1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This transformation analyzes and transforms the induction variables (and 11 // computations derived from them) into forms suitable for efficient execution 12 // on the target. 13 // 14 // This pass performs a strength reduction on array references inside loops that 15 // have as one or more of their components the loop induction variable, it 16 // rewrites expressions to take advantage of scaled-index addressing modes 17 // available on the target, and it performs a variety of other optimizations 18 // related to loop induction variables. 19 // 20 // Terminology note: this code has a lot of handling for "post-increment" or 21 // "post-inc" users. This is not talking about post-increment addressing modes; 22 // it is instead talking about code like this: 23 // 24 // %i = phi [ 0, %entry ], [ %i.next, %latch ] 25 // ... 26 // %i.next = add %i, 1 27 // %c = icmp eq %i.next, %n 28 // 29 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however 30 // it's useful to think about these as the same register, with some uses using 31 // the value of the register before the add and some using // it after. In this 32 // example, the icmp is a post-increment user, since it uses %i.next, which is 33 // the value of the induction variable after the increment. The other common 34 // case of post-increment users is users outside the loop. 35 // 36 // TODO: More sophistication in the way Formulae are generated and filtered. 37 // 38 // TODO: Handle multiple loops at a time. 39 // 40 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead 41 // of a GlobalValue? 42 // 43 // TODO: When truncation is free, truncate ICmp users' operands to make it a 44 // smaller encoding (on x86 at least). 45 // 46 // TODO: When a negated register is used by an add (such as in a list of 47 // multiple base registers, or as the increment expression in an addrec), 48 // we may not actually need both reg and (-1 * reg) in registers; the 49 // negation can be implemented by using a sub instead of an add. The 50 // lack of support for taking this into consideration when making 51 // register pressure decisions is partly worked around by the "Special" 52 // use kind. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Scalar.h" 57 #include "llvm/ADT/DenseSet.h" 58 #include "llvm/ADT/Hashing.h" 59 #include "llvm/ADT/STLExtras.h" 60 #include "llvm/ADT/SetVector.h" 61 #include "llvm/ADT/SmallBitVector.h" 62 #include "llvm/Analysis/IVUsers.h" 63 #include "llvm/Analysis/LoopPass.h" 64 #include "llvm/Analysis/ScalarEvolutionExpander.h" 65 #include "llvm/Analysis/TargetTransformInfo.h" 66 #include "llvm/IR/Constants.h" 67 #include "llvm/IR/DerivedTypes.h" 68 #include "llvm/IR/Dominators.h" 69 #include "llvm/IR/Instructions.h" 70 #include "llvm/IR/IntrinsicInst.h" 71 #include "llvm/IR/ValueHandle.h" 72 #include "llvm/Support/CommandLine.h" 73 #include "llvm/Support/Debug.h" 74 #include "llvm/Support/raw_ostream.h" 75 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 76 #include "llvm/Transforms/Utils/Local.h" 77 #include <algorithm> 78 using namespace llvm; 79 80 #define DEBUG_TYPE "loop-reduce" 81 82 /// MaxIVUsers is an arbitrary threshold that provides an early opportunitiy for 83 /// bail out. This threshold is far beyond the number of users that LSR can 84 /// conceivably solve, so it should not affect generated code, but catches the 85 /// worst cases before LSR burns too much compile time and stack space. 86 static const unsigned MaxIVUsers = 200; 87 88 // Temporary flag to cleanup congruent phis after LSR phi expansion. 89 // It's currently disabled until we can determine whether it's truly useful or 90 // not. The flag should be removed after the v3.0 release. 91 // This is now needed for ivchains. 92 static cl::opt<bool> EnablePhiElim( 93 "enable-lsr-phielim", cl::Hidden, cl::init(true), 94 cl::desc("Enable LSR phi elimination")); 95 96 #ifndef NDEBUG 97 // Stress test IV chain generation. 98 static cl::opt<bool> StressIVChain( 99 "stress-ivchain", cl::Hidden, cl::init(false), 100 cl::desc("Stress test LSR IV chains")); 101 #else 102 static bool StressIVChain = false; 103 #endif 104 105 namespace { 106 107 /// RegSortData - This class holds data which is used to order reuse candidates. 108 class RegSortData { 109 public: 110 /// UsedByIndices - This represents the set of LSRUse indices which reference 111 /// a particular register. 112 SmallBitVector UsedByIndices; 113 114 RegSortData() {} 115 116 void print(raw_ostream &OS) const; 117 void dump() const; 118 }; 119 120 } 121 122 void RegSortData::print(raw_ostream &OS) const { 123 OS << "[NumUses=" << UsedByIndices.count() << ']'; 124 } 125 126 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 127 void RegSortData::dump() const { 128 print(errs()); errs() << '\n'; 129 } 130 #endif 131 132 namespace { 133 134 /// RegUseTracker - Map register candidates to information about how they are 135 /// used. 136 class RegUseTracker { 137 typedef DenseMap<const SCEV *, RegSortData> RegUsesTy; 138 139 RegUsesTy RegUsesMap; 140 SmallVector<const SCEV *, 16> RegSequence; 141 142 public: 143 void CountRegister(const SCEV *Reg, size_t LUIdx); 144 void DropRegister(const SCEV *Reg, size_t LUIdx); 145 void SwapAndDropUse(size_t LUIdx, size_t LastLUIdx); 146 147 bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const; 148 149 const SmallBitVector &getUsedByIndices(const SCEV *Reg) const; 150 151 void clear(); 152 153 typedef SmallVectorImpl<const SCEV *>::iterator iterator; 154 typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator; 155 iterator begin() { return RegSequence.begin(); } 156 iterator end() { return RegSequence.end(); } 157 const_iterator begin() const { return RegSequence.begin(); } 158 const_iterator end() const { return RegSequence.end(); } 159 }; 160 161 } 162 163 void 164 RegUseTracker::CountRegister(const SCEV *Reg, size_t LUIdx) { 165 std::pair<RegUsesTy::iterator, bool> Pair = 166 RegUsesMap.insert(std::make_pair(Reg, RegSortData())); 167 RegSortData &RSD = Pair.first->second; 168 if (Pair.second) 169 RegSequence.push_back(Reg); 170 RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1)); 171 RSD.UsedByIndices.set(LUIdx); 172 } 173 174 void 175 RegUseTracker::DropRegister(const SCEV *Reg, size_t LUIdx) { 176 RegUsesTy::iterator It = RegUsesMap.find(Reg); 177 assert(It != RegUsesMap.end()); 178 RegSortData &RSD = It->second; 179 assert(RSD.UsedByIndices.size() > LUIdx); 180 RSD.UsedByIndices.reset(LUIdx); 181 } 182 183 void 184 RegUseTracker::SwapAndDropUse(size_t LUIdx, size_t LastLUIdx) { 185 assert(LUIdx <= LastLUIdx); 186 187 // Update RegUses. The data structure is not optimized for this purpose; 188 // we must iterate through it and update each of the bit vectors. 189 for (RegUsesTy::iterator I = RegUsesMap.begin(), E = RegUsesMap.end(); 190 I != E; ++I) { 191 SmallBitVector &UsedByIndices = I->second.UsedByIndices; 192 if (LUIdx < UsedByIndices.size()) 193 UsedByIndices[LUIdx] = 194 LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : 0; 195 UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx)); 196 } 197 } 198 199 bool 200 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const { 201 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 202 if (I == RegUsesMap.end()) 203 return false; 204 const SmallBitVector &UsedByIndices = I->second.UsedByIndices; 205 int i = UsedByIndices.find_first(); 206 if (i == -1) return false; 207 if ((size_t)i != LUIdx) return true; 208 return UsedByIndices.find_next(i) != -1; 209 } 210 211 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const { 212 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 213 assert(I != RegUsesMap.end() && "Unknown register!"); 214 return I->second.UsedByIndices; 215 } 216 217 void RegUseTracker::clear() { 218 RegUsesMap.clear(); 219 RegSequence.clear(); 220 } 221 222 namespace { 223 224 /// Formula - This class holds information that describes a formula for 225 /// computing satisfying a use. It may include broken-out immediates and scaled 226 /// registers. 227 struct Formula { 228 /// Global base address used for complex addressing. 229 GlobalValue *BaseGV; 230 231 /// Base offset for complex addressing. 232 int64_t BaseOffset; 233 234 /// Whether any complex addressing has a base register. 235 bool HasBaseReg; 236 237 /// The scale of any complex addressing. 238 int64_t Scale; 239 240 /// BaseRegs - The list of "base" registers for this use. When this is 241 /// non-empty. The canonical representation of a formula is 242 /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and 243 /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty(). 244 /// #1 enforces that the scaled register is always used when at least two 245 /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2. 246 /// #2 enforces that 1 * reg is reg. 247 /// This invariant can be temporarly broken while building a formula. 248 /// However, every formula inserted into the LSRInstance must be in canonical 249 /// form. 250 SmallVector<const SCEV *, 4> BaseRegs; 251 252 /// ScaledReg - The 'scaled' register for this use. This should be non-null 253 /// when Scale is not zero. 254 const SCEV *ScaledReg; 255 256 /// UnfoldedOffset - An additional constant offset which added near the 257 /// use. This requires a temporary register, but the offset itself can 258 /// live in an add immediate field rather than a register. 259 int64_t UnfoldedOffset; 260 261 Formula() 262 : BaseGV(nullptr), BaseOffset(0), HasBaseReg(false), Scale(0), 263 ScaledReg(nullptr), UnfoldedOffset(0) {} 264 265 void InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE); 266 267 bool isCanonical() const; 268 269 void Canonicalize(); 270 271 bool Unscale(); 272 273 size_t getNumRegs() const; 274 Type *getType() const; 275 276 void DeleteBaseReg(const SCEV *&S); 277 278 bool referencesReg(const SCEV *S) const; 279 bool hasRegsUsedByUsesOtherThan(size_t LUIdx, 280 const RegUseTracker &RegUses) const; 281 282 void print(raw_ostream &OS) const; 283 void dump() const; 284 }; 285 286 } 287 288 /// DoInitialMatch - Recursion helper for InitialMatch. 289 static void DoInitialMatch(const SCEV *S, Loop *L, 290 SmallVectorImpl<const SCEV *> &Good, 291 SmallVectorImpl<const SCEV *> &Bad, 292 ScalarEvolution &SE) { 293 // Collect expressions which properly dominate the loop header. 294 if (SE.properlyDominates(S, L->getHeader())) { 295 Good.push_back(S); 296 return; 297 } 298 299 // Look at add operands. 300 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 301 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); 302 I != E; ++I) 303 DoInitialMatch(*I, L, Good, Bad, SE); 304 return; 305 } 306 307 // Look at addrec operands. 308 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 309 if (!AR->getStart()->isZero()) { 310 DoInitialMatch(AR->getStart(), L, Good, Bad, SE); 311 DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0), 312 AR->getStepRecurrence(SE), 313 // FIXME: AR->getNoWrapFlags() 314 AR->getLoop(), SCEV::FlagAnyWrap), 315 L, Good, Bad, SE); 316 return; 317 } 318 319 // Handle a multiplication by -1 (negation) if it didn't fold. 320 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) 321 if (Mul->getOperand(0)->isAllOnesValue()) { 322 SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end()); 323 const SCEV *NewMul = SE.getMulExpr(Ops); 324 325 SmallVector<const SCEV *, 4> MyGood; 326 SmallVector<const SCEV *, 4> MyBad; 327 DoInitialMatch(NewMul, L, MyGood, MyBad, SE); 328 const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue( 329 SE.getEffectiveSCEVType(NewMul->getType()))); 330 for (SmallVectorImpl<const SCEV *>::const_iterator I = MyGood.begin(), 331 E = MyGood.end(); I != E; ++I) 332 Good.push_back(SE.getMulExpr(NegOne, *I)); 333 for (SmallVectorImpl<const SCEV *>::const_iterator I = MyBad.begin(), 334 E = MyBad.end(); I != E; ++I) 335 Bad.push_back(SE.getMulExpr(NegOne, *I)); 336 return; 337 } 338 339 // Ok, we can't do anything interesting. Just stuff the whole thing into a 340 // register and hope for the best. 341 Bad.push_back(S); 342 } 343 344 /// InitialMatch - Incorporate loop-variant parts of S into this Formula, 345 /// attempting to keep all loop-invariant and loop-computable values in a 346 /// single base register. 347 void Formula::InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) { 348 SmallVector<const SCEV *, 4> Good; 349 SmallVector<const SCEV *, 4> Bad; 350 DoInitialMatch(S, L, Good, Bad, SE); 351 if (!Good.empty()) { 352 const SCEV *Sum = SE.getAddExpr(Good); 353 if (!Sum->isZero()) 354 BaseRegs.push_back(Sum); 355 HasBaseReg = true; 356 } 357 if (!Bad.empty()) { 358 const SCEV *Sum = SE.getAddExpr(Bad); 359 if (!Sum->isZero()) 360 BaseRegs.push_back(Sum); 361 HasBaseReg = true; 362 } 363 Canonicalize(); 364 } 365 366 /// \brief Check whether or not this formula statisfies the canonical 367 /// representation. 368 /// \see Formula::BaseRegs. 369 bool Formula::isCanonical() const { 370 if (ScaledReg) 371 return Scale != 1 || !BaseRegs.empty(); 372 return BaseRegs.size() <= 1; 373 } 374 375 /// \brief Helper method to morph a formula into its canonical representation. 376 /// \see Formula::BaseRegs. 377 /// Every formula having more than one base register, must use the ScaledReg 378 /// field. Otherwise, we would have to do special cases everywhere in LSR 379 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ... 380 /// On the other hand, 1*reg should be canonicalized into reg. 381 void Formula::Canonicalize() { 382 if (isCanonical()) 383 return; 384 // So far we did not need this case. This is easy to implement but it is 385 // useless to maintain dead code. Beside it could hurt compile time. 386 assert(!BaseRegs.empty() && "1*reg => reg, should not be needed."); 387 // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg. 388 ScaledReg = BaseRegs.back(); 389 BaseRegs.pop_back(); 390 Scale = 1; 391 size_t BaseRegsSize = BaseRegs.size(); 392 size_t Try = 0; 393 // If ScaledReg is an invariant, try to find a variant expression. 394 while (Try < BaseRegsSize && !isa<SCEVAddRecExpr>(ScaledReg)) 395 std::swap(ScaledReg, BaseRegs[Try++]); 396 } 397 398 /// \brief Get rid of the scale in the formula. 399 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2. 400 /// \return true if it was possible to get rid of the scale, false otherwise. 401 /// \note After this operation the formula may not be in the canonical form. 402 bool Formula::Unscale() { 403 if (Scale != 1) 404 return false; 405 Scale = 0; 406 BaseRegs.push_back(ScaledReg); 407 ScaledReg = nullptr; 408 return true; 409 } 410 411 /// getNumRegs - Return the total number of register operands used by this 412 /// formula. This does not include register uses implied by non-constant 413 /// addrec strides. 414 size_t Formula::getNumRegs() const { 415 return !!ScaledReg + BaseRegs.size(); 416 } 417 418 /// getType - Return the type of this formula, if it has one, or null 419 /// otherwise. This type is meaningless except for the bit size. 420 Type *Formula::getType() const { 421 return !BaseRegs.empty() ? BaseRegs.front()->getType() : 422 ScaledReg ? ScaledReg->getType() : 423 BaseGV ? BaseGV->getType() : 424 nullptr; 425 } 426 427 /// DeleteBaseReg - Delete the given base reg from the BaseRegs list. 428 void Formula::DeleteBaseReg(const SCEV *&S) { 429 if (&S != &BaseRegs.back()) 430 std::swap(S, BaseRegs.back()); 431 BaseRegs.pop_back(); 432 } 433 434 /// referencesReg - Test if this formula references the given register. 435 bool Formula::referencesReg(const SCEV *S) const { 436 return S == ScaledReg || 437 std::find(BaseRegs.begin(), BaseRegs.end(), S) != BaseRegs.end(); 438 } 439 440 /// hasRegsUsedByUsesOtherThan - Test whether this formula uses registers 441 /// which are used by uses other than the use with the given index. 442 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx, 443 const RegUseTracker &RegUses) const { 444 if (ScaledReg) 445 if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx)) 446 return true; 447 for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(), 448 E = BaseRegs.end(); I != E; ++I) 449 if (RegUses.isRegUsedByUsesOtherThan(*I, LUIdx)) 450 return true; 451 return false; 452 } 453 454 void Formula::print(raw_ostream &OS) const { 455 bool First = true; 456 if (BaseGV) { 457 if (!First) OS << " + "; else First = false; 458 BaseGV->printAsOperand(OS, /*PrintType=*/false); 459 } 460 if (BaseOffset != 0) { 461 if (!First) OS << " + "; else First = false; 462 OS << BaseOffset; 463 } 464 for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(), 465 E = BaseRegs.end(); I != E; ++I) { 466 if (!First) OS << " + "; else First = false; 467 OS << "reg(" << **I << ')'; 468 } 469 if (HasBaseReg && BaseRegs.empty()) { 470 if (!First) OS << " + "; else First = false; 471 OS << "**error: HasBaseReg**"; 472 } else if (!HasBaseReg && !BaseRegs.empty()) { 473 if (!First) OS << " + "; else First = false; 474 OS << "**error: !HasBaseReg**"; 475 } 476 if (Scale != 0) { 477 if (!First) OS << " + "; else First = false; 478 OS << Scale << "*reg("; 479 if (ScaledReg) 480 OS << *ScaledReg; 481 else 482 OS << "<unknown>"; 483 OS << ')'; 484 } 485 if (UnfoldedOffset != 0) { 486 if (!First) OS << " + "; 487 OS << "imm(" << UnfoldedOffset << ')'; 488 } 489 } 490 491 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 492 void Formula::dump() const { 493 print(errs()); errs() << '\n'; 494 } 495 #endif 496 497 /// isAddRecSExtable - Return true if the given addrec can be sign-extended 498 /// without changing its value. 499 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 500 Type *WideTy = 501 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1); 502 return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy)); 503 } 504 505 /// isAddSExtable - Return true if the given add can be sign-extended 506 /// without changing its value. 507 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) { 508 Type *WideTy = 509 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1); 510 return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy)); 511 } 512 513 /// isMulSExtable - Return true if the given mul can be sign-extended 514 /// without changing its value. 515 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) { 516 Type *WideTy = 517 IntegerType::get(SE.getContext(), 518 SE.getTypeSizeInBits(M->getType()) * M->getNumOperands()); 519 return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy)); 520 } 521 522 /// getExactSDiv - Return an expression for LHS /s RHS, if it can be determined 523 /// and if the remainder is known to be zero, or null otherwise. If 524 /// IgnoreSignificantBits is true, expressions like (X * Y) /s Y are simplified 525 /// to Y, ignoring that the multiplication may overflow, which is useful when 526 /// the result will be used in a context where the most significant bits are 527 /// ignored. 528 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS, 529 ScalarEvolution &SE, 530 bool IgnoreSignificantBits = false) { 531 // Handle the trivial case, which works for any SCEV type. 532 if (LHS == RHS) 533 return SE.getConstant(LHS->getType(), 1); 534 535 // Handle a few RHS special cases. 536 const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS); 537 if (RC) { 538 const APInt &RA = RC->getValue()->getValue(); 539 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do 540 // some folding. 541 if (RA.isAllOnesValue()) 542 return SE.getMulExpr(LHS, RC); 543 // Handle x /s 1 as x. 544 if (RA == 1) 545 return LHS; 546 } 547 548 // Check for a division of a constant by a constant. 549 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) { 550 if (!RC) 551 return nullptr; 552 const APInt &LA = C->getValue()->getValue(); 553 const APInt &RA = RC->getValue()->getValue(); 554 if (LA.srem(RA) != 0) 555 return nullptr; 556 return SE.getConstant(LA.sdiv(RA)); 557 } 558 559 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow. 560 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) { 561 if (IgnoreSignificantBits || isAddRecSExtable(AR, SE)) { 562 const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE, 563 IgnoreSignificantBits); 564 if (!Step) return nullptr; 565 const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE, 566 IgnoreSignificantBits); 567 if (!Start) return nullptr; 568 // FlagNW is independent of the start value, step direction, and is 569 // preserved with smaller magnitude steps. 570 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 571 return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap); 572 } 573 return nullptr; 574 } 575 576 // Distribute the sdiv over add operands, if the add doesn't overflow. 577 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) { 578 if (IgnoreSignificantBits || isAddSExtable(Add, SE)) { 579 SmallVector<const SCEV *, 8> Ops; 580 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); 581 I != E; ++I) { 582 const SCEV *Op = getExactSDiv(*I, RHS, SE, 583 IgnoreSignificantBits); 584 if (!Op) return nullptr; 585 Ops.push_back(Op); 586 } 587 return SE.getAddExpr(Ops); 588 } 589 return nullptr; 590 } 591 592 // Check for a multiply operand that we can pull RHS out of. 593 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) { 594 if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) { 595 SmallVector<const SCEV *, 4> Ops; 596 bool Found = false; 597 for (SCEVMulExpr::op_iterator I = Mul->op_begin(), E = Mul->op_end(); 598 I != E; ++I) { 599 const SCEV *S = *I; 600 if (!Found) 601 if (const SCEV *Q = getExactSDiv(S, RHS, SE, 602 IgnoreSignificantBits)) { 603 S = Q; 604 Found = true; 605 } 606 Ops.push_back(S); 607 } 608 return Found ? SE.getMulExpr(Ops) : nullptr; 609 } 610 return nullptr; 611 } 612 613 // Otherwise we don't know. 614 return nullptr; 615 } 616 617 /// ExtractImmediate - If S involves the addition of a constant integer value, 618 /// return that integer value, and mutate S to point to a new SCEV with that 619 /// value excluded. 620 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) { 621 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 622 if (C->getValue()->getValue().getMinSignedBits() <= 64) { 623 S = SE.getConstant(C->getType(), 0); 624 return C->getValue()->getSExtValue(); 625 } 626 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 627 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 628 int64_t Result = ExtractImmediate(NewOps.front(), SE); 629 if (Result != 0) 630 S = SE.getAddExpr(NewOps); 631 return Result; 632 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 633 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 634 int64_t Result = ExtractImmediate(NewOps.front(), SE); 635 if (Result != 0) 636 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 637 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 638 SCEV::FlagAnyWrap); 639 return Result; 640 } 641 return 0; 642 } 643 644 /// ExtractSymbol - If S involves the addition of a GlobalValue address, 645 /// return that symbol, and mutate S to point to a new SCEV with that 646 /// value excluded. 647 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) { 648 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 649 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) { 650 S = SE.getConstant(GV->getType(), 0); 651 return GV; 652 } 653 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 654 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 655 GlobalValue *Result = ExtractSymbol(NewOps.back(), SE); 656 if (Result) 657 S = SE.getAddExpr(NewOps); 658 return Result; 659 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 660 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 661 GlobalValue *Result = ExtractSymbol(NewOps.front(), SE); 662 if (Result) 663 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 664 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 665 SCEV::FlagAnyWrap); 666 return Result; 667 } 668 return nullptr; 669 } 670 671 /// isAddressUse - Returns true if the specified instruction is using the 672 /// specified value as an address. 