1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This transformation analyzes and transforms the induction variables (and 10 // computations derived from them) into forms suitable for efficient execution 11 // on the target. 12 // 13 // This pass performs a strength reduction on array references inside loops that 14 // have as one or more of their components the loop induction variable, it 15 // rewrites expressions to take advantage of scaled-index addressing modes 16 // available on the target, and it performs a variety of other optimizations 17 // related to loop induction variables. 18 // 19 // Terminology note: this code has a lot of handling for "post-increment" or 20 // "post-inc" users. This is not talking about post-increment addressing modes; 21 // it is instead talking about code like this: 22 // 23 // %i = phi [ 0, %entry ], [ %i.next, %latch ] 24 // ... 25 // %i.next = add %i, 1 26 // %c = icmp eq %i.next, %n 27 // 28 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however 29 // it's useful to think about these as the same register, with some uses using 30 // the value of the register before the add and some using it after. In this 31 // example, the icmp is a post-increment user, since it uses %i.next, which is 32 // the value of the induction variable after the increment. The other common 33 // case of post-increment users is users outside the loop. 34 // 35 // TODO: More sophistication in the way Formulae are generated and filtered. 36 // 37 // TODO: Handle multiple loops at a time. 38 // 39 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead 40 // of a GlobalValue? 41 // 42 // TODO: When truncation is free, truncate ICmp users' operands to make it a 43 // smaller encoding (on x86 at least). 44 // 45 // TODO: When a negated register is used by an add (such as in a list of 46 // multiple base registers, or as the increment expression in an addrec), 47 // we may not actually need both reg and (-1 * reg) in registers; the 48 // negation can be implemented by using a sub instead of an add. The 49 // lack of support for taking this into consideration when making 50 // register pressure decisions is partly worked around by the "Special" 51 // use kind. 52 // 53 //===----------------------------------------------------------------------===// 54 55 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h" 56 #include "llvm/ADT/APInt.h" 57 #include "llvm/ADT/DenseMap.h" 58 #include "llvm/ADT/DenseSet.h" 59 #include "llvm/ADT/Hashing.h" 60 #include "llvm/ADT/PointerIntPair.h" 61 #include "llvm/ADT/STLExtras.h" 62 #include "llvm/ADT/SetVector.h" 63 #include "llvm/ADT/SmallBitVector.h" 64 #include "llvm/ADT/SmallPtrSet.h" 65 #include "llvm/ADT/SmallSet.h" 66 #include "llvm/ADT/SmallVector.h" 67 #include "llvm/ADT/iterator_range.h" 68 #include "llvm/Analysis/IVUsers.h" 69 #include "llvm/Analysis/LoopAnalysisManager.h" 70 #include "llvm/Analysis/LoopInfo.h" 71 #include "llvm/Analysis/LoopPass.h" 72 #include "llvm/Analysis/ScalarEvolution.h" 73 #include "llvm/Analysis/ScalarEvolutionExpander.h" 74 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 75 #include "llvm/Analysis/ScalarEvolutionNormalization.h" 76 #include "llvm/Analysis/TargetTransformInfo.h" 77 #include "llvm/Transforms/Utils/Local.h" 78 #include "llvm/Config/llvm-config.h" 79 #include "llvm/IR/BasicBlock.h" 80 #include "llvm/IR/Constant.h" 81 #include "llvm/IR/Constants.h" 82 #include "llvm/IR/DerivedTypes.h" 83 #include "llvm/IR/Dominators.h" 84 #include "llvm/IR/GlobalValue.h" 85 #include "llvm/IR/IRBuilder.h" 86 #include "llvm/IR/InstrTypes.h" 87 #include "llvm/IR/Instruction.h" 88 #include "llvm/IR/Instructions.h" 89 #include "llvm/IR/IntrinsicInst.h" 90 #include "llvm/IR/Intrinsics.h" 91 #include "llvm/IR/Module.h" 92 #include "llvm/IR/OperandTraits.h" 93 #include "llvm/IR/Operator.h" 94 #include "llvm/IR/PassManager.h" 95 #include "llvm/IR/Type.h" 96 #include "llvm/IR/Use.h" 97 #include "llvm/IR/User.h" 98 #include "llvm/IR/Value.h" 99 #include "llvm/IR/ValueHandle.h" 100 #include "llvm/Pass.h" 101 #include "llvm/Support/Casting.h" 102 #include "llvm/Support/CommandLine.h" 103 #include "llvm/Support/Compiler.h" 104 #include "llvm/Support/Debug.h" 105 #include "llvm/Support/ErrorHandling.h" 106 #include "llvm/Support/MathExtras.h" 107 #include "llvm/Support/raw_ostream.h" 108 #include "llvm/Transforms/Scalar.h" 109 #include "llvm/Transforms/Utils.h" 110 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 111 #include <algorithm> 112 #include <cassert> 113 #include <cstddef> 114 #include <cstdint> 115 #include <cstdlib> 116 #include <iterator> 117 #include <limits> 118 #include <map> 119 #include <utility> 120 121 using namespace llvm; 122 123 #define DEBUG_TYPE "loop-reduce" 124 125 /// MaxIVUsers is an arbitrary threshold that provides an early opportunity for 126 /// bail out. This threshold is far beyond the number of users that LSR can 127 /// conceivably solve, so it should not affect generated code, but catches the 128 /// worst cases before LSR burns too much compile time and stack space. 129 static const unsigned MaxIVUsers = 200; 130 131 // Temporary flag to cleanup congruent phis after LSR phi expansion. 132 // It's currently disabled until we can determine whether it's truly useful or 133 // not. The flag should be removed after the v3.0 release. 134 // This is now needed for ivchains. 135 static cl::opt<bool> EnablePhiElim( 136 "enable-lsr-phielim", cl::Hidden, cl::init(true), 137 cl::desc("Enable LSR phi elimination")); 138 139 // The flag adds instruction count to solutions cost comparision. 140 static cl::opt<bool> InsnsCost( 141 "lsr-insns-cost", cl::Hidden, cl::init(true), 142 cl::desc("Add instruction count to a LSR cost model")); 143 144 // Flag to choose how to narrow complex lsr solution 145 static cl::opt<bool> LSRExpNarrow( 146 "lsr-exp-narrow", cl::Hidden, cl::init(false), 147 cl::desc("Narrow LSR complex solution using" 148 " expectation of registers number")); 149 150 // Flag to narrow search space by filtering non-optimal formulae with 151 // the same ScaledReg and Scale. 152 static cl::opt<bool> FilterSameScaledReg( 153 "lsr-filter-same-scaled-reg", cl::Hidden, cl::init(true), 154 cl::desc("Narrow LSR search space by filtering non-optimal formulae" 155 " with the same ScaledReg and Scale")); 156 157 static cl::opt<unsigned> ComplexityLimit( 158 "lsr-complexity-limit", cl::Hidden, 159 cl::init(std::numeric_limits<uint16_t>::max()), 160 cl::desc("LSR search space complexity limit")); 161 162 #ifndef NDEBUG 163 // Stress test IV chain generation. 164 static cl::opt<bool> StressIVChain( 165 "stress-ivchain", cl::Hidden, cl::init(false), 166 cl::desc("Stress test LSR IV chains")); 167 #else 168 static bool StressIVChain = false; 169 #endif 170 171 namespace { 172 173 struct MemAccessTy { 174 /// Used in situations where the accessed memory type is unknown. 175 static const unsigned UnknownAddressSpace = 176 std::numeric_limits<unsigned>::max(); 177 178 Type *MemTy = nullptr; 179 unsigned AddrSpace = UnknownAddressSpace; 180 181 MemAccessTy() = default; 182 MemAccessTy(Type *Ty, unsigned AS) : MemTy(Ty), AddrSpace(AS) {} 183 184 bool operator==(MemAccessTy Other) const { 185 return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace; 186 } 187 188 bool operator!=(MemAccessTy Other) const { return !(*this == Other); } 189 190 static MemAccessTy getUnknown(LLVMContext &Ctx, 191 unsigned AS = UnknownAddressSpace) { 192 return MemAccessTy(Type::getVoidTy(Ctx), AS); 193 } 194 195 Type *getType() { return MemTy; } 196 }; 197 198 /// This class holds data which is used to order reuse candidates. 199 class RegSortData { 200 public: 201 /// This represents the set of LSRUse indices which reference 202 /// a particular register. 203 SmallBitVector UsedByIndices; 204 205 void print(raw_ostream &OS) const; 206 void dump() const; 207 }; 208 209 } // end anonymous namespace 210 211 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 212 void RegSortData::print(raw_ostream &OS) const { 213 OS << "[NumUses=" << UsedByIndices.count() << ']'; 214 } 215 216 LLVM_DUMP_METHOD void RegSortData::dump() const { 217 print(errs()); errs() << '\n'; 218 } 219 #endif 220 221 namespace { 222 223 /// Map register candidates to information about how they are used. 224 class RegUseTracker { 225 using RegUsesTy = DenseMap<const SCEV *, RegSortData>; 226 227 RegUsesTy RegUsesMap; 228 SmallVector<const SCEV *, 16> RegSequence; 229 230 public: 231 void countRegister(const SCEV *Reg, size_t LUIdx); 232 void dropRegister(const SCEV *Reg, size_t LUIdx); 233 void swapAndDropUse(size_t LUIdx, size_t LastLUIdx); 234 235 bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const; 236 237 const SmallBitVector &getUsedByIndices(const SCEV *Reg) const; 238 239 void clear(); 240 241 using iterator = SmallVectorImpl<const SCEV *>::iterator; 242 using const_iterator = SmallVectorImpl<const SCEV *>::const_iterator; 243 244 iterator begin() { return RegSequence.begin(); } 245 iterator end() { return RegSequence.end(); } 246 const_iterator begin() const { return RegSequence.begin(); } 247 const_iterator end() const { return RegSequence.end(); } 248 }; 249 250 } // end anonymous namespace 251 252 void 253 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) { 254 std::pair<RegUsesTy::iterator, bool> Pair = 255 RegUsesMap.insert(std::make_pair(Reg, RegSortData())); 256 RegSortData &RSD = Pair.first->second; 257 if (Pair.second) 258 RegSequence.push_back(Reg); 259 RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1)); 260 RSD.UsedByIndices.set(LUIdx); 261 } 262 263 void 264 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) { 265 RegUsesTy::iterator It = RegUsesMap.find(Reg); 266 assert(It != RegUsesMap.end()); 267 RegSortData &RSD = It->second; 268 assert(RSD.UsedByIndices.size() > LUIdx); 269 RSD.UsedByIndices.reset(LUIdx); 270 } 271 272 void 273 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) { 274 assert(LUIdx <= LastLUIdx); 275 276 // Update RegUses. The data structure is not optimized for this purpose; 277 // we must iterate through it and update each of the bit vectors. 278 for (auto &Pair : RegUsesMap) { 279 SmallBitVector &UsedByIndices = Pair.second.UsedByIndices; 280 if (LUIdx < UsedByIndices.size()) 281 UsedByIndices[LUIdx] = 282 LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false; 283 UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx)); 284 } 285 } 286 287 bool 288 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const { 289 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 290 if (I == RegUsesMap.end()) 291 return false; 292 const SmallBitVector &UsedByIndices = I->second.UsedByIndices; 293 int i = UsedByIndices.find_first(); 294 if (i == -1) return false; 295 if ((size_t)i != LUIdx) return true; 296 return UsedByIndices.find_next(i) != -1; 297 } 298 299 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const { 300 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 301 assert(I != RegUsesMap.end() && "Unknown register!"); 302 return I->second.UsedByIndices; 303 } 304 305 void RegUseTracker::clear() { 306 RegUsesMap.clear(); 307 RegSequence.clear(); 308 } 309 310 namespace { 311 312 /// This class holds information that describes a formula for computing 313 /// satisfying a use. It may include broken-out immediates and scaled registers. 314 struct Formula { 315 /// Global base address used for complex addressing. 316 GlobalValue *BaseGV = nullptr; 317 318 /// Base offset for complex addressing. 319 int64_t BaseOffset = 0; 320 321 /// Whether any complex addressing has a base register. 322 bool HasBaseReg = false; 323 324 /// The scale of any complex addressing. 325 int64_t Scale = 0; 326 327 /// The list of "base" registers for this use. When this is non-empty. The 328 /// canonical representation of a formula is 329 /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and 330 /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty(). 331 /// 3. The reg containing recurrent expr related with currect loop in the 332 /// formula should be put in the ScaledReg. 333 /// #1 enforces that the scaled register is always used when at least two 334 /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2. 335 /// #2 enforces that 1 * reg is reg. 336 /// #3 ensures invariant regs with respect to current loop can be combined 337 /// together in LSR codegen. 338 /// This invariant can be temporarily broken while building a formula. 339 /// However, every formula inserted into the LSRInstance must be in canonical 340 /// form. 341 SmallVector<const SCEV *, 4> BaseRegs; 342 343 /// The 'scaled' register for this use. This should be non-null when Scale is 344 /// not zero. 345 const SCEV *ScaledReg = nullptr; 346 347 /// An additional constant offset which added near the use. This requires a 348 /// temporary register, but the offset itself can live in an add immediate 349 /// field rather than a register. 350 int64_t UnfoldedOffset = 0; 351 352 Formula() = default; 353 354 void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE); 355 356 bool isCanonical(const Loop &L) const; 357 358 void canonicalize(const Loop &L); 359 360 bool unscale(); 361 362 bool hasZeroEnd() const; 363 364 size_t getNumRegs() const; 365 Type *getType() const; 366 367 void deleteBaseReg(const SCEV *&S); 368 369 bool referencesReg(const SCEV *S) const; 370 bool hasRegsUsedByUsesOtherThan(size_t LUIdx, 371 const RegUseTracker &RegUses) const; 372 373 void print(raw_ostream &OS) const; 374 void dump() const; 375 }; 376 377 } // end anonymous namespace 378 379 /// Recursion helper for initialMatch. 380 static void DoInitialMatch(const SCEV *S, Loop *L, 381 SmallVectorImpl<const SCEV *> &Good, 382 SmallVectorImpl<const SCEV *> &Bad, 383 ScalarEvolution &SE) { 384 // Collect expressions which properly dominate the loop header. 385 if (SE.properlyDominates(S, L->getHeader())) { 386 Good.push_back(S); 387 return; 388 } 389 390 // Look at add operands. 391 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 392 for (const SCEV *S : Add->operands()) 393 DoInitialMatch(S, L, Good, Bad, SE); 394 return; 395 } 396 397 // Look at addrec operands. 398 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 399 if (!AR->getStart()->isZero() && AR->isAffine()) { 400 DoInitialMatch(AR->getStart(), L, Good, Bad, SE); 401 DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0), 402 AR->getStepRecurrence(SE), 403 // FIXME: AR->getNoWrapFlags() 404 AR->getLoop(), SCEV::FlagAnyWrap), 405 L, Good, Bad, SE); 406 return; 407 } 408 409 // Handle a multiplication by -1 (negation) if it didn't fold. 410 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) 411 if (Mul->getOperand(0)->isAllOnesValue()) { 412 SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end()); 413 const SCEV *NewMul = SE.getMulExpr(Ops); 414 415 SmallVector<const SCEV *, 4> MyGood; 416 SmallVector<const SCEV *, 4> MyBad; 417 DoInitialMatch(NewMul, L, MyGood, MyBad, SE); 418 const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue( 419 SE.getEffectiveSCEVType(NewMul->getType()))); 420 for (const SCEV *S : MyGood) 421 Good.push_back(SE.getMulExpr(NegOne, S)); 422 for (const SCEV *S : MyBad) 423 Bad.push_back(SE.getMulExpr(NegOne, S)); 424 return; 425 } 426 427 // Ok, we can't do anything interesting. Just stuff the whole thing into a 428 // register and hope for the best. 429 Bad.push_back(S); 430 } 431 432 /// Incorporate loop-variant parts of S into this Formula, attempting to keep 433 /// all loop-invariant and loop-computable values in a single base register. 434 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) { 435 SmallVector<const SCEV *, 4> Good; 436 SmallVector<const SCEV *, 4> Bad; 437 DoInitialMatch(S, L, Good, Bad, SE); 438 if (!Good.empty()) { 439 const SCEV *Sum = SE.getAddExpr(Good); 440 if (!Sum->isZero()) 441 BaseRegs.push_back(Sum); 442 HasBaseReg = true; 443 } 444 if (!Bad.empty()) { 445 const SCEV *Sum = SE.getAddExpr(Bad); 446 if (!Sum->isZero()) 447 BaseRegs.push_back(Sum); 448 HasBaseReg = true; 449 } 450 canonicalize(*L); 451 } 452 453 /// Check whether or not this formula satisfies the canonical 454 /// representation. 455 /// \see Formula::BaseRegs. 456 bool Formula::isCanonical(const Loop &L) const { 457 if (!ScaledReg) 458 return BaseRegs.size() <= 1; 459 460 if (Scale != 1) 461 return true; 462 463 if (Scale == 1 && BaseRegs.empty()) 464 return false; 465 466 const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg); 467 if (SAR && SAR->getLoop() == &L) 468 return true; 469 470 // If ScaledReg is not a recurrent expr, or it is but its loop is not current 471 // loop, meanwhile BaseRegs contains a recurrent expr reg related with current 472 // loop, we want to swap the reg in BaseRegs with ScaledReg. 473 auto I = 474 find_if(make_range(BaseRegs.begin(), BaseRegs.end()), [&](const SCEV *S) { 475 return isa<const SCEVAddRecExpr>(S) && 476 (cast<SCEVAddRecExpr>(S)->getLoop() == &L); 477 }); 478 return I == BaseRegs.end(); 479 } 480 481 /// Helper method to morph a formula into its canonical representation. 482 /// \see Formula::BaseRegs. 483 /// Every formula having more than one base register, must use the ScaledReg 484 /// field. Otherwise, we would have to do special cases everywhere in LSR 485 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ... 486 /// On the other hand, 1*reg should be canonicalized into reg. 487 void Formula::canonicalize(const Loop &L) { 488 if (isCanonical(L)) 489 return; 490 // So far we did not need this case. This is easy to implement but it is 491 // useless to maintain dead code. Beside it could hurt compile time. 492 assert(!BaseRegs.empty() && "1*reg => reg, should not be needed."); 493 494 // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg. 495 if (!ScaledReg) { 496 ScaledReg = BaseRegs.back(); 497 BaseRegs.pop_back(); 498 Scale = 1; 499 } 500 501 // If ScaledReg is an invariant with respect to L, find the reg from 502 // BaseRegs containing the recurrent expr related with Loop L. Swap the 503 // reg with ScaledReg. 504 const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg); 505 if (!SAR || SAR->getLoop() != &L) { 506 auto I = find_if(make_range(BaseRegs.begin(), BaseRegs.end()), 507 [&](const SCEV *S) { 508 return isa<const SCEVAddRecExpr>(S) && 509 (cast<SCEVAddRecExpr>(S)->getLoop() == &L); 510 }); 511 if (I != BaseRegs.end()) 512 std::swap(ScaledReg, *I); 513 } 514 } 515 516 /// Get rid of the scale in the formula. 517 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2. 518 /// \return true if it was possible to get rid of the scale, false otherwise. 519 /// \note After this operation the formula may not be in the canonical form. 520 bool Formula::unscale() { 521 if (Scale != 1) 522 return false; 523 Scale = 0; 524 BaseRegs.push_back(ScaledReg); 525 ScaledReg = nullptr; 526 return true; 527 } 528 529 bool Formula::hasZeroEnd() const { 530 if (UnfoldedOffset || BaseOffset) 531 return false; 532 if (BaseRegs.size() != 1 || ScaledReg) 533 return false; 534 return true; 535 } 536 537 /// Return the total number of register operands used by this formula. This does 538 /// not include register uses implied by non-constant addrec strides. 539 size_t Formula::getNumRegs() const { 540 return !!ScaledReg + BaseRegs.size(); 541 } 542 543 /// Return the type of this formula, if it has one, or null otherwise. This type 544 /// is meaningless except for the bit size. 545 Type *Formula::getType() const { 546 return !BaseRegs.empty() ? BaseRegs.front()->getType() : 547 ScaledReg ? ScaledReg->getType() : 548 BaseGV ? BaseGV->getType() : 549 nullptr; 550 } 551 552 /// Delete the given base reg from the BaseRegs list. 553 void Formula::deleteBaseReg(const SCEV *&S) { 554 if (&S != &BaseRegs.back()) 555 std::swap(S, BaseRegs.back()); 556 BaseRegs.pop_back(); 557 } 558 559 /// Test if this formula references the given register. 560 bool Formula::referencesReg(const SCEV *S) const { 561 return S == ScaledReg || is_contained(BaseRegs, S); 562 } 563 564 /// Test whether this formula uses registers which are used by uses other than 565 /// the use with the given index. 566 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx, 567 const RegUseTracker &RegUses) const { 568 if (ScaledReg) 569 if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx)) 570 return true; 571 for (const SCEV *BaseReg : BaseRegs) 572 if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx)) 573 return true; 574 return false; 575 } 576 577 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 578 void Formula::print(raw_ostream &OS) const { 579 bool First = true; 580 if (BaseGV) { 581 if (!First) OS << " + "; else First = false; 582 BaseGV->printAsOperand(OS, /*PrintType=*/false); 583 } 584 if (BaseOffset != 0) { 585 if (!First) OS << " + "; else First = false; 586 OS << BaseOffset; 587 } 588 for (const SCEV *BaseReg : BaseRegs) { 589 if (!First) OS << " + "; else First = false; 590 OS << "reg(" << *BaseReg << ')'; 591 } 592 if (HasBaseReg && BaseRegs.empty()) { 593 if (!First) OS << " + "; else First = false; 594 OS << "**error: HasBaseReg**"; 595 } else if (!HasBaseReg && !BaseRegs.empty()) { 596 if (!First) OS << " + "; else First = false; 597 OS << "**error: !HasBaseReg**"; 598 } 599 if (Scale != 0) { 600 if (!First) OS << " + "; else First = false; 601 OS << Scale << "*reg("; 602 if (ScaledReg) 603 OS << *ScaledReg; 604 else 605 OS << "<unknown>"; 606 OS << ')'; 607 } 608 if (UnfoldedOffset != 0) { 609 if (!First) OS << " + "; 610 OS << "imm(" << UnfoldedOffset << ')'; 611 } 612 } 613 614 LLVM_DUMP_METHOD void Formula::dump() const { 615 print(errs()); errs() << '\n'; 616 } 617 #endif 618 619 /// Return true if the given addrec can be sign-extended without changing its 620 /// value. 621 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 622 Type *WideTy = 623 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1); 624 return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy)); 625 } 626 627 /// Return true if the given add can be sign-extended without changing its 628 /// value. 629 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) { 630 Type *WideTy = 631 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1); 632 return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy)); 633 } 634 635 /// Return true if the given mul can be sign-extended without changing its 636 /// value. 637 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) { 638 Type *WideTy = 639 IntegerType::get(SE.getContext(), 640 SE.getTypeSizeInBits(M->getType()) * M->getNumOperands()); 641 return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy)); 642 } 643 644 /// Return an expression for LHS /s RHS, if it can be determined and if the 645 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits 646 /// is true, expressions like (X * Y) /s Y are simplified to Y, ignoring that 647 /// the multiplication may overflow, which is useful when the result will be 648 /// used in a context where the most significant bits are ignored. 649 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS, 650 ScalarEvolution &SE, 651 bool IgnoreSignificantBits = false) { 652 // Handle the trivial case, which works for any SCEV type. 653 if (LHS == RHS) 654 return SE.getConstant(LHS->getType(), 1); 655 656 // Handle a few RHS special cases. 657 const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS); 658 if (RC) { 659 const APInt &RA = RC->getAPInt(); 660 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do 661 // some folding. 662 if (RA.isAllOnesValue()) 663 return SE.getMulExpr(LHS, RC); 664 // Handle x /s 1 as x. 665 if (RA == 1) 666 return LHS; 667 } 668 669 // Check for a division of a constant by a constant. 670 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) { 671 if (!RC) 672 return nullptr; 673 const APInt &LA = C->getAPInt(); 674 const APInt &RA = RC->getAPInt(); 675 if (LA.srem(RA) != 0) 676 return nullptr; 677 return SE.getConstant(LA.sdiv(RA)); 678 } 679 680 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow. 681 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) { 682 if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) { 683 const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE, 684 IgnoreSignificantBits); 685 if (!Step) return nullptr; 686 const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE, 687 IgnoreSignificantBits); 688 if (!Start) return nullptr; 689 // FlagNW is independent of the start value, step direction, and is 690 // preserved with smaller magnitude steps. 691 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 692 return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap); 693 } 694 return nullptr; 695 } 696 697 // Distribute the sdiv over add operands, if the add doesn't overflow. 698 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) { 699 if (IgnoreSignificantBits || isAddSExtable(Add, SE)) { 700 SmallVector<const SCEV *, 8> Ops; 701 for (const SCEV *S : Add->operands()) { 702 const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits); 703 if (!Op) return nullptr; 704 Ops.push_back(Op); 705 } 706 return SE.getAddExpr(Ops); 707 } 708 return nullptr; 709 } 710 711 // Check for a multiply operand that we can pull RHS out of. 712 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) { 713 if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) { 714 SmallVector<const SCEV *, 4> Ops; 715 bool Found = false; 716 for (const SCEV *S : Mul->operands()) { 717 if (!Found) 718 if (const SCEV *Q = getExactSDiv(S, RHS, SE, 719 IgnoreSignificantBits)) { 720 S = Q; 721 Found = true; 722 } 723 Ops.push_back(S); 724 } 725 return Found ? SE.getMulExpr(Ops) : nullptr; 726 } 727 return nullptr; 728 } 729 730 // Otherwise we don't know. 731 return nullptr; 732 } 733 734 /// If S involves the addition of a constant integer value, return that integer 735 /// value, and mutate S to point to a new SCEV with that value excluded. 