simple single-register formula for 2658 /// the given expression into the given use. 2659 void 2660 LSRInstance::InsertSupplementalFormula(const SCEV *S, 2661 LSRUse &LU, size_t LUIdx) { 2662 Formula F; 2663 F.BaseRegs.push_back(S); 2664 F.AM.HasBaseReg = true; 2665 bool Inserted = InsertFormula(LU, LUIdx, F); 2666 assert(Inserted && "Supplemental formula already exists!"); (void)Inserted; 2667 } 2668 2669 /// CountRegisters - Note which registers are used by the given formula, 2670 /// updating RegUses. 2671 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) { 2672 if (F.ScaledReg) 2673 RegUses.CountRegister(F.ScaledReg, LUIdx); 2674 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(), 2675 E = F.BaseRegs.end(); I != E; ++I) 2676 RegUses.CountRegister(*I, LUIdx); 2677 } 2678 2679 /// InsertFormula - If the given formula has not yet been inserted, add it to 2680 /// the list, and return true. Return false otherwise. 2681 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) { 2682 if (!LU.InsertFormula(F)) 2683 return false; 2684 2685 CountRegisters(F, LUIdx); 2686 return true; 2687 } 2688 2689 /// CollectLoopInvariantFixupsAndFormulae - Check for other uses of 2690 /// loop-invariant values which we're tracking. These other uses will pin these 2691 /// values in registers, making them less profitable for elimination. 2692 /// TODO: This currently misses non-constant addrec step registers. 2693 /// TODO: Should this give more weight to users inside the loop? 2694 void 2695 LSRInstance::CollectLoopInvariantFixupsAndFormulae() { 2696 SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end()); 2697 SmallPtrSet<const SCEV *, 8> Inserted; 2698 2699 while (!Worklist.empty()) { 2700 const SCEV *S = Worklist.pop_back_val(); 2701 2702 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) 2703 Worklist.append(N->op_begin(), N->op_end()); 2704 else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) 2705 Worklist.push_back(C->getOperand()); 2706 else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 2707 Worklist.push_back(D->getLHS()); 2708 Worklist.push_back(D->getRHS()); 2709 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 2710 if (!Inserted.insert(U)) continue; 2711 const Value *V = U->getValue(); 2712 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 2713 // Look for instructions defined outside the loop. 2714 if (L->contains(Inst)) continue; 2715 } else if (isa<UndefValue>(V)) 2716 // Undef doesn't have a live range, so it doesn't matter. 2717 continue; 2718 for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end(); 2719 UI != UE; ++UI) { 2720 const Instruction *UserInst = dyn_cast<Instruction>(*UI); 2721 // Ignore non-instructions. 2722 if (!UserInst) 2723 continue; 2724 // Ignore instructions in other functions (as can happen with 2725 // Constants). 2726 if (UserInst->getParent()->getParent() != L->getHeader()->getParent()) 2727 continue; 2728 // Ignore instructions not dominated by the loop. 2729 const BasicBlock *UseBB = !isa<PHINode>(UserInst) ? 2730 UserInst->getParent() : 2731 cast<PHINode>(UserInst)->getIncomingBlock( 2732 PHINode::getIncomingValueNumForOperand(UI.getOperandNo())); 2733 if (!DT.dominates(L->getHeader(), UseBB)) 2734 continue; 2735 // Ignore uses which are part of other SCEV expressions, to avoid 2736 // analyzing them multiple times. 2737 if (SE.isSCEVable(UserInst->getType())) { 2738 const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst)); 2739 // If the user is a no-op, look through to its uses. 2740 if (!isa<SCEVUnknown>(UserS)) 2741 continue; 2742 if (UserS == U) { 2743 Worklist.push_back( 2744 SE.getUnknown(const_cast<Instruction *>(UserInst))); 2745 continue; 2746 } 2747 } 2748 // Ignore icmp instructions which are already being analyzed. 2749 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) { 2750 unsigned OtherIdx = !UI.getOperandNo(); 2751 Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx)); 2752 if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L)) 2753 continue; 2754 } 2755 2756 LSRFixup &LF = getNewFixup(); 2757 LF.UserInst = const_cast<Instruction *>(UserInst); 2758 LF.OperandValToReplace = UI.getUse(); 2759 std::pair<size_t, int64_t> P = getUse(S, LSRUse::Basic, 0); 2760 LF.LUIdx = P.first; 2761 LF.Offset = P.second; 2762 LSRUse &LU = Uses[LF.LUIdx]; 2763 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 2764 if (!LU.WidestFixupType || 2765 SE.getTypeSizeInBits(LU.WidestFixupType) < 2766 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 2767 LU.WidestFixupType = LF.OperandValToReplace->getType(); 2768 InsertSupplementalFormula(U, LU, LF.LUIdx); 2769 CountRegisters(LU.Formulae.back(), Uses.size() - 1); 2770 break; 2771 } 2772 } 2773 } 2774 } 2775 2776 /// CollectSubexprs - Split S into subexpressions which can be pulled out into 2777 /// separate registers. If C is non-null, multiply each subexpression by C. 2778 static void CollectSubexprs(const SCEV *S, const SCEVConstant *C, 2779 SmallVectorImpl<const SCEV *> &Ops, 2780 const Loop *L, 2781 ScalarEvolution &SE) { 2782 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2783 // Break out add operands. 2784 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); 2785 I != E; ++I) 2786 CollectSubexprs(*I, C, Ops, L, SE); 2787 return; 2788 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2789 // Split a non-zero base out of an addrec. 2790 if (!AR->getStart()->isZero()) { 2791 CollectSubexprs(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0), 2792 AR->getStepRecurrence(SE), 2793 AR->getLoop(), 2794 //FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 2795 SCEV::FlagAnyWrap), 2796 C, Ops, L, SE); 2797 CollectSubexprs(AR->getStart(), C, Ops, L, SE); 2798 return; 2799 } 2800 } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 2801 // Break (C * (a + b + c)) into C*a + C*b + C*c. 2802 if (Mul->getNumOperands() == 2) 2803 if (const SCEVConstant *Op0 = 2804 dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 2805 CollectSubexprs(Mul->getOperand(1), 2806 C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0, 2807 Ops, L, SE); 2808 return; 2809 } 2810 } 2811 2812 // Otherwise use the value itself, optionally with a scale applied. 2813 Ops.push_back(C ? SE.getMulExpr(C, S) : S); 2814 } 2815 2816 /// GenerateReassociations - Split out subexpressions from adds and the bases of 2817 /// addrecs. 2818 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx, 2819 Formula Base, 2820 unsigned Depth) { 2821 // Arbitrarily cap recursion to protect compile time. 2822 if (Depth >= 3) return; 2823 2824 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { 2825 const SCEV *BaseReg = Base.BaseRegs[i]; 2826 2827 SmallVector<const SCEV *, 8> AddOps; 2828 CollectSubexprs(BaseReg, 0, AddOps, L, SE); 2829 2830 if (AddOps.size() == 1) continue; 2831 2832 for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(), 2833 JE = AddOps.end(); J != JE; ++J) { 2834 2835 // Loop-variant "unknown" values are uninteresting; we won't be able to 2836 // do anything meaningful with them. 2837 if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L)) 2838 continue; 2839 2840 // Don't pull a constant into a register if the constant could be folded 2841 // into an immediate field. 2842 if (isAlwaysFoldable(*J, LU.MinOffset, LU.MaxOffset, 2843 Base.getNumRegs() > 1, 2844 LU.Kind, LU.AccessTy, TLI, SE)) 2845 continue; 2846 2847 // Collect all operands except *J. 2848 SmallVector<const SCEV *, 8> InnerAddOps 2849 (((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J); 2850 InnerAddOps.append 2851 (llvm::next(J), ((const SmallVector<const SCEV *, 8> &)AddOps).end()); 2852 2853 // Don't leave just a constant behind in a register if the constant could 2854 // be folded into an immediate field. 2855 if (InnerAddOps.size() == 1 && 2856 isAlwaysFoldable(InnerAddOps[0], LU.MinOffset, LU.MaxOffset, 2857 Base.getNumRegs() > 1, 2858 LU.Kind, LU.AccessTy, TLI, SE)) 2859 continue; 2860 2861 const SCEV *InnerSum = SE.getAddExpr(InnerAddOps); 2862 if (InnerSum->isZero()) 2863 continue; 2864 Formula F = Base; 2865 2866 // Add the remaining pieces of the add back into the new formula. 2867 const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum); 2868 if (TLI && InnerSumSC && 2869 SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 && 2870 TLI->isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 2871 InnerSumSC->getValue()->getZExtValue())) { 2872 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset + 2873 InnerSumSC->getValue()->getZExtValue(); 2874 F.BaseRegs.erase(F.BaseRegs.begin() + i); 2875 } else 2876 F.BaseRegs[i] = InnerSum; 2877 2878 // Add J as its own register, or an unfolded immediate. 