1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This transformation analyzes and transforms the induction variables (and
10 // computations derived from them) into forms suitable for efficient execution
11 // on the target.
12 //
13 // This pass performs a strength reduction on array references inside loops that
14 // have as one or more of their components the loop induction variable, it
15 // rewrites expressions to take advantage of scaled-index addressing modes
16 // available on the target, and it performs a variety of other optimizations
17 // related to loop induction variables.
18 //
19 // Terminology note: this code has a lot of handling for "post-increment" or
20 // "post-inc" users. This is not talking about post-increment addressing modes;
21 // it is instead talking about code like this:
22 //
23 //   %i = phi [ 0, %entry ], [ %i.next, %latch ]
24 //   ...
25 //   %i.next = add %i, 1
26 //   %c = icmp eq %i.next, %n
27 //
28 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
29 // it's useful to think about these as the same register, with some uses using
30 // the value of the register before the add and some using it after. In this
31 // example, the icmp is a post-increment user, since it uses %i.next, which is
32 // the value of the induction variable after the increment. The other common
33 // case of post-increment users is users outside the loop.
34 //
35 // TODO: More sophistication in the way Formulae are generated and filtered.
36 //
37 // TODO: Handle multiple loops at a time.
38 //
39 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead
40 //       of a GlobalValue?
41 //
42 // TODO: When truncation is free, truncate ICmp users' operands to make it a
43 //       smaller encoding (on x86 at least).
44 //
45 // TODO: When a negated register is used by an add (such as in a list of
46 //       multiple base registers, or as the increment expression in an addrec),
47 //       we may not actually need both reg and (-1 * reg) in registers; the
48 //       negation can be implemented by using a sub instead of an add. The
49 //       lack of support for taking this into consideration when making
50 //       register pressure decisions is partly worked around by the "Special"
51 //       use kind.
52 //
53 //===----------------------------------------------------------------------===//
54 
55 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h"
56 #include "llvm/ADT/APInt.h"
57 #include "llvm/ADT/DenseMap.h"
58 #include "llvm/ADT/DenseSet.h"
59 #include "llvm/ADT/Hashing.h"
60 #include "llvm/ADT/PointerIntPair.h"
61 #include "llvm/ADT/STLExtras.h"
62 #include "llvm/ADT/SetVector.h"
63 #include "llvm/ADT/SmallBitVector.h"
64 #include "llvm/ADT/SmallPtrSet.h"
65 #include "llvm/ADT/SmallSet.h"
66 #include "llvm/ADT/SmallVector.h"
67 #include "llvm/ADT/iterator_range.h"
68 #include "llvm/Analysis/IVUsers.h"
69 #include "llvm/Analysis/LoopAnalysisManager.h"
70 #include "llvm/Analysis/LoopInfo.h"
71 #include "llvm/Analysis/LoopPass.h"
72 #include "llvm/Analysis/ScalarEvolution.h"
73 #include "llvm/Analysis/ScalarEvolutionExpander.h"
74 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
75 #include "llvm/Analysis/ScalarEvolutionNormalization.h"
76 #include "llvm/Analysis/TargetTransformInfo.h"
77 #include "llvm/Transforms/Utils/Local.h"
78 #include "llvm/Config/llvm-config.h"
79 #include "llvm/IR/BasicBlock.h"
80 #include "llvm/IR/Constant.h"
81 #include "llvm/IR/Constants.h"
82 #include "llvm/IR/DerivedTypes.h"
83 #include "llvm/IR/Dominators.h"
84 #include "llvm/IR/GlobalValue.h"
85 #include "llvm/IR/IRBuilder.h"
86 #include "llvm/IR/InstrTypes.h"
87 #include "llvm/IR/Instruction.h"
88 #include "llvm/IR/Instructions.h"
89 #include "llvm/IR/IntrinsicInst.h"
90 #include "llvm/IR/Intrinsics.h"
91 #include "llvm/IR/Module.h"
92 #include "llvm/IR/OperandTraits.h"
93 #include "llvm/IR/Operator.h"
94 #include "llvm/IR/PassManager.h"
95 #include "llvm/IR/Type.h"
96 #include "llvm/IR/Use.h"
97 #include "llvm/IR/User.h"
98 #include "llvm/IR/Value.h"
99 #include "llvm/IR/ValueHandle.h"
100 #include "llvm/Pass.h"
101 #include "llvm/Support/Casting.h"
102 #include "llvm/Support/CommandLine.h"
103 #include "llvm/Support/Compiler.h"
104 #include "llvm/Support/Debug.h"
105 #include "llvm/Support/ErrorHandling.h"
106 #include "llvm/Support/MathExtras.h"
107 #include "llvm/Support/raw_ostream.h"
108 #include "llvm/Transforms/Scalar.h"
109 #include "llvm/Transforms/Utils.h"
110 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
111 #include <algorithm>
112 #include <cassert>
113 #include <cstddef>
114 #include <cstdint>
115 #include <cstdlib>
116 #include <iterator>
117 #include <limits>
118 #include <numeric>
119 #include <map>
120 #include <utility>
121 
122 using namespace llvm;
123 
124 #define DEBUG_TYPE "loop-reduce"
125 
126 /// MaxIVUsers is an arbitrary threshold that provides an early opportunity for
127 /// bail out. This threshold is far beyond the number of users that LSR can
128 /// conceivably solve, so it should not affect generated code, but catches the
129 /// worst cases before LSR burns too much compile time and stack space.
130 static const unsigned MaxIVUsers = 200;
131 
132 // Temporary flag to cleanup congruent phis after LSR phi expansion.
133 // It's currently disabled until we can determine whether it's truly useful or
134 // not. The flag should be removed after the v3.0 release.
135 // This is now needed for ivchains.
136 static cl::opt<bool> EnablePhiElim(
137   "enable-lsr-phielim", cl::Hidden, cl::init(true),
138   cl::desc("Enable LSR phi elimination"));
139 
140 // The flag adds instruction count to solutions cost comparision.
141 static cl::opt<bool> InsnsCost(
142   "lsr-insns-cost", cl::Hidden, cl::init(true),
143   cl::desc("Add instruction count to a LSR cost model"));
144 
145 // Flag to choose how to narrow complex lsr solution
146 static cl::opt<bool> LSRExpNarrow(
147   "lsr-exp-narrow", cl::Hidden, cl::init(false),
148   cl::desc("Narrow LSR complex solution using"
149            " expectation of registers number"));
150 
151 // Flag to narrow search space by filtering non-optimal formulae with
152 // the same ScaledReg and Scale.
153 static cl::opt<bool> FilterSameScaledReg(
154     "lsr-filter-same-scaled-reg", cl::Hidden, cl::init(true),
155     cl::desc("Narrow LSR search space by filtering non-optimal formulae"
156              " with the same ScaledReg and Scale"));
157 
158 static cl::opt<bool> EnableBackedgeIndexing(
159   "lsr-backedge-indexing", cl::Hidden, cl::init(true),
160   cl::desc("Enable the generation of cross iteration indexed memops"));
161 
162 static cl::opt<unsigned> ComplexityLimit(
163   "lsr-complexity-limit", cl::Hidden,
164   cl::init(std::numeric_limits<uint16_t>::max()),
165   cl::desc("LSR search space complexity limit"));
166 
167 static cl::opt<bool> EnableRecursiveSetupCost(
168   "lsr-recursive-setupcost", cl::Hidden, cl::init(true),
169   cl::desc("Enable more thorough lsr setup cost calculation"));
170 
171 #ifndef NDEBUG
172 // Stress test IV chain generation.
173 static cl::opt<bool> StressIVChain(
174   "stress-ivchain", cl::Hidden, cl::init(false),
175   cl::desc("Stress test LSR IV chains"));
176 #else
177 static bool StressIVChain = false;
178 #endif
179 
180 namespace {
181 
182 struct MemAccessTy {
183   /// Used in situations where the accessed memory type is unknown.
184   static const unsigned UnknownAddressSpace =
185       std::numeric_limits<unsigned>::max();
186 
187   Type *MemTy = nullptr;
188   unsigned AddrSpace = UnknownAddressSpace;
189 
190   MemAccessTy() = default;
191   MemAccessTy(Type *Ty, unsigned AS) : MemTy(Ty), AddrSpace(AS) {}
192 
193   bool operator==(MemAccessTy Other) const {
194     return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace;
195   }
196 
197   bool operator!=(MemAccessTy Other) const { return !(*this == Other); }
198 
199   static MemAccessTy getUnknown(LLVMContext &Ctx,
200                                 unsigned AS = UnknownAddressSpace) {
201     return MemAccessTy(Type::getVoidTy(Ctx), AS);
202   }
203 
204   Type *getType() { return MemTy; }
205 };
206 
207 /// This class holds data which is used to order reuse candidates.
208 class RegSortData {
209 public:
210   /// This represents the set of LSRUse indices which reference
211   /// a particular register.
212   SmallBitVector UsedByIndices;
213 
214   void print(raw_ostream &OS) const;
215   void dump() const;
216 };
217 
218 } // end anonymous namespace
219 
220 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
221 void RegSortData::print(raw_ostream &OS) const {
222   OS << "[NumUses=" << UsedByIndices.count() << ']';
223 }
224 
225 LLVM_DUMP_METHOD void RegSortData::dump() const {
226   print(errs()); errs() << '\n';
227 }
228 #endif
229 
230 namespace {
231 
232 /// Map register candidates to information about how they are used.
233 class RegUseTracker {
234   using RegUsesTy = DenseMap<const SCEV *, RegSortData>;
235 
236   RegUsesTy RegUsesMap;
237   SmallVector<const SCEV *, 16> RegSequence;
238 
239 public:
240   void countRegister(const SCEV *Reg, size_t LUIdx);
241   void dropRegister(const SCEV *Reg, size_t LUIdx);
242   void swapAndDropUse(size_t LUIdx, size_t LastLUIdx);
243 
244   bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
245 
246   const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
247 
248   void clear();
249 
250   using iterator = SmallVectorImpl<const SCEV *>::iterator;
251   using const_iterator = SmallVectorImpl<const SCEV *>::const_iterator;
252 
253   iterator begin() { return RegSequence.begin(); }
254   iterator end()   { return RegSequence.end(); }
255   const_iterator begin() const { return RegSequence.begin(); }
256   const_iterator end() const   { return RegSequence.end(); }
257 };
258 
259 } // end anonymous namespace
260 
261 void
262 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) {
263   std::pair<RegUsesTy::iterator, bool> Pair =
264     RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
265   RegSortData &RSD = Pair.first->second;
266   if (Pair.second)
267     RegSequence.push_back(Reg);
268   RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
269   RSD.UsedByIndices.set(LUIdx);
270 }
271 
272 void
273 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) {
274   RegUsesTy::iterator It = RegUsesMap.find(Reg);
275   assert(It != RegUsesMap.end());
276   RegSortData &RSD = It->second;
277   assert(RSD.UsedByIndices.size() > LUIdx);
278   RSD.UsedByIndices.reset(LUIdx);
279 }
280 
281 void
282 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) {
283   assert(LUIdx <= LastLUIdx);
284 
285   // Update RegUses. The data structure is not optimized for this purpose;
286   // we must iterate through it and update each of the bit vectors.
287   for (auto &Pair : RegUsesMap) {
288     SmallBitVector &UsedByIndices = Pair.second.UsedByIndices;
289     if (LUIdx < UsedByIndices.size())
290       UsedByIndices[LUIdx] =
291         LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false;
292     UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx));
293   }
294 }
295 
296 bool
297 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
298   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
299   if (I == RegUsesMap.end())
300     return false;
301   const SmallBitVector &UsedByIndices = I->second.UsedByIndices;
302   int i = UsedByIndices.find_first();
303   if (i == -1) return false;
304   if ((size_t)i != LUIdx) return true;
305   return UsedByIndices.find_next(i) != -1;
306 }
307 
308 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
309   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
310   assert(I != RegUsesMap.end() && "Unknown register!");
311   return I->second.UsedByIndices;
312 }
313 
314 void RegUseTracker::clear() {
315   RegUsesMap.clear();
316   RegSequence.clear();
317 }
318 
319 namespace {
320 
321 /// This class holds information that describes a formula for computing
322 /// satisfying a use. It may include broken-out immediates and scaled registers.
323 struct Formula {
324   /// Global base address used for complex addressing.
325   GlobalValue *BaseGV = nullptr;
326 
327   /// Base offset for complex addressing.
328   int64_t BaseOffset = 0;
329 
330   /// Whether any complex addressing has a base register.
331   bool HasBaseReg = false;
332 
333   /// The scale of any complex addressing.
334   int64_t Scale = 0;
335 
336   /// The list of "base" registers for this use. When this is non-empty. The
337   /// canonical representation of a formula is
338   /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and
339   /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty().
340   /// 3. The reg containing recurrent expr related with currect loop in the
341   /// formula should be put in the ScaledReg.
342   /// #1 enforces that the scaled register is always used when at least two
343   /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2.
344   /// #2 enforces that 1 * reg is reg.
345   /// #3 ensures invariant regs with respect to current loop can be combined
346   /// together in LSR codegen.
347   /// This invariant can be temporarily broken while building a formula.
348   /// However, every formula inserted into the LSRInstance must be in canonical
349   /// form.
350   SmallVector<const SCEV *, 4> BaseRegs;
351 
352   /// The 'scaled' register for this use. This should be non-null when Scale is
353   /// not zero.
354   const SCEV *ScaledReg = nullptr;
355 
356   /// An additional constant offset which added near the use. This requires a
357   /// temporary register, but the offset itself can live in an add immediate
358   /// field rather than a register.
359   int64_t UnfoldedOffset = 0;
360 
361   Formula() = default;
362 
363   void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE);
364 
365   bool isCanonical(const Loop &L) const;
366 
367   void canonicalize(const Loop &L);
368 
369   bool unscale();
370 
371   bool hasZeroEnd() const;
372 
373   size_t getNumRegs() const;
374   Type *getType() const;
375 
376   void deleteBaseReg(const SCEV *&S);
377 
378   bool referencesReg(const SCEV *S) const;
379   bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
380                                   const RegUseTracker &RegUses) const;
381 
382   void print(raw_ostream &OS) const;
383   void dump() const;
384 };
385 
386 } // end anonymous namespace
387 
388 /// Recursion helper for initialMatch.
389 static void DoInitialMatch(const SCEV *S, Loop *L,
390                            SmallVectorImpl<const SCEV *> &Good,
391                            SmallVectorImpl<const SCEV *> &Bad,
392                            ScalarEvolution &SE) {
393   // Collect expressions which properly dominate the loop header.
394   if (SE.properlyDominates(S, L->getHeader())) {
395     Good.push_back(S);
396     return;
397   }
398 
399   // Look at add operands.
400   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
401     for (const SCEV *S : Add->operands())
402       DoInitialMatch(S, L, Good, Bad, SE);
403     return;
404   }
405 
406   // Look at addrec operands.
407   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
408     if (!AR->getStart()->isZero() && AR->isAffine()) {
409       DoInitialMatch(AR->getStart(), L, Good, Bad, SE);
410       DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
411                                       AR->getStepRecurrence(SE),
412                                       // FIXME: AR->getNoWrapFlags()
413                                       AR->getLoop(), SCEV::FlagAnyWrap),
414                      L, Good, Bad, SE);
415       return;
416     }
417 
418   // Handle a multiplication by -1 (negation) if it didn't fold.
419   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
420     if (Mul->getOperand(0)->isAllOnesValue()) {
421       SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end());
422       const SCEV *NewMul = SE.getMulExpr(Ops);
423 
424       SmallVector<const SCEV *, 4> MyGood;
425       SmallVector<const SCEV *, 4> MyBad;
426       DoInitialMatch(NewMul, L, MyGood, MyBad, SE);
427       const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
428         SE.getEffectiveSCEVType(NewMul->getType())));
429       for (const SCEV *S : MyGood)
430         Good.push_back(SE.getMulExpr(NegOne, S));
431       for (const SCEV *S : MyBad)
432         Bad.push_back(SE.getMulExpr(NegOne, S));
433       return;
434     }
435 
436   // Ok, we can't do anything interesting. Just stuff the whole thing into a
437   // register and hope for the best.
438   Bad.push_back(S);
439 }
440 
441 /// Incorporate loop-variant parts of S into this Formula, attempting to keep
442 /// all loop-invariant and loop-computable values in a single base register.
443 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) {
444   SmallVector<const SCEV *, 4> Good;
445   SmallVector<const SCEV *, 4> Bad;
446   DoInitialMatch(S, L, Good, Bad, SE);
447   if (!Good.empty()) {
448     const SCEV *Sum = SE.getAddExpr(Good);
449     if (!Sum->isZero())
450       BaseRegs.push_back(Sum);
451     HasBaseReg = true;
452   }
453   if (!Bad.empty()) {
454     const SCEV *Sum = SE.getAddExpr(Bad);
455     if (!Sum->isZero())
456       BaseRegs.push_back(Sum);
457     HasBaseReg = true;
458   }
459   canonicalize(*L);
460 }
461 
462 /// Check whether or not this formula satisfies the canonical
463 /// representation.
464 /// \see Formula::BaseRegs.
465 bool Formula::isCanonical(const Loop &L) const {
466   if (!ScaledReg)
467     return BaseRegs.size() <= 1;
468 
469   if (Scale != 1)
470     return true;
471 
472   if (Scale == 1 && BaseRegs.empty())
473     return false;
474 
475   const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg);
476   if (SAR && SAR->getLoop() == &L)
477     return true;
478 
479   // If ScaledReg is not a recurrent expr, or it is but its loop is not current
480   // loop, meanwhile BaseRegs contains a recurrent expr reg related with current
481   // loop, we want to swap the reg in BaseRegs with ScaledReg.
482   auto I =
483       find_if(make_range(BaseRegs.begin(), BaseRegs.end()), [&](const SCEV *S) {
484         return isa<const SCEVAddRecExpr>(S) &&
485                (cast<SCEVAddRecExpr>(S)->getLoop() == &L);
486       });
487   return I == BaseRegs.end();
488 }
489 
490 /// Helper method to morph a formula into its canonical representation.
491 /// \see Formula::BaseRegs.
492 /// Every formula having more than one base register, must use the ScaledReg
493 /// field. Otherwise, we would have to do special cases everywhere in LSR
494 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ...
495 /// On the other hand, 1*reg should be canonicalized into reg.
496 void Formula::canonicalize(const Loop &L) {
497   if (isCanonical(L))
498     return;
499   // So far we did not need this case. This is easy to implement but it is
500   // useless to maintain dead code. Beside it could hurt compile time.
501   assert(!BaseRegs.empty() && "1*reg => reg, should not be needed.");
502 
503   // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg.
504   if (!ScaledReg) {
505     ScaledReg = BaseRegs.back();
506     BaseRegs.pop_back();
507     Scale = 1;
508   }
509 
510   // If ScaledReg is an invariant with respect to L, find the reg from
511   // BaseRegs containing the recurrent expr related with Loop L. Swap the
512   // reg with ScaledReg.
513   const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg);
514   if (!SAR || SAR->getLoop() != &L) {
515     auto I = find_if(make_range(BaseRegs.begin(), BaseRegs.end()),
516                      [&](const SCEV *S) {
517                        return isa<const SCEVAddRecExpr>(S) &&
518                               (cast<SCEVAddRecExpr>(S)->getLoop() == &L);
519                      });
520     if (I != BaseRegs.end())
521       std::swap(ScaledReg, *I);
522   }
523 }
524 
525 /// Get rid of the scale in the formula.
526 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2.
527 /// \return true if it was possible to get rid of the scale, false otherwise.
528 /// \note After this operation the formula may not be in the canonical form.
529 bool Formula::unscale() {
530   if (Scale != 1)
531     return false;
532   Scale = 0;
533   BaseRegs.push_back(ScaledReg);
534   ScaledReg = nullptr;
535   return true;
536 }
537 
538 bool Formula::hasZeroEnd() const {
539   if (UnfoldedOffset || BaseOffset)
540     return false;
541   if (BaseRegs.size() != 1 || ScaledReg)
542     return false;
543   return true;
544 }
545 
546 /// Return the total number of register operands used by this formula. This does
547 /// not include register uses implied by non-constant addrec strides.
548 size_t Formula::getNumRegs() const {
549   return !!ScaledReg + BaseRegs.size();
550 }
551 
552 /// Return the type of this formula, if it has one, or null otherwise. This type
553 /// is meaningless except for the bit size.
554 Type *Formula::getType() const {
555   return !BaseRegs.empty() ? BaseRegs.front()->getType() :
556          ScaledReg ? ScaledReg->getType() :
557          BaseGV ? BaseGV->getType() :
558          nullptr;
559 }
560 
561 /// Delete the given base reg from the BaseRegs list.
562 void Formula::deleteBaseReg(const SCEV *&S) {
563   if (&S != &BaseRegs.back())
564     std::swap(S, BaseRegs.back());
565   BaseRegs.pop_back();
566 }
567 
568 /// Test if this formula references the given register.
569 bool Formula::referencesReg(const SCEV *S) const {
570   return S == ScaledReg || is_contained(BaseRegs, S);
571 }
572 
573 /// Test whether this formula uses registers which are used by uses other than
574 /// the use with the given index.
575 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
576                                          const RegUseTracker &RegUses) const {
577   if (ScaledReg)
578     if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
579       return true;
580   for (const SCEV *BaseReg : BaseRegs)
581     if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx))
582       return true;
583   return false;
584 }
585 
586 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
587 void Formula::print(raw_ostream &OS) const {
588   bool First = true;
589   if (BaseGV) {
590     if (!First) OS << " + "; else First = false;
591     BaseGV->printAsOperand(OS, /*PrintType=*/false);
592   }
593   if (BaseOffset != 0) {
594     if (!First) OS << " + "; else First = false;
595     OS << BaseOffset;
596   }
597   for (const SCEV *BaseReg : BaseRegs) {
598     if (!First) OS << " + "; else First = false;
599     OS << "reg(" << *BaseReg << ')';
600   }
601   if (HasBaseReg && BaseRegs.empty()) {
602     if (!First) OS << " + "; else First = false;
603     OS << "**error: HasBaseReg**";
604   } else if (!HasBaseReg && !BaseRegs.empty()) {
605     if (!First) OS << " + "; else First = false;
606     OS << "**error: !HasBaseReg**";
607   }
608   if (Scale != 0) {
609     if (!First) OS << " + "; else First = false;
610     OS << Scale << "*reg(";
611     if (ScaledReg)
612       OS << *ScaledReg;
613     else
614       OS << "<unknown>";
615     OS << ')';
616   }
617   if (UnfoldedOffset != 0) {
618     if (!First) OS << " + ";
619     OS << "imm(" << UnfoldedOffset << ')';
620   }
621 }
622 
623 LLVM_DUMP_METHOD void Formula::dump() const {
624   print(errs()); errs() << '\n';
625 }
626 #endif
627 
628 /// Return true if the given addrec can be sign-extended without changing its
629 /// value.
630 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
631   Type *WideTy =
632     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
633   return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
634 }
635 
636 /// Return true if the given add can be sign-extended without changing its
637 /// value.
638 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
639   Type *WideTy =
640     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
641   return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
642 }
643 
644 /// Return true if the given mul can be sign-extended without changing its
645 /// value.
646 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) {
647   Type *WideTy =
648     IntegerType::get(SE.getContext(),
649                      SE.getTypeSizeInBits(M->getType()) * M->getNumOperands());
650   return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy));
651 }
652 
653 /// Return an expression for LHS /s RHS, if it can be determined and if the
654 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits
655 /// is true, expressions like (X * Y) /s Y are simplified to Y, ignoring that
656 /// the multiplication may overflow, which is useful when the result will be
657 /// used in a context where the most significant bits are ignored.
658 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
659                                 ScalarEvolution &SE,
660                                 bool IgnoreSignificantBits = false) {
661   // Handle the trivial case, which works for any SCEV type.
662   if (LHS == RHS)
663     return SE.getConstant(LHS->getType(), 1);
664 
665   // Handle a few RHS special cases.
666   const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
667   if (RC) {
668     const APInt &RA = RC->getAPInt();
669     // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
670     // some folding.
671     if (RA.isAllOnesValue())
672       return SE.getMulExpr(LHS, RC);
673     // Handle x /s 1 as x.
674     if (RA == 1)
675       return LHS;
676   }
677 
678   // Check for a division of a constant by a constant.
679   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
680     if (!RC)
681       return nullptr;
682     const APInt &LA = C->getAPInt();
683     const APInt &RA = RC->getAPInt();
684     if (LA.srem(RA) != 0)
685       return nullptr;
686     return SE.getConstant(LA.sdiv(RA));
687   }
688 
689   // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
690   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
691     if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) {
692       const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
693                                       IgnoreSignificantBits);
694       if (!Step) return nullptr;
695       const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
696                                        IgnoreSignificantBits);
697       if (!Start) return nullptr;
698       // FlagNW is independent of the start value, step direction, and is
699       // preserved with smaller magnitude steps.
700       // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
701       return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap);
702     }
703     return nullptr;
704   }
705 
706   // Distribute the sdiv over add operands, if the add doesn't overflow.
707   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
708     if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
709       SmallVector<const SCEV *, 8> Ops;
710       for (const SCEV *S : Add->operands()) {
711         const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits);
712         if (!Op) return nullptr;
713         Ops.push_back(Op);
714       }
715       return SE.getAddExpr(Ops);
716     }
717     return nullptr;
718   }
719 
720   // Check for a multiply operand that we can pull RHS out of.
721   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) {
722     if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
723       SmallVector<const SCEV *, 4> Ops;
724       bool Found = false;
725       for (const SCEV *S : Mul->operands()) {
726         if (!Found)
727           if (const SCEV *Q = getExactSDiv(S, RHS, SE,
728                                            IgnoreSignificantBits)) {
729             S = Q;
730             Found = true;
731           }
732         Ops.push_back(S);
733       }
734       return Found ? SE.getMulExpr(Ops) : nullptr;
735     }
736     return nullptr;
737   }
738 
739   // Otherwise we don't know.
740   return nullptr;
741 }
742 
743 /// If S involves the addition of a constant integer value, return that integer
744 /// value, and mutate S to point to a new SCEV with that value excluded.
745 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
746   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
747     if (C->getAPInt().getMinSignedBits() <= 64) {
748       S = SE.getConstant(C->getType(), 0);
749       return C->getValue()->getSExtValue();
750     }
751   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
752     SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
753     int64_t Result = ExtractImmediate(NewOps.front(), SE);
754     if (Result != 0)
755       S = SE.getAddExpr(NewOps);
756     return Result;
757   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
758     SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
759     int64_t Result = ExtractImmediate(NewOps.front(), SE);
760     if (Result != 0)
761       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
762                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
763                            SCEV::FlagAnyWrap);
764     return Result;
765   }
766   return 0;
767 }
768 
769 /// If S involves the addition of a GlobalValue address, return that symbol, and
770 /// mutate S to point to a new SCEV with that value excluded.