673 static bool isAddressUse(Instruction *Inst, Value *OperandVal) { 674 bool isAddress = isa<LoadInst>(Inst); 675 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 676 if (SI->getOperand(1) == OperandVal) 677 isAddress = true; 678 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 679 // Addressing modes can also be folded into prefetches and a variety 680 // of intrinsics. 681 switch (II->getIntrinsicID()) { 682 default: break; 683 case Intrinsic::prefetch: 684 case Intrinsic::x86_sse_storeu_ps: 685 case Intrinsic::x86_sse2_storeu_pd: 686 case Intrinsic::x86_sse2_storeu_dq: 687 case Intrinsic::x86_sse2_storel_dq: 688 if (II->getArgOperand(0) == OperandVal) 689 isAddress = true; 690 break; 691 } 692 } 693 return isAddress; 694 } 695 696 /// getAccessType - Return the type of the memory being accessed. 697 static Type *getAccessType(const Instruction *Inst) { 698 Type *AccessTy = Inst->getType(); 699 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) 700 AccessTy = SI->getOperand(0)->getType(); 701 else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 702 // Addressing modes can also be folded into prefetches and a variety 703 // of intrinsics. 704 switch (II->getIntrinsicID()) { 705 default: break; 706 case Intrinsic::x86_sse_storeu_ps: 707 case Intrinsic::x86_sse2_storeu_pd: 708 case Intrinsic::x86_sse2_storeu_dq: 709 case Intrinsic::x86_sse2_storel_dq: 710 AccessTy = II->getArgOperand(0)->getType(); 711 break; 712 } 713 } 714 715 // All pointers have the same requirements, so canonicalize them to an 716 // arbitrary pointer type to minimize variation. 717 if (PointerType *PTy = dyn_cast<PointerType>(AccessTy)) 718 AccessTy = PointerType::get(IntegerType::get(PTy->getContext(), 1), 719 PTy->getAddressSpace()); 720 721 return AccessTy; 722 } 723 724 /// isExistingPhi - Return true if this AddRec is already a phi in its loop. 725 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 726 for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin(); 727 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 728 if (SE.isSCEVable(PN->getType()) && 729 (SE.getEffectiveSCEVType(PN->getType()) == 730 SE.getEffectiveSCEVType(AR->getType())) && 731 SE.getSCEV(PN) == AR) 732 return true; 733 } 734 return false; 735 } 736 737 /// Check if expanding this expression is likely to incur significant cost. This 738 /// is tricky because SCEV doesn't track which expressions are actually computed 739 /// by the current IR. 740 /// 741 /// We currently allow expansion of IV increments that involve adds, 742 /// multiplication by constants, and AddRecs from existing phis. 743 /// 744 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an 745 /// obvious multiple of the UDivExpr. 746 static bool isHighCostExpansion(const SCEV *S, 747 SmallPtrSetImpl<const SCEV*> &Processed, 748 ScalarEvolution &SE) { 749 // Zero/One operand expressions 750 switch (S->getSCEVType()) { 751 case scUnknown: 752 case scConstant: 753 return false; 754 case scTruncate: 755 return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(), 756 Processed, SE); 757 case scZeroExtend: 758 return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(), 759 Processed, SE); 760 case scSignExtend: 761 return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(), 762 Processed, SE); 763 } 764 765 if (!Processed.insert(S).second) 766 return false; 767 768 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 769 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); 770 I != E; ++I) { 771 if (isHighCostExpansion(*I, Processed, SE)) 772 return true; 773 } 774 return false; 775 } 776 777 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 778 if (Mul->getNumOperands() == 2) { 779 // Multiplication by a constant is ok 780 if (isa<SCEVConstant>(Mul->getOperand(0))) 781 return isHighCostExpansion(Mul->getOperand(1), Processed, SE); 782 783 // If we have the value of one operand, check if an existing 784 // multiplication already generates this expression. 785 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) { 786 Value *UVal = U->getValue(); 787 for (User *UR : UVal->users()) { 788 // If U is a constant, it may be used by a ConstantExpr. 789 Instruction *UI = dyn_cast<Instruction>(UR); 790 if (UI && UI->getOpcode() == Instruction::Mul && 791 SE.isSCEVable(UI->getType())) { 792 return SE.getSCEV(UI) == Mul; 793 } 794 } 795 } 796 } 797 } 798 799 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 800 if (isExistingPhi(AR, SE)) 801 return false; 802 } 803 804 // Fow now, consider any other type of expression (div/mul/min/max) high cost. 805 return true; 806 } 807 808 /// DeleteTriviallyDeadInstructions - If any of the instructions is the 809 /// specified set are trivially dead, delete them and see if this makes any of 810 /// their operands subsequently dead. 811 static bool 812 DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) { 813 bool Changed = false; 814 815 while (!DeadInsts.empty()) { 816 Value *V = DeadInsts.pop_back_val(); 817 Instruction *I = dyn_cast_or_null<Instruction>(V); 818 819 if (!I || !isInstructionTriviallyDead(I)) 820 continue; 821 822 for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) 823 if (Instruction *U = dyn_cast<Instruction>(*OI)) { 824 *OI = nullptr; 825 if (U->use_empty()) 826 DeadInsts.push_back(U); 827 } 828 829 I->eraseFromParent(); 830 Changed = true; 831 } 832 833 return Changed; 834 } 835 836 namespace { 837 class LSRUse; 838 } 839 840 /// \brief Check if the addressing mode defined by \p F is completely 841 /// folded in \p LU at isel time. 842 /// This includes address-mode folding and special icmp tricks. 843 /// This function returns true if \p LU can accommodate what \p F 844 /// defines and up to 1 base + 1 scaled + offset. 845 /// In other words, if \p F has several base registers, this function may 846 /// still return true. Therefore, users still need to account for 847 /// additional base registers and/or unfolded offsets to derive an 848 /// accurate cost model. 849 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 850 const LSRUse &LU, const Formula &F); 851 // Get the cost of the scaling factor used in F for LU. 852 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, 853 const LSRUse &LU, const Formula &F); 854 855 namespace { 856 857 /// Cost - This class is used to measure and compare candidate formulae. 858 class Cost { 859 /// TODO: Some of these could be merged. Also, a lexical ordering 860 /// isn't always optimal. 861 unsigned NumRegs; 862 unsigned AddRecCost; 863 unsigned NumIVMuls; 864 unsigned NumBaseAdds; 865 unsigned ImmCost; 866 unsigned SetupCost; 867 unsigned ScaleCost; 868 869 public: 870 Cost() 871 : NumRegs(0), AddRecCost(0), NumIVMuls(0), NumBaseAdds(0), ImmCost(0), 872 SetupCost(0), ScaleCost(0) {} 873 874 bool operator<(const Cost &Other) const; 875 876 void Lose(); 877 878 #ifndef NDEBUG 879 // Once any of the metrics loses, they must all remain losers. 880 bool isValid() { 881 return ((NumRegs | AddRecCost | NumIVMuls | NumBaseAdds 882 | ImmCost | SetupCost | ScaleCost) != ~0u) 883 || ((NumRegs & AddRecCost & NumIVMuls & NumBaseAdds 884 & ImmCost & SetupCost & ScaleCost) == ~0u); 885 } 886 #endif 887 888 bool isLoser() { 889 assert(isValid() && "invalid cost"); 890 return NumRegs == ~0u; 891 } 892 893 void RateFormula(const TargetTransformInfo &TTI, 894 const Formula &F, 895 SmallPtrSetImpl<const SCEV *> &Regs, 896 const DenseSet<const SCEV *> &VisitedRegs, 897 const Loop *L, 898 const SmallVectorImpl<int64_t> &Offsets, 899 ScalarEvolution &SE, DominatorTree &DT, 900 const LSRUse &LU, 901 SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr); 902 903 void print(raw_ostream &OS) const; 904 void dump() const; 905 906 private: 907 void RateRegister(const SCEV *Reg, 908 SmallPtrSetImpl<const SCEV *> &Regs, 909 const Loop *L, 910 ScalarEvolution &SE, DominatorTree &DT); 911 void RatePrimaryRegister(const SCEV *Reg, 912 SmallPtrSetImpl<const SCEV *> &Regs, 913 const Loop *L, 914 ScalarEvolution &SE, DominatorTree &DT, 915 SmallPtrSetImpl<const SCEV *> *LoserRegs); 916 }; 917 918 } 919 920 /// RateRegister - Tally up interesting quantities from the given register. 921 void Cost::RateRegister(const SCEV *Reg, 922 SmallPtrSetImpl<const SCEV *> &Regs, 923 const Loop *L, 924 ScalarEvolution &SE, DominatorTree &DT) { 925 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) { 926 // If this is an addrec for another loop, don't second-guess its addrec phi 927 // nodes. LSR isn't currently smart enough to reason about more than one 928 // loop at a time. LSR has already run on inner loops, will not run on outer 929 // loops, and cannot be expected to change sibling loops. 930 if (AR->getLoop() != L) { 931 // If the AddRec exists, consider it's register free and leave it alone. 932 if (isExistingPhi(AR, SE)) 933 return; 934 935 // Otherwise, do not consider this formula at all. 936 Lose(); 937 return; 938 } 939 AddRecCost += 1; /// TODO: This should be a function of the stride. 940 941 // Add the step value register, if it needs one. 942 // TODO: The non-affine case isn't precisely modeled here. 943 if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) { 944 if (!Regs.count(AR->getOperand(1))) { 945 RateRegister(AR->getOperand(1), Regs, L, SE, DT); 946 if (isLoser()) 947 return; 948 } 949 } 950 } 951 ++NumRegs; 952 953 // Rough heuristic; favor registers which don't require extra setup 954 // instructions in the preheader. 955 if (!isa<SCEVUnknown>(Reg) && 956 !isa<SCEVConstant>(Reg) && 957 !(isa<SCEVAddRecExpr>(Reg) && 958 (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) || 959 isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart())))) 960 ++SetupCost; 961 962 NumIVMuls += isa<SCEVMulExpr>(Reg) && 963 SE.hasComputableLoopEvolution(Reg, L); 964 } 965 966 /// RatePrimaryRegister - Record this register in the set. If we haven't seen it 967 /// before, rate it. Optional LoserRegs provides a way to declare any formula 968 /// that refers to one of those regs an instant loser. 969 void Cost::RatePrimaryRegister(const SCEV *Reg, 970 SmallPtrSetImpl<const SCEV *> &Regs, 971 const Loop *L, 972 ScalarEvolution &SE, DominatorTree &DT, 973 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 974 if (LoserRegs && LoserRegs->count(Reg)) { 975 Lose(); 976 return; 977 } 978 if (Regs.insert(Reg).second) { 979 RateRegister(Reg, Regs, L, SE, DT); 980 if (LoserRegs && isLoser()) 981 LoserRegs->insert(Reg); 982 } 983 } 984 985 void Cost::RateFormula(const TargetTransformInfo &TTI, 986 const Formula &F, 987 SmallPtrSetImpl<const SCEV *> &Regs, 988 const DenseSet<const SCEV *> &VisitedRegs, 989 const Loop *L, 990 const SmallVectorImpl<int64_t> &Offsets, 991 ScalarEvolution &SE, DominatorTree &DT, 992 const LSRUse &LU, 993 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 994 assert(F.isCanonical() && "Cost is accurate only for canonical formula"); 995 // Tally up the registers. 996 if (const SCEV *ScaledReg = F.ScaledReg) { 997 if (VisitedRegs.count(ScaledReg)) { 998 Lose(); 999 return; 1000 } 1001 RatePrimaryRegister(ScaledReg, Regs, L, SE, DT, LoserRegs); 1002 if (isLoser()) 1003 return; 1004 } 1005 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(), 1006 E = F.BaseRegs.end(); I != E; ++I) { 1007 const SCEV *BaseReg = *I; 1008 if (VisitedRegs.count(BaseReg)) { 1009 Lose(); 1010 return; 1011 } 1012 RatePrimaryRegister(BaseReg, Regs, L, SE, DT, LoserRegs); 1013 if (isLoser()) 1014 return; 1015 } 1016 1017 // Determine how many (unfolded) adds we'll need inside the loop. 1018 size_t NumBaseParts = F.getNumRegs(); 1019 if (NumBaseParts > 1) 1020 // Do not count the base and a possible second register if the target 1021 // allows to fold 2 registers. 1022 NumBaseAdds += 1023 NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(TTI, LU, F))); 1024 NumBaseAdds += (F.UnfoldedOffset != 0); 1025 1026 // Accumulate non-free scaling amounts. 1027 ScaleCost += getScalingFactorCost(TTI, LU, F); 1028 1029 // Tally up the non-zero immediates. 1030 for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(), 1031 E = Offsets.end(); I != E; ++I) { 1032 int64_t Offset = (uint64_t)*I + F.BaseOffset; 1033 if (F.BaseGV) 1034 ImmCost += 64; // Handle symbolic values conservatively. 1035 // TODO: This should probably be the pointer size. 1036 else if (Offset != 0) 1037 ImmCost += APInt(64, Offset, true).getMinSignedBits(); 1038 } 1039 assert(isValid() && "invalid cost"); 1040 } 1041 1042 /// Lose - Set this cost to a losing value. 1043 void Cost::Lose() { 1044 NumRegs = ~0u; 1045 AddRecCost = ~0u; 1046 NumIVMuls = ~0u; 1047 NumBaseAdds = ~0u; 1048 ImmCost = ~0u; 1049 SetupCost = ~0u; 1050 ScaleCost = ~0u; 1051 } 1052 1053 /// operator< - Choose the lower cost. 1054 bool Cost::operator<(const Cost &Other) const { 1055 return std::tie(NumRegs, AddRecCost, NumIVMuls, NumBaseAdds, ScaleCost, 1056 ImmCost, SetupCost) < 1057 std::tie(Other.NumRegs, Other.AddRecCost, Other.NumIVMuls, 1058 Other.NumBaseAdds, Other.ScaleCost, Other.ImmCost, 1059 Other.SetupCost); 1060 } 1061 1062 void Cost::print(raw_ostream &OS) const { 1063 OS << NumRegs << " reg" << (NumRegs == 1 ? "" : "s"); 1064 if (AddRecCost != 0) 1065 OS << ", with addrec cost " << AddRecCost; 1066 if (NumIVMuls != 0) 1067 OS << ", plus " << NumIVMuls << " IV mul" << (NumIVMuls == 1 ? "" : "s"); 1068 if (NumBaseAdds != 0) 1069 OS << ", plus " << NumBaseAdds << " base add" 1070 << (NumBaseAdds == 1 ? "" : "s"); 1071 if (ScaleCost != 0) 1072 OS << ", plus " << ScaleCost << " scale cost"; 1073 if (ImmCost != 0) 1074 OS << ", plus " << ImmCost << " imm cost"; 1075 if (SetupCost != 0) 1076 OS << ", plus " << SetupCost << " setup cost"; 1077 } 1078 1079 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1080 void Cost::dump() const { 1081 print(errs()); errs() << '\n'; 1082 } 1083 #endif 1084 1085 namespace { 1086 1087 /// LSRFixup - An operand value in an instruction which is to be replaced 1088 /// with some equivalent, possibly strength-reduced, replacement. 1089 struct LSRFixup { 1090 /// UserInst - The instruction which will be updated. 1091 Instruction *UserInst; 1092 1093 /// OperandValToReplace - The operand of the instruction which will 1094 /// be replaced. The operand may be used more than once; every instance 1095 /// will be replaced. 1096 Value *OperandValToReplace; 1097 1098 /// PostIncLoops - If this user is to use the post-incremented value of an 1099 /// induction variable, this variable is non-null and holds the loop 1100 /// associated with the induction variable. 1101 PostIncLoopSet PostIncLoops; 1102 1103 /// LUIdx - The index of the LSRUse describing the expression which 1104 /// this fixup needs, minus an offset (below). 1105 size_t LUIdx; 1106 1107 /// Offset - A constant offset to be added to the LSRUse expression. 1108 /// This allows multiple fixups to share the same LSRUse with different 1109 /// offsets, for example in an unrolled loop. 1110 int64_t Offset; 1111 1112 bool isUseFullyOutsideLoop(const Loop *L) const; 1113 1114 LSRFixup(); 1115 1116 void print(raw_ostream &OS) const; 1117 void dump() const; 1118 }; 1119 1120 } 1121 1122 LSRFixup::LSRFixup() 1123 : UserInst(nullptr), OperandValToReplace(nullptr), LUIdx(~size_t(0)), 1124 Offset(0) {} 1125 1126 /// isUseFullyOutsideLoop - Test whether this fixup always uses its 1127 /// value outside of the given loop. 1128 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const { 1129 // PHI nodes use their value in their incoming blocks. 1130 if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) { 1131 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1132 if (PN->getIncomingValue(i) == OperandValToReplace && 1133 L->contains(PN->getIncomingBlock(i))) 1134 return false; 1135 return true; 1136 } 1137 1138 return !L->contains(UserInst); 1139 } 1140 1141 void LSRFixup::print(raw_ostream &OS) const { 1142 OS << "UserInst="; 1143 // Store is common and interesting enough to be worth special-casing. 1144 if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) { 1145 OS << "store "; 1146 Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false); 1147 } else if (UserInst->getType()->isVoidTy()) 1148 OS << UserInst->getOpcodeName(); 1149 else 1150 UserInst->printAsOperand(OS, /*PrintType=*/false); 1151 1152 OS << ", OperandValToReplace="; 1153 OperandValToReplace->printAsOperand(OS, /*PrintType=*/false); 1154 1155 for (PostIncLoopSet::const_iterator I = PostIncLoops.begin(), 1156 E = PostIncLoops.end(); I != E; ++I) { 1157 OS << ", PostIncLoop="; 1158 (*I)->getHeader()->printAsOperand(OS, /*PrintType=*/false); 1159 } 1160 1161 if (LUIdx != ~size_t(0)) 1162 OS << ", LUIdx=" << LUIdx; 1163 1164 if (Offset != 0) 1165 OS << ", Offset=" << Offset; 1166 } 1167 1168 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1169 void LSRFixup::dump() const { 1170 print(errs()); errs() << '\n'; 1171 } 1172 #endif 1173 1174 namespace { 1175 1176 /// UniquifierDenseMapInfo - A DenseMapInfo implementation for holding 1177 /// DenseMaps and DenseSets of sorted SmallVectors of const SCEV*. 1178 struct UniquifierDenseMapInfo { 1179 static SmallVector<const SCEV *, 4> getEmptyKey() { 1180 SmallVector<const SCEV *, 4> V; 1181 V.push_back(reinterpret_cast<const SCEV *>(-1)); 1182 return V; 1183 } 1184 1185 static SmallVector<const SCEV *, 4> getTombstoneKey() { 1186 SmallVector<const SCEV *, 4> V; 1187 V.push_back(reinterpret_cast<const SCEV *>(-2)); 1188 return V; 1189 } 1190 1191 static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) { 1192 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 1193 } 1194 1195 static bool isEqual(const SmallVector<const SCEV *, 4> &LHS, 1196 const SmallVector<const SCEV *, 4> &RHS) { 1197 return LHS == RHS; 1198 } 1199 }; 1200 1201 /// LSRUse - This class holds the state that LSR keeps for each use in 1202 /// IVUsers, as well as uses invented by LSR itself. It includes information 1203 /// about what kinds of things can be folded into the user, information about 1204 /// the user itself, and information about how the use may be satisfied. 1205 /// TODO: Represent multiple users of the same expression in common? 1206 class LSRUse { 1207 DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier; 1208 1209 public: 1210 /// KindType - An enum for a kind of use, indicating what types of 1211 /// scaled and immediate operands it might support. 1212 enum KindType { 1213 Basic, ///< A normal use, with no folding. 1214 Special, ///< A special case of basic, allowing -1 scales. 1215 Address, ///< An address use; folding according to TargetLowering 1216 ICmpZero ///< An equality icmp with both operands folded into one. 1217 // TODO: Add a generic icmp too? 1218 }; 1219 1220 typedef PointerIntPair<const SCEV *, 2, KindType> SCEVUseKindPair; 1221 1222 KindType Kind; 1223 Type *AccessTy; 1224 1225 SmallVector<int64_t, 8> Offsets; 1226 int64_t MinOffset; 1227 int64_t MaxOffset; 1228 1229 /// AllFixupsOutsideLoop - This records whether all of the fixups using this 1230 /// LSRUse are outside of the loop, in which case some special-case heuristics 1231 /// may be used. 1232 bool AllFixupsOutsideLoop; 1233 1234 /// RigidFormula is set to true to guarantee that this use will be associated 1235 /// with a single formula--the one that initially matched. Some SCEV 1236 /// expressions cannot be expanded. This allows LSR to consider the registers 1237 /// used by those expressions without the need to expand them later after 1238 /// changing the formula. 1239 bool RigidFormula; 1240 1241 /// WidestFixupType - This records the widest use type for any fixup using 1242 /// this LSRUse. FindUseWithSimilarFormula can't consider uses with different 1243 /// max fixup widths to be equivalent, because the narrower one may be relying 1244 /// on the implicit truncation to truncate away bogus bits. 1245 Type *WidestFixupType; 1246 1247 /// Formulae - A list of ways to build a value that can satisfy this user. 1248 /// After the list is populated, one of these is selected heuristically and 1249 /// used to formulate a replacement for OperandValToReplace in UserInst. 1250 SmallVector<Formula, 12> Formulae; 1251 1252 /// Regs - The set of register candidates used by all formulae in this LSRUse. 1253 SmallPtrSet<const SCEV *, 4> Regs; 1254 1255 LSRUse(KindType K, Type *T) : Kind(K), AccessTy(T), 1256 MinOffset(INT64_MAX), 1257 MaxOffset(INT64_MIN), 1258 AllFixupsOutsideLoop(true), 1259 RigidFormula(false), 1260 WidestFixupType(nullptr) {} 1261 1262 bool HasFormulaWithSameRegs(const Formula &F) const; 1263 bool InsertFormula(const Formula &F); 1264 void DeleteFormula(Formula &F); 1265 void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses); 1266 1267 void print(raw_ostream &OS) const; 1268 void dump() const; 1269 }; 1270 1271 } 1272 1273 /// HasFormula - Test whether this use as a formula which has the same 1274 /// registers as the given formula. 1275 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const { 1276 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1277 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1278 // Unstable sort by host order ok, because this is only used for uniquifying. 1279 std::sort(Key.begin(), Key.end()); 1280 return Uniquifier.count(Key); 1281 } 1282 1283 /// InsertFormula - If the given formula has not yet been inserted, add it to 1284 /// the list, and return true. Return false otherwise. 1285 /// The formula must be in canonical form. 1286 bool LSRUse::InsertFormula(const Formula &F) { 1287 assert(F.isCanonical() && "Invalid canonical representation"); 1288 1289 if (!Formulae.empty() && RigidFormula) 1290 return false; 1291 1292 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1293 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1294 // Unstable sort by host order ok, because this is only used for uniquifying. 1295 std::sort(Key.begin(), Key.end()); 1296 1297 if (!Uniquifier.insert(Key).second) 1298 return false; 1299 1300 // Using a register to hold the value of 0 is not profitable. 1301 assert((!F.ScaledReg || !F.ScaledReg->isZero()) && 1302 "Zero allocated in a scaled register!"); 1303 #ifndef NDEBUG 1304 for (SmallVectorImpl<const SCEV *>::const_iterator I = 1305 F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) 1306 assert(!(*I)->isZero() && "Zero allocated in a base register!"); 1307 #endif 1308 1309 // Add the formula to the list. 1310 Formulae.push_back(F); 1311 1312 // Record registers now being used by this use. 1313 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1314 if (F.ScaledReg) 1315 Regs.insert(F.ScaledReg); 1316 1317 return true; 1318 } 1319 1320 /// DeleteFormula - Remove the given formula from this use's list. 1321 void LSRUse::DeleteFormula(Formula &F) { 1322 if (&F != &Formulae.back()) 1323 std::swap(F, Formulae.back()); 1324 Formulae.pop_back(); 1325 } 1326 1327 /// RecomputeRegs - Recompute the Regs field, and update RegUses. 