2879 const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J); 2880 if (TLI && SC && SE.getTypeSizeInBits(SC->getType()) <= 64 && 2881 TLI->isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 2882 SC->getValue()->getZExtValue())) 2883 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset + 2884 SC->getValue()->getZExtValue(); 2885 else 2886 F.BaseRegs.push_back(*J); 2887 2888 if (InsertFormula(LU, LUIdx, F)) 2889 // If that formula hadn't been seen before, recurse to find more like 2890 // it. 2891 GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth+1); 2892 } 2893 } 2894 } 2895 2896 /// GenerateCombinations - Generate a formula consisting of all of the 2897 /// loop-dominating registers added into a single register. 2898 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx, 2899 Formula Base) { 2900 // This method is only interesting on a plurality of registers. 2901 if (Base.BaseRegs.size() <= 1) return; 2902 2903 Formula F = Base; 2904 F.BaseRegs.clear(); 2905 SmallVector<const SCEV *, 4> Ops; 2906 for (SmallVectorImpl<const SCEV *>::const_iterator 2907 I = Base.BaseRegs.begin(), E = Base.BaseRegs.end(); I != E; ++I) { 2908 const SCEV *BaseReg = *I; 2909 if (SE.properlyDominates(BaseReg, L->getHeader()) && 2910 !SE.hasComputableLoopEvolution(BaseReg, L)) 2911 Ops.push_back(BaseReg); 2912 else 2913 F.BaseRegs.push_back(BaseReg); 2914 } 2915 if (Ops.size() > 1) { 2916 const SCEV *Sum = SE.getAddExpr(Ops); 2917 // TODO: If Sum is zero, it probably means ScalarEvolution missed an 2918 // opportunity to fold something. For now, just ignore such cases 2919 // rather than proceed with zero in a register. 2920 if (!Sum->isZero()) { 2921 F.BaseRegs.push_back(Sum); 2922 (void)InsertFormula(LU, LUIdx, F); 2923 } 2924 } 2925 } 2926 2927 /// GenerateSymbolicOffsets - Generate reuse formulae using symbolic offsets. 2928 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, 2929 Formula Base) { 2930 // We can't add a symbolic offset if the address already contains one. 2931 if (Base.AM.BaseGV) return; 2932 2933 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { 2934 const SCEV *G = Base.BaseRegs[i]; 2935 GlobalValue *GV = ExtractSymbol(G, SE); 2936 if (G->isZero() || !GV) 2937 continue; 2938 Formula F = Base; 2939 F.AM.BaseGV = GV; 2940 if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset, 2941 LU.Kind, LU.AccessTy, TLI)) 2942 continue; 2943 F.BaseRegs[i] = G; 2944 (void)InsertFormula(LU, LUIdx, F); 2945 } 2946 } 2947 2948 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets. 2949 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, 2950 Formula Base) { 2951 // TODO: For now, just add the min and max offset, because it usually isn't 2952 // worthwhile looking at everything inbetween. 2953 SmallVector<int64_t, 2> Worklist; 2954 Worklist.push_back(LU.MinOffset); 2955 if (LU.MaxOffset != LU.MinOffset) 2956 Worklist.push_back(LU.MaxOffset); 2957 2958 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { 2959 const SCEV *G = Base.BaseRegs[i]; 2960 2961 for (SmallVectorImpl<int64_t>::const_iterator I = Worklist.begin(), 2962 E = Worklist.end(); I != E; ++I) { 2963 Formula F = Base; 2964 F.AM.BaseOffs = (uint64_t)Base.AM.BaseOffs - *I; 2965 if (isLegalUse(F.AM, LU.MinOffset - *I, LU.MaxOffset - *I, 2966 LU.Kind, LU.AccessTy, TLI)) { 2967 // Add the offset to the base register. 2968 const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), *I), G); 2969 // If it cancelled out, drop the base register, otherwise update it. 2970 if (NewG->isZero()) { 2971 std::swap(F.BaseRegs[i], F.BaseRegs.back()); 2972 F.BaseRegs.pop_back(); 2973 } else 2974 F.BaseRegs[i] = NewG; 2975 2976 (void)InsertFormula(LU, LUIdx, F); 2977 } 2978 } 2979 2980 int64_t Imm = ExtractImmediate(G, SE); 2981 if (G->isZero() || Imm == 0) 2982 continue; 2983 Formula F = Base; 2984 F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Imm; 2985 if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset, 2986 LU.Kind, LU.AccessTy, TLI)) 2987 continue; 2988 F.BaseRegs[i] = G; 2989 (void)InsertFormula(LU, LUIdx, F); 2990 } 2991 } 2992 2993 /// GenerateICmpZeroScales - For ICmpZero, check to see if we can scale up 2994 /// the comparison. For example, x == y -> x*c == y*c. 2995 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, 2996 Formula Base) { 2997 if (LU.Kind != LSRUse::ICmpZero) return; 2998 2999 // Determine the integer type for the base formula. 3000 Type *IntTy = Base.getType(); 3001 if (!IntTy) return; 3002 if (SE.getTypeSizeInBits(IntTy) > 64) return; 3003 3004 // Don't do this if there is more than one offset. 3005 if (LU.MinOffset != LU.MaxOffset) return; 3006 3007 assert(!Base.AM.BaseGV && "ICmpZero use is not legal!"); 3008 3009 // Check each interesting stride. 3010 for (SmallSetVector<int64_t, 8>::const_iterator 3011 I = Factors.begin(), E = Factors.end(); I != E; ++I) { 3012 int64_t Factor = *I; 3013 3014 // Check that the multiplication doesn't overflow. 3015 if (Base.AM.BaseOffs == INT64_MIN && Factor == -1) 3016 continue; 3017 int64_t NewBaseOffs = (uint64_t)Base.AM.BaseOffs * Factor; 3018 if (NewBaseOffs / Factor != Base.AM.BaseOffs) 3019 continue; 3020 3021 // Check that multiplying with the use offset doesn't overflow. 3022 int64_t Offset = LU.MinOffset; 3023 if (Offset == INT64_MIN && Factor == -1) 3024 continue; 3025 Offset = (uint64_t)Offset * Factor; 3026 if (Offset / Factor != LU.MinOffset) 3027 continue; 3028 3029 Formula F = Base; 3030 F.AM.BaseOffs = NewBaseOffs; 3031 3032 // Check that this scale is legal. 3033 if (!isLegalUse(F.AM, Offset, Offset, LU.Kind, LU.AccessTy, TLI)) 3034 continue; 3035 3036 // Compensate for the use having MinOffset built into it. 3037 F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Offset - LU.MinOffset; 3038 3039 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3040 3041 // Check that multiplying with each base register doesn't overflow. 3042 for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) { 3043 F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS); 3044 if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i]) 3045 goto next; 3046 } 3047 3048 // Check that multiplying with the scaled register doesn't overflow. 3049 if (F.ScaledReg) { 3050 F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS); 3051 if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg) 3052 continue; 3053 } 3054 3055 // Check that multiplying with the unfolded offset doesn't overflow. 3056 if (F.UnfoldedOffset != 0) { 3057 if (F.UnfoldedOffset == INT64_MIN && Factor == -1) 3058 continue; 3059 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor; 3060 if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset) 3061 continue; 3062 } 3063 3064 // If we make it here and it's legal, add it. 3065 (void)InsertFormula(LU, LUIdx, F); 3066 next:; 3067 } 3068 } 3069 3070 /// GenerateScales - Generate stride factor reuse formulae by making use of 3071 /// scaled-offset address modes, for example. 3072 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) { 3073 // Determine the integer type for the base formula. 3074 Type *IntTy = Base.getType(); 3075 if (!IntTy) return; 3076 3077 // If this Formula already has a scaled register, we can't add another one. 3078 if (Base.AM.Scale != 0) return; 3079 3080 // Check each interesting stride. 3081 for (SmallSetVector<int64_t, 8>::const_iterator 3082 I = Factors.begin(), E = Factors.end(); I != E; ++I) { 3083 int64_t Factor = *I; 3084 3085 Base.AM.Scale = Factor; 3086 Base.AM.HasBaseReg = Base.BaseRegs.size() > 1; 3087 // Check whether this scale is going to be legal. 3088 if (!isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset, 3089 LU.Kind, LU.AccessTy, TLI)) { 3090 // As a special-case, handle special out-of-loop Basic users specially. 3091 // TODO: Reconsider this special case. 3092 if (LU.Kind == LSRUse::Basic && 3093 isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset, 3094 LSRUse::Special, LU.AccessTy, TLI) && 3095 LU.AllFixupsOutsideLoop) 3096 LU.Kind = LSRUse::Special; 3097 else 3098 continue; 3099 } 3100 // For an ICmpZero, negating a solitary base register won't lead to 3101 // new solutions. 3102 if (LU.Kind == LSRUse::ICmpZero && 3103 !Base.AM.HasBaseReg && Base.AM.BaseOffs == 0 && !Base.AM.BaseGV) 3104 continue; 3105 // For each addrec base reg, apply the scale, if possible. 