736 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) { 737 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 738 if (C->getAPInt().getMinSignedBits() <= 64) { 739 S = SE.getConstant(C->getType(), 0); 740 return C->getValue()->getSExtValue(); 741 } 742 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 743 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 744 int64_t Result = ExtractImmediate(NewOps.front(), SE); 745 if (Result != 0) 746 S = SE.getAddExpr(NewOps); 747 return Result; 748 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 749 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 750 int64_t Result = ExtractImmediate(NewOps.front(), SE); 751 if (Result != 0) 752 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 753 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 754 SCEV::FlagAnyWrap); 755 return Result; 756 } 757 return 0; 758 } 759 760 /// If S involves the addition of a GlobalValue address, return that symbol, and 761 /// mutate S to point to a new SCEV with that value excluded. 762 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) { 763 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 764 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) { 765 S = SE.getConstant(GV->getType(), 0); 766 return GV; 767 } 768 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 769 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 770 GlobalValue *Result = ExtractSymbol(NewOps.back(), SE); 771 if (Result) 772 S = SE.getAddExpr(NewOps); 773 return Result; 774 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 775 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 776 GlobalValue *Result = ExtractSymbol(NewOps.front(), SE); 777 if (Result) 778 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 779 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 780 SCEV::FlagAnyWrap); 781 return Result; 782 } 783 return nullptr; 784 } 785 786 /// Returns true if the specified instruction is using the specified value as an 787 /// address. 788 static bool isAddressUse(const TargetTransformInfo &TTI, 789 Instruction *Inst, Value *OperandVal) { 790 bool isAddress = isa<LoadInst>(Inst); 791 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 792 if (SI->getPointerOperand() == OperandVal) 793 isAddress = true; 794 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 795 // Addressing modes can also be folded into prefetches and a variety 796 // of intrinsics. 797 switch (II->getIntrinsicID()) { 798 case Intrinsic::memset: 799 case Intrinsic::prefetch: 800 if (II->getArgOperand(0) == OperandVal) 801 isAddress = true; 802 break; 803 case Intrinsic::memmove: 804 case Intrinsic::memcpy: 805 if (II->getArgOperand(0) == OperandVal || 806 II->getArgOperand(1) == OperandVal) 807 isAddress = true; 808 break; 809 default: { 810 MemIntrinsicInfo IntrInfo; 811 if (TTI.getTgtMemIntrinsic(II, IntrInfo)) { 812 if (IntrInfo.PtrVal == OperandVal) 813 isAddress = true; 814 } 815 } 816 } 817 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) { 818 if (RMW->getPointerOperand() == OperandVal) 819 isAddress = true; 820 } else if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 821 if (CmpX->getPointerOperand() == OperandVal) 822 isAddress = true; 823 } 824 return isAddress; 825 } 826 827 /// Return the type of the memory being accessed. 828 static MemAccessTy getAccessType(const TargetTransformInfo &TTI, 829 Instruction *Inst, Value *OperandVal) { 830 MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace); 831 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 832 AccessTy.MemTy = SI->getOperand(0)->getType(); 833 AccessTy.AddrSpace = SI->getPointerAddressSpace(); 834 } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 835 AccessTy.AddrSpace = LI->getPointerAddressSpace(); 836 } else if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) { 837 AccessTy.AddrSpace = RMW->getPointerAddressSpace(); 838 } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 839 AccessTy.AddrSpace = CmpX->getPointerAddressSpace(); 840 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 841 switch (II->getIntrinsicID()) { 842 case Intrinsic::prefetch: 843 case Intrinsic::memset: 844 AccessTy.AddrSpace = II->getArgOperand(0)->getType()->getPointerAddressSpace(); 845 AccessTy.MemTy = OperandVal->getType(); 846 break; 847 case Intrinsic::memmove: 848 case Intrinsic::memcpy: 849 AccessTy.AddrSpace = OperandVal->getType()->getPointerAddressSpace(); 850 AccessTy.MemTy = OperandVal->getType(); 851 break; 852 default: { 853 MemIntrinsicInfo IntrInfo; 854 if (TTI.getTgtMemIntrinsic(II, IntrInfo) && IntrInfo.PtrVal) { 855 AccessTy.AddrSpace 856 = IntrInfo.PtrVal->getType()->getPointerAddressSpace(); 857 } 858 859 break; 860 } 861 } 862 } 863 864 // All pointers have the same requirements, so canonicalize them to an 865 // arbitrary pointer type to minimize variation. 866 if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy)) 867 AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1), 868 PTy->getAddressSpace()); 869 870 return AccessTy; 871 } 872 873 /// Return true if this AddRec is already a phi in its loop. 874 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 875 for (PHINode &PN : AR->getLoop()->getHeader()->phis()) { 876 if (SE.isSCEVable(PN.getType()) && 877 (SE.getEffectiveSCEVType(PN.getType()) == 878 SE.getEffectiveSCEVType(AR->getType())) && 879 SE.getSCEV(&PN) == AR) 880 return true; 881 } 882 return false; 883 } 884 885 /// Check if expanding this expression is likely to incur significant cost. This 886 /// is tricky because SCEV doesn't track which expressions are actually computed 887 /// by the current IR. 888 /// 889 /// We currently allow expansion of IV increments that involve adds, 890 /// multiplication by constants, and AddRecs from existing phis. 891 /// 892 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an 893 /// obvious multiple of the UDivExpr. 894 static bool isHighCostExpansion(const SCEV *S, 895 SmallPtrSetImpl<const SCEV*> &Processed, 896 ScalarEvolution &SE) { 897 // Zero/One operand expressions 898 switch (S->getSCEVType()) { 899 case scUnknown: 900 case scConstant: 901 return false; 902 case scTruncate: 903 return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(), 904 Processed, SE); 905 case scZeroExtend: 906 return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(), 907 Processed, SE); 908 case scSignExtend: 909 return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(), 910 Processed, SE); 911 } 912 913 if (!Processed.insert(S).second) 914 return false; 915 916 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 917 for (const SCEV *S : Add->operands()) { 918 if (isHighCostExpansion(S, Processed, SE)) 919 return true; 920 } 921 return false; 922 } 923 924 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 925 if (Mul->getNumOperands() == 2) { 926 // Multiplication by a constant is ok 927 if (isa<SCEVConstant>(Mul->getOperand(0))) 928 return isHighCostExpansion(Mul->getOperand(1), Processed, SE); 929 930 // If we have the value of one operand, check if an existing 931 // multiplication already generates this expression. 932 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) { 933 Value *UVal = U->getValue(); 934 for (User *UR : UVal->users()) { 935 // If U is a constant, it may be used by a ConstantExpr. 936 Instruction *UI = dyn_cast<Instruction>(UR); 937 if (UI && UI->getOpcode() == Instruction::Mul && 938 SE.isSCEVable(UI->getType())) { 939 return SE.getSCEV(UI) == Mul; 940 } 941 } 942 } 943 } 944 } 945 946 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 947 if (isExistingPhi(AR, SE)) 948 return false; 949 } 950 951 // Fow now, consider any other type of expression (div/mul/min/max) high cost. 952 return true; 953 } 954 955 /// If any of the instructions in the specified set are trivially dead, delete 956 /// them and see if this makes any of their operands subsequently dead. 957 static bool 958 DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 959 bool Changed = false; 960 961 while (!DeadInsts.empty()) { 962 Value *V = DeadInsts.pop_back_val(); 963 Instruction *I = dyn_cast_or_null<Instruction>(V); 964 965 if (!I || !isInstructionTriviallyDead(I)) 966 continue; 967 968 for (Use &O : I->operands()) 969 if (Instruction *U = dyn_cast<Instruction>(O)) { 970 O = nullptr; 971 if (U->use_empty()) 972 DeadInsts.emplace_back(U); 973 } 974 975 I->eraseFromParent(); 976 Changed = true; 977 } 978 979 return Changed; 980 } 981 982 namespace { 983 984 class LSRUse; 985 986 } // end anonymous namespace 987 988 /// Check if the addressing mode defined by \p F is completely 989 /// folded in \p LU at isel time. 990 /// This includes address-mode folding and special icmp tricks. 991 /// This function returns true if \p LU can accommodate what \p F 992 /// defines and up to 1 base + 1 scaled + offset. 993 /// In other words, if \p F has several base registers, this function may 994 /// still return true. Therefore, users still need to account for 995 /// additional base registers and/or unfolded offsets to derive an 996 /// accurate cost model. 997 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 998 const LSRUse &LU, const Formula &F); 999 1000 // Get the cost of the scaling factor used in F for LU. 1001 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, 1002 const LSRUse &LU, const Formula &F, 1003 const Loop &L); 1004 1005 namespace { 1006 1007 /// This class is used to measure and compare candidate formulae. 1008 class Cost { 1009 TargetTransformInfo::LSRCost C; 1010 1011 public: 1012 Cost() { 1013 C.Insns = 0; 1014 C.NumRegs = 0; 1015 C.AddRecCost = 0; 1016 C.NumIVMuls = 0; 1017 C.NumBaseAdds = 0; 1018 C.ImmCost = 0; 1019 C.SetupCost = 0; 1020 C.ScaleCost = 0; 1021 } 1022 1023 bool isLess(Cost &Other, const TargetTransformInfo &TTI); 1024 1025 void Lose(); 1026 1027 #ifndef NDEBUG 1028 // Once any of the metrics loses, they must all remain losers. 1029 bool isValid() { 1030 return ((C.Insns | C.NumRegs | C.AddRecCost | C.NumIVMuls | C.NumBaseAdds 1031 | C.ImmCost | C.SetupCost | C.ScaleCost) != ~0u) 1032 || ((C.Insns & C.NumRegs & C.AddRecCost & C.NumIVMuls & C.NumBaseAdds 1033 & C.ImmCost & C.SetupCost & C.ScaleCost) == ~0u); 1034 } 1035 #endif 1036 1037 bool isLoser() { 1038 assert(isValid() && "invalid cost"); 1039 return C.NumRegs == ~0u; 1040 } 1041 1042 void RateFormula(const TargetTransformInfo &TTI, 1043 const Formula &F, 1044 SmallPtrSetImpl<const SCEV *> &Regs, 1045 const DenseSet<const SCEV *> &VisitedRegs, 1046 const Loop *L, 1047 ScalarEvolution &SE, DominatorTree &DT, 1048 const LSRUse &LU, 1049 SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr); 1050 1051 void print(raw_ostream &OS) const; 1052 void dump() const; 1053 1054 private: 1055 void RateRegister(const SCEV *Reg, 1056 SmallPtrSetImpl<const SCEV *> &Regs, 1057 const Loop *L, 1058 ScalarEvolution &SE, DominatorTree &DT, 1059 const TargetTransformInfo &TTI); 1060 void RatePrimaryRegister(const SCEV *Reg, 1061 SmallPtrSetImpl<const SCEV *> &Regs, 1062 const Loop *L, 1063 ScalarEvolution &SE, DominatorTree &DT, 1064 SmallPtrSetImpl<const SCEV *> *LoserRegs, 1065 const TargetTransformInfo &TTI); 1066 }; 1067 1068 /// An operand value in an instruction which is to be replaced with some 1069 /// equivalent, possibly strength-reduced, replacement. 1070 struct LSRFixup { 1071 /// The instruction which will be updated. 1072 Instruction *UserInst = nullptr; 1073 1074 /// The operand of the instruction which will be replaced. The operand may be 1075 /// used more than once; every instance will be replaced. 1076 Value *OperandValToReplace = nullptr; 1077 1078 /// If this user is to use the post-incremented value of an induction 1079 /// variable, this set is non-empty and holds the loops associated with the 1080 /// induction variable. 1081 PostIncLoopSet PostIncLoops; 1082 1083 /// A constant offset to be added to the LSRUse expression. This allows 1084 /// multiple fixups to share the same LSRUse with different offsets, for 1085 /// example in an unrolled loop. 1086 int64_t Offset = 0; 1087 1088 LSRFixup() = default; 1089 1090 bool isUseFullyOutsideLoop(const Loop *L) const; 1091 1092 void print(raw_ostream &OS) const; 1093 void dump() const; 1094 }; 1095 1096 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted 1097 /// SmallVectors of const SCEV*. 1098 struct UniquifierDenseMapInfo { 1099 static SmallVector<const SCEV *, 4> getEmptyKey() { 1100 SmallVector<const SCEV *, 4> V; 1101 V.push_back(reinterpret_cast<const SCEV *>(-1)); 1102 return V; 1103 } 1104 1105 static SmallVector<const SCEV *, 4> getTombstoneKey() { 1106 SmallVector<const SCEV *, 4> V; 1107 V.push_back(reinterpret_cast<const SCEV *>(-2)); 1108 return V; 1109 } 1110 1111 static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) { 1112 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 1113 } 1114 1115 static bool isEqual(const SmallVector<const SCEV *, 4> &LHS, 1116 const SmallVector<const SCEV *, 4> &RHS) { 1117 return LHS == RHS; 1118 } 1119 }; 1120 1121 /// This class holds the state that LSR keeps for each use in IVUsers, as well 1122 /// as uses invented by LSR itself. It includes information about what kinds of 1123 /// things can be folded into the user, information about the user itself, and 1124 /// information about how the use may be satisfied. TODO: Represent multiple 1125 /// users of the same expression in common? 1126 class LSRUse { 1127 DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier; 1128 1129 public: 1130 /// An enum for a kind of use, indicating what types of scaled and immediate 1131 /// operands it might support. 1132 enum KindType { 1133 Basic, ///< A normal use, with no folding. 1134 Special, ///< A special case of basic, allowing -1 scales. 1135 Address, ///< An address use; folding according to TargetLowering 1136 ICmpZero ///< An equality icmp with both operands folded into one. 1137 // TODO: Add a generic icmp too? 1138 }; 1139 1140 using SCEVUseKindPair = PointerIntPair<const SCEV *, 2, KindType>; 1141 1142 KindType Kind; 1143 MemAccessTy AccessTy; 1144 1145 /// The list of operands which are to be replaced. 1146 SmallVector<LSRFixup, 8> Fixups; 1147 1148 /// Keep track of the min and max offsets of the fixups. 1149 int64_t MinOffset = std::numeric_limits<int64_t>::max(); 1150 int64_t MaxOffset = std::numeric_limits<int64_t>::min(); 1151 1152 /// This records whether all of the fixups using this LSRUse are outside of 1153 /// the loop, in which case some special-case heuristics may be used. 1154 bool AllFixupsOutsideLoop = true; 1155 1156 /// RigidFormula is set to true to guarantee that this use will be associated 1157 /// with a single formula--the one that initially matched. Some SCEV 1158 /// expressions cannot be expanded. This allows LSR to consider the registers 1159 /// used by those expressions without the need to expand them later after 1160 /// changing the formula. 1161 bool RigidFormula = false; 1162 1163 /// This records the widest use type for any fixup using this 1164 /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max 1165 /// fixup widths to be equivalent, because the narrower one may be relying on 1166 /// the implicit truncation to truncate away bogus bits. 1167 Type *WidestFixupType = nullptr; 1168 1169 /// A list of ways to build a value that can satisfy this user. After the 1170 /// list is populated, one of these is selected heuristically and used to 1171 /// formulate a replacement for OperandValToReplace in UserInst. 1172 SmallVector<Formula, 12> Formulae; 1173 1174 /// The set of register candidates used by all formulae in this LSRUse. 1175 SmallPtrSet<const SCEV *, 4> Regs; 1176 1177 LSRUse(KindType K, MemAccessTy AT) : Kind(K), AccessTy(AT) {} 1178 1179 LSRFixup &getNewFixup() { 1180 Fixups.push_back(LSRFixup()); 1181 return Fixups.back(); 1182 } 1183 1184 void pushFixup(LSRFixup &f) { 1185 Fixups.push_back(f); 1186 if (f.Offset > MaxOffset) 1187 MaxOffset = f.Offset; 1188 if (f.Offset < MinOffset) 1189 MinOffset = f.Offset; 1190 } 1191 1192 bool HasFormulaWithSameRegs(const Formula &F) const; 1193 float getNotSelectedProbability(const SCEV *Reg) const; 1194 bool InsertFormula(const Formula &F, const Loop &L); 1195 void DeleteFormula(Formula &F); 1196 void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses); 1197 1198 void print(raw_ostream &OS) const; 1199 void dump() const; 1200 }; 1201 1202 } // end anonymous namespace 1203 1204 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1205 LSRUse::KindType Kind, MemAccessTy AccessTy, 1206 GlobalValue *BaseGV, int64_t BaseOffset, 1207 bool HasBaseReg, int64_t Scale, 1208 Instruction *Fixup = nullptr); 1209 1210 /// Tally up interesting quantities from the given register. 1211 void Cost::RateRegister(const SCEV *Reg, 1212 SmallPtrSetImpl<const SCEV *> &Regs, 1213 const Loop *L, 1214 ScalarEvolution &SE, DominatorTree &DT, 1215 const TargetTransformInfo &TTI) { 1216 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) { 1217 // If this is an addrec for another loop, it should be an invariant 1218 // with respect to L since L is the innermost loop (at least 1219 // for now LSR only handles innermost loops). 1220 if (AR->getLoop() != L) { 1221 // If the AddRec exists, consider it's register free and leave it alone. 1222 if (isExistingPhi(AR, SE)) 1223 return; 1224 1225 // It is bad to allow LSR for current loop to add induction variables 1226 // for its sibling loops. 1227 if (!AR->getLoop()->contains(L)) { 1228 Lose(); 1229 return; 1230 } 1231 1232 // Otherwise, it will be an invariant with respect to Loop L. 1233 ++C.NumRegs; 1234 return; 1235 } 1236 1237 unsigned LoopCost = 1; 1238 if (TTI.shouldFavorPostInc()) { 1239 const SCEV *LoopStep = AR->getStepRecurrence(SE); 1240 if (isa<SCEVConstant>(LoopStep)) { 1241 // Check if a post-indexed load/store can be used. 1242 if (TTI.isIndexedLoadLegal(TTI.MIM_PostInc, AR->getType()) || 1243 TTI.isIndexedStoreLegal(TTI.MIM_PostInc, AR->getType())) { 1244 const SCEV *LoopStart = AR->getStart(); 1245 if (!isa<SCEVConstant>(LoopStart) && 1246 SE.isLoopInvariant(LoopStart, L)) 1247 LoopCost = 0; 1248 } 1249 } 1250 } 1251 C.AddRecCost += LoopCost; 1252 1253 // Add the step value register, if it needs one. 1254 // TODO: The non-affine case isn't precisely modeled here. 1255 if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) { 1256 if (!Regs.count(AR->getOperand(1))) { 1257 RateRegister(AR->getOperand(1), Regs, L, SE, DT, TTI); 1258 if (isLoser()) 1259 return; 1260 } 1261 } 1262 } 1263 ++C.NumRegs; 1264 1265 // Rough heuristic; favor registers which don't require extra setup 1266 // instructions in the preheader. 1267 if (!isa<SCEVUnknown>(Reg) && 1268 !isa<SCEVConstant>(Reg) && 1269 !(isa<SCEVAddRecExpr>(Reg) && 1270 (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) || 1271 isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart())))) 1272 ++C.SetupCost; 1273 1274 C.NumIVMuls += isa<SCEVMulExpr>(Reg) && 1275 SE.hasComputableLoopEvolution(Reg, L); 1276 } 1277 1278 /// Record this register in the set. If we haven't seen it before, rate 1279 /// it. Optional LoserRegs provides a way to declare any formula that refers to 1280 /// one of those regs an instant loser. 1281 void Cost::RatePrimaryRegister(const SCEV *Reg, 1282 SmallPtrSetImpl<const SCEV *> &Regs, 1283 const Loop *L, 1284 ScalarEvolution &SE, DominatorTree &DT, 1285 SmallPtrSetImpl<const SCEV *> *LoserRegs, 1286 const TargetTransformInfo &TTI) { 1287 if (LoserRegs && LoserRegs->count(Reg)) { 1288 Lose(); 1289 return; 1290 } 1291 if (Regs.insert(Reg).second) { 1292 RateRegister(Reg, Regs, L, SE, DT, TTI); 1293 if (LoserRegs && isLoser()) 1294 LoserRegs->insert(Reg); 1295 } 1296 } 1297 1298 void Cost::RateFormula(const TargetTransformInfo &TTI, 1299 const Formula &F, 1300 SmallPtrSetImpl<const SCEV *> &Regs, 1301 const DenseSet<const SCEV *> &VisitedRegs, 1302 const Loop *L, 1303 ScalarEvolution &SE, DominatorTree &DT, 1304 const LSRUse &LU, 1305 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1306 assert(F.isCanonical(*L) && "Cost is accurate only for canonical formula"); 1307 // Tally up the registers. 1308 unsigned PrevAddRecCost = C.AddRecCost; 1309 unsigned PrevNumRegs = C.NumRegs; 1310 unsigned PrevNumBaseAdds = C.NumBaseAdds; 1311 if (const SCEV *ScaledReg = F.ScaledReg) { 1312 if (VisitedRegs.count(ScaledReg)) { 1313 Lose(); 1314 return; 1315 } 1316 RatePrimaryRegister(ScaledReg, Regs, L, SE, DT, LoserRegs, TTI); 1317 if (isLoser()) 1318 return; 1319 } 1320 for (const SCEV *BaseReg : F.BaseRegs) { 1321 if (VisitedRegs.count(BaseReg)) { 1322 Lose(); 1323 return; 1324 } 1325 RatePrimaryRegister(BaseReg, Regs, L, SE, DT, LoserRegs, TTI); 1326 if (isLoser()) 1327 return; 1328 } 1329 1330 // Determine how many (unfolded) adds we'll need inside the loop. 1331 size_t NumBaseParts = F.getNumRegs(); 1332 if (NumBaseParts > 1) 1333 // Do not count the base and a possible second register if the target 1334 // allows to fold 2 registers. 1335 C.NumBaseAdds += 1336 NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(TTI, LU, F))); 1337 C.NumBaseAdds += (F.UnfoldedOffset != 0); 1338 1339 // Accumulate non-free scaling amounts. 1340 C.ScaleCost += getScalingFactorCost(TTI, LU, F, *L); 1341 1342 // Tally up the non-zero immediates. 1343 for (const LSRFixup &Fixup : LU.Fixups) { 1344 int64_t O = Fixup.Offset; 1345 int64_t Offset = (uint64_t)O + F.BaseOffset; 1346 if (F.BaseGV) 1347 C.ImmCost += 64; // Handle symbolic values conservatively. 1348 // TODO: This should probably be the pointer size. 1349 else if (Offset != 0) 1350 C.ImmCost += APInt(64, Offset, true).getMinSignedBits(); 1351 1352 // Check with target if this offset with this instruction is 1353 // specifically not supported. 1354 if (LU.Kind == LSRUse::Address && Offset != 0 && 1355 !isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV, 1356 Offset, F.HasBaseReg, F.Scale, Fixup.UserInst)) 1357 C.NumBaseAdds++; 1358 } 1359 1360 // If we don't count instruction cost exit here. 1361 if (!InsnsCost) { 1362 assert(isValid() && "invalid cost"); 1363 return; 1364 } 1365 1366 // Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as 1367 // additional instruction (at least fill). 1368 unsigned TTIRegNum = TTI.getNumberOfRegisters(false) - 1; 1369 if (C.NumRegs > TTIRegNum) { 1370 // Cost already exceeded TTIRegNum, then only newly added register can add 1371 // new instructions. 1372 if (PrevNumRegs > TTIRegNum) 1373 C.Insns += (C.NumRegs - PrevNumRegs); 1374 else 1375 C.Insns += (C.NumRegs - TTIRegNum); 1376 } 1377 1378 // If ICmpZero formula ends with not 0, it could not be replaced by 1379 // just add or sub. We'll need to compare final result of AddRec. 1380 // That means we'll need an additional instruction. But if the target can 1381 // macro-fuse a compare with a branch, don't count this extra instruction. 1382 // For -10 + {0, +, 1}: 1383 // i = i + 1; 1384 // cmp i, 10 1385 // 1386 // For {-10, +, 1}: 1387 // i = i + 1; 1388 if (LU.Kind == LSRUse::ICmpZero && !F.hasZeroEnd() && !TTI.canMacroFuseCmp()) 1389 C.Insns++; 1390 // Each new AddRec adds 1 instruction to calculation. 1391 C.Insns += (C.AddRecCost - PrevAddRecCost); 1392 1393 // BaseAdds adds instructions for unfolded registers. 1394 if (LU.Kind != LSRUse::ICmpZero) 1395 C.Insns += C.NumBaseAdds - PrevNumBaseAdds; 1396 assert(isValid() && "invalid cost"); 1397 } 1398 1399 /// Set this cost to a losing value. 1400 void Cost::Lose() { 1401 C.Insns = std::numeric_limits<unsigned>::max(); 1402 C.NumRegs = std::numeric_limits<unsigned>::max(); 1403 C.AddRecCost = std::numeric_limits<unsigned>::max(); 1404 C.NumIVMuls = std::numeric_limits<unsigned>::max(); 1405 C.NumBaseAdds = std::numeric_limits<unsigned>::max(); 1406 C.ImmCost = std::numeric_limits<unsigned>::max(); 1407 C.SetupCost = std::numeric_limits<unsigned>::max(); 1408 C.ScaleCost = std::numeric_limits<unsigned>::max(); 1409 } 1410 1411 /// Choose the lower cost. 1412 bool Cost::isLess(Cost &Other, const TargetTransformInfo &TTI) { 1413 if (InsnsCost.getNumOccurrences() > 0 && InsnsCost && 1414 C.Insns != Other.C.Insns) 1415 return C.Insns < Other.C.Insns; 1416 return TTI.isLSRCostLess(C, Other.C); 1417 } 1418 1419 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1420 void Cost::print(raw_ostream &OS) const { 1421 if (InsnsCost) 1422 OS << C.Insns << " instruction" << (C.Insns == 1 ? " " : "s "); 1423 OS << C.NumRegs << " reg" << (C.NumRegs == 1 ? "" : "s"); 1424 if (C.AddRecCost != 0) 1425 OS << ", with addrec cost " << C.AddRecCost; 1426 if (C.NumIVMuls != 0) 1427 OS << ", plus " << C.NumIVMuls << " IV mul" 1428 << (C.NumIVMuls == 1 ? "" : "s"); 1429 if (C.NumBaseAdds != 0) 1430 OS << ", plus " << C.NumBaseAdds << " base add" 1431 << (C.NumBaseAdds == 1 ? "" : "s"); 1432 if (C.ScaleCost != 0) 1433 OS << ", plus " << C.ScaleCost << " scale cost"; 1434 if (C.ImmCost != 0) 1435 OS << ", plus " << C.ImmCost << " imm cost"; 1436 if (C.SetupCost != 0) 1437 OS << ", plus " << C.SetupCost << " setup cost"; 1438 } 1439 1440 LLVM_DUMP_METHOD void Cost::dump() const { 1441 print(errs()); errs() << '\n'; 1442 } 1443 #endif 1444 1445 /// Test whether this fixup always uses its value outside of the given loop. 1446 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const { 1447 // PHI nodes use their value in their incoming blocks. 1448 if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) { 1449 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1450 if (PN->getIncomingValue(i) == OperandValToReplace && 1451 L->contains(PN->getIncomingBlock(i))) 1452 return false; 1453 return true; 1454 } 1455 1456 return !L->contains(UserInst); 1457 } 1458 1459 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1460 void LSRFixup::print(raw_ostream &OS) const { 1461 OS << "UserInst="; 1462 // Store is common and interesting enough to be worth special-casing. 