1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This transformation analyzes and transforms the induction variables (and 11 // computations derived from them) into forms suitable for efficient execution 12 // on the target. 13 // 14 // This pass performs a strength reduction on array references inside loops that 15 // have as one or more of their components the loop induction variable, it 16 // rewrites expressions to take advantage of scaled-index addressing modes 17 // available on the target, and it performs a variety of other optimizations 18 // related to loop induction variables. 19 // 20 // Terminology note: this code has a lot of handling for "post-increment" or 21 // "post-inc" users. This is not talking about post-increment addressing modes; 22 // it is instead talking about code like this: 23 // 24 // %i = phi [ 0, %entry ], [ %i.next, %latch ] 25 // ... 26 // %i.next = add %i, 1 27 // %c = icmp eq %i.next, %n 28 // 29 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however 30 // it's useful to think about these as the same register, with some uses using 31 // the value of the register before the add and some using it after. In this 32 // example, the icmp is a post-increment user, since it uses %i.next, which is 33 // the value of the induction variable after the increment. The other common 34 // case of post-increment users is users outside the loop. 35 // 36 // TODO: More sophistication in the way Formulae are generated and filtered. 37 // 38 // TODO: Handle multiple loops at a time. 39 // 40 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead 41 // of a GlobalValue? 42 // 43 // TODO: When truncation is free, truncate ICmp users' operands to make it a 44 // smaller encoding (on x86 at least). 45 // 46 // TODO: When a negated register is used by an add (such as in a list of 47 // multiple base registers, or as the increment expression in an addrec), 48 // we may not actually need both reg and (-1 * reg) in registers; the 49 // negation can be implemented by using a sub instead of an add. The 50 // lack of support for taking this into consideration when making 51 // register pressure decisions is partly worked around by the "Special" 52 // use kind. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h" 57 #include "llvm/ADT/APInt.h" 58 #include "llvm/ADT/DenseMap.h" 59 #include "llvm/ADT/DenseSet.h" 60 #include "llvm/ADT/Hashing.h" 61 #include "llvm/ADT/PointerIntPair.h" 62 #include "llvm/ADT/STLExtras.h" 63 #include "llvm/ADT/SetVector.h" 64 #include "llvm/ADT/SmallBitVector.h" 65 #include "llvm/ADT/SmallPtrSet.h" 66 #include "llvm/ADT/SmallSet.h" 67 #include "llvm/ADT/SmallVector.h" 68 #include "llvm/Analysis/IVUsers.h" 69 #include "llvm/Analysis/LoopInfo.h" 70 #include "llvm/Analysis/LoopPass.h" 71 #include "llvm/Analysis/ScalarEvolution.h" 72 #include "llvm/Analysis/ScalarEvolutionExpander.h" 73 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 74 #include "llvm/Analysis/ScalarEvolutionNormalization.h" 75 #include "llvm/Analysis/TargetTransformInfo.h" 76 #include "llvm/IR/BasicBlock.h" 77 #include "llvm/IR/Constant.h" 78 #include "llvm/IR/Constants.h" 79 #include "llvm/IR/DerivedTypes.h" 80 #include "llvm/IR/Dominators.h" 81 #include "llvm/IR/GlobalValue.h" 82 #include "llvm/IR/IRBuilder.h" 83 #include "llvm/IR/Instruction.h" 84 #include "llvm/IR/Instructions.h" 85 #include "llvm/IR/IntrinsicInst.h" 86 #include "llvm/IR/Module.h" 87 #include "llvm/IR/OperandTraits.h" 88 #include "llvm/IR/Operator.h" 89 #include "llvm/IR/Type.h" 90 #include "llvm/IR/Value.h" 91 #include "llvm/IR/ValueHandle.h" 92 #include "llvm/Pass.h" 93 #include "llvm/Support/Casting.h" 94 #include "llvm/Support/CommandLine.h" 95 #include "llvm/Support/Compiler.h" 96 #include "llvm/Support/Debug.h" 97 #include "llvm/Support/ErrorHandling.h" 98 #include "llvm/Support/MathExtras.h" 99 #include "llvm/Support/raw_ostream.h" 100 #include "llvm/Transforms/Scalar.h" 101 #include "llvm/Transforms/Scalar/LoopPassManager.h" 102 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 103 #include "llvm/Transforms/Utils/Local.h" 104 #include <algorithm> 105 #include <cassert> 106 #include <cstddef> 107 #include <cstdint> 108 #include <cstdlib> 109 #include <iterator> 110 #include <map> 111 #include <tuple> 112 #include <utility> 113 114 using namespace llvm; 115 116 #define DEBUG_TYPE "loop-reduce" 117 118 /// MaxIVUsers is an arbitrary threshold that provides an early opportunitiy for 119 /// bail out. This threshold is far beyond the number of users that LSR can 120 /// conceivably solve, so it should not affect generated code, but catches the 121 /// worst cases before LSR burns too much compile time and stack space. 122 static const unsigned MaxIVUsers = 200; 123 124 // Temporary flag to cleanup congruent phis after LSR phi expansion. 125 // It's currently disabled until we can determine whether it's truly useful or 126 // not. The flag should be removed after the v3.0 release. 127 // This is now needed for ivchains. 128 static cl::opt<bool> EnablePhiElim( 129 "enable-lsr-phielim", cl::Hidden, cl::init(true), 130 cl::desc("Enable LSR phi elimination")); 131 132 // The flag adds instruction count to solutions cost comparision. 133 static cl::opt<bool> InsnsCost( 134 "lsr-insns-cost", cl::Hidden, cl::init(false), 135 cl::desc("Add instruction count to a LSR cost model")); 136 137 // Flag to choose how to narrow complex lsr solution 138 static cl::opt<bool> LSRExpNarrow( 139 "lsr-exp-narrow", cl::Hidden, cl::init(false), 140 cl::desc("Narrow LSR complex solution using" 141 " expectation of registers number")); 142 143 #ifndef NDEBUG 144 // Stress test IV chain generation. 145 static cl::opt<bool> StressIVChain( 146 "stress-ivchain", cl::Hidden, cl::init(false), 147 cl::desc("Stress test LSR IV chains")); 148 #else 149 static bool StressIVChain = false; 150 #endif 151 152 namespace { 153 154 struct MemAccessTy { 155 /// Used in situations where the accessed memory type is unknown. 156 static const unsigned UnknownAddressSpace = ~0u; 157 158 Type *MemTy; 159 unsigned AddrSpace; 160 161 MemAccessTy() : MemTy(nullptr), AddrSpace(UnknownAddressSpace) {} 162 163 MemAccessTy(Type *Ty, unsigned AS) : 164 MemTy(Ty), AddrSpace(AS) {} 165 166 bool operator==(MemAccessTy Other) const { 167 return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace; 168 } 169 170 bool operator!=(MemAccessTy Other) const { return !(*this == Other); } 171 172 static MemAccessTy getUnknown(LLVMContext &Ctx, 173 unsigned AS = UnknownAddressSpace) { 174 return MemAccessTy(Type::getVoidTy(Ctx), AS); 175 } 176 }; 177 178 /// This class holds data which is used to order reuse candidates. 179 class RegSortData { 180 public: 181 /// This represents the set of LSRUse indices which reference 182 /// a particular register. 183 SmallBitVector UsedByIndices; 184 185 void print(raw_ostream &OS) const; 186 void dump() const; 187 }; 188 189 } // end anonymous namespace 190 191 void RegSortData::print(raw_ostream &OS) const { 192 OS << "[NumUses=" << UsedByIndices.count() << ']'; 193 } 194 195 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 196 LLVM_DUMP_METHOD void RegSortData::dump() const { 197 print(errs()); errs() << '\n'; 198 } 199 #endif 200 201 namespace { 202 203 /// Map register candidates to information about how they are used. 204 class RegUseTracker { 205 typedef DenseMap<const SCEV *, RegSortData> RegUsesTy; 206 207 RegUsesTy RegUsesMap; 208 SmallVector<const SCEV *, 16> RegSequence; 209 210 public: 211 void countRegister(const SCEV *Reg, size_t LUIdx); 212 void dropRegister(const SCEV *Reg, size_t LUIdx); 213 void swapAndDropUse(size_t LUIdx, size_t LastLUIdx); 214 215 bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const; 216 217 const SmallBitVector &getUsedByIndices(const SCEV *Reg) const; 218 219 void clear(); 220 221 typedef SmallVectorImpl<const SCEV *>::iterator iterator; 222 typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator; 223 iterator begin() { return RegSequence.begin(); } 224 iterator end() { return RegSequence.end(); } 225 const_iterator begin() const { return RegSequence.begin(); } 226 const_iterator end() const { return RegSequence.end(); } 227 }; 228 229 } // end anonymous namespace 230 231 void 232 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) { 233 std::pair<RegUsesTy::iterator, bool> Pair = 234 RegUsesMap.insert(std::make_pair(Reg, RegSortData())); 235 RegSortData &RSD = Pair.first->second; 236 if (Pair.second) 237 RegSequence.push_back(Reg); 238 RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1)); 239 RSD.UsedByIndices.set(LUIdx); 240 } 241 242 void 243 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) { 244 RegUsesTy::iterator It = RegUsesMap.find(Reg); 245 assert(It != RegUsesMap.end()); 246 RegSortData &RSD = It->second; 247 assert(RSD.UsedByIndices.size() > LUIdx); 248 RSD.UsedByIndices.reset(LUIdx); 249 } 250 251 void 252 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) { 253 assert(LUIdx <= LastLUIdx); 254 255 // Update RegUses. The data structure is not optimized for this purpose; 256 // we must iterate through it and update each of the bit vectors. 257 for (auto &Pair : RegUsesMap) { 258 SmallBitVector &UsedByIndices = Pair.second.UsedByIndices; 259 if (LUIdx < UsedByIndices.size()) 260 UsedByIndices[LUIdx] = 261 LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false; 262 UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx)); 263 } 264 } 265 266 bool 267 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const { 268 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 269 if (I == RegUsesMap.end()) 270 return false; 271 const SmallBitVector &UsedByIndices = I->second.UsedByIndices; 272 int i = UsedByIndices.find_first(); 273 if (i == -1) return false; 274 if ((size_t)i != LUIdx) return true; 275 return UsedByIndices.find_next(i) != -1; 276 } 277 278 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const { 279 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 280 assert(I != RegUsesMap.end() && "Unknown register!"); 281 return I->second.UsedByIndices; 282 } 283 284 void RegUseTracker::clear() { 285 RegUsesMap.clear(); 286 RegSequence.clear(); 287 } 288 289 namespace { 290 291 /// This class holds information that describes a formula for computing 292 /// satisfying a use. It may include broken-out immediates and scaled registers. 293 struct Formula { 294 /// Global base address used for complex addressing. 295 GlobalValue *BaseGV; 296 297 /// Base offset for complex addressing. 298 int64_t BaseOffset; 299 300 /// Whether any complex addressing has a base register. 301 bool HasBaseReg; 302 303 /// The scale of any complex addressing. 304 int64_t Scale; 305 306 /// The list of "base" registers for this use. When this is non-empty. The 307 /// canonical representation of a formula is 308 /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and 309 /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty(). 310 /// 3. The reg containing recurrent expr related with currect loop in the 311 /// formula should be put in the ScaledReg. 312 /// #1 enforces that the scaled register is always used when at least two 313 /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2. 314 /// #2 enforces that 1 * reg is reg. 315 /// #3 ensures invariant regs with respect to current loop can be combined 316 /// together in LSR codegen. 317 /// This invariant can be temporarly broken while building a formula. 318 /// However, every formula inserted into the LSRInstance must be in canonical 319 /// form. 320 SmallVector<const SCEV *, 4> BaseRegs; 321 322 /// The 'scaled' register for this use. This should be non-null when Scale is 323 /// not zero. 324 const SCEV *ScaledReg; 325 326 /// An additional constant offset which added near the use. This requires a 327 /// temporary register, but the offset itself can live in an add immediate 328 /// field rather than a register. 329 int64_t UnfoldedOffset; 330 331 Formula() 332 : BaseGV(nullptr), BaseOffset(0), HasBaseReg(false), Scale(0), 333 ScaledReg(nullptr), UnfoldedOffset(0) {} 334 335 void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE); 336 337 bool isCanonical(const Loop &L) const; 338 339 void canonicalize(const Loop &L); 340 341 bool unscale(); 342 343 bool hasZeroEnd() const; 344 345 size_t getNumRegs() const; 346 Type *getType() const; 347 348 void deleteBaseReg(const SCEV *&S); 349 350 bool referencesReg(const SCEV *S) const; 351 bool hasRegsUsedByUsesOtherThan(size_t LUIdx, 352 const RegUseTracker &RegUses) const; 353 354 void print(raw_ostream &OS) const; 355 void dump() const; 356 }; 357 358 } // end anonymous namespace 359 360 /// Recursion helper for initialMatch. 361 static void DoInitialMatch(const SCEV *S, Loop *L, 362 SmallVectorImpl<const SCEV *> &Good, 363 SmallVectorImpl<const SCEV *> &Bad, 364 ScalarEvolution &SE) { 365 // Collect expressions which properly dominate the loop header. 366 if (SE.properlyDominates(S, L->getHeader())) { 367 Good.push_back(S); 368 return; 369 } 370 371 // Look at add operands. 372 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 373 for (const SCEV *S : Add->operands()) 374 DoInitialMatch(S, L, Good, Bad, SE); 375 return; 376 } 377 378 // Look at addrec operands. 379 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 380 if (!AR->getStart()->isZero() && AR->isAffine()) { 381 DoInitialMatch(AR->getStart(), L, Good, Bad, SE); 382 DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0), 383 AR->getStepRecurrence(SE), 384 // FIXME: AR->getNoWrapFlags() 385 AR->getLoop(), SCEV::FlagAnyWrap), 386 L, Good, Bad, SE); 387 return; 388 } 389 390 // Handle a multiplication by -1 (negation) if it didn't fold. 391 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) 392 if (Mul->getOperand(0)->isAllOnesValue()) { 393 SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end()); 394 const SCEV *NewMul = SE.getMulExpr(Ops); 395 396 SmallVector<const SCEV *, 4> MyGood; 397 SmallVector<const SCEV *, 4> MyBad; 398 DoInitialMatch(NewMul, L, MyGood, MyBad, SE); 399 const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue( 400 SE.getEffectiveSCEVType(NewMul->getType()))); 401 for (const SCEV *S : MyGood) 402 Good.push_back(SE.getMulExpr(NegOne, S)); 403 for (const SCEV *S : MyBad) 404 Bad.push_back(SE.getMulExpr(NegOne, S)); 405 return; 406 } 407 408 // Ok, we can't do anything interesting. Just stuff the whole thing into a 409 // register and hope for the best. 410 Bad.push_back(S); 411 } 412 413 /// Incorporate loop-variant parts of S into this Formula, attempting to keep 414 /// all loop-invariant and loop-computable values in a single base register. 415 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) { 416 SmallVector<const SCEV *, 4> Good; 417 SmallVector<const SCEV *, 4> Bad; 418 DoInitialMatch(S, L, Good, Bad, SE); 419 if (!Good.empty()) { 420 const SCEV *Sum = SE.getAddExpr(Good); 421 if (!Sum->isZero()) 422 BaseRegs.push_back(Sum); 423 HasBaseReg = true; 424 } 425 if (!Bad.empty()) { 426 const SCEV *Sum = SE.getAddExpr(Bad); 427 if (!Sum->isZero()) 428 BaseRegs.push_back(Sum); 429 HasBaseReg = true; 430 } 431 canonicalize(*L); 432 } 433 434 /// \brief Check whether or not this formula statisfies the canonical 435 /// representation. 436 /// \see Formula::BaseRegs. 437 bool Formula::isCanonical(const Loop &L) const { 438 if (!ScaledReg) 439 return BaseRegs.size() <= 1; 440 441 if (Scale != 1) 442 return true; 443 444 if (Scale == 1 && BaseRegs.empty()) 445 return false; 446 447 const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg); 448 if (SAR && SAR->getLoop() == &L) 449 return true; 450 451 // If ScaledReg is not a recurrent expr, or it is but its loop is not current 452 // loop, meanwhile BaseRegs contains a recurrent expr reg related with current 453 // loop, we want to swap the reg in BaseRegs with ScaledReg. 454 auto I = 455 find_if(make_range(BaseRegs.begin(), BaseRegs.end()), [&](const SCEV *S) { 456 return isa<const SCEVAddRecExpr>(S) && 457 (cast<SCEVAddRecExpr>(S)->getLoop() == &L); 458 }); 459 return I == BaseRegs.end(); 460 } 461 462 /// \brief Helper method to morph a formula into its canonical representation. 463 /// \see Formula::BaseRegs. 464 /// Every formula having more than one base register, must use the ScaledReg 465 /// field. Otherwise, we would have to do special cases everywhere in LSR 466 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ... 467 /// On the other hand, 1*reg should be canonicalized into reg. 468 void Formula::canonicalize(const Loop &L) { 469 if (isCanonical(L)) 470 return; 471 // So far we did not need this case. This is easy to implement but it is 472 // useless to maintain dead code. Beside it could hurt compile time. 473 assert(!BaseRegs.empty() && "1*reg => reg, should not be needed."); 474 475 // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg. 476 if (!ScaledReg) { 477 ScaledReg = BaseRegs.back(); 478 BaseRegs.pop_back(); 479 Scale = 1; 480 } 481 482 // If ScaledReg is an invariant with respect to L, find the reg from 483 // BaseRegs containing the recurrent expr related with Loop L. Swap the 484 // reg with ScaledReg. 485 const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg); 486 if (!SAR || SAR->getLoop() != &L) { 487 auto I = find_if(make_range(BaseRegs.begin(), BaseRegs.end()), 488 [&](const SCEV *S) { 489 return isa<const SCEVAddRecExpr>(S) && 490 (cast<SCEVAddRecExpr>(S)->getLoop() == &L); 491 }); 492 if (I != BaseRegs.end()) 493 std::swap(ScaledReg, *I); 494 } 495 } 496 497 /// \brief Get rid of the scale in the formula. 498 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2. 499 /// \return true if it was possible to get rid of the scale, false otherwise. 500 /// \note After this operation the formula may not be in the canonical form. 501 bool Formula::unscale() { 502 if (Scale != 1) 503 return false; 504 Scale = 0; 505 BaseRegs.push_back(ScaledReg); 506 ScaledReg = nullptr; 507 return true; 508 } 509 510 bool Formula::hasZeroEnd() const { 511 if (UnfoldedOffset || BaseOffset) 512 return false; 513 if (BaseRegs.size() != 1 || ScaledReg) 514 return false; 515 return true; 516 } 517 518 /// Return the total number of register operands used by this formula. This does 519 /// not include register uses implied by non-constant addrec strides. 520 size_t Formula::getNumRegs() const { 521 return !!ScaledReg + BaseRegs.size(); 522 } 523 524 /// Return the type of this formula, if it has one, or null otherwise. This type 525 /// is meaningless except for the bit size. 526 Type *Formula::getType() const { 527 return !BaseRegs.empty() ? BaseRegs.front()->getType() : 528 ScaledReg ? ScaledReg->getType() : 529 BaseGV ? BaseGV->getType() : 530 nullptr; 531 } 532 533 /// Delete the given base reg from the BaseRegs list. 534 void Formula::deleteBaseReg(const SCEV *&S) { 535 if (&S != &BaseRegs.back()) 536 std::swap(S, BaseRegs.back()); 537 BaseRegs.pop_back(); 538 } 539 540 /// Test if this formula references the given register. 541 bool Formula::referencesReg(const SCEV *S) const { 542 return S == ScaledReg || is_contained(BaseRegs, S); 543 } 544 545 /// Test whether this formula uses registers which are used by uses other than 546 /// the use with the given index. 547 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx, 548 const RegUseTracker &RegUses) const { 549 if (ScaledReg) 550 if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx)) 551 return true; 552 for (const SCEV *BaseReg : BaseRegs) 553 if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx)) 554 return true; 555 return false; 556 } 557 558 void Formula::print(raw_ostream &OS) const { 559 bool First = true; 560 if (BaseGV) { 561 if (!First) OS << " + "; else First = false; 562 BaseGV->printAsOperand(OS, /*PrintType=*/false); 563 } 564 if (BaseOffset != 0) { 565 if (!First) OS << " + "; else First = false; 566 OS << BaseOffset; 567 } 568 for (const SCEV *BaseReg : BaseRegs) { 569 if (!First) OS << " + "; else First = false; 570 OS << "reg(" << *BaseReg << ')'; 571 } 572 if (HasBaseReg && BaseRegs.empty()) { 573 if (!First) OS << " + "; else First = false; 574 OS << "**error: HasBaseReg**"; 575 } else if (!HasBaseReg && !BaseRegs.empty()) { 576 if (!First) OS << " + "; else First = false; 577 OS << "**error: !HasBaseReg**"; 578 } 579 if (Scale != 0) { 580 if (!First) OS << " + "; else First = false; 581 OS << Scale << "*reg("; 582 if (ScaledReg) 583 OS << *ScaledReg; 584 else 585 OS << "<unknown>"; 586 OS << ')'; 587 } 588 if (UnfoldedOffset != 0) { 589 if (!First) OS << " + "; 590 OS << "imm(" << UnfoldedOffset << ')'; 591 } 592 } 593 594 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 595 LLVM_DUMP_METHOD void Formula::dump() const { 596 print(errs()); errs() << '\n'; 597 } 598 #endif 599 600 /// Return true if the given addrec can be sign-extended without changing its 601 /// value. 602 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 603 Type *WideTy = 604 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1); 605 return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy)); 606 } 607 608 /// Return true if the given add can be sign-extended without changing its 609 /// value. 610 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) { 611 Type *WideTy = 612 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1); 613 return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy)); 614 } 615 616 /// Return true if the given mul can be sign-extended without changing its 617 /// value. 618 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) { 619 Type *WideTy = 620 IntegerType::get(SE.getContext(), 621 SE.getTypeSizeInBits(M->getType()) * M->getNumOperands()); 622 return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy)); 623 } 624 625 /// Return an expression for LHS /s RHS, if it can be determined and if the 626 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits 627 /// is true, expressions like (X * Y) /s Y are simplified to Y, ignoring that 628 /// the multiplication may overflow, which is useful when the result will be 629 /// used in a context where the most significant bits are ignored. 630 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS, 631 ScalarEvolution &SE, 632 bool IgnoreSignificantBits = false) { 633 // Handle the trivial case, which works for any SCEV type. 634 if (LHS == RHS) 635 return SE.getConstant(LHS->getType(), 1); 636 637 // Handle a few RHS special cases. 638 const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS); 639 if (RC) { 640 const APInt &RA = RC->getAPInt(); 641 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do 642 // some folding. 643 if (RA.isAllOnesValue()) 644 return SE.getMulExpr(LHS, RC); 645 // Handle x /s 1 as x. 646 if (RA == 1) 647 return LHS; 648 } 649 650 // Check for a division of a constant by a constant. 651 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) { 652 if (!RC) 653 return nullptr; 654 const APInt &LA = C->getAPInt(); 655 const APInt &RA = RC->getAPInt(); 656 if (LA.srem(RA) != 0) 657 return nullptr; 658 return SE.getConstant(LA.sdiv(RA)); 659 } 660 661 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow. 662 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) { 663 if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) { 664 const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE, 665 IgnoreSignificantBits); 666 if (!Step) return nullptr; 667 const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE, 668 IgnoreSignificantBits); 669 if (!Start) return nullptr; 670 // FlagNW is independent of the start value, step direction, and is 671 // preserved with smaller magnitude steps. 672 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 673 return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap); 674 } 675 return nullptr; 676 } 677 678 // Distribute the sdiv over add operands, if the add doesn't overflow. 679 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) { 680 if (IgnoreSignificantBits || isAddSExtable(Add, SE)) { 681 SmallVector<const SCEV *, 8> Ops; 682 for (const SCEV *S : Add->operands()) { 683 const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits); 684 if (!Op) return nullptr; 685 Ops.push_back(Op); 686 } 687 return SE.getAddExpr(Ops); 688 } 689 return nullptr; 690 } 691 692 // Check for a multiply operand that we can pull RHS out of. 693 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) { 694 if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) { 695 SmallVector<const SCEV *, 4> Ops; 696 bool Found = false; 697 for (const SCEV *S : Mul->operands()) { 698 if (!Found) 699 if (const SCEV *Q = getExactSDiv(S, RHS, SE, 700 IgnoreSignificantBits)) { 701 S = Q; 702 Found = true; 703 } 704 Ops.push_back(S); 705 } 706 return Found ? SE.getMulExpr(Ops) : nullptr; 707 } 708 return nullptr; 709 } 710 711 // Otherwise we don't know. 712 return nullptr; 713 } 714 715 /// If S involves the addition of a constant integer value, return that integer 716 /// value, and mutate S to point to a new SCEV with that value excluded. 