3106 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3107 if (const SCEVAddRecExpr *AR = 3108 dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i])) { 3109 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3110 if (FactorS->isZero()) 3111 continue; 3112 // Divide out the factor, ignoring high bits, since we'll be 3113 // scaling the value back up in the end. 3114 if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) { 3115 // TODO: This could be optimized to avoid all the copying. 3116 Formula F = Base; 3117 F.ScaledReg = Quotient; 3118 F.DeleteBaseReg(F.BaseRegs[i]); 3119 (void)InsertFormula(LU, LUIdx, F); 3120 } 3121 } 3122 } 3123 } 3124 3125 /// GenerateTruncates - Generate reuse formulae from different IV types. 3126 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) { 3127 // This requires TargetLowering to tell us which truncates are free. 3128 if (!TLI) return; 3129 3130 // Don't bother truncating symbolic values. 3131 if (Base.AM.BaseGV) return; 3132 3133 // Determine the integer type for the base formula. 3134 Type *DstTy = Base.getType(); 3135 if (!DstTy) return; 3136 DstTy = SE.getEffectiveSCEVType(DstTy); 3137 3138 for (SmallSetVector<Type *, 4>::const_iterator 3139 I = Types.begin(), E = Types.end(); I != E; ++I) { 3140 Type *SrcTy = *I; 3141 if (SrcTy != DstTy && TLI->isTruncateFree(SrcTy, DstTy)) { 3142 Formula F = Base; 3143 3144 if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, *I); 3145 for (SmallVectorImpl<const SCEV *>::iterator J = F.BaseRegs.begin(), 3146 JE = F.BaseRegs.end(); J != JE; ++J) 3147 *J = SE.getAnyExtendExpr(*J, SrcTy); 3148 3149 // TODO: This assumes we've done basic processing on all uses and 3150 // have an idea what the register usage is. 3151 if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses)) 3152 continue; 3153 3154 (void)InsertFormula(LU, LUIdx, F); 3155 } 3156 } 3157 } 3158 3159 namespace { 3160 3161 /// WorkItem - Helper class for GenerateCrossUseConstantOffsets. It's used to 3162 /// defer modifications so that the search phase doesn't have to worry about 3163 /// the data structures moving underneath it. 3164 struct WorkItem { 3165 size_t LUIdx; 3166 int64_t Imm; 3167 const SCEV *OrigReg; 3168 3169 WorkItem(size_t LI, int64_t I, const SCEV *R) 3170 : LUIdx(LI), Imm(I), OrigReg(R) {} 3171 3172 void print(raw_ostream &OS) const; 3173 void dump() const; 3174 }; 3175 3176 } 3177 3178 void WorkItem::print(raw_ostream &OS) const { 3179 OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx 3180 << " , add offset " << Imm; 3181 } 3182 3183 void WorkItem::dump() const { 3184 print(errs()); errs() << '\n'; 3185 } 3186 3187 /// GenerateCrossUseConstantOffsets - Look for registers which are a constant 3188 /// distance apart and try to form reuse opportunities between them. 3189 void LSRInstance::GenerateCrossUseConstantOffsets() { 3190 // Group the registers by their value without any added constant offset. 3191 typedef std::map<int64_t, const SCEV *> ImmMapTy; 3192 typedef DenseMap<const SCEV *, ImmMapTy> RegMapTy; 3193 RegMapTy Map; 3194 DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap; 3195 SmallVector<const SCEV *, 8> Sequence; 3196 for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end(); 3197 I != E; ++I) { 3198 const SCEV *Reg = *I; 3199 int64_t Imm = ExtractImmediate(Reg, SE); 3200 std::pair<RegMapTy::iterator, bool> Pair = 3201 Map.insert(std::make_pair(Reg, ImmMapTy())); 3202 if (Pair.second) 3203 Sequence.push_back(Reg); 3204 Pair.first->second.insert(std::make_pair(Imm, *I)); 3205 UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(*I); 3206 } 3207 3208 // Now examine each set of registers with the same base value. Build up 3209 // a list of work to do and do the work in a separate step so that we're 3210 // not adding formulae and register counts while we're searching. 3211 SmallVector<WorkItem, 32> WorkItems; 3212 SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems; 3213 for (SmallVectorImpl<const SCEV *>::const_iterator I = Sequence.begin(), 3214 E = Sequence.end(); I != E; ++I) { 3215 const SCEV *Reg = *I; 3216 const ImmMapTy &Imms = Map.find(Reg)->second; 3217 3218 // It's not worthwhile looking for reuse if there's only one offset. 3219 if (Imms.size() == 1) 3220 continue; 3221 3222 DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':'; 3223 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); 3224 J != JE; ++J) 3225 dbgs() << ' ' << J->first; 3226 dbgs() << '\n'); 3227 3228 // Examine each offset. 3229 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); 3230 J != JE; ++J) { 3231 const SCEV *OrigReg = J->second; 3232 3233 int64_t JImm = J->first; 3234 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg); 3235 3236 if (!isa<SCEVConstant>(OrigReg) && 3237 UsedByIndicesMap[Reg].count() == 1) { 3238 DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n'); 3239 continue; 3240 } 3241 3242 // Conservatively examine offsets between this orig reg a few selected 3243 // other orig regs. 3244 ImmMapTy::const_iterator OtherImms[] = { 3245 Imms.begin(), prior(Imms.end()), 3246 Imms.lower_bound((Imms.begin()->first + prior(Imms.end())->first) / 2) 3247 }; 3248 for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) { 3249 ImmMapTy::const_iterator M = OtherImms[i]; 3250 if (M == J || M == JE) continue; 3251 3252 // Compute the difference between the two. 3253 int64_t Imm = (uint64_t)JImm - M->first; 3254 for (int LUIdx = UsedByIndices.find_first(); LUIdx != -1; 3255 LUIdx = UsedByIndices.find_next(LUIdx)) 3256 // Make a memo of this use, offset, and register tuple. 3257 if (UniqueItems.insert(std::make_pair(LUIdx, Imm))) 3258 WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg)); 3259 } 3260 } 3261 } 3262 3263 Map.clear(); 3264 Sequence.clear(); 3265 UsedByIndicesMap.clear(); 3266 UniqueItems.clear(); 3267 3268 // Now iterate through the worklist and add new formulae. 3269 for (SmallVectorImpl<WorkItem>::const_iterator I = WorkItems.begin(), 3270 E = WorkItems.end(); I != E; ++I) { 3271 const WorkItem &WI = *I; 3272 size_t LUIdx = WI.LUIdx; 3273 LSRUse &LU = Uses[LUIdx]; 3274 int64_t Imm = WI.Imm; 3275 const SCEV *OrigReg = WI.OrigReg; 3276 3277 Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType()); 3278 const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm)); 3279 unsigned BitWidth = SE.getTypeSizeInBits(IntTy); 3280 3281 // TODO: Use a more targeted data structure. 3282 for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) { 3283 const Formula &F = LU.Formulae[L]; 3284 // Use the immediate in the scaled register. 3285 if (F.ScaledReg == OrigReg) { 3286 int64_t Offs = (uint64_t)F.AM.BaseOffs + 3287 Imm * (uint64_t)F.AM.Scale; 3288 // Don't create 50 + reg(-50). 3289 if (F.referencesReg(SE.getSCEV( 3290 ConstantInt::get(IntTy, -(uint64_t)Offs)))) 3291 continue; 3292 Formula NewF = F; 3293 NewF.AM.BaseOffs = Offs; 3294 if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset, 3295 LU.Kind, LU.AccessTy, TLI)) 3296 continue; 3297 NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg); 3298 3299 // If the new scale is a constant in a register, and adding the constant 3300 // value to the immediate would produce a value closer to zero than the 3301 // immediate itself, then the formula isn't worthwhile. 3302 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg)) 3303 if (C->getValue()->isNegative() != 3304 (NewF.AM.BaseOffs < 0) && 3305 (C->getValue()->getValue().abs() * APInt(BitWidth, F.AM.Scale)) 3306 .ule(abs64(NewF.AM.BaseOffs))) 3307 continue; 3308 3309 // OK, looks good. 3310 (void)InsertFormula(LU, LUIdx, NewF); 3311 } else { 3312 // Use the immediate in a base register. 3313 for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) { 3314 const SCEV *BaseReg = F.BaseRegs[N]; 3315 if (BaseReg != OrigReg) 3316 continue; 3317 Formula NewF = F; 3318 NewF.AM.BaseOffs = (uint64_t)NewF.AM.BaseOffs + Imm; 3319 if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset, 3320 LU.Kind, LU.AccessTy, TLI)) { 3321 if (!TLI || 3322 !TLI->isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm)) 3323 continue; 3324 NewF = F; 3325 NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm; 3326 } 3327 NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg); 3328 3329 // If the new formula has a constant in a register, and adding the 3330 // constant value to the immediate would produce a value closer to 3331 // zero than the immediate itself, then the formula isn't worthwhile. 