1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This transformation analyzes and transforms the induction variables (and
11 // computations derived from them) into forms suitable for efficient execution
12 // on the target.
13 //
14 // This pass performs a strength reduction on array references inside loops that
15 // have as one or more of their components the loop induction variable, it
16 // rewrites expressions to take advantage of scaled-index addressing modes
17 // available on the target, and it performs a variety of other optimizations
18 // related to loop induction variables.
19 //
20 // Terminology note: this code has a lot of handling for "post-increment" or
21 // "post-inc" users. This is not talking about post-increment addressing modes;
22 // it is instead talking about code like this:
23 //
24 //   %i = phi [ 0, %entry ], [ %i.next, %latch ]
25 //   ...
26 //   %i.next = add %i, 1
27 //   %c = icmp eq %i.next, %n
28 //
29 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
30 // it's useful to think about these as the same register, with some uses using
31 // the value of the register before the add and some using it after. In this
32 // example, the icmp is a post-increment user, since it uses %i.next, which is
33 // the value of the induction variable after the increment. The other common
34 // case of post-increment users is users outside the loop.
35 //
36 // TODO: More sophistication in the way Formulae are generated and filtered.
37 //
38 // TODO: Handle multiple loops at a time.
39 //
40 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead
41 //       of a GlobalValue?
42 //
43 // TODO: When truncation is free, truncate ICmp users' operands to make it a
44 //       smaller encoding (on x86 at least).
45 //
46 // TODO: When a negated register is used by an add (such as in a list of
47 //       multiple base registers, or as the increment expression in an addrec),
48 //       we may not actually need both reg and (-1 * reg) in registers; the
49 //       negation can be implemented by using a sub instead of an add. The
50 //       lack of support for taking this into consideration when making
51 //       register pressure decisions is partly worked around by the "Special"
52 //       use kind.
53 //
54 //===----------------------------------------------------------------------===//
55 
56 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h"
57 #include "llvm/ADT/APInt.h"
58 #include "llvm/ADT/DenseMap.h"
59 #include "llvm/ADT/DenseSet.h"
60 #include "llvm/ADT/Hashing.h"
61 #include "llvm/ADT/PointerIntPair.h"
62 #include "llvm/ADT/STLExtras.h"
63 #include "llvm/ADT/SetVector.h"
64 #include "llvm/ADT/SmallBitVector.h"
65 #include "llvm/ADT/SmallPtrSet.h"
66 #include "llvm/ADT/SmallSet.h"
67 #include "llvm/ADT/SmallVector.h"
68 #include "llvm/Analysis/IVUsers.h"
69 #include "llvm/Analysis/LoopInfo.h"
70 #include "llvm/Analysis/LoopPass.h"
71 #include "llvm/Analysis/ScalarEvolution.h"
72 #include "llvm/Analysis/ScalarEvolutionExpander.h"
73 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
74 #include "llvm/Analysis/ScalarEvolutionNormalization.h"
75 #include "llvm/Analysis/TargetTransformInfo.h"
76 #include "llvm/IR/BasicBlock.h"
77 #include "llvm/IR/Constant.h"
78 #include "llvm/IR/Constants.h"
79 #include "llvm/IR/DerivedTypes.h"
80 #include "llvm/IR/Dominators.h"
81 #include "llvm/IR/GlobalValue.h"
82 #include "llvm/IR/IRBuilder.h"
83 #include "llvm/IR/Instruction.h"
84 #include "llvm/IR/Instructions.h"
85 #include "llvm/IR/IntrinsicInst.h"
86 #include "llvm/IR/Module.h"
87 #include "llvm/IR/OperandTraits.h"
88 #include "llvm/IR/Operator.h"
89 #include "llvm/IR/Type.h"
90 #include "llvm/IR/Value.h"
91 #include "llvm/IR/ValueHandle.h"
92 #include "llvm/Pass.h"
93 #include "llvm/Support/Casting.h"
94 #include "llvm/Support/CommandLine.h"
95 #include "llvm/Support/Compiler.h"
96 #include "llvm/Support/Debug.h"
97 #include "llvm/Support/ErrorHandling.h"
98 #include "llvm/Support/MathExtras.h"
99 #include "llvm/Support/raw_ostream.h"
100 #include "llvm/Transforms/Scalar.h"
101 #include "llvm/Transforms/Scalar/LoopPassManager.h"
102 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
103 #include "llvm/Transforms/Utils/Local.h"
104 #include <algorithm>
105 #include <cassert>
106 #include <cstddef>
107 #include <cstdint>
108 #include <cstdlib>
109 #include <iterator>
110 #include <map>
111 #include <tuple>
112 #include <utility>
113 
114 using namespace llvm;
115 
116 #define DEBUG_TYPE "loop-reduce"
117 
118 /// MaxIVUsers is an arbitrary threshold that provides an early opportunitiy for
119 /// bail out. This threshold is far beyond the number of users that LSR can
120 /// conceivably solve, so it should not affect generated code, but catches the
121 /// worst cases before LSR burns too much compile time and stack space.
122 static const unsigned MaxIVUsers = 200;
123 
124 // Temporary flag to cleanup congruent phis after LSR phi expansion.
125 // It's currently disabled until we can determine whether it's truly useful or
126 // not. The flag should be removed after the v3.0 release.
127 // This is now needed for ivchains.
128 static cl::opt<bool> EnablePhiElim(
129   "enable-lsr-phielim", cl::Hidden, cl::init(true),
130   cl::desc("Enable LSR phi elimination"));
131 
132 // The flag adds instruction count to solutions cost comparision.
133 static cl::opt<bool> InsnsCost(
134   "lsr-insns-cost", cl::Hidden, cl::init(true),
135   cl::desc("Add instruction count to a LSR cost model"));
136 
137 // Flag to choose how to narrow complex lsr solution
138 static cl::opt<bool> LSRExpNarrow(
139   "lsr-exp-narrow", cl::Hidden, cl::init(false),
140   cl::desc("Narrow LSR complex solution using"
141            " expectation of registers number"));
142 
143 #ifndef NDEBUG
144 // Stress test IV chain generation.
145 static cl::opt<bool> StressIVChain(
146   "stress-ivchain", cl::Hidden, cl::init(false),
147   cl::desc("Stress test LSR IV chains"));
148 #else
149 static bool StressIVChain = false;
150 #endif
151 
152 namespace {
153 
154 struct MemAccessTy {
155   /// Used in situations where the accessed memory type is unknown.
156   static const unsigned UnknownAddressSpace = ~0u;
157 
158   Type *MemTy;
159   unsigned AddrSpace;
160 
161   MemAccessTy() : MemTy(nullptr), AddrSpace(UnknownAddressSpace) {}
162 
163   MemAccessTy(Type *Ty, unsigned AS) :
164     MemTy(Ty), AddrSpace(AS) {}
165 
166   bool operator==(MemAccessTy Other) const {
167     return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace;
168   }
169 
170   bool operator!=(MemAccessTy Other) const { return !(*this == Other); }
171 
172   static MemAccessTy getUnknown(LLVMContext &Ctx,
173                                 unsigned AS = UnknownAddressSpace) {
174     return MemAccessTy(Type::getVoidTy(Ctx), AS);
175   }
176 };
177 
178 /// This class holds data which is used to order reuse candidates.
179 class RegSortData {
180 public:
181   /// This represents the set of LSRUse indices which reference
182   /// a particular register.
183   SmallBitVector UsedByIndices;
184 
185   void print(raw_ostream &OS) const;
186   void dump() const;
187 };
188 
189 } // end anonymous namespace
190 
191 void RegSortData::print(raw_ostream &OS) const {
192   OS << "[NumUses=" << UsedByIndices.count() << ']';
193 }
194 
195 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
196 LLVM_DUMP_METHOD void RegSortData::dump() const {
197   print(errs()); errs() << '\n';
198 }
199 #endif
200 
201 namespace {
202 
203 /// Map register candidates to information about how they are used.
204 class RegUseTracker {
205   typedef DenseMap<const SCEV *, RegSortData> RegUsesTy;
206 
207   RegUsesTy RegUsesMap;
208   SmallVector<const SCEV *, 16> RegSequence;
209 
210 public:
211   void countRegister(const SCEV *Reg, size_t LUIdx);
212   void dropRegister(const SCEV *Reg, size_t LUIdx);
213   void swapAndDropUse(size_t LUIdx, size_t LastLUIdx);
214 
215   bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
216 
217   const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
218 
219   void clear();
220 
221   typedef SmallVectorImpl<const SCEV *>::iterator iterator;
222   typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator;
223   iterator begin() { return RegSequence.begin(); }
224   iterator end()   { return RegSequence.end(); }
225   const_iterator begin() const { return RegSequence.begin(); }
226   const_iterator end() const   { return RegSequence.end(); }
227 };
228 
229 } // end anonymous namespace
230 
231 void
232 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) {
233   std::pair<RegUsesTy::iterator, bool> Pair =
234     RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
235   RegSortData &RSD = Pair.first->second;
236   if (Pair.second)
237     RegSequence.push_back(Reg);
238   RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
239   RSD.UsedByIndices.set(LUIdx);
240 }
241 
242 void
243 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) {
244   RegUsesTy::iterator It = RegUsesMap.find(Reg);
245   assert(It != RegUsesMap.end());
246   RegSortData &RSD = It->second;
247   assert(RSD.UsedByIndices.size() > LUIdx);
248   RSD.UsedByIndices.reset(LUIdx);
249 }
250 
251 void
252 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) {
253   assert(LUIdx <= LastLUIdx);
254 
255   // Update RegUses. The data structure is not optimized for this purpose;
256   // we must iterate through it and update each of the bit vectors.
257   for (auto &Pair : RegUsesMap) {
258     SmallBitVector &UsedByIndices = Pair.second.UsedByIndices;
259     if (LUIdx < UsedByIndices.size())
260       UsedByIndices[LUIdx] =
261         LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false;
262     UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx));
263   }
264 }
265 
266 bool
267 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
268   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
269   if (I == RegUsesMap.end())
270     return false;
271   const SmallBitVector &UsedByIndices = I->second.UsedByIndices;
272   int i = UsedByIndices.find_first();
273   if (i == -1) return false;
274   if ((size_t)i != LUIdx) return true;
275   return UsedByIndices.find_next(i) != -1;
276 }
277 
278 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
279   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
280   assert(I != RegUsesMap.end() && "Unknown register!");
281   return I->second.UsedByIndices;
282 }
283 
284 void RegUseTracker::clear() {
285   RegUsesMap.clear();
286   RegSequence.clear();
287 }
288 
289 namespace {
290 
291 /// This class holds information that describes a formula for computing
292 /// satisfying a use. It may include broken-out immediates and scaled registers.
293 struct Formula {
294   /// Global base address used for complex addressing.
295   GlobalValue *BaseGV;
296 
297   /// Base offset for complex addressing.
298   int64_t BaseOffset;
299 
300   /// Whether any complex addressing has a base register.
301   bool HasBaseReg;
302 
303   /// The scale of any complex addressing.
304   int64_t Scale;
305 
306   /// The list of "base" registers for this use. When this is non-empty. The
307   /// canonical representation of a formula is
308   /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and
309   /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty().
310   /// 3. The reg containing recurrent expr related with currect loop in the
311   /// formula should be put in the ScaledReg.
312   /// #1 enforces that the scaled register is always used when at least two
313   /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2.
314   /// #2 enforces that 1 * reg is reg.
315   /// #3 ensures invariant regs with respect to current loop can be combined
316   /// together in LSR codegen.
317   /// This invariant can be temporarly broken while building a formula.
318   /// However, every formula inserted into the LSRInstance must be in canonical
319   /// form.
320   SmallVector<const SCEV *, 4> BaseRegs;
321 
322   /// The 'scaled' register for this use. This should be non-null when Scale is
323   /// not zero.
324   const SCEV *ScaledReg;
325 
326   /// An additional constant offset which added near the use. This requires a
327   /// temporary register, but the offset itself can live in an add immediate
328   /// field rather than a register.
329   int64_t UnfoldedOffset;
330 
331   Formula()
332       : BaseGV(nullptr), BaseOffset(0), HasBaseReg(false), Scale(0),
333         ScaledReg(nullptr), UnfoldedOffset(0) {}
334 
335   void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE);
336 
337   bool isCanonical(const Loop &L) const;
338 
339   void canonicalize(const Loop &L);
340 
341   bool unscale();
342 
343   bool hasZeroEnd() const;
344 
345   size_t getNumRegs() const;
346   Type *getType() const;
347 
348   void deleteBaseReg(const SCEV *&S);
349 
350   bool referencesReg(const SCEV *S) const;
351   bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
352                                   const RegUseTracker &RegUses) const;
353 
354   void print(raw_ostream &OS) const;
355   void dump() const;
356 };
357 
358 } // end anonymous namespace
359 
360 /// Recursion helper for initialMatch.
361 static void DoInitialMatch(const SCEV *S, Loop *L,
362                            SmallVectorImpl<const SCEV *> &Good,
363                            SmallVectorImpl<const SCEV *> &Bad,
364                            ScalarEvolution &SE) {
365   // Collect expressions which properly dominate the loop header.
366   if (SE.properlyDominates(S, L->getHeader())) {
367     Good.push_back(S);
368     return;
369   }
370 
371   // Look at add operands.
372   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
373     for (const SCEV *S : Add->operands())
374       DoInitialMatch(S, L, Good, Bad, SE);
375     return;
376   }
377 
378   // Look at addrec operands.
379   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
380     if (!AR->getStart()->isZero() && AR->isAffine()) {
381       DoInitialMatch(AR->getStart(), L, Good, Bad, SE);
382       DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
383                                       AR->getStepRecurrence(SE),
384                                       // FIXME: AR->getNoWrapFlags()
385                                       AR->getLoop(), SCEV::FlagAnyWrap),
386                      L, Good, Bad, SE);
387       return;
388     }
389 
390   // Handle a multiplication by -1 (negation) if it didn't fold.
391   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
392     if (Mul->getOperand(0)->isAllOnesValue()) {
393       SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end());
394       const SCEV *NewMul = SE.getMulExpr(Ops);
395 
396       SmallVector<const SCEV *, 4> MyGood;
397       SmallVector<const SCEV *, 4> MyBad;
398       DoInitialMatch(NewMul, L, MyGood, MyBad, SE);
399       const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
400         SE.getEffectiveSCEVType(NewMul->getType())));
401       for (const SCEV *S : MyGood)
402         Good.push_back(SE.getMulExpr(NegOne, S));
403       for (const SCEV *S : MyBad)
404         Bad.push_back(SE.getMulExpr(NegOne, S));
405       return;
406     }
407 
408   // Ok, we can't do anything interesting. Just stuff the whole thing into a
409   // register and hope for the best.
410   Bad.push_back(S);
411 }
412 
413 /// Incorporate loop-variant parts of S into this Formula, attempting to keep
414 /// all loop-invariant and loop-computable values in a single base register.
415 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) {
416   SmallVector<const SCEV *, 4> Good;
417   SmallVector<const SCEV *, 4> Bad;
418   DoInitialMatch(S, L, Good, Bad, SE);
419   if (!Good.empty()) {
420     const SCEV *Sum = SE.getAddExpr(Good);
421     if (!Sum->isZero())
422       BaseRegs.push_back(Sum);
423     HasBaseReg = true;
424   }
425   if (!Bad.empty()) {
426     const SCEV *Sum = SE.getAddExpr(Bad);
427     if (!Sum->isZero())
428       BaseRegs.push_back(Sum);
429     HasBaseReg = true;
430   }
431   canonicalize(*L);
432 }
433 
434 /// \brief Check whether or not this formula statisfies the canonical
435 /// representation.
436 /// \see Formula::BaseRegs.
437 bool Formula::isCanonical(const Loop &L) const {
438   if (!ScaledReg)
439     return BaseRegs.size() <= 1;
440 
441   if (Scale != 1)
442     return true;
443 
444   if (Scale == 1 && BaseRegs.empty())
445     return false;
446 
447   const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg);
448   if (SAR && SAR->getLoop() == &L)
449     return true;
450 
451   // If ScaledReg is not a recurrent expr, or it is but its loop is not current
452   // loop, meanwhile BaseRegs contains a recurrent expr reg related with current
453   // loop, we want to swap the reg in BaseRegs with ScaledReg.
454   auto I =
455       find_if(make_range(BaseRegs.begin(), BaseRegs.end()), [&](const SCEV *S) {
456         return isa<const SCEVAddRecExpr>(S) &&
457                (cast<SCEVAddRecExpr>(S)->getLoop() == &L);
458       });
459   return I == BaseRegs.end();
460 }
461 
462 /// \brief Helper method to morph a formula into its canonical representation.
463 /// \see Formula::BaseRegs.
464 /// Every formula having more than one base register, must use the ScaledReg
465 /// field. Otherwise, we would have to do special cases everywhere in LSR
466 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ...
467 /// On the other hand, 1*reg should be canonicalized into reg.
468 void Formula::canonicalize(const Loop &L) {
469   if (isCanonical(L))
470     return;
471   // So far we did not need this case. This is easy to implement but it is
472   // useless to maintain dead code. Beside it could hurt compile time.
473   assert(!BaseRegs.empty() && "1*reg => reg, should not be needed.");
474 
475   // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg.
476   if (!ScaledReg) {
477     ScaledReg = BaseRegs.back();
478     BaseRegs.pop_back();
479     Scale = 1;
480   }
481 
482   // If ScaledReg is an invariant with respect to L, find the reg from
483   // BaseRegs containing the recurrent expr related with Loop L. Swap the
484   // reg with ScaledReg.
485   const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg);
486   if (!SAR || SAR->getLoop() != &L) {
487     auto I = find_if(make_range(BaseRegs.begin(), BaseRegs.end()),
488                      [&](const SCEV *S) {
489                        return isa<const SCEVAddRecExpr>(S) &&
490                               (cast<SCEVAddRecExpr>(S)->getLoop() == &L);
491                      });
492     if (I != BaseRegs.end())
493       std::swap(ScaledReg, *I);
494   }
495 }
496 
497 /// \brief Get rid of the scale in the formula.
498 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2.
499 /// \return true if it was possible to get rid of the scale, false otherwise.
500 /// \note After this operation the formula may not be in the canonical form.
501 bool Formula::unscale() {
502   if (Scale != 1)
503     return false;
504   Scale = 0;
505   BaseRegs.push_back(ScaledReg);
506   ScaledReg = nullptr;
507   return true;
508 }
509 
510 bool Formula::hasZeroEnd() const {
511   if (UnfoldedOffset || BaseOffset)
512     return false;
513   if (BaseRegs.size() != 1 || ScaledReg)
514     return false;
515   return true;
516 }
517 
518 /// Return the total number of register operands used by this formula. This does
519 /// not include register uses implied by non-constant addrec strides.
520 size_t Formula::getNumRegs() const {
521   return !!ScaledReg + BaseRegs.size();
522 }
523 
524 /// Return the type of this formula, if it has one, or null otherwise. This type
525 /// is meaningless except for the bit size.
526 Type *Formula::getType() const {
527   return !BaseRegs.empty() ? BaseRegs.front()->getType() :
528          ScaledReg ? ScaledReg->getType() :
529          BaseGV ? BaseGV->getType() :
530          nullptr;
531 }
532 
533 /// Delete the given base reg from the BaseRegs list.
534 void Formula::deleteBaseReg(const SCEV *&S) {
535   if (&S != &BaseRegs.back())
536     std::swap(S, BaseRegs.back());
537   BaseRegs.pop_back();
538 }
539 
540 /// Test if this formula references the given register.
541 bool Formula::referencesReg(const SCEV *S) const {
542   return S == ScaledReg || is_contained(BaseRegs, S);
543 }
544 
545 /// Test whether this formula uses registers which are used by uses other than
546 /// the use with the given index.
547 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
548                                          const RegUseTracker &RegUses) const {
549   if (ScaledReg)
550     if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
551       return true;
552   for (const SCEV *BaseReg : BaseRegs)
553     if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx))
554       return true;
555   return false;
556 }
557 
558 void Formula::print(raw_ostream &OS) const {
559   bool First = true;
560   if (BaseGV) {
561     if (!First) OS << " + "; else First = false;
562     BaseGV->printAsOperand(OS, /*PrintType=*/false);
563   }
564   if (BaseOffset != 0) {
565     if (!First) OS << " + "; else First = false;
566     OS << BaseOffset;
567   }
568   for (const SCEV *BaseReg : BaseRegs) {
569     if (!First) OS << " + "; else First = false;
570     OS << "reg(" << *BaseReg << ')';
571   }
572   if (HasBaseReg && BaseRegs.empty()) {
573     if (!First) OS << " + "; else First = false;
574     OS << "**error: HasBaseReg**";
575   } else if (!HasBaseReg && !BaseRegs.empty()) {
576     if (!First) OS << " + "; else First = false;
577     OS << "**error: !HasBaseReg**";
578   }
579   if (Scale != 0) {
580     if (!First) OS << " + "; else First = false;
581     OS << Scale << "*reg(";
582     if (ScaledReg)
583       OS << *ScaledReg;
584     else
585       OS << "<unknown>";
586     OS << ')';
587   }
588   if (UnfoldedOffset != 0) {
589     if (!First) OS << " + ";
590     OS << "imm(" << UnfoldedOffset << ')';
591   }
592 }
593 
594 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
595 LLVM_DUMP_METHOD void Formula::dump() const {
596   print(errs()); errs() << '\n';
597 }
598 #endif
599 
600 /// Return true if the given addrec can be sign-extended without changing its
601 /// value.
602 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
603   Type *WideTy =
604     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
605   return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
606 }
607 
608 /// Return true if the given add can be sign-extended without changing its
609 /// value.
610 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
611   Type *WideTy =
612     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
613   return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
614 }
615 
616 /// Return true if the given mul can be sign-extended without changing its
617 /// value.
618 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) {
619   Type *WideTy =
620     IntegerType::get(SE.getContext(),
621                      SE.getTypeSizeInBits(M->getType()) * M->getNumOperands());
622   return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy));
623 }
624 
625 /// Return an expression for LHS /s RHS, if it can be determined and if the
626 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits
627 /// is true, expressions like (X * Y) /s Y are simplified to Y, ignoring that
628 /// the multiplication may overflow, which is useful when the result will be
629 /// used in a context where the most significant bits are ignored.
630 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
631                                 ScalarEvolution &SE,
632                                 bool IgnoreSignificantBits = false) {
633   // Handle the trivial case, which works for any SCEV type.
634   if (LHS == RHS)
635     return SE.getConstant(LHS->getType(), 1);
636 
637   // Handle a few RHS special cases.
638   const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
639   if (RC) {
640     const APInt &RA = RC->getAPInt();
641     // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
642     // some folding.
643     if (RA.isAllOnesValue())
644       return SE.getMulExpr(LHS, RC);
645     // Handle x /s 1 as x.
646     if (RA == 1)
647       return LHS;
648   }
649 
650   // Check for a division of a constant by a constant.
651   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
652     if (!RC)
653       return nullptr;
654     const APInt &LA = C->getAPInt();
655     const APInt &RA = RC->getAPInt();
656     if (LA.srem(RA) != 0)
657       return nullptr;
658     return SE.getConstant(LA.sdiv(RA));
659   }
660 
661   // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
662   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
663     if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) {
664       const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
665                                       IgnoreSignificantBits);
666       if (!Step) return nullptr;
667       const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
668                                        IgnoreSignificantBits);
669       if (!Start) return nullptr;
670       // FlagNW is independent of the start value, step direction, and is
671       // preserved with smaller magnitude steps.
672       // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
673       return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap);
674     }
675     return nullptr;
676   }
677 
678   // Distribute the sdiv over add operands, if the add doesn't overflow.
679   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
680     if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
681       SmallVector<const SCEV *, 8> Ops;
682       for (const SCEV *S : Add->operands()) {
683         const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits);
684         if (!Op) return nullptr;
685         Ops.push_back(Op);
686       }
687       return SE.getAddExpr(Ops);
688     }
689     return nullptr;
690   }
691 
692   // Check for a multiply operand that we can pull RHS out of.
693   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) {
694     if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
695       SmallVector<const SCEV *, 4> Ops;
696       bool Found = false;
697       for (const SCEV *S : Mul->operands()) {
698         if (!Found)
699           if (const SCEV *Q = getExactSDiv(S, RHS, SE,
700                                            IgnoreSignificantBits)) {
701             S = Q;
702             Found = true;
703           }
704         Ops.push_back(S);
705       }
706       return Found ? SE.getMulExpr(Ops) : nullptr;
707     }
708     return nullptr;
709   }
710 
711   // Otherwise we don't know.