717 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) { 718 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 719 if (C->getAPInt().getMinSignedBits() <= 64) { 720 S = SE.getConstant(C->getType(), 0); 721 return C->getValue()->getSExtValue(); 722 } 723 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 724 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 725 int64_t Result = ExtractImmediate(NewOps.front(), SE); 726 if (Result != 0) 727 S = SE.getAddExpr(NewOps); 728 return Result; 729 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 730 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 731 int64_t Result = ExtractImmediate(NewOps.front(), SE); 732 if (Result != 0) 733 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 734 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 735 SCEV::FlagAnyWrap); 736 return Result; 737 } 738 return 0; 739 } 740 741 /// If S involves the addition of a GlobalValue address, return that symbol, and 742 /// mutate S to point to a new SCEV with that value excluded. 743 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) { 744 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 745 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) { 746 S = SE.getConstant(GV->getType(), 0); 747 return GV; 748 } 749 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 750 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 751 GlobalValue *Result = ExtractSymbol(NewOps.back(), SE); 752 if (Result) 753 S = SE.getAddExpr(NewOps); 754 return Result; 755 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 756 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 757 GlobalValue *Result = ExtractSymbol(NewOps.front(), SE); 758 if (Result) 759 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 760 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 761 SCEV::FlagAnyWrap); 762 return Result; 763 } 764 return nullptr; 765 } 766 767 /// Returns true if the specified instruction is using the specified value as an 768 /// address. 769 static bool isAddressUse(Instruction *Inst, Value *OperandVal) { 770 bool isAddress = isa<LoadInst>(Inst); 771 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 772 if (SI->getPointerOperand() == OperandVal) 773 isAddress = true; 774 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 775 // Addressing modes can also be folded into prefetches and a variety 776 // of intrinsics. 777 switch (II->getIntrinsicID()) { 778 default: break; 779 case Intrinsic::prefetch: 780 if (II->getArgOperand(0) == OperandVal) 781 isAddress = true; 782 break; 783 } 784 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) { 785 if (RMW->getPointerOperand() == OperandVal) 786 isAddress = true; 787 } else if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 788 if (CmpX->getPointerOperand() == OperandVal) 789 isAddress = true; 790 } 791 return isAddress; 792 } 793 794 /// Return the type of the memory being accessed. 795 static MemAccessTy getAccessType(const Instruction *Inst) { 796 MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace); 797 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 798 AccessTy.MemTy = SI->getOperand(0)->getType(); 799 AccessTy.AddrSpace = SI->getPointerAddressSpace(); 800 } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 801 AccessTy.AddrSpace = LI->getPointerAddressSpace(); 802 } else if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) { 803 AccessTy.AddrSpace = RMW->getPointerAddressSpace(); 804 } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 805 AccessTy.AddrSpace = CmpX->getPointerAddressSpace(); 806 } 807 808 // All pointers have the same requirements, so canonicalize them to an 809 // arbitrary pointer type to minimize variation. 810 if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy)) 811 AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1), 812 PTy->getAddressSpace()); 813 814 return AccessTy; 815 } 816 817 /// Return true if this AddRec is already a phi in its loop. 818 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 819 for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin(); 820 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 821 if (SE.isSCEVable(PN->getType()) && 822 (SE.getEffectiveSCEVType(PN->getType()) == 823 SE.getEffectiveSCEVType(AR->getType())) && 824 SE.getSCEV(PN) == AR) 825 return true; 826 } 827 return false; 828 } 829 830 /// Check if expanding this expression is likely to incur significant cost. This 831 /// is tricky because SCEV doesn't track which expressions are actually computed 832 /// by the current IR. 833 /// 834 /// We currently allow expansion of IV increments that involve adds, 835 /// multiplication by constants, and AddRecs from existing phis. 836 /// 837 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an 838 /// obvious multiple of the UDivExpr. 839 static bool isHighCostExpansion(const SCEV *S, 840 SmallPtrSetImpl<const SCEV*> &Processed, 841 ScalarEvolution &SE) { 842 // Zero/One operand expressions 843 switch (S->getSCEVType()) { 844 case scUnknown: 845 case scConstant: 846 return false; 847 case scTruncate: 848 return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(), 849 Processed, SE); 850 case scZeroExtend: 851 return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(), 852 Processed, SE); 853 case scSignExtend: 854 return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(), 855 Processed, SE); 856 } 857 858 if (!Processed.insert(S).second) 859 return false; 860 861 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 862 for (const SCEV *S : Add->operands()) { 863 if (isHighCostExpansion(S, Processed, SE)) 864 return true; 865 } 866 return false; 867 } 868 869 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 870 if (Mul->getNumOperands() == 2) { 871 // Multiplication by a constant is ok 872 if (isa<SCEVConstant>(Mul->getOperand(0))) 873 return isHighCostExpansion(Mul->getOperand(1), Processed, SE); 874 875 // If we have the value of one operand, check if an existing 876 // multiplication already generates this expression. 877 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) { 878 Value *UVal = U->getValue(); 879 for (User *UR : UVal->users()) { 880 // If U is a constant, it may be used by a ConstantExpr. 881 Instruction *UI = dyn_cast<Instruction>(UR); 882 if (UI && UI->getOpcode() == Instruction::Mul && 883 SE.isSCEVable(UI->getType())) { 884 return SE.getSCEV(UI) == Mul; 885 } 886 } 887 } 888 } 889 } 890 891 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 892 if (isExistingPhi(AR, SE)) 893 return false; 894 } 895 896 // Fow now, consider any other type of expression (div/mul/min/max) high cost. 897 return true; 898 } 899 900 /// If any of the instructions is the specified set are trivially dead, delete 901 /// them and see if this makes any of their operands subsequently dead. 902 static bool 903 DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) { 904 bool Changed = false; 905 906 while (!DeadInsts.empty()) { 907 Value *V = DeadInsts.pop_back_val(); 908 Instruction *I = dyn_cast_or_null<Instruction>(V); 909 910 if (!I || !isInstructionTriviallyDead(I)) 911 continue; 912 913 for (Use &O : I->operands()) 914 if (Instruction *U = dyn_cast<Instruction>(O)) { 915 O = nullptr; 916 if (U->use_empty()) 917 DeadInsts.emplace_back(U); 918 } 919 920 I->eraseFromParent(); 921 Changed = true; 922 } 923 924 return Changed; 925 } 926 927 namespace { 928 929 class LSRUse; 930 931 } // end anonymous namespace 932 933 /// \brief Check if the addressing mode defined by \p F is completely 934 /// folded in \p LU at isel time. 935 /// This includes address-mode folding and special icmp tricks. 936 /// This function returns true if \p LU can accommodate what \p F 937 /// defines and up to 1 base + 1 scaled + offset. 938 /// In other words, if \p F has several base registers, this function may 939 /// still return true. Therefore, users still need to account for 940 /// additional base registers and/or unfolded offsets to derive an 941 /// accurate cost model. 942 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 943 const LSRUse &LU, const Formula &F); 944 // Get the cost of the scaling factor used in F for LU. 945 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, 946 const LSRUse &LU, const Formula &F, 947 const Loop &L); 948 949 namespace { 950 951 /// This class is used to measure and compare candidate formulae. 952 class Cost { 953 /// TODO: Some of these could be merged. Also, a lexical ordering 954 /// isn't always optimal. 955 unsigned Insns; 956 unsigned NumRegs; 957 unsigned AddRecCost; 958 unsigned NumIVMuls; 959 unsigned NumBaseAdds; 960 unsigned ImmCost; 961 unsigned SetupCost; 962 unsigned ScaleCost; 963 964 public: 965 Cost() 966 : Insns(0), NumRegs(0), AddRecCost(0), NumIVMuls(0), NumBaseAdds(0), 967 ImmCost(0), SetupCost(0), ScaleCost(0) {} 968 969 bool operator<(const Cost &Other) const; 970 971 void Lose(); 972 973 #ifndef NDEBUG 974 // Once any of the metrics loses, they must all remain losers. 975 bool isValid() { 976 return ((Insns | NumRegs | AddRecCost | NumIVMuls | NumBaseAdds 977 | ImmCost | SetupCost | ScaleCost) != ~0u) 978 || ((Insns & NumRegs & AddRecCost & NumIVMuls & NumBaseAdds 979 & ImmCost & SetupCost & ScaleCost) == ~0u); 980 } 981 #endif 982 983 bool isLoser() { 984 assert(isValid() && "invalid cost"); 985 return NumRegs == ~0u; 986 } 987 988 void RateFormula(const TargetTransformInfo &TTI, 989 const Formula &F, 990 SmallPtrSetImpl<const SCEV *> &Regs, 991 const DenseSet<const SCEV *> &VisitedRegs, 992 const Loop *L, 993 ScalarEvolution &SE, DominatorTree &DT, 994 const LSRUse &LU, 995 SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr); 996 997 void print(raw_ostream &OS) const; 998 void dump() const; 999 1000 private: 1001 void RateRegister(const SCEV *Reg, 1002 SmallPtrSetImpl<const SCEV *> &Regs, 1003 const Loop *L, 1004 ScalarEvolution &SE, DominatorTree &DT); 1005 void RatePrimaryRegister(const SCEV *Reg, 1006 SmallPtrSetImpl<const SCEV *> &Regs, 1007 const Loop *L, 1008 ScalarEvolution &SE, DominatorTree &DT, 1009 SmallPtrSetImpl<const SCEV *> *LoserRegs); 1010 }; 1011 1012 /// An operand value in an instruction which is to be replaced with some 1013 /// equivalent, possibly strength-reduced, replacement. 1014 struct LSRFixup { 1015 /// The instruction which will be updated. 1016 Instruction *UserInst; 1017 1018 /// The operand of the instruction which will be replaced. The operand may be 1019 /// used more than once; every instance will be replaced. 1020 Value *OperandValToReplace; 1021 1022 /// If this user is to use the post-incremented value of an induction 1023 /// variable, this variable is non-null and holds the loop associated with the 1024 /// induction variable. 1025 PostIncLoopSet PostIncLoops; 1026 1027 /// A constant offset to be added to the LSRUse expression. This allows 1028 /// multiple fixups to share the same LSRUse with different offsets, for 1029 /// example in an unrolled loop. 1030 int64_t Offset; 1031 1032 bool isUseFullyOutsideLoop(const Loop *L) const; 1033 1034 LSRFixup(); 1035 1036 void print(raw_ostream &OS) const; 1037 void dump() const; 1038 }; 1039 1040 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted 1041 /// SmallVectors of const SCEV*. 1042 struct UniquifierDenseMapInfo { 1043 static SmallVector<const SCEV *, 4> getEmptyKey() { 1044 SmallVector<const SCEV *, 4> V; 1045 V.push_back(reinterpret_cast<const SCEV *>(-1)); 1046 return V; 1047 } 1048 1049 static SmallVector<const SCEV *, 4> getTombstoneKey() { 1050 SmallVector<const SCEV *, 4> V; 1051 V.push_back(reinterpret_cast<const SCEV *>(-2)); 1052 return V; 1053 } 1054 1055 static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) { 1056 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 1057 } 1058 1059 static bool isEqual(const SmallVector<const SCEV *, 4> &LHS, 1060 const SmallVector<const SCEV *, 4> &RHS) { 1061 return LHS == RHS; 1062 } 1063 }; 1064 1065 /// This class holds the state that LSR keeps for each use in IVUsers, as well 1066 /// as uses invented by LSR itself. It includes information about what kinds of 1067 /// things can be folded into the user, information about the user itself, and 1068 /// information about how the use may be satisfied. TODO: Represent multiple 1069 /// users of the same expression in common? 1070 class LSRUse { 1071 DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier; 1072 1073 public: 1074 /// An enum for a kind of use, indicating what types of scaled and immediate 1075 /// operands it might support. 1076 enum KindType { 1077 Basic, ///< A normal use, with no folding. 1078 Special, ///< A special case of basic, allowing -1 scales. 1079 Address, ///< An address use; folding according to TargetLowering 1080 ICmpZero ///< An equality icmp with both operands folded into one. 1081 // TODO: Add a generic icmp too? 1082 }; 1083 1084 typedef PointerIntPair<const SCEV *, 2, KindType> SCEVUseKindPair; 1085 1086 KindType Kind; 1087 MemAccessTy AccessTy; 1088 1089 /// The list of operands which are to be replaced. 1090 SmallVector<LSRFixup, 8> Fixups; 1091 1092 /// Keep track of the min and max offsets of the fixups. 1093 int64_t MinOffset; 1094 int64_t MaxOffset; 1095 1096 /// This records whether all of the fixups using this LSRUse are outside of 1097 /// the loop, in which case some special-case heuristics may be used. 1098 bool AllFixupsOutsideLoop; 1099 1100 /// RigidFormula is set to true to guarantee that this use will be associated 1101 /// with a single formula--the one that initially matched. Some SCEV 1102 /// expressions cannot be expanded. This allows LSR to consider the registers 1103 /// used by those expressions without the need to expand them later after 1104 /// changing the formula. 1105 bool RigidFormula; 1106 1107 /// This records the widest use type for any fixup using this 1108 /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max 1109 /// fixup widths to be equivalent, because the narrower one may be relying on 1110 /// the implicit truncation to truncate away bogus bits. 1111 Type *WidestFixupType; 1112 1113 /// A list of ways to build a value that can satisfy this user. After the 1114 /// list is populated, one of these is selected heuristically and used to 1115 /// formulate a replacement for OperandValToReplace in UserInst. 1116 SmallVector<Formula, 12> Formulae; 1117 1118 /// The set of register candidates used by all formulae in this LSRUse. 1119 SmallPtrSet<const SCEV *, 4> Regs; 1120 1121 LSRUse(KindType K, MemAccessTy AT) 1122 : Kind(K), AccessTy(AT), MinOffset(INT64_MAX), MaxOffset(INT64_MIN), 1123 AllFixupsOutsideLoop(true), RigidFormula(false), 1124 WidestFixupType(nullptr) {} 1125 1126 LSRFixup &getNewFixup() { 1127 Fixups.push_back(LSRFixup()); 1128 return Fixups.back(); 1129 } 1130 1131 void pushFixup(LSRFixup &f) { 1132 Fixups.push_back(f); 1133 if (f.Offset > MaxOffset) 1134 MaxOffset = f.Offset; 1135 if (f.Offset < MinOffset) 1136 MinOffset = f.Offset; 1137 } 1138 1139 bool HasFormulaWithSameRegs(const Formula &F) const; 1140 float getNotSelectedProbability(const SCEV *Reg) const; 1141 bool InsertFormula(const Formula &F, const Loop &L); 1142 void DeleteFormula(Formula &F); 1143 void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses); 1144 1145 void print(raw_ostream &OS) const; 1146 void dump() const; 1147 }; 1148 1149 } // end anonymous namespace 1150 1151 /// Tally up interesting quantities from the given register. 1152 void Cost::RateRegister(const SCEV *Reg, 1153 SmallPtrSetImpl<const SCEV *> &Regs, 1154 const Loop *L, 1155 ScalarEvolution &SE, DominatorTree &DT) { 1156 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) { 1157 // If this is an addrec for another loop, it should be an invariant 1158 // with respect to L since L is the innermost loop (at least 1159 // for now LSR only handles innermost loops). 1160 if (AR->getLoop() != L) { 1161 // If the AddRec exists, consider it's register free and leave it alone. 1162 if (isExistingPhi(AR, SE)) 1163 return; 1164 1165 // It is bad to allow LSR for current loop to add induction variables 1166 // for its sibling loops. 1167 if (!AR->getLoop()->contains(L)) { 1168 Lose(); 1169 return; 1170 } 1171 1172 // Otherwise, it will be an invariant with respect to Loop L. 1173 ++NumRegs; 1174 return; 1175 } 1176 AddRecCost += 1; /// TODO: This should be a function of the stride. 1177 1178 // Add the step value register, if it needs one. 1179 // TODO: The non-affine case isn't precisely modeled here. 1180 if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) { 1181 if (!Regs.count(AR->getOperand(1))) { 1182 RateRegister(AR->getOperand(1), Regs, L, SE, DT); 1183 if (isLoser()) 1184 return; 1185 } 1186 } 1187 } 1188 ++NumRegs; 1189 1190 // Rough heuristic; favor registers which don't require extra setup 1191 // instructions in the preheader. 1192 if (!isa<SCEVUnknown>(Reg) && 1193 !isa<SCEVConstant>(Reg) && 1194 !(isa<SCEVAddRecExpr>(Reg) && 1195 (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) || 1196 isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart())))) 1197 ++SetupCost; 1198 1199 NumIVMuls += isa<SCEVMulExpr>(Reg) && 1200 SE.hasComputableLoopEvolution(Reg, L); 1201 } 1202 1203 /// Record this register in the set. If we haven't seen it before, rate 1204 /// it. Optional LoserRegs provides a way to declare any formula that refers to 1205 /// one of those regs an instant loser. 1206 void Cost::RatePrimaryRegister(const SCEV *Reg, 1207 SmallPtrSetImpl<const SCEV *> &Regs, 1208 const Loop *L, 1209 ScalarEvolution &SE, DominatorTree &DT, 1210 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1211 if (LoserRegs && LoserRegs->count(Reg)) { 1212 Lose(); 1213 return; 1214 } 1215 if (Regs.insert(Reg).second) { 1216 RateRegister(Reg, Regs, L, SE, DT); 1217 if (LoserRegs && isLoser()) 1218 LoserRegs->insert(Reg); 1219 } 1220 } 1221 1222 void Cost::RateFormula(const TargetTransformInfo &TTI, 1223 const Formula &F, 1224 SmallPtrSetImpl<const SCEV *> &Regs, 1225 const DenseSet<const SCEV *> &VisitedRegs, 1226 const Loop *L, 1227 ScalarEvolution &SE, DominatorTree &DT, 1228 const LSRUse &LU, 1229 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1230 assert(F.isCanonical(*L) && "Cost is accurate only for canonical formula"); 1231 // Tally up the registers. 1232 unsigned PrevAddRecCost = AddRecCost; 1233 unsigned PrevNumRegs = NumRegs; 1234 unsigned PrevNumBaseAdds = NumBaseAdds; 1235 if (const SCEV *ScaledReg = F.ScaledReg) { 1236 if (VisitedRegs.count(ScaledReg)) { 1237 Lose(); 1238 return; 1239 } 1240 RatePrimaryRegister(ScaledReg, Regs, L, SE, DT, LoserRegs); 1241 if (isLoser()) 1242 return; 1243 } 1244 for (const SCEV *BaseReg : F.BaseRegs) { 1245 if (VisitedRegs.count(BaseReg)) { 1246 Lose(); 1247 return; 1248 } 1249 RatePrimaryRegister(BaseReg, Regs, L, SE, DT, LoserRegs); 1250 if (isLoser()) 1251 return; 1252 } 1253 1254 // Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as 1255 // additional instruction (at least fill). 1256 unsigned TTIRegNum = TTI.getNumberOfRegisters(false) - 1; 1257 if (NumRegs > TTIRegNum) { 1258 // Cost already exceeded TTIRegNum, then only newly added register can add 1259 // new instructions. 1260 if (PrevNumRegs > TTIRegNum) 1261 Insns += (NumRegs - PrevNumRegs); 1262 else 1263 Insns += (NumRegs - TTIRegNum); 1264 } 1265 1266 // Determine how many (unfolded) adds we'll need inside the loop. 1267 size_t NumBaseParts = F.getNumRegs(); 1268 if (NumBaseParts > 1) 1269 // Do not count the base and a possible second register if the target 1270 // allows to fold 2 registers. 1271 NumBaseAdds += 1272 NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(TTI, LU, F))); 1273 NumBaseAdds += (F.UnfoldedOffset != 0); 1274 1275 // Accumulate non-free scaling amounts. 1276 ScaleCost += getScalingFactorCost(TTI, LU, F, *L); 1277 1278 // Tally up the non-zero immediates. 1279 for (const LSRFixup &Fixup : LU.Fixups) { 1280 int64_t O = Fixup.Offset; 1281 int64_t Offset = (uint64_t)O + F.BaseOffset; 1282 if (F.BaseGV) 1283 ImmCost += 64; // Handle symbolic values conservatively. 1284 // TODO: This should probably be the pointer size. 1285 else if (Offset != 0) 1286 ImmCost += APInt(64, Offset, true).getMinSignedBits(); 1287 1288 // Check with target if this offset with this instruction is 1289 // specifically not supported. 1290 if ((isa<LoadInst>(Fixup.UserInst) || isa<StoreInst>(Fixup.UserInst)) && 1291 !TTI.isFoldableMemAccessOffset(Fixup.UserInst, Offset)) 1292 NumBaseAdds++; 1293 } 1294 1295 // If ICmpZero formula ends with not 0, it could not be replaced by 1296 // just add or sub. We'll need to compare final result of AddRec. 1297 // That means we'll need an additional instruction. 1298 // For -10 + {0, +, 1}: 1299 // i = i + 1; 1300 // cmp i, 10 1301 // 1302 // For {-10, +, 1}: 1303 // i = i + 1; 1304 if (LU.Kind == LSRUse::ICmpZero && !F.hasZeroEnd()) 1305 Insns++; 1306 // Each new AddRec adds 1 instruction to calculation. 1307 Insns += (AddRecCost - PrevAddRecCost); 1308 1309 // BaseAdds adds instructions for unfolded registers. 1310 if (LU.Kind != LSRUse::ICmpZero) 1311 Insns += NumBaseAdds - PrevNumBaseAdds; 1312 assert(isValid() && "invalid cost"); 1313 } 1314 1315 /// Set this cost to a losing value. 1316 void Cost::Lose() { 1317 Insns = ~0u; 1318 NumRegs = ~0u; 1319 AddRecCost = ~0u; 1320 NumIVMuls = ~0u; 1321 NumBaseAdds = ~0u; 1322 ImmCost = ~0u; 1323 SetupCost = ~0u; 1324 ScaleCost = ~0u; 1325 } 1326 1327 /// Choose the lower cost. 1328 bool Cost::operator<(const Cost &Other) const { 1329 if (InsnsCost && Insns != Other.Insns) 1330 return Insns < Other.Insns; 1331 return std::tie(NumRegs, AddRecCost, NumIVMuls, NumBaseAdds, ScaleCost, 1332 ImmCost, SetupCost) < 1333 std::tie(Other.NumRegs, Other.AddRecCost, Other.NumIVMuls, 1334 Other.NumBaseAdds, Other.ScaleCost, Other.ImmCost, 1335 Other.SetupCost); 1336 } 1337 1338 void Cost::print(raw_ostream &OS) const { 1339 OS << Insns << " instruction" << (Insns == 1 ? " " : "s "); 1340 OS << NumRegs << " reg" << (NumRegs == 1 ? "" : "s"); 1341 if (AddRecCost != 0) 1342 OS << ", with addrec cost " << AddRecCost; 1343 if (NumIVMuls != 0) 1344 OS << ", plus " << NumIVMuls << " IV mul" << (NumIVMuls == 1 ? "" : "s"); 1345 if (NumBaseAdds != 0) 1346 OS << ", plus " << NumBaseAdds << " base add" 1347 << (NumBaseAdds == 1 ? "" : "s"); 1348 if (ScaleCost != 0) 1349 OS << ", plus " << ScaleCost << " scale cost"; 1350 if (ImmCost != 0) 1351 OS << ", plus " << ImmCost << " imm cost"; 1352 if (SetupCost != 0) 1353 OS << ", plus " << SetupCost << " setup cost"; 1354 } 1355 1356 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1357 LLVM_DUMP_METHOD void Cost::dump() const { 1358 print(errs()); errs() << '\n'; 1359 } 1360 #endif 1361 1362 LSRFixup::LSRFixup() 1363 : UserInst(nullptr), OperandValToReplace(nullptr), 1364 Offset(0) {} 1365 1366 /// Test whether this fixup always uses its value outside of the given loop. 1367 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const { 1368 // PHI nodes use their value in their incoming blocks. 1369 if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) { 1370 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1371 if (PN->getIncomingValue(i) == OperandValToReplace && 1372 L->contains(PN->getIncomingBlock(i))) 1373 return false; 1374 return true; 1375 } 1376 1377 return !L->contains(UserInst); 1378 } 1379 1380 void LSRFixup::print(raw_ostream &OS) const { 1381 OS << "UserInst="; 1382 // Store is common and interesting enough to be worth special-casing. 1383 if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) { 1384 OS << "store "; 1385 Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false); 1386 } else if (UserInst->getType()->isVoidTy()) 1387 OS << UserInst->getOpcodeName(); 1388 else 1389 UserInst->printAsOperand(OS, /*PrintType=*/false); 1390 1391 OS << ", OperandValToReplace="; 1392 OperandValToReplace->printAsOperand(OS, /*PrintType=*/false); 1393 1394 for (const Loop *PIL : PostIncLoops) { 1395 OS << ", PostIncLoop="; 1396 PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 1397 } 1398 1399 if (Offset != 0) 1400 OS << ", Offset=" << Offset; 1401 } 1402 1403 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1404 LLVM_DUMP_METHOD void LSRFixup::dump() const { 1405 print(errs()); errs() << '\n'; 1406 } 1407 #endif 1408 1409 /// Test whether this use as a formula which has the same registers as the given 1410 /// formula. 