3332 for (SmallVectorImpl<const SCEV *>::const_iterator 3333 J = NewF.BaseRegs.begin(), JE = NewF.BaseRegs.end(); 3334 J != JE; ++J) 3335 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*J)) 3336 if ((C->getValue()->getValue() + NewF.AM.BaseOffs).abs().slt( 3337 abs64(NewF.AM.BaseOffs)) && 3338 (C->getValue()->getValue() + 3339 NewF.AM.BaseOffs).countTrailingZeros() >= 3340 CountTrailingZeros_64(NewF.AM.BaseOffs)) 3341 goto skip_formula; 3342 3343 // Ok, looks good. 3344 (void)InsertFormula(LU, LUIdx, NewF); 3345 break; 3346 skip_formula:; 3347 } 3348 } 3349 } 3350 } 3351 } 3352 3353 /// GenerateAllReuseFormulae - Generate formulae for each use. 3354 void 3355 LSRInstance::GenerateAllReuseFormulae() { 3356 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan 3357 // queries are more precise. 3358 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3359 LSRUse &LU = Uses[LUIdx]; 3360 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3361 GenerateReassociations(LU, LUIdx, LU.Formulae[i]); 3362 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3363 GenerateCombinations(LU, LUIdx, LU.Formulae[i]); 3364 } 3365 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3366 LSRUse &LU = Uses[LUIdx]; 3367 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3368 GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]); 3369 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3370 GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]); 3371 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3372 GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]); 3373 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3374 GenerateScales(LU, LUIdx, LU.Formulae[i]); 3375 } 3376 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3377 LSRUse &LU = Uses[LUIdx]; 3378 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3379 GenerateTruncates(LU, LUIdx, LU.Formulae[i]); 3380 } 3381 3382 GenerateCrossUseConstantOffsets(); 3383 3384 DEBUG(dbgs() << "\n" 3385 "After generating reuse formulae:\n"; 3386 print_uses(dbgs())); 3387 } 3388 3389 /// If there are multiple formulae with the same set of registers used 3390 /// by other uses, pick the best one and delete the others. 3391 void LSRInstance::FilterOutUndesirableDedicatedRegisters() { 3392 DenseSet<const SCEV *> VisitedRegs; 3393 SmallPtrSet<const SCEV *, 16> Regs; 3394 SmallPtrSet<const SCEV *, 16> LoserRegs; 3395 #ifndef NDEBUG 3396 bool ChangedFormulae = false; 3397 #endif 3398 3399 // Collect the best formula for each unique set of shared registers. This 3400 // is reset for each use. 3401 typedef DenseMap<SmallVector<const SCEV *, 2>, size_t, UniquifierDenseMapInfo> 3402 BestFormulaeTy; 3403 BestFormulaeTy BestFormulae; 3404 3405 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3406 LSRUse &LU = Uses[LUIdx]; 3407 DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n'); 3408 3409 bool Any = false; 3410 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); 3411 FIdx != NumForms; ++FIdx) { 3412 Formula &F = LU.Formulae[FIdx]; 3413 3414 // Some formulas are instant losers. For example, they may depend on 3415 // nonexistent AddRecs from other loops. These need to be filtered 3416 // immediately, otherwise heuristics could choose them over others leading 3417 // to an unsatisfactory solution. Passing LoserRegs into RateFormula here 3418 // avoids the need to recompute this information across formulae using the 3419 // same bad AddRec. Passing LoserRegs is also essential unless we remove 3420 // the corresponding bad register from the Regs set. 3421 Cost CostF; 3422 Regs.clear(); 3423 CostF.RateFormula(F, Regs, VisitedRegs, L, LU.Offsets, SE, DT, 3424 &LoserRegs); 3425 if (CostF.isLoser()) { 3426 // During initial formula generation, undesirable formulae are generated 3427 // by uses within other loops that have some non-trivial address mode or 3428 // use the postinc form of the IV. LSR needs to provide these formulae 3429 // as the basis of rediscovering the desired formula that uses an AddRec 3430 // corresponding to the existing phi. Once all formulae have been 3431 // generated, these initial losers may be pruned. 3432 DEBUG(dbgs() << " Filtering loser "; F.print(dbgs()); 3433 dbgs() << "\n"); 3434 } 3435 else { 3436 SmallVector<const SCEV *, 2> Key; 3437 for (SmallVectorImpl<const SCEV *>::const_iterator J = F.BaseRegs.begin(), 3438 JE = F.BaseRegs.end(); J != JE; ++J) { 3439 const SCEV *Reg = *J; 3440 if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx)) 3441 Key.push_back(Reg); 3442 } 3443 if (F.ScaledReg && 3444 RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx)) 3445 Key.push_back(F.ScaledReg); 3446 // Unstable sort by host order ok, because this is only used for 3447 // uniquifying. 3448 std::sort(Key.begin(), Key.end()); 3449 3450 std::pair<BestFormulaeTy::const_iterator, bool> P = 3451 BestFormulae.insert(std::make_pair(Key, FIdx)); 3452 if (P.second) 3453 continue; 3454 3455 Formula &Best = LU.Formulae[P.first->second]; 3456 3457 Cost CostBest; 3458 Regs.clear(); 3459 CostBest.RateFormula(Best, Regs, VisitedRegs, L, LU.Offsets, SE, DT); 3460 if (CostF < CostBest) 3461 std::swap(F, Best); 3462 DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 3463 dbgs() << "\n" 3464 " in favor of formula "; Best.print(dbgs()); 3465 dbgs() << '\n'); 3466 } 3467 #ifndef NDEBUG 3468 ChangedFormulae = true; 3469 #endif 3470 LU.DeleteFormula(F); 3471 --FIdx; 3472 --NumForms; 3473 Any = true; 3474 } 3475 3476 // Now that we've filtered out some formulae, recompute the Regs set. 3477 if (Any) 3478 LU.RecomputeRegs(LUIdx, RegUses); 3479 3480 // Reset this to prepare for the next use. 3481 BestFormulae.clear(); 3482 } 3483 3484 DEBUG(if (ChangedFormulae) { 3485 dbgs() << "\n" 3486 "After filtering out undesirable candidates:\n"; 3487 print_uses(dbgs()); 3488 }); 3489 } 3490 3491 // This is a rough guess that seems to work fairly well. 3492 static const size_t ComplexityLimit = UINT16_MAX; 3493 3494 /// EstimateSearchSpaceComplexity - Estimate the worst-case number of 3495 /// solutions the solver might have to consider. It almost never considers 3496 /// this many solutions because it prune the search space, but the pruning 3497 /// isn't always sufficient. 3498 size_t LSRInstance::EstimateSearchSpaceComplexity() const { 3499 size_t Power = 1; 3500 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(), 3501 E = Uses.end(); I != E; ++I) { 3502 size_t FSize = I->Formulae.size(); 3503 if (FSize >= ComplexityLimit) { 3504 Power = ComplexityLimit; 3505 break; 3506 } 3507 Power *= FSize; 3508 if (Power >= ComplexityLimit) 3509 break; 3510 } 3511 return Power; 3512 } 3513 3514 /// NarrowSearchSpaceByDetectingSupersets - When one formula uses a superset 3515 /// of the registers of another formula, it won't help reduce register 3516 /// pressure (though it may not necessarily hurt register pressure); remove 3517 /// it to simplify the system. 3518 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() { 3519 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 3520 DEBUG(dbgs() << "The search space is too complex.\n"); 3521 3522 DEBUG(dbgs() << "Narrowing the search space by eliminating formulae " 3523 "which use a superset of registers used by other " 3524 "formulae.\n"); 3525 3526 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3527 LSRUse &LU = Uses[LUIdx]; 3528 bool Any = false; 3529 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 3530 Formula &F = LU.Formulae[i]; 3531 // Look for a formula with a constant or GV in a register. If the use 3532 // also has a formula with that same value in an immediate field, 3533 // delete the one that uses a register. 3534 for (SmallVectorImpl<const SCEV *>::const_iterator 3535 I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) { 3536 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) { 3537 Formula NewF = F; 3538 NewF.AM.BaseOffs += C->getValue()->getSExtValue(); 3539 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 3540 (I - F.BaseRegs.begin())); 3541 if (LU.HasFormulaWithSameRegs(NewF)) { 3542 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 3543 LU.DeleteFormula(F); 3544 --i; 3545 --e; 3546 Any = true; 3547 break; 3548 } 3549 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) { 3550 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) 3551 if (!F.AM.BaseGV) { 3552 Formula NewF = F; 3553 NewF.AM.BaseGV = GV; 3554 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 3555 (I - F.BaseRegs.begin())); 3556 if (LU.HasFormulaWithSameRegs(NewF)) { 3557 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 3558 dbgs() << '\n'); 3559 LU.DeleteFormula(F); 3560 --i; 3561 --e; 3562 Any = true; 3563 break; 3564 } 3565 } 3566 } 3567 } 3568 } 3569 if (Any) 3570 LU.RecomputeRegs(LUIdx, RegUses); 3571 } 3572 3573 DEBUG(dbgs() << "After pre-selection:\n"; 3574 print_uses(dbgs())); 3575 } 3576 } 3577 3578 /// NarrowSearchSpaceByCollapsingUnrolledCode - When there are many registers 3579 /// for expressions like A, A+1, A+2, etc., allocate a single register for 3580 /// them. 3581 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() { 3582 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 3583 DEBUG(dbgs() << "The search space is too complex.