1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This transformation analyzes and transforms the induction variables (and 11 // computations derived from them) into forms suitable for efficient execution 12 // on the target. 13 // 14 // This pass performs a strength reduction on array references inside loops that 15 // have as one or more of their components the loop induction variable, it 16 // rewrites expressions to take advantage of scaled-index addressing modes 17 // available on the target, and it performs a variety of other optimizations 18 // related to loop induction variables. 19 // 20 // Terminology note: this code has a lot of handling for "post-increment" or 21 // "post-inc" users. This is not talking about post-increment addressing modes; 22 // it is instead talking about code like this: 23 // 24 // %i = phi [ 0, %entry ], [ %i.next, %latch ] 25 // ... 26 // %i.next = add %i, 1 27 // %c = icmp eq %i.next, %n 28 // 29 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however 30 // it's useful to think about these as the same register, with some uses using 31 // the value of the register before the add and some using it after. In this 32 // example, the icmp is a post-increment user, since it uses %i.next, which is 33 // the value of the induction variable after the increment. The other common 34 // case of post-increment users is users outside the loop. 35 // 36 // TODO: More sophistication in the way Formulae are generated and filtered. 37 // 38 // TODO: Handle multiple loops at a time. 39 // 40 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead 41 // of a GlobalValue? 42 // 43 // TODO: When truncation is free, truncate ICmp users' operands to make it a 44 // smaller encoding (on x86 at least). 45 // 46 // TODO: When a negated register is used by an add (such as in a list of 47 // multiple base registers, or as the increment expression in an addrec), 48 // we may not actually need both reg and (-1 * reg) in registers; the 49 // negation can be implemented by using a sub instead of an add. The 50 // lack of support for taking this into consideration when making 51 // register pressure decisions is partly worked around by the "Special" 52 // use kind. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h" 57 #include "llvm/ADT/APInt.h" 58 #include "llvm/ADT/DenseMap.h" 59 #include "llvm/ADT/DenseSet.h" 60 #include "llvm/ADT/Hashing.h" 61 #include "llvm/ADT/PointerIntPair.h" 62 #include "llvm/ADT/SetVector.h" 63 #include "llvm/ADT/SmallBitVector.h" 64 #include "llvm/ADT/SmallPtrSet.h" 65 #include "llvm/ADT/SmallSet.h" 66 #include "llvm/ADT/SmallVector.h" 67 #include "llvm/ADT/STLExtras.h" 68 #include "llvm/Analysis/IVUsers.h" 69 #include "llvm/Analysis/LoopInfo.h" 70 #include "llvm/Analysis/LoopPass.h" 71 #include "llvm/Analysis/LoopPassManager.h" 72 #include "llvm/Analysis/ScalarEvolution.h" 73 #include "llvm/Analysis/ScalarEvolutionExpander.h" 74 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 75 #include "llvm/Analysis/ScalarEvolutionNormalization.h" 76 #include "llvm/Analysis/TargetTransformInfo.h" 77 #include "llvm/IR/BasicBlock.h" 78 #include "llvm/IR/Constant.h" 79 #include "llvm/IR/Constants.h" 80 #include "llvm/IR/DerivedTypes.h" 81 #include "llvm/IR/Dominators.h" 82 #include "llvm/IR/GlobalValue.h" 83 #include "llvm/IR/Instruction.h" 84 #include "llvm/IR/Instructions.h" 85 #include "llvm/IR/IntrinsicInst.h" 86 #include "llvm/IR/IRBuilder.h" 87 #include "llvm/IR/OperandTraits.h" 88 #include "llvm/IR/Operator.h" 89 #include "llvm/IR/Module.h" 90 #include "llvm/IR/Type.h" 91 #include "llvm/IR/Value.h" 92 #include "llvm/IR/ValueHandle.h" 93 #include "llvm/Pass.h" 94 #include "llvm/Support/Casting.h" 95 #include "llvm/Support/CommandLine.h" 96 #include "llvm/Support/Compiler.h" 97 #include "llvm/Support/Debug.h" 98 #include "llvm/Support/ErrorHandling.h" 99 #include "llvm/Support/MathExtras.h" 100 #include "llvm/Support/raw_ostream.h" 101 #include "llvm/Transforms/Scalar.h" 102 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 103 #include "llvm/Transforms/Utils/Local.h" 104 #include <algorithm> 105 #include <cassert> 106 #include <cstddef> 107 #include <cstdint> 108 #include <cstdlib> 109 #include <iterator> 110 #include <map> 111 #include <tuple> 112 #include <utility> 113 114 using namespace llvm; 115 116 #define DEBUG_TYPE "loop-reduce" 117 118 /// MaxIVUsers is an arbitrary threshold that provides an early opportunitiy for 119 /// bail out. This threshold is far beyond the number of users that LSR can 120 /// conceivably solve, so it should not affect generated code, but catches the 121 /// worst cases before LSR burns too much compile time and stack space. 122 static const unsigned MaxIVUsers = 200; 123 124 // Temporary flag to cleanup congruent phis after LSR phi expansion. 125 // It's currently disabled until we can determine whether it's truly useful or 126 // not. The flag should be removed after the v3.0 release. 127 // This is now needed for ivchains. 128 static cl::opt<bool> EnablePhiElim( 129 "enable-lsr-phielim", cl::Hidden, cl::init(true), 130 cl::desc("Enable LSR phi elimination")); 131 132 #ifndef NDEBUG 133 // Stress test IV chain generation. 134 static cl::opt<bool> StressIVChain( 135 "stress-ivchain", cl::Hidden, cl::init(false), 136 cl::desc("Stress test LSR IV chains")); 137 #else 138 static bool StressIVChain = false; 139 #endif 140 141 namespace { 142 143 struct MemAccessTy { 144 /// Used in situations where the accessed memory type is unknown. 145 static const unsigned UnknownAddressSpace = ~0u; 146 147 Type *MemTy; 148 unsigned AddrSpace; 149 150 MemAccessTy() : MemTy(nullptr), AddrSpace(UnknownAddressSpace) {} 151 152 MemAccessTy(Type *Ty, unsigned AS) : 153 MemTy(Ty), AddrSpace(AS) {} 154 155 bool operator==(MemAccessTy Other) const { 156 return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace; 157 } 158 159 bool operator!=(MemAccessTy Other) const { return !(*this == Other); } 160 161 static MemAccessTy getUnknown(LLVMContext &Ctx) { 162 return MemAccessTy(Type::getVoidTy(Ctx), UnknownAddressSpace); 163 } 164 }; 165 166 /// This class holds data which is used to order reuse candidates. 167 class RegSortData { 168 public: 169 /// This represents the set of LSRUse indices which reference 170 /// a particular register. 171 SmallBitVector UsedByIndices; 172 173 void print(raw_ostream &OS) const; 174 void dump() const; 175 }; 176 177 } // end anonymous namespace 178 179 void RegSortData::print(raw_ostream &OS) const { 180 OS << "[NumUses=" << UsedByIndices.count() << ']'; 181 } 182 183 LLVM_DUMP_METHOD 184 void RegSortData::dump() const { 185 print(errs()); errs() << '\n'; 186 } 187 188 namespace { 189 190 /// Map register candidates to information about how they are used. 191 class RegUseTracker { 192 typedef DenseMap<const SCEV *, RegSortData> RegUsesTy; 193 194 RegUsesTy RegUsesMap; 195 SmallVector<const SCEV *, 16> RegSequence; 196 197 public: 198 void countRegister(const SCEV *Reg, size_t LUIdx); 199 void dropRegister(const SCEV *Reg, size_t LUIdx); 200 void swapAndDropUse(size_t LUIdx, size_t LastLUIdx); 201 202 bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const; 203 204 const SmallBitVector &getUsedByIndices(const SCEV *Reg) const; 205 206 void clear(); 207 208 typedef SmallVectorImpl<const SCEV *>::iterator iterator; 209 typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator; 210 iterator begin() { return RegSequence.begin(); } 211 iterator end() { return RegSequence.end(); } 212 const_iterator begin() const { return RegSequence.begin(); } 213 const_iterator end() const { return RegSequence.end(); } 214 }; 215 216 } // end anonymous namespace 217 218 void 219 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) { 220 std::pair<RegUsesTy::iterator, bool> Pair = 221 RegUsesMap.insert(std::make_pair(Reg, RegSortData())); 222 RegSortData &RSD = Pair.first->second; 223 if (Pair.second) 224 RegSequence.push_back(Reg); 225 RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1)); 226 RSD.UsedByIndices.set(LUIdx); 227 } 228 229 void 230 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) { 231 RegUsesTy::iterator It = RegUsesMap.find(Reg); 232 assert(It != RegUsesMap.end()); 233 RegSortData &RSD = It->second; 234 assert(RSD.UsedByIndices.size() > LUIdx); 235 RSD.UsedByIndices.reset(LUIdx); 236 } 237 238 void 239 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) { 240 assert(LUIdx <= LastLUIdx); 241 242 // Update RegUses. The data structure is not optimized for this purpose; 243 // we must iterate through it and update each of the bit vectors. 244 for (auto &Pair : RegUsesMap) { 245 SmallBitVector &UsedByIndices = Pair.second.UsedByIndices; 246 if (LUIdx < UsedByIndices.size()) 247 UsedByIndices[LUIdx] = 248 LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false; 249 UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx)); 250 } 251 } 252 253 bool 254 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const { 255 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 256 if (I == RegUsesMap.end()) 257 return false; 258 const SmallBitVector &UsedByIndices = I->second.UsedByIndices; 259 int i = UsedByIndices.find_first(); 260 if (i == -1) return false; 261 if ((size_t)i != LUIdx) return true; 262 return UsedByIndices.find_next(i) != -1; 263 } 264 265 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const { 266 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 267 assert(I != RegUsesMap.end() && "Unknown register!"); 268 return I->second.UsedByIndices; 269 } 270 271 void RegUseTracker::clear() { 272 RegUsesMap.clear(); 273 RegSequence.clear(); 274 } 275 276 namespace { 277 278 /// This class holds information that describes a formula for computing 279 /// satisfying a use. It may include broken-out immediates and scaled registers. 280 struct Formula { 281 /// Global base address used for complex addressing. 282 GlobalValue *BaseGV; 283 284 /// Base offset for complex addressing. 285 int64_t BaseOffset; 286 287 /// Whether any complex addressing has a base register. 288 bool HasBaseReg; 289 290 /// The scale of any complex addressing. 291 int64_t Scale; 292 293 /// The list of "base" registers for this use. When this is non-empty. The 294 /// canonical representation of a formula is 295 /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and 296 /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty(). 297 /// #1 enforces that the scaled register is always used when at least two 298 /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2. 299 /// #2 enforces that 1 * reg is reg. 300 /// This invariant can be temporarly broken while building a formula. 301 /// However, every formula inserted into the LSRInstance must be in canonical 302 /// form. 303 SmallVector<const SCEV *, 4> BaseRegs; 304 305 /// The 'scaled' register for this use. This should be non-null when Scale is 306 /// not zero. 307 const SCEV *ScaledReg; 308 309 /// An additional constant offset which added near the use. This requires a 310 /// temporary register, but the offset itself can live in an add immediate 311 /// field rather than a register. 312 int64_t UnfoldedOffset; 313 314 Formula() 315 : BaseGV(nullptr), BaseOffset(0), HasBaseReg(false), Scale(0), 316 ScaledReg(nullptr), UnfoldedOffset(0) {} 317 318 void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE); 319 320 bool isCanonical() const; 321 322 void canonicalize(); 323 324 bool unscale(); 325 326 size_t getNumRegs() const; 327 Type *getType() const; 328 329 void deleteBaseReg(const SCEV *&S); 330 331 bool referencesReg(const SCEV *S) const; 332 bool hasRegsUsedByUsesOtherThan(size_t LUIdx, 333 const RegUseTracker &RegUses) const; 334 335 void print(raw_ostream &OS) const; 336 void dump() const; 337 }; 338 339 } // end anonymous namespace 340 341 /// Recursion helper for initialMatch. 342 static void DoInitialMatch(const SCEV *S, Loop *L, 343 SmallVectorImpl<const SCEV *> &Good, 344 SmallVectorImpl<const SCEV *> &Bad, 345 ScalarEvolution &SE) { 346 // Collect expressions which properly dominate the loop header. 347 if (SE.properlyDominates(S, L->getHeader())) { 348 Good.push_back(S); 349 return; 350 } 351 352 // Look at add operands. 353 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 354 for (const SCEV *S : Add->operands()) 355 DoInitialMatch(S, L, Good, Bad, SE); 356 return; 357 } 358 359 // Look at addrec operands. 360 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 361 if (!AR->getStart()->isZero() && AR->isAffine()) { 362 DoInitialMatch(AR->getStart(), L, Good, Bad, SE); 363 DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0), 364 AR->getStepRecurrence(SE), 365 // FIXME: AR->getNoWrapFlags() 366 AR->getLoop(), SCEV::FlagAnyWrap), 367 L, Good, Bad, SE); 368 return; 369 } 370 371 // Handle a multiplication by -1 (negation) if it didn't fold. 372 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) 373 if (Mul->getOperand(0)->isAllOnesValue()) { 374 SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end()); 375 const SCEV *NewMul = SE.getMulExpr(Ops); 376 377 SmallVector<const SCEV *, 4> MyGood; 378 SmallVector<const SCEV *, 4> MyBad; 379 DoInitialMatch(NewMul, L, MyGood, MyBad, SE); 380 const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue( 381 SE.getEffectiveSCEVType(NewMul->getType()))); 382 for (const SCEV *S : MyGood) 383 Good.push_back(SE.getMulExpr(NegOne, S)); 384 for (const SCEV *S : MyBad) 385 Bad.push_back(SE.getMulExpr(NegOne, S)); 386 return; 387 } 388 389 // Ok, we can't do anything interesting. Just stuff the whole thing into a 390 // register and hope for the best. 391 Bad.push_back(S); 392 } 393 394 /// Incorporate loop-variant parts of S into this Formula, attempting to keep 395 /// all loop-invariant and loop-computable values in a single base register. 396 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) { 397 SmallVector<const SCEV *, 4> Good; 398 SmallVector<const SCEV *, 4> Bad; 399 DoInitialMatch(S, L, Good, Bad, SE); 400 if (!Good.empty()) { 401 const SCEV *Sum = SE.getAddExpr(Good); 402 if (!Sum->isZero()) 403 BaseRegs.push_back(Sum); 404 HasBaseReg = true; 405 } 406 if (!Bad.empty()) { 407 const SCEV *Sum = SE.getAddExpr(Bad); 408 if (!Sum->isZero()) 409 BaseRegs.push_back(Sum); 410 HasBaseReg = true; 411 } 412 canonicalize(); 413 } 414 415 /// \brief Check whether or not this formula statisfies the canonical 416 /// representation. 417 /// \see Formula::BaseRegs. 418 bool Formula::isCanonical() const { 419 if (ScaledReg) 420 return Scale != 1 || !BaseRegs.empty(); 421 return BaseRegs.size() <= 1; 422 } 423 424 /// \brief Helper method to morph a formula into its canonical representation. 425 /// \see Formula::BaseRegs. 426 /// Every formula having more than one base register, must use the ScaledReg 427 /// field. Otherwise, we would have to do special cases everywhere in LSR 428 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ... 429 /// On the other hand, 1*reg should be canonicalized into reg. 430 void Formula::canonicalize() { 431 if (isCanonical()) 432 return; 433 // So far we did not need this case. This is easy to implement but it is 434 // useless to maintain dead code. Beside it could hurt compile time. 435 assert(!BaseRegs.empty() && "1*reg => reg, should not be needed."); 436 // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg. 437 ScaledReg = BaseRegs.back(); 438 BaseRegs.pop_back(); 439 Scale = 1; 440 size_t BaseRegsSize = BaseRegs.size(); 441 size_t Try = 0; 442 // If ScaledReg is an invariant, try to find a variant expression. 443 while (Try < BaseRegsSize && !isa<SCEVAddRecExpr>(ScaledReg)) 444 std::swap(ScaledReg, BaseRegs[Try++]); 445 } 446 447 /// \brief Get rid of the scale in the formula. 448 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2. 449 /// \return true if it was possible to get rid of the scale, false otherwise. 450 /// \note After this operation the formula may not be in the canonical form. 451 bool Formula::unscale() { 452 if (Scale != 1) 453 return false; 454 Scale = 0; 455 BaseRegs.push_back(ScaledReg); 456 ScaledReg = nullptr; 457 return true; 458 } 459 460 /// Return the total number of register operands used by this formula. This does 461 /// not include register uses implied by non-constant addrec strides. 462 size_t Formula::getNumRegs() const { 463 return !!ScaledReg + BaseRegs.size(); 464 } 465 466 /// Return the type of this formula, if it has one, or null otherwise. This type 467 /// is meaningless except for the bit size. 468 Type *Formula::getType() const { 469 return !BaseRegs.empty() ? BaseRegs.front()->getType() : 470 ScaledReg ? ScaledReg->getType() : 471 BaseGV ? BaseGV->getType() : 472 nullptr; 473 } 474 475 /// Delete the given base reg from the BaseRegs list. 476 void Formula::deleteBaseReg(const SCEV *&S) { 477 if (&S != &BaseRegs.back()) 478 std::swap(S, BaseRegs.back()); 479 BaseRegs.pop_back(); 480 } 481 482 /// Test if this formula references the given register. 483 bool Formula::referencesReg(const SCEV *S) const { 484 return S == ScaledReg || is_contained(BaseRegs, S); 485 } 486 487 /// Test whether this formula uses registers which are used by uses other than 488 /// the use with the given index. 489 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx, 490 const RegUseTracker &RegUses) const { 491 if (ScaledReg) 492 if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx)) 493 return true; 494 for (const SCEV *BaseReg : BaseRegs) 495 if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx)) 496 return true; 497 return false; 498 } 499 500 void Formula::print(raw_ostream &OS) const { 501 bool First = true; 502 if (BaseGV) { 503 if (!First) OS << " + "; else First = false; 504 BaseGV->printAsOperand(OS, /*PrintType=*/false); 505 } 506 if (BaseOffset != 0) { 507 if (!First) OS << " + "; else First = false; 508 OS << BaseOffset; 509 } 510 for (const SCEV *BaseReg : BaseRegs) { 511 if (!First) OS << " + "; else First = false; 512 OS << "reg(" << *BaseReg << ')'; 513 } 514 if (HasBaseReg && BaseRegs.empty()) { 515 if (!First) OS << " + "; else First = false; 516 OS << "**error: HasBaseReg**"; 517 } else if (!HasBaseReg && !BaseRegs.empty()) { 518 if (!First) OS << " + "; else First = false; 519 OS << "**error: !HasBaseReg**"; 520 } 521 if (Scale != 0) { 522 if (!First) OS << " + "; else First = false; 523 OS << Scale << "*reg("; 524 if (ScaledReg) 525 OS << *ScaledReg; 526 else 527 OS << "<unknown>"; 528 OS << ')'; 529 } 530 if (UnfoldedOffset != 0) { 531 if (!First) OS << " + "; 532 OS << "imm(" << UnfoldedOffset << ')'; 533 } 534 } 535 536 LLVM_DUMP_METHOD 537 void Formula::dump() const { 538 print(errs()); errs() << '\n'; 539 } 540 541 /// Return true if the given addrec can be sign-extended without changing its 542 /// value. 543 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 544 Type *WideTy = 545 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1); 546 return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy)); 547 } 548 549 /// Return true if the given add can be sign-extended without changing its 550 /// value. 551 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) { 552 Type *WideTy = 553 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1); 554 return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy)); 555 } 556 557 /// Return true if the given mul can be sign-extended without changing its 558 /// value. 559 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) { 560 Type *WideTy = 561 IntegerType::get(SE.getContext(), 562 SE.getTypeSizeInBits(M->getType()) * M->getNumOperands()); 563 return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy)); 564 } 565 566 /// Return an expression for LHS /s RHS, if it can be determined and if the 567 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits 568 /// is true, expressions like (X * Y) /s Y are simplified to Y, ignoring that 569 /// the multiplication may overflow, which is useful when the result will be 570 /// used in a context where the most significant bits are ignored. 571 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS, 572 ScalarEvolution &SE, 573 bool IgnoreSignificantBits = false) { 574 // Handle the trivial case, which works for any SCEV type. 575 if (LHS == RHS) 576 return SE.getConstant(LHS->getType(), 1); 577 578 // Handle a few RHS special cases. 579 const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS); 580 if (RC) { 581 const APInt &RA = RC->getAPInt(); 582 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do 583 // some folding. 584 if (RA.isAllOnesValue()) 585 return SE.getMulExpr(LHS, RC); 586 // Handle x /s 1 as x. 587 if (RA == 1) 588 return LHS; 589 } 590 591 // Check for a division of a constant by a constant. 592 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) { 593 if (!RC) 594 return nullptr; 595 const APInt &LA = C->getAPInt(); 596 const APInt &RA = RC->getAPInt(); 597 if (LA.srem(RA) != 0) 598 return nullptr; 599 return SE.getConstant(LA.sdiv(RA)); 600 } 601 602 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow. 603 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) { 604 if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) { 605 const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE, 606 IgnoreSignificantBits); 607 if (!Step) return nullptr; 608 const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE, 609 IgnoreSignificantBits); 610 if (!Start) return nullptr; 611 // FlagNW is independent of the start value, step direction, and is 612 // preserved with smaller magnitude steps. 613 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 614 return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap); 615 } 616 return nullptr; 617 } 618 619 // Distribute the sdiv over add operands, if the add doesn't overflow. 620 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) { 621 if (IgnoreSignificantBits || isAddSExtable(Add, SE)) { 622 SmallVector<const SCEV *, 8> Ops; 623 for (const SCEV *S : Add->operands()) { 624 const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits); 625 if (!Op) return nullptr; 626 Ops.push_back(Op); 627 } 628 return SE.getAddExpr(Ops); 629 } 630 return nullptr; 631 } 632 633 // Check for a multiply operand that we can pull RHS out of. 634 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) { 635 if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) { 636 SmallVector<const SCEV *, 4> Ops; 637 bool Found = false; 638 for (const SCEV *S : Mul->operands()) { 639 if (!Found) 640 if (const SCEV *Q = getExactSDiv(S, RHS, SE, 641 IgnoreSignificantBits)) { 642 S = Q; 643 Found = true; 644 } 645 Ops.push_back(S); 646 } 647 return Found ? SE.getMulExpr(Ops) : nullptr; 648 } 649 return nullptr; 650 } 651 652 // Otherwise we don't know. 653 return nullptr; 654 } 655 656 /// If S involves the addition of a constant integer value, return that integer 657 /// value, and mutate S to point to a new SCEV with that value excluded. 