1411 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const { 1412 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1413 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1414 // Unstable sort by host order ok, because this is only used for uniquifying. 1415 std::sort(Key.begin(), Key.end()); 1416 return Uniquifier.count(Key); 1417 } 1418 1419 /// The function returns a probability of selecting formula without Reg. 1420 float LSRUse::getNotSelectedProbability(const SCEV *Reg) const { 1421 unsigned FNum = 0; 1422 for (const Formula &F : Formulae) 1423 if (F.referencesReg(Reg)) 1424 FNum++; 1425 return ((float)(Formulae.size() - FNum)) / Formulae.size(); 1426 } 1427 1428 /// If the given formula has not yet been inserted, add it to the list, and 1429 /// return true. Return false otherwise. The formula must be in canonical form. 1430 bool LSRUse::InsertFormula(const Formula &F, const Loop &L) { 1431 assert(F.isCanonical(L) && "Invalid canonical representation"); 1432 1433 if (!Formulae.empty() && RigidFormula) 1434 return false; 1435 1436 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1437 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1438 // Unstable sort by host order ok, because this is only used for uniquifying. 1439 std::sort(Key.begin(), Key.end()); 1440 1441 if (!Uniquifier.insert(Key).second) 1442 return false; 1443 1444 // Using a register to hold the value of 0 is not profitable. 1445 assert((!F.ScaledReg || !F.ScaledReg->isZero()) && 1446 "Zero allocated in a scaled register!"); 1447 #ifndef NDEBUG 1448 for (const SCEV *BaseReg : F.BaseRegs) 1449 assert(!BaseReg->isZero() && "Zero allocated in a base register!"); 1450 #endif 1451 1452 // Add the formula to the list. 1453 Formulae.push_back(F); 1454 1455 // Record registers now being used by this use. 1456 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1457 if (F.ScaledReg) 1458 Regs.insert(F.ScaledReg); 1459 1460 return true; 1461 } 1462 1463 /// Remove the given formula from this use's list. 1464 void LSRUse::DeleteFormula(Formula &F) { 1465 if (&F != &Formulae.back()) 1466 std::swap(F, Formulae.back()); 1467 Formulae.pop_back(); 1468 } 1469 1470 /// Recompute the Regs field, and update RegUses. 1471 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) { 1472 // Now that we've filtered out some formulae, recompute the Regs set. 1473 SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs); 1474 Regs.clear(); 1475 for (const Formula &F : Formulae) { 1476 if (F.ScaledReg) Regs.insert(F.ScaledReg); 1477 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1478 } 1479 1480 // Update the RegTracker. 1481 for (const SCEV *S : OldRegs) 1482 if (!Regs.count(S)) 1483 RegUses.dropRegister(S, LUIdx); 1484 } 1485 1486 void LSRUse::print(raw_ostream &OS) const { 1487 OS << "LSR Use: Kind="; 1488 switch (Kind) { 1489 case Basic: OS << "Basic"; break; 1490 case Special: OS << "Special"; break; 1491 case ICmpZero: OS << "ICmpZero"; break; 1492 case Address: 1493 OS << "Address of "; 1494 if (AccessTy.MemTy->isPointerTy()) 1495 OS << "pointer"; // the full pointer type could be really verbose 1496 else { 1497 OS << *AccessTy.MemTy; 1498 } 1499 1500 OS << " in addrspace(" << AccessTy.AddrSpace << ')'; 1501 } 1502 1503 OS << ", Offsets={"; 1504 bool NeedComma = false; 1505 for (const LSRFixup &Fixup : Fixups) { 1506 if (NeedComma) OS << ','; 1507 OS << Fixup.Offset; 1508 NeedComma = true; 1509 } 1510 OS << '}'; 1511 1512 if (AllFixupsOutsideLoop) 1513 OS << ", all-fixups-outside-loop"; 1514 1515 if (WidestFixupType) 1516 OS << ", widest fixup type: " << *WidestFixupType; 1517 } 1518 1519 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1520 LLVM_DUMP_METHOD void LSRUse::dump() const { 1521 print(errs()); errs() << '\n'; 1522 } 1523 #endif 1524 1525 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1526 LSRUse::KindType Kind, MemAccessTy AccessTy, 1527 GlobalValue *BaseGV, int64_t BaseOffset, 1528 bool HasBaseReg, int64_t Scale) { 1529 switch (Kind) { 1530 case LSRUse::Address: 1531 return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset, 1532 HasBaseReg, Scale, AccessTy.AddrSpace); 1533 1534 case LSRUse::ICmpZero: 1535 // There's not even a target hook for querying whether it would be legal to 1536 // fold a GV into an ICmp. 1537 if (BaseGV) 1538 return false; 1539 1540 // ICmp only has two operands; don't allow more than two non-trivial parts. 1541 if (Scale != 0 && HasBaseReg && BaseOffset != 0) 1542 return false; 1543 1544 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by 1545 // putting the scaled register in the other operand of the icmp. 1546 if (Scale != 0 && Scale != -1) 1547 return false; 1548 1549 // If we have low-level target information, ask the target if it can fold an 1550 // integer immediate on an icmp. 1551 if (BaseOffset != 0) { 1552 // We have one of: 1553 // ICmpZero BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset 1554 // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset 1555 // Offs is the ICmp immediate. 1556 if (Scale == 0) 1557 // The cast does the right thing with INT64_MIN. 1558 BaseOffset = -(uint64_t)BaseOffset; 1559 return TTI.isLegalICmpImmediate(BaseOffset); 1560 } 1561 1562 // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg 1563 return true; 1564 1565 case LSRUse::Basic: 1566 // Only handle single-register values. 1567 return !BaseGV && Scale == 0 && BaseOffset == 0; 1568 1569 case LSRUse::Special: 1570 // Special case Basic to handle -1 scales. 1571 return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0; 1572 } 1573 1574 llvm_unreachable("Invalid LSRUse Kind!"); 1575 } 1576 1577 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1578 int64_t MinOffset, int64_t MaxOffset, 1579 LSRUse::KindType Kind, MemAccessTy AccessTy, 1580 GlobalValue *BaseGV, int64_t BaseOffset, 1581 bool HasBaseReg, int64_t Scale) { 1582 // Check for overflow. 1583 if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) != 1584 (MinOffset > 0)) 1585 return false; 1586 MinOffset = (uint64_t)BaseOffset + MinOffset; 1587 if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) != 1588 (MaxOffset > 0)) 1589 return false; 1590 MaxOffset = (uint64_t)BaseOffset + MaxOffset; 1591 1592 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset, 1593 HasBaseReg, Scale) && 1594 isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset, 1595 HasBaseReg, Scale); 1596 } 1597 1598 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1599 int64_t MinOffset, int64_t MaxOffset, 1600 LSRUse::KindType Kind, MemAccessTy AccessTy, 1601 const Formula &F, const Loop &L) { 1602 // For the purpose of isAMCompletelyFolded either having a canonical formula 1603 // or a scale not equal to zero is correct. 1604 // Problems may arise from non canonical formulae having a scale == 0. 1605 // Strictly speaking it would best to just rely on canonical formulae. 1606 // However, when we generate the scaled formulae, we first check that the 1607 // scaling factor is profitable before computing the actual ScaledReg for 1608 // compile time sake. 1609 assert((F.isCanonical(L) || F.Scale != 0)); 1610 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1611 F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale); 1612 } 1613 1614 /// Test whether we know how to expand the current formula. 1615 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1616 int64_t MaxOffset, LSRUse::KindType Kind, 1617 MemAccessTy AccessTy, GlobalValue *BaseGV, 1618 int64_t BaseOffset, bool HasBaseReg, int64_t Scale) { 1619 // We know how to expand completely foldable formulae. 1620 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1621 BaseOffset, HasBaseReg, Scale) || 1622 // Or formulae that use a base register produced by a sum of base 1623 // registers. 1624 (Scale == 1 && 1625 isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1626 BaseGV, BaseOffset, true, 0)); 1627 } 1628 1629 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1630 int64_t MaxOffset, LSRUse::KindType Kind, 1631 MemAccessTy AccessTy, const Formula &F) { 1632 return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV, 1633 F.BaseOffset, F.HasBaseReg, F.Scale); 1634 } 1635 1636 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1637 const LSRUse &LU, const Formula &F) { 1638 return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1639 LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg, 1640 F.Scale); 1641 } 1642 1643 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, 1644 const LSRUse &LU, const Formula &F, 1645 const Loop &L) { 1646 if (!F.Scale) 1647 return 0; 1648 1649 // If the use is not completely folded in that instruction, we will have to 1650 // pay an extra cost only for scale != 1. 1651 if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1652 LU.AccessTy, F, L)) 1653 return F.Scale != 1; 1654 1655 switch (LU.Kind) { 1656 case LSRUse::Address: { 1657 // Check the scaling factor cost with both the min and max offsets. 1658 int ScaleCostMinOffset = TTI.getScalingFactorCost( 1659 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg, 1660 F.Scale, LU.AccessTy.AddrSpace); 1661 int ScaleCostMaxOffset = TTI.getScalingFactorCost( 1662 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg, 1663 F.Scale, LU.AccessTy.AddrSpace); 1664 1665 assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 && 1666 "Legal addressing mode has an illegal cost!"); 1667 return std::max(ScaleCostMinOffset, ScaleCostMaxOffset); 1668 } 1669 case LSRUse::ICmpZero: 1670 case LSRUse::Basic: 1671 case LSRUse::Special: 1672 // The use is completely folded, i.e., everything is folded into the 1673 // instruction. 1674 return 0; 1675 } 1676 1677 llvm_unreachable("Invalid LSRUse Kind!"); 1678 } 1679 1680 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1681 LSRUse::KindType Kind, MemAccessTy AccessTy, 1682 GlobalValue *BaseGV, int64_t BaseOffset, 1683 bool HasBaseReg) { 1684 // Fast-path: zero is always foldable. 1685 if (BaseOffset == 0 && !BaseGV) return true; 1686 1687 // Conservatively, create an address with an immediate and a 1688 // base and a scale. 1689 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1690 1691 // Canonicalize a scale of 1 to a base register if the formula doesn't 1692 // already have a base register. 1693 if (!HasBaseReg && Scale == 1) { 1694 Scale = 0; 1695 HasBaseReg = true; 1696 } 1697 1698 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset, 1699 HasBaseReg, Scale); 1700 } 1701 1702 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1703 ScalarEvolution &SE, int64_t MinOffset, 1704 int64_t MaxOffset, LSRUse::KindType Kind, 1705 MemAccessTy AccessTy, const SCEV *S, 1706 bool HasBaseReg) { 1707 // Fast-path: zero is always foldable. 1708 if (S->isZero()) return true; 1709 1710 // Conservatively, create an address with an immediate and a 1711 // base and a scale. 1712 int64_t BaseOffset = ExtractImmediate(S, SE); 1713 GlobalValue *BaseGV = ExtractSymbol(S, SE); 1714 1715 // If there's anything else involved, it's not foldable. 1716 if (!S->isZero()) return false; 1717 1718 // Fast-path: zero is always foldable. 1719 if (BaseOffset == 0 && !BaseGV) return true; 1720 1721 // Conservatively, create an address with an immediate and a 1722 // base and a scale. 1723 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1724 1725 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1726 BaseOffset, HasBaseReg, Scale); 1727 } 1728 1729 namespace { 1730 1731 /// An individual increment in a Chain of IV increments. Relate an IV user to 1732 /// an expression that computes the IV it uses from the IV used by the previous 1733 /// link in the Chain. 1734 /// 1735 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the 1736 /// original IVOperand. The head of the chain's IVOperand is only valid during 1737 /// chain collection, before LSR replaces IV users. During chain generation, 1738 /// IncExpr can be used to find the new IVOperand that computes the same 1739 /// expression. 1740 struct IVInc { 1741 Instruction *UserInst; 1742 Value* IVOperand; 1743 const SCEV *IncExpr; 1744 1745 IVInc(Instruction *U, Value *O, const SCEV *E): 1746 UserInst(U), IVOperand(O), IncExpr(E) {} 1747 }; 1748 1749 // The list of IV increments in program order. We typically add the head of a 1750 // chain without finding subsequent links. 1751 struct IVChain { 1752 SmallVector<IVInc,1> Incs; 1753 const SCEV *ExprBase; 1754 1755 IVChain() : ExprBase(nullptr) {} 1756 1757 IVChain(const IVInc &Head, const SCEV *Base) 1758 : Incs(1, Head), ExprBase(Base) {} 1759 1760 typedef SmallVectorImpl<IVInc>::const_iterator const_iterator; 1761 1762 // Return the first increment in the chain. 1763 const_iterator begin() const { 1764 assert(!Incs.empty()); 1765 return std::next(Incs.begin()); 1766 } 1767 const_iterator end() const { 1768 return Incs.end(); 1769 } 1770 1771 // Returns true if this chain contains any increments. 1772 bool hasIncs() const { return Incs.size() >= 2; } 1773 1774 // Add an IVInc to the end of this chain. 1775 void add(const IVInc &X) { Incs.push_back(X); } 1776 1777 // Returns the last UserInst in the chain. 1778 Instruction *tailUserInst() const { return Incs.back().UserInst; } 1779 1780 // Returns true if IncExpr can be profitably added to this chain. 1781 bool isProfitableIncrement(const SCEV *OperExpr, 1782 const SCEV *IncExpr, 1783 ScalarEvolution&); 1784 }; 1785 1786 /// Helper for CollectChains to track multiple IV increment uses. Distinguish 1787 /// between FarUsers that definitely cross IV increments and NearUsers that may 1788 /// be used between IV increments. 1789 struct ChainUsers { 1790 SmallPtrSet<Instruction*, 4> FarUsers; 1791 SmallPtrSet<Instruction*, 4> NearUsers; 1792 }; 1793 1794 /// This class holds state for the main loop strength reduction logic. 1795 class LSRInstance { 1796 IVUsers &IU; 1797 ScalarEvolution &SE; 1798 DominatorTree &DT; 1799 LoopInfo &LI; 1800 const TargetTransformInfo &TTI; 1801 Loop *const L; 1802 bool Changed; 1803 1804 /// This is the insert position that the current loop's induction variable 1805 /// increment should be placed. In simple loops, this is the latch block's 1806 /// terminator. But in more complicated cases, this is a position which will 1807 /// dominate all the in-loop post-increment users. 1808 Instruction *IVIncInsertPos; 1809 1810 /// Interesting factors between use strides. 1811 /// 1812 /// We explicitly use a SetVector which contains a SmallSet, instead of the 1813 /// default, a SmallDenseSet, because we need to use the full range of 1814 /// int64_ts, and there's currently no good way of doing that with 1815 /// SmallDenseSet. 1816 SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors; 1817 1818 /// Interesting use types, to facilitate truncation reuse. 1819 SmallSetVector<Type *, 4> Types; 1820 1821 /// The list of interesting uses. 1822 SmallVector<LSRUse, 16> Uses; 1823 1824 /// Track which uses use which register candidates. 1825 RegUseTracker RegUses; 1826 1827 // Limit the number of chains to avoid quadratic behavior. We don't expect to 1828 // have more than a few IV increment chains in a loop. Missing a Chain falls 1829 // back to normal LSR behavior for those uses. 1830 static const unsigned MaxChains = 8; 1831 1832 /// IV users can form a chain of IV increments. 1833 SmallVector<IVChain, MaxChains> IVChainVec; 1834 1835 /// IV users that belong to profitable IVChains. 1836 SmallPtrSet<Use*, MaxChains> IVIncSet; 1837 1838 void OptimizeShadowIV(); 1839 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse); 1840 ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse); 1841 void OptimizeLoopTermCond(); 1842 1843 void ChainInstruction(Instruction *UserInst, Instruction *IVOper, 1844 SmallVectorImpl<ChainUsers> &ChainUsersVec); 1845 void FinalizeChain(IVChain &Chain); 1846 void CollectChains(); 1847 void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 1848 SmallVectorImpl<WeakVH> &DeadInsts); 1849 1850 void CollectInterestingTypesAndFactors(); 1851 void CollectFixupsAndInitialFormulae(); 1852 1853 // Support for sharing of LSRUses between LSRFixups. 1854 typedef DenseMap<LSRUse::SCEVUseKindPair, size_t> UseMapTy; 1855 UseMapTy UseMap; 1856 1857 bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, 1858 LSRUse::KindType Kind, MemAccessTy AccessTy); 1859 1860 std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind, 1861 MemAccessTy AccessTy); 1862 1863 void DeleteUse(LSRUse &LU, size_t LUIdx); 1864 1865 LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU); 1866 1867 void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1868 void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1869 void CountRegisters(const Formula &F, size_t LUIdx); 1870 bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F); 1871 1872 void CollectLoopInvariantFixupsAndFormulae(); 1873 1874 void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base, 1875 unsigned Depth = 0); 1876 1877 void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 1878 const Formula &Base, unsigned Depth, 1879 size_t Idx, bool IsScaledReg = false); 1880 void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base); 1881 void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 1882 const Formula &Base, size_t Idx, 1883 bool IsScaledReg = false); 1884 void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1885 void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx, 1886 const Formula &Base, 1887 const SmallVectorImpl<int64_t> &Worklist, 1888 size_t Idx, bool IsScaledReg = false); 1889 void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1890 void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base); 1891 void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base); 1892 void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base); 1893 void GenerateCrossUseConstantOffsets(); 1894 void GenerateAllReuseFormulae(); 1895 1896 void FilterOutUndesirableDedicatedRegisters(); 1897 1898 size_t EstimateSearchSpaceComplexity() const; 1899 void NarrowSearchSpaceByDetectingSupersets(); 1900 void NarrowSearchSpaceByCollapsingUnrolledCode(); 1901 void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 1902 void NarrowSearchSpaceByDeletingCostlyFormulas(); 1903 void NarrowSearchSpaceByPickingWinnerRegs(); 1904 void NarrowSearchSpaceUsingHeuristics(); 1905 1906 void SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 1907 Cost &SolutionCost, 1908 SmallVectorImpl<const Formula *> &Workspace, 1909 const Cost &CurCost, 1910 const SmallPtrSet<const SCEV *, 16> &CurRegs, 1911 DenseSet<const SCEV *> &VisitedRegs) const; 1912 void Solve(SmallVectorImpl<const Formula *> &Solution) const; 1913 1914 BasicBlock::iterator 1915 HoistInsertPosition(BasicBlock::iterator IP, 1916 const SmallVectorImpl<Instruction *> &Inputs) const; 1917 BasicBlock::iterator 1918 AdjustInsertPositionForExpand(BasicBlock::iterator IP, 1919 const LSRFixup &LF, 1920 const LSRUse &LU, 1921 SCEVExpander &Rewriter) const; 1922 1923 Value *Expand(const LSRUse &LU, const LSRFixup &LF, 1924 const Formula &F, 1925 BasicBlock::iterator IP, 1926 SCEVExpander &Rewriter, 1927 SmallVectorImpl<WeakVH> &DeadInsts) const; 1928 void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF, 1929 const Formula &F, 1930 SCEVExpander &Rewriter, 1931 SmallVectorImpl<WeakVH> &DeadInsts) const; 1932 void Rewrite(const LSRUse &LU, const LSRFixup &LF, 1933 const Formula &F, 1934 SCEVExpander &Rewriter, 1935 SmallVectorImpl<WeakVH> &DeadInsts) const; 1936 void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution); 1937 1938 public: 1939 LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT, 1940 LoopInfo &LI, const TargetTransformInfo &TTI); 1941 1942 bool getChanged() const { return Changed; } 1943 1944 void print_factors_and_types(raw_ostream &OS) const; 1945 void print_fixups(raw_ostream &OS) const; 1946 void print_uses(raw_ostream &OS) const; 1947 void print(raw_ostream &OS) const; 1948 void dump() const; 1949 }; 1950 1951 } // end anonymous namespace 1952 1953 /// If IV is used in a int-to-float cast inside the loop then try to eliminate 1954 /// the cast operation. 1955 void LSRInstance::OptimizeShadowIV() { 1956 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 1957 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 1958 return; 1959 1960 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); 1961 UI != E; /* empty */) { 1962 IVUsers::const_iterator CandidateUI = UI; 1963 ++UI; 1964 Instruction *ShadowUse = CandidateUI->getUser(); 1965 Type *DestTy = nullptr; 1966 bool IsSigned = false; 1967 1968 /* If shadow use is a int->float cast then insert a second IV 1969 to eliminate this cast. 1970 1971 for (unsigned i = 0; i < n; ++i) 1972 foo((double)i); 1973 1974 is transformed into 1975 1976 double d = 0.0; 1977 for (unsigned i = 0; i < n; ++i, ++d) 1978 foo(d); 1979 */ 1980 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) { 1981 IsSigned = false; 1982 DestTy = UCast->getDestTy(); 1983 } 1984 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) { 1985 IsSigned = true; 1986 DestTy = SCast->getDestTy(); 1987 } 1988 if (!DestTy) continue; 1989 1990 // If target does not support DestTy natively then do not apply 1991 // this transformation. 1992 if (!TTI.isTypeLegal(DestTy)) continue; 1993 1994 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0)); 1995 if (!PH) continue; 1996 if (PH->getNumIncomingValues() != 2) continue; 1997 1998 Type *SrcTy = PH->getType(); 1999 int Mantissa = DestTy->getFPMantissaWidth(); 2000 if (Mantissa == -1) continue; 2001 if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa) 2002 continue; 2003 2004 unsigned Entry, Latch; 2005 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) { 2006 Entry = 0; 2007 Latch = 1; 2008 } else { 2009 Entry = 1; 2010 Latch = 0; 2011 } 2012 2013 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry)); 2014 if (!Init) continue; 2015 Constant *NewInit = ConstantFP::get(DestTy, IsSigned ? 2016 (double)Init->getSExtValue() : 2017 (double)Init->getZExtValue()); 2018 2019 BinaryOperator *Incr = 2020 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch)); 2021 if (!Incr) continue; 2022 if (Incr->getOpcode() != Instruction::Add 2023 && Incr->getOpcode() != Instruction::Sub) 2024 continue; 2025 2026 /* Initialize new IV, double d = 0.0 in above example. */ 2027 ConstantInt *C = nullptr; 2028 if (Incr->getOperand(0) == PH) 2029 C = dyn_cast<ConstantInt>(Incr->getOperand(1)); 2030 else if (Incr->getOperand(1) == PH) 2031 C = dyn_cast<ConstantInt>(Incr->getOperand(0)); 2032 else 2033 continue; 2034 2035 if (!C) continue; 2036 2037 // Ignore negative constants, as the code below doesn't handle them 2038 // correctly. TODO: Remove this restriction. 2039 if (!C->getValue().isStrictlyPositive()) continue; 2040 2041 /* Add new PHINode. */ 2042 PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH); 2043 2044 /* create new increment. '++d' in above example. */ 2045 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue()); 2046 BinaryOperator *NewIncr = 2047 BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ? 2048 Instruction::FAdd : Instruction::FSub, 2049 NewPH, CFP, "IV.S.next.", Incr); 2050 2051 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry)); 2052 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch)); 2053 2054 /* Remove cast operation */ 2055 ShadowUse->replaceAllUsesWith(NewPH); 2056 ShadowUse->eraseFromParent(); 2057 Changed = true; 2058 break; 2059 } 2060 } 2061 2062 /// If Cond has an operand that is an expression of an IV, set the IV user and 2063 /// stride information and return true, otherwise return false. 2064 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) { 2065 for (IVStrideUse &U : IU) 2066 if (U.getUser() == Cond) { 2067 // NOTE: we could handle setcc instructions with multiple uses here, but 2068 // InstCombine does it as well for simple uses, it's not clear that it 2069 // occurs enough in real life to handle. 2070 CondUse = &U; 2071 return true; 2072 } 2073 return false; 2074 } 2075 2076 /// Rewrite the loop's terminating condition if it uses a max computation. 