712   return nullptr;
713 }
714 
715 /// If S involves the addition of a constant integer value, return that integer
716 /// value, and mutate S to point to a new SCEV with that value excluded.
717 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
718   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
719     if (C->getAPInt().getMinSignedBits() <= 64) {
720       S = SE.getConstant(C->getType(), 0);
721       return C->getValue()->getSExtValue();
722     }
723   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
724     SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
725     int64_t Result = ExtractImmediate(NewOps.front(), SE);
726     if (Result != 0)
727       S = SE.getAddExpr(NewOps);
728     return Result;
729   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
730     SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
731     int64_t Result = ExtractImmediate(NewOps.front(), SE);
732     if (Result != 0)
733       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
734                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
735                            SCEV::FlagAnyWrap);
736     return Result;
737   }
738   return 0;
739 }
740 
741 /// If S involves the addition of a GlobalValue address, return that symbol, and
742 /// mutate S to point to a new SCEV with that value excluded.
743 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
744   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
745     if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
746       S = SE.getConstant(GV->getType(), 0);
747       return GV;
748     }
749   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
750     SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
751     GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
752     if (Result)
753       S = SE.getAddExpr(NewOps);
754     return Result;
755   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
756     SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
757     GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
758     if (Result)
759       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
760                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
761                            SCEV::FlagAnyWrap);
762     return Result;
763   }
764   return nullptr;
765 }
766 
767 /// Returns true if the specified instruction is using the specified value as an
768 /// address.
769 static bool isAddressUse(Instruction *Inst, Value *OperandVal) {
770   bool isAddress = isa<LoadInst>(Inst);
771   if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
772     if (SI->getPointerOperand() == OperandVal)
773       isAddress = true;
774   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
775     // Addressing modes can also be folded into prefetches and a variety
776     // of intrinsics.
777     switch (II->getIntrinsicID()) {
778       default: break;
779       case Intrinsic::prefetch:
780         if (II->getArgOperand(0) == OperandVal)
781           isAddress = true;
782         break;
783     }
784   } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
785     if (RMW->getPointerOperand() == OperandVal)
786       isAddress = true;
787   } else if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
788     if (CmpX->getPointerOperand() == OperandVal)
789       isAddress = true;
790   }
791   return isAddress;
792 }
793 
794 /// Return the type of the memory being accessed.
795 static MemAccessTy getAccessType(const Instruction *Inst) {
796   MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace);
797   if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
798     AccessTy.MemTy = SI->getOperand(0)->getType();
799     AccessTy.AddrSpace = SI->getPointerAddressSpace();
800   } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
801     AccessTy.AddrSpace = LI->getPointerAddressSpace();
802   } else if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
803     AccessTy.AddrSpace = RMW->getPointerAddressSpace();
804   } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
805     AccessTy.AddrSpace = CmpX->getPointerAddressSpace();
806   }
807 
808   // All pointers have the same requirements, so canonicalize them to an
809   // arbitrary pointer type to minimize variation.
810   if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy))
811     AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
812                                       PTy->getAddressSpace());
813 
814   return AccessTy;
815 }
816 
817 /// Return true if this AddRec is already a phi in its loop.
818 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
819   for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin();
820        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
821     if (SE.isSCEVable(PN->getType()) &&
822         (SE.getEffectiveSCEVType(PN->getType()) ==
823          SE.getEffectiveSCEVType(AR->getType())) &&
824         SE.getSCEV(PN) == AR)
825       return true;
826   }
827   return false;
828 }
829 
830 /// Check if expanding this expression is likely to incur significant cost. This
831 /// is tricky because SCEV doesn't track which expressions are actually computed
832 /// by the current IR.
833 ///
834 /// We currently allow expansion of IV increments that involve adds,
835 /// multiplication by constants, and AddRecs from existing phis.
836 ///
837 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an
838 /// obvious multiple of the UDivExpr.
839 static bool isHighCostExpansion(const SCEV *S,
840                                 SmallPtrSetImpl<const SCEV*> &Processed,
841                                 ScalarEvolution &SE) {
842   // Zero/One operand expressions
843   switch (S->getSCEVType()) {
844   case scUnknown:
845   case scConstant:
846     return false;
847   case scTruncate:
848     return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(),
849                                Processed, SE);
850   case scZeroExtend:
851     return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(),
852                                Processed, SE);
853   case scSignExtend:
854     return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(),
855                                Processed, SE);
856   }
857 
858   if (!Processed.insert(S).second)
859     return false;
860 
861   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
862     for (const SCEV *S : Add->operands()) {
863       if (isHighCostExpansion(S, Processed, SE))
864         return true;
865     }
866     return false;
867   }
868 
869   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
870     if (Mul->getNumOperands() == 2) {
871       // Multiplication by a constant is ok
872       if (isa<SCEVConstant>(Mul->getOperand(0)))
873         return isHighCostExpansion(Mul->getOperand(1), Processed, SE);
874 
875       // If we have the value of one operand, check if an existing
876       // multiplication already generates this expression.
877       if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) {
878         Value *UVal = U->getValue();
879         for (User *UR : UVal->users()) {
880           // If U is a constant, it may be used by a ConstantExpr.
881           Instruction *UI = dyn_cast<Instruction>(UR);
882           if (UI && UI->getOpcode() == Instruction::Mul &&
883               SE.isSCEVable(UI->getType())) {
884             return SE.getSCEV(UI) == Mul;
885           }
886         }
887       }
888     }
889   }
890 
891   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
892     if (isExistingPhi(AR, SE))
893       return false;
894   }
895 
896   // Fow now, consider any other type of expression (div/mul/min/max) high cost.
897   return true;
898 }
899 
900 /// If any of the instructions is the specified set are trivially dead, delete
901 /// them and see if this makes any of their operands subsequently dead.
902 static bool
903 DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
904   bool Changed = false;
905 
906   while (!DeadInsts.empty()) {
907     Value *V = DeadInsts.pop_back_val();
908     Instruction *I = dyn_cast_or_null<Instruction>(V);
909 
910     if (!I || !isInstructionTriviallyDead(I))
911       continue;
912 
913     for (Use &O : I->operands())
914       if (Instruction *U = dyn_cast<Instruction>(O)) {
915         O = nullptr;
916         if (U->use_empty())
917           DeadInsts.emplace_back(U);
918       }
919 
920     I->eraseFromParent();
921     Changed = true;
922   }
923 
924   return Changed;
925 }
926 
927 namespace {
928 
929 class LSRUse;
930 
931 } // end anonymous namespace
932 
933 /// \brief Check if the addressing mode defined by \p F is completely
934 /// folded in \p LU at isel time.
935 /// This includes address-mode folding and special icmp tricks.
936 /// This function returns true if \p LU can accommodate what \p F
937 /// defines and up to 1 base + 1 scaled + offset.
938 /// In other words, if \p F has several base registers, this function may
939 /// still return true. Therefore, users still need to account for
940 /// additional base registers and/or unfolded offsets to derive an
941 /// accurate cost model.
942 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
943                                  const LSRUse &LU, const Formula &F);
944 // Get the cost of the scaling factor used in F for LU.
945 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
946                                      const LSRUse &LU, const Formula &F,
947                                      const Loop &L);
948 
949 namespace {
950 
951 /// This class is used to measure and compare candidate formulae.
952 class Cost {
953   TargetTransformInfo::LSRCost C;
954 
955 public:
956   Cost() {
957     C.Insns = 0;
958     C.NumRegs = 0;
959     C.AddRecCost = 0;
960     C.NumIVMuls = 0;
961     C.NumBaseAdds = 0;
962     C.ImmCost = 0;
963     C.SetupCost = 0;
964     C.ScaleCost = 0;
965   }
966 
967   bool isLess(Cost &Other, const TargetTransformInfo &TTI);
968 
969   void Lose();
970 
971 #ifndef NDEBUG
972   // Once any of the metrics loses, they must all remain losers.
973   bool isValid() {
974     return ((C.Insns | C.NumRegs | C.AddRecCost | C.NumIVMuls | C.NumBaseAdds
975              | C.ImmCost | C.SetupCost | C.ScaleCost) != ~0u)
976       || ((C.Insns & C.NumRegs & C.AddRecCost & C.NumIVMuls & C.NumBaseAdds
977            & C.ImmCost & C.SetupCost & C.ScaleCost) == ~0u);
978   }
979 #endif
980 
981   bool isLoser() {
982     assert(isValid() && "invalid cost");
983     return C.NumRegs == ~0u;
984   }
985 
986   void RateFormula(const TargetTransformInfo &TTI,
987                    const Formula &F,
988                    SmallPtrSetImpl<const SCEV *> &Regs,
989                    const DenseSet<const SCEV *> &VisitedRegs,
990                    const Loop *L,
991                    ScalarEvolution &SE, DominatorTree &DT,
992                    const LSRUse &LU,
993                    SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr);
994 
995   void print(raw_ostream &OS) const;
996   void dump() const;
997 
998 private:
999   void RateRegister(const SCEV *Reg,
1000                     SmallPtrSetImpl<const SCEV *> &Regs,
1001                     const Loop *L,
1002                     ScalarEvolution &SE, DominatorTree &DT);
1003   void RatePrimaryRegister(const SCEV *Reg,
1004                            SmallPtrSetImpl<const SCEV *> &Regs,
1005                            const Loop *L,
1006                            ScalarEvolution &SE, DominatorTree &DT,
1007                            SmallPtrSetImpl<const SCEV *> *LoserRegs);
1008 };
1009 
1010 /// An operand value in an instruction which is to be replaced with some
1011 /// equivalent, possibly strength-reduced, replacement.
1012 struct LSRFixup {
1013   /// The instruction which will be updated.
1014   Instruction *UserInst;
1015 
1016   /// The operand of the instruction which will be replaced. The operand may be
1017   /// used more than once; every instance will be replaced.
1018   Value *OperandValToReplace;
1019 
1020   /// If this user is to use the post-incremented value of an induction
1021   /// variable, this variable is non-null and holds the loop associated with the
1022   /// induction variable.
1023   PostIncLoopSet PostIncLoops;
1024 
1025   /// A constant offset to be added to the LSRUse expression.  This allows
1026   /// multiple fixups to share the same LSRUse with different offsets, for
1027   /// example in an unrolled loop.
1028   int64_t Offset;
1029 
1030   bool isUseFullyOutsideLoop(const Loop *L) const;
1031 
1032   LSRFixup();
1033 
1034   void print(raw_ostream &OS) const;
1035   void dump() const;
1036 };
1037 
1038 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted
1039 /// SmallVectors of const SCEV*.
1040 struct UniquifierDenseMapInfo {
1041   static SmallVector<const SCEV *, 4> getEmptyKey() {
1042     SmallVector<const SCEV *, 4>  V;
1043     V.push_back(reinterpret_cast<const SCEV *>(-1));
1044     return V;
1045   }
1046 
1047   static SmallVector<const SCEV *, 4> getTombstoneKey() {
1048     SmallVector<const SCEV *, 4> V;
1049     V.push_back(reinterpret_cast<const SCEV *>(-2));
1050     return V;
1051   }
1052 
1053   static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) {
1054     return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
1055   }
1056 
1057   static bool isEqual(const SmallVector<const SCEV *, 4> &LHS,
1058                       const SmallVector<const SCEV *, 4> &RHS) {
1059     return LHS == RHS;
1060   }
1061 };
1062 
1063 /// This class holds the state that LSR keeps for each use in IVUsers, as well
1064 /// as uses invented by LSR itself. It includes information about what kinds of
1065 /// things can be folded into the user, information about the user itself, and
1066 /// information about how the use may be satisfied.  TODO: Represent multiple
1067 /// users of the same expression in common?
1068 class LSRUse {
1069   DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier;
1070 
1071 public:
1072   /// An enum for a kind of use, indicating what types of scaled and immediate
1073   /// operands it might support.
1074   enum KindType {
1075     Basic,   ///< A normal use, with no folding.
1076     Special, ///< A special case of basic, allowing -1 scales.
1077     Address, ///< An address use; folding according to TargetLowering
1078     ICmpZero ///< An equality icmp with both operands folded into one.
1079     // TODO: Add a generic icmp too?
1080   };
1081 
1082   typedef PointerIntPair<const SCEV *, 2, KindType> SCEVUseKindPair;
1083 
1084   KindType Kind;
1085   MemAccessTy AccessTy;
1086 
1087   /// The list of operands which are to be replaced.
1088   SmallVector<LSRFixup, 8> Fixups;
1089 
1090   /// Keep track of the min and max offsets of the fixups.
1091   int64_t MinOffset;
1092   int64_t MaxOffset;
1093 
1094   /// This records whether all of the fixups using this LSRUse are outside of
1095   /// the loop, in which case some special-case heuristics may be used.
1096   bool AllFixupsOutsideLoop;
1097 
1098   /// RigidFormula is set to true to guarantee that this use will be associated
1099   /// with a single formula--the one that initially matched. Some SCEV
1100   /// expressions cannot be expanded. This allows LSR to consider the registers
1101   /// used by those expressions without the need to expand them later after
1102   /// changing the formula.
1103   bool RigidFormula;
1104 
1105   /// This records the widest use type for any fixup using this
1106   /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max
1107   /// fixup widths to be equivalent, because the narrower one may be relying on
1108   /// the implicit truncation to truncate away bogus bits.
1109   Type *WidestFixupType;
1110 
1111   /// A list of ways to build a value that can satisfy this user.  After the
1112   /// list is populated, one of these is selected heuristically and used to
1113   /// formulate a replacement for OperandValToReplace in UserInst.
1114   SmallVector<Formula, 12> Formulae;
1115 
1116   /// The set of register candidates used by all formulae in this LSRUse.
1117   SmallPtrSet<const SCEV *, 4> Regs;
1118 
1119   LSRUse(KindType K, MemAccessTy AT)
1120       : Kind(K), AccessTy(AT), MinOffset(INT64_MAX), MaxOffset(INT64_MIN),
1121         AllFixupsOutsideLoop(true), RigidFormula(false),
1122         WidestFixupType(nullptr) {}
1123 
1124   LSRFixup &getNewFixup() {
1125     Fixups.push_back(LSRFixup());
1126     return Fixups.back();
1127   }
1128 
1129   void pushFixup(LSRFixup &f) {
1130     Fixups.push_back(f);
1131     if (f.Offset > MaxOffset)
1132       MaxOffset = f.Offset;
1133     if (f.Offset < MinOffset)
1134       MinOffset = f.Offset;
1135   }
1136 
1137   bool HasFormulaWithSameRegs(const Formula &F) const;
1138   float getNotSelectedProbability(const SCEV *Reg) const;
1139   bool InsertFormula(const Formula &F, const Loop &L);
1140   void DeleteFormula(Formula &F);
1141   void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
1142 
1143   void print(raw_ostream &OS) const;
1144   void dump() const;
1145 };
1146 
1147 } // end anonymous namespace
1148 
1149 /// Tally up interesting quantities from the given register.
1150 void Cost::RateRegister(const SCEV *Reg,
1151                         SmallPtrSetImpl<const SCEV *> &Regs,
1152                         const Loop *L,
1153                         ScalarEvolution &SE, DominatorTree &DT) {
1154   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
1155     // If this is an addrec for another loop, it should be an invariant
1156     // with respect to L since L is the innermost loop (at least
1157     // for now LSR only handles innermost loops).
1158     if (AR->getLoop() != L) {
1159       // If the AddRec exists, consider it's register free and leave it alone.
1160       if (isExistingPhi(AR, SE))
1161         return;
1162 
1163       // It is bad to allow LSR for current loop to add induction variables
1164       // for its sibling loops.
1165       if (!AR->getLoop()->contains(L)) {
1166         Lose();
1167         return;
1168       }
1169 
1170       // Otherwise, it will be an invariant with respect to Loop L.
1171       ++C.NumRegs;
1172       return;
1173     }
1174     C.AddRecCost += 1; /// TODO: This should be a function of the stride.
1175 
1176     // Add the step value register, if it needs one.
1177     // TODO: The non-affine case isn't precisely modeled here.
1178     if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) {
1179       if (!Regs.count(AR->getOperand(1))) {
1180         RateRegister(AR->getOperand(1), Regs, L, SE, DT);
1181         if (isLoser())
1182           return;
1183       }
1184     }
1185   }
1186   ++C.NumRegs;
1187 
1188   // Rough heuristic; favor registers which don't require extra setup
1189   // instructions in the preheader.
1190   if (!isa<SCEVUnknown>(Reg) &&
1191       !isa<SCEVConstant>(Reg) &&
1192       !(isa<SCEVAddRecExpr>(Reg) &&
1193         (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) ||
1194          isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart()))))
1195     ++C.SetupCost;
1196 
1197   C.NumIVMuls += isa<SCEVMulExpr>(Reg) &&
1198                SE.hasComputableLoopEvolution(Reg, L);
1199 }
1200 
1201 /// Record this register in the set. If we haven't seen it before, rate
1202 /// it. Optional LoserRegs provides a way to declare any formula that refers to
1203 /// one of those regs an instant loser.
1204 void Cost::RatePrimaryRegister(const SCEV *Reg,
1205                                SmallPtrSetImpl<const SCEV *> &Regs,
1206                                const Loop *L,
1207                                ScalarEvolution &SE, DominatorTree &DT,
1208                                SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1209   if (LoserRegs && LoserRegs->count(Reg)) {
1210     Lose();
1211     return;
1212   }
1213   if (Regs.insert(Reg).second) {
1214     RateRegister(Reg, Regs, L, SE, DT);
1215     if (LoserRegs && isLoser())
1216       LoserRegs->insert(Reg);
1217   }
1218 }
1219 
1220 void Cost::RateFormula(const TargetTransformInfo &TTI,
1221                        const Formula &F,
1222                        SmallPtrSetImpl<const SCEV *> &Regs,
1223                        const DenseSet<const SCEV *> &VisitedRegs,
1224                        const Loop *L,
1225                        ScalarEvolution &SE, DominatorTree &DT,
1226                        const LSRUse &LU,
1227                        SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1228   assert(F.isCanonical(*L) && "Cost is accurate only for canonical formula");
1229   // Tally up the registers.
1230   unsigned PrevAddRecCost = C.AddRecCost;
1231   unsigned PrevNumRegs = C.NumRegs;
1232   unsigned PrevNumBaseAdds = C.NumBaseAdds;
1233   if (const SCEV *ScaledReg = F.ScaledReg) {
1234     if (VisitedRegs.count(ScaledReg)) {
1235       Lose();
1236       return;
1237     }
1238     RatePrimaryRegister(ScaledReg, Regs, L, SE, DT, LoserRegs);
1239     if (isLoser())
1240       return;
1241   }
1242   for (const SCEV *BaseReg : F.BaseRegs) {
1243     if (VisitedRegs.count(BaseReg)) {
1244       Lose();
1245       return;
1246     }
1247     RatePrimaryRegister(BaseReg, Regs, L, SE, DT, LoserRegs);
1248     if (isLoser())
1249       return;
1250   }
1251 
1252   // Determine how many (unfolded) adds we'll need inside the loop.
1253   size_t NumBaseParts = F.getNumRegs();
1254   if (NumBaseParts > 1)
1255     // Do not count the base and a possible second register if the target
1256     // allows to fold 2 registers.
1257     C.NumBaseAdds +=
1258         NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(TTI, LU, F)));
1259   C.NumBaseAdds += (F.UnfoldedOffset != 0);
1260 
1261   // Accumulate non-free scaling amounts.
1262   C.ScaleCost += getScalingFactorCost(TTI, LU, F, *L);
1263 
1264   // Tally up the non-zero immediates.
1265   for (const LSRFixup &Fixup : LU.Fixups) {
1266     int64_t O = Fixup.Offset;
1267     int64_t Offset = (uint64_t)O + F.BaseOffset;
1268     if (F.BaseGV)
1269       C.ImmCost += 64; // Handle symbolic values conservatively.
1270                      // TODO: This should probably be the pointer size.
1271     else if (Offset != 0)
1272       C.ImmCost += APInt(64, Offset, true).getMinSignedBits();
1273 
1274     // Check with target if this offset with this instruction is
1275     // specifically not supported.
1276     if ((isa<LoadInst>(Fixup.UserInst) || isa<StoreInst>(Fixup.UserInst)) &&
1277         !TTI.isFoldableMemAccessOffset(Fixup.UserInst, Offset))
1278       C.NumBaseAdds++;
1279   }
1280 
1281   // If we don't count instruction cost exit here.
1282   if (!InsnsCost) {
1283     assert(isValid() && "invalid cost");
1284     return;
1285   }
1286 
1287   // Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as
1288   // additional instruction (at least fill).
1289   unsigned TTIRegNum = TTI.getNumberOfRegisters(false) - 1;
1290   if (C.NumRegs > TTIRegNum) {
1291     // Cost already exceeded TTIRegNum, then only newly added register can add
1292     // new instructions.
1293     if (PrevNumRegs > TTIRegNum)
1294       C.Insns += (C.NumRegs - PrevNumRegs);
1295     else
1296       C.Insns += (C.NumRegs - TTIRegNum);
1297   }
1298 
1299   // If ICmpZero formula ends with not 0, it could not be replaced by
1300   // just add or sub. We'll need to compare final result of AddRec.
1301   // That means we'll need an additional instruction.
1302   // For -10 + {0, +, 1}:
1303   // i = i + 1;
1304   // cmp i, 10
1305   //
1306   // For {-10, +, 1}:
1307   // i = i + 1;
1308   if (LU.Kind == LSRUse::ICmpZero && !F.hasZeroEnd())
1309     C.Insns++;
1310   // Each new AddRec adds 1 instruction to calculation.
1311   C.Insns += (C.AddRecCost - PrevAddRecCost);
1312 
1313   // BaseAdds adds instructions for unfolded registers.
1314   if (LU.Kind != LSRUse::ICmpZero)
1315     C.Insns += C.NumBaseAdds - PrevNumBaseAdds;
1316   assert(isValid() && "invalid cost");
1317 }
1318 
1319 /// Set this cost to a losing value.
1320 void Cost::Lose() {
1321   C.Insns = ~0u;
1322   C.NumRegs = ~0u;
1323   C.AddRecCost = ~0u;
1324   C.NumIVMuls = ~0u;
1325   C.NumBaseAdds = ~0u;
1326   C.ImmCost = ~0u;
1327   C.SetupCost = ~0u;
1328   C.ScaleCost = ~0u;
1329 }
1330 
1331 /// Choose the lower cost.
1332 bool Cost::isLess(Cost &Other, const TargetTransformInfo &TTI) {
1333   if (InsnsCost.getNumOccurrences() > 0 && InsnsCost &&
1334       C.Insns != Other.C.Insns)
1335     return C.Insns < Other.C.Insns;
1336   return TTI.isLSRCostLess(C, Other.C);
1337 }
1338 
1339 void Cost::print(raw_ostream &OS) const {
1340   if (InsnsCost)
1341     OS << C.Insns << " instruction" << (C.Insns == 1 ? " " : "s ");
1342   OS << C.NumRegs << " reg" << (C.NumRegs == 1 ? "" : "s");
1343   if (C.AddRecCost != 0)
1344     OS << ", with addrec cost " << C.AddRecCost;
1345   if (C.NumIVMuls != 0)
1346     OS << ", plus " << C.NumIVMuls << " IV mul"
1347        << (C.NumIVMuls == 1 ? "" : "s");
1348   if (C.NumBaseAdds != 0)
1349     OS << ", plus " << C.NumBaseAdds << " base add"
1350        << (C.NumBaseAdds == 1 ? "" : "s");
1351   if (C.ScaleCost != 0)
1352     OS << ", plus " << C.ScaleCost << " scale cost";
1353   if (C.ImmCost != 0)
1354     OS << ", plus " << C.ImmCost << " imm cost";
1355   if (C.SetupCost != 0)
1356     OS << ", plus " << C.SetupCost << " setup cost";
1357 }
1358 
1359 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1360 LLVM_DUMP_METHOD void Cost::dump() const {
1361   print(errs()); errs() << '\n';
1362 }
1363 #endif
1364 
1365 LSRFixup::LSRFixup()
1366   : UserInst(nullptr), OperandValToReplace(nullptr),
1367     Offset(0) {}
1368 
1369 /// Test whether this fixup always uses its value outside of the given loop.
1370 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
1371   // PHI nodes use their value in their incoming blocks.
1372   if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
1373     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1374       if (PN->getIncomingValue(i) == OperandValToReplace &&
1375           L->contains(PN->getIncomingBlock(i)))
1376         return false;
1377     return true;
1378   }
1379 
1380   return !L->contains(UserInst);
1381 }
1382 
1383 void LSRFixup::print(raw_ostream &OS) const {
1384   OS << "UserInst=";
1385   // Store is common and interesting enough to be worth special-casing.