658 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) { 659 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 660 if (C->getAPInt().getMinSignedBits() <= 64) { 661 S = SE.getConstant(C->getType(), 0); 662 return C->getValue()->getSExtValue(); 663 } 664 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 665 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 666 int64_t Result = ExtractImmediate(NewOps.front(), SE); 667 if (Result != 0) 668 S = SE.getAddExpr(NewOps); 669 return Result; 670 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 671 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 672 int64_t Result = ExtractImmediate(NewOps.front(), SE); 673 if (Result != 0) 674 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 675 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 676 SCEV::FlagAnyWrap); 677 return Result; 678 } 679 return 0; 680 } 681 682 /// If S involves the addition of a GlobalValue address, return that symbol, and 683 /// mutate S to point to a new SCEV with that value excluded. 684 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) { 685 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 686 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) { 687 S = SE.getConstant(GV->getType(), 0); 688 return GV; 689 } 690 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 691 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 692 GlobalValue *Result = ExtractSymbol(NewOps.back(), SE); 693 if (Result) 694 S = SE.getAddExpr(NewOps); 695 return Result; 696 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 697 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 698 GlobalValue *Result = ExtractSymbol(NewOps.front(), SE); 699 if (Result) 700 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 701 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 702 SCEV::FlagAnyWrap); 703 return Result; 704 } 705 return nullptr; 706 } 707 708 /// Returns true if the specified instruction is using the specified value as an 709 /// address. 710 static bool isAddressUse(Instruction *Inst, Value *OperandVal) { 711 bool isAddress = isa<LoadInst>(Inst); 712 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 713 if (SI->getOperand(1) == OperandVal) 714 isAddress = true; 715 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 716 // Addressing modes can also be folded into prefetches and a variety 717 // of intrinsics. 718 switch (II->getIntrinsicID()) { 719 default: break; 720 case Intrinsic::prefetch: 721 if (II->getArgOperand(0) == OperandVal) 722 isAddress = true; 723 break; 724 } 725 } 726 return isAddress; 727 } 728 729 /// Return the type of the memory being accessed. 730 static MemAccessTy getAccessType(const Instruction *Inst) { 731 MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace); 732 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 733 AccessTy.MemTy = SI->getOperand(0)->getType(); 734 AccessTy.AddrSpace = SI->getPointerAddressSpace(); 735 } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 736 AccessTy.AddrSpace = LI->getPointerAddressSpace(); 737 } 738 739 // All pointers have the same requirements, so canonicalize them to an 740 // arbitrary pointer type to minimize variation. 741 if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy)) 742 AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1), 743 PTy->getAddressSpace()); 744 745 return AccessTy; 746 } 747 748 /// Return true if this AddRec is already a phi in its loop. 749 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 750 for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin(); 751 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 752 if (SE.isSCEVable(PN->getType()) && 753 (SE.getEffectiveSCEVType(PN->getType()) == 754 SE.getEffectiveSCEVType(AR->getType())) && 755 SE.getSCEV(PN) == AR) 756 return true; 757 } 758 return false; 759 } 760 761 /// Check if expanding this expression is likely to incur significant cost. This 762 /// is tricky because SCEV doesn't track which expressions are actually computed 763 /// by the current IR. 764 /// 765 /// We currently allow expansion of IV increments that involve adds, 766 /// multiplication by constants, and AddRecs from existing phis. 767 /// 768 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an 769 /// obvious multiple of the UDivExpr. 770 static bool isHighCostExpansion(const SCEV *S, 771 SmallPtrSetImpl<const SCEV*> &Processed, 772 ScalarEvolution &SE) { 773 // Zero/One operand expressions 774 switch (S->getSCEVType()) { 775 case scUnknown: 776 case scConstant: 777 return false; 778 case scTruncate: 779 return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(), 780 Processed, SE); 781 case scZeroExtend: 782 return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(), 783 Processed, SE); 784 case scSignExtend: 785 return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(), 786 Processed, SE); 787 } 788 789 if (!Processed.insert(S).second) 790 return false; 791 792 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 793 for (const SCEV *S : Add->operands()) { 794 if (isHighCostExpansion(S, Processed, SE)) 795 return true; 796 } 797 return false; 798 } 799 800 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 801 if (Mul->getNumOperands() == 2) { 802 // Multiplication by a constant is ok 803 if (isa<SCEVConstant>(Mul->getOperand(0))) 804 return isHighCostExpansion(Mul->getOperand(1), Processed, SE); 805 806 // If we have the value of one operand, check if an existing 807 // multiplication already generates this expression. 808 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) { 809 Value *UVal = U->getValue(); 810 for (User *UR : UVal->users()) { 811 // If U is a constant, it may be used by a ConstantExpr. 812 Instruction *UI = dyn_cast<Instruction>(UR); 813 if (UI && UI->getOpcode() == Instruction::Mul && 814 SE.isSCEVable(UI->getType())) { 815 return SE.getSCEV(UI) == Mul; 816 } 817 } 818 } 819 } 820 } 821 822 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 823 if (isExistingPhi(AR, SE)) 824 return false; 825 } 826 827 // Fow now, consider any other type of expression (div/mul/min/max) high cost. 828 return true; 829 } 830 831 /// If any of the instructions is the specified set are trivially dead, delete 832 /// them and see if this makes any of their operands subsequently dead. 833 static bool 834 DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) { 835 bool Changed = false; 836 837 while (!DeadInsts.empty()) { 838 Value *V = DeadInsts.pop_back_val(); 839 Instruction *I = dyn_cast_or_null<Instruction>(V); 840 841 if (!I || !isInstructionTriviallyDead(I)) 842 continue; 843 844 for (Use &O : I->operands()) 845 if (Instruction *U = dyn_cast<Instruction>(O)) { 846 O = nullptr; 847 if (U->use_empty()) 848 DeadInsts.emplace_back(U); 849 } 850 851 I->eraseFromParent(); 852 Changed = true; 853 } 854 855 return Changed; 856 } 857 858 namespace { 859 860 class LSRUse; 861 862 } // end anonymous namespace 863 864 /// \brief Check if the addressing mode defined by \p F is completely 865 /// folded in \p LU at isel time. 866 /// This includes address-mode folding and special icmp tricks. 867 /// This function returns true if \p LU can accommodate what \p F 868 /// defines and up to 1 base + 1 scaled + offset. 869 /// In other words, if \p F has several base registers, this function may 870 /// still return true. Therefore, users still need to account for 871 /// additional base registers and/or unfolded offsets to derive an 872 /// accurate cost model. 873 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 874 const LSRUse &LU, const Formula &F); 875 // Get the cost of the scaling factor used in F for LU. 876 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, 877 const LSRUse &LU, const Formula &F); 878 879 namespace { 880 881 /// This class is used to measure and compare candidate formulae. 882 class Cost { 883 /// TODO: Some of these could be merged. Also, a lexical ordering 884 /// isn't always optimal. 885 unsigned NumRegs; 886 unsigned AddRecCost; 887 unsigned NumIVMuls; 888 unsigned NumBaseAdds; 889 unsigned ImmCost; 890 unsigned SetupCost; 891 unsigned ScaleCost; 892 893 public: 894 Cost() 895 : NumRegs(0), AddRecCost(0), NumIVMuls(0), NumBaseAdds(0), ImmCost(0), 896 SetupCost(0), ScaleCost(0) {} 897 898 bool operator<(const Cost &Other) const; 899 900 void Lose(); 901 902 #ifndef NDEBUG 903 // Once any of the metrics loses, they must all remain losers. 904 bool isValid() { 905 return ((NumRegs | AddRecCost | NumIVMuls | NumBaseAdds 906 | ImmCost | SetupCost | ScaleCost) != ~0u) 907 || ((NumRegs & AddRecCost & NumIVMuls & NumBaseAdds 908 & ImmCost & SetupCost & ScaleCost) == ~0u); 909 } 910 #endif 911 912 bool isLoser() { 913 assert(isValid() && "invalid cost"); 914 return NumRegs == ~0u; 915 } 916 917 void RateFormula(const TargetTransformInfo &TTI, 918 const Formula &F, 919 SmallPtrSetImpl<const SCEV *> &Regs, 920 const DenseSet<const SCEV *> &VisitedRegs, 921 const Loop *L, 922 ScalarEvolution &SE, DominatorTree &DT, 923 const LSRUse &LU, 924 SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr); 925 926 void print(raw_ostream &OS) const; 927 void dump() const; 928 929 private: 930 void RateRegister(const SCEV *Reg, 931 SmallPtrSetImpl<const SCEV *> &Regs, 932 const Loop *L, 933 ScalarEvolution &SE, DominatorTree &DT); 934 void RatePrimaryRegister(const SCEV *Reg, 935 SmallPtrSetImpl<const SCEV *> &Regs, 936 const Loop *L, 937 ScalarEvolution &SE, DominatorTree &DT, 938 SmallPtrSetImpl<const SCEV *> *LoserRegs); 939 }; 940 941 /// An operand value in an instruction which is to be replaced with some 942 /// equivalent, possibly strength-reduced, replacement. 943 struct LSRFixup { 944 /// The instruction which will be updated. 945 Instruction *UserInst; 946 947 /// The operand of the instruction which will be replaced. The operand may be 948 /// used more than once; every instance will be replaced. 949 Value *OperandValToReplace; 950 951 /// If this user is to use the post-incremented value of an induction 952 /// variable, this variable is non-null and holds the loop associated with the 953 /// induction variable. 954 PostIncLoopSet PostIncLoops; 955 956 /// A constant offset to be added to the LSRUse expression. This allows 957 /// multiple fixups to share the same LSRUse with different offsets, for 958 /// example in an unrolled loop. 959 int64_t Offset; 960 961 bool isUseFullyOutsideLoop(const Loop *L) const; 962 963 LSRFixup(); 964 965 void print(raw_ostream &OS) const; 966 void dump() const; 967 }; 968 969 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted 970 /// SmallVectors of const SCEV*. 971 struct UniquifierDenseMapInfo { 972 static SmallVector<const SCEV *, 4> getEmptyKey() { 973 SmallVector<const SCEV *, 4> V; 974 V.push_back(reinterpret_cast<const SCEV *>(-1)); 975 return V; 976 } 977 978 static SmallVector<const SCEV *, 4> getTombstoneKey() { 979 SmallVector<const SCEV *, 4> V; 980 V.push_back(reinterpret_cast<const SCEV *>(-2)); 981 return V; 982 } 983 984 static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) { 985 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 986 } 987 988 static bool isEqual(const SmallVector<const SCEV *, 4> &LHS, 989 const SmallVector<const SCEV *, 4> &RHS) { 990 return LHS == RHS; 991 } 992 }; 993 994 /// This class holds the state that LSR keeps for each use in IVUsers, as well 995 /// as uses invented by LSR itself. It includes information about what kinds of 996 /// things can be folded into the user, information about the user itself, and 997 /// information about how the use may be satisfied. TODO: Represent multiple 998 /// users of the same expression in common? 999 class LSRUse { 1000 DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier; 1001 1002 public: 1003 /// An enum for a kind of use, indicating what types of scaled and immediate 1004 /// operands it might support. 1005 enum KindType { 1006 Basic, ///< A normal use, with no folding. 1007 Special, ///< A special case of basic, allowing -1 scales. 1008 Address, ///< An address use; folding according to TargetLowering 1009 ICmpZero ///< An equality icmp with both operands folded into one. 1010 // TODO: Add a generic icmp too? 1011 }; 1012 1013 typedef PointerIntPair<const SCEV *, 2, KindType> SCEVUseKindPair; 1014 1015 KindType Kind; 1016 MemAccessTy AccessTy; 1017 1018 /// The list of operands which are to be replaced. 1019 SmallVector<LSRFixup, 8> Fixups; 1020 1021 /// Keep track of the min and max offsets of the fixups. 1022 int64_t MinOffset; 1023 int64_t MaxOffset; 1024 1025 /// This records whether all of the fixups using this LSRUse are outside of 1026 /// the loop, in which case some special-case heuristics may be used. 1027 bool AllFixupsOutsideLoop; 1028 1029 /// RigidFormula is set to true to guarantee that this use will be associated 1030 /// with a single formula--the one that initially matched. Some SCEV 1031 /// expressions cannot be expanded. This allows LSR to consider the registers 1032 /// used by those expressions without the need to expand them later after 1033 /// changing the formula. 1034 bool RigidFormula; 1035 1036 /// This records the widest use type for any fixup using this 1037 /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max 1038 /// fixup widths to be equivalent, because the narrower one may be relying on 1039 /// the implicit truncation to truncate away bogus bits. 1040 Type *WidestFixupType; 1041 1042 /// A list of ways to build a value that can satisfy this user. After the 1043 /// list is populated, one of these is selected heuristically and used to 1044 /// formulate a replacement for OperandValToReplace in UserInst. 1045 SmallVector<Formula, 12> Formulae; 1046 1047 /// The set of register candidates used by all formulae in this LSRUse. 1048 SmallPtrSet<const SCEV *, 4> Regs; 1049 1050 LSRUse(KindType K, MemAccessTy AT) 1051 : Kind(K), AccessTy(AT), MinOffset(INT64_MAX), MaxOffset(INT64_MIN), 1052 AllFixupsOutsideLoop(true), RigidFormula(false), 1053 WidestFixupType(nullptr) {} 1054 1055 LSRFixup &getNewFixup() { 1056 Fixups.push_back(LSRFixup()); 1057 return Fixups.back(); 1058 } 1059 1060 void pushFixup(LSRFixup &f) { 1061 Fixups.push_back(f); 1062 if (f.Offset > MaxOffset) 1063 MaxOffset = f.Offset; 1064 if (f.Offset < MinOffset) 1065 MinOffset = f.Offset; 1066 } 1067 1068 bool HasFormulaWithSameRegs(const Formula &F) const; 1069 bool InsertFormula(const Formula &F); 1070 void DeleteFormula(Formula &F); 1071 void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses); 1072 1073 void print(raw_ostream &OS) const; 1074 void dump() const; 1075 }; 1076 1077 } // end anonymous namespace 1078 1079 /// Tally up interesting quantities from the given register. 1080 void Cost::RateRegister(const SCEV *Reg, 1081 SmallPtrSetImpl<const SCEV *> &Regs, 1082 const Loop *L, 1083 ScalarEvolution &SE, DominatorTree &DT) { 1084 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) { 1085 // If this is an addrec for another loop, don't second-guess its addrec phi 1086 // nodes. LSR isn't currently smart enough to reason about more than one 1087 // loop at a time. LSR has already run on inner loops, will not run on outer 1088 // loops, and cannot be expected to change sibling loops. 1089 if (AR->getLoop() != L) { 1090 // If the AddRec exists, consider it's register free and leave it alone. 1091 if (isExistingPhi(AR, SE)) 1092 return; 1093 1094 // Otherwise, do not consider this formula at all. 1095 Lose(); 1096 return; 1097 } 1098 AddRecCost += 1; /// TODO: This should be a function of the stride. 1099 1100 // Add the step value register, if it needs one. 1101 // TODO: The non-affine case isn't precisely modeled here. 1102 if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) { 1103 if (!Regs.count(AR->getOperand(1))) { 1104 RateRegister(AR->getOperand(1), Regs, L, SE, DT); 1105 if (isLoser()) 1106 return; 1107 } 1108 } 1109 } 1110 ++NumRegs; 1111 1112 // Rough heuristic; favor registers which don't require extra setup 1113 // instructions in the preheader. 1114 if (!isa<SCEVUnknown>(Reg) && 1115 !isa<SCEVConstant>(Reg) && 1116 !(isa<SCEVAddRecExpr>(Reg) && 1117 (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) || 1118 isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart())))) 1119 ++SetupCost; 1120 1121 NumIVMuls += isa<SCEVMulExpr>(Reg) && 1122 SE.hasComputableLoopEvolution(Reg, L); 1123 } 1124 1125 /// Record this register in the set. If we haven't seen it before, rate 1126 /// it. Optional LoserRegs provides a way to declare any formula that refers to 1127 /// one of those regs an instant loser. 1128 void Cost::RatePrimaryRegister(const SCEV *Reg, 1129 SmallPtrSetImpl<const SCEV *> &Regs, 1130 const Loop *L, 1131 ScalarEvolution &SE, DominatorTree &DT, 1132 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1133 if (LoserRegs && LoserRegs->count(Reg)) { 1134 Lose(); 1135 return; 1136 } 1137 if (Regs.insert(Reg).second) { 1138 RateRegister(Reg, Regs, L, SE, DT); 1139 if (LoserRegs && isLoser()) 1140 LoserRegs->insert(Reg); 1141 } 1142 } 1143 1144 void Cost::RateFormula(const TargetTransformInfo &TTI, 1145 const Formula &F, 1146 SmallPtrSetImpl<const SCEV *> &Regs, 1147 const DenseSet<const SCEV *> &VisitedRegs, 1148 const Loop *L, 1149 ScalarEvolution &SE, DominatorTree &DT, 1150 const LSRUse &LU, 1151 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1152 assert(F.isCanonical() && "Cost is accurate only for canonical formula"); 1153 // Tally up the registers. 1154 if (const SCEV *ScaledReg = F.ScaledReg) { 1155 if (VisitedRegs.count(ScaledReg)) { 1156 Lose(); 1157 return; 1158 } 1159 RatePrimaryRegister(ScaledReg, Regs, L, SE, DT, LoserRegs); 1160 if (isLoser()) 1161 return; 1162 } 1163 for (const SCEV *BaseReg : F.BaseRegs) { 1164 if (VisitedRegs.count(BaseReg)) { 1165 Lose(); 1166 return; 1167 } 1168 RatePrimaryRegister(BaseReg, Regs, L, SE, DT, LoserRegs); 1169 if (isLoser()) 1170 return; 1171 } 1172 1173 // Determine how many (unfolded) adds we'll need inside the loop. 1174 size_t NumBaseParts = F.getNumRegs(); 1175 if (NumBaseParts > 1) 1176 // Do not count the base and a possible second register if the target 1177 // allows to fold 2 registers. 1178 NumBaseAdds += 1179 NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(TTI, LU, F))); 1180 NumBaseAdds += (F.UnfoldedOffset != 0); 1181 1182 // Accumulate non-free scaling amounts. 1183 ScaleCost += getScalingFactorCost(TTI, LU, F); 1184 1185 // Tally up the non-zero immediates. 1186 for (const LSRFixup &Fixup : LU.Fixups) { 1187 int64_t O = Fixup.Offset; 1188 int64_t Offset = (uint64_t)O + F.BaseOffset; 1189 if (F.BaseGV) 1190 ImmCost += 64; // Handle symbolic values conservatively. 1191 // TODO: This should probably be the pointer size. 1192 else if (Offset != 0) 1193 ImmCost += APInt(64, Offset, true).getMinSignedBits(); 1194 1195 // Check with target if this offset with this instruction is 1196 // specifically not supported. 1197 if ((isa<LoadInst>(Fixup.UserInst) || isa<StoreInst>(Fixup.UserInst)) && 1198 !TTI.isFoldableMemAccessOffset(Fixup.UserInst, Offset)) 1199 NumBaseAdds++; 1200 } 1201 assert(isValid() && "invalid cost"); 1202 } 1203 1204 /// Set this cost to a losing value. 1205 void Cost::Lose() { 1206 NumRegs = ~0u; 1207 AddRecCost = ~0u; 1208 NumIVMuls = ~0u; 1209 NumBaseAdds = ~0u; 1210 ImmCost = ~0u; 1211 SetupCost = ~0u; 1212 ScaleCost = ~0u; 1213 } 1214 1215 /// Choose the lower cost. 1216 bool Cost::operator<(const Cost &Other) const { 1217 return std::tie(NumRegs, AddRecCost, NumIVMuls, NumBaseAdds, ScaleCost, 1218 ImmCost, SetupCost) < 1219 std::tie(Other.NumRegs, Other.AddRecCost, Other.NumIVMuls, 1220 Other.NumBaseAdds, Other.ScaleCost, Other.ImmCost, 1221 Other.SetupCost); 1222 } 1223 1224 void Cost::print(raw_ostream &OS) const { 1225 OS << NumRegs << " reg" << (NumRegs == 1 ? "" : "s"); 1226 if (AddRecCost != 0) 1227 OS << ", with addrec cost " << AddRecCost; 1228 if (NumIVMuls != 0) 1229 OS << ", plus " << NumIVMuls << " IV mul" << (NumIVMuls == 1 ? "" : "s"); 1230 if (NumBaseAdds != 0) 1231 OS << ", plus " << NumBaseAdds << " base add" 1232 << (NumBaseAdds == 1 ? "" : "s"); 1233 if (ScaleCost != 0) 1234 OS << ", plus " << ScaleCost << " scale cost"; 1235 if (ImmCost != 0) 1236 OS << ", plus " << ImmCost << " imm cost"; 1237 if (SetupCost != 0) 1238 OS << ", plus " << SetupCost << " setup cost"; 1239 } 1240 1241 LLVM_DUMP_METHOD 1242 void Cost::dump() const { 1243 print(errs()); errs() << '\n'; 1244 } 1245 1246 LSRFixup::LSRFixup() 1247 : UserInst(nullptr), OperandValToReplace(nullptr), 1248 Offset(0) {} 1249 1250 /// Test whether this fixup always uses its value outside of the given loop. 1251 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const { 1252 // PHI nodes use their value in their incoming blocks. 1253 if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) { 1254 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1255 if (PN->getIncomingValue(i) == OperandValToReplace && 1256 L->contains(PN->getIncomingBlock(i))) 1257 return false; 1258 return true; 1259 } 1260 1261 return !L->contains(UserInst); 1262 } 1263 1264 void LSRFixup::print(raw_ostream &OS) const { 1265 OS << "UserInst="; 1266 // Store is common and interesting enough to be worth special-casing. 1267 if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) { 1268 OS << "store "; 1269 Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false); 1270 } else if (UserInst->getType()->isVoidTy()) 1271 OS << UserInst->getOpcodeName(); 1272 else 1273 UserInst->printAsOperand(OS, /*PrintType=*/false); 1274 1275 OS << ", OperandValToReplace="; 1276 OperandValToReplace->printAsOperand(OS, /*PrintType=*/false); 1277 1278 for (const Loop *PIL : PostIncLoops) { 1279 OS << ", PostIncLoop="; 1280 PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 1281 } 1282 1283 if (Offset != 0) 1284 OS << ", Offset=" << Offset; 1285 } 1286 1287 LLVM_DUMP_METHOD 1288 void LSRFixup::dump() const { 1289 print(errs()); errs() << '\n'; 1290 } 1291 1292 /// Test whether this use as a formula which has the same registers as the given 1293 /// formula. 1294 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const { 1295 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1296 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1297 // Unstable sort by host order ok, because this is only used for uniquifying. 1298 std::sort(Key.begin(), Key.end()); 1299 return Uniquifier.count(Key); 1300 } 1301 1302 /// If the given formula has not yet been inserted, add it to the list, and 1303 /// return true. Return false otherwise. The formula must be in canonical form. 1304 bool LSRUse::InsertFormula(const Formula &F) { 1305 assert(F.isCanonical() && "Invalid canonical representation"); 1306 1307 if (!Formulae.empty() && RigidFormula) 1308 return false; 1309 1310 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1311 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1312 // Unstable sort by host order ok, because this is only used for uniquifying. 1313 std::sort(Key.begin(), Key.end()); 1314 1315 if (!Uniquifier.insert(Key).second) 1316 return false; 1317 1318 // Using a register to hold the value of 0 is not profitable. 1319 assert((!F.ScaledReg || !F.ScaledReg->isZero()) && 1320 "Zero allocated in a scaled register!"); 1321 #ifndef NDEBUG 1322 for (const SCEV *BaseReg : F.BaseRegs) 1323 assert(!BaseReg->isZero() && "Zero allocated in a base register!"); 1324 #endif 1325 1326 // Add the formula to the list. 1327 Formulae.push_back(F); 1328 1329 // Record registers now being used by this use. 1330 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1331 if (F.ScaledReg) 1332 Regs.insert(F.ScaledReg); 1333 1334 return true; 1335 } 1336 1337 /// Remove the given formula from this use's list. 1338 void LSRUse::DeleteFormula(Formula &F) { 1339 if (&F != &Formulae.back()) 1340 std::swap(F, Formulae.back()); 1341 Formulae.pop_back(); 1342 } 1343 1344 /// Recompute the Regs field, and update RegUses. 