771 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
772   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
773     if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
774       S = SE.getConstant(GV->getType(), 0);
775       return GV;
776     }
777   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
778     SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
779     GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
780     if (Result)
781       S = SE.getAddExpr(NewOps);
782     return Result;
783   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
784     SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
785     GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
786     if (Result)
787       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
788                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
789                            SCEV::FlagAnyWrap);
790     return Result;
791   }
792   return nullptr;
793 }
794 
795 /// Returns true if the specified instruction is using the specified value as an
796 /// address.
797 static bool isAddressUse(const TargetTransformInfo &TTI,
798                          Instruction *Inst, Value *OperandVal) {
799   bool isAddress = isa<LoadInst>(Inst);
800   if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
801     if (SI->getPointerOperand() == OperandVal)
802       isAddress = true;
803   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
804     // Addressing modes can also be folded into prefetches and a variety
805     // of intrinsics.
806     switch (II->getIntrinsicID()) {
807     case Intrinsic::memset:
808     case Intrinsic::prefetch:
809       if (II->getArgOperand(0) == OperandVal)
810         isAddress = true;
811       break;
812     case Intrinsic::memmove:
813     case Intrinsic::memcpy:
814       if (II->getArgOperand(0) == OperandVal ||
815           II->getArgOperand(1) == OperandVal)
816         isAddress = true;
817       break;
818     default: {
819       MemIntrinsicInfo IntrInfo;
820       if (TTI.getTgtMemIntrinsic(II, IntrInfo)) {
821         if (IntrInfo.PtrVal == OperandVal)
822           isAddress = true;
823       }
824     }
825     }
826   } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
827     if (RMW->getPointerOperand() == OperandVal)
828       isAddress = true;
829   } else if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
830     if (CmpX->getPointerOperand() == OperandVal)
831       isAddress = true;
832   }
833   return isAddress;
834 }
835 
836 /// Return the type of the memory being accessed.
837 static MemAccessTy getAccessType(const TargetTransformInfo &TTI,
838                                  Instruction *Inst, Value *OperandVal) {
839   MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace);
840   if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
841     AccessTy.MemTy = SI->getOperand(0)->getType();
842     AccessTy.AddrSpace = SI->getPointerAddressSpace();
843   } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
844     AccessTy.AddrSpace = LI->getPointerAddressSpace();
845   } else if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
846     AccessTy.AddrSpace = RMW->getPointerAddressSpace();
847   } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
848     AccessTy.AddrSpace = CmpX->getPointerAddressSpace();
849   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
850     switch (II->getIntrinsicID()) {
851     case Intrinsic::prefetch:
852     case Intrinsic::memset:
853       AccessTy.AddrSpace = II->getArgOperand(0)->getType()->getPointerAddressSpace();
854       AccessTy.MemTy = OperandVal->getType();
855       break;
856     case Intrinsic::memmove:
857     case Intrinsic::memcpy:
858       AccessTy.AddrSpace = OperandVal->getType()->getPointerAddressSpace();
859       AccessTy.MemTy = OperandVal->getType();
860       break;
861     default: {
862       MemIntrinsicInfo IntrInfo;
863       if (TTI.getTgtMemIntrinsic(II, IntrInfo) && IntrInfo.PtrVal) {
864         AccessTy.AddrSpace
865           = IntrInfo.PtrVal->getType()->getPointerAddressSpace();
866       }
867 
868       break;
869     }
870     }
871   }
872 
873   // All pointers have the same requirements, so canonicalize them to an
874   // arbitrary pointer type to minimize variation.
875   if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy))
876     AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
877                                       PTy->getAddressSpace());
878 
879   return AccessTy;
880 }
881 
882 /// Return true if this AddRec is already a phi in its loop.
883 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
884   for (PHINode &PN : AR->getLoop()->getHeader()->phis()) {
885     if (SE.isSCEVable(PN.getType()) &&
886         (SE.getEffectiveSCEVType(PN.getType()) ==
887          SE.getEffectiveSCEVType(AR->getType())) &&
888         SE.getSCEV(&PN) == AR)
889       return true;
890   }
891   return false;
892 }
893 
894 /// Check if expanding this expression is likely to incur significant cost. This
895 /// is tricky because SCEV doesn't track which expressions are actually computed
896 /// by the current IR.
897 ///
898 /// We currently allow expansion of IV increments that involve adds,
899 /// multiplication by constants, and AddRecs from existing phis.
900 ///
901 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an
902 /// obvious multiple of the UDivExpr.
903 static bool isHighCostExpansion(const SCEV *S,
904                                 SmallPtrSetImpl<const SCEV*> &Processed,
905                                 ScalarEvolution &SE) {
906   // Zero/One operand expressions
907   switch (S->getSCEVType()) {
908   case scUnknown:
909   case scConstant:
910     return false;
911   case scTruncate:
912     return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(),
913                                Processed, SE);
914   case scZeroExtend:
915     return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(),
916                                Processed, SE);
917   case scSignExtend:
918     return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(),
919                                Processed, SE);
920   }
921 
922   if (!Processed.insert(S).second)
923     return false;
924 
925   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
926     for (const SCEV *S : Add->operands()) {
927       if (isHighCostExpansion(S, Processed, SE))
928         return true;
929     }
930     return false;
931   }
932 
933   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
934     if (Mul->getNumOperands() == 2) {
935       // Multiplication by a constant is ok
936       if (isa<SCEVConstant>(Mul->getOperand(0)))
937         return isHighCostExpansion(Mul->getOperand(1), Processed, SE);
938 
939       // If we have the value of one operand, check if an existing
940       // multiplication already generates this expression.
941       if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) {
942         Value *UVal = U->getValue();
943         for (User *UR : UVal->users()) {
944           // If U is a constant, it may be used by a ConstantExpr.
945           Instruction *UI = dyn_cast<Instruction>(UR);
946           if (UI && UI->getOpcode() == Instruction::Mul &&
947               SE.isSCEVable(UI->getType())) {
948             return SE.getSCEV(UI) == Mul;
949           }
950         }
951       }
952     }
953   }
954 
955   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
956     if (isExistingPhi(AR, SE))
957       return false;
958   }
959 
960   // Fow now, consider any other type of expression (div/mul/min/max) high cost.
961   return true;
962 }
963 
964 /// If any of the instructions in the specified set are trivially dead, delete
965 /// them and see if this makes any of their operands subsequently dead.
966 static bool
967 DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
968   bool Changed = false;
969 
970   while (!DeadInsts.empty()) {
971     Value *V = DeadInsts.pop_back_val();
972     Instruction *I = dyn_cast_or_null<Instruction>(V);
973 
974     if (!I || !isInstructionTriviallyDead(I))
975       continue;
976 
977     for (Use &O : I->operands())
978       if (Instruction *U = dyn_cast<Instruction>(O)) {
979         O = nullptr;
980         if (U->use_empty())
981           DeadInsts.emplace_back(U);
982       }
983 
984     I->eraseFromParent();
985     Changed = true;
986   }
987 
988   return Changed;
989 }
990 
991 namespace {
992 
993 class LSRUse;
994 
995 } // end anonymous namespace
996 
997 /// Check if the addressing mode defined by \p F is completely
998 /// folded in \p LU at isel time.
999 /// This includes address-mode folding and special icmp tricks.
1000 /// This function returns true if \p LU can accommodate what \p F
1001 /// defines and up to 1 base + 1 scaled + offset.
1002 /// In other words, if \p F has several base registers, this function may
1003 /// still return true. Therefore, users still need to account for
1004 /// additional base registers and/or unfolded offsets to derive an
1005 /// accurate cost model.
1006 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1007                                  const LSRUse &LU, const Formula &F);
1008 
1009 // Get the cost of the scaling factor used in F for LU.
1010 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
1011                                      const LSRUse &LU, const Formula &F,
1012                                      const Loop &L);
1013 
1014 namespace {
1015 
1016 /// This class is used to measure and compare candidate formulae.
1017 class Cost {
1018   TargetTransformInfo::LSRCost C;
1019 
1020 public:
1021   Cost() {
1022     C.Insns = 0;
1023     C.NumRegs = 0;
1024     C.AddRecCost = 0;
1025     C.NumIVMuls = 0;
1026     C.NumBaseAdds = 0;
1027     C.ImmCost = 0;
1028     C.SetupCost = 0;
1029     C.ScaleCost = 0;
1030   }
1031 
1032   bool isLess(Cost &Other, const TargetTransformInfo &TTI);
1033 
1034   void Lose();
1035 
1036 #ifndef NDEBUG
1037   // Once any of the metrics loses, they must all remain losers.
1038   bool isValid() {
1039     return ((C.Insns | C.NumRegs | C.AddRecCost | C.NumIVMuls | C.NumBaseAdds
1040              | C.ImmCost | C.SetupCost | C.ScaleCost) != ~0u)
1041       || ((C.Insns & C.NumRegs & C.AddRecCost & C.NumIVMuls & C.NumBaseAdds
1042            & C.ImmCost & C.SetupCost & C.ScaleCost) == ~0u);
1043   }
1044 #endif
1045 
1046   bool isLoser() {
1047     assert(isValid() && "invalid cost");
1048     return C.NumRegs == ~0u;
1049   }
1050 
1051   void RateFormula(const TargetTransformInfo &TTI,
1052                    const Formula &F,
1053                    SmallPtrSetImpl<const SCEV *> &Regs,
1054                    const DenseSet<const SCEV *> &VisitedRegs,
1055                    const Loop *L,
1056                    ScalarEvolution &SE, DominatorTree &DT,
1057                    const LSRUse &LU,
1058                    SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr);
1059 
1060   void print(raw_ostream &OS) const;
1061   void dump() const;
1062 
1063 private:
1064   void RateRegister(const Formula &F, const SCEV *Reg,
1065                     SmallPtrSetImpl<const SCEV *> &Regs,
1066                     const Loop *L,
1067                     ScalarEvolution &SE, DominatorTree &DT,
1068                     const TargetTransformInfo &TTI);
1069   void RatePrimaryRegister(const Formula &F, const SCEV *Reg,
1070                            SmallPtrSetImpl<const SCEV *> &Regs,
1071                            const Loop *L,
1072                            ScalarEvolution &SE, DominatorTree &DT,
1073                            SmallPtrSetImpl<const SCEV *> *LoserRegs,
1074                            const TargetTransformInfo &TTI);
1075 };
1076 
1077 /// An operand value in an instruction which is to be replaced with some
1078 /// equivalent, possibly strength-reduced, replacement.
1079 struct LSRFixup {
1080   /// The instruction which will be updated.
1081   Instruction *UserInst = nullptr;
1082 
1083   /// The operand of the instruction which will be replaced. The operand may be
1084   /// used more than once; every instance will be replaced.
1085   Value *OperandValToReplace = nullptr;
1086 
1087   /// If this user is to use the post-incremented value of an induction
1088   /// variable, this set is non-empty and holds the loops associated with the
1089   /// induction variable.
1090   PostIncLoopSet PostIncLoops;
1091 
1092   /// A constant offset to be added to the LSRUse expression.  This allows
1093   /// multiple fixups to share the same LSRUse with different offsets, for
1094   /// example in an unrolled loop.
1095   int64_t Offset = 0;
1096 
1097   LSRFixup() = default;
1098 
1099   bool isUseFullyOutsideLoop(const Loop *L) const;
1100 
1101   void print(raw_ostream &OS) const;
1102   void dump() const;
1103 };
1104 
1105 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted
1106 /// SmallVectors of const SCEV*.
1107 struct UniquifierDenseMapInfo {
1108   static SmallVector<const SCEV *, 4> getEmptyKey() {
1109     SmallVector<const SCEV *, 4>  V;
1110     V.push_back(reinterpret_cast<const SCEV *>(-1));
1111     return V;
1112   }
1113 
1114   static SmallVector<const SCEV *, 4> getTombstoneKey() {
1115     SmallVector<const SCEV *, 4> V;
1116     V.push_back(reinterpret_cast<const SCEV *>(-2));
1117     return V;
1118   }
1119 
1120   static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) {
1121     return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
1122   }
1123 
1124   static bool isEqual(const SmallVector<const SCEV *, 4> &LHS,
1125                       const SmallVector<const SCEV *, 4> &RHS) {
1126     return LHS == RHS;
1127   }
1128 };
1129 
1130 /// This class holds the state that LSR keeps for each use in IVUsers, as well
1131 /// as uses invented by LSR itself. It includes information about what kinds of
1132 /// things can be folded into the user, information about the user itself, and
1133 /// information about how the use may be satisfied.  TODO: Represent multiple
1134 /// users of the same expression in common?
1135 class LSRUse {
1136   DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier;
1137 
1138 public:
1139   /// An enum for a kind of use, indicating what types of scaled and immediate
1140   /// operands it might support.
1141   enum KindType {
1142     Basic,   ///< A normal use, with no folding.
1143     Special, ///< A special case of basic, allowing -1 scales.
1144     Address, ///< An address use; folding according to TargetLowering
1145     ICmpZero ///< An equality icmp with both operands folded into one.
1146     // TODO: Add a generic icmp too?
1147   };
1148 
1149   using SCEVUseKindPair = PointerIntPair<const SCEV *, 2, KindType>;
1150 
1151   KindType Kind;
1152   MemAccessTy AccessTy;
1153 
1154   /// The list of operands which are to be replaced.
1155   SmallVector<LSRFixup, 8> Fixups;
1156 
1157   /// Keep track of the min and max offsets of the fixups.
1158   int64_t MinOffset = std::numeric_limits<int64_t>::max();
1159   int64_t MaxOffset = std::numeric_limits<int64_t>::min();
1160 
1161   /// This records whether all of the fixups using this LSRUse are outside of
1162   /// the loop, in which case some special-case heuristics may be used.
1163   bool AllFixupsOutsideLoop = true;
1164 
1165   /// RigidFormula is set to true to guarantee that this use will be associated
1166   /// with a single formula--the one that initially matched. Some SCEV
1167   /// expressions cannot be expanded. This allows LSR to consider the registers
1168   /// used by those expressions without the need to expand them later after
1169   /// changing the formula.
1170   bool RigidFormula = false;
1171 
1172   /// This records the widest use type for any fixup using this
1173   /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max
1174   /// fixup widths to be equivalent, because the narrower one may be relying on
1175   /// the implicit truncation to truncate away bogus bits.
1176   Type *WidestFixupType = nullptr;
1177 
1178   /// A list of ways to build a value that can satisfy this user.  After the
1179   /// list is populated, one of these is selected heuristically and used to
1180   /// formulate a replacement for OperandValToReplace in UserInst.
1181   SmallVector<Formula, 12> Formulae;
1182 
1183   /// The set of register candidates used by all formulae in this LSRUse.
1184   SmallPtrSet<const SCEV *, 4> Regs;
1185 
1186   LSRUse(KindType K, MemAccessTy AT) : Kind(K), AccessTy(AT) {}
1187 
1188   LSRFixup &getNewFixup() {
1189     Fixups.push_back(LSRFixup());
1190     return Fixups.back();
1191   }
1192 
1193   void pushFixup(LSRFixup &f) {
1194     Fixups.push_back(f);
1195     if (f.Offset > MaxOffset)
1196       MaxOffset = f.Offset;
1197     if (f.Offset < MinOffset)
1198       MinOffset = f.Offset;
1199   }
1200 
1201   bool HasFormulaWithSameRegs(const Formula &F) const;
1202   float getNotSelectedProbability(const SCEV *Reg) const;
1203   bool InsertFormula(const Formula &F, const Loop &L);
1204   void DeleteFormula(Formula &F);
1205   void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
1206 
1207   void print(raw_ostream &OS) const;
1208   void dump() const;
1209 };
1210 
1211 } // end anonymous namespace
1212 
1213 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1214                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1215                                  GlobalValue *BaseGV, int64_t BaseOffset,
1216                                  bool HasBaseReg, int64_t Scale,
1217                                  Instruction *Fixup = nullptr);
1218 
1219 static unsigned getSetupCost(const SCEV *Reg) {
1220   if (isa<SCEVUnknown>(Reg) || isa<SCEVConstant>(Reg))
1221     return 1;
1222   if (!EnableRecursiveSetupCost)
1223     return 0;
1224   if (const auto *S = dyn_cast<SCEVAddRecExpr>(Reg))
1225     return getSetupCost(S->getStart());
1226   if (auto S = dyn_cast<SCEVCastExpr>(Reg))
1227     return getSetupCost(S->getOperand());
1228   if (auto S = dyn_cast<SCEVNAryExpr>(Reg))
1229     return std::accumulate(S->op_begin(), S->op_end(), 0,
1230                            [](unsigned i, const SCEV *Reg) {
1231                              return i + getSetupCost(Reg);
1232                            });
1233   if (auto S = dyn_cast<SCEVUDivExpr>(Reg))
1234     return getSetupCost(S->getLHS()) + getSetupCost(S->getRHS());
1235   return 0;
1236 }
1237 
1238 /// Tally up interesting quantities from the given register.
1239 void Cost::RateRegister(const Formula &F, const SCEV *Reg,
1240                         SmallPtrSetImpl<const SCEV *> &Regs,
1241                         const Loop *L,
1242                         ScalarEvolution &SE, DominatorTree &DT,
1243                         const TargetTransformInfo &TTI) {
1244   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
1245     // If this is an addrec for another loop, it should be an invariant
1246     // with respect to L since L is the innermost loop (at least
1247     // for now LSR only handles innermost loops).
1248     if (AR->getLoop() != L) {
1249       // If the AddRec exists, consider it's register free and leave it alone.
1250       if (isExistingPhi(AR, SE))
1251         return;
1252 
1253       // It is bad to allow LSR for current loop to add induction variables
1254       // for its sibling loops.
1255       if (!AR->getLoop()->contains(L)) {
1256         Lose();
1257         return;
1258       }
1259 
1260       // Otherwise, it will be an invariant with respect to Loop L.
1261       ++C.NumRegs;
1262       return;
1263     }
1264 
1265     unsigned LoopCost = 1;
1266     if (TTI.isIndexedLoadLegal(TTI.MIM_PostInc, AR->getType()) ||
1267         TTI.isIndexedStoreLegal(TTI.MIM_PostInc, AR->getType())) {
1268 
1269       // If the step size matches the base offset, we could use pre-indexed
1270       // addressing.
1271       if (TTI.shouldFavorBackedgeIndex(L)) {
1272         if (auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
1273           if (Step->getAPInt() == F.BaseOffset)
1274             LoopCost = 0;
1275       }
1276 
1277       if (TTI.shouldFavorPostInc()) {
1278         const SCEV *LoopStep = AR->getStepRecurrence(SE);
1279         if (isa<SCEVConstant>(LoopStep)) {
1280           const SCEV *LoopStart = AR->getStart();
1281           if (!isa<SCEVConstant>(LoopStart) &&
1282               SE.isLoopInvariant(LoopStart, L))
1283             LoopCost = 0;
1284         }
1285       }
1286     }
1287     C.AddRecCost += LoopCost;
1288 
1289     // Add the step value register, if it needs one.
1290     // TODO: The non-affine case isn't precisely modeled here.
1291     if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) {
1292       if (!Regs.count(AR->getOperand(1))) {
1293         RateRegister(F, AR->getOperand(1), Regs, L, SE, DT, TTI);
1294         if (isLoser())
1295           return;
1296       }
1297     }
1298   }
1299   ++C.NumRegs;
1300 
1301   // Rough heuristic; favor registers which don't require extra setup
1302   // instructions in the preheader.
1303   C.SetupCost += getSetupCost(Reg);
1304 
1305   C.NumIVMuls += isa<SCEVMulExpr>(Reg) &&
1306                SE.hasComputableLoopEvolution(Reg, L);
1307 }
1308 
1309 /// Record this register in the set. If we haven't seen it before, rate
1310 /// it. Optional LoserRegs provides a way to declare any formula that refers to
1311 /// one of those regs an instant loser.
1312 void Cost::RatePrimaryRegister(const Formula &F, const SCEV *Reg,
1313                                SmallPtrSetImpl<const SCEV *> &Regs,
1314                                const Loop *L,
1315                                ScalarEvolution &SE, DominatorTree &DT,
1316                                SmallPtrSetImpl<const SCEV *> *LoserRegs,
1317                                const TargetTransformInfo &TTI) {
1318   if (LoserRegs && LoserRegs->count(Reg)) {
1319     Lose();
1320     return;
1321   }
1322   if (Regs.insert(Reg).second) {
1323     RateRegister(F, Reg, Regs, L, SE, DT, TTI);
1324     if (LoserRegs && isLoser())
1325       LoserRegs->insert(Reg);
1326   }
1327 }
1328 
1329 void Cost::RateFormula(const TargetTransformInfo &TTI,
1330                        const Formula &F,
1331                        SmallPtrSetImpl<const SCEV *> &Regs,
1332                        const DenseSet<const SCEV *> &VisitedRegs,
1333                        const Loop *L,
1334                        ScalarEvolution &SE, DominatorTree &DT,
1335                        const LSRUse &LU,
1336                        SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1337   assert(F.isCanonical(*L) && "Cost is accurate only for canonical formula");
1338   // Tally up the registers.
1339   unsigned PrevAddRecCost = C.AddRecCost;
1340   unsigned PrevNumRegs = C.NumRegs;
1341   unsigned PrevNumBaseAdds = C.NumBaseAdds;
1342   if (const SCEV *ScaledReg = F.ScaledReg) {
1343     if (VisitedRegs.count(ScaledReg)) {
1344       Lose();
1345       return;
1346     }
1347     RatePrimaryRegister(F, ScaledReg, Regs, L, SE, DT, LoserRegs, TTI);
1348     if (isLoser())
1349       return;
1350   }
1351   for (const SCEV *BaseReg : F.BaseRegs) {
1352     if (VisitedRegs.count(BaseReg)) {
1353       Lose();
1354       return;
1355     }
1356     RatePrimaryRegister(F, BaseReg, Regs, L, SE, DT, LoserRegs, TTI);
1357     if (isLoser())
1358       return;
1359   }
1360 
1361   // Determine how many (unfolded) adds we'll need inside the loop.
1362   size_t NumBaseParts = F.getNumRegs();
1363   if (NumBaseParts > 1)
1364     // Do not count the base and a possible second register if the target
1365     // allows to fold 2 registers.
1366     C.NumBaseAdds +=
1367         NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(TTI, LU, F)));
1368   C.NumBaseAdds += (F.UnfoldedOffset != 0);
1369 
1370   // Accumulate non-free scaling amounts.
1371   C.ScaleCost += getScalingFactorCost(TTI, LU, F, *L);
1372 
1373   // Tally up the non-zero immediates.
1374   for (const LSRFixup &Fixup : LU.Fixups) {
1375     int64_t O = Fixup.Offset;
1376     int64_t Offset = (uint64_t)O + F.BaseOffset;
1377     if (F.BaseGV)
1378       C.ImmCost += 64; // Handle symbolic values conservatively.
1379                      // TODO: This should probably be the pointer size.
1380     else if (Offset != 0)
1381       C.ImmCost += APInt(64, Offset, true).getMinSignedBits();
1382 
1383     // Check with target if this offset with this instruction is
1384     // specifically not supported.
1385     if (LU.Kind == LSRUse::Address && Offset != 0 &&
1386         !isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV,
1387                               Offset, F.HasBaseReg, F.Scale, Fixup.UserInst))
1388       C.NumBaseAdds++;
1389   }
1390 
1391   // If we don't count instruction cost exit here.
1392   if (!InsnsCost) {
1393     assert(isValid() && "invalid cost");
1394     return;
1395   }
1396 
1397   // Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as
1398   // additional instruction (at least fill).
1399   unsigned TTIRegNum = TTI.getNumberOfRegisters(false) - 1;
1400   if (C.NumRegs > TTIRegNum) {
1401     // Cost already exceeded TTIRegNum, then only newly added register can add
1402     // new instructions.
1403     if (PrevNumRegs > TTIRegNum)
1404       C.Insns += (C.NumRegs - PrevNumRegs);
1405     else
1406       C.Insns += (C.NumRegs - TTIRegNum);
1407   }
1408 
1409   // If ICmpZero formula ends with not 0, it could not be replaced by
1410   // just add or sub. We'll need to compare final result of AddRec.
1411   // That means we'll need an additional instruction. But if the target can
1412   // macro-fuse a compare with a branch, don't count this extra instruction.
1413   // For -10 + {0, +, 1}:
1414   // i = i + 1;
1415   // cmp i, 10
1416   //
1417   // For {-10, +, 1}:
1418   // i = i + 1;
1419   if (LU.Kind == LSRUse::ICmpZero && !F.hasZeroEnd() && !TTI.canMacroFuseCmp())
1420     C.Insns++;
1421   // Each new AddRec adds 1 instruction to calculation.
1422   C.Insns += (C.AddRecCost - PrevAddRecCost);
1423 
1424   // BaseAdds adds instructions for unfolded registers.
1425   if (LU.Kind != LSRUse::ICmpZero)
1426     C.Insns += C.NumBaseAdds - PrevNumBaseAdds;
1427   assert(isValid() && "invalid cost");
1428 }
1429 
1430 /// Set this cost to a losing value.
1431 void Cost::Lose() {
1432   C.Insns = std::numeric_limits<unsigned>::max();
1433   C.NumRegs = std::numeric_limits<unsigned>::max();
1434   C.AddRecCost = std::numeric_limits<unsigned>::max();
1435   C.NumIVMuls = std::numeric_limits<unsigned>::max();
1436   C.NumBaseAdds = std::numeric_limits<unsigned>::max();
1437   C.ImmCost = std::numeric_limits<unsigned>::max();
1438   C.SetupCost = std::numeric_limits<unsigned>::max();
1439   C.ScaleCost = std::numeric_limits<unsigned>::max();
1440 }
1441 
1442 /// Choose the lower cost.