1328 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) { 1329 // Now that we've filtered out some formulae, recompute the Regs set. 1330 SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs); 1331 Regs.clear(); 1332 for (const Formula &F : Formulae) { 1333 if (F.ScaledReg) Regs.insert(F.ScaledReg); 1334 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1335 } 1336 1337 // Update the RegTracker. 1338 for (const SCEV *S : OldRegs) 1339 if (!Regs.count(S)) 1340 RegUses.DropRegister(S, LUIdx); 1341 } 1342 1343 void LSRUse::print(raw_ostream &OS) const { 1344 OS << "LSR Use: Kind="; 1345 switch (Kind) { 1346 case Basic: OS << "Basic"; break; 1347 case Special: OS << "Special"; break; 1348 case ICmpZero: OS << "ICmpZero"; break; 1349 case Address: 1350 OS << "Address of "; 1351 if (AccessTy->isPointerTy()) 1352 OS << "pointer"; // the full pointer type could be really verbose 1353 else 1354 OS << *AccessTy; 1355 } 1356 1357 OS << ", Offsets={"; 1358 for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(), 1359 E = Offsets.end(); I != E; ++I) { 1360 OS << *I; 1361 if (std::next(I) != E) 1362 OS << ','; 1363 } 1364 OS << '}'; 1365 1366 if (AllFixupsOutsideLoop) 1367 OS << ", all-fixups-outside-loop"; 1368 1369 if (WidestFixupType) 1370 OS << ", widest fixup type: " << *WidestFixupType; 1371 } 1372 1373 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1374 void LSRUse::dump() const { 1375 print(errs()); errs() << '\n'; 1376 } 1377 #endif 1378 1379 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1380 LSRUse::KindType Kind, Type *AccessTy, 1381 GlobalValue *BaseGV, int64_t BaseOffset, 1382 bool HasBaseReg, int64_t Scale) { 1383 switch (Kind) { 1384 case LSRUse::Address: 1385 return TTI.isLegalAddressingMode(AccessTy, BaseGV, BaseOffset, HasBaseReg, Scale); 1386 1387 // Otherwise, just guess that reg+reg addressing is legal. 1388 //return ; 1389 1390 case LSRUse::ICmpZero: 1391 // There's not even a target hook for querying whether it would be legal to 1392 // fold a GV into an ICmp. 1393 if (BaseGV) 1394 return false; 1395 1396 // ICmp only has two operands; don't allow more than two non-trivial parts. 1397 if (Scale != 0 && HasBaseReg && BaseOffset != 0) 1398 return false; 1399 1400 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by 1401 // putting the scaled register in the other operand of the icmp. 1402 if (Scale != 0 && Scale != -1) 1403 return false; 1404 1405 // If we have low-level target information, ask the target if it can fold an 1406 // integer immediate on an icmp. 1407 if (BaseOffset != 0) { 1408 // We have one of: 1409 // ICmpZero BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset 1410 // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset 1411 // Offs is the ICmp immediate. 1412 if (Scale == 0) 1413 // The cast does the right thing with INT64_MIN. 1414 BaseOffset = -(uint64_t)BaseOffset; 1415 return TTI.isLegalICmpImmediate(BaseOffset); 1416 } 1417 1418 // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg 1419 return true; 1420 1421 case LSRUse::Basic: 1422 // Only handle single-register values. 1423 return !BaseGV && Scale == 0 && BaseOffset == 0; 1424 1425 case LSRUse::Special: 1426 // Special case Basic to handle -1 scales. 1427 return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0; 1428 } 1429 1430 llvm_unreachable("Invalid LSRUse Kind!"); 1431 } 1432 1433 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1434 int64_t MinOffset, int64_t MaxOffset, 1435 LSRUse::KindType Kind, Type *AccessTy, 1436 GlobalValue *BaseGV, int64_t BaseOffset, 1437 bool HasBaseReg, int64_t Scale) { 1438 // Check for overflow. 1439 if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) != 1440 (MinOffset > 0)) 1441 return false; 1442 MinOffset = (uint64_t)BaseOffset + MinOffset; 1443 if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) != 1444 (MaxOffset > 0)) 1445 return false; 1446 MaxOffset = (uint64_t)BaseOffset + MaxOffset; 1447 1448 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset, 1449 HasBaseReg, Scale) && 1450 isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset, 1451 HasBaseReg, Scale); 1452 } 1453 1454 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1455 int64_t MinOffset, int64_t MaxOffset, 1456 LSRUse::KindType Kind, Type *AccessTy, 1457 const Formula &F) { 1458 // For the purpose of isAMCompletelyFolded either having a canonical formula 1459 // or a scale not equal to zero is correct. 1460 // Problems may arise from non canonical formulae having a scale == 0. 1461 // Strictly speaking it would best to just rely on canonical formulae. 1462 // However, when we generate the scaled formulae, we first check that the 1463 // scaling factor is profitable before computing the actual ScaledReg for 1464 // compile time sake. 1465 assert((F.isCanonical() || F.Scale != 0)); 1466 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1467 F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale); 1468 } 1469 1470 /// isLegalUse - Test whether we know how to expand the current formula. 1471 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1472 int64_t MaxOffset, LSRUse::KindType Kind, Type *AccessTy, 1473 GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg, 1474 int64_t Scale) { 1475 // We know how to expand completely foldable formulae. 1476 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1477 BaseOffset, HasBaseReg, Scale) || 1478 // Or formulae that use a base register produced by a sum of base 1479 // registers. 1480 (Scale == 1 && 1481 isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1482 BaseGV, BaseOffset, true, 0)); 1483 } 1484 1485 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1486 int64_t MaxOffset, LSRUse::KindType Kind, Type *AccessTy, 1487 const Formula &F) { 1488 return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV, 1489 F.BaseOffset, F.HasBaseReg, F.Scale); 1490 } 1491 1492 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1493 const LSRUse &LU, const Formula &F) { 1494 return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1495 LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg, 1496 F.Scale); 1497 } 1498 1499 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, 1500 const LSRUse &LU, const Formula &F) { 1501 if (!F.Scale) 1502 return 0; 1503 1504 // If the use is not completely folded in that instruction, we will have to 1505 // pay an extra cost only for scale != 1. 1506 if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1507 LU.AccessTy, F)) 1508 return F.Scale != 1; 1509 1510 switch (LU.Kind) { 1511 case LSRUse::Address: { 1512 // Check the scaling factor cost with both the min and max offsets. 1513 int ScaleCostMinOffset = 1514 TTI.getScalingFactorCost(LU.AccessTy, F.BaseGV, 1515 F.BaseOffset + LU.MinOffset, 1516 F.HasBaseReg, F.Scale); 1517 int ScaleCostMaxOffset = 1518 TTI.getScalingFactorCost(LU.AccessTy, F.BaseGV, 1519 F.BaseOffset + LU.MaxOffset, 1520 F.HasBaseReg, F.Scale); 1521 1522 assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 && 1523 "Legal addressing mode has an illegal cost!"); 1524 return std::max(ScaleCostMinOffset, ScaleCostMaxOffset); 1525 } 1526 case LSRUse::ICmpZero: 1527 case LSRUse::Basic: 1528 case LSRUse::Special: 1529 // The use is completely folded, i.e., everything is folded into the 1530 // instruction. 1531 return 0; 1532 } 1533 1534 llvm_unreachable("Invalid LSRUse Kind!"); 1535 } 1536 1537 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1538 LSRUse::KindType Kind, Type *AccessTy, 1539 GlobalValue *BaseGV, int64_t BaseOffset, 1540 bool HasBaseReg) { 1541 // Fast-path: zero is always foldable. 1542 if (BaseOffset == 0 && !BaseGV) return true; 1543 1544 // Conservatively, create an address with an immediate and a 1545 // base and a scale. 1546 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1547 1548 // Canonicalize a scale of 1 to a base register if the formula doesn't 1549 // already have a base register. 1550 if (!HasBaseReg && Scale == 1) { 1551 Scale = 0; 1552 HasBaseReg = true; 1553 } 1554 1555 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset, 1556 HasBaseReg, Scale); 1557 } 1558 1559 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1560 ScalarEvolution &SE, int64_t MinOffset, 1561 int64_t MaxOffset, LSRUse::KindType Kind, 1562 Type *AccessTy, const SCEV *S, bool HasBaseReg) { 1563 // Fast-path: zero is always foldable. 1564 if (S->isZero()) return true; 1565 1566 // Conservatively, create an address with an immediate and a 1567 // base and a scale. 1568 int64_t BaseOffset = ExtractImmediate(S, SE); 1569 GlobalValue *BaseGV = ExtractSymbol(S, SE); 1570 1571 // If there's anything else involved, it's not foldable. 1572 if (!S->isZero()) return false; 1573 1574 // Fast-path: zero is always foldable. 1575 if (BaseOffset == 0 && !BaseGV) return true; 1576 1577 // Conservatively, create an address with an immediate and a 1578 // base and a scale. 1579 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1580 1581 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1582 BaseOffset, HasBaseReg, Scale); 1583 } 1584 1585 namespace { 1586 1587 /// IVInc - An individual increment in a Chain of IV increments. 1588 /// Relate an IV user to an expression that computes the IV it uses from the IV 1589 /// used by the previous link in the Chain. 1590 /// 1591 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the 1592 /// original IVOperand. The head of the chain's IVOperand is only valid during 1593 /// chain collection, before LSR replaces IV users. During chain generation, 1594 /// IncExpr can be used to find the new IVOperand that computes the same 1595 /// expression. 1596 struct IVInc { 1597 Instruction *UserInst; 1598 Value* IVOperand; 1599 const SCEV *IncExpr; 1600 1601 IVInc(Instruction *U, Value *O, const SCEV *E): 1602 UserInst(U), IVOperand(O), IncExpr(E) {} 1603 }; 1604 1605 // IVChain - The list of IV increments in program order. 1606 // We typically add the head of a chain without finding subsequent links. 1607 struct IVChain { 1608 SmallVector<IVInc,1> Incs; 1609 const SCEV *ExprBase; 1610 1611 IVChain() : ExprBase(nullptr) {} 1612 1613 IVChain(const IVInc &Head, const SCEV *Base) 1614 : Incs(1, Head), ExprBase(Base) {} 1615 1616 typedef SmallVectorImpl<IVInc>::const_iterator const_iterator; 1617 1618 // begin - return the first increment in the chain. 1619 const_iterator begin() const { 1620 assert(!Incs.empty()); 1621 return std::next(Incs.begin()); 1622 } 1623 const_iterator end() const { 1624 return Incs.end(); 1625 } 1626 1627 // hasIncs - Returns true if this chain contains any increments. 1628 bool hasIncs() const { return Incs.size() >= 2; } 1629 1630 // add - Add an IVInc to the end of this chain. 1631 void add(const IVInc &X) { Incs.push_back(X); } 1632 1633 // tailUserInst - Returns the last UserInst in the chain. 1634 Instruction *tailUserInst() const { return Incs.back().UserInst; } 1635 1636 // isProfitableIncrement - Returns true if IncExpr can be profitably added to 1637 // this chain. 1638 bool isProfitableIncrement(const SCEV *OperExpr, 1639 const SCEV *IncExpr, 1640 ScalarEvolution&); 1641 }; 1642 1643 /// ChainUsers - Helper for CollectChains to track multiple IV increment uses. 1644 /// Distinguish between FarUsers that definitely cross IV increments and 1645 /// NearUsers that may be used between IV increments. 1646 struct ChainUsers { 1647 SmallPtrSet<Instruction*, 4> FarUsers; 1648 SmallPtrSet<Instruction*, 4> NearUsers; 1649 }; 1650 1651 /// LSRInstance - This class holds state for the main loop strength reduction 1652 /// logic. 1653 class LSRInstance { 1654 IVUsers &IU; 1655 ScalarEvolution &SE; 1656 DominatorTree &DT; 1657 LoopInfo &LI; 1658 const TargetTransformInfo &TTI; 1659 Loop *const L; 1660 bool Changed; 1661 1662 /// IVIncInsertPos - This is the insert position that the current loop's 1663 /// induction variable increment should be placed. In simple loops, this is 1664 /// the latch block's terminator. But in more complicated cases, this is a 1665 /// position which will dominate all the in-loop post-increment users. 1666 Instruction *IVIncInsertPos; 1667 1668 /// Factors - Interesting factors between use strides. 1669 SmallSetVector<int64_t, 8> Factors; 1670 1671 /// Types - Interesting use types, to facilitate truncation reuse. 1672 SmallSetVector<Type *, 4> Types; 1673 1674 /// Fixups - The list of operands which are to be replaced. 1675 SmallVector<LSRFixup, 16> Fixups; 1676 1677 /// Uses - The list of interesting uses. 1678 SmallVector<LSRUse, 16> Uses; 1679 1680 /// RegUses - Track which uses use which register candidates. 1681 RegUseTracker RegUses; 1682 1683 // Limit the number of chains to avoid quadratic behavior. We don't expect to 1684 // have more than a few IV increment chains in a loop. Missing a Chain falls 1685 // back to normal LSR behavior for those uses. 1686 static const unsigned MaxChains = 8; 1687 1688 /// IVChainVec - IV users can form a chain of IV increments. 1689 SmallVector<IVChain, MaxChains> IVChainVec; 1690 1691 /// IVIncSet - IV users that belong to profitable IVChains. 1692 SmallPtrSet<Use*, MaxChains> IVIncSet; 1693 1694 void OptimizeShadowIV(); 1695 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse); 1696 ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse); 1697 void OptimizeLoopTermCond(); 1698 1699 void ChainInstruction(Instruction *UserInst, Instruction *IVOper, 1700 SmallVectorImpl<ChainUsers> &ChainUsersVec); 1701 void FinalizeChain(IVChain &Chain); 1702 void CollectChains(); 1703 void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 1704 SmallVectorImpl<WeakVH> &DeadInsts); 1705 1706 void CollectInterestingTypesAndFactors(); 1707 void CollectFixupsAndInitialFormulae(); 1708 1709 LSRFixup &getNewFixup() { 1710 Fixups.push_back(LSRFixup()); 1711 return Fixups.back(); 1712 } 1713 1714 // Support for sharing of LSRUses between LSRFixups. 1715 typedef DenseMap<LSRUse::SCEVUseKindPair, size_t> UseMapTy; 1716 UseMapTy UseMap; 1717 1718 bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, 1719 LSRUse::KindType Kind, Type *AccessTy); 1720 1721 std::pair<size_t, int64_t> getUse(const SCEV *&Expr, 1722 LSRUse::KindType Kind, 1723 Type *AccessTy); 1724 1725 void DeleteUse(LSRUse &LU, size_t LUIdx); 1726 1727 LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU); 1728 1729 void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1730 void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1731 void CountRegisters(const Formula &F, size_t LUIdx); 1732 bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F); 1733 1734 void CollectLoopInvariantFixupsAndFormulae(); 1735 1736 void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base, 1737 unsigned Depth = 0); 1738 1739 void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 1740 const Formula &Base, unsigned Depth, 1741 size_t Idx, bool IsScaledReg = false); 1742 void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base); 1743 void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 1744 const Formula &Base, size_t Idx, 1745 bool IsScaledReg = false); 1746 void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1747 void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx, 1748 const Formula &Base, 1749 const SmallVectorImpl<int64_t> &Worklist, 1750 size_t Idx, bool IsScaledReg = false); 1751 void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1752 void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base); 1753 void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base); 1754 void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base); 1755 void GenerateCrossUseConstantOffsets(); 1756 void GenerateAllReuseFormulae(); 1757 1758 void FilterOutUndesirableDedicatedRegisters(); 1759 1760 size_t EstimateSearchSpaceComplexity() const; 1761 void NarrowSearchSpaceByDetectingSupersets(); 1762 void NarrowSearchSpaceByCollapsingUnrolledCode(); 1763 void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 1764 void NarrowSearchSpaceByPickingWinnerRegs(); 1765 void NarrowSearchSpaceUsingHeuristics(); 1766 1767 void SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 1768 Cost &SolutionCost, 1769 SmallVectorImpl<const Formula *> &Workspace, 1770 const Cost &CurCost, 1771 const SmallPtrSet<const SCEV *, 16> &CurRegs, 1772 DenseSet<const SCEV *> &VisitedRegs) const; 1773 void Solve(SmallVectorImpl<const Formula *> &Solution) const; 1774 1775 BasicBlock::iterator 1776 HoistInsertPosition(BasicBlock::iterator IP, 1777 const SmallVectorImpl<Instruction *> &Inputs) const; 1778 BasicBlock::iterator 1779 AdjustInsertPositionForExpand(BasicBlock::iterator IP, 1780 const LSRFixup &LF, 1781 const LSRUse &LU, 1782 SCEVExpander &Rewriter) const; 1783 1784 Value *Expand(const LSRFixup &LF, 1785 const Formula &F, 1786 BasicBlock::iterator IP, 1787 SCEVExpander &Rewriter, 1788 SmallVectorImpl<WeakVH> &DeadInsts) const; 1789 void RewriteForPHI(PHINode *PN, const LSRFixup &LF, 1790 const Formula &F, 1791 SCEVExpander &Rewriter, 1792 SmallVectorImpl<WeakVH> &DeadInsts, 1793 Pass *P) const; 1794 void Rewrite(const LSRFixup &LF, 1795 const Formula &F, 1796 SCEVExpander &Rewriter, 1797 SmallVectorImpl<WeakVH> &DeadInsts, 1798 Pass *P) const; 1799 void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution, 1800 Pass *P); 1801 1802 public: 1803 LSRInstance(Loop *L, Pass *P); 1804 1805 bool getChanged() const { return Changed; } 1806 1807 void print_factors_and_types(raw_ostream &OS) const; 1808 void print_fixups(raw_ostream &OS) const; 1809 void print_uses(raw_ostream &OS) const; 1810 void print(raw_ostream &OS) const; 1811 void dump() const; 1812 }; 1813 1814 } 1815 1816 /// OptimizeShadowIV - If IV is used in a int-to-float cast 1817 /// inside the loop then try to eliminate the cast operation. 1818 void LSRInstance::OptimizeShadowIV() { 1819 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 1820 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 1821 return; 1822 1823 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); 1824 UI != E; /* empty */) { 1825 IVUsers::const_iterator CandidateUI = UI; 1826 ++UI; 1827 Instruction *ShadowUse = CandidateUI->getUser(); 1828 Type *DestTy = nullptr; 1829 bool IsSigned = false; 1830 1831 /* If shadow use is a int->float cast then insert a second IV 1832 to eliminate this cast. 1833 1834 for (unsigned i = 0; i < n; ++i) 1835 foo((double)i); 1836 1837 is transformed into 1838 1839 double d = 0.0; 1840 for (unsigned i = 0; i < n; ++i, ++d) 1841 foo(d); 1842 */ 1843 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) { 1844 IsSigned = false; 1845 DestTy = UCast->getDestTy(); 1846 } 1847 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) { 1848 IsSigned = true; 1849 DestTy = SCast->getDestTy(); 1850 } 1851 if (!DestTy) continue; 1852 1853 // If target does not support DestTy natively then do not apply 1854 // this transformation. 1855 if (!TTI.isTypeLegal(DestTy)) continue; 1856 1857 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0)); 1858 if (!PH) continue; 1859 if (PH->getNumIncomingValues() != 2) continue; 1860 1861 Type *SrcTy = PH->getType(); 1862 int Mantissa = DestTy->getFPMantissaWidth(); 1863 if (Mantissa == -1) continue; 1864 if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa) 1865 continue; 1866 1867 unsigned Entry, Latch; 1868 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) { 1869 Entry = 0; 1870 Latch = 1; 1871 } else { 1872 Entry = 1; 1873 Latch = 0; 1874 } 1875 1876 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry)); 1877 if (!Init) continue; 1878 Constant *NewInit = ConstantFP::get(DestTy, IsSigned ? 1879 (double)Init->getSExtValue() : 1880 (double)Init->getZExtValue()); 1881 1882 BinaryOperator *Incr = 1883 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch)); 1884 if (!Incr) continue; 1885 if (Incr->getOpcode() != Instruction::Add 1886 && Incr->getOpcode() != Instruction::Sub) 1887 continue; 1888 1889 /* Initialize new IV, double d = 0.0 in above example. */ 1890 ConstantInt *C = nullptr; 1891 if (Incr->getOperand(0) == PH) 1892 C = dyn_cast<ConstantInt>(Incr->getOperand(1)); 1893 else if (Incr->getOperand(1) == PH) 1894 C = dyn_cast<ConstantInt>(Incr->getOperand(0)); 1895 else 1896 continue; 1897 1898 if (!C) continue; 1899 1900 // Ignore negative constants, as the code below doesn't handle them 1901 // correctly. TODO: Remove this restriction. 1902 if (!C->getValue().isStrictlyPositive()) continue; 1903 1904 /* Add new PHINode. */ 1905 PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH); 1906 1907 /* create new increment. '++d' in above example. */ 1908 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue()); 1909 BinaryOperator *NewIncr = 1910 BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ? 1911 Instruction::FAdd : Instruction::FSub, 1912 NewPH, CFP, "IV.S.next.", Incr); 1913 1914 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry)); 1915 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch)); 1916 1917 /* Remove cast operation */ 1918 ShadowUse->replaceAllUsesWith(NewPH); 1919 ShadowUse->eraseFromParent(); 1920 Changed = true; 1921 break; 1922 } 1923 } 1924 1925 /// FindIVUserForCond - If Cond has an operand that is an expression of an IV, 1926 /// set the IV user and stride information and return true, otherwise return 1927 /// false. 1928 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) { 1929 for (IVUsers::iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) 1930 if (UI->getUser() == Cond) { 1931 // NOTE: we could handle setcc instructions with multiple uses here, but 1932 // InstCombine does it as well for simple uses, it's not clear that it 1933 // occurs enough in real life to handle. 1934 CondUse = UI; 1935 return true; 1936 } 1937 return false; 1938 } 1939 1940 /// OptimizeMax - Rewrite the loop's terminating condition if it uses 1941 /// a max computation. 1942 /// 1943 /// This is a narrow solution to a specific, but acute, problem. For loops 1944 /// like this: 1945 /// 1946 /// i = 0; 1947 /// do { 1948 /// p[i] = 0.0; 1949 /// } while (++i < n); 1950 /// 1951 /// the trip count isn't just 'n', because 'n' might not be positive. And 1952 /// unfortunately this can come up even for loops where the user didn't use 1953 /// a C do-while loop. For example, seemingly well-behaved top-test loops 1954 /// will commonly be lowered like this: 1955 // 1956 /// if (n > 0) { 1957 /// i = 0; 1958 /// do { 1959 /// p[i] = 0.0; 1960 /// } while (++i < n); 1961 /// } 1962 /// 1963 /// and then it's possible for subsequent optimization to obscure the if 1964 /// test in such a way that indvars can't find it. 1965 /// 1966 /// When indvars can't find the if test in loops like this, it creates a 1967 /// max expression, which allows it to give the loop a canonical 1968 /// induction variable: 1969 /// 1970 /// i = 0; 1971 /// max = n < 1 ? 1 : n; 1972 /// do { 1973 /// p[i] = 0.0; 1974 /// } while (++i != max); 1975 /// 1976 /// Canonical induction variables are necessary because the loop passes 1977 /// are designed around them. The most obvious example of this is the 1978 /// LoopInfo analysis, which doesn't remember trip count values. It 1979 /// expects to be able to rediscover the trip count each time it is 1980 /// needed, and it does this using a simple analysis that only succeeds if 1981 /// the loop has a canonical induction variable. 1982 /// 1983 /// However, when it comes time to generate code, the maximum operation 1984 /// can be quite costly, especially if it's inside of an outer loop. 1985 /// 1986 /// This function solves this problem by detecting this type of loop and 1987 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting 1988 /// the instructions for the maximum computation. 