1386   if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
1387     OS << "store ";
1388     Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false);
1389   } else if (UserInst->getType()->isVoidTy())
1390     OS << UserInst->getOpcodeName();
1391   else
1392     UserInst->printAsOperand(OS, /*PrintType=*/false);
1393 
1394   OS << ", OperandValToReplace=";
1395   OperandValToReplace->printAsOperand(OS, /*PrintType=*/false);
1396 
1397   for (const Loop *PIL : PostIncLoops) {
1398     OS << ", PostIncLoop=";
1399     PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
1400   }
1401 
1402   if (Offset != 0)
1403     OS << ", Offset=" << Offset;
1404 }
1405 
1406 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1407 LLVM_DUMP_METHOD void LSRFixup::dump() const {
1408   print(errs()); errs() << '\n';
1409 }
1410 #endif
1411 
1412 /// Test whether this use as a formula which has the same registers as the given
1413 /// formula.
1414 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
1415   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1416   if (F.ScaledReg) Key.push_back(F.ScaledReg);
1417   // Unstable sort by host order ok, because this is only used for uniquifying.
1418   std::sort(Key.begin(), Key.end());
1419   return Uniquifier.count(Key);
1420 }
1421 
1422 /// The function returns a probability of selecting formula without Reg.
1423 float LSRUse::getNotSelectedProbability(const SCEV *Reg) const {
1424   unsigned FNum = 0;
1425   for (const Formula &F : Formulae)
1426     if (F.referencesReg(Reg))
1427       FNum++;
1428   return ((float)(Formulae.size() - FNum)) / Formulae.size();
1429 }
1430 
1431 /// If the given formula has not yet been inserted, add it to the list, and
1432 /// return true. Return false otherwise.  The formula must be in canonical form.
1433 bool LSRUse::InsertFormula(const Formula &F, const Loop &L) {
1434   assert(F.isCanonical(L) && "Invalid canonical representation");
1435 
1436   if (!Formulae.empty() && RigidFormula)
1437     return false;
1438 
1439   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1440   if (F.ScaledReg) Key.push_back(F.ScaledReg);
1441   // Unstable sort by host order ok, because this is only used for uniquifying.
1442   std::sort(Key.begin(), Key.end());
1443 
1444   if (!Uniquifier.insert(Key).second)
1445     return false;
1446 
1447   // Using a register to hold the value of 0 is not profitable.
1448   assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
1449          "Zero allocated in a scaled register!");
1450 #ifndef NDEBUG
1451   for (const SCEV *BaseReg : F.BaseRegs)
1452     assert(!BaseReg->isZero() && "Zero allocated in a base register!");
1453 #endif
1454 
1455   // Add the formula to the list.
1456   Formulae.push_back(F);
1457 
1458   // Record registers now being used by this use.
1459   Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1460   if (F.ScaledReg)
1461     Regs.insert(F.ScaledReg);
1462 
1463   return true;
1464 }
1465 
1466 /// Remove the given formula from this use's list.
1467 void LSRUse::DeleteFormula(Formula &F) {
1468   if (&F != &Formulae.back())
1469     std::swap(F, Formulae.back());
1470   Formulae.pop_back();
1471 }
1472 
1473 /// Recompute the Regs field, and update RegUses.
1474 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
1475   // Now that we've filtered out some formulae, recompute the Regs set.
1476   SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs);
1477   Regs.clear();
1478   for (const Formula &F : Formulae) {
1479     if (F.ScaledReg) Regs.insert(F.ScaledReg);
1480     Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1481   }
1482 
1483   // Update the RegTracker.
1484   for (const SCEV *S : OldRegs)
1485     if (!Regs.count(S))
1486       RegUses.dropRegister(S, LUIdx);
1487 }
1488 
1489 void LSRUse::print(raw_ostream &OS) const {
1490   OS << "LSR Use: Kind=";
1491   switch (Kind) {
1492   case Basic:    OS << "Basic"; break;
1493   case Special:  OS << "Special"; break;
1494   case ICmpZero: OS << "ICmpZero"; break;
1495   case Address:
1496     OS << "Address of ";
1497     if (AccessTy.MemTy->isPointerTy())
1498       OS << "pointer"; // the full pointer type could be really verbose
1499     else {
1500       OS << *AccessTy.MemTy;
1501     }
1502 
1503     OS << " in addrspace(" << AccessTy.AddrSpace << ')';
1504   }
1505 
1506   OS << ", Offsets={";
1507   bool NeedComma = false;
1508   for (const LSRFixup &Fixup : Fixups) {
1509     if (NeedComma) OS << ',';
1510     OS << Fixup.Offset;
1511     NeedComma = true;
1512   }
1513   OS << '}';
1514 
1515   if (AllFixupsOutsideLoop)
1516     OS << ", all-fixups-outside-loop";
1517 
1518   if (WidestFixupType)
1519     OS << ", widest fixup type: " << *WidestFixupType;
1520 }
1521 
1522 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1523 LLVM_DUMP_METHOD void LSRUse::dump() const {
1524   print(errs()); errs() << '\n';
1525 }
1526 #endif
1527 
1528 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1529                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1530                                  GlobalValue *BaseGV, int64_t BaseOffset,
1531                                  bool HasBaseReg, int64_t Scale) {
1532   switch (Kind) {
1533   case LSRUse::Address:
1534     return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset,
1535                                      HasBaseReg, Scale, AccessTy.AddrSpace);
1536 
1537   case LSRUse::ICmpZero:
1538     // There's not even a target hook for querying whether it would be legal to
1539     // fold a GV into an ICmp.
1540     if (BaseGV)
1541       return false;
1542 
1543     // ICmp only has two operands; don't allow more than two non-trivial parts.
1544     if (Scale != 0 && HasBaseReg && BaseOffset != 0)
1545       return false;
1546 
1547     // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
1548     // putting the scaled register in the other operand of the icmp.
1549     if (Scale != 0 && Scale != -1)
1550       return false;
1551 
1552     // If we have low-level target information, ask the target if it can fold an
1553     // integer immediate on an icmp.
1554     if (BaseOffset != 0) {
1555       // We have one of:
1556       // ICmpZero     BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset
1557       // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset
1558       // Offs is the ICmp immediate.
1559       if (Scale == 0)
1560         // The cast does the right thing with INT64_MIN.
1561         BaseOffset = -(uint64_t)BaseOffset;
1562       return TTI.isLegalICmpImmediate(BaseOffset);
1563     }
1564 
1565     // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg
1566     return true;
1567 
1568   case LSRUse::Basic:
1569     // Only handle single-register values.
1570     return !BaseGV && Scale == 0 && BaseOffset == 0;
1571 
1572   case LSRUse::Special:
1573     // Special case Basic to handle -1 scales.
1574     return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0;
1575   }
1576 
1577   llvm_unreachable("Invalid LSRUse Kind!");
1578 }
1579 
1580 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1581                                  int64_t MinOffset, int64_t MaxOffset,
1582                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1583                                  GlobalValue *BaseGV, int64_t BaseOffset,
1584                                  bool HasBaseReg, int64_t Scale) {
1585   // Check for overflow.
1586   if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) !=
1587       (MinOffset > 0))
1588     return false;
1589   MinOffset = (uint64_t)BaseOffset + MinOffset;
1590   if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) !=
1591       (MaxOffset > 0))
1592     return false;
1593   MaxOffset = (uint64_t)BaseOffset + MaxOffset;
1594 
1595   return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset,
1596                               HasBaseReg, Scale) &&
1597          isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset,
1598                               HasBaseReg, Scale);
1599 }
1600 
1601 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1602                                  int64_t MinOffset, int64_t MaxOffset,
1603                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1604                                  const Formula &F, const Loop &L) {
1605   // For the purpose of isAMCompletelyFolded either having a canonical formula
1606   // or a scale not equal to zero is correct.
1607   // Problems may arise from non canonical formulae having a scale == 0.
1608   // Strictly speaking it would best to just rely on canonical formulae.
1609   // However, when we generate the scaled formulae, we first check that the
1610   // scaling factor is profitable before computing the actual ScaledReg for
1611   // compile time sake.
1612   assert((F.isCanonical(L) || F.Scale != 0));
1613   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1614                               F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale);
1615 }
1616 
1617 /// Test whether we know how to expand the current formula.
1618 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1619                        int64_t MaxOffset, LSRUse::KindType Kind,
1620                        MemAccessTy AccessTy, GlobalValue *BaseGV,
1621                        int64_t BaseOffset, bool HasBaseReg, int64_t Scale) {
1622   // We know how to expand completely foldable formulae.
1623   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1624                               BaseOffset, HasBaseReg, Scale) ||
1625          // Or formulae that use a base register produced by a sum of base
1626          // registers.
1627          (Scale == 1 &&
1628           isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1629                                BaseGV, BaseOffset, true, 0));
1630 }
1631 
1632 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1633                        int64_t MaxOffset, LSRUse::KindType Kind,
1634                        MemAccessTy AccessTy, const Formula &F) {
1635   return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV,
1636                     F.BaseOffset, F.HasBaseReg, F.Scale);
1637 }
1638 
1639 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1640                                  const LSRUse &LU, const Formula &F) {
1641   return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1642                               LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg,
1643                               F.Scale);
1644 }
1645 
1646 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
1647                                      const LSRUse &LU, const Formula &F,
1648                                      const Loop &L) {
1649   if (!F.Scale)
1650     return 0;
1651 
1652   // If the use is not completely folded in that instruction, we will have to
1653   // pay an extra cost only for scale != 1.
1654   if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1655                             LU.AccessTy, F, L))
1656     return F.Scale != 1;
1657 
1658   switch (LU.Kind) {
1659   case LSRUse::Address: {
1660     // Check the scaling factor cost with both the min and max offsets.
1661     int ScaleCostMinOffset = TTI.getScalingFactorCost(
1662         LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg,
1663         F.Scale, LU.AccessTy.AddrSpace);
1664     int ScaleCostMaxOffset = TTI.getScalingFactorCost(
1665         LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg,
1666         F.Scale, LU.AccessTy.AddrSpace);
1667 
1668     assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 &&
1669            "Legal addressing mode has an illegal cost!");
1670     return std::max(ScaleCostMinOffset, ScaleCostMaxOffset);
1671   }
1672   case LSRUse::ICmpZero:
1673   case LSRUse::Basic:
1674   case LSRUse::Special:
1675     // The use is completely folded, i.e., everything is folded into the
1676     // instruction.
1677     return 0;
1678   }
1679 
1680   llvm_unreachable("Invalid LSRUse Kind!");
1681 }
1682 
1683 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1684                              LSRUse::KindType Kind, MemAccessTy AccessTy,
1685                              GlobalValue *BaseGV, int64_t BaseOffset,
1686                              bool HasBaseReg) {
1687   // Fast-path: zero is always foldable.
1688   if (BaseOffset == 0 && !BaseGV) return true;
1689 
1690   // Conservatively, create an address with an immediate and a
1691   // base and a scale.
1692   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1693 
1694   // Canonicalize a scale of 1 to a base register if the formula doesn't
1695   // already have a base register.
1696   if (!HasBaseReg && Scale == 1) {
1697     Scale = 0;
1698     HasBaseReg = true;
1699   }
1700 
1701   return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset,
1702                               HasBaseReg, Scale);
1703 }
1704 
1705 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1706                              ScalarEvolution &SE, int64_t MinOffset,
1707                              int64_t MaxOffset, LSRUse::KindType Kind,
1708                              MemAccessTy AccessTy, const SCEV *S,
1709                              bool HasBaseReg) {
1710   // Fast-path: zero is always foldable.
1711   if (S->isZero()) return true;
1712 
1713   // Conservatively, create an address with an immediate and a
1714   // base and a scale.
1715   int64_t BaseOffset = ExtractImmediate(S, SE);
1716   GlobalValue *BaseGV = ExtractSymbol(S, SE);
1717 
1718   // If there's anything else involved, it's not foldable.
1719   if (!S->isZero()) return false;
1720 
1721   // Fast-path: zero is always foldable.
1722   if (BaseOffset == 0 && !BaseGV) return true;
1723 
1724   // Conservatively, create an address with an immediate and a
1725   // base and a scale.
1726   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1727 
1728   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1729                               BaseOffset, HasBaseReg, Scale);
1730 }
1731 
1732 namespace {
1733 
1734 /// An individual increment in a Chain of IV increments.  Relate an IV user to
1735 /// an expression that computes the IV it uses from the IV used by the previous
1736 /// link in the Chain.
1737 ///
1738 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the
1739 /// original IVOperand. The head of the chain's IVOperand is only valid during
1740 /// chain collection, before LSR replaces IV users. During chain generation,
1741 /// IncExpr can be used to find the new IVOperand that computes the same
1742 /// expression.
1743 struct IVInc {
1744   Instruction *UserInst;
1745   Value* IVOperand;
1746   const SCEV *IncExpr;
1747 
1748   IVInc(Instruction *U, Value *O, const SCEV *E):
1749     UserInst(U), IVOperand(O), IncExpr(E) {}
1750 };
1751 
1752 // The list of IV increments in program order.  We typically add the head of a
1753 // chain without finding subsequent links.
1754 struct IVChain {
1755   SmallVector<IVInc,1> Incs;
1756   const SCEV *ExprBase;
1757 
1758   IVChain() : ExprBase(nullptr) {}
1759 
1760   IVChain(const IVInc &Head, const SCEV *Base)
1761     : Incs(1, Head), ExprBase(Base) {}
1762 
1763   typedef SmallVectorImpl<IVInc>::const_iterator const_iterator;
1764 
1765   // Return the first increment in the chain.
1766   const_iterator begin() const {
1767     assert(!Incs.empty());
1768     return std::next(Incs.begin());
1769   }
1770   const_iterator end() const {
1771     return Incs.end();
1772   }
1773 
1774   // Returns true if this chain contains any increments.
1775   bool hasIncs() const { return Incs.size() >= 2; }
1776 
1777   // Add an IVInc to the end of this chain.
1778   void add(const IVInc &X) { Incs.push_back(X); }
1779 
1780   // Returns the last UserInst in the chain.
1781   Instruction *tailUserInst() const { return Incs.back().UserInst; }
1782 
1783   // Returns true if IncExpr can be profitably added to this chain.
1784   bool isProfitableIncrement(const SCEV *OperExpr,
1785                              const SCEV *IncExpr,
1786                              ScalarEvolution&);
1787 };
1788 
1789 /// Helper for CollectChains to track multiple IV increment uses.  Distinguish
1790 /// between FarUsers that definitely cross IV increments and NearUsers that may
1791 /// be used between IV increments.
1792 struct ChainUsers {
1793   SmallPtrSet<Instruction*, 4> FarUsers;
1794   SmallPtrSet<Instruction*, 4> NearUsers;
1795 };
1796 
1797 /// This class holds state for the main loop strength reduction logic.
1798 class LSRInstance {
1799   IVUsers &IU;
1800   ScalarEvolution &SE;
1801   DominatorTree &DT;
1802   LoopInfo &LI;
1803   const TargetTransformInfo &TTI;
1804   Loop *const L;
1805   bool Changed;
1806 
1807   /// This is the insert position that the current loop's induction variable
1808   /// increment should be placed. In simple loops, this is the latch block's
1809   /// terminator. But in more complicated cases, this is a position which will
1810   /// dominate all the in-loop post-increment users.
1811   Instruction *IVIncInsertPos;
1812 
1813   /// Interesting factors between use strides.
1814   ///
1815   /// We explicitly use a SetVector which contains a SmallSet, instead of the
1816   /// default, a SmallDenseSet, because we need to use the full range of
1817   /// int64_ts, and there's currently no good way of doing that with
1818   /// SmallDenseSet.
1819   SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors;
1820 
1821   /// Interesting use types, to facilitate truncation reuse.
1822   SmallSetVector<Type *, 4> Types;
1823 
1824   /// The list of interesting uses.
1825   SmallVector<LSRUse, 16> Uses;
1826 
1827   /// Track which uses use which register candidates.
1828   RegUseTracker RegUses;
1829 
1830   // Limit the number of chains to avoid quadratic behavior. We don't expect to
1831   // have more than a few IV increment chains in a loop. Missing a Chain falls
1832   // back to normal LSR behavior for those uses.
1833   static const unsigned MaxChains = 8;
1834 
1835   /// IV users can form a chain of IV increments.
1836   SmallVector<IVChain, MaxChains> IVChainVec;
1837 
1838   /// IV users that belong to profitable IVChains.
1839   SmallPtrSet<Use*, MaxChains> IVIncSet;
1840 
1841   void OptimizeShadowIV();
1842   bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
1843   ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
1844   void OptimizeLoopTermCond();
1845 
1846   void ChainInstruction(Instruction *UserInst, Instruction *IVOper,
1847                         SmallVectorImpl<ChainUsers> &ChainUsersVec);
1848   void FinalizeChain(IVChain &Chain);
1849   void CollectChains();
1850   void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
1851                        SmallVectorImpl<WeakTrackingVH> &DeadInsts);
1852 
1853   void CollectInterestingTypesAndFactors();
1854   void CollectFixupsAndInitialFormulae();
1855 
1856   // Support for sharing of LSRUses between LSRFixups.
1857   typedef DenseMap<LSRUse::SCEVUseKindPair, size_t> UseMapTy;
1858   UseMapTy UseMap;
1859 
1860   bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
1861                           LSRUse::KindType Kind, MemAccessTy AccessTy);
1862 
1863   std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind,
1864                                     MemAccessTy AccessTy);
1865 
1866   void DeleteUse(LSRUse &LU, size_t LUIdx);
1867 
1868   LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
1869 
1870   void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1871   void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1872   void CountRegisters(const Formula &F, size_t LUIdx);
1873   bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
1874 
1875   void CollectLoopInvariantFixupsAndFormulae();
1876 
1877   void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
1878                               unsigned Depth = 0);
1879 
1880   void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
1881                                   const Formula &Base, unsigned Depth,
1882                                   size_t Idx, bool IsScaledReg = false);
1883   void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
1884   void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
1885                                    const Formula &Base, size_t Idx,
1886                                    bool IsScaledReg = false);
1887   void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1888   void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx,
1889                                    const Formula &Base,
1890                                    const SmallVectorImpl<int64_t> &Worklist,
1891                                    size_t Idx, bool IsScaledReg = false);
1892   void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1893   void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1894   void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1895   void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
1896   void GenerateCrossUseConstantOffsets();
1897   void GenerateAllReuseFormulae();
1898 
1899   void FilterOutUndesirableDedicatedRegisters();
1900 
1901   size_t EstimateSearchSpaceComplexity() const;
1902   void NarrowSearchSpaceByDetectingSupersets();
1903   void NarrowSearchSpaceByCollapsingUnrolledCode();
1904   void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
1905   void NarrowSearchSpaceByDeletingCostlyFormulas();
1906   void NarrowSearchSpaceByPickingWinnerRegs();
1907   void NarrowSearchSpaceUsingHeuristics();
1908 
1909   void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
1910                     Cost &SolutionCost,
1911                     SmallVectorImpl<const Formula *> &Workspace,
1912                     const Cost &CurCost,
1913                     const SmallPtrSet<const SCEV *, 16> &CurRegs,
1914                     DenseSet<const SCEV *> &VisitedRegs) const;
1915   void Solve(SmallVectorImpl<const Formula *> &Solution) const;
1916 
1917   BasicBlock::iterator
1918     HoistInsertPosition(BasicBlock::iterator IP,
1919                         const SmallVectorImpl<Instruction *> &Inputs) const;
1920   BasicBlock::iterator
1921     AdjustInsertPositionForExpand(BasicBlock::iterator IP,
1922                                   const LSRFixup &LF,
1923                                   const LSRUse &LU,
1924                                   SCEVExpander &Rewriter) const;
1925 
1926   Value *Expand(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
1927                 BasicBlock::iterator IP, SCEVExpander &Rewriter,
1928                 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
1929   void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF,
1930                      const Formula &F, SCEVExpander &Rewriter,
1931                      SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
1932   void Rewrite(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
1933                SCEVExpander &Rewriter,
1934                SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
1935   void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution);
1936 
1937 public:
1938   LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT,
1939               LoopInfo &LI, const TargetTransformInfo &TTI);
1940 
1941   bool getChanged() const { return Changed; }
1942 
1943   void print_factors_and_types(raw_ostream &OS) const;
1944   void print_fixups(raw_ostream &OS) const;
1945   void print_uses(raw_ostream &OS) const;
1946   void print(raw_ostream &OS) const;
1947   void dump() const;
1948 };
1949 
1950 } // end anonymous namespace
1951 
1952 /// If IV is used in a int-to-float cast inside the loop then try to eliminate
1953 /// the cast operation.
1954 void LSRInstance::OptimizeShadowIV() {
1955   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
1956   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1957     return;
1958 
1959   for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
1960        UI != E; /* empty */) {
1961     IVUsers::const_iterator CandidateUI = UI;
1962     ++UI;
1963     Instruction *ShadowUse = CandidateUI->getUser();
1964     Type *DestTy = nullptr;
1965     bool IsSigned = false;
1966 
1967     /* If shadow use is a int->float cast then insert a second IV
1968        to eliminate this cast.
1969 
1970          for (unsigned i = 0; i < n; ++i)
1971            foo((double)i);
1972 
1973        is transformed into
1974 
1975          double d = 0.0;
1976          for (unsigned i = 0; i < n; ++i, ++d)
1977            foo(d);
1978     */
1979     if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) {
1980       IsSigned = false;
1981       DestTy = UCast->getDestTy();
1982     }
1983     else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) {
1984       IsSigned = true;
1985       DestTy = SCast->getDestTy();
1986     }
1987     if (!DestTy) continue;
1988 
1989     // If target does not support DestTy natively then do not apply
1990     // this transformation.
1991     if (!TTI.isTypeLegal(DestTy)) continue;
1992 
1993     PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
1994     if (!PH) continue;
1995     if (PH->getNumIncomingValues() != 2) continue;
1996 
1997     Type *SrcTy = PH->getType();
1998     int Mantissa = DestTy->getFPMantissaWidth();
1999     if (Mantissa == -1) continue;
2000     if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
2001       continue;
2002 
2003     unsigned Entry, Latch;
2004     if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
2005       Entry = 0;
2006       Latch = 1;
2007     } else {
2008       Entry = 1;
2009       Latch = 0;
2010     }
2011 
2012     ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
2013     if (!Init) continue;
2014     Constant *NewInit = ConstantFP::get(DestTy, IsSigned ?
2015                                         (double)Init->getSExtValue() :
2016                                         (double)Init->getZExtValue());
2017 
2018     BinaryOperator *Incr =
2019       dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
2020     if (!Incr) continue;
2021     if (Incr->getOpcode() != Instruction::Add
2022         && Incr->getOpcode() != Instruction::Sub)
2023       continue;
2024 
2025     /* Initialize new IV, double d = 0.0 in above example. */
2026     ConstantInt *C = nullptr;
2027     if (Incr->getOperand(0) == PH)
2028       C = dyn_cast<ConstantInt>(Incr->getOperand(1));
2029     else if (Incr->getOperand(1) == PH)
2030       C = dyn_cast<ConstantInt>(Incr->getOperand(0));
2031     else
2032       continue;
2033 
2034     if (!C) continue;
2035 
2036     // Ignore negative constants, as the code below doesn't handle them
2037     // correctly. TODO: Remove this restriction.
2038     if (!C->getValue().isStrictlyPositive()) continue;
2039 
2040     /* Add new PHINode. */
2041     PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH);
2042 
2043     /* create new increment. '++d' in above example. */
2044     Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
2045     BinaryOperator *NewIncr =
2046       BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
2047                                Instruction::FAdd : Instruction::FSub,
2048                              NewPH, CFP, "IV.S.next.", Incr);
2049 
2050     NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
2051     NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
2052 
2053     /* Remove cast operation */
2054     ShadowUse->replaceAllUsesWith(NewPH);
2055     ShadowUse->eraseFromParent();
2056     Changed = true;
2057     break;
2058   }
2059 }
2060 
2061 /// If Cond has an operand that is an expression of an IV, set the IV user and
2062 /// stride information and return true, otherwise return false.
2063 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
2064   for (IVStrideUse &U : IU)
2065     if (U.getUser() == Cond) {
2066       // NOTE: we could handle setcc instructions with multiple uses here, but
2067       // InstCombine does it as well for simple uses, it's not clear that it
2068       // occurs enough in real life to handle.
2069       CondUse = &U;
2070       return true;
2071     }
2072   return false;
2073 }
2074 
2075 /// Rewrite the loop's terminating condition if it uses a max computation.