1443 bool Cost::isLess(Cost &Other, const TargetTransformInfo &TTI) {
1444   if (InsnsCost.getNumOccurrences() > 0 && InsnsCost &&
1445       C.Insns != Other.C.Insns)
1446     return C.Insns < Other.C.Insns;
1447   return TTI.isLSRCostLess(C, Other.C);
1448 }
1449 
1450 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1451 void Cost::print(raw_ostream &OS) const {
1452   if (InsnsCost)
1453     OS << C.Insns << " instruction" << (C.Insns == 1 ? " " : "s ");
1454   OS << C.NumRegs << " reg" << (C.NumRegs == 1 ? "" : "s");
1455   if (C.AddRecCost != 0)
1456     OS << ", with addrec cost " << C.AddRecCost;
1457   if (C.NumIVMuls != 0)
1458     OS << ", plus " << C.NumIVMuls << " IV mul"
1459        << (C.NumIVMuls == 1 ? "" : "s");
1460   if (C.NumBaseAdds != 0)
1461     OS << ", plus " << C.NumBaseAdds << " base add"
1462        << (C.NumBaseAdds == 1 ? "" : "s");
1463   if (C.ScaleCost != 0)
1464     OS << ", plus " << C.ScaleCost << " scale cost";
1465   if (C.ImmCost != 0)
1466     OS << ", plus " << C.ImmCost << " imm cost";
1467   if (C.SetupCost != 0)
1468     OS << ", plus " << C.SetupCost << " setup cost";
1469 }
1470 
1471 LLVM_DUMP_METHOD void Cost::dump() const {
1472   print(errs()); errs() << '\n';
1473 }
1474 #endif
1475 
1476 /// Test whether this fixup always uses its value outside of the given loop.
1477 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
1478   // PHI nodes use their value in their incoming blocks.
1479   if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
1480     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1481       if (PN->getIncomingValue(i) == OperandValToReplace &&
1482           L->contains(PN->getIncomingBlock(i)))
1483         return false;
1484     return true;
1485   }
1486 
1487   return !L->contains(UserInst);
1488 }
1489 
1490 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1491 void LSRFixup::print(raw_ostream &OS) const {
1492   OS << "UserInst=";
1493   // Store is common and interesting enough to be worth special-casing.
1494   if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
1495     OS << "store ";
1496     Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false);
1497   } else if (UserInst->getType()->isVoidTy())
1498     OS << UserInst->getOpcodeName();
1499   else
1500     UserInst->printAsOperand(OS, /*PrintType=*/false);
1501 
1502   OS << ", OperandValToReplace=";
1503   OperandValToReplace->printAsOperand(OS, /*PrintType=*/false);
1504 
1505   for (const Loop *PIL : PostIncLoops) {
1506     OS << ", PostIncLoop=";
1507     PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
1508   }
1509 
1510   if (Offset != 0)
1511     OS << ", Offset=" << Offset;
1512 }
1513 
1514 LLVM_DUMP_METHOD void LSRFixup::dump() const {
1515   print(errs()); errs() << '\n';
1516 }
1517 #endif
1518 
1519 /// Test whether this use as a formula which has the same registers as the given
1520 /// formula.
1521 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
1522   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1523   if (F.ScaledReg) Key.push_back(F.ScaledReg);
1524   // Unstable sort by host order ok, because this is only used for uniquifying.
1525   llvm::sort(Key);
1526   return Uniquifier.count(Key);
1527 }
1528 
1529 /// The function returns a probability of selecting formula without Reg.
1530 float LSRUse::getNotSelectedProbability(const SCEV *Reg) const {
1531   unsigned FNum = 0;
1532   for (const Formula &F : Formulae)
1533     if (F.referencesReg(Reg))
1534       FNum++;
1535   return ((float)(Formulae.size() - FNum)) / Formulae.size();
1536 }
1537 
1538 /// If the given formula has not yet been inserted, add it to the list, and
1539 /// return true. Return false otherwise.  The formula must be in canonical form.
1540 bool LSRUse::InsertFormula(const Formula &F, const Loop &L) {
1541   assert(F.isCanonical(L) && "Invalid canonical representation");
1542 
1543   if (!Formulae.empty() && RigidFormula)
1544     return false;
1545 
1546   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1547   if (F.ScaledReg) Key.push_back(F.ScaledReg);
1548   // Unstable sort by host order ok, because this is only used for uniquifying.
1549   llvm::sort(Key);
1550 
1551   if (!Uniquifier.insert(Key).second)
1552     return false;
1553 
1554   // Using a register to hold the value of 0 is not profitable.
1555   assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
1556          "Zero allocated in a scaled register!");
1557 #ifndef NDEBUG
1558   for (const SCEV *BaseReg : F.BaseRegs)
1559     assert(!BaseReg->isZero() && "Zero allocated in a base register!");
1560 #endif
1561 
1562   // Add the formula to the list.
1563   Formulae.push_back(F);
1564 
1565   // Record registers now being used by this use.
1566   Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1567   if (F.ScaledReg)
1568     Regs.insert(F.ScaledReg);
1569 
1570   return true;
1571 }
1572 
1573 /// Remove the given formula from this use's list.
1574 void LSRUse::DeleteFormula(Formula &F) {
1575   if (&F != &Formulae.back())
1576     std::swap(F, Formulae.back());
1577   Formulae.pop_back();
1578 }
1579 
1580 /// Recompute the Regs field, and update RegUses.
1581 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
1582   // Now that we've filtered out some formulae, recompute the Regs set.
1583   SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs);
1584   Regs.clear();
1585   for (const Formula &F : Formulae) {
1586     if (F.ScaledReg) Regs.insert(F.ScaledReg);
1587     Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1588   }
1589 
1590   // Update the RegTracker.
1591   for (const SCEV *S : OldRegs)
1592     if (!Regs.count(S))
1593       RegUses.dropRegister(S, LUIdx);
1594 }
1595 
1596 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1597 void LSRUse::print(raw_ostream &OS) const {
1598   OS << "LSR Use: Kind=";
1599   switch (Kind) {
1600   case Basic:    OS << "Basic"; break;
1601   case Special:  OS << "Special"; break;
1602   case ICmpZero: OS << "ICmpZero"; break;
1603   case Address:
1604     OS << "Address of ";
1605     if (AccessTy.MemTy->isPointerTy())
1606       OS << "pointer"; // the full pointer type could be really verbose
1607     else {
1608       OS << *AccessTy.MemTy;
1609     }
1610 
1611     OS << " in addrspace(" << AccessTy.AddrSpace << ')';
1612   }
1613 
1614   OS << ", Offsets={";
1615   bool NeedComma = false;
1616   for (const LSRFixup &Fixup : Fixups) {
1617     if (NeedComma) OS << ',';
1618     OS << Fixup.Offset;
1619     NeedComma = true;
1620   }
1621   OS << '}';
1622 
1623   if (AllFixupsOutsideLoop)
1624     OS << ", all-fixups-outside-loop";
1625 
1626   if (WidestFixupType)
1627     OS << ", widest fixup type: " << *WidestFixupType;
1628 }
1629 
1630 LLVM_DUMP_METHOD void LSRUse::dump() const {
1631   print(errs()); errs() << '\n';
1632 }
1633 #endif
1634 
1635 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1636                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1637                                  GlobalValue *BaseGV, int64_t BaseOffset,
1638                                  bool HasBaseReg, int64_t Scale,
1639                                  Instruction *Fixup/*= nullptr*/) {
1640   switch (Kind) {
1641   case LSRUse::Address:
1642     return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset,
1643                                      HasBaseReg, Scale, AccessTy.AddrSpace, Fixup);
1644 
1645   case LSRUse::ICmpZero:
1646     // There's not even a target hook for querying whether it would be legal to
1647     // fold a GV into an ICmp.
1648     if (BaseGV)
1649       return false;
1650 
1651     // ICmp only has two operands; don't allow more than two non-trivial parts.
1652     if (Scale != 0 && HasBaseReg && BaseOffset != 0)
1653       return false;
1654 
1655     // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
1656     // putting the scaled register in the other operand of the icmp.
1657     if (Scale != 0 && Scale != -1)
1658       return false;
1659 
1660     // If we have low-level target information, ask the target if it can fold an
1661     // integer immediate on an icmp.
1662     if (BaseOffset != 0) {
1663       // We have one of:
1664       // ICmpZero     BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset
1665       // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset
1666       // Offs is the ICmp immediate.
1667       if (Scale == 0)
1668         // The cast does the right thing with
1669         // std::numeric_limits<int64_t>::min().
1670         BaseOffset = -(uint64_t)BaseOffset;
1671       return TTI.isLegalICmpImmediate(BaseOffset);
1672     }
1673 
1674     // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg
1675     return true;
1676 
1677   case LSRUse::Basic:
1678     // Only handle single-register values.
1679     return !BaseGV && Scale == 0 && BaseOffset == 0;
1680 
1681   case LSRUse::Special:
1682     // Special case Basic to handle -1 scales.
1683     return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0;
1684   }
1685 
1686   llvm_unreachable("Invalid LSRUse Kind!");
1687 }
1688 
1689 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1690                                  int64_t MinOffset, int64_t MaxOffset,
1691                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1692                                  GlobalValue *BaseGV, int64_t BaseOffset,
1693                                  bool HasBaseReg, int64_t Scale) {
1694   // Check for overflow.
1695   if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) !=
1696       (MinOffset > 0))
1697     return false;
1698   MinOffset = (uint64_t)BaseOffset + MinOffset;
1699   if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) !=
1700       (MaxOffset > 0))
1701     return false;
1702   MaxOffset = (uint64_t)BaseOffset + MaxOffset;
1703 
1704   return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset,
1705                               HasBaseReg, Scale) &&
1706          isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset,
1707                               HasBaseReg, Scale);
1708 }
1709 
1710 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1711                                  int64_t MinOffset, int64_t MaxOffset,
1712                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1713                                  const Formula &F, const Loop &L) {
1714   // For the purpose of isAMCompletelyFolded either having a canonical formula
1715   // or a scale not equal to zero is correct.
1716   // Problems may arise from non canonical formulae having a scale == 0.
1717   // Strictly speaking it would best to just rely on canonical formulae.
1718   // However, when we generate the scaled formulae, we first check that the
1719   // scaling factor is profitable before computing the actual ScaledReg for
1720   // compile time sake.
1721   assert((F.isCanonical(L) || F.Scale != 0));
1722   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1723                               F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale);
1724 }
1725 
1726 /// Test whether we know how to expand the current formula.
1727 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1728                        int64_t MaxOffset, LSRUse::KindType Kind,
1729                        MemAccessTy AccessTy, GlobalValue *BaseGV,
1730                        int64_t BaseOffset, bool HasBaseReg, int64_t Scale) {
1731   // We know how to expand completely foldable formulae.
1732   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1733                               BaseOffset, HasBaseReg, Scale) ||
1734          // Or formulae that use a base register produced by a sum of base
1735          // registers.
1736          (Scale == 1 &&
1737           isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1738                                BaseGV, BaseOffset, true, 0));
1739 }
1740 
1741 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1742                        int64_t MaxOffset, LSRUse::KindType Kind,
1743                        MemAccessTy AccessTy, const Formula &F) {
1744   return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV,
1745                     F.BaseOffset, F.HasBaseReg, F.Scale);
1746 }
1747 
1748 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1749                                  const LSRUse &LU, const Formula &F) {
1750   // Target may want to look at the user instructions.
1751   if (LU.Kind == LSRUse::Address && TTI.LSRWithInstrQueries()) {
1752     for (const LSRFixup &Fixup : LU.Fixups)
1753       if (!isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV,
1754                                 (F.BaseOffset + Fixup.Offset), F.HasBaseReg,
1755                                 F.Scale, Fixup.UserInst))
1756         return false;
1757     return true;
1758   }
1759 
1760   return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1761                               LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg,
1762                               F.Scale);
1763 }
1764 
1765 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
1766                                      const LSRUse &LU, const Formula &F,
1767                                      const Loop &L) {
1768   if (!F.Scale)
1769     return 0;
1770 
1771   // If the use is not completely folded in that instruction, we will have to
1772   // pay an extra cost only for scale != 1.
1773   if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1774                             LU.AccessTy, F, L))
1775     return F.Scale != 1;
1776 
1777   switch (LU.Kind) {
1778   case LSRUse::Address: {
1779     // Check the scaling factor cost with both the min and max offsets.
1780     int ScaleCostMinOffset = TTI.getScalingFactorCost(
1781         LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg,
1782         F.Scale, LU.AccessTy.AddrSpace);
1783     int ScaleCostMaxOffset = TTI.getScalingFactorCost(
1784         LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg,
1785         F.Scale, LU.AccessTy.AddrSpace);
1786 
1787     assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 &&
1788            "Legal addressing mode has an illegal cost!");
1789     return std::max(ScaleCostMinOffset, ScaleCostMaxOffset);
1790   }
1791   case LSRUse::ICmpZero:
1792   case LSRUse::Basic:
1793   case LSRUse::Special:
1794     // The use is completely folded, i.e., everything is folded into the
1795     // instruction.
1796     return 0;
1797   }
1798 
1799   llvm_unreachable("Invalid LSRUse Kind!");
1800 }
1801 
1802 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1803                              LSRUse::KindType Kind, MemAccessTy AccessTy,
1804                              GlobalValue *BaseGV, int64_t BaseOffset,
1805                              bool HasBaseReg) {
1806   // Fast-path: zero is always foldable.
1807   if (BaseOffset == 0 && !BaseGV) return true;
1808 
1809   // Conservatively, create an address with an immediate and a
1810   // base and a scale.
1811   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1812 
1813   // Canonicalize a scale of 1 to a base register if the formula doesn't
1814   // already have a base register.
1815   if (!HasBaseReg && Scale == 1) {
1816     Scale = 0;
1817     HasBaseReg = true;
1818   }
1819 
1820   return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset,
1821                               HasBaseReg, Scale);
1822 }
1823 
1824 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1825                              ScalarEvolution &SE, int64_t MinOffset,
1826                              int64_t MaxOffset, LSRUse::KindType Kind,
1827                              MemAccessTy AccessTy, const SCEV *S,
1828                              bool HasBaseReg) {
1829   // Fast-path: zero is always foldable.
1830   if (S->isZero()) return true;
1831 
1832   // Conservatively, create an address with an immediate and a
1833   // base and a scale.
1834   int64_t BaseOffset = ExtractImmediate(S, SE);
1835   GlobalValue *BaseGV = ExtractSymbol(S, SE);
1836 
1837   // If there's anything else involved, it's not foldable.
1838   if (!S->isZero()) return false;
1839 
1840   // Fast-path: zero is always foldable.
1841   if (BaseOffset == 0 && !BaseGV) return true;
1842 
1843   // Conservatively, create an address with an immediate and a
1844   // base and a scale.
1845   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1846 
1847   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1848                               BaseOffset, HasBaseReg, Scale);
1849 }
1850 
1851 namespace {
1852 
1853 /// An individual increment in a Chain of IV increments.  Relate an IV user to
1854 /// an expression that computes the IV it uses from the IV used by the previous
1855 /// link in the Chain.
1856 ///
1857 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the
1858 /// original IVOperand. The head of the chain's IVOperand is only valid during
1859 /// chain collection, before LSR replaces IV users. During chain generation,
1860 /// IncExpr can be used to find the new IVOperand that computes the same
1861 /// expression.
1862 struct IVInc {
1863   Instruction *UserInst;
1864   Value* IVOperand;
1865   const SCEV *IncExpr;
1866 
1867   IVInc(Instruction *U, Value *O, const SCEV *E)
1868       : UserInst(U), IVOperand(O), IncExpr(E) {}
1869 };
1870 
1871 // The list of IV increments in program order.  We typically add the head of a
1872 // chain without finding subsequent links.
1873 struct IVChain {
1874   SmallVector<IVInc, 1> Incs;
1875   const SCEV *ExprBase = nullptr;
1876 
1877   IVChain() = default;
1878   IVChain(const IVInc &Head, const SCEV *Base)
1879       : Incs(1, Head), ExprBase(Base) {}
1880 
1881   using const_iterator = SmallVectorImpl<IVInc>::const_iterator;
1882 
1883   // Return the first increment in the chain.
1884   const_iterator begin() const {
1885     assert(!Incs.empty());
1886     return std::next(Incs.begin());
1887   }
1888   const_iterator end() const {
1889     return Incs.end();
1890   }
1891 
1892   // Returns true if this chain contains any increments.
1893   bool hasIncs() const { return Incs.size() >= 2; }
1894 
1895   // Add an IVInc to the end of this chain.
1896   void add(const IVInc &X) { Incs.push_back(X); }
1897 
1898   // Returns the last UserInst in the chain.
1899   Instruction *tailUserInst() const { return Incs.back().UserInst; }
1900 
1901   // Returns true if IncExpr can be profitably added to this chain.
1902   bool isProfitableIncrement(const SCEV *OperExpr,
1903                              const SCEV *IncExpr,
1904                              ScalarEvolution&);
1905 };
1906 
1907 /// Helper for CollectChains to track multiple IV increment uses.  Distinguish
1908 /// between FarUsers that definitely cross IV increments and NearUsers that may
1909 /// be used between IV increments.
1910 struct ChainUsers {
1911   SmallPtrSet<Instruction*, 4> FarUsers;
1912   SmallPtrSet<Instruction*, 4> NearUsers;
1913 };
1914 
1915 /// This class holds state for the main loop strength reduction logic.
1916 class LSRInstance {
1917   IVUsers &IU;
1918   ScalarEvolution &SE;
1919   DominatorTree &DT;
1920   LoopInfo &LI;
1921   const TargetTransformInfo &TTI;
1922   Loop *const L;
1923   bool FavorBackedgeIndex = false;
1924   bool Changed = false;
1925 
1926   /// This is the insert position that the current loop's induction variable
1927   /// increment should be placed. In simple loops, this is the latch block's
1928   /// terminator. But in more complicated cases, this is a position which will
1929   /// dominate all the in-loop post-increment users.
1930   Instruction *IVIncInsertPos = nullptr;
1931 
1932   /// Interesting factors between use strides.
1933   ///
1934   /// We explicitly use a SetVector which contains a SmallSet, instead of the
1935   /// default, a SmallDenseSet, because we need to use the full range of
1936   /// int64_ts, and there's currently no good way of doing that with
1937   /// SmallDenseSet.
1938   SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors;
1939 
1940   /// Interesting use types, to facilitate truncation reuse.
1941   SmallSetVector<Type *, 4> Types;
1942 
1943   /// The list of interesting uses.
1944   SmallVector<LSRUse, 16> Uses;
1945 
1946   /// Track which uses use which register candidates.
1947   RegUseTracker RegUses;
1948 
1949   // Limit the number of chains to avoid quadratic behavior. We don't expect to
1950   // have more than a few IV increment chains in a loop. Missing a Chain falls
1951   // back to normal LSR behavior for those uses.
1952   static const unsigned MaxChains = 8;
1953 
1954   /// IV users can form a chain of IV increments.
1955   SmallVector<IVChain, MaxChains> IVChainVec;
1956 
1957   /// IV users that belong to profitable IVChains.
1958   SmallPtrSet<Use*, MaxChains> IVIncSet;
1959 
1960   void OptimizeShadowIV();
1961   bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
1962   ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
1963   void OptimizeLoopTermCond();
1964 
1965   void ChainInstruction(Instruction *UserInst, Instruction *IVOper,
1966                         SmallVectorImpl<ChainUsers> &ChainUsersVec);
1967   void FinalizeChain(IVChain &Chain);
1968   void CollectChains();
1969   void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
1970                        SmallVectorImpl<WeakTrackingVH> &DeadInsts);
1971 
1972   void CollectInterestingTypesAndFactors();
1973   void CollectFixupsAndInitialFormulae();
1974 
1975   // Support for sharing of LSRUses between LSRFixups.
1976   using UseMapTy = DenseMap<LSRUse::SCEVUseKindPair, size_t>;
1977   UseMapTy UseMap;
1978 
1979   bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
1980                           LSRUse::KindType Kind, MemAccessTy AccessTy);
1981 
1982   std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind,
1983                                     MemAccessTy AccessTy);
1984 
1985   void DeleteUse(LSRUse &LU, size_t LUIdx);
1986 
1987   LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
1988 
1989   void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1990   void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1991   void CountRegisters(const Formula &F, size_t LUIdx);
1992   bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
1993 
1994   void CollectLoopInvariantFixupsAndFormulae();
1995 
1996   void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
1997                               unsigned Depth = 0);
1998 
1999   void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
2000                                   const Formula &Base, unsigned Depth,
2001                                   size_t Idx, bool IsScaledReg = false);
2002   void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
2003   void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
2004                                    const Formula &Base, size_t Idx,
2005                                    bool IsScaledReg = false);
2006   void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
2007   void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx,
2008                                    const Formula &Base,
2009                                    const SmallVectorImpl<int64_t> &Worklist,
2010                                    size_t Idx, bool IsScaledReg = false);
2011   void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
2012   void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
2013   void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
2014   void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
2015   void GenerateCrossUseConstantOffsets();
2016   void GenerateAllReuseFormulae();
2017 
2018   void FilterOutUndesirableDedicatedRegisters();
2019 
2020   size_t EstimateSearchSpaceComplexity() const;
2021   void NarrowSearchSpaceByDetectingSupersets();
2022   void NarrowSearchSpaceByCollapsingUnrolledCode();
2023   void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
2024   void NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
2025   void NarrowSearchSpaceByDeletingCostlyFormulas();
2026   void NarrowSearchSpaceByPickingWinnerRegs();
2027   void NarrowSearchSpaceUsingHeuristics();
2028 
2029   void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
2030                     Cost &SolutionCost,
2031                     SmallVectorImpl<const Formula *> &Workspace,
2032                     const Cost &CurCost,
2033                     const SmallPtrSet<const SCEV *, 16> &CurRegs,
2034                     DenseSet<const SCEV *> &VisitedRegs) const;
2035   void Solve(SmallVectorImpl<const Formula *> &Solution) const;
2036 
2037   BasicBlock::iterator
2038     HoistInsertPosition(BasicBlock::iterator IP,
2039                         const SmallVectorImpl<Instruction *> &Inputs) const;
2040   BasicBlock::iterator
2041     AdjustInsertPositionForExpand(BasicBlock::iterator IP,
2042                                   const LSRFixup &LF,
2043                                   const LSRUse &LU,
2044                                   SCEVExpander &Rewriter) const;
2045 
2046   Value *Expand(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
2047                 BasicBlock::iterator IP, SCEVExpander &Rewriter,
2048                 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2049   void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF,
2050                      const Formula &F, SCEVExpander &Rewriter,
2051                      SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2052   void Rewrite(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
2053                SCEVExpander &Rewriter,
2054                SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2055   void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution);
2056 
2057 public:
2058   LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT,
2059               LoopInfo &LI, const TargetTransformInfo &TTI);
2060 
2061   bool getChanged() const { return Changed; }
2062 
2063   void print_factors_and_types(raw_ostream &OS) const;
2064   void print_fixups(raw_ostream &OS) const;
2065   void print_uses(raw_ostream &OS) const;
2066   void print(raw_ostream &OS) const;
2067   void dump() const;
2068 };
2069 
2070 } // end anonymous namespace
2071 
2072 /// If IV is used in a int-to-float cast inside the loop then try to eliminate
2073 /// the cast operation.
2074 void LSRInstance::OptimizeShadowIV() {
2075   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
2076   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2077     return;
2078 
2079   for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
2080        UI != E; /* empty */) {
2081     IVUsers::const_iterator CandidateUI = UI;
2082     ++UI;
2083     Instruction *ShadowUse = CandidateUI->getUser();
2084     Type *DestTy = nullptr;
2085     bool IsSigned = false;
2086 
2087     /* If shadow use is a int->float cast then insert a second IV
2088        to eliminate this cast.
2089 
2090          for (unsigned i = 0; i < n; ++i)
2091            foo((double)i);
2092 
2093        is transformed into
2094 
2095          double d = 0.0;
2096          for (unsigned i = 0; i < n; ++i, ++d)
2097            foo(d);
2098     */
2099     if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) {
2100       IsSigned = false;
2101       DestTy = UCast->getDestTy();
2102     }
2103     else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) {
2104       IsSigned = true;
2105       DestTy = SCast->getDestTy();
2106     }
2107     if (!DestTy) continue;
2108 
2109     // If target does not support DestTy natively then do not apply
2110     // this transformation.
2111     if (!TTI.isTypeLegal(DestTy)) continue;
2112 
2113     PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
2114     if (!PH) continue;
2115     if (PH->getNumIncomingValues() != 2) continue;
2116 
2117     // If the calculation in integers overflows, the result in FP type will
2118     // differ. So we only can do this transformation if we are guaranteed to not
2119     // deal with overflowing values
2120     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PH));
2121     if (!AR) continue;
2122     if (IsSigned && !AR->hasNoSignedWrap()) continue;
2123     if (!IsSigned && !AR->hasNoUnsignedWrap()) continue;
2124 
2125     Type *SrcTy = PH->getType();
2126     int Mantissa = DestTy->getFPMantissaWidth();
2127     if (Mantissa == -1) continue;
2128     if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
2129       continue;
2130 
2131     unsigned Entry, Latch;
2132     if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
2133       Entry = 0;
2134       Latch = 1;
2135     } else {
2136       Entry = 1;
2137       Latch = 0;
2138     }
2139 
2140     ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
2141     if (!Init) continue;
2142     Constant *NewInit = ConstantFP::get(DestTy, IsSigned ?
2143                                         (double)Init->getSExtValue() :
2144                                         (double)Init->getZExtValue());
2145 
2146     BinaryOperator *Incr =
2147       dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
2148     if (!Incr) continue;
2149     if (Incr->getOpcode() != Instruction::Add
2150         && Incr->getOpcode() != Instruction::Sub)
2151       continue;
2152 
2153     /* Initialize new IV, double d = 0.0 in above example. */
2154     ConstantInt *C = nullptr;
2155     if (Incr->getOperand(0) == PH)
2156       C = dyn_cast<ConstantInt>(Incr->getOperand(1));
2157     else if (Incr->getOperand(1) == PH)
2158       C = dyn_cast<ConstantInt>(Incr->getOperand(0));
2159     else
2160       continue;
2161 
2162     if (!C) continue;
2163 
2164     // Ignore negative constants, as the code below doesn't handle them
2165     // correctly. TODO: Remove this restriction.
2166     if (!C->getValue().isStrictlyPositive()) continue;
2167 
2168     /* Add new PHINode. */
2169     PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH);
2170 
2171     /* create new increment. '++d' in above example. */
2172     Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
2173     BinaryOperator *NewIncr =
2174       BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
2175                                Instruction::FAdd : Instruction::FSub,
2176                              NewPH, CFP, "IV.S.next.", Incr);
2177 
2178     NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
2179     NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
2180 
2181     /* Remove cast operation */
2182     ShadowUse->replaceAllUsesWith(NewPH);
2183     ShadowUse->eraseFromParent();
2184     Changed = true;
2185     break;
2186   }
2187 }
2188 
2189 /// If Cond has an operand that is an expression of an IV, set the IV user and
2190 /// stride information and return true, otherwise return false.