2077 /// 2078 /// This is a narrow solution to a specific, but acute, problem. For loops 2079 /// like this: 2080 /// 2081 /// i = 0; 2082 /// do { 2083 /// p[i] = 0.0; 2084 /// } while (++i < n); 2085 /// 2086 /// the trip count isn't just 'n', because 'n' might not be positive. And 2087 /// unfortunately this can come up even for loops where the user didn't use 2088 /// a C do-while loop. For example, seemingly well-behaved top-test loops 2089 /// will commonly be lowered like this: 2090 // 2091 /// if (n > 0) { 2092 /// i = 0; 2093 /// do { 2094 /// p[i] = 0.0; 2095 /// } while (++i < n); 2096 /// } 2097 /// 2098 /// and then it's possible for subsequent optimization to obscure the if 2099 /// test in such a way that indvars can't find it. 2100 /// 2101 /// When indvars can't find the if test in loops like this, it creates a 2102 /// max expression, which allows it to give the loop a canonical 2103 /// induction variable: 2104 /// 2105 /// i = 0; 2106 /// max = n < 1 ? 1 : n; 2107 /// do { 2108 /// p[i] = 0.0; 2109 /// } while (++i != max); 2110 /// 2111 /// Canonical induction variables are necessary because the loop passes 2112 /// are designed around them. The most obvious example of this is the 2113 /// LoopInfo analysis, which doesn't remember trip count values. It 2114 /// expects to be able to rediscover the trip count each time it is 2115 /// needed, and it does this using a simple analysis that only succeeds if 2116 /// the loop has a canonical induction variable. 2117 /// 2118 /// However, when it comes time to generate code, the maximum operation 2119 /// can be quite costly, especially if it's inside of an outer loop. 2120 /// 2121 /// This function solves this problem by detecting this type of loop and 2122 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting 2123 /// the instructions for the maximum computation. 2124 /// 2125 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) { 2126 // Check that the loop matches the pattern we're looking for. 2127 if (Cond->getPredicate() != CmpInst::ICMP_EQ && 2128 Cond->getPredicate() != CmpInst::ICMP_NE) 2129 return Cond; 2130 2131 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1)); 2132 if (!Sel || !Sel->hasOneUse()) return Cond; 2133 2134 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 2135 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2136 return Cond; 2137 const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1); 2138 2139 // Add one to the backedge-taken count to get the trip count. 2140 const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount); 2141 if (IterationCount != SE.getSCEV(Sel)) return Cond; 2142 2143 // Check for a max calculation that matches the pattern. There's no check 2144 // for ICMP_ULE here because the comparison would be with zero, which 2145 // isn't interesting. 2146 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 2147 const SCEVNAryExpr *Max = nullptr; 2148 if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) { 2149 Pred = ICmpInst::ICMP_SLE; 2150 Max = S; 2151 } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) { 2152 Pred = ICmpInst::ICMP_SLT; 2153 Max = S; 2154 } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) { 2155 Pred = ICmpInst::ICMP_ULT; 2156 Max = U; 2157 } else { 2158 // No match; bail. 2159 return Cond; 2160 } 2161 2162 // To handle a max with more than two operands, this optimization would 2163 // require additional checking and setup. 2164 if (Max->getNumOperands() != 2) 2165 return Cond; 2166 2167 const SCEV *MaxLHS = Max->getOperand(0); 2168 const SCEV *MaxRHS = Max->getOperand(1); 2169 2170 // ScalarEvolution canonicalizes constants to the left. For < and >, look 2171 // for a comparison with 1. For <= and >=, a comparison with zero. 2172 if (!MaxLHS || 2173 (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One))) 2174 return Cond; 2175 2176 // Check the relevant induction variable for conformance to 2177 // the pattern. 2178 const SCEV *IV = SE.getSCEV(Cond->getOperand(0)); 2179 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV); 2180 if (!AR || !AR->isAffine() || 2181 AR->getStart() != One || 2182 AR->getStepRecurrence(SE) != One) 2183 return Cond; 2184 2185 assert(AR->getLoop() == L && 2186 "Loop condition operand is an addrec in a different loop!"); 2187 2188 // Check the right operand of the select, and remember it, as it will 2189 // be used in the new comparison instruction. 2190 Value *NewRHS = nullptr; 2191 if (ICmpInst::isTrueWhenEqual(Pred)) { 2192 // Look for n+1, and grab n. 2193 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1))) 2194 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2195 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2196 NewRHS = BO->getOperand(0); 2197 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2))) 2198 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2199 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2200 NewRHS = BO->getOperand(0); 2201 if (!NewRHS) 2202 return Cond; 2203 } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS) 2204 NewRHS = Sel->getOperand(1); 2205 else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS) 2206 NewRHS = Sel->getOperand(2); 2207 else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS)) 2208 NewRHS = SU->getValue(); 2209 else 2210 // Max doesn't match expected pattern. 2211 return Cond; 2212 2213 // Determine the new comparison opcode. It may be signed or unsigned, 2214 // and the original comparison may be either equality or inequality. 2215 if (Cond->getPredicate() == CmpInst::ICMP_EQ) 2216 Pred = CmpInst::getInversePredicate(Pred); 2217 2218 // Ok, everything looks ok to change the condition into an SLT or SGE and 2219 // delete the max calculation. 2220 ICmpInst *NewCond = 2221 new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp"); 2222 2223 // Delete the max calculation instructions. 2224 Cond->replaceAllUsesWith(NewCond); 2225 CondUse->setUser(NewCond); 2226 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0)); 2227 Cond->eraseFromParent(); 2228 Sel->eraseFromParent(); 2229 if (Cmp->use_empty()) 2230 Cmp->eraseFromParent(); 2231 return NewCond; 2232 } 2233 2234 /// Change loop terminating condition to use the postinc iv when possible. 2235 void 2236 LSRInstance::OptimizeLoopTermCond() { 2237 SmallPtrSet<Instruction *, 4> PostIncs; 2238 2239 // We need a different set of heuristics for rotated and non-rotated loops. 2240 // If a loop is rotated then the latch is also the backedge, so inserting 2241 // post-inc expressions just before the latch is ideal. To reduce live ranges 2242 // it also makes sense to rewrite terminating conditions to use post-inc 2243 // expressions. 2244 // 2245 // If the loop is not rotated then the latch is not a backedge; the latch 2246 // check is done in the loop head. Adding post-inc expressions before the 2247 // latch will cause overlapping live-ranges of pre-inc and post-inc expressions 2248 // in the loop body. In this case we do *not* want to use post-inc expressions 2249 // in the latch check, and we want to insert post-inc expressions before 2250 // the backedge. 2251 BasicBlock *LatchBlock = L->getLoopLatch(); 2252 SmallVector<BasicBlock*, 8> ExitingBlocks; 2253 L->getExitingBlocks(ExitingBlocks); 2254 if (llvm::all_of(ExitingBlocks, [&LatchBlock](const BasicBlock *BB) { 2255 return LatchBlock != BB; 2256 })) { 2257 // The backedge doesn't exit the loop; treat this as a head-tested loop. 2258 IVIncInsertPos = LatchBlock->getTerminator(); 2259 return; 2260 } 2261 2262 // Otherwise treat this as a rotated loop. 2263 for (BasicBlock *ExitingBlock : ExitingBlocks) { 2264 2265 // Get the terminating condition for the loop if possible. If we 2266 // can, we want to change it to use a post-incremented version of its 2267 // induction variable, to allow coalescing the live ranges for the IV into 2268 // one register value. 2269 2270 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 2271 if (!TermBr) 2272 continue; 2273 // FIXME: Overly conservative, termination condition could be an 'or' etc.. 2274 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition())) 2275 continue; 2276 2277 // Search IVUsesByStride to find Cond's IVUse if there is one. 2278 IVStrideUse *CondUse = nullptr; 2279 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition()); 2280 if (!FindIVUserForCond(Cond, CondUse)) 2281 continue; 2282 2283 // If the trip count is computed in terms of a max (due to ScalarEvolution 2284 // being unable to find a sufficient guard, for example), change the loop 2285 // comparison to use SLT or ULT instead of NE. 2286 // One consequence of doing this now is that it disrupts the count-down 2287 // optimization. That's not always a bad thing though, because in such 2288 // cases it may still be worthwhile to avoid a max. 2289 Cond = OptimizeMax(Cond, CondUse); 2290 2291 // If this exiting block dominates the latch block, it may also use 2292 // the post-inc value if it won't be shared with other uses. 2293 // Check for dominance. 2294 if (!DT.dominates(ExitingBlock, LatchBlock)) 2295 continue; 2296 2297 // Conservatively avoid trying to use the post-inc value in non-latch 2298 // exits if there may be pre-inc users in intervening blocks. 2299 if (LatchBlock != ExitingBlock) 2300 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) 2301 // Test if the use is reachable from the exiting block. This dominator 2302 // query is a conservative approximation of reachability. 2303 if (&*UI != CondUse && 2304 !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) { 2305 // Conservatively assume there may be reuse if the quotient of their 2306 // strides could be a legal scale. 2307 const SCEV *A = IU.getStride(*CondUse, L); 2308 const SCEV *B = IU.getStride(*UI, L); 2309 if (!A || !B) continue; 2310 if (SE.getTypeSizeInBits(A->getType()) != 2311 SE.getTypeSizeInBits(B->getType())) { 2312 if (SE.getTypeSizeInBits(A->getType()) > 2313 SE.getTypeSizeInBits(B->getType())) 2314 B = SE.getSignExtendExpr(B, A->getType()); 2315 else 2316 A = SE.getSignExtendExpr(A, B->getType()); 2317 } 2318 if (const SCEVConstant *D = 2319 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) { 2320 const ConstantInt *C = D->getValue(); 2321 // Stride of one or negative one can have reuse with non-addresses. 2322 if (C->isOne() || C->isAllOnesValue()) 2323 goto decline_post_inc; 2324 // Avoid weird situations. 2325 if (C->getValue().getMinSignedBits() >= 64 || 2326 C->getValue().isMinSignedValue()) 2327 goto decline_post_inc; 2328 // Check for possible scaled-address reuse. 2329 MemAccessTy AccessTy = getAccessType(UI->getUser()); 2330 int64_t Scale = C->getSExtValue(); 2331 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2332 /*BaseOffset=*/0, 2333 /*HasBaseReg=*/false, Scale, 2334 AccessTy.AddrSpace)) 2335 goto decline_post_inc; 2336 Scale = -Scale; 2337 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2338 /*BaseOffset=*/0, 2339 /*HasBaseReg=*/false, Scale, 2340 AccessTy.AddrSpace)) 2341 goto decline_post_inc; 2342 } 2343 } 2344 2345 DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: " 2346 << *Cond << '\n'); 2347 2348 // It's possible for the setcc instruction to be anywhere in the loop, and 2349 // possible for it to have multiple users. If it is not immediately before 2350 // the exiting block branch, move it. 2351 if (&*++BasicBlock::iterator(Cond) != TermBr) { 2352 if (Cond->hasOneUse()) { 2353 Cond->moveBefore(TermBr); 2354 } else { 2355 // Clone the terminating condition and insert into the loopend. 2356 ICmpInst *OldCond = Cond; 2357 Cond = cast<ICmpInst>(Cond->clone()); 2358 Cond->setName(L->getHeader()->getName() + ".termcond"); 2359 ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond); 2360 2361 // Clone the IVUse, as the old use still exists! 2362 CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace()); 2363 TermBr->replaceUsesOfWith(OldCond, Cond); 2364 } 2365 } 2366 2367 // If we get to here, we know that we can transform the setcc instruction to 2368 // use the post-incremented version of the IV, allowing us to coalesce the 2369 // live ranges for the IV correctly. 2370 CondUse->transformToPostInc(L); 2371 Changed = true; 2372 2373 PostIncs.insert(Cond); 2374 decline_post_inc:; 2375 } 2376 2377 // Determine an insertion point for the loop induction variable increment. It 2378 // must dominate all the post-inc comparisons we just set up, and it must 2379 // dominate the loop latch edge. 2380 IVIncInsertPos = L->getLoopLatch()->getTerminator(); 2381 for (Instruction *Inst : PostIncs) { 2382 BasicBlock *BB = 2383 DT.findNearestCommonDominator(IVIncInsertPos->getParent(), 2384 Inst->getParent()); 2385 if (BB == Inst->getParent()) 2386 IVIncInsertPos = Inst; 2387 else if (BB != IVIncInsertPos->getParent()) 2388 IVIncInsertPos = BB->getTerminator(); 2389 } 2390 } 2391 2392 /// Determine if the given use can accommodate a fixup at the given offset and 2393 /// other details. If so, update the use and return true. 2394 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, 2395 bool HasBaseReg, LSRUse::KindType Kind, 2396 MemAccessTy AccessTy) { 2397 int64_t NewMinOffset = LU.MinOffset; 2398 int64_t NewMaxOffset = LU.MaxOffset; 2399 MemAccessTy NewAccessTy = AccessTy; 2400 2401 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to 2402 // something conservative, however this can pessimize in the case that one of 2403 // the uses will have all its uses outside the loop, for example. 2404 if (LU.Kind != Kind) 2405 return false; 2406 2407 // Check for a mismatched access type, and fall back conservatively as needed. 2408 // TODO: Be less conservative when the type is similar and can use the same 2409 // addressing modes. 2410 if (Kind == LSRUse::Address) { 2411 if (AccessTy.MemTy != LU.AccessTy.MemTy) { 2412 NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(), 2413 AccessTy.AddrSpace); 2414 } 2415 } 2416 2417 // Conservatively assume HasBaseReg is true for now. 2418 if (NewOffset < LU.MinOffset) { 2419 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2420 LU.MaxOffset - NewOffset, HasBaseReg)) 2421 return false; 2422 NewMinOffset = NewOffset; 2423 } else if (NewOffset > LU.MaxOffset) { 2424 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2425 NewOffset - LU.MinOffset, HasBaseReg)) 2426 return false; 2427 NewMaxOffset = NewOffset; 2428 } 2429 2430 // Update the use. 2431 LU.MinOffset = NewMinOffset; 2432 LU.MaxOffset = NewMaxOffset; 2433 LU.AccessTy = NewAccessTy; 2434 return true; 2435 } 2436 2437 /// Return an LSRUse index and an offset value for a fixup which needs the given 2438 /// expression, with the given kind and optional access type. Either reuse an 2439 /// existing use or create a new one, as needed. 2440 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr, 2441 LSRUse::KindType Kind, 2442 MemAccessTy AccessTy) { 2443 const SCEV *Copy = Expr; 2444 int64_t Offset = ExtractImmediate(Expr, SE); 2445 2446 // Basic uses can't accept any offset, for example. 2447 if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr, 2448 Offset, /*HasBaseReg=*/ true)) { 2449 Expr = Copy; 2450 Offset = 0; 2451 } 2452 2453 std::pair<UseMapTy::iterator, bool> P = 2454 UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0)); 2455 if (!P.second) { 2456 // A use already existed with this base. 2457 size_t LUIdx = P.first->second; 2458 LSRUse &LU = Uses[LUIdx]; 2459 if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy)) 2460 // Reuse this use. 2461 return std::make_pair(LUIdx, Offset); 2462 } 2463 2464 // Create a new use. 2465 size_t LUIdx = Uses.size(); 2466 P.first->second = LUIdx; 2467 Uses.push_back(LSRUse(Kind, AccessTy)); 2468 LSRUse &LU = Uses[LUIdx]; 2469 2470 LU.MinOffset = Offset; 2471 LU.MaxOffset = Offset; 2472 return std::make_pair(LUIdx, Offset); 2473 } 2474 2475 /// Delete the given use from the Uses list. 2476 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) { 2477 if (&LU != &Uses.back()) 2478 std::swap(LU, Uses.back()); 2479 Uses.pop_back(); 2480 2481 // Update RegUses. 2482 RegUses.swapAndDropUse(LUIdx, Uses.size()); 2483 } 2484 2485 /// Look for a use distinct from OrigLU which is has a formula that has the same 2486 /// registers as the given formula. 2487 LSRUse * 2488 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF, 2489 const LSRUse &OrigLU) { 2490 // Search all uses for the formula. This could be more clever. 2491 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 2492 LSRUse &LU = Uses[LUIdx]; 2493 // Check whether this use is close enough to OrigLU, to see whether it's 2494 // worthwhile looking through its formulae. 2495 // Ignore ICmpZero uses because they may contain formulae generated by 2496 // GenerateICmpZeroScales, in which case adding fixup offsets may 2497 // be invalid. 2498 if (&LU != &OrigLU && 2499 LU.Kind != LSRUse::ICmpZero && 2500 LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy && 2501 LU.WidestFixupType == OrigLU.WidestFixupType && 2502 LU.HasFormulaWithSameRegs(OrigF)) { 2503 // Scan through this use's formulae. 2504 for (const Formula &F : LU.Formulae) { 2505 // Check to see if this formula has the same registers and symbols 2506 // as OrigF. 2507 if (F.BaseRegs == OrigF.BaseRegs && 2508 F.ScaledReg == OrigF.ScaledReg && 2509 F.BaseGV == OrigF.BaseGV && 2510 F.Scale == OrigF.Scale && 2511 F.UnfoldedOffset == OrigF.UnfoldedOffset) { 2512 if (F.BaseOffset == 0) 2513 return &LU; 2514 // This is the formula where all the registers and symbols matched; 2515 // there aren't going to be any others. Since we declined it, we 2516 // can skip the rest of the formulae and proceed to the next LSRUse. 2517 break; 2518 } 2519 } 2520 } 2521 } 2522 2523 // Nothing looked good. 2524 return nullptr; 2525 } 2526 2527 void LSRInstance::CollectInterestingTypesAndFactors() { 2528 SmallSetVector<const SCEV *, 4> Strides; 2529 2530 // Collect interesting types and strides. 2531 SmallVector<const SCEV *, 4> Worklist; 2532 for (const IVStrideUse &U : IU) { 2533 const SCEV *Expr = IU.getExpr(U); 2534 2535 // Collect interesting types. 2536 Types.insert(SE.getEffectiveSCEVType(Expr->getType())); 2537 2538 // Add strides for mentioned loops. 2539 Worklist.push_back(Expr); 2540 do { 2541 const SCEV *S = Worklist.pop_back_val(); 2542 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2543 if (AR->getLoop() == L) 2544 Strides.insert(AR->getStepRecurrence(SE)); 2545 Worklist.push_back(AR->getStart()); 2546 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2547 Worklist.append(Add->op_begin(), Add->op_end()); 2548 } 2549 } while (!Worklist.empty()); 2550 } 2551 2552 // Compute interesting factors from the set of interesting strides. 2553 for (SmallSetVector<const SCEV *, 4>::const_iterator 2554 I = Strides.begin(), E = Strides.end(); I != E; ++I) 2555 for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter = 2556 std::next(I); NewStrideIter != E; ++NewStrideIter) { 2557 const SCEV *OldStride = *I; 2558 const SCEV *NewStride = *NewStrideIter; 2559 2560 if (SE.getTypeSizeInBits(OldStride->getType()) != 2561 SE.getTypeSizeInBits(NewStride->getType())) { 2562 if (SE.getTypeSizeInBits(OldStride->getType()) > 2563 SE.getTypeSizeInBits(NewStride->getType())) 2564 NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType()); 2565 else 2566 OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType()); 2567 } 2568 if (const SCEVConstant *Factor = 2569 dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride, 2570 SE, true))) { 2571 if (Factor->getAPInt().getMinSignedBits() <= 64) 2572 Factors.insert(Factor->getAPInt().getSExtValue()); 2573 } else if (const SCEVConstant *Factor = 2574 dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride, 2575 NewStride, 2576 SE, true))) { 2577 if (Factor->getAPInt().getMinSignedBits() <= 64) 2578 Factors.insert(Factor->getAPInt().getSExtValue()); 2579 } 2580 } 2581 2582 // If all uses use the same type, don't bother looking for truncation-based 2583 // reuse. 2584 if (Types.size() == 1) 2585 Types.clear(); 2586 2587 DEBUG(print_factors_and_types(dbgs())); 2588 } 2589 2590 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in 2591 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to 2592 /// IVStrideUses, we could partially skip this. 2593 static User::op_iterator 2594 findIVOperand(User::op_iterator OI, User::op_iterator OE, 2595 Loop *L, ScalarEvolution &SE) { 2596 for(; OI != OE; ++OI) { 2597 if (Instruction *Oper = dyn_cast<Instruction>(*OI)) { 2598 if (!SE.isSCEVable(Oper->getType())) 2599 continue; 2600 2601 if (const SCEVAddRecExpr *AR = 2602 dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) { 2603 if (AR->getLoop() == L) 2604 break; 2605 } 2606 } 2607 } 2608 return OI; 2609 } 2610 2611 /// IVChain logic must consistenctly peek base TruncInst operands, so wrap it in 2612 /// a convenient helper. 2613 static Value *getWideOperand(Value *Oper) { 2614 if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper)) 2615 return Trunc->getOperand(0); 2616 return Oper; 2617 } 2618 2619 /// Return true if we allow an IV chain to include both types. 2620 static bool isCompatibleIVType(Value *LVal, Value *RVal) { 2621 Type *LType = LVal->getType(); 2622 Type *RType = RVal->getType(); 2623 return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy() && 2624 // Different address spaces means (possibly) 2625 // different types of the pointer implementation, 2626 // e.g. i16 vs i32 so disallow that. 2627 (LType->getPointerAddressSpace() == 2628 RType->getPointerAddressSpace())); 2629 } 2630 2631 /// Return an approximation of this SCEV expression's "base", or NULL for any 2632 /// constant. Returning the expression itself is conservative. Returning a 2633 /// deeper subexpression is more precise and valid as long as it isn't less 2634 /// complex than another subexpression. For expressions involving multiple 2635 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids 2636 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i], 2637 /// IVInc==b-a. 2638 /// 2639 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost 2640 /// SCEVUnknown, we simply return the rightmost SCEV operand. 2641 static const SCEV *getExprBase(const SCEV *S) { 2642 switch (S->getSCEVType()) { 2643 default: // uncluding scUnknown. 2644 return S; 2645 case scConstant: 2646 return nullptr; 2647 case scTruncate: 2648 return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand()); 2649 case scZeroExtend: 2650 return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand()); 2651 case scSignExtend: 2652 return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand()); 2653 case scAddExpr: { 2654 // Skip over scaled operands (scMulExpr) to follow add operands as long as 2655 // there's nothing more complex. 2656 // FIXME: not sure if we want to recognize negation. 2657 const SCEVAddExpr *Add = cast<SCEVAddExpr>(S); 2658 for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()), 2659 E(Add->op_begin()); I != E; ++I) { 2660 const SCEV *SubExpr = *I; 2661 if (SubExpr->getSCEVType() == scAddExpr) 2662 return getExprBase(SubExpr); 2663 2664 if (SubExpr->getSCEVType() != scMulExpr) 2665 return SubExpr; 2666 } 2667 return S; // all operands are scaled, be conservative. 2668 } 2669 case scAddRecExpr: 2670 return getExprBase(cast<SCEVAddRecExpr>(S)->getStart()); 2671 } 2672 } 2673 2674 /// Return true if the chain increment is profitable to expand into a loop 2675 /// invariant value, which may require its own register. A profitable chain 2676 /// increment will be an offset relative to the same base. We allow such offsets 2677 /// to potentially be used as chain increment as long as it's not obviously 2678 /// expensive to expand using real instructions. 2679 bool IVChain::isProfitableIncrement(const SCEV *OperExpr, 2680 const SCEV *IncExpr, 2681 ScalarEvolution &SE) { 2682 // Aggressively form chains when -stress-ivchain. 2683 if (StressIVChain) 2684 return true; 2685 2686 // Do not replace a constant offset from IV head with a nonconstant IV 2687 // increment. 2688 if (!isa<SCEVConstant>(IncExpr)) { 2689 const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand)); 2690 if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr))) 2691 return false; 2692 } 2693 2694 SmallPtrSet<const SCEV*, 8> Processed; 2695 return !isHighCostExpansion(IncExpr, Processed, SE); 2696 } 2697 2698 /// Return true if the number of registers needed for the chain is estimated to 2699 /// be less than the number required for the individual IV users. First prohibit 2700 /// any IV users that keep the IV live across increments (the Users set should 2701 /// be empty). Next count the number and type of increments in the chain. 2702 /// 2703 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't 2704 /// effectively use postinc addressing modes. Only consider it profitable it the 2705 /// increments can be computed in fewer registers when chained. 2706 /// 2707 /// TODO: Consider IVInc free if it's already used in another chains. 