1463 if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) { 1464 OS << "store "; 1465 Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false); 1466 } else if (UserInst->getType()->isVoidTy()) 1467 OS << UserInst->getOpcodeName(); 1468 else 1469 UserInst->printAsOperand(OS, /*PrintType=*/false); 1470 1471 OS << ", OperandValToReplace="; 1472 OperandValToReplace->printAsOperand(OS, /*PrintType=*/false); 1473 1474 for (const Loop *PIL : PostIncLoops) { 1475 OS << ", PostIncLoop="; 1476 PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 1477 } 1478 1479 if (Offset != 0) 1480 OS << ", Offset=" << Offset; 1481 } 1482 1483 LLVM_DUMP_METHOD void LSRFixup::dump() const { 1484 print(errs()); errs() << '\n'; 1485 } 1486 #endif 1487 1488 /// Test whether this use as a formula which has the same registers as the given 1489 /// formula. 1490 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const { 1491 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1492 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1493 // Unstable sort by host order ok, because this is only used for uniquifying. 1494 llvm::sort(Key); 1495 return Uniquifier.count(Key); 1496 } 1497 1498 /// The function returns a probability of selecting formula without Reg. 1499 float LSRUse::getNotSelectedProbability(const SCEV *Reg) const { 1500 unsigned FNum = 0; 1501 for (const Formula &F : Formulae) 1502 if (F.referencesReg(Reg)) 1503 FNum++; 1504 return ((float)(Formulae.size() - FNum)) / Formulae.size(); 1505 } 1506 1507 /// If the given formula has not yet been inserted, add it to the list, and 1508 /// return true. Return false otherwise. The formula must be in canonical form. 1509 bool LSRUse::InsertFormula(const Formula &F, const Loop &L) { 1510 assert(F.isCanonical(L) && "Invalid canonical representation"); 1511 1512 if (!Formulae.empty() && RigidFormula) 1513 return false; 1514 1515 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1516 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1517 // Unstable sort by host order ok, because this is only used for uniquifying. 1518 llvm::sort(Key); 1519 1520 if (!Uniquifier.insert(Key).second) 1521 return false; 1522 1523 // Using a register to hold the value of 0 is not profitable. 1524 assert((!F.ScaledReg || !F.ScaledReg->isZero()) && 1525 "Zero allocated in a scaled register!"); 1526 #ifndef NDEBUG 1527 for (const SCEV *BaseReg : F.BaseRegs) 1528 assert(!BaseReg->isZero() && "Zero allocated in a base register!"); 1529 #endif 1530 1531 // Add the formula to the list. 1532 Formulae.push_back(F); 1533 1534 // Record registers now being used by this use. 1535 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1536 if (F.ScaledReg) 1537 Regs.insert(F.ScaledReg); 1538 1539 return true; 1540 } 1541 1542 /// Remove the given formula from this use's list. 1543 void LSRUse::DeleteFormula(Formula &F) { 1544 if (&F != &Formulae.back()) 1545 std::swap(F, Formulae.back()); 1546 Formulae.pop_back(); 1547 } 1548 1549 /// Recompute the Regs field, and update RegUses. 1550 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) { 1551 // Now that we've filtered out some formulae, recompute the Regs set. 1552 SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs); 1553 Regs.clear(); 1554 for (const Formula &F : Formulae) { 1555 if (F.ScaledReg) Regs.insert(F.ScaledReg); 1556 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1557 } 1558 1559 // Update the RegTracker. 1560 for (const SCEV *S : OldRegs) 1561 if (!Regs.count(S)) 1562 RegUses.dropRegister(S, LUIdx); 1563 } 1564 1565 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1566 void LSRUse::print(raw_ostream &OS) const { 1567 OS << "LSR Use: Kind="; 1568 switch (Kind) { 1569 case Basic: OS << "Basic"; break; 1570 case Special: OS << "Special"; break; 1571 case ICmpZero: OS << "ICmpZero"; break; 1572 case Address: 1573 OS << "Address of "; 1574 if (AccessTy.MemTy->isPointerTy()) 1575 OS << "pointer"; // the full pointer type could be really verbose 1576 else { 1577 OS << *AccessTy.MemTy; 1578 } 1579 1580 OS << " in addrspace(" << AccessTy.AddrSpace << ')'; 1581 } 1582 1583 OS << ", Offsets={"; 1584 bool NeedComma = false; 1585 for (const LSRFixup &Fixup : Fixups) { 1586 if (NeedComma) OS << ','; 1587 OS << Fixup.Offset; 1588 NeedComma = true; 1589 } 1590 OS << '}'; 1591 1592 if (AllFixupsOutsideLoop) 1593 OS << ", all-fixups-outside-loop"; 1594 1595 if (WidestFixupType) 1596 OS << ", widest fixup type: " << *WidestFixupType; 1597 } 1598 1599 LLVM_DUMP_METHOD void LSRUse::dump() const { 1600 print(errs()); errs() << '\n'; 1601 } 1602 #endif 1603 1604 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1605 LSRUse::KindType Kind, MemAccessTy AccessTy, 1606 GlobalValue *BaseGV, int64_t BaseOffset, 1607 bool HasBaseReg, int64_t Scale, 1608 Instruction *Fixup/*= nullptr*/) { 1609 switch (Kind) { 1610 case LSRUse::Address: 1611 return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset, 1612 HasBaseReg, Scale, AccessTy.AddrSpace, Fixup); 1613 1614 case LSRUse::ICmpZero: 1615 // There's not even a target hook for querying whether it would be legal to 1616 // fold a GV into an ICmp. 1617 if (BaseGV) 1618 return false; 1619 1620 // ICmp only has two operands; don't allow more than two non-trivial parts. 1621 if (Scale != 0 && HasBaseReg && BaseOffset != 0) 1622 return false; 1623 1624 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by 1625 // putting the scaled register in the other operand of the icmp. 1626 if (Scale != 0 && Scale != -1) 1627 return false; 1628 1629 // If we have low-level target information, ask the target if it can fold an 1630 // integer immediate on an icmp. 1631 if (BaseOffset != 0) { 1632 // We have one of: 1633 // ICmpZero BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset 1634 // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset 1635 // Offs is the ICmp immediate. 1636 if (Scale == 0) 1637 // The cast does the right thing with 1638 // std::numeric_limits<int64_t>::min(). 1639 BaseOffset = -(uint64_t)BaseOffset; 1640 return TTI.isLegalICmpImmediate(BaseOffset); 1641 } 1642 1643 // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg 1644 return true; 1645 1646 case LSRUse::Basic: 1647 // Only handle single-register values. 1648 return !BaseGV && Scale == 0 && BaseOffset == 0; 1649 1650 case LSRUse::Special: 1651 // Special case Basic to handle -1 scales. 1652 return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0; 1653 } 1654 1655 llvm_unreachable("Invalid LSRUse Kind!"); 1656 } 1657 1658 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1659 int64_t MinOffset, int64_t MaxOffset, 1660 LSRUse::KindType Kind, MemAccessTy AccessTy, 1661 GlobalValue *BaseGV, int64_t BaseOffset, 1662 bool HasBaseReg, int64_t Scale) { 1663 // Check for overflow. 1664 if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) != 1665 (MinOffset > 0)) 1666 return false; 1667 MinOffset = (uint64_t)BaseOffset + MinOffset; 1668 if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) != 1669 (MaxOffset > 0)) 1670 return false; 1671 MaxOffset = (uint64_t)BaseOffset + MaxOffset; 1672 1673 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset, 1674 HasBaseReg, Scale) && 1675 isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset, 1676 HasBaseReg, Scale); 1677 } 1678 1679 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1680 int64_t MinOffset, int64_t MaxOffset, 1681 LSRUse::KindType Kind, MemAccessTy AccessTy, 1682 const Formula &F, const Loop &L) { 1683 // For the purpose of isAMCompletelyFolded either having a canonical formula 1684 // or a scale not equal to zero is correct. 1685 // Problems may arise from non canonical formulae having a scale == 0. 1686 // Strictly speaking it would best to just rely on canonical formulae. 1687 // However, when we generate the scaled formulae, we first check that the 1688 // scaling factor is profitable before computing the actual ScaledReg for 1689 // compile time sake. 1690 assert((F.isCanonical(L) || F.Scale != 0)); 1691 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1692 F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale); 1693 } 1694 1695 /// Test whether we know how to expand the current formula. 1696 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1697 int64_t MaxOffset, LSRUse::KindType Kind, 1698 MemAccessTy AccessTy, GlobalValue *BaseGV, 1699 int64_t BaseOffset, bool HasBaseReg, int64_t Scale) { 1700 // We know how to expand completely foldable formulae. 1701 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1702 BaseOffset, HasBaseReg, Scale) || 1703 // Or formulae that use a base register produced by a sum of base 1704 // registers. 1705 (Scale == 1 && 1706 isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1707 BaseGV, BaseOffset, true, 0)); 1708 } 1709 1710 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1711 int64_t MaxOffset, LSRUse::KindType Kind, 1712 MemAccessTy AccessTy, const Formula &F) { 1713 return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV, 1714 F.BaseOffset, F.HasBaseReg, F.Scale); 1715 } 1716 1717 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1718 const LSRUse &LU, const Formula &F) { 1719 // Target may want to look at the user instructions. 1720 if (LU.Kind == LSRUse::Address && TTI.LSRWithInstrQueries()) { 1721 for (const LSRFixup &Fixup : LU.Fixups) 1722 if (!isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV, 1723 (F.BaseOffset + Fixup.Offset), F.HasBaseReg, 1724 F.Scale, Fixup.UserInst)) 1725 return false; 1726 return true; 1727 } 1728 1729 return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1730 LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg, 1731 F.Scale); 1732 } 1733 1734 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, 1735 const LSRUse &LU, const Formula &F, 1736 const Loop &L) { 1737 if (!F.Scale) 1738 return 0; 1739 1740 // If the use is not completely folded in that instruction, we will have to 1741 // pay an extra cost only for scale != 1. 1742 if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1743 LU.AccessTy, F, L)) 1744 return F.Scale != 1; 1745 1746 switch (LU.Kind) { 1747 case LSRUse::Address: { 1748 // Check the scaling factor cost with both the min and max offsets. 1749 int ScaleCostMinOffset = TTI.getScalingFactorCost( 1750 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg, 1751 F.Scale, LU.AccessTy.AddrSpace); 1752 int ScaleCostMaxOffset = TTI.getScalingFactorCost( 1753 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg, 1754 F.Scale, LU.AccessTy.AddrSpace); 1755 1756 assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 && 1757 "Legal addressing mode has an illegal cost!"); 1758 return std::max(ScaleCostMinOffset, ScaleCostMaxOffset); 1759 } 1760 case LSRUse::ICmpZero: 1761 case LSRUse::Basic: 1762 case LSRUse::Special: 1763 // The use is completely folded, i.e., everything is folded into the 1764 // instruction. 1765 return 0; 1766 } 1767 1768 llvm_unreachable("Invalid LSRUse Kind!"); 1769 } 1770 1771 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1772 LSRUse::KindType Kind, MemAccessTy AccessTy, 1773 GlobalValue *BaseGV, int64_t BaseOffset, 1774 bool HasBaseReg) { 1775 // Fast-path: zero is always foldable. 1776 if (BaseOffset == 0 && !BaseGV) return true; 1777 1778 // Conservatively, create an address with an immediate and a 1779 // base and a scale. 1780 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1781 1782 // Canonicalize a scale of 1 to a base register if the formula doesn't 1783 // already have a base register. 1784 if (!HasBaseReg && Scale == 1) { 1785 Scale = 0; 1786 HasBaseReg = true; 1787 } 1788 1789 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset, 1790 HasBaseReg, Scale); 1791 } 1792 1793 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1794 ScalarEvolution &SE, int64_t MinOffset, 1795 int64_t MaxOffset, LSRUse::KindType Kind, 1796 MemAccessTy AccessTy, const SCEV *S, 1797 bool HasBaseReg) { 1798 // Fast-path: zero is always foldable. 1799 if (S->isZero()) return true; 1800 1801 // Conservatively, create an address with an immediate and a 1802 // base and a scale. 1803 int64_t BaseOffset = ExtractImmediate(S, SE); 1804 GlobalValue *BaseGV = ExtractSymbol(S, SE); 1805 1806 // If there's anything else involved, it's not foldable. 1807 if (!S->isZero()) return false; 1808 1809 // Fast-path: zero is always foldable. 1810 if (BaseOffset == 0 && !BaseGV) return true; 1811 1812 // Conservatively, create an address with an immediate and a 1813 // base and a scale. 1814 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1815 1816 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1817 BaseOffset, HasBaseReg, Scale); 1818 } 1819 1820 namespace { 1821 1822 /// An individual increment in a Chain of IV increments. Relate an IV user to 1823 /// an expression that computes the IV it uses from the IV used by the previous 1824 /// link in the Chain. 1825 /// 1826 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the 1827 /// original IVOperand. The head of the chain's IVOperand is only valid during 1828 /// chain collection, before LSR replaces IV users. During chain generation, 1829 /// IncExpr can be used to find the new IVOperand that computes the same 1830 /// expression. 1831 struct IVInc { 1832 Instruction *UserInst; 1833 Value* IVOperand; 1834 const SCEV *IncExpr; 1835 1836 IVInc(Instruction *U, Value *O, const SCEV *E) 1837 : UserInst(U), IVOperand(O), IncExpr(E) {} 1838 }; 1839 1840 // The list of IV increments in program order. We typically add the head of a 1841 // chain without finding subsequent links. 1842 struct IVChain { 1843 SmallVector<IVInc, 1> Incs; 1844 const SCEV *ExprBase = nullptr; 1845 1846 IVChain() = default; 1847 IVChain(const IVInc &Head, const SCEV *Base) 1848 : Incs(1, Head), ExprBase(Base) {} 1849 1850 using const_iterator = SmallVectorImpl<IVInc>::const_iterator; 1851 1852 // Return the first increment in the chain. 1853 const_iterator begin() const { 1854 assert(!Incs.empty()); 1855 return std::next(Incs.begin()); 1856 } 1857 const_iterator end() const { 1858 return Incs.end(); 1859 } 1860 1861 // Returns true if this chain contains any increments. 1862 bool hasIncs() const { return Incs.size() >= 2; } 1863 1864 // Add an IVInc to the end of this chain. 1865 void add(const IVInc &X) { Incs.push_back(X); } 1866 1867 // Returns the last UserInst in the chain. 1868 Instruction *tailUserInst() const { return Incs.back().UserInst; } 1869 1870 // Returns true if IncExpr can be profitably added to this chain. 1871 bool isProfitableIncrement(const SCEV *OperExpr, 1872 const SCEV *IncExpr, 1873 ScalarEvolution&); 1874 }; 1875 1876 /// Helper for CollectChains to track multiple IV increment uses. Distinguish 1877 /// between FarUsers that definitely cross IV increments and NearUsers that may 1878 /// be used between IV increments. 1879 struct ChainUsers { 1880 SmallPtrSet<Instruction*, 4> FarUsers; 1881 SmallPtrSet<Instruction*, 4> NearUsers; 1882 }; 1883 1884 /// This class holds state for the main loop strength reduction logic. 1885 class LSRInstance { 1886 IVUsers &IU; 1887 ScalarEvolution &SE; 1888 DominatorTree &DT; 1889 LoopInfo &LI; 1890 const TargetTransformInfo &TTI; 1891 Loop *const L; 1892 bool Changed = false; 1893 1894 /// This is the insert position that the current loop's induction variable 1895 /// increment should be placed. In simple loops, this is the latch block's 1896 /// terminator. But in more complicated cases, this is a position which will 1897 /// dominate all the in-loop post-increment users. 1898 Instruction *IVIncInsertPos = nullptr; 1899 1900 /// Interesting factors between use strides. 1901 /// 1902 /// We explicitly use a SetVector which contains a SmallSet, instead of the 1903 /// default, a SmallDenseSet, because we need to use the full range of 1904 /// int64_ts, and there's currently no good way of doing that with 1905 /// SmallDenseSet. 1906 SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors; 1907 1908 /// Interesting use types, to facilitate truncation reuse. 1909 SmallSetVector<Type *, 4> Types; 1910 1911 /// The list of interesting uses. 1912 SmallVector<LSRUse, 16> Uses; 1913 1914 /// Track which uses use which register candidates. 1915 RegUseTracker RegUses; 1916 1917 // Limit the number of chains to avoid quadratic behavior. We don't expect to 1918 // have more than a few IV increment chains in a loop. Missing a Chain falls 1919 // back to normal LSR behavior for those uses. 1920 static const unsigned MaxChains = 8; 1921 1922 /// IV users can form a chain of IV increments. 1923 SmallVector<IVChain, MaxChains> IVChainVec; 1924 1925 /// IV users that belong to profitable IVChains. 1926 SmallPtrSet<Use*, MaxChains> IVIncSet; 1927 1928 void OptimizeShadowIV(); 1929 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse); 1930 ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse); 1931 void OptimizeLoopTermCond(); 1932 1933 void ChainInstruction(Instruction *UserInst, Instruction *IVOper, 1934 SmallVectorImpl<ChainUsers> &ChainUsersVec); 1935 void FinalizeChain(IVChain &Chain); 1936 void CollectChains(); 1937 void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 1938 SmallVectorImpl<WeakTrackingVH> &DeadInsts); 1939 1940 void CollectInterestingTypesAndFactors(); 1941 void CollectFixupsAndInitialFormulae(); 1942 1943 // Support for sharing of LSRUses between LSRFixups. 1944 using UseMapTy = DenseMap<LSRUse::SCEVUseKindPair, size_t>; 1945 UseMapTy UseMap; 1946 1947 bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, 1948 LSRUse::KindType Kind, MemAccessTy AccessTy); 1949 1950 std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind, 1951 MemAccessTy AccessTy); 1952 1953 void DeleteUse(LSRUse &LU, size_t LUIdx); 1954 1955 LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU); 1956 1957 void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1958 void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1959 void CountRegisters(const Formula &F, size_t LUIdx); 1960 bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F); 1961 1962 void CollectLoopInvariantFixupsAndFormulae(); 1963 1964 void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base, 1965 unsigned Depth = 0); 1966 1967 void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 1968 const Formula &Base, unsigned Depth, 1969 size_t Idx, bool IsScaledReg = false); 1970 void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base); 1971 void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 1972 const Formula &Base, size_t Idx, 1973 bool IsScaledReg = false); 1974 void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1975 void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx, 1976 const Formula &Base, 1977 const SmallVectorImpl<int64_t> &Worklist, 1978 size_t Idx, bool IsScaledReg = false); 1979 void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1980 void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base); 1981 void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base); 1982 void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base); 1983 void GenerateCrossUseConstantOffsets(); 1984 void GenerateAllReuseFormulae(); 1985 1986 void FilterOutUndesirableDedicatedRegisters(); 1987 1988 size_t EstimateSearchSpaceComplexity() const; 1989 void NarrowSearchSpaceByDetectingSupersets(); 1990 void NarrowSearchSpaceByCollapsingUnrolledCode(); 1991 void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 1992 void NarrowSearchSpaceByFilterFormulaWithSameScaledReg(); 1993 void NarrowSearchSpaceByDeletingCostlyFormulas(); 1994 void NarrowSearchSpaceByPickingWinnerRegs(); 1995 void NarrowSearchSpaceUsingHeuristics(); 1996 1997 void SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 1998 Cost &SolutionCost, 1999 SmallVectorImpl<const Formula *> &Workspace, 2000 const Cost &CurCost, 2001 const SmallPtrSet<const SCEV *, 16> &CurRegs, 2002 DenseSet<const SCEV *> &VisitedRegs) const; 2003 void Solve(SmallVectorImpl<const Formula *> &Solution) const; 2004 2005 BasicBlock::iterator 2006 HoistInsertPosition(BasicBlock::iterator IP, 2007 const SmallVectorImpl<Instruction *> &Inputs) const; 2008 BasicBlock::iterator 2009 AdjustInsertPositionForExpand(BasicBlock::iterator IP, 2010 const LSRFixup &LF, 2011 const LSRUse &LU, 2012 SCEVExpander &Rewriter) const; 2013 2014 Value *Expand(const LSRUse &LU, const LSRFixup &LF, const Formula &F, 2015 BasicBlock::iterator IP, SCEVExpander &Rewriter, 2016 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 2017 void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF, 2018 const Formula &F, SCEVExpander &Rewriter, 2019 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 2020 void Rewrite(const LSRUse &LU, const LSRFixup &LF, const Formula &F, 2021 SCEVExpander &Rewriter, 2022 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 2023 void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution); 2024 2025 public: 2026 LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT, 2027 LoopInfo &LI, const TargetTransformInfo &TTI); 2028 2029 bool getChanged() const { return Changed; } 2030 2031 void print_factors_and_types(raw_ostream &OS) const; 2032 void print_fixups(raw_ostream &OS) const; 2033 void print_uses(raw_ostream &OS) const; 2034 void print(raw_ostream &OS) const; 2035 void dump() const; 2036 }; 2037 2038 } // end anonymous namespace 2039 2040 /// If IV is used in a int-to-float cast inside the loop then try to eliminate 2041 /// the cast operation. 2042 void LSRInstance::OptimizeShadowIV() { 2043 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 2044 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2045 return; 2046 2047 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); 2048 UI != E; /* empty */) { 2049 IVUsers::const_iterator CandidateUI = UI; 2050 ++UI; 2051 Instruction *ShadowUse = CandidateUI->getUser(); 2052 Type *DestTy = nullptr; 2053 bool IsSigned = false; 2054 2055 /* If shadow use is a int->float cast then insert a second IV 2056 to eliminate this cast. 2057 2058 for (unsigned i = 0; i < n; ++i) 2059 foo((double)i); 2060 2061 is transformed into 2062 2063 double d = 0.0; 2064 for (unsigned i = 0; i < n; ++i, ++d) 2065 foo(d); 2066 */ 2067 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) { 2068 IsSigned = false; 2069 DestTy = UCast->getDestTy(); 2070 } 2071 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) { 2072 IsSigned = true; 2073 DestTy = SCast->getDestTy(); 2074 } 2075 if (!DestTy) continue; 2076 2077 // If target does not support DestTy natively then do not apply 2078 // this transformation. 2079 if (!TTI.isTypeLegal(DestTy)) continue; 2080 2081 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0)); 2082 if (!PH) continue; 2083 if (PH->getNumIncomingValues() != 2) continue; 2084 2085 // If the calculation in integers overflows, the result in FP type will 2086 // differ. So we only can do this transformation if we are guaranteed to not 2087 // deal with overflowing values 2088 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PH)); 2089 if (!AR) continue; 2090 if (IsSigned && !AR->hasNoSignedWrap()) continue; 2091 if (!IsSigned && !AR->hasNoUnsignedWrap()) continue; 2092 2093 Type *SrcTy = PH->getType(); 2094 int Mantissa = DestTy->getFPMantissaWidth(); 2095 if (Mantissa == -1) continue; 2096 if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa) 2097 continue; 2098 2099 unsigned Entry, Latch; 2100 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) { 2101 Entry = 0; 2102 Latch = 1; 2103 } else { 2104 Entry = 1; 2105 Latch = 0; 2106 } 2107 2108 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry)); 2109 if (!Init) continue; 2110 Constant *NewInit = ConstantFP::get(DestTy, IsSigned ? 2111 (double)Init->getSExtValue() : 2112 (double)Init->getZExtValue()); 2113 2114 BinaryOperator *Incr = 2115 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch)); 2116 if (!Incr) continue; 2117 if (Incr->getOpcode() != Instruction::Add 2118 && Incr->getOpcode() != Instruction::Sub) 2119 continue; 2120 2121 /* Initialize new IV, double d = 0.0 in above example. */ 2122 ConstantInt *C = nullptr; 2123 if (Incr->getOperand(0) == PH) 2124 C = dyn_cast<ConstantInt>(Incr->getOperand(1)); 2125 else if (Incr->getOperand(1) == PH) 2126 C = dyn_cast<ConstantInt>(Incr->getOperand(0)); 2127 else 2128 continue; 2129 2130 if (!C) continue; 2131 2132 // Ignore negative constants, as the code below doesn't handle them 2133 // correctly. TODO: Remove this restriction. 2134 if (!C->getValue().isStrictlyPositive()) continue; 2135 2136 /* Add new PHINode. */ 2137 PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH); 2138 2139 /* create new increment. '++d' in above example. */ 2140 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue()); 2141 BinaryOperator *NewIncr = 2142 BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ? 2143 Instruction::FAdd : Instruction::FSub, 2144 NewPH, CFP, "IV.S.next.", Incr); 2145 2146 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry)); 2147 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch)); 2148 2149 /* Remove cast operation */ 2150 ShadowUse->replaceAllUsesWith(NewPH); 2151 ShadowUse->eraseFromParent(); 2152 Changed = true; 2153 break; 2154 } 2155 } 2156 2157 /// If Cond has an operand that is an expression of an IV, set the IV user and 2158 /// stride information and return true, otherwise return false. 2159 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) { 2160 for (IVStrideUse &U : IU) 2161 if (U.getUser() == Cond) { 2162 // NOTE: we could handle setcc instructions with multiple uses here, but 2163 // InstCombine does it as well for simple uses, it's not clear that it 2164 // occurs enough in real life to handle. 2165 CondUse = &U; 2166 return true; 2167 } 2168 return false; 2169 } 2170 2171 /// Rewrite the loop's terminating condition if it uses a max computation. 