2076 ///
2077 /// This is a narrow solution to a specific, but acute, problem. For loops
2078 /// like this:
2079 ///
2080 ///   i = 0;
2081 ///   do {
2082 ///     p[i] = 0.0;
2083 ///   } while (++i < n);
2084 ///
2085 /// the trip count isn't just 'n', because 'n' might not be positive. And
2086 /// unfortunately this can come up even for loops where the user didn't use
2087 /// a C do-while loop. For example, seemingly well-behaved top-test loops
2088 /// will commonly be lowered like this:
2089 //
2090 ///   if (n > 0) {
2091 ///     i = 0;
2092 ///     do {
2093 ///       p[i] = 0.0;
2094 ///     } while (++i < n);
2095 ///   }
2096 ///
2097 /// and then it's possible for subsequent optimization to obscure the if
2098 /// test in such a way that indvars can't find it.
2099 ///
2100 /// When indvars can't find the if test in loops like this, it creates a
2101 /// max expression, which allows it to give the loop a canonical
2102 /// induction variable:
2103 ///
2104 ///   i = 0;
2105 ///   max = n < 1 ? 1 : n;
2106 ///   do {
2107 ///     p[i] = 0.0;
2108 ///   } while (++i != max);
2109 ///
2110 /// Canonical induction variables are necessary because the loop passes
2111 /// are designed around them. The most obvious example of this is the
2112 /// LoopInfo analysis, which doesn't remember trip count values. It
2113 /// expects to be able to rediscover the trip count each time it is
2114 /// needed, and it does this using a simple analysis that only succeeds if
2115 /// the loop has a canonical induction variable.
2116 ///
2117 /// However, when it comes time to generate code, the maximum operation
2118 /// can be quite costly, especially if it's inside of an outer loop.
2119 ///
2120 /// This function solves this problem by detecting this type of loop and
2121 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
2122 /// the instructions for the maximum computation.
2123 ///
2124 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
2125   // Check that the loop matches the pattern we're looking for.
2126   if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
2127       Cond->getPredicate() != CmpInst::ICMP_NE)
2128     return Cond;
2129 
2130   SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
2131   if (!Sel || !Sel->hasOneUse()) return Cond;
2132 
2133   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
2134   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2135     return Cond;
2136   const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
2137 
2138   // Add one to the backedge-taken count to get the trip count.
2139   const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount);
2140   if (IterationCount != SE.getSCEV(Sel)) return Cond;
2141 
2142   // Check for a max calculation that matches the pattern. There's no check
2143   // for ICMP_ULE here because the comparison would be with zero, which
2144   // isn't interesting.
2145   CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
2146   const SCEVNAryExpr *Max = nullptr;
2147   if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
2148     Pred = ICmpInst::ICMP_SLE;
2149     Max = S;
2150   } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
2151     Pred = ICmpInst::ICMP_SLT;
2152     Max = S;
2153   } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
2154     Pred = ICmpInst::ICMP_ULT;
2155     Max = U;
2156   } else {
2157     // No match; bail.
2158     return Cond;
2159   }
2160 
2161   // To handle a max with more than two operands, this optimization would
2162   // require additional checking and setup.
2163   if (Max->getNumOperands() != 2)
2164     return Cond;
2165 
2166   const SCEV *MaxLHS = Max->getOperand(0);
2167   const SCEV *MaxRHS = Max->getOperand(1);
2168 
2169   // ScalarEvolution canonicalizes constants to the left. For < and >, look
2170   // for a comparison with 1. For <= and >=, a comparison with zero.
2171   if (!MaxLHS ||
2172       (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
2173     return Cond;
2174 
2175   // Check the relevant induction variable for conformance to
2176   // the pattern.
2177   const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
2178   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
2179   if (!AR || !AR->isAffine() ||
2180       AR->getStart() != One ||
2181       AR->getStepRecurrence(SE) != One)
2182     return Cond;
2183 
2184   assert(AR->getLoop() == L &&
2185          "Loop condition operand is an addrec in a different loop!");
2186 
2187   // Check the right operand of the select, and remember it, as it will
2188   // be used in the new comparison instruction.
2189   Value *NewRHS = nullptr;
2190   if (ICmpInst::isTrueWhenEqual(Pred)) {
2191     // Look for n+1, and grab n.
2192     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
2193       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2194          if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2195            NewRHS = BO->getOperand(0);
2196     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
2197       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2198         if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2199           NewRHS = BO->getOperand(0);
2200     if (!NewRHS)
2201       return Cond;
2202   } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
2203     NewRHS = Sel->getOperand(1);
2204   else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
2205     NewRHS = Sel->getOperand(2);
2206   else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS))
2207     NewRHS = SU->getValue();
2208   else
2209     // Max doesn't match expected pattern.
2210     return Cond;
2211 
2212   // Determine the new comparison opcode. It may be signed or unsigned,
2213   // and the original comparison may be either equality or inequality.
2214   if (Cond->getPredicate() == CmpInst::ICMP_EQ)
2215     Pred = CmpInst::getInversePredicate(Pred);
2216 
2217   // Ok, everything looks ok to change the condition into an SLT or SGE and
2218   // delete the max calculation.
2219   ICmpInst *NewCond =
2220     new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
2221 
2222   // Delete the max calculation instructions.
2223   Cond->replaceAllUsesWith(NewCond);
2224   CondUse->setUser(NewCond);
2225   Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
2226   Cond->eraseFromParent();
2227   Sel->eraseFromParent();
2228   if (Cmp->use_empty())
2229     Cmp->eraseFromParent();
2230   return NewCond;
2231 }
2232 
2233 /// Change loop terminating condition to use the postinc iv when possible.
2234 void
2235 LSRInstance::OptimizeLoopTermCond() {
2236   SmallPtrSet<Instruction *, 4> PostIncs;
2237 
2238   // We need a different set of heuristics for rotated and non-rotated loops.
2239   // If a loop is rotated then the latch is also the backedge, so inserting
2240   // post-inc expressions just before the latch is ideal. To reduce live ranges
2241   // it also makes sense to rewrite terminating conditions to use post-inc
2242   // expressions.
2243   //
2244   // If the loop is not rotated then the latch is not a backedge; the latch
2245   // check is done in the loop head. Adding post-inc expressions before the
2246   // latch will cause overlapping live-ranges of pre-inc and post-inc expressions
2247   // in the loop body. In this case we do *not* want to use post-inc expressions
2248   // in the latch check, and we want to insert post-inc expressions before
2249   // the backedge.
2250   BasicBlock *LatchBlock = L->getLoopLatch();
2251   SmallVector<BasicBlock*, 8> ExitingBlocks;
2252   L->getExitingBlocks(ExitingBlocks);
2253   if (llvm::all_of(ExitingBlocks, [&LatchBlock](const BasicBlock *BB) {
2254         return LatchBlock != BB;
2255       })) {
2256     // The backedge doesn't exit the loop; treat this as a head-tested loop.
2257     IVIncInsertPos = LatchBlock->getTerminator();
2258     return;
2259   }
2260 
2261   // Otherwise treat this as a rotated loop.
2262   for (BasicBlock *ExitingBlock : ExitingBlocks) {
2263 
2264     // Get the terminating condition for the loop if possible.  If we
2265     // can, we want to change it to use a post-incremented version of its
2266     // induction variable, to allow coalescing the live ranges for the IV into
2267     // one register value.
2268 
2269     BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
2270     if (!TermBr)
2271       continue;
2272     // FIXME: Overly conservative, termination condition could be an 'or' etc..
2273     if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
2274       continue;
2275 
2276     // Search IVUsesByStride to find Cond's IVUse if there is one.
2277     IVStrideUse *CondUse = nullptr;
2278     ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
2279     if (!FindIVUserForCond(Cond, CondUse))
2280       continue;
2281 
2282     // If the trip count is computed in terms of a max (due to ScalarEvolution
2283     // being unable to find a sufficient guard, for example), change the loop
2284     // comparison to use SLT or ULT instead of NE.
2285     // One consequence of doing this now is that it disrupts the count-down
2286     // optimization. That's not always a bad thing though, because in such
2287     // cases it may still be worthwhile to avoid a max.
2288     Cond = OptimizeMax(Cond, CondUse);
2289 
2290     // If this exiting block dominates the latch block, it may also use
2291     // the post-inc value if it won't be shared with other uses.
2292     // Check for dominance.
2293     if (!DT.dominates(ExitingBlock, LatchBlock))
2294       continue;
2295 
2296     // Conservatively avoid trying to use the post-inc value in non-latch
2297     // exits if there may be pre-inc users in intervening blocks.
2298     if (LatchBlock != ExitingBlock)
2299       for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
2300         // Test if the use is reachable from the exiting block. This dominator
2301         // query is a conservative approximation of reachability.
2302         if (&*UI != CondUse &&
2303             !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
2304           // Conservatively assume there may be reuse if the quotient of their
2305           // strides could be a legal scale.
2306           const SCEV *A = IU.getStride(*CondUse, L);
2307           const SCEV *B = IU.getStride(*UI, L);
2308           if (!A || !B) continue;
2309           if (SE.getTypeSizeInBits(A->getType()) !=
2310               SE.getTypeSizeInBits(B->getType())) {
2311             if (SE.getTypeSizeInBits(A->getType()) >
2312                 SE.getTypeSizeInBits(B->getType()))
2313               B = SE.getSignExtendExpr(B, A->getType());
2314             else
2315               A = SE.getSignExtendExpr(A, B->getType());
2316           }
2317           if (const SCEVConstant *D =
2318                 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
2319             const ConstantInt *C = D->getValue();
2320             // Stride of one or negative one can have reuse with non-addresses.
2321             if (C->isOne() || C->isAllOnesValue())
2322               goto decline_post_inc;
2323             // Avoid weird situations.
2324             if (C->getValue().getMinSignedBits() >= 64 ||
2325                 C->getValue().isMinSignedValue())
2326               goto decline_post_inc;
2327             // Check for possible scaled-address reuse.
2328             MemAccessTy AccessTy = getAccessType(UI->getUser());
2329             int64_t Scale = C->getSExtValue();
2330             if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2331                                           /*BaseOffset=*/0,
2332                                           /*HasBaseReg=*/false, Scale,
2333                                           AccessTy.AddrSpace))
2334               goto decline_post_inc;
2335             Scale = -Scale;
2336             if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2337                                           /*BaseOffset=*/0,
2338                                           /*HasBaseReg=*/false, Scale,
2339                                           AccessTy.AddrSpace))
2340               goto decline_post_inc;
2341           }
2342         }
2343 
2344     DEBUG(dbgs() << "  Change loop exiting icmp to use postinc iv: "
2345                  << *Cond << '\n');
2346 
2347     // It's possible for the setcc instruction to be anywhere in the loop, and
2348     // possible for it to have multiple users.  If it is not immediately before
2349     // the exiting block branch, move it.
2350     if (&*++BasicBlock::iterator(Cond) != TermBr) {
2351       if (Cond->hasOneUse()) {
2352         Cond->moveBefore(TermBr);
2353       } else {
2354         // Clone the terminating condition and insert into the loopend.
2355         ICmpInst *OldCond = Cond;
2356         Cond = cast<ICmpInst>(Cond->clone());
2357         Cond->setName(L->getHeader()->getName() + ".termcond");
2358         ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond);
2359 
2360         // Clone the IVUse, as the old use still exists!
2361         CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
2362         TermBr->replaceUsesOfWith(OldCond, Cond);
2363       }
2364     }
2365 
2366     // If we get to here, we know that we can transform the setcc instruction to
2367     // use the post-incremented version of the IV, allowing us to coalesce the
2368     // live ranges for the IV correctly.
2369     CondUse->transformToPostInc(L);
2370     Changed = true;
2371 
2372     PostIncs.insert(Cond);
2373   decline_post_inc:;
2374   }
2375 
2376   // Determine an insertion point for the loop induction variable increment. It
2377   // must dominate all the post-inc comparisons we just set up, and it must
2378   // dominate the loop latch edge.
2379   IVIncInsertPos = L->getLoopLatch()->getTerminator();
2380   for (Instruction *Inst : PostIncs) {
2381     BasicBlock *BB =
2382       DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
2383                                     Inst->getParent());
2384     if (BB == Inst->getParent())
2385       IVIncInsertPos = Inst;
2386     else if (BB != IVIncInsertPos->getParent())
2387       IVIncInsertPos = BB->getTerminator();
2388   }
2389 }
2390 
2391 /// Determine if the given use can accommodate a fixup at the given offset and
2392 /// other details. If so, update the use and return true.
2393 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset,
2394                                      bool HasBaseReg, LSRUse::KindType Kind,
2395                                      MemAccessTy AccessTy) {
2396   int64_t NewMinOffset = LU.MinOffset;
2397   int64_t NewMaxOffset = LU.MaxOffset;
2398   MemAccessTy NewAccessTy = AccessTy;
2399 
2400   // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
2401   // something conservative, however this can pessimize in the case that one of
2402   // the uses will have all its uses outside the loop, for example.
2403   if (LU.Kind != Kind)
2404     return false;
2405 
2406   // Check for a mismatched access type, and fall back conservatively as needed.
2407   // TODO: Be less conservative when the type is similar and can use the same
2408   // addressing modes.
2409   if (Kind == LSRUse::Address) {
2410     if (AccessTy.MemTy != LU.AccessTy.MemTy) {
2411       NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(),
2412                                             AccessTy.AddrSpace);
2413     }
2414   }
2415 
2416   // Conservatively assume HasBaseReg is true for now.
2417   if (NewOffset < LU.MinOffset) {
2418     if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2419                           LU.MaxOffset - NewOffset, HasBaseReg))
2420       return false;
2421     NewMinOffset = NewOffset;
2422   } else if (NewOffset > LU.MaxOffset) {
2423     if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2424                           NewOffset - LU.MinOffset, HasBaseReg))
2425       return false;
2426     NewMaxOffset = NewOffset;
2427   }
2428 
2429   // Update the use.
2430   LU.MinOffset = NewMinOffset;
2431   LU.MaxOffset = NewMaxOffset;
2432   LU.AccessTy = NewAccessTy;
2433   return true;
2434 }
2435 
2436 /// Return an LSRUse index and an offset value for a fixup which needs the given
2437 /// expression, with the given kind and optional access type.  Either reuse an
2438 /// existing use or create a new one, as needed.
2439 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr,
2440                                                LSRUse::KindType Kind,
2441                                                MemAccessTy AccessTy) {
2442   const SCEV *Copy = Expr;
2443   int64_t Offset = ExtractImmediate(Expr, SE);
2444 
2445   // Basic uses can't accept any offset, for example.
2446   if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr,
2447                         Offset, /*HasBaseReg=*/ true)) {
2448     Expr = Copy;
2449     Offset = 0;
2450   }
2451 
2452   std::pair<UseMapTy::iterator, bool> P =
2453     UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0));
2454   if (!P.second) {
2455     // A use already existed with this base.
2456     size_t LUIdx = P.first->second;
2457     LSRUse &LU = Uses[LUIdx];
2458     if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
2459       // Reuse this use.
2460       return std::make_pair(LUIdx, Offset);
2461   }
2462 
2463   // Create a new use.
2464   size_t LUIdx = Uses.size();
2465   P.first->second = LUIdx;
2466   Uses.push_back(LSRUse(Kind, AccessTy));
2467   LSRUse &LU = Uses[LUIdx];
2468 
2469   LU.MinOffset = Offset;
2470   LU.MaxOffset = Offset;
2471   return std::make_pair(LUIdx, Offset);
2472 }
2473 
2474 /// Delete the given use from the Uses list.
2475 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) {
2476   if (&LU != &Uses.back())
2477     std::swap(LU, Uses.back());
2478   Uses.pop_back();
2479 
2480   // Update RegUses.
2481   RegUses.swapAndDropUse(LUIdx, Uses.size());
2482 }
2483 
2484 /// Look for a use distinct from OrigLU which is has a formula that has the same
2485 /// registers as the given formula.
2486 LSRUse *
2487 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
2488                                        const LSRUse &OrigLU) {
2489   // Search all uses for the formula. This could be more clever.
2490   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2491     LSRUse &LU = Uses[LUIdx];
2492     // Check whether this use is close enough to OrigLU, to see whether it's
2493     // worthwhile looking through its formulae.
2494     // Ignore ICmpZero uses because they may contain formulae generated by
2495     // GenerateICmpZeroScales, in which case adding fixup offsets may
2496     // be invalid.
2497     if (&LU != &OrigLU &&
2498         LU.Kind != LSRUse::ICmpZero &&
2499         LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
2500         LU.WidestFixupType == OrigLU.WidestFixupType &&
2501         LU.HasFormulaWithSameRegs(OrigF)) {
2502       // Scan through this use's formulae.
2503       for (const Formula &F : LU.Formulae) {
2504         // Check to see if this formula has the same registers and symbols
2505         // as OrigF.
2506         if (F.BaseRegs == OrigF.BaseRegs &&
2507             F.ScaledReg == OrigF.ScaledReg &&
2508             F.BaseGV == OrigF.BaseGV &&
2509             F.Scale == OrigF.Scale &&
2510             F.UnfoldedOffset == OrigF.UnfoldedOffset) {
2511           if (F.BaseOffset == 0)
2512             return &LU;
2513           // This is the formula where all the registers and symbols matched;
2514           // there aren't going to be any others. Since we declined it, we
2515           // can skip the rest of the formulae and proceed to the next LSRUse.
2516           break;
2517         }
2518       }
2519     }
2520   }
2521 
2522   // Nothing looked good.
2523   return nullptr;
2524 }
2525 
2526 void LSRInstance::CollectInterestingTypesAndFactors() {
2527   SmallSetVector<const SCEV *, 4> Strides;
2528 
2529   // Collect interesting types and strides.
2530   SmallVector<const SCEV *, 4> Worklist;
2531   for (const IVStrideUse &U : IU) {
2532     const SCEV *Expr = IU.getExpr(U);
2533 
2534     // Collect interesting types.
2535     Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
2536 
2537     // Add strides for mentioned loops.
2538     Worklist.push_back(Expr);
2539     do {
2540       const SCEV *S = Worklist.pop_back_val();
2541       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2542         if (AR->getLoop() == L)
2543           Strides.insert(AR->getStepRecurrence(SE));
2544         Worklist.push_back(AR->getStart());
2545       } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2546         Worklist.append(Add->op_begin(), Add->op_end());
2547       }
2548     } while (!Worklist.empty());
2549   }
2550 
2551   // Compute interesting factors from the set of interesting strides.
2552   for (SmallSetVector<const SCEV *, 4>::const_iterator
2553        I = Strides.begin(), E = Strides.end(); I != E; ++I)
2554     for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
2555          std::next(I); NewStrideIter != E; ++NewStrideIter) {
2556       const SCEV *OldStride = *I;
2557       const SCEV *NewStride = *NewStrideIter;
2558 
2559       if (SE.getTypeSizeInBits(OldStride->getType()) !=
2560           SE.getTypeSizeInBits(NewStride->getType())) {
2561         if (SE.getTypeSizeInBits(OldStride->getType()) >
2562             SE.getTypeSizeInBits(NewStride->getType()))
2563           NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
2564         else
2565           OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
2566       }
2567       if (const SCEVConstant *Factor =
2568             dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
2569                                                         SE, true))) {
2570         if (Factor->getAPInt().getMinSignedBits() <= 64)
2571           Factors.insert(Factor->getAPInt().getSExtValue());
2572       } else if (const SCEVConstant *Factor =
2573                    dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
2574                                                                NewStride,
2575                                                                SE, true))) {
2576         if (Factor->getAPInt().getMinSignedBits() <= 64)
2577           Factors.insert(Factor->getAPInt().getSExtValue());
2578       }
2579     }
2580 
2581   // If all uses use the same type, don't bother looking for truncation-based
2582   // reuse.
2583   if (Types.size() == 1)
2584     Types.clear();
2585 
2586   DEBUG(print_factors_and_types(dbgs()));
2587 }
2588 
2589 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in
2590 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to
2591 /// IVStrideUses, we could partially skip this.
2592 static User::op_iterator
2593 findIVOperand(User::op_iterator OI, User::op_iterator OE,
2594               Loop *L, ScalarEvolution &SE) {
2595   for(; OI != OE; ++OI) {
2596     if (Instruction *Oper = dyn_cast<Instruction>(*OI)) {
2597       if (!SE.isSCEVable(Oper->getType()))
2598         continue;
2599 
2600       if (const SCEVAddRecExpr *AR =
2601           dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) {
2602         if (AR->getLoop() == L)
2603           break;
2604       }
2605     }
2606   }
2607   return OI;
2608 }
2609 
2610 /// IVChain logic must consistenctly peek base TruncInst operands, so wrap it in
2611 /// a convenient helper.
2612 static Value *getWideOperand(Value *Oper) {
2613   if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper))
2614     return Trunc->getOperand(0);
2615   return Oper;
2616 }
2617 
2618 /// Return true if we allow an IV chain to include both types.
2619 static bool isCompatibleIVType(Value *LVal, Value *RVal) {
2620   Type *LType = LVal->getType();
2621   Type *RType = RVal->getType();
2622   return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy() &&
2623                               // Different address spaces means (possibly)
2624                               // different types of the pointer implementation,
2625                               // e.g. i16 vs i32 so disallow that.
2626                               (LType->getPointerAddressSpace() ==
2627                                RType->getPointerAddressSpace()));
2628 }
2629 
2630 /// Return an approximation of this SCEV expression's "base", or NULL for any
2631 /// constant. Returning the expression itself is conservative. Returning a
2632 /// deeper subexpression is more precise and valid as long as it isn't less
2633 /// complex than another subexpression. For expressions involving multiple
2634 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids
2635 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i],
2636 /// IVInc==b-a.
2637 ///
2638 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost
2639 /// SCEVUnknown, we simply return the rightmost SCEV operand.
2640 static const SCEV *getExprBase(const SCEV *S) {
2641   switch (S->getSCEVType()) {
2642   default: // uncluding scUnknown.
2643     return S;
2644   case scConstant:
2645     return nullptr;
2646   case scTruncate:
2647     return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand());
2648   case scZeroExtend:
2649     return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand());
2650   case scSignExtend:
2651     return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand());
2652   case scAddExpr: {
2653     // Skip over scaled operands (scMulExpr) to follow add operands as long as
2654     // there's nothing more complex.
2655     // FIXME: not sure if we want to recognize negation.
2656     const SCEVAddExpr *Add = cast<SCEVAddExpr>(S);
2657     for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()),
2658            E(Add->op_begin()); I != E; ++I) {
2659       const SCEV *SubExpr = *I;
2660       if (SubExpr->getSCEVType() == scAddExpr)
2661         return getExprBase(SubExpr);
2662 
2663       if (SubExpr->getSCEVType() != scMulExpr)
2664         return SubExpr;
2665     }
2666     return S; // all operands are scaled, be conservative.
2667   }
2668   case scAddRecExpr:
2669     return getExprBase(cast<SCEVAddRecExpr>(S)->getStart());
2670   }
2671 }
2672 
2673 /// Return true if the chain increment is profitable to expand into a loop
2674 /// invariant value, which may require its own register. A profitable chain
2675 /// increment will be an offset relative to the same base. We allow such offsets
2676 /// to potentially be used as chain increment as long as it's not obviously
2677 /// expensive to expand using real instructions.
2678 bool IVChain::isProfitableIncrement(const SCEV *OperExpr,
2679                                     const SCEV *IncExpr,
2680                                     ScalarEvolution &SE) {
2681   // Aggressively form chains when -stress-ivchain.
2682   if (StressIVChain)
2683     return true;
2684 
2685   // Do not replace a constant offset from IV head with a nonconstant IV
2686   // increment.
2687   if (!isa<SCEVConstant>(IncExpr)) {
2688     const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand));
2689     if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr)))
2690       return false;
2691   }
2692 
2693   SmallPtrSet<const SCEV*, 8> Processed;
2694   return !isHighCostExpansion(IncExpr, Processed, SE);
2695 }
2696 
2697 /// Return true if the number of registers needed for the chain is estimated to
2698 /// be less than the number required for the individual IV users. First prohibit
2699 /// any IV users that keep the IV live across increments (the Users set should
2700 /// be empty). Next count the number and type of increments in the chain.
2701 ///
2702 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't
2703 /// effectively use postinc addressing modes. Only consider it profitable it the
2704 /// increments can be computed in fewer registers when chained.
2705 ///
2706 /// TODO: Consider IVInc free if it's already used in another chains.