\n"); 3584 3585 DEBUG(dbgs() << "Narrowing the search space by assuming that uses " 3586 "separated by a constant offset will use the same " 3587 "registers.\n"); 3588 3589 // This is especially useful for unrolled loops. 3590 3591 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3592 LSRUse &LU = Uses[LUIdx]; 3593 for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(), 3594 E = LU.Formulae.end(); I != E; ++I) { 3595 const Formula &F = *I; 3596 if (F.AM.BaseOffs != 0 && F.AM.Scale == 0) { 3597 if (LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU)) { 3598 if (reconcileNewOffset(*LUThatHas, F.AM.BaseOffs, 3599 /*HasBaseReg=*/false, 3600 LU.Kind, LU.AccessTy)) { 3601 DEBUG(dbgs() << " Deleting use "; LU.print(dbgs()); 3602 dbgs() << '\n'); 3603 3604 LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop; 3605 3606 // Update the relocs to reference the new use. 3607 for (SmallVectorImpl<LSRFixup>::iterator I = Fixups.begin(), 3608 E = Fixups.end(); I != E; ++I) { 3609 LSRFixup &Fixup = *I; 3610 if (Fixup.LUIdx == LUIdx) { 3611 Fixup.LUIdx = LUThatHas - &Uses.front(); 3612 Fixup.Offset += F.AM.BaseOffs; 3613 // Add the new offset to LUThatHas' offset list. 3614 if (LUThatHas->Offsets.back() != Fixup.Offset) { 3615 LUThatHas->Offsets.push_back(Fixup.Offset); 3616 if (Fixup.Offset > LUThatHas->MaxOffset) 3617 LUThatHas->MaxOffset = Fixup.Offset; 3618 if (Fixup.Offset < LUThatHas->MinOffset) 3619 LUThatHas->MinOffset = Fixup.Offset; 3620 } 3621 DEBUG(dbgs() << "New fixup has offset " 3622 << Fixup.Offset << '\n'); 3623 } 3624 if (Fixup.LUIdx == NumUses-1) 3625 Fixup.LUIdx = LUIdx; 3626 } 3627 3628 // Delete formulae from the new use which are no longer legal. 3629 bool Any = false; 3630 for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) { 3631 Formula &F = LUThatHas->Formulae[i]; 3632 if (!isLegalUse(F.AM, 3633 LUThatHas->MinOffset, LUThatHas->MaxOffset, 3634 LUThatHas->Kind, LUThatHas->AccessTy, TLI)) { 3635 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 3636 dbgs() << '\n'); 3637 LUThatHas->DeleteFormula(F); 3638 --i; 3639 --e; 3640 Any = true; 3641 } 3642 } 3643 if (Any) 3644 LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses); 3645 3646 // Delete the old use. 3647 DeleteUse(LU, LUIdx); 3648 --LUIdx; 3649 --NumUses; 3650 break; 3651 } 3652 } 3653 } 3654 } 3655 } 3656 3657 DEBUG(dbgs() << "After pre-selection:\n"; 3658 print_uses(dbgs())); 3659 } 3660 } 3661 3662 /// NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters - Call 3663 /// FilterOutUndesirableDedicatedRegisters again, if necessary, now that 3664 /// we've done more filtering, as it may be able to find more formulae to 3665 /// eliminate. 3666 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){ 3667 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 3668 DEBUG(dbgs() << "The search space is too complex.\n"); 3669 3670 DEBUG(dbgs() << "Narrowing the search space by re-filtering out " 3671 "undesirable dedicated registers.\n"); 3672 3673 FilterOutUndesirableDedicatedRegisters(); 3674 3675 DEBUG(dbgs() << "After pre-selection:\n"; 3676 print_uses(dbgs())); 3677 } 3678 } 3679 3680 /// NarrowSearchSpaceByPickingWinnerRegs - Pick a register which seems likely 3681 /// to be profitable, and then in any use which has any reference to that 3682 /// register, delete all formulae which do not reference that register. 3683 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() { 3684 // With all other options exhausted, loop until the system is simple 3685 // enough to handle. 3686 SmallPtrSet<const SCEV *, 4> Taken; 3687 while (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 3688 // Ok, we have too many of formulae on our hands to conveniently handle. 3689 // Use a rough heuristic to thin out the list. 3690 DEBUG(dbgs() << "The search space is too complex.\n"); 3691 3692 // Pick the register which is used by the most LSRUses, which is likely 3693 // to be a good reuse register candidate. 3694 const SCEV *Best = 0; 3695 unsigned BestNum = 0; 3696 for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end(); 3697 I != E; ++I) { 3698 const SCEV *Reg = *I; 3699 if (Taken.count(Reg)) 3700 continue; 3701 if (!Best) 3702 Best = Reg; 3703 else { 3704 unsigned Count = RegUses.getUsedByIndices(Reg).count(); 3705 if (Count > BestNum) { 3706 Best = Reg; 3707 BestNum = Count; 3708 } 3709 } 3710 } 3711 3712 DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best 3713 << " will yield profitable reuse.\n"); 3714 Taken.insert(Best); 3715 3716 // In any use with formulae which references this register, delete formulae 3717 // which don't reference it. 3718 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3719 LSRUse &LU = Uses[LUIdx]; 3720 if (!LU.Regs.count(Best)) continue; 3721 3722 bool Any = false; 3723 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 3724 Formula &F = LU.Formulae[i]; 3725 if (!F.referencesReg(Best)) { 3726 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 3727 LU.DeleteFormula(F); 3728 --e; 3729 --i; 3730 Any = true; 3731 assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?"); 3732 continue; 3733 } 3734 } 3735 3736 if (Any) 3737 LU.RecomputeRegs(LUIdx, RegUses); 3738 } 3739 3740 DEBUG(dbgs() << "After pre-selection:\n"; 3741 print_uses(dbgs())); 3742 } 3743 } 3744 3745 /// NarrowSearchSpaceUsingHeuristics - If there are an extraordinary number of 3746 /// formulae to choose from, use some rough heuristics to prune down the number 3747 /// of formulae. This keeps the main solver from taking an extraordinary amount 3748 /// of time in some worst-case scenarios. 3749 void LSRInstance::NarrowSearchSpaceUsingHeuristics() { 3750 NarrowSearchSpaceByDetectingSupersets(); 3751 NarrowSearchSpaceByCollapsingUnrolledCode(); 3752 NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 3753 NarrowSearchSpaceByPickingWinnerRegs(); 3754 } 3755 3756 /// SolveRecurse - This is the recursive solver. 3757 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 3758 Cost &SolutionCost, 3759 SmallVectorImpl<const Formula *> &Workspace, 3760 const Cost &CurCost, 3761 const SmallPtrSet<const SCEV *, 16> &CurRegs, 3762 DenseSet<const SCEV *> &VisitedRegs) const { 3763 // Some ideas: 3764 // - prune more: 3765 // - use more aggressive filtering 3766 // - sort the formula so that the most profitable solutions are found first 3767 // - sort the uses too 3768 // - search faster: 3769 // - don't compute a cost, and then compare. compare while computing a cost 3770 // and bail early. 3771 // - track register sets with SmallBitVector 3772 3773 const LSRUse &LU = Uses[Workspace.size()]; 3774 3775 // If this use references any register that's already a part of the 3776 // in-progress solution, consider it a requirement that a formula must 3777 // reference that register in order to be considered. This prunes out 3778 // unprofitable searching. 3779 SmallSetVector<const SCEV *, 4> ReqRegs; 3780 for (SmallPtrSet<const SCEV *, 16>::const_iterator I = CurRegs.begin(), 3781 E = CurRegs.end(); I != E; ++I) 3782 if (LU.Regs.count(*I)) 3783 ReqRegs.insert(*I); 3784 3785 bool AnySatisfiedReqRegs = false; 3786 SmallPtrSet<const SCEV *, 16> NewRegs; 3787 Cost NewCost; 3788 retry: 3789 for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(), 3790 E = LU.Formulae.end(); I != E; ++I) { 3791 const Formula &F = *I; 3792 3793 // Ignore formulae which do not use any of the required registers. 3794 for (SmallSetVector<const SCEV *, 4>::const_iterator J = ReqRegs.begin(), 3795 JE = ReqRegs.end(); J != JE; ++J) { 3796 const SCEV *Reg = *J; 3797 if ((!F.ScaledReg || F.ScaledReg != Reg) && 3798 std::find(F.BaseRegs.begin(), F.BaseRegs.end(), Reg) == 3799 F.BaseRegs.end()) 3800 goto skip; 3801 } 3802 AnySatisfiedReqRegs = true; 3803 3804 // Evaluate the cost of the current formula. If it's already worse than 3805 // the current best, prune the search at that point. 