2708 static bool 2709 isProfitableChain(IVChain &Chain, SmallPtrSetImpl<Instruction*> &Users, 2710 ScalarEvolution &SE, const TargetTransformInfo &TTI) { 2711 if (StressIVChain) 2712 return true; 2713 2714 if (!Chain.hasIncs()) 2715 return false; 2716 2717 if (!Users.empty()) { 2718 DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n"; 2719 for (Instruction *Inst : Users) { 2720 dbgs() << " " << *Inst << "\n"; 2721 }); 2722 return false; 2723 } 2724 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 2725 2726 // The chain itself may require a register, so intialize cost to 1. 2727 int cost = 1; 2728 2729 // A complete chain likely eliminates the need for keeping the original IV in 2730 // a register. LSR does not currently know how to form a complete chain unless 2731 // the header phi already exists. 2732 if (isa<PHINode>(Chain.tailUserInst()) 2733 && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) { 2734 --cost; 2735 } 2736 const SCEV *LastIncExpr = nullptr; 2737 unsigned NumConstIncrements = 0; 2738 unsigned NumVarIncrements = 0; 2739 unsigned NumReusedIncrements = 0; 2740 for (const IVInc &Inc : Chain) { 2741 if (Inc.IncExpr->isZero()) 2742 continue; 2743 2744 // Incrementing by zero or some constant is neutral. We assume constants can 2745 // be folded into an addressing mode or an add's immediate operand. 2746 if (isa<SCEVConstant>(Inc.IncExpr)) { 2747 ++NumConstIncrements; 2748 continue; 2749 } 2750 2751 if (Inc.IncExpr == LastIncExpr) 2752 ++NumReusedIncrements; 2753 else 2754 ++NumVarIncrements; 2755 2756 LastIncExpr = Inc.IncExpr; 2757 } 2758 // An IV chain with a single increment is handled by LSR's postinc 2759 // uses. However, a chain with multiple increments requires keeping the IV's 2760 // value live longer than it needs to be if chained. 2761 if (NumConstIncrements > 1) 2762 --cost; 2763 2764 // Materializing increment expressions in the preheader that didn't exist in 2765 // the original code may cost a register. For example, sign-extended array 2766 // indices can produce ridiculous increments like this: 2767 // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64))) 2768 cost += NumVarIncrements; 2769 2770 // Reusing variable increments likely saves a register to hold the multiple of 2771 // the stride. 2772 cost -= NumReusedIncrements; 2773 2774 DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost 2775 << "\n"); 2776 2777 return cost < 0; 2778 } 2779 2780 /// Add this IV user to an existing chain or make it the head of a new chain. 2781 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper, 2782 SmallVectorImpl<ChainUsers> &ChainUsersVec) { 2783 // When IVs are used as types of varying widths, they are generally converted 2784 // to a wider type with some uses remaining narrow under a (free) trunc. 2785 Value *const NextIV = getWideOperand(IVOper); 2786 const SCEV *const OperExpr = SE.getSCEV(NextIV); 2787 const SCEV *const OperExprBase = getExprBase(OperExpr); 2788 2789 // Visit all existing chains. Check if its IVOper can be computed as a 2790 // profitable loop invariant increment from the last link in the Chain. 2791 unsigned ChainIdx = 0, NChains = IVChainVec.size(); 2792 const SCEV *LastIncExpr = nullptr; 2793 for (; ChainIdx < NChains; ++ChainIdx) { 2794 IVChain &Chain = IVChainVec[ChainIdx]; 2795 2796 // Prune the solution space aggressively by checking that both IV operands 2797 // are expressions that operate on the same unscaled SCEVUnknown. This 2798 // "base" will be canceled by the subsequent getMinusSCEV call. Checking 2799 // first avoids creating extra SCEV expressions. 2800 if (!StressIVChain && Chain.ExprBase != OperExprBase) 2801 continue; 2802 2803 Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand); 2804 if (!isCompatibleIVType(PrevIV, NextIV)) 2805 continue; 2806 2807 // A phi node terminates a chain. 2808 if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst())) 2809 continue; 2810 2811 // The increment must be loop-invariant so it can be kept in a register. 2812 const SCEV *PrevExpr = SE.getSCEV(PrevIV); 2813 const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr); 2814 if (!SE.isLoopInvariant(IncExpr, L)) 2815 continue; 2816 2817 if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) { 2818 LastIncExpr = IncExpr; 2819 break; 2820 } 2821 } 2822 // If we haven't found a chain, create a new one, unless we hit the max. Don't 2823 // bother for phi nodes, because they must be last in the chain. 2824 if (ChainIdx == NChains) { 2825 if (isa<PHINode>(UserInst)) 2826 return; 2827 if (NChains >= MaxChains && !StressIVChain) { 2828 DEBUG(dbgs() << "IV Chain Limit\n"); 2829 return; 2830 } 2831 LastIncExpr = OperExpr; 2832 // IVUsers may have skipped over sign/zero extensions. We don't currently 2833 // attempt to form chains involving extensions unless they can be hoisted 2834 // into this loop's AddRec. 2835 if (!isa<SCEVAddRecExpr>(LastIncExpr)) 2836 return; 2837 ++NChains; 2838 IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr), 2839 OperExprBase)); 2840 ChainUsersVec.resize(NChains); 2841 DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst 2842 << ") IV=" << *LastIncExpr << "\n"); 2843 } else { 2844 DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Inc: (" << *UserInst 2845 << ") IV+" << *LastIncExpr << "\n"); 2846 // Add this IV user to the end of the chain. 2847 IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr)); 2848 } 2849 IVChain &Chain = IVChainVec[ChainIdx]; 2850 2851 SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers; 2852 // This chain's NearUsers become FarUsers. 2853 if (!LastIncExpr->isZero()) { 2854 ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(), 2855 NearUsers.end()); 2856 NearUsers.clear(); 2857 } 2858 2859 // All other uses of IVOperand become near uses of the chain. 2860 // We currently ignore intermediate values within SCEV expressions, assuming 2861 // they will eventually be used be the current chain, or can be computed 2862 // from one of the chain increments. To be more precise we could 2863 // transitively follow its user and only add leaf IV users to the set. 2864 for (User *U : IVOper->users()) { 2865 Instruction *OtherUse = dyn_cast<Instruction>(U); 2866 if (!OtherUse) 2867 continue; 2868 // Uses in the chain will no longer be uses if the chain is formed. 2869 // Include the head of the chain in this iteration (not Chain.begin()). 2870 IVChain::const_iterator IncIter = Chain.Incs.begin(); 2871 IVChain::const_iterator IncEnd = Chain.Incs.end(); 2872 for( ; IncIter != IncEnd; ++IncIter) { 2873 if (IncIter->UserInst == OtherUse) 2874 break; 2875 } 2876 if (IncIter != IncEnd) 2877 continue; 2878 2879 if (SE.isSCEVable(OtherUse->getType()) 2880 && !isa<SCEVUnknown>(SE.getSCEV(OtherUse)) 2881 && IU.isIVUserOrOperand(OtherUse)) { 2882 continue; 2883 } 2884 NearUsers.insert(OtherUse); 2885 } 2886 2887 // Since this user is part of the chain, it's no longer considered a use 2888 // of the chain. 2889 ChainUsersVec[ChainIdx].FarUsers.erase(UserInst); 2890 } 2891 2892 /// Populate the vector of Chains. 2893 /// 2894 /// This decreases ILP at the architecture level. Targets with ample registers, 2895 /// multiple memory ports, and no register renaming probably don't want 2896 /// this. However, such targets should probably disable LSR altogether. 2897 /// 2898 /// The job of LSR is to make a reasonable choice of induction variables across 2899 /// the loop. Subsequent passes can easily "unchain" computation exposing more 2900 /// ILP *within the loop* if the target wants it. 2901 /// 2902 /// Finding the best IV chain is potentially a scheduling problem. Since LSR 2903 /// will not reorder memory operations, it will recognize this as a chain, but 2904 /// will generate redundant IV increments. Ideally this would be corrected later 2905 /// by a smart scheduler: 2906 /// = A[i] 2907 /// = A[i+x] 2908 /// A[i] = 2909 /// A[i+x] = 2910 /// 2911 /// TODO: Walk the entire domtree within this loop, not just the path to the 2912 /// loop latch. This will discover chains on side paths, but requires 2913 /// maintaining multiple copies of the Chains state. 2914 void LSRInstance::CollectChains() { 2915 DEBUG(dbgs() << "Collecting IV Chains.\n"); 2916 SmallVector<ChainUsers, 8> ChainUsersVec; 2917 2918 SmallVector<BasicBlock *,8> LatchPath; 2919 BasicBlock *LoopHeader = L->getHeader(); 2920 for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch()); 2921 Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) { 2922 LatchPath.push_back(Rung->getBlock()); 2923 } 2924 LatchPath.push_back(LoopHeader); 2925 2926 // Walk the instruction stream from the loop header to the loop latch. 2927 for (BasicBlock *BB : reverse(LatchPath)) { 2928 for (Instruction &I : *BB) { 2929 // Skip instructions that weren't seen by IVUsers analysis. 2930 if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I)) 2931 continue; 2932 2933 // Ignore users that are part of a SCEV expression. This way we only 2934 // consider leaf IV Users. This effectively rediscovers a portion of 2935 // IVUsers analysis but in program order this time. 2936 if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I))) 2937 continue; 2938 2939 // Remove this instruction from any NearUsers set it may be in. 2940 for (unsigned ChainIdx = 0, NChains = IVChainVec.size(); 2941 ChainIdx < NChains; ++ChainIdx) { 2942 ChainUsersVec[ChainIdx].NearUsers.erase(&I); 2943 } 2944 // Search for operands that can be chained. 2945 SmallPtrSet<Instruction*, 4> UniqueOperands; 2946 User::op_iterator IVOpEnd = I.op_end(); 2947 User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE); 2948 while (IVOpIter != IVOpEnd) { 2949 Instruction *IVOpInst = cast<Instruction>(*IVOpIter); 2950 if (UniqueOperands.insert(IVOpInst).second) 2951 ChainInstruction(&I, IVOpInst, ChainUsersVec); 2952 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 2953 } 2954 } // Continue walking down the instructions. 2955 } // Continue walking down the domtree. 2956 // Visit phi backedges to determine if the chain can generate the IV postinc. 2957 for (BasicBlock::iterator I = L->getHeader()->begin(); 2958 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 2959 if (!SE.isSCEVable(PN->getType())) 2960 continue; 2961 2962 Instruction *IncV = 2963 dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch())); 2964 if (IncV) 2965 ChainInstruction(PN, IncV, ChainUsersVec); 2966 } 2967 // Remove any unprofitable chains. 2968 unsigned ChainIdx = 0; 2969 for (unsigned UsersIdx = 0, NChains = IVChainVec.size(); 2970 UsersIdx < NChains; ++UsersIdx) { 2971 if (!isProfitableChain(IVChainVec[UsersIdx], 2972 ChainUsersVec[UsersIdx].FarUsers, SE, TTI)) 2973 continue; 2974 // Preserve the chain at UsesIdx. 2975 if (ChainIdx != UsersIdx) 2976 IVChainVec[ChainIdx] = IVChainVec[UsersIdx]; 2977 FinalizeChain(IVChainVec[ChainIdx]); 2978 ++ChainIdx; 2979 } 2980 IVChainVec.resize(ChainIdx); 2981 } 2982 2983 void LSRInstance::FinalizeChain(IVChain &Chain) { 2984 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 2985 DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n"); 2986 2987 for (const IVInc &Inc : Chain) { 2988 DEBUG(dbgs() << " Inc: " << *Inc.UserInst << "\n"); 2989 auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand); 2990 assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand"); 2991 IVIncSet.insert(UseI); 2992 } 2993 } 2994 2995 /// Return true if the IVInc can be folded into an addressing mode. 2996 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst, 2997 Value *Operand, const TargetTransformInfo &TTI) { 2998 const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr); 2999 if (!IncConst || !isAddressUse(UserInst, Operand)) 3000 return false; 3001 3002 if (IncConst->getAPInt().getMinSignedBits() > 64) 3003 return false; 3004 3005 MemAccessTy AccessTy = getAccessType(UserInst); 3006 int64_t IncOffset = IncConst->getValue()->getSExtValue(); 3007 if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr, 3008 IncOffset, /*HaseBaseReg=*/false)) 3009 return false; 3010 3011 return true; 3012 } 3013 3014 /// Generate an add or subtract for each IVInc in a chain to materialize the IV 3015 /// user's operand from the previous IV user's operand. 3016 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 3017 SmallVectorImpl<WeakVH> &DeadInsts) { 3018 // Find the new IVOperand for the head of the chain. It may have been replaced 3019 // by LSR. 3020 const IVInc &Head = Chain.Incs[0]; 3021 User::op_iterator IVOpEnd = Head.UserInst->op_end(); 3022 // findIVOperand returns IVOpEnd if it can no longer find a valid IV user. 3023 User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(), 3024 IVOpEnd, L, SE); 3025 Value *IVSrc = nullptr; 3026 while (IVOpIter != IVOpEnd) { 3027 IVSrc = getWideOperand(*IVOpIter); 3028 3029 // If this operand computes the expression that the chain needs, we may use 3030 // it. (Check this after setting IVSrc which is used below.) 3031 // 3032 // Note that if Head.IncExpr is wider than IVSrc, then this phi is too 3033 // narrow for the chain, so we can no longer use it. We do allow using a 3034 // wider phi, assuming the LSR checked for free truncation. In that case we 3035 // should already have a truncate on this operand such that 3036 // getSCEV(IVSrc) == IncExpr. 3037 if (SE.getSCEV(*IVOpIter) == Head.IncExpr 3038 || SE.getSCEV(IVSrc) == Head.IncExpr) { 3039 break; 3040 } 3041 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 3042 } 3043 if (IVOpIter == IVOpEnd) { 3044 // Gracefully give up on this chain. 3045 DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n"); 3046 return; 3047 } 3048 3049 DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n"); 3050 Type *IVTy = IVSrc->getType(); 3051 Type *IntTy = SE.getEffectiveSCEVType(IVTy); 3052 const SCEV *LeftOverExpr = nullptr; 3053 for (const IVInc &Inc : Chain) { 3054 Instruction *InsertPt = Inc.UserInst; 3055 if (isa<PHINode>(InsertPt)) 3056 InsertPt = L->getLoopLatch()->getTerminator(); 3057 3058 // IVOper will replace the current IV User's operand. IVSrc is the IV 3059 // value currently held in a register. 3060 Value *IVOper = IVSrc; 3061 if (!Inc.IncExpr->isZero()) { 3062 // IncExpr was the result of subtraction of two narrow values, so must 3063 // be signed. 3064 const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy); 3065 LeftOverExpr = LeftOverExpr ? 3066 SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr; 3067 } 3068 if (LeftOverExpr && !LeftOverExpr->isZero()) { 3069 // Expand the IV increment. 3070 Rewriter.clearPostInc(); 3071 Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt); 3072 const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc), 3073 SE.getUnknown(IncV)); 3074 IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt); 3075 3076 // If an IV increment can't be folded, use it as the next IV value. 3077 if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) { 3078 assert(IVTy == IVOper->getType() && "inconsistent IV increment type"); 3079 IVSrc = IVOper; 3080 LeftOverExpr = nullptr; 3081 } 3082 } 3083 Type *OperTy = Inc.IVOperand->getType(); 3084 if (IVTy != OperTy) { 3085 assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) && 3086 "cannot extend a chained IV"); 3087 IRBuilder<> Builder(InsertPt); 3088 IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain"); 3089 } 3090 Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper); 3091 DeadInsts.emplace_back(Inc.IVOperand); 3092 } 3093 // If LSR created a new, wider phi, we may also replace its postinc. We only 3094 // do this if we also found a wide value for the head of the chain. 3095 if (isa<PHINode>(Chain.tailUserInst())) { 3096 for (BasicBlock::iterator I = L->getHeader()->begin(); 3097 PHINode *Phi = dyn_cast<PHINode>(I); ++I) { 3098 if (!isCompatibleIVType(Phi, IVSrc)) 3099 continue; 3100 Instruction *PostIncV = dyn_cast<Instruction>( 3101 Phi->getIncomingValueForBlock(L->getLoopLatch())); 3102 if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc))) 3103 continue; 3104 Value *IVOper = IVSrc; 3105 Type *PostIncTy = PostIncV->getType(); 3106 if (IVTy != PostIncTy) { 3107 assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types"); 3108 IRBuilder<> Builder(L->getLoopLatch()->getTerminator()); 3109 Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc()); 3110 IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain"); 3111 } 3112 Phi->replaceUsesOfWith(PostIncV, IVOper); 3113 DeadInsts.emplace_back(PostIncV); 3114 } 3115 } 3116 } 3117 3118 void LSRInstance::CollectFixupsAndInitialFormulae() { 3119 for (const IVStrideUse &U : IU) { 3120 Instruction *UserInst = U.getUser(); 3121 // Skip IV users that are part of profitable IV Chains. 3122 User::op_iterator UseI = 3123 find(UserInst->operands(), U.getOperandValToReplace()); 3124 assert(UseI != UserInst->op_end() && "cannot find IV operand"); 3125 if (IVIncSet.count(UseI)) { 3126 DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n'); 3127 continue; 3128 } 3129 3130 LSRUse::KindType Kind = LSRUse::Basic; 3131 MemAccessTy AccessTy; 3132 if (isAddressUse(UserInst, U.getOperandValToReplace())) { 3133 Kind = LSRUse::Address; 3134 AccessTy = getAccessType(UserInst); 3135 } 3136 3137 const SCEV *S = IU.getExpr(U); 3138 PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops(); 3139 3140 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as 3141 // (N - i == 0), and this allows (N - i) to be the expression that we work 3142 // with rather than just N or i, so we can consider the register 3143 // requirements for both N and i at the same time. Limiting this code to 3144 // equality icmps is not a problem because all interesting loops use 3145 // equality icmps, thanks to IndVarSimplify. 3146 if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst)) 3147 if (CI->isEquality()) { 3148 // Swap the operands if needed to put the OperandValToReplace on the 3149 // left, for consistency. 3150 Value *NV = CI->getOperand(1); 3151 if (NV == U.getOperandValToReplace()) { 3152 CI->setOperand(1, CI->getOperand(0)); 3153 CI->setOperand(0, NV); 3154 NV = CI->getOperand(1); 3155 Changed = true; 3156 } 3157 3158 // x == y --> x - y == 0 3159 const SCEV *N = SE.getSCEV(NV); 3160 if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) { 3161 // S is normalized, so normalize N before folding it into S 3162 // to keep the result normalized. 3163 N = TransformForPostIncUse(Normalize, N, CI, nullptr, 3164 TmpPostIncLoops, SE, DT); 3165 Kind = LSRUse::ICmpZero; 3166 S = SE.getMinusSCEV(N, S); 3167 } 3168 3169 // -1 and the negations of all interesting strides (except the negation 3170 // of -1) are now also interesting. 3171 for (size_t i = 0, e = Factors.size(); i != e; ++i) 3172 if (Factors[i] != -1) 3173 Factors.insert(-(uint64_t)Factors[i]); 3174 Factors.insert(-1); 3175 } 3176 3177 // Get or create an LSRUse. 3178 std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy); 3179 size_t LUIdx = P.first; 3180 int64_t Offset = P.second; 3181 LSRUse &LU = Uses[LUIdx]; 3182 3183 // Record the fixup. 3184 LSRFixup &LF = LU.getNewFixup(); 3185 LF.UserInst = UserInst; 3186 LF.OperandValToReplace = U.getOperandValToReplace(); 3187 LF.PostIncLoops = TmpPostIncLoops; 3188 LF.Offset = Offset; 3189 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3190 3191 if (!LU.WidestFixupType || 3192 SE.getTypeSizeInBits(LU.WidestFixupType) < 3193 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3194 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3195 3196 // If this is the first use of this LSRUse, give it a formula. 3197 if (LU.Formulae.empty()) { 3198 InsertInitialFormula(S, LU, LUIdx); 3199 CountRegisters(LU.Formulae.back(), LUIdx); 3200 } 3201 } 3202 3203 DEBUG(print_fixups(dbgs())); 3204 } 3205 3206 /// Insert a formula for the given expression into the given use, separating out 3207 /// loop-variant portions from loop-invariant and loop-computable portions. 3208 void 3209 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) { 3210 // Mark uses whose expressions cannot be expanded. 3211 if (!isSafeToExpand(S, SE)) 3212 LU.RigidFormula = true; 3213 3214 Formula F; 3215 F.initialMatch(S, L, SE); 3216 bool Inserted = InsertFormula(LU, LUIdx, F); 3217 assert(Inserted && "Initial formula already exists!"); (void)Inserted; 3218 } 3219 3220 /// Insert a simple single-register formula for the given expression into the 3221 /// given use. 3222 void 3223 LSRInstance::InsertSupplementalFormula(const SCEV *S, 3224 LSRUse &LU, size_t LUIdx) { 3225 Formula F; 3226 F.BaseRegs.push_back(S); 3227 F.HasBaseReg = true; 3228 bool Inserted = InsertFormula(LU, LUIdx, F); 3229 assert(Inserted && "Supplemental formula already exists!"); (void)Inserted; 3230 } 3231 3232 /// Note which registers are used by the given formula, updating RegUses. 3233 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) { 3234 if (F.ScaledReg) 3235 RegUses.countRegister(F.ScaledReg, LUIdx); 3236 for (const SCEV *BaseReg : F.BaseRegs) 3237 RegUses.countRegister(BaseReg, LUIdx); 3238 } 3239 3240 /// If the given formula has not yet been inserted, add it to the list, and 3241 /// return true. Return false otherwise. 3242 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) { 3243 // Do not insert formula that we will not be able to expand. 3244 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) && 3245 "Formula is illegal"); 3246 3247 if (!LU.InsertFormula(F, *L)) 3248 return false; 3249 3250 CountRegisters(F, LUIdx); 3251 return true; 3252 } 3253 3254 /// Check for other uses of loop-invariant values which we're tracking. These 3255 /// other uses will pin these values in registers, making them less profitable 3256 /// for elimination. 3257 /// TODO: This currently misses non-constant addrec step registers. 3258 /// TODO: Should this give more weight to users inside the loop? 3259 void 3260 LSRInstance::CollectLoopInvariantFixupsAndFormulae() { 3261 SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end()); 3262 SmallPtrSet<const SCEV *, 32> Visited; 3263 3264 while (!Worklist.empty()) { 3265 const SCEV *S = Worklist.pop_back_val(); 3266 3267 // Don't process the same SCEV twice 3268 if (!Visited.insert(S).second) 3269 continue; 3270 3271 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) 3272 Worklist.append(N->op_begin(), N->op_end()); 3273 else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) 3274 Worklist.push_back(C->getOperand()); 3275 else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 3276 Worklist.push_back(D->getLHS()); 3277 Worklist.push_back(D->getRHS()); 3278 } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) { 3279 const Value *V = US->getValue(); 3280 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 3281 // Look for instructions defined outside the loop. 3282 if (L->contains(Inst)) continue; 3283 } else if (isa<UndefValue>(V)) 3284 // Undef doesn't have a live range, so it doesn't matter. 3285 continue; 3286 for (const Use &U : V->uses()) { 3287 const Instruction *UserInst = dyn_cast<Instruction>(U.getUser()); 3288 // Ignore non-instructions. 3289 if (!UserInst) 3290 continue; 3291 // Ignore instructions in other functions (as can happen with 3292 // Constants). 3293 if (UserInst->getParent()->getParent() != L->getHeader()->getParent()) 3294 continue; 3295 // Ignore instructions not dominated by the loop. 3296 const BasicBlock *UseBB = !isa<PHINode>(UserInst) ? 3297 UserInst->getParent() : 3298 cast<PHINode>(UserInst)->getIncomingBlock( 3299 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 3300 if (!DT.dominates(L->getHeader(), UseBB)) 3301 continue; 3302 // Don't bother if the instruction is in a BB which ends in an EHPad. 3303 if (UseBB->getTerminator()->isEHPad()) 3304 continue; 3305 // Don't bother rewriting PHIs in catchswitch blocks. 3306 if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator())) 3307 continue; 3308 // Ignore uses which are part of other SCEV expressions, to avoid 3309 // analyzing them multiple times. 3310 if (SE.isSCEVable(UserInst->getType())) { 3311 const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst)); 3312 // If the user is a no-op, look through to its uses. 3313 if (!isa<SCEVUnknown>(UserS)) 3314 continue; 3315 if (UserS == US) { 3316 Worklist.push_back( 3317 SE.getUnknown(const_cast<Instruction *>(UserInst))); 3318 continue; 3319 } 3320 } 3321 // Ignore icmp instructions which are already being analyzed. 