2191 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
2192   for (IVStrideUse &U : IU)
2193     if (U.getUser() == Cond) {
2194       // NOTE: we could handle setcc instructions with multiple uses here, but
2195       // InstCombine does it as well for simple uses, it's not clear that it
2196       // occurs enough in real life to handle.
2197       CondUse = &U;
2198       return true;
2199     }
2200   return false;
2201 }
2202 
2203 /// Rewrite the loop's terminating condition if it uses a max computation.
2204 ///
2205 /// This is a narrow solution to a specific, but acute, problem. For loops
2206 /// like this:
2207 ///
2208 ///   i = 0;
2209 ///   do {
2210 ///     p[i] = 0.0;
2211 ///   } while (++i < n);
2212 ///
2213 /// the trip count isn't just 'n', because 'n' might not be positive. And
2214 /// unfortunately this can come up even for loops where the user didn't use
2215 /// a C do-while loop. For example, seemingly well-behaved top-test loops
2216 /// will commonly be lowered like this:
2217 ///
2218 ///   if (n > 0) {
2219 ///     i = 0;
2220 ///     do {
2221 ///       p[i] = 0.0;
2222 ///     } while (++i < n);
2223 ///   }
2224 ///
2225 /// and then it's possible for subsequent optimization to obscure the if
2226 /// test in such a way that indvars can't find it.
2227 ///
2228 /// When indvars can't find the if test in loops like this, it creates a
2229 /// max expression, which allows it to give the loop a canonical
2230 /// induction variable:
2231 ///
2232 ///   i = 0;
2233 ///   max = n < 1 ? 1 : n;
2234 ///   do {
2235 ///     p[i] = 0.0;
2236 ///   } while (++i != max);
2237 ///
2238 /// Canonical induction variables are necessary because the loop passes
2239 /// are designed around them. The most obvious example of this is the
2240 /// LoopInfo analysis, which doesn't remember trip count values. It
2241 /// expects to be able to rediscover the trip count each time it is
2242 /// needed, and it does this using a simple analysis that only succeeds if
2243 /// the loop has a canonical induction variable.
2244 ///
2245 /// However, when it comes time to generate code, the maximum operation
2246 /// can be quite costly, especially if it's inside of an outer loop.
2247 ///
2248 /// This function solves this problem by detecting this type of loop and
2249 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
2250 /// the instructions for the maximum computation.
2251 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
2252   // Check that the loop matches the pattern we're looking for.
2253   if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
2254       Cond->getPredicate() != CmpInst::ICMP_NE)
2255     return Cond;
2256 
2257   SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
2258   if (!Sel || !Sel->hasOneUse()) return Cond;
2259 
2260   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
2261   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2262     return Cond;
2263   const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
2264 
2265   // Add one to the backedge-taken count to get the trip count.
2266   const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount);
2267   if (IterationCount != SE.getSCEV(Sel)) return Cond;
2268 
2269   // Check for a max calculation that matches the pattern. There's no check
2270   // for ICMP_ULE here because the comparison would be with zero, which
2271   // isn't interesting.
2272   CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
2273   const SCEVNAryExpr *Max = nullptr;
2274   if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
2275     Pred = ICmpInst::ICMP_SLE;
2276     Max = S;
2277   } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
2278     Pred = ICmpInst::ICMP_SLT;
2279     Max = S;
2280   } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
2281     Pred = ICmpInst::ICMP_ULT;
2282     Max = U;
2283   } else {
2284     // No match; bail.
2285     return Cond;
2286   }
2287 
2288   // To handle a max with more than two operands, this optimization would
2289   // require additional checking and setup.
2290   if (Max->getNumOperands() != 2)
2291     return Cond;
2292 
2293   const SCEV *MaxLHS = Max->getOperand(0);
2294   const SCEV *MaxRHS = Max->getOperand(1);
2295 
2296   // ScalarEvolution canonicalizes constants to the left. For < and >, look
2297   // for a comparison with 1. For <= and >=, a comparison with zero.
2298   if (!MaxLHS ||
2299       (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
2300     return Cond;
2301 
2302   // Check the relevant induction variable for conformance to
2303   // the pattern.
2304   const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
2305   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
2306   if (!AR || !AR->isAffine() ||
2307       AR->getStart() != One ||
2308       AR->getStepRecurrence(SE) != One)
2309     return Cond;
2310 
2311   assert(AR->getLoop() == L &&
2312          "Loop condition operand is an addrec in a different loop!");
2313 
2314   // Check the right operand of the select, and remember it, as it will
2315   // be used in the new comparison instruction.
2316   Value *NewRHS = nullptr;
2317   if (ICmpInst::isTrueWhenEqual(Pred)) {
2318     // Look for n+1, and grab n.
2319     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
2320       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2321          if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2322            NewRHS = BO->getOperand(0);
2323     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
2324       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2325         if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2326           NewRHS = BO->getOperand(0);
2327     if (!NewRHS)
2328       return Cond;
2329   } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
2330     NewRHS = Sel->getOperand(1);
2331   else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
2332     NewRHS = Sel->getOperand(2);
2333   else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS))
2334     NewRHS = SU->getValue();
2335   else
2336     // Max doesn't match expected pattern.
2337     return Cond;
2338 
2339   // Determine the new comparison opcode. It may be signed or unsigned,
2340   // and the original comparison may be either equality or inequality.
2341   if (Cond->getPredicate() == CmpInst::ICMP_EQ)
2342     Pred = CmpInst::getInversePredicate(Pred);
2343 
2344   // Ok, everything looks ok to change the condition into an SLT or SGE and
2345   // delete the max calculation.
2346   ICmpInst *NewCond =
2347     new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
2348 
2349   // Delete the max calculation instructions.
2350   Cond->replaceAllUsesWith(NewCond);
2351   CondUse->setUser(NewCond);
2352   Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
2353   Cond->eraseFromParent();
2354   Sel->eraseFromParent();
2355   if (Cmp->use_empty())
2356     Cmp->eraseFromParent();
2357   return NewCond;
2358 }
2359 
2360 /// Change loop terminating condition to use the postinc iv when possible.
2361 void
2362 LSRInstance::OptimizeLoopTermCond() {
2363   SmallPtrSet<Instruction *, 4> PostIncs;
2364 
2365   // We need a different set of heuristics for rotated and non-rotated loops.
2366   // If a loop is rotated then the latch is also the backedge, so inserting
2367   // post-inc expressions just before the latch is ideal. To reduce live ranges
2368   // it also makes sense to rewrite terminating conditions to use post-inc
2369   // expressions.
2370   //
2371   // If the loop is not rotated then the latch is not a backedge; the latch
2372   // check is done in the loop head. Adding post-inc expressions before the
2373   // latch will cause overlapping live-ranges of pre-inc and post-inc expressions
2374   // in the loop body. In this case we do *not* want to use post-inc expressions
2375   // in the latch check, and we want to insert post-inc expressions before
2376   // the backedge.
2377   BasicBlock *LatchBlock = L->getLoopLatch();
2378   SmallVector<BasicBlock*, 8> ExitingBlocks;
2379   L->getExitingBlocks(ExitingBlocks);
2380   if (llvm::all_of(ExitingBlocks, [&LatchBlock](const BasicBlock *BB) {
2381         return LatchBlock != BB;
2382       })) {
2383     // The backedge doesn't exit the loop; treat this as a head-tested loop.
2384     IVIncInsertPos = LatchBlock->getTerminator();
2385     return;
2386   }
2387 
2388   // Otherwise treat this as a rotated loop.
2389   for (BasicBlock *ExitingBlock : ExitingBlocks) {
2390     // Get the terminating condition for the loop if possible.  If we
2391     // can, we want to change it to use a post-incremented version of its
2392     // induction variable, to allow coalescing the live ranges for the IV into
2393     // one register value.
2394 
2395     BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
2396     if (!TermBr)
2397       continue;
2398     // FIXME: Overly conservative, termination condition could be an 'or' etc..
2399     if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
2400       continue;
2401 
2402     // Search IVUsesByStride to find Cond's IVUse if there is one.
2403     IVStrideUse *CondUse = nullptr;
2404     ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
2405     if (!FindIVUserForCond(Cond, CondUse))
2406       continue;
2407 
2408     // If the trip count is computed in terms of a max (due to ScalarEvolution
2409     // being unable to find a sufficient guard, for example), change the loop
2410     // comparison to use SLT or ULT instead of NE.
2411     // One consequence of doing this now is that it disrupts the count-down
2412     // optimization. That's not always a bad thing though, because in such
2413     // cases it may still be worthwhile to avoid a max.
2414     Cond = OptimizeMax(Cond, CondUse);
2415 
2416     // If this exiting block dominates the latch block, it may also use
2417     // the post-inc value if it won't be shared with other uses.
2418     // Check for dominance.
2419     if (!DT.dominates(ExitingBlock, LatchBlock))
2420       continue;
2421 
2422     // Conservatively avoid trying to use the post-inc value in non-latch
2423     // exits if there may be pre-inc users in intervening blocks.
2424     if (LatchBlock != ExitingBlock)
2425       for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
2426         // Test if the use is reachable from the exiting block. This dominator
2427         // query is a conservative approximation of reachability.
2428         if (&*UI != CondUse &&
2429             !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
2430           // Conservatively assume there may be reuse if the quotient of their
2431           // strides could be a legal scale.
2432           const SCEV *A = IU.getStride(*CondUse, L);
2433           const SCEV *B = IU.getStride(*UI, L);
2434           if (!A || !B) continue;
2435           if (SE.getTypeSizeInBits(A->getType()) !=
2436               SE.getTypeSizeInBits(B->getType())) {
2437             if (SE.getTypeSizeInBits(A->getType()) >
2438                 SE.getTypeSizeInBits(B->getType()))
2439               B = SE.getSignExtendExpr(B, A->getType());
2440             else
2441               A = SE.getSignExtendExpr(A, B->getType());
2442           }
2443           if (const SCEVConstant *D =
2444                 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
2445             const ConstantInt *C = D->getValue();
2446             // Stride of one or negative one can have reuse with non-addresses.
2447             if (C->isOne() || C->isMinusOne())
2448               goto decline_post_inc;
2449             // Avoid weird situations.
2450             if (C->getValue().getMinSignedBits() >= 64 ||
2451                 C->getValue().isMinSignedValue())
2452               goto decline_post_inc;
2453             // Check for possible scaled-address reuse.
2454             if (isAddressUse(TTI, UI->getUser(), UI->getOperandValToReplace())) {
2455               MemAccessTy AccessTy = getAccessType(
2456                   TTI, UI->getUser(), UI->getOperandValToReplace());
2457               int64_t Scale = C->getSExtValue();
2458               if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2459                                             /*BaseOffset=*/0,
2460                                             /*HasBaseReg=*/false, Scale,
2461                                             AccessTy.AddrSpace))
2462                 goto decline_post_inc;
2463               Scale = -Scale;
2464               if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2465                                             /*BaseOffset=*/0,
2466                                             /*HasBaseReg=*/false, Scale,
2467                                             AccessTy.AddrSpace))
2468                 goto decline_post_inc;
2469             }
2470           }
2471         }
2472 
2473     LLVM_DEBUG(dbgs() << "  Change loop exiting icmp to use postinc iv: "
2474                       << *Cond << '\n');
2475 
2476     // It's possible for the setcc instruction to be anywhere in the loop, and
2477     // possible for it to have multiple users.  If it is not immediately before
2478     // the exiting block branch, move it.
2479     if (&*++BasicBlock::iterator(Cond) != TermBr) {
2480       if (Cond->hasOneUse()) {
2481         Cond->moveBefore(TermBr);
2482       } else {
2483         // Clone the terminating condition and insert into the loopend.
2484         ICmpInst *OldCond = Cond;
2485         Cond = cast<ICmpInst>(Cond->clone());
2486         Cond->setName(L->getHeader()->getName() + ".termcond");
2487         ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond);
2488 
2489         // Clone the IVUse, as the old use still exists!
2490         CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
2491         TermBr->replaceUsesOfWith(OldCond, Cond);
2492       }
2493     }
2494 
2495     // If we get to here, we know that we can transform the setcc instruction to
2496     // use the post-incremented version of the IV, allowing us to coalesce the
2497     // live ranges for the IV correctly.
2498     CondUse->transformToPostInc(L);
2499     Changed = true;
2500 
2501     PostIncs.insert(Cond);
2502   decline_post_inc:;
2503   }
2504 
2505   // Determine an insertion point for the loop induction variable increment. It
2506   // must dominate all the post-inc comparisons we just set up, and it must
2507   // dominate the loop latch edge.
2508   IVIncInsertPos = L->getLoopLatch()->getTerminator();
2509   for (Instruction *Inst : PostIncs) {
2510     BasicBlock *BB =
2511       DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
2512                                     Inst->getParent());
2513     if (BB == Inst->getParent())
2514       IVIncInsertPos = Inst;
2515     else if (BB != IVIncInsertPos->getParent())
2516       IVIncInsertPos = BB->getTerminator();
2517   }
2518 }
2519 
2520 /// Determine if the given use can accommodate a fixup at the given offset and
2521 /// other details. If so, update the use and return true.
2522 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset,
2523                                      bool HasBaseReg, LSRUse::KindType Kind,
2524                                      MemAccessTy AccessTy) {
2525   int64_t NewMinOffset = LU.MinOffset;
2526   int64_t NewMaxOffset = LU.MaxOffset;
2527   MemAccessTy NewAccessTy = AccessTy;
2528 
2529   // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
2530   // something conservative, however this can pessimize in the case that one of
2531   // the uses will have all its uses outside the loop, for example.
2532   if (LU.Kind != Kind)
2533     return false;
2534 
2535   // Check for a mismatched access type, and fall back conservatively as needed.
2536   // TODO: Be less conservative when the type is similar and can use the same
2537   // addressing modes.
2538   if (Kind == LSRUse::Address) {
2539     if (AccessTy.MemTy != LU.AccessTy.MemTy) {
2540       NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(),
2541                                             AccessTy.AddrSpace);
2542     }
2543   }
2544 
2545   // Conservatively assume HasBaseReg is true for now.
2546   if (NewOffset < LU.MinOffset) {
2547     if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2548                           LU.MaxOffset - NewOffset, HasBaseReg))
2549       return false;
2550     NewMinOffset = NewOffset;
2551   } else if (NewOffset > LU.MaxOffset) {
2552     if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2553                           NewOffset - LU.MinOffset, HasBaseReg))
2554       return false;
2555     NewMaxOffset = NewOffset;
2556   }
2557 
2558   // Update the use.
2559   LU.MinOffset = NewMinOffset;
2560   LU.MaxOffset = NewMaxOffset;
2561   LU.AccessTy = NewAccessTy;
2562   return true;
2563 }
2564 
2565 /// Return an LSRUse index and an offset value for a fixup which needs the given
2566 /// expression, with the given kind and optional access type.  Either reuse an
2567 /// existing use or create a new one, as needed.
2568 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr,
2569                                                LSRUse::KindType Kind,
2570                                                MemAccessTy AccessTy) {
2571   const SCEV *Copy = Expr;
2572   int64_t Offset = ExtractImmediate(Expr, SE);
2573 
2574   // Basic uses can't accept any offset, for example.
2575   if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr,
2576                         Offset, /*HasBaseReg=*/ true)) {
2577     Expr = Copy;
2578     Offset = 0;
2579   }
2580 
2581   std::pair<UseMapTy::iterator, bool> P =
2582     UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0));
2583   if (!P.second) {
2584     // A use already existed with this base.
2585     size_t LUIdx = P.first->second;
2586     LSRUse &LU = Uses[LUIdx];
2587     if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
2588       // Reuse this use.
2589       return std::make_pair(LUIdx, Offset);
2590   }
2591 
2592   // Create a new use.
2593   size_t LUIdx = Uses.size();
2594   P.first->second = LUIdx;
2595   Uses.push_back(LSRUse(Kind, AccessTy));
2596   LSRUse &LU = Uses[LUIdx];
2597 
2598   LU.MinOffset = Offset;
2599   LU.MaxOffset = Offset;
2600   return std::make_pair(LUIdx, Offset);
2601 }
2602 
2603 /// Delete the given use from the Uses list.
2604 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) {
2605   if (&LU != &Uses.back())
2606     std::swap(LU, Uses.back());
2607   Uses.pop_back();
2608 
2609   // Update RegUses.
2610   RegUses.swapAndDropUse(LUIdx, Uses.size());
2611 }
2612 
2613 /// Look for a use distinct from OrigLU which is has a formula that has the same
2614 /// registers as the given formula.
2615 LSRUse *
2616 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
2617                                        const LSRUse &OrigLU) {
2618   // Search all uses for the formula. This could be more clever.
2619   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2620     LSRUse &LU = Uses[LUIdx];
2621     // Check whether this use is close enough to OrigLU, to see whether it's
2622     // worthwhile looking through its formulae.
2623     // Ignore ICmpZero uses because they may contain formulae generated by
2624     // GenerateICmpZeroScales, in which case adding fixup offsets may
2625     // be invalid.
2626     if (&LU != &OrigLU &&
2627         LU.Kind != LSRUse::ICmpZero &&
2628         LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
2629         LU.WidestFixupType == OrigLU.WidestFixupType &&
2630         LU.HasFormulaWithSameRegs(OrigF)) {
2631       // Scan through this use's formulae.
2632       for (const Formula &F : LU.Formulae) {
2633         // Check to see if this formula has the same registers and symbols
2634         // as OrigF.
2635         if (F.BaseRegs == OrigF.BaseRegs &&
2636             F.ScaledReg == OrigF.ScaledReg &&
2637             F.BaseGV == OrigF.BaseGV &&
2638             F.Scale == OrigF.Scale &&
2639             F.UnfoldedOffset == OrigF.UnfoldedOffset) {
2640           if (F.BaseOffset == 0)
2641             return &LU;
2642           // This is the formula where all the registers and symbols matched;
2643           // there aren't going to be any others. Since we declined it, we
2644           // can skip the rest of the formulae and proceed to the next LSRUse.
2645           break;
2646         }
2647       }
2648     }
2649   }
2650 
2651   // Nothing looked good.
2652   return nullptr;
2653 }
2654 
2655 void LSRInstance::CollectInterestingTypesAndFactors() {
2656   SmallSetVector<const SCEV *, 4> Strides;
2657 
2658   // Collect interesting types and strides.
2659   SmallVector<const SCEV *, 4> Worklist;
2660   for (const IVStrideUse &U : IU) {
2661     const SCEV *Expr = IU.getExpr(U);
2662 
2663     // Collect interesting types.
2664     Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
2665 
2666     // Add strides for mentioned loops.
2667     Worklist.push_back(Expr);
2668     do {
2669       const SCEV *S = Worklist.pop_back_val();
2670       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2671         if (AR->getLoop() == L)
2672           Strides.insert(AR->getStepRecurrence(SE));
2673         Worklist.push_back(AR->getStart());
2674       } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2675         Worklist.append(Add->op_begin(), Add->op_end());
2676       }
2677     } while (!Worklist.empty());
2678   }
2679 
2680   // Compute interesting factors from the set of interesting strides.
2681   for (SmallSetVector<const SCEV *, 4>::const_iterator
2682        I = Strides.begin(), E = Strides.end(); I != E; ++I)
2683     for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
2684          std::next(I); NewStrideIter != E; ++NewStrideIter) {
2685       const SCEV *OldStride = *I;
2686       const SCEV *NewStride = *NewStrideIter;
2687 
2688       if (SE.getTypeSizeInBits(OldStride->getType()) !=
2689           SE.getTypeSizeInBits(NewStride->getType())) {
2690         if (SE.getTypeSizeInBits(OldStride->getType()) >
2691             SE.getTypeSizeInBits(NewStride->getType()))
2692           NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
2693         else
2694           OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
2695       }
2696       if (const SCEVConstant *Factor =
2697             dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
2698                                                         SE, true))) {
2699         if (Factor->getAPInt().getMinSignedBits() <= 64)
2700           Factors.insert(Factor->getAPInt().getSExtValue());
2701       } else if (const SCEVConstant *Factor =
2702                    dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
2703                                                                NewStride,
2704                                                                SE, true))) {
2705         if (Factor->getAPInt().getMinSignedBits() <= 64)
2706           Factors.insert(Factor->getAPInt().getSExtValue());
2707       }
2708     }
2709 
2710   // If all uses use the same type, don't bother looking for truncation-based
2711   // reuse.
2712   if (Types.size() == 1)
2713     Types.clear();
2714 
2715   LLVM_DEBUG(print_factors_and_types(dbgs()));
2716 }
2717 
2718 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in
2719 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to
2720 /// IVStrideUses, we could partially skip this.
2721 static User::op_iterator
2722 findIVOperand(User::op_iterator OI, User::op_iterator OE,
2723               Loop *L, ScalarEvolution &SE) {
2724   for(; OI != OE; ++OI) {
2725     if (Instruction *Oper = dyn_cast<Instruction>(*OI)) {
2726       if (!SE.isSCEVable(Oper->getType()))
2727         continue;
2728 
2729       if (const SCEVAddRecExpr *AR =
2730           dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) {
2731         if (AR->getLoop() == L)
2732           break;
2733       }
2734     }
2735   }
2736   return OI;
2737 }
2738 
2739 /// IVChain logic must consistently peek base TruncInst operands, so wrap it in
2740 /// a convenient helper.
2741 static Value *getWideOperand(Value *Oper) {
2742   if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper))
2743     return Trunc->getOperand(0);
2744   return Oper;
2745 }
2746 
2747 /// Return true if we allow an IV chain to include both types.
2748 static bool isCompatibleIVType(Value *LVal, Value *RVal) {
2749   Type *LType = LVal->getType();
2750   Type *RType = RVal->getType();
2751   return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy() &&
2752                               // Different address spaces means (possibly)
2753                               // different types of the pointer implementation,
2754                               // e.g. i16 vs i32 so disallow that.
2755                               (LType->getPointerAddressSpace() ==
2756                                RType->getPointerAddressSpace()));
2757 }
2758 
2759 /// Return an approximation of this SCEV expression's "base", or NULL for any
2760 /// constant. Returning the expression itself is conservative. Returning a
2761 /// deeper subexpression is more precise and valid as long as it isn't less
2762 /// complex than another subexpression. For expressions involving multiple
2763 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids
2764 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i],
2765 /// IVInc==b-a.
2766 ///
2767 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost
2768 /// SCEVUnknown, we simply return the rightmost SCEV operand.
2769 static const SCEV *getExprBase(const SCEV *S) {
2770   switch (S->getSCEVType()) {
2771   default: // uncluding scUnknown.
2772     return S;
2773   case scConstant:
2774     return nullptr;
2775   case scTruncate:
2776     return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand());
2777   case scZeroExtend:
2778     return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand());
2779   case scSignExtend:
2780     return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand());
2781   case scAddExpr: {
2782     // Skip over scaled operands (scMulExpr) to follow add operands as long as
2783     // there's nothing more complex.
2784     // FIXME: not sure if we want to recognize negation.
2785     const SCEVAddExpr *Add = cast<SCEVAddExpr>(S);
2786     for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()),
2787            E(Add->op_begin()); I != E; ++I) {
2788       const SCEV *SubExpr = *I;
2789       if (SubExpr->getSCEVType() == scAddExpr)
2790         return getExprBase(SubExpr);
2791 
2792       if (SubExpr->getSCEVType() != scMulExpr)
2793         return SubExpr;
2794     }
2795     return S; // all operands are scaled, be conservative.
2796   }
2797   case scAddRecExpr:
2798     return getExprBase(cast<SCEVAddRecExpr>(S)->getStart());
2799   }
2800 }
2801 
2802 /// Return true if the chain increment is profitable to expand into a loop
2803 /// invariant value, which may require its own register. A profitable chain
2804 /// increment will be an offset relative to the same base. We allow such offsets
2805 /// to potentially be used as chain increment as long as it's not obviously
2806 /// expensive to expand using real instructions.
2807 bool IVChain::isProfitableIncrement(const SCEV *OperExpr,
2808                                     const SCEV *IncExpr,
2809                                     ScalarEvolution &SE) {
2810   // Aggressively form chains when -stress-ivchain.
2811   if (StressIVChain)
2812     return true;
2813 
2814   // Do not replace a constant offset from IV head with a nonconstant IV
2815   // increment.
2816   if (!isa<SCEVConstant>(IncExpr)) {
2817     const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand));
2818     if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr)))
2819       return false;
2820   }
2821 
2822   SmallPtrSet<const SCEV*, 8> Processed;
2823   return !isHighCostExpansion(IncExpr, Processed, SE);
2824 }
2825 
2826 /// Return true if the number of registers needed for the chain is estimated to
2827 /// be less than the number required for the individual IV users. First prohibit
2828 /// any IV users that keep the IV live across increments (the Users set should
2829 /// be empty). Next count the number and type of increments in the chain.
2830 ///
2831 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't
2832 /// effectively use postinc addressing modes. Only consider it profitable it the
2833 /// increments can be computed in fewer registers when chained.
2834 ///
2835 /// TODO: Consider IVInc free if it's already used in another chains.
2836 static bool
2837 isProfitableChain(IVChain &Chain, SmallPtrSetImpl<Instruction*> &Users,
2838                   ScalarEvolution &SE) {
2839   if (StressIVChain)
2840     return true;
2841 
2842   if (!Chain.hasIncs())
2843     return false;
2844 
2845   if (!Users.empty()) {
2846     LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n";
2847                for (Instruction *Inst
2848                     : Users) { dbgs() << "  " << *Inst << "\n"; });
2849     return false;
2850   }
2851   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
2852 
2853   // The chain itself may require a register, so intialize cost to 1.
2854   int cost = 1;
2855 
2856   // A complete chain likely eliminates the need for keeping the original IV in
2857   // a register. LSR does not currently know how to form a complete chain unless
2858   // the header phi already exists.
2859   if (isa<PHINode>(Chain.tailUserInst())
2860       && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) {
2861     --cost;
2862   }
2863   const SCEV *LastIncExpr = nullptr;
2864   unsigned NumConstIncrements = 0;
2865   unsigned NumVarIncrements = 0;
2866   unsigned NumReusedIncrements = 0;
2867   for (const IVInc &Inc : Chain) {
2868     if (Inc.IncExpr->isZero())
2869       continue;
2870 
2871     // Incrementing by zero or some constant is neutral. We assume constants can
2872     // be folded into an addressing mode or an add's immediate operand.
2873     if (isa<SCEVConstant>(Inc.IncExpr)) {
2874       ++NumConstIncrements;
2875       continue;
2876     }
2877 
2878     if (Inc.IncExpr == LastIncExpr)
2879       ++NumReusedIncrements;
2880     else
2881       ++NumVarIncrements;
2882 
2883     LastIncExpr = Inc.IncExpr;
2884   }
2885   // An IV chain with a single increment is handled by LSR's postinc
2886   // uses. However, a chain with multiple increments requires keeping the IV's
2887   // value live longer than it needs to be if chained.