2172 /// 2173 /// This is a narrow solution to a specific, but acute, problem. For loops 2174 /// like this: 2175 /// 2176 /// i = 0; 2177 /// do { 2178 /// p[i] = 0.0; 2179 /// } while (++i < n); 2180 /// 2181 /// the trip count isn't just 'n', because 'n' might not be positive. And 2182 /// unfortunately this can come up even for loops where the user didn't use 2183 /// a C do-while loop. For example, seemingly well-behaved top-test loops 2184 /// will commonly be lowered like this: 2185 /// 2186 /// if (n > 0) { 2187 /// i = 0; 2188 /// do { 2189 /// p[i] = 0.0; 2190 /// } while (++i < n); 2191 /// } 2192 /// 2193 /// and then it's possible for subsequent optimization to obscure the if 2194 /// test in such a way that indvars can't find it. 2195 /// 2196 /// When indvars can't find the if test in loops like this, it creates a 2197 /// max expression, which allows it to give the loop a canonical 2198 /// induction variable: 2199 /// 2200 /// i = 0; 2201 /// max = n < 1 ? 1 : n; 2202 /// do { 2203 /// p[i] = 0.0; 2204 /// } while (++i != max); 2205 /// 2206 /// Canonical induction variables are necessary because the loop passes 2207 /// are designed around them. The most obvious example of this is the 2208 /// LoopInfo analysis, which doesn't remember trip count values. It 2209 /// expects to be able to rediscover the trip count each time it is 2210 /// needed, and it does this using a simple analysis that only succeeds if 2211 /// the loop has a canonical induction variable. 2212 /// 2213 /// However, when it comes time to generate code, the maximum operation 2214 /// can be quite costly, especially if it's inside of an outer loop. 2215 /// 2216 /// This function solves this problem by detecting this type of loop and 2217 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting 2218 /// the instructions for the maximum computation. 2219 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) { 2220 // Check that the loop matches the pattern we're looking for. 2221 if (Cond->getPredicate() != CmpInst::ICMP_EQ && 2222 Cond->getPredicate() != CmpInst::ICMP_NE) 2223 return Cond; 2224 2225 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1)); 2226 if (!Sel || !Sel->hasOneUse()) return Cond; 2227 2228 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 2229 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2230 return Cond; 2231 const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1); 2232 2233 // Add one to the backedge-taken count to get the trip count. 2234 const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount); 2235 if (IterationCount != SE.getSCEV(Sel)) return Cond; 2236 2237 // Check for a max calculation that matches the pattern. There's no check 2238 // for ICMP_ULE here because the comparison would be with zero, which 2239 // isn't interesting. 2240 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 2241 const SCEVNAryExpr *Max = nullptr; 2242 if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) { 2243 Pred = ICmpInst::ICMP_SLE; 2244 Max = S; 2245 } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) { 2246 Pred = ICmpInst::ICMP_SLT; 2247 Max = S; 2248 } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) { 2249 Pred = ICmpInst::ICMP_ULT; 2250 Max = U; 2251 } else { 2252 // No match; bail. 2253 return Cond; 2254 } 2255 2256 // To handle a max with more than two operands, this optimization would 2257 // require additional checking and setup. 2258 if (Max->getNumOperands() != 2) 2259 return Cond; 2260 2261 const SCEV *MaxLHS = Max->getOperand(0); 2262 const SCEV *MaxRHS = Max->getOperand(1); 2263 2264 // ScalarEvolution canonicalizes constants to the left. For < and >, look 2265 // for a comparison with 1. For <= and >=, a comparison with zero. 2266 if (!MaxLHS || 2267 (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One))) 2268 return Cond; 2269 2270 // Check the relevant induction variable for conformance to 2271 // the pattern. 2272 const SCEV *IV = SE.getSCEV(Cond->getOperand(0)); 2273 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV); 2274 if (!AR || !AR->isAffine() || 2275 AR->getStart() != One || 2276 AR->getStepRecurrence(SE) != One) 2277 return Cond; 2278 2279 assert(AR->getLoop() == L && 2280 "Loop condition operand is an addrec in a different loop!"); 2281 2282 // Check the right operand of the select, and remember it, as it will 2283 // be used in the new comparison instruction. 2284 Value *NewRHS = nullptr; 2285 if (ICmpInst::isTrueWhenEqual(Pred)) { 2286 // Look for n+1, and grab n. 2287 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1))) 2288 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2289 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2290 NewRHS = BO->getOperand(0); 2291 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2))) 2292 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2293 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2294 NewRHS = BO->getOperand(0); 2295 if (!NewRHS) 2296 return Cond; 2297 } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS) 2298 NewRHS = Sel->getOperand(1); 2299 else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS) 2300 NewRHS = Sel->getOperand(2); 2301 else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS)) 2302 NewRHS = SU->getValue(); 2303 else 2304 // Max doesn't match expected pattern. 2305 return Cond; 2306 2307 // Determine the new comparison opcode. It may be signed or unsigned, 2308 // and the original comparison may be either equality or inequality. 2309 if (Cond->getPredicate() == CmpInst::ICMP_EQ) 2310 Pred = CmpInst::getInversePredicate(Pred); 2311 2312 // Ok, everything looks ok to change the condition into an SLT or SGE and 2313 // delete the max calculation. 2314 ICmpInst *NewCond = 2315 new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp"); 2316 2317 // Delete the max calculation instructions. 2318 Cond->replaceAllUsesWith(NewCond); 2319 CondUse->setUser(NewCond); 2320 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0)); 2321 Cond->eraseFromParent(); 2322 Sel->eraseFromParent(); 2323 if (Cmp->use_empty()) 2324 Cmp->eraseFromParent(); 2325 return NewCond; 2326 } 2327 2328 /// Change loop terminating condition to use the postinc iv when possible. 2329 void 2330 LSRInstance::OptimizeLoopTermCond() { 2331 SmallPtrSet<Instruction *, 4> PostIncs; 2332 2333 // We need a different set of heuristics for rotated and non-rotated loops. 2334 // If a loop is rotated then the latch is also the backedge, so inserting 2335 // post-inc expressions just before the latch is ideal. To reduce live ranges 2336 // it also makes sense to rewrite terminating conditions to use post-inc 2337 // expressions. 2338 // 2339 // If the loop is not rotated then the latch is not a backedge; the latch 2340 // check is done in the loop head. Adding post-inc expressions before the 2341 // latch will cause overlapping live-ranges of pre-inc and post-inc expressions 2342 // in the loop body. In this case we do *not* want to use post-inc expressions 2343 // in the latch check, and we want to insert post-inc expressions before 2344 // the backedge. 2345 BasicBlock *LatchBlock = L->getLoopLatch(); 2346 SmallVector<BasicBlock*, 8> ExitingBlocks; 2347 L->getExitingBlocks(ExitingBlocks); 2348 if (llvm::all_of(ExitingBlocks, [&LatchBlock](const BasicBlock *BB) { 2349 return LatchBlock != BB; 2350 })) { 2351 // The backedge doesn't exit the loop; treat this as a head-tested loop. 2352 IVIncInsertPos = LatchBlock->getTerminator(); 2353 return; 2354 } 2355 2356 // Otherwise treat this as a rotated loop. 2357 for (BasicBlock *ExitingBlock : ExitingBlocks) { 2358 // Get the terminating condition for the loop if possible. If we 2359 // can, we want to change it to use a post-incremented version of its 2360 // induction variable, to allow coalescing the live ranges for the IV into 2361 // one register value. 2362 2363 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 2364 if (!TermBr) 2365 continue; 2366 // FIXME: Overly conservative, termination condition could be an 'or' etc.. 2367 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition())) 2368 continue; 2369 2370 // Search IVUsesByStride to find Cond's IVUse if there is one. 2371 IVStrideUse *CondUse = nullptr; 2372 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition()); 2373 if (!FindIVUserForCond(Cond, CondUse)) 2374 continue; 2375 2376 // If the trip count is computed in terms of a max (due to ScalarEvolution 2377 // being unable to find a sufficient guard, for example), change the loop 2378 // comparison to use SLT or ULT instead of NE. 2379 // One consequence of doing this now is that it disrupts the count-down 2380 // optimization. That's not always a bad thing though, because in such 2381 // cases it may still be worthwhile to avoid a max. 2382 Cond = OptimizeMax(Cond, CondUse); 2383 2384 // If this exiting block dominates the latch block, it may also use 2385 // the post-inc value if it won't be shared with other uses. 2386 // Check for dominance. 2387 if (!DT.dominates(ExitingBlock, LatchBlock)) 2388 continue; 2389 2390 // Conservatively avoid trying to use the post-inc value in non-latch 2391 // exits if there may be pre-inc users in intervening blocks. 2392 if (LatchBlock != ExitingBlock) 2393 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) 2394 // Test if the use is reachable from the exiting block. This dominator 2395 // query is a conservative approximation of reachability. 2396 if (&*UI != CondUse && 2397 !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) { 2398 // Conservatively assume there may be reuse if the quotient of their 2399 // strides could be a legal scale. 2400 const SCEV *A = IU.getStride(*CondUse, L); 2401 const SCEV *B = IU.getStride(*UI, L); 2402 if (!A || !B) continue; 2403 if (SE.getTypeSizeInBits(A->getType()) != 2404 SE.getTypeSizeInBits(B->getType())) { 2405 if (SE.getTypeSizeInBits(A->getType()) > 2406 SE.getTypeSizeInBits(B->getType())) 2407 B = SE.getSignExtendExpr(B, A->getType()); 2408 else 2409 A = SE.getSignExtendExpr(A, B->getType()); 2410 } 2411 if (const SCEVConstant *D = 2412 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) { 2413 const ConstantInt *C = D->getValue(); 2414 // Stride of one or negative one can have reuse with non-addresses. 2415 if (C->isOne() || C->isMinusOne()) 2416 goto decline_post_inc; 2417 // Avoid weird situations. 2418 if (C->getValue().getMinSignedBits() >= 64 || 2419 C->getValue().isMinSignedValue()) 2420 goto decline_post_inc; 2421 // Check for possible scaled-address reuse. 2422 if (isAddressUse(TTI, UI->getUser(), UI->getOperandValToReplace())) { 2423 MemAccessTy AccessTy = getAccessType( 2424 TTI, UI->getUser(), UI->getOperandValToReplace()); 2425 int64_t Scale = C->getSExtValue(); 2426 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2427 /*BaseOffset=*/0, 2428 /*HasBaseReg=*/false, Scale, 2429 AccessTy.AddrSpace)) 2430 goto decline_post_inc; 2431 Scale = -Scale; 2432 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2433 /*BaseOffset=*/0, 2434 /*HasBaseReg=*/false, Scale, 2435 AccessTy.AddrSpace)) 2436 goto decline_post_inc; 2437 } 2438 } 2439 } 2440 2441 LLVM_DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: " 2442 << *Cond << '\n'); 2443 2444 // It's possible for the setcc instruction to be anywhere in the loop, and 2445 // possible for it to have multiple users. If it is not immediately before 2446 // the exiting block branch, move it. 2447 if (&*++BasicBlock::iterator(Cond) != TermBr) { 2448 if (Cond->hasOneUse()) { 2449 Cond->moveBefore(TermBr); 2450 } else { 2451 // Clone the terminating condition and insert into the loopend. 2452 ICmpInst *OldCond = Cond; 2453 Cond = cast<ICmpInst>(Cond->clone()); 2454 Cond->setName(L->getHeader()->getName() + ".termcond"); 2455 ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond); 2456 2457 // Clone the IVUse, as the old use still exists! 2458 CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace()); 2459 TermBr->replaceUsesOfWith(OldCond, Cond); 2460 } 2461 } 2462 2463 // If we get to here, we know that we can transform the setcc instruction to 2464 // use the post-incremented version of the IV, allowing us to coalesce the 2465 // live ranges for the IV correctly. 2466 CondUse->transformToPostInc(L); 2467 Changed = true; 2468 2469 PostIncs.insert(Cond); 2470 decline_post_inc:; 2471 } 2472 2473 // Determine an insertion point for the loop induction variable increment. It 2474 // must dominate all the post-inc comparisons we just set up, and it must 2475 // dominate the loop latch edge. 2476 IVIncInsertPos = L->getLoopLatch()->getTerminator(); 2477 for (Instruction *Inst : PostIncs) { 2478 BasicBlock *BB = 2479 DT.findNearestCommonDominator(IVIncInsertPos->getParent(), 2480 Inst->getParent()); 2481 if (BB == Inst->getParent()) 2482 IVIncInsertPos = Inst; 2483 else if (BB != IVIncInsertPos->getParent()) 2484 IVIncInsertPos = BB->getTerminator(); 2485 } 2486 } 2487 2488 /// Determine if the given use can accommodate a fixup at the given offset and 2489 /// other details. If so, update the use and return true. 2490 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, 2491 bool HasBaseReg, LSRUse::KindType Kind, 2492 MemAccessTy AccessTy) { 2493 int64_t NewMinOffset = LU.MinOffset; 2494 int64_t NewMaxOffset = LU.MaxOffset; 2495 MemAccessTy NewAccessTy = AccessTy; 2496 2497 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to 2498 // something conservative, however this can pessimize in the case that one of 2499 // the uses will have all its uses outside the loop, for example. 2500 if (LU.Kind != Kind) 2501 return false; 2502 2503 // Check for a mismatched access type, and fall back conservatively as needed. 2504 // TODO: Be less conservative when the type is similar and can use the same 2505 // addressing modes. 2506 if (Kind == LSRUse::Address) { 2507 if (AccessTy.MemTy != LU.AccessTy.MemTy) { 2508 NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(), 2509 AccessTy.AddrSpace); 2510 } 2511 } 2512 2513 // Conservatively assume HasBaseReg is true for now. 2514 if (NewOffset < LU.MinOffset) { 2515 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2516 LU.MaxOffset - NewOffset, HasBaseReg)) 2517 return false; 2518 NewMinOffset = NewOffset; 2519 } else if (NewOffset > LU.MaxOffset) { 2520 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2521 NewOffset - LU.MinOffset, HasBaseReg)) 2522 return false; 2523 NewMaxOffset = NewOffset; 2524 } 2525 2526 // Update the use. 2527 LU.MinOffset = NewMinOffset; 2528 LU.MaxOffset = NewMaxOffset; 2529 LU.AccessTy = NewAccessTy; 2530 return true; 2531 } 2532 2533 /// Return an LSRUse index and an offset value for a fixup which needs the given 2534 /// expression, with the given kind and optional access type. Either reuse an 2535 /// existing use or create a new one, as needed. 2536 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr, 2537 LSRUse::KindType Kind, 2538 MemAccessTy AccessTy) { 2539 const SCEV *Copy = Expr; 2540 int64_t Offset = ExtractImmediate(Expr, SE); 2541 2542 // Basic uses can't accept any offset, for example. 2543 if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr, 2544 Offset, /*HasBaseReg=*/ true)) { 2545 Expr = Copy; 2546 Offset = 0; 2547 } 2548 2549 std::pair<UseMapTy::iterator, bool> P = 2550 UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0)); 2551 if (!P.second) { 2552 // A use already existed with this base. 2553 size_t LUIdx = P.first->second; 2554 LSRUse &LU = Uses[LUIdx]; 2555 if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy)) 2556 // Reuse this use. 2557 return std::make_pair(LUIdx, Offset); 2558 } 2559 2560 // Create a new use. 2561 size_t LUIdx = Uses.size(); 2562 P.first->second = LUIdx; 2563 Uses.push_back(LSRUse(Kind, AccessTy)); 2564 LSRUse &LU = Uses[LUIdx]; 2565 2566 LU.MinOffset = Offset; 2567 LU.MaxOffset = Offset; 2568 return std::make_pair(LUIdx, Offset); 2569 } 2570 2571 /// Delete the given use from the Uses list. 2572 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) { 2573 if (&LU != &Uses.back()) 2574 std::swap(LU, Uses.back()); 2575 Uses.pop_back(); 2576 2577 // Update RegUses. 2578 RegUses.swapAndDropUse(LUIdx, Uses.size()); 2579 } 2580 2581 /// Look for a use distinct from OrigLU which is has a formula that has the same 2582 /// registers as the given formula. 2583 LSRUse * 2584 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF, 2585 const LSRUse &OrigLU) { 2586 // Search all uses for the formula. This could be more clever. 2587 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 2588 LSRUse &LU = Uses[LUIdx]; 2589 // Check whether this use is close enough to OrigLU, to see whether it's 2590 // worthwhile looking through its formulae. 2591 // Ignore ICmpZero uses because they may contain formulae generated by 2592 // GenerateICmpZeroScales, in which case adding fixup offsets may 2593 // be invalid. 2594 if (&LU != &OrigLU && 2595 LU.Kind != LSRUse::ICmpZero && 2596 LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy && 2597 LU.WidestFixupType == OrigLU.WidestFixupType && 2598 LU.HasFormulaWithSameRegs(OrigF)) { 2599 // Scan through this use's formulae. 2600 for (const Formula &F : LU.Formulae) { 2601 // Check to see if this formula has the same registers and symbols 2602 // as OrigF. 2603 if (F.BaseRegs == OrigF.BaseRegs && 2604 F.ScaledReg == OrigF.ScaledReg && 2605 F.BaseGV == OrigF.BaseGV && 2606 F.Scale == OrigF.Scale && 2607 F.UnfoldedOffset == OrigF.UnfoldedOffset) { 2608 if (F.BaseOffset == 0) 2609 return &LU; 2610 // This is the formula where all the registers and symbols matched; 2611 // there aren't going to be any others. Since we declined it, we 2612 // can skip the rest of the formulae and proceed to the next LSRUse. 2613 break; 2614 } 2615 } 2616 } 2617 } 2618 2619 // Nothing looked good. 2620 return nullptr; 2621 } 2622 2623 void LSRInstance::CollectInterestingTypesAndFactors() { 2624 SmallSetVector<const SCEV *, 4> Strides; 2625 2626 // Collect interesting types and strides. 2627 SmallVector<const SCEV *, 4> Worklist; 2628 for (const IVStrideUse &U : IU) { 2629 const SCEV *Expr = IU.getExpr(U); 2630 2631 // Collect interesting types. 2632 Types.insert(SE.getEffectiveSCEVType(Expr->getType())); 2633 2634 // Add strides for mentioned loops. 2635 Worklist.push_back(Expr); 2636 do { 2637 const SCEV *S = Worklist.pop_back_val(); 2638 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2639 if (AR->getLoop() == L) 2640 Strides.insert(AR->getStepRecurrence(SE)); 2641 Worklist.push_back(AR->getStart()); 2642 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2643 Worklist.append(Add->op_begin(), Add->op_end()); 2644 } 2645 } while (!Worklist.empty()); 2646 } 2647 2648 // Compute interesting factors from the set of interesting strides. 2649 for (SmallSetVector<const SCEV *, 4>::const_iterator 2650 I = Strides.begin(), E = Strides.end(); I != E; ++I) 2651 for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter = 2652 std::next(I); NewStrideIter != E; ++NewStrideIter) { 2653 const SCEV *OldStride = *I; 2654 const SCEV *NewStride = *NewStrideIter; 2655 2656 if (SE.getTypeSizeInBits(OldStride->getType()) != 2657 SE.getTypeSizeInBits(NewStride->getType())) { 2658 if (SE.getTypeSizeInBits(OldStride->getType()) > 2659 SE.getTypeSizeInBits(NewStride->getType())) 2660 NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType()); 2661 else 2662 OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType()); 2663 } 2664 if (const SCEVConstant *Factor = 2665 dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride, 2666 SE, true))) { 2667 if (Factor->getAPInt().getMinSignedBits() <= 64) 2668 Factors.insert(Factor->getAPInt().getSExtValue()); 2669 } else if (const SCEVConstant *Factor = 2670 dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride, 2671 NewStride, 2672 SE, true))) { 2673 if (Factor->getAPInt().getMinSignedBits() <= 64) 2674 Factors.insert(Factor->getAPInt().getSExtValue()); 2675 } 2676 } 2677 2678 // If all uses use the same type, don't bother looking for truncation-based 2679 // reuse. 2680 if (Types.size() == 1) 2681 Types.clear(); 2682 2683 LLVM_DEBUG(print_factors_and_types(dbgs())); 2684 } 2685 2686 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in 2687 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to 2688 /// IVStrideUses, we could partially skip this. 2689 static User::op_iterator 2690 findIVOperand(User::op_iterator OI, User::op_iterator OE, 2691 Loop *L, ScalarEvolution &SE) { 2692 for(; OI != OE; ++OI) { 2693 if (Instruction *Oper = dyn_cast<Instruction>(*OI)) { 2694 if (!SE.isSCEVable(Oper->getType())) 2695 continue; 2696 2697 if (const SCEVAddRecExpr *AR = 2698 dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) { 2699 if (AR->getLoop() == L) 2700 break; 2701 } 2702 } 2703 } 2704 return OI; 2705 } 2706 2707 /// IVChain logic must consistently peek base TruncInst operands, so wrap it in 2708 /// a convenient helper. 2709 static Value *getWideOperand(Value *Oper) { 2710 if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper)) 2711 return Trunc->getOperand(0); 2712 return Oper; 2713 } 2714 2715 /// Return true if we allow an IV chain to include both types. 2716 static bool isCompatibleIVType(Value *LVal, Value *RVal) { 2717 Type *LType = LVal->getType(); 2718 Type *RType = RVal->getType(); 2719 return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy() && 2720 // Different address spaces means (possibly) 2721 // different types of the pointer implementation, 2722 // e.g. i16 vs i32 so disallow that. 2723 (LType->getPointerAddressSpace() == 2724 RType->getPointerAddressSpace())); 2725 } 2726 2727 /// Return an approximation of this SCEV expression's "base", or NULL for any 2728 /// constant. Returning the expression itself is conservative. Returning a 2729 /// deeper subexpression is more precise and valid as long as it isn't less 2730 /// complex than another subexpression. For expressions involving multiple 2731 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids 2732 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i], 2733 /// IVInc==b-a. 2734 /// 2735 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost 2736 /// SCEVUnknown, we simply return the rightmost SCEV operand. 2737 static const SCEV *getExprBase(const SCEV *S) { 2738 switch (S->getSCEVType()) { 2739 default: // uncluding scUnknown. 2740 return S; 2741 case scConstant: 2742 return nullptr; 2743 case scTruncate: 2744 return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand()); 2745 case scZeroExtend: 2746 return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand()); 2747 case scSignExtend: 2748 return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand()); 2749 case scAddExpr: { 2750 // Skip over scaled operands (scMulExpr) to follow add operands as long as 2751 // there's nothing more complex. 2752 // FIXME: not sure if we want to recognize negation. 2753 const SCEVAddExpr *Add = cast<SCEVAddExpr>(S); 2754 for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()), 2755 E(Add->op_begin()); I != E; ++I) { 2756 const SCEV *SubExpr = *I; 2757 if (SubExpr->getSCEVType() == scAddExpr) 2758 return getExprBase(SubExpr); 2759 2760 if (SubExpr->getSCEVType() != scMulExpr) 2761 return SubExpr; 2762 } 2763 return S; // all operands are scaled, be conservative. 2764 } 2765 case scAddRecExpr: 2766 return getExprBase(cast<SCEVAddRecExpr>(S)->getStart()); 2767 } 2768 } 2769 2770 /// Return true if the chain increment is profitable to expand into a loop 2771 /// invariant value, which may require its own register. A profitable chain 2772 /// increment will be an offset relative to the same base. We allow such offsets 2773 /// to potentially be used as chain increment as long as it's not obviously 2774 /// expensive to expand using real instructions. 2775 bool IVChain::isProfitableIncrement(const SCEV *OperExpr, 2776 const SCEV *IncExpr, 2777 ScalarEvolution &SE) { 2778 // Aggressively form chains when -stress-ivchain. 2779 if (StressIVChain) 2780 return true; 2781 2782 // Do not replace a constant offset from IV head with a nonconstant IV 2783 // increment. 2784 if (!isa<SCEVConstant>(IncExpr)) { 2785 const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand)); 2786 if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr))) 2787 return false; 2788 } 2789 2790 SmallPtrSet<const SCEV*, 8> Processed; 2791 return !isHighCostExpansion(IncExpr, Processed, SE); 2792 } 2793 2794 /// Return true if the number of registers needed for the chain is estimated to 2795 /// be less than the number required for the individual IV users. First prohibit 2796 /// any IV users that keep the IV live across increments (the Users set should 2797 /// be empty). Next count the number and type of increments in the chain. 2798 /// 2799 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't 2800 /// effectively use postinc addressing modes. Only consider it profitable it the 2801 /// increments can be computed in fewer registers when chained. 2802 /// 2803 /// TODO: Consider IVInc free if it's already used in another chains. 2804 static bool 2805 isProfitableChain(IVChain &Chain, SmallPtrSetImpl<Instruction*> &Users, 2806 ScalarEvolution &SE, const TargetTransformInfo &TTI) { 2807 if (StressIVChain) 2808 return true; 2809 2810 if (!Chain.hasIncs()) 2811 return false; 2812 2813 if (!Users.empty()) { 2814 LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n"; 2815 for (Instruction *Inst 2816 : Users) { dbgs() << " " << *Inst << "\n"; }); 2817 return false; 2818 } 2819 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 2820 2821 // The chain itself may require a register, so intialize cost to 1. 2822 int cost = 1; 2823 2824 // A complete chain likely eliminates the need for keeping the original IV in 2825 // a register. LSR does not currently know how to form a complete chain unless 2826 // the header phi already exists. 2827 if (isa<PHINode>(Chain.tailUserInst()) 2828 && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) { 2829 --cost; 2830 } 2831 const SCEV *LastIncExpr = nullptr; 2832 unsigned NumConstIncrements = 0; 2833 unsigned NumVarIncrements = 0; 2834 unsigned NumReusedIncrements = 0; 2835 for (const IVInc &Inc : Chain) { 2836 if (Inc.IncExpr->isZero()) 2837 continue; 2838 2839 // Incrementing by zero or some constant is neutral. We assume constants can 2840 // be folded into an addressing mode or an add's immediate operand. 