3322 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) { 3323 unsigned OtherIdx = !U.getOperandNo(); 3324 Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx)); 3325 if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L)) 3326 continue; 3327 } 3328 3329 std::pair<size_t, int64_t> P = getUse( 3330 S, LSRUse::Basic, MemAccessTy()); 3331 size_t LUIdx = P.first; 3332 int64_t Offset = P.second; 3333 LSRUse &LU = Uses[LUIdx]; 3334 LSRFixup &LF = LU.getNewFixup(); 3335 LF.UserInst = const_cast<Instruction *>(UserInst); 3336 LF.OperandValToReplace = U; 3337 LF.Offset = Offset; 3338 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3339 if (!LU.WidestFixupType || 3340 SE.getTypeSizeInBits(LU.WidestFixupType) < 3341 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3342 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3343 InsertSupplementalFormula(US, LU, LUIdx); 3344 CountRegisters(LU.Formulae.back(), Uses.size() - 1); 3345 break; 3346 } 3347 } 3348 } 3349 } 3350 3351 /// Split S into subexpressions which can be pulled out into separate 3352 /// registers. If C is non-null, multiply each subexpression by C. 3353 /// 3354 /// Return remainder expression after factoring the subexpressions captured by 3355 /// Ops. If Ops is complete, return NULL. 3356 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C, 3357 SmallVectorImpl<const SCEV *> &Ops, 3358 const Loop *L, 3359 ScalarEvolution &SE, 3360 unsigned Depth = 0) { 3361 // Arbitrarily cap recursion to protect compile time. 3362 if (Depth >= 3) 3363 return S; 3364 3365 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3366 // Break out add operands. 3367 for (const SCEV *S : Add->operands()) { 3368 const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1); 3369 if (Remainder) 3370 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3371 } 3372 return nullptr; 3373 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 3374 // Split a non-zero base out of an addrec. 3375 if (AR->getStart()->isZero() || !AR->isAffine()) 3376 return S; 3377 3378 const SCEV *Remainder = CollectSubexprs(AR->getStart(), 3379 C, Ops, L, SE, Depth+1); 3380 // Split the non-zero AddRec unless it is part of a nested recurrence that 3381 // does not pertain to this loop. 3382 if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) { 3383 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3384 Remainder = nullptr; 3385 } 3386 if (Remainder != AR->getStart()) { 3387 if (!Remainder) 3388 Remainder = SE.getConstant(AR->getType(), 0); 3389 return SE.getAddRecExpr(Remainder, 3390 AR->getStepRecurrence(SE), 3391 AR->getLoop(), 3392 //FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 3393 SCEV::FlagAnyWrap); 3394 } 3395 } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3396 // Break (C * (a + b + c)) into C*a + C*b + C*c. 3397 if (Mul->getNumOperands() != 2) 3398 return S; 3399 if (const SCEVConstant *Op0 = 3400 dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3401 C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0; 3402 const SCEV *Remainder = 3403 CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1); 3404 if (Remainder) 3405 Ops.push_back(SE.getMulExpr(C, Remainder)); 3406 return nullptr; 3407 } 3408 } 3409 return S; 3410 } 3411 3412 /// \brief Helper function for LSRInstance::GenerateReassociations. 3413 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 3414 const Formula &Base, 3415 unsigned Depth, size_t Idx, 3416 bool IsScaledReg) { 3417 const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3418 SmallVector<const SCEV *, 8> AddOps; 3419 const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE); 3420 if (Remainder) 3421 AddOps.push_back(Remainder); 3422 3423 if (AddOps.size() == 1) 3424 return; 3425 3426 for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(), 3427 JE = AddOps.end(); 3428 J != JE; ++J) { 3429 3430 // Loop-variant "unknown" values are uninteresting; we won't be able to 3431 // do anything meaningful with them. 3432 if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L)) 3433 continue; 3434 3435 // Don't pull a constant into a register if the constant could be folded 3436 // into an immediate field. 3437 if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3438 LU.AccessTy, *J, Base.getNumRegs() > 1)) 3439 continue; 3440 3441 // Collect all operands except *J. 3442 SmallVector<const SCEV *, 8> InnerAddOps( 3443 ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J); 3444 InnerAddOps.append(std::next(J), 3445 ((const SmallVector<const SCEV *, 8> &)AddOps).end()); 3446 3447 // Don't leave just a constant behind in a register if the constant could 3448 // be folded into an immediate field. 3449 if (InnerAddOps.size() == 1 && 3450 isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3451 LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1)) 3452 continue; 3453 3454 const SCEV *InnerSum = SE.getAddExpr(InnerAddOps); 3455 if (InnerSum->isZero()) 3456 continue; 3457 Formula F = Base; 3458 3459 // Add the remaining pieces of the add back into the new formula. 3460 const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum); 3461 if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 && 3462 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3463 InnerSumSC->getValue()->getZExtValue())) { 3464 F.UnfoldedOffset = 3465 (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue(); 3466 if (IsScaledReg) 3467 F.ScaledReg = nullptr; 3468 else 3469 F.BaseRegs.erase(F.BaseRegs.begin() + Idx); 3470 } else if (IsScaledReg) 3471 F.ScaledReg = InnerSum; 3472 else 3473 F.BaseRegs[Idx] = InnerSum; 3474 3475 // Add J as its own register, or an unfolded immediate. 3476 const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J); 3477 if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 && 3478 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3479 SC->getValue()->getZExtValue())) 3480 F.UnfoldedOffset = 3481 (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue(); 3482 else 3483 F.BaseRegs.push_back(*J); 3484 // We may have changed the number of register in base regs, adjust the 3485 // formula accordingly. 3486 F.canonicalize(*L); 3487 3488 if (InsertFormula(LU, LUIdx, F)) 3489 // If that formula hadn't been seen before, recurse to find more like 3490 // it. 3491 GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth + 1); 3492 } 3493 } 3494 3495 /// Split out subexpressions from adds and the bases of addrecs. 3496 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx, 3497 Formula Base, unsigned Depth) { 3498 assert(Base.isCanonical(*L) && "Input must be in the canonical form"); 3499 // Arbitrarily cap recursion to protect compile time. 3500 if (Depth >= 3) 3501 return; 3502 3503 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3504 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i); 3505 3506 if (Base.Scale == 1) 3507 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, 3508 /* Idx */ -1, /* IsScaledReg */ true); 3509 } 3510 3511 /// Generate a formula consisting of all of the loop-dominating registers added 3512 /// into a single register. 3513 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx, 3514 Formula Base) { 3515 // This method is only interesting on a plurality of registers. 3516 if (Base.BaseRegs.size() + (Base.Scale == 1) <= 1) 3517 return; 3518 3519 // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before 3520 // processing the formula. 3521 Base.unscale(); 3522 Formula F = Base; 3523 F.BaseRegs.clear(); 3524 SmallVector<const SCEV *, 4> Ops; 3525 for (const SCEV *BaseReg : Base.BaseRegs) { 3526 if (SE.properlyDominates(BaseReg, L->getHeader()) && 3527 !SE.hasComputableLoopEvolution(BaseReg, L)) 3528 Ops.push_back(BaseReg); 3529 else 3530 F.BaseRegs.push_back(BaseReg); 3531 } 3532 if (Ops.size() > 1) { 3533 const SCEV *Sum = SE.getAddExpr(Ops); 3534 // TODO: If Sum is zero, it probably means ScalarEvolution missed an 3535 // opportunity to fold something. For now, just ignore such cases 3536 // rather than proceed with zero in a register. 3537 if (!Sum->isZero()) { 3538 F.BaseRegs.push_back(Sum); 3539 F.canonicalize(*L); 3540 (void)InsertFormula(LU, LUIdx, F); 3541 } 3542 } 3543 } 3544 3545 /// \brief Helper function for LSRInstance::GenerateSymbolicOffsets. 3546 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 3547 const Formula &Base, size_t Idx, 3548 bool IsScaledReg) { 3549 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3550 GlobalValue *GV = ExtractSymbol(G, SE); 3551 if (G->isZero() || !GV) 3552 return; 3553 Formula F = Base; 3554 F.BaseGV = GV; 3555 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3556 return; 3557 if (IsScaledReg) 3558 F.ScaledReg = G; 3559 else 3560 F.BaseRegs[Idx] = G; 3561 (void)InsertFormula(LU, LUIdx, F); 3562 } 3563 3564 /// Generate reuse formulae using symbolic offsets. 3565 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, 3566 Formula Base) { 3567 // We can't add a symbolic offset if the address already contains one. 3568 if (Base.BaseGV) return; 3569 3570 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3571 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i); 3572 if (Base.Scale == 1) 3573 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1, 3574 /* IsScaledReg */ true); 3575 } 3576 3577 /// \brief Helper function for LSRInstance::GenerateConstantOffsets. 3578 void LSRInstance::GenerateConstantOffsetsImpl( 3579 LSRUse &LU, unsigned LUIdx, const Formula &Base, 3580 const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) { 3581 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3582 for (int64_t Offset : Worklist) { 3583 Formula F = Base; 3584 F.BaseOffset = (uint64_t)Base.BaseOffset - Offset; 3585 if (isLegalUse(TTI, LU.MinOffset - Offset, LU.MaxOffset - Offset, LU.Kind, 3586 LU.AccessTy, F)) { 3587 // Add the offset to the base register. 3588 const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G); 3589 // If it cancelled out, drop the base register, otherwise update it. 3590 if (NewG->isZero()) { 3591 if (IsScaledReg) { 3592 F.Scale = 0; 3593 F.ScaledReg = nullptr; 3594 } else 3595 F.deleteBaseReg(F.BaseRegs[Idx]); 3596 F.canonicalize(*L); 3597 } else if (IsScaledReg) 3598 F.ScaledReg = NewG; 3599 else 3600 F.BaseRegs[Idx] = NewG; 3601 3602 (void)InsertFormula(LU, LUIdx, F); 3603 } 3604 } 3605 3606 int64_t Imm = ExtractImmediate(G, SE); 3607 if (G->isZero() || Imm == 0) 3608 return; 3609 Formula F = Base; 3610 F.BaseOffset = (uint64_t)F.BaseOffset + Imm; 3611 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3612 return; 3613 if (IsScaledReg) 3614 F.ScaledReg = G; 3615 else 3616 F.BaseRegs[Idx] = G; 3617 (void)InsertFormula(LU, LUIdx, F); 3618 } 3619 3620 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets. 3621 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, 3622 Formula Base) { 3623 // TODO: For now, just add the min and max offset, because it usually isn't 3624 // worthwhile looking at everything inbetween. 3625 SmallVector<int64_t, 2> Worklist; 3626 Worklist.push_back(LU.MinOffset); 3627 if (LU.MaxOffset != LU.MinOffset) 3628 Worklist.push_back(LU.MaxOffset); 3629 3630 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3631 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i); 3632 if (Base.Scale == 1) 3633 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1, 3634 /* IsScaledReg */ true); 3635 } 3636 3637 /// For ICmpZero, check to see if we can scale up the comparison. For example, x 3638 /// == y -> x*c == y*c. 3639 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, 3640 Formula Base) { 3641 if (LU.Kind != LSRUse::ICmpZero) return; 3642 3643 // Determine the integer type for the base formula. 3644 Type *IntTy = Base.getType(); 3645 if (!IntTy) return; 3646 if (SE.getTypeSizeInBits(IntTy) > 64) return; 3647 3648 // Don't do this if there is more than one offset. 3649 if (LU.MinOffset != LU.MaxOffset) return; 3650 3651 assert(!Base.BaseGV && "ICmpZero use is not legal!"); 3652 3653 // Check each interesting stride. 3654 for (int64_t Factor : Factors) { 3655 // Check that the multiplication doesn't overflow. 3656 if (Base.BaseOffset == INT64_MIN && Factor == -1) 3657 continue; 3658 int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor; 3659 if (NewBaseOffset / Factor != Base.BaseOffset) 3660 continue; 3661 // If the offset will be truncated at this use, check that it is in bounds. 3662 if (!IntTy->isPointerTy() && 3663 !ConstantInt::isValueValidForType(IntTy, NewBaseOffset)) 3664 continue; 3665 3666 // Check that multiplying with the use offset doesn't overflow. 3667 int64_t Offset = LU.MinOffset; 3668 if (Offset == INT64_MIN && Factor == -1) 3669 continue; 3670 Offset = (uint64_t)Offset * Factor; 3671 if (Offset / Factor != LU.MinOffset) 3672 continue; 3673 // If the offset will be truncated at this use, check that it is in bounds. 3674 if (!IntTy->isPointerTy() && 3675 !ConstantInt::isValueValidForType(IntTy, Offset)) 3676 continue; 3677 3678 Formula F = Base; 3679 F.BaseOffset = NewBaseOffset; 3680 3681 // Check that this scale is legal. 3682 if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F)) 3683 continue; 3684 3685 // Compensate for the use having MinOffset built into it. 3686 F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset; 3687 3688 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3689 3690 // Check that multiplying with each base register doesn't overflow. 3691 for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) { 3692 F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS); 3693 if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i]) 3694 goto next; 3695 } 3696 3697 // Check that multiplying with the scaled register doesn't overflow. 3698 if (F.ScaledReg) { 3699 F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS); 3700 if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg) 3701 continue; 3702 } 3703 3704 // Check that multiplying with the unfolded offset doesn't overflow. 3705 if (F.UnfoldedOffset != 0) { 3706 if (F.UnfoldedOffset == INT64_MIN && Factor == -1) 3707 continue; 3708 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor; 3709 if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset) 3710 continue; 3711 // If the offset will be truncated, check that it is in bounds. 3712 if (!IntTy->isPointerTy() && 3713 !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset)) 3714 continue; 3715 } 3716 3717 // If we make it here and it's legal, add it. 3718 (void)InsertFormula(LU, LUIdx, F); 3719 next:; 3720 } 3721 } 3722 3723 /// Generate stride factor reuse formulae by making use of scaled-offset address 3724 /// modes, for example. 3725 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) { 3726 // Determine the integer type for the base formula. 3727 Type *IntTy = Base.getType(); 3728 if (!IntTy) return; 3729 3730 // If this Formula already has a scaled register, we can't add another one. 3731 // Try to unscale the formula to generate a better scale. 3732 if (Base.Scale != 0 && !Base.unscale()) 3733 return; 3734 3735 assert(Base.Scale == 0 && "unscale did not did its job!"); 3736 3737 // Check each interesting stride. 3738 for (int64_t Factor : Factors) { 3739 Base.Scale = Factor; 3740 Base.HasBaseReg = Base.BaseRegs.size() > 1; 3741 // Check whether this scale is going to be legal. 3742 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 3743 Base)) { 3744 // As a special-case, handle special out-of-loop Basic users specially. 3745 // TODO: Reconsider this special case. 3746 if (LU.Kind == LSRUse::Basic && 3747 isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special, 3748 LU.AccessTy, Base) && 3749 LU.AllFixupsOutsideLoop) 3750 LU.Kind = LSRUse::Special; 3751 else 3752 continue; 3753 } 3754 // For an ICmpZero, negating a solitary base register won't lead to 3755 // new solutions. 3756 if (LU.Kind == LSRUse::ICmpZero && 3757 !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV) 3758 continue; 3759 // For each addrec base reg, if its loop is current loop, apply the scale. 3760 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { 3761 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i]); 3762 if (AR && (AR->getLoop() == L || LU.AllFixupsOutsideLoop)) { 3763 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3764 if (FactorS->isZero()) 3765 continue; 3766 // Divide out the factor, ignoring high bits, since we'll be 3767 // scaling the value back up in the end. 3768 if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) { 3769 // TODO: This could be optimized to avoid all the copying. 3770 Formula F = Base; 3771 F.ScaledReg = Quotient; 3772 F.deleteBaseReg(F.BaseRegs[i]); 3773 // The canonical representation of 1*reg is reg, which is already in 3774 // Base. In that case, do not try to insert the formula, it will be 3775 // rejected anyway. 3776 if (F.Scale == 1 && (F.BaseRegs.empty() || 3777 (AR->getLoop() != L && LU.AllFixupsOutsideLoop))) 3778 continue; 3779 // If AllFixupsOutsideLoop is true and F.Scale is 1, we may generate 3780 // non canonical Formula with ScaledReg's loop not being L. 3781 if (F.Scale == 1 && LU.AllFixupsOutsideLoop) 3782 F.canonicalize(*L); 3783 (void)InsertFormula(LU, LUIdx, F); 3784 } 3785 } 3786 } 3787 } 3788 } 3789 3790 /// Generate reuse formulae from different IV types. 3791 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) { 3792 // Don't bother truncating symbolic values. 3793 if (Base.BaseGV) return; 3794 3795 // Determine the integer type for the base formula. 3796 Type *DstTy = Base.getType(); 3797 if (!DstTy) return; 3798 DstTy = SE.getEffectiveSCEVType(DstTy); 3799 3800 for (Type *SrcTy : Types) { 3801 if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) { 3802 Formula F = Base; 3803 3804 if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy); 3805 for (const SCEV *&BaseReg : F.BaseRegs) 3806 BaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy); 3807 3808 // TODO: This assumes we've done basic processing on all uses and 3809 // have an idea what the register usage is. 3810 if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses)) 3811 continue; 3812 3813 (void)InsertFormula(LU, LUIdx, F); 3814 } 3815 } 3816 } 3817 3818 namespace { 3819 3820 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer 3821 /// modifications so that the search phase doesn't have to worry about the data 3822 /// structures moving underneath it. 3823 struct WorkItem { 3824 size_t LUIdx; 3825 int64_t Imm; 3826 const SCEV *OrigReg; 3827 3828 WorkItem(size_t LI, int64_t I, const SCEV *R) 3829 : LUIdx(LI), Imm(I), OrigReg(R) {} 3830 3831 void print(raw_ostream &OS) const; 3832 void dump() const; 3833 }; 3834 3835 } // end anonymous namespace 3836 3837 void WorkItem::print(raw_ostream &OS) const { 3838 OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx 3839 << " , add offset " << Imm; 3840 } 3841 3842 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 3843 LLVM_DUMP_METHOD void WorkItem::dump() const { 3844 print(errs()); errs() << '\n'; 3845 } 3846 #endif 3847 3848 /// Look for registers which are a constant distance apart and try to form reuse 3849 /// opportunities between them. 3850 void LSRInstance::GenerateCrossUseConstantOffsets() { 3851 // Group the registers by their value without any added constant offset. 3852 typedef std::map<int64_t, const SCEV *> ImmMapTy; 3853 DenseMap<const SCEV *, ImmMapTy> Map; 3854 DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap; 3855 SmallVector<const SCEV *, 8> Sequence; 3856 for (const SCEV *Use : RegUses) { 3857 const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify. 3858 int64_t Imm = ExtractImmediate(Reg, SE); 3859 auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy())); 3860 if (Pair.second) 3861 Sequence.push_back(Reg); 3862 Pair.first->second.insert(std::make_pair(Imm, Use)); 3863 UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use); 3864 } 3865 3866 // Now examine each set of registers with the same base value. Build up 3867 // a list of work to do and do the work in a separate step so that we're 3868 // not adding formulae and register counts while we're searching. 3869 SmallVector<WorkItem, 32> WorkItems; 3870 SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems; 3871 for (const SCEV *Reg : Sequence) { 3872 const ImmMapTy &Imms = Map.find(Reg)->second; 3873 3874 // It's not worthwhile looking for reuse if there's only one offset. 3875 if (Imms.size() == 1) 3876 continue; 3877 3878 DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':'; 3879 for (const auto &Entry : Imms) 3880 dbgs() << ' ' << Entry.first; 3881 dbgs() << '\n'); 3882 3883 // Examine each offset. 3884 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); 3885 J != JE; ++J) { 3886 const SCEV *OrigReg = J->second; 3887 3888 int64_t JImm = J->first; 3889 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg); 3890 3891 if (!isa<SCEVConstant>(OrigReg) && 3892 UsedByIndicesMap[Reg].count() == 1) { 3893 DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n'); 3894 continue; 3895 } 3896 3897 // Conservatively examine offsets between this orig reg a few selected 3898 // other orig regs. 3899 ImmMapTy::const_iterator OtherImms[] = { 3900 Imms.begin(), std::prev(Imms.end()), 3901 Imms.lower_bound((Imms.begin()->first + std::prev(Imms.end())->first) / 3902 2) 3903 }; 3904 for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) { 3905 ImmMapTy::const_iterator M = OtherImms[i]; 3906 if (M == J || M == JE) continue; 3907 3908 // Compute the difference between the two. 3909 int64_t Imm = (uint64_t)JImm - M->first; 3910 for (int LUIdx = UsedByIndices.find_first(); LUIdx != -1; 3911 LUIdx = UsedByIndices.find_next(LUIdx)) 3912 // Make a memo of this use, offset, and register tuple. 3913 if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second) 3914 WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg)); 3915 } 3916 } 3917 } 3918 3919 Map.clear(); 3920 Sequence.clear(); 3921 UsedByIndicesMap.clear(); 3922 UniqueItems.clear(); 3923 3924 // Now iterate through the worklist and add new formulae. 3925 for (const WorkItem &WI : WorkItems) { 3926 size_t LUIdx = WI.LUIdx; 3927 LSRUse &LU = Uses[LUIdx]; 3928 int64_t Imm = WI.Imm; 3929 const SCEV *OrigReg = WI.OrigReg; 3930 3931 Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType()); 3932 const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm)); 3933 unsigned BitWidth = SE.getTypeSizeInBits(IntTy); 3934 3935 // TODO: Use a more targeted data structure. 3936 for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) { 3937 Formula F = LU.Formulae[L]; 3938 // FIXME: The code for the scaled and unscaled registers looks 3939 // very similar but slightly different. Investigate if they 3940 // could be merged. That way, we would not have to unscale the 3941 // Formula. 3942 F.unscale(); 3943 // Use the immediate in the scaled register. 3944 if (F.ScaledReg == OrigReg) { 3945 int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale; 3946 // Don't create 50 + reg(-50). 3947 if (F.referencesReg(SE.getSCEV( 3948 ConstantInt::get(IntTy, -(uint64_t)Offset)))) 3949 continue; 3950 Formula NewF = F; 3951 NewF.BaseOffset = Offset; 3952 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 3953 NewF)) 3954 continue; 3955 NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg); 3956 3957 // If the new scale is a constant in a register, and adding the constant 3958 // value to the immediate would produce a value closer to zero than the 3959 // immediate itself, then the formula isn't worthwhile. 3960 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg)) 3961 if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) && 3962 (C->getAPInt().abs() * APInt(BitWidth, F.Scale)) 3963 .ule(std::abs(NewF.BaseOffset))) 3964 continue; 3965 3966 // OK, looks good. 3967 NewF.canonicalize(*this->L); 3968 (void)InsertFormula(LU, LUIdx, NewF); 3969 } else { 3970 // Use the immediate in a base register. 3971 for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) { 3972 const SCEV *BaseReg = F.BaseRegs[N]; 3973 if (BaseReg != OrigReg) 3974 continue; 3975 Formula NewF = F; 3976 NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm; 3977 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, 3978 LU.Kind, LU.AccessTy, NewF)) { 3979 if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm)) 3980 continue; 3981 NewF = F; 3982 NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm; 3983 } 3984 NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg); 3985 3986 // If the new formula has a constant in a register, and adding the 3987 // constant value to the immediate would produce a value closer to 3988 // zero than the immediate itself, then the formula isn't worthwhile. 