2888   if (NumConstIncrements > 1)
2889     --cost;
2890 
2891   // Materializing increment expressions in the preheader that didn't exist in
2892   // the original code may cost a register. For example, sign-extended array
2893   // indices can produce ridiculous increments like this:
2894   // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64)))
2895   cost += NumVarIncrements;
2896 
2897   // Reusing variable increments likely saves a register to hold the multiple of
2898   // the stride.
2899   cost -= NumReusedIncrements;
2900 
2901   LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost
2902                     << "\n");
2903 
2904   return cost < 0;
2905 }
2906 
2907 /// Add this IV user to an existing chain or make it the head of a new chain.
2908 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper,
2909                                    SmallVectorImpl<ChainUsers> &ChainUsersVec) {
2910   // When IVs are used as types of varying widths, they are generally converted
2911   // to a wider type with some uses remaining narrow under a (free) trunc.
2912   Value *const NextIV = getWideOperand(IVOper);
2913   const SCEV *const OperExpr = SE.getSCEV(NextIV);
2914   const SCEV *const OperExprBase = getExprBase(OperExpr);
2915 
2916   // Visit all existing chains. Check if its IVOper can be computed as a
2917   // profitable loop invariant increment from the last link in the Chain.
2918   unsigned ChainIdx = 0, NChains = IVChainVec.size();
2919   const SCEV *LastIncExpr = nullptr;
2920   for (; ChainIdx < NChains; ++ChainIdx) {
2921     IVChain &Chain = IVChainVec[ChainIdx];
2922 
2923     // Prune the solution space aggressively by checking that both IV operands
2924     // are expressions that operate on the same unscaled SCEVUnknown. This
2925     // "base" will be canceled by the subsequent getMinusSCEV call. Checking
2926     // first avoids creating extra SCEV expressions.
2927     if (!StressIVChain && Chain.ExprBase != OperExprBase)
2928       continue;
2929 
2930     Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand);
2931     if (!isCompatibleIVType(PrevIV, NextIV))
2932       continue;
2933 
2934     // A phi node terminates a chain.
2935     if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst()))
2936       continue;
2937 
2938     // The increment must be loop-invariant so it can be kept in a register.
2939     const SCEV *PrevExpr = SE.getSCEV(PrevIV);
2940     const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr);
2941     if (!SE.isLoopInvariant(IncExpr, L))
2942       continue;
2943 
2944     if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) {
2945       LastIncExpr = IncExpr;
2946       break;
2947     }
2948   }
2949   // If we haven't found a chain, create a new one, unless we hit the max. Don't
2950   // bother for phi nodes, because they must be last in the chain.
2951   if (ChainIdx == NChains) {
2952     if (isa<PHINode>(UserInst))
2953       return;
2954     if (NChains >= MaxChains && !StressIVChain) {
2955       LLVM_DEBUG(dbgs() << "IV Chain Limit\n");
2956       return;
2957     }
2958     LastIncExpr = OperExpr;
2959     // IVUsers may have skipped over sign/zero extensions. We don't currently
2960     // attempt to form chains involving extensions unless they can be hoisted
2961     // into this loop's AddRec.
2962     if (!isa<SCEVAddRecExpr>(LastIncExpr))
2963       return;
2964     ++NChains;
2965     IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr),
2966                                  OperExprBase));
2967     ChainUsersVec.resize(NChains);
2968     LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst
2969                       << ") IV=" << *LastIncExpr << "\n");
2970   } else {
2971     LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << "  Inc: (" << *UserInst
2972                       << ") IV+" << *LastIncExpr << "\n");
2973     // Add this IV user to the end of the chain.
2974     IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr));
2975   }
2976   IVChain &Chain = IVChainVec[ChainIdx];
2977 
2978   SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers;
2979   // This chain's NearUsers become FarUsers.
2980   if (!LastIncExpr->isZero()) {
2981     ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(),
2982                                             NearUsers.end());
2983     NearUsers.clear();
2984   }
2985 
2986   // All other uses of IVOperand become near uses of the chain.
2987   // We currently ignore intermediate values within SCEV expressions, assuming
2988   // they will eventually be used be the current chain, or can be computed
2989   // from one of the chain increments. To be more precise we could
2990   // transitively follow its user and only add leaf IV users to the set.
2991   for (User *U : IVOper->users()) {
2992     Instruction *OtherUse = dyn_cast<Instruction>(U);
2993     if (!OtherUse)
2994       continue;
2995     // Uses in the chain will no longer be uses if the chain is formed.
2996     // Include the head of the chain in this iteration (not Chain.begin()).
2997     IVChain::const_iterator IncIter = Chain.Incs.begin();
2998     IVChain::const_iterator IncEnd = Chain.Incs.end();
2999     for( ; IncIter != IncEnd; ++IncIter) {
3000       if (IncIter->UserInst == OtherUse)
3001         break;
3002     }
3003     if (IncIter != IncEnd)
3004       continue;
3005 
3006     if (SE.isSCEVable(OtherUse->getType())
3007         && !isa<SCEVUnknown>(SE.getSCEV(OtherUse))
3008         && IU.isIVUserOrOperand(OtherUse)) {
3009       continue;
3010     }
3011     NearUsers.insert(OtherUse);
3012   }
3013 
3014   // Since this user is part of the chain, it's no longer considered a use
3015   // of the chain.
3016   ChainUsersVec[ChainIdx].FarUsers.erase(UserInst);
3017 }
3018 
3019 /// Populate the vector of Chains.
3020 ///
3021 /// This decreases ILP at the architecture level. Targets with ample registers,
3022 /// multiple memory ports, and no register renaming probably don't want
3023 /// this. However, such targets should probably disable LSR altogether.
3024 ///
3025 /// The job of LSR is to make a reasonable choice of induction variables across
3026 /// the loop. Subsequent passes can easily "unchain" computation exposing more
3027 /// ILP *within the loop* if the target wants it.
3028 ///
3029 /// Finding the best IV chain is potentially a scheduling problem. Since LSR
3030 /// will not reorder memory operations, it will recognize this as a chain, but
3031 /// will generate redundant IV increments. Ideally this would be corrected later
3032 /// by a smart scheduler:
3033 ///        = A[i]
3034 ///        = A[i+x]
3035 /// A[i]   =
3036 /// A[i+x] =
3037 ///
3038 /// TODO: Walk the entire domtree within this loop, not just the path to the
3039 /// loop latch. This will discover chains on side paths, but requires
3040 /// maintaining multiple copies of the Chains state.
3041 void LSRInstance::CollectChains() {
3042   LLVM_DEBUG(dbgs() << "Collecting IV Chains.\n");
3043   SmallVector<ChainUsers, 8> ChainUsersVec;
3044 
3045   SmallVector<BasicBlock *,8> LatchPath;
3046   BasicBlock *LoopHeader = L->getHeader();
3047   for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch());
3048        Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) {
3049     LatchPath.push_back(Rung->getBlock());
3050   }
3051   LatchPath.push_back(LoopHeader);
3052 
3053   // Walk the instruction stream from the loop header to the loop latch.
3054   for (BasicBlock *BB : reverse(LatchPath)) {
3055     for (Instruction &I : *BB) {
3056       // Skip instructions that weren't seen by IVUsers analysis.
3057       if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I))
3058         continue;
3059 
3060       // Ignore users that are part of a SCEV expression. This way we only
3061       // consider leaf IV Users. This effectively rediscovers a portion of
3062       // IVUsers analysis but in program order this time.
3063       if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I)))
3064           continue;
3065 
3066       // Remove this instruction from any NearUsers set it may be in.
3067       for (unsigned ChainIdx = 0, NChains = IVChainVec.size();
3068            ChainIdx < NChains; ++ChainIdx) {
3069         ChainUsersVec[ChainIdx].NearUsers.erase(&I);
3070       }
3071       // Search for operands that can be chained.
3072       SmallPtrSet<Instruction*, 4> UniqueOperands;
3073       User::op_iterator IVOpEnd = I.op_end();
3074       User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE);
3075       while (IVOpIter != IVOpEnd) {
3076         Instruction *IVOpInst = cast<Instruction>(*IVOpIter);
3077         if (UniqueOperands.insert(IVOpInst).second)
3078           ChainInstruction(&I, IVOpInst, ChainUsersVec);
3079         IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
3080       }
3081     } // Continue walking down the instructions.
3082   } // Continue walking down the domtree.
3083   // Visit phi backedges to determine if the chain can generate the IV postinc.
3084   for (PHINode &PN : L->getHeader()->phis()) {
3085     if (!SE.isSCEVable(PN.getType()))
3086       continue;
3087 
3088     Instruction *IncV =
3089         dyn_cast<Instruction>(PN.getIncomingValueForBlock(L->getLoopLatch()));
3090     if (IncV)
3091       ChainInstruction(&PN, IncV, ChainUsersVec);
3092   }
3093   // Remove any unprofitable chains.
3094   unsigned ChainIdx = 0;
3095   for (unsigned UsersIdx = 0, NChains = IVChainVec.size();
3096        UsersIdx < NChains; ++UsersIdx) {
3097     if (!isProfitableChain(IVChainVec[UsersIdx],
3098                            ChainUsersVec[UsersIdx].FarUsers, SE))
3099       continue;
3100     // Preserve the chain at UsesIdx.
3101     if (ChainIdx != UsersIdx)
3102       IVChainVec[ChainIdx] = IVChainVec[UsersIdx];
3103     FinalizeChain(IVChainVec[ChainIdx]);
3104     ++ChainIdx;
3105   }
3106   IVChainVec.resize(ChainIdx);
3107 }
3108 
3109 void LSRInstance::FinalizeChain(IVChain &Chain) {
3110   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
3111   LLVM_DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n");
3112 
3113   for (const IVInc &Inc : Chain) {
3114     LLVM_DEBUG(dbgs() << "        Inc: " << *Inc.UserInst << "\n");
3115     auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand);
3116     assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand");
3117     IVIncSet.insert(UseI);
3118   }
3119 }
3120 
3121 /// Return true if the IVInc can be folded into an addressing mode.
3122 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst,
3123                              Value *Operand, const TargetTransformInfo &TTI) {
3124   const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr);
3125   if (!IncConst || !isAddressUse(TTI, UserInst, Operand))
3126     return false;
3127 
3128   if (IncConst->getAPInt().getMinSignedBits() > 64)
3129     return false;
3130 
3131   MemAccessTy AccessTy = getAccessType(TTI, UserInst, Operand);
3132   int64_t IncOffset = IncConst->getValue()->getSExtValue();
3133   if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr,
3134                         IncOffset, /*HaseBaseReg=*/false))
3135     return false;
3136 
3137   return true;
3138 }
3139 
3140 /// Generate an add or subtract for each IVInc in a chain to materialize the IV
3141 /// user's operand from the previous IV user's operand.
3142 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
3143                                   SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
3144   // Find the new IVOperand for the head of the chain. It may have been replaced
3145   // by LSR.
3146   const IVInc &Head = Chain.Incs[0];
3147   User::op_iterator IVOpEnd = Head.UserInst->op_end();
3148   // findIVOperand returns IVOpEnd if it can no longer find a valid IV user.
3149   User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(),
3150                                              IVOpEnd, L, SE);
3151   Value *IVSrc = nullptr;
3152   while (IVOpIter != IVOpEnd) {
3153     IVSrc = getWideOperand(*IVOpIter);
3154 
3155     // If this operand computes the expression that the chain needs, we may use
3156     // it. (Check this after setting IVSrc which is used below.)
3157     //
3158     // Note that if Head.IncExpr is wider than IVSrc, then this phi is too
3159     // narrow for the chain, so we can no longer use it. We do allow using a
3160     // wider phi, assuming the LSR checked for free truncation. In that case we
3161     // should already have a truncate on this operand such that
3162     // getSCEV(IVSrc) == IncExpr.
3163     if (SE.getSCEV(*IVOpIter) == Head.IncExpr
3164         || SE.getSCEV(IVSrc) == Head.IncExpr) {
3165       break;
3166     }
3167     IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
3168   }
3169   if (IVOpIter == IVOpEnd) {
3170     // Gracefully give up on this chain.
3171     LLVM_DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n");
3172     return;
3173   }
3174 
3175   LLVM_DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n");
3176   Type *IVTy = IVSrc->getType();
3177   Type *IntTy = SE.getEffectiveSCEVType(IVTy);
3178   const SCEV *LeftOverExpr = nullptr;
3179   for (const IVInc &Inc : Chain) {
3180     Instruction *InsertPt = Inc.UserInst;
3181     if (isa<PHINode>(InsertPt))
3182       InsertPt = L->getLoopLatch()->getTerminator();
3183 
3184     // IVOper will replace the current IV User's operand. IVSrc is the IV
3185     // value currently held in a register.
3186     Value *IVOper = IVSrc;
3187     if (!Inc.IncExpr->isZero()) {
3188       // IncExpr was the result of subtraction of two narrow values, so must
3189       // be signed.
3190       const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy);
3191       LeftOverExpr = LeftOverExpr ?
3192         SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr;
3193     }
3194     if (LeftOverExpr && !LeftOverExpr->isZero()) {
3195       // Expand the IV increment.
3196       Rewriter.clearPostInc();
3197       Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt);
3198       const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc),
3199                                              SE.getUnknown(IncV));
3200       IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt);
3201 
3202       // If an IV increment can't be folded, use it as the next IV value.
3203       if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) {
3204         assert(IVTy == IVOper->getType() && "inconsistent IV increment type");
3205         IVSrc = IVOper;
3206         LeftOverExpr = nullptr;
3207       }
3208     }
3209     Type *OperTy = Inc.IVOperand->getType();
3210     if (IVTy != OperTy) {
3211       assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) &&
3212              "cannot extend a chained IV");
3213       IRBuilder<> Builder(InsertPt);
3214       IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain");
3215     }
3216     Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper);
3217     DeadInsts.emplace_back(Inc.IVOperand);
3218   }
3219   // If LSR created a new, wider phi, we may also replace its postinc. We only
3220   // do this if we also found a wide value for the head of the chain.
3221   if (isa<PHINode>(Chain.tailUserInst())) {
3222     for (PHINode &Phi : L->getHeader()->phis()) {
3223       if (!isCompatibleIVType(&Phi, IVSrc))
3224         continue;
3225       Instruction *PostIncV = dyn_cast<Instruction>(
3226           Phi.getIncomingValueForBlock(L->getLoopLatch()));
3227       if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc)))
3228         continue;
3229       Value *IVOper = IVSrc;
3230       Type *PostIncTy = PostIncV->getType();
3231       if (IVTy != PostIncTy) {
3232         assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types");
3233         IRBuilder<> Builder(L->getLoopLatch()->getTerminator());
3234         Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc());
3235         IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain");
3236       }
3237       Phi.replaceUsesOfWith(PostIncV, IVOper);
3238       DeadInsts.emplace_back(PostIncV);
3239     }
3240   }
3241 }
3242 
3243 void LSRInstance::CollectFixupsAndInitialFormulae() {
3244   for (const IVStrideUse &U : IU) {
3245     Instruction *UserInst = U.getUser();
3246     // Skip IV users that are part of profitable IV Chains.
3247     User::op_iterator UseI =
3248         find(UserInst->operands(), U.getOperandValToReplace());
3249     assert(UseI != UserInst->op_end() && "cannot find IV operand");
3250     if (IVIncSet.count(UseI)) {
3251       LLVM_DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n');
3252       continue;
3253     }
3254 
3255     LSRUse::KindType Kind = LSRUse::Basic;
3256     MemAccessTy AccessTy;
3257     if (isAddressUse(TTI, UserInst, U.getOperandValToReplace())) {
3258       Kind = LSRUse::Address;
3259       AccessTy = getAccessType(TTI, UserInst, U.getOperandValToReplace());
3260     }
3261 
3262     const SCEV *S = IU.getExpr(U);
3263     PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops();
3264 
3265     // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
3266     // (N - i == 0), and this allows (N - i) to be the expression that we work
3267     // with rather than just N or i, so we can consider the register
3268     // requirements for both N and i at the same time. Limiting this code to
3269     // equality icmps is not a problem because all interesting loops use
3270     // equality icmps, thanks to IndVarSimplify.
3271     if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst))
3272       if (CI->isEquality()) {
3273         // Swap the operands if needed to put the OperandValToReplace on the
3274         // left, for consistency.
3275         Value *NV = CI->getOperand(1);
3276         if (NV == U.getOperandValToReplace()) {
3277           CI->setOperand(1, CI->getOperand(0));
3278           CI->setOperand(0, NV);
3279           NV = CI->getOperand(1);
3280           Changed = true;
3281         }
3282 
3283         // x == y  -->  x - y == 0
3284         const SCEV *N = SE.getSCEV(NV);
3285         if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) {
3286           // S is normalized, so normalize N before folding it into S
3287           // to keep the result normalized.
3288           N = normalizeForPostIncUse(N, TmpPostIncLoops, SE);
3289           Kind = LSRUse::ICmpZero;
3290           S = SE.getMinusSCEV(N, S);
3291         }
3292 
3293         // -1 and the negations of all interesting strides (except the negation
3294         // of -1) are now also interesting.
3295         for (size_t i = 0, e = Factors.size(); i != e; ++i)
3296           if (Factors[i] != -1)
3297             Factors.insert(-(uint64_t)Factors[i]);
3298         Factors.insert(-1);
3299       }
3300 
3301     // Get or create an LSRUse.
3302     std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
3303     size_t LUIdx = P.first;
3304     int64_t Offset = P.second;
3305     LSRUse &LU = Uses[LUIdx];
3306 
3307     // Record the fixup.
3308     LSRFixup &LF = LU.getNewFixup();
3309     LF.UserInst = UserInst;
3310     LF.OperandValToReplace = U.getOperandValToReplace();
3311     LF.PostIncLoops = TmpPostIncLoops;
3312     LF.Offset = Offset;
3313     LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3314 
3315     if (!LU.WidestFixupType ||
3316         SE.getTypeSizeInBits(LU.WidestFixupType) <
3317         SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3318       LU.WidestFixupType = LF.OperandValToReplace->getType();
3319 
3320     // If this is the first use of this LSRUse, give it a formula.
3321     if (LU.Formulae.empty()) {
3322       InsertInitialFormula(S, LU, LUIdx);
3323       CountRegisters(LU.Formulae.back(), LUIdx);
3324     }
3325   }
3326 
3327   LLVM_DEBUG(print_fixups(dbgs()));
3328 }
3329 
3330 /// Insert a formula for the given expression into the given use, separating out
3331 /// loop-variant portions from loop-invariant and loop-computable portions.
3332 void
3333 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
3334   // Mark uses whose expressions cannot be expanded.
3335   if (!isSafeToExpand(S, SE))
3336     LU.RigidFormula = true;
3337 
3338   Formula F;
3339   F.initialMatch(S, L, SE);
3340   bool Inserted = InsertFormula(LU, LUIdx, F);
3341   assert(Inserted && "Initial formula already exists!"); (void)Inserted;
3342 }
3343 
3344 /// Insert a simple single-register formula for the given expression into the
3345 /// given use.
3346 void
3347 LSRInstance::InsertSupplementalFormula(const SCEV *S,
3348                                        LSRUse &LU, size_t LUIdx) {
3349   Formula F;
3350   F.BaseRegs.push_back(S);
3351   F.HasBaseReg = true;
3352   bool Inserted = InsertFormula(LU, LUIdx, F);
3353   assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
3354 }
3355 
3356 /// Note which registers are used by the given formula, updating RegUses.
3357 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
3358   if (F.ScaledReg)
3359     RegUses.countRegister(F.ScaledReg, LUIdx);
3360   for (const SCEV *BaseReg : F.BaseRegs)
3361     RegUses.countRegister(BaseReg, LUIdx);
3362 }
3363 
3364 /// If the given formula has not yet been inserted, add it to the list, and
3365 /// return true. Return false otherwise.
3366 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
3367   // Do not insert formula that we will not be able to expand.
3368   assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) &&
3369          "Formula is illegal");
3370 
3371   if (!LU.InsertFormula(F, *L))
3372     return false;
3373 
3374   CountRegisters(F, LUIdx);
3375   return true;
3376 }
3377 
3378 /// Check for other uses of loop-invariant values which we're tracking. These
3379 /// other uses will pin these values in registers, making them less profitable
3380 /// for elimination.
3381 /// TODO: This currently misses non-constant addrec step registers.
3382 /// TODO: Should this give more weight to users inside the loop?
3383 void
3384 LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
3385   SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
3386   SmallPtrSet<const SCEV *, 32> Visited;
3387 
3388   while (!Worklist.empty()) {
3389     const SCEV *S = Worklist.pop_back_val();
3390 
3391     // Don't process the same SCEV twice
3392     if (!Visited.insert(S).second)
3393       continue;
3394 
3395     if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
3396       Worklist.append(N->op_begin(), N->op_end());
3397     else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
3398       Worklist.push_back(C->getOperand());
3399     else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
3400       Worklist.push_back(D->getLHS());
3401       Worklist.push_back(D->getRHS());
3402     } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) {
3403       const Value *V = US->getValue();
3404       if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
3405         // Look for instructions defined outside the loop.
3406         if (L->contains(Inst)) continue;
3407       } else if (isa<UndefValue>(V))
3408         // Undef doesn't have a live range, so it doesn't matter.
3409         continue;
3410       for (const Use &U : V->uses()) {
3411         const Instruction *UserInst = dyn_cast<Instruction>(U.getUser());
3412         // Ignore non-instructions.
3413         if (!UserInst)
3414           continue;
3415         // Ignore instructions in other functions (as can happen with
3416         // Constants).
3417         if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
3418           continue;
3419         // Ignore instructions not dominated by the loop.
3420         const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
3421           UserInst->getParent() :
3422           cast<PHINode>(UserInst)->getIncomingBlock(
3423             PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
3424         if (!DT.dominates(L->getHeader(), UseBB))
3425           continue;
3426         // Don't bother if the instruction is in a BB which ends in an EHPad.
3427         if (UseBB->getTerminator()->isEHPad())
3428           continue;
3429         // Don't bother rewriting PHIs in catchswitch blocks.
3430         if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator()))
3431           continue;
3432         // Ignore uses which are part of other SCEV expressions, to avoid
3433         // analyzing them multiple times.
3434         if (SE.isSCEVable(UserInst->getType())) {
3435           const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
3436           // If the user is a no-op, look through to its uses.
3437           if (!isa<SCEVUnknown>(UserS))
3438             continue;
3439           if (UserS == US) {
3440             Worklist.push_back(
3441               SE.getUnknown(const_cast<Instruction *>(UserInst)));
3442             continue;
3443           }
3444         }
3445         // Ignore icmp instructions which are already being analyzed.
3446         if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
3447           unsigned OtherIdx = !U.getOperandNo();
3448           Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
3449           if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L))
3450             continue;
3451         }
3452 
3453         std::pair<size_t, int64_t> P = getUse(
3454             S, LSRUse::Basic, MemAccessTy());
3455         size_t LUIdx = P.first;
3456         int64_t Offset = P.second;
3457         LSRUse &LU = Uses[LUIdx];
3458         LSRFixup &LF = LU.getNewFixup();
3459         LF.UserInst = const_cast<Instruction *>(UserInst);
3460         LF.OperandValToReplace = U;
3461         LF.Offset = Offset;
3462         LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3463         if (!LU.WidestFixupType ||
3464             SE.getTypeSizeInBits(LU.WidestFixupType) <
3465             SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3466           LU.WidestFixupType = LF.OperandValToReplace->getType();
3467         InsertSupplementalFormula(US, LU, LUIdx);
3468         CountRegisters(LU.Formulae.back(), Uses.size() - 1);
3469         break;
3470       }
3471     }
3472   }
3473 }
3474 
3475 /// Split S into subexpressions which can be pulled out into separate
3476 /// registers. If C is non-null, multiply each subexpression by C.
3477 ///
3478 /// Return remainder expression after factoring the subexpressions captured by
3479 /// Ops. If Ops is complete, return NULL.
3480 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C,
3481                                    SmallVectorImpl<const SCEV *> &Ops,
3482                                    const Loop *L,
3483                                    ScalarEvolution &SE,
3484                                    unsigned Depth = 0) {
3485   // Arbitrarily cap recursion to protect compile time.
3486   if (Depth >= 3)
3487     return S;
3488 
3489   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3490     // Break out add operands.
3491     for (const SCEV *S : Add->operands()) {
3492       const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1);
3493       if (Remainder)
3494         Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3495     }
3496     return nullptr;
3497   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
3498     // Split a non-zero base out of an addrec.
3499     if (AR->getStart()->isZero() || !AR->isAffine())
3500       return S;
3501 
3502     const SCEV *Remainder = CollectSubexprs(AR->getStart(),
3503                                             C, Ops, L, SE, Depth+1);
3504     // Split the non-zero AddRec unless it is part of a nested recurrence that
3505     // does not pertain to this loop.
3506     if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) {
3507       Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3508       Remainder = nullptr;
3509     }
3510     if (Remainder != AR->getStart()) {
3511       if (!Remainder)
3512         Remainder = SE.getConstant(AR->getType(), 0);
3513       return SE.getAddRecExpr(Remainder,
3514                               AR->getStepRecurrence(SE),
3515                               AR->getLoop(),
3516                               //FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
3517                               SCEV::FlagAnyWrap);
3518     }
3519   } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3520     // Break (C * (a + b + c)) into C*a + C*b + C*c.
3521     if (Mul->getNumOperands() != 2)
3522       return S;
3523     if (const SCEVConstant *Op0 =
3524         dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3525       C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0;
3526       const SCEV *Remainder =
3527         CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1);
3528       if (Remainder)
3529         Ops.push_back(SE.getMulExpr(C, Remainder));
3530       return nullptr;
3531     }
3532   }
3533   return S;
3534 }
3535 
3536 /// Return true if the SCEV represents a value that may end up as a
3537 /// post-increment operation.
3538 static bool mayUsePostIncMode(const TargetTransformInfo &TTI,
3539                               LSRUse &LU, const SCEV *S, const Loop *L,
3540                               ScalarEvolution &SE) {
3541   if (LU.Kind != LSRUse::Address ||
3542       !LU.AccessTy.getType()->isIntOrIntVectorTy())
3543     return false;
3544   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S);
3545   if (!AR)
3546     return false;
3547   const SCEV *LoopStep = AR->getStepRecurrence(SE);
3548   if (!isa<SCEVConstant>(LoopStep))
3549     return false;
3550   if (LU.AccessTy.getType()->getScalarSizeInBits() !=
3551       LoopStep->getType()->getScalarSizeInBits())
3552     return false;
3553   // Check if a post-indexed load/store can be used.