3806 NewCost = CurCost; 3807 NewRegs = CurRegs; 3808 NewCost.RateFormula(F, NewRegs, VisitedRegs, L, LU.Offsets, SE, DT); 3809 if (NewCost < SolutionCost) { 3810 Workspace.push_back(&F); 3811 if (Workspace.size() != Uses.size()) { 3812 SolveRecurse(Solution, SolutionCost, Workspace, NewCost, 3813 NewRegs, VisitedRegs); 3814 if (F.getNumRegs() == 1 && Workspace.size() == 1) 3815 VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]); 3816 } else { 3817 DEBUG(dbgs() << "New best at "; NewCost.print(dbgs()); 3818 dbgs() << ".\n Regs:"; 3819 for (SmallPtrSet<const SCEV *, 16>::const_iterator 3820 I = NewRegs.begin(), E = NewRegs.end(); I != E; ++I) 3821 dbgs() << ' ' << **I; 3822 dbgs() << '\n'); 3823 3824 SolutionCost = NewCost; 3825 Solution = Workspace; 3826 } 3827 Workspace.pop_back(); 3828 } 3829 skip:; 3830 } 3831 3832 if (!EnableRetry && !AnySatisfiedReqRegs) 3833 return; 3834 3835 // If none of the formulae had all of the required registers, relax the 3836 // constraint so that we don't exclude all formulae. 3837 if (!AnySatisfiedReqRegs) { 3838 assert(!ReqRegs.empty() && "Solver failed even without required registers"); 3839 ReqRegs.clear(); 3840 goto retry; 3841 } 3842 } 3843 3844 /// Solve - Choose one formula from each use. Return the results in the given 3845 /// Solution vector. 3846 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const { 3847 SmallVector<const Formula *, 8> Workspace; 3848 Cost SolutionCost; 3849 SolutionCost.Loose(); 3850 Cost CurCost; 3851 SmallPtrSet<const SCEV *, 16> CurRegs; 3852 DenseSet<const SCEV *> VisitedRegs; 3853 Workspace.reserve(Uses.size()); 3854 3855 // SolveRecurse does all the work. 3856 SolveRecurse(Solution, SolutionCost, Workspace, CurCost, 3857 CurRegs, VisitedRegs); 3858 if (Solution.empty()) { 3859 DEBUG(dbgs() << "\nNo Satisfactory Solution\n"); 3860 return; 3861 } 3862 3863 // Ok, we've now made all our decisions. 3864 DEBUG(dbgs() << "\n" 3865 "The chosen solution requires "; SolutionCost.print(dbgs()); 3866 dbgs() << ":\n"; 3867 for (size_t i = 0, e = Uses.size(); i != e; ++i) { 3868 dbgs() << " "; 3869 Uses[i].print(dbgs()); 3870 dbgs() << "\n" 3871 " "; 3872 Solution[i]->print(dbgs()); 3873 dbgs() << '\n'; 3874 }); 3875 3876 assert(Solution.size() == Uses.size() && "Malformed solution!"); 3877 } 3878 3879 /// HoistInsertPosition - Helper for AdjustInsertPositionForExpand. Climb up 3880 /// the dominator tree far as we can go while still being dominated by the 3881 /// input positions. This helps canonicalize the insert position, which 3882 /// encourages sharing. 3883 BasicBlock::iterator 3884 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP, 3885 const SmallVectorImpl<Instruction *> &Inputs) 3886 const { 3887 for (;;) { 3888 const Loop *IPLoop = LI.getLoopFor(IP->getParent()); 3889 unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0; 3890 3891 BasicBlock *IDom; 3892 for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) { 3893 if (!Rung) return IP; 3894 Rung = Rung->getIDom(); 3895 if (!Rung) return IP; 3896 IDom = Rung->getBlock(); 3897 3898 // Don't climb into a loop though. 3899 const Loop *IDomLoop = LI.getLoopFor(IDom); 3900 unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0; 3901 if (IDomDepth <= IPLoopDepth && 3902 (IDomDepth != IPLoopDepth || IDomLoop == IPLoop)) 3903 break; 3904 } 3905 3906 bool AllDominate = true; 3907 Instruction *BetterPos = 0; 3908 Instruction *Tentative = IDom->getTerminator(); 3909 for (SmallVectorImpl<Instruction *>::const_iterator I = Inputs.begin(), 3910 E = Inputs.end(); I != E; ++I) { 3911 Instruction *Inst = *I; 3912 if (Inst == Tentative || !DT.dominates(Inst, Tentative)) { 3913 AllDominate = false; 3914 break; 3915 } 3916 // Attempt to find an insert position in the middle of the block, 3917 // instead of at the end, so that it can be used for other expansions. 3918 if (IDom == Inst->getParent() && 3919 (!BetterPos || DT.dominates(BetterPos, Inst))) 3920 BetterPos = llvm::next(BasicBlock::iterator(Inst)); 3921 } 3922 if (!AllDominate) 3923 break; 3924 if (BetterPos) 3925 IP = BetterPos; 3926 else 3927 IP = Tentative; 3928 } 3929 3930 return IP; 3931 } 3932 3933 /// AdjustInsertPositionForExpand - Determine an input position which will be 3934 /// dominated by the operands and which will dominate the result. 3935 BasicBlock::iterator 3936 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator IP, 3937 const LSRFixup &LF, 3938 const LSRUse &LU) const { 3939 // Collect some instructions which must be dominated by the 3940 // expanding replacement. These must be dominated by any operands that 3941 // will be required in the expansion. 3942 SmallVector<Instruction *, 4> Inputs; 3943 if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace)) 3944 Inputs.push_back(I); 3945 if (LU.Kind == LSRUse::ICmpZero) 3946 if (Instruction *I = 3947 dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1))) 3948 Inputs.push_back(I); 3949 if (LF.PostIncLoops.count(L)) { 3950 if (LF.isUseFullyOutsideLoop(L)) 3951 Inputs.push_back(L->getLoopLatch()->getTerminator()); 3952 else 3953 Inputs.push_back(IVIncInsertPos); 3954 } 3955 // The expansion must also be dominated by the increment positions of any 3956 // loops it for which it is using post-inc mode. 3957 for (PostIncLoopSet::const_iterator I = LF.PostIncLoops.begin(), 3958 E = LF.PostIncLoops.end(); I != E; ++I) { 3959 const Loop *PIL = *I; 3960 if (PIL == L) continue; 3961 3962 // Be dominated by the loop exit. 3963 SmallVector<BasicBlock *, 4> ExitingBlocks; 3964 PIL->getExitingBlocks(ExitingBlocks); 3965 if (!ExitingBlocks.empty()) { 3966 BasicBlock *BB = ExitingBlocks[0]; 3967 for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i) 3968 BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]); 3969 Inputs.push_back(BB->getTerminator()); 3970 } 3971 } 3972 3973 // Then, climb up the immediate dominator tree as far as we can go while 3974 // still being dominated by the input positions. 3975 IP = HoistInsertPosition(IP, Inputs); 3976 3977 // Don't insert instructions before PHI nodes. 3978 while (isa<PHINode>(IP)) ++IP; 3979 3980 // Ignore landingpad instructions. 3981 while (isa<LandingPadInst>(IP)) ++IP; 3982 3983 // Ignore debug intrinsics. 3984 while (isa<DbgInfoIntrinsic>(IP)) ++IP; 3985 3986 return IP; 3987 } 3988 3989 /// Expand - Emit instructions for the leading candidate expression for this 3990 /// LSRUse (this is called "expanding"). 3991 Value *LSRInstance::Expand(const LSRFixup &LF, 3992 const Formula &F, 3993 BasicBlock::iterator IP, 3994 SCEVExpander &Rewriter, 3995 SmallVectorImpl<WeakVH> &DeadInsts) const { 3996 const LSRUse &LU = Uses[LF.LUIdx]; 3997 3998 // Determine an input position which will be dominated by the operands and 3999 // which will dominate the result. 4000 IP = AdjustInsertPositionForExpand(IP, LF, LU); 4001 4002 // Inform the Rewriter if we have a post-increment use, so that it can 4003 // perform an advantageous expansion. 4004 Rewriter.setPostInc(LF.PostIncLoops); 4005 4006 // This is the type that the user actually needs. 4007 Type *OpTy = LF.OperandValToReplace->getType(); 4008 // This will be the type that we'll initially expand to. 4009 Type *Ty = F.getType(); 4010 if (!Ty) 4011 // No type known; just expand directly to the ultimate type. 4012 Ty = OpTy; 4013 else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy)) 4014 // Expand directly to the ultimate type if it's the right size. 4015 Ty = OpTy; 4016 // This is the type to do integer arithmetic in. 4017 Type *IntTy = SE.getEffectiveSCEVType(Ty); 4018 4019 // Build up a list of operands to add together to form the full base. 4020 SmallVector<const SCEV *, 8> Ops; 4021 4022 // Expand the BaseRegs portion. 4023 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(), 4024 E = F.BaseRegs.end(); I != E; ++I) { 4025 const SCEV *Reg = *I; 4026 assert(!Reg->isZero() && "Zero allocated in a base register!"); 4027 4028 // If we're expanding for a post-inc user, make the post-inc adjustment. 4029 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 4030 Reg = TransformForPostIncUse(Denormalize, Reg, 4031 LF.UserInst, LF.OperandValToReplace, 4032 Loops, SE, DT); 4033 4034 Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, 0, IP))); 4035 } 4036 4037 // Flush the operand list to suppress SCEVExpander hoisting. 4038 if (!Ops.empty()) { 4039 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP); 4040 Ops.clear(); 4041 Ops.push_back(SE.getUnknown(FullV)); 4042 } 4043 4044 // Expand the ScaledReg portion. 