3989 for (const SCEV *NewReg : NewF.BaseRegs) 3990 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg)) 3991 if ((C->getAPInt() + NewF.BaseOffset) 3992 .abs() 3993 .slt(std::abs(NewF.BaseOffset)) && 3994 (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >= 3995 countTrailingZeros<uint64_t>(NewF.BaseOffset)) 3996 goto skip_formula; 3997 3998 // Ok, looks good. 3999 NewF.canonicalize(*this->L); 4000 (void)InsertFormula(LU, LUIdx, NewF); 4001 break; 4002 skip_formula:; 4003 } 4004 } 4005 } 4006 } 4007 } 4008 4009 /// Generate formulae for each use. 4010 void 4011 LSRInstance::GenerateAllReuseFormulae() { 4012 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan 4013 // queries are more precise. 4014 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4015 LSRUse &LU = Uses[LUIdx]; 4016 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4017 GenerateReassociations(LU, LUIdx, LU.Formulae[i]); 4018 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4019 GenerateCombinations(LU, LUIdx, LU.Formulae[i]); 4020 } 4021 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4022 LSRUse &LU = Uses[LUIdx]; 4023 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4024 GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]); 4025 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4026 GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]); 4027 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4028 GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]); 4029 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4030 GenerateScales(LU, LUIdx, LU.Formulae[i]); 4031 } 4032 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4033 LSRUse &LU = Uses[LUIdx]; 4034 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4035 GenerateTruncates(LU, LUIdx, LU.Formulae[i]); 4036 } 4037 4038 GenerateCrossUseConstantOffsets(); 4039 4040 DEBUG(dbgs() << "\n" 4041 "After generating reuse formulae:\n"; 4042 print_uses(dbgs())); 4043 } 4044 4045 /// If there are multiple formulae with the same set of registers used 4046 /// by other uses, pick the best one and delete the others. 4047 void LSRInstance::FilterOutUndesirableDedicatedRegisters() { 4048 DenseSet<const SCEV *> VisitedRegs; 4049 SmallPtrSet<const SCEV *, 16> Regs; 4050 SmallPtrSet<const SCEV *, 16> LoserRegs; 4051 #ifndef NDEBUG 4052 bool ChangedFormulae = false; 4053 #endif 4054 4055 // Collect the best formula for each unique set of shared registers. This 4056 // is reset for each use. 4057 typedef DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo> 4058 BestFormulaeTy; 4059 BestFormulaeTy BestFormulae; 4060 4061 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4062 LSRUse &LU = Uses[LUIdx]; 4063 DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n'); 4064 4065 bool Any = false; 4066 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); 4067 FIdx != NumForms; ++FIdx) { 4068 Formula &F = LU.Formulae[FIdx]; 4069 4070 // Some formulas are instant losers. For example, they may depend on 4071 // nonexistent AddRecs from other loops. These need to be filtered 4072 // immediately, otherwise heuristics could choose them over others leading 4073 // to an unsatisfactory solution. Passing LoserRegs into RateFormula here 4074 // avoids the need to recompute this information across formulae using the 4075 // same bad AddRec. Passing LoserRegs is also essential unless we remove 4076 // the corresponding bad register from the Regs set. 4077 Cost CostF; 4078 Regs.clear(); 4079 CostF.RateFormula(TTI, F, Regs, VisitedRegs, L, SE, DT, LU, &LoserRegs); 4080 if (CostF.isLoser()) { 4081 // During initial formula generation, undesirable formulae are generated 4082 // by uses within other loops that have some non-trivial address mode or 4083 // use the postinc form of the IV. LSR needs to provide these formulae 4084 // as the basis of rediscovering the desired formula that uses an AddRec 4085 // corresponding to the existing phi. Once all formulae have been 4086 // generated, these initial losers may be pruned. 4087 DEBUG(dbgs() << " Filtering loser "; F.print(dbgs()); 4088 dbgs() << "\n"); 4089 } 4090 else { 4091 SmallVector<const SCEV *, 4> Key; 4092 for (const SCEV *Reg : F.BaseRegs) { 4093 if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx)) 4094 Key.push_back(Reg); 4095 } 4096 if (F.ScaledReg && 4097 RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx)) 4098 Key.push_back(F.ScaledReg); 4099 // Unstable sort by host order ok, because this is only used for 4100 // uniquifying. 4101 std::sort(Key.begin(), Key.end()); 4102 4103 std::pair<BestFormulaeTy::const_iterator, bool> P = 4104 BestFormulae.insert(std::make_pair(Key, FIdx)); 4105 if (P.second) 4106 continue; 4107 4108 Formula &Best = LU.Formulae[P.first->second]; 4109 4110 Cost CostBest; 4111 Regs.clear(); 4112 CostBest.RateFormula(TTI, Best, Regs, VisitedRegs, L, SE, DT, LU); 4113 if (CostF < CostBest) 4114 std::swap(F, Best); 4115 DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 4116 dbgs() << "\n" 4117 " in favor of formula "; Best.print(dbgs()); 4118 dbgs() << '\n'); 4119 } 4120 #ifndef NDEBUG 4121 ChangedFormulae = true; 4122 #endif 4123 LU.DeleteFormula(F); 4124 --FIdx; 4125 --NumForms; 4126 Any = true; 4127 } 4128 4129 // Now that we've filtered out some formulae, recompute the Regs set. 4130 if (Any) 4131 LU.RecomputeRegs(LUIdx, RegUses); 4132 4133 // Reset this to prepare for the next use. 4134 BestFormulae.clear(); 4135 } 4136 4137 DEBUG(if (ChangedFormulae) { 4138 dbgs() << "\n" 4139 "After filtering out undesirable candidates:\n"; 4140 print_uses(dbgs()); 4141 }); 4142 } 4143 4144 // This is a rough guess that seems to work fairly well. 4145 static const size_t ComplexityLimit = UINT16_MAX; 4146 4147 /// Estimate the worst-case number of solutions the solver might have to 4148 /// consider. It almost never considers this many solutions because it prune the 4149 /// search space, but the pruning isn't always sufficient. 4150 size_t LSRInstance::EstimateSearchSpaceComplexity() const { 4151 size_t Power = 1; 4152 for (const LSRUse &LU : Uses) { 4153 size_t FSize = LU.Formulae.size(); 4154 if (FSize >= ComplexityLimit) { 4155 Power = ComplexityLimit; 4156 break; 4157 } 4158 Power *= FSize; 4159 if (Power >= ComplexityLimit) 4160 break; 4161 } 4162 return Power; 4163 } 4164 4165 /// When one formula uses a superset of the registers of another formula, it 4166 /// won't help reduce register pressure (though it may not necessarily hurt 4167 /// register pressure); remove it to simplify the system. 4168 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() { 4169 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4170 DEBUG(dbgs() << "The search space is too complex.\n"); 4171 4172 DEBUG(dbgs() << "Narrowing the search space by eliminating formulae " 4173 "which use a superset of registers used by other " 4174 "formulae.\n"); 4175 4176 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4177 LSRUse &LU = Uses[LUIdx]; 4178 bool Any = false; 4179 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4180 Formula &F = LU.Formulae[i]; 4181 // Look for a formula with a constant or GV in a register. If the use 4182 // also has a formula with that same value in an immediate field, 4183 // delete the one that uses a register. 4184 for (SmallVectorImpl<const SCEV *>::const_iterator 4185 I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) { 4186 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) { 4187 Formula NewF = F; 4188 NewF.BaseOffset += C->getValue()->getSExtValue(); 4189 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4190 (I - F.BaseRegs.begin())); 4191 if (LU.HasFormulaWithSameRegs(NewF)) { 4192 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4193 LU.DeleteFormula(F); 4194 --i; 4195 --e; 4196 Any = true; 4197 break; 4198 } 4199 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) { 4200 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) 4201 if (!F.BaseGV) { 4202 Formula NewF = F; 4203 NewF.BaseGV = GV; 4204 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4205 (I - F.BaseRegs.begin())); 4206 if (LU.HasFormulaWithSameRegs(NewF)) { 4207 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4208 dbgs() << '\n'); 4209 LU.DeleteFormula(F); 4210 --i; 4211 --e; 4212 Any = true; 4213 break; 4214 } 4215 } 4216 } 4217 } 4218 } 4219 if (Any) 4220 LU.RecomputeRegs(LUIdx, RegUses); 4221 } 4222 4223 DEBUG(dbgs() << "After pre-selection:\n"; 4224 print_uses(dbgs())); 4225 } 4226 } 4227 4228 /// When there are many registers for expressions like A, A+1, A+2, etc., 4229 /// allocate a single register for them. 4230 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() { 4231 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4232 return; 4233 4234 DEBUG(dbgs() << "The search space is too complex.\n" 4235 "Narrowing the search space by assuming that uses separated " 4236 "by a constant offset will use the same registers.\n"); 4237 4238 // This is especially useful for unrolled loops. 4239 4240 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4241 LSRUse &LU = Uses[LUIdx]; 4242 for (const Formula &F : LU.Formulae) { 4243 if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1)) 4244 continue; 4245 4246 LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU); 4247 if (!LUThatHas) 4248 continue; 4249 4250 if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false, 4251 LU.Kind, LU.AccessTy)) 4252 continue; 4253 4254 DEBUG(dbgs() << " Deleting use "; LU.print(dbgs()); dbgs() << '\n'); 4255 4256 LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop; 4257 4258 // Transfer the fixups of LU to LUThatHas. 4259 for (LSRFixup &Fixup : LU.Fixups) { 4260 Fixup.Offset += F.BaseOffset; 4261 LUThatHas->pushFixup(Fixup); 4262 DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n'); 4263 } 4264 4265 // Delete formulae from the new use which are no longer legal. 4266 bool Any = false; 4267 for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) { 4268 Formula &F = LUThatHas->Formulae[i]; 4269 if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset, 4270 LUThatHas->Kind, LUThatHas->AccessTy, F)) { 4271 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4272 dbgs() << '\n'); 4273 LUThatHas->DeleteFormula(F); 4274 --i; 4275 --e; 4276 Any = true; 4277 } 4278 } 4279 4280 if (Any) 4281 LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses); 4282 4283 // Delete the old use. 4284 DeleteUse(LU, LUIdx); 4285 --LUIdx; 4286 --NumUses; 4287 break; 4288 } 4289 } 4290 4291 DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4292 } 4293 4294 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that 4295 /// we've done more filtering, as it may be able to find more formulae to 4296 /// eliminate. 4297 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){ 4298 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4299 DEBUG(dbgs() << "The search space is too complex.\n"); 4300 4301 DEBUG(dbgs() << "Narrowing the search space by re-filtering out " 4302 "undesirable dedicated registers.\n"); 4303 4304 FilterOutUndesirableDedicatedRegisters(); 4305 4306 DEBUG(dbgs() << "After pre-selection:\n"; 4307 print_uses(dbgs())); 4308 } 4309 } 4310 4311 /// The function delete formulas with high registers number expectation. 4312 /// Assuming we don't know the value of each formula (already delete 4313 /// all inefficient), generate probability of not selecting for each 4314 /// register. 4315 /// For example, 4316 /// Use1: 4317 /// reg(a) + reg({0,+,1}) 4318 /// reg(a) + reg({-1,+,1}) + 1 4319 /// reg({a,+,1}) 4320 /// Use2: 4321 /// reg(b) + reg({0,+,1}) 4322 /// reg(b) + reg({-1,+,1}) + 1 4323 /// reg({b,+,1}) 4324 /// Use3: 4325 /// reg(c) + reg(b) + reg({0,+,1}) 4326 /// reg(c) + reg({b,+,1}) 4327 /// 4328 /// Probability of not selecting 4329 /// Use1 Use2 Use3 4330 /// reg(a) (1/3) * 1 * 1 4331 /// reg(b) 1 * (1/3) * (1/2) 4332 /// reg({0,+,1}) (2/3) * (2/3) * (1/2) 4333 /// reg({-1,+,1}) (2/3) * (2/3) * 1 4334 /// reg({a,+,1}) (2/3) * 1 * 1 4335 /// reg({b,+,1}) 1 * (2/3) * (2/3) 4336 /// reg(c) 1 * 1 * 0 4337 /// 4338 /// Now count registers number mathematical expectation for each formula: 4339 /// Note that for each use we exclude probability if not selecting for the use. 4340 /// For example for Use1 probability for reg(a) would be just 1 * 1 (excluding 4341 /// probabilty 1/3 of not selecting for Use1). 4342 /// Use1: 4343 /// reg(a) + reg({0,+,1}) 1 + 1/3 -- to be deleted 4344 /// reg(a) + reg({-1,+,1}) + 1 1 + 4/9 -- to be deleted 4345 /// reg({a,+,1}) 1 4346 /// Use2: 4347 /// reg(b) + reg({0,+,1}) 1/2 + 1/3 -- to be deleted 4348 /// reg(b) + reg({-1,+,1}) + 1 1/2 + 2/3 -- to be deleted 4349 /// reg({b,+,1}) 2/3 4350 /// Use3: 4351 /// reg(c) + reg(b) + reg({0,+,1}) 1 + 1/3 + 4/9 -- to be deleted 4352 /// reg(c) + reg({b,+,1}) 1 + 2/3 4353 4354 void LSRInstance::NarrowSearchSpaceByDeletingCostlyFormulas() { 4355 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4356 return; 4357 // Ok, we have too many of formulae on our hands to conveniently handle. 4358 // Use a rough heuristic to thin out the list. 4359 4360 // Set of Regs wich will be 100% used in final solution. 4361 // Used in each formula of a solution (in example above this is reg(c)). 4362 // We can skip them in calculations. 4363 SmallPtrSet<const SCEV *, 4> UniqRegs; 4364 DEBUG(dbgs() << "The search space is too complex.\n"); 4365 4366 // Map each register to probability of not selecting 4367 DenseMap <const SCEV *, float> RegNumMap; 4368 for (const SCEV *Reg : RegUses) { 4369 if (UniqRegs.count(Reg)) 4370 continue; 4371 float PNotSel = 1; 4372 for (const LSRUse &LU : Uses) { 4373 if (!LU.Regs.count(Reg)) 4374 continue; 4375 float P = LU.getNotSelectedProbability(Reg); 4376 if (P != 0.0) 4377 PNotSel *= P; 4378 else 4379 UniqRegs.insert(Reg); 4380 } 4381 RegNumMap.insert(std::make_pair(Reg, PNotSel)); 4382 } 4383 4384 DEBUG(dbgs() << "Narrowing the search space by deleting costly formulas\n"); 4385 4386 // Delete formulas where registers number expectation is high. 4387 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4388 LSRUse &LU = Uses[LUIdx]; 4389 // If nothing to delete - continue. 4390 if (LU.Formulae.size() < 2) 4391 continue; 4392 // This is temporary solution to test performance. Float should be 4393 // replaced with round independent type (based on integers) to avoid 4394 // different results for different target builds. 4395 float FMinRegNum = LU.Formulae[0].getNumRegs(); 4396 float FMinARegNum = LU.Formulae[0].getNumRegs(); 4397 size_t MinIdx = 0; 4398 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4399 Formula &F = LU.Formulae[i]; 4400 float FRegNum = 0; 4401 float FARegNum = 0; 4402 for (const SCEV *BaseReg : F.BaseRegs) { 4403 if (UniqRegs.count(BaseReg)) 4404 continue; 4405 FRegNum += RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg); 4406 if (isa<SCEVAddRecExpr>(BaseReg)) 4407 FARegNum += 4408 RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg); 4409 } 4410 if (const SCEV *ScaledReg = F.ScaledReg) { 4411 if (!UniqRegs.count(ScaledReg)) { 4412 FRegNum += 4413 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg); 4414 if (isa<SCEVAddRecExpr>(ScaledReg)) 4415 FARegNum += 4416 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg); 4417 } 4418 } 4419 if (FMinRegNum > FRegNum || 4420 (FMinRegNum == FRegNum && FMinARegNum > FARegNum)) { 4421 FMinRegNum = FRegNum; 4422 FMinARegNum = FARegNum; 4423 MinIdx = i; 4424 } 4425 } 4426 DEBUG(dbgs() << " The formula "; LU.Formulae[MinIdx].print(dbgs()); 4427 dbgs() << " with min reg num " << FMinRegNum << '\n'); 4428 if (MinIdx != 0) 4429 std::swap(LU.Formulae[MinIdx], LU.Formulae[0]); 4430 while (LU.Formulae.size() != 1) { 4431 DEBUG(dbgs() << " Deleting "; LU.Formulae.back().print(dbgs()); 4432 dbgs() << '\n'); 4433 LU.Formulae.pop_back(); 4434 } 4435 LU.RecomputeRegs(LUIdx, RegUses); 4436 assert(LU.Formulae.size() == 1 && "Should be exactly 1 min regs formula"); 4437 Formula &F = LU.Formulae[0]; 4438 DEBUG(dbgs() << " Leaving only "; F.print(dbgs()); dbgs() << '\n'); 4439 // When we choose the formula, the regs become unique. 4440 UniqRegs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 4441 if (F.ScaledReg) 4442 UniqRegs.insert(F.ScaledReg); 4443 } 4444 DEBUG(dbgs() << "After pre-selection:\n"; 4445 print_uses(dbgs())); 4446 } 4447 4448 4449 /// Pick a register which seems likely to be profitable, and then in any use 4450 /// which has any reference to that register, delete all formulae which do not 4451 /// reference that register. 4452 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() { 4453 // With all other options exhausted, loop until the system is simple 4454 // enough to handle. 4455 SmallPtrSet<const SCEV *, 4> Taken; 4456 while (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4457 // Ok, we have too many of formulae on our hands to conveniently handle. 4458 // Use a rough heuristic to thin out the list. 4459 DEBUG(dbgs() << "The search space is too complex.\n"); 4460 4461 // Pick the register which is used by the most LSRUses, which is likely 4462 // to be a good reuse register candidate. 4463 const SCEV *Best = nullptr; 4464 unsigned BestNum = 0; 4465 for (const SCEV *Reg : RegUses) { 4466 if (Taken.count(Reg)) 4467 continue; 4468 if (!Best) { 4469 Best = Reg; 4470 BestNum = RegUses.getUsedByIndices(Reg).count(); 4471 } else { 4472 unsigned Count = RegUses.getUsedByIndices(Reg).count(); 4473 if (Count > BestNum) { 4474 Best = Reg; 4475 BestNum = Count; 4476 } 4477 } 4478 } 4479 4480 DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best 4481 << " will yield profitable reuse.\n"); 4482 Taken.insert(Best); 4483 4484 // In any use with formulae which references this register, delete formulae 4485 // which don't reference it. 4486 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4487 LSRUse &LU = Uses[LUIdx]; 4488 if (!LU.Regs.count(Best)) continue; 4489 4490 bool Any = false; 4491 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4492 Formula &F = LU.Formulae[i]; 4493 if (!F.referencesReg(Best)) { 4494 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4495 LU.DeleteFormula(F); 4496 --e; 4497 --i; 4498 Any = true; 4499 assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?"); 4500 continue; 4501 } 4502 } 4503 4504 if (Any) 4505 LU.RecomputeRegs(LUIdx, RegUses); 4506 } 4507 4508 DEBUG(dbgs() << "After pre-selection:\n"; 4509 print_uses(dbgs())); 4510 } 4511 } 4512 4513 /// If there are an extraordinary number of formulae to choose from, use some 4514 /// rough heuristics to prune down the number of formulae. This keeps the main 4515 /// solver from taking an extraordinary amount of time in some worst-case 4516 /// scenarios. 4517 void LSRInstance::NarrowSearchSpaceUsingHeuristics() { 4518 NarrowSearchSpaceByDetectingSupersets(); 4519 NarrowSearchSpaceByCollapsingUnrolledCode(); 4520 NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 4521 if (LSRExpNarrow) 4522 NarrowSearchSpaceByDeletingCostlyFormulas(); 4523 else 4524 NarrowSearchSpaceByPickingWinnerRegs(); 4525 } 4526 4527 /// This is the recursive solver. 4528 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 4529 Cost &SolutionCost, 4530 SmallVectorImpl<const Formula *> &Workspace, 4531 const Cost &CurCost, 4532 const SmallPtrSet<const SCEV *, 16> &CurRegs, 4533 DenseSet<const SCEV *> &VisitedRegs) const { 4534 // Some ideas: 4535 // - prune more: 4536 // - use more aggressive filtering 4537 // - sort the formula so that the most profitable solutions are found first 4538 // - sort the uses too 4539 // - search faster: 4540 // - don't compute a cost, and then compare. compare while computing a cost 4541 // and bail early. 4542 // - track register sets with SmallBitVector 4543 4544 const LSRUse &LU = Uses[Workspace.size()]; 4545 4546 // If this use references any register that's already a part of the 4547 // in-progress solution, consider it a requirement that a formula must 4548 // reference that register in order to be considered. This prunes out 4549 // unprofitable searching. 4550 SmallSetVector<const SCEV *, 4> ReqRegs; 4551 for (const SCEV *S : CurRegs) 4552 if (LU.Regs.count(S)) 4553 ReqRegs.insert(S); 4554 4555 SmallPtrSet<const SCEV *, 16> NewRegs; 4556 Cost NewCost; 4557 for (const Formula &F : LU.Formulae) { 4558 // Ignore formulae which may not be ideal in terms of register reuse of 4559 // ReqRegs. The formula should use all required registers before 4560 // introducing new ones. 4561 int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size()); 4562 for (const SCEV *Reg : ReqRegs) { 4563 if ((F.ScaledReg && F.ScaledReg == Reg) || 4564 is_contained(F.BaseRegs, Reg)) { 4565 --NumReqRegsToFind; 4566 if (NumReqRegsToFind == 0) 4567 break; 4568 } 4569 } 4570 if (NumReqRegsToFind != 0) { 4571 // If none of the formulae satisfied the required registers, then we could 4572 // clear ReqRegs and try again. Currently, we simply give up in this case. 4573 continue; 4574 } 4575 4576 // Evaluate the cost of the current formula. If it's already worse than 4577 // the current best, prune the search at that point. 4578 NewCost = CurCost; 4579 NewRegs = CurRegs; 4580 NewCost.RateFormula(TTI, F, NewRegs, VisitedRegs, L, SE, DT, LU); 4581 if (NewCost < SolutionCost) { 4582 Workspace.push_back(&F); 4583 if (Workspace.size() != Uses.size()) { 4584 SolveRecurse(Solution, SolutionCost, Workspace, NewCost, 4585 NewRegs, VisitedRegs); 4586 if (F.getNumRegs() == 1 && Workspace.size() == 1) 4587 VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]); 4588 } else { 4589 DEBUG(dbgs() << "New best at "; NewCost.print(dbgs()); 4590 dbgs() << ".\n Regs:"; 4591 for (const SCEV *S : NewRegs) 4592 dbgs() << ' ' << *S; 4593 dbgs() << '\n'); 4594 4595 SolutionCost = NewCost; 4596 Solution = Workspace; 4597 } 4598 Workspace.pop_back(); 4599 } 4600 } 4601 } 4602 4603 /// Choose one formula from each use. Return the results in the given Solution 4604 /// vector. 4605 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const { 4606 SmallVector<const Formula *, 8> Workspace; 4607 Cost SolutionCost; 4608 SolutionCost.Lose(); 4609 Cost CurCost; 4610 SmallPtrSet<const SCEV *, 16> CurRegs; 4611 DenseSet<const SCEV *> VisitedRegs; 4612 Workspace.reserve(Uses.size()); 4613 4614 // SolveRecurse does all the work. 4615 SolveRecurse(Solution, SolutionCost, Workspace, CurCost, 4616 CurRegs, VisitedRegs); 4617 if (Solution.empty()) { 4618 DEBUG(dbgs() << "\nNo Satisfactory Solution\n"); 4619 return; 4620 } 4621 4622 // Ok, we've now made all our decisions. 4623 DEBUG(dbgs() << "\n" 4624 "The chosen solution requires "; SolutionCost.print(dbgs()); 4625 dbgs() << ":\n"; 4626 for (size_t i = 0, e = Uses.size(); i != e; ++i) { 4627 dbgs() << " "; 4628 Uses[i].print(dbgs()); 4629 dbgs() << "\n" 4630 " "; 4631 Solution[i]->print(dbgs()); 4632 dbgs() << '\n'; 4633 }); 4634 4635 assert(Solution.size() == Uses.size() && "Malformed solution!"); 4636 } 4637 4638 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as 4639 /// we can go while still being dominated by the input positions. This helps 4640 /// canonicalize the insert position, which encourages sharing. 4641 BasicBlock::iterator 4642 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP, 4643 const SmallVectorImpl<Instruction *> &Inputs) 4644 const { 4645 Instruction *Tentative = &*IP; 4646 while (true) { 4647 bool AllDominate = true; 4648 Instruction *BetterPos = nullptr; 4649 // Don't bother attempting to insert before a catchswitch, their basic block 4650 // cannot have other non-PHI instructions. 4651 if (isa<CatchSwitchInst>(Tentative)) 4652 return IP; 4653 4654 for (Instruction *Inst : Inputs) { 4655 if (Inst == Tentative || !DT.dominates(Inst, Tentative)) { 4656 AllDominate = false; 4657 break; 4658 } 4659 // Attempt to find an insert position in the middle of the block, 4660 // instead of at the end, so that it can be used for other expansions. 4661 if (Tentative->getParent() == Inst->getParent() && 4662 (!BetterPos || !DT.dominates(Inst, BetterPos))) 4663 BetterPos = &*std::next(BasicBlock::iterator(Inst)); 4664 } 4665 if (!AllDominate) 4666 break; 4667 if (BetterPos) 4668 IP = BetterPos->getIterator(); 4669 else 4670 IP = Tentative->getIterator(); 4671 4672 const Loop *IPLoop = LI.getLoopFor(IP->getParent()); 4673 unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0; 4674 4675 BasicBlock *IDom; 4676 for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) { 4677 if (!Rung) return IP; 4678 Rung = Rung->getIDom(); 4679 if (!Rung) return IP; 4680 IDom = Rung->getBlock(); 4681 4682 // Don't climb into a loop though. 4683 const Loop *IDomLoop = LI.getLoopFor(IDom); 4684 unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0; 4685 if (IDomDepth <= IPLoopDepth && 4686 (IDomDepth != IPLoopDepth || IDomLoop == IPLoop)) 4687 break; 4688 } 4689 4690 Tentative = IDom->getTerminator(); 4691 } 4692 4693 return IP; 4694 } 4695 4696 /// Determine an input position which will be dominated by the operands and 4697 /// which will dominate the result. 