2841 if (isa<SCEVConstant>(Inc.IncExpr)) { 2842 ++NumConstIncrements; 2843 continue; 2844 } 2845 2846 if (Inc.IncExpr == LastIncExpr) 2847 ++NumReusedIncrements; 2848 else 2849 ++NumVarIncrements; 2850 2851 LastIncExpr = Inc.IncExpr; 2852 } 2853 // An IV chain with a single increment is handled by LSR's postinc 2854 // uses. However, a chain with multiple increments requires keeping the IV's 2855 // value live longer than it needs to be if chained. 2856 if (NumConstIncrements > 1) 2857 --cost; 2858 2859 // Materializing increment expressions in the preheader that didn't exist in 2860 // the original code may cost a register. For example, sign-extended array 2861 // indices can produce ridiculous increments like this: 2862 // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64))) 2863 cost += NumVarIncrements; 2864 2865 // Reusing variable increments likely saves a register to hold the multiple of 2866 // the stride. 2867 cost -= NumReusedIncrements; 2868 2869 LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost 2870 << "\n"); 2871 2872 return cost < 0; 2873 } 2874 2875 /// Add this IV user to an existing chain or make it the head of a new chain. 2876 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper, 2877 SmallVectorImpl<ChainUsers> &ChainUsersVec) { 2878 // When IVs are used as types of varying widths, they are generally converted 2879 // to a wider type with some uses remaining narrow under a (free) trunc. 2880 Value *const NextIV = getWideOperand(IVOper); 2881 const SCEV *const OperExpr = SE.getSCEV(NextIV); 2882 const SCEV *const OperExprBase = getExprBase(OperExpr); 2883 2884 // Visit all existing chains. Check if its IVOper can be computed as a 2885 // profitable loop invariant increment from the last link in the Chain. 2886 unsigned ChainIdx = 0, NChains = IVChainVec.size(); 2887 const SCEV *LastIncExpr = nullptr; 2888 for (; ChainIdx < NChains; ++ChainIdx) { 2889 IVChain &Chain = IVChainVec[ChainIdx]; 2890 2891 // Prune the solution space aggressively by checking that both IV operands 2892 // are expressions that operate on the same unscaled SCEVUnknown. This 2893 // "base" will be canceled by the subsequent getMinusSCEV call. Checking 2894 // first avoids creating extra SCEV expressions. 2895 if (!StressIVChain && Chain.ExprBase != OperExprBase) 2896 continue; 2897 2898 Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand); 2899 if (!isCompatibleIVType(PrevIV, NextIV)) 2900 continue; 2901 2902 // A phi node terminates a chain. 2903 if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst())) 2904 continue; 2905 2906 // The increment must be loop-invariant so it can be kept in a register. 2907 const SCEV *PrevExpr = SE.getSCEV(PrevIV); 2908 const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr); 2909 if (!SE.isLoopInvariant(IncExpr, L)) 2910 continue; 2911 2912 if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) { 2913 LastIncExpr = IncExpr; 2914 break; 2915 } 2916 } 2917 // If we haven't found a chain, create a new one, unless we hit the max. Don't 2918 // bother for phi nodes, because they must be last in the chain. 2919 if (ChainIdx == NChains) { 2920 if (isa<PHINode>(UserInst)) 2921 return; 2922 if (NChains >= MaxChains && !StressIVChain) { 2923 LLVM_DEBUG(dbgs() << "IV Chain Limit\n"); 2924 return; 2925 } 2926 LastIncExpr = OperExpr; 2927 // IVUsers may have skipped over sign/zero extensions. We don't currently 2928 // attempt to form chains involving extensions unless they can be hoisted 2929 // into this loop's AddRec. 2930 if (!isa<SCEVAddRecExpr>(LastIncExpr)) 2931 return; 2932 ++NChains; 2933 IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr), 2934 OperExprBase)); 2935 ChainUsersVec.resize(NChains); 2936 LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst 2937 << ") IV=" << *LastIncExpr << "\n"); 2938 } else { 2939 LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Inc: (" << *UserInst 2940 << ") IV+" << *LastIncExpr << "\n"); 2941 // Add this IV user to the end of the chain. 2942 IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr)); 2943 } 2944 IVChain &Chain = IVChainVec[ChainIdx]; 2945 2946 SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers; 2947 // This chain's NearUsers become FarUsers. 2948 if (!LastIncExpr->isZero()) { 2949 ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(), 2950 NearUsers.end()); 2951 NearUsers.clear(); 2952 } 2953 2954 // All other uses of IVOperand become near uses of the chain. 2955 // We currently ignore intermediate values within SCEV expressions, assuming 2956 // they will eventually be used be the current chain, or can be computed 2957 // from one of the chain increments. To be more precise we could 2958 // transitively follow its user and only add leaf IV users to the set. 2959 for (User *U : IVOper->users()) { 2960 Instruction *OtherUse = dyn_cast<Instruction>(U); 2961 if (!OtherUse) 2962 continue; 2963 // Uses in the chain will no longer be uses if the chain is formed. 2964 // Include the head of the chain in this iteration (not Chain.begin()). 2965 IVChain::const_iterator IncIter = Chain.Incs.begin(); 2966 IVChain::const_iterator IncEnd = Chain.Incs.end(); 2967 for( ; IncIter != IncEnd; ++IncIter) { 2968 if (IncIter->UserInst == OtherUse) 2969 break; 2970 } 2971 if (IncIter != IncEnd) 2972 continue; 2973 2974 if (SE.isSCEVable(OtherUse->getType()) 2975 && !isa<SCEVUnknown>(SE.getSCEV(OtherUse)) 2976 && IU.isIVUserOrOperand(OtherUse)) { 2977 continue; 2978 } 2979 NearUsers.insert(OtherUse); 2980 } 2981 2982 // Since this user is part of the chain, it's no longer considered a use 2983 // of the chain. 2984 ChainUsersVec[ChainIdx].FarUsers.erase(UserInst); 2985 } 2986 2987 /// Populate the vector of Chains. 2988 /// 2989 /// This decreases ILP at the architecture level. Targets with ample registers, 2990 /// multiple memory ports, and no register renaming probably don't want 2991 /// this. However, such targets should probably disable LSR altogether. 2992 /// 2993 /// The job of LSR is to make a reasonable choice of induction variables across 2994 /// the loop. Subsequent passes can easily "unchain" computation exposing more 2995 /// ILP *within the loop* if the target wants it. 2996 /// 2997 /// Finding the best IV chain is potentially a scheduling problem. Since LSR 2998 /// will not reorder memory operations, it will recognize this as a chain, but 2999 /// will generate redundant IV increments. Ideally this would be corrected later 3000 /// by a smart scheduler: 3001 /// = A[i] 3002 /// = A[i+x] 3003 /// A[i] = 3004 /// A[i+x] = 3005 /// 3006 /// TODO: Walk the entire domtree within this loop, not just the path to the 3007 /// loop latch. This will discover chains on side paths, but requires 3008 /// maintaining multiple copies of the Chains state. 3009 void LSRInstance::CollectChains() { 3010 LLVM_DEBUG(dbgs() << "Collecting IV Chains.\n"); 3011 SmallVector<ChainUsers, 8> ChainUsersVec; 3012 3013 SmallVector<BasicBlock *,8> LatchPath; 3014 BasicBlock *LoopHeader = L->getHeader(); 3015 for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch()); 3016 Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) { 3017 LatchPath.push_back(Rung->getBlock()); 3018 } 3019 LatchPath.push_back(LoopHeader); 3020 3021 // Walk the instruction stream from the loop header to the loop latch. 3022 for (BasicBlock *BB : reverse(LatchPath)) { 3023 for (Instruction &I : *BB) { 3024 // Skip instructions that weren't seen by IVUsers analysis. 3025 if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I)) 3026 continue; 3027 3028 // Ignore users that are part of a SCEV expression. This way we only 3029 // consider leaf IV Users. This effectively rediscovers a portion of 3030 // IVUsers analysis but in program order this time. 3031 if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I))) 3032 continue; 3033 3034 // Remove this instruction from any NearUsers set it may be in. 3035 for (unsigned ChainIdx = 0, NChains = IVChainVec.size(); 3036 ChainIdx < NChains; ++ChainIdx) { 3037 ChainUsersVec[ChainIdx].NearUsers.erase(&I); 3038 } 3039 // Search for operands that can be chained. 3040 SmallPtrSet<Instruction*, 4> UniqueOperands; 3041 User::op_iterator IVOpEnd = I.op_end(); 3042 User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE); 3043 while (IVOpIter != IVOpEnd) { 3044 Instruction *IVOpInst = cast<Instruction>(*IVOpIter); 3045 if (UniqueOperands.insert(IVOpInst).second) 3046 ChainInstruction(&I, IVOpInst, ChainUsersVec); 3047 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 3048 } 3049 } // Continue walking down the instructions. 3050 } // Continue walking down the domtree. 3051 // Visit phi backedges to determine if the chain can generate the IV postinc. 3052 for (PHINode &PN : L->getHeader()->phis()) { 3053 if (!SE.isSCEVable(PN.getType())) 3054 continue; 3055 3056 Instruction *IncV = 3057 dyn_cast<Instruction>(PN.getIncomingValueForBlock(L->getLoopLatch())); 3058 if (IncV) 3059 ChainInstruction(&PN, IncV, ChainUsersVec); 3060 } 3061 // Remove any unprofitable chains. 3062 unsigned ChainIdx = 0; 3063 for (unsigned UsersIdx = 0, NChains = IVChainVec.size(); 3064 UsersIdx < NChains; ++UsersIdx) { 3065 if (!isProfitableChain(IVChainVec[UsersIdx], 3066 ChainUsersVec[UsersIdx].FarUsers, SE, TTI)) 3067 continue; 3068 // Preserve the chain at UsesIdx. 3069 if (ChainIdx != UsersIdx) 3070 IVChainVec[ChainIdx] = IVChainVec[UsersIdx]; 3071 FinalizeChain(IVChainVec[ChainIdx]); 3072 ++ChainIdx; 3073 } 3074 IVChainVec.resize(ChainIdx); 3075 } 3076 3077 void LSRInstance::FinalizeChain(IVChain &Chain) { 3078 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 3079 LLVM_DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n"); 3080 3081 for (const IVInc &Inc : Chain) { 3082 LLVM_DEBUG(dbgs() << " Inc: " << *Inc.UserInst << "\n"); 3083 auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand); 3084 assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand"); 3085 IVIncSet.insert(UseI); 3086 } 3087 } 3088 3089 /// Return true if the IVInc can be folded into an addressing mode. 3090 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst, 3091 Value *Operand, const TargetTransformInfo &TTI) { 3092 const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr); 3093 if (!IncConst || !isAddressUse(TTI, UserInst, Operand)) 3094 return false; 3095 3096 if (IncConst->getAPInt().getMinSignedBits() > 64) 3097 return false; 3098 3099 MemAccessTy AccessTy = getAccessType(TTI, UserInst, Operand); 3100 int64_t IncOffset = IncConst->getValue()->getSExtValue(); 3101 if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr, 3102 IncOffset, /*HaseBaseReg=*/false)) 3103 return false; 3104 3105 return true; 3106 } 3107 3108 /// Generate an add or subtract for each IVInc in a chain to materialize the IV 3109 /// user's operand from the previous IV user's operand. 3110 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 3111 SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 3112 // Find the new IVOperand for the head of the chain. It may have been replaced 3113 // by LSR. 3114 const IVInc &Head = Chain.Incs[0]; 3115 User::op_iterator IVOpEnd = Head.UserInst->op_end(); 3116 // findIVOperand returns IVOpEnd if it can no longer find a valid IV user. 3117 User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(), 3118 IVOpEnd, L, SE); 3119 Value *IVSrc = nullptr; 3120 while (IVOpIter != IVOpEnd) { 3121 IVSrc = getWideOperand(*IVOpIter); 3122 3123 // If this operand computes the expression that the chain needs, we may use 3124 // it. (Check this after setting IVSrc which is used below.) 3125 // 3126 // Note that if Head.IncExpr is wider than IVSrc, then this phi is too 3127 // narrow for the chain, so we can no longer use it. We do allow using a 3128 // wider phi, assuming the LSR checked for free truncation. In that case we 3129 // should already have a truncate on this operand such that 3130 // getSCEV(IVSrc) == IncExpr. 3131 if (SE.getSCEV(*IVOpIter) == Head.IncExpr 3132 || SE.getSCEV(IVSrc) == Head.IncExpr) { 3133 break; 3134 } 3135 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 3136 } 3137 if (IVOpIter == IVOpEnd) { 3138 // Gracefully give up on this chain. 3139 LLVM_DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n"); 3140 return; 3141 } 3142 3143 LLVM_DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n"); 3144 Type *IVTy = IVSrc->getType(); 3145 Type *IntTy = SE.getEffectiveSCEVType(IVTy); 3146 const SCEV *LeftOverExpr = nullptr; 3147 for (const IVInc &Inc : Chain) { 3148 Instruction *InsertPt = Inc.UserInst; 3149 if (isa<PHINode>(InsertPt)) 3150 InsertPt = L->getLoopLatch()->getTerminator(); 3151 3152 // IVOper will replace the current IV User's operand. IVSrc is the IV 3153 // value currently held in a register. 3154 Value *IVOper = IVSrc; 3155 if (!Inc.IncExpr->isZero()) { 3156 // IncExpr was the result of subtraction of two narrow values, so must 3157 // be signed. 3158 const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy); 3159 LeftOverExpr = LeftOverExpr ? 3160 SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr; 3161 } 3162 if (LeftOverExpr && !LeftOverExpr->isZero()) { 3163 // Expand the IV increment. 3164 Rewriter.clearPostInc(); 3165 Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt); 3166 const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc), 3167 SE.getUnknown(IncV)); 3168 IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt); 3169 3170 // If an IV increment can't be folded, use it as the next IV value. 3171 if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) { 3172 assert(IVTy == IVOper->getType() && "inconsistent IV increment type"); 3173 IVSrc = IVOper; 3174 LeftOverExpr = nullptr; 3175 } 3176 } 3177 Type *OperTy = Inc.IVOperand->getType(); 3178 if (IVTy != OperTy) { 3179 assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) && 3180 "cannot extend a chained IV"); 3181 IRBuilder<> Builder(InsertPt); 3182 IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain"); 3183 } 3184 Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper); 3185 DeadInsts.emplace_back(Inc.IVOperand); 3186 } 3187 // If LSR created a new, wider phi, we may also replace its postinc. We only 3188 // do this if we also found a wide value for the head of the chain. 3189 if (isa<PHINode>(Chain.tailUserInst())) { 3190 for (PHINode &Phi : L->getHeader()->phis()) { 3191 if (!isCompatibleIVType(&Phi, IVSrc)) 3192 continue; 3193 Instruction *PostIncV = dyn_cast<Instruction>( 3194 Phi.getIncomingValueForBlock(L->getLoopLatch())); 3195 if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc))) 3196 continue; 3197 Value *IVOper = IVSrc; 3198 Type *PostIncTy = PostIncV->getType(); 3199 if (IVTy != PostIncTy) { 3200 assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types"); 3201 IRBuilder<> Builder(L->getLoopLatch()->getTerminator()); 3202 Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc()); 3203 IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain"); 3204 } 3205 Phi.replaceUsesOfWith(PostIncV, IVOper); 3206 DeadInsts.emplace_back(PostIncV); 3207 } 3208 } 3209 } 3210 3211 void LSRInstance::CollectFixupsAndInitialFormulae() { 3212 for (const IVStrideUse &U : IU) { 3213 Instruction *UserInst = U.getUser(); 3214 // Skip IV users that are part of profitable IV Chains. 3215 User::op_iterator UseI = 3216 find(UserInst->operands(), U.getOperandValToReplace()); 3217 assert(UseI != UserInst->op_end() && "cannot find IV operand"); 3218 if (IVIncSet.count(UseI)) { 3219 LLVM_DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n'); 3220 continue; 3221 } 3222 3223 LSRUse::KindType Kind = LSRUse::Basic; 3224 MemAccessTy AccessTy; 3225 if (isAddressUse(TTI, UserInst, U.getOperandValToReplace())) { 3226 Kind = LSRUse::Address; 3227 AccessTy = getAccessType(TTI, UserInst, U.getOperandValToReplace()); 3228 } 3229 3230 const SCEV *S = IU.getExpr(U); 3231 PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops(); 3232 3233 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as 3234 // (N - i == 0), and this allows (N - i) to be the expression that we work 3235 // with rather than just N or i, so we can consider the register 3236 // requirements for both N and i at the same time. Limiting this code to 3237 // equality icmps is not a problem because all interesting loops use 3238 // equality icmps, thanks to IndVarSimplify. 3239 if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst)) 3240 if (CI->isEquality()) { 3241 // Swap the operands if needed to put the OperandValToReplace on the 3242 // left, for consistency. 3243 Value *NV = CI->getOperand(1); 3244 if (NV == U.getOperandValToReplace()) { 3245 CI->setOperand(1, CI->getOperand(0)); 3246 CI->setOperand(0, NV); 3247 NV = CI->getOperand(1); 3248 Changed = true; 3249 } 3250 3251 // x == y --> x - y == 0 3252 const SCEV *N = SE.getSCEV(NV); 3253 if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) { 3254 // S is normalized, so normalize N before folding it into S 3255 // to keep the result normalized. 3256 N = normalizeForPostIncUse(N, TmpPostIncLoops, SE); 3257 Kind = LSRUse::ICmpZero; 3258 S = SE.getMinusSCEV(N, S); 3259 } 3260 3261 // -1 and the negations of all interesting strides (except the negation 3262 // of -1) are now also interesting. 3263 for (size_t i = 0, e = Factors.size(); i != e; ++i) 3264 if (Factors[i] != -1) 3265 Factors.insert(-(uint64_t)Factors[i]); 3266 Factors.insert(-1); 3267 } 3268 3269 // Get or create an LSRUse. 3270 std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy); 3271 size_t LUIdx = P.first; 3272 int64_t Offset = P.second; 3273 LSRUse &LU = Uses[LUIdx]; 3274 3275 // Record the fixup. 3276 LSRFixup &LF = LU.getNewFixup(); 3277 LF.UserInst = UserInst; 3278 LF.OperandValToReplace = U.getOperandValToReplace(); 3279 LF.PostIncLoops = TmpPostIncLoops; 3280 LF.Offset = Offset; 3281 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3282 3283 if (!LU.WidestFixupType || 3284 SE.getTypeSizeInBits(LU.WidestFixupType) < 3285 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3286 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3287 3288 // If this is the first use of this LSRUse, give it a formula. 3289 if (LU.Formulae.empty()) { 3290 InsertInitialFormula(S, LU, LUIdx); 3291 CountRegisters(LU.Formulae.back(), LUIdx); 3292 } 3293 } 3294 3295 LLVM_DEBUG(print_fixups(dbgs())); 3296 } 3297 3298 /// Insert a formula for the given expression into the given use, separating out 3299 /// loop-variant portions from loop-invariant and loop-computable portions. 3300 void 3301 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) { 3302 // Mark uses whose expressions cannot be expanded. 3303 if (!isSafeToExpand(S, SE)) 3304 LU.RigidFormula = true; 3305 3306 Formula F; 3307 F.initialMatch(S, L, SE); 3308 bool Inserted = InsertFormula(LU, LUIdx, F); 3309 assert(Inserted && "Initial formula already exists!"); (void)Inserted; 3310 } 3311 3312 /// Insert a simple single-register formula for the given expression into the 3313 /// given use. 3314 void 3315 LSRInstance::InsertSupplementalFormula(const SCEV *S, 3316 LSRUse &LU, size_t LUIdx) { 3317 Formula F; 3318 F.BaseRegs.push_back(S); 3319 F.HasBaseReg = true; 3320 bool Inserted = InsertFormula(LU, LUIdx, F); 3321 assert(Inserted && "Supplemental formula already exists!"); (void)Inserted; 3322 } 3323 3324 /// Note which registers are used by the given formula, updating RegUses. 3325 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) { 3326 if (F.ScaledReg) 3327 RegUses.countRegister(F.ScaledReg, LUIdx); 3328 for (const SCEV *BaseReg : F.BaseRegs) 3329 RegUses.countRegister(BaseReg, LUIdx); 3330 } 3331 3332 /// If the given formula has not yet been inserted, add it to the list, and 3333 /// return true. Return false otherwise. 3334 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) { 3335 // Do not insert formula that we will not be able to expand. 3336 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) && 3337 "Formula is illegal"); 3338 3339 if (!LU.InsertFormula(F, *L)) 3340 return false; 3341 3342 CountRegisters(F, LUIdx); 3343 return true; 3344 } 3345 3346 /// Check for other uses of loop-invariant values which we're tracking. These 3347 /// other uses will pin these values in registers, making them less profitable 3348 /// for elimination. 3349 /// TODO: This currently misses non-constant addrec step registers. 3350 /// TODO: Should this give more weight to users inside the loop? 3351 void 3352 LSRInstance::CollectLoopInvariantFixupsAndFormulae() { 3353 SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end()); 3354 SmallPtrSet<const SCEV *, 32> Visited; 3355 3356 while (!Worklist.empty()) { 3357 const SCEV *S = Worklist.pop_back_val(); 3358 3359 // Don't process the same SCEV twice 3360 if (!Visited.insert(S).second) 3361 continue; 3362 3363 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) 3364 Worklist.append(N->op_begin(), N->op_end()); 3365 else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) 3366 Worklist.push_back(C->getOperand()); 3367 else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 3368 Worklist.push_back(D->getLHS()); 3369 Worklist.push_back(D->getRHS()); 3370 } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) { 3371 const Value *V = US->getValue(); 3372 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 3373 // Look for instructions defined outside the loop. 3374 if (L->contains(Inst)) continue; 3375 } else if (isa<UndefValue>(V)) 3376 // Undef doesn't have a live range, so it doesn't matter. 3377 continue; 3378 for (const Use &U : V->uses()) { 3379 const Instruction *UserInst = dyn_cast<Instruction>(U.getUser()); 3380 // Ignore non-instructions. 3381 if (!UserInst) 3382 continue; 3383 // Ignore instructions in other functions (as can happen with 3384 // Constants). 3385 if (UserInst->getParent()->getParent() != L->getHeader()->getParent()) 3386 continue; 3387 // Ignore instructions not dominated by the loop. 3388 const BasicBlock *UseBB = !isa<PHINode>(UserInst) ? 3389 UserInst->getParent() : 3390 cast<PHINode>(UserInst)->getIncomingBlock( 3391 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 3392 if (!DT.dominates(L->getHeader(), UseBB)) 3393 continue; 3394 // Don't bother if the instruction is in a BB which ends in an EHPad. 3395 if (UseBB->getTerminator()->isEHPad()) 3396 continue; 3397 // Don't bother rewriting PHIs in catchswitch blocks. 3398 if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator())) 3399 continue; 3400 // Ignore uses which are part of other SCEV expressions, to avoid 3401 // analyzing them multiple times. 3402 if (SE.isSCEVable(UserInst->getType())) { 3403 const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst)); 3404 // If the user is a no-op, look through to its uses. 3405 if (!isa<SCEVUnknown>(UserS)) 3406 continue; 3407 if (UserS == US) { 3408 Worklist.push_back( 3409 SE.getUnknown(const_cast<Instruction *>(UserInst))); 3410 continue; 3411 } 3412 } 3413 // Ignore icmp instructions which are already being analyzed. 3414 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) { 3415 unsigned OtherIdx = !U.getOperandNo(); 3416 Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx)); 3417 if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L)) 3418 continue; 3419 } 3420 3421 std::pair<size_t, int64_t> P = getUse( 3422 S, LSRUse::Basic, MemAccessTy()); 3423 size_t LUIdx = P.first; 3424 int64_t Offset = P.second; 3425 LSRUse &LU = Uses[LUIdx]; 3426 LSRFixup &LF = LU.getNewFixup(); 3427 LF.UserInst = const_cast<Instruction *>(UserInst); 3428 LF.OperandValToReplace = U; 3429 LF.Offset = Offset; 3430 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3431 if (!LU.WidestFixupType || 3432 SE.getTypeSizeInBits(LU.WidestFixupType) < 3433 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3434 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3435 InsertSupplementalFormula(US, LU, LUIdx); 3436 CountRegisters(LU.Formulae.back(), Uses.size() - 1); 3437 break; 3438 } 3439 } 3440 } 3441 } 3442 3443 /// Split S into subexpressions which can be pulled out into separate 3444 /// registers. If C is non-null, multiply each subexpression by C. 3445 /// 3446 /// Return remainder expression after factoring the subexpressions captured by 3447 /// Ops. If Ops is complete, return NULL. 3448 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C, 3449 SmallVectorImpl<const SCEV *> &Ops, 3450 const Loop *L, 3451 ScalarEvolution &SE, 3452 unsigned Depth = 0) { 3453 // Arbitrarily cap recursion to protect compile time. 3454 if (Depth >= 3) 3455 return S; 3456 3457 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3458 // Break out add operands. 3459 for (const SCEV *S : Add->operands()) { 3460 const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1); 3461 if (Remainder) 3462 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3463 } 3464 return nullptr; 3465 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 3466 // Split a non-zero base out of an addrec. 3467 if (AR->getStart()->isZero() || !AR->isAffine()) 3468 return S; 3469 3470 const SCEV *Remainder = CollectSubexprs(AR->getStart(), 3471 C, Ops, L, SE, Depth+1); 3472 // Split the non-zero AddRec unless it is part of a nested recurrence that 3473 // does not pertain to this loop. 3474 if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) { 3475 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3476 Remainder = nullptr; 3477 } 3478 if (Remainder != AR->getStart()) { 3479 if (!Remainder) 3480 Remainder = SE.getConstant(AR->getType(), 0); 3481 return SE.getAddRecExpr(Remainder, 3482 AR->getStepRecurrence(SE), 3483 AR->getLoop(), 3484 //FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 3485 SCEV::FlagAnyWrap); 3486 } 3487 } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3488 // Break (C * (a + b + c)) into C*a + C*b + C*c. 3489 if (Mul->getNumOperands() != 2) 3490 return S; 3491 if (const SCEVConstant *Op0 = 3492 dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3493 C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0; 3494 const SCEV *Remainder = 3495 CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1); 3496 if (Remainder) 3497 Ops.push_back(SE.getMulExpr(C, Remainder)); 3498 return nullptr; 3499 } 3500 } 3501 return S; 3502 } 3503 3504 /// Return true if the SCEV represents a value that may end up as a 3505 /// post-increment operation. 