1989 /// 1990 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) { 1991 // Check that the loop matches the pattern we're looking for. 1992 if (Cond->getPredicate() != CmpInst::ICMP_EQ && 1993 Cond->getPredicate() != CmpInst::ICMP_NE) 1994 return Cond; 1995 1996 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1)); 1997 if (!Sel || !Sel->hasOneUse()) return Cond; 1998 1999 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 2000 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2001 return Cond; 2002 const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1); 2003 2004 // Add one to the backedge-taken count to get the trip count. 2005 const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount); 2006 if (IterationCount != SE.getSCEV(Sel)) return Cond; 2007 2008 // Check for a max calculation that matches the pattern. There's no check 2009 // for ICMP_ULE here because the comparison would be with zero, which 2010 // isn't interesting. 2011 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 2012 const SCEVNAryExpr *Max = nullptr; 2013 if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) { 2014 Pred = ICmpInst::ICMP_SLE; 2015 Max = S; 2016 } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) { 2017 Pred = ICmpInst::ICMP_SLT; 2018 Max = S; 2019 } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) { 2020 Pred = ICmpInst::ICMP_ULT; 2021 Max = U; 2022 } else { 2023 // No match; bail. 2024 return Cond; 2025 } 2026 2027 // To handle a max with more than two operands, this optimization would 2028 // require additional checking and setup. 2029 if (Max->getNumOperands() != 2) 2030 return Cond; 2031 2032 const SCEV *MaxLHS = Max->getOperand(0); 2033 const SCEV *MaxRHS = Max->getOperand(1); 2034 2035 // ScalarEvolution canonicalizes constants to the left. For < and >, look 2036 // for a comparison with 1. For <= and >=, a comparison with zero. 2037 if (!MaxLHS || 2038 (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One))) 2039 return Cond; 2040 2041 // Check the relevant induction variable for conformance to 2042 // the pattern. 2043 const SCEV *IV = SE.getSCEV(Cond->getOperand(0)); 2044 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV); 2045 if (!AR || !AR->isAffine() || 2046 AR->getStart() != One || 2047 AR->getStepRecurrence(SE) != One) 2048 return Cond; 2049 2050 assert(AR->getLoop() == L && 2051 "Loop condition operand is an addrec in a different loop!"); 2052 2053 // Check the right operand of the select, and remember it, as it will 2054 // be used in the new comparison instruction. 2055 Value *NewRHS = nullptr; 2056 if (ICmpInst::isTrueWhenEqual(Pred)) { 2057 // Look for n+1, and grab n. 2058 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1))) 2059 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2060 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2061 NewRHS = BO->getOperand(0); 2062 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2))) 2063 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2064 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2065 NewRHS = BO->getOperand(0); 2066 if (!NewRHS) 2067 return Cond; 2068 } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS) 2069 NewRHS = Sel->getOperand(1); 2070 else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS) 2071 NewRHS = Sel->getOperand(2); 2072 else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS)) 2073 NewRHS = SU->getValue(); 2074 else 2075 // Max doesn't match expected pattern. 2076 return Cond; 2077 2078 // Determine the new comparison opcode. It may be signed or unsigned, 2079 // and the original comparison may be either equality or inequality. 2080 if (Cond->getPredicate() == CmpInst::ICMP_EQ) 2081 Pred = CmpInst::getInversePredicate(Pred); 2082 2083 // Ok, everything looks ok to change the condition into an SLT or SGE and 2084 // delete the max calculation. 2085 ICmpInst *NewCond = 2086 new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp"); 2087 2088 // Delete the max calculation instructions. 2089 Cond->replaceAllUsesWith(NewCond); 2090 CondUse->setUser(NewCond); 2091 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0)); 2092 Cond->eraseFromParent(); 2093 Sel->eraseFromParent(); 2094 if (Cmp->use_empty()) 2095 Cmp->eraseFromParent(); 2096 return NewCond; 2097 } 2098 2099 /// OptimizeLoopTermCond - Change loop terminating condition to use the 2100 /// postinc iv when possible. 2101 void 2102 LSRInstance::OptimizeLoopTermCond() { 2103 SmallPtrSet<Instruction *, 4> PostIncs; 2104 2105 BasicBlock *LatchBlock = L->getLoopLatch(); 2106 SmallVector<BasicBlock*, 8> ExitingBlocks; 2107 L->getExitingBlocks(ExitingBlocks); 2108 2109 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 2110 BasicBlock *ExitingBlock = ExitingBlocks[i]; 2111 2112 // Get the terminating condition for the loop if possible. If we 2113 // can, we want to change it to use a post-incremented version of its 2114 // induction variable, to allow coalescing the live ranges for the IV into 2115 // one register value. 2116 2117 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 2118 if (!TermBr) 2119 continue; 2120 // FIXME: Overly conservative, termination condition could be an 'or' etc.. 2121 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition())) 2122 continue; 2123 2124 // Search IVUsesByStride to find Cond's IVUse if there is one. 2125 IVStrideUse *CondUse = nullptr; 2126 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition()); 2127 if (!FindIVUserForCond(Cond, CondUse)) 2128 continue; 2129 2130 // If the trip count is computed in terms of a max (due to ScalarEvolution 2131 // being unable to find a sufficient guard, for example), change the loop 2132 // comparison to use SLT or ULT instead of NE. 2133 // One consequence of doing this now is that it disrupts the count-down 2134 // optimization. That's not always a bad thing though, because in such 2135 // cases it may still be worthwhile to avoid a max. 2136 Cond = OptimizeMax(Cond, CondUse); 2137 2138 // If this exiting block dominates the latch block, it may also use 2139 // the post-inc value if it won't be shared with other uses. 2140 // Check for dominance. 2141 if (!DT.dominates(ExitingBlock, LatchBlock)) 2142 continue; 2143 2144 // Conservatively avoid trying to use the post-inc value in non-latch 2145 // exits if there may be pre-inc users in intervening blocks. 2146 if (LatchBlock != ExitingBlock) 2147 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) 2148 // Test if the use is reachable from the exiting block. This dominator 2149 // query is a conservative approximation of reachability. 2150 if (&*UI != CondUse && 2151 !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) { 2152 // Conservatively assume there may be reuse if the quotient of their 2153 // strides could be a legal scale. 2154 const SCEV *A = IU.getStride(*CondUse, L); 2155 const SCEV *B = IU.getStride(*UI, L); 2156 if (!A || !B) continue; 2157 if (SE.getTypeSizeInBits(A->getType()) != 2158 SE.getTypeSizeInBits(B->getType())) { 2159 if (SE.getTypeSizeInBits(A->getType()) > 2160 SE.getTypeSizeInBits(B->getType())) 2161 B = SE.getSignExtendExpr(B, A->getType()); 2162 else 2163 A = SE.getSignExtendExpr(A, B->getType()); 2164 } 2165 if (const SCEVConstant *D = 2166 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) { 2167 const ConstantInt *C = D->getValue(); 2168 // Stride of one or negative one can have reuse with non-addresses. 2169 if (C->isOne() || C->isAllOnesValue()) 2170 goto decline_post_inc; 2171 // Avoid weird situations. 2172 if (C->getValue().getMinSignedBits() >= 64 || 2173 C->getValue().isMinSignedValue()) 2174 goto decline_post_inc; 2175 // Check for possible scaled-address reuse. 2176 Type *AccessTy = getAccessType(UI->getUser()); 2177 int64_t Scale = C->getSExtValue(); 2178 if (TTI.isLegalAddressingMode(AccessTy, /*BaseGV=*/ nullptr, 2179 /*BaseOffset=*/ 0, 2180 /*HasBaseReg=*/ false, Scale)) 2181 goto decline_post_inc; 2182 Scale = -Scale; 2183 if (TTI.isLegalAddressingMode(AccessTy, /*BaseGV=*/ nullptr, 2184 /*BaseOffset=*/ 0, 2185 /*HasBaseReg=*/ false, Scale)) 2186 goto decline_post_inc; 2187 } 2188 } 2189 2190 DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: " 2191 << *Cond << '\n'); 2192 2193 // It's possible for the setcc instruction to be anywhere in the loop, and 2194 // possible for it to have multiple users. If it is not immediately before 2195 // the exiting block branch, move it. 2196 if (&*++BasicBlock::iterator(Cond) != TermBr) { 2197 if (Cond->hasOneUse()) { 2198 Cond->moveBefore(TermBr); 2199 } else { 2200 // Clone the terminating condition and insert into the loopend. 2201 ICmpInst *OldCond = Cond; 2202 Cond = cast<ICmpInst>(Cond->clone()); 2203 Cond->setName(L->getHeader()->getName() + ".termcond"); 2204 ExitingBlock->getInstList().insert(TermBr, Cond); 2205 2206 // Clone the IVUse, as the old use still exists! 2207 CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace()); 2208 TermBr->replaceUsesOfWith(OldCond, Cond); 2209 } 2210 } 2211 2212 // If we get to here, we know that we can transform the setcc instruction to 2213 // use the post-incremented version of the IV, allowing us to coalesce the 2214 // live ranges for the IV correctly. 2215 CondUse->transformToPostInc(L); 2216 Changed = true; 2217 2218 PostIncs.insert(Cond); 2219 decline_post_inc:; 2220 } 2221 2222 // Determine an insertion point for the loop induction variable increment. It 2223 // must dominate all the post-inc comparisons we just set up, and it must 2224 // dominate the loop latch edge. 2225 IVIncInsertPos = L->getLoopLatch()->getTerminator(); 2226 for (Instruction *Inst : PostIncs) { 2227 BasicBlock *BB = 2228 DT.findNearestCommonDominator(IVIncInsertPos->getParent(), 2229 Inst->getParent()); 2230 if (BB == Inst->getParent()) 2231 IVIncInsertPos = Inst; 2232 else if (BB != IVIncInsertPos->getParent()) 2233 IVIncInsertPos = BB->getTerminator(); 2234 } 2235 } 2236 2237 /// reconcileNewOffset - Determine if the given use can accommodate a fixup 2238 /// at the given offset and other details. If so, update the use and 2239 /// return true. 2240 bool 2241 LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, 2242 LSRUse::KindType Kind, Type *AccessTy) { 2243 int64_t NewMinOffset = LU.MinOffset; 2244 int64_t NewMaxOffset = LU.MaxOffset; 2245 Type *NewAccessTy = AccessTy; 2246 2247 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to 2248 // something conservative, however this can pessimize in the case that one of 2249 // the uses will have all its uses outside the loop, for example. 2250 if (LU.Kind != Kind) 2251 return false; 2252 2253 // Check for a mismatched access type, and fall back conservatively as needed. 2254 // TODO: Be less conservative when the type is similar and can use the same 2255 // addressing modes. 2256 if (Kind == LSRUse::Address && AccessTy != LU.AccessTy) 2257 NewAccessTy = Type::getVoidTy(AccessTy->getContext()); 2258 2259 // Conservatively assume HasBaseReg is true for now. 2260 if (NewOffset < LU.MinOffset) { 2261 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2262 LU.MaxOffset - NewOffset, HasBaseReg)) 2263 return false; 2264 NewMinOffset = NewOffset; 2265 } else if (NewOffset > LU.MaxOffset) { 2266 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2267 NewOffset - LU.MinOffset, HasBaseReg)) 2268 return false; 2269 NewMaxOffset = NewOffset; 2270 } 2271 2272 // Update the use. 2273 LU.MinOffset = NewMinOffset; 2274 LU.MaxOffset = NewMaxOffset; 2275 LU.AccessTy = NewAccessTy; 2276 if (NewOffset != LU.Offsets.back()) 2277 LU.Offsets.push_back(NewOffset); 2278 return true; 2279 } 2280 2281 /// getUse - Return an LSRUse index and an offset value for a fixup which 2282 /// needs the given expression, with the given kind and optional access type. 2283 /// Either reuse an existing use or create a new one, as needed. 2284 std::pair<size_t, int64_t> 2285 LSRInstance::getUse(const SCEV *&Expr, 2286 LSRUse::KindType Kind, Type *AccessTy) { 2287 const SCEV *Copy = Expr; 2288 int64_t Offset = ExtractImmediate(Expr, SE); 2289 2290 // Basic uses can't accept any offset, for example. 2291 if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr, 2292 Offset, /*HasBaseReg=*/ true)) { 2293 Expr = Copy; 2294 Offset = 0; 2295 } 2296 2297 std::pair<UseMapTy::iterator, bool> P = 2298 UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0)); 2299 if (!P.second) { 2300 // A use already existed with this base. 2301 size_t LUIdx = P.first->second; 2302 LSRUse &LU = Uses[LUIdx]; 2303 if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy)) 2304 // Reuse this use. 2305 return std::make_pair(LUIdx, Offset); 2306 } 2307 2308 // Create a new use. 2309 size_t LUIdx = Uses.size(); 2310 P.first->second = LUIdx; 2311 Uses.push_back(LSRUse(Kind, AccessTy)); 2312 LSRUse &LU = Uses[LUIdx]; 2313 2314 // We don't need to track redundant offsets, but we don't need to go out 2315 // of our way here to avoid them. 2316 if (LU.Offsets.empty() || Offset != LU.Offsets.back()) 2317 LU.Offsets.push_back(Offset); 2318 2319 LU.MinOffset = Offset; 2320 LU.MaxOffset = Offset; 2321 return std::make_pair(LUIdx, Offset); 2322 } 2323 2324 /// DeleteUse - Delete the given use from the Uses list. 2325 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) { 2326 if (&LU != &Uses.back()) 2327 std::swap(LU, Uses.back()); 2328 Uses.pop_back(); 2329 2330 // Update RegUses. 2331 RegUses.SwapAndDropUse(LUIdx, Uses.size()); 2332 } 2333 2334 /// FindUseWithFormula - Look for a use distinct from OrigLU which is has 2335 /// a formula that has the same registers as the given formula. 2336 LSRUse * 2337 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF, 2338 const LSRUse &OrigLU) { 2339 // Search all uses for the formula. This could be more clever. 2340 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 2341 LSRUse &LU = Uses[LUIdx]; 2342 // Check whether this use is close enough to OrigLU, to see whether it's 2343 // worthwhile looking through its formulae. 2344 // Ignore ICmpZero uses because they may contain formulae generated by 2345 // GenerateICmpZeroScales, in which case adding fixup offsets may 2346 // be invalid. 2347 if (&LU != &OrigLU && 2348 LU.Kind != LSRUse::ICmpZero && 2349 LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy && 2350 LU.WidestFixupType == OrigLU.WidestFixupType && 2351 LU.HasFormulaWithSameRegs(OrigF)) { 2352 // Scan through this use's formulae. 2353 for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(), 2354 E = LU.Formulae.end(); I != E; ++I) { 2355 const Formula &F = *I; 2356 // Check to see if this formula has the same registers and symbols 2357 // as OrigF. 2358 if (F.BaseRegs == OrigF.BaseRegs && 2359 F.ScaledReg == OrigF.ScaledReg && 2360 F.BaseGV == OrigF.BaseGV && 2361 F.Scale == OrigF.Scale && 2362 F.UnfoldedOffset == OrigF.UnfoldedOffset) { 2363 if (F.BaseOffset == 0) 2364 return &LU; 2365 // This is the formula where all the registers and symbols matched; 2366 // there aren't going to be any others. Since we declined it, we 2367 // can skip the rest of the formulae and proceed to the next LSRUse. 2368 break; 2369 } 2370 } 2371 } 2372 } 2373 2374 // Nothing looked good. 2375 return nullptr; 2376 } 2377 2378 void LSRInstance::CollectInterestingTypesAndFactors() { 2379 SmallSetVector<const SCEV *, 4> Strides; 2380 2381 // Collect interesting types and strides. 2382 SmallVector<const SCEV *, 4> Worklist; 2383 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) { 2384 const SCEV *Expr = IU.getExpr(*UI); 2385 2386 // Collect interesting types. 2387 Types.insert(SE.getEffectiveSCEVType(Expr->getType())); 2388 2389 // Add strides for mentioned loops. 2390 Worklist.push_back(Expr); 2391 do { 2392 const SCEV *S = Worklist.pop_back_val(); 2393 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2394 if (AR->getLoop() == L) 2395 Strides.insert(AR->getStepRecurrence(SE)); 2396 Worklist.push_back(AR->getStart()); 2397 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2398 Worklist.append(Add->op_begin(), Add->op_end()); 2399 } 2400 } while (!Worklist.empty()); 2401 } 2402 2403 // Compute interesting factors from the set of interesting strides. 2404 for (SmallSetVector<const SCEV *, 4>::const_iterator 2405 I = Strides.begin(), E = Strides.end(); I != E; ++I) 2406 for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter = 2407 std::next(I); NewStrideIter != E; ++NewStrideIter) { 2408 const SCEV *OldStride = *I; 2409 const SCEV *NewStride = *NewStrideIter; 2410 2411 if (SE.getTypeSizeInBits(OldStride->getType()) != 2412 SE.getTypeSizeInBits(NewStride->getType())) { 2413 if (SE.getTypeSizeInBits(OldStride->getType()) > 2414 SE.getTypeSizeInBits(NewStride->getType())) 2415 NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType()); 2416 else 2417 OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType()); 2418 } 2419 if (const SCEVConstant *Factor = 2420 dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride, 2421 SE, true))) { 2422 if (Factor->getValue()->getValue().getMinSignedBits() <= 64) 2423 Factors.insert(Factor->getValue()->getValue().getSExtValue()); 2424 } else if (const SCEVConstant *Factor = 2425 dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride, 2426 NewStride, 2427 SE, true))) { 2428 if (Factor->getValue()->getValue().getMinSignedBits() <= 64) 2429 Factors.insert(Factor->getValue()->getValue().getSExtValue()); 2430 } 2431 } 2432 2433 // If all uses use the same type, don't bother looking for truncation-based 2434 // reuse. 2435 if (Types.size() == 1) 2436 Types.clear(); 2437 2438 DEBUG(print_factors_and_types(dbgs())); 2439 } 2440 2441 /// findIVOperand - Helper for CollectChains that finds an IV operand (computed 2442 /// by an AddRec in this loop) within [OI,OE) or returns OE. If IVUsers mapped 2443 /// Instructions to IVStrideUses, we could partially skip this. 2444 static User::op_iterator 2445 findIVOperand(User::op_iterator OI, User::op_iterator OE, 2446 Loop *L, ScalarEvolution &SE) { 2447 for(; OI != OE; ++OI) { 2448 if (Instruction *Oper = dyn_cast<Instruction>(*OI)) { 2449 if (!SE.isSCEVable(Oper->getType())) 2450 continue; 2451 2452 if (const SCEVAddRecExpr *AR = 2453 dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) { 2454 if (AR->getLoop() == L) 2455 break; 2456 } 2457 } 2458 } 2459 return OI; 2460 } 2461 2462 /// getWideOperand - IVChain logic must consistenctly peek base TruncInst 2463 /// operands, so wrap it in a convenient helper. 2464 static Value *getWideOperand(Value *Oper) { 2465 if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper)) 2466 return Trunc->getOperand(0); 2467 return Oper; 2468 } 2469 2470 /// isCompatibleIVType - Return true if we allow an IV chain to include both 2471 /// types. 2472 static bool isCompatibleIVType(Value *LVal, Value *RVal) { 2473 Type *LType = LVal->getType(); 2474 Type *RType = RVal->getType(); 2475 return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy()); 2476 } 2477 2478 /// getExprBase - Return an approximation of this SCEV expression's "base", or 2479 /// NULL for any constant. Returning the expression itself is 2480 /// conservative. Returning a deeper subexpression is more precise and valid as 2481 /// long as it isn't less complex than another subexpression. For expressions 2482 /// involving multiple unscaled values, we need to return the pointer-type 2483 /// SCEVUnknown. This avoids forming chains across objects, such as: 2484 /// PrevOper==a[i], IVOper==b[i], IVInc==b-a. 2485 /// 2486 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost 2487 /// SCEVUnknown, we simply return the rightmost SCEV operand. 2488 static const SCEV *getExprBase(const SCEV *S) { 2489 switch (S->getSCEVType()) { 2490 default: // uncluding scUnknown. 2491 return S; 2492 case scConstant: 2493 return nullptr; 2494 case scTruncate: 2495 return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand()); 2496 case scZeroExtend: 2497 return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand()); 2498 case scSignExtend: 2499 return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand()); 2500 case scAddExpr: { 2501 // Skip over scaled operands (scMulExpr) to follow add operands as long as 2502 // there's nothing more complex. 2503 // FIXME: not sure if we want to recognize negation. 2504 const SCEVAddExpr *Add = cast<SCEVAddExpr>(S); 2505 for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()), 2506 E(Add->op_begin()); I != E; ++I) { 2507 const SCEV *SubExpr = *I; 2508 if (SubExpr->getSCEVType() == scAddExpr) 2509 return getExprBase(SubExpr); 2510 2511 if (SubExpr->getSCEVType() != scMulExpr) 2512 return SubExpr; 2513 } 2514 return S; // all operands are scaled, be conservative. 2515 } 2516 case scAddRecExpr: 2517 return getExprBase(cast<SCEVAddRecExpr>(S)->getStart()); 2518 } 2519 } 2520 2521 /// Return true if the chain increment is profitable to expand into a loop 2522 /// invariant value, which may require its own register. A profitable chain 2523 /// increment will be an offset relative to the same base. We allow such offsets 2524 /// to potentially be used as chain increment as long as it's not obviously 2525 /// expensive to expand using real instructions. 2526 bool IVChain::isProfitableIncrement(const SCEV *OperExpr, 2527 const SCEV *IncExpr, 2528 ScalarEvolution &SE) { 2529 // Aggressively form chains when -stress-ivchain. 2530 if (StressIVChain) 2531 return true; 2532 2533 // Do not replace a constant offset from IV head with a nonconstant IV 2534 // increment. 2535 if (!isa<SCEVConstant>(IncExpr)) { 2536 const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand)); 2537 if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr))) 2538 return 0; 2539 } 2540 2541 SmallPtrSet<const SCEV*, 8> Processed; 2542 return !isHighCostExpansion(IncExpr, Processed, SE); 2543 } 2544 2545 /// Return true if the number of registers needed for the chain is estimated to 2546 /// be less than the number required for the individual IV users. First prohibit 2547 /// any IV users that keep the IV live across increments (the Users set should 2548 /// be empty). Next count the number and type of increments in the chain. 2549 /// 2550 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't 2551 /// effectively use postinc addressing modes. Only consider it profitable it the 2552 /// increments can be computed in fewer registers when chained. 2553 /// 2554 /// TODO: Consider IVInc free if it's already used in another chains. 2555 static bool 2556 isProfitableChain(IVChain &Chain, SmallPtrSetImpl<Instruction*> &Users, 2557 ScalarEvolution &SE, const TargetTransformInfo &TTI) { 2558 if (StressIVChain) 2559 return true; 2560 2561 if (!Chain.hasIncs()) 2562 return false; 2563 2564 if (!Users.empty()) { 2565 DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n"; 2566 for (Instruction *Inst : Users) { 2567 dbgs() << " " << *Inst << "\n"; 2568 }); 2569 return false; 2570 } 2571 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 2572 2573 // The chain itself may require a register, so intialize cost to 1. 2574 int cost = 1; 2575 2576 // A complete chain likely eliminates the need for keeping the original IV in 2577 // a register. LSR does not currently know how to form a complete chain unless 2578 // the header phi already exists. 2579 if (isa<PHINode>(Chain.tailUserInst()) 2580 && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) { 2581 --cost; 2582 } 2583 const SCEV *LastIncExpr = nullptr; 2584 unsigned NumConstIncrements = 0; 2585 unsigned NumVarIncrements = 0; 2586 unsigned NumReusedIncrements = 0; 2587 for (IVChain::const_iterator I = Chain.begin(), E = Chain.end(); 2588 I != E; ++I) { 2589 2590 if (I->IncExpr->isZero()) 2591 continue; 2592 2593 // Incrementing by zero or some constant is neutral. We assume constants can 2594 // be folded into an addressing mode or an add's immediate operand. 