2707 static bool
2708 isProfitableChain(IVChain &Chain, SmallPtrSetImpl<Instruction*> &Users,
2709                   ScalarEvolution &SE, const TargetTransformInfo &TTI) {
2710   if (StressIVChain)
2711     return true;
2712 
2713   if (!Chain.hasIncs())
2714     return false;
2715 
2716   if (!Users.empty()) {
2717     DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n";
2718           for (Instruction *Inst : Users) {
2719             dbgs() << "  " << *Inst << "\n";
2720           });
2721     return false;
2722   }
2723   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
2724 
2725   // The chain itself may require a register, so intialize cost to 1.
2726   int cost = 1;
2727 
2728   // A complete chain likely eliminates the need for keeping the original IV in
2729   // a register. LSR does not currently know how to form a complete chain unless
2730   // the header phi already exists.
2731   if (isa<PHINode>(Chain.tailUserInst())
2732       && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) {
2733     --cost;
2734   }
2735   const SCEV *LastIncExpr = nullptr;
2736   unsigned NumConstIncrements = 0;
2737   unsigned NumVarIncrements = 0;
2738   unsigned NumReusedIncrements = 0;
2739   for (const IVInc &Inc : Chain) {
2740     if (Inc.IncExpr->isZero())
2741       continue;
2742 
2743     // Incrementing by zero or some constant is neutral. We assume constants can
2744     // be folded into an addressing mode or an add's immediate operand.
2745     if (isa<SCEVConstant>(Inc.IncExpr)) {
2746       ++NumConstIncrements;
2747       continue;
2748     }
2749 
2750     if (Inc.IncExpr == LastIncExpr)
2751       ++NumReusedIncrements;
2752     else
2753       ++NumVarIncrements;
2754 
2755     LastIncExpr = Inc.IncExpr;
2756   }
2757   // An IV chain with a single increment is handled by LSR's postinc
2758   // uses. However, a chain with multiple increments requires keeping the IV's
2759   // value live longer than it needs to be if chained.
2760   if (NumConstIncrements > 1)
2761     --cost;
2762 
2763   // Materializing increment expressions in the preheader that didn't exist in
2764   // the original code may cost a register. For example, sign-extended array
2765   // indices can produce ridiculous increments like this:
2766   // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64)))
2767   cost += NumVarIncrements;
2768 
2769   // Reusing variable increments likely saves a register to hold the multiple of
2770   // the stride.
2771   cost -= NumReusedIncrements;
2772 
2773   DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost
2774                << "\n");
2775 
2776   return cost < 0;
2777 }
2778 
2779 /// Add this IV user to an existing chain or make it the head of a new chain.
2780 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper,
2781                                    SmallVectorImpl<ChainUsers> &ChainUsersVec) {
2782   // When IVs are used as types of varying widths, they are generally converted
2783   // to a wider type with some uses remaining narrow under a (free) trunc.
2784   Value *const NextIV = getWideOperand(IVOper);
2785   const SCEV *const OperExpr = SE.getSCEV(NextIV);
2786   const SCEV *const OperExprBase = getExprBase(OperExpr);
2787 
2788   // Visit all existing chains. Check if its IVOper can be computed as a
2789   // profitable loop invariant increment from the last link in the Chain.
2790   unsigned ChainIdx = 0, NChains = IVChainVec.size();
2791   const SCEV *LastIncExpr = nullptr;
2792   for (; ChainIdx < NChains; ++ChainIdx) {
2793     IVChain &Chain = IVChainVec[ChainIdx];
2794 
2795     // Prune the solution space aggressively by checking that both IV operands
2796     // are expressions that operate on the same unscaled SCEVUnknown. This
2797     // "base" will be canceled by the subsequent getMinusSCEV call. Checking
2798     // first avoids creating extra SCEV expressions.
2799     if (!StressIVChain && Chain.ExprBase != OperExprBase)
2800       continue;
2801 
2802     Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand);
2803     if (!isCompatibleIVType(PrevIV, NextIV))
2804       continue;
2805 
2806     // A phi node terminates a chain.
2807     if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst()))
2808       continue;
2809 
2810     // The increment must be loop-invariant so it can be kept in a register.
2811     const SCEV *PrevExpr = SE.getSCEV(PrevIV);
2812     const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr);
2813     if (!SE.isLoopInvariant(IncExpr, L))
2814       continue;
2815 
2816     if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) {
2817       LastIncExpr = IncExpr;
2818       break;
2819     }
2820   }
2821   // If we haven't found a chain, create a new one, unless we hit the max. Don't
2822   // bother for phi nodes, because they must be last in the chain.
2823   if (ChainIdx == NChains) {
2824     if (isa<PHINode>(UserInst))
2825       return;
2826     if (NChains >= MaxChains && !StressIVChain) {
2827       DEBUG(dbgs() << "IV Chain Limit\n");
2828       return;
2829     }
2830     LastIncExpr = OperExpr;
2831     // IVUsers may have skipped over sign/zero extensions. We don't currently
2832     // attempt to form chains involving extensions unless they can be hoisted
2833     // into this loop's AddRec.
2834     if (!isa<SCEVAddRecExpr>(LastIncExpr))
2835       return;
2836     ++NChains;
2837     IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr),
2838                                  OperExprBase));
2839     ChainUsersVec.resize(NChains);
2840     DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst
2841                  << ") IV=" << *LastIncExpr << "\n");
2842   } else {
2843     DEBUG(dbgs() << "IV Chain#" << ChainIdx << "  Inc: (" << *UserInst
2844                  << ") IV+" << *LastIncExpr << "\n");
2845     // Add this IV user to the end of the chain.
2846     IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr));
2847   }
2848   IVChain &Chain = IVChainVec[ChainIdx];
2849 
2850   SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers;
2851   // This chain's NearUsers become FarUsers.
2852   if (!LastIncExpr->isZero()) {
2853     ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(),
2854                                             NearUsers.end());
2855     NearUsers.clear();
2856   }
2857 
2858   // All other uses of IVOperand become near uses of the chain.
2859   // We currently ignore intermediate values within SCEV expressions, assuming
2860   // they will eventually be used be the current chain, or can be computed
2861   // from one of the chain increments. To be more precise we could
2862   // transitively follow its user and only add leaf IV users to the set.
2863   for (User *U : IVOper->users()) {
2864     Instruction *OtherUse = dyn_cast<Instruction>(U);
2865     if (!OtherUse)
2866       continue;
2867     // Uses in the chain will no longer be uses if the chain is formed.
2868     // Include the head of the chain in this iteration (not Chain.begin()).
2869     IVChain::const_iterator IncIter = Chain.Incs.begin();
2870     IVChain::const_iterator IncEnd = Chain.Incs.end();
2871     for( ; IncIter != IncEnd; ++IncIter) {
2872       if (IncIter->UserInst == OtherUse)
2873         break;
2874     }
2875     if (IncIter != IncEnd)
2876       continue;
2877 
2878     if (SE.isSCEVable(OtherUse->getType())
2879         && !isa<SCEVUnknown>(SE.getSCEV(OtherUse))
2880         && IU.isIVUserOrOperand(OtherUse)) {
2881       continue;
2882     }
2883     NearUsers.insert(OtherUse);
2884   }
2885 
2886   // Since this user is part of the chain, it's no longer considered a use
2887   // of the chain.
2888   ChainUsersVec[ChainIdx].FarUsers.erase(UserInst);
2889 }
2890 
2891 /// Populate the vector of Chains.
2892 ///
2893 /// This decreases ILP at the architecture level. Targets with ample registers,
2894 /// multiple memory ports, and no register renaming probably don't want
2895 /// this. However, such targets should probably disable LSR altogether.
2896 ///
2897 /// The job of LSR is to make a reasonable choice of induction variables across
2898 /// the loop. Subsequent passes can easily "unchain" computation exposing more
2899 /// ILP *within the loop* if the target wants it.
2900 ///
2901 /// Finding the best IV chain is potentially a scheduling problem. Since LSR
2902 /// will not reorder memory operations, it will recognize this as a chain, but
2903 /// will generate redundant IV increments. Ideally this would be corrected later
2904 /// by a smart scheduler:
2905 ///        = A[i]
2906 ///        = A[i+x]
2907 /// A[i]   =
2908 /// A[i+x] =
2909 ///
2910 /// TODO: Walk the entire domtree within this loop, not just the path to the
2911 /// loop latch. This will discover chains on side paths, but requires
2912 /// maintaining multiple copies of the Chains state.
2913 void LSRInstance::CollectChains() {
2914   DEBUG(dbgs() << "Collecting IV Chains.\n");
2915   SmallVector<ChainUsers, 8> ChainUsersVec;
2916 
2917   SmallVector<BasicBlock *,8> LatchPath;
2918   BasicBlock *LoopHeader = L->getHeader();
2919   for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch());
2920        Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) {
2921     LatchPath.push_back(Rung->getBlock());
2922   }
2923   LatchPath.push_back(LoopHeader);
2924 
2925   // Walk the instruction stream from the loop header to the loop latch.
2926   for (BasicBlock *BB : reverse(LatchPath)) {
2927     for (Instruction &I : *BB) {
2928       // Skip instructions that weren't seen by IVUsers analysis.
2929       if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I))
2930         continue;
2931 
2932       // Ignore users that are part of a SCEV expression. This way we only
2933       // consider leaf IV Users. This effectively rediscovers a portion of
2934       // IVUsers analysis but in program order this time.
2935       if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I)))
2936         continue;
2937 
2938       // Remove this instruction from any NearUsers set it may be in.
2939       for (unsigned ChainIdx = 0, NChains = IVChainVec.size();
2940            ChainIdx < NChains; ++ChainIdx) {
2941         ChainUsersVec[ChainIdx].NearUsers.erase(&I);
2942       }
2943       // Search for operands that can be chained.
2944       SmallPtrSet<Instruction*, 4> UniqueOperands;
2945       User::op_iterator IVOpEnd = I.op_end();
2946       User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE);
2947       while (IVOpIter != IVOpEnd) {
2948         Instruction *IVOpInst = cast<Instruction>(*IVOpIter);
2949         if (UniqueOperands.insert(IVOpInst).second)
2950           ChainInstruction(&I, IVOpInst, ChainUsersVec);
2951         IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
2952       }
2953     } // Continue walking down the instructions.
2954   } // Continue walking down the domtree.
2955   // Visit phi backedges to determine if the chain can generate the IV postinc.
2956   for (BasicBlock::iterator I = L->getHeader()->begin();
2957        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
2958     if (!SE.isSCEVable(PN->getType()))
2959       continue;
2960 
2961     Instruction *IncV =
2962       dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch()));
2963     if (IncV)
2964       ChainInstruction(PN, IncV, ChainUsersVec);
2965   }
2966   // Remove any unprofitable chains.
2967   unsigned ChainIdx = 0;
2968   for (unsigned UsersIdx = 0, NChains = IVChainVec.size();
2969        UsersIdx < NChains; ++UsersIdx) {
2970     if (!isProfitableChain(IVChainVec[UsersIdx],
2971                            ChainUsersVec[UsersIdx].FarUsers, SE, TTI))
2972       continue;
2973     // Preserve the chain at UsesIdx.
2974     if (ChainIdx != UsersIdx)
2975       IVChainVec[ChainIdx] = IVChainVec[UsersIdx];
2976     FinalizeChain(IVChainVec[ChainIdx]);
2977     ++ChainIdx;
2978   }
2979   IVChainVec.resize(ChainIdx);
2980 }
2981 
2982 void LSRInstance::FinalizeChain(IVChain &Chain) {
2983   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
2984   DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n");
2985 
2986   for (const IVInc &Inc : Chain) {
2987     DEBUG(dbgs() << "        Inc: " << *Inc.UserInst << "\n");
2988     auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand);
2989     assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand");
2990     IVIncSet.insert(UseI);
2991   }
2992 }
2993 
2994 /// Return true if the IVInc can be folded into an addressing mode.
2995 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst,
2996                              Value *Operand, const TargetTransformInfo &TTI) {
2997   const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr);
2998   if (!IncConst || !isAddressUse(UserInst, Operand))
2999     return false;
3000 
3001   if (IncConst->getAPInt().getMinSignedBits() > 64)
3002     return false;
3003 
3004   MemAccessTy AccessTy = getAccessType(UserInst);
3005   int64_t IncOffset = IncConst->getValue()->getSExtValue();
3006   if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr,
3007                         IncOffset, /*HaseBaseReg=*/false))
3008     return false;
3009 
3010   return true;
3011 }
3012 
3013 /// Generate an add or subtract for each IVInc in a chain to materialize the IV
3014 /// user's operand from the previous IV user's operand.
3015 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
3016                                   SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
3017   // Find the new IVOperand for the head of the chain. It may have been replaced
3018   // by LSR.
3019   const IVInc &Head = Chain.Incs[0];
3020   User::op_iterator IVOpEnd = Head.UserInst->op_end();
3021   // findIVOperand returns IVOpEnd if it can no longer find a valid IV user.
3022   User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(),
3023                                              IVOpEnd, L, SE);
3024   Value *IVSrc = nullptr;
3025   while (IVOpIter != IVOpEnd) {
3026     IVSrc = getWideOperand(*IVOpIter);
3027 
3028     // If this operand computes the expression that the chain needs, we may use
3029     // it. (Check this after setting IVSrc which is used below.)
3030     //
3031     // Note that if Head.IncExpr is wider than IVSrc, then this phi is too
3032     // narrow for the chain, so we can no longer use it. We do allow using a
3033     // wider phi, assuming the LSR checked for free truncation. In that case we
3034     // should already have a truncate on this operand such that
3035     // getSCEV(IVSrc) == IncExpr.
3036     if (SE.getSCEV(*IVOpIter) == Head.IncExpr
3037         || SE.getSCEV(IVSrc) == Head.IncExpr) {
3038       break;
3039     }
3040     IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
3041   }
3042   if (IVOpIter == IVOpEnd) {
3043     // Gracefully give up on this chain.
3044     DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n");
3045     return;
3046   }
3047 
3048   DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n");
3049   Type *IVTy = IVSrc->getType();
3050   Type *IntTy = SE.getEffectiveSCEVType(IVTy);
3051   const SCEV *LeftOverExpr = nullptr;
3052   for (const IVInc &Inc : Chain) {
3053     Instruction *InsertPt = Inc.UserInst;
3054     if (isa<PHINode>(InsertPt))
3055       InsertPt = L->getLoopLatch()->getTerminator();
3056 
3057     // IVOper will replace the current IV User's operand. IVSrc is the IV
3058     // value currently held in a register.
3059     Value *IVOper = IVSrc;
3060     if (!Inc.IncExpr->isZero()) {
3061       // IncExpr was the result of subtraction of two narrow values, so must
3062       // be signed.
3063       const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy);
3064       LeftOverExpr = LeftOverExpr ?
3065         SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr;
3066     }
3067     if (LeftOverExpr && !LeftOverExpr->isZero()) {
3068       // Expand the IV increment.
3069       Rewriter.clearPostInc();
3070       Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt);
3071       const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc),
3072                                              SE.getUnknown(IncV));
3073       IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt);
3074 
3075       // If an IV increment can't be folded, use it as the next IV value.
3076       if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) {
3077         assert(IVTy == IVOper->getType() && "inconsistent IV increment type");
3078         IVSrc = IVOper;
3079         LeftOverExpr = nullptr;
3080       }
3081     }
3082     Type *OperTy = Inc.IVOperand->getType();
3083     if (IVTy != OperTy) {
3084       assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) &&
3085              "cannot extend a chained IV");
3086       IRBuilder<> Builder(InsertPt);
3087       IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain");
3088     }
3089     Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper);
3090     DeadInsts.emplace_back(Inc.IVOperand);
3091   }
3092   // If LSR created a new, wider phi, we may also replace its postinc. We only
3093   // do this if we also found a wide value for the head of the chain.
3094   if (isa<PHINode>(Chain.tailUserInst())) {
3095     for (BasicBlock::iterator I = L->getHeader()->begin();
3096          PHINode *Phi = dyn_cast<PHINode>(I); ++I) {
3097       if (!isCompatibleIVType(Phi, IVSrc))
3098         continue;
3099       Instruction *PostIncV = dyn_cast<Instruction>(
3100         Phi->getIncomingValueForBlock(L->getLoopLatch()));
3101       if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc)))
3102         continue;
3103       Value *IVOper = IVSrc;
3104       Type *PostIncTy = PostIncV->getType();
3105       if (IVTy != PostIncTy) {
3106         assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types");
3107         IRBuilder<> Builder(L->getLoopLatch()->getTerminator());
3108         Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc());
3109         IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain");
3110       }
3111       Phi->replaceUsesOfWith(PostIncV, IVOper);
3112       DeadInsts.emplace_back(PostIncV);
3113     }
3114   }
3115 }
3116 
3117 void LSRInstance::CollectFixupsAndInitialFormulae() {
3118   for (const IVStrideUse &U : IU) {
3119     Instruction *UserInst = U.getUser();
3120     // Skip IV users that are part of profitable IV Chains.
3121     User::op_iterator UseI =
3122         find(UserInst->operands(), U.getOperandValToReplace());
3123     assert(UseI != UserInst->op_end() && "cannot find IV operand");
3124     if (IVIncSet.count(UseI)) {
3125       DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n');
3126       continue;
3127     }
3128 
3129     LSRUse::KindType Kind = LSRUse::Basic;
3130     MemAccessTy AccessTy;
3131     if (isAddressUse(UserInst, U.getOperandValToReplace())) {
3132       Kind = LSRUse::Address;
3133       AccessTy = getAccessType(UserInst);
3134     }
3135 
3136     const SCEV *S = IU.getExpr(U);
3137     PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops();
3138 
3139     // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
3140     // (N - i == 0), and this allows (N - i) to be the expression that we work
3141     // with rather than just N or i, so we can consider the register
3142     // requirements for both N and i at the same time. Limiting this code to
3143     // equality icmps is not a problem because all interesting loops use
3144     // equality icmps, thanks to IndVarSimplify.
3145     if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst))
3146       if (CI->isEquality()) {
3147         // Swap the operands if needed to put the OperandValToReplace on the
3148         // left, for consistency.
3149         Value *NV = CI->getOperand(1);
3150         if (NV == U.getOperandValToReplace()) {
3151           CI->setOperand(1, CI->getOperand(0));
3152           CI->setOperand(0, NV);
3153           NV = CI->getOperand(1);
3154           Changed = true;
3155         }
3156 
3157         // x == y  -->  x - y == 0
3158         const SCEV *N = SE.getSCEV(NV);
3159         if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) {
3160           // S is normalized, so normalize N before folding it into S
3161           // to keep the result normalized.
3162           N = normalizeForPostIncUse(N, TmpPostIncLoops, SE);
3163           Kind = LSRUse::ICmpZero;
3164           S = SE.getMinusSCEV(N, S);
3165         }
3166 
3167         // -1 and the negations of all interesting strides (except the negation
3168         // of -1) are now also interesting.
3169         for (size_t i = 0, e = Factors.size(); i != e; ++i)
3170           if (Factors[i] != -1)
3171             Factors.insert(-(uint64_t)Factors[i]);
3172         Factors.insert(-1);
3173       }
3174 
3175     // Get or create an LSRUse.
3176     std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
3177     size_t LUIdx = P.first;
3178     int64_t Offset = P.second;
3179     LSRUse &LU = Uses[LUIdx];
3180 
3181     // Record the fixup.
3182     LSRFixup &LF = LU.getNewFixup();
3183     LF.UserInst = UserInst;
3184     LF.OperandValToReplace = U.getOperandValToReplace();
3185     LF.PostIncLoops = TmpPostIncLoops;
3186     LF.Offset = Offset;
3187     LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3188 
3189     if (!LU.WidestFixupType ||
3190         SE.getTypeSizeInBits(LU.WidestFixupType) <
3191         SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3192       LU.WidestFixupType = LF.OperandValToReplace->getType();
3193 
3194     // If this is the first use of this LSRUse, give it a formula.
3195     if (LU.Formulae.empty()) {
3196       InsertInitialFormula(S, LU, LUIdx);
3197       CountRegisters(LU.Formulae.back(), LUIdx);
3198     }
3199   }
3200 
3201   DEBUG(print_fixups(dbgs()));
3202 }
3203 
3204 /// Insert a formula for the given expression into the given use, separating out
3205 /// loop-variant portions from loop-invariant and loop-computable portions.
3206 void
3207 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
3208   // Mark uses whose expressions cannot be expanded.
3209   if (!isSafeToExpand(S, SE))
3210     LU.RigidFormula = true;
3211 
3212   Formula F;
3213   F.initialMatch(S, L, SE);
3214   bool Inserted = InsertFormula(LU, LUIdx, F);
3215   assert(Inserted && "Initial formula already exists!"); (void)Inserted;
3216 }
3217 
3218 /// Insert a simple single-register formula for the given expression into the
3219 /// given use.
3220 void
3221 LSRInstance::InsertSupplementalFormula(const SCEV *S,
3222                                        LSRUse &LU, size_t LUIdx) {
3223   Formula F;
3224   F.BaseRegs.push_back(S);
3225   F.HasBaseReg = true;
3226   bool Inserted = InsertFormula(LU, LUIdx, F);
3227   assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
3228 }
3229 
3230 /// Note which registers are used by the given formula, updating RegUses.
3231 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
3232   if (F.ScaledReg)
3233     RegUses.countRegister(F.ScaledReg, LUIdx);
3234   for (const SCEV *BaseReg : F.BaseRegs)
3235     RegUses.countRegister(BaseReg, LUIdx);
3236 }
3237 
3238 /// If the given formula has not yet been inserted, add it to the list, and
3239 /// return true. Return false otherwise.
3240 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
3241   // Do not insert formula that we will not be able to expand.
3242   assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) &&
3243          "Formula is illegal");
3244 
3245   if (!LU.InsertFormula(F, *L))
3246     return false;
3247 
3248   CountRegisters(F, LUIdx);
3249   return true;
3250 }
3251 
3252 /// Check for other uses of loop-invariant values which we're tracking. These
3253 /// other uses will pin these values in registers, making them less profitable
3254 /// for elimination.
3255 /// TODO: This currently misses non-constant addrec step registers.
3256 /// TODO: Should this give more weight to users inside the loop?
3257 void
3258 LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
3259   SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
3260   SmallPtrSet<const SCEV *, 32> Visited;
3261 
3262   while (!Worklist.empty()) {
3263     const SCEV *S = Worklist.pop_back_val();
3264 
3265     // Don't process the same SCEV twice
3266     if (!Visited.insert(S).second)
3267       continue;
3268 
3269     if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
3270       Worklist.append(N->op_begin(), N->op_end());
3271     else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
3272       Worklist.push_back(C->getOperand());
3273     else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
3274       Worklist.push_back(D->getLHS());
3275       Worklist.push_back(D->getRHS());
3276     } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) {
3277       const Value *V = US->getValue();
3278       if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
3279         // Look for instructions defined outside the loop.
3280         if (L->contains(Inst)) continue;
3281       } else if (isa<UndefValue>(V))
3282         // Undef doesn't have a live range, so it doesn't matter.
3283         continue;
3284       for (const Use &U : V->uses()) {
3285         const Instruction *UserInst = dyn_cast<Instruction>(U.getUser());
3286         // Ignore non-instructions.
3287         if (!UserInst)
3288           continue;
3289         // Ignore instructions in other functions (as can happen with
3290         // Constants).
3291         if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
3292           continue;
3293         // Ignore instructions not dominated by the loop.
3294         const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
3295           UserInst->getParent() :
3296           cast<PHINode>(UserInst)->getIncomingBlock(
3297             PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
3298         if (!DT.dominates(L->getHeader(), UseBB))
3299           continue;
3300         // Don't bother if the instruction is in a BB which ends in an EHPad.
3301         if (UseBB->getTerminator()->isEHPad())
3302           continue;
3303         // Don't bother rewriting PHIs in catchswitch blocks.
3304         if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator()))
3305           continue;
3306         // Ignore uses which are part of other SCEV expressions, to avoid
3307         // analyzing them multiple times.
3308         if (SE.isSCEVable(UserInst->getType())) {
3309           const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
3310           // If the user is a no-op, look through to its uses.
3311           if (!isa<SCEVUnknown>(UserS))
3312             continue;
3313           if (UserS == US) {
3314             Worklist.push_back(
3315               SE.getUnknown(const_cast<Instruction *>(UserInst)));
3316             continue;
3317           }
3318         }
3319         // Ignore icmp instructions which are already being analyzed.