3554   if (TTI.isIndexedLoadLegal(TTI.MIM_PostInc, AR->getType()) ||
3555       TTI.isIndexedStoreLegal(TTI.MIM_PostInc, AR->getType())) {
3556     const SCEV *LoopStart = AR->getStart();
3557     if (!isa<SCEVConstant>(LoopStart) && SE.isLoopInvariant(LoopStart, L))
3558       return true;
3559   }
3560   return false;
3561 }
3562 
3563 /// Helper function for LSRInstance::GenerateReassociations.
3564 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
3565                                              const Formula &Base,
3566                                              unsigned Depth, size_t Idx,
3567                                              bool IsScaledReg) {
3568   const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3569   // Don't generate reassociations for the base register of a value that
3570   // may generate a post-increment operator. The reason is that the
3571   // reassociations cause extra base+register formula to be created,
3572   // and possibly chosen, but the post-increment is more efficient.
3573   if (TTI.shouldFavorPostInc() && mayUsePostIncMode(TTI, LU, BaseReg, L, SE))
3574     return;
3575   SmallVector<const SCEV *, 8> AddOps;
3576   const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE);
3577   if (Remainder)
3578     AddOps.push_back(Remainder);
3579 
3580   if (AddOps.size() == 1)
3581     return;
3582 
3583   for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
3584                                                      JE = AddOps.end();
3585        J != JE; ++J) {
3586     // Loop-variant "unknown" values are uninteresting; we won't be able to
3587     // do anything meaningful with them.
3588     if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L))
3589       continue;
3590 
3591     // Don't pull a constant into a register if the constant could be folded
3592     // into an immediate field.
3593     if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3594                          LU.AccessTy, *J, Base.getNumRegs() > 1))
3595       continue;
3596 
3597     // Collect all operands except *J.
3598     SmallVector<const SCEV *, 8> InnerAddOps(
3599         ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J);
3600     InnerAddOps.append(std::next(J),
3601                        ((const SmallVector<const SCEV *, 8> &)AddOps).end());
3602 
3603     // Don't leave just a constant behind in a register if the constant could
3604     // be folded into an immediate field.
3605     if (InnerAddOps.size() == 1 &&
3606         isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3607                          LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1))
3608       continue;
3609 
3610     const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
3611     if (InnerSum->isZero())
3612       continue;
3613     Formula F = Base;
3614 
3615     // Add the remaining pieces of the add back into the new formula.
3616     const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum);
3617     if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 &&
3618         TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3619                                 InnerSumSC->getValue()->getZExtValue())) {
3620       F.UnfoldedOffset =
3621           (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue();
3622       if (IsScaledReg)
3623         F.ScaledReg = nullptr;
3624       else
3625         F.BaseRegs.erase(F.BaseRegs.begin() + Idx);
3626     } else if (IsScaledReg)
3627       F.ScaledReg = InnerSum;
3628     else
3629       F.BaseRegs[Idx] = InnerSum;
3630 
3631     // Add J as its own register, or an unfolded immediate.
3632     const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J);
3633     if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 &&
3634         TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3635                                 SC->getValue()->getZExtValue()))
3636       F.UnfoldedOffset =
3637           (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue();
3638     else
3639       F.BaseRegs.push_back(*J);
3640     // We may have changed the number of register in base regs, adjust the
3641     // formula accordingly.
3642     F.canonicalize(*L);
3643 
3644     if (InsertFormula(LU, LUIdx, F))
3645       // If that formula hadn't been seen before, recurse to find more like
3646       // it.
3647       // Add check on Log16(AddOps.size()) - same as Log2_32(AddOps.size()) >> 2)
3648       // Because just Depth is not enough to bound compile time.
3649       // This means that every time AddOps.size() is greater 16^x we will add
3650       // x to Depth.
3651       GenerateReassociations(LU, LUIdx, LU.Formulae.back(),
3652                              Depth + 1 + (Log2_32(AddOps.size()) >> 2));
3653   }
3654 }
3655 
3656 /// Split out subexpressions from adds and the bases of addrecs.
3657 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
3658                                          Formula Base, unsigned Depth) {
3659   assert(Base.isCanonical(*L) && "Input must be in the canonical form");
3660   // Arbitrarily cap recursion to protect compile time.
3661   if (Depth >= 3)
3662     return;
3663 
3664   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3665     GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i);
3666 
3667   if (Base.Scale == 1)
3668     GenerateReassociationsImpl(LU, LUIdx, Base, Depth,
3669                                /* Idx */ -1, /* IsScaledReg */ true);
3670 }
3671 
3672 ///  Generate a formula consisting of all of the loop-dominating registers added
3673 /// into a single register.
3674 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
3675                                        Formula Base) {
3676   // This method is only interesting on a plurality of registers.
3677   if (Base.BaseRegs.size() + (Base.Scale == 1) +
3678       (Base.UnfoldedOffset != 0) <= 1)
3679     return;
3680 
3681   // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before
3682   // processing the formula.
3683   Base.unscale();
3684   SmallVector<const SCEV *, 4> Ops;
3685   Formula NewBase = Base;
3686   NewBase.BaseRegs.clear();
3687   Type *CombinedIntegerType = nullptr;
3688   for (const SCEV *BaseReg : Base.BaseRegs) {
3689     if (SE.properlyDominates(BaseReg, L->getHeader()) &&
3690         !SE.hasComputableLoopEvolution(BaseReg, L)) {
3691       if (!CombinedIntegerType)
3692         CombinedIntegerType = SE.getEffectiveSCEVType(BaseReg->getType());
3693       Ops.push_back(BaseReg);
3694     }
3695     else
3696       NewBase.BaseRegs.push_back(BaseReg);
3697   }
3698 
3699   // If no register is relevant, we're done.
3700   if (Ops.size() == 0)
3701     return;
3702 
3703   // Utility function for generating the required variants of the combined
3704   // registers.
3705   auto GenerateFormula = [&](const SCEV *Sum) {
3706     Formula F = NewBase;
3707 
3708     // TODO: If Sum is zero, it probably means ScalarEvolution missed an
3709     // opportunity to fold something. For now, just ignore such cases
3710     // rather than proceed with zero in a register.
3711     if (Sum->isZero())
3712       return;
3713 
3714     F.BaseRegs.push_back(Sum);
3715     F.canonicalize(*L);
3716     (void)InsertFormula(LU, LUIdx, F);
3717   };
3718 
3719   // If we collected at least two registers, generate a formula combining them.
3720   if (Ops.size() > 1) {
3721     SmallVector<const SCEV *, 4> OpsCopy(Ops); // Don't let SE modify Ops.
3722     GenerateFormula(SE.getAddExpr(OpsCopy));
3723   }
3724 
3725   // If we have an unfolded offset, generate a formula combining it with the
3726   // registers collected.
3727   if (NewBase.UnfoldedOffset) {
3728     assert(CombinedIntegerType && "Missing a type for the unfolded offset");
3729     Ops.push_back(SE.getConstant(CombinedIntegerType, NewBase.UnfoldedOffset,
3730                                  true));
3731     NewBase.UnfoldedOffset = 0;
3732     GenerateFormula(SE.getAddExpr(Ops));
3733   }
3734 }
3735 
3736 /// Helper function for LSRInstance::GenerateSymbolicOffsets.
3737 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
3738                                               const Formula &Base, size_t Idx,
3739                                               bool IsScaledReg) {
3740   const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3741   GlobalValue *GV = ExtractSymbol(G, SE);
3742   if (G->isZero() || !GV)
3743     return;
3744   Formula F = Base;
3745   F.BaseGV = GV;
3746   if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3747     return;
3748   if (IsScaledReg)
3749     F.ScaledReg = G;
3750   else
3751     F.BaseRegs[Idx] = G;
3752   (void)InsertFormula(LU, LUIdx, F);
3753 }
3754 
3755 /// Generate reuse formulae using symbolic offsets.
3756 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
3757                                           Formula Base) {
3758   // We can't add a symbolic offset if the address already contains one.
3759   if (Base.BaseGV) return;
3760 
3761   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3762     GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i);
3763   if (Base.Scale == 1)
3764     GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1,
3765                                 /* IsScaledReg */ true);
3766 }
3767 
3768 /// Helper function for LSRInstance::GenerateConstantOffsets.
3769 void LSRInstance::GenerateConstantOffsetsImpl(
3770     LSRUse &LU, unsigned LUIdx, const Formula &Base,
3771     const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) {
3772 
3773   auto GenerateOffset = [&](const SCEV *G, int64_t Offset) {
3774     Formula F = Base;
3775     F.BaseOffset = (uint64_t)Base.BaseOffset - Offset;
3776 
3777     if (isLegalUse(TTI, LU.MinOffset - Offset, LU.MaxOffset - Offset, LU.Kind,
3778                    LU.AccessTy, F)) {
3779       // Add the offset to the base register.
3780       const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G);
3781       // If it cancelled out, drop the base register, otherwise update it.
3782       if (NewG->isZero()) {
3783         if (IsScaledReg) {
3784           F.Scale = 0;
3785           F.ScaledReg = nullptr;
3786         } else
3787           F.deleteBaseReg(F.BaseRegs[Idx]);
3788         F.canonicalize(*L);
3789       } else if (IsScaledReg)
3790         F.ScaledReg = NewG;
3791       else
3792         F.BaseRegs[Idx] = NewG;
3793 
3794       (void)InsertFormula(LU, LUIdx, F);
3795     }
3796   };
3797 
3798   const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3799 
3800   // With constant offsets and constant steps, we can generate pre-inc
3801   // accesses by having the offset equal the step. So, for access #0 with a
3802   // step of 8, we generate a G - 8 base which would require the first access
3803   // to be ((G - 8) + 8),+,8. The pre-indexed access then updates the pointer
3804   // for itself and hopefully becomes the base for other accesses. This means
3805   // means that a single pre-indexed access can be generated to become the new
3806   // base pointer for each iteration of the loop, resulting in no extra add/sub
3807   // instructions for pointer updating.
3808   if (FavorBackedgeIndex && LU.Kind == LSRUse::Address) {
3809     if (auto *GAR = dyn_cast<SCEVAddRecExpr>(G)) {
3810       if (auto *StepRec =
3811           dyn_cast<SCEVConstant>(GAR->getStepRecurrence(SE))) {
3812         const APInt &StepInt = StepRec->getAPInt();
3813         int64_t Step = StepInt.isNegative() ?
3814           StepInt.getSExtValue() : StepInt.getZExtValue();
3815 
3816         for (int64_t Offset : Worklist) {
3817           Offset -= Step;
3818           GenerateOffset(G, Offset);
3819         }
3820       }
3821     }
3822   }
3823   for (int64_t Offset : Worklist)
3824     GenerateOffset(G, Offset);
3825 
3826   int64_t Imm = ExtractImmediate(G, SE);
3827   if (G->isZero() || Imm == 0)
3828     return;
3829   Formula F = Base;
3830   F.BaseOffset = (uint64_t)F.BaseOffset + Imm;
3831   if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3832     return;
3833   if (IsScaledReg)
3834     F.ScaledReg = G;
3835   else
3836     F.BaseRegs[Idx] = G;
3837   (void)InsertFormula(LU, LUIdx, F);
3838 }
3839 
3840 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
3841 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
3842                                           Formula Base) {
3843   // TODO: For now, just add the min and max offset, because it usually isn't
3844   // worthwhile looking at everything inbetween.
3845   SmallVector<int64_t, 2> Worklist;
3846   Worklist.push_back(LU.MinOffset);
3847   if (LU.MaxOffset != LU.MinOffset)
3848     Worklist.push_back(LU.MaxOffset);
3849 
3850   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3851     GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i);
3852   if (Base.Scale == 1)
3853     GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1,
3854                                 /* IsScaledReg */ true);
3855 }
3856 
3857 /// For ICmpZero, check to see if we can scale up the comparison. For example, x
3858 /// == y -> x*c == y*c.
3859 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
3860                                          Formula Base) {
3861   if (LU.Kind != LSRUse::ICmpZero) return;
3862 
3863   // Determine the integer type for the base formula.
3864   Type *IntTy = Base.getType();
3865   if (!IntTy) return;
3866   if (SE.getTypeSizeInBits(IntTy) > 64) return;
3867 
3868   // Don't do this if there is more than one offset.
3869   if (LU.MinOffset != LU.MaxOffset) return;
3870 
3871   // Check if transformation is valid. It is illegal to multiply pointer.
3872   if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy())
3873     return;
3874   for (const SCEV *BaseReg : Base.BaseRegs)
3875     if (BaseReg->getType()->isPointerTy())
3876       return;
3877   assert(!Base.BaseGV && "ICmpZero use is not legal!");
3878 
3879   // Check each interesting stride.
3880   for (int64_t Factor : Factors) {
3881     // Check that the multiplication doesn't overflow.
3882     if (Base.BaseOffset == std::numeric_limits<int64_t>::min() && Factor == -1)
3883       continue;
3884     int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor;
3885     if (NewBaseOffset / Factor != Base.BaseOffset)
3886       continue;
3887     // If the offset will be truncated at this use, check that it is in bounds.
3888     if (!IntTy->isPointerTy() &&
3889         !ConstantInt::isValueValidForType(IntTy, NewBaseOffset))
3890       continue;
3891 
3892     // Check that multiplying with the use offset doesn't overflow.
3893     int64_t Offset = LU.MinOffset;
3894     if (Offset == std::numeric_limits<int64_t>::min() && Factor == -1)
3895       continue;
3896     Offset = (uint64_t)Offset * Factor;
3897     if (Offset / Factor != LU.MinOffset)
3898       continue;
3899     // If the offset will be truncated at this use, check that it is in bounds.
3900     if (!IntTy->isPointerTy() &&
3901         !ConstantInt::isValueValidForType(IntTy, Offset))
3902       continue;
3903 
3904     Formula F = Base;
3905     F.BaseOffset = NewBaseOffset;
3906 
3907     // Check that this scale is legal.
3908     if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F))
3909       continue;
3910 
3911     // Compensate for the use having MinOffset built into it.
3912     F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset;
3913 
3914     const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3915 
3916     // Check that multiplying with each base register doesn't overflow.
3917     for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
3918       F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
3919       if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
3920         goto next;
3921     }
3922 
3923     // Check that multiplying with the scaled register doesn't overflow.
3924     if (F.ScaledReg) {
3925       F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
3926       if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
3927         continue;
3928     }
3929 
3930     // Check that multiplying with the unfolded offset doesn't overflow.
3931     if (F.UnfoldedOffset != 0) {
3932       if (F.UnfoldedOffset == std::numeric_limits<int64_t>::min() &&
3933           Factor == -1)
3934         continue;
3935       F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor;
3936       if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset)
3937         continue;
3938       // If the offset will be truncated, check that it is in bounds.
3939       if (!IntTy->isPointerTy() &&
3940           !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset))
3941         continue;
3942     }
3943 
3944     // If we make it here and it's legal, add it.
3945     (void)InsertFormula(LU, LUIdx, F);
3946   next:;
3947   }
3948 }
3949 
3950 /// Generate stride factor reuse formulae by making use of scaled-offset address
3951 /// modes, for example.
3952 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
3953   // Determine the integer type for the base formula.
3954   Type *IntTy = Base.getType();
3955   if (!IntTy) return;
3956 
3957   // If this Formula already has a scaled register, we can't add another one.
3958   // Try to unscale the formula to generate a better scale.
3959   if (Base.Scale != 0 && !Base.unscale())
3960     return;
3961 
3962   assert(Base.Scale == 0 && "unscale did not did its job!");
3963 
3964   // Check each interesting stride.
3965   for (int64_t Factor : Factors) {
3966     Base.Scale = Factor;
3967     Base.HasBaseReg = Base.BaseRegs.size() > 1;
3968     // Check whether this scale is going to be legal.
3969     if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
3970                     Base)) {
3971       // As a special-case, handle special out-of-loop Basic users specially.
3972       // TODO: Reconsider this special case.
3973       if (LU.Kind == LSRUse::Basic &&
3974           isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special,
3975                      LU.AccessTy, Base) &&
3976           LU.AllFixupsOutsideLoop)
3977         LU.Kind = LSRUse::Special;
3978       else
3979         continue;
3980     }
3981     // For an ICmpZero, negating a solitary base register won't lead to
3982     // new solutions.
3983     if (LU.Kind == LSRUse::ICmpZero &&
3984         !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV)
3985       continue;
3986     // For each addrec base reg, if its loop is current loop, apply the scale.
3987     for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
3988       const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i]);
3989       if (AR && (AR->getLoop() == L || LU.AllFixupsOutsideLoop)) {
3990         const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3991         if (FactorS->isZero())
3992           continue;
3993         // Divide out the factor, ignoring high bits, since we'll be
3994         // scaling the value back up in the end.
3995         if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) {
3996           // TODO: This could be optimized to avoid all the copying.
3997           Formula F = Base;
3998           F.ScaledReg = Quotient;
3999           F.deleteBaseReg(F.BaseRegs[i]);
4000           // The canonical representation of 1*reg is reg, which is already in
4001           // Base. In that case, do not try to insert the formula, it will be
4002           // rejected anyway.
4003           if (F.Scale == 1 && (F.BaseRegs.empty() ||
4004                                (AR->getLoop() != L && LU.AllFixupsOutsideLoop)))
4005             continue;
4006           // If AllFixupsOutsideLoop is true and F.Scale is 1, we may generate
4007           // non canonical Formula with ScaledReg's loop not being L.
4008           if (F.Scale == 1 && LU.AllFixupsOutsideLoop)
4009             F.canonicalize(*L);
4010           (void)InsertFormula(LU, LUIdx, F);
4011         }
4012       }
4013     }
4014   }
4015 }
4016 
4017 /// Generate reuse formulae from different IV types.
4018 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
4019   // Don't bother truncating symbolic values.
4020   if (Base.BaseGV) return;
4021 
4022   // Determine the integer type for the base formula.
4023   Type *DstTy = Base.getType();
4024   if (!DstTy) return;
4025   DstTy = SE.getEffectiveSCEVType(DstTy);
4026 
4027   for (Type *SrcTy : Types) {
4028     if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) {
4029       Formula F = Base;
4030 
4031       // Sometimes SCEV is able to prove zero during ext transform. It may
4032       // happen if SCEV did not do all possible transforms while creating the
4033       // initial node (maybe due to depth limitations), but it can do them while
4034       // taking ext.
4035       if (F.ScaledReg) {
4036         const SCEV *NewScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy);
4037         if (NewScaledReg->isZero())
4038          continue;
4039         F.ScaledReg = NewScaledReg;
4040       }
4041       bool HasZeroBaseReg = false;
4042       for (const SCEV *&BaseReg : F.BaseRegs) {
4043         const SCEV *NewBaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy);
4044         if (NewBaseReg->isZero()) {
4045           HasZeroBaseReg = true;
4046           break;
4047         }
4048         BaseReg = NewBaseReg;
4049       }
4050       if (HasZeroBaseReg)
4051         continue;
4052 
4053       // TODO: This assumes we've done basic processing on all uses and
4054       // have an idea what the register usage is.
4055       if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
4056         continue;
4057 
4058       F.canonicalize(*L);
4059       (void)InsertFormula(LU, LUIdx, F);
4060     }
4061   }
4062 }
4063 
4064 namespace {
4065 
4066 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer
4067 /// modifications so that the search phase doesn't have to worry about the data
4068 /// structures moving underneath it.
4069 struct WorkItem {
4070   size_t LUIdx;
4071   int64_t Imm;
4072   const SCEV *OrigReg;
4073 
4074   WorkItem(size_t LI, int64_t I, const SCEV *R)
4075       : LUIdx(LI), Imm(I), OrigReg(R) {}
4076 
4077   void print(raw_ostream &OS) const;
4078   void dump() const;
4079 };
4080 
4081 } // end anonymous namespace
4082 
4083 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4084 void WorkItem::print(raw_ostream &OS) const {
4085   OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
4086      << " , add offset " << Imm;
4087 }
4088 
4089 LLVM_DUMP_METHOD void WorkItem::dump() const {
4090   print(errs()); errs() << '\n';
4091 }
4092 #endif
4093 
4094 /// Look for registers which are a constant distance apart and try to form reuse
4095 /// opportunities between them.
4096 void LSRInstance::GenerateCrossUseConstantOffsets() {
4097   // Group the registers by their value without any added constant offset.
4098   using ImmMapTy = std::map<int64_t, const SCEV *>;
4099 
4100   DenseMap<const SCEV *, ImmMapTy> Map;
4101   DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
4102   SmallVector<const SCEV *, 8> Sequence;
4103   for (const SCEV *Use : RegUses) {
4104     const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify.
4105     int64_t Imm = ExtractImmediate(Reg, SE);
4106     auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy()));
4107     if (Pair.second)
4108       Sequence.push_back(Reg);
4109     Pair.first->second.insert(std::make_pair(Imm, Use));
4110     UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use);
4111   }
4112 
4113   // Now examine each set of registers with the same base value. Build up
4114   // a list of work to do and do the work in a separate step so that we're
4115   // not adding formulae and register counts while we're searching.
4116   SmallVector<WorkItem, 32> WorkItems;
4117   SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
4118   for (const SCEV *Reg : Sequence) {
4119     const ImmMapTy &Imms = Map.find(Reg)->second;
4120 
4121     // It's not worthwhile looking for reuse if there's only one offset.
4122     if (Imms.size() == 1)
4123       continue;
4124 
4125     LLVM_DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
4126                for (const auto &Entry
4127                     : Imms) dbgs()
4128                << ' ' << Entry.first;
4129                dbgs() << '\n');
4130 
4131     // Examine each offset.
4132     for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
4133          J != JE; ++J) {
4134       const SCEV *OrigReg = J->second;
4135 
4136       int64_t JImm = J->first;
4137       const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
4138 
4139       if (!isa<SCEVConstant>(OrigReg) &&
4140           UsedByIndicesMap[Reg].count() == 1) {
4141         LLVM_DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg
4142                           << '\n');
4143         continue;
4144       }
4145 
4146       // Conservatively examine offsets between this orig reg a few selected
4147       // other orig regs.
4148       ImmMapTy::const_iterator OtherImms[] = {
4149         Imms.begin(), std::prev(Imms.end()),
4150         Imms.lower_bound((Imms.begin()->first + std::prev(Imms.end())->first) /
4151                          2)
4152       };
4153       for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
4154         ImmMapTy::const_iterator M = OtherImms[i];
4155         if (M == J || M == JE) continue;
4156 
4157         // Compute the difference between the two.
4158         int64_t Imm = (uint64_t)JImm - M->first;
4159         for (unsigned LUIdx : UsedByIndices.set_bits())
4160           // Make a memo of this use, offset, and register tuple.
4161           if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second)
4162             WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
4163       }
4164     }
4165   }
4166 
4167   Map.clear();
4168   Sequence.clear();
4169   UsedByIndicesMap.clear();
4170   UniqueItems.clear();
4171 
4172   // Now iterate through the worklist and add new formulae.
4173   for (const WorkItem &WI : WorkItems) {
4174     size_t LUIdx = WI.LUIdx;
4175     LSRUse &LU = Uses[LUIdx];
4176     int64_t Imm = WI.Imm;
4177     const SCEV *OrigReg = WI.OrigReg;
4178 
4179     Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
4180     const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
4181     unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
4182 
4183     // TODO: Use a more targeted data structure.
4184     for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
4185       Formula F = LU.Formulae[L];
4186       // FIXME: The code for the scaled and unscaled registers looks
4187       // very similar but slightly different. Investigate if they
4188       // could be merged. That way, we would not have to unscale the
4189       // Formula.
4190       F.unscale();
4191       // Use the immediate in the scaled register.
4192       if (F.ScaledReg == OrigReg) {
4193         int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale;
4194         // Don't create 50 + reg(-50).
4195         if (F.referencesReg(SE.getSCEV(
4196                    ConstantInt::get(IntTy, -(uint64_t)Offset))))
4197           continue;
4198         Formula NewF = F;
4199         NewF.BaseOffset = Offset;
4200         if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
4201                         NewF))
4202           continue;
4203         NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
4204 
4205         // If the new scale is a constant in a register, and adding the constant
4206         // value to the immediate would produce a value closer to zero than the
4207         // immediate itself, then the formula isn't worthwhile.
4208         if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
4209           if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) &&
4210               (C->getAPInt().abs() * APInt(BitWidth, F.Scale))
4211                   .ule(std::abs(NewF.BaseOffset)))
4212             continue;
4213 
4214         // OK, looks good.
4215         NewF.canonicalize(*this->L);
4216         (void)InsertFormula(LU, LUIdx, NewF);
4217       } else {
4218         // Use the immediate in a base register.
4219         for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
4220           const SCEV *BaseReg = F.BaseRegs[N];
4221           if (BaseReg != OrigReg)
4222             continue;
4223           Formula NewF = F;
4224           NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm;
4225           if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset,
4226                           LU.Kind, LU.AccessTy, NewF)) {
4227             if (TTI.shouldFavorPostInc() &&
4228                 mayUsePostIncMode(TTI, LU, OrigReg, this->L, SE))
4229               continue;
4230             if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm))
4231               continue;
4232             NewF = F;
4233             NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm;
4234           }
4235           NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
4236 
4237           // If the new formula has a constant in a register, and adding the
4238           // constant value to the immediate would produce a value closer to
4239           // zero than the immediate itself, then the formula isn't worthwhile.
4240           for (const SCEV *NewReg : NewF.BaseRegs)
4241             if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg))
4242               if ((C->getAPInt() + NewF.BaseOffset)
4243                       .abs()
4244                       .slt(std::abs(NewF.BaseOffset)) &&
4245                   (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >=
4246                       countTrailingZeros<uint64_t>(NewF.BaseOffset))
4247                 goto skip_formula;
4248 
4249           // Ok, looks good.
4250           NewF.canonicalize(*this->L);
4251           (void)InsertFormula(LU, LUIdx, NewF);
4252           break;
4253         skip_formula:;
4254         }
4255       }
4256     }
4257   }
4258 }
4259 
4260 /// Generate formulae for each use.
4261 void
4262 LSRInstance::GenerateAllReuseFormulae() {
4263   // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
4264   // queries are more precise.
4265   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4266     LSRUse &LU = Uses[LUIdx];
4267     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4268       GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
4269     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4270       GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
4271   }
4272   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4273     LSRUse &LU = Uses[LUIdx];
4274     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4275       GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
4276     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4277       GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
4278     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4279       GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
4280     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4281       GenerateScales(LU, LUIdx, LU.Formulae[i]);
4282   }
4283   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4284     LSRUse &LU = Uses[LUIdx];
4285     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4286       GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
4287   }
4288 
4289   GenerateCrossUseConstantOffsets();
4290 
4291   LLVM_DEBUG(dbgs() << "\n"
4292                        "After generating reuse formulae:\n";
4293              print_uses(dbgs()));
4294 }
4295 
4296 /// If there are multiple formulae with the same set of registers used
4297 /// by other uses, pick the best one and delete the others.