3506 static bool mayUsePostIncMode(const TargetTransformInfo &TTI, 3507 LSRUse &LU, const SCEV *S, const Loop *L, 3508 ScalarEvolution &SE) { 3509 if (LU.Kind != LSRUse::Address || 3510 !LU.AccessTy.getType()->isIntOrIntVectorTy()) 3511 return false; 3512 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S); 3513 if (!AR) 3514 return false; 3515 const SCEV *LoopStep = AR->getStepRecurrence(SE); 3516 if (!isa<SCEVConstant>(LoopStep)) 3517 return false; 3518 if (LU.AccessTy.getType()->getScalarSizeInBits() != 3519 LoopStep->getType()->getScalarSizeInBits()) 3520 return false; 3521 // Check if a post-indexed load/store can be used. 3522 if (TTI.isIndexedLoadLegal(TTI.MIM_PostInc, AR->getType()) || 3523 TTI.isIndexedStoreLegal(TTI.MIM_PostInc, AR->getType())) { 3524 const SCEV *LoopStart = AR->getStart(); 3525 if (!isa<SCEVConstant>(LoopStart) && SE.isLoopInvariant(LoopStart, L)) 3526 return true; 3527 } 3528 return false; 3529 } 3530 3531 /// Helper function for LSRInstance::GenerateReassociations. 3532 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 3533 const Formula &Base, 3534 unsigned Depth, size_t Idx, 3535 bool IsScaledReg) { 3536 const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3537 // Don't generate reassociations for the base register of a value that 3538 // may generate a post-increment operator. The reason is that the 3539 // reassociations cause extra base+register formula to be created, 3540 // and possibly chosen, but the post-increment is more efficient. 3541 if (TTI.shouldFavorPostInc() && mayUsePostIncMode(TTI, LU, BaseReg, L, SE)) 3542 return; 3543 SmallVector<const SCEV *, 8> AddOps; 3544 const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE); 3545 if (Remainder) 3546 AddOps.push_back(Remainder); 3547 3548 if (AddOps.size() == 1) 3549 return; 3550 3551 for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(), 3552 JE = AddOps.end(); 3553 J != JE; ++J) { 3554 // Loop-variant "unknown" values are uninteresting; we won't be able to 3555 // do anything meaningful with them. 3556 if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L)) 3557 continue; 3558 3559 // Don't pull a constant into a register if the constant could be folded 3560 // into an immediate field. 3561 if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3562 LU.AccessTy, *J, Base.getNumRegs() > 1)) 3563 continue; 3564 3565 // Collect all operands except *J. 3566 SmallVector<const SCEV *, 8> InnerAddOps( 3567 ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J); 3568 InnerAddOps.append(std::next(J), 3569 ((const SmallVector<const SCEV *, 8> &)AddOps).end()); 3570 3571 // Don't leave just a constant behind in a register if the constant could 3572 // be folded into an immediate field. 3573 if (InnerAddOps.size() == 1 && 3574 isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3575 LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1)) 3576 continue; 3577 3578 const SCEV *InnerSum = SE.getAddExpr(InnerAddOps); 3579 if (InnerSum->isZero()) 3580 continue; 3581 Formula F = Base; 3582 3583 // Add the remaining pieces of the add back into the new formula. 3584 const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum); 3585 if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 && 3586 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3587 InnerSumSC->getValue()->getZExtValue())) { 3588 F.UnfoldedOffset = 3589 (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue(); 3590 if (IsScaledReg) 3591 F.ScaledReg = nullptr; 3592 else 3593 F.BaseRegs.erase(F.BaseRegs.begin() + Idx); 3594 } else if (IsScaledReg) 3595 F.ScaledReg = InnerSum; 3596 else 3597 F.BaseRegs[Idx] = InnerSum; 3598 3599 // Add J as its own register, or an unfolded immediate. 3600 const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J); 3601 if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 && 3602 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3603 SC->getValue()->getZExtValue())) 3604 F.UnfoldedOffset = 3605 (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue(); 3606 else 3607 F.BaseRegs.push_back(*J); 3608 // We may have changed the number of register in base regs, adjust the 3609 // formula accordingly. 3610 F.canonicalize(*L); 3611 3612 if (InsertFormula(LU, LUIdx, F)) 3613 // If that formula hadn't been seen before, recurse to find more like 3614 // it. 3615 // Add check on Log16(AddOps.size()) - same as Log2_32(AddOps.size()) >> 2) 3616 // Because just Depth is not enough to bound compile time. 3617 // This means that every time AddOps.size() is greater 16^x we will add 3618 // x to Depth. 3619 GenerateReassociations(LU, LUIdx, LU.Formulae.back(), 3620 Depth + 1 + (Log2_32(AddOps.size()) >> 2)); 3621 } 3622 } 3623 3624 /// Split out subexpressions from adds and the bases of addrecs. 3625 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx, 3626 Formula Base, unsigned Depth) { 3627 assert(Base.isCanonical(*L) && "Input must be in the canonical form"); 3628 // Arbitrarily cap recursion to protect compile time. 3629 if (Depth >= 3) 3630 return; 3631 3632 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3633 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i); 3634 3635 if (Base.Scale == 1) 3636 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, 3637 /* Idx */ -1, /* IsScaledReg */ true); 3638 } 3639 3640 /// Generate a formula consisting of all of the loop-dominating registers added 3641 /// into a single register. 3642 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx, 3643 Formula Base) { 3644 // This method is only interesting on a plurality of registers. 3645 if (Base.BaseRegs.size() + (Base.Scale == 1) + 3646 (Base.UnfoldedOffset != 0) <= 1) 3647 return; 3648 3649 // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before 3650 // processing the formula. 3651 Base.unscale(); 3652 SmallVector<const SCEV *, 4> Ops; 3653 Formula NewBase = Base; 3654 NewBase.BaseRegs.clear(); 3655 Type *CombinedIntegerType = nullptr; 3656 for (const SCEV *BaseReg : Base.BaseRegs) { 3657 if (SE.properlyDominates(BaseReg, L->getHeader()) && 3658 !SE.hasComputableLoopEvolution(BaseReg, L)) { 3659 if (!CombinedIntegerType) 3660 CombinedIntegerType = SE.getEffectiveSCEVType(BaseReg->getType()); 3661 Ops.push_back(BaseReg); 3662 } 3663 else 3664 NewBase.BaseRegs.push_back(BaseReg); 3665 } 3666 3667 // If no register is relevant, we're done. 3668 if (Ops.size() == 0) 3669 return; 3670 3671 // Utility function for generating the required variants of the combined 3672 // registers. 3673 auto GenerateFormula = [&](const SCEV *Sum) { 3674 Formula F = NewBase; 3675 3676 // TODO: If Sum is zero, it probably means ScalarEvolution missed an 3677 // opportunity to fold something. For now, just ignore such cases 3678 // rather than proceed with zero in a register. 3679 if (Sum->isZero()) 3680 return; 3681 3682 F.BaseRegs.push_back(Sum); 3683 F.canonicalize(*L); 3684 (void)InsertFormula(LU, LUIdx, F); 3685 }; 3686 3687 // If we collected at least two registers, generate a formula combining them. 3688 if (Ops.size() > 1) { 3689 SmallVector<const SCEV *, 4> OpsCopy(Ops); // Don't let SE modify Ops. 3690 GenerateFormula(SE.getAddExpr(OpsCopy)); 3691 } 3692 3693 // If we have an unfolded offset, generate a formula combining it with the 3694 // registers collected. 3695 if (NewBase.UnfoldedOffset) { 3696 assert(CombinedIntegerType && "Missing a type for the unfolded offset"); 3697 Ops.push_back(SE.getConstant(CombinedIntegerType, NewBase.UnfoldedOffset, 3698 true)); 3699 NewBase.UnfoldedOffset = 0; 3700 GenerateFormula(SE.getAddExpr(Ops)); 3701 } 3702 } 3703 3704 /// Helper function for LSRInstance::GenerateSymbolicOffsets. 3705 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 3706 const Formula &Base, size_t Idx, 3707 bool IsScaledReg) { 3708 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3709 GlobalValue *GV = ExtractSymbol(G, SE); 3710 if (G->isZero() || !GV) 3711 return; 3712 Formula F = Base; 3713 F.BaseGV = GV; 3714 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3715 return; 3716 if (IsScaledReg) 3717 F.ScaledReg = G; 3718 else 3719 F.BaseRegs[Idx] = G; 3720 (void)InsertFormula(LU, LUIdx, F); 3721 } 3722 3723 /// Generate reuse formulae using symbolic offsets. 3724 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, 3725 Formula Base) { 3726 // We can't add a symbolic offset if the address already contains one. 3727 if (Base.BaseGV) return; 3728 3729 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3730 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i); 3731 if (Base.Scale == 1) 3732 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1, 3733 /* IsScaledReg */ true); 3734 } 3735 3736 /// Helper function for LSRInstance::GenerateConstantOffsets. 3737 void LSRInstance::GenerateConstantOffsetsImpl( 3738 LSRUse &LU, unsigned LUIdx, const Formula &Base, 3739 const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) { 3740 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3741 for (int64_t Offset : Worklist) { 3742 Formula F = Base; 3743 F.BaseOffset = (uint64_t)Base.BaseOffset - Offset; 3744 if (isLegalUse(TTI, LU.MinOffset - Offset, LU.MaxOffset - Offset, LU.Kind, 3745 LU.AccessTy, F)) { 3746 // Add the offset to the base register. 3747 const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G); 3748 // If it cancelled out, drop the base register, otherwise update it. 3749 if (NewG->isZero()) { 3750 if (IsScaledReg) { 3751 F.Scale = 0; 3752 F.ScaledReg = nullptr; 3753 } else 3754 F.deleteBaseReg(F.BaseRegs[Idx]); 3755 F.canonicalize(*L); 3756 } else if (IsScaledReg) 3757 F.ScaledReg = NewG; 3758 else 3759 F.BaseRegs[Idx] = NewG; 3760 3761 (void)InsertFormula(LU, LUIdx, F); 3762 } 3763 } 3764 3765 int64_t Imm = ExtractImmediate(G, SE); 3766 if (G->isZero() || Imm == 0) 3767 return; 3768 Formula F = Base; 3769 F.BaseOffset = (uint64_t)F.BaseOffset + Imm; 3770 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3771 return; 3772 if (IsScaledReg) 3773 F.ScaledReg = G; 3774 else 3775 F.BaseRegs[Idx] = G; 3776 (void)InsertFormula(LU, LUIdx, F); 3777 } 3778 3779 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets. 3780 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, 3781 Formula Base) { 3782 // TODO: For now, just add the min and max offset, because it usually isn't 3783 // worthwhile looking at everything inbetween. 3784 SmallVector<int64_t, 2> Worklist; 3785 Worklist.push_back(LU.MinOffset); 3786 if (LU.MaxOffset != LU.MinOffset) 3787 Worklist.push_back(LU.MaxOffset); 3788 3789 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3790 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i); 3791 if (Base.Scale == 1) 3792 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1, 3793 /* IsScaledReg */ true); 3794 } 3795 3796 /// For ICmpZero, check to see if we can scale up the comparison. For example, x 3797 /// == y -> x*c == y*c. 3798 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, 3799 Formula Base) { 3800 if (LU.Kind != LSRUse::ICmpZero) return; 3801 3802 // Determine the integer type for the base formula. 3803 Type *IntTy = Base.getType(); 3804 if (!IntTy) return; 3805 if (SE.getTypeSizeInBits(IntTy) > 64) return; 3806 3807 // Don't do this if there is more than one offset. 3808 if (LU.MinOffset != LU.MaxOffset) return; 3809 3810 // Check if transformation is valid. It is illegal to multiply pointer. 3811 if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy()) 3812 return; 3813 for (const SCEV *BaseReg : Base.BaseRegs) 3814 if (BaseReg->getType()->isPointerTy()) 3815 return; 3816 assert(!Base.BaseGV && "ICmpZero use is not legal!"); 3817 3818 // Check each interesting stride. 3819 for (int64_t Factor : Factors) { 3820 // Check that the multiplication doesn't overflow. 3821 if (Base.BaseOffset == std::numeric_limits<int64_t>::min() && Factor == -1) 3822 continue; 3823 int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor; 3824 if (NewBaseOffset / Factor != Base.BaseOffset) 3825 continue; 3826 // If the offset will be truncated at this use, check that it is in bounds. 3827 if (!IntTy->isPointerTy() && 3828 !ConstantInt::isValueValidForType(IntTy, NewBaseOffset)) 3829 continue; 3830 3831 // Check that multiplying with the use offset doesn't overflow. 3832 int64_t Offset = LU.MinOffset; 3833 if (Offset == std::numeric_limits<int64_t>::min() && Factor == -1) 3834 continue; 3835 Offset = (uint64_t)Offset * Factor; 3836 if (Offset / Factor != LU.MinOffset) 3837 continue; 3838 // If the offset will be truncated at this use, check that it is in bounds. 3839 if (!IntTy->isPointerTy() && 3840 !ConstantInt::isValueValidForType(IntTy, Offset)) 3841 continue; 3842 3843 Formula F = Base; 3844 F.BaseOffset = NewBaseOffset; 3845 3846 // Check that this scale is legal. 3847 if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F)) 3848 continue; 3849 3850 // Compensate for the use having MinOffset built into it. 3851 F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset; 3852 3853 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3854 3855 // Check that multiplying with each base register doesn't overflow. 3856 for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) { 3857 F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS); 3858 if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i]) 3859 goto next; 3860 } 3861 3862 // Check that multiplying with the scaled register doesn't overflow. 3863 if (F.ScaledReg) { 3864 F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS); 3865 if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg) 3866 continue; 3867 } 3868 3869 // Check that multiplying with the unfolded offset doesn't overflow. 3870 if (F.UnfoldedOffset != 0) { 3871 if (F.UnfoldedOffset == std::numeric_limits<int64_t>::min() && 3872 Factor == -1) 3873 continue; 3874 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor; 3875 if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset) 3876 continue; 3877 // If the offset will be truncated, check that it is in bounds. 3878 if (!IntTy->isPointerTy() && 3879 !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset)) 3880 continue; 3881 } 3882 3883 // If we make it here and it's legal, add it. 3884 (void)InsertFormula(LU, LUIdx, F); 3885 next:; 3886 } 3887 } 3888 3889 /// Generate stride factor reuse formulae by making use of scaled-offset address 3890 /// modes, for example. 3891 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) { 3892 // Determine the integer type for the base formula. 3893 Type *IntTy = Base.getType(); 3894 if (!IntTy) return; 3895 3896 // If this Formula already has a scaled register, we can't add another one. 3897 // Try to unscale the formula to generate a better scale. 3898 if (Base.Scale != 0 && !Base.unscale()) 3899 return; 3900 3901 assert(Base.Scale == 0 && "unscale did not did its job!"); 3902 3903 // Check each interesting stride. 3904 for (int64_t Factor : Factors) { 3905 Base.Scale = Factor; 3906 Base.HasBaseReg = Base.BaseRegs.size() > 1; 3907 // Check whether this scale is going to be legal. 3908 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 3909 Base)) { 3910 // As a special-case, handle special out-of-loop Basic users specially. 3911 // TODO: Reconsider this special case. 3912 if (LU.Kind == LSRUse::Basic && 3913 isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special, 3914 LU.AccessTy, Base) && 3915 LU.AllFixupsOutsideLoop) 3916 LU.Kind = LSRUse::Special; 3917 else 3918 continue; 3919 } 3920 // For an ICmpZero, negating a solitary base register won't lead to 3921 // new solutions. 3922 if (LU.Kind == LSRUse::ICmpZero && 3923 !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV) 3924 continue; 3925 // For each addrec base reg, if its loop is current loop, apply the scale. 3926 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { 3927 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i]); 3928 if (AR && (AR->getLoop() == L || LU.AllFixupsOutsideLoop)) { 3929 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3930 if (FactorS->isZero()) 3931 continue; 3932 // Divide out the factor, ignoring high bits, since we'll be 3933 // scaling the value back up in the end. 3934 if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) { 3935 // TODO: This could be optimized to avoid all the copying. 3936 Formula F = Base; 3937 F.ScaledReg = Quotient; 3938 F.deleteBaseReg(F.BaseRegs[i]); 3939 // The canonical representation of 1*reg is reg, which is already in 3940 // Base. In that case, do not try to insert the formula, it will be 3941 // rejected anyway. 3942 if (F.Scale == 1 && (F.BaseRegs.empty() || 3943 (AR->getLoop() != L && LU.AllFixupsOutsideLoop))) 3944 continue; 3945 // If AllFixupsOutsideLoop is true and F.Scale is 1, we may generate 3946 // non canonical Formula with ScaledReg's loop not being L. 3947 if (F.Scale == 1 && LU.AllFixupsOutsideLoop) 3948 F.canonicalize(*L); 3949 (void)InsertFormula(LU, LUIdx, F); 3950 } 3951 } 3952 } 3953 } 3954 } 3955 3956 /// Generate reuse formulae from different IV types. 3957 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) { 3958 // Don't bother truncating symbolic values. 3959 if (Base.BaseGV) return; 3960 3961 // Determine the integer type for the base formula. 3962 Type *DstTy = Base.getType(); 3963 if (!DstTy) return; 3964 DstTy = SE.getEffectiveSCEVType(DstTy); 3965 3966 for (Type *SrcTy : Types) { 3967 if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) { 3968 Formula F = Base; 3969 3970 if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy); 3971 for (const SCEV *&BaseReg : F.BaseRegs) 3972 BaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy); 3973 3974 // TODO: This assumes we've done basic processing on all uses and 3975 // have an idea what the register usage is. 3976 if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses)) 3977 continue; 3978 3979 F.canonicalize(*L); 3980 (void)InsertFormula(LU, LUIdx, F); 3981 } 3982 } 3983 } 3984 3985 namespace { 3986 3987 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer 3988 /// modifications so that the search phase doesn't have to worry about the data 3989 /// structures moving underneath it. 3990 struct WorkItem { 3991 size_t LUIdx; 3992 int64_t Imm; 3993 const SCEV *OrigReg; 3994 3995 WorkItem(size_t LI, int64_t I, const SCEV *R) 3996 : LUIdx(LI), Imm(I), OrigReg(R) {} 3997 3998 void print(raw_ostream &OS) const; 3999 void dump() const; 4000 }; 4001 4002 } // end anonymous namespace 4003 4004 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 4005 void WorkItem::print(raw_ostream &OS) const { 4006 OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx 4007 << " , add offset " << Imm; 4008 } 4009 4010 LLVM_DUMP_METHOD void WorkItem::dump() const { 4011 print(errs()); errs() << '\n'; 4012 } 4013 #endif 4014 4015 /// Look for registers which are a constant distance apart and try to form reuse 4016 /// opportunities between them. 4017 void LSRInstance::GenerateCrossUseConstantOffsets() { 4018 // Group the registers by their value without any added constant offset. 4019 using ImmMapTy = std::map<int64_t, const SCEV *>; 4020 4021 DenseMap<const SCEV *, ImmMapTy> Map; 4022 DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap; 4023 SmallVector<const SCEV *, 8> Sequence; 4024 for (const SCEV *Use : RegUses) { 4025 const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify. 4026 int64_t Imm = ExtractImmediate(Reg, SE); 4027 auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy())); 4028 if (Pair.second) 4029 Sequence.push_back(Reg); 4030 Pair.first->second.insert(std::make_pair(Imm, Use)); 4031 UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use); 4032 } 4033 4034 // Now examine each set of registers with the same base value. Build up 4035 // a list of work to do and do the work in a separate step so that we're 4036 // not adding formulae and register counts while we're searching. 4037 SmallVector<WorkItem, 32> WorkItems; 4038 SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems; 4039 for (const SCEV *Reg : Sequence) { 4040 const ImmMapTy &Imms = Map.find(Reg)->second; 4041 4042 // It's not worthwhile looking for reuse if there's only one offset. 4043 if (Imms.size() == 1) 4044 continue; 4045 4046 LLVM_DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':'; 4047 for (const auto &Entry 4048 : Imms) dbgs() 4049 << ' ' << Entry.first; 4050 dbgs() << '\n'); 4051 4052 // Examine each offset. 4053 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); 4054 J != JE; ++J) { 4055 const SCEV *OrigReg = J->second; 4056 4057 int64_t JImm = J->first; 4058 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg); 4059 4060 if (!isa<SCEVConstant>(OrigReg) && 4061 UsedByIndicesMap[Reg].count() == 1) { 4062 LLVM_DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg 4063 << '\n'); 4064 continue; 4065 } 4066 4067 // Conservatively examine offsets between this orig reg a few selected 4068 // other orig regs. 4069 ImmMapTy::const_iterator OtherImms[] = { 4070 Imms.begin(), std::prev(Imms.end()), 4071 Imms.lower_bound((Imms.begin()->first + std::prev(Imms.end())->first) / 4072 2) 4073 }; 4074 for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) { 4075 ImmMapTy::const_iterator M = OtherImms[i]; 4076 if (M == J || M == JE) continue; 4077 4078 // Compute the difference between the two. 4079 int64_t Imm = (uint64_t)JImm - M->first; 4080 for (unsigned LUIdx : UsedByIndices.set_bits()) 4081 // Make a memo of this use, offset, and register tuple. 4082 if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second) 4083 WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg)); 4084 } 4085 } 4086 } 4087 4088 Map.clear(); 4089 Sequence.clear(); 4090 UsedByIndicesMap.clear(); 4091 UniqueItems.clear(); 4092 4093 // Now iterate through the worklist and add new formulae. 4094 for (const WorkItem &WI : WorkItems) { 4095 size_t LUIdx = WI.LUIdx; 4096 LSRUse &LU = Uses[LUIdx]; 4097 int64_t Imm = WI.Imm; 4098 const SCEV *OrigReg = WI.OrigReg; 4099 4100 Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType()); 4101 const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm)); 4102 unsigned BitWidth = SE.getTypeSizeInBits(IntTy); 4103 4104 // TODO: Use a more targeted data structure. 4105 for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) { 4106 Formula F = LU.Formulae[L]; 4107 // FIXME: The code for the scaled and unscaled registers looks 4108 // very similar but slightly different. Investigate if they 4109 // could be merged. That way, we would not have to unscale the 4110 // Formula. 4111 F.unscale(); 4112 // Use the immediate in the scaled register. 4113 if (F.ScaledReg == OrigReg) { 4114 int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale; 4115 // Don't create 50 + reg(-50). 4116 if (F.referencesReg(SE.getSCEV( 4117 ConstantInt::get(IntTy, -(uint64_t)Offset)))) 4118 continue; 4119 Formula NewF = F; 4120 NewF.BaseOffset = Offset; 4121 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 4122 NewF)) 4123 continue; 4124 NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg); 4125 4126 // If the new scale is a constant in a register, and adding the constant 4127 // value to the immediate would produce a value closer to zero than the 4128 // immediate itself, then the formula isn't worthwhile. 4129 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg)) 4130 if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) && 4131 (C->getAPInt().abs() * APInt(BitWidth, F.Scale)) 4132 .ule(std::abs(NewF.BaseOffset))) 4133 continue; 4134 4135 // OK, looks good. 4136 NewF.canonicalize(*this->L); 4137 (void)InsertFormula(LU, LUIdx, NewF); 4138 } else { 4139 // Use the immediate in a base register. 4140 for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) { 4141 const SCEV *BaseReg = F.BaseRegs[N]; 4142 if (BaseReg != OrigReg) 4143 continue; 4144 Formula NewF = F; 4145 NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm; 4146 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, 4147 LU.Kind, LU.AccessTy, NewF)) { 4148 if (TTI.shouldFavorPostInc() && 4149 mayUsePostIncMode(TTI, LU, OrigReg, this->L, SE)) 4150 continue; 4151 if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm)) 4152 continue; 4153 NewF = F; 4154 NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm; 4155 } 4156 NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg); 4157 4158 // If the new formula has a constant in a register, and adding the 4159 // constant value to the immediate would produce a value closer to 4160 // zero than the immediate itself, then the formula isn't worthwhile. 4161 for (const SCEV *NewReg : NewF.BaseRegs) 4162 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg)) 4163 if ((C->getAPInt() + NewF.BaseOffset) 4164 .abs() 4165 .slt(std::abs(NewF.BaseOffset)) && 4166 (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >= 4167 countTrailingZeros<uint64_t>(NewF.BaseOffset)) 4168 goto skip_formula; 4169 4170 // Ok, looks good. 4171 NewF.canonicalize(*this->L); 4172 (void)InsertFormula(LU, LUIdx, NewF); 4173 break; 4174 skip_formula:; 4175 } 4176 } 4177 } 4178 } 4179 } 4180 4181 /// Generate formulae for each use. 4182 void 4183 LSRInstance::GenerateAllReuseFormulae() { 4184 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan 4185 // queries are more precise. 