1345 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) { 1346 // Now that we've filtered out some formulae, recompute the Regs set. 1347 SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs); 1348 Regs.clear(); 1349 for (const Formula &F : Formulae) { 1350 if (F.ScaledReg) Regs.insert(F.ScaledReg); 1351 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1352 } 1353 1354 // Update the RegTracker. 1355 for (const SCEV *S : OldRegs) 1356 if (!Regs.count(S)) 1357 RegUses.dropRegister(S, LUIdx); 1358 } 1359 1360 void LSRUse::print(raw_ostream &OS) const { 1361 OS << "LSR Use: Kind="; 1362 switch (Kind) { 1363 case Basic: OS << "Basic"; break; 1364 case Special: OS << "Special"; break; 1365 case ICmpZero: OS << "ICmpZero"; break; 1366 case Address: 1367 OS << "Address of "; 1368 if (AccessTy.MemTy->isPointerTy()) 1369 OS << "pointer"; // the full pointer type could be really verbose 1370 else { 1371 OS << *AccessTy.MemTy; 1372 } 1373 1374 OS << " in addrspace(" << AccessTy.AddrSpace << ')'; 1375 } 1376 1377 OS << ", Offsets={"; 1378 bool NeedComma = false; 1379 for (const LSRFixup &Fixup : Fixups) { 1380 if (NeedComma) OS << ','; 1381 OS << Fixup.Offset; 1382 NeedComma = true; 1383 } 1384 OS << '}'; 1385 1386 if (AllFixupsOutsideLoop) 1387 OS << ", all-fixups-outside-loop"; 1388 1389 if (WidestFixupType) 1390 OS << ", widest fixup type: " << *WidestFixupType; 1391 } 1392 1393 LLVM_DUMP_METHOD 1394 void LSRUse::dump() const { 1395 print(errs()); errs() << '\n'; 1396 } 1397 1398 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1399 LSRUse::KindType Kind, MemAccessTy AccessTy, 1400 GlobalValue *BaseGV, int64_t BaseOffset, 1401 bool HasBaseReg, int64_t Scale) { 1402 switch (Kind) { 1403 case LSRUse::Address: 1404 return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset, 1405 HasBaseReg, Scale, AccessTy.AddrSpace); 1406 1407 case LSRUse::ICmpZero: 1408 // There's not even a target hook for querying whether it would be legal to 1409 // fold a GV into an ICmp. 1410 if (BaseGV) 1411 return false; 1412 1413 // ICmp only has two operands; don't allow more than two non-trivial parts. 1414 if (Scale != 0 && HasBaseReg && BaseOffset != 0) 1415 return false; 1416 1417 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by 1418 // putting the scaled register in the other operand of the icmp. 1419 if (Scale != 0 && Scale != -1) 1420 return false; 1421 1422 // If we have low-level target information, ask the target if it can fold an 1423 // integer immediate on an icmp. 1424 if (BaseOffset != 0) { 1425 // We have one of: 1426 // ICmpZero BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset 1427 // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset 1428 // Offs is the ICmp immediate. 1429 if (Scale == 0) 1430 // The cast does the right thing with INT64_MIN. 1431 BaseOffset = -(uint64_t)BaseOffset; 1432 return TTI.isLegalICmpImmediate(BaseOffset); 1433 } 1434 1435 // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg 1436 return true; 1437 1438 case LSRUse::Basic: 1439 // Only handle single-register values. 1440 return !BaseGV && Scale == 0 && BaseOffset == 0; 1441 1442 case LSRUse::Special: 1443 // Special case Basic to handle -1 scales. 1444 return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0; 1445 } 1446 1447 llvm_unreachable("Invalid LSRUse Kind!"); 1448 } 1449 1450 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1451 int64_t MinOffset, int64_t MaxOffset, 1452 LSRUse::KindType Kind, MemAccessTy AccessTy, 1453 GlobalValue *BaseGV, int64_t BaseOffset, 1454 bool HasBaseReg, int64_t Scale) { 1455 // Check for overflow. 1456 if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) != 1457 (MinOffset > 0)) 1458 return false; 1459 MinOffset = (uint64_t)BaseOffset + MinOffset; 1460 if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) != 1461 (MaxOffset > 0)) 1462 return false; 1463 MaxOffset = (uint64_t)BaseOffset + MaxOffset; 1464 1465 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset, 1466 HasBaseReg, Scale) && 1467 isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset, 1468 HasBaseReg, Scale); 1469 } 1470 1471 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1472 int64_t MinOffset, int64_t MaxOffset, 1473 LSRUse::KindType Kind, MemAccessTy AccessTy, 1474 const Formula &F) { 1475 // For the purpose of isAMCompletelyFolded either having a canonical formula 1476 // or a scale not equal to zero is correct. 1477 // Problems may arise from non canonical formulae having a scale == 0. 1478 // Strictly speaking it would best to just rely on canonical formulae. 1479 // However, when we generate the scaled formulae, we first check that the 1480 // scaling factor is profitable before computing the actual ScaledReg for 1481 // compile time sake. 1482 assert((F.isCanonical() || F.Scale != 0)); 1483 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1484 F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale); 1485 } 1486 1487 /// Test whether we know how to expand the current formula. 1488 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1489 int64_t MaxOffset, LSRUse::KindType Kind, 1490 MemAccessTy AccessTy, GlobalValue *BaseGV, 1491 int64_t BaseOffset, bool HasBaseReg, int64_t Scale) { 1492 // We know how to expand completely foldable formulae. 1493 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1494 BaseOffset, HasBaseReg, Scale) || 1495 // Or formulae that use a base register produced by a sum of base 1496 // registers. 1497 (Scale == 1 && 1498 isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1499 BaseGV, BaseOffset, true, 0)); 1500 } 1501 1502 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1503 int64_t MaxOffset, LSRUse::KindType Kind, 1504 MemAccessTy AccessTy, const Formula &F) { 1505 return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV, 1506 F.BaseOffset, F.HasBaseReg, F.Scale); 1507 } 1508 1509 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1510 const LSRUse &LU, const Formula &F) { 1511 return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1512 LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg, 1513 F.Scale); 1514 } 1515 1516 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, 1517 const LSRUse &LU, const Formula &F) { 1518 if (!F.Scale) 1519 return 0; 1520 1521 // If the use is not completely folded in that instruction, we will have to 1522 // pay an extra cost only for scale != 1. 1523 if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1524 LU.AccessTy, F)) 1525 return F.Scale != 1; 1526 1527 switch (LU.Kind) { 1528 case LSRUse::Address: { 1529 // Check the scaling factor cost with both the min and max offsets. 1530 int ScaleCostMinOffset = TTI.getScalingFactorCost( 1531 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg, 1532 F.Scale, LU.AccessTy.AddrSpace); 1533 int ScaleCostMaxOffset = TTI.getScalingFactorCost( 1534 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg, 1535 F.Scale, LU.AccessTy.AddrSpace); 1536 1537 assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 && 1538 "Legal addressing mode has an illegal cost!"); 1539 return std::max(ScaleCostMinOffset, ScaleCostMaxOffset); 1540 } 1541 case LSRUse::ICmpZero: 1542 case LSRUse::Basic: 1543 case LSRUse::Special: 1544 // The use is completely folded, i.e., everything is folded into the 1545 // instruction. 1546 return 0; 1547 } 1548 1549 llvm_unreachable("Invalid LSRUse Kind!"); 1550 } 1551 1552 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1553 LSRUse::KindType Kind, MemAccessTy AccessTy, 1554 GlobalValue *BaseGV, int64_t BaseOffset, 1555 bool HasBaseReg) { 1556 // Fast-path: zero is always foldable. 1557 if (BaseOffset == 0 && !BaseGV) return true; 1558 1559 // Conservatively, create an address with an immediate and a 1560 // base and a scale. 1561 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1562 1563 // Canonicalize a scale of 1 to a base register if the formula doesn't 1564 // already have a base register. 1565 if (!HasBaseReg && Scale == 1) { 1566 Scale = 0; 1567 HasBaseReg = true; 1568 } 1569 1570 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset, 1571 HasBaseReg, Scale); 1572 } 1573 1574 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1575 ScalarEvolution &SE, int64_t MinOffset, 1576 int64_t MaxOffset, LSRUse::KindType Kind, 1577 MemAccessTy AccessTy, const SCEV *S, 1578 bool HasBaseReg) { 1579 // Fast-path: zero is always foldable. 1580 if (S->isZero()) return true; 1581 1582 // Conservatively, create an address with an immediate and a 1583 // base and a scale. 1584 int64_t BaseOffset = ExtractImmediate(S, SE); 1585 GlobalValue *BaseGV = ExtractSymbol(S, SE); 1586 1587 // If there's anything else involved, it's not foldable. 1588 if (!S->isZero()) return false; 1589 1590 // Fast-path: zero is always foldable. 1591 if (BaseOffset == 0 && !BaseGV) return true; 1592 1593 // Conservatively, create an address with an immediate and a 1594 // base and a scale. 1595 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1596 1597 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1598 BaseOffset, HasBaseReg, Scale); 1599 } 1600 1601 namespace { 1602 1603 /// An individual increment in a Chain of IV increments. Relate an IV user to 1604 /// an expression that computes the IV it uses from the IV used by the previous 1605 /// link in the Chain. 1606 /// 1607 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the 1608 /// original IVOperand. The head of the chain's IVOperand is only valid during 1609 /// chain collection, before LSR replaces IV users. During chain generation, 1610 /// IncExpr can be used to find the new IVOperand that computes the same 1611 /// expression. 1612 struct IVInc { 1613 Instruction *UserInst; 1614 Value* IVOperand; 1615 const SCEV *IncExpr; 1616 1617 IVInc(Instruction *U, Value *O, const SCEV *E): 1618 UserInst(U), IVOperand(O), IncExpr(E) {} 1619 }; 1620 1621 // The list of IV increments in program order. We typically add the head of a 1622 // chain without finding subsequent links. 1623 struct IVChain { 1624 SmallVector<IVInc,1> Incs; 1625 const SCEV *ExprBase; 1626 1627 IVChain() : ExprBase(nullptr) {} 1628 1629 IVChain(const IVInc &Head, const SCEV *Base) 1630 : Incs(1, Head), ExprBase(Base) {} 1631 1632 typedef SmallVectorImpl<IVInc>::const_iterator const_iterator; 1633 1634 // Return the first increment in the chain. 1635 const_iterator begin() const { 1636 assert(!Incs.empty()); 1637 return std::next(Incs.begin()); 1638 } 1639 const_iterator end() const { 1640 return Incs.end(); 1641 } 1642 1643 // Returns true if this chain contains any increments. 1644 bool hasIncs() const { return Incs.size() >= 2; } 1645 1646 // Add an IVInc to the end of this chain. 1647 void add(const IVInc &X) { Incs.push_back(X); } 1648 1649 // Returns the last UserInst in the chain. 1650 Instruction *tailUserInst() const { return Incs.back().UserInst; } 1651 1652 // Returns true if IncExpr can be profitably added to this chain. 1653 bool isProfitableIncrement(const SCEV *OperExpr, 1654 const SCEV *IncExpr, 1655 ScalarEvolution&); 1656 }; 1657 1658 /// Helper for CollectChains to track multiple IV increment uses. Distinguish 1659 /// between FarUsers that definitely cross IV increments and NearUsers that may 1660 /// be used between IV increments. 1661 struct ChainUsers { 1662 SmallPtrSet<Instruction*, 4> FarUsers; 1663 SmallPtrSet<Instruction*, 4> NearUsers; 1664 }; 1665 1666 /// This class holds state for the main loop strength reduction logic. 1667 class LSRInstance { 1668 IVUsers &IU; 1669 ScalarEvolution &SE; 1670 DominatorTree &DT; 1671 LoopInfo &LI; 1672 const TargetTransformInfo &TTI; 1673 Loop *const L; 1674 bool Changed; 1675 1676 /// This is the insert position that the current loop's induction variable 1677 /// increment should be placed. In simple loops, this is the latch block's 1678 /// terminator. But in more complicated cases, this is a position which will 1679 /// dominate all the in-loop post-increment users. 1680 Instruction *IVIncInsertPos; 1681 1682 /// Interesting factors between use strides. 1683 /// 1684 /// We explicitly use a SetVector which contains a SmallSet, instead of the 1685 /// default, a SmallDenseSet, because we need to use the full range of 1686 /// int64_ts, and there's currently no good way of doing that with 1687 /// SmallDenseSet. 1688 SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors; 1689 1690 /// Interesting use types, to facilitate truncation reuse. 1691 SmallSetVector<Type *, 4> Types; 1692 1693 /// The list of interesting uses. 1694 SmallVector<LSRUse, 16> Uses; 1695 1696 /// Track which uses use which register candidates. 1697 RegUseTracker RegUses; 1698 1699 // Limit the number of chains to avoid quadratic behavior. We don't expect to 1700 // have more than a few IV increment chains in a loop. Missing a Chain falls 1701 // back to normal LSR behavior for those uses. 1702 static const unsigned MaxChains = 8; 1703 1704 /// IV users can form a chain of IV increments. 1705 SmallVector<IVChain, MaxChains> IVChainVec; 1706 1707 /// IV users that belong to profitable IVChains. 1708 SmallPtrSet<Use*, MaxChains> IVIncSet; 1709 1710 void OptimizeShadowIV(); 1711 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse); 1712 ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse); 1713 void OptimizeLoopTermCond(); 1714 1715 void ChainInstruction(Instruction *UserInst, Instruction *IVOper, 1716 SmallVectorImpl<ChainUsers> &ChainUsersVec); 1717 void FinalizeChain(IVChain &Chain); 1718 void CollectChains(); 1719 void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 1720 SmallVectorImpl<WeakVH> &DeadInsts); 1721 1722 void CollectInterestingTypesAndFactors(); 1723 void CollectFixupsAndInitialFormulae(); 1724 1725 // Support for sharing of LSRUses between LSRFixups. 1726 typedef DenseMap<LSRUse::SCEVUseKindPair, size_t> UseMapTy; 1727 UseMapTy UseMap; 1728 1729 bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, 1730 LSRUse::KindType Kind, MemAccessTy AccessTy); 1731 1732 std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind, 1733 MemAccessTy AccessTy); 1734 1735 void DeleteUse(LSRUse &LU, size_t LUIdx); 1736 1737 LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU); 1738 1739 void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1740 void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1741 void CountRegisters(const Formula &F, size_t LUIdx); 1742 bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F); 1743 1744 void CollectLoopInvariantFixupsAndFormulae(); 1745 1746 void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base, 1747 unsigned Depth = 0); 1748 1749 void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 1750 const Formula &Base, unsigned Depth, 1751 size_t Idx, bool IsScaledReg = false); 1752 void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base); 1753 void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 1754 const Formula &Base, size_t Idx, 1755 bool IsScaledReg = false); 1756 void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1757 void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx, 1758 const Formula &Base, 1759 const SmallVectorImpl<int64_t> &Worklist, 1760 size_t Idx, bool IsScaledReg = false); 1761 void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1762 void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base); 1763 void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base); 1764 void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base); 1765 void GenerateCrossUseConstantOffsets(); 1766 void GenerateAllReuseFormulae(); 1767 1768 void FilterOutUndesirableDedicatedRegisters(); 1769 1770 size_t EstimateSearchSpaceComplexity() const; 1771 void NarrowSearchSpaceByDetectingSupersets(); 1772 void NarrowSearchSpaceByCollapsingUnrolledCode(); 1773 void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 1774 void NarrowSearchSpaceByPickingWinnerRegs(); 1775 void NarrowSearchSpaceUsingHeuristics(); 1776 1777 void SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 1778 Cost &SolutionCost, 1779 SmallVectorImpl<const Formula *> &Workspace, 1780 const Cost &CurCost, 1781 const SmallPtrSet<const SCEV *, 16> &CurRegs, 1782 DenseSet<const SCEV *> &VisitedRegs) const; 1783 void Solve(SmallVectorImpl<const Formula *> &Solution) const; 1784 1785 BasicBlock::iterator 1786 HoistInsertPosition(BasicBlock::iterator IP, 1787 const SmallVectorImpl<Instruction *> &Inputs) const; 1788 BasicBlock::iterator 1789 AdjustInsertPositionForExpand(BasicBlock::iterator IP, 1790 const LSRFixup &LF, 1791 const LSRUse &LU, 1792 SCEVExpander &Rewriter) const; 1793 1794 Value *Expand(const LSRUse &LU, const LSRFixup &LF, 1795 const Formula &F, 1796 BasicBlock::iterator IP, 1797 SCEVExpander &Rewriter, 1798 SmallVectorImpl<WeakVH> &DeadInsts) const; 1799 void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF, 1800 const Formula &F, 1801 SCEVExpander &Rewriter, 1802 SmallVectorImpl<WeakVH> &DeadInsts) const; 1803 void Rewrite(const LSRUse &LU, const LSRFixup &LF, 1804 const Formula &F, 1805 SCEVExpander &Rewriter, 1806 SmallVectorImpl<WeakVH> &DeadInsts) const; 1807 void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution); 1808 1809 public: 1810 LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT, 1811 LoopInfo &LI, const TargetTransformInfo &TTI); 1812 1813 bool getChanged() const { return Changed; } 1814 1815 void print_factors_and_types(raw_ostream &OS) const; 1816 void print_fixups(raw_ostream &OS) const; 1817 void print_uses(raw_ostream &OS) const; 1818 void print(raw_ostream &OS) const; 1819 void dump() const; 1820 }; 1821 1822 } // end anonymous namespace 1823 1824 /// If IV is used in a int-to-float cast inside the loop then try to eliminate 1825 /// the cast operation. 1826 void LSRInstance::OptimizeShadowIV() { 1827 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 1828 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 1829 return; 1830 1831 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); 1832 UI != E; /* empty */) { 1833 IVUsers::const_iterator CandidateUI = UI; 1834 ++UI; 1835 Instruction *ShadowUse = CandidateUI->getUser(); 1836 Type *DestTy = nullptr; 1837 bool IsSigned = false; 1838 1839 /* If shadow use is a int->float cast then insert a second IV 1840 to eliminate this cast. 1841 1842 for (unsigned i = 0; i < n; ++i) 1843 foo((double)i); 1844 1845 is transformed into 1846 1847 double d = 0.0; 1848 for (unsigned i = 0; i < n; ++i, ++d) 1849 foo(d); 1850 */ 1851 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) { 1852 IsSigned = false; 1853 DestTy = UCast->getDestTy(); 1854 } 1855 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) { 1856 IsSigned = true; 1857 DestTy = SCast->getDestTy(); 1858 } 1859 if (!DestTy) continue; 1860 1861 // If target does not support DestTy natively then do not apply 1862 // this transformation. 1863 if (!TTI.isTypeLegal(DestTy)) continue; 1864 1865 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0)); 1866 if (!PH) continue; 1867 if (PH->getNumIncomingValues() != 2) continue; 1868 1869 Type *SrcTy = PH->getType(); 1870 int Mantissa = DestTy->getFPMantissaWidth(); 1871 if (Mantissa == -1) continue; 1872 if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa) 1873 continue; 1874 1875 unsigned Entry, Latch; 1876 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) { 1877 Entry = 0; 1878 Latch = 1; 1879 } else { 1880 Entry = 1; 1881 Latch = 0; 1882 } 1883 1884 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry)); 1885 if (!Init) continue; 1886 Constant *NewInit = ConstantFP::get(DestTy, IsSigned ? 1887 (double)Init->getSExtValue() : 1888 (double)Init->getZExtValue()); 1889 1890 BinaryOperator *Incr = 1891 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch)); 1892 if (!Incr) continue; 1893 if (Incr->getOpcode() != Instruction::Add 1894 && Incr->getOpcode() != Instruction::Sub) 1895 continue; 1896 1897 /* Initialize new IV, double d = 0.0 in above example. */ 1898 ConstantInt *C = nullptr; 1899 if (Incr->getOperand(0) == PH) 1900 C = dyn_cast<ConstantInt>(Incr->getOperand(1)); 1901 else if (Incr->getOperand(1) == PH) 1902 C = dyn_cast<ConstantInt>(Incr->getOperand(0)); 1903 else 1904 continue; 1905 1906 if (!C) continue; 1907 1908 // Ignore negative constants, as the code below doesn't handle them 1909 // correctly. TODO: Remove this restriction. 1910 if (!C->getValue().isStrictlyPositive()) continue; 1911 1912 /* Add new PHINode. */ 1913 PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH); 1914 1915 /* create new increment. '++d' in above example. */ 1916 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue()); 1917 BinaryOperator *NewIncr = 1918 BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ? 1919 Instruction::FAdd : Instruction::FSub, 1920 NewPH, CFP, "IV.S.next.", Incr); 1921 1922 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry)); 1923 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch)); 1924 1925 /* Remove cast operation */ 1926 ShadowUse->replaceAllUsesWith(NewPH); 1927 ShadowUse->eraseFromParent(); 1928 Changed = true; 1929 break; 1930 } 1931 } 1932 1933 /// If Cond has an operand that is an expression of an IV, set the IV user and 1934 /// stride information and return true, otherwise return false. 1935 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) { 1936 for (IVStrideUse &U : IU) 1937 if (U.getUser() == Cond) { 1938 // NOTE: we could handle setcc instructions with multiple uses here, but 1939 // InstCombine does it as well for simple uses, it's not clear that it 1940 // occurs enough in real life to handle. 1941 CondUse = &U; 1942 return true; 1943 } 1944 return false; 1945 } 1946 1947 /// Rewrite the loop's terminating condition if it uses a max computation. 1948 /// 1949 /// This is a narrow solution to a specific, but acute, problem. For loops 1950 /// like this: 1951 /// 1952 /// i = 0; 1953 /// do { 1954 /// p[i] = 0.0; 1955 /// } while (++i < n); 1956 /// 1957 /// the trip count isn't just 'n', because 'n' might not be positive. And 1958 /// unfortunately this can come up even for loops where the user didn't use 1959 /// a C do-while loop. For example, seemingly well-behaved top-test loops 1960 /// will commonly be lowered like this: 1961 // 1962 /// if (n > 0) { 1963 /// i = 0; 1964 /// do { 1965 /// p[i] = 0.0; 1966 /// } while (++i < n); 1967 /// } 1968 /// 1969 /// and then it's possible for subsequent optimization to obscure the if 1970 /// test in such a way that indvars can't find it. 1971 /// 1972 /// When indvars can't find the if test in loops like this, it creates a 1973 /// max expression, which allows it to give the loop a canonical 1974 /// induction variable: 1975 /// 1976 /// i = 0; 1977 /// max = n < 1 ? 