3320         if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
3321           unsigned OtherIdx = !U.getOperandNo();
3322           Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
3323           if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L))
3324             continue;
3325         }
3326 
3327         std::pair<size_t, int64_t> P = getUse(
3328             S, LSRUse::Basic, MemAccessTy());
3329         size_t LUIdx = P.first;
3330         int64_t Offset = P.second;
3331         LSRUse &LU = Uses[LUIdx];
3332         LSRFixup &LF = LU.getNewFixup();
3333         LF.UserInst = const_cast<Instruction *>(UserInst);
3334         LF.OperandValToReplace = U;
3335         LF.Offset = Offset;
3336         LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3337         if (!LU.WidestFixupType ||
3338             SE.getTypeSizeInBits(LU.WidestFixupType) <
3339             SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3340           LU.WidestFixupType = LF.OperandValToReplace->getType();
3341         InsertSupplementalFormula(US, LU, LUIdx);
3342         CountRegisters(LU.Formulae.back(), Uses.size() - 1);
3343         break;
3344       }
3345     }
3346   }
3347 }
3348 
3349 /// Split S into subexpressions which can be pulled out into separate
3350 /// registers. If C is non-null, multiply each subexpression by C.
3351 ///
3352 /// Return remainder expression after factoring the subexpressions captured by
3353 /// Ops. If Ops is complete, return NULL.
3354 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C,
3355                                    SmallVectorImpl<const SCEV *> &Ops,
3356                                    const Loop *L,
3357                                    ScalarEvolution &SE,
3358                                    unsigned Depth = 0) {
3359   // Arbitrarily cap recursion to protect compile time.
3360   if (Depth >= 3)
3361     return S;
3362 
3363   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3364     // Break out add operands.
3365     for (const SCEV *S : Add->operands()) {
3366       const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1);
3367       if (Remainder)
3368         Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3369     }
3370     return nullptr;
3371   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
3372     // Split a non-zero base out of an addrec.
3373     if (AR->getStart()->isZero() || !AR->isAffine())
3374       return S;
3375 
3376     const SCEV *Remainder = CollectSubexprs(AR->getStart(),
3377                                             C, Ops, L, SE, Depth+1);
3378     // Split the non-zero AddRec unless it is part of a nested recurrence that
3379     // does not pertain to this loop.
3380     if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) {
3381       Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3382       Remainder = nullptr;
3383     }
3384     if (Remainder != AR->getStart()) {
3385       if (!Remainder)
3386         Remainder = SE.getConstant(AR->getType(), 0);
3387       return SE.getAddRecExpr(Remainder,
3388                               AR->getStepRecurrence(SE),
3389                               AR->getLoop(),
3390                               //FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
3391                               SCEV::FlagAnyWrap);
3392     }
3393   } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3394     // Break (C * (a + b + c)) into C*a + C*b + C*c.
3395     if (Mul->getNumOperands() != 2)
3396       return S;
3397     if (const SCEVConstant *Op0 =
3398         dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3399       C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0;
3400       const SCEV *Remainder =
3401         CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1);
3402       if (Remainder)
3403         Ops.push_back(SE.getMulExpr(C, Remainder));
3404       return nullptr;
3405     }
3406   }
3407   return S;
3408 }
3409 
3410 /// \brief Helper function for LSRInstance::GenerateReassociations.
3411 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
3412                                              const Formula &Base,
3413                                              unsigned Depth, size_t Idx,
3414                                              bool IsScaledReg) {
3415   const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3416   SmallVector<const SCEV *, 8> AddOps;
3417   const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE);
3418   if (Remainder)
3419     AddOps.push_back(Remainder);
3420 
3421   if (AddOps.size() == 1)
3422     return;
3423 
3424   for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
3425                                                      JE = AddOps.end();
3426        J != JE; ++J) {
3427 
3428     // Loop-variant "unknown" values are uninteresting; we won't be able to
3429     // do anything meaningful with them.
3430     if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L))
3431       continue;
3432 
3433     // Don't pull a constant into a register if the constant could be folded
3434     // into an immediate field.
3435     if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3436                          LU.AccessTy, *J, Base.getNumRegs() > 1))
3437       continue;
3438 
3439     // Collect all operands except *J.
3440     SmallVector<const SCEV *, 8> InnerAddOps(
3441         ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J);
3442     InnerAddOps.append(std::next(J),
3443                        ((const SmallVector<const SCEV *, 8> &)AddOps).end());
3444 
3445     // Don't leave just a constant behind in a register if the constant could
3446     // be folded into an immediate field.
3447     if (InnerAddOps.size() == 1 &&
3448         isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3449                          LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1))
3450       continue;
3451 
3452     const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
3453     if (InnerSum->isZero())
3454       continue;
3455     Formula F = Base;
3456 
3457     // Add the remaining pieces of the add back into the new formula.
3458     const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum);
3459     if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 &&
3460         TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3461                                 InnerSumSC->getValue()->getZExtValue())) {
3462       F.UnfoldedOffset =
3463           (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue();
3464       if (IsScaledReg)
3465         F.ScaledReg = nullptr;
3466       else
3467         F.BaseRegs.erase(F.BaseRegs.begin() + Idx);
3468     } else if (IsScaledReg)
3469       F.ScaledReg = InnerSum;
3470     else
3471       F.BaseRegs[Idx] = InnerSum;
3472 
3473     // Add J as its own register, or an unfolded immediate.
3474     const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J);
3475     if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 &&
3476         TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3477                                 SC->getValue()->getZExtValue()))
3478       F.UnfoldedOffset =
3479           (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue();
3480     else
3481       F.BaseRegs.push_back(*J);
3482     // We may have changed the number of register in base regs, adjust the
3483     // formula accordingly.
3484     F.canonicalize(*L);
3485 
3486     if (InsertFormula(LU, LUIdx, F))
3487       // If that formula hadn't been seen before, recurse to find more like
3488       // it.
3489       GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth + 1);
3490   }
3491 }
3492 
3493 /// Split out subexpressions from adds and the bases of addrecs.
3494 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
3495                                          Formula Base, unsigned Depth) {
3496   assert(Base.isCanonical(*L) && "Input must be in the canonical form");
3497   // Arbitrarily cap recursion to protect compile time.
3498   if (Depth >= 3)
3499     return;
3500 
3501   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3502     GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i);
3503 
3504   if (Base.Scale == 1)
3505     GenerateReassociationsImpl(LU, LUIdx, Base, Depth,
3506                                /* Idx */ -1, /* IsScaledReg */ true);
3507 }
3508 
3509 ///  Generate a formula consisting of all of the loop-dominating registers added
3510 /// into a single register.
3511 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
3512                                        Formula Base) {
3513   // This method is only interesting on a plurality of registers.
3514   if (Base.BaseRegs.size() + (Base.Scale == 1) <= 1)
3515     return;
3516 
3517   // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before
3518   // processing the formula.
3519   Base.unscale();
3520   Formula F = Base;
3521   F.BaseRegs.clear();
3522   SmallVector<const SCEV *, 4> Ops;
3523   for (const SCEV *BaseReg : Base.BaseRegs) {
3524     if (SE.properlyDominates(BaseReg, L->getHeader()) &&
3525         !SE.hasComputableLoopEvolution(BaseReg, L))
3526       Ops.push_back(BaseReg);
3527     else
3528       F.BaseRegs.push_back(BaseReg);
3529   }
3530   if (Ops.size() > 1) {
3531     const SCEV *Sum = SE.getAddExpr(Ops);
3532     // TODO: If Sum is zero, it probably means ScalarEvolution missed an
3533     // opportunity to fold something. For now, just ignore such cases
3534     // rather than proceed with zero in a register.
3535     if (!Sum->isZero()) {
3536       F.BaseRegs.push_back(Sum);
3537       F.canonicalize(*L);
3538       (void)InsertFormula(LU, LUIdx, F);
3539     }
3540   }
3541 }
3542 
3543 /// \brief Helper function for LSRInstance::GenerateSymbolicOffsets.
3544 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
3545                                               const Formula &Base, size_t Idx,
3546                                               bool IsScaledReg) {
3547   const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3548   GlobalValue *GV = ExtractSymbol(G, SE);
3549   if (G->isZero() || !GV)
3550     return;
3551   Formula F = Base;
3552   F.BaseGV = GV;
3553   if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3554     return;
3555   if (IsScaledReg)
3556     F.ScaledReg = G;
3557   else
3558     F.BaseRegs[Idx] = G;
3559   (void)InsertFormula(LU, LUIdx, F);
3560 }
3561 
3562 /// Generate reuse formulae using symbolic offsets.
3563 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
3564                                           Formula Base) {
3565   // We can't add a symbolic offset if the address already contains one.
3566   if (Base.BaseGV) return;
3567 
3568   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3569     GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i);
3570   if (Base.Scale == 1)
3571     GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1,
3572                                 /* IsScaledReg */ true);
3573 }
3574 
3575 /// \brief Helper function for LSRInstance::GenerateConstantOffsets.
3576 void LSRInstance::GenerateConstantOffsetsImpl(
3577     LSRUse &LU, unsigned LUIdx, const Formula &Base,
3578     const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) {
3579   const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3580   for (int64_t Offset : Worklist) {
3581     Formula F = Base;
3582     F.BaseOffset = (uint64_t)Base.BaseOffset - Offset;
3583     if (isLegalUse(TTI, LU.MinOffset - Offset, LU.MaxOffset - Offset, LU.Kind,
3584                    LU.AccessTy, F)) {
3585       // Add the offset to the base register.
3586       const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G);
3587       // If it cancelled out, drop the base register, otherwise update it.
3588       if (NewG->isZero()) {
3589         if (IsScaledReg) {
3590           F.Scale = 0;
3591           F.ScaledReg = nullptr;
3592         } else
3593           F.deleteBaseReg(F.BaseRegs[Idx]);
3594         F.canonicalize(*L);
3595       } else if (IsScaledReg)
3596         F.ScaledReg = NewG;
3597       else
3598         F.BaseRegs[Idx] = NewG;
3599 
3600       (void)InsertFormula(LU, LUIdx, F);
3601     }
3602   }
3603 
3604   int64_t Imm = ExtractImmediate(G, SE);
3605   if (G->isZero() || Imm == 0)
3606     return;
3607   Formula F = Base;
3608   F.BaseOffset = (uint64_t)F.BaseOffset + Imm;
3609   if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3610     return;
3611   if (IsScaledReg)
3612     F.ScaledReg = G;
3613   else
3614     F.BaseRegs[Idx] = G;
3615   (void)InsertFormula(LU, LUIdx, F);
3616 }
3617 
3618 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
3619 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
3620                                           Formula Base) {
3621   // TODO: For now, just add the min and max offset, because it usually isn't
3622   // worthwhile looking at everything inbetween.
3623   SmallVector<int64_t, 2> Worklist;
3624   Worklist.push_back(LU.MinOffset);
3625   if (LU.MaxOffset != LU.MinOffset)
3626     Worklist.push_back(LU.MaxOffset);
3627 
3628   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3629     GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i);
3630   if (Base.Scale == 1)
3631     GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1,
3632                                 /* IsScaledReg */ true);
3633 }
3634 
3635 /// For ICmpZero, check to see if we can scale up the comparison. For example, x
3636 /// == y -> x*c == y*c.
3637 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
3638                                          Formula Base) {
3639   if (LU.Kind != LSRUse::ICmpZero) return;
3640 
3641   // Determine the integer type for the base formula.
3642   Type *IntTy = Base.getType();
3643   if (!IntTy) return;
3644   if (SE.getTypeSizeInBits(IntTy) > 64) return;
3645 
3646   // Don't do this if there is more than one offset.
3647   if (LU.MinOffset != LU.MaxOffset) return;
3648 
3649   assert(!Base.BaseGV && "ICmpZero use is not legal!");
3650 
3651   // Check each interesting stride.
3652   for (int64_t Factor : Factors) {
3653     // Check that the multiplication doesn't overflow.
3654     if (Base.BaseOffset == INT64_MIN && Factor == -1)
3655       continue;
3656     int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor;
3657     if (NewBaseOffset / Factor != Base.BaseOffset)
3658       continue;
3659     // If the offset will be truncated at this use, check that it is in bounds.
3660     if (!IntTy->isPointerTy() &&
3661         !ConstantInt::isValueValidForType(IntTy, NewBaseOffset))
3662       continue;
3663 
3664     // Check that multiplying with the use offset doesn't overflow.
3665     int64_t Offset = LU.MinOffset;
3666     if (Offset == INT64_MIN && Factor == -1)
3667       continue;
3668     Offset = (uint64_t)Offset * Factor;
3669     if (Offset / Factor != LU.MinOffset)
3670       continue;
3671     // If the offset will be truncated at this use, check that it is in bounds.
3672     if (!IntTy->isPointerTy() &&
3673         !ConstantInt::isValueValidForType(IntTy, Offset))
3674       continue;
3675 
3676     Formula F = Base;
3677     F.BaseOffset = NewBaseOffset;
3678 
3679     // Check that this scale is legal.
3680     if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F))
3681       continue;
3682 
3683     // Compensate for the use having MinOffset built into it.
3684     F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset;
3685 
3686     const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3687 
3688     // Check that multiplying with each base register doesn't overflow.
3689     for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
3690       F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
3691       if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
3692         goto next;
3693     }
3694 
3695     // Check that multiplying with the scaled register doesn't overflow.
3696     if (F.ScaledReg) {
3697       F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
3698       if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
3699         continue;
3700     }
3701 
3702     // Check that multiplying with the unfolded offset doesn't overflow.
3703     if (F.UnfoldedOffset != 0) {
3704       if (F.UnfoldedOffset == INT64_MIN && Factor == -1)
3705         continue;
3706       F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor;
3707       if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset)
3708         continue;
3709       // If the offset will be truncated, check that it is in bounds.
3710       if (!IntTy->isPointerTy() &&
3711           !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset))
3712         continue;
3713     }
3714 
3715     // If we make it here and it's legal, add it.
3716     (void)InsertFormula(LU, LUIdx, F);
3717   next:;
3718   }
3719 }
3720 
3721 /// Generate stride factor reuse formulae by making use of scaled-offset address
3722 /// modes, for example.
3723 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
3724   // Determine the integer type for the base formula.
3725   Type *IntTy = Base.getType();
3726   if (!IntTy) return;
3727 
3728   // If this Formula already has a scaled register, we can't add another one.
3729   // Try to unscale the formula to generate a better scale.
3730   if (Base.Scale != 0 && !Base.unscale())
3731     return;
3732 
3733   assert(Base.Scale == 0 && "unscale did not did its job!");
3734 
3735   // Check each interesting stride.
3736   for (int64_t Factor : Factors) {
3737     Base.Scale = Factor;
3738     Base.HasBaseReg = Base.BaseRegs.size() > 1;
3739     // Check whether this scale is going to be legal.
3740     if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
3741                     Base)) {
3742       // As a special-case, handle special out-of-loop Basic users specially.
3743       // TODO: Reconsider this special case.
3744       if (LU.Kind == LSRUse::Basic &&
3745           isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special,
3746                      LU.AccessTy, Base) &&
3747           LU.AllFixupsOutsideLoop)
3748         LU.Kind = LSRUse::Special;
3749       else
3750         continue;
3751     }
3752     // For an ICmpZero, negating a solitary base register won't lead to
3753     // new solutions.
3754     if (LU.Kind == LSRUse::ICmpZero &&
3755         !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV)
3756       continue;
3757     // For each addrec base reg, if its loop is current loop, apply the scale.
3758     for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
3759       const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i]);
3760       if (AR && (AR->getLoop() == L || LU.AllFixupsOutsideLoop)) {
3761         const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3762         if (FactorS->isZero())
3763           continue;
3764         // Divide out the factor, ignoring high bits, since we'll be
3765         // scaling the value back up in the end.
3766         if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) {
3767           // TODO: This could be optimized to avoid all the copying.
3768           Formula F = Base;
3769           F.ScaledReg = Quotient;
3770           F.deleteBaseReg(F.BaseRegs[i]);
3771           // The canonical representation of 1*reg is reg, which is already in
3772           // Base. In that case, do not try to insert the formula, it will be
3773           // rejected anyway.
3774           if (F.Scale == 1 && (F.BaseRegs.empty() ||
3775                                (AR->getLoop() != L && LU.AllFixupsOutsideLoop)))
3776             continue;
3777           // If AllFixupsOutsideLoop is true and F.Scale is 1, we may generate
3778           // non canonical Formula with ScaledReg's loop not being L.
3779           if (F.Scale == 1 && LU.AllFixupsOutsideLoop)
3780             F.canonicalize(*L);
3781           (void)InsertFormula(LU, LUIdx, F);
3782         }
3783       }
3784     }
3785   }
3786 }
3787 
3788 /// Generate reuse formulae from different IV types.
3789 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
3790   // Don't bother truncating symbolic values.
3791   if (Base.BaseGV) return;
3792 
3793   // Determine the integer type for the base formula.
3794   Type *DstTy = Base.getType();
3795   if (!DstTy) return;
3796   DstTy = SE.getEffectiveSCEVType(DstTy);
3797 
3798   for (Type *SrcTy : Types) {
3799     if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) {
3800       Formula F = Base;
3801 
3802       if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy);
3803       for (const SCEV *&BaseReg : F.BaseRegs)
3804         BaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy);
3805 
3806       // TODO: This assumes we've done basic processing on all uses and
3807       // have an idea what the register usage is.
3808       if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
3809         continue;
3810 
3811       F.canonicalize(*L);
3812       (void)InsertFormula(LU, LUIdx, F);
3813     }
3814   }
3815 }
3816 
3817 namespace {
3818 
3819 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer
3820 /// modifications so that the search phase doesn't have to worry about the data
3821 /// structures moving underneath it.
3822 struct WorkItem {
3823   size_t LUIdx;
3824   int64_t Imm;
3825   const SCEV *OrigReg;
3826 
3827   WorkItem(size_t LI, int64_t I, const SCEV *R)
3828     : LUIdx(LI), Imm(I), OrigReg(R) {}
3829 
3830   void print(raw_ostream &OS) const;
3831   void dump() const;
3832 };
3833 
3834 } // end anonymous namespace
3835 
3836 void WorkItem::print(raw_ostream &OS) const {
3837   OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
3838      << " , add offset " << Imm;
3839 }
3840 
3841 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3842 LLVM_DUMP_METHOD void WorkItem::dump() const {
3843   print(errs()); errs() << '\n';
3844 }
3845 #endif
3846 
3847 /// Look for registers which are a constant distance apart and try to form reuse
3848 /// opportunities between them.
3849 void LSRInstance::GenerateCrossUseConstantOffsets() {
3850   // Group the registers by their value without any added constant offset.
3851   typedef std::map<int64_t, const SCEV *> ImmMapTy;
3852   DenseMap<const SCEV *, ImmMapTy> Map;
3853   DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
3854   SmallVector<const SCEV *, 8> Sequence;
3855   for (const SCEV *Use : RegUses) {
3856     const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify.
3857     int64_t Imm = ExtractImmediate(Reg, SE);
3858     auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy()));
3859     if (Pair.second)
3860       Sequence.push_back(Reg);
3861     Pair.first->second.insert(std::make_pair(Imm, Use));
3862     UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use);
3863   }
3864 
3865   // Now examine each set of registers with the same base value. Build up
3866   // a list of work to do and do the work in a separate step so that we're
3867   // not adding formulae and register counts while we're searching.
3868   SmallVector<WorkItem, 32> WorkItems;
3869   SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
3870   for (const SCEV *Reg : Sequence) {
3871     const ImmMapTy &Imms = Map.find(Reg)->second;
3872 
3873     // It's not worthwhile looking for reuse if there's only one offset.
3874     if (Imms.size() == 1)
3875       continue;
3876 
3877     DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
3878           for (const auto &Entry : Imms)
3879             dbgs() << ' ' << Entry.first;
3880           dbgs() << '\n');
3881 
3882     // Examine each offset.
3883     for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
3884          J != JE; ++J) {
3885       const SCEV *OrigReg = J->second;
3886 
3887       int64_t JImm = J->first;
3888       const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
3889 
3890       if (!isa<SCEVConstant>(OrigReg) &&
3891           UsedByIndicesMap[Reg].count() == 1) {
3892         DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n');
3893         continue;
3894       }
3895 
3896       // Conservatively examine offsets between this orig reg a few selected
3897       // other orig regs.
3898       ImmMapTy::const_iterator OtherImms[] = {
3899         Imms.begin(), std::prev(Imms.end()),
3900         Imms.lower_bound((Imms.begin()->first + std::prev(Imms.end())->first) /
3901                          2)
3902       };
3903       for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
3904         ImmMapTy::const_iterator M = OtherImms[i];
3905         if (M == J || M == JE) continue;
3906 
3907         // Compute the difference between the two.
3908         int64_t Imm = (uint64_t)JImm - M->first;
3909         for (unsigned LUIdx : UsedByIndices.set_bits())
3910           // Make a memo of this use, offset, and register tuple.
3911           if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second)
3912             WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
3913       }
3914     }
3915   }
3916 
3917   Map.clear();
3918   Sequence.clear();
3919   UsedByIndicesMap.clear();
3920   UniqueItems.clear();
3921 
3922   // Now iterate through the worklist and add new formulae.
3923   for (const WorkItem &WI : WorkItems) {
3924     size_t LUIdx = WI.LUIdx;
3925     LSRUse &LU = Uses[LUIdx];
3926     int64_t Imm = WI.Imm;
3927     const SCEV *OrigReg = WI.OrigReg;
3928 
3929     Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
3930     const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
3931     unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
3932 
3933     // TODO: Use a more targeted data structure.
3934     for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
3935       Formula F = LU.Formulae[L];
3936       // FIXME: The code for the scaled and unscaled registers looks
3937       // very similar but slightly different. Investigate if they
3938       // could be merged. That way, we would not have to unscale the
3939       // Formula.
3940       F.unscale();
3941       // Use the immediate in the scaled register.
3942       if (F.ScaledReg == OrigReg) {
3943         int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale;
3944         // Don't create 50 + reg(-50).
3945         if (F.referencesReg(SE.getSCEV(
3946                    ConstantInt::get(IntTy, -(uint64_t)Offset))))
3947           continue;
3948         Formula NewF = F;
3949         NewF.BaseOffset = Offset;
3950         if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
3951                         NewF))
3952           continue;
3953         NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
3954 
3955         // If the new scale is a constant in a register, and adding the constant
3956         // value to the immediate would produce a value closer to zero than the
3957         // immediate itself, then the formula isn't worthwhile.
3958         if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
3959           if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) &&
3960               (C->getAPInt().abs() * APInt(BitWidth, F.Scale))
3961                   .ule(std::abs(NewF.BaseOffset)))
3962             continue;
3963 
3964         // OK, looks good.
3965         NewF.canonicalize(*this->L);
3966         (void)InsertFormula(LU, LUIdx, NewF);
3967       } else {
3968         // Use the immediate in a base register.
3969         for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
3970           const SCEV *BaseReg = F.BaseRegs[N];
3971           if (BaseReg != OrigReg)
3972             continue;
3973           Formula NewF = F;
3974           NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm;
3975           if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset,
3976                           LU.Kind, LU.AccessTy, NewF)) {
3977             if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm))
3978               continue;
3979             NewF = F;
3980             NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm;
3981           }
3982           NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
3983 
3984           // If the new formula has a constant in a register, and adding the
3985           // constant value to the immediate would produce a value closer to
3986           // zero than the immediate itself, then the formula isn't worthwhile.
3987           for (const SCEV *NewReg : NewF.BaseRegs)
3988             if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg))
3989               if ((C->getAPInt() + NewF.BaseOffset)
3990                       .abs()
3991                       .slt(std::abs(NewF.BaseOffset)) &&
3992                   (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >=
3993                       countTrailingZeros<uint64_t>(NewF.BaseOffset))
3994                 goto skip_formula;
3995 
3996           // Ok, looks good.
3997           NewF.canonicalize(*this->L);
3998           (void)InsertFormula(LU, LUIdx, NewF);
3999           break;
4000         skip_formula:;
4001         }
4002       }
4003     }
4004   }
4005 }
4006 
4007 /// Generate formulae for each use.
4008 void
4009 LSRInstance::GenerateAllReuseFormulae() {
4010   // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
4011   // queries are more precise.
4012   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4013     LSRUse &LU = Uses[LUIdx];
4014     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4015       GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
4016     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4017       GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
4018   }
4019   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4020     LSRUse &LU = Uses[LUIdx];
4021     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4022       GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
4023     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4024       GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
4025     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4026       GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
4027     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4028       GenerateScales(LU, LUIdx, LU.Formulae[i]);
4029   }
4030   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4031     LSRUse &LU = Uses[LUIdx];
4032     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4033       GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
4034   }
4035 
4036   GenerateCrossUseConstantOffsets();
4037 
4038   DEBUG(dbgs() << "\n"
4039                   "After generating reuse formulae:\n";
4040         print_uses(dbgs()));
4041 }
4042 
4043 /// If there are multiple formulae with the same set of registers used
4044 /// by other uses, pick the best one and delete the others.