4298 void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
4299   DenseSet<const SCEV *> VisitedRegs;
4300   SmallPtrSet<const SCEV *, 16> Regs;
4301   SmallPtrSet<const SCEV *, 16> LoserRegs;
4302 #ifndef NDEBUG
4303   bool ChangedFormulae = false;
4304 #endif
4305 
4306   // Collect the best formula for each unique set of shared registers. This
4307   // is reset for each use.
4308   using BestFormulaeTy =
4309       DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>;
4310 
4311   BestFormulaeTy BestFormulae;
4312 
4313   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4314     LSRUse &LU = Uses[LUIdx];
4315     LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs());
4316                dbgs() << '\n');
4317 
4318     bool Any = false;
4319     for (size_t FIdx = 0, NumForms = LU.Formulae.size();
4320          FIdx != NumForms; ++FIdx) {
4321       Formula &F = LU.Formulae[FIdx];
4322 
4323       // Some formulas are instant losers. For example, they may depend on
4324       // nonexistent AddRecs from other loops. These need to be filtered
4325       // immediately, otherwise heuristics could choose them over others leading
4326       // to an unsatisfactory solution. Passing LoserRegs into RateFormula here
4327       // avoids the need to recompute this information across formulae using the
4328       // same bad AddRec. Passing LoserRegs is also essential unless we remove
4329       // the corresponding bad register from the Regs set.
4330       Cost CostF;
4331       Regs.clear();
4332       CostF.RateFormula(TTI, F, Regs, VisitedRegs, L, SE, DT, LU, &LoserRegs);
4333       if (CostF.isLoser()) {
4334         // During initial formula generation, undesirable formulae are generated
4335         // by uses within other loops that have some non-trivial address mode or
4336         // use the postinc form of the IV. LSR needs to provide these formulae
4337         // as the basis of rediscovering the desired formula that uses an AddRec
4338         // corresponding to the existing phi. Once all formulae have been
4339         // generated, these initial losers may be pruned.
4340         LLVM_DEBUG(dbgs() << "  Filtering loser "; F.print(dbgs());
4341                    dbgs() << "\n");
4342       }
4343       else {
4344         SmallVector<const SCEV *, 4> Key;
4345         for (const SCEV *Reg : F.BaseRegs) {
4346           if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
4347             Key.push_back(Reg);
4348         }
4349         if (F.ScaledReg &&
4350             RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
4351           Key.push_back(F.ScaledReg);
4352         // Unstable sort by host order ok, because this is only used for
4353         // uniquifying.
4354         llvm::sort(Key);
4355 
4356         std::pair<BestFormulaeTy::const_iterator, bool> P =
4357           BestFormulae.insert(std::make_pair(Key, FIdx));
4358         if (P.second)
4359           continue;
4360 
4361         Formula &Best = LU.Formulae[P.first->second];
4362 
4363         Cost CostBest;
4364         Regs.clear();
4365         CostBest.RateFormula(TTI, Best, Regs, VisitedRegs, L, SE, DT, LU);
4366         if (CostF.isLess(CostBest, TTI))
4367           std::swap(F, Best);
4368         LLVM_DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
4369                    dbgs() << "\n"
4370                              "    in favor of formula ";
4371                    Best.print(dbgs()); dbgs() << '\n');
4372       }
4373 #ifndef NDEBUG
4374       ChangedFormulae = true;
4375 #endif
4376       LU.DeleteFormula(F);
4377       --FIdx;
4378       --NumForms;
4379       Any = true;
4380     }
4381 
4382     // Now that we've filtered out some formulae, recompute the Regs set.
4383     if (Any)
4384       LU.RecomputeRegs(LUIdx, RegUses);
4385 
4386     // Reset this to prepare for the next use.
4387     BestFormulae.clear();
4388   }
4389 
4390   LLVM_DEBUG(if (ChangedFormulae) {
4391     dbgs() << "\n"
4392               "After filtering out undesirable candidates:\n";
4393     print_uses(dbgs());
4394   });
4395 }
4396 
4397 /// Estimate the worst-case number of solutions the solver might have to
4398 /// consider. It almost never considers this many solutions because it prune the
4399 /// search space, but the pruning isn't always sufficient.
4400 size_t LSRInstance::EstimateSearchSpaceComplexity() const {
4401   size_t Power = 1;
4402   for (const LSRUse &LU : Uses) {
4403     size_t FSize = LU.Formulae.size();
4404     if (FSize >= ComplexityLimit) {
4405       Power = ComplexityLimit;
4406       break;
4407     }
4408     Power *= FSize;
4409     if (Power >= ComplexityLimit)
4410       break;
4411   }
4412   return Power;
4413 }
4414 
4415 /// When one formula uses a superset of the registers of another formula, it
4416 /// won't help reduce register pressure (though it may not necessarily hurt
4417 /// register pressure); remove it to simplify the system.
4418 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
4419   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4420     LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4421 
4422     LLVM_DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
4423                          "which use a superset of registers used by other "
4424                          "formulae.\n");
4425 
4426     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4427       LSRUse &LU = Uses[LUIdx];
4428       bool Any = false;
4429       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4430         Formula &F = LU.Formulae[i];
4431         // Look for a formula with a constant or GV in a register. If the use
4432         // also has a formula with that same value in an immediate field,
4433         // delete the one that uses a register.
4434         for (SmallVectorImpl<const SCEV *>::const_iterator
4435              I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
4436           if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
4437             Formula NewF = F;
4438             NewF.BaseOffset += C->getValue()->getSExtValue();
4439             NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4440                                 (I - F.BaseRegs.begin()));
4441             if (LU.HasFormulaWithSameRegs(NewF)) {
4442               LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4443                          dbgs() << '\n');
4444               LU.DeleteFormula(F);
4445               --i;
4446               --e;
4447               Any = true;
4448               break;
4449             }
4450           } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
4451             if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
4452               if (!F.BaseGV) {
4453                 Formula NewF = F;
4454                 NewF.BaseGV = GV;
4455                 NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4456                                     (I - F.BaseRegs.begin()));
4457                 if (LU.HasFormulaWithSameRegs(NewF)) {
4458                   LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4459                              dbgs() << '\n');
4460                   LU.DeleteFormula(F);
4461                   --i;
4462                   --e;
4463                   Any = true;
4464                   break;
4465                 }
4466               }
4467           }
4468         }
4469       }
4470       if (Any)
4471         LU.RecomputeRegs(LUIdx, RegUses);
4472     }
4473 
4474     LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4475   }
4476 }
4477 
4478 /// When there are many registers for expressions like A, A+1, A+2, etc.,
4479 /// allocate a single register for them.
4480 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
4481   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4482     return;
4483 
4484   LLVM_DEBUG(
4485       dbgs() << "The search space is too complex.\n"
4486                 "Narrowing the search space by assuming that uses separated "
4487                 "by a constant offset will use the same registers.\n");
4488 
4489   // This is especially useful for unrolled loops.
4490 
4491   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4492     LSRUse &LU = Uses[LUIdx];
4493     for (const Formula &F : LU.Formulae) {
4494       if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1))
4495         continue;
4496 
4497       LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU);
4498       if (!LUThatHas)
4499         continue;
4500 
4501       if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false,
4502                               LU.Kind, LU.AccessTy))
4503         continue;
4504 
4505       LLVM_DEBUG(dbgs() << "  Deleting use "; LU.print(dbgs()); dbgs() << '\n');
4506 
4507       LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
4508 
4509       // Transfer the fixups of LU to LUThatHas.
4510       for (LSRFixup &Fixup : LU.Fixups) {
4511         Fixup.Offset += F.BaseOffset;
4512         LUThatHas->pushFixup(Fixup);
4513         LLVM_DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n');
4514       }
4515 
4516       // Delete formulae from the new use which are no longer legal.
4517       bool Any = false;
4518       for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
4519         Formula &F = LUThatHas->Formulae[i];
4520         if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset,
4521                         LUThatHas->Kind, LUThatHas->AccessTy, F)) {
4522           LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
4523           LUThatHas->DeleteFormula(F);
4524           --i;
4525           --e;
4526           Any = true;
4527         }
4528       }
4529 
4530       if (Any)
4531         LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
4532 
4533       // Delete the old use.
4534       DeleteUse(LU, LUIdx);
4535       --LUIdx;
4536       --NumUses;
4537       break;
4538     }
4539   }
4540 
4541   LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4542 }
4543 
4544 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that
4545 /// we've done more filtering, as it may be able to find more formulae to
4546 /// eliminate.
4547 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){
4548   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4549     LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4550 
4551     LLVM_DEBUG(dbgs() << "Narrowing the search space by re-filtering out "
4552                          "undesirable dedicated registers.\n");
4553 
4554     FilterOutUndesirableDedicatedRegisters();
4555 
4556     LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4557   }
4558 }
4559 
4560 /// If a LSRUse has multiple formulae with the same ScaledReg and Scale.
4561 /// Pick the best one and delete the others.
4562 /// This narrowing heuristic is to keep as many formulae with different
4563 /// Scale and ScaledReg pair as possible while narrowing the search space.
4564 /// The benefit is that it is more likely to find out a better solution
4565 /// from a formulae set with more Scale and ScaledReg variations than
4566 /// a formulae set with the same Scale and ScaledReg. The picking winner
4567 /// reg heuristic will often keep the formulae with the same Scale and
4568 /// ScaledReg and filter others, and we want to avoid that if possible.
4569 void LSRInstance::NarrowSearchSpaceByFilterFormulaWithSameScaledReg() {
4570   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4571     return;
4572 
4573   LLVM_DEBUG(
4574       dbgs() << "The search space is too complex.\n"
4575                 "Narrowing the search space by choosing the best Formula "
4576                 "from the Formulae with the same Scale and ScaledReg.\n");
4577 
4578   // Map the "Scale * ScaledReg" pair to the best formula of current LSRUse.
4579   using BestFormulaeTy = DenseMap<std::pair<const SCEV *, int64_t>, size_t>;
4580 
4581   BestFormulaeTy BestFormulae;
4582 #ifndef NDEBUG
4583   bool ChangedFormulae = false;
4584 #endif
4585   DenseSet<const SCEV *> VisitedRegs;
4586   SmallPtrSet<const SCEV *, 16> Regs;
4587 
4588   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4589     LSRUse &LU = Uses[LUIdx];
4590     LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs());
4591                dbgs() << '\n');
4592 
4593     // Return true if Formula FA is better than Formula FB.
4594     auto IsBetterThan = [&](Formula &FA, Formula &FB) {
4595       // First we will try to choose the Formula with fewer new registers.
4596       // For a register used by current Formula, the more the register is
4597       // shared among LSRUses, the less we increase the register number
4598       // counter of the formula.
4599       size_t FARegNum = 0;
4600       for (const SCEV *Reg : FA.BaseRegs) {
4601         const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg);
4602         FARegNum += (NumUses - UsedByIndices.count() + 1);
4603       }
4604       size_t FBRegNum = 0;
4605       for (const SCEV *Reg : FB.BaseRegs) {
4606         const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg);
4607         FBRegNum += (NumUses - UsedByIndices.count() + 1);
4608       }
4609       if (FARegNum != FBRegNum)
4610         return FARegNum < FBRegNum;
4611 
4612       // If the new register numbers are the same, choose the Formula with
4613       // less Cost.
4614       Cost CostFA, CostFB;
4615       Regs.clear();
4616       CostFA.RateFormula(TTI, FA, Regs, VisitedRegs, L, SE, DT, LU);
4617       Regs.clear();
4618       CostFB.RateFormula(TTI, FB, Regs, VisitedRegs, L, SE, DT, LU);
4619       return CostFA.isLess(CostFB, TTI);
4620     };
4621 
4622     bool Any = false;
4623     for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms;
4624          ++FIdx) {
4625       Formula &F = LU.Formulae[FIdx];
4626       if (!F.ScaledReg)
4627         continue;
4628       auto P = BestFormulae.insert({{F.ScaledReg, F.Scale}, FIdx});
4629       if (P.second)
4630         continue;
4631 
4632       Formula &Best = LU.Formulae[P.first->second];
4633       if (IsBetterThan(F, Best))
4634         std::swap(F, Best);
4635       LLVM_DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
4636                  dbgs() << "\n"
4637                            "    in favor of formula ";
4638                  Best.print(dbgs()); dbgs() << '\n');
4639 #ifndef NDEBUG
4640       ChangedFormulae = true;
4641 #endif
4642       LU.DeleteFormula(F);
4643       --FIdx;
4644       --NumForms;
4645       Any = true;
4646     }
4647     if (Any)
4648       LU.RecomputeRegs(LUIdx, RegUses);
4649 
4650     // Reset this to prepare for the next use.
4651     BestFormulae.clear();
4652   }
4653 
4654   LLVM_DEBUG(if (ChangedFormulae) {
4655     dbgs() << "\n"
4656               "After filtering out undesirable candidates:\n";
4657     print_uses(dbgs());
4658   });
4659 }
4660 
4661 /// The function delete formulas with high registers number expectation.
4662 /// Assuming we don't know the value of each formula (already delete
4663 /// all inefficient), generate probability of not selecting for each
4664 /// register.
4665 /// For example,
4666 /// Use1:
4667 ///  reg(a) + reg({0,+,1})
4668 ///  reg(a) + reg({-1,+,1}) + 1
4669 ///  reg({a,+,1})
4670 /// Use2:
4671 ///  reg(b) + reg({0,+,1})
4672 ///  reg(b) + reg({-1,+,1}) + 1
4673 ///  reg({b,+,1})
4674 /// Use3:
4675 ///  reg(c) + reg(b) + reg({0,+,1})
4676 ///  reg(c) + reg({b,+,1})
4677 ///
4678 /// Probability of not selecting
4679 ///                 Use1   Use2    Use3
4680 /// reg(a)         (1/3) *   1   *   1
4681 /// reg(b)           1   * (1/3) * (1/2)
4682 /// reg({0,+,1})   (2/3) * (2/3) * (1/2)
4683 /// reg({-1,+,1})  (2/3) * (2/3) *   1
4684 /// reg({a,+,1})   (2/3) *   1   *   1
4685 /// reg({b,+,1})     1   * (2/3) * (2/3)
4686 /// reg(c)           1   *   1   *   0
4687 ///
4688 /// Now count registers number mathematical expectation for each formula:
4689 /// Note that for each use we exclude probability if not selecting for the use.
4690 /// For example for Use1 probability for reg(a) would be just 1 * 1 (excluding
4691 /// probabilty 1/3 of not selecting for Use1).
4692 /// Use1:
4693 ///  reg(a) + reg({0,+,1})          1 + 1/3       -- to be deleted
4694 ///  reg(a) + reg({-1,+,1}) + 1     1 + 4/9       -- to be deleted
4695 ///  reg({a,+,1})                   1
4696 /// Use2:
4697 ///  reg(b) + reg({0,+,1})          1/2 + 1/3     -- to be deleted
4698 ///  reg(b) + reg({-1,+,1}) + 1     1/2 + 2/3     -- to be deleted
4699 ///  reg({b,+,1})                   2/3
4700 /// Use3:
4701 ///  reg(c) + reg(b) + reg({0,+,1}) 1 + 1/3 + 4/9 -- to be deleted
4702 ///  reg(c) + reg({b,+,1})          1 + 2/3
4703 void LSRInstance::NarrowSearchSpaceByDeletingCostlyFormulas() {
4704   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4705     return;
4706   // Ok, we have too many of formulae on our hands to conveniently handle.
4707   // Use a rough heuristic to thin out the list.
4708 
4709   // Set of Regs wich will be 100% used in final solution.
4710   // Used in each formula of a solution (in example above this is reg(c)).
4711   // We can skip them in calculations.
4712   SmallPtrSet<const SCEV *, 4> UniqRegs;
4713   LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4714 
4715   // Map each register to probability of not selecting
4716   DenseMap <const SCEV *, float> RegNumMap;
4717   for (const SCEV *Reg : RegUses) {
4718     if (UniqRegs.count(Reg))
4719       continue;
4720     float PNotSel = 1;
4721     for (const LSRUse &LU : Uses) {
4722       if (!LU.Regs.count(Reg))
4723         continue;
4724       float P = LU.getNotSelectedProbability(Reg);
4725       if (P != 0.0)
4726         PNotSel *= P;
4727       else
4728         UniqRegs.insert(Reg);
4729     }
4730     RegNumMap.insert(std::make_pair(Reg, PNotSel));
4731   }
4732 
4733   LLVM_DEBUG(
4734       dbgs() << "Narrowing the search space by deleting costly formulas\n");
4735 
4736   // Delete formulas where registers number expectation is high.
4737   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4738     LSRUse &LU = Uses[LUIdx];
4739     // If nothing to delete - continue.
4740     if (LU.Formulae.size() < 2)
4741       continue;
4742     // This is temporary solution to test performance. Float should be
4743     // replaced with round independent type (based on integers) to avoid
4744     // different results for different target builds.
4745     float FMinRegNum = LU.Formulae[0].getNumRegs();
4746     float FMinARegNum = LU.Formulae[0].getNumRegs();
4747     size_t MinIdx = 0;
4748     for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4749       Formula &F = LU.Formulae[i];
4750       float FRegNum = 0;
4751       float FARegNum = 0;
4752       for (const SCEV *BaseReg : F.BaseRegs) {
4753         if (UniqRegs.count(BaseReg))
4754           continue;
4755         FRegNum += RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg);
4756         if (isa<SCEVAddRecExpr>(BaseReg))
4757           FARegNum +=
4758               RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg);
4759       }
4760       if (const SCEV *ScaledReg = F.ScaledReg) {
4761         if (!UniqRegs.count(ScaledReg)) {
4762           FRegNum +=
4763               RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg);
4764           if (isa<SCEVAddRecExpr>(ScaledReg))
4765             FARegNum +=
4766                 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg);
4767         }
4768       }
4769       if (FMinRegNum > FRegNum ||
4770           (FMinRegNum == FRegNum && FMinARegNum > FARegNum)) {
4771         FMinRegNum = FRegNum;
4772         FMinARegNum = FARegNum;
4773         MinIdx = i;
4774       }
4775     }
4776     LLVM_DEBUG(dbgs() << "  The formula "; LU.Formulae[MinIdx].print(dbgs());
4777                dbgs() << " with min reg num " << FMinRegNum << '\n');
4778     if (MinIdx != 0)
4779       std::swap(LU.Formulae[MinIdx], LU.Formulae[0]);
4780     while (LU.Formulae.size() != 1) {
4781       LLVM_DEBUG(dbgs() << "  Deleting "; LU.Formulae.back().print(dbgs());
4782                  dbgs() << '\n');
4783       LU.Formulae.pop_back();
4784     }
4785     LU.RecomputeRegs(LUIdx, RegUses);
4786     assert(LU.Formulae.size() == 1 && "Should be exactly 1 min regs formula");
4787     Formula &F = LU.Formulae[0];
4788     LLVM_DEBUG(dbgs() << "  Leaving only "; F.print(dbgs()); dbgs() << '\n');
4789     // When we choose the formula, the regs become unique.
4790     UniqRegs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
4791     if (F.ScaledReg)
4792       UniqRegs.insert(F.ScaledReg);
4793   }
4794   LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4795 }
4796 
4797 /// Pick a register which seems likely to be profitable, and then in any use
4798 /// which has any reference to that register, delete all formulae which do not
4799 /// reference that register.
4800 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() {
4801   // With all other options exhausted, loop until the system is simple
4802   // enough to handle.
4803   SmallPtrSet<const SCEV *, 4> Taken;
4804   while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4805     // Ok, we have too many of formulae on our hands to conveniently handle.
4806     // Use a rough heuristic to thin out the list.
4807     LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4808 
4809     // Pick the register which is used by the most LSRUses, which is likely
4810     // to be a good reuse register candidate.
4811     const SCEV *Best = nullptr;
4812     unsigned BestNum = 0;
4813     for (const SCEV *Reg : RegUses) {
4814       if (Taken.count(Reg))
4815         continue;
4816       if (!Best) {
4817         Best = Reg;
4818         BestNum = RegUses.getUsedByIndices(Reg).count();
4819       } else {
4820         unsigned Count = RegUses.getUsedByIndices(Reg).count();
4821         if (Count > BestNum) {
4822           Best = Reg;
4823           BestNum = Count;
4824         }
4825       }
4826     }
4827 
4828     LLVM_DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
4829                       << " will yield profitable reuse.\n");
4830     Taken.insert(Best);
4831 
4832     // In any use with formulae which references this register, delete formulae
4833     // which don't reference it.
4834     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4835       LSRUse &LU = Uses[LUIdx];
4836       if (!LU.Regs.count(Best)) continue;
4837 
4838       bool Any = false;
4839       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4840         Formula &F = LU.Formulae[i];
4841         if (!F.referencesReg(Best)) {
4842           LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
4843           LU.DeleteFormula(F);
4844           --e;
4845           --i;
4846           Any = true;
4847           assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
4848           continue;
4849         }
4850       }
4851 
4852       if (Any)
4853         LU.RecomputeRegs(LUIdx, RegUses);
4854     }
4855 
4856     LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4857   }
4858 }
4859 
4860 /// If there are an extraordinary number of formulae to choose from, use some
4861 /// rough heuristics to prune down the number of formulae. This keeps the main
4862 /// solver from taking an extraordinary amount of time in some worst-case
4863 /// scenarios.
4864 void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
4865   NarrowSearchSpaceByDetectingSupersets();
4866   NarrowSearchSpaceByCollapsingUnrolledCode();
4867   NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
4868   if (FilterSameScaledReg)
4869     NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
4870   if (LSRExpNarrow)
4871     NarrowSearchSpaceByDeletingCostlyFormulas();
4872   else
4873     NarrowSearchSpaceByPickingWinnerRegs();
4874 }
4875 
4876 /// This is the recursive solver.
4877 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
4878                                Cost &SolutionCost,
4879                                SmallVectorImpl<const Formula *> &Workspace,
4880                                const Cost &CurCost,
4881                                const SmallPtrSet<const SCEV *, 16> &CurRegs,
4882                                DenseSet<const SCEV *> &VisitedRegs) const {
4883   // Some ideas:
4884   //  - prune more:
4885   //    - use more aggressive filtering
4886   //    - sort the formula so that the most profitable solutions are found first
4887   //    - sort the uses too
4888   //  - search faster:
4889   //    - don't compute a cost, and then compare. compare while computing a cost
4890   //      and bail early.
4891   //    - track register sets with SmallBitVector
4892 
4893   const LSRUse &LU = Uses[Workspace.size()];
4894 
4895   // If this use references any register that's already a part of the
4896   // in-progress solution, consider it a requirement that a formula must
4897   // reference that register in order to be considered. This prunes out
4898   // unprofitable searching.
4899   SmallSetVector<const SCEV *, 4> ReqRegs;
4900   for (const SCEV *S : CurRegs)
4901     if (LU.Regs.count(S))
4902       ReqRegs.insert(S);
4903 
4904   SmallPtrSet<const SCEV *, 16> NewRegs;
4905   Cost NewCost;
4906   for (const Formula &F : LU.Formulae) {
4907     // Ignore formulae which may not be ideal in terms of register reuse of
4908     // ReqRegs.  The formula should use all required registers before
4909     // introducing new ones.
4910     int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size());
4911     for (const SCEV *Reg : ReqRegs) {
4912       if ((F.ScaledReg && F.ScaledReg == Reg) ||
4913           is_contained(F.BaseRegs, Reg)) {
4914         --NumReqRegsToFind;
4915         if (NumReqRegsToFind == 0)
4916           break;
4917       }
4918     }
4919     if (NumReqRegsToFind != 0) {
4920       // If none of the formulae satisfied the required registers, then we could
4921       // clear ReqRegs and try again. Currently, we simply give up in this case.
4922       continue;
4923     }
4924 
4925     // Evaluate the cost of the current formula. If it's already worse than
4926     // the current best, prune the search at that point.
4927     NewCost = CurCost;
4928     NewRegs = CurRegs;
4929     NewCost.RateFormula(TTI, F, NewRegs, VisitedRegs, L, SE, DT, LU);
4930     if (NewCost.isLess(SolutionCost, TTI)) {
4931       Workspace.push_back(&F);
4932       if (Workspace.size() != Uses.size()) {
4933         SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
4934                      NewRegs, VisitedRegs);
4935         if (F.getNumRegs() == 1 && Workspace.size() == 1)
4936           VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
4937       } else {
4938         LLVM_DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
4939                    dbgs() << ".\n Regs:"; for (const SCEV *S
4940                                                : NewRegs) dbgs()
4941                                           << ' ' << *S;
4942                    dbgs() << '\n');
4943 
4944         SolutionCost = NewCost;
4945         Solution = Workspace;
4946       }
4947       Workspace.pop_back();
4948     }
4949   }
4950 }
4951 
4952 /// Choose one formula from each use. Return the results in the given Solution
4953 /// vector.
4954 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
4955   SmallVector<const Formula *, 8> Workspace;
4956   Cost SolutionCost;
4957   SolutionCost.Lose();
4958   Cost CurCost;
4959   SmallPtrSet<const SCEV *, 16> CurRegs;
4960   DenseSet<const SCEV *> VisitedRegs;
4961   Workspace.reserve(Uses.size());
4962 
4963   // SolveRecurse does all the work.
4964   SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
4965                CurRegs, VisitedRegs);
4966   if (Solution.empty()) {
4967     LLVM_DEBUG(dbgs() << "\nNo Satisfactory Solution\n");
4968     return;
4969   }
4970 
4971   // Ok, we've now made all our decisions.
4972   LLVM_DEBUG(dbgs() << "\n"
4973                        "The chosen solution requires ";
4974              SolutionCost.print(dbgs()); dbgs() << ":\n";
4975              for (size_t i = 0, e = Uses.size(); i != e; ++i) {
4976                dbgs() << "  ";
4977                Uses[i].print(dbgs());
4978                dbgs() << "\n"
4979                          "    ";
4980                Solution[i]->print(dbgs());
4981                dbgs() << '\n';
4982              });
4983 
4984   assert(Solution.size() == Uses.size() && "Malformed solution!");
4985 }
4986 
4987 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as
4988 /// we can go while still being dominated by the input positions. This helps
4989 /// canonicalize the insert position, which encourages sharing.