1 : n; 1978 /// do { 1979 /// p[i] = 0.0; 1980 /// } while (++i != max); 1981 /// 1982 /// Canonical induction variables are necessary because the loop passes 1983 /// are designed around them. The most obvious example of this is the 1984 /// LoopInfo analysis, which doesn't remember trip count values. It 1985 /// expects to be able to rediscover the trip count each time it is 1986 /// needed, and it does this using a simple analysis that only succeeds if 1987 /// the loop has a canonical induction variable. 1988 /// 1989 /// However, when it comes time to generate code, the maximum operation 1990 /// can be quite costly, especially if it's inside of an outer loop. 1991 /// 1992 /// This function solves this problem by detecting this type of loop and 1993 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting 1994 /// the instructions for the maximum computation. 1995 /// 1996 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) { 1997 // Check that the loop matches the pattern we're looking for. 1998 if (Cond->getPredicate() != CmpInst::ICMP_EQ && 1999 Cond->getPredicate() != CmpInst::ICMP_NE) 2000 return Cond; 2001 2002 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1)); 2003 if (!Sel || !Sel->hasOneUse()) return Cond; 2004 2005 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 2006 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2007 return Cond; 2008 const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1); 2009 2010 // Add one to the backedge-taken count to get the trip count. 2011 const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount); 2012 if (IterationCount != SE.getSCEV(Sel)) return Cond; 2013 2014 // Check for a max calculation that matches the pattern. There's no check 2015 // for ICMP_ULE here because the comparison would be with zero, which 2016 // isn't interesting. 2017 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 2018 const SCEVNAryExpr *Max = nullptr; 2019 if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) { 2020 Pred = ICmpInst::ICMP_SLE; 2021 Max = S; 2022 } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) { 2023 Pred = ICmpInst::ICMP_SLT; 2024 Max = S; 2025 } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) { 2026 Pred = ICmpInst::ICMP_ULT; 2027 Max = U; 2028 } else { 2029 // No match; bail. 2030 return Cond; 2031 } 2032 2033 // To handle a max with more than two operands, this optimization would 2034 // require additional checking and setup. 2035 if (Max->getNumOperands() != 2) 2036 return Cond; 2037 2038 const SCEV *MaxLHS = Max->getOperand(0); 2039 const SCEV *MaxRHS = Max->getOperand(1); 2040 2041 // ScalarEvolution canonicalizes constants to the left. For < and >, look 2042 // for a comparison with 1. For <= and >=, a comparison with zero. 2043 if (!MaxLHS || 2044 (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One))) 2045 return Cond; 2046 2047 // Check the relevant induction variable for conformance to 2048 // the pattern. 2049 const SCEV *IV = SE.getSCEV(Cond->getOperand(0)); 2050 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV); 2051 if (!AR || !AR->isAffine() || 2052 AR->getStart() != One || 2053 AR->getStepRecurrence(SE) != One) 2054 return Cond; 2055 2056 assert(AR->getLoop() == L && 2057 "Loop condition operand is an addrec in a different loop!"); 2058 2059 // Check the right operand of the select, and remember it, as it will 2060 // be used in the new comparison instruction. 2061 Value *NewRHS = nullptr; 2062 if (ICmpInst::isTrueWhenEqual(Pred)) { 2063 // Look for n+1, and grab n. 2064 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1))) 2065 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2066 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2067 NewRHS = BO->getOperand(0); 2068 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2))) 2069 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2070 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2071 NewRHS = BO->getOperand(0); 2072 if (!NewRHS) 2073 return Cond; 2074 } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS) 2075 NewRHS = Sel->getOperand(1); 2076 else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS) 2077 NewRHS = Sel->getOperand(2); 2078 else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS)) 2079 NewRHS = SU->getValue(); 2080 else 2081 // Max doesn't match expected pattern. 2082 return Cond; 2083 2084 // Determine the new comparison opcode. It may be signed or unsigned, 2085 // and the original comparison may be either equality or inequality. 2086 if (Cond->getPredicate() == CmpInst::ICMP_EQ) 2087 Pred = CmpInst::getInversePredicate(Pred); 2088 2089 // Ok, everything looks ok to change the condition into an SLT or SGE and 2090 // delete the max calculation. 2091 ICmpInst *NewCond = 2092 new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp"); 2093 2094 // Delete the max calculation instructions. 2095 Cond->replaceAllUsesWith(NewCond); 2096 CondUse->setUser(NewCond); 2097 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0)); 2098 Cond->eraseFromParent(); 2099 Sel->eraseFromParent(); 2100 if (Cmp->use_empty()) 2101 Cmp->eraseFromParent(); 2102 return NewCond; 2103 } 2104 2105 /// Change loop terminating condition to use the postinc iv when possible. 2106 void 2107 LSRInstance::OptimizeLoopTermCond() { 2108 SmallPtrSet<Instruction *, 4> PostIncs; 2109 2110 // We need a different set of heuristics for rotated and non-rotated loops. 2111 // If a loop is rotated then the latch is also the backedge, so inserting 2112 // post-inc expressions just before the latch is ideal. To reduce live ranges 2113 // it also makes sense to rewrite terminating conditions to use post-inc 2114 // expressions. 2115 // 2116 // If the loop is not rotated then the latch is not a backedge; the latch 2117 // check is done in the loop head. Adding post-inc expressions before the 2118 // latch will cause overlapping live-ranges of pre-inc and post-inc expressions 2119 // in the loop body. In this case we do *not* want to use post-inc expressions 2120 // in the latch check, and we want to insert post-inc expressions before 2121 // the backedge. 2122 BasicBlock *LatchBlock = L->getLoopLatch(); 2123 SmallVector<BasicBlock*, 8> ExitingBlocks; 2124 L->getExitingBlocks(ExitingBlocks); 2125 if (llvm::all_of(ExitingBlocks, [&LatchBlock](const BasicBlock *BB) { 2126 return LatchBlock != BB; 2127 })) { 2128 // The backedge doesn't exit the loop; treat this as a head-tested loop. 2129 IVIncInsertPos = LatchBlock->getTerminator(); 2130 return; 2131 } 2132 2133 // Otherwise treat this as a rotated loop. 2134 for (BasicBlock *ExitingBlock : ExitingBlocks) { 2135 2136 // Get the terminating condition for the loop if possible. If we 2137 // can, we want to change it to use a post-incremented version of its 2138 // induction variable, to allow coalescing the live ranges for the IV into 2139 // one register value. 2140 2141 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 2142 if (!TermBr) 2143 continue; 2144 // FIXME: Overly conservative, termination condition could be an 'or' etc.. 2145 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition())) 2146 continue; 2147 2148 // Search IVUsesByStride to find Cond's IVUse if there is one. 2149 IVStrideUse *CondUse = nullptr; 2150 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition()); 2151 if (!FindIVUserForCond(Cond, CondUse)) 2152 continue; 2153 2154 // If the trip count is computed in terms of a max (due to ScalarEvolution 2155 // being unable to find a sufficient guard, for example), change the loop 2156 // comparison to use SLT or ULT instead of NE. 2157 // One consequence of doing this now is that it disrupts the count-down 2158 // optimization. That's not always a bad thing though, because in such 2159 // cases it may still be worthwhile to avoid a max. 2160 Cond = OptimizeMax(Cond, CondUse); 2161 2162 // If this exiting block dominates the latch block, it may also use 2163 // the post-inc value if it won't be shared with other uses. 2164 // Check for dominance. 2165 if (!DT.dominates(ExitingBlock, LatchBlock)) 2166 continue; 2167 2168 // Conservatively avoid trying to use the post-inc value in non-latch 2169 // exits if there may be pre-inc users in intervening blocks. 2170 if (LatchBlock != ExitingBlock) 2171 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) 2172 // Test if the use is reachable from the exiting block. This dominator 2173 // query is a conservative approximation of reachability. 2174 if (&*UI != CondUse && 2175 !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) { 2176 // Conservatively assume there may be reuse if the quotient of their 2177 // strides could be a legal scale. 2178 const SCEV *A = IU.getStride(*CondUse, L); 2179 const SCEV *B = IU.getStride(*UI, L); 2180 if (!A || !B) continue; 2181 if (SE.getTypeSizeInBits(A->getType()) != 2182 SE.getTypeSizeInBits(B->getType())) { 2183 if (SE.getTypeSizeInBits(A->getType()) > 2184 SE.getTypeSizeInBits(B->getType())) 2185 B = SE.getSignExtendExpr(B, A->getType()); 2186 else 2187 A = SE.getSignExtendExpr(A, B->getType()); 2188 } 2189 if (const SCEVConstant *D = 2190 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) { 2191 const ConstantInt *C = D->getValue(); 2192 // Stride of one or negative one can have reuse with non-addresses. 2193 if (C->isOne() || C->isAllOnesValue()) 2194 goto decline_post_inc; 2195 // Avoid weird situations. 2196 if (C->getValue().getMinSignedBits() >= 64 || 2197 C->getValue().isMinSignedValue()) 2198 goto decline_post_inc; 2199 // Check for possible scaled-address reuse. 2200 MemAccessTy AccessTy = getAccessType(UI->getUser()); 2201 int64_t Scale = C->getSExtValue(); 2202 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2203 /*BaseOffset=*/0, 2204 /*HasBaseReg=*/false, Scale, 2205 AccessTy.AddrSpace)) 2206 goto decline_post_inc; 2207 Scale = -Scale; 2208 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2209 /*BaseOffset=*/0, 2210 /*HasBaseReg=*/false, Scale, 2211 AccessTy.AddrSpace)) 2212 goto decline_post_inc; 2213 } 2214 } 2215 2216 DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: " 2217 << *Cond << '\n'); 2218 2219 // It's possible for the setcc instruction to be anywhere in the loop, and 2220 // possible for it to have multiple users. If it is not immediately before 2221 // the exiting block branch, move it. 2222 if (&*++BasicBlock::iterator(Cond) != TermBr) { 2223 if (Cond->hasOneUse()) { 2224 Cond->moveBefore(TermBr); 2225 } else { 2226 // Clone the terminating condition and insert into the loopend. 2227 ICmpInst *OldCond = Cond; 2228 Cond = cast<ICmpInst>(Cond->clone()); 2229 Cond->setName(L->getHeader()->getName() + ".termcond"); 2230 ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond); 2231 2232 // Clone the IVUse, as the old use still exists! 2233 CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace()); 2234 TermBr->replaceUsesOfWith(OldCond, Cond); 2235 } 2236 } 2237 2238 // If we get to here, we know that we can transform the setcc instruction to 2239 // use the post-incremented version of the IV, allowing us to coalesce the 2240 // live ranges for the IV correctly. 2241 CondUse->transformToPostInc(L); 2242 Changed = true; 2243 2244 PostIncs.insert(Cond); 2245 decline_post_inc:; 2246 } 2247 2248 // Determine an insertion point for the loop induction variable increment. It 2249 // must dominate all the post-inc comparisons we just set up, and it must 2250 // dominate the loop latch edge. 2251 IVIncInsertPos = L->getLoopLatch()->getTerminator(); 2252 for (Instruction *Inst : PostIncs) { 2253 BasicBlock *BB = 2254 DT.findNearestCommonDominator(IVIncInsertPos->getParent(), 2255 Inst->getParent()); 2256 if (BB == Inst->getParent()) 2257 IVIncInsertPos = Inst; 2258 else if (BB != IVIncInsertPos->getParent()) 2259 IVIncInsertPos = BB->getTerminator(); 2260 } 2261 } 2262 2263 /// Determine if the given use can accommodate a fixup at the given offset and 2264 /// other details. If so, update the use and return true. 2265 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, 2266 bool HasBaseReg, LSRUse::KindType Kind, 2267 MemAccessTy AccessTy) { 2268 int64_t NewMinOffset = LU.MinOffset; 2269 int64_t NewMaxOffset = LU.MaxOffset; 2270 MemAccessTy NewAccessTy = AccessTy; 2271 2272 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to 2273 // something conservative, however this can pessimize in the case that one of 2274 // the uses will have all its uses outside the loop, for example. 2275 if (LU.Kind != Kind) 2276 return false; 2277 2278 // Check for a mismatched access type, and fall back conservatively as needed. 2279 // TODO: Be less conservative when the type is similar and can use the same 2280 // addressing modes. 2281 if (Kind == LSRUse::Address) { 2282 if (AccessTy != LU.AccessTy) 2283 NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext()); 2284 } 2285 2286 // Conservatively assume HasBaseReg is true for now. 2287 if (NewOffset < LU.MinOffset) { 2288 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2289 LU.MaxOffset - NewOffset, HasBaseReg)) 2290 return false; 2291 NewMinOffset = NewOffset; 2292 } else if (NewOffset > LU.MaxOffset) { 2293 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2294 NewOffset - LU.MinOffset, HasBaseReg)) 2295 return false; 2296 NewMaxOffset = NewOffset; 2297 } 2298 2299 // Update the use. 2300 LU.MinOffset = NewMinOffset; 2301 LU.MaxOffset = NewMaxOffset; 2302 LU.AccessTy = NewAccessTy; 2303 return true; 2304 } 2305 2306 /// Return an LSRUse index and an offset value for a fixup which needs the given 2307 /// expression, with the given kind and optional access type. Either reuse an 2308 /// existing use or create a new one, as needed. 2309 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr, 2310 LSRUse::KindType Kind, 2311 MemAccessTy AccessTy) { 2312 const SCEV *Copy = Expr; 2313 int64_t Offset = ExtractImmediate(Expr, SE); 2314 2315 // Basic uses can't accept any offset, for example. 2316 if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr, 2317 Offset, /*HasBaseReg=*/ true)) { 2318 Expr = Copy; 2319 Offset = 0; 2320 } 2321 2322 std::pair<UseMapTy::iterator, bool> P = 2323 UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0)); 2324 if (!P.second) { 2325 // A use already existed with this base. 2326 size_t LUIdx = P.first->second; 2327 LSRUse &LU = Uses[LUIdx]; 2328 if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy)) 2329 // Reuse this use. 2330 return std::make_pair(LUIdx, Offset); 2331 } 2332 2333 // Create a new use. 2334 size_t LUIdx = Uses.size(); 2335 P.first->second = LUIdx; 2336 Uses.push_back(LSRUse(Kind, AccessTy)); 2337 LSRUse &LU = Uses[LUIdx]; 2338 2339 LU.MinOffset = Offset; 2340 LU.MaxOffset = Offset; 2341 return std::make_pair(LUIdx, Offset); 2342 } 2343 2344 /// Delete the given use from the Uses list. 2345 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) { 2346 if (&LU != &Uses.back()) 2347 std::swap(LU, Uses.back()); 2348 Uses.pop_back(); 2349 2350 // Update RegUses. 2351 RegUses.swapAndDropUse(LUIdx, Uses.size()); 2352 } 2353 2354 /// Look for a use distinct from OrigLU which is has a formula that has the same 2355 /// registers as the given formula. 2356 LSRUse * 2357 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF, 2358 const LSRUse &OrigLU) { 2359 // Search all uses for the formula. This could be more clever. 2360 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 2361 LSRUse &LU = Uses[LUIdx]; 2362 // Check whether this use is close enough to OrigLU, to see whether it's 2363 // worthwhile looking through its formulae. 2364 // Ignore ICmpZero uses because they may contain formulae generated by 2365 // GenerateICmpZeroScales, in which case adding fixup offsets may 2366 // be invalid. 2367 if (&LU != &OrigLU && 2368 LU.Kind != LSRUse::ICmpZero && 2369 LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy && 2370 LU.WidestFixupType == OrigLU.WidestFixupType && 2371 LU.HasFormulaWithSameRegs(OrigF)) { 2372 // Scan through this use's formulae. 2373 for (const Formula &F : LU.Formulae) { 2374 // Check to see if this formula has the same registers and symbols 2375 // as OrigF. 2376 if (F.BaseRegs == OrigF.BaseRegs && 2377 F.ScaledReg == OrigF.ScaledReg && 2378 F.BaseGV == OrigF.BaseGV && 2379 F.Scale == OrigF.Scale && 2380 F.UnfoldedOffset == OrigF.UnfoldedOffset) { 2381 if (F.BaseOffset == 0) 2382 return &LU; 2383 // This is the formula where all the registers and symbols matched; 2384 // there aren't going to be any others. Since we declined it, we 2385 // can skip the rest of the formulae and proceed to the next LSRUse. 2386 break; 2387 } 2388 } 2389 } 2390 } 2391 2392 // Nothing looked good. 2393 return nullptr; 2394 } 2395 2396 void LSRInstance::CollectInterestingTypesAndFactors() { 2397 SmallSetVector<const SCEV *, 4> Strides; 2398 2399 // Collect interesting types and strides. 2400 SmallVector<const SCEV *, 4> Worklist; 2401 for (const IVStrideUse &U : IU) { 2402 const SCEV *Expr = IU.getExpr(U); 2403 2404 // Collect interesting types. 2405 Types.insert(SE.getEffectiveSCEVType(Expr->getType())); 2406 2407 // Add strides for mentioned loops. 2408 Worklist.push_back(Expr); 2409 do { 2410 const SCEV *S = Worklist.pop_back_val(); 2411 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2412 if (AR->getLoop() == L) 2413 Strides.insert(AR->getStepRecurrence(SE)); 2414 Worklist.push_back(AR->getStart()); 2415 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2416 Worklist.append(Add->op_begin(), Add->op_end()); 2417 } 2418 } while (!Worklist.empty()); 2419 } 2420 2421 // Compute interesting factors from the set of interesting strides. 2422 for (SmallSetVector<const SCEV *, 4>::const_iterator 2423 I = Strides.begin(), E = Strides.end(); I != E; ++I) 2424 for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter = 2425 std::next(I); NewStrideIter != E; ++NewStrideIter) { 2426 const SCEV *OldStride = *I; 2427 const SCEV *NewStride = *NewStrideIter; 2428 2429 if (SE.getTypeSizeInBits(OldStride->getType()) != 2430 SE.getTypeSizeInBits(NewStride->getType())) { 2431 if (SE.getTypeSizeInBits(OldStride->getType()) > 2432 SE.getTypeSizeInBits(NewStride->getType())) 2433 NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType()); 2434 else 2435 OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType()); 2436 } 2437 if (const SCEVConstant *Factor = 2438 dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride, 2439 SE, true))) { 2440 if (Factor->getAPInt().getMinSignedBits() <= 64) 2441 Factors.insert(Factor->getAPInt().getSExtValue()); 2442 } else if (const SCEVConstant *Factor = 2443 dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride, 2444 NewStride, 2445 SE, true))) { 2446 if (Factor->getAPInt().getMinSignedBits() <= 64) 2447 Factors.insert(Factor->getAPInt().getSExtValue()); 2448 } 2449 } 2450 2451 // If all uses use the same type, don't bother looking for truncation-based 2452 // reuse. 2453 if (Types.size() == 1) 2454 Types.clear(); 2455 2456 DEBUG(print_factors_and_types(dbgs())); 2457 } 2458 2459 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in 2460 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to 2461 /// IVStrideUses, we could partially skip this. 2462 static User::op_iterator 2463 findIVOperand(User::op_iterator OI, User::op_iterator OE, 2464 Loop *L, ScalarEvolution &SE) { 2465 for(; OI != OE; ++OI) { 2466 if (Instruction *Oper = dyn_cast<Instruction>(*OI)) { 2467 if (!SE.isSCEVable(Oper->getType())) 2468 continue; 2469 2470 if (const SCEVAddRecExpr *AR = 2471 dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) { 2472 if (AR->getLoop() == L) 2473 break; 2474 } 2475 } 2476 } 2477 return OI; 2478 } 2479 2480 /// IVChain logic must consistenctly peek base TruncInst operands, so wrap it in 2481 /// a convenient helper. 2482 static Value *getWideOperand(Value *Oper) { 2483 if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper)) 2484 return Trunc->getOperand(0); 2485 return Oper; 2486 } 2487 2488 /// Return true if we allow an IV chain to include both types. 2489 static bool isCompatibleIVType(Value *LVal, Value *RVal) { 2490 Type *LType = LVal->getType(); 2491 Type *RType = RVal->getType(); 2492 return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy()); 2493 } 2494 2495 /// Return an approximation of this SCEV expression's "base", or NULL for any 2496 /// constant. Returning the expression itself is conservative. Returning a 2497 /// deeper subexpression is more precise and valid as long as it isn't less 2498 /// complex than another subexpression. For expressions involving multiple 2499 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids 2500 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i], 2501 /// IVInc==b-a. 2502 /// 2503 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost 2504 /// SCEVUnknown, we simply return the rightmost SCEV operand. 2505 static const SCEV *getExprBase(const SCEV *S) { 2506 switch (S->getSCEVType()) { 2507 default: // uncluding scUnknown. 2508 return S; 2509 case scConstant: 2510 return nullptr; 2511 case scTruncate: 2512 return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand()); 2513 case scZeroExtend: 2514 return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand()); 2515 case scSignExtend: 2516 return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand()); 2517 case scAddExpr: { 2518 // Skip over scaled operands (scMulExpr) to follow add operands as long as 2519 // there's nothing more complex. 2520 // FIXME: not sure if we want to recognize negation. 2521 const SCEVAddExpr *Add = cast<SCEVAddExpr>(S); 2522 for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()), 2523 E(Add->op_begin()); I != E; ++I) { 2524 const SCEV *SubExpr = *I; 2525 if (SubExpr->getSCEVType() == scAddExpr) 2526 return getExprBase(SubExpr); 2527 2528 if (SubExpr->getSCEVType() != scMulExpr) 2529 return SubExpr; 2530 } 2531 return S; // all operands are scaled, be conservative. 2532 } 2533 case scAddRecExpr: 2534 return getExprBase(cast<SCEVAddRecExpr>(S)->getStart()); 2535 } 2536 } 2537 2538 /// Return true if the chain increment is profitable to expand into a loop 2539 /// invariant value, which may require its own register. A profitable chain 2540 /// increment will be an offset relative to the same base. We allow such offsets 2541 /// to potentially be used as chain increment as long as it's not obviously 2542 /// expensive to expand using real instructions. 2543 bool IVChain::isProfitableIncrement(const SCEV *OperExpr, 2544 const SCEV *IncExpr, 2545 ScalarEvolution &SE) { 2546 // Aggressively form chains when -stress-ivchain. 2547 if (StressIVChain) 2548 return true; 2549 2550 // Do not replace a constant offset from IV head with a nonconstant IV 2551 // increment. 2552 if (!isa<SCEVConstant>(IncExpr)) { 2553 const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand)); 2554 if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr))) 2555 return false; 2556 } 2557 2558 SmallPtrSet<const SCEV*, 8> Processed; 2559 return !isHighCostExpansion(IncExpr, Processed, SE); 2560 } 2561 2562 /// Return true if the number of registers needed for the chain is estimated to 2563 /// be less than the number required for the individual IV users. First prohibit 2564 /// any IV users that keep the IV live across increments (the Users set should 2565 /// be empty). Next count the number and type of increments in the chain. 2566 /// 2567 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't 2568 /// effectively use postinc addressing modes. Only consider it profitable it the 2569 /// increments can be computed in fewer registers when chained. 