4186 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4187 LSRUse &LU = Uses[LUIdx]; 4188 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4189 GenerateReassociations(LU, LUIdx, LU.Formulae[i]); 4190 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4191 GenerateCombinations(LU, LUIdx, LU.Formulae[i]); 4192 } 4193 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4194 LSRUse &LU = Uses[LUIdx]; 4195 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4196 GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]); 4197 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4198 GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]); 4199 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4200 GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]); 4201 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4202 GenerateScales(LU, LUIdx, LU.Formulae[i]); 4203 } 4204 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4205 LSRUse &LU = Uses[LUIdx]; 4206 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4207 GenerateTruncates(LU, LUIdx, LU.Formulae[i]); 4208 } 4209 4210 GenerateCrossUseConstantOffsets(); 4211 4212 LLVM_DEBUG(dbgs() << "\n" 4213 "After generating reuse formulae:\n"; 4214 print_uses(dbgs())); 4215 } 4216 4217 /// If there are multiple formulae with the same set of registers used 4218 /// by other uses, pick the best one and delete the others. 4219 void LSRInstance::FilterOutUndesirableDedicatedRegisters() { 4220 DenseSet<const SCEV *> VisitedRegs; 4221 SmallPtrSet<const SCEV *, 16> Regs; 4222 SmallPtrSet<const SCEV *, 16> LoserRegs; 4223 #ifndef NDEBUG 4224 bool ChangedFormulae = false; 4225 #endif 4226 4227 // Collect the best formula for each unique set of shared registers. This 4228 // is reset for each use. 4229 using BestFormulaeTy = 4230 DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>; 4231 4232 BestFormulaeTy BestFormulae; 4233 4234 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4235 LSRUse &LU = Uses[LUIdx]; 4236 LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); 4237 dbgs() << '\n'); 4238 4239 bool Any = false; 4240 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); 4241 FIdx != NumForms; ++FIdx) { 4242 Formula &F = LU.Formulae[FIdx]; 4243 4244 // Some formulas are instant losers. For example, they may depend on 4245 // nonexistent AddRecs from other loops. These need to be filtered 4246 // immediately, otherwise heuristics could choose them over others leading 4247 // to an unsatisfactory solution. Passing LoserRegs into RateFormula here 4248 // avoids the need to recompute this information across formulae using the 4249 // same bad AddRec. Passing LoserRegs is also essential unless we remove 4250 // the corresponding bad register from the Regs set. 4251 Cost CostF; 4252 Regs.clear(); 4253 CostF.RateFormula(TTI, F, Regs, VisitedRegs, L, SE, DT, LU, &LoserRegs); 4254 if (CostF.isLoser()) { 4255 // During initial formula generation, undesirable formulae are generated 4256 // by uses within other loops that have some non-trivial address mode or 4257 // use the postinc form of the IV. LSR needs to provide these formulae 4258 // as the basis of rediscovering the desired formula that uses an AddRec 4259 // corresponding to the existing phi. Once all formulae have been 4260 // generated, these initial losers may be pruned. 4261 LLVM_DEBUG(dbgs() << " Filtering loser "; F.print(dbgs()); 4262 dbgs() << "\n"); 4263 } 4264 else { 4265 SmallVector<const SCEV *, 4> Key; 4266 for (const SCEV *Reg : F.BaseRegs) { 4267 if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx)) 4268 Key.push_back(Reg); 4269 } 4270 if (F.ScaledReg && 4271 RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx)) 4272 Key.push_back(F.ScaledReg); 4273 // Unstable sort by host order ok, because this is only used for 4274 // uniquifying. 4275 llvm::sort(Key); 4276 4277 std::pair<BestFormulaeTy::const_iterator, bool> P = 4278 BestFormulae.insert(std::make_pair(Key, FIdx)); 4279 if (P.second) 4280 continue; 4281 4282 Formula &Best = LU.Formulae[P.first->second]; 4283 4284 Cost CostBest; 4285 Regs.clear(); 4286 CostBest.RateFormula(TTI, Best, Regs, VisitedRegs, L, SE, DT, LU); 4287 if (CostF.isLess(CostBest, TTI)) 4288 std::swap(F, Best); 4289 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 4290 dbgs() << "\n" 4291 " in favor of formula "; 4292 Best.print(dbgs()); dbgs() << '\n'); 4293 } 4294 #ifndef NDEBUG 4295 ChangedFormulae = true; 4296 #endif 4297 LU.DeleteFormula(F); 4298 --FIdx; 4299 --NumForms; 4300 Any = true; 4301 } 4302 4303 // Now that we've filtered out some formulae, recompute the Regs set. 4304 if (Any) 4305 LU.RecomputeRegs(LUIdx, RegUses); 4306 4307 // Reset this to prepare for the next use. 4308 BestFormulae.clear(); 4309 } 4310 4311 LLVM_DEBUG(if (ChangedFormulae) { 4312 dbgs() << "\n" 4313 "After filtering out undesirable candidates:\n"; 4314 print_uses(dbgs()); 4315 }); 4316 } 4317 4318 /// Estimate the worst-case number of solutions the solver might have to 4319 /// consider. It almost never considers this many solutions because it prune the 4320 /// search space, but the pruning isn't always sufficient. 4321 size_t LSRInstance::EstimateSearchSpaceComplexity() const { 4322 size_t Power = 1; 4323 for (const LSRUse &LU : Uses) { 4324 size_t FSize = LU.Formulae.size(); 4325 if (FSize >= ComplexityLimit) { 4326 Power = ComplexityLimit; 4327 break; 4328 } 4329 Power *= FSize; 4330 if (Power >= ComplexityLimit) 4331 break; 4332 } 4333 return Power; 4334 } 4335 4336 /// When one formula uses a superset of the registers of another formula, it 4337 /// won't help reduce register pressure (though it may not necessarily hurt 4338 /// register pressure); remove it to simplify the system. 4339 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() { 4340 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4341 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4342 4343 LLVM_DEBUG(dbgs() << "Narrowing the search space by eliminating formulae " 4344 "which use a superset of registers used by other " 4345 "formulae.\n"); 4346 4347 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4348 LSRUse &LU = Uses[LUIdx]; 4349 bool Any = false; 4350 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4351 Formula &F = LU.Formulae[i]; 4352 // Look for a formula with a constant or GV in a register. If the use 4353 // also has a formula with that same value in an immediate field, 4354 // delete the one that uses a register. 4355 for (SmallVectorImpl<const SCEV *>::const_iterator 4356 I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) { 4357 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) { 4358 Formula NewF = F; 4359 NewF.BaseOffset += C->getValue()->getSExtValue(); 4360 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4361 (I - F.BaseRegs.begin())); 4362 if (LU.HasFormulaWithSameRegs(NewF)) { 4363 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4364 dbgs() << '\n'); 4365 LU.DeleteFormula(F); 4366 --i; 4367 --e; 4368 Any = true; 4369 break; 4370 } 4371 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) { 4372 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) 4373 if (!F.BaseGV) { 4374 Formula NewF = F; 4375 NewF.BaseGV = GV; 4376 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4377 (I - F.BaseRegs.begin())); 4378 if (LU.HasFormulaWithSameRegs(NewF)) { 4379 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4380 dbgs() << '\n'); 4381 LU.DeleteFormula(F); 4382 --i; 4383 --e; 4384 Any = true; 4385 break; 4386 } 4387 } 4388 } 4389 } 4390 } 4391 if (Any) 4392 LU.RecomputeRegs(LUIdx, RegUses); 4393 } 4394 4395 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4396 } 4397 } 4398 4399 /// When there are many registers for expressions like A, A+1, A+2, etc., 4400 /// allocate a single register for them. 4401 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() { 4402 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4403 return; 4404 4405 LLVM_DEBUG( 4406 dbgs() << "The search space is too complex.\n" 4407 "Narrowing the search space by assuming that uses separated " 4408 "by a constant offset will use the same registers.\n"); 4409 4410 // This is especially useful for unrolled loops. 4411 4412 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4413 LSRUse &LU = Uses[LUIdx]; 4414 for (const Formula &F : LU.Formulae) { 4415 if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1)) 4416 continue; 4417 4418 LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU); 4419 if (!LUThatHas) 4420 continue; 4421 4422 if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false, 4423 LU.Kind, LU.AccessTy)) 4424 continue; 4425 4426 LLVM_DEBUG(dbgs() << " Deleting use "; LU.print(dbgs()); dbgs() << '\n'); 4427 4428 LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop; 4429 4430 // Transfer the fixups of LU to LUThatHas. 4431 for (LSRFixup &Fixup : LU.Fixups) { 4432 Fixup.Offset += F.BaseOffset; 4433 LUThatHas->pushFixup(Fixup); 4434 LLVM_DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n'); 4435 } 4436 4437 // Delete formulae from the new use which are no longer legal. 4438 bool Any = false; 4439 for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) { 4440 Formula &F = LUThatHas->Formulae[i]; 4441 if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset, 4442 LUThatHas->Kind, LUThatHas->AccessTy, F)) { 4443 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4444 LUThatHas->DeleteFormula(F); 4445 --i; 4446 --e; 4447 Any = true; 4448 } 4449 } 4450 4451 if (Any) 4452 LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses); 4453 4454 // Delete the old use. 4455 DeleteUse(LU, LUIdx); 4456 --LUIdx; 4457 --NumUses; 4458 break; 4459 } 4460 } 4461 4462 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4463 } 4464 4465 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that 4466 /// we've done more filtering, as it may be able to find more formulae to 4467 /// eliminate. 4468 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){ 4469 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4470 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4471 4472 LLVM_DEBUG(dbgs() << "Narrowing the search space by re-filtering out " 4473 "undesirable dedicated registers.\n"); 4474 4475 FilterOutUndesirableDedicatedRegisters(); 4476 4477 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4478 } 4479 } 4480 4481 /// If a LSRUse has multiple formulae with the same ScaledReg and Scale. 4482 /// Pick the best one and delete the others. 4483 /// This narrowing heuristic is to keep as many formulae with different 4484 /// Scale and ScaledReg pair as possible while narrowing the search space. 4485 /// The benefit is that it is more likely to find out a better solution 4486 /// from a formulae set with more Scale and ScaledReg variations than 4487 /// a formulae set with the same Scale and ScaledReg. The picking winner 4488 /// reg heuristic will often keep the formulae with the same Scale and 4489 /// ScaledReg and filter others, and we want to avoid that if possible. 4490 void LSRInstance::NarrowSearchSpaceByFilterFormulaWithSameScaledReg() { 4491 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4492 return; 4493 4494 LLVM_DEBUG( 4495 dbgs() << "The search space is too complex.\n" 4496 "Narrowing the search space by choosing the best Formula " 4497 "from the Formulae with the same Scale and ScaledReg.\n"); 4498 4499 // Map the "Scale * ScaledReg" pair to the best formula of current LSRUse. 4500 using BestFormulaeTy = DenseMap<std::pair<const SCEV *, int64_t>, size_t>; 4501 4502 BestFormulaeTy BestFormulae; 4503 #ifndef NDEBUG 4504 bool ChangedFormulae = false; 4505 #endif 4506 DenseSet<const SCEV *> VisitedRegs; 4507 SmallPtrSet<const SCEV *, 16> Regs; 4508 4509 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4510 LSRUse &LU = Uses[LUIdx]; 4511 LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); 4512 dbgs() << '\n'); 4513 4514 // Return true if Formula FA is better than Formula FB. 4515 auto IsBetterThan = [&](Formula &FA, Formula &FB) { 4516 // First we will try to choose the Formula with fewer new registers. 4517 // For a register used by current Formula, the more the register is 4518 // shared among LSRUses, the less we increase the register number 4519 // counter of the formula. 4520 size_t FARegNum = 0; 4521 for (const SCEV *Reg : FA.BaseRegs) { 4522 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg); 4523 FARegNum += (NumUses - UsedByIndices.count() + 1); 4524 } 4525 size_t FBRegNum = 0; 4526 for (const SCEV *Reg : FB.BaseRegs) { 4527 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg); 4528 FBRegNum += (NumUses - UsedByIndices.count() + 1); 4529 } 4530 if (FARegNum != FBRegNum) 4531 return FARegNum < FBRegNum; 4532 4533 // If the new register numbers are the same, choose the Formula with 4534 // less Cost. 4535 Cost CostFA, CostFB; 4536 Regs.clear(); 4537 CostFA.RateFormula(TTI, FA, Regs, VisitedRegs, L, SE, DT, LU); 4538 Regs.clear(); 4539 CostFB.RateFormula(TTI, FB, Regs, VisitedRegs, L, SE, DT, LU); 4540 return CostFA.isLess(CostFB, TTI); 4541 }; 4542 4543 bool Any = false; 4544 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms; 4545 ++FIdx) { 4546 Formula &F = LU.Formulae[FIdx]; 4547 if (!F.ScaledReg) 4548 continue; 4549 auto P = BestFormulae.insert({{F.ScaledReg, F.Scale}, FIdx}); 4550 if (P.second) 4551 continue; 4552 4553 Formula &Best = LU.Formulae[P.first->second]; 4554 if (IsBetterThan(F, Best)) 4555 std::swap(F, Best); 4556 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 4557 dbgs() << "\n" 4558 " in favor of formula "; 4559 Best.print(dbgs()); dbgs() << '\n'); 4560 #ifndef NDEBUG 4561 ChangedFormulae = true; 4562 #endif 4563 LU.DeleteFormula(F); 4564 --FIdx; 4565 --NumForms; 4566 Any = true; 4567 } 4568 if (Any) 4569 LU.RecomputeRegs(LUIdx, RegUses); 4570 4571 // Reset this to prepare for the next use. 4572 BestFormulae.clear(); 4573 } 4574 4575 LLVM_DEBUG(if (ChangedFormulae) { 4576 dbgs() << "\n" 4577 "After filtering out undesirable candidates:\n"; 4578 print_uses(dbgs()); 4579 }); 4580 } 4581 4582 /// The function delete formulas with high registers number expectation. 4583 /// Assuming we don't know the value of each formula (already delete 4584 /// all inefficient), generate probability of not selecting for each 4585 /// register. 4586 /// For example, 4587 /// Use1: 4588 /// reg(a) + reg({0,+,1}) 4589 /// reg(a) + reg({-1,+,1}) + 1 4590 /// reg({a,+,1}) 4591 /// Use2: 4592 /// reg(b) + reg({0,+,1}) 4593 /// reg(b) + reg({-1,+,1}) + 1 4594 /// reg({b,+,1}) 4595 /// Use3: 4596 /// reg(c) + reg(b) + reg({0,+,1}) 4597 /// reg(c) + reg({b,+,1}) 4598 /// 4599 /// Probability of not selecting 4600 /// Use1 Use2 Use3 4601 /// reg(a) (1/3) * 1 * 1 4602 /// reg(b) 1 * (1/3) * (1/2) 4603 /// reg({0,+,1}) (2/3) * (2/3) * (1/2) 4604 /// reg({-1,+,1}) (2/3) * (2/3) * 1 4605 /// reg({a,+,1}) (2/3) * 1 * 1 4606 /// reg({b,+,1}) 1 * (2/3) * (2/3) 4607 /// reg(c) 1 * 1 * 0 4608 /// 4609 /// Now count registers number mathematical expectation for each formula: 4610 /// Note that for each use we exclude probability if not selecting for the use. 4611 /// For example for Use1 probability for reg(a) would be just 1 * 1 (excluding 4612 /// probabilty 1/3 of not selecting for Use1). 4613 /// Use1: 4614 /// reg(a) + reg({0,+,1}) 1 + 1/3 -- to be deleted 4615 /// reg(a) + reg({-1,+,1}) + 1 1 + 4/9 -- to be deleted 4616 /// reg({a,+,1}) 1 4617 /// Use2: 4618 /// reg(b) + reg({0,+,1}) 1/2 + 1/3 -- to be deleted 4619 /// reg(b) + reg({-1,+,1}) + 1 1/2 + 2/3 -- to be deleted 4620 /// reg({b,+,1}) 2/3 4621 /// Use3: 4622 /// reg(c) + reg(b) + reg({0,+,1}) 1 + 1/3 + 4/9 -- to be deleted 4623 /// reg(c) + reg({b,+,1}) 1 + 2/3 4624 void LSRInstance::NarrowSearchSpaceByDeletingCostlyFormulas() { 4625 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4626 return; 4627 // Ok, we have too many of formulae on our hands to conveniently handle. 4628 // Use a rough heuristic to thin out the list. 4629 4630 // Set of Regs wich will be 100% used in final solution. 4631 // Used in each formula of a solution (in example above this is reg(c)). 4632 // We can skip them in calculations. 4633 SmallPtrSet<const SCEV *, 4> UniqRegs; 4634 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4635 4636 // Map each register to probability of not selecting 4637 DenseMap <const SCEV *, float> RegNumMap; 4638 for (const SCEV *Reg : RegUses) { 4639 if (UniqRegs.count(Reg)) 4640 continue; 4641 float PNotSel = 1; 4642 for (const LSRUse &LU : Uses) { 4643 if (!LU.Regs.count(Reg)) 4644 continue; 4645 float P = LU.getNotSelectedProbability(Reg); 4646 if (P != 0.0) 4647 PNotSel *= P; 4648 else 4649 UniqRegs.insert(Reg); 4650 } 4651 RegNumMap.insert(std::make_pair(Reg, PNotSel)); 4652 } 4653 4654 LLVM_DEBUG( 4655 dbgs() << "Narrowing the search space by deleting costly formulas\n"); 4656 4657 // Delete formulas where registers number expectation is high. 4658 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4659 LSRUse &LU = Uses[LUIdx]; 4660 // If nothing to delete - continue. 4661 if (LU.Formulae.size() < 2) 4662 continue; 4663 // This is temporary solution to test performance. Float should be 4664 // replaced with round independent type (based on integers) to avoid 4665 // different results for different target builds. 4666 float FMinRegNum = LU.Formulae[0].getNumRegs(); 4667 float FMinARegNum = LU.Formulae[0].getNumRegs(); 4668 size_t MinIdx = 0; 4669 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4670 Formula &F = LU.Formulae[i]; 4671 float FRegNum = 0; 4672 float FARegNum = 0; 4673 for (const SCEV *BaseReg : F.BaseRegs) { 4674 if (UniqRegs.count(BaseReg)) 4675 continue; 4676 FRegNum += RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg); 4677 if (isa<SCEVAddRecExpr>(BaseReg)) 4678 FARegNum += 4679 RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg); 4680 } 4681 if (const SCEV *ScaledReg = F.ScaledReg) { 4682 if (!UniqRegs.count(ScaledReg)) { 4683 FRegNum += 4684 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg); 4685 if (isa<SCEVAddRecExpr>(ScaledReg)) 4686 FARegNum += 4687 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg); 4688 } 4689 } 4690 if (FMinRegNum > FRegNum || 4691 (FMinRegNum == FRegNum && FMinARegNum > FARegNum)) { 4692 FMinRegNum = FRegNum; 4693 FMinARegNum = FARegNum; 4694 MinIdx = i; 4695 } 4696 } 4697 LLVM_DEBUG(dbgs() << " The formula "; LU.Formulae[MinIdx].print(dbgs()); 4698 dbgs() << " with min reg num " << FMinRegNum << '\n'); 4699 if (MinIdx != 0) 4700 std::swap(LU.Formulae[MinIdx], LU.Formulae[0]); 4701 while (LU.Formulae.size() != 1) { 4702 LLVM_DEBUG(dbgs() << " Deleting "; LU.Formulae.back().print(dbgs()); 4703 dbgs() << '\n'); 4704 LU.Formulae.pop_back(); 4705 } 4706 LU.RecomputeRegs(LUIdx, RegUses); 4707 assert(LU.Formulae.size() == 1 && "Should be exactly 1 min regs formula"); 4708 Formula &F = LU.Formulae[0]; 4709 LLVM_DEBUG(dbgs() << " Leaving only "; F.print(dbgs()); dbgs() << '\n'); 4710 // When we choose the formula, the regs become unique. 4711 UniqRegs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 4712 if (F.ScaledReg) 4713 UniqRegs.insert(F.ScaledReg); 4714 } 4715 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4716 } 4717 4718 /// Pick a register which seems likely to be profitable, and then in any use 4719 /// which has any reference to that register, delete all formulae which do not 4720 /// reference that register. 4721 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() { 4722 // With all other options exhausted, loop until the system is simple 4723 // enough to handle. 4724 SmallPtrSet<const SCEV *, 4> Taken; 4725 while (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4726 // Ok, we have too many of formulae on our hands to conveniently handle. 4727 // Use a rough heuristic to thin out the list. 4728 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4729 4730 // Pick the register which is used by the most LSRUses, which is likely 4731 // to be a good reuse register candidate. 4732 const SCEV *Best = nullptr; 4733 unsigned BestNum = 0; 4734 for (const SCEV *Reg : RegUses) { 4735 if (Taken.count(Reg)) 4736 continue; 4737 if (!Best) { 4738 Best = Reg; 4739 BestNum = RegUses.getUsedByIndices(Reg).count(); 4740 } else { 4741 unsigned Count = RegUses.getUsedByIndices(Reg).count(); 4742 if (Count > BestNum) { 4743 Best = Reg; 4744 BestNum = Count; 4745 } 4746 } 4747 } 4748 4749 LLVM_DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best 4750 << " will yield profitable reuse.\n"); 4751 Taken.insert(Best); 4752 4753 // In any use with formulae which references this register, delete formulae 4754 // which don't reference it. 4755 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4756 LSRUse &LU = Uses[LUIdx]; 4757 if (!LU.Regs.count(Best)) continue; 4758 4759 bool Any = false; 4760 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4761 Formula &F = LU.Formulae[i]; 4762 if (!F.referencesReg(Best)) { 4763 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4764 LU.DeleteFormula(F); 4765 --e; 4766 --i; 4767 Any = true; 4768 assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?"); 4769 continue; 4770 } 4771 } 4772 4773 if (Any) 4774 LU.RecomputeRegs(LUIdx, RegUses); 4775 } 4776 4777 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4778 } 4779 } 4780 4781 /// If there are an extraordinary number of formulae to choose from, use some 4782 /// rough heuristics to prune down the number of formulae. This keeps the main 4783 /// solver from taking an extraordinary amount of time in some worst-case 4784 /// scenarios. 4785 void LSRInstance::NarrowSearchSpaceUsingHeuristics() { 4786 NarrowSearchSpaceByDetectingSupersets(); 4787 NarrowSearchSpaceByCollapsingUnrolledCode(); 4788 NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 4789 if (FilterSameScaledReg) 4790 NarrowSearchSpaceByFilterFormulaWithSameScaledReg(); 4791 if (LSRExpNarrow) 4792 NarrowSearchSpaceByDeletingCostlyFormulas(); 4793 else 4794 NarrowSearchSpaceByPickingWinnerRegs(); 4795 } 4796 4797 /// This is the recursive solver. 4798 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 4799 Cost &SolutionCost, 4800 SmallVectorImpl<const Formula *> &Workspace, 4801 const Cost &CurCost, 4802 const SmallPtrSet<const SCEV *, 16> &CurRegs, 4803 DenseSet<const SCEV *> &VisitedRegs) const { 4804 // Some ideas: 4805 // - prune more: 4806 // - use more aggressive filtering 4807 // - sort the formula so that the most profitable solutions are found first 4808 // - sort the uses too 4809 // - search faster: 4810 // - don't compute a cost, and then compare. compare while computing a cost 4811 // and bail early. 4812 // - track register sets with SmallBitVector 4813 4814 const LSRUse &LU = Uses[Workspace.size()]; 4815 4816 // If this use references any register that's already a part of the 4817 // in-progress solution, consider it a requirement that a formula must 4818 // reference that register in order to be considered. This prunes out 4819 // unprofitable searching. 4820 SmallSetVector<const SCEV *, 4> ReqRegs; 4821 for (const SCEV *S : CurRegs) 4822 if (LU.Regs.count(S)) 4823 ReqRegs.insert(S); 4824 4825 SmallPtrSet<const SCEV *, 16> NewRegs; 4826 Cost NewCost; 4827 for (const Formula &F : LU.Formulae) { 4828 // Ignore formulae which may not be ideal in terms of register reuse of 4829 // ReqRegs. The formula should use all required registers before 4830 // introducing new ones. 4831 int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size()); 4832 for (const SCEV *Reg : ReqRegs) { 4833 if ((F.ScaledReg && F.ScaledReg == Reg) || 4834 is_contained(F.BaseRegs, Reg)) { 4835 --NumReqRegsToFind; 4836 if (NumReqRegsToFind == 0) 4837 break; 4838 } 4839 } 4840 if (NumReqRegsToFind != 0) { 4841 // If none of the formulae satisfied the required registers, then we could 4842 // clear ReqRegs and try again. Currently, we simply give up in this case. 4843 continue; 4844 } 4845 4846 // Evaluate the cost of the current formula. If it's already worse than 4847 // the current best, prune the search at that point. 4848 NewCost = CurCost; 4849 NewRegs = CurRegs; 4850 NewCost.RateFormula(TTI, F, NewRegs, VisitedRegs, L, SE, DT, LU); 4851 if (NewCost.isLess(SolutionCost, TTI)) { 4852 Workspace.push_back(&F); 4853 if (Workspace.size() != Uses.size()) { 4854 SolveRecurse(Solution, SolutionCost, Workspace, NewCost, 4855 NewRegs, VisitedRegs); 4856 if (F.getNumRegs() == 1 && Workspace.size() == 1) 4857 VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]); 4858 } else { 4859 LLVM_DEBUG(dbgs() << "New best at "; NewCost.print(dbgs()); 4860 dbgs() << ".\n Regs:"; for (const SCEV *S 4861 : NewRegs) dbgs() 4862 << ' ' << *S; 4863 dbgs() << '\n'); 4864 4865 SolutionCost = NewCost; 4866 Solution = Workspace; 4867 } 4868 Workspace.pop_back(); 4869 } 4870 } 4871 } 4872 4873 /// Choose one formula from each use. Return the results in the given Solution 4874 /// vector. 4875 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const { 4876 SmallVector<const Formula *, 8> Workspace; 4877 Cost SolutionCost; 4878 SolutionCost.Lose(); 4879 Cost CurCost; 4880 SmallPtrSet<const SCEV *, 16> CurRegs; 4881 DenseSet<const SCEV *> VisitedRegs; 4882 Workspace.reserve(Uses.size()); 4883 4884 // SolveRecurse does all the work. 4885 SolveRecurse(Solution, SolutionCost, Workspace, CurCost, 4886 CurRegs, VisitedRegs); 4887 if (Solution.empty()) { 4888 LLVM_DEBUG(dbgs() << "\nNo Satisfactory Solution\n"); 4889 return; 4890 } 4891 4892 // Ok, we've now made all our decisions. 4893 LLVM_DEBUG(dbgs() << "\n" 4894 "The chosen solution requires "; 4895 SolutionCost.print(dbgs()); dbgs() << ":\n"; 4896 for (size_t i = 0, e = Uses.size(); i != e; ++i) { 4897 dbgs() << " "; 4898 Uses[i].print(dbgs()); 4899 dbgs() << "\n" 4900 " "; 4901 Solution[i]->print(dbgs()); 4902 dbgs() << '\n'; 4903 }); 4904 4905 assert(Solution.size() == Uses.size() && "Malformed solution!"); 4906 } 4907 4908 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as 4909 /// we can go while still being dominated by the input positions. This helps 4910 /// canonicalize the insert position, which encourages sharing. 