4045 Value *ICmpScaledV = 0; 4046 if (F.AM.Scale != 0) { 4047 const SCEV *ScaledS = F.ScaledReg; 4048 4049 // If we're expanding for a post-inc user, make the post-inc adjustment. 4050 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 4051 ScaledS = TransformForPostIncUse(Denormalize, ScaledS, 4052 LF.UserInst, LF.OperandValToReplace, 4053 Loops, SE, DT); 4054 4055 if (LU.Kind == LSRUse::ICmpZero) { 4056 // An interesting way of "folding" with an icmp is to use a negated 4057 // scale, which we'll implement by inserting it into the other operand 4058 // of the icmp. 4059 assert(F.AM.Scale == -1 && 4060 "The only scale supported by ICmpZero uses is -1!"); 4061 ICmpScaledV = Rewriter.expandCodeFor(ScaledS, 0, IP); 4062 } else { 4063 // Otherwise just expand the scaled register and an explicit scale, 4064 // which is expected to be matched as part of the address. 4065 ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, 0, IP)); 4066 ScaledS = SE.getMulExpr(ScaledS, 4067 SE.getConstant(ScaledS->getType(), F.AM.Scale)); 4068 Ops.push_back(ScaledS); 4069 4070 // Flush the operand list to suppress SCEVExpander hoisting. 4071 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP); 4072 Ops.clear(); 4073 Ops.push_back(SE.getUnknown(FullV)); 4074 } 4075 } 4076 4077 // Expand the GV portion. 4078 if (F.AM.BaseGV) { 4079 Ops.push_back(SE.getUnknown(F.AM.BaseGV)); 4080 4081 // Flush the operand list to suppress SCEVExpander hoisting. 4082 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP); 4083 Ops.clear(); 4084 Ops.push_back(SE.getUnknown(FullV)); 4085 } 4086 4087 // Expand the immediate portion. 4088 int64_t Offset = (uint64_t)F.AM.BaseOffs + LF.Offset; 4089 if (Offset != 0) { 4090 if (LU.Kind == LSRUse::ICmpZero) { 4091 // The other interesting way of "folding" with an ICmpZero is to use a 4092 // negated immediate. 4093 if (!ICmpScaledV) 4094 ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset); 4095 else { 4096 Ops.push_back(SE.getUnknown(ICmpScaledV)); 4097 ICmpScaledV = ConstantInt::get(IntTy, Offset); 4098 } 4099 } else { 4100 // Just add the immediate values. These again are expected to be matched 4101 // as part of the address. 4102 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset))); 4103 } 4104 } 4105 4106 // Expand the unfolded offset portion. 4107 int64_t UnfoldedOffset = F.UnfoldedOffset; 4108 if (UnfoldedOffset != 0) { 4109 // Just add the immediate values. 4110 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, 4111 UnfoldedOffset))); 4112 } 4113 4114 // Emit instructions summing all the operands. 4115 const SCEV *FullS = Ops.empty() ? 4116 SE.getConstant(IntTy, 0) : 4117 SE.getAddExpr(Ops); 4118 Value *FullV = Rewriter.expandCodeFor(FullS, Ty, IP); 4119 4120 // We're done expanding now, so reset the rewriter. 4121 Rewriter.clearPostInc(); 4122 4123 // An ICmpZero Formula represents an ICmp which we're handling as a 4124 // comparison against zero. Now that we've expanded an expression for that 4125 // form, update the ICmp's other operand. 4126 if (LU.Kind == LSRUse::ICmpZero) { 4127 ICmpInst *CI = cast<ICmpInst>(LF.UserInst); 4128 DeadInsts.push_back(CI->getOperand(1)); 4129 assert(!F.AM.BaseGV && "ICmp does not support folding a global value and " 4130 "a scale at the same time!"); 4131 if (F.AM.Scale == -1) { 4132 if (ICmpScaledV->getType() != OpTy) { 4133 Instruction *Cast = 4134 CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false, 4135 OpTy, false), 4136 ICmpScaledV, OpTy, "tmp", CI); 4137 ICmpScaledV = Cast; 4138 } 4139 CI->setOperand(1, ICmpScaledV); 4140 } else { 4141 assert(F.AM.Scale == 0 && 4142 "ICmp does not support folding a global value and " 4143 "a scale at the same time!"); 4144 Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy), 4145 -(uint64_t)Offset); 4146 if (C->getType() != OpTy) 4147 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 4148 OpTy, false), 4149 C, OpTy); 4150 4151 CI->setOperand(1, C); 4152 } 4153 } 4154 4155 return FullV; 4156 } 4157 4158 /// RewriteForPHI - Helper for Rewrite. PHI nodes are special because the use 4159 /// of their operands effectively happens in their predecessor blocks, so the 4160 /// expression may need to be expanded in multiple places. 4161 void LSRInstance::RewriteForPHI(PHINode *PN, 4162 const LSRFixup &LF, 4163 const Formula &F, 4164 SCEVExpander &Rewriter, 4165 SmallVectorImpl<WeakVH> &DeadInsts, 4166 Pass *P) const { 4167 DenseMap<BasicBlock *, Value *> Inserted; 4168 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 4169 if (PN->getIncomingValue(i) == LF.OperandValToReplace) { 4170 BasicBlock *BB = PN->getIncomingBlock(i); 4171 4172 // If this is a critical edge, split the edge so that we do not insert 4173 // the code on all predecessor/successor paths. We do this unless this 4174 // is the canonical backedge for this loop, which complicates post-inc 4175 // users. 4176 if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 && 4177 !isa<IndirectBrInst>(BB->getTerminator())) { 4178 BasicBlock *Parent = PN->getParent(); 4179 Loop *PNLoop = LI.getLoopFor(Parent); 4180 if (!PNLoop || Parent != PNLoop->getHeader()) { 4181 // Split the critical edge. 4182 BasicBlock *NewBB = 0; 4183 if (!Parent->isLandingPad()) { 4184 NewBB = SplitCriticalEdge(BB, Parent, P, 4185 /*MergeIdenticalEdges=*/true, 4186 /*DontDeleteUselessPhis=*/true); 4187 } else { 4188 SmallVector<BasicBlock*, 2> NewBBs; 4189 SplitLandingPadPredecessors(Parent, BB, "", "", P, NewBBs); 4190 NewBB = NewBBs[0]; 4191 } 4192 4193 // If PN is outside of the loop and BB is in the loop, we want to 4194 // move the block to be immediately before the PHI block, not 4195 // immediately after BB. 4196 if (L->contains(BB) && !L->contains(PN)) 4197 NewBB->moveBefore(PN->getParent()); 4198 4199 // Splitting the edge can reduce the number of PHI entries we have. 4200 e = PN->getNumIncomingValues(); 4201 BB = NewBB; 4202 i = PN->getBasicBlockIndex(BB); 4203 } 4204 } 4205 4206 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair = 4207 Inserted.insert(std::make_pair(BB, static_cast<Value *>(0))); 4208 if (!Pair.second) 4209 PN->setIncomingValue(i, Pair.first->second); 4210 else { 4211 Value *FullV = Expand(LF, F, BB->getTerminator(), Rewriter, DeadInsts); 4212 4213 // If this is reuse-by-noop-cast, insert the noop cast. 4214 Type *OpTy = LF.OperandValToReplace->getType(); 4215 if (FullV->getType() != OpTy) 4216 FullV = 4217 CastInst::Create(CastInst::getCastOpcode(FullV, false, 4218 OpTy, false), 4219 FullV, LF.OperandValToReplace->getType(), 4220 "tmp", BB->getTerminator()); 4221 4222 PN->setIncomingValue(i, FullV); 4223 Pair.first->second = FullV; 4224 } 4225 } 4226 } 4227 4228 /// Rewrite - Emit instructions for the leading candidate expression for this 4229 /// LSRUse (this is called "expanding"), and update the UserInst to reference 4230 /// the newly expanded value. 4231 void LSRInstance::Rewrite(const LSRFixup &LF, 4232 const Formula &F, 4233 SCEVExpander &Rewriter, 4234 SmallVectorImpl<WeakVH> &DeadInsts, 4235 Pass *P) const { 4236 // First, find an insertion point that dominates UserInst. For PHI nodes, 4237 // find the nearest block which dominates all the relevant uses. 4238 if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) { 4239 RewriteForPHI(PN, LF, F, Rewriter, DeadInsts, P); 4240 } else { 4241 Value *FullV = Expand(LF, F, LF.UserInst, Rewriter, DeadInsts); 4242 4243 // If this is reuse-by-noop-cast, insert the noop cast. 4244 Type *OpTy = LF.OperandValToReplace->getType(); 4245 if (FullV->getType() != OpTy) { 4246 Instruction *Cast = 4247 CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false), 4248 FullV, OpTy, "tmp", LF.UserInst); 4249 FullV = Cast; 4250 } 4251 4252 // Update the user. ICmpZero is handled specially here (for now) because 4253 // Expand may have updated one of the operands of the icmp already, and 4254 // its new value may happen to be equal to LF.OperandValToReplace, in 4255 // which case doing replaceUsesOfWith leads to replacing both operands 4256 // with the same value. TODO: Reorganize this. 4257 if (Uses[LF.LUIdx].Kind == LSRUse::ICmpZero) 4258 LF.UserInst->setOperand(0, FullV); 4259 else 4260 LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV); 4261 } 4262 4263 DeadInsts.push_back(LF.OperandValToReplace); 4264 } 4265 4266 /// ImplementSolution - Rewrite all the fixup locations with new values, 4267 /// following the chosen solution. 