2595 if (isa<SCEVConstant>(I->IncExpr)) { 2596 ++NumConstIncrements; 2597 continue; 2598 } 2599 2600 if (I->IncExpr == LastIncExpr) 2601 ++NumReusedIncrements; 2602 else 2603 ++NumVarIncrements; 2604 2605 LastIncExpr = I->IncExpr; 2606 } 2607 // An IV chain with a single increment is handled by LSR's postinc 2608 // uses. However, a chain with multiple increments requires keeping the IV's 2609 // value live longer than it needs to be if chained. 2610 if (NumConstIncrements > 1) 2611 --cost; 2612 2613 // Materializing increment expressions in the preheader that didn't exist in 2614 // the original code may cost a register. For example, sign-extended array 2615 // indices can produce ridiculous increments like this: 2616 // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64))) 2617 cost += NumVarIncrements; 2618 2619 // Reusing variable increments likely saves a register to hold the multiple of 2620 // the stride. 2621 cost -= NumReusedIncrements; 2622 2623 DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost 2624 << "\n"); 2625 2626 return cost < 0; 2627 } 2628 2629 /// ChainInstruction - Add this IV user to an existing chain or make it the head 2630 /// of a new chain. 2631 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper, 2632 SmallVectorImpl<ChainUsers> &ChainUsersVec) { 2633 // When IVs are used as types of varying widths, they are generally converted 2634 // to a wider type with some uses remaining narrow under a (free) trunc. 2635 Value *const NextIV = getWideOperand(IVOper); 2636 const SCEV *const OperExpr = SE.getSCEV(NextIV); 2637 const SCEV *const OperExprBase = getExprBase(OperExpr); 2638 2639 // Visit all existing chains. Check if its IVOper can be computed as a 2640 // profitable loop invariant increment from the last link in the Chain. 2641 unsigned ChainIdx = 0, NChains = IVChainVec.size(); 2642 const SCEV *LastIncExpr = nullptr; 2643 for (; ChainIdx < NChains; ++ChainIdx) { 2644 IVChain &Chain = IVChainVec[ChainIdx]; 2645 2646 // Prune the solution space aggressively by checking that both IV operands 2647 // are expressions that operate on the same unscaled SCEVUnknown. This 2648 // "base" will be canceled by the subsequent getMinusSCEV call. Checking 2649 // first avoids creating extra SCEV expressions. 2650 if (!StressIVChain && Chain.ExprBase != OperExprBase) 2651 continue; 2652 2653 Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand); 2654 if (!isCompatibleIVType(PrevIV, NextIV)) 2655 continue; 2656 2657 // A phi node terminates a chain. 2658 if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst())) 2659 continue; 2660 2661 // The increment must be loop-invariant so it can be kept in a register. 2662 const SCEV *PrevExpr = SE.getSCEV(PrevIV); 2663 const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr); 2664 if (!SE.isLoopInvariant(IncExpr, L)) 2665 continue; 2666 2667 if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) { 2668 LastIncExpr = IncExpr; 2669 break; 2670 } 2671 } 2672 // If we haven't found a chain, create a new one, unless we hit the max. Don't 2673 // bother for phi nodes, because they must be last in the chain. 2674 if (ChainIdx == NChains) { 2675 if (isa<PHINode>(UserInst)) 2676 return; 2677 if (NChains >= MaxChains && !StressIVChain) { 2678 DEBUG(dbgs() << "IV Chain Limit\n"); 2679 return; 2680 } 2681 LastIncExpr = OperExpr; 2682 // IVUsers may have skipped over sign/zero extensions. We don't currently 2683 // attempt to form chains involving extensions unless they can be hoisted 2684 // into this loop's AddRec. 2685 if (!isa<SCEVAddRecExpr>(LastIncExpr)) 2686 return; 2687 ++NChains; 2688 IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr), 2689 OperExprBase)); 2690 ChainUsersVec.resize(NChains); 2691 DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst 2692 << ") IV=" << *LastIncExpr << "\n"); 2693 } else { 2694 DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Inc: (" << *UserInst 2695 << ") IV+" << *LastIncExpr << "\n"); 2696 // Add this IV user to the end of the chain. 2697 IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr)); 2698 } 2699 IVChain &Chain = IVChainVec[ChainIdx]; 2700 2701 SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers; 2702 // This chain's NearUsers become FarUsers. 2703 if (!LastIncExpr->isZero()) { 2704 ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(), 2705 NearUsers.end()); 2706 NearUsers.clear(); 2707 } 2708 2709 // All other uses of IVOperand become near uses of the chain. 2710 // We currently ignore intermediate values within SCEV expressions, assuming 2711 // they will eventually be used be the current chain, or can be computed 2712 // from one of the chain increments. To be more precise we could 2713 // transitively follow its user and only add leaf IV users to the set. 2714 for (User *U : IVOper->users()) { 2715 Instruction *OtherUse = dyn_cast<Instruction>(U); 2716 if (!OtherUse) 2717 continue; 2718 // Uses in the chain will no longer be uses if the chain is formed. 2719 // Include the head of the chain in this iteration (not Chain.begin()). 2720 IVChain::const_iterator IncIter = Chain.Incs.begin(); 2721 IVChain::const_iterator IncEnd = Chain.Incs.end(); 2722 for( ; IncIter != IncEnd; ++IncIter) { 2723 if (IncIter->UserInst == OtherUse) 2724 break; 2725 } 2726 if (IncIter != IncEnd) 2727 continue; 2728 2729 if (SE.isSCEVable(OtherUse->getType()) 2730 && !isa<SCEVUnknown>(SE.getSCEV(OtherUse)) 2731 && IU.isIVUserOrOperand(OtherUse)) { 2732 continue; 2733 } 2734 NearUsers.insert(OtherUse); 2735 } 2736 2737 // Since this user is part of the chain, it's no longer considered a use 2738 // of the chain. 2739 ChainUsersVec[ChainIdx].FarUsers.erase(UserInst); 2740 } 2741 2742 /// CollectChains - Populate the vector of Chains. 2743 /// 2744 /// This decreases ILP at the architecture level. Targets with ample registers, 2745 /// multiple memory ports, and no register renaming probably don't want 2746 /// this. However, such targets should probably disable LSR altogether. 2747 /// 2748 /// The job of LSR is to make a reasonable choice of induction variables across 2749 /// the loop. Subsequent passes can easily "unchain" computation exposing more 2750 /// ILP *within the loop* if the target wants it. 2751 /// 2752 /// Finding the best IV chain is potentially a scheduling problem. Since LSR 2753 /// will not reorder memory operations, it will recognize this as a chain, but 2754 /// will generate redundant IV increments. Ideally this would be corrected later 2755 /// by a smart scheduler: 2756 /// = A[i] 2757 /// = A[i+x] 2758 /// A[i] = 2759 /// A[i+x] = 2760 /// 2761 /// TODO: Walk the entire domtree within this loop, not just the path to the 2762 /// loop latch. This will discover chains on side paths, but requires 2763 /// maintaining multiple copies of the Chains state. 2764 void LSRInstance::CollectChains() { 2765 DEBUG(dbgs() << "Collecting IV Chains.\n"); 2766 SmallVector<ChainUsers, 8> ChainUsersVec; 2767 2768 SmallVector<BasicBlock *,8> LatchPath; 2769 BasicBlock *LoopHeader = L->getHeader(); 2770 for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch()); 2771 Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) { 2772 LatchPath.push_back(Rung->getBlock()); 2773 } 2774 LatchPath.push_back(LoopHeader); 2775 2776 // Walk the instruction stream from the loop header to the loop latch. 2777 for (SmallVectorImpl<BasicBlock *>::reverse_iterator 2778 BBIter = LatchPath.rbegin(), BBEnd = LatchPath.rend(); 2779 BBIter != BBEnd; ++BBIter) { 2780 for (BasicBlock::iterator I = (*BBIter)->begin(), E = (*BBIter)->end(); 2781 I != E; ++I) { 2782 // Skip instructions that weren't seen by IVUsers analysis. 2783 if (isa<PHINode>(I) || !IU.isIVUserOrOperand(I)) 2784 continue; 2785 2786 // Ignore users that are part of a SCEV expression. This way we only 2787 // consider leaf IV Users. This effectively rediscovers a portion of 2788 // IVUsers analysis but in program order this time. 2789 if (SE.isSCEVable(I->getType()) && !isa<SCEVUnknown>(SE.getSCEV(I))) 2790 continue; 2791 2792 // Remove this instruction from any NearUsers set it may be in. 2793 for (unsigned ChainIdx = 0, NChains = IVChainVec.size(); 2794 ChainIdx < NChains; ++ChainIdx) { 2795 ChainUsersVec[ChainIdx].NearUsers.erase(I); 2796 } 2797 // Search for operands that can be chained. 2798 SmallPtrSet<Instruction*, 4> UniqueOperands; 2799 User::op_iterator IVOpEnd = I->op_end(); 2800 User::op_iterator IVOpIter = findIVOperand(I->op_begin(), IVOpEnd, L, SE); 2801 while (IVOpIter != IVOpEnd) { 2802 Instruction *IVOpInst = cast<Instruction>(*IVOpIter); 2803 if (UniqueOperands.insert(IVOpInst).second) 2804 ChainInstruction(I, IVOpInst, ChainUsersVec); 2805 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 2806 } 2807 } // Continue walking down the instructions. 2808 } // Continue walking down the domtree. 2809 // Visit phi backedges to determine if the chain can generate the IV postinc. 2810 for (BasicBlock::iterator I = L->getHeader()->begin(); 2811 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 2812 if (!SE.isSCEVable(PN->getType())) 2813 continue; 2814 2815 Instruction *IncV = 2816 dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch())); 2817 if (IncV) 2818 ChainInstruction(PN, IncV, ChainUsersVec); 2819 } 2820 // Remove any unprofitable chains. 2821 unsigned ChainIdx = 0; 2822 for (unsigned UsersIdx = 0, NChains = IVChainVec.size(); 2823 UsersIdx < NChains; ++UsersIdx) { 2824 if (!isProfitableChain(IVChainVec[UsersIdx], 2825 ChainUsersVec[UsersIdx].FarUsers, SE, TTI)) 2826 continue; 2827 // Preserve the chain at UsesIdx. 2828 if (ChainIdx != UsersIdx) 2829 IVChainVec[ChainIdx] = IVChainVec[UsersIdx]; 2830 FinalizeChain(IVChainVec[ChainIdx]); 2831 ++ChainIdx; 2832 } 2833 IVChainVec.resize(ChainIdx); 2834 } 2835 2836 void LSRInstance::FinalizeChain(IVChain &Chain) { 2837 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 2838 DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n"); 2839 2840 for (IVChain::const_iterator I = Chain.begin(), E = Chain.end(); 2841 I != E; ++I) { 2842 DEBUG(dbgs() << " Inc: " << *I->UserInst << "\n"); 2843 User::op_iterator UseI = 2844 std::find(I->UserInst->op_begin(), I->UserInst->op_end(), I->IVOperand); 2845 assert(UseI != I->UserInst->op_end() && "cannot find IV operand"); 2846 IVIncSet.insert(UseI); 2847 } 2848 } 2849 2850 /// Return true if the IVInc can be folded into an addressing mode. 2851 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst, 2852 Value *Operand, const TargetTransformInfo &TTI) { 2853 const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr); 2854 if (!IncConst || !isAddressUse(UserInst, Operand)) 2855 return false; 2856 2857 if (IncConst->getValue()->getValue().getMinSignedBits() > 64) 2858 return false; 2859 2860 int64_t IncOffset = IncConst->getValue()->getSExtValue(); 2861 if (!isAlwaysFoldable(TTI, LSRUse::Address, 2862 getAccessType(UserInst), /*BaseGV=*/ nullptr, 2863 IncOffset, /*HaseBaseReg=*/ false)) 2864 return false; 2865 2866 return true; 2867 } 2868 2869 /// GenerateIVChains - Generate an add or subtract for each IVInc in a chain to 2870 /// materialize the IV user's operand from the previous IV user's operand. 2871 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 2872 SmallVectorImpl<WeakVH> &DeadInsts) { 2873 // Find the new IVOperand for the head of the chain. It may have been replaced 2874 // by LSR. 2875 const IVInc &Head = Chain.Incs[0]; 2876 User::op_iterator IVOpEnd = Head.UserInst->op_end(); 2877 // findIVOperand returns IVOpEnd if it can no longer find a valid IV user. 2878 User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(), 2879 IVOpEnd, L, SE); 2880 Value *IVSrc = nullptr; 2881 while (IVOpIter != IVOpEnd) { 2882 IVSrc = getWideOperand(*IVOpIter); 2883 2884 // If this operand computes the expression that the chain needs, we may use 2885 // it. (Check this after setting IVSrc which is used below.) 2886 // 2887 // Note that if Head.IncExpr is wider than IVSrc, then this phi is too 2888 // narrow for the chain, so we can no longer use it. We do allow using a 2889 // wider phi, assuming the LSR checked for free truncation. In that case we 2890 // should already have a truncate on this operand such that 2891 // getSCEV(IVSrc) == IncExpr. 2892 if (SE.getSCEV(*IVOpIter) == Head.IncExpr 2893 || SE.getSCEV(IVSrc) == Head.IncExpr) { 2894 break; 2895 } 2896 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 2897 } 2898 if (IVOpIter == IVOpEnd) { 2899 // Gracefully give up on this chain. 2900 DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n"); 2901 return; 2902 } 2903 2904 DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n"); 2905 Type *IVTy = IVSrc->getType(); 2906 Type *IntTy = SE.getEffectiveSCEVType(IVTy); 2907 const SCEV *LeftOverExpr = nullptr; 2908 for (IVChain::const_iterator IncI = Chain.begin(), 2909 IncE = Chain.end(); IncI != IncE; ++IncI) { 2910 2911 Instruction *InsertPt = IncI->UserInst; 2912 if (isa<PHINode>(InsertPt)) 2913 InsertPt = L->getLoopLatch()->getTerminator(); 2914 2915 // IVOper will replace the current IV User's operand. IVSrc is the IV 2916 // value currently held in a register. 2917 Value *IVOper = IVSrc; 2918 if (!IncI->IncExpr->isZero()) { 2919 // IncExpr was the result of subtraction of two narrow values, so must 2920 // be signed. 2921 const SCEV *IncExpr = SE.getNoopOrSignExtend(IncI->IncExpr, IntTy); 2922 LeftOverExpr = LeftOverExpr ? 2923 SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr; 2924 } 2925 if (LeftOverExpr && !LeftOverExpr->isZero()) { 2926 // Expand the IV increment. 2927 Rewriter.clearPostInc(); 2928 Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt); 2929 const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc), 2930 SE.getUnknown(IncV)); 2931 IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt); 2932 2933 // If an IV increment can't be folded, use it as the next IV value. 2934 if (!canFoldIVIncExpr(LeftOverExpr, IncI->UserInst, IncI->IVOperand, 2935 TTI)) { 2936 assert(IVTy == IVOper->getType() && "inconsistent IV increment type"); 2937 IVSrc = IVOper; 2938 LeftOverExpr = nullptr; 2939 } 2940 } 2941 Type *OperTy = IncI->IVOperand->getType(); 2942 if (IVTy != OperTy) { 2943 assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) && 2944 "cannot extend a chained IV"); 2945 IRBuilder<> Builder(InsertPt); 2946 IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain"); 2947 } 2948 IncI->UserInst->replaceUsesOfWith(IncI->IVOperand, IVOper); 2949 DeadInsts.push_back(IncI->IVOperand); 2950 } 2951 // If LSR created a new, wider phi, we may also replace its postinc. We only 2952 // do this if we also found a wide value for the head of the chain. 2953 if (isa<PHINode>(Chain.tailUserInst())) { 2954 for (BasicBlock::iterator I = L->getHeader()->begin(); 2955 PHINode *Phi = dyn_cast<PHINode>(I); ++I) { 2956 if (!isCompatibleIVType(Phi, IVSrc)) 2957 continue; 2958 Instruction *PostIncV = dyn_cast<Instruction>( 2959 Phi->getIncomingValueForBlock(L->getLoopLatch())); 2960 if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc))) 2961 continue; 2962 Value *IVOper = IVSrc; 2963 Type *PostIncTy = PostIncV->getType(); 2964 if (IVTy != PostIncTy) { 2965 assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types"); 2966 IRBuilder<> Builder(L->getLoopLatch()->getTerminator()); 2967 Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc()); 2968 IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain"); 2969 } 2970 Phi->replaceUsesOfWith(PostIncV, IVOper); 2971 DeadInsts.push_back(PostIncV); 2972 } 2973 } 2974 } 2975 2976 void LSRInstance::CollectFixupsAndInitialFormulae() { 2977 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) { 2978 Instruction *UserInst = UI->getUser(); 2979 // Skip IV users that are part of profitable IV Chains. 2980 User::op_iterator UseI = std::find(UserInst->op_begin(), UserInst->op_end(), 2981 UI->getOperandValToReplace()); 2982 assert(UseI != UserInst->op_end() && "cannot find IV operand"); 2983 if (IVIncSet.count(UseI)) 2984 continue; 2985 2986 // Record the uses. 2987 LSRFixup &LF = getNewFixup(); 2988 LF.UserInst = UserInst; 2989 LF.OperandValToReplace = UI->getOperandValToReplace(); 2990 LF.PostIncLoops = UI->getPostIncLoops(); 2991 2992 LSRUse::KindType Kind = LSRUse::Basic; 2993 Type *AccessTy = nullptr; 2994 if (isAddressUse(LF.UserInst, LF.OperandValToReplace)) { 2995 Kind = LSRUse::Address; 2996 AccessTy = getAccessType(LF.UserInst); 2997 } 2998 2999 const SCEV *S = IU.getExpr(*UI); 3000 3001 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as 3002 // (N - i == 0), and this allows (N - i) to be the expression that we work 3003 // with rather than just N or i, so we can consider the register 3004 // requirements for both N and i at the same time. Limiting this code to 3005 // equality icmps is not a problem because all interesting loops use 3006 // equality icmps, thanks to IndVarSimplify. 3007 if (ICmpInst *CI = dyn_cast<ICmpInst>(LF.UserInst)) 3008 if (CI->isEquality()) { 3009 // Swap the operands if needed to put the OperandValToReplace on the 3010 // left, for consistency. 3011 Value *NV = CI->getOperand(1); 3012 if (NV == LF.OperandValToReplace) { 3013 CI->setOperand(1, CI->getOperand(0)); 3014 CI->setOperand(0, NV); 3015 NV = CI->getOperand(1); 3016 Changed = true; 3017 } 3018 3019 // x == y --> x - y == 0 3020 const SCEV *N = SE.getSCEV(NV); 3021 if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) { 3022 // S is normalized, so normalize N before folding it into S 3023 // to keep the result normalized. 3024 N = TransformForPostIncUse(Normalize, N, CI, nullptr, 3025 LF.PostIncLoops, SE, DT); 3026 Kind = LSRUse::ICmpZero; 3027 S = SE.getMinusSCEV(N, S); 3028 } 3029 3030 // -1 and the negations of all interesting strides (except the negation 3031 // of -1) are now also interesting. 3032 for (size_t i = 0, e = Factors.size(); i != e; ++i) 3033 if (Factors[i] != -1) 3034 Factors.insert(-(uint64_t)Factors[i]); 3035 Factors.insert(-1); 3036 } 3037 3038 // Set up the initial formula for this use. 3039 std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy); 3040 LF.LUIdx = P.first; 3041 LF.Offset = P.second; 3042 LSRUse &LU = Uses[LF.LUIdx]; 3043 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3044 if (!LU.WidestFixupType || 3045 SE.getTypeSizeInBits(LU.WidestFixupType) < 3046 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3047 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3048 3049 // If this is the first use of this LSRUse, give it a formula. 3050 if (LU.Formulae.empty()) { 3051 InsertInitialFormula(S, LU, LF.LUIdx); 3052 CountRegisters(LU.Formulae.back(), LF.LUIdx); 3053 } 3054 } 3055 3056 DEBUG(print_fixups(dbgs())); 3057 } 3058 3059 /// InsertInitialFormula - Insert a formula for the given expression into 3060 /// the given use, separating out loop-variant portions from loop-invariant 3061 /// and loop-computable portions. 3062 void 3063 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) { 3064 // Mark uses whose expressions cannot be expanded. 3065 if (!isSafeToExpand(S, SE)) 3066 LU.RigidFormula = true; 3067 3068 Formula F; 3069 F.InitialMatch(S, L, SE); 3070 bool Inserted = InsertFormula(LU, LUIdx, F); 3071 assert(Inserted && "Initial formula already exists!"); (void)Inserted; 3072 } 3073 3074 /// InsertSupplementalFormula - Insert a simple single-register formula for 3075 /// the given expression into the given use. 3076 void 3077 LSRInstance::InsertSupplementalFormula(const SCEV *S, 3078 LSRUse &LU, size_t LUIdx) { 3079 Formula F; 3080 F.BaseRegs.push_back(S); 3081 F.HasBaseReg = true; 3082 bool Inserted = InsertFormula(LU, LUIdx, F); 3083 assert(Inserted && "Supplemental formula already exists!"); (void)Inserted; 3084 } 3085 3086 /// CountRegisters - Note which registers are used by the given formula, 3087 /// updating RegUses. 3088 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) { 3089 if (F.ScaledReg) 3090 RegUses.CountRegister(F.ScaledReg, LUIdx); 3091 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(), 3092 E = F.BaseRegs.end(); I != E; ++I) 3093 RegUses.CountRegister(*I, LUIdx); 3094 } 3095 3096 /// InsertFormula - If the given formula has not yet been inserted, add it to 3097 /// the list, and return true. Return false otherwise. 3098 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) { 3099 // Do not insert formula that we will not be able to expand. 3100 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) && 3101 "Formula is illegal"); 3102 if (!LU.InsertFormula(F)) 3103 return false; 3104 3105 CountRegisters(F, LUIdx); 3106 return true; 3107 } 3108 3109 /// CollectLoopInvariantFixupsAndFormulae - Check for other uses of 3110 /// loop-invariant values which we're tracking. These other uses will pin these 3111 /// values in registers, making them less profitable for elimination. 3112 /// TODO: This currently misses non-constant addrec step registers. 3113 /// TODO: Should this give more weight to users inside the loop? 3114 void 3115 LSRInstance::CollectLoopInvariantFixupsAndFormulae() { 3116 SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end()); 3117 SmallPtrSet<const SCEV *, 32> Visited; 3118 3119 while (!Worklist.empty()) { 3120 const SCEV *S = Worklist.pop_back_val(); 3121 3122 // Don't process the same SCEV twice 3123 if (!Visited.insert(S).second) 3124 continue; 3125 3126 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) 3127 Worklist.append(N->op_begin(), N->op_end()); 3128 else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) 3129 Worklist.push_back(C->getOperand()); 3130 else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 3131 Worklist.push_back(D->getLHS()); 3132 Worklist.push_back(D->getRHS()); 3133 } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) { 3134 const Value *V = US->getValue(); 3135 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 3136 // Look for instructions defined outside the loop. 3137 if (L->contains(Inst)) continue; 3138 } else if (isa<UndefValue>(V)) 3139 // Undef doesn't have a live range, so it doesn't matter. 3140 continue; 3141 for (const Use &U : V->uses()) { 3142 const Instruction *UserInst = dyn_cast<Instruction>(U.getUser()); 3143 // Ignore non-instructions. 3144 if (!UserInst) 3145 continue; 3146 // Ignore instructions in other functions (as can happen with 3147 // Constants). 3148 if (UserInst->getParent()->getParent() != L->getHeader()->getParent()) 3149 continue; 3150 // Ignore instructions not dominated by the loop. 3151 const BasicBlock *UseBB = !isa<PHINode>(UserInst) ? 3152 UserInst->getParent() : 3153 cast<PHINode>(UserInst)->getIncomingBlock( 3154 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 3155 if (!DT.dominates(L->getHeader(), UseBB)) 3156 continue; 3157 // Ignore uses which are part of other SCEV expressions, to avoid 3158 // analyzing them multiple times. 3159 if (SE.isSCEVable(UserInst->getType())) { 3160 const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst)); 3161 // If the user is a no-op, look through to its uses. 3162 if (!isa<SCEVUnknown>(UserS)) 3163 continue; 3164 if (UserS == US) { 3165 Worklist.push_back( 3166 SE.getUnknown(const_cast<Instruction *>(UserInst))); 3167 continue; 3168 } 3169 } 3170 // Ignore icmp instructions which are already being analyzed. 