4045 void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
4046   DenseSet<const SCEV *> VisitedRegs;
4047   SmallPtrSet<const SCEV *, 16> Regs;
4048   SmallPtrSet<const SCEV *, 16> LoserRegs;
4049 #ifndef NDEBUG
4050   bool ChangedFormulae = false;
4051 #endif
4052 
4053   // Collect the best formula for each unique set of shared registers. This
4054   // is reset for each use.
4055   typedef DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>
4056     BestFormulaeTy;
4057   BestFormulaeTy BestFormulae;
4058 
4059   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4060     LSRUse &LU = Uses[LUIdx];
4061     DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n');
4062 
4063     bool Any = false;
4064     for (size_t FIdx = 0, NumForms = LU.Formulae.size();
4065          FIdx != NumForms; ++FIdx) {
4066       Formula &F = LU.Formulae[FIdx];
4067 
4068       // Some formulas are instant losers. For example, they may depend on
4069       // nonexistent AddRecs from other loops. These need to be filtered
4070       // immediately, otherwise heuristics could choose them over others leading
4071       // to an unsatisfactory solution. Passing LoserRegs into RateFormula here
4072       // avoids the need to recompute this information across formulae using the
4073       // same bad AddRec. Passing LoserRegs is also essential unless we remove
4074       // the corresponding bad register from the Regs set.
4075       Cost CostF;
4076       Regs.clear();
4077       CostF.RateFormula(TTI, F, Regs, VisitedRegs, L, SE, DT, LU, &LoserRegs);
4078       if (CostF.isLoser()) {
4079         // During initial formula generation, undesirable formulae are generated
4080         // by uses within other loops that have some non-trivial address mode or
4081         // use the postinc form of the IV. LSR needs to provide these formulae
4082         // as the basis of rediscovering the desired formula that uses an AddRec
4083         // corresponding to the existing phi. Once all formulae have been
4084         // generated, these initial losers may be pruned.
4085         DEBUG(dbgs() << "  Filtering loser "; F.print(dbgs());
4086               dbgs() << "\n");
4087       }
4088       else {
4089         SmallVector<const SCEV *, 4> Key;
4090         for (const SCEV *Reg : F.BaseRegs) {
4091           if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
4092             Key.push_back(Reg);
4093         }
4094         if (F.ScaledReg &&
4095             RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
4096           Key.push_back(F.ScaledReg);
4097         // Unstable sort by host order ok, because this is only used for
4098         // uniquifying.
4099         std::sort(Key.begin(), Key.end());
4100 
4101         std::pair<BestFormulaeTy::const_iterator, bool> P =
4102           BestFormulae.insert(std::make_pair(Key, FIdx));
4103         if (P.second)
4104           continue;
4105 
4106         Formula &Best = LU.Formulae[P.first->second];
4107 
4108         Cost CostBest;
4109         Regs.clear();
4110         CostBest.RateFormula(TTI, Best, Regs, VisitedRegs, L, SE, DT, LU);
4111         if (CostF.isLess(CostBest, TTI))
4112           std::swap(F, Best);
4113         DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
4114               dbgs() << "\n"
4115                         "    in favor of formula "; Best.print(dbgs());
4116               dbgs() << '\n');
4117       }
4118 #ifndef NDEBUG
4119       ChangedFormulae = true;
4120 #endif
4121       LU.DeleteFormula(F);
4122       --FIdx;
4123       --NumForms;
4124       Any = true;
4125     }
4126 
4127     // Now that we've filtered out some formulae, recompute the Regs set.
4128     if (Any)
4129       LU.RecomputeRegs(LUIdx, RegUses);
4130 
4131     // Reset this to prepare for the next use.
4132     BestFormulae.clear();
4133   }
4134 
4135   DEBUG(if (ChangedFormulae) {
4136           dbgs() << "\n"
4137                     "After filtering out undesirable candidates:\n";
4138           print_uses(dbgs());
4139         });
4140 }
4141 
4142 // This is a rough guess that seems to work fairly well.
4143 static const size_t ComplexityLimit = UINT16_MAX;
4144 
4145 /// Estimate the worst-case number of solutions the solver might have to
4146 /// consider. It almost never considers this many solutions because it prune the
4147 /// search space, but the pruning isn't always sufficient.
4148 size_t LSRInstance::EstimateSearchSpaceComplexity() const {
4149   size_t Power = 1;
4150   for (const LSRUse &LU : Uses) {
4151     size_t FSize = LU.Formulae.size();
4152     if (FSize >= ComplexityLimit) {
4153       Power = ComplexityLimit;
4154       break;
4155     }
4156     Power *= FSize;
4157     if (Power >= ComplexityLimit)
4158       break;
4159   }
4160   return Power;
4161 }
4162 
4163 /// When one formula uses a superset of the registers of another formula, it
4164 /// won't help reduce register pressure (though it may not necessarily hurt
4165 /// register pressure); remove it to simplify the system.
4166 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
4167   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4168     DEBUG(dbgs() << "The search space is too complex.\n");
4169 
4170     DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
4171                     "which use a superset of registers used by other "
4172                     "formulae.\n");
4173 
4174     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4175       LSRUse &LU = Uses[LUIdx];
4176       bool Any = false;
4177       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4178         Formula &F = LU.Formulae[i];
4179         // Look for a formula with a constant or GV in a register. If the use
4180         // also has a formula with that same value in an immediate field,
4181         // delete the one that uses a register.
4182         for (SmallVectorImpl<const SCEV *>::const_iterator
4183              I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
4184           if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
4185             Formula NewF = F;
4186             NewF.BaseOffset += C->getValue()->getSExtValue();
4187             NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4188                                 (I - F.BaseRegs.begin()));
4189             if (LU.HasFormulaWithSameRegs(NewF)) {
4190               DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
4191               LU.DeleteFormula(F);
4192               --i;
4193               --e;
4194               Any = true;
4195               break;
4196             }
4197           } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
4198             if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
4199               if (!F.BaseGV) {
4200                 Formula NewF = F;
4201                 NewF.BaseGV = GV;
4202                 NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4203                                     (I - F.BaseRegs.begin()));
4204                 if (LU.HasFormulaWithSameRegs(NewF)) {
4205                   DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4206                         dbgs() << '\n');
4207                   LU.DeleteFormula(F);
4208                   --i;
4209                   --e;
4210                   Any = true;
4211                   break;
4212                 }
4213               }
4214           }
4215         }
4216       }
4217       if (Any)
4218         LU.RecomputeRegs(LUIdx, RegUses);
4219     }
4220 
4221     DEBUG(dbgs() << "After pre-selection:\n";
4222           print_uses(dbgs()));
4223   }
4224 }
4225 
4226 /// When there are many registers for expressions like A, A+1, A+2, etc.,
4227 /// allocate a single register for them.
4228 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
4229   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4230     return;
4231 
4232   DEBUG(dbgs() << "The search space is too complex.\n"
4233                   "Narrowing the search space by assuming that uses separated "
4234                   "by a constant offset will use the same registers.\n");
4235 
4236   // This is especially useful for unrolled loops.
4237 
4238   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4239     LSRUse &LU = Uses[LUIdx];
4240     for (const Formula &F : LU.Formulae) {
4241       if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1))
4242         continue;
4243 
4244       LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU);
4245       if (!LUThatHas)
4246         continue;
4247 
4248       if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false,
4249                               LU.Kind, LU.AccessTy))
4250         continue;
4251 
4252       DEBUG(dbgs() << "  Deleting use "; LU.print(dbgs()); dbgs() << '\n');
4253 
4254       LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
4255 
4256       // Transfer the fixups of LU to LUThatHas.
4257       for (LSRFixup &Fixup : LU.Fixups) {
4258         Fixup.Offset += F.BaseOffset;
4259         LUThatHas->pushFixup(Fixup);
4260         DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n');
4261       }
4262 
4263       // Delete formulae from the new use which are no longer legal.
4264       bool Any = false;
4265       for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
4266         Formula &F = LUThatHas->Formulae[i];
4267         if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset,
4268                         LUThatHas->Kind, LUThatHas->AccessTy, F)) {
4269           DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4270                 dbgs() << '\n');
4271           LUThatHas->DeleteFormula(F);
4272           --i;
4273           --e;
4274           Any = true;
4275         }
4276       }
4277 
4278       if (Any)
4279         LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
4280 
4281       // Delete the old use.
4282       DeleteUse(LU, LUIdx);
4283       --LUIdx;
4284       --NumUses;
4285       break;
4286     }
4287   }
4288 
4289   DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4290 }
4291 
4292 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that
4293 /// we've done more filtering, as it may be able to find more formulae to
4294 /// eliminate.
4295 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){
4296   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4297     DEBUG(dbgs() << "The search space is too complex.\n");
4298 
4299     DEBUG(dbgs() << "Narrowing the search space by re-filtering out "
4300                     "undesirable dedicated registers.\n");
4301 
4302     FilterOutUndesirableDedicatedRegisters();
4303 
4304     DEBUG(dbgs() << "After pre-selection:\n";
4305           print_uses(dbgs()));
4306   }
4307 }
4308 
4309 /// The function delete formulas with high registers number expectation.
4310 /// Assuming we don't know the value of each formula (already delete
4311 /// all inefficient), generate probability of not selecting for each
4312 /// register.
4313 /// For example,
4314 /// Use1:
4315 ///  reg(a) + reg({0,+,1})
4316 ///  reg(a) + reg({-1,+,1}) + 1
4317 ///  reg({a,+,1})
4318 /// Use2:
4319 ///  reg(b) + reg({0,+,1})
4320 ///  reg(b) + reg({-1,+,1}) + 1
4321 ///  reg({b,+,1})
4322 /// Use3:
4323 ///  reg(c) + reg(b) + reg({0,+,1})
4324 ///  reg(c) + reg({b,+,1})
4325 ///
4326 /// Probability of not selecting
4327 ///                 Use1   Use2    Use3
4328 /// reg(a)         (1/3) *   1   *   1
4329 /// reg(b)           1   * (1/3) * (1/2)
4330 /// reg({0,+,1})   (2/3) * (2/3) * (1/2)
4331 /// reg({-1,+,1})  (2/3) * (2/3) *   1
4332 /// reg({a,+,1})   (2/3) *   1   *   1
4333 /// reg({b,+,1})     1   * (2/3) * (2/3)
4334 /// reg(c)           1   *   1   *   0
4335 ///
4336 /// Now count registers number mathematical expectation for each formula:
4337 /// Note that for each use we exclude probability if not selecting for the use.
4338 /// For example for Use1 probability for reg(a) would be just 1 * 1 (excluding
4339 /// probabilty 1/3 of not selecting for Use1).
4340 /// Use1:
4341 ///  reg(a) + reg({0,+,1})          1 + 1/3       -- to be deleted
4342 ///  reg(a) + reg({-1,+,1}) + 1     1 + 4/9       -- to be deleted
4343 ///  reg({a,+,1})                   1
4344 /// Use2:
4345 ///  reg(b) + reg({0,+,1})          1/2 + 1/3     -- to be deleted
4346 ///  reg(b) + reg({-1,+,1}) + 1     1/2 + 2/3     -- to be deleted
4347 ///  reg({b,+,1})                   2/3
4348 /// Use3:
4349 ///  reg(c) + reg(b) + reg({0,+,1}) 1 + 1/3 + 4/9 -- to be deleted
4350 ///  reg(c) + reg({b,+,1})          1 + 2/3
4351 
4352 void LSRInstance::NarrowSearchSpaceByDeletingCostlyFormulas() {
4353   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4354     return;
4355   // Ok, we have too many of formulae on our hands to conveniently handle.
4356   // Use a rough heuristic to thin out the list.
4357 
4358   // Set of Regs wich will be 100% used in final solution.
4359   // Used in each formula of a solution (in example above this is reg(c)).
4360   // We can skip them in calculations.
4361   SmallPtrSet<const SCEV *, 4> UniqRegs;
4362   DEBUG(dbgs() << "The search space is too complex.\n");
4363 
4364   // Map each register to probability of not selecting
4365   DenseMap <const SCEV *, float> RegNumMap;
4366   for (const SCEV *Reg : RegUses) {
4367     if (UniqRegs.count(Reg))
4368       continue;
4369     float PNotSel = 1;
4370     for (const LSRUse &LU : Uses) {
4371       if (!LU.Regs.count(Reg))
4372         continue;
4373       float P = LU.getNotSelectedProbability(Reg);
4374       if (P != 0.0)
4375         PNotSel *= P;
4376       else
4377         UniqRegs.insert(Reg);
4378     }
4379     RegNumMap.insert(std::make_pair(Reg, PNotSel));
4380   }
4381 
4382   DEBUG(dbgs() << "Narrowing the search space by deleting costly formulas\n");
4383 
4384   // Delete formulas where registers number expectation is high.
4385   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4386     LSRUse &LU = Uses[LUIdx];
4387     // If nothing to delete - continue.
4388     if (LU.Formulae.size() < 2)
4389       continue;
4390     // This is temporary solution to test performance. Float should be
4391     // replaced with round independent type (based on integers) to avoid
4392     // different results for different target builds.
4393     float FMinRegNum = LU.Formulae[0].getNumRegs();
4394     float FMinARegNum = LU.Formulae[0].getNumRegs();
4395     size_t MinIdx = 0;
4396     for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4397       Formula &F = LU.Formulae[i];
4398       float FRegNum = 0;
4399       float FARegNum = 0;
4400       for (const SCEV *BaseReg : F.BaseRegs) {
4401         if (UniqRegs.count(BaseReg))
4402           continue;
4403         FRegNum += RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg);
4404         if (isa<SCEVAddRecExpr>(BaseReg))
4405           FARegNum +=
4406               RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg);
4407       }
4408       if (const SCEV *ScaledReg = F.ScaledReg) {
4409         if (!UniqRegs.count(ScaledReg)) {
4410           FRegNum +=
4411               RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg);
4412           if (isa<SCEVAddRecExpr>(ScaledReg))
4413             FARegNum +=
4414                 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg);
4415         }
4416       }
4417       if (FMinRegNum > FRegNum ||
4418           (FMinRegNum == FRegNum && FMinARegNum > FARegNum)) {
4419         FMinRegNum = FRegNum;
4420         FMinARegNum = FARegNum;
4421         MinIdx = i;
4422       }
4423     }
4424     DEBUG(dbgs() << "  The formula "; LU.Formulae[MinIdx].print(dbgs());
4425           dbgs() << " with min reg num " << FMinRegNum << '\n');
4426     if (MinIdx != 0)
4427       std::swap(LU.Formulae[MinIdx], LU.Formulae[0]);
4428     while (LU.Formulae.size() != 1) {
4429       DEBUG(dbgs() << "  Deleting "; LU.Formulae.back().print(dbgs());
4430             dbgs() << '\n');
4431       LU.Formulae.pop_back();
4432     }
4433     LU.RecomputeRegs(LUIdx, RegUses);
4434     assert(LU.Formulae.size() == 1 && "Should be exactly 1 min regs formula");
4435     Formula &F = LU.Formulae[0];
4436     DEBUG(dbgs() << "  Leaving only "; F.print(dbgs()); dbgs() << '\n');
4437     // When we choose the formula, the regs become unique.
4438     UniqRegs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
4439     if (F.ScaledReg)
4440       UniqRegs.insert(F.ScaledReg);
4441   }
4442   DEBUG(dbgs() << "After pre-selection:\n";
4443   print_uses(dbgs()));
4444 }
4445 
4446 
4447 /// Pick a register which seems likely to be profitable, and then in any use
4448 /// which has any reference to that register, delete all formulae which do not
4449 /// reference that register.
4450 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() {
4451   // With all other options exhausted, loop until the system is simple
4452   // enough to handle.
4453   SmallPtrSet<const SCEV *, 4> Taken;
4454   while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4455     // Ok, we have too many of formulae on our hands to conveniently handle.
4456     // Use a rough heuristic to thin out the list.
4457     DEBUG(dbgs() << "The search space is too complex.\n");
4458 
4459     // Pick the register which is used by the most LSRUses, which is likely
4460     // to be a good reuse register candidate.
4461     const SCEV *Best = nullptr;
4462     unsigned BestNum = 0;
4463     for (const SCEV *Reg : RegUses) {
4464       if (Taken.count(Reg))
4465         continue;
4466       if (!Best) {
4467         Best = Reg;
4468         BestNum = RegUses.getUsedByIndices(Reg).count();
4469       } else {
4470         unsigned Count = RegUses.getUsedByIndices(Reg).count();
4471         if (Count > BestNum) {
4472           Best = Reg;
4473           BestNum = Count;
4474         }
4475       }
4476     }
4477 
4478     DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
4479                  << " will yield profitable reuse.\n");
4480     Taken.insert(Best);
4481 
4482     // In any use with formulae which references this register, delete formulae
4483     // which don't reference it.
4484     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4485       LSRUse &LU = Uses[LUIdx];
4486       if (!LU.Regs.count(Best)) continue;
4487 
4488       bool Any = false;
4489       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4490         Formula &F = LU.Formulae[i];
4491         if (!F.referencesReg(Best)) {
4492           DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
4493           LU.DeleteFormula(F);
4494           --e;
4495           --i;
4496           Any = true;
4497           assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
4498           continue;
4499         }
4500       }
4501 
4502       if (Any)
4503         LU.RecomputeRegs(LUIdx, RegUses);
4504     }
4505 
4506     DEBUG(dbgs() << "After pre-selection:\n";
4507           print_uses(dbgs()));
4508   }
4509 }
4510 
4511 /// If there are an extraordinary number of formulae to choose from, use some
4512 /// rough heuristics to prune down the number of formulae. This keeps the main
4513 /// solver from taking an extraordinary amount of time in some worst-case
4514 /// scenarios.
4515 void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
4516   NarrowSearchSpaceByDetectingSupersets();
4517   NarrowSearchSpaceByCollapsingUnrolledCode();
4518   NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
4519   if (LSRExpNarrow)
4520     NarrowSearchSpaceByDeletingCostlyFormulas();
4521   else
4522     NarrowSearchSpaceByPickingWinnerRegs();
4523 }
4524 
4525 /// This is the recursive solver.
4526 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
4527                                Cost &SolutionCost,
4528                                SmallVectorImpl<const Formula *> &Workspace,
4529                                const Cost &CurCost,
4530                                const SmallPtrSet<const SCEV *, 16> &CurRegs,
4531                                DenseSet<const SCEV *> &VisitedRegs) const {
4532   // Some ideas:
4533   //  - prune more:
4534   //    - use more aggressive filtering
4535   //    - sort the formula so that the most profitable solutions are found first
4536   //    - sort the uses too
4537   //  - search faster:
4538   //    - don't compute a cost, and then compare. compare while computing a cost
4539   //      and bail early.
4540   //    - track register sets with SmallBitVector
4541 
4542   const LSRUse &LU = Uses[Workspace.size()];
4543 
4544   // If this use references any register that's already a part of the
4545   // in-progress solution, consider it a requirement that a formula must
4546   // reference that register in order to be considered. This prunes out
4547   // unprofitable searching.
4548   SmallSetVector<const SCEV *, 4> ReqRegs;
4549   for (const SCEV *S : CurRegs)
4550     if (LU.Regs.count(S))
4551       ReqRegs.insert(S);
4552 
4553   SmallPtrSet<const SCEV *, 16> NewRegs;
4554   Cost NewCost;
4555   for (const Formula &F : LU.Formulae) {
4556     // Ignore formulae which may not be ideal in terms of register reuse of
4557     // ReqRegs.  The formula should use all required registers before
4558     // introducing new ones.
4559     int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size());
4560     for (const SCEV *Reg : ReqRegs) {
4561       if ((F.ScaledReg && F.ScaledReg == Reg) ||
4562           is_contained(F.BaseRegs, Reg)) {
4563         --NumReqRegsToFind;
4564         if (NumReqRegsToFind == 0)
4565           break;
4566       }
4567     }
4568     if (NumReqRegsToFind != 0) {
4569       // If none of the formulae satisfied the required registers, then we could
4570       // clear ReqRegs and try again. Currently, we simply give up in this case.
4571       continue;
4572     }
4573 
4574     // Evaluate the cost of the current formula. If it's already worse than
4575     // the current best, prune the search at that point.
4576     NewCost = CurCost;
4577     NewRegs = CurRegs;
4578     NewCost.RateFormula(TTI, F, NewRegs, VisitedRegs, L, SE, DT, LU);
4579     if (NewCost.isLess(SolutionCost, TTI)) {
4580       Workspace.push_back(&F);
4581       if (Workspace.size() != Uses.size()) {
4582         SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
4583                      NewRegs, VisitedRegs);
4584         if (F.getNumRegs() == 1 && Workspace.size() == 1)
4585           VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
4586       } else {
4587         DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
4588               dbgs() << ".\n Regs:";
4589               for (const SCEV *S : NewRegs)
4590                 dbgs() << ' ' << *S;
4591               dbgs() << '\n');
4592 
4593         SolutionCost = NewCost;
4594         Solution = Workspace;
4595       }
4596       Workspace.pop_back();
4597     }
4598   }
4599 }
4600 
4601 /// Choose one formula from each use. Return the results in the given Solution
4602 /// vector.
4603 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
4604   SmallVector<const Formula *, 8> Workspace;
4605   Cost SolutionCost;
4606   SolutionCost.Lose();
4607   Cost CurCost;
4608   SmallPtrSet<const SCEV *, 16> CurRegs;
4609   DenseSet<const SCEV *> VisitedRegs;
4610   Workspace.reserve(Uses.size());
4611 
4612   // SolveRecurse does all the work.
4613   SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
4614                CurRegs, VisitedRegs);
4615   if (Solution.empty()) {
4616     DEBUG(dbgs() << "\nNo Satisfactory Solution\n");
4617     return;
4618   }
4619 
4620   // Ok, we've now made all our decisions.
4621   DEBUG(dbgs() << "\n"
4622                   "The chosen solution requires "; SolutionCost.print(dbgs());
4623         dbgs() << ":\n";
4624         for (size_t i = 0, e = Uses.size(); i != e; ++i) {
4625           dbgs() << "  ";
4626           Uses[i].print(dbgs());
4627           dbgs() << "\n"
4628                     "    ";
4629           Solution[i]->print(dbgs());
4630           dbgs() << '\n';
4631         });
4632 
4633   assert(Solution.size() == Uses.size() && "Malformed solution!");
4634 }
4635 
4636 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as
4637 /// we can go while still being dominated by the input positions. This helps
4638 /// canonicalize the insert position, which encourages sharing.
4639 BasicBlock::iterator
4640 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
4641                                  const SmallVectorImpl<Instruction *> &Inputs)
4642                                                                          const {
4643   Instruction *Tentative = &*IP;
4644   while (true) {
4645     bool AllDominate = true;
4646     Instruction *BetterPos = nullptr;
4647     // Don't bother attempting to insert before a catchswitch, their basic block
4648     // cannot have other non-PHI instructions.
4649     if (isa<CatchSwitchInst>(Tentative))
4650       return IP;
4651 
4652     for (Instruction *Inst : Inputs) {
4653       if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
4654         AllDominate = false;
4655         break;
4656       }
4657       // Attempt to find an insert position in the middle of the block,
4658       // instead of at the end, so that it can be used for other expansions.
4659       if (Tentative->getParent() == Inst->getParent() &&
4660           (!BetterPos || !DT.dominates(Inst, BetterPos)))
4661         BetterPos = &*std::next(BasicBlock::iterator(Inst));
4662     }
4663     if (!AllDominate)
4664       break;
4665     if (BetterPos)
4666       IP = BetterPos->getIterator();
4667     else
4668       IP = Tentative->getIterator();
4669 
4670     const Loop *IPLoop = LI.getLoopFor(IP->getParent());
4671     unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
4672 
4673     BasicBlock *IDom;
4674     for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) {
4675       if (!Rung) return IP;
4676       Rung = Rung->getIDom();
4677       if (!Rung) return IP;
4678       IDom = Rung->getBlock();
4679 
4680       // Don't climb into a loop though.
4681       const Loop *IDomLoop = LI.getLoopFor(IDom);
4682       unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
4683       if (IDomDepth <= IPLoopDepth &&
4684           (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
4685         break;
4686     }
4687 
4688     Tentative = IDom->getTerminator();
4689   }
4690 
4691   return IP;
4692 }
4693 
4694 /// Determine an input position which will be dominated by the operands and
4695 /// which will dominate the result.
4696 BasicBlock::iterator
4697 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP,
4698                                            const LSRFixup &LF,
4699                                            const LSRUse &LU,
4700                                            SCEVExpander &Rewriter) const {
4701   // Collect some instructions which must be dominated by the
4702   // expanding replacement. These must be dominated by any operands that
4703   // will be required in the expansion.