2570 /// 2571 /// TODO: Consider IVInc free if it's already used in another chains. 2572 static bool 2573 isProfitableChain(IVChain &Chain, SmallPtrSetImpl<Instruction*> &Users, 2574 ScalarEvolution &SE, const TargetTransformInfo &TTI) { 2575 if (StressIVChain) 2576 return true; 2577 2578 if (!Chain.hasIncs()) 2579 return false; 2580 2581 if (!Users.empty()) { 2582 DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n"; 2583 for (Instruction *Inst : Users) { 2584 dbgs() << " " << *Inst << "\n"; 2585 }); 2586 return false; 2587 } 2588 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 2589 2590 // The chain itself may require a register, so intialize cost to 1. 2591 int cost = 1; 2592 2593 // A complete chain likely eliminates the need for keeping the original IV in 2594 // a register. LSR does not currently know how to form a complete chain unless 2595 // the header phi already exists. 2596 if (isa<PHINode>(Chain.tailUserInst()) 2597 && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) { 2598 --cost; 2599 } 2600 const SCEV *LastIncExpr = nullptr; 2601 unsigned NumConstIncrements = 0; 2602 unsigned NumVarIncrements = 0; 2603 unsigned NumReusedIncrements = 0; 2604 for (const IVInc &Inc : Chain) { 2605 if (Inc.IncExpr->isZero()) 2606 continue; 2607 2608 // Incrementing by zero or some constant is neutral. We assume constants can 2609 // be folded into an addressing mode or an add's immediate operand. 2610 if (isa<SCEVConstant>(Inc.IncExpr)) { 2611 ++NumConstIncrements; 2612 continue; 2613 } 2614 2615 if (Inc.IncExpr == LastIncExpr) 2616 ++NumReusedIncrements; 2617 else 2618 ++NumVarIncrements; 2619 2620 LastIncExpr = Inc.IncExpr; 2621 } 2622 // An IV chain with a single increment is handled by LSR's postinc 2623 // uses. However, a chain with multiple increments requires keeping the IV's 2624 // value live longer than it needs to be if chained. 2625 if (NumConstIncrements > 1) 2626 --cost; 2627 2628 // Materializing increment expressions in the preheader that didn't exist in 2629 // the original code may cost a register. For example, sign-extended array 2630 // indices can produce ridiculous increments like this: 2631 // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64))) 2632 cost += NumVarIncrements; 2633 2634 // Reusing variable increments likely saves a register to hold the multiple of 2635 // the stride. 2636 cost -= NumReusedIncrements; 2637 2638 DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost 2639 << "\n"); 2640 2641 return cost < 0; 2642 } 2643 2644 /// Add this IV user to an existing chain or make it the head of a new chain. 2645 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper, 2646 SmallVectorImpl<ChainUsers> &ChainUsersVec) { 2647 // When IVs are used as types of varying widths, they are generally converted 2648 // to a wider type with some uses remaining narrow under a (free) trunc. 2649 Value *const NextIV = getWideOperand(IVOper); 2650 const SCEV *const OperExpr = SE.getSCEV(NextIV); 2651 const SCEV *const OperExprBase = getExprBase(OperExpr); 2652 2653 // Visit all existing chains. Check if its IVOper can be computed as a 2654 // profitable loop invariant increment from the last link in the Chain. 2655 unsigned ChainIdx = 0, NChains = IVChainVec.size(); 2656 const SCEV *LastIncExpr = nullptr; 2657 for (; ChainIdx < NChains; ++ChainIdx) { 2658 IVChain &Chain = IVChainVec[ChainIdx]; 2659 2660 // Prune the solution space aggressively by checking that both IV operands 2661 // are expressions that operate on the same unscaled SCEVUnknown. This 2662 // "base" will be canceled by the subsequent getMinusSCEV call. Checking 2663 // first avoids creating extra SCEV expressions. 2664 if (!StressIVChain && Chain.ExprBase != OperExprBase) 2665 continue; 2666 2667 Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand); 2668 if (!isCompatibleIVType(PrevIV, NextIV)) 2669 continue; 2670 2671 // A phi node terminates a chain. 2672 if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst())) 2673 continue; 2674 2675 // The increment must be loop-invariant so it can be kept in a register. 2676 const SCEV *PrevExpr = SE.getSCEV(PrevIV); 2677 const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr); 2678 if (!SE.isLoopInvariant(IncExpr, L)) 2679 continue; 2680 2681 if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) { 2682 LastIncExpr = IncExpr; 2683 break; 2684 } 2685 } 2686 // If we haven't found a chain, create a new one, unless we hit the max. Don't 2687 // bother for phi nodes, because they must be last in the chain. 2688 if (ChainIdx == NChains) { 2689 if (isa<PHINode>(UserInst)) 2690 return; 2691 if (NChains >= MaxChains && !StressIVChain) { 2692 DEBUG(dbgs() << "IV Chain Limit\n"); 2693 return; 2694 } 2695 LastIncExpr = OperExpr; 2696 // IVUsers may have skipped over sign/zero extensions. We don't currently 2697 // attempt to form chains involving extensions unless they can be hoisted 2698 // into this loop's AddRec. 2699 if (!isa<SCEVAddRecExpr>(LastIncExpr)) 2700 return; 2701 ++NChains; 2702 IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr), 2703 OperExprBase)); 2704 ChainUsersVec.resize(NChains); 2705 DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst 2706 << ") IV=" << *LastIncExpr << "\n"); 2707 } else { 2708 DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Inc: (" << *UserInst 2709 << ") IV+" << *LastIncExpr << "\n"); 2710 // Add this IV user to the end of the chain. 2711 IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr)); 2712 } 2713 IVChain &Chain = IVChainVec[ChainIdx]; 2714 2715 SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers; 2716 // This chain's NearUsers become FarUsers. 2717 if (!LastIncExpr->isZero()) { 2718 ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(), 2719 NearUsers.end()); 2720 NearUsers.clear(); 2721 } 2722 2723 // All other uses of IVOperand become near uses of the chain. 2724 // We currently ignore intermediate values within SCEV expressions, assuming 2725 // they will eventually be used be the current chain, or can be computed 2726 // from one of the chain increments. To be more precise we could 2727 // transitively follow its user and only add leaf IV users to the set. 2728 for (User *U : IVOper->users()) { 2729 Instruction *OtherUse = dyn_cast<Instruction>(U); 2730 if (!OtherUse) 2731 continue; 2732 // Uses in the chain will no longer be uses if the chain is formed. 2733 // Include the head of the chain in this iteration (not Chain.begin()). 2734 IVChain::const_iterator IncIter = Chain.Incs.begin(); 2735 IVChain::const_iterator IncEnd = Chain.Incs.end(); 2736 for( ; IncIter != IncEnd; ++IncIter) { 2737 if (IncIter->UserInst == OtherUse) 2738 break; 2739 } 2740 if (IncIter != IncEnd) 2741 continue; 2742 2743 if (SE.isSCEVable(OtherUse->getType()) 2744 && !isa<SCEVUnknown>(SE.getSCEV(OtherUse)) 2745 && IU.isIVUserOrOperand(OtherUse)) { 2746 continue; 2747 } 2748 NearUsers.insert(OtherUse); 2749 } 2750 2751 // Since this user is part of the chain, it's no longer considered a use 2752 // of the chain. 2753 ChainUsersVec[ChainIdx].FarUsers.erase(UserInst); 2754 } 2755 2756 /// Populate the vector of Chains. 2757 /// 2758 /// This decreases ILP at the architecture level. Targets with ample registers, 2759 /// multiple memory ports, and no register renaming probably don't want 2760 /// this. However, such targets should probably disable LSR altogether. 2761 /// 2762 /// The job of LSR is to make a reasonable choice of induction variables across 2763 /// the loop. Subsequent passes can easily "unchain" computation exposing more 2764 /// ILP *within the loop* if the target wants it. 2765 /// 2766 /// Finding the best IV chain is potentially a scheduling problem. Since LSR 2767 /// will not reorder memory operations, it will recognize this as a chain, but 2768 /// will generate redundant IV increments. Ideally this would be corrected later 2769 /// by a smart scheduler: 2770 /// = A[i] 2771 /// = A[i+x] 2772 /// A[i] = 2773 /// A[i+x] = 2774 /// 2775 /// TODO: Walk the entire domtree within this loop, not just the path to the 2776 /// loop latch. This will discover chains on side paths, but requires 2777 /// maintaining multiple copies of the Chains state. 2778 void LSRInstance::CollectChains() { 2779 DEBUG(dbgs() << "Collecting IV Chains.\n"); 2780 SmallVector<ChainUsers, 8> ChainUsersVec; 2781 2782 SmallVector<BasicBlock *,8> LatchPath; 2783 BasicBlock *LoopHeader = L->getHeader(); 2784 for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch()); 2785 Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) { 2786 LatchPath.push_back(Rung->getBlock()); 2787 } 2788 LatchPath.push_back(LoopHeader); 2789 2790 // Walk the instruction stream from the loop header to the loop latch. 2791 for (BasicBlock *BB : reverse(LatchPath)) { 2792 for (Instruction &I : *BB) { 2793 // Skip instructions that weren't seen by IVUsers analysis. 2794 if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I)) 2795 continue; 2796 2797 // Ignore users that are part of a SCEV expression. This way we only 2798 // consider leaf IV Users. This effectively rediscovers a portion of 2799 // IVUsers analysis but in program order this time. 2800 if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I))) 2801 continue; 2802 2803 // Remove this instruction from any NearUsers set it may be in. 2804 for (unsigned ChainIdx = 0, NChains = IVChainVec.size(); 2805 ChainIdx < NChains; ++ChainIdx) { 2806 ChainUsersVec[ChainIdx].NearUsers.erase(&I); 2807 } 2808 // Search for operands that can be chained. 2809 SmallPtrSet<Instruction*, 4> UniqueOperands; 2810 User::op_iterator IVOpEnd = I.op_end(); 2811 User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE); 2812 while (IVOpIter != IVOpEnd) { 2813 Instruction *IVOpInst = cast<Instruction>(*IVOpIter); 2814 if (UniqueOperands.insert(IVOpInst).second) 2815 ChainInstruction(&I, IVOpInst, ChainUsersVec); 2816 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 2817 } 2818 } // Continue walking down the instructions. 2819 } // Continue walking down the domtree. 2820 // Visit phi backedges to determine if the chain can generate the IV postinc. 2821 for (BasicBlock::iterator I = L->getHeader()->begin(); 2822 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 2823 if (!SE.isSCEVable(PN->getType())) 2824 continue; 2825 2826 Instruction *IncV = 2827 dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch())); 2828 if (IncV) 2829 ChainInstruction(PN, IncV, ChainUsersVec); 2830 } 2831 // Remove any unprofitable chains. 2832 unsigned ChainIdx = 0; 2833 for (unsigned UsersIdx = 0, NChains = IVChainVec.size(); 2834 UsersIdx < NChains; ++UsersIdx) { 2835 if (!isProfitableChain(IVChainVec[UsersIdx], 2836 ChainUsersVec[UsersIdx].FarUsers, SE, TTI)) 2837 continue; 2838 // Preserve the chain at UsesIdx. 2839 if (ChainIdx != UsersIdx) 2840 IVChainVec[ChainIdx] = IVChainVec[UsersIdx]; 2841 FinalizeChain(IVChainVec[ChainIdx]); 2842 ++ChainIdx; 2843 } 2844 IVChainVec.resize(ChainIdx); 2845 } 2846 2847 void LSRInstance::FinalizeChain(IVChain &Chain) { 2848 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 2849 DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n"); 2850 2851 for (const IVInc &Inc : Chain) { 2852 DEBUG(dbgs() << " Inc: " << *Inc.UserInst << "\n"); 2853 auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand); 2854 assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand"); 2855 IVIncSet.insert(UseI); 2856 } 2857 } 2858 2859 /// Return true if the IVInc can be folded into an addressing mode. 2860 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst, 2861 Value *Operand, const TargetTransformInfo &TTI) { 2862 const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr); 2863 if (!IncConst || !isAddressUse(UserInst, Operand)) 2864 return false; 2865 2866 if (IncConst->getAPInt().getMinSignedBits() > 64) 2867 return false; 2868 2869 MemAccessTy AccessTy = getAccessType(UserInst); 2870 int64_t IncOffset = IncConst->getValue()->getSExtValue(); 2871 if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr, 2872 IncOffset, /*HaseBaseReg=*/false)) 2873 return false; 2874 2875 return true; 2876 } 2877 2878 /// Generate an add or subtract for each IVInc in a chain to materialize the IV 2879 /// user's operand from the previous IV user's operand. 2880 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 2881 SmallVectorImpl<WeakVH> &DeadInsts) { 2882 // Find the new IVOperand for the head of the chain. It may have been replaced 2883 // by LSR. 2884 const IVInc &Head = Chain.Incs[0]; 2885 User::op_iterator IVOpEnd = Head.UserInst->op_end(); 2886 // findIVOperand returns IVOpEnd if it can no longer find a valid IV user. 2887 User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(), 2888 IVOpEnd, L, SE); 2889 Value *IVSrc = nullptr; 2890 while (IVOpIter != IVOpEnd) { 2891 IVSrc = getWideOperand(*IVOpIter); 2892 2893 // If this operand computes the expression that the chain needs, we may use 2894 // it. (Check this after setting IVSrc which is used below.) 2895 // 2896 // Note that if Head.IncExpr is wider than IVSrc, then this phi is too 2897 // narrow for the chain, so we can no longer use it. We do allow using a 2898 // wider phi, assuming the LSR checked for free truncation. In that case we 2899 // should already have a truncate on this operand such that 2900 // getSCEV(IVSrc) == IncExpr. 2901 if (SE.getSCEV(*IVOpIter) == Head.IncExpr 2902 || SE.getSCEV(IVSrc) == Head.IncExpr) { 2903 break; 2904 } 2905 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 2906 } 2907 if (IVOpIter == IVOpEnd) { 2908 // Gracefully give up on this chain. 2909 DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n"); 2910 return; 2911 } 2912 2913 DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n"); 2914 Type *IVTy = IVSrc->getType(); 2915 Type *IntTy = SE.getEffectiveSCEVType(IVTy); 2916 const SCEV *LeftOverExpr = nullptr; 2917 for (const IVInc &Inc : Chain) { 2918 Instruction *InsertPt = Inc.UserInst; 2919 if (isa<PHINode>(InsertPt)) 2920 InsertPt = L->getLoopLatch()->getTerminator(); 2921 2922 // IVOper will replace the current IV User's operand. IVSrc is the IV 2923 // value currently held in a register. 2924 Value *IVOper = IVSrc; 2925 if (!Inc.IncExpr->isZero()) { 2926 // IncExpr was the result of subtraction of two narrow values, so must 2927 // be signed. 2928 const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy); 2929 LeftOverExpr = LeftOverExpr ? 2930 SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr; 2931 } 2932 if (LeftOverExpr && !LeftOverExpr->isZero()) { 2933 // Expand the IV increment. 2934 Rewriter.clearPostInc(); 2935 Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt); 2936 const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc), 2937 SE.getUnknown(IncV)); 2938 IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt); 2939 2940 // If an IV increment can't be folded, use it as the next IV value. 2941 if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) { 2942 assert(IVTy == IVOper->getType() && "inconsistent IV increment type"); 2943 IVSrc = IVOper; 2944 LeftOverExpr = nullptr; 2945 } 2946 } 2947 Type *OperTy = Inc.IVOperand->getType(); 2948 if (IVTy != OperTy) { 2949 assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) && 2950 "cannot extend a chained IV"); 2951 IRBuilder<> Builder(InsertPt); 2952 IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain"); 2953 } 2954 Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper); 2955 DeadInsts.emplace_back(Inc.IVOperand); 2956 } 2957 // If LSR created a new, wider phi, we may also replace its postinc. We only 2958 // do this if we also found a wide value for the head of the chain. 2959 if (isa<PHINode>(Chain.tailUserInst())) { 2960 for (BasicBlock::iterator I = L->getHeader()->begin(); 2961 PHINode *Phi = dyn_cast<PHINode>(I); ++I) { 2962 if (!isCompatibleIVType(Phi, IVSrc)) 2963 continue; 2964 Instruction *PostIncV = dyn_cast<Instruction>( 2965 Phi->getIncomingValueForBlock(L->getLoopLatch())); 2966 if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc))) 2967 continue; 2968 Value *IVOper = IVSrc; 2969 Type *PostIncTy = PostIncV->getType(); 2970 if (IVTy != PostIncTy) { 2971 assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types"); 2972 IRBuilder<> Builder(L->getLoopLatch()->getTerminator()); 2973 Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc()); 2974 IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain"); 2975 } 2976 Phi->replaceUsesOfWith(PostIncV, IVOper); 2977 DeadInsts.emplace_back(PostIncV); 2978 } 2979 } 2980 } 2981 2982 void LSRInstance::CollectFixupsAndInitialFormulae() { 2983 for (const IVStrideUse &U : IU) { 2984 Instruction *UserInst = U.getUser(); 2985 // Skip IV users that are part of profitable IV Chains. 2986 User::op_iterator UseI = 2987 find(UserInst->operands(), U.getOperandValToReplace()); 2988 assert(UseI != UserInst->op_end() && "cannot find IV operand"); 2989 if (IVIncSet.count(UseI)) 2990 continue; 2991 2992 LSRUse::KindType Kind = LSRUse::Basic; 2993 MemAccessTy AccessTy; 2994 if (isAddressUse(UserInst, U.getOperandValToReplace())) { 2995 Kind = LSRUse::Address; 2996 AccessTy = getAccessType(UserInst); 2997 } 2998 2999 const SCEV *S = IU.getExpr(U); 3000 PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops(); 3001 3002 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as 3003 // (N - i == 0), and this allows (N - i) to be the expression that we work 3004 // with rather than just N or i, so we can consider the register 3005 // requirements for both N and i at the same time. Limiting this code to 3006 // equality icmps is not a problem because all interesting loops use 3007 // equality icmps, thanks to IndVarSimplify. 3008 if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst)) 3009 if (CI->isEquality()) { 3010 // Swap the operands if needed to put the OperandValToReplace on the 3011 // left, for consistency. 3012 Value *NV = CI->getOperand(1); 3013 if (NV == U.getOperandValToReplace()) { 3014 CI->setOperand(1, CI->getOperand(0)); 3015 CI->setOperand(0, NV); 3016 NV = CI->getOperand(1); 3017 Changed = true; 3018 } 3019 3020 // x == y --> x - y == 0 3021 const SCEV *N = SE.getSCEV(NV); 3022 if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) { 3023 // S is normalized, so normalize N before folding it into S 3024 // to keep the result normalized. 3025 N = TransformForPostIncUse(Normalize, N, CI, nullptr, 3026 TmpPostIncLoops, SE, DT); 3027 Kind = LSRUse::ICmpZero; 3028 S = SE.getMinusSCEV(N, S); 3029 } 3030 3031 // -1 and the negations of all interesting strides (except the negation 3032 // of -1) are now also interesting. 3033 for (size_t i = 0, e = Factors.size(); i != e; ++i) 3034 if (Factors[i] != -1) 3035 Factors.insert(-(uint64_t)Factors[i]); 3036 Factors.insert(-1); 3037 } 3038 3039 // Get or create an LSRUse. 3040 std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy); 3041 size_t LUIdx = P.first; 3042 int64_t Offset = P.second; 3043 LSRUse &LU = Uses[LUIdx]; 3044 3045 // Record the fixup. 3046 LSRFixup &LF = LU.getNewFixup(); 3047 LF.UserInst = UserInst; 3048 LF.OperandValToReplace = U.getOperandValToReplace(); 3049 LF.PostIncLoops = TmpPostIncLoops; 3050 LF.Offset = Offset; 3051 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3052 3053 if (!LU.WidestFixupType || 3054 SE.getTypeSizeInBits(LU.WidestFixupType) < 3055 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3056 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3057 3058 // If this is the first use of this LSRUse, give it a formula. 3059 if (LU.Formulae.empty()) { 3060 InsertInitialFormula(S, LU, LUIdx); 3061 CountRegisters(LU.Formulae.back(), LUIdx); 3062 } 3063 } 3064 3065 DEBUG(print_fixups(dbgs())); 3066 } 3067 3068 /// Insert a formula for the given expression into the given use, separating out 3069 /// loop-variant portions from loop-invariant and loop-computable portions. 3070 void 3071 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) { 3072 // Mark uses whose expressions cannot be expanded. 3073 if (!isSafeToExpand(S, SE)) 3074 LU.RigidFormula = true; 3075 3076 Formula F; 3077 F.initialMatch(S, L, SE); 3078 bool Inserted = InsertFormula(LU, LUIdx, F); 3079 assert(Inserted && "Initial formula already exists!"); (void)Inserted; 3080 } 3081 3082 /// Insert a simple single-register formula for the given expression into the 3083 /// given use. 3084 void 3085 LSRInstance::InsertSupplementalFormula(const SCEV *S, 3086 LSRUse &LU, size_t LUIdx) { 3087 Formula F; 3088 F.BaseRegs.push_back(S); 3089 F.HasBaseReg = true; 3090 bool Inserted = InsertFormula(LU, LUIdx, F); 3091 assert(Inserted && "Supplemental formula already exists!"); (void)Inserted; 3092 } 3093 3094 /// Note which registers are used by the given formula, updating RegUses. 3095 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) { 3096 if (F.ScaledReg) 3097 RegUses.countRegister(F.ScaledReg, LUIdx); 3098 for (const SCEV *BaseReg : F.BaseRegs) 3099 RegUses.countRegister(BaseReg, LUIdx); 3100 } 3101 3102 /// If the given formula has not yet been inserted, add it to the list, and 3103 /// return true. Return false otherwise. 3104 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) { 3105 // Do not insert formula that we will not be able to expand. 3106 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) && 3107 "Formula is illegal"); 3108 if (!LU.InsertFormula(F)) 3109 return false; 3110 3111 CountRegisters(F, LUIdx); 3112 return true; 3113 } 3114 3115 /// Check for other uses of loop-invariant values which we're tracking. These 3116 /// other uses will pin these values in registers, making them less profitable 3117 /// for elimination. 3118 /// TODO: This currently misses non-constant addrec step registers. 3119 /// TODO: Should this give more weight to users inside the loop? 3120 void 3121 LSRInstance::CollectLoopInvariantFixupsAndFormulae() { 3122 SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end()); 3123 SmallPtrSet<const SCEV *, 32> Visited; 3124 3125 while (!Worklist.empty()) { 3126 const SCEV *S = Worklist.pop_back_val(); 3127 3128 // Don't process the same SCEV twice 3129 if (!Visited.insert(S).second) 3130 continue; 3131 3132 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) 3133 Worklist.append(N->op_begin(), N->op_end()); 3134 else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) 3135 Worklist.push_back(C->getOperand()); 3136 else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 3137 Worklist.push_back(D->getLHS()); 3138 Worklist.push_back(D->getRHS()); 3139 } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) { 3140 const Value *V = US->getValue(); 3141 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 3142 // Look for instructions defined outside the loop. 3143 if (L->contains(Inst)) continue; 3144 } else if (isa<UndefValue>(V)) 3145 // Undef doesn't have a live range, so it doesn't matter. 3146 continue; 3147 for (const Use &U : V->uses()) { 3148 const Instruction *UserInst = dyn_cast<Instruction>(U.getUser()); 3149 // Ignore non-instructions. 3150 if (!UserInst) 3151 continue; 3152 // Ignore instructions in other functions (as can happen with 3153 // Constants). 