4990 BasicBlock::iterator
4991 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
4992                                  const SmallVectorImpl<Instruction *> &Inputs)
4993                                                                          const {
4994   Instruction *Tentative = &*IP;
4995   while (true) {
4996     bool AllDominate = true;
4997     Instruction *BetterPos = nullptr;
4998     // Don't bother attempting to insert before a catchswitch, their basic block
4999     // cannot have other non-PHI instructions.
5000     if (isa<CatchSwitchInst>(Tentative))
5001       return IP;
5002 
5003     for (Instruction *Inst : Inputs) {
5004       if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
5005         AllDominate = false;
5006         break;
5007       }
5008       // Attempt to find an insert position in the middle of the block,
5009       // instead of at the end, so that it can be used for other expansions.
5010       if (Tentative->getParent() == Inst->getParent() &&
5011           (!BetterPos || !DT.dominates(Inst, BetterPos)))
5012         BetterPos = &*std::next(BasicBlock::iterator(Inst));
5013     }
5014     if (!AllDominate)
5015       break;
5016     if (BetterPos)
5017       IP = BetterPos->getIterator();
5018     else
5019       IP = Tentative->getIterator();
5020 
5021     const Loop *IPLoop = LI.getLoopFor(IP->getParent());
5022     unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
5023 
5024     BasicBlock *IDom;
5025     for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) {
5026       if (!Rung) return IP;
5027       Rung = Rung->getIDom();
5028       if (!Rung) return IP;
5029       IDom = Rung->getBlock();
5030 
5031       // Don't climb into a loop though.
5032       const Loop *IDomLoop = LI.getLoopFor(IDom);
5033       unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
5034       if (IDomDepth <= IPLoopDepth &&
5035           (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
5036         break;
5037     }
5038 
5039     Tentative = IDom->getTerminator();
5040   }
5041 
5042   return IP;
5043 }
5044 
5045 /// Determine an input position which will be dominated by the operands and
5046 /// which will dominate the result.
5047 BasicBlock::iterator
5048 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP,
5049                                            const LSRFixup &LF,
5050                                            const LSRUse &LU,
5051                                            SCEVExpander &Rewriter) const {
5052   // Collect some instructions which must be dominated by the
5053   // expanding replacement. These must be dominated by any operands that
5054   // will be required in the expansion.
5055   SmallVector<Instruction *, 4> Inputs;
5056   if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
5057     Inputs.push_back(I);
5058   if (LU.Kind == LSRUse::ICmpZero)
5059     if (Instruction *I =
5060           dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
5061       Inputs.push_back(I);
5062   if (LF.PostIncLoops.count(L)) {
5063     if (LF.isUseFullyOutsideLoop(L))
5064       Inputs.push_back(L->getLoopLatch()->getTerminator());
5065     else
5066       Inputs.push_back(IVIncInsertPos);
5067   }
5068   // The expansion must also be dominated by the increment positions of any
5069   // loops it for which it is using post-inc mode.
5070   for (const Loop *PIL : LF.PostIncLoops) {
5071     if (PIL == L) continue;
5072 
5073     // Be dominated by the loop exit.
5074     SmallVector<BasicBlock *, 4> ExitingBlocks;
5075     PIL->getExitingBlocks(ExitingBlocks);
5076     if (!ExitingBlocks.empty()) {
5077       BasicBlock *BB = ExitingBlocks[0];
5078       for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
5079         BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
5080       Inputs.push_back(BB->getTerminator());
5081     }
5082   }
5083 
5084   assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad()
5085          && !isa<DbgInfoIntrinsic>(LowestIP) &&
5086          "Insertion point must be a normal instruction");
5087 
5088   // Then, climb up the immediate dominator tree as far as we can go while
5089   // still being dominated by the input positions.
5090   BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs);
5091 
5092   // Don't insert instructions before PHI nodes.
5093   while (isa<PHINode>(IP)) ++IP;
5094 
5095   // Ignore landingpad instructions.
5096   while (IP->isEHPad()) ++IP;
5097 
5098   // Ignore debug intrinsics.
5099   while (isa<DbgInfoIntrinsic>(IP)) ++IP;
5100 
5101   // Set IP below instructions recently inserted by SCEVExpander. This keeps the
5102   // IP consistent across expansions and allows the previously inserted
5103   // instructions to be reused by subsequent expansion.
5104   while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP)
5105     ++IP;
5106 
5107   return IP;
5108 }
5109 
5110 /// Emit instructions for the leading candidate expression for this LSRUse (this
5111 /// is called "expanding").
5112 Value *LSRInstance::Expand(const LSRUse &LU, const LSRFixup &LF,
5113                            const Formula &F, BasicBlock::iterator IP,
5114                            SCEVExpander &Rewriter,
5115                            SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5116   if (LU.RigidFormula)
5117     return LF.OperandValToReplace;
5118 
5119   // Determine an input position which will be dominated by the operands and
5120   // which will dominate the result.
5121   IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter);
5122   Rewriter.setInsertPoint(&*IP);
5123 
5124   // Inform the Rewriter if we have a post-increment use, so that it can
5125   // perform an advantageous expansion.
5126   Rewriter.setPostInc(LF.PostIncLoops);
5127 
5128   // This is the type that the user actually needs.
5129   Type *OpTy = LF.OperandValToReplace->getType();
5130   // This will be the type that we'll initially expand to.
5131   Type *Ty = F.getType();
5132   if (!Ty)
5133     // No type known; just expand directly to the ultimate type.
5134     Ty = OpTy;
5135   else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
5136     // Expand directly to the ultimate type if it's the right size.
5137     Ty = OpTy;
5138   // This is the type to do integer arithmetic in.
5139   Type *IntTy = SE.getEffectiveSCEVType(Ty);
5140 
5141   // Build up a list of operands to add together to form the full base.
5142   SmallVector<const SCEV *, 8> Ops;
5143 
5144   // Expand the BaseRegs portion.
5145   for (const SCEV *Reg : F.BaseRegs) {
5146     assert(!Reg->isZero() && "Zero allocated in a base register!");
5147 
5148     // If we're expanding for a post-inc user, make the post-inc adjustment.
5149     Reg = denormalizeForPostIncUse(Reg, LF.PostIncLoops, SE);
5150     Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr)));
5151   }
5152 
5153   // Expand the ScaledReg portion.
5154   Value *ICmpScaledV = nullptr;
5155   if (F.Scale != 0) {
5156     const SCEV *ScaledS = F.ScaledReg;
5157 
5158     // If we're expanding for a post-inc user, make the post-inc adjustment.
5159     PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
5160     ScaledS = denormalizeForPostIncUse(ScaledS, Loops, SE);
5161 
5162     if (LU.Kind == LSRUse::ICmpZero) {
5163       // Expand ScaleReg as if it was part of the base regs.
5164       if (F.Scale == 1)
5165         Ops.push_back(
5166             SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)));
5167       else {
5168         // An interesting way of "folding" with an icmp is to use a negated
5169         // scale, which we'll implement by inserting it into the other operand
5170         // of the icmp.
5171         assert(F.Scale == -1 &&
5172                "The only scale supported by ICmpZero uses is -1!");
5173         ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr);
5174       }
5175     } else {
5176       // Otherwise just expand the scaled register and an explicit scale,
5177       // which is expected to be matched as part of the address.
5178 
5179       // Flush the operand list to suppress SCEVExpander hoisting address modes.
5180       // Unless the addressing mode will not be folded.
5181       if (!Ops.empty() && LU.Kind == LSRUse::Address &&
5182           isAMCompletelyFolded(TTI, LU, F)) {
5183         Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), nullptr);
5184         Ops.clear();
5185         Ops.push_back(SE.getUnknown(FullV));
5186       }
5187       ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr));
5188       if (F.Scale != 1)
5189         ScaledS =
5190             SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale));
5191       Ops.push_back(ScaledS);
5192     }
5193   }
5194 
5195   // Expand the GV portion.
5196   if (F.BaseGV) {
5197     // Flush the operand list to suppress SCEVExpander hoisting.
5198     if (!Ops.empty()) {
5199       Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
5200       Ops.clear();
5201       Ops.push_back(SE.getUnknown(FullV));
5202     }
5203     Ops.push_back(SE.getUnknown(F.BaseGV));
5204   }
5205 
5206   // Flush the operand list to suppress SCEVExpander hoisting of both folded and
5207   // unfolded offsets. LSR assumes they both live next to their uses.
5208   if (!Ops.empty()) {
5209     Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
5210     Ops.clear();
5211     Ops.push_back(SE.getUnknown(FullV));
5212   }
5213 
5214   // Expand the immediate portion.
5215   int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset;
5216   if (Offset != 0) {
5217     if (LU.Kind == LSRUse::ICmpZero) {
5218       // The other interesting way of "folding" with an ICmpZero is to use a
5219       // negated immediate.
5220       if (!ICmpScaledV)
5221         ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset);
5222       else {
5223         Ops.push_back(SE.getUnknown(ICmpScaledV));
5224         ICmpScaledV = ConstantInt::get(IntTy, Offset);
5225       }
5226     } else {
5227       // Just add the immediate values. These again are expected to be matched
5228       // as part of the address.
5229       Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
5230     }
5231   }
5232 
5233   // Expand the unfolded offset portion.
5234   int64_t UnfoldedOffset = F.UnfoldedOffset;
5235   if (UnfoldedOffset != 0) {
5236     // Just add the immediate values.
5237     Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy,
5238                                                        UnfoldedOffset)));
5239   }
5240 
5241   // Emit instructions summing all the operands.
5242   const SCEV *FullS = Ops.empty() ?
5243                       SE.getConstant(IntTy, 0) :
5244                       SE.getAddExpr(Ops);
5245   Value *FullV = Rewriter.expandCodeFor(FullS, Ty);
5246 
5247   // We're done expanding now, so reset the rewriter.
5248   Rewriter.clearPostInc();
5249 
5250   // An ICmpZero Formula represents an ICmp which we're handling as a
5251   // comparison against zero. Now that we've expanded an expression for that
5252   // form, update the ICmp's other operand.
5253   if (LU.Kind == LSRUse::ICmpZero) {
5254     ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
5255     DeadInsts.emplace_back(CI->getOperand(1));
5256     assert(!F.BaseGV && "ICmp does not support folding a global value and "
5257                            "a scale at the same time!");
5258     if (F.Scale == -1) {
5259       if (ICmpScaledV->getType() != OpTy) {
5260         Instruction *Cast =
5261           CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
5262                                                    OpTy, false),
5263                            ICmpScaledV, OpTy, "tmp", CI);
5264         ICmpScaledV = Cast;
5265       }
5266       CI->setOperand(1, ICmpScaledV);
5267     } else {
5268       // A scale of 1 means that the scale has been expanded as part of the
5269       // base regs.
5270       assert((F.Scale == 0 || F.Scale == 1) &&
5271              "ICmp does not support folding a global value and "
5272              "a scale at the same time!");
5273       Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
5274                                            -(uint64_t)Offset);
5275       if (C->getType() != OpTy)
5276         C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
5277                                                           OpTy, false),
5278                                   C, OpTy);
5279 
5280       CI->setOperand(1, C);
5281     }
5282   }
5283 
5284   return FullV;
5285 }
5286 
5287 /// Helper for Rewrite. PHI nodes are special because the use of their operands
5288 /// effectively happens in their predecessor blocks, so the expression may need
5289 /// to be expanded in multiple places.
5290 void LSRInstance::RewriteForPHI(
5291     PHINode *PN, const LSRUse &LU, const LSRFixup &LF, const Formula &F,
5292     SCEVExpander &Rewriter, SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5293   DenseMap<BasicBlock *, Value *> Inserted;
5294   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
5295     if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
5296       BasicBlock *BB = PN->getIncomingBlock(i);
5297 
5298       // If this is a critical edge, split the edge so that we do not insert
5299       // the code on all predecessor/successor paths.  We do this unless this
5300       // is the canonical backedge for this loop, which complicates post-inc
5301       // users.
5302       if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
5303           !isa<IndirectBrInst>(BB->getTerminator()) &&
5304           !isa<CatchSwitchInst>(BB->getTerminator())) {
5305         BasicBlock *Parent = PN->getParent();
5306         Loop *PNLoop = LI.getLoopFor(Parent);
5307         if (!PNLoop || Parent != PNLoop->getHeader()) {
5308           // Split the critical edge.
5309           BasicBlock *NewBB = nullptr;
5310           if (!Parent->isLandingPad()) {
5311             NewBB = SplitCriticalEdge(BB, Parent,
5312                                       CriticalEdgeSplittingOptions(&DT, &LI)
5313                                           .setMergeIdenticalEdges()
5314                                           .setKeepOneInputPHIs());
5315           } else {
5316             SmallVector<BasicBlock*, 2> NewBBs;
5317             SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI);
5318             NewBB = NewBBs[0];
5319           }
5320           // If NewBB==NULL, then SplitCriticalEdge refused to split because all
5321           // phi predecessors are identical. The simple thing to do is skip
5322           // splitting in this case rather than complicate the API.
5323           if (NewBB) {
5324             // If PN is outside of the loop and BB is in the loop, we want to
5325             // move the block to be immediately before the PHI block, not
5326             // immediately after BB.
5327             if (L->contains(BB) && !L->contains(PN))
5328               NewBB->moveBefore(PN->getParent());
5329 
5330             // Splitting the edge can reduce the number of PHI entries we have.
5331             e = PN->getNumIncomingValues();
5332             BB = NewBB;
5333             i = PN->getBasicBlockIndex(BB);
5334           }
5335         }
5336       }
5337 
5338       std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
5339         Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr)));
5340       if (!Pair.second)
5341         PN->setIncomingValue(i, Pair.first->second);
5342       else {
5343         Value *FullV = Expand(LU, LF, F, BB->getTerminator()->getIterator(),
5344                               Rewriter, DeadInsts);
5345 
5346         // If this is reuse-by-noop-cast, insert the noop cast.
5347         Type *OpTy = LF.OperandValToReplace->getType();
5348         if (FullV->getType() != OpTy)
5349           FullV =
5350             CastInst::Create(CastInst::getCastOpcode(FullV, false,
5351                                                      OpTy, false),
5352                              FullV, LF.OperandValToReplace->getType(),
5353                              "tmp", BB->getTerminator());
5354 
5355         PN->setIncomingValue(i, FullV);
5356         Pair.first->second = FullV;
5357       }
5358     }
5359 }
5360 
5361 /// Emit instructions for the leading candidate expression for this LSRUse (this
5362 /// is called "expanding"), and update the UserInst to reference the newly
5363 /// expanded value.
5364 void LSRInstance::Rewrite(const LSRUse &LU, const LSRFixup &LF,
5365                           const Formula &F, SCEVExpander &Rewriter,
5366                           SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5367   // First, find an insertion point that dominates UserInst. For PHI nodes,
5368   // find the nearest block which dominates all the relevant uses.
5369   if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
5370     RewriteForPHI(PN, LU, LF, F, Rewriter, DeadInsts);
5371   } else {
5372     Value *FullV =
5373       Expand(LU, LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts);
5374 
5375     // If this is reuse-by-noop-cast, insert the noop cast.
5376     Type *OpTy = LF.OperandValToReplace->getType();
5377     if (FullV->getType() != OpTy) {
5378       Instruction *Cast =
5379         CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
5380                          FullV, OpTy, "tmp", LF.UserInst);
5381       FullV = Cast;
5382     }
5383 
5384     // Update the user. ICmpZero is handled specially here (for now) because
5385     // Expand may have updated one of the operands of the icmp already, and
5386     // its new value may happen to be equal to LF.OperandValToReplace, in
5387     // which case doing replaceUsesOfWith leads to replacing both operands
5388     // with the same value. TODO: Reorganize this.
5389     if (LU.Kind == LSRUse::ICmpZero)
5390       LF.UserInst->setOperand(0, FullV);
5391     else
5392       LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
5393   }
5394 
5395   DeadInsts.emplace_back(LF.OperandValToReplace);
5396 }
5397 
5398 /// Rewrite all the fixup locations with new values, following the chosen
5399 /// solution.
5400 void LSRInstance::ImplementSolution(
5401     const SmallVectorImpl<const Formula *> &Solution) {
5402   // Keep track of instructions we may have made dead, so that
5403   // we can remove them after we are done working.
5404   SmallVector<WeakTrackingVH, 16> DeadInsts;
5405 
5406   SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(),
5407                         "lsr");
5408 #ifndef NDEBUG
5409   Rewriter.setDebugType(DEBUG_TYPE);
5410 #endif
5411   Rewriter.disableCanonicalMode();
5412   Rewriter.enableLSRMode();
5413   Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
5414 
5415   // Mark phi nodes that terminate chains so the expander tries to reuse them.
5416   for (const IVChain &Chain : IVChainVec) {
5417     if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst()))
5418       Rewriter.setChainedPhi(PN);
5419   }
5420 
5421   // Expand the new value definitions and update the users.
5422   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx)
5423     for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) {
5424       Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], Rewriter, DeadInsts);
5425       Changed = true;
5426     }
5427 
5428   for (const IVChain &Chain : IVChainVec) {
5429     GenerateIVChain(Chain, Rewriter, DeadInsts);
5430     Changed = true;
5431   }
5432   // Clean up after ourselves. This must be done before deleting any
5433   // instructions.
5434   Rewriter.clear();
5435 
5436   Changed |= DeleteTriviallyDeadInstructions(DeadInsts);
5437 }
5438 
5439 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE,
5440                          DominatorTree &DT, LoopInfo &LI,
5441                          const TargetTransformInfo &TTI)
5442     : IU(IU), SE(SE), DT(DT), LI(LI), TTI(TTI), L(L),
5443       FavorBackedgeIndex(EnableBackedgeIndexing &&
5444                          TTI.shouldFavorBackedgeIndex(L)) {
5445   // If LoopSimplify form is not available, stay out of trouble.
5446   if (!L->isLoopSimplifyForm())
5447     return;
5448 
5449   // If there's no interesting work to be done, bail early.
5450   if (IU.empty()) return;
5451 
5452   // If there's too much analysis to be done, bail early. We won't be able to
5453   // model the problem anyway.
5454   unsigned NumUsers = 0;
5455   for (const IVStrideUse &U : IU) {
5456     if (++NumUsers > MaxIVUsers) {
5457       (void)U;
5458       LLVM_DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U
5459                         << "\n");
5460       return;
5461     }
5462     // Bail out if we have a PHI on an EHPad that gets a value from a
5463     // CatchSwitchInst.  Because the CatchSwitchInst cannot be split, there is
5464     // no good place to stick any instructions.
5465     if (auto *PN = dyn_cast<PHINode>(U.getUser())) {
5466        auto *FirstNonPHI = PN->getParent()->getFirstNonPHI();
5467        if (isa<FuncletPadInst>(FirstNonPHI) ||
5468            isa<CatchSwitchInst>(FirstNonPHI))
5469          for (BasicBlock *PredBB : PN->blocks())
5470            if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI()))
5471              return;
5472     }
5473   }
5474 
5475 #ifndef NDEBUG
5476   // All dominating loops must have preheaders, or SCEVExpander may not be able
5477   // to materialize an AddRecExpr whose Start is an outer AddRecExpr.
5478   //
5479   // IVUsers analysis should only create users that are dominated by simple loop
5480   // headers. Since this loop should dominate all of its users, its user list
5481   // should be empty if this loop itself is not within a simple loop nest.
5482   for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader());
5483        Rung; Rung = Rung->getIDom()) {
5484     BasicBlock *BB = Rung->getBlock();
5485     const Loop *DomLoop = LI.getLoopFor(BB);
5486     if (DomLoop && DomLoop->getHeader() == BB) {
5487       assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest");
5488     }
5489   }
5490 #endif // DEBUG
5491 
5492   LLVM_DEBUG(dbgs() << "\nLSR on loop ";
5493              L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false);
5494              dbgs() << ":\n");
5495 
5496   // First, perform some low-level loop optimizations.
5497   OptimizeShadowIV();
5498   OptimizeLoopTermCond();
5499 
5500   // If loop preparation eliminates all interesting IV users, bail.
5501   if (IU.empty()) return;
5502 
5503   // Skip nested loops until we can model them better with formulae.
5504   if (!L->empty()) {
5505     LLVM_DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n");
5506     return;
5507   }
5508 
5509   // Start collecting data and preparing for the solver.
5510   CollectChains();
5511   CollectInterestingTypesAndFactors();
5512   CollectFixupsAndInitialFormulae();
5513   CollectLoopInvariantFixupsAndFormulae();
5514 
5515   if (Uses.empty())
5516     return;
5517 
5518   LLVM_DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
5519              print_uses(dbgs()));
5520 
5521   // Now use the reuse data to generate a bunch of interesting ways
5522   // to formulate the values needed for the uses.
5523   GenerateAllReuseFormulae();
5524 
5525   FilterOutUndesirableDedicatedRegisters();
5526   NarrowSearchSpaceUsingHeuristics();
5527 
5528   SmallVector<const Formula *, 8> Solution;
5529   Solve(Solution);
5530 
5531   // Release memory that is no longer needed.
5532   Factors.clear();
5533   Types.clear();
5534   RegUses.clear();
5535 
5536   if (Solution.empty())
5537     return;
5538 
5539 #ifndef NDEBUG
5540   // Formulae should be legal.
5541   for (const LSRUse &LU : Uses) {
5542     for (const Formula &F : LU.Formulae)
5543       assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
5544                         F) && "Illegal formula generated!");
5545   };
5546 #endif
5547 
5548   // Now that we've decided what we want, make it so.
5549   ImplementSolution(Solution);
5550 }
5551 
5552 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
5553 void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
5554   if (Factors.empty() && Types.empty()) return;
5555 
5556   OS << "LSR has identified the following interesting factors and types: ";
5557   bool First = true;
5558 
5559   for (int64_t Factor : Factors) {
5560     if (!First) OS << ", ";
5561     First = false;
5562     OS << '*' << Factor;
5563   }
5564 
5565   for (Type *Ty : Types) {
5566     if (!First) OS << ", ";
5567     First = false;
5568     OS << '(' << *Ty << ')';
5569   }
5570   OS << '\n';
5571 }
5572 
5573 void LSRInstance::print_fixups(raw_ostream &OS) const {
5574   OS << "LSR is examining the following fixup sites:\n";
5575   for (const LSRUse &LU : Uses)
5576     for (const LSRFixup &LF : LU.Fixups) {
5577       dbgs() << "  ";
5578       LF.print(OS);
5579       OS << '\n';
5580     }
5581 }
5582 
5583 void LSRInstance::print_uses(raw_ostream &OS) const {
5584   OS << "LSR is examining the following uses:\n";
5585   for (const LSRUse &LU : Uses) {
5586     dbgs() << "  ";
5587     LU.print(OS);
5588     OS << '\n';
5589     for (const Formula &F : LU.Formulae) {
5590       OS << "    ";
5591       F.print(OS);
5592       OS << '\n';
5593     }
5594   }
5595 }
5596 
5597 void LSRInstance::print(raw_ostream &OS) const {
5598   print_factors_and_types(OS);
5599   print_fixups(OS);
5600   print_uses(OS);
5601 }
5602 
5603 LLVM_DUMP_METHOD void LSRInstance::dump() const {
5604   print(errs()); errs() << '\n';
5605 }
5606 #endif
5607 
5608 namespace {
5609 
5610 class LoopStrengthReduce : public LoopPass {
5611 public:
5612   static char ID; // Pass ID, replacement for typeid
5613 
5614   LoopStrengthReduce();
5615 
5616 private:
5617   bool runOnLoop(Loop *L, LPPassManager &LPM) override;
5618   void getAnalysisUsage(AnalysisUsage &AU) const override;
5619 };
5620 
5621 } // end anonymous namespace
5622 
5623 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) {
5624   initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
5625 }
5626 
5627 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
5628   // We split critical edges, so we change the CFG.  However, we do update
5629   // many analyses if they are around.
5630   AU.addPreservedID(LoopSimplifyID);
5631 
5632   AU.addRequired<LoopInfoWrapperPass>();
5633   AU.addPreserved<LoopInfoWrapperPass>();
5634   AU.addRequiredID(LoopSimplifyID);
5635   AU.addRequired<DominatorTreeWrapperPass>();
5636   AU.addPreserved<DominatorTreeWrapperPass>();
5637   AU.addRequired<ScalarEvolutionWrapperPass>();
5638   AU.addPreserved<ScalarEvolutionWrapperPass>();
5639   // Requiring LoopSimplify a second time here prevents IVUsers from running
5640   // twice, since LoopSimplify was invalidated by running ScalarEvolution.
5641   AU.addRequiredID(LoopSimplifyID);
5642   AU.addRequired<IVUsersWrapperPass>();
5643   AU.addPreserved<IVUsersWrapperPass>();
5644   AU.addRequired<TargetTransformInfoWrapperPass>();
5645 }
5646 
5647 static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE,
5648                                DominatorTree &DT, LoopInfo &LI,
5649                                const TargetTransformInfo &TTI) {
5650   bool Changed = false;
5651 
5652   // Run the main LSR transformation.
5653   Changed |= LSRInstance(L, IU, SE, DT, LI, TTI).getChanged();
5654 
5655   // Remove any extra phis created by processing inner loops.
5656   Changed |= DeleteDeadPHIs(L->getHeader());
5657   if (EnablePhiElim && L->isLoopSimplifyForm()) {
5658     SmallVector<WeakTrackingVH, 16> DeadInsts;
5659     const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
5660     SCEVExpander Rewriter(SE, DL, "lsr");
5661 #ifndef NDEBUG
5662     Rewriter.setDebugType(DEBUG_TYPE);
5663 #endif
5664     unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI);
5665     if (numFolded) {
5666       Changed = true;
5667       DeleteTriviallyDeadInstructions(DeadInsts);
5668       DeleteDeadPHIs(L->getHeader());
5669     }
5670   }
5671   return Changed;
5672 }
5673 
5674 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
5675   if (skipLoop(L))
5676     return false;
5677 
5678   auto &IU = getAnalysis<IVUsersWrapperPass>().getIU();
5679   auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
5680   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
5681   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
5682   const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
5683       *L->getHeader()->getParent());
5684   return ReduceLoopStrength(L, IU, SE, DT, LI, TTI);
5685 }
5686 
5687 PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM,
5688                                               LoopStandardAnalysisResults &AR,
5689                                               LPMUpdater &) {
5690   if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE,
5691                           AR.DT, AR.LI, AR.TTI))
5692     return PreservedAnalyses::all();
5693 
5694   return getLoopPassPreservedAnalyses();
5695 }
5696 
5697 char LoopStrengthReduce::ID = 0;
5698 
5699 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce",
5700                       "Loop Strength Reduction", false, false)
5701 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
5702 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
5703 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
5704 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass)
5705 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
5706 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
5707 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce",
5708                     "Loop Strength Reduction", false, false)
5709 
5710 Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); }
5711