4704   SmallVector<Instruction *, 4> Inputs;
4705   if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
4706     Inputs.push_back(I);
4707   if (LU.Kind == LSRUse::ICmpZero)
4708     if (Instruction *I =
4709           dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
4710       Inputs.push_back(I);
4711   if (LF.PostIncLoops.count(L)) {
4712     if (LF.isUseFullyOutsideLoop(L))
4713       Inputs.push_back(L->getLoopLatch()->getTerminator());
4714     else
4715       Inputs.push_back(IVIncInsertPos);
4716   }
4717   // The expansion must also be dominated by the increment positions of any
4718   // loops it for which it is using post-inc mode.
4719   for (const Loop *PIL : LF.PostIncLoops) {
4720     if (PIL == L) continue;
4721 
4722     // Be dominated by the loop exit.
4723     SmallVector<BasicBlock *, 4> ExitingBlocks;
4724     PIL->getExitingBlocks(ExitingBlocks);
4725     if (!ExitingBlocks.empty()) {
4726       BasicBlock *BB = ExitingBlocks[0];
4727       for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
4728         BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
4729       Inputs.push_back(BB->getTerminator());
4730     }
4731   }
4732 
4733   assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad()
4734          && !isa<DbgInfoIntrinsic>(LowestIP) &&
4735          "Insertion point must be a normal instruction");
4736 
4737   // Then, climb up the immediate dominator tree as far as we can go while
4738   // still being dominated by the input positions.
4739   BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs);
4740 
4741   // Don't insert instructions before PHI nodes.
4742   while (isa<PHINode>(IP)) ++IP;
4743 
4744   // Ignore landingpad instructions.
4745   while (IP->isEHPad()) ++IP;
4746 
4747   // Ignore debug intrinsics.
4748   while (isa<DbgInfoIntrinsic>(IP)) ++IP;
4749 
4750   // Set IP below instructions recently inserted by SCEVExpander. This keeps the
4751   // IP consistent across expansions and allows the previously inserted
4752   // instructions to be reused by subsequent expansion.
4753   while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP)
4754     ++IP;
4755 
4756   return IP;
4757 }
4758 
4759 /// Emit instructions for the leading candidate expression for this LSRUse (this
4760 /// is called "expanding").
4761 Value *LSRInstance::Expand(const LSRUse &LU, const LSRFixup &LF,
4762                            const Formula &F, BasicBlock::iterator IP,
4763                            SCEVExpander &Rewriter,
4764                            SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
4765   if (LU.RigidFormula)
4766     return LF.OperandValToReplace;
4767 
4768   // Determine an input position which will be dominated by the operands and
4769   // which will dominate the result.
4770   IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter);
4771   Rewriter.setInsertPoint(&*IP);
4772 
4773   // Inform the Rewriter if we have a post-increment use, so that it can
4774   // perform an advantageous expansion.
4775   Rewriter.setPostInc(LF.PostIncLoops);
4776 
4777   // This is the type that the user actually needs.
4778   Type *OpTy = LF.OperandValToReplace->getType();
4779   // This will be the type that we'll initially expand to.
4780   Type *Ty = F.getType();
4781   if (!Ty)
4782     // No type known; just expand directly to the ultimate type.
4783     Ty = OpTy;
4784   else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
4785     // Expand directly to the ultimate type if it's the right size.
4786     Ty = OpTy;
4787   // This is the type to do integer arithmetic in.
4788   Type *IntTy = SE.getEffectiveSCEVType(Ty);
4789 
4790   // Build up a list of operands to add together to form the full base.
4791   SmallVector<const SCEV *, 8> Ops;
4792 
4793   // Expand the BaseRegs portion.
4794   for (const SCEV *Reg : F.BaseRegs) {
4795     assert(!Reg->isZero() && "Zero allocated in a base register!");
4796 
4797     // If we're expanding for a post-inc user, make the post-inc adjustment.
4798     Reg = denormalizeForPostIncUse(Reg, LF.PostIncLoops, SE);
4799     Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr)));
4800   }
4801 
4802   // Expand the ScaledReg portion.
4803   Value *ICmpScaledV = nullptr;
4804   if (F.Scale != 0) {
4805     const SCEV *ScaledS = F.ScaledReg;
4806 
4807     // If we're expanding for a post-inc user, make the post-inc adjustment.
4808     PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
4809     ScaledS = denormalizeForPostIncUse(ScaledS, Loops, SE);
4810 
4811     if (LU.Kind == LSRUse::ICmpZero) {
4812       // Expand ScaleReg as if it was part of the base regs.
4813       if (F.Scale == 1)
4814         Ops.push_back(
4815             SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)));
4816       else {
4817         // An interesting way of "folding" with an icmp is to use a negated
4818         // scale, which we'll implement by inserting it into the other operand
4819         // of the icmp.
4820         assert(F.Scale == -1 &&
4821                "The only scale supported by ICmpZero uses is -1!");
4822         ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr);
4823       }
4824     } else {
4825       // Otherwise just expand the scaled register and an explicit scale,
4826       // which is expected to be matched as part of the address.
4827 
4828       // Flush the operand list to suppress SCEVExpander hoisting address modes.
4829       // Unless the addressing mode will not be folded.
4830       if (!Ops.empty() && LU.Kind == LSRUse::Address &&
4831           isAMCompletelyFolded(TTI, LU, F)) {
4832         Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
4833         Ops.clear();
4834         Ops.push_back(SE.getUnknown(FullV));
4835       }
4836       ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr));
4837       if (F.Scale != 1)
4838         ScaledS =
4839             SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale));
4840       Ops.push_back(ScaledS);
4841     }
4842   }
4843 
4844   // Expand the GV portion.
4845   if (F.BaseGV) {
4846     // Flush the operand list to suppress SCEVExpander hoisting.
4847     if (!Ops.empty()) {
4848       Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
4849       Ops.clear();
4850       Ops.push_back(SE.getUnknown(FullV));
4851     }
4852     Ops.push_back(SE.getUnknown(F.BaseGV));
4853   }
4854 
4855   // Flush the operand list to suppress SCEVExpander hoisting of both folded and
4856   // unfolded offsets. LSR assumes they both live next to their uses.
4857   if (!Ops.empty()) {
4858     Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
4859     Ops.clear();
4860     Ops.push_back(SE.getUnknown(FullV));
4861   }
4862 
4863   // Expand the immediate portion.
4864   int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset;
4865   if (Offset != 0) {
4866     if (LU.Kind == LSRUse::ICmpZero) {
4867       // The other interesting way of "folding" with an ICmpZero is to use a
4868       // negated immediate.
4869       if (!ICmpScaledV)
4870         ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset);
4871       else {
4872         Ops.push_back(SE.getUnknown(ICmpScaledV));
4873         ICmpScaledV = ConstantInt::get(IntTy, Offset);
4874       }
4875     } else {
4876       // Just add the immediate values. These again are expected to be matched
4877       // as part of the address.
4878       Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
4879     }
4880   }
4881 
4882   // Expand the unfolded offset portion.
4883   int64_t UnfoldedOffset = F.UnfoldedOffset;
4884   if (UnfoldedOffset != 0) {
4885     // Just add the immediate values.
4886     Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy,
4887                                                        UnfoldedOffset)));
4888   }
4889 
4890   // Emit instructions summing all the operands.
4891   const SCEV *FullS = Ops.empty() ?
4892                       SE.getConstant(IntTy, 0) :
4893                       SE.getAddExpr(Ops);
4894   Value *FullV = Rewriter.expandCodeFor(FullS, Ty);
4895 
4896   // We're done expanding now, so reset the rewriter.
4897   Rewriter.clearPostInc();
4898 
4899   // An ICmpZero Formula represents an ICmp which we're handling as a
4900   // comparison against zero. Now that we've expanded an expression for that
4901   // form, update the ICmp's other operand.
4902   if (LU.Kind == LSRUse::ICmpZero) {
4903     ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
4904     DeadInsts.emplace_back(CI->getOperand(1));
4905     assert(!F.BaseGV && "ICmp does not support folding a global value and "
4906                            "a scale at the same time!");
4907     if (F.Scale == -1) {
4908       if (ICmpScaledV->getType() != OpTy) {
4909         Instruction *Cast =
4910           CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
4911                                                    OpTy, false),
4912                            ICmpScaledV, OpTy, "tmp", CI);
4913         ICmpScaledV = Cast;
4914       }
4915       CI->setOperand(1, ICmpScaledV);
4916     } else {
4917       // A scale of 1 means that the scale has been expanded as part of the
4918       // base regs.
4919       assert((F.Scale == 0 || F.Scale == 1) &&
4920              "ICmp does not support folding a global value and "
4921              "a scale at the same time!");
4922       Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
4923                                            -(uint64_t)Offset);
4924       if (C->getType() != OpTy)
4925         C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4926                                                           OpTy, false),
4927                                   C, OpTy);
4928 
4929       CI->setOperand(1, C);
4930     }
4931   }
4932 
4933   return FullV;
4934 }
4935 
4936 /// Helper for Rewrite. PHI nodes are special because the use of their operands
4937 /// effectively happens in their predecessor blocks, so the expression may need
4938 /// to be expanded in multiple places.
4939 void LSRInstance::RewriteForPHI(
4940     PHINode *PN, const LSRUse &LU, const LSRFixup &LF, const Formula &F,
4941     SCEVExpander &Rewriter, SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
4942   DenseMap<BasicBlock *, Value *> Inserted;
4943   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
4944     if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
4945       BasicBlock *BB = PN->getIncomingBlock(i);
4946 
4947       // If this is a critical edge, split the edge so that we do not insert
4948       // the code on all predecessor/successor paths.  We do this unless this
4949       // is the canonical backedge for this loop, which complicates post-inc
4950       // users.
4951       if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
4952           !isa<IndirectBrInst>(BB->getTerminator()) &&
4953           !isa<CatchSwitchInst>(BB->getTerminator())) {
4954         BasicBlock *Parent = PN->getParent();
4955         Loop *PNLoop = LI.getLoopFor(Parent);
4956         if (!PNLoop || Parent != PNLoop->getHeader()) {
4957           // Split the critical edge.
4958           BasicBlock *NewBB = nullptr;
4959           if (!Parent->isLandingPad()) {
4960             NewBB = SplitCriticalEdge(BB, Parent,
4961                                       CriticalEdgeSplittingOptions(&DT, &LI)
4962                                           .setMergeIdenticalEdges()
4963                                           .setDontDeleteUselessPHIs());
4964           } else {
4965             SmallVector<BasicBlock*, 2> NewBBs;
4966             SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI);
4967             NewBB = NewBBs[0];
4968           }
4969           // If NewBB==NULL, then SplitCriticalEdge refused to split because all
4970           // phi predecessors are identical. The simple thing to do is skip
4971           // splitting in this case rather than complicate the API.
4972           if (NewBB) {
4973             // If PN is outside of the loop and BB is in the loop, we want to
4974             // move the block to be immediately before the PHI block, not
4975             // immediately after BB.
4976             if (L->contains(BB) && !L->contains(PN))
4977               NewBB->moveBefore(PN->getParent());
4978 
4979             // Splitting the edge can reduce the number of PHI entries we have.
4980             e = PN->getNumIncomingValues();
4981             BB = NewBB;
4982             i = PN->getBasicBlockIndex(BB);
4983           }
4984         }
4985       }
4986 
4987       std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
4988         Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr)));
4989       if (!Pair.second)
4990         PN->setIncomingValue(i, Pair.first->second);
4991       else {
4992         Value *FullV = Expand(LU, LF, F, BB->getTerminator()->getIterator(),
4993                               Rewriter, DeadInsts);
4994 
4995         // If this is reuse-by-noop-cast, insert the noop cast.
4996         Type *OpTy = LF.OperandValToReplace->getType();
4997         if (FullV->getType() != OpTy)
4998           FullV =
4999             CastInst::Create(CastInst::getCastOpcode(FullV, false,
5000                                                      OpTy, false),
5001                              FullV, LF.OperandValToReplace->getType(),
5002                              "tmp", BB->getTerminator());
5003 
5004         PN->setIncomingValue(i, FullV);
5005         Pair.first->second = FullV;
5006       }
5007     }
5008 }
5009 
5010 /// Emit instructions for the leading candidate expression for this LSRUse (this
5011 /// is called "expanding"), and update the UserInst to reference the newly
5012 /// expanded value.
5013 void LSRInstance::Rewrite(const LSRUse &LU, const LSRFixup &LF,
5014                           const Formula &F, SCEVExpander &Rewriter,
5015                           SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5016   // First, find an insertion point that dominates UserInst. For PHI nodes,
5017   // find the nearest block which dominates all the relevant uses.
5018   if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
5019     RewriteForPHI(PN, LU, LF, F, Rewriter, DeadInsts);
5020   } else {
5021     Value *FullV =
5022       Expand(LU, LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts);
5023 
5024     // If this is reuse-by-noop-cast, insert the noop cast.
5025     Type *OpTy = LF.OperandValToReplace->getType();
5026     if (FullV->getType() != OpTy) {
5027       Instruction *Cast =
5028         CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
5029                          FullV, OpTy, "tmp", LF.UserInst);
5030       FullV = Cast;
5031     }
5032 
5033     // Update the user. ICmpZero is handled specially here (for now) because
5034     // Expand may have updated one of the operands of the icmp already, and
5035     // its new value may happen to be equal to LF.OperandValToReplace, in
5036     // which case doing replaceUsesOfWith leads to replacing both operands
5037     // with the same value. TODO: Reorganize this.
5038     if (LU.Kind == LSRUse::ICmpZero)
5039       LF.UserInst->setOperand(0, FullV);
5040     else
5041       LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
5042   }
5043 
5044   DeadInsts.emplace_back(LF.OperandValToReplace);
5045 }
5046 
5047 /// Rewrite all the fixup locations with new values, following the chosen
5048 /// solution.
5049 void LSRInstance::ImplementSolution(
5050     const SmallVectorImpl<const Formula *> &Solution) {
5051   // Keep track of instructions we may have made dead, so that
5052   // we can remove them after we are done working.
5053   SmallVector<WeakTrackingVH, 16> DeadInsts;
5054 
5055   SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(),
5056                         "lsr");
5057 #ifndef NDEBUG
5058   Rewriter.setDebugType(DEBUG_TYPE);
5059 #endif
5060   Rewriter.disableCanonicalMode();
5061   Rewriter.enableLSRMode();
5062   Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
5063 
5064   // Mark phi nodes that terminate chains so the expander tries to reuse them.
5065   for (const IVChain &Chain : IVChainVec) {
5066     if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst()))
5067       Rewriter.setChainedPhi(PN);
5068   }
5069 
5070   // Expand the new value definitions and update the users.
5071   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx)
5072     for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) {
5073       Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], Rewriter, DeadInsts);
5074       Changed = true;
5075     }
5076 
5077   for (const IVChain &Chain : IVChainVec) {
5078     GenerateIVChain(Chain, Rewriter, DeadInsts);
5079     Changed = true;
5080   }
5081   // Clean up after ourselves. This must be done before deleting any
5082   // instructions.
5083   Rewriter.clear();
5084 
5085   Changed |= DeleteTriviallyDeadInstructions(DeadInsts);
5086 }
5087 
5088 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE,
5089                          DominatorTree &DT, LoopInfo &LI,
5090                          const TargetTransformInfo &TTI)
5091     : IU(IU), SE(SE), DT(DT), LI(LI), TTI(TTI), L(L), Changed(false),
5092       IVIncInsertPos(nullptr) {
5093   // If LoopSimplify form is not available, stay out of trouble.
5094   if (!L->isLoopSimplifyForm())
5095     return;
5096 
5097   // If there's no interesting work to be done, bail early.
5098   if (IU.empty()) return;
5099 
5100   // If there's too much analysis to be done, bail early. We won't be able to
5101   // model the problem anyway.
5102   unsigned NumUsers = 0;
5103   for (const IVStrideUse &U : IU) {
5104     if (++NumUsers > MaxIVUsers) {
5105       (void)U;
5106       DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U << "\n");
5107       return;
5108     }
5109     // Bail out if we have a PHI on an EHPad that gets a value from a
5110     // CatchSwitchInst.  Because the CatchSwitchInst cannot be split, there is
5111     // no good place to stick any instructions.
5112     if (auto *PN = dyn_cast<PHINode>(U.getUser())) {
5113        auto *FirstNonPHI = PN->getParent()->getFirstNonPHI();
5114        if (isa<FuncletPadInst>(FirstNonPHI) ||
5115            isa<CatchSwitchInst>(FirstNonPHI))
5116          for (BasicBlock *PredBB : PN->blocks())
5117            if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI()))
5118              return;
5119     }
5120   }
5121 
5122 #ifndef NDEBUG
5123   // All dominating loops must have preheaders, or SCEVExpander may not be able
5124   // to materialize an AddRecExpr whose Start is an outer AddRecExpr.
5125   //
5126   // IVUsers analysis should only create users that are dominated by simple loop
5127   // headers. Since this loop should dominate all of its users, its user list
5128   // should be empty if this loop itself is not within a simple loop nest.
5129   for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader());
5130        Rung; Rung = Rung->getIDom()) {
5131     BasicBlock *BB = Rung->getBlock();
5132     const Loop *DomLoop = LI.getLoopFor(BB);
5133     if (DomLoop && DomLoop->getHeader() == BB) {
5134       assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest");
5135     }
5136   }
5137 #endif // DEBUG
5138 
5139   DEBUG(dbgs() << "\nLSR on loop ";
5140         L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false);
5141         dbgs() << ":\n");
5142 
5143   // First, perform some low-level loop optimizations.
5144   OptimizeShadowIV();
5145   OptimizeLoopTermCond();
5146 
5147   // If loop preparation eliminates all interesting IV users, bail.
5148   if (IU.empty()) return;
5149 
5150   // Skip nested loops until we can model them better with formulae.
5151   if (!L->empty()) {
5152     DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n");
5153     return;
5154   }
5155 
5156   // Start collecting data and preparing for the solver.
5157   CollectChains();
5158   CollectInterestingTypesAndFactors();
5159   CollectFixupsAndInitialFormulae();
5160   CollectLoopInvariantFixupsAndFormulae();
5161 
5162   assert(!Uses.empty() && "IVUsers reported at least one use");
5163   DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
5164         print_uses(dbgs()));
5165 
5166   // Now use the reuse data to generate a bunch of interesting ways
5167   // to formulate the values needed for the uses.
5168   GenerateAllReuseFormulae();
5169 
5170   FilterOutUndesirableDedicatedRegisters();
5171   NarrowSearchSpaceUsingHeuristics();
5172 
5173   SmallVector<const Formula *, 8> Solution;
5174   Solve(Solution);
5175 
5176   // Release memory that is no longer needed.
5177   Factors.clear();
5178   Types.clear();
5179   RegUses.clear();
5180 
5181   if (Solution.empty())
5182     return;
5183 
5184 #ifndef NDEBUG
5185   // Formulae should be legal.
5186   for (const LSRUse &LU : Uses) {
5187     for (const Formula &F : LU.Formulae)
5188       assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
5189                         F) && "Illegal formula generated!");
5190   };
5191 #endif
5192 
5193   // Now that we've decided what we want, make it so.
5194   ImplementSolution(Solution);
5195 }
5196 
5197 void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
5198   if (Factors.empty() && Types.empty()) return;
5199 
5200   OS << "LSR has identified the following interesting factors and types: ";
5201   bool First = true;
5202 
5203   for (int64_t Factor : Factors) {
5204     if (!First) OS << ", ";
5205     First = false;
5206     OS << '*' << Factor;
5207   }
5208 
5209   for (Type *Ty : Types) {
5210     if (!First) OS << ", ";
5211     First = false;
5212     OS << '(' << *Ty << ')';
5213   }
5214   OS << '\n';
5215 }
5216 
5217 void LSRInstance::print_fixups(raw_ostream &OS) const {
5218   OS << "LSR is examining the following fixup sites:\n";
5219   for (const LSRUse &LU : Uses)
5220     for (const LSRFixup &LF : LU.Fixups) {
5221       dbgs() << "  ";
5222       LF.print(OS);
5223       OS << '\n';
5224     }
5225 }
5226 
5227 void LSRInstance::print_uses(raw_ostream &OS) const {
5228   OS << "LSR is examining the following uses:\n";
5229   for (const LSRUse &LU : Uses) {
5230     dbgs() << "  ";
5231     LU.print(OS);
5232     OS << '\n';
5233     for (const Formula &F : LU.Formulae) {
5234       OS << "    ";
5235       F.print(OS);
5236       OS << '\n';
5237     }
5238   }
5239 }
5240 
5241 void LSRInstance::print(raw_ostream &OS) const {
5242   print_factors_and_types(OS);
5243   print_fixups(OS);
5244   print_uses(OS);
5245 }
5246 
5247 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
5248 LLVM_DUMP_METHOD void LSRInstance::dump() const {
5249   print(errs()); errs() << '\n';
5250 }
5251 #endif
5252 
5253 namespace {
5254 
5255 class LoopStrengthReduce : public LoopPass {
5256 public:
5257   static char ID; // Pass ID, replacement for typeid
5258 
5259   LoopStrengthReduce();
5260 
5261 private:
5262   bool runOnLoop(Loop *L, LPPassManager &LPM) override;
5263   void getAnalysisUsage(AnalysisUsage &AU) const override;
5264 };
5265 
5266 } // end anonymous namespace
5267 
5268 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) {
5269   initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
5270 }
5271 
5272 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
5273   // We split critical edges, so we change the CFG.  However, we do update
5274   // many analyses if they are around.
5275   AU.addPreservedID(LoopSimplifyID);
5276 
5277   AU.addRequired<LoopInfoWrapperPass>();
5278   AU.addPreserved<LoopInfoWrapperPass>();
5279   AU.addRequiredID(LoopSimplifyID);
5280   AU.addRequired<DominatorTreeWrapperPass>();
5281   AU.addPreserved<DominatorTreeWrapperPass>();
5282   AU.addRequired<ScalarEvolutionWrapperPass>();
5283   AU.addPreserved<ScalarEvolutionWrapperPass>();
5284   // Requiring LoopSimplify a second time here prevents IVUsers from running
5285   // twice, since LoopSimplify was invalidated by running ScalarEvolution.
5286   AU.addRequiredID(LoopSimplifyID);
5287   AU.addRequired<IVUsersWrapperPass>();
5288   AU.addPreserved<IVUsersWrapperPass>();
5289   AU.addRequired<TargetTransformInfoWrapperPass>();
5290 }
5291 
5292 static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE,
5293                                DominatorTree &DT, LoopInfo &LI,
5294                                const TargetTransformInfo &TTI) {
5295   bool Changed = false;
5296 
5297   // Run the main LSR transformation.
5298   Changed |= LSRInstance(L, IU, SE, DT, LI, TTI).getChanged();
5299 
5300   // Remove any extra phis created by processing inner loops.
5301   Changed |= DeleteDeadPHIs(L->getHeader());
5302   if (EnablePhiElim && L->isLoopSimplifyForm()) {
5303     SmallVector<WeakTrackingVH, 16> DeadInsts;
5304     const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
5305     SCEVExpander Rewriter(SE, DL, "lsr");
5306 #ifndef NDEBUG
5307     Rewriter.setDebugType(DEBUG_TYPE);
5308 #endif
5309     unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI);
5310     if (numFolded) {
5311       Changed = true;
5312       DeleteTriviallyDeadInstructions(DeadInsts);
5313       DeleteDeadPHIs(L->getHeader());
5314     }
5315   }
5316   return Changed;
5317 }
5318 
5319 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
5320   if (skipLoop(L))
5321     return false;
5322 
5323   auto &IU = getAnalysis<IVUsersWrapperPass>().getIU();
5324   auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
5325   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
5326   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
5327   const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
5328       *L->getHeader()->getParent());
5329   return ReduceLoopStrength(L, IU, SE, DT, LI, TTI);
5330 }
5331 
5332 PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM,
5333                                               LoopStandardAnalysisResults &AR,
5334                                               LPMUpdater &) {
5335   if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE,
5336                           AR.DT, AR.LI, AR.TTI))
5337     return PreservedAnalyses::all();
5338 
5339   return getLoopPassPreservedAnalyses();
5340 }
5341 
5342 char LoopStrengthReduce::ID = 0;
5343 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce",
5344                       "Loop Strength Reduction", false, false)
5345 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
5346 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
5347 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
5348 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass)
5349 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
5350 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
5351 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce",
5352                     "Loop Strength Reduction", false, false)
5353 
5354 Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); }
5355