3154 if (UserInst->getParent()->getParent() != L->getHeader()->getParent()) 3155 continue; 3156 // Ignore instructions not dominated by the loop. 3157 const BasicBlock *UseBB = !isa<PHINode>(UserInst) ? 3158 UserInst->getParent() : 3159 cast<PHINode>(UserInst)->getIncomingBlock( 3160 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 3161 if (!DT.dominates(L->getHeader(), UseBB)) 3162 continue; 3163 // Don't bother if the instruction is in a BB which ends in an EHPad. 3164 if (UseBB->getTerminator()->isEHPad()) 3165 continue; 3166 // Ignore uses which are part of other SCEV expressions, to avoid 3167 // analyzing them multiple times. 3168 if (SE.isSCEVable(UserInst->getType())) { 3169 const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst)); 3170 // If the user is a no-op, look through to its uses. 3171 if (!isa<SCEVUnknown>(UserS)) 3172 continue; 3173 if (UserS == US) { 3174 Worklist.push_back( 3175 SE.getUnknown(const_cast<Instruction *>(UserInst))); 3176 continue; 3177 } 3178 } 3179 // Ignore icmp instructions which are already being analyzed. 3180 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) { 3181 unsigned OtherIdx = !U.getOperandNo(); 3182 Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx)); 3183 if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L)) 3184 continue; 3185 } 3186 3187 std::pair<size_t, int64_t> P = getUse( 3188 S, LSRUse::Basic, MemAccessTy()); 3189 size_t LUIdx = P.first; 3190 int64_t Offset = P.second; 3191 LSRUse &LU = Uses[LUIdx]; 3192 LSRFixup &LF = LU.getNewFixup(); 3193 LF.UserInst = const_cast<Instruction *>(UserInst); 3194 LF.OperandValToReplace = U; 3195 LF.Offset = Offset; 3196 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3197 if (!LU.WidestFixupType || 3198 SE.getTypeSizeInBits(LU.WidestFixupType) < 3199 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3200 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3201 InsertSupplementalFormula(US, LU, LUIdx); 3202 CountRegisters(LU.Formulae.back(), Uses.size() - 1); 3203 break; 3204 } 3205 } 3206 } 3207 } 3208 3209 /// Split S into subexpressions which can be pulled out into separate 3210 /// registers. If C is non-null, multiply each subexpression by C. 3211 /// 3212 /// Return remainder expression after factoring the subexpressions captured by 3213 /// Ops. If Ops is complete, return NULL. 3214 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C, 3215 SmallVectorImpl<const SCEV *> &Ops, 3216 const Loop *L, 3217 ScalarEvolution &SE, 3218 unsigned Depth = 0) { 3219 // Arbitrarily cap recursion to protect compile time. 3220 if (Depth >= 3) 3221 return S; 3222 3223 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3224 // Break out add operands. 3225 for (const SCEV *S : Add->operands()) { 3226 const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1); 3227 if (Remainder) 3228 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3229 } 3230 return nullptr; 3231 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 3232 // Split a non-zero base out of an addrec. 3233 if (AR->getStart()->isZero() || !AR->isAffine()) 3234 return S; 3235 3236 const SCEV *Remainder = CollectSubexprs(AR->getStart(), 3237 C, Ops, L, SE, Depth+1); 3238 // Split the non-zero AddRec unless it is part of a nested recurrence that 3239 // does not pertain to this loop. 3240 if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) { 3241 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3242 Remainder = nullptr; 3243 } 3244 if (Remainder != AR->getStart()) { 3245 if (!Remainder) 3246 Remainder = SE.getConstant(AR->getType(), 0); 3247 return SE.getAddRecExpr(Remainder, 3248 AR->getStepRecurrence(SE), 3249 AR->getLoop(), 3250 //FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 3251 SCEV::FlagAnyWrap); 3252 } 3253 } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3254 // Break (C * (a + b + c)) into C*a + C*b + C*c. 3255 if (Mul->getNumOperands() != 2) 3256 return S; 3257 if (const SCEVConstant *Op0 = 3258 dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3259 C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0; 3260 const SCEV *Remainder = 3261 CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1); 3262 if (Remainder) 3263 Ops.push_back(SE.getMulExpr(C, Remainder)); 3264 return nullptr; 3265 } 3266 } 3267 return S; 3268 } 3269 3270 /// \brief Helper function for LSRInstance::GenerateReassociations. 3271 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 3272 const Formula &Base, 3273 unsigned Depth, size_t Idx, 3274 bool IsScaledReg) { 3275 const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3276 SmallVector<const SCEV *, 8> AddOps; 3277 const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE); 3278 if (Remainder) 3279 AddOps.push_back(Remainder); 3280 3281 if (AddOps.size() == 1) 3282 return; 3283 3284 for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(), 3285 JE = AddOps.end(); 3286 J != JE; ++J) { 3287 3288 // Loop-variant "unknown" values are uninteresting; we won't be able to 3289 // do anything meaningful with them. 3290 if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L)) 3291 continue; 3292 3293 // Don't pull a constant into a register if the constant could be folded 3294 // into an immediate field. 3295 if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3296 LU.AccessTy, *J, Base.getNumRegs() > 1)) 3297 continue; 3298 3299 // Collect all operands except *J. 3300 SmallVector<const SCEV *, 8> InnerAddOps( 3301 ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J); 3302 InnerAddOps.append(std::next(J), 3303 ((const SmallVector<const SCEV *, 8> &)AddOps).end()); 3304 3305 // Don't leave just a constant behind in a register if the constant could 3306 // be folded into an immediate field. 3307 if (InnerAddOps.size() == 1 && 3308 isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3309 LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1)) 3310 continue; 3311 3312 const SCEV *InnerSum = SE.getAddExpr(InnerAddOps); 3313 if (InnerSum->isZero()) 3314 continue; 3315 Formula F = Base; 3316 3317 // Add the remaining pieces of the add back into the new formula. 3318 const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum); 3319 if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 && 3320 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3321 InnerSumSC->getValue()->getZExtValue())) { 3322 F.UnfoldedOffset = 3323 (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue(); 3324 if (IsScaledReg) 3325 F.ScaledReg = nullptr; 3326 else 3327 F.BaseRegs.erase(F.BaseRegs.begin() + Idx); 3328 } else if (IsScaledReg) 3329 F.ScaledReg = InnerSum; 3330 else 3331 F.BaseRegs[Idx] = InnerSum; 3332 3333 // Add J as its own register, or an unfolded immediate. 3334 const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J); 3335 if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 && 3336 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3337 SC->getValue()->getZExtValue())) 3338 F.UnfoldedOffset = 3339 (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue(); 3340 else 3341 F.BaseRegs.push_back(*J); 3342 // We may have changed the number of register in base regs, adjust the 3343 // formula accordingly. 3344 F.canonicalize(); 3345 3346 if (InsertFormula(LU, LUIdx, F)) 3347 // If that formula hadn't been seen before, recurse to find more like 3348 // it. 3349 GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth + 1); 3350 } 3351 } 3352 3353 /// Split out subexpressions from adds and the bases of addrecs. 3354 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx, 3355 Formula Base, unsigned Depth) { 3356 assert(Base.isCanonical() && "Input must be in the canonical form"); 3357 // Arbitrarily cap recursion to protect compile time. 3358 if (Depth >= 3) 3359 return; 3360 3361 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3362 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i); 3363 3364 if (Base.Scale == 1) 3365 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, 3366 /* Idx */ -1, /* IsScaledReg */ true); 3367 } 3368 3369 /// Generate a formula consisting of all of the loop-dominating registers added 3370 /// into a single register. 3371 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx, 3372 Formula Base) { 3373 // This method is only interesting on a plurality of registers. 3374 if (Base.BaseRegs.size() + (Base.Scale == 1) <= 1) 3375 return; 3376 3377 // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before 3378 // processing the formula. 3379 Base.unscale(); 3380 Formula F = Base; 3381 F.BaseRegs.clear(); 3382 SmallVector<const SCEV *, 4> Ops; 3383 for (const SCEV *BaseReg : Base.BaseRegs) { 3384 if (SE.properlyDominates(BaseReg, L->getHeader()) && 3385 !SE.hasComputableLoopEvolution(BaseReg, L)) 3386 Ops.push_back(BaseReg); 3387 else 3388 F.BaseRegs.push_back(BaseReg); 3389 } 3390 if (Ops.size() > 1) { 3391 const SCEV *Sum = SE.getAddExpr(Ops); 3392 // TODO: If Sum is zero, it probably means ScalarEvolution missed an 3393 // opportunity to fold something. For now, just ignore such cases 3394 // rather than proceed with zero in a register. 3395 if (!Sum->isZero()) { 3396 F.BaseRegs.push_back(Sum); 3397 F.canonicalize(); 3398 (void)InsertFormula(LU, LUIdx, F); 3399 } 3400 } 3401 } 3402 3403 /// \brief Helper function for LSRInstance::GenerateSymbolicOffsets. 3404 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 3405 const Formula &Base, size_t Idx, 3406 bool IsScaledReg) { 3407 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3408 GlobalValue *GV = ExtractSymbol(G, SE); 3409 if (G->isZero() || !GV) 3410 return; 3411 Formula F = Base; 3412 F.BaseGV = GV; 3413 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3414 return; 3415 if (IsScaledReg) 3416 F.ScaledReg = G; 3417 else 3418 F.BaseRegs[Idx] = G; 3419 (void)InsertFormula(LU, LUIdx, F); 3420 } 3421 3422 /// Generate reuse formulae using symbolic offsets. 3423 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, 3424 Formula Base) { 3425 // We can't add a symbolic offset if the address already contains one. 3426 if (Base.BaseGV) return; 3427 3428 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3429 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i); 3430 if (Base.Scale == 1) 3431 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1, 3432 /* IsScaledReg */ true); 3433 } 3434 3435 /// \brief Helper function for LSRInstance::GenerateConstantOffsets. 3436 void LSRInstance::GenerateConstantOffsetsImpl( 3437 LSRUse &LU, unsigned LUIdx, const Formula &Base, 3438 const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) { 3439 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3440 for (int64_t Offset : Worklist) { 3441 Formula F = Base; 3442 F.BaseOffset = (uint64_t)Base.BaseOffset - Offset; 3443 if (isLegalUse(TTI, LU.MinOffset - Offset, LU.MaxOffset - Offset, LU.Kind, 3444 LU.AccessTy, F)) { 3445 // Add the offset to the base register. 3446 const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G); 3447 // If it cancelled out, drop the base register, otherwise update it. 3448 if (NewG->isZero()) { 3449 if (IsScaledReg) { 3450 F.Scale = 0; 3451 F.ScaledReg = nullptr; 3452 } else 3453 F.deleteBaseReg(F.BaseRegs[Idx]); 3454 F.canonicalize(); 3455 } else if (IsScaledReg) 3456 F.ScaledReg = NewG; 3457 else 3458 F.BaseRegs[Idx] = NewG; 3459 3460 (void)InsertFormula(LU, LUIdx, F); 3461 } 3462 } 3463 3464 int64_t Imm = ExtractImmediate(G, SE); 3465 if (G->isZero() || Imm == 0) 3466 return; 3467 Formula F = Base; 3468 F.BaseOffset = (uint64_t)F.BaseOffset + Imm; 3469 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3470 return; 3471 if (IsScaledReg) 3472 F.ScaledReg = G; 3473 else 3474 F.BaseRegs[Idx] = G; 3475 (void)InsertFormula(LU, LUIdx, F); 3476 } 3477 3478 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets. 3479 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, 3480 Formula Base) { 3481 // TODO: For now, just add the min and max offset, because it usually isn't 3482 // worthwhile looking at everything inbetween. 3483 SmallVector<int64_t, 2> Worklist; 3484 Worklist.push_back(LU.MinOffset); 3485 if (LU.MaxOffset != LU.MinOffset) 3486 Worklist.push_back(LU.MaxOffset); 3487 3488 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3489 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i); 3490 if (Base.Scale == 1) 3491 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1, 3492 /* IsScaledReg */ true); 3493 } 3494 3495 /// For ICmpZero, check to see if we can scale up the comparison. For example, x 3496 /// == y -> x*c == y*c. 3497 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, 3498 Formula Base) { 3499 if (LU.Kind != LSRUse::ICmpZero) return; 3500 3501 // Determine the integer type for the base formula. 3502 Type *IntTy = Base.getType(); 3503 if (!IntTy) return; 3504 if (SE.getTypeSizeInBits(IntTy) > 64) return; 3505 3506 // Don't do this if there is more than one offset. 3507 if (LU.MinOffset != LU.MaxOffset) return; 3508 3509 assert(!Base.BaseGV && "ICmpZero use is not legal!"); 3510 3511 // Check each interesting stride. 3512 for (int64_t Factor : Factors) { 3513 // Check that the multiplication doesn't overflow. 3514 if (Base.BaseOffset == INT64_MIN && Factor == -1) 3515 continue; 3516 int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor; 3517 if (NewBaseOffset / Factor != Base.BaseOffset) 3518 continue; 3519 // If the offset will be truncated at this use, check that it is in bounds. 3520 if (!IntTy->isPointerTy() && 3521 !ConstantInt::isValueValidForType(IntTy, NewBaseOffset)) 3522 continue; 3523 3524 // Check that multiplying with the use offset doesn't overflow. 3525 int64_t Offset = LU.MinOffset; 3526 if (Offset == INT64_MIN && Factor == -1) 3527 continue; 3528 Offset = (uint64_t)Offset * Factor; 3529 if (Offset / Factor != LU.MinOffset) 3530 continue; 3531 // If the offset will be truncated at this use, check that it is in bounds. 3532 if (!IntTy->isPointerTy() && 3533 !ConstantInt::isValueValidForType(IntTy, Offset)) 3534 continue; 3535 3536 Formula F = Base; 3537 F.BaseOffset = NewBaseOffset; 3538 3539 // Check that this scale is legal. 3540 if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F)) 3541 continue; 3542 3543 // Compensate for the use having MinOffset built into it. 3544 F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset; 3545 3546 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3547 3548 // Check that multiplying with each base register doesn't overflow. 3549 for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) { 3550 F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS); 3551 if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i]) 3552 goto next; 3553 } 3554 3555 // Check that multiplying with the scaled register doesn't overflow. 3556 if (F.ScaledReg) { 3557 F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS); 3558 if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg) 3559 continue; 3560 } 3561 3562 // Check that multiplying with the unfolded offset doesn't overflow. 3563 if (F.UnfoldedOffset != 0) { 3564 if (F.UnfoldedOffset == INT64_MIN && Factor == -1) 3565 continue; 3566 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor; 3567 if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset) 3568 continue; 3569 // If the offset will be truncated, check that it is in bounds. 3570 if (!IntTy->isPointerTy() && 3571 !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset)) 3572 continue; 3573 } 3574 3575 // If we make it here and it's legal, add it. 3576 (void)InsertFormula(LU, LUIdx, F); 3577 next:; 3578 } 3579 } 3580 3581 /// Generate stride factor reuse formulae by making use of scaled-offset address 3582 /// modes, for example. 3583 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) { 3584 // Determine the integer type for the base formula. 3585 Type *IntTy = Base.getType(); 3586 if (!IntTy) return; 3587 3588 // If this Formula already has a scaled register, we can't add another one. 3589 // Try to unscale the formula to generate a better scale. 3590 if (Base.Scale != 0 && !Base.unscale()) 3591 return; 3592 3593 assert(Base.Scale == 0 && "unscale did not did its job!"); 3594 3595 // Check each interesting stride. 3596 for (int64_t Factor : Factors) { 3597 Base.Scale = Factor; 3598 Base.HasBaseReg = Base.BaseRegs.size() > 1; 3599 // Check whether this scale is going to be legal. 3600 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 3601 Base)) { 3602 // As a special-case, handle special out-of-loop Basic users specially. 3603 // TODO: Reconsider this special case. 3604 if (LU.Kind == LSRUse::Basic && 3605 isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special, 3606 LU.AccessTy, Base) && 3607 LU.AllFixupsOutsideLoop) 3608 LU.Kind = LSRUse::Special; 3609 else 3610 continue; 3611 } 3612 // For an ICmpZero, negating a solitary base register won't lead to 3613 // new solutions. 3614 if (LU.Kind == LSRUse::ICmpZero && 3615 !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV) 3616 continue; 3617 // For each addrec base reg, apply the scale, if possible. 3618 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3619 if (const SCEVAddRecExpr *AR = 3620 dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i])) { 3621 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3622 if (FactorS->isZero()) 3623 continue; 3624 // Divide out the factor, ignoring high bits, since we'll be 3625 // scaling the value back up in the end. 3626 if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) { 3627 // TODO: This could be optimized to avoid all the copying. 3628 Formula F = Base; 3629 F.ScaledReg = Quotient; 3630 F.deleteBaseReg(F.BaseRegs[i]); 3631 // The canonical representation of 1*reg is reg, which is already in 3632 // Base. In that case, do not try to insert the formula, it will be 3633 // rejected anyway. 3634 if (F.Scale == 1 && F.BaseRegs.empty()) 3635 continue; 3636 (void)InsertFormula(LU, LUIdx, F); 3637 } 3638 } 3639 } 3640 } 3641 3642 /// Generate reuse formulae from different IV types. 3643 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) { 3644 // Don't bother truncating symbolic values. 3645 if (Base.BaseGV) return; 3646 3647 // Determine the integer type for the base formula. 3648 Type *DstTy = Base.getType(); 3649 if (!DstTy) return; 3650 DstTy = SE.getEffectiveSCEVType(DstTy); 3651 3652 for (Type *SrcTy : Types) { 3653 if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) { 3654 Formula F = Base; 3655 3656 if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy); 3657 for (const SCEV *&BaseReg : F.BaseRegs) 3658 BaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy); 3659 3660 // TODO: This assumes we've done basic processing on all uses and 3661 // have an idea what the register usage is. 3662 if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses)) 3663 continue; 3664 3665 (void)InsertFormula(LU, LUIdx, F); 3666 } 3667 } 3668 } 3669 3670 namespace { 3671 3672 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer 3673 /// modifications so that the search phase doesn't have to worry about the data 3674 /// structures moving underneath it. 3675 struct WorkItem { 3676 size_t LUIdx; 3677 int64_t Imm; 3678 const SCEV *OrigReg; 3679 3680 WorkItem(size_t LI, int64_t I, const SCEV *R) 3681 : LUIdx(LI), Imm(I), OrigReg(R) {} 3682 3683 void print(raw_ostream &OS) const; 3684 void dump() const; 3685 }; 3686 3687 } // end anonymous namespace 3688 3689 void WorkItem::print(raw_ostream &OS) const { 3690 OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx 3691 << " , add offset " << Imm; 3692 } 3693 3694 LLVM_DUMP_METHOD 3695 void WorkItem::dump() const { 3696 print(errs()); errs() << '\n'; 3697 } 3698 3699 /// Look for registers which are a constant distance apart and try to form reuse 3700 /// opportunities between them. 3701 void LSRInstance::GenerateCrossUseConstantOffsets() { 3702 // Group the registers by their value without any added constant offset. 3703 typedef std::map<int64_t, const SCEV *> ImmMapTy; 3704 DenseMap<const SCEV *, ImmMapTy> Map; 3705 DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap; 3706 SmallVector<const SCEV *, 8> Sequence; 3707 for (const SCEV *Use : RegUses) { 3708 const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify. 3709 int64_t Imm = ExtractImmediate(Reg, SE); 3710 auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy())); 3711 if (Pair.second) 3712 Sequence.push_back(Reg); 3713 Pair.first->second.insert(std::make_pair(Imm, Use)); 3714 UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use); 3715 } 3716 3717 // Now examine each set of registers with the same base value. Build up 3718 // a list of work to do and do the work in a separate step so that we're 3719 // not adding formulae and register counts while we're searching. 3720 SmallVector<WorkItem, 32> WorkItems; 3721 SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems; 3722 for (const SCEV *Reg : Sequence) { 3723 const ImmMapTy &Imms = Map.find(Reg)->second; 3724 3725 // It's not worthwhile looking for reuse if there's only one offset. 3726 if (Imms.size() == 1) 3727 continue; 3728 3729 DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':'; 3730 for (const auto &Entry : Imms) 3731 dbgs() << ' ' << Entry.first; 3732 dbgs() << '\n'); 3733 3734 // Examine each offset. 3735 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); 3736 J != JE; ++J) { 3737 const SCEV *OrigReg = J->second; 3738 3739 int64_t JImm = J->first; 3740 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg); 3741 3742 if (!isa<SCEVConstant>(OrigReg) && 3743 UsedByIndicesMap[Reg].count() == 1) { 3744 DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n'); 3745 continue; 3746 } 3747 3748 // Conservatively examine offsets between this orig reg a few selected 3749 // other orig regs. 3750 ImmMapTy::const_iterator OtherImms[] = { 3751 Imms.begin(), std::prev(Imms.end()), 3752 Imms.lower_bound((Imms.begin()->first + std::prev(Imms.end())->first) / 3753 2) 3754 }; 3755 for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) { 3756 ImmMapTy::const_iterator M = OtherImms[i]; 3757 if (M == J || M == JE) continue; 3758 3759 // Compute the difference between the two. 3760 int64_t Imm = (uint64_t)JImm - M->first; 3761 for (int LUIdx = UsedByIndices.find_first(); LUIdx != -1; 3762 LUIdx = UsedByIndices.find_next(LUIdx)) 3763 // Make a memo of this use, offset, and register tuple. 3764 if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second) 3765 WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg)); 3766 } 3767 } 3768 } 3769 3770 Map.clear(); 3771 Sequence.clear(); 3772 UsedByIndicesMap.clear(); 3773 UniqueItems.clear(); 3774 3775 // Now iterate through the worklist and add new formulae. 3776 for (const WorkItem &WI : WorkItems) { 3777 size_t LUIdx = WI.LUIdx; 3778 LSRUse &LU = Uses[LUIdx]; 3779 int64_t Imm = WI.Imm; 3780 const SCEV *OrigReg = WI.OrigReg; 3781 3782 Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType()); 3783 const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm)); 3784 unsigned BitWidth = SE.getTypeSizeInBits(IntTy); 3785 3786 // TODO: Use a more targeted data structure. 3787 for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) { 3788 Formula F = LU.Formulae[L]; 3789 // FIXME: The code for the scaled and unscaled registers looks 3790 // very similar but slightly different. Investigate if they 3791 // could be merged. That way, we would not have to unscale the 3792 // Formula. 