3171 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) { 3172 unsigned OtherIdx = !U.getOperandNo(); 3173 Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx)); 3174 if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L)) 3175 continue; 3176 } 3177 3178 LSRFixup &LF = getNewFixup(); 3179 LF.UserInst = const_cast<Instruction *>(UserInst); 3180 LF.OperandValToReplace = U; 3181 std::pair<size_t, int64_t> P = getUse(S, LSRUse::Basic, nullptr); 3182 LF.LUIdx = P.first; 3183 LF.Offset = P.second; 3184 LSRUse &LU = Uses[LF.LUIdx]; 3185 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3186 if (!LU.WidestFixupType || 3187 SE.getTypeSizeInBits(LU.WidestFixupType) < 3188 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3189 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3190 InsertSupplementalFormula(US, LU, LF.LUIdx); 3191 CountRegisters(LU.Formulae.back(), Uses.size() - 1); 3192 break; 3193 } 3194 } 3195 } 3196 } 3197 3198 /// CollectSubexprs - Split S into subexpressions which can be pulled out into 3199 /// separate registers. If C is non-null, multiply each subexpression by C. 3200 /// 3201 /// Return remainder expression after factoring the subexpressions captured by 3202 /// Ops. If Ops is complete, return NULL. 3203 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C, 3204 SmallVectorImpl<const SCEV *> &Ops, 3205 const Loop *L, 3206 ScalarEvolution &SE, 3207 unsigned Depth = 0) { 3208 // Arbitrarily cap recursion to protect compile time. 3209 if (Depth >= 3) 3210 return S; 3211 3212 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3213 // Break out add operands. 3214 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); 3215 I != E; ++I) { 3216 const SCEV *Remainder = CollectSubexprs(*I, C, Ops, L, SE, Depth+1); 3217 if (Remainder) 3218 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3219 } 3220 return nullptr; 3221 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 3222 // Split a non-zero base out of an addrec. 3223 if (AR->getStart()->isZero()) 3224 return S; 3225 3226 const SCEV *Remainder = CollectSubexprs(AR->getStart(), 3227 C, Ops, L, SE, Depth+1); 3228 // Split the non-zero AddRec unless it is part of a nested recurrence that 3229 // does not pertain to this loop. 3230 if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) { 3231 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3232 Remainder = nullptr; 3233 } 3234 if (Remainder != AR->getStart()) { 3235 if (!Remainder) 3236 Remainder = SE.getConstant(AR->getType(), 0); 3237 return SE.getAddRecExpr(Remainder, 3238 AR->getStepRecurrence(SE), 3239 AR->getLoop(), 3240 //FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 3241 SCEV::FlagAnyWrap); 3242 } 3243 } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3244 // Break (C * (a + b + c)) into C*a + C*b + C*c. 3245 if (Mul->getNumOperands() != 2) 3246 return S; 3247 if (const SCEVConstant *Op0 = 3248 dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3249 C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0; 3250 const SCEV *Remainder = 3251 CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1); 3252 if (Remainder) 3253 Ops.push_back(SE.getMulExpr(C, Remainder)); 3254 return nullptr; 3255 } 3256 } 3257 return S; 3258 } 3259 3260 /// \brief Helper function for LSRInstance::GenerateReassociations. 3261 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 3262 const Formula &Base, 3263 unsigned Depth, size_t Idx, 3264 bool IsScaledReg) { 3265 const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3266 SmallVector<const SCEV *, 8> AddOps; 3267 const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE); 3268 if (Remainder) 3269 AddOps.push_back(Remainder); 3270 3271 if (AddOps.size() == 1) 3272 return; 3273 3274 for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(), 3275 JE = AddOps.end(); 3276 J != JE; ++J) { 3277 3278 // Loop-variant "unknown" values are uninteresting; we won't be able to 3279 // do anything meaningful with them. 3280 if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L)) 3281 continue; 3282 3283 // Don't pull a constant into a register if the constant could be folded 3284 // into an immediate field. 3285 if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3286 LU.AccessTy, *J, Base.getNumRegs() > 1)) 3287 continue; 3288 3289 // Collect all operands except *J. 3290 SmallVector<const SCEV *, 8> InnerAddOps( 3291 ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J); 3292 InnerAddOps.append(std::next(J), 3293 ((const SmallVector<const SCEV *, 8> &)AddOps).end()); 3294 3295 // Don't leave just a constant behind in a register if the constant could 3296 // be folded into an immediate field. 3297 if (InnerAddOps.size() == 1 && 3298 isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3299 LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1)) 3300 continue; 3301 3302 const SCEV *InnerSum = SE.getAddExpr(InnerAddOps); 3303 if (InnerSum->isZero()) 3304 continue; 3305 Formula F = Base; 3306 3307 // Add the remaining pieces of the add back into the new formula. 3308 const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum); 3309 if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 && 3310 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3311 InnerSumSC->getValue()->getZExtValue())) { 3312 F.UnfoldedOffset = 3313 (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue(); 3314 if (IsScaledReg) 3315 F.ScaledReg = nullptr; 3316 else 3317 F.BaseRegs.erase(F.BaseRegs.begin() + Idx); 3318 } else if (IsScaledReg) 3319 F.ScaledReg = InnerSum; 3320 else 3321 F.BaseRegs[Idx] = InnerSum; 3322 3323 // Add J as its own register, or an unfolded immediate. 3324 const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J); 3325 if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 && 3326 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3327 SC->getValue()->getZExtValue())) 3328 F.UnfoldedOffset = 3329 (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue(); 3330 else 3331 F.BaseRegs.push_back(*J); 3332 // We may have changed the number of register in base regs, adjust the 3333 // formula accordingly. 3334 F.Canonicalize(); 3335 3336 if (InsertFormula(LU, LUIdx, F)) 3337 // If that formula hadn't been seen before, recurse to find more like 3338 // it. 3339 GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth + 1); 3340 } 3341 } 3342 3343 /// GenerateReassociations - Split out subexpressions from adds and the bases of 3344 /// addrecs. 3345 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx, 3346 Formula Base, unsigned Depth) { 3347 assert(Base.isCanonical() && "Input must be in the canonical form"); 3348 // Arbitrarily cap recursion to protect compile time. 3349 if (Depth >= 3) 3350 return; 3351 3352 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3353 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i); 3354 3355 if (Base.Scale == 1) 3356 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, 3357 /* Idx */ -1, /* IsScaledReg */ true); 3358 } 3359 3360 /// GenerateCombinations - Generate a formula consisting of all of the 3361 /// loop-dominating registers added into a single register. 3362 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx, 3363 Formula Base) { 3364 // This method is only interesting on a plurality of registers. 3365 if (Base.BaseRegs.size() + (Base.Scale == 1) <= 1) 3366 return; 3367 3368 // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before 3369 // processing the formula. 3370 Base.Unscale(); 3371 Formula F = Base; 3372 F.BaseRegs.clear(); 3373 SmallVector<const SCEV *, 4> Ops; 3374 for (SmallVectorImpl<const SCEV *>::const_iterator 3375 I = Base.BaseRegs.begin(), E = Base.BaseRegs.end(); I != E; ++I) { 3376 const SCEV *BaseReg = *I; 3377 if (SE.properlyDominates(BaseReg, L->getHeader()) && 3378 !SE.hasComputableLoopEvolution(BaseReg, L)) 3379 Ops.push_back(BaseReg); 3380 else 3381 F.BaseRegs.push_back(BaseReg); 3382 } 3383 if (Ops.size() > 1) { 3384 const SCEV *Sum = SE.getAddExpr(Ops); 3385 // TODO: If Sum is zero, it probably means ScalarEvolution missed an 3386 // opportunity to fold something. For now, just ignore such cases 3387 // rather than proceed with zero in a register. 3388 if (!Sum->isZero()) { 3389 F.BaseRegs.push_back(Sum); 3390 F.Canonicalize(); 3391 (void)InsertFormula(LU, LUIdx, F); 3392 } 3393 } 3394 } 3395 3396 /// \brief Helper function for LSRInstance::GenerateSymbolicOffsets. 3397 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 3398 const Formula &Base, size_t Idx, 3399 bool IsScaledReg) { 3400 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3401 GlobalValue *GV = ExtractSymbol(G, SE); 3402 if (G->isZero() || !GV) 3403 return; 3404 Formula F = Base; 3405 F.BaseGV = GV; 3406 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3407 return; 3408 if (IsScaledReg) 3409 F.ScaledReg = G; 3410 else 3411 F.BaseRegs[Idx] = G; 3412 (void)InsertFormula(LU, LUIdx, F); 3413 } 3414 3415 /// GenerateSymbolicOffsets - Generate reuse formulae using symbolic offsets. 3416 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, 3417 Formula Base) { 3418 // We can't add a symbolic offset if the address already contains one. 3419 if (Base.BaseGV) return; 3420 3421 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3422 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i); 3423 if (Base.Scale == 1) 3424 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1, 3425 /* IsScaledReg */ true); 3426 } 3427 3428 /// \brief Helper function for LSRInstance::GenerateConstantOffsets. 3429 void LSRInstance::GenerateConstantOffsetsImpl( 3430 LSRUse &LU, unsigned LUIdx, const Formula &Base, 3431 const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) { 3432 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3433 for (SmallVectorImpl<int64_t>::const_iterator I = Worklist.begin(), 3434 E = Worklist.end(); 3435 I != E; ++I) { 3436 Formula F = Base; 3437 F.BaseOffset = (uint64_t)Base.BaseOffset - *I; 3438 if (isLegalUse(TTI, LU.MinOffset - *I, LU.MaxOffset - *I, LU.Kind, 3439 LU.AccessTy, F)) { 3440 // Add the offset to the base register. 3441 const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), *I), G); 3442 // If it cancelled out, drop the base register, otherwise update it. 3443 if (NewG->isZero()) { 3444 if (IsScaledReg) { 3445 F.Scale = 0; 3446 F.ScaledReg = nullptr; 3447 } else 3448 F.DeleteBaseReg(F.BaseRegs[Idx]); 3449 F.Canonicalize(); 3450 } else if (IsScaledReg) 3451 F.ScaledReg = NewG; 3452 else 3453 F.BaseRegs[Idx] = NewG; 3454 3455 (void)InsertFormula(LU, LUIdx, F); 3456 } 3457 } 3458 3459 int64_t Imm = ExtractImmediate(G, SE); 3460 if (G->isZero() || Imm == 0) 3461 return; 3462 Formula F = Base; 3463 F.BaseOffset = (uint64_t)F.BaseOffset + Imm; 3464 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3465 return; 3466 if (IsScaledReg) 3467 F.ScaledReg = G; 3468 else 3469 F.BaseRegs[Idx] = G; 3470 (void)InsertFormula(LU, LUIdx, F); 3471 } 3472 3473 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets. 3474 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, 3475 Formula Base) { 3476 // TODO: For now, just add the min and max offset, because it usually isn't 3477 // worthwhile looking at everything inbetween. 3478 SmallVector<int64_t, 2> Worklist; 3479 Worklist.push_back(LU.MinOffset); 3480 if (LU.MaxOffset != LU.MinOffset) 3481 Worklist.push_back(LU.MaxOffset); 3482 3483 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3484 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i); 3485 if (Base.Scale == 1) 3486 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1, 3487 /* IsScaledReg */ true); 3488 } 3489 3490 /// GenerateICmpZeroScales - For ICmpZero, check to see if we can scale up 3491 /// the comparison. For example, x == y -> x*c == y*c. 3492 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, 3493 Formula Base) { 3494 if (LU.Kind != LSRUse::ICmpZero) return; 3495 3496 // Determine the integer type for the base formula. 3497 Type *IntTy = Base.getType(); 3498 if (!IntTy) return; 3499 if (SE.getTypeSizeInBits(IntTy) > 64) return; 3500 3501 // Don't do this if there is more than one offset. 3502 if (LU.MinOffset != LU.MaxOffset) return; 3503 3504 assert(!Base.BaseGV && "ICmpZero use is not legal!"); 3505 3506 // Check each interesting stride. 3507 for (SmallSetVector<int64_t, 8>::const_iterator 3508 I = Factors.begin(), E = Factors.end(); I != E; ++I) { 3509 int64_t Factor = *I; 3510 3511 // Check that the multiplication doesn't overflow. 3512 if (Base.BaseOffset == INT64_MIN && Factor == -1) 3513 continue; 3514 int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor; 3515 if (NewBaseOffset / Factor != Base.BaseOffset) 3516 continue; 3517 // If the offset will be truncated at this use, check that it is in bounds. 3518 if (!IntTy->isPointerTy() && 3519 !ConstantInt::isValueValidForType(IntTy, NewBaseOffset)) 3520 continue; 3521 3522 // Check that multiplying with the use offset doesn't overflow. 3523 int64_t Offset = LU.MinOffset; 3524 if (Offset == INT64_MIN && Factor == -1) 3525 continue; 3526 Offset = (uint64_t)Offset * Factor; 3527 if (Offset / Factor != LU.MinOffset) 3528 continue; 3529 // If the offset will be truncated at this use, check that it is in bounds. 3530 if (!IntTy->isPointerTy() && 3531 !ConstantInt::isValueValidForType(IntTy, Offset)) 3532 continue; 3533 3534 Formula F = Base; 3535 F.BaseOffset = NewBaseOffset; 3536 3537 // Check that this scale is legal. 3538 if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F)) 3539 continue; 3540 3541 // Compensate for the use having MinOffset built into it. 3542 F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset; 3543 3544 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3545 3546 // Check that multiplying with each base register doesn't overflow. 3547 for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) { 3548 F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS); 3549 if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i]) 3550 goto next; 3551 } 3552 3553 // Check that multiplying with the scaled register doesn't overflow. 3554 if (F.ScaledReg) { 3555 F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS); 3556 if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg) 3557 continue; 3558 } 3559 3560 // Check that multiplying with the unfolded offset doesn't overflow. 3561 if (F.UnfoldedOffset != 0) { 3562 if (F.UnfoldedOffset == INT64_MIN && Factor == -1) 3563 continue; 3564 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor; 3565 if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset) 3566 continue; 3567 // If the offset will be truncated, check that it is in bounds. 3568 if (!IntTy->isPointerTy() && 3569 !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset)) 3570 continue; 3571 } 3572 3573 // If we make it here and it's legal, add it. 3574 (void)InsertFormula(LU, LUIdx, F); 3575 next:; 3576 } 3577 } 3578 3579 /// GenerateScales - Generate stride factor reuse formulae by making use of 3580 /// scaled-offset address modes, for example. 3581 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) { 3582 // Determine the integer type for the base formula. 3583 Type *IntTy = Base.getType(); 3584 if (!IntTy) return; 3585 3586 // If this Formula already has a scaled register, we can't add another one. 3587 // Try to unscale the formula to generate a better scale. 3588 if (Base.Scale != 0 && !Base.Unscale()) 3589 return; 3590 3591 assert(Base.Scale == 0 && "Unscale did not did its job!"); 3592 3593 // Check each interesting stride. 3594 for (SmallSetVector<int64_t, 8>::const_iterator 3595 I = Factors.begin(), E = Factors.end(); I != E; ++I) { 3596 int64_t Factor = *I; 3597 3598 Base.Scale = Factor; 3599 Base.HasBaseReg = Base.BaseRegs.size() > 1; 3600 // Check whether this scale is going to be legal. 3601 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 3602 Base)) { 3603 // As a special-case, handle special out-of-loop Basic users specially. 3604 // TODO: Reconsider this special case. 3605 if (LU.Kind == LSRUse::Basic && 3606 isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special, 3607 LU.AccessTy, Base) && 3608 LU.AllFixupsOutsideLoop) 3609 LU.Kind = LSRUse::Special; 3610 else 3611 continue; 3612 } 3613 // For an ICmpZero, negating a solitary base register won't lead to 3614 // new solutions. 3615 if (LU.Kind == LSRUse::ICmpZero && 3616 !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV) 3617 continue; 3618 // For each addrec base reg, apply the scale, if possible. 3619 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3620 if (const SCEVAddRecExpr *AR = 3621 dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i])) { 3622 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3623 if (FactorS->isZero()) 3624 continue; 3625 // Divide out the factor, ignoring high bits, since we'll be 3626 // scaling the value back up in the end. 3627 if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) { 3628 // TODO: This could be optimized to avoid all the copying. 3629 Formula F = Base; 3630 F.ScaledReg = Quotient; 3631 F.DeleteBaseReg(F.BaseRegs[i]); 3632 // The canonical representation of 1*reg is reg, which is already in 3633 // Base. In that case, do not try to insert the formula, it will be 3634 // rejected anyway. 3635 if (F.Scale == 1 && F.BaseRegs.empty()) 3636 continue; 3637 (void)InsertFormula(LU, LUIdx, F); 3638 } 3639 } 3640 } 3641 } 3642 3643 /// GenerateTruncates - Generate reuse formulae from different IV types. 3644 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) { 3645 // Don't bother truncating symbolic values. 3646 if (Base.BaseGV) return; 3647 3648 // Determine the integer type for the base formula. 3649 Type *DstTy = Base.getType(); 3650 if (!DstTy) return; 3651 DstTy = SE.getEffectiveSCEVType(DstTy); 3652 3653 for (SmallSetVector<Type *, 4>::const_iterator 3654 I = Types.begin(), E = Types.end(); I != E; ++I) { 3655 Type *SrcTy = *I; 3656 if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) { 3657 Formula F = Base; 3658 3659 if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, *I); 3660 for (SmallVectorImpl<const SCEV *>::iterator J = F.BaseRegs.begin(), 3661 JE = F.BaseRegs.end(); J != JE; ++J) 3662 *J = SE.getAnyExtendExpr(*J, SrcTy); 3663 3664 // TODO: This assumes we've done basic processing on all uses and 3665 // have an idea what the register usage is. 3666 if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses)) 3667 continue; 3668 3669 (void)InsertFormula(LU, LUIdx, F); 3670 } 3671 } 3672 } 3673 3674 namespace { 3675 3676 /// WorkItem - Helper class for GenerateCrossUseConstantOffsets. It's used to 3677 /// defer modifications so that the search phase doesn't have to worry about 3678 /// the data structures moving underneath it. 3679 struct WorkItem { 3680 size_t LUIdx; 3681 int64_t Imm; 3682 const SCEV *OrigReg; 3683 3684 WorkItem(size_t LI, int64_t I, const SCEV *R) 3685 : LUIdx(LI), Imm(I), OrigReg(R) {} 3686 3687 void print(raw_ostream &OS) const; 3688 void dump() const; 3689 }; 3690 3691 } 3692 3693 void WorkItem::print(raw_ostream &OS) const { 3694 OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx 3695 << " , add offset " << Imm; 3696 } 3697 3698 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 3699 void WorkItem::dump() const { 3700 print(errs()); errs() << '\n'; 3701 } 3702 #endif 3703 3704 /// GenerateCrossUseConstantOffsets - Look for registers which are a constant 3705 /// distance apart and try to form reuse opportunities between them. 3706 void LSRInstance::GenerateCrossUseConstantOffsets() { 3707 // Group the registers by their value without any added constant offset. 3708 typedef std::map<int64_t, const SCEV *> ImmMapTy; 3709 typedef DenseMap<const SCEV *, ImmMapTy> RegMapTy; 3710 RegMapTy Map; 3711 DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap; 3712 SmallVector<const SCEV *, 8> Sequence; 3713 for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end(); 3714 I != E; ++I) { 3715 const SCEV *Reg = *I; 3716 int64_t Imm = ExtractImmediate(Reg, SE); 3717 std::pair<RegMapTy::iterator, bool> Pair = 3718 Map.insert(std::make_pair(Reg, ImmMapTy())); 3719 if (Pair.second) 3720 Sequence.push_back(Reg); 3721 Pair.first->second.insert(std::make_pair(Imm, *I)); 3722 UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(*I); 3723 } 3724 3725 // Now examine each set of registers with the same base value. Build up 3726 // a list of work to do and do the work in a separate step so that we're 3727 // not adding formulae and register counts while we're searching. 3728 SmallVector<WorkItem, 32> WorkItems; 3729 SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems; 3730 for (SmallVectorImpl<const SCEV *>::const_iterator I = Sequence.begin(), 3731 E = Sequence.end(); I != E; ++I) { 3732 const SCEV *Reg = *I; 3733 const ImmMapTy &Imms = Map.find(Reg)->second; 3734 3735 // It's not worthwhile looking for reuse if there's only one offset. 3736 if (Imms.size() == 1) 3737 continue; 3738 3739 DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':'; 3740 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); 3741 J != JE; ++J) 3742 dbgs() << ' ' << J->first; 3743 dbgs() << '\n'); 3744 3745 // Examine each offset. 3746 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); 3747 J != JE; ++J) { 3748 const SCEV *OrigReg = J->second; 3749 3750 int64_t JImm = J->first; 3751 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg); 3752 3753 if (!isa<SCEVConstant>(OrigReg) && 3754 UsedByIndicesMap[Reg].count() == 1) { 3755 DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n'); 3756 continue; 3757 } 3758 3759 // Conservatively examine offsets between this orig reg a few selected 3760 // other orig regs. 3761 ImmMapTy::const_iterator OtherImms[] = { 3762 Imms.begin(), std::prev(Imms.end()), 3763 Imms.lower_bound((Imms.begin()->first + std::prev(Imms.end())->first) / 3764 2) 3765 }; 3766 for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) { 3767 ImmMapTy::const_iterator M = OtherImms[i]; 3768 if (M == J || M == JE) continue; 3769 3770 // Compute the difference between the two. 3771 int64_t Imm = (uint64_t)JImm - M->first; 3772 for (int LUIdx = UsedByIndices.find_first(); LUIdx != -1; 3773 LUIdx = UsedByIndices.find_next(LUIdx)) 3774 // Make a memo of this use, offset, and register tuple. 3775 if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second) 3776 WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg)); 3777 } 3778 } 3779 } 3780 3781 Map.clear(); 3782 Sequence.clear(); 3783 UsedByIndicesMap.clear(); 3784 UniqueItems.clear(); 3785 3786 // Now iterate through the worklist and add new formulae. 3787 for (SmallVectorImpl<WorkItem>::const_iterator I = WorkItems.begin(), 3788 E = WorkItems.end(); I != E; ++I) { 3789 const WorkItem &WI = *I; 3790 size_t LUIdx = WI.LUIdx; 3791 LSRUse &LU = Uses[LUIdx]; 3792 int64_t Imm = WI.Imm; 3793 const SCEV *OrigReg = WI.OrigReg; 3794 3795 Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType()); 3796 const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm)); 3797 unsigned BitWidth = SE.getTypeSizeInBits(IntTy); 3798 3799 // TODO: Use a more targeted data structure. 3800 for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) { 3801 Formula F = LU.Formulae[L]; 3802 // FIXME: The code for the scaled and unscaled registers looks 3803 // very similar but slightly different. Investigate if they 3804 // could be merged. That way, we would not have to unscale the 3805 // Formula. 3806 F.Unscale(); 3807 // Use the immediate in the scaled register. 3808 if (F.ScaledReg == OrigReg) { 3809 int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale; 3810 // Don't create 50 + reg(-50). 