4698 BasicBlock::iterator 4699 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP, 4700 const LSRFixup &LF, 4701 const LSRUse &LU, 4702 SCEVExpander &Rewriter) const { 4703 // Collect some instructions which must be dominated by the 4704 // expanding replacement. These must be dominated by any operands that 4705 // will be required in the expansion. 4706 SmallVector<Instruction *, 4> Inputs; 4707 if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace)) 4708 Inputs.push_back(I); 4709 if (LU.Kind == LSRUse::ICmpZero) 4710 if (Instruction *I = 4711 dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1))) 4712 Inputs.push_back(I); 4713 if (LF.PostIncLoops.count(L)) { 4714 if (LF.isUseFullyOutsideLoop(L)) 4715 Inputs.push_back(L->getLoopLatch()->getTerminator()); 4716 else 4717 Inputs.push_back(IVIncInsertPos); 4718 } 4719 // The expansion must also be dominated by the increment positions of any 4720 // loops it for which it is using post-inc mode. 4721 for (const Loop *PIL : LF.PostIncLoops) { 4722 if (PIL == L) continue; 4723 4724 // Be dominated by the loop exit. 4725 SmallVector<BasicBlock *, 4> ExitingBlocks; 4726 PIL->getExitingBlocks(ExitingBlocks); 4727 if (!ExitingBlocks.empty()) { 4728 BasicBlock *BB = ExitingBlocks[0]; 4729 for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i) 4730 BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]); 4731 Inputs.push_back(BB->getTerminator()); 4732 } 4733 } 4734 4735 assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad() 4736 && !isa<DbgInfoIntrinsic>(LowestIP) && 4737 "Insertion point must be a normal instruction"); 4738 4739 // Then, climb up the immediate dominator tree as far as we can go while 4740 // still being dominated by the input positions. 4741 BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs); 4742 4743 // Don't insert instructions before PHI nodes. 4744 while (isa<PHINode>(IP)) ++IP; 4745 4746 // Ignore landingpad instructions. 4747 while (IP->isEHPad()) ++IP; 4748 4749 // Ignore debug intrinsics. 4750 while (isa<DbgInfoIntrinsic>(IP)) ++IP; 4751 4752 // Set IP below instructions recently inserted by SCEVExpander. This keeps the 4753 // IP consistent across expansions and allows the previously inserted 4754 // instructions to be reused by subsequent expansion. 4755 while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP) 4756 ++IP; 4757 4758 return IP; 4759 } 4760 4761 /// Emit instructions for the leading candidate expression for this LSRUse (this 4762 /// is called "expanding"). 4763 Value *LSRInstance::Expand(const LSRUse &LU, 4764 const LSRFixup &LF, 4765 const Formula &F, 4766 BasicBlock::iterator IP, 4767 SCEVExpander &Rewriter, 4768 SmallVectorImpl<WeakVH> &DeadInsts) const { 4769 if (LU.RigidFormula) 4770 return LF.OperandValToReplace; 4771 4772 // Determine an input position which will be dominated by the operands and 4773 // which will dominate the result. 4774 IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter); 4775 Rewriter.setInsertPoint(&*IP); 4776 4777 // Inform the Rewriter if we have a post-increment use, so that it can 4778 // perform an advantageous expansion. 4779 Rewriter.setPostInc(LF.PostIncLoops); 4780 4781 // This is the type that the user actually needs. 4782 Type *OpTy = LF.OperandValToReplace->getType(); 4783 // This will be the type that we'll initially expand to. 4784 Type *Ty = F.getType(); 4785 if (!Ty) 4786 // No type known; just expand directly to the ultimate type. 4787 Ty = OpTy; 4788 else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy)) 4789 // Expand directly to the ultimate type if it's the right size. 4790 Ty = OpTy; 4791 // This is the type to do integer arithmetic in. 4792 Type *IntTy = SE.getEffectiveSCEVType(Ty); 4793 4794 // Build up a list of operands to add together to form the full base. 4795 SmallVector<const SCEV *, 8> Ops; 4796 4797 // Expand the BaseRegs portion. 4798 for (const SCEV *Reg : F.BaseRegs) { 4799 assert(!Reg->isZero() && "Zero allocated in a base register!"); 4800 4801 // If we're expanding for a post-inc user, make the post-inc adjustment. 4802 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 4803 Reg = TransformForPostIncUse(Denormalize, Reg, 4804 LF.UserInst, LF.OperandValToReplace, 4805 Loops, SE, DT); 4806 4807 Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr))); 4808 } 4809 4810 // Expand the ScaledReg portion. 4811 Value *ICmpScaledV = nullptr; 4812 if (F.Scale != 0) { 4813 const SCEV *ScaledS = F.ScaledReg; 4814 4815 // If we're expanding for a post-inc user, make the post-inc adjustment. 4816 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 4817 ScaledS = TransformForPostIncUse(Denormalize, ScaledS, 4818 LF.UserInst, LF.OperandValToReplace, 4819 Loops, SE, DT); 4820 4821 if (LU.Kind == LSRUse::ICmpZero) { 4822 // Expand ScaleReg as if it was part of the base regs. 4823 if (F.Scale == 1) 4824 Ops.push_back( 4825 SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr))); 4826 else { 4827 // An interesting way of "folding" with an icmp is to use a negated 4828 // scale, which we'll implement by inserting it into the other operand 4829 // of the icmp. 4830 assert(F.Scale == -1 && 4831 "The only scale supported by ICmpZero uses is -1!"); 4832 ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr); 4833 } 4834 } else { 4835 // Otherwise just expand the scaled register and an explicit scale, 4836 // which is expected to be matched as part of the address. 4837 4838 // Flush the operand list to suppress SCEVExpander hoisting address modes. 4839 // Unless the addressing mode will not be folded. 4840 if (!Ops.empty() && LU.Kind == LSRUse::Address && 4841 isAMCompletelyFolded(TTI, LU, F)) { 4842 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 4843 Ops.clear(); 4844 Ops.push_back(SE.getUnknown(FullV)); 4845 } 4846 ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)); 4847 if (F.Scale != 1) 4848 ScaledS = 4849 SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale)); 4850 Ops.push_back(ScaledS); 4851 } 4852 } 4853 4854 // Expand the GV portion. 4855 if (F.BaseGV) { 4856 // Flush the operand list to suppress SCEVExpander hoisting. 4857 if (!Ops.empty()) { 4858 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 4859 Ops.clear(); 4860 Ops.push_back(SE.getUnknown(FullV)); 4861 } 4862 Ops.push_back(SE.getUnknown(F.BaseGV)); 4863 } 4864 4865 // Flush the operand list to suppress SCEVExpander hoisting of both folded and 4866 // unfolded offsets. LSR assumes they both live next to their uses. 4867 if (!Ops.empty()) { 4868 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 4869 Ops.clear(); 4870 Ops.push_back(SE.getUnknown(FullV)); 4871 } 4872 4873 // Expand the immediate portion. 4874 int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset; 4875 if (Offset != 0) { 4876 if (LU.Kind == LSRUse::ICmpZero) { 4877 // The other interesting way of "folding" with an ICmpZero is to use a 4878 // negated immediate. 4879 if (!ICmpScaledV) 4880 ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset); 4881 else { 4882 Ops.push_back(SE.getUnknown(ICmpScaledV)); 4883 ICmpScaledV = ConstantInt::get(IntTy, Offset); 4884 } 4885 } else { 4886 // Just add the immediate values. These again are expected to be matched 4887 // as part of the address. 4888 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset))); 4889 } 4890 } 4891 4892 // Expand the unfolded offset portion. 4893 int64_t UnfoldedOffset = F.UnfoldedOffset; 4894 if (UnfoldedOffset != 0) { 4895 // Just add the immediate values. 4896 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, 4897 UnfoldedOffset))); 4898 } 4899 4900 // Emit instructions summing all the operands. 4901 const SCEV *FullS = Ops.empty() ? 4902 SE.getConstant(IntTy, 0) : 4903 SE.getAddExpr(Ops); 4904 Value *FullV = Rewriter.expandCodeFor(FullS, Ty); 4905 4906 // We're done expanding now, so reset the rewriter. 4907 Rewriter.clearPostInc(); 4908 4909 // An ICmpZero Formula represents an ICmp which we're handling as a 4910 // comparison against zero. Now that we've expanded an expression for that 4911 // form, update the ICmp's other operand. 4912 if (LU.Kind == LSRUse::ICmpZero) { 4913 ICmpInst *CI = cast<ICmpInst>(LF.UserInst); 4914 DeadInsts.emplace_back(CI->getOperand(1)); 4915 assert(!F.BaseGV && "ICmp does not support folding a global value and " 4916 "a scale at the same time!"); 4917 if (F.Scale == -1) { 4918 if (ICmpScaledV->getType() != OpTy) { 4919 Instruction *Cast = 4920 CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false, 4921 OpTy, false), 4922 ICmpScaledV, OpTy, "tmp", CI); 4923 ICmpScaledV = Cast; 4924 } 4925 CI->setOperand(1, ICmpScaledV); 4926 } else { 4927 // A scale of 1 means that the scale has been expanded as part of the 4928 // base regs. 4929 assert((F.Scale == 0 || F.Scale == 1) && 4930 "ICmp does not support folding a global value and " 4931 "a scale at the same time!"); 4932 Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy), 4933 -(uint64_t)Offset); 4934 if (C->getType() != OpTy) 4935 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 4936 OpTy, false), 4937 C, OpTy); 4938 4939 CI->setOperand(1, C); 4940 } 4941 } 4942 4943 return FullV; 4944 } 4945 4946 /// Helper for Rewrite. PHI nodes are special because the use of their operands 4947 /// effectively happens in their predecessor blocks, so the expression may need 4948 /// to be expanded in multiple places. 4949 void LSRInstance::RewriteForPHI(PHINode *PN, 4950 const LSRUse &LU, 4951 const LSRFixup &LF, 4952 const Formula &F, 4953 SCEVExpander &Rewriter, 4954 SmallVectorImpl<WeakVH> &DeadInsts) const { 4955 DenseMap<BasicBlock *, Value *> Inserted; 4956 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 4957 if (PN->getIncomingValue(i) == LF.OperandValToReplace) { 4958 BasicBlock *BB = PN->getIncomingBlock(i); 4959 4960 // If this is a critical edge, split the edge so that we do not insert 4961 // the code on all predecessor/successor paths. We do this unless this 4962 // is the canonical backedge for this loop, which complicates post-inc 4963 // users. 4964 if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 && 4965 !isa<IndirectBrInst>(BB->getTerminator()) && 4966 !isa<CatchSwitchInst>(BB->getTerminator())) { 4967 BasicBlock *Parent = PN->getParent(); 4968 Loop *PNLoop = LI.getLoopFor(Parent); 4969 if (!PNLoop || Parent != PNLoop->getHeader()) { 4970 // Split the critical edge. 4971 BasicBlock *NewBB = nullptr; 4972 if (!Parent->isLandingPad()) { 4973 NewBB = SplitCriticalEdge(BB, Parent, 4974 CriticalEdgeSplittingOptions(&DT, &LI) 4975 .setMergeIdenticalEdges() 4976 .setDontDeleteUselessPHIs()); 4977 } else { 4978 SmallVector<BasicBlock*, 2> NewBBs; 4979 SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI); 4980 NewBB = NewBBs[0]; 4981 } 4982 // If NewBB==NULL, then SplitCriticalEdge refused to split because all 4983 // phi predecessors are identical. The simple thing to do is skip 4984 // splitting in this case rather than complicate the API. 4985 if (NewBB) { 4986 // If PN is outside of the loop and BB is in the loop, we want to 4987 // move the block to be immediately before the PHI block, not 4988 // immediately after BB. 4989 if (L->contains(BB) && !L->contains(PN)) 4990 NewBB->moveBefore(PN->getParent()); 4991 4992 // Splitting the edge can reduce the number of PHI entries we have. 4993 e = PN->getNumIncomingValues(); 4994 BB = NewBB; 4995 i = PN->getBasicBlockIndex(BB); 4996 } 4997 } 4998 } 4999 5000 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair = 5001 Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr))); 5002 if (!Pair.second) 5003 PN->setIncomingValue(i, Pair.first->second); 5004 else { 5005 Value *FullV = Expand(LU, LF, F, BB->getTerminator()->getIterator(), 5006 Rewriter, DeadInsts); 5007 5008 // If this is reuse-by-noop-cast, insert the noop cast. 5009 Type *OpTy = LF.OperandValToReplace->getType(); 5010 if (FullV->getType() != OpTy) 5011 FullV = 5012 CastInst::Create(CastInst::getCastOpcode(FullV, false, 5013 OpTy, false), 5014 FullV, LF.OperandValToReplace->getType(), 5015 "tmp", BB->getTerminator()); 5016 5017 PN->setIncomingValue(i, FullV); 5018 Pair.first->second = FullV; 5019 } 5020 } 5021 } 5022 5023 /// Emit instructions for the leading candidate expression for this LSRUse (this 5024 /// is called "expanding"), and update the UserInst to reference the newly 5025 /// expanded value. 5026 void LSRInstance::Rewrite(const LSRUse &LU, 5027 const LSRFixup &LF, 5028 const Formula &F, 5029 SCEVExpander &Rewriter, 5030 SmallVectorImpl<WeakVH> &DeadInsts) const { 5031 // First, find an insertion point that dominates UserInst. For PHI nodes, 5032 // find the nearest block which dominates all the relevant uses. 5033 if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) { 5034 RewriteForPHI(PN, LU, LF, F, Rewriter, DeadInsts); 5035 } else { 5036 Value *FullV = 5037 Expand(LU, LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts); 5038 5039 // If this is reuse-by-noop-cast, insert the noop cast. 5040 Type *OpTy = LF.OperandValToReplace->getType(); 5041 if (FullV->getType() != OpTy) { 5042 Instruction *Cast = 5043 CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false), 5044 FullV, OpTy, "tmp", LF.UserInst); 5045 FullV = Cast; 5046 } 5047 5048 // Update the user. ICmpZero is handled specially here (for now) because 5049 // Expand may have updated one of the operands of the icmp already, and 5050 // its new value may happen to be equal to LF.OperandValToReplace, in 5051 // which case doing replaceUsesOfWith leads to replacing both operands 5052 // with the same value. TODO: Reorganize this. 5053 if (LU.Kind == LSRUse::ICmpZero) 5054 LF.UserInst->setOperand(0, FullV); 5055 else 5056 LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV); 5057 } 5058 5059 DeadInsts.emplace_back(LF.OperandValToReplace); 5060 } 5061 5062 /// Rewrite all the fixup locations with new values, following the chosen 5063 /// solution. 5064 void LSRInstance::ImplementSolution( 5065 const SmallVectorImpl<const Formula *> &Solution) { 5066 // Keep track of instructions we may have made dead, so that 5067 // we can remove them after we are done working. 5068 SmallVector<WeakVH, 16> DeadInsts; 5069 5070 SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(), 5071 "lsr"); 5072 #ifndef NDEBUG 5073 Rewriter.setDebugType(DEBUG_TYPE); 5074 #endif 5075 Rewriter.disableCanonicalMode(); 5076 Rewriter.enableLSRMode(); 5077 Rewriter.setIVIncInsertPos(L, IVIncInsertPos); 5078 5079 // Mark phi nodes that terminate chains so the expander tries to reuse them. 5080 for (const IVChain &Chain : IVChainVec) { 5081 if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst())) 5082 Rewriter.setChainedPhi(PN); 5083 } 5084 5085 // Expand the new value definitions and update the users. 5086 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) 5087 for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) { 5088 Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], Rewriter, DeadInsts); 5089 Changed = true; 5090 } 5091 5092 for (const IVChain &Chain : IVChainVec) { 5093 GenerateIVChain(Chain, Rewriter, DeadInsts); 5094 Changed = true; 5095 } 5096 // Clean up after ourselves. This must be done before deleting any 5097 // instructions. 5098 Rewriter.clear(); 5099 5100 Changed |= DeleteTriviallyDeadInstructions(DeadInsts); 5101 } 5102 5103 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, 5104 DominatorTree &DT, LoopInfo &LI, 5105 const TargetTransformInfo &TTI) 5106 : IU(IU), SE(SE), DT(DT), LI(LI), TTI(TTI), L(L), Changed(false), 5107 IVIncInsertPos(nullptr) { 5108 // If LoopSimplify form is not available, stay out of trouble. 5109 if (!L->isLoopSimplifyForm()) 5110 return; 5111 5112 // If there's no interesting work to be done, bail early. 5113 if (IU.empty()) return; 5114 5115 // If there's too much analysis to be done, bail early. We won't be able to 5116 // model the problem anyway. 5117 unsigned NumUsers = 0; 5118 for (const IVStrideUse &U : IU) { 5119 if (++NumUsers > MaxIVUsers) { 5120 (void)U; 5121 DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U << "\n"); 5122 return; 5123 } 5124 // Bail out if we have a PHI on an EHPad that gets a value from a 5125 // CatchSwitchInst. Because the CatchSwitchInst cannot be split, there is 5126 // no good place to stick any instructions. 5127 if (auto *PN = dyn_cast<PHINode>(U.getUser())) { 5128 auto *FirstNonPHI = PN->getParent()->getFirstNonPHI(); 5129 if (isa<FuncletPadInst>(FirstNonPHI) || 5130 isa<CatchSwitchInst>(FirstNonPHI)) 5131 for (BasicBlock *PredBB : PN->blocks()) 5132 if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI())) 5133 return; 5134 } 5135 } 5136 5137 #ifndef NDEBUG 5138 // All dominating loops must have preheaders, or SCEVExpander may not be able 5139 // to materialize an AddRecExpr whose Start is an outer AddRecExpr. 5140 // 5141 // IVUsers analysis should only create users that are dominated by simple loop 5142 // headers. Since this loop should dominate all of its users, its user list 5143 // should be empty if this loop itself is not within a simple loop nest. 5144 for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader()); 5145 Rung; Rung = Rung->getIDom()) { 5146 BasicBlock *BB = Rung->getBlock(); 5147 const Loop *DomLoop = LI.getLoopFor(BB); 5148 if (DomLoop && DomLoop->getHeader() == BB) { 5149 assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest"); 5150 } 5151 } 5152 #endif // DEBUG 5153 5154 DEBUG(dbgs() << "\nLSR on loop "; 5155 L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false); 5156 dbgs() << ":\n"); 5157 5158 // First, perform some low-level loop optimizations. 5159 OptimizeShadowIV(); 5160 OptimizeLoopTermCond(); 5161 5162 // If loop preparation eliminates all interesting IV users, bail. 5163 if (IU.empty()) return; 5164 5165 // Skip nested loops until we can model them better with formulae. 5166 if (!L->empty()) { 5167 DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n"); 5168 return; 5169 } 5170 5171 // Start collecting data and preparing for the solver. 5172 CollectChains(); 5173 CollectInterestingTypesAndFactors(); 5174 CollectFixupsAndInitialFormulae(); 5175 CollectLoopInvariantFixupsAndFormulae(); 5176 5177 assert(!Uses.empty() && "IVUsers reported at least one use"); 5178 DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n"; 5179 print_uses(dbgs())); 5180 5181 // Now use the reuse data to generate a bunch of interesting ways 5182 // to formulate the values needed for the uses. 5183 GenerateAllReuseFormulae(); 5184 5185 FilterOutUndesirableDedicatedRegisters(); 5186 NarrowSearchSpaceUsingHeuristics(); 5187 5188 SmallVector<const Formula *, 8> Solution; 5189 Solve(Solution); 5190 5191 // Release memory that is no longer needed. 5192 Factors.clear(); 5193 Types.clear(); 5194 RegUses.clear(); 5195 5196 if (Solution.empty()) 5197 return; 5198 5199 #ifndef NDEBUG 5200 // Formulae should be legal. 5201 for (const LSRUse &LU : Uses) { 5202 for (const Formula &F : LU.Formulae) 5203 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 5204 F) && "Illegal formula generated!"); 5205 }; 5206 #endif 5207 5208 // Now that we've decided what we want, make it so. 5209 ImplementSolution(Solution); 5210 } 5211 5212 void LSRInstance::print_factors_and_types(raw_ostream &OS) const { 5213 if (Factors.empty() && Types.empty()) return; 5214 5215 OS << "LSR has identified the following interesting factors and types: "; 5216 bool First = true; 5217 5218 for (int64_t Factor : Factors) { 5219 if (!First) OS << ", "; 5220 First = false; 5221 OS << '*' << Factor; 5222 } 5223 5224 for (Type *Ty : Types) { 5225 if (!First) OS << ", "; 5226 First = false; 5227 OS << '(' << *Ty << ')'; 5228 } 5229 OS << '\n'; 5230 } 5231 5232 void LSRInstance::print_fixups(raw_ostream &OS) const { 5233 OS << "LSR is examining the following fixup sites:\n"; 5234 for (const LSRUse &LU : Uses) 5235 for (const LSRFixup &LF : LU.Fixups) { 5236 dbgs() << " "; 5237 LF.print(OS); 5238 OS << '\n'; 5239 } 5240 } 5241 5242 void LSRInstance::print_uses(raw_ostream &OS) const { 5243 OS << "LSR is examining the following uses:\n"; 5244 for (const LSRUse &LU : Uses) { 5245 dbgs() << " "; 5246 LU.print(OS); 5247 OS << '\n'; 5248 for (const Formula &F : LU.Formulae) { 5249 OS << " "; 5250 F.print(OS); 5251 OS << '\n'; 5252 } 5253 } 5254 } 5255 5256 void LSRInstance::print(raw_ostream &OS) const { 5257 print_factors_and_types(OS); 5258 print_fixups(OS); 5259 print_uses(OS); 5260 } 5261 5262 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 5263 LLVM_DUMP_METHOD void LSRInstance::dump() const { 5264 print(errs()); errs() << '\n'; 5265 } 5266 #endif 5267 5268 namespace { 5269 5270 class LoopStrengthReduce : public LoopPass { 5271 public: 5272 static char ID; // Pass ID, replacement for typeid 5273 5274 LoopStrengthReduce(); 5275 5276 private: 5277 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 5278 void getAnalysisUsage(AnalysisUsage &AU) const override; 5279 }; 5280 5281 } // end anonymous namespace 5282 5283 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) { 5284 initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry()); 5285 } 5286 5287 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const { 5288 // We split critical edges, so we change the CFG. However, we do update 5289 // many analyses if they are around. 5290 AU.addPreservedID(LoopSimplifyID); 5291 5292 AU.addRequired<LoopInfoWrapperPass>(); 5293 AU.addPreserved<LoopInfoWrapperPass>(); 5294 AU.addRequiredID(LoopSimplifyID); 5295 AU.addRequired<DominatorTreeWrapperPass>(); 5296 AU.addPreserved<DominatorTreeWrapperPass>(); 5297 AU.addRequired<ScalarEvolutionWrapperPass>(); 5298 AU.addPreserved<ScalarEvolutionWrapperPass>(); 5299 // Requiring LoopSimplify a second time here prevents IVUsers from running 5300 // twice, since LoopSimplify was invalidated by running ScalarEvolution. 5301 AU.addRequiredID(LoopSimplifyID); 5302 AU.addRequired<IVUsersWrapperPass>(); 5303 AU.addPreserved<IVUsersWrapperPass>(); 5304 AU.addRequired<TargetTransformInfoWrapperPass>(); 5305 } 5306 5307 static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE, 5308 DominatorTree &DT, LoopInfo &LI, 5309 const TargetTransformInfo &TTI) { 5310 bool Changed = false; 5311 5312 // Run the main LSR transformation. 5313 Changed |= LSRInstance(L, IU, SE, DT, LI, TTI).getChanged(); 5314 5315 // Remove any extra phis created by processing inner loops. 5316 Changed |= DeleteDeadPHIs(L->getHeader()); 5317 if (EnablePhiElim && L->isLoopSimplifyForm()) { 5318 SmallVector<WeakVH, 16> DeadInsts; 5319 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 5320 SCEVExpander Rewriter(SE, DL, "lsr"); 5321 #ifndef NDEBUG 5322 Rewriter.setDebugType(DEBUG_TYPE); 5323 #endif 5324 unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI); 5325 if (numFolded) { 5326 Changed = true; 5327 DeleteTriviallyDeadInstructions(DeadInsts); 5328 DeleteDeadPHIs(L->getHeader()); 5329 } 5330 } 5331 return Changed; 5332 } 5333 5334 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) { 5335 if (skipLoop(L)) 5336 return false; 5337 5338 auto &IU = getAnalysis<IVUsersWrapperPass>().getIU(); 5339 auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 5340 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 5341 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 5342 const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI( 5343 *L->getHeader()->getParent()); 5344 return ReduceLoopStrength(L, IU, SE, DT, LI, TTI); 5345 } 5346 5347 PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM, 5348 LoopStandardAnalysisResults &AR, 5349 LPMUpdater &) { 5350 if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE, 5351 AR.DT, AR.LI, AR.TTI)) 5352 return PreservedAnalyses::all(); 5353 5354 return getLoopPassPreservedAnalyses(); 5355 } 5356 5357 char LoopStrengthReduce::ID = 0; 5358 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce", 5359 "Loop Strength Reduction", false, false) 5360 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 5361 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 5362 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 5363 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass) 5364 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 5365 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 5366 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce", 5367 "Loop Strength Reduction", false, false) 5368 5369 Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); } 5370