3793 F.unscale(); 3794 // Use the immediate in the scaled register. 3795 if (F.ScaledReg == OrigReg) { 3796 int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale; 3797 // Don't create 50 + reg(-50). 3798 if (F.referencesReg(SE.getSCEV( 3799 ConstantInt::get(IntTy, -(uint64_t)Offset)))) 3800 continue; 3801 Formula NewF = F; 3802 NewF.BaseOffset = Offset; 3803 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 3804 NewF)) 3805 continue; 3806 NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg); 3807 3808 // If the new scale is a constant in a register, and adding the constant 3809 // value to the immediate would produce a value closer to zero than the 3810 // immediate itself, then the formula isn't worthwhile. 3811 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg)) 3812 if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) && 3813 (C->getAPInt().abs() * APInt(BitWidth, F.Scale)) 3814 .ule(std::abs(NewF.BaseOffset))) 3815 continue; 3816 3817 // OK, looks good. 3818 NewF.canonicalize(); 3819 (void)InsertFormula(LU, LUIdx, NewF); 3820 } else { 3821 // Use the immediate in a base register. 3822 for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) { 3823 const SCEV *BaseReg = F.BaseRegs[N]; 3824 if (BaseReg != OrigReg) 3825 continue; 3826 Formula NewF = F; 3827 NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm; 3828 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, 3829 LU.Kind, LU.AccessTy, NewF)) { 3830 if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm)) 3831 continue; 3832 NewF = F; 3833 NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm; 3834 } 3835 NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg); 3836 3837 // If the new formula has a constant in a register, and adding the 3838 // constant value to the immediate would produce a value closer to 3839 // zero than the immediate itself, then the formula isn't worthwhile. 3840 for (const SCEV *NewReg : NewF.BaseRegs) 3841 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg)) 3842 if ((C->getAPInt() + NewF.BaseOffset) 3843 .abs() 3844 .slt(std::abs(NewF.BaseOffset)) && 3845 (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >= 3846 countTrailingZeros<uint64_t>(NewF.BaseOffset)) 3847 goto skip_formula; 3848 3849 // Ok, looks good. 3850 NewF.canonicalize(); 3851 (void)InsertFormula(LU, LUIdx, NewF); 3852 break; 3853 skip_formula:; 3854 } 3855 } 3856 } 3857 } 3858 } 3859 3860 /// Generate formulae for each use. 3861 void 3862 LSRInstance::GenerateAllReuseFormulae() { 3863 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan 3864 // queries are more precise. 3865 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3866 LSRUse &LU = Uses[LUIdx]; 3867 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3868 GenerateReassociations(LU, LUIdx, LU.Formulae[i]); 3869 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3870 GenerateCombinations(LU, LUIdx, LU.Formulae[i]); 3871 } 3872 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3873 LSRUse &LU = Uses[LUIdx]; 3874 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3875 GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]); 3876 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3877 GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]); 3878 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3879 GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]); 3880 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3881 GenerateScales(LU, LUIdx, LU.Formulae[i]); 3882 } 3883 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3884 LSRUse &LU = Uses[LUIdx]; 3885 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3886 GenerateTruncates(LU, LUIdx, LU.Formulae[i]); 3887 } 3888 3889 GenerateCrossUseConstantOffsets(); 3890 3891 DEBUG(dbgs() << "\n" 3892 "After generating reuse formulae:\n"; 3893 print_uses(dbgs())); 3894 } 3895 3896 /// If there are multiple formulae with the same set of registers used 3897 /// by other uses, pick the best one and delete the others. 3898 void LSRInstance::FilterOutUndesirableDedicatedRegisters() { 3899 DenseSet<const SCEV *> VisitedRegs; 3900 SmallPtrSet<const SCEV *, 16> Regs; 3901 SmallPtrSet<const SCEV *, 16> LoserRegs; 3902 #ifndef NDEBUG 3903 bool ChangedFormulae = false; 3904 #endif 3905 3906 // Collect the best formula for each unique set of shared registers. This 3907 // is reset for each use. 3908 typedef DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo> 3909 BestFormulaeTy; 3910 BestFormulaeTy BestFormulae; 3911 3912 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3913 LSRUse &LU = Uses[LUIdx]; 3914 DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n'); 3915 3916 bool Any = false; 3917 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); 3918 FIdx != NumForms; ++FIdx) { 3919 Formula &F = LU.Formulae[FIdx]; 3920 3921 // Some formulas are instant losers. For example, they may depend on 3922 // nonexistent AddRecs from other loops. These need to be filtered 3923 // immediately, otherwise heuristics could choose them over others leading 3924 // to an unsatisfactory solution. Passing LoserRegs into RateFormula here 3925 // avoids the need to recompute this information across formulae using the 3926 // same bad AddRec. Passing LoserRegs is also essential unless we remove 3927 // the corresponding bad register from the Regs set. 3928 Cost CostF; 3929 Regs.clear(); 3930 CostF.RateFormula(TTI, F, Regs, VisitedRegs, L, SE, DT, LU, &LoserRegs); 3931 if (CostF.isLoser()) { 3932 // During initial formula generation, undesirable formulae are generated 3933 // by uses within other loops that have some non-trivial address mode or 3934 // use the postinc form of the IV. LSR needs to provide these formulae 3935 // as the basis of rediscovering the desired formula that uses an AddRec 3936 // corresponding to the existing phi. Once all formulae have been 3937 // generated, these initial losers may be pruned. 3938 DEBUG(dbgs() << " Filtering loser "; F.print(dbgs()); 3939 dbgs() << "\n"); 3940 } 3941 else { 3942 SmallVector<const SCEV *, 4> Key; 3943 for (const SCEV *Reg : F.BaseRegs) { 3944 if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx)) 3945 Key.push_back(Reg); 3946 } 3947 if (F.ScaledReg && 3948 RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx)) 3949 Key.push_back(F.ScaledReg); 3950 // Unstable sort by host order ok, because this is only used for 3951 // uniquifying. 3952 std::sort(Key.begin(), Key.end()); 3953 3954 std::pair<BestFormulaeTy::const_iterator, bool> P = 3955 BestFormulae.insert(std::make_pair(Key, FIdx)); 3956 if (P.second) 3957 continue; 3958 3959 Formula &Best = LU.Formulae[P.first->second]; 3960 3961 Cost CostBest; 3962 Regs.clear(); 3963 CostBest.RateFormula(TTI, Best, Regs, VisitedRegs, L, SE, DT, LU); 3964 if (CostF < CostBest) 3965 std::swap(F, Best); 3966 DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 3967 dbgs() << "\n" 3968 " in favor of formula "; Best.print(dbgs()); 3969 dbgs() << '\n'); 3970 } 3971 #ifndef NDEBUG 3972 ChangedFormulae = true; 3973 #endif 3974 LU.DeleteFormula(F); 3975 --FIdx; 3976 --NumForms; 3977 Any = true; 3978 } 3979 3980 // Now that we've filtered out some formulae, recompute the Regs set. 3981 if (Any) 3982 LU.RecomputeRegs(LUIdx, RegUses); 3983 3984 // Reset this to prepare for the next use. 3985 BestFormulae.clear(); 3986 } 3987 3988 DEBUG(if (ChangedFormulae) { 3989 dbgs() << "\n" 3990 "After filtering out undesirable candidates:\n"; 3991 print_uses(dbgs()); 3992 }); 3993 } 3994 3995 // This is a rough guess that seems to work fairly well. 3996 static const size_t ComplexityLimit = UINT16_MAX; 3997 3998 /// Estimate the worst-case number of solutions the solver might have to 3999 /// consider. It almost never considers this many solutions because it prune the 4000 /// search space, but the pruning isn't always sufficient. 4001 size_t LSRInstance::EstimateSearchSpaceComplexity() const { 4002 size_t Power = 1; 4003 for (const LSRUse &LU : Uses) { 4004 size_t FSize = LU.Formulae.size(); 4005 if (FSize >= ComplexityLimit) { 4006 Power = ComplexityLimit; 4007 break; 4008 } 4009 Power *= FSize; 4010 if (Power >= ComplexityLimit) 4011 break; 4012 } 4013 return Power; 4014 } 4015 4016 /// When one formula uses a superset of the registers of another formula, it 4017 /// won't help reduce register pressure (though it may not necessarily hurt 4018 /// register pressure); remove it to simplify the system. 4019 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() { 4020 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4021 DEBUG(dbgs() << "The search space is too complex.\n"); 4022 4023 DEBUG(dbgs() << "Narrowing the search space by eliminating formulae " 4024 "which use a superset of registers used by other " 4025 "formulae.\n"); 4026 4027 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4028 LSRUse &LU = Uses[LUIdx]; 4029 bool Any = false; 4030 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4031 Formula &F = LU.Formulae[i]; 4032 // Look for a formula with a constant or GV in a register. If the use 4033 // also has a formula with that same value in an immediate field, 4034 // delete the one that uses a register. 4035 for (SmallVectorImpl<const SCEV *>::const_iterator 4036 I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) { 4037 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) { 4038 Formula NewF = F; 4039 NewF.BaseOffset += C->getValue()->getSExtValue(); 4040 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4041 (I - F.BaseRegs.begin())); 4042 if (LU.HasFormulaWithSameRegs(NewF)) { 4043 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4044 LU.DeleteFormula(F); 4045 --i; 4046 --e; 4047 Any = true; 4048 break; 4049 } 4050 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) { 4051 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) 4052 if (!F.BaseGV) { 4053 Formula NewF = F; 4054 NewF.BaseGV = GV; 4055 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4056 (I - F.BaseRegs.begin())); 4057 if (LU.HasFormulaWithSameRegs(NewF)) { 4058 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4059 dbgs() << '\n'); 4060 LU.DeleteFormula(F); 4061 --i; 4062 --e; 4063 Any = true; 4064 break; 4065 } 4066 } 4067 } 4068 } 4069 } 4070 if (Any) 4071 LU.RecomputeRegs(LUIdx, RegUses); 4072 } 4073 4074 DEBUG(dbgs() << "After pre-selection:\n"; 4075 print_uses(dbgs())); 4076 } 4077 } 4078 4079 /// When there are many registers for expressions like A, A+1, A+2, etc., 4080 /// allocate a single register for them. 4081 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() { 4082 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4083 return; 4084 4085 DEBUG(dbgs() << "The search space is too complex.\n" 4086 "Narrowing the search space by assuming that uses separated " 4087 "by a constant offset will use the same registers.\n"); 4088 4089 // This is especially useful for unrolled loops. 4090 4091 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4092 LSRUse &LU = Uses[LUIdx]; 4093 for (const Formula &F : LU.Formulae) { 4094 if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1)) 4095 continue; 4096 4097 LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU); 4098 if (!LUThatHas) 4099 continue; 4100 4101 if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false, 4102 LU.Kind, LU.AccessTy)) 4103 continue; 4104 4105 DEBUG(dbgs() << " Deleting use "; LU.print(dbgs()); dbgs() << '\n'); 4106 4107 LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop; 4108 4109 // Transfer the fixups of LU to LUThatHas. 4110 for (LSRFixup &Fixup : LU.Fixups) { 4111 Fixup.Offset += F.BaseOffset; 4112 LUThatHas->pushFixup(Fixup); 4113 DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n'); 4114 } 4115 4116 // Delete formulae from the new use which are no longer legal. 4117 bool Any = false; 4118 for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) { 4119 Formula &F = LUThatHas->Formulae[i]; 4120 if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset, 4121 LUThatHas->Kind, LUThatHas->AccessTy, F)) { 4122 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4123 dbgs() << '\n'); 4124 LUThatHas->DeleteFormula(F); 4125 --i; 4126 --e; 4127 Any = true; 4128 } 4129 } 4130 4131 if (Any) 4132 LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses); 4133 4134 // Delete the old use. 4135 DeleteUse(LU, LUIdx); 4136 --LUIdx; 4137 --NumUses; 4138 break; 4139 } 4140 } 4141 4142 DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4143 } 4144 4145 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that 4146 /// we've done more filtering, as it may be able to find more formulae to 4147 /// eliminate. 4148 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){ 4149 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4150 DEBUG(dbgs() << "The search space is too complex.\n"); 4151 4152 DEBUG(dbgs() << "Narrowing the search space by re-filtering out " 4153 "undesirable dedicated registers.\n"); 4154 4155 FilterOutUndesirableDedicatedRegisters(); 4156 4157 DEBUG(dbgs() << "After pre-selection:\n"; 4158 print_uses(dbgs())); 4159 } 4160 } 4161 4162 /// Pick a register which seems likely to be profitable, and then in any use 4163 /// which has any reference to that register, delete all formulae which do not 4164 /// reference that register. 4165 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() { 4166 // With all other options exhausted, loop until the system is simple 4167 // enough to handle. 4168 SmallPtrSet<const SCEV *, 4> Taken; 4169 while (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4170 // Ok, we have too many of formulae on our hands to conveniently handle. 4171 // Use a rough heuristic to thin out the list. 4172 DEBUG(dbgs() << "The search space is too complex.\n"); 4173 4174 // Pick the register which is used by the most LSRUses, which is likely 4175 // to be a good reuse register candidate. 4176 const SCEV *Best = nullptr; 4177 unsigned BestNum = 0; 4178 for (const SCEV *Reg : RegUses) { 4179 if (Taken.count(Reg)) 4180 continue; 4181 if (!Best) { 4182 Best = Reg; 4183 BestNum = RegUses.getUsedByIndices(Reg).count(); 4184 } else { 4185 unsigned Count = RegUses.getUsedByIndices(Reg).count(); 4186 if (Count > BestNum) { 4187 Best = Reg; 4188 BestNum = Count; 4189 } 4190 } 4191 } 4192 4193 DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best 4194 << " will yield profitable reuse.\n"); 4195 Taken.insert(Best); 4196 4197 // In any use with formulae which references this register, delete formulae 4198 // which don't reference it. 4199 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4200 LSRUse &LU = Uses[LUIdx]; 4201 if (!LU.Regs.count(Best)) continue; 4202 4203 bool Any = false; 4204 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4205 Formula &F = LU.Formulae[i]; 4206 if (!F.referencesReg(Best)) { 4207 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4208 LU.DeleteFormula(F); 4209 --e; 4210 --i; 4211 Any = true; 4212 assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?"); 4213 continue; 4214 } 4215 } 4216 4217 if (Any) 4218 LU.RecomputeRegs(LUIdx, RegUses); 4219 } 4220 4221 DEBUG(dbgs() << "After pre-selection:\n"; 4222 print_uses(dbgs())); 4223 } 4224 } 4225 4226 /// If there are an extraordinary number of formulae to choose from, use some 4227 /// rough heuristics to prune down the number of formulae. This keeps the main 4228 /// solver from taking an extraordinary amount of time in some worst-case 4229 /// scenarios. 4230 void LSRInstance::NarrowSearchSpaceUsingHeuristics() { 4231 NarrowSearchSpaceByDetectingSupersets(); 4232 NarrowSearchSpaceByCollapsingUnrolledCode(); 4233 NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 4234 NarrowSearchSpaceByPickingWinnerRegs(); 4235 } 4236 4237 /// This is the recursive solver. 4238 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 4239 Cost &SolutionCost, 4240 SmallVectorImpl<const Formula *> &Workspace, 4241 const Cost &CurCost, 4242 const SmallPtrSet<const SCEV *, 16> &CurRegs, 4243 DenseSet<const SCEV *> &VisitedRegs) const { 4244 // Some ideas: 4245 // - prune more: 4246 // - use more aggressive filtering 4247 // - sort the formula so that the most profitable solutions are found first 4248 // - sort the uses too 4249 // - search faster: 4250 // - don't compute a cost, and then compare. compare while computing a cost 4251 // and bail early. 4252 // - track register sets with SmallBitVector 4253 4254 const LSRUse &LU = Uses[Workspace.size()]; 4255 4256 // If this use references any register that's already a part of the 4257 // in-progress solution, consider it a requirement that a formula must 4258 // reference that register in order to be considered. This prunes out 4259 // unprofitable searching. 4260 SmallSetVector<const SCEV *, 4> ReqRegs; 4261 for (const SCEV *S : CurRegs) 4262 if (LU.Regs.count(S)) 4263 ReqRegs.insert(S); 4264 4265 SmallPtrSet<const SCEV *, 16> NewRegs; 4266 Cost NewCost; 4267 for (const Formula &F : LU.Formulae) { 4268 // Ignore formulae which may not be ideal in terms of register reuse of 4269 // ReqRegs. The formula should use all required registers before 4270 // introducing new ones. 4271 int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size()); 4272 for (const SCEV *Reg : ReqRegs) { 4273 if ((F.ScaledReg && F.ScaledReg == Reg) || 4274 is_contained(F.BaseRegs, Reg)) { 4275 --NumReqRegsToFind; 4276 if (NumReqRegsToFind == 0) 4277 break; 4278 } 4279 } 4280 if (NumReqRegsToFind != 0) { 4281 // If none of the formulae satisfied the required registers, then we could 4282 // clear ReqRegs and try again. Currently, we simply give up in this case. 4283 continue; 4284 } 4285 4286 // Evaluate the cost of the current formula. If it's already worse than 4287 // the current best, prune the search at that point. 4288 NewCost = CurCost; 4289 NewRegs = CurRegs; 4290 NewCost.RateFormula(TTI, F, NewRegs, VisitedRegs, L, SE, DT, LU); 4291 if (NewCost < SolutionCost) { 4292 Workspace.push_back(&F); 4293 if (Workspace.size() != Uses.size()) { 4294 SolveRecurse(Solution, SolutionCost, Workspace, NewCost, 4295 NewRegs, VisitedRegs); 4296 if (F.getNumRegs() == 1 && Workspace.size() == 1) 4297 VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]); 4298 } else { 4299 DEBUG(dbgs() << "New best at "; NewCost.print(dbgs()); 4300 dbgs() << ".\n Regs:"; 4301 for (const SCEV *S : NewRegs) 4302 dbgs() << ' ' << *S; 4303 dbgs() << '\n'); 4304 4305 SolutionCost = NewCost; 4306 Solution = Workspace; 4307 } 4308 Workspace.pop_back(); 4309 } 4310 } 4311 } 4312 4313 /// Choose one formula from each use. Return the results in the given Solution 4314 /// vector. 4315 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const { 4316 SmallVector<const Formula *, 8> Workspace; 4317 Cost SolutionCost; 4318 SolutionCost.Lose(); 4319 Cost CurCost; 4320 SmallPtrSet<const SCEV *, 16> CurRegs; 4321 DenseSet<const SCEV *> VisitedRegs; 4322 Workspace.reserve(Uses.size()); 4323 4324 // SolveRecurse does all the work. 4325 SolveRecurse(Solution, SolutionCost, Workspace, CurCost, 4326 CurRegs, VisitedRegs); 4327 if (Solution.empty()) { 4328 DEBUG(dbgs() << "\nNo Satisfactory Solution\n"); 4329 return; 4330 } 4331 4332 // Ok, we've now made all our decisions. 4333 DEBUG(dbgs() << "\n" 4334 "The chosen solution requires "; SolutionCost.print(dbgs()); 4335 dbgs() << ":\n"; 4336 for (size_t i = 0, e = Uses.size(); i != e; ++i) { 4337 dbgs() << " "; 4338 Uses[i].print(dbgs()); 4339 dbgs() << "\n" 4340 " "; 4341 Solution[i]->print(dbgs()); 4342 dbgs() << '\n'; 4343 }); 4344 4345 assert(Solution.size() == Uses.size() && "Malformed solution!"); 4346 } 4347 4348 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as 4349 /// we can go while still being dominated by the input positions. This helps 4350 /// canonicalize the insert position, which encourages sharing. 4351 BasicBlock::iterator 4352 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP, 4353 const SmallVectorImpl<Instruction *> &Inputs) 4354 const { 4355 Instruction *Tentative = &*IP; 4356 while (true) { 4357 bool AllDominate = true; 4358 Instruction *BetterPos = nullptr; 4359 // Don't bother attempting to insert before a catchswitch, their basic block 4360 // cannot have other non-PHI instructions. 4361 if (isa<CatchSwitchInst>(Tentative)) 4362 return IP; 4363 4364 for (Instruction *Inst : Inputs) { 4365 if (Inst == Tentative || !DT.dominates(Inst, Tentative)) { 4366 AllDominate = false; 4367 break; 4368 } 4369 // Attempt to find an insert position in the middle of the block, 4370 // instead of at the end, so that it can be used for other expansions. 4371 if (Tentative->getParent() == Inst->getParent() && 4372 (!BetterPos || !DT.dominates(Inst, BetterPos))) 4373 BetterPos = &*std::next(BasicBlock::iterator(Inst)); 4374 } 4375 if (!AllDominate) 4376 break; 4377 if (BetterPos) 4378 IP = BetterPos->getIterator(); 4379 else 4380 IP = Tentative->getIterator(); 4381 4382 const Loop *IPLoop = LI.getLoopFor(IP->getParent()); 4383 unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0; 4384 4385 BasicBlock *IDom; 4386 for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) { 4387 if (!Rung) return IP; 4388 Rung = Rung->getIDom(); 4389 if (!Rung) return IP; 4390 IDom = Rung->getBlock(); 4391 4392 // Don't climb into a loop though. 4393 const Loop *IDomLoop = LI.getLoopFor(IDom); 4394 unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0; 4395 if (IDomDepth <= IPLoopDepth && 4396 (IDomDepth != IPLoopDepth || IDomLoop == IPLoop)) 4397 break; 4398 } 4399 4400 Tentative = IDom->getTerminator(); 4401 } 4402 4403 return IP; 4404 } 4405 4406 /// Determine an input position which will be dominated by the operands and 4407 /// which will dominate the result. 4408 BasicBlock::iterator 4409 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP, 4410 const LSRFixup &LF, 4411 const LSRUse &LU, 4412 SCEVExpander &Rewriter) const { 4413 // Collect some instructions which must be dominated by the 4414 // expanding replacement. These must be dominated by any operands that 4415 // will be required in the expansion. 4416 SmallVector<Instruction *, 4> Inputs; 4417 if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace)) 4418 Inputs.push_back(I); 4419 if (LU.Kind == LSRUse::ICmpZero) 4420 if (Instruction *I = 4421 dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1))) 4422 Inputs.push_back(I); 4423 if (LF.PostIncLoops.count(L)) { 4424 if (LF.isUseFullyOutsideLoop(L)) 4425 Inputs.push_back(L->getLoopLatch()->getTerminator()); 4426 else 4427 Inputs.push_back(IVIncInsertPos); 4428 } 4429 // The expansion must also be dominated by the increment positions of any 4430 // loops it for which it is using post-inc mode. 4431 for (const Loop *PIL : LF.PostIncLoops) { 4432 if (PIL == L) continue; 4433 4434 // Be dominated by the loop exit. 4435 SmallVector<BasicBlock *, 4> ExitingBlocks; 4436 PIL->getExitingBlocks(ExitingBlocks); 4437 if (!ExitingBlocks.empty()) { 4438 BasicBlock *BB = ExitingBlocks[0]; 4439 for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i) 4440 BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]); 4441 Inputs.push_back(BB->getTerminator()); 4442 } 4443 } 4444 4445 assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad() 4446 && !isa<DbgInfoIntrinsic>(LowestIP) && 4447 "Insertion point must be a normal instruction"); 4448 4449 // Then, climb up the immediate dominator tree as far as we can go while 4450 // still being dominated by the input positions. 