3811 if (F.referencesReg(SE.getSCEV( 3812 ConstantInt::get(IntTy, -(uint64_t)Offset)))) 3813 continue; 3814 Formula NewF = F; 3815 NewF.BaseOffset = Offset; 3816 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 3817 NewF)) 3818 continue; 3819 NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg); 3820 3821 // If the new scale is a constant in a register, and adding the constant 3822 // value to the immediate would produce a value closer to zero than the 3823 // immediate itself, then the formula isn't worthwhile. 3824 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg)) 3825 if (C->getValue()->isNegative() != 3826 (NewF.BaseOffset < 0) && 3827 (C->getValue()->getValue().abs() * APInt(BitWidth, F.Scale)) 3828 .ule(abs64(NewF.BaseOffset))) 3829 continue; 3830 3831 // OK, looks good. 3832 NewF.Canonicalize(); 3833 (void)InsertFormula(LU, LUIdx, NewF); 3834 } else { 3835 // Use the immediate in a base register. 3836 for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) { 3837 const SCEV *BaseReg = F.BaseRegs[N]; 3838 if (BaseReg != OrigReg) 3839 continue; 3840 Formula NewF = F; 3841 NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm; 3842 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, 3843 LU.Kind, LU.AccessTy, NewF)) { 3844 if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm)) 3845 continue; 3846 NewF = F; 3847 NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm; 3848 } 3849 NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg); 3850 3851 // If the new formula has a constant in a register, and adding the 3852 // constant value to the immediate would produce a value closer to 3853 // zero than the immediate itself, then the formula isn't worthwhile. 3854 for (SmallVectorImpl<const SCEV *>::const_iterator 3855 J = NewF.BaseRegs.begin(), JE = NewF.BaseRegs.end(); 3856 J != JE; ++J) 3857 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*J)) 3858 if ((C->getValue()->getValue() + NewF.BaseOffset).abs().slt( 3859 abs64(NewF.BaseOffset)) && 3860 (C->getValue()->getValue() + 3861 NewF.BaseOffset).countTrailingZeros() >= 3862 countTrailingZeros<uint64_t>(NewF.BaseOffset)) 3863 goto skip_formula; 3864 3865 // Ok, looks good. 3866 NewF.Canonicalize(); 3867 (void)InsertFormula(LU, LUIdx, NewF); 3868 break; 3869 skip_formula:; 3870 } 3871 } 3872 } 3873 } 3874 } 3875 3876 /// GenerateAllReuseFormulae - Generate formulae for each use. 3877 void 3878 LSRInstance::GenerateAllReuseFormulae() { 3879 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan 3880 // queries are more precise. 3881 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3882 LSRUse &LU = Uses[LUIdx]; 3883 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3884 GenerateReassociations(LU, LUIdx, LU.Formulae[i]); 3885 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3886 GenerateCombinations(LU, LUIdx, LU.Formulae[i]); 3887 } 3888 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3889 LSRUse &LU = Uses[LUIdx]; 3890 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3891 GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]); 3892 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3893 GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]); 3894 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3895 GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]); 3896 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3897 GenerateScales(LU, LUIdx, LU.Formulae[i]); 3898 } 3899 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3900 LSRUse &LU = Uses[LUIdx]; 3901 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3902 GenerateTruncates(LU, LUIdx, LU.Formulae[i]); 3903 } 3904 3905 GenerateCrossUseConstantOffsets(); 3906 3907 DEBUG(dbgs() << "\n" 3908 "After generating reuse formulae:\n"; 3909 print_uses(dbgs())); 3910 } 3911 3912 /// If there are multiple formulae with the same set of registers used 3913 /// by other uses, pick the best one and delete the others. 3914 void LSRInstance::FilterOutUndesirableDedicatedRegisters() { 3915 DenseSet<const SCEV *> VisitedRegs; 3916 SmallPtrSet<const SCEV *, 16> Regs; 3917 SmallPtrSet<const SCEV *, 16> LoserRegs; 3918 #ifndef NDEBUG 3919 bool ChangedFormulae = false; 3920 #endif 3921 3922 // Collect the best formula for each unique set of shared registers. This 3923 // is reset for each use. 3924 typedef DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo> 3925 BestFormulaeTy; 3926 BestFormulaeTy BestFormulae; 3927 3928 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3929 LSRUse &LU = Uses[LUIdx]; 3930 DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n'); 3931 3932 bool Any = false; 3933 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); 3934 FIdx != NumForms; ++FIdx) { 3935 Formula &F = LU.Formulae[FIdx]; 3936 3937 // Some formulas are instant losers. For example, they may depend on 3938 // nonexistent AddRecs from other loops. These need to be filtered 3939 // immediately, otherwise heuristics could choose them over others leading 3940 // to an unsatisfactory solution. Passing LoserRegs into RateFormula here 3941 // avoids the need to recompute this information across formulae using the 3942 // same bad AddRec. Passing LoserRegs is also essential unless we remove 3943 // the corresponding bad register from the Regs set. 3944 Cost CostF; 3945 Regs.clear(); 3946 CostF.RateFormula(TTI, F, Regs, VisitedRegs, L, LU.Offsets, SE, DT, LU, 3947 &LoserRegs); 3948 if (CostF.isLoser()) { 3949 // During initial formula generation, undesirable formulae are generated 3950 // by uses within other loops that have some non-trivial address mode or 3951 // use the postinc form of the IV. LSR needs to provide these formulae 3952 // as the basis of rediscovering the desired formula that uses an AddRec 3953 // corresponding to the existing phi. Once all formulae have been 3954 // generated, these initial losers may be pruned. 3955 DEBUG(dbgs() << " Filtering loser "; F.print(dbgs()); 3956 dbgs() << "\n"); 3957 } 3958 else { 3959 SmallVector<const SCEV *, 4> Key; 3960 for (SmallVectorImpl<const SCEV *>::const_iterator J = F.BaseRegs.begin(), 3961 JE = F.BaseRegs.end(); J != JE; ++J) { 3962 const SCEV *Reg = *J; 3963 if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx)) 3964 Key.push_back(Reg); 3965 } 3966 if (F.ScaledReg && 3967 RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx)) 3968 Key.push_back(F.ScaledReg); 3969 // Unstable sort by host order ok, because this is only used for 3970 // uniquifying. 3971 std::sort(Key.begin(), Key.end()); 3972 3973 std::pair<BestFormulaeTy::const_iterator, bool> P = 3974 BestFormulae.insert(std::make_pair(Key, FIdx)); 3975 if (P.second) 3976 continue; 3977 3978 Formula &Best = LU.Formulae[P.first->second]; 3979 3980 Cost CostBest; 3981 Regs.clear(); 3982 CostBest.RateFormula(TTI, Best, Regs, VisitedRegs, L, LU.Offsets, SE, 3983 DT, LU); 3984 if (CostF < CostBest) 3985 std::swap(F, Best); 3986 DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 3987 dbgs() << "\n" 3988 " in favor of formula "; Best.print(dbgs()); 3989 dbgs() << '\n'); 3990 } 3991 #ifndef NDEBUG 3992 ChangedFormulae = true; 3993 #endif 3994 LU.DeleteFormula(F); 3995 --FIdx; 3996 --NumForms; 3997 Any = true; 3998 } 3999 4000 // Now that we've filtered out some formulae, recompute the Regs set. 4001 if (Any) 4002 LU.RecomputeRegs(LUIdx, RegUses); 4003 4004 // Reset this to prepare for the next use. 4005 BestFormulae.clear(); 4006 } 4007 4008 DEBUG(if (ChangedFormulae) { 4009 dbgs() << "\n" 4010 "After filtering out undesirable candidates:\n"; 4011 print_uses(dbgs()); 4012 }); 4013 } 4014 4015 // This is a rough guess that seems to work fairly well. 4016 static const size_t ComplexityLimit = UINT16_MAX; 4017 4018 /// EstimateSearchSpaceComplexity - Estimate the worst-case number of 4019 /// solutions the solver might have to consider. It almost never considers 4020 /// this many solutions because it prune the search space, but the pruning 4021 /// isn't always sufficient. 4022 size_t LSRInstance::EstimateSearchSpaceComplexity() const { 4023 size_t Power = 1; 4024 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(), 4025 E = Uses.end(); I != E; ++I) { 4026 size_t FSize = I->Formulae.size(); 4027 if (FSize >= ComplexityLimit) { 4028 Power = ComplexityLimit; 4029 break; 4030 } 4031 Power *= FSize; 4032 if (Power >= ComplexityLimit) 4033 break; 4034 } 4035 return Power; 4036 } 4037 4038 /// NarrowSearchSpaceByDetectingSupersets - When one formula uses a superset 4039 /// of the registers of another formula, it won't help reduce register 4040 /// pressure (though it may not necessarily hurt register pressure); remove 4041 /// it to simplify the system. 4042 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() { 4043 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4044 DEBUG(dbgs() << "The search space is too complex.\n"); 4045 4046 DEBUG(dbgs() << "Narrowing the search space by eliminating formulae " 4047 "which use a superset of registers used by other " 4048 "formulae.\n"); 4049 4050 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4051 LSRUse &LU = Uses[LUIdx]; 4052 bool Any = false; 4053 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4054 Formula &F = LU.Formulae[i]; 4055 // Look for a formula with a constant or GV in a register. If the use 4056 // also has a formula with that same value in an immediate field, 4057 // delete the one that uses a register. 4058 for (SmallVectorImpl<const SCEV *>::const_iterator 4059 I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) { 4060 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) { 4061 Formula NewF = F; 4062 NewF.BaseOffset += C->getValue()->getSExtValue(); 4063 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4064 (I - F.BaseRegs.begin())); 4065 if (LU.HasFormulaWithSameRegs(NewF)) { 4066 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4067 LU.DeleteFormula(F); 4068 --i; 4069 --e; 4070 Any = true; 4071 break; 4072 } 4073 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) { 4074 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) 4075 if (!F.BaseGV) { 4076 Formula NewF = F; 4077 NewF.BaseGV = GV; 4078 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4079 (I - F.BaseRegs.begin())); 4080 if (LU.HasFormulaWithSameRegs(NewF)) { 4081 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4082 dbgs() << '\n'); 4083 LU.DeleteFormula(F); 4084 --i; 4085 --e; 4086 Any = true; 4087 break; 4088 } 4089 } 4090 } 4091 } 4092 } 4093 if (Any) 4094 LU.RecomputeRegs(LUIdx, RegUses); 4095 } 4096 4097 DEBUG(dbgs() << "After pre-selection:\n"; 4098 print_uses(dbgs())); 4099 } 4100 } 4101 4102 /// NarrowSearchSpaceByCollapsingUnrolledCode - When there are many registers 4103 /// for expressions like A, A+1, A+2, etc., allocate a single register for 4104 /// them. 4105 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() { 4106 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4107 return; 4108 4109 DEBUG(dbgs() << "The search space is too complex.\n" 4110 "Narrowing the search space by assuming that uses separated " 4111 "by a constant offset will use the same registers.\n"); 4112 4113 // This is especially useful for unrolled loops. 4114 4115 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4116 LSRUse &LU = Uses[LUIdx]; 4117 for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(), 4118 E = LU.Formulae.end(); I != E; ++I) { 4119 const Formula &F = *I; 4120 if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1)) 4121 continue; 4122 4123 LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU); 4124 if (!LUThatHas) 4125 continue; 4126 4127 if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false, 4128 LU.Kind, LU.AccessTy)) 4129 continue; 4130 4131 DEBUG(dbgs() << " Deleting use "; LU.print(dbgs()); dbgs() << '\n'); 4132 4133 LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop; 4134 4135 // Update the relocs to reference the new use. 4136 for (SmallVectorImpl<LSRFixup>::iterator I = Fixups.begin(), 4137 E = Fixups.end(); I != E; ++I) { 4138 LSRFixup &Fixup = *I; 4139 if (Fixup.LUIdx == LUIdx) { 4140 Fixup.LUIdx = LUThatHas - &Uses.front(); 4141 Fixup.Offset += F.BaseOffset; 4142 // Add the new offset to LUThatHas' offset list. 4143 if (LUThatHas->Offsets.back() != Fixup.Offset) { 4144 LUThatHas->Offsets.push_back(Fixup.Offset); 4145 if (Fixup.Offset > LUThatHas->MaxOffset) 4146 LUThatHas->MaxOffset = Fixup.Offset; 4147 if (Fixup.Offset < LUThatHas->MinOffset) 4148 LUThatHas->MinOffset = Fixup.Offset; 4149 } 4150 DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n'); 4151 } 4152 if (Fixup.LUIdx == NumUses-1) 4153 Fixup.LUIdx = LUIdx; 4154 } 4155 4156 // Delete formulae from the new use which are no longer legal. 4157 bool Any = false; 4158 for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) { 4159 Formula &F = LUThatHas->Formulae[i]; 4160 if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset, 4161 LUThatHas->Kind, LUThatHas->AccessTy, F)) { 4162 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4163 dbgs() << '\n'); 4164 LUThatHas->DeleteFormula(F); 4165 --i; 4166 --e; 4167 Any = true; 4168 } 4169 } 4170 4171 if (Any) 4172 LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses); 4173 4174 // Delete the old use. 4175 DeleteUse(LU, LUIdx); 4176 --LUIdx; 4177 --NumUses; 4178 break; 4179 } 4180 } 4181 4182 DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4183 } 4184 4185 /// NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters - Call 4186 /// FilterOutUndesirableDedicatedRegisters again, if necessary, now that 4187 /// we've done more filtering, as it may be able to find more formulae to 4188 /// eliminate. 4189 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){ 4190 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4191 DEBUG(dbgs() << "The search space is too complex.\n"); 4192 4193 DEBUG(dbgs() << "Narrowing the search space by re-filtering out " 4194 "undesirable dedicated registers.\n"); 4195 4196 FilterOutUndesirableDedicatedRegisters(); 4197 4198 DEBUG(dbgs() << "After pre-selection:\n"; 4199 print_uses(dbgs())); 4200 } 4201 } 4202 4203 /// NarrowSearchSpaceByPickingWinnerRegs - Pick a register which seems likely 4204 /// to be profitable, and then in any use which has any reference to that 4205 /// register, delete all formulae which do not reference that register. 4206 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() { 4207 // With all other options exhausted, loop until the system is simple 4208 // enough to handle. 4209 SmallPtrSet<const SCEV *, 4> Taken; 4210 while (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4211 // Ok, we have too many of formulae on our hands to conveniently handle. 4212 // Use a rough heuristic to thin out the list. 4213 DEBUG(dbgs() << "The search space is too complex.\n"); 4214 4215 // Pick the register which is used by the most LSRUses, which is likely 4216 // to be a good reuse register candidate. 4217 const SCEV *Best = nullptr; 4218 unsigned BestNum = 0; 4219 for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end(); 4220 I != E; ++I) { 4221 const SCEV *Reg = *I; 4222 if (Taken.count(Reg)) 4223 continue; 4224 if (!Best) 4225 Best = Reg; 4226 else { 4227 unsigned Count = RegUses.getUsedByIndices(Reg).count(); 4228 if (Count > BestNum) { 4229 Best = Reg; 4230 BestNum = Count; 4231 } 4232 } 4233 } 4234 4235 DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best 4236 << " will yield profitable reuse.\n"); 4237 Taken.insert(Best); 4238 4239 // In any use with formulae which references this register, delete formulae 4240 // which don't reference it. 4241 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4242 LSRUse &LU = Uses[LUIdx]; 4243 if (!LU.Regs.count(Best)) continue; 4244 4245 bool Any = false; 4246 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4247 Formula &F = LU.Formulae[i]; 4248 if (!F.referencesReg(Best)) { 4249 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4250 LU.DeleteFormula(F); 4251 --e; 4252 --i; 4253 Any = true; 4254 assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?"); 4255 continue; 4256 } 4257 } 4258 4259 if (Any) 4260 LU.RecomputeRegs(LUIdx, RegUses); 4261 } 4262 4263 DEBUG(dbgs() << "After pre-selection:\n"; 4264 print_uses(dbgs())); 4265 } 4266 } 4267 4268 /// NarrowSearchSpaceUsingHeuristics - If there are an extraordinary number of 4269 /// formulae to choose from, use some rough heuristics to prune down the number 4270 /// of formulae. This keeps the main solver from taking an extraordinary amount 4271 /// of time in some worst-case scenarios. 4272 void LSRInstance::NarrowSearchSpaceUsingHeuristics() { 4273 NarrowSearchSpaceByDetectingSupersets(); 4274 NarrowSearchSpaceByCollapsingUnrolledCode(); 4275 NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 4276 NarrowSearchSpaceByPickingWinnerRegs(); 4277 } 4278 4279 /// SolveRecurse - This is the recursive solver. 4280 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 4281 Cost &SolutionCost, 4282 SmallVectorImpl<const Formula *> &Workspace, 4283 const Cost &CurCost, 4284 const SmallPtrSet<const SCEV *, 16> &CurRegs, 4285 DenseSet<const SCEV *> &VisitedRegs) const { 4286 // Some ideas: 4287 // - prune more: 4288 // - use more aggressive filtering 4289 // - sort the formula so that the most profitable solutions are found first 4290 // - sort the uses too 4291 // - search faster: 4292 // - don't compute a cost, and then compare. compare while computing a cost 4293 // and bail early. 4294 // - track register sets with SmallBitVector 4295 4296 const LSRUse &LU = Uses[Workspace.size()]; 4297 4298 // If this use references any register that's already a part of the 4299 // in-progress solution, consider it a requirement that a formula must 4300 // reference that register in order to be considered. This prunes out 4301 // unprofitable searching. 4302 SmallSetVector<const SCEV *, 4> ReqRegs; 4303 for (const SCEV *S : CurRegs) 4304 if (LU.Regs.count(S)) 4305 ReqRegs.insert(S); 4306 4307 SmallPtrSet<const SCEV *, 16> NewRegs; 4308 Cost NewCost; 4309 for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(), 4310 E = LU.Formulae.end(); I != E; ++I) { 4311 const Formula &F = *I; 4312 4313 // Ignore formulae which may not be ideal in terms of register reuse of 4314 // ReqRegs. The formula should use all required registers before 4315 // introducing new ones. 4316 int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size()); 4317 for (SmallSetVector<const SCEV *, 4>::const_iterator J = ReqRegs.begin(), 4318 JE = ReqRegs.end(); J != JE; ++J) { 4319 const SCEV *Reg = *J; 4320 if ((F.ScaledReg && F.ScaledReg == Reg) || 4321 std::find(F.BaseRegs.begin(), F.BaseRegs.end(), Reg) != 4322 F.BaseRegs.end()) { 4323 --NumReqRegsToFind; 4324 if (NumReqRegsToFind == 0) 4325 break; 4326 } 4327 } 4328 if (NumReqRegsToFind != 0) { 4329 // If none of the formulae satisfied the required registers, then we could 4330 // clear ReqRegs and try again. Currently, we simply give up in this case. 4331 continue; 4332 } 4333 4334 // Evaluate the cost of the current formula. If it's already worse than 4335 // the current best, prune the search at that point. 4336 NewCost = CurCost; 4337 NewRegs = CurRegs; 4338 NewCost.RateFormula(TTI, F, NewRegs, VisitedRegs, L, LU.Offsets, SE, DT, 4339 LU); 4340 if (NewCost < SolutionCost) { 4341 Workspace.push_back(&F); 4342 if (Workspace.size() != Uses.size()) { 4343 SolveRecurse(Solution, SolutionCost, Workspace, NewCost, 4344 NewRegs, VisitedRegs); 4345 if (F.getNumRegs() == 1 && Workspace.size() == 1) 4346 VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]); 4347 } else { 4348 DEBUG(dbgs() << "New best at "; NewCost.print(dbgs()); 4349 dbgs() << ".\n Regs:"; 4350 for (const SCEV *S : NewRegs) 4351 dbgs() << ' ' << *S; 4352 dbgs() << '\n'); 4353 4354 SolutionCost = NewCost; 4355 Solution = Workspace; 4356 } 4357 Workspace.pop_back(); 4358 } 4359 } 4360 } 4361 4362 /// Solve - Choose one formula from each use. Return the results in the given 4363 /// Solution vector. 4364 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const { 4365 SmallVector<const Formula *, 8> Workspace; 4366 Cost SolutionCost; 4367 SolutionCost.Lose(); 4368 Cost CurCost; 4369 SmallPtrSet<const SCEV *, 16> CurRegs; 4370 DenseSet<const SCEV *> VisitedRegs; 4371 Workspace.reserve(Uses.size()); 4372 4373 // SolveRecurse does all the work. 4374 SolveRecurse(Solution, SolutionCost, Workspace, CurCost, 4375 CurRegs, VisitedRegs); 4376 if (Solution.empty()) { 4377 DEBUG(dbgs() << "\nNo Satisfactory Solution\n"); 4378 return; 4379 } 4380 4381 // Ok, we've now made all our decisions. 4382 DEBUG(dbgs() << "\n" 4383 "The chosen solution requires "; SolutionCost.print(dbgs()); 4384 dbgs() << ":\n"; 4385 for (size_t i = 0, e = Uses.size(); i != e; ++i) { 4386 dbgs() << " "; 4387 Uses[i].print(dbgs()); 4388 dbgs() << "\n" 4389 " "; 4390 Solution[i]->print(dbgs()); 4391 dbgs() << '\n'; 4392 }); 4393 4394 assert(Solution.size() == Uses.size() && "Malformed solution!"); 4395 } 4396 4397 /// HoistInsertPosition - Helper for AdjustInsertPositionForExpand. Climb up 4398 /// the dominator tree far as we can go while still being dominated by the 4399 /// input positions. This helps canonicalize the insert position, which 4400 /// encourages sharing. 4401 BasicBlock::iterator 4402 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP, 4403 const SmallVectorImpl<Instruction *> &Inputs) 4404 const { 4405 for (;;) { 4406 const Loop *IPLoop = LI.getLoopFor(IP->getParent()); 4407 unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0; 4408 4409 BasicBlock *IDom; 4410 for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) { 4411 if (!Rung) return IP; 4412 Rung = Rung->getIDom(); 4413 if (!Rung) return IP; 4414 IDom = Rung->getBlock(); 4415 4416 // Don't climb into a loop though. 4417 const Loop *IDomLoop = LI.getLoopFor(IDom); 4418 unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0; 4419 if (IDomDepth <= IPLoopDepth && 4420 (IDomDepth != IPLoopDepth || IDomLoop == IPLoop)) 4421 break; 4422 } 4423 4424 bool AllDominate = true; 4425 Instruction *BetterPos = nullptr; 4426 Instruction *Tentative = IDom->getTerminator(); 4427 for (SmallVectorImpl<Instruction *>::const_iterator I = Inputs.begin(), 4428 E = Inputs.end(); I != E; ++I) { 4429 Instruction *Inst = *I; 4430 if (Inst == Tentative || !DT.dominates(Inst, Tentative)) { 4431 AllDominate = false; 4432 break; 4433 } 4434 // Attempt to find an insert position in the middle of the block, 4435 // instead of at the end, so that it can be used for other expansions. 4436 if (IDom == Inst->getParent() && 4437 (!BetterPos || !DT.dominates(Inst, BetterPos))) 4438 BetterPos = std::next(BasicBlock::iterator(Inst)); 4439 } 4440 if (!AllDominate) 4441 break; 4442 if (BetterPos) 4443 IP = BetterPos; 4444 else 4445 IP = Tentative; 4446 } 4447 4448 return IP; 4449 } 4450 4451 /// AdjustInsertPositionForExpand - Determine an input position which will be 4452 /// dominated by the operands and which will dominate the result. 4453 BasicBlock::iterator 4454 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP, 4455 const LSRFixup &LF, 4456 const LSRUse &LU, 4457 SCEVExpander &Rewriter) const { 4458 // Collect some instructions which must be dominated by the 4459 // expanding replacement. These must be dominated by any operands that 4460 // will be required in the expansion. 