4268 void 4269 LSRInstance::ImplementSolution(const SmallVectorImpl<const Formula *> &Solution, 4270 Pass *P) { 4271 // Keep track of instructions we may have made dead, so that 4272 // we can remove them after we are done working. 4273 SmallVector<WeakVH, 16> DeadInsts; 4274 4275 SCEVExpander Rewriter(SE, "lsr"); 4276 #ifndef NDEBUG 4277 Rewriter.setDebugType(DEBUG_TYPE); 4278 #endif 4279 Rewriter.disableCanonicalMode(); 4280 Rewriter.enableLSRMode(); 4281 Rewriter.setIVIncInsertPos(L, IVIncInsertPos); 4282 4283 // Expand the new value definitions and update the users. 4284 for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(), 4285 E = Fixups.end(); I != E; ++I) { 4286 const LSRFixup &Fixup = *I; 4287 4288 Rewrite(Fixup, *Solution[Fixup.LUIdx], Rewriter, DeadInsts, P); 4289 4290 Changed = true; 4291 } 4292 4293 for (SmallVectorImpl<IVChain>::const_iterator ChainI = IVChainVec.begin(), 4294 ChainE = IVChainVec.end(); ChainI != ChainE; ++ChainI) { 4295 GenerateIVChain(*ChainI, Rewriter, DeadInsts); 4296 Changed = true; 4297 } 4298 // Clean up after ourselves. This must be done before deleting any 4299 // instructions. 4300 Rewriter.clear(); 4301 4302 Changed |= DeleteTriviallyDeadInstructions(DeadInsts); 4303 } 4304 4305 LSRInstance::LSRInstance(const TargetLowering *tli, Loop *l, Pass *P) 4306 : IU(P->getAnalysis<IVUsers>()), 4307 SE(P->getAnalysis<ScalarEvolution>()), 4308 DT(P->getAnalysis<DominatorTree>()), 4309 LI(P->getAnalysis<LoopInfo>()), 4310 TLI(tli), L(l), Changed(false), IVIncInsertPos(0) { 4311 4312 // If LoopSimplify form is not available, stay out of trouble. 4313 if (!L->isLoopSimplifyForm()) 4314 return; 4315 4316 // All outer loops must have preheaders, or SCEVExpander may not be able to 4317 // materialize an AddRecExpr whose Start is an outer AddRecExpr. 4318 for (const Loop *OuterLoop = L; (OuterLoop = OuterLoop->getParentLoop());) { 4319 if (!OuterLoop->getLoopPreheader()) 4320 return; 4321 } 4322 // If there's no interesting work to be done, bail early. 4323 if (IU.empty()) return; 4324 4325 DEBUG(dbgs() << "\nLSR on loop "; 4326 WriteAsOperand(dbgs(), L->getHeader(), /*PrintType=*/false); 4327 dbgs() << ":\n"); 4328 4329 // First, perform some low-level loop optimizations. 4330 OptimizeShadowIV(); 4331 OptimizeLoopTermCond(); 4332 4333 // If loop preparation eliminates all interesting IV users, bail. 4334 if (IU.empty()) return; 4335 4336 // Skip nested loops until we can model them better with formulae. 4337 if (!EnableNested && !L->empty()) { 4338 DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n"); 4339 return; 4340 } 4341 4342 // Start collecting data and preparing for the solver. 4343 CollectChains(); 4344 CollectInterestingTypesAndFactors(); 4345 CollectFixupsAndInitialFormulae(); 4346 CollectLoopInvariantFixupsAndFormulae(); 4347 4348 assert(!Uses.empty() && "IVUsers reported at least one use"); 4349 DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n"; 4350 print_uses(dbgs())); 4351 4352 // Now use the reuse data to generate a bunch of interesting ways 4353 // to formulate the values needed for the uses. 4354 GenerateAllReuseFormulae(); 4355 4356 FilterOutUndesirableDedicatedRegisters(); 4357 NarrowSearchSpaceUsingHeuristics(); 4358 4359 SmallVector<const Formula *, 8> Solution; 4360 Solve(Solution); 4361 4362 // Release memory that is no longer needed. 4363 Factors.clear(); 4364 Types.clear(); 4365 RegUses.clear(); 4366 4367 if (Solution.empty()) 4368 return; 4369 4370 #ifndef NDEBUG 4371 // Formulae should be legal. 4372 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(), 4373 E = Uses.end(); I != E; ++I) { 4374 const LSRUse &LU = *I; 4375 for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(), 4376 JE = LU.Formulae.end(); J != JE; ++J) 4377 assert(isLegalUse(J->AM, LU.MinOffset, LU.MaxOffset, 4378 LU.Kind, LU.AccessTy, TLI) && 4379 "Illegal formula generated!"); 4380 }; 4381 #endif 4382 4383 // Now that we've decided what we want, make it so. 4384 ImplementSolution(Solution, P); 4385 } 4386 4387 void LSRInstance::print_factors_and_types(raw_ostream &OS) const { 4388 if (Factors.empty() && Types.empty()) return; 4389 4390 OS << "LSR has identified the following interesting factors and types: "; 4391 bool First = true; 4392 4393 for (SmallSetVector<int64_t, 8>::const_iterator 4394 I = Factors.begin(), E = Factors.end(); I != E; ++I) { 4395 if (!First) OS << ", "; 4396 First = false; 4397 OS << '*' << *I; 4398 } 4399 4400 for (SmallSetVector<Type *, 4>::const_iterator 4401 I = Types.begin(), E = Types.end(); I != E; ++I) { 4402 if (!First) OS << ", "; 4403 First = false; 4404 OS << '(' << **I << ')'; 4405 } 4406 OS << '\n'; 4407 } 4408 4409 void LSRInstance::print_fixups(raw_ostream &OS) const { 4410 OS << "LSR is examining the following fixup sites:\n"; 4411 for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(), 4412 E = Fixups.end(); I != E; ++I) { 4413 dbgs() << " "; 4414 I->print(OS); 4415 OS << '\n'; 4416 } 4417 } 4418 4419 void LSRInstance::print_uses(raw_ostream &OS) const { 4420 OS << "LSR is examining the following uses:\n"; 4421 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(), 4422 E = Uses.end(); I != E; ++I) { 4423 const LSRUse &LU = *I; 4424 dbgs() << " "; 4425 LU.print(OS); 4426 OS << '\n'; 4427 for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(), 4428 JE = LU.Formulae.end(); J != JE; ++J) { 4429 OS << " "; 4430 J->print(OS); 4431 OS << '\n'; 4432 } 4433 } 4434 } 4435 4436 void LSRInstance::print(raw_ostream &OS) const { 4437 print_factors_and_types(OS); 4438 print_fixups(OS); 4439 print_uses(OS); 4440 } 4441 4442 void LSRInstance::dump() const { 4443 print(errs()); errs() << '\n'; 4444 } 4445 4446 namespace { 4447 4448 class LoopStrengthReduce : public LoopPass { 4449 /// TLI - Keep a pointer of a TargetLowering to consult for determining 4450 /// transformation profitability. 4451 const TargetLowering *const TLI; 4452 4453 public: 4454 static char ID; // Pass ID, replacement for typeid 4455 explicit LoopStrengthReduce(const TargetLowering *tli = 0); 4456 4457 private: 4458 bool runOnLoop(Loop *L, LPPassManager &LPM); 4459 void getAnalysisUsage(AnalysisUsage &AU) const; 4460 }; 4461 4462 } 4463 4464 char LoopStrengthReduce::ID = 0; 4465 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce", 4466 "Loop Strength Reduction", false, false) 4467 INITIALIZE_PASS_DEPENDENCY(DominatorTree) 4468 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 4469 INITIALIZE_PASS_DEPENDENCY(IVUsers) 4470 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 4471 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 4472 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce", 4473 "Loop Strength Reduction", false, false) 4474 4475 4476 Pass *llvm::createLoopStrengthReducePass(const TargetLowering *TLI) { 4477 return new LoopStrengthReduce(TLI); 4478 } 4479 4480 LoopStrengthReduce::LoopStrengthReduce(const TargetLowering *tli) 4481 : LoopPass(ID), TLI(tli) { 4482 initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry()); 4483 } 4484 4485 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const { 4486 // We split critical edges, so we change the CFG. However, we do update 4487 // many analyses if they are around. 4488 AU.addPreservedID(LoopSimplifyID); 4489 4490 AU.addRequired<LoopInfo>(); 4491 AU.addPreserved<LoopInfo>(); 4492 AU.addRequiredID(LoopSimplifyID); 4493 AU.addRequired<DominatorTree>(); 4494 AU.addPreserved<DominatorTree>(); 4495 AU.addRequired<ScalarEvolution>(); 4496 AU.addPreserved<ScalarEvolution>(); 4497 // Requiring LoopSimplify a second time here prevents IVUsers from running 4498 // twice, since LoopSimplify was invalidated by running ScalarEvolution. 4499 AU.addRequiredID(LoopSimplifyID); 4500 AU.addRequired<IVUsers>(); 4501 AU.addPreserved<IVUsers>(); 4502 } 4503 4504 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) { 4505 bool Changed = false; 4506 4507 // Run the main LSR transformation. 4508 Changed |= LSRInstance(TLI, L, this).getChanged(); 4509 4510 // Remove any extra phis created by processing inner loops. 4511 Changed |= DeleteDeadPHIs(L->getHeader()); 4512 if (EnablePhiElim) { 4513 SmallVector<WeakVH, 16> DeadInsts; 4514 SCEVExpander Rewriter(getAnalysis<ScalarEvolution>(), "lsr"); 4515 #ifndef NDEBUG 4516 Rewriter.setDebugType(DEBUG_TYPE); 4517 #endif 4518 unsigned numFolded = Rewriter. 4519 replaceCongruentIVs(L, &getAnalysis<DominatorTree>(), DeadInsts, TLI); 4520 if (numFolded) { 4521 Changed = true; 4522 DeleteTriviallyDeadInstructions(DeadInsts); 4523 DeleteDeadPHIs(L->getHeader()); 4524 } 4525 } 4526 return Changed; 4527 } 4528