4451 BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs); 4452 4453 // Don't insert instructions before PHI nodes. 4454 while (isa<PHINode>(IP)) ++IP; 4455 4456 // Ignore landingpad instructions. 4457 while (IP->isEHPad()) ++IP; 4458 4459 // Ignore debug intrinsics. 4460 while (isa<DbgInfoIntrinsic>(IP)) ++IP; 4461 4462 // Set IP below instructions recently inserted by SCEVExpander. This keeps the 4463 // IP consistent across expansions and allows the previously inserted 4464 // instructions to be reused by subsequent expansion. 4465 while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP) 4466 ++IP; 4467 4468 return IP; 4469 } 4470 4471 /// Emit instructions for the leading candidate expression for this LSRUse (this 4472 /// is called "expanding"). 4473 Value *LSRInstance::Expand(const LSRUse &LU, 4474 const LSRFixup &LF, 4475 const Formula &F, 4476 BasicBlock::iterator IP, 4477 SCEVExpander &Rewriter, 4478 SmallVectorImpl<WeakVH> &DeadInsts) const { 4479 if (LU.RigidFormula) 4480 return LF.OperandValToReplace; 4481 4482 // Determine an input position which will be dominated by the operands and 4483 // which will dominate the result. 4484 IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter); 4485 Rewriter.setInsertPoint(&*IP); 4486 4487 // Inform the Rewriter if we have a post-increment use, so that it can 4488 // perform an advantageous expansion. 4489 Rewriter.setPostInc(LF.PostIncLoops); 4490 4491 // This is the type that the user actually needs. 4492 Type *OpTy = LF.OperandValToReplace->getType(); 4493 // This will be the type that we'll initially expand to. 4494 Type *Ty = F.getType(); 4495 if (!Ty) 4496 // No type known; just expand directly to the ultimate type. 4497 Ty = OpTy; 4498 else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy)) 4499 // Expand directly to the ultimate type if it's the right size. 4500 Ty = OpTy; 4501 // This is the type to do integer arithmetic in. 4502 Type *IntTy = SE.getEffectiveSCEVType(Ty); 4503 4504 // Build up a list of operands to add together to form the full base. 4505 SmallVector<const SCEV *, 8> Ops; 4506 4507 // Expand the BaseRegs portion. 4508 for (const SCEV *Reg : F.BaseRegs) { 4509 assert(!Reg->isZero() && "Zero allocated in a base register!"); 4510 4511 // If we're expanding for a post-inc user, make the post-inc adjustment. 4512 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 4513 Reg = TransformForPostIncUse(Denormalize, Reg, 4514 LF.UserInst, LF.OperandValToReplace, 4515 Loops, SE, DT); 4516 4517 Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr))); 4518 } 4519 4520 // Expand the ScaledReg portion. 4521 Value *ICmpScaledV = nullptr; 4522 if (F.Scale != 0) { 4523 const SCEV *ScaledS = F.ScaledReg; 4524 4525 // If we're expanding for a post-inc user, make the post-inc adjustment. 4526 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 4527 ScaledS = TransformForPostIncUse(Denormalize, ScaledS, 4528 LF.UserInst, LF.OperandValToReplace, 4529 Loops, SE, DT); 4530 4531 if (LU.Kind == LSRUse::ICmpZero) { 4532 // Expand ScaleReg as if it was part of the base regs. 4533 if (F.Scale == 1) 4534 Ops.push_back( 4535 SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr))); 4536 else { 4537 // An interesting way of "folding" with an icmp is to use a negated 4538 // scale, which we'll implement by inserting it into the other operand 4539 // of the icmp. 4540 assert(F.Scale == -1 && 4541 "The only scale supported by ICmpZero uses is -1!"); 4542 ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr); 4543 } 4544 } else { 4545 // Otherwise just expand the scaled register and an explicit scale, 4546 // which is expected to be matched as part of the address. 4547 4548 // Flush the operand list to suppress SCEVExpander hoisting address modes. 4549 // Unless the addressing mode will not be folded. 4550 if (!Ops.empty() && LU.Kind == LSRUse::Address && 4551 isAMCompletelyFolded(TTI, LU, F)) { 4552 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 4553 Ops.clear(); 4554 Ops.push_back(SE.getUnknown(FullV)); 4555 } 4556 ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)); 4557 if (F.Scale != 1) 4558 ScaledS = 4559 SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale)); 4560 Ops.push_back(ScaledS); 4561 } 4562 } 4563 4564 // Expand the GV portion. 4565 if (F.BaseGV) { 4566 // Flush the operand list to suppress SCEVExpander hoisting. 4567 if (!Ops.empty()) { 4568 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 4569 Ops.clear(); 4570 Ops.push_back(SE.getUnknown(FullV)); 4571 } 4572 Ops.push_back(SE.getUnknown(F.BaseGV)); 4573 } 4574 4575 // Flush the operand list to suppress SCEVExpander hoisting of both folded and 4576 // unfolded offsets. LSR assumes they both live next to their uses. 4577 if (!Ops.empty()) { 4578 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 4579 Ops.clear(); 4580 Ops.push_back(SE.getUnknown(FullV)); 4581 } 4582 4583 // Expand the immediate portion. 4584 int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset; 4585 if (Offset != 0) { 4586 if (LU.Kind == LSRUse::ICmpZero) { 4587 // The other interesting way of "folding" with an ICmpZero is to use a 4588 // negated immediate. 4589 if (!ICmpScaledV) 4590 ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset); 4591 else { 4592 Ops.push_back(SE.getUnknown(ICmpScaledV)); 4593 ICmpScaledV = ConstantInt::get(IntTy, Offset); 4594 } 4595 } else { 4596 // Just add the immediate values. These again are expected to be matched 4597 // as part of the address. 4598 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset))); 4599 } 4600 } 4601 4602 // Expand the unfolded offset portion. 4603 int64_t UnfoldedOffset = F.UnfoldedOffset; 4604 if (UnfoldedOffset != 0) { 4605 // Just add the immediate values. 4606 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, 4607 UnfoldedOffset))); 4608 } 4609 4610 // Emit instructions summing all the operands. 4611 const SCEV *FullS = Ops.empty() ? 4612 SE.getConstant(IntTy, 0) : 4613 SE.getAddExpr(Ops); 4614 Value *FullV = Rewriter.expandCodeFor(FullS, Ty); 4615 4616 // We're done expanding now, so reset the rewriter. 4617 Rewriter.clearPostInc(); 4618 4619 // An ICmpZero Formula represents an ICmp which we're handling as a 4620 // comparison against zero. Now that we've expanded an expression for that 4621 // form, update the ICmp's other operand. 4622 if (LU.Kind == LSRUse::ICmpZero) { 4623 ICmpInst *CI = cast<ICmpInst>(LF.UserInst); 4624 DeadInsts.emplace_back(CI->getOperand(1)); 4625 assert(!F.BaseGV && "ICmp does not support folding a global value and " 4626 "a scale at the same time!"); 4627 if (F.Scale == -1) { 4628 if (ICmpScaledV->getType() != OpTy) { 4629 Instruction *Cast = 4630 CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false, 4631 OpTy, false), 4632 ICmpScaledV, OpTy, "tmp", CI); 4633 ICmpScaledV = Cast; 4634 } 4635 CI->setOperand(1, ICmpScaledV); 4636 } else { 4637 // A scale of 1 means that the scale has been expanded as part of the 4638 // base regs. 4639 assert((F.Scale == 0 || F.Scale == 1) && 4640 "ICmp does not support folding a global value and " 4641 "a scale at the same time!"); 4642 Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy), 4643 -(uint64_t)Offset); 4644 if (C->getType() != OpTy) 4645 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 4646 OpTy, false), 4647 C, OpTy); 4648 4649 CI->setOperand(1, C); 4650 } 4651 } 4652 4653 return FullV; 4654 } 4655 4656 /// Helper for Rewrite. PHI nodes are special because the use of their operands 4657 /// effectively happens in their predecessor blocks, so the expression may need 4658 /// to be expanded in multiple places. 4659 void LSRInstance::RewriteForPHI(PHINode *PN, 4660 const LSRUse &LU, 4661 const LSRFixup &LF, 4662 const Formula &F, 4663 SCEVExpander &Rewriter, 4664 SmallVectorImpl<WeakVH> &DeadInsts) const { 4665 DenseMap<BasicBlock *, Value *> Inserted; 4666 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 4667 if (PN->getIncomingValue(i) == LF.OperandValToReplace) { 4668 BasicBlock *BB = PN->getIncomingBlock(i); 4669 4670 // If this is a critical edge, split the edge so that we do not insert 4671 // the code on all predecessor/successor paths. We do this unless this 4672 // is the canonical backedge for this loop, which complicates post-inc 4673 // users. 4674 if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 && 4675 !isa<IndirectBrInst>(BB->getTerminator())) { 4676 BasicBlock *Parent = PN->getParent(); 4677 Loop *PNLoop = LI.getLoopFor(Parent); 4678 if (!PNLoop || Parent != PNLoop->getHeader()) { 4679 // Split the critical edge. 4680 BasicBlock *NewBB = nullptr; 4681 if (!Parent->isLandingPad()) { 4682 NewBB = SplitCriticalEdge(BB, Parent, 4683 CriticalEdgeSplittingOptions(&DT, &LI) 4684 .setMergeIdenticalEdges() 4685 .setDontDeleteUselessPHIs()); 4686 } else { 4687 SmallVector<BasicBlock*, 2> NewBBs; 4688 SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI); 4689 NewBB = NewBBs[0]; 4690 } 4691 // If NewBB==NULL, then SplitCriticalEdge refused to split because all 4692 // phi predecessors are identical. The simple thing to do is skip 4693 // splitting in this case rather than complicate the API. 4694 if (NewBB) { 4695 // If PN is outside of the loop and BB is in the loop, we want to 4696 // move the block to be immediately before the PHI block, not 4697 // immediately after BB. 4698 if (L->contains(BB) && !L->contains(PN)) 4699 NewBB->moveBefore(PN->getParent()); 4700 4701 // Splitting the edge can reduce the number of PHI entries we have. 4702 e = PN->getNumIncomingValues(); 4703 BB = NewBB; 4704 i = PN->getBasicBlockIndex(BB); 4705 } 4706 } 4707 } 4708 4709 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair = 4710 Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr))); 4711 if (!Pair.second) 4712 PN->setIncomingValue(i, Pair.first->second); 4713 else { 4714 Value *FullV = Expand(LU, LF, F, BB->getTerminator()->getIterator(), 4715 Rewriter, DeadInsts); 4716 4717 // If this is reuse-by-noop-cast, insert the noop cast. 4718 Type *OpTy = LF.OperandValToReplace->getType(); 4719 if (FullV->getType() != OpTy) 4720 FullV = 4721 CastInst::Create(CastInst::getCastOpcode(FullV, false, 4722 OpTy, false), 4723 FullV, LF.OperandValToReplace->getType(), 4724 "tmp", BB->getTerminator()); 4725 4726 PN->setIncomingValue(i, FullV); 4727 Pair.first->second = FullV; 4728 } 4729 } 4730 } 4731 4732 /// Emit instructions for the leading candidate expression for this LSRUse (this 4733 /// is called "expanding"), and update the UserInst to reference the newly 4734 /// expanded value. 4735 void LSRInstance::Rewrite(const LSRUse &LU, 4736 const LSRFixup &LF, 4737 const Formula &F, 4738 SCEVExpander &Rewriter, 4739 SmallVectorImpl<WeakVH> &DeadInsts) const { 4740 // First, find an insertion point that dominates UserInst. For PHI nodes, 4741 // find the nearest block which dominates all the relevant uses. 4742 if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) { 4743 RewriteForPHI(PN, LU, LF, F, Rewriter, DeadInsts); 4744 } else { 4745 Value *FullV = 4746 Expand(LU, LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts); 4747 4748 // If this is reuse-by-noop-cast, insert the noop cast. 4749 Type *OpTy = LF.OperandValToReplace->getType(); 4750 if (FullV->getType() != OpTy) { 4751 Instruction *Cast = 4752 CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false), 4753 FullV, OpTy, "tmp", LF.UserInst); 4754 FullV = Cast; 4755 } 4756 4757 // Update the user. ICmpZero is handled specially here (for now) because 4758 // Expand may have updated one of the operands of the icmp already, and 4759 // its new value may happen to be equal to LF.OperandValToReplace, in 4760 // which case doing replaceUsesOfWith leads to replacing both operands 4761 // with the same value. TODO: Reorganize this. 4762 if (LU.Kind == LSRUse::ICmpZero) 4763 LF.UserInst->setOperand(0, FullV); 4764 else 4765 LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV); 4766 } 4767 4768 DeadInsts.emplace_back(LF.OperandValToReplace); 4769 } 4770 4771 /// Rewrite all the fixup locations with new values, following the chosen 4772 /// solution. 4773 void LSRInstance::ImplementSolution( 4774 const SmallVectorImpl<const Formula *> &Solution) { 4775 // Keep track of instructions we may have made dead, so that 4776 // we can remove them after we are done working. 4777 SmallVector<WeakVH, 16> DeadInsts; 4778 4779 SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(), 4780 "lsr"); 4781 #ifndef NDEBUG 4782 Rewriter.setDebugType(DEBUG_TYPE); 4783 #endif 4784 Rewriter.disableCanonicalMode(); 4785 Rewriter.enableLSRMode(); 4786 Rewriter.setIVIncInsertPos(L, IVIncInsertPos); 4787 4788 // Mark phi nodes that terminate chains so the expander tries to reuse them. 4789 for (const IVChain &Chain : IVChainVec) { 4790 if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst())) 4791 Rewriter.setChainedPhi(PN); 4792 } 4793 4794 // Expand the new value definitions and update the users. 4795 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) 4796 for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) { 4797 Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], Rewriter, DeadInsts); 4798 Changed = true; 4799 } 4800 4801 for (const IVChain &Chain : IVChainVec) { 4802 GenerateIVChain(Chain, Rewriter, DeadInsts); 4803 Changed = true; 4804 } 4805 // Clean up after ourselves. This must be done before deleting any 4806 // instructions. 4807 Rewriter.clear(); 4808 4809 Changed |= DeleteTriviallyDeadInstructions(DeadInsts); 4810 } 4811 4812 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, 4813 DominatorTree &DT, LoopInfo &LI, 4814 const TargetTransformInfo &TTI) 4815 : IU(IU), SE(SE), DT(DT), LI(LI), TTI(TTI), L(L), Changed(false), 4816 IVIncInsertPos(nullptr) { 4817 // If LoopSimplify form is not available, stay out of trouble. 4818 if (!L->isLoopSimplifyForm()) 4819 return; 4820 4821 // If there's no interesting work to be done, bail early. 4822 if (IU.empty()) return; 4823 4824 // If there's too much analysis to be done, bail early. We won't be able to 4825 // model the problem anyway. 4826 unsigned NumUsers = 0; 4827 for (const IVStrideUse &U : IU) { 4828 if (++NumUsers > MaxIVUsers) { 4829 (void)U; 4830 DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U << "\n"); 4831 return; 4832 } 4833 // Bail out if we have a PHI on an EHPad that gets a value from a 4834 // CatchSwitchInst. Because the CatchSwitchInst cannot be split, there is 4835 // no good place to stick any instructions. 4836 if (auto *PN = dyn_cast<PHINode>(U.getUser())) { 4837 auto *FirstNonPHI = PN->getParent()->getFirstNonPHI(); 4838 if (isa<FuncletPadInst>(FirstNonPHI) || 4839 isa<CatchSwitchInst>(FirstNonPHI)) 4840 for (BasicBlock *PredBB : PN->blocks()) 4841 if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI())) 4842 return; 4843 } 4844 } 4845 4846 #ifndef NDEBUG 4847 // All dominating loops must have preheaders, or SCEVExpander may not be able 4848 // to materialize an AddRecExpr whose Start is an outer AddRecExpr. 4849 // 4850 // IVUsers analysis should only create users that are dominated by simple loop 4851 // headers. Since this loop should dominate all of its users, its user list 4852 // should be empty if this loop itself is not within a simple loop nest. 4853 for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader()); 4854 Rung; Rung = Rung->getIDom()) { 4855 BasicBlock *BB = Rung->getBlock(); 4856 const Loop *DomLoop = LI.getLoopFor(BB); 4857 if (DomLoop && DomLoop->getHeader() == BB) { 4858 assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest"); 4859 } 4860 } 4861 #endif // DEBUG 4862 4863 DEBUG(dbgs() << "\nLSR on loop "; 4864 L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false); 4865 dbgs() << ":\n"); 4866 4867 // First, perform some low-level loop optimizations. 4868 OptimizeShadowIV(); 4869 OptimizeLoopTermCond(); 4870 4871 // If loop preparation eliminates all interesting IV users, bail. 4872 if (IU.empty()) return; 4873 4874 // Skip nested loops until we can model them better with formulae. 4875 if (!L->empty()) { 4876 DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n"); 4877 return; 4878 } 4879 4880 // Start collecting data and preparing for the solver. 4881 CollectChains(); 4882 CollectInterestingTypesAndFactors(); 4883 CollectFixupsAndInitialFormulae(); 4884 CollectLoopInvariantFixupsAndFormulae(); 4885 4886 assert(!Uses.empty() && "IVUsers reported at least one use"); 4887 DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n"; 4888 print_uses(dbgs())); 4889 4890 // Now use the reuse data to generate a bunch of interesting ways 4891 // to formulate the values needed for the uses. 4892 GenerateAllReuseFormulae(); 4893 4894 FilterOutUndesirableDedicatedRegisters(); 4895 NarrowSearchSpaceUsingHeuristics(); 4896 4897 SmallVector<const Formula *, 8> Solution; 4898 Solve(Solution); 4899 4900 // Release memory that is no longer needed. 4901 Factors.clear(); 4902 Types.clear(); 4903 RegUses.clear(); 4904 4905 if (Solution.empty()) 4906 return; 4907 4908 #ifndef NDEBUG 4909 // Formulae should be legal. 4910 for (const LSRUse &LU : Uses) { 4911 for (const Formula &F : LU.Formulae) 4912 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 4913 F) && "Illegal formula generated!"); 4914 }; 4915 #endif 4916 4917 // Now that we've decided what we want, make it so. 4918 ImplementSolution(Solution); 4919 } 4920 4921 void LSRInstance::print_factors_and_types(raw_ostream &OS) const { 4922 if (Factors.empty() && Types.empty()) return; 4923 4924 OS << "LSR has identified the following interesting factors and types: "; 4925 bool First = true; 4926 4927 for (int64_t Factor : Factors) { 4928 if (!First) OS << ", "; 4929 First = false; 4930 OS << '*' << Factor; 4931 } 4932 4933 for (Type *Ty : Types) { 4934 if (!First) OS << ", "; 4935 First = false; 4936 OS << '(' << *Ty << ')'; 4937 } 4938 OS << '\n'; 4939 } 4940 4941 void LSRInstance::print_fixups(raw_ostream &OS) const { 4942 OS << "LSR is examining the following fixup sites:\n"; 4943 for (const LSRUse &LU : Uses) 4944 for (const LSRFixup &LF : LU.Fixups) { 4945 dbgs() << " "; 4946 LF.print(OS); 4947 OS << '\n'; 4948 } 4949 } 4950 4951 void LSRInstance::print_uses(raw_ostream &OS) const { 4952 OS << "LSR is examining the following uses:\n"; 4953 for (const LSRUse &LU : Uses) { 4954 dbgs() << " "; 4955 LU.print(OS); 4956 OS << '\n'; 4957 for (const Formula &F : LU.Formulae) { 4958 OS << " "; 4959 F.print(OS); 4960 OS << '\n'; 4961 } 4962 } 4963 } 4964 4965 void LSRInstance::print(raw_ostream &OS) const { 4966 print_factors_and_types(OS); 4967 print_fixups(OS); 4968 print_uses(OS); 4969 } 4970 4971 LLVM_DUMP_METHOD 4972 void LSRInstance::dump() const { 4973 print(errs()); errs() << '\n'; 4974 } 4975 4976 namespace { 4977 4978 class LoopStrengthReduce : public LoopPass { 4979 public: 4980 static char ID; // Pass ID, replacement for typeid 4981 4982 LoopStrengthReduce(); 4983 4984 private: 4985 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 4986 void getAnalysisUsage(AnalysisUsage &AU) const override; 4987 }; 4988 4989 } // end anonymous namespace 4990 4991 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) { 4992 initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry()); 4993 } 4994 4995 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const { 4996 // We split critical edges, so we change the CFG. However, we do update 4997 // many analyses if they are around. 4998 AU.addPreservedID(LoopSimplifyID); 4999 5000 AU.addRequired<LoopInfoWrapperPass>(); 5001 AU.addPreserved<LoopInfoWrapperPass>(); 5002 AU.addRequiredID(LoopSimplifyID); 5003 AU.addRequired<DominatorTreeWrapperPass>(); 5004 AU.addPreserved<DominatorTreeWrapperPass>(); 5005 AU.addRequired<ScalarEvolutionWrapperPass>(); 5006 AU.addPreserved<ScalarEvolutionWrapperPass>(); 5007 // Requiring LoopSimplify a second time here prevents IVUsers from running 5008 // twice, since LoopSimplify was invalidated by running ScalarEvolution. 5009 AU.addRequiredID(LoopSimplifyID); 5010 AU.addRequired<IVUsersWrapperPass>(); 5011 AU.addPreserved<IVUsersWrapperPass>(); 5012 AU.addRequired<TargetTransformInfoWrapperPass>(); 5013 } 5014 5015 static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE, 5016 DominatorTree &DT, LoopInfo &LI, 5017 const TargetTransformInfo &TTI) { 5018 bool Changed = false; 5019 5020 // Run the main LSR transformation. 5021 Changed |= LSRInstance(L, IU, SE, DT, LI, TTI).getChanged(); 5022 5023 // Remove any extra phis created by processing inner loops. 5024 Changed |= DeleteDeadPHIs(L->getHeader()); 5025 if (EnablePhiElim && L->isLoopSimplifyForm()) { 5026 SmallVector<WeakVH, 16> DeadInsts; 5027 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 5028 SCEVExpander Rewriter(SE, DL, "lsr"); 5029 #ifndef NDEBUG 5030 Rewriter.setDebugType(DEBUG_TYPE); 5031 #endif 5032 unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI); 5033 if (numFolded) { 5034 Changed = true; 5035 DeleteTriviallyDeadInstructions(DeadInsts); 5036 DeleteDeadPHIs(L->getHeader()); 5037 } 5038 } 5039 return Changed; 5040 } 5041 5042 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) { 5043 if (skipLoop(L)) 5044 return false; 5045 5046 auto &IU = getAnalysis<IVUsersWrapperPass>().getIU(); 5047 auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 5048 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 5049 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 5050 const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI( 5051 *L->getHeader()->getParent()); 5052 return ReduceLoopStrength(L, IU, SE, DT, LI, TTI); 5053 } 5054 5055 PreservedAnalyses LoopStrengthReducePass::run(Loop &L, 5056 LoopAnalysisManager &AM) { 5057 const auto &FAM = 5058 AM.getResult<FunctionAnalysisManagerLoopProxy>(L).getManager(); 5059 Function *F = L.getHeader()->getParent(); 5060 5061 auto &IU = AM.getResult<IVUsersAnalysis>(L); 5062 auto *SE = FAM.getCachedResult<ScalarEvolutionAnalysis>(*F); 5063 auto *DT = FAM.getCachedResult<DominatorTreeAnalysis>(*F); 5064 auto *LI = FAM.getCachedResult<LoopAnalysis>(*F); 5065 auto *TTI = FAM.getCachedResult<TargetIRAnalysis>(*F); 5066 assert((SE && DT && LI && TTI) && 5067 "Analyses for Loop Strength Reduce not available"); 5068 5069 if (!ReduceLoopStrength(&L, IU, *SE, *DT, *LI, *TTI)) 5070 return PreservedAnalyses::all(); 5071 5072 return getLoopPassPreservedAnalyses(); 5073 } 5074 5075 char LoopStrengthReduce::ID = 0; 5076 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce", 5077 "Loop Strength Reduction", false, false) 5078 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 5079 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 5080 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 5081 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass) 5082 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 5083 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 5084 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce", 5085 "Loop Strength Reduction", false, false) 5086 5087 Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); } 5088