4911 BasicBlock::iterator 4912 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP, 4913 const SmallVectorImpl<Instruction *> &Inputs) 4914 const { 4915 Instruction *Tentative = &*IP; 4916 while (true) { 4917 bool AllDominate = true; 4918 Instruction *BetterPos = nullptr; 4919 // Don't bother attempting to insert before a catchswitch, their basic block 4920 // cannot have other non-PHI instructions. 4921 if (isa<CatchSwitchInst>(Tentative)) 4922 return IP; 4923 4924 for (Instruction *Inst : Inputs) { 4925 if (Inst == Tentative || !DT.dominates(Inst, Tentative)) { 4926 AllDominate = false; 4927 break; 4928 } 4929 // Attempt to find an insert position in the middle of the block, 4930 // instead of at the end, so that it can be used for other expansions. 4931 if (Tentative->getParent() == Inst->getParent() && 4932 (!BetterPos || !DT.dominates(Inst, BetterPos))) 4933 BetterPos = &*std::next(BasicBlock::iterator(Inst)); 4934 } 4935 if (!AllDominate) 4936 break; 4937 if (BetterPos) 4938 IP = BetterPos->getIterator(); 4939 else 4940 IP = Tentative->getIterator(); 4941 4942 const Loop *IPLoop = LI.getLoopFor(IP->getParent()); 4943 unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0; 4944 4945 BasicBlock *IDom; 4946 for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) { 4947 if (!Rung) return IP; 4948 Rung = Rung->getIDom(); 4949 if (!Rung) return IP; 4950 IDom = Rung->getBlock(); 4951 4952 // Don't climb into a loop though. 4953 const Loop *IDomLoop = LI.getLoopFor(IDom); 4954 unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0; 4955 if (IDomDepth <= IPLoopDepth && 4956 (IDomDepth != IPLoopDepth || IDomLoop == IPLoop)) 4957 break; 4958 } 4959 4960 Tentative = IDom->getTerminator(); 4961 } 4962 4963 return IP; 4964 } 4965 4966 /// Determine an input position which will be dominated by the operands and 4967 /// which will dominate the result. 4968 BasicBlock::iterator 4969 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP, 4970 const LSRFixup &LF, 4971 const LSRUse &LU, 4972 SCEVExpander &Rewriter) const { 4973 // Collect some instructions which must be dominated by the 4974 // expanding replacement. These must be dominated by any operands that 4975 // will be required in the expansion. 4976 SmallVector<Instruction *, 4> Inputs; 4977 if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace)) 4978 Inputs.push_back(I); 4979 if (LU.Kind == LSRUse::ICmpZero) 4980 if (Instruction *I = 4981 dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1))) 4982 Inputs.push_back(I); 4983 if (LF.PostIncLoops.count(L)) { 4984 if (LF.isUseFullyOutsideLoop(L)) 4985 Inputs.push_back(L->getLoopLatch()->getTerminator()); 4986 else 4987 Inputs.push_back(IVIncInsertPos); 4988 } 4989 // The expansion must also be dominated by the increment positions of any 4990 // loops it for which it is using post-inc mode. 4991 for (const Loop *PIL : LF.PostIncLoops) { 4992 if (PIL == L) continue; 4993 4994 // Be dominated by the loop exit. 4995 SmallVector<BasicBlock *, 4> ExitingBlocks; 4996 PIL->getExitingBlocks(ExitingBlocks); 4997 if (!ExitingBlocks.empty()) { 4998 BasicBlock *BB = ExitingBlocks[0]; 4999 for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i) 5000 BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]); 5001 Inputs.push_back(BB->getTerminator()); 5002 } 5003 } 5004 5005 assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad() 5006 && !isa<DbgInfoIntrinsic>(LowestIP) && 5007 "Insertion point must be a normal instruction"); 5008 5009 // Then, climb up the immediate dominator tree as far as we can go while 5010 // still being dominated by the input positions. 5011 BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs); 5012 5013 // Don't insert instructions before PHI nodes. 5014 while (isa<PHINode>(IP)) ++IP; 5015 5016 // Ignore landingpad instructions. 5017 while (IP->isEHPad()) ++IP; 5018 5019 // Ignore debug intrinsics. 5020 while (isa<DbgInfoIntrinsic>(IP)) ++IP; 5021 5022 // Set IP below instructions recently inserted by SCEVExpander. This keeps the 5023 // IP consistent across expansions and allows the previously inserted 5024 // instructions to be reused by subsequent expansion. 5025 while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP) 5026 ++IP; 5027 5028 return IP; 5029 } 5030 5031 /// Emit instructions for the leading candidate expression for this LSRUse (this 5032 /// is called "expanding"). 5033 Value *LSRInstance::Expand(const LSRUse &LU, const LSRFixup &LF, 5034 const Formula &F, BasicBlock::iterator IP, 5035 SCEVExpander &Rewriter, 5036 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5037 if (LU.RigidFormula) 5038 return LF.OperandValToReplace; 5039 5040 // Determine an input position which will be dominated by the operands and 5041 // which will dominate the result. 5042 IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter); 5043 Rewriter.setInsertPoint(&*IP); 5044 5045 // Inform the Rewriter if we have a post-increment use, so that it can 5046 // perform an advantageous expansion. 5047 Rewriter.setPostInc(LF.PostIncLoops); 5048 5049 // This is the type that the user actually needs. 5050 Type *OpTy = LF.OperandValToReplace->getType(); 5051 // This will be the type that we'll initially expand to. 5052 Type *Ty = F.getType(); 5053 if (!Ty) 5054 // No type known; just expand directly to the ultimate type. 5055 Ty = OpTy; 5056 else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy)) 5057 // Expand directly to the ultimate type if it's the right size. 5058 Ty = OpTy; 5059 // This is the type to do integer arithmetic in. 5060 Type *IntTy = SE.getEffectiveSCEVType(Ty); 5061 5062 // Build up a list of operands to add together to form the full base. 5063 SmallVector<const SCEV *, 8> Ops; 5064 5065 // Expand the BaseRegs portion. 5066 for (const SCEV *Reg : F.BaseRegs) { 5067 assert(!Reg->isZero() && "Zero allocated in a base register!"); 5068 5069 // If we're expanding for a post-inc user, make the post-inc adjustment. 5070 Reg = denormalizeForPostIncUse(Reg, LF.PostIncLoops, SE); 5071 Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr))); 5072 } 5073 5074 // Expand the ScaledReg portion. 5075 Value *ICmpScaledV = nullptr; 5076 if (F.Scale != 0) { 5077 const SCEV *ScaledS = F.ScaledReg; 5078 5079 // If we're expanding for a post-inc user, make the post-inc adjustment. 5080 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 5081 ScaledS = denormalizeForPostIncUse(ScaledS, Loops, SE); 5082 5083 if (LU.Kind == LSRUse::ICmpZero) { 5084 // Expand ScaleReg as if it was part of the base regs. 5085 if (F.Scale == 1) 5086 Ops.push_back( 5087 SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr))); 5088 else { 5089 // An interesting way of "folding" with an icmp is to use a negated 5090 // scale, which we'll implement by inserting it into the other operand 5091 // of the icmp. 5092 assert(F.Scale == -1 && 5093 "The only scale supported by ICmpZero uses is -1!"); 5094 ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr); 5095 } 5096 } else { 5097 // Otherwise just expand the scaled register and an explicit scale, 5098 // which is expected to be matched as part of the address. 5099 5100 // Flush the operand list to suppress SCEVExpander hoisting address modes. 5101 // Unless the addressing mode will not be folded. 5102 if (!Ops.empty() && LU.Kind == LSRUse::Address && 5103 isAMCompletelyFolded(TTI, LU, F)) { 5104 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), nullptr); 5105 Ops.clear(); 5106 Ops.push_back(SE.getUnknown(FullV)); 5107 } 5108 ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)); 5109 if (F.Scale != 1) 5110 ScaledS = 5111 SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale)); 5112 Ops.push_back(ScaledS); 5113 } 5114 } 5115 5116 // Expand the GV portion. 5117 if (F.BaseGV) { 5118 // Flush the operand list to suppress SCEVExpander hoisting. 5119 if (!Ops.empty()) { 5120 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 5121 Ops.clear(); 5122 Ops.push_back(SE.getUnknown(FullV)); 5123 } 5124 Ops.push_back(SE.getUnknown(F.BaseGV)); 5125 } 5126 5127 // Flush the operand list to suppress SCEVExpander hoisting of both folded and 5128 // unfolded offsets. LSR assumes they both live next to their uses. 5129 if (!Ops.empty()) { 5130 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 5131 Ops.clear(); 5132 Ops.push_back(SE.getUnknown(FullV)); 5133 } 5134 5135 // Expand the immediate portion. 5136 int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset; 5137 if (Offset != 0) { 5138 if (LU.Kind == LSRUse::ICmpZero) { 5139 // The other interesting way of "folding" with an ICmpZero is to use a 5140 // negated immediate. 5141 if (!ICmpScaledV) 5142 ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset); 5143 else { 5144 Ops.push_back(SE.getUnknown(ICmpScaledV)); 5145 ICmpScaledV = ConstantInt::get(IntTy, Offset); 5146 } 5147 } else { 5148 // Just add the immediate values. These again are expected to be matched 5149 // as part of the address. 5150 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset))); 5151 } 5152 } 5153 5154 // Expand the unfolded offset portion. 5155 int64_t UnfoldedOffset = F.UnfoldedOffset; 5156 if (UnfoldedOffset != 0) { 5157 // Just add the immediate values. 5158 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, 5159 UnfoldedOffset))); 5160 } 5161 5162 // Emit instructions summing all the operands. 5163 const SCEV *FullS = Ops.empty() ? 5164 SE.getConstant(IntTy, 0) : 5165 SE.getAddExpr(Ops); 5166 Value *FullV = Rewriter.expandCodeFor(FullS, Ty); 5167 5168 // We're done expanding now, so reset the rewriter. 5169 Rewriter.clearPostInc(); 5170 5171 // An ICmpZero Formula represents an ICmp which we're handling as a 5172 // comparison against zero. Now that we've expanded an expression for that 5173 // form, update the ICmp's other operand. 5174 if (LU.Kind == LSRUse::ICmpZero) { 5175 ICmpInst *CI = cast<ICmpInst>(LF.UserInst); 5176 DeadInsts.emplace_back(CI->getOperand(1)); 5177 assert(!F.BaseGV && "ICmp does not support folding a global value and " 5178 "a scale at the same time!"); 5179 if (F.Scale == -1) { 5180 if (ICmpScaledV->getType() != OpTy) { 5181 Instruction *Cast = 5182 CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false, 5183 OpTy, false), 5184 ICmpScaledV, OpTy, "tmp", CI); 5185 ICmpScaledV = Cast; 5186 } 5187 CI->setOperand(1, ICmpScaledV); 5188 } else { 5189 // A scale of 1 means that the scale has been expanded as part of the 5190 // base regs. 5191 assert((F.Scale == 0 || F.Scale == 1) && 5192 "ICmp does not support folding a global value and " 5193 "a scale at the same time!"); 5194 Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy), 5195 -(uint64_t)Offset); 5196 if (C->getType() != OpTy) 5197 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 5198 OpTy, false), 5199 C, OpTy); 5200 5201 CI->setOperand(1, C); 5202 } 5203 } 5204 5205 return FullV; 5206 } 5207 5208 /// Helper for Rewrite. PHI nodes are special because the use of their operands 5209 /// effectively happens in their predecessor blocks, so the expression may need 5210 /// to be expanded in multiple places. 5211 void LSRInstance::RewriteForPHI( 5212 PHINode *PN, const LSRUse &LU, const LSRFixup &LF, const Formula &F, 5213 SCEVExpander &Rewriter, SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5214 DenseMap<BasicBlock *, Value *> Inserted; 5215 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 5216 if (PN->getIncomingValue(i) == LF.OperandValToReplace) { 5217 BasicBlock *BB = PN->getIncomingBlock(i); 5218 5219 // If this is a critical edge, split the edge so that we do not insert 5220 // the code on all predecessor/successor paths. We do this unless this 5221 // is the canonical backedge for this loop, which complicates post-inc 5222 // users. 5223 if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 && 5224 !isa<IndirectBrInst>(BB->getTerminator()) && 5225 !isa<CatchSwitchInst>(BB->getTerminator())) { 5226 BasicBlock *Parent = PN->getParent(); 5227 Loop *PNLoop = LI.getLoopFor(Parent); 5228 if (!PNLoop || Parent != PNLoop->getHeader()) { 5229 // Split the critical edge. 5230 BasicBlock *NewBB = nullptr; 5231 if (!Parent->isLandingPad()) { 5232 NewBB = SplitCriticalEdge(BB, Parent, 5233 CriticalEdgeSplittingOptions(&DT, &LI) 5234 .setMergeIdenticalEdges() 5235 .setDontDeleteUselessPHIs()); 5236 } else { 5237 SmallVector<BasicBlock*, 2> NewBBs; 5238 SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI); 5239 NewBB = NewBBs[0]; 5240 } 5241 // If NewBB==NULL, then SplitCriticalEdge refused to split because all 5242 // phi predecessors are identical. The simple thing to do is skip 5243 // splitting in this case rather than complicate the API. 5244 if (NewBB) { 5245 // If PN is outside of the loop and BB is in the loop, we want to 5246 // move the block to be immediately before the PHI block, not 5247 // immediately after BB. 5248 if (L->contains(BB) && !L->contains(PN)) 5249 NewBB->moveBefore(PN->getParent()); 5250 5251 // Splitting the edge can reduce the number of PHI entries we have. 5252 e = PN->getNumIncomingValues(); 5253 BB = NewBB; 5254 i = PN->getBasicBlockIndex(BB); 5255 } 5256 } 5257 } 5258 5259 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair = 5260 Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr))); 5261 if (!Pair.second) 5262 PN->setIncomingValue(i, Pair.first->second); 5263 else { 5264 Value *FullV = Expand(LU, LF, F, BB->getTerminator()->getIterator(), 5265 Rewriter, DeadInsts); 5266 5267 // If this is reuse-by-noop-cast, insert the noop cast. 5268 Type *OpTy = LF.OperandValToReplace->getType(); 5269 if (FullV->getType() != OpTy) 5270 FullV = 5271 CastInst::Create(CastInst::getCastOpcode(FullV, false, 5272 OpTy, false), 5273 FullV, LF.OperandValToReplace->getType(), 5274 "tmp", BB->getTerminator()); 5275 5276 PN->setIncomingValue(i, FullV); 5277 Pair.first->second = FullV; 5278 } 5279 } 5280 } 5281 5282 /// Emit instructions for the leading candidate expression for this LSRUse (this 5283 /// is called "expanding"), and update the UserInst to reference the newly 5284 /// expanded value. 5285 void LSRInstance::Rewrite(const LSRUse &LU, const LSRFixup &LF, 5286 const Formula &F, SCEVExpander &Rewriter, 5287 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5288 // First, find an insertion point that dominates UserInst. For PHI nodes, 5289 // find the nearest block which dominates all the relevant uses. 5290 if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) { 5291 RewriteForPHI(PN, LU, LF, F, Rewriter, DeadInsts); 5292 } else { 5293 Value *FullV = 5294 Expand(LU, LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts); 5295 5296 // If this is reuse-by-noop-cast, insert the noop cast. 5297 Type *OpTy = LF.OperandValToReplace->getType(); 5298 if (FullV->getType() != OpTy) { 5299 Instruction *Cast = 5300 CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false), 5301 FullV, OpTy, "tmp", LF.UserInst); 5302 FullV = Cast; 5303 } 5304 5305 // Update the user. ICmpZero is handled specially here (for now) because 5306 // Expand may have updated one of the operands of the icmp already, and 5307 // its new value may happen to be equal to LF.OperandValToReplace, in 5308 // which case doing replaceUsesOfWith leads to replacing both operands 5309 // with the same value. TODO: Reorganize this. 5310 if (LU.Kind == LSRUse::ICmpZero) 5311 LF.UserInst->setOperand(0, FullV); 5312 else 5313 LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV); 5314 } 5315 5316 DeadInsts.emplace_back(LF.OperandValToReplace); 5317 } 5318 5319 /// Rewrite all the fixup locations with new values, following the chosen 5320 /// solution. 5321 void LSRInstance::ImplementSolution( 5322 const SmallVectorImpl<const Formula *> &Solution) { 5323 // Keep track of instructions we may have made dead, so that 5324 // we can remove them after we are done working. 5325 SmallVector<WeakTrackingVH, 16> DeadInsts; 5326 5327 SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(), 5328 "lsr"); 5329 #ifndef NDEBUG 5330 Rewriter.setDebugType(DEBUG_TYPE); 5331 #endif 5332 Rewriter.disableCanonicalMode(); 5333 Rewriter.enableLSRMode(); 5334 Rewriter.setIVIncInsertPos(L, IVIncInsertPos); 5335 5336 // Mark phi nodes that terminate chains so the expander tries to reuse them. 5337 for (const IVChain &Chain : IVChainVec) { 5338 if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst())) 5339 Rewriter.setChainedPhi(PN); 5340 } 5341 5342 // Expand the new value definitions and update the users. 5343 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) 5344 for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) { 5345 Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], Rewriter, DeadInsts); 5346 Changed = true; 5347 } 5348 5349 for (const IVChain &Chain : IVChainVec) { 5350 GenerateIVChain(Chain, Rewriter, DeadInsts); 5351 Changed = true; 5352 } 5353 // Clean up after ourselves. This must be done before deleting any 5354 // instructions. 5355 Rewriter.clear(); 5356 5357 Changed |= DeleteTriviallyDeadInstructions(DeadInsts); 5358 } 5359 5360 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, 5361 DominatorTree &DT, LoopInfo &LI, 5362 const TargetTransformInfo &TTI) 5363 : IU(IU), SE(SE), DT(DT), LI(LI), TTI(TTI), L(L) { 5364 // If LoopSimplify form is not available, stay out of trouble. 5365 if (!L->isLoopSimplifyForm()) 5366 return; 5367 5368 // If there's no interesting work to be done, bail early. 5369 if (IU.empty()) return; 5370 5371 // If there's too much analysis to be done, bail early. We won't be able to 5372 // model the problem anyway. 5373 unsigned NumUsers = 0; 5374 for (const IVStrideUse &U : IU) { 5375 if (++NumUsers > MaxIVUsers) { 5376 (void)U; 5377 LLVM_DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U 5378 << "\n"); 5379 return; 5380 } 5381 // Bail out if we have a PHI on an EHPad that gets a value from a 5382 // CatchSwitchInst. Because the CatchSwitchInst cannot be split, there is 5383 // no good place to stick any instructions. 5384 if (auto *PN = dyn_cast<PHINode>(U.getUser())) { 5385 auto *FirstNonPHI = PN->getParent()->getFirstNonPHI(); 5386 if (isa<FuncletPadInst>(FirstNonPHI) || 5387 isa<CatchSwitchInst>(FirstNonPHI)) 5388 for (BasicBlock *PredBB : PN->blocks()) 5389 if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI())) 5390 return; 5391 } 5392 } 5393 5394 #ifndef NDEBUG 5395 // All dominating loops must have preheaders, or SCEVExpander may not be able 5396 // to materialize an AddRecExpr whose Start is an outer AddRecExpr. 5397 // 5398 // IVUsers analysis should only create users that are dominated by simple loop 5399 // headers. Since this loop should dominate all of its users, its user list 5400 // should be empty if this loop itself is not within a simple loop nest. 5401 for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader()); 5402 Rung; Rung = Rung->getIDom()) { 5403 BasicBlock *BB = Rung->getBlock(); 5404 const Loop *DomLoop = LI.getLoopFor(BB); 5405 if (DomLoop && DomLoop->getHeader() == BB) { 5406 assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest"); 5407 } 5408 } 5409 #endif // DEBUG 5410 5411 LLVM_DEBUG(dbgs() << "\nLSR on loop "; 5412 L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false); 5413 dbgs() << ":\n"); 5414 5415 // First, perform some low-level loop optimizations. 5416 OptimizeShadowIV(); 5417 OptimizeLoopTermCond(); 5418 5419 // If loop preparation eliminates all interesting IV users, bail. 5420 if (IU.empty()) return; 5421 5422 // Skip nested loops until we can model them better with formulae. 5423 if (!L->empty()) { 5424 LLVM_DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n"); 5425 return; 5426 } 5427 5428 // Start collecting data and preparing for the solver. 5429 CollectChains(); 5430 CollectInterestingTypesAndFactors(); 5431 CollectFixupsAndInitialFormulae(); 5432 CollectLoopInvariantFixupsAndFormulae(); 5433 5434 if (Uses.empty()) 5435 return; 5436 5437 LLVM_DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n"; 5438 print_uses(dbgs())); 5439 5440 // Now use the reuse data to generate a bunch of interesting ways 5441 // to formulate the values needed for the uses. 5442 GenerateAllReuseFormulae(); 5443 5444 FilterOutUndesirableDedicatedRegisters(); 5445 NarrowSearchSpaceUsingHeuristics(); 5446 5447 SmallVector<const Formula *, 8> Solution; 5448 Solve(Solution); 5449 5450 // Release memory that is no longer needed. 5451 Factors.clear(); 5452 Types.clear(); 5453 RegUses.clear(); 5454 5455 if (Solution.empty()) 5456 return; 5457 5458 #ifndef NDEBUG 5459 // Formulae should be legal. 5460 for (const LSRUse &LU : Uses) { 5461 for (const Formula &F : LU.Formulae) 5462 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 5463 F) && "Illegal formula generated!"); 5464 }; 5465 #endif 5466 5467 // Now that we've decided what we want, make it so. 5468 ImplementSolution(Solution); 5469 } 5470 5471 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 5472 void LSRInstance::print_factors_and_types(raw_ostream &OS) const { 5473 if (Factors.empty() && Types.empty()) return; 5474 5475 OS << "LSR has identified the following interesting factors and types: "; 5476 bool First = true; 5477 5478 for (int64_t Factor : Factors) { 5479 if (!First) OS << ", "; 5480 First = false; 5481 OS << '*' << Factor; 5482 } 5483 5484 for (Type *Ty : Types) { 5485 if (!First) OS << ", "; 5486 First = false; 5487 OS << '(' << *Ty << ')'; 5488 } 5489 OS << '\n'; 5490 } 5491 5492 void LSRInstance::print_fixups(raw_ostream &OS) const { 5493 OS << "LSR is examining the following fixup sites:\n"; 5494 for (const LSRUse &LU : Uses) 5495 for (const LSRFixup &LF : LU.Fixups) { 5496 dbgs() << " "; 5497 LF.print(OS); 5498 OS << '\n'; 5499 } 5500 } 5501 5502 void LSRInstance::print_uses(raw_ostream &OS) const { 5503 OS << "LSR is examining the following uses:\n"; 5504 for (const LSRUse &LU : Uses) { 5505 dbgs() << " "; 5506 LU.print(OS); 5507 OS << '\n'; 5508 for (const Formula &F : LU.Formulae) { 5509 OS << " "; 5510 F.print(OS); 5511 OS << '\n'; 5512 } 5513 } 5514 } 5515 5516 void LSRInstance::print(raw_ostream &OS) const { 5517 print_factors_and_types(OS); 5518 print_fixups(OS); 5519 print_uses(OS); 5520 } 5521 5522 LLVM_DUMP_METHOD void LSRInstance::dump() const { 5523 print(errs()); errs() << '\n'; 5524 } 5525 #endif 5526 5527 namespace { 5528 5529 class LoopStrengthReduce : public LoopPass { 5530 public: 5531 static char ID; // Pass ID, replacement for typeid 5532 5533 LoopStrengthReduce(); 5534 5535 private: 5536 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 5537 void getAnalysisUsage(AnalysisUsage &AU) const override; 5538 }; 5539 5540 } // end anonymous namespace 5541 5542 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) { 5543 initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry()); 5544 } 5545 5546 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const { 5547 // We split critical edges, so we change the CFG. However, we do update 5548 // many analyses if they are around. 5549 AU.addPreservedID(LoopSimplifyID); 5550 5551 AU.addRequired<LoopInfoWrapperPass>(); 5552 AU.addPreserved<LoopInfoWrapperPass>(); 5553 AU.addRequiredID(LoopSimplifyID); 5554 AU.addRequired<DominatorTreeWrapperPass>(); 5555 AU.addPreserved<DominatorTreeWrapperPass>(); 5556 AU.addRequired<ScalarEvolutionWrapperPass>(); 5557 AU.addPreserved<ScalarEvolutionWrapperPass>(); 5558 // Requiring LoopSimplify a second time here prevents IVUsers from running 5559 // twice, since LoopSimplify was invalidated by running ScalarEvolution. 5560 AU.addRequiredID(LoopSimplifyID); 5561 AU.addRequired<IVUsersWrapperPass>(); 5562 AU.addPreserved<IVUsersWrapperPass>(); 5563 AU.addRequired<TargetTransformInfoWrapperPass>(); 5564 } 5565 5566 static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE, 5567 DominatorTree &DT, LoopInfo &LI, 5568 const TargetTransformInfo &TTI) { 5569 bool Changed = false; 5570 5571 // Run the main LSR transformation. 5572 Changed |= LSRInstance(L, IU, SE, DT, LI, TTI).getChanged(); 5573 5574 // Remove any extra phis created by processing inner loops. 5575 Changed |= DeleteDeadPHIs(L->getHeader()); 5576 if (EnablePhiElim && L->isLoopSimplifyForm()) { 5577 SmallVector<WeakTrackingVH, 16> DeadInsts; 5578 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 5579 SCEVExpander Rewriter(SE, DL, "lsr"); 5580 #ifndef NDEBUG 5581 Rewriter.setDebugType(DEBUG_TYPE); 5582 #endif 5583 unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI); 5584 if (numFolded) { 5585 Changed = true; 5586 DeleteTriviallyDeadInstructions(DeadInsts); 5587 DeleteDeadPHIs(L->getHeader()); 5588 } 5589 } 5590 return Changed; 5591 } 5592 5593 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) { 5594 if (skipLoop(L)) 5595 return false; 5596 5597 auto &IU = getAnalysis<IVUsersWrapperPass>().getIU(); 5598 auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 5599 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 5600 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 5601 const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI( 5602 *L->getHeader()->getParent()); 5603 return ReduceLoopStrength(L, IU, SE, DT, LI, TTI); 5604 } 5605 5606 PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM, 5607 LoopStandardAnalysisResults &AR, 5608 LPMUpdater &) { 5609 if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE, 5610 AR.DT, AR.LI, AR.TTI)) 5611 return PreservedAnalyses::all(); 5612 5613 return getLoopPassPreservedAnalyses(); 5614 } 5615 5616 char LoopStrengthReduce::ID = 0; 5617 5618 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce", 5619 "Loop Strength Reduction", false, false) 5620 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 5621 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 5622 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 5623 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass) 5624 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 5625 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 5626 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce", 5627 "Loop Strength Reduction", false, false) 5628 5629 Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); } 5630