4461 SmallVector<Instruction *, 4> Inputs; 4462 if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace)) 4463 Inputs.push_back(I); 4464 if (LU.Kind == LSRUse::ICmpZero) 4465 if (Instruction *I = 4466 dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1))) 4467 Inputs.push_back(I); 4468 if (LF.PostIncLoops.count(L)) { 4469 if (LF.isUseFullyOutsideLoop(L)) 4470 Inputs.push_back(L->getLoopLatch()->getTerminator()); 4471 else 4472 Inputs.push_back(IVIncInsertPos); 4473 } 4474 // The expansion must also be dominated by the increment positions of any 4475 // loops it for which it is using post-inc mode. 4476 for (PostIncLoopSet::const_iterator I = LF.PostIncLoops.begin(), 4477 E = LF.PostIncLoops.end(); I != E; ++I) { 4478 const Loop *PIL = *I; 4479 if (PIL == L) continue; 4480 4481 // Be dominated by the loop exit. 4482 SmallVector<BasicBlock *, 4> ExitingBlocks; 4483 PIL->getExitingBlocks(ExitingBlocks); 4484 if (!ExitingBlocks.empty()) { 4485 BasicBlock *BB = ExitingBlocks[0]; 4486 for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i) 4487 BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]); 4488 Inputs.push_back(BB->getTerminator()); 4489 } 4490 } 4491 4492 assert(!isa<PHINode>(LowestIP) && !isa<LandingPadInst>(LowestIP) 4493 && !isa<DbgInfoIntrinsic>(LowestIP) && 4494 "Insertion point must be a normal instruction"); 4495 4496 // Then, climb up the immediate dominator tree as far as we can go while 4497 // still being dominated by the input positions. 4498 BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs); 4499 4500 // Don't insert instructions before PHI nodes. 4501 while (isa<PHINode>(IP)) ++IP; 4502 4503 // Ignore landingpad instructions. 4504 while (isa<LandingPadInst>(IP)) ++IP; 4505 4506 // Ignore debug intrinsics. 4507 while (isa<DbgInfoIntrinsic>(IP)) ++IP; 4508 4509 // Set IP below instructions recently inserted by SCEVExpander. This keeps the 4510 // IP consistent across expansions and allows the previously inserted 4511 // instructions to be reused by subsequent expansion. 4512 while (Rewriter.isInsertedInstruction(IP) && IP != LowestIP) ++IP; 4513 4514 return IP; 4515 } 4516 4517 /// Expand - Emit instructions for the leading candidate expression for this 4518 /// LSRUse (this is called "expanding"). 4519 Value *LSRInstance::Expand(const LSRFixup &LF, 4520 const Formula &F, 4521 BasicBlock::iterator IP, 4522 SCEVExpander &Rewriter, 4523 SmallVectorImpl<WeakVH> &DeadInsts) const { 4524 const LSRUse &LU = Uses[LF.LUIdx]; 4525 if (LU.RigidFormula) 4526 return LF.OperandValToReplace; 4527 4528 // Determine an input position which will be dominated by the operands and 4529 // which will dominate the result. 4530 IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter); 4531 4532 // Inform the Rewriter if we have a post-increment use, so that it can 4533 // perform an advantageous expansion. 4534 Rewriter.setPostInc(LF.PostIncLoops); 4535 4536 // This is the type that the user actually needs. 4537 Type *OpTy = LF.OperandValToReplace->getType(); 4538 // This will be the type that we'll initially expand to. 4539 Type *Ty = F.getType(); 4540 if (!Ty) 4541 // No type known; just expand directly to the ultimate type. 4542 Ty = OpTy; 4543 else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy)) 4544 // Expand directly to the ultimate type if it's the right size. 4545 Ty = OpTy; 4546 // This is the type to do integer arithmetic in. 4547 Type *IntTy = SE.getEffectiveSCEVType(Ty); 4548 4549 // Build up a list of operands to add together to form the full base. 4550 SmallVector<const SCEV *, 8> Ops; 4551 4552 // Expand the BaseRegs portion. 4553 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(), 4554 E = F.BaseRegs.end(); I != E; ++I) { 4555 const SCEV *Reg = *I; 4556 assert(!Reg->isZero() && "Zero allocated in a base register!"); 4557 4558 // If we're expanding for a post-inc user, make the post-inc adjustment. 4559 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 4560 Reg = TransformForPostIncUse(Denormalize, Reg, 4561 LF.UserInst, LF.OperandValToReplace, 4562 Loops, SE, DT); 4563 4564 Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr, IP))); 4565 } 4566 4567 // Expand the ScaledReg portion. 4568 Value *ICmpScaledV = nullptr; 4569 if (F.Scale != 0) { 4570 const SCEV *ScaledS = F.ScaledReg; 4571 4572 // If we're expanding for a post-inc user, make the post-inc adjustment. 4573 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 4574 ScaledS = TransformForPostIncUse(Denormalize, ScaledS, 4575 LF.UserInst, LF.OperandValToReplace, 4576 Loops, SE, DT); 4577 4578 if (LU.Kind == LSRUse::ICmpZero) { 4579 // Expand ScaleReg as if it was part of the base regs. 4580 if (F.Scale == 1) 4581 Ops.push_back( 4582 SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr, IP))); 4583 else { 4584 // An interesting way of "folding" with an icmp is to use a negated 4585 // scale, which we'll implement by inserting it into the other operand 4586 // of the icmp. 4587 assert(F.Scale == -1 && 4588 "The only scale supported by ICmpZero uses is -1!"); 4589 ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr, IP); 4590 } 4591 } else { 4592 // Otherwise just expand the scaled register and an explicit scale, 4593 // which is expected to be matched as part of the address. 4594 4595 // Flush the operand list to suppress SCEVExpander hoisting address modes. 4596 // Unless the addressing mode will not be folded. 4597 if (!Ops.empty() && LU.Kind == LSRUse::Address && 4598 isAMCompletelyFolded(TTI, LU, F)) { 4599 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP); 4600 Ops.clear(); 4601 Ops.push_back(SE.getUnknown(FullV)); 4602 } 4603 ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr, IP)); 4604 if (F.Scale != 1) 4605 ScaledS = 4606 SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale)); 4607 Ops.push_back(ScaledS); 4608 } 4609 } 4610 4611 // Expand the GV portion. 4612 if (F.BaseGV) { 4613 // Flush the operand list to suppress SCEVExpander hoisting. 4614 if (!Ops.empty()) { 4615 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP); 4616 Ops.clear(); 4617 Ops.push_back(SE.getUnknown(FullV)); 4618 } 4619 Ops.push_back(SE.getUnknown(F.BaseGV)); 4620 } 4621 4622 // Flush the operand list to suppress SCEVExpander hoisting of both folded and 4623 // unfolded offsets. LSR assumes they both live next to their uses. 4624 if (!Ops.empty()) { 4625 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP); 4626 Ops.clear(); 4627 Ops.push_back(SE.getUnknown(FullV)); 4628 } 4629 4630 // Expand the immediate portion. 4631 int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset; 4632 if (Offset != 0) { 4633 if (LU.Kind == LSRUse::ICmpZero) { 4634 // The other interesting way of "folding" with an ICmpZero is to use a 4635 // negated immediate. 4636 if (!ICmpScaledV) 4637 ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset); 4638 else { 4639 Ops.push_back(SE.getUnknown(ICmpScaledV)); 4640 ICmpScaledV = ConstantInt::get(IntTy, Offset); 4641 } 4642 } else { 4643 // Just add the immediate values. These again are expected to be matched 4644 // as part of the address. 4645 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset))); 4646 } 4647 } 4648 4649 // Expand the unfolded offset portion. 4650 int64_t UnfoldedOffset = F.UnfoldedOffset; 4651 if (UnfoldedOffset != 0) { 4652 // Just add the immediate values. 4653 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, 4654 UnfoldedOffset))); 4655 } 4656 4657 // Emit instructions summing all the operands. 4658 const SCEV *FullS = Ops.empty() ? 4659 SE.getConstant(IntTy, 0) : 4660 SE.getAddExpr(Ops); 4661 Value *FullV = Rewriter.expandCodeFor(FullS, Ty, IP); 4662 4663 // We're done expanding now, so reset the rewriter. 4664 Rewriter.clearPostInc(); 4665 4666 // An ICmpZero Formula represents an ICmp which we're handling as a 4667 // comparison against zero. Now that we've expanded an expression for that 4668 // form, update the ICmp's other operand. 4669 if (LU.Kind == LSRUse::ICmpZero) { 4670 ICmpInst *CI = cast<ICmpInst>(LF.UserInst); 4671 DeadInsts.push_back(CI->getOperand(1)); 4672 assert(!F.BaseGV && "ICmp does not support folding a global value and " 4673 "a scale at the same time!"); 4674 if (F.Scale == -1) { 4675 if (ICmpScaledV->getType() != OpTy) { 4676 Instruction *Cast = 4677 CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false, 4678 OpTy, false), 4679 ICmpScaledV, OpTy, "tmp", CI); 4680 ICmpScaledV = Cast; 4681 } 4682 CI->setOperand(1, ICmpScaledV); 4683 } else { 4684 // A scale of 1 means that the scale has been expanded as part of the 4685 // base regs. 4686 assert((F.Scale == 0 || F.Scale == 1) && 4687 "ICmp does not support folding a global value and " 4688 "a scale at the same time!"); 4689 Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy), 4690 -(uint64_t)Offset); 4691 if (C->getType() != OpTy) 4692 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 4693 OpTy, false), 4694 C, OpTy); 4695 4696 CI->setOperand(1, C); 4697 } 4698 } 4699 4700 return FullV; 4701 } 4702 4703 /// RewriteForPHI - Helper for Rewrite. PHI nodes are special because the use 4704 /// of their operands effectively happens in their predecessor blocks, so the 4705 /// expression may need to be expanded in multiple places. 4706 void LSRInstance::RewriteForPHI(PHINode *PN, 4707 const LSRFixup &LF, 4708 const Formula &F, 4709 SCEVExpander &Rewriter, 4710 SmallVectorImpl<WeakVH> &DeadInsts, 4711 Pass *P) const { 4712 DenseMap<BasicBlock *, Value *> Inserted; 4713 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 4714 if (PN->getIncomingValue(i) == LF.OperandValToReplace) { 4715 BasicBlock *BB = PN->getIncomingBlock(i); 4716 4717 // If this is a critical edge, split the edge so that we do not insert 4718 // the code on all predecessor/successor paths. We do this unless this 4719 // is the canonical backedge for this loop, which complicates post-inc 4720 // users. 4721 if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 && 4722 !isa<IndirectBrInst>(BB->getTerminator())) { 4723 BasicBlock *Parent = PN->getParent(); 4724 Loop *PNLoop = LI.getLoopFor(Parent); 4725 if (!PNLoop || Parent != PNLoop->getHeader()) { 4726 // Split the critical edge. 4727 BasicBlock *NewBB = nullptr; 4728 if (!Parent->isLandingPad()) { 4729 NewBB = SplitCriticalEdge(BB, Parent, 4730 CriticalEdgeSplittingOptions(&DT, &LI) 4731 .setMergeIdenticalEdges() 4732 .setDontDeleteUselessPHIs()); 4733 } else { 4734 SmallVector<BasicBlock*, 2> NewBBs; 4735 SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, 4736 /*AliasAnalysis*/ nullptr, &DT, &LI); 4737 NewBB = NewBBs[0]; 4738 } 4739 // If NewBB==NULL, then SplitCriticalEdge refused to split because all 4740 // phi predecessors are identical. The simple thing to do is skip 4741 // splitting in this case rather than complicate the API. 4742 if (NewBB) { 4743 // If PN is outside of the loop and BB is in the loop, we want to 4744 // move the block to be immediately before the PHI block, not 4745 // immediately after BB. 4746 if (L->contains(BB) && !L->contains(PN)) 4747 NewBB->moveBefore(PN->getParent()); 4748 4749 // Splitting the edge can reduce the number of PHI entries we have. 4750 e = PN->getNumIncomingValues(); 4751 BB = NewBB; 4752 i = PN->getBasicBlockIndex(BB); 4753 } 4754 } 4755 } 4756 4757 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair = 4758 Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr))); 4759 if (!Pair.second) 4760 PN->setIncomingValue(i, Pair.first->second); 4761 else { 4762 Value *FullV = Expand(LF, F, BB->getTerminator(), Rewriter, DeadInsts); 4763 4764 // If this is reuse-by-noop-cast, insert the noop cast. 4765 Type *OpTy = LF.OperandValToReplace->getType(); 4766 if (FullV->getType() != OpTy) 4767 FullV = 4768 CastInst::Create(CastInst::getCastOpcode(FullV, false, 4769 OpTy, false), 4770 FullV, LF.OperandValToReplace->getType(), 4771 "tmp", BB->getTerminator()); 4772 4773 PN->setIncomingValue(i, FullV); 4774 Pair.first->second = FullV; 4775 } 4776 } 4777 } 4778 4779 /// Rewrite - Emit instructions for the leading candidate expression for this 4780 /// LSRUse (this is called "expanding"), and update the UserInst to reference 4781 /// the newly expanded value. 4782 void LSRInstance::Rewrite(const LSRFixup &LF, 4783 const Formula &F, 4784 SCEVExpander &Rewriter, 4785 SmallVectorImpl<WeakVH> &DeadInsts, 4786 Pass *P) const { 4787 // First, find an insertion point that dominates UserInst. For PHI nodes, 4788 // find the nearest block which dominates all the relevant uses. 4789 if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) { 4790 RewriteForPHI(PN, LF, F, Rewriter, DeadInsts, P); 4791 } else { 4792 Value *FullV = Expand(LF, F, LF.UserInst, Rewriter, DeadInsts); 4793 4794 // If this is reuse-by-noop-cast, insert the noop cast. 4795 Type *OpTy = LF.OperandValToReplace->getType(); 4796 if (FullV->getType() != OpTy) { 4797 Instruction *Cast = 4798 CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false), 4799 FullV, OpTy, "tmp", LF.UserInst); 4800 FullV = Cast; 4801 } 4802 4803 // Update the user. ICmpZero is handled specially here (for now) because 4804 // Expand may have updated one of the operands of the icmp already, and 4805 // its new value may happen to be equal to LF.OperandValToReplace, in 4806 // which case doing replaceUsesOfWith leads to replacing both operands 4807 // with the same value. TODO: Reorganize this. 4808 if (Uses[LF.LUIdx].Kind == LSRUse::ICmpZero) 4809 LF.UserInst->setOperand(0, FullV); 4810 else 4811 LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV); 4812 } 4813 4814 DeadInsts.push_back(LF.OperandValToReplace); 4815 } 4816 4817 /// ImplementSolution - Rewrite all the fixup locations with new values, 4818 /// following the chosen solution. 4819 void 4820 LSRInstance::ImplementSolution(const SmallVectorImpl<const Formula *> &Solution, 4821 Pass *P) { 4822 // Keep track of instructions we may have made dead, so that 4823 // we can remove them after we are done working. 4824 SmallVector<WeakVH, 16> DeadInsts; 4825 4826 SCEVExpander Rewriter(SE, "lsr"); 4827 #ifndef NDEBUG 4828 Rewriter.setDebugType(DEBUG_TYPE); 4829 #endif 4830 Rewriter.disableCanonicalMode(); 4831 Rewriter.enableLSRMode(); 4832 Rewriter.setIVIncInsertPos(L, IVIncInsertPos); 4833 4834 // Mark phi nodes that terminate chains so the expander tries to reuse them. 4835 for (SmallVectorImpl<IVChain>::const_iterator ChainI = IVChainVec.begin(), 4836 ChainE = IVChainVec.end(); ChainI != ChainE; ++ChainI) { 4837 if (PHINode *PN = dyn_cast<PHINode>(ChainI->tailUserInst())) 4838 Rewriter.setChainedPhi(PN); 4839 } 4840 4841 // Expand the new value definitions and update the users. 4842 for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(), 4843 E = Fixups.end(); I != E; ++I) { 4844 const LSRFixup &Fixup = *I; 4845 4846 Rewrite(Fixup, *Solution[Fixup.LUIdx], Rewriter, DeadInsts, P); 4847 4848 Changed = true; 4849 } 4850 4851 for (SmallVectorImpl<IVChain>::const_iterator ChainI = IVChainVec.begin(), 4852 ChainE = IVChainVec.end(); ChainI != ChainE; ++ChainI) { 4853 GenerateIVChain(*ChainI, Rewriter, DeadInsts); 4854 Changed = true; 4855 } 4856 // Clean up after ourselves. This must be done before deleting any 4857 // instructions. 4858 Rewriter.clear(); 4859 4860 Changed |= DeleteTriviallyDeadInstructions(DeadInsts); 4861 } 4862 4863 LSRInstance::LSRInstance(Loop *L, Pass *P) 4864 : IU(P->getAnalysis<IVUsers>()), SE(P->getAnalysis<ScalarEvolution>()), 4865 DT(P->getAnalysis<DominatorTreeWrapperPass>().getDomTree()), 4866 LI(P->getAnalysis<LoopInfoWrapperPass>().getLoopInfo()), 4867 TTI(P->getAnalysis<TargetTransformInfoWrapperPass>().getTTI( 4868 *L->getHeader()->getParent())), 4869 L(L), Changed(false), IVIncInsertPos(nullptr) { 4870 // If LoopSimplify form is not available, stay out of trouble. 4871 if (!L->isLoopSimplifyForm()) 4872 return; 4873 4874 // If there's no interesting work to be done, bail early. 4875 if (IU.empty()) return; 4876 4877 // If there's too much analysis to be done, bail early. We won't be able to 4878 // model the problem anyway. 4879 unsigned NumUsers = 0; 4880 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) { 4881 if (++NumUsers > MaxIVUsers) { 4882 DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << *L 4883 << "\n"); 4884 return; 4885 } 4886 } 4887 4888 #ifndef NDEBUG 4889 // All dominating loops must have preheaders, or SCEVExpander may not be able 4890 // to materialize an AddRecExpr whose Start is an outer AddRecExpr. 4891 // 4892 // IVUsers analysis should only create users that are dominated by simple loop 4893 // headers. Since this loop should dominate all of its users, its user list 4894 // should be empty if this loop itself is not within a simple loop nest. 4895 for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader()); 4896 Rung; Rung = Rung->getIDom()) { 4897 BasicBlock *BB = Rung->getBlock(); 4898 const Loop *DomLoop = LI.getLoopFor(BB); 4899 if (DomLoop && DomLoop->getHeader() == BB) { 4900 assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest"); 4901 } 4902 } 4903 #endif // DEBUG 4904 4905 DEBUG(dbgs() << "\nLSR on loop "; 4906 L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false); 4907 dbgs() << ":\n"); 4908 4909 // First, perform some low-level loop optimizations. 4910 OptimizeShadowIV(); 4911 OptimizeLoopTermCond(); 4912 4913 // If loop preparation eliminates all interesting IV users, bail. 4914 if (IU.empty()) return; 4915 4916 // Skip nested loops until we can model them better with formulae. 4917 if (!L->empty()) { 4918 DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n"); 4919 return; 4920 } 4921 4922 // Start collecting data and preparing for the solver. 4923 CollectChains(); 4924 CollectInterestingTypesAndFactors(); 4925 CollectFixupsAndInitialFormulae(); 4926 CollectLoopInvariantFixupsAndFormulae(); 4927 4928 assert(!Uses.empty() && "IVUsers reported at least one use"); 4929 DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n"; 4930 print_uses(dbgs())); 4931 4932 // Now use the reuse data to generate a bunch of interesting ways 4933 // to formulate the values needed for the uses. 4934 GenerateAllReuseFormulae(); 4935 4936 FilterOutUndesirableDedicatedRegisters(); 4937 NarrowSearchSpaceUsingHeuristics(); 4938 4939 SmallVector<const Formula *, 8> Solution; 4940 Solve(Solution); 4941 4942 // Release memory that is no longer needed. 4943 Factors.clear(); 4944 Types.clear(); 4945 RegUses.clear(); 4946 4947 if (Solution.empty()) 4948 return; 4949 4950 #ifndef NDEBUG 4951 // Formulae should be legal. 4952 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(), E = Uses.end(); 4953 I != E; ++I) { 4954 const LSRUse &LU = *I; 4955 for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(), 4956 JE = LU.Formulae.end(); 4957 J != JE; ++J) 4958 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 4959 *J) && "Illegal formula generated!"); 4960 }; 4961 #endif 4962 4963 // Now that we've decided what we want, make it so. 4964 ImplementSolution(Solution, P); 4965 } 4966 4967 void LSRInstance::print_factors_and_types(raw_ostream &OS) const { 4968 if (Factors.empty() && Types.empty()) return; 4969 4970 OS << "LSR has identified the following interesting factors and types: "; 4971 bool First = true; 4972 4973 for (SmallSetVector<int64_t, 8>::const_iterator 4974 I = Factors.begin(), E = Factors.end(); I != E; ++I) { 4975 if (!First) OS << ", "; 4976 First = false; 4977 OS << '*' << *I; 4978 } 4979 4980 for (SmallSetVector<Type *, 4>::const_iterator 4981 I = Types.begin(), E = Types.end(); I != E; ++I) { 4982 if (!First) OS << ", "; 4983 First = false; 4984 OS << '(' << **I << ')'; 4985 } 4986 OS << '\n'; 4987 } 4988 4989 void LSRInstance::print_fixups(raw_ostream &OS) const { 4990 OS << "LSR is examining the following fixup sites:\n"; 4991 for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(), 4992 E = Fixups.end(); I != E; ++I) { 4993 dbgs() << " "; 4994 I->print(OS); 4995 OS << '\n'; 4996 } 4997 } 4998 4999 void LSRInstance::print_uses(raw_ostream &OS) const { 5000 OS << "LSR is examining the following uses:\n"; 5001 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(), 5002 E = Uses.end(); I != E; ++I) { 5003 const LSRUse &LU = *I; 5004 dbgs() << " "; 5005 LU.print(OS); 5006 OS << '\n'; 5007 for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(), 5008 JE = LU.Formulae.end(); J != JE; ++J) { 5009 OS << " "; 5010 J->print(OS); 5011 OS << '\n'; 5012 } 5013 } 5014 } 5015 5016 void LSRInstance::print(raw_ostream &OS) const { 5017 print_factors_and_types(OS); 5018 print_fixups(OS); 5019 print_uses(OS); 5020 } 5021 5022 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 5023 void LSRInstance::dump() const { 5024 print(errs()); errs() << '\n'; 5025 } 5026 #endif 5027 5028 namespace { 5029 5030 class LoopStrengthReduce : public LoopPass { 5031 public: 5032 static char ID; // Pass ID, replacement for typeid 5033 LoopStrengthReduce(); 5034 5035 private: 5036 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 5037 void getAnalysisUsage(AnalysisUsage &AU) const override; 5038 }; 5039 5040 } 5041 5042 char LoopStrengthReduce::ID = 0; 5043 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce", 5044 "Loop Strength Reduction", false, false) 5045 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 5046 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 5047 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 5048 INITIALIZE_PASS_DEPENDENCY(IVUsers) 5049 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 5050 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 5051 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce", 5052 "Loop Strength Reduction", false, false) 5053 5054 5055 Pass *llvm::createLoopStrengthReducePass() { 5056 return new LoopStrengthReduce(); 5057 } 5058 5059 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) { 5060 initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry()); 5061 } 5062 5063 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const { 5064 // We split critical edges, so we change the CFG. However, we do update 5065 // many analyses if they are around. 5066 AU.addPreservedID(LoopSimplifyID); 5067 5068 AU.addRequired<LoopInfoWrapperPass>(); 5069 AU.addPreserved<LoopInfoWrapperPass>(); 5070 AU.addRequiredID(LoopSimplifyID); 5071 AU.addRequired<DominatorTreeWrapperPass>(); 5072 AU.addPreserved<DominatorTreeWrapperPass>(); 5073 AU.addRequired<ScalarEvolution>(); 5074 AU.addPreserved<ScalarEvolution>(); 5075 // Requiring LoopSimplify a second time here prevents IVUsers from running 5076 // twice, since LoopSimplify was invalidated by running ScalarEvolution. 5077 AU.addRequiredID(LoopSimplifyID); 5078 AU.addRequired<IVUsers>(); 5079 AU.addPreserved<IVUsers>(); 5080 AU.addRequired<TargetTransformInfoWrapperPass>(); 5081 } 5082 5083 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) { 5084 if (skipOptnoneFunction(L)) 5085 return false; 5086 5087 bool Changed = false; 5088 5089 // Run the main LSR transformation. 5090 Changed |= LSRInstance(L, this).getChanged(); 5091 5092 // Remove any extra phis created by processing inner loops. 5093 Changed |= DeleteDeadPHIs(L->getHeader()); 5094 if (EnablePhiElim && L->isLoopSimplifyForm()) { 5095 SmallVector<WeakVH, 16> DeadInsts; 5096 SCEVExpander Rewriter(getAnalysis<ScalarEvolution>(), "lsr"); 5097 #ifndef NDEBUG 5098 Rewriter.setDebugType(DEBUG_TYPE); 5099 #endif 5100 unsigned numFolded = Rewriter.replaceCongruentIVs( 5101 L, &getAnalysis<DominatorTreeWrapperPass>().getDomTree(), DeadInsts, 5102 &getAnalysis<TargetTransformInfoWrapperPass>().getTTI( 5103 *L->getHeader()->getParent())); 5104 if (numFolded) { 5105 Changed = true; 5106 DeleteTriviallyDeadInstructions(DeadInsts); 5107 DeleteDeadPHIs(L->getHeader()); 5108 } 5109 } 5110 return Changed; 5111 } 5112