1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This transformation analyzes and transforms the induction variables (and 10 // computations derived from them) into forms suitable for efficient execution 11 // on the target. 12 // 13 // This pass performs a strength reduction on array references inside loops that 14 // have as one or more of their components the loop induction variable, it 15 // rewrites expressions to take advantage of scaled-index addressing modes 16 // available on the target, and it performs a variety of other optimizations 17 // related to loop induction variables. 18 // 19 // Terminology note: this code has a lot of handling for "post-increment" or 20 // "post-inc" users. This is not talking about post-increment addressing modes; 21 // it is instead talking about code like this: 22 // 23 // %i = phi [ 0, %entry ], [ %i.next, %latch ] 24 // ... 25 // %i.next = add %i, 1 26 // %c = icmp eq %i.next, %n 27 // 28 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however 29 // it's useful to think about these as the same register, with some uses using 30 // the value of the register before the add and some using it after. In this 31 // example, the icmp is a post-increment user, since it uses %i.next, which is 32 // the value of the induction variable after the increment. The other common 33 // case of post-increment users is users outside the loop. 34 // 35 // TODO: More sophistication in the way Formulae are generated and filtered. 36 // 37 // TODO: Handle multiple loops at a time. 38 // 39 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead 40 // of a GlobalValue? 41 // 42 // TODO: When truncation is free, truncate ICmp users' operands to make it a 43 // smaller encoding (on x86 at least). 44 // 45 // TODO: When a negated register is used by an add (such as in a list of 46 // multiple base registers, or as the increment expression in an addrec), 47 // we may not actually need both reg and (-1 * reg) in registers; the 48 // negation can be implemented by using a sub instead of an add. The 49 // lack of support for taking this into consideration when making 50 // register pressure decisions is partly worked around by the "Special" 51 // use kind. 52 // 53 //===----------------------------------------------------------------------===// 54 55 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h" 56 #include "llvm/ADT/APInt.h" 57 #include "llvm/ADT/DenseMap.h" 58 #include "llvm/ADT/DenseSet.h" 59 #include "llvm/ADT/Hashing.h" 60 #include "llvm/ADT/PointerIntPair.h" 61 #include "llvm/ADT/STLExtras.h" 62 #include "llvm/ADT/SetVector.h" 63 #include "llvm/ADT/SmallBitVector.h" 64 #include "llvm/ADT/SmallPtrSet.h" 65 #include "llvm/ADT/SmallSet.h" 66 #include "llvm/ADT/SmallVector.h" 67 #include "llvm/ADT/iterator_range.h" 68 #include "llvm/Analysis/AssumptionCache.h" 69 #include "llvm/Analysis/IVUsers.h" 70 #include "llvm/Analysis/LoopAnalysisManager.h" 71 #include "llvm/Analysis/LoopInfo.h" 72 #include "llvm/Analysis/LoopPass.h" 73 #include "llvm/Analysis/MemorySSA.h" 74 #include "llvm/Analysis/MemorySSAUpdater.h" 75 #include "llvm/Analysis/ScalarEvolution.h" 76 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 77 #include "llvm/Analysis/ScalarEvolutionNormalization.h" 78 #include "llvm/Analysis/TargetLibraryInfo.h" 79 #include "llvm/Analysis/TargetTransformInfo.h" 80 #include "llvm/Config/llvm-config.h" 81 #include "llvm/IR/BasicBlock.h" 82 #include "llvm/IR/Constant.h" 83 #include "llvm/IR/Constants.h" 84 #include "llvm/IR/DebugInfoMetadata.h" 85 #include "llvm/IR/DerivedTypes.h" 86 #include "llvm/IR/Dominators.h" 87 #include "llvm/IR/GlobalValue.h" 88 #include "llvm/IR/IRBuilder.h" 89 #include "llvm/IR/InstrTypes.h" 90 #include "llvm/IR/Instruction.h" 91 #include "llvm/IR/Instructions.h" 92 #include "llvm/IR/IntrinsicInst.h" 93 #include "llvm/IR/Intrinsics.h" 94 #include "llvm/IR/Module.h" 95 #include "llvm/IR/OperandTraits.h" 96 #include "llvm/IR/Operator.h" 97 #include "llvm/IR/PassManager.h" 98 #include "llvm/IR/Type.h" 99 #include "llvm/IR/Use.h" 100 #include "llvm/IR/User.h" 101 #include "llvm/IR/Value.h" 102 #include "llvm/IR/ValueHandle.h" 103 #include "llvm/InitializePasses.h" 104 #include "llvm/Pass.h" 105 #include "llvm/Support/Casting.h" 106 #include "llvm/Support/CommandLine.h" 107 #include "llvm/Support/Compiler.h" 108 #include "llvm/Support/Debug.h" 109 #include "llvm/Support/ErrorHandling.h" 110 #include "llvm/Support/MathExtras.h" 111 #include "llvm/Support/raw_ostream.h" 112 #include "llvm/Transforms/Scalar.h" 113 #include "llvm/Transforms/Utils.h" 114 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 115 #include "llvm/Transforms/Utils/Local.h" 116 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 117 #include <algorithm> 118 #include <cassert> 119 #include <cstddef> 120 #include <cstdint> 121 #include <cstdlib> 122 #include <iterator> 123 #include <limits> 124 #include <map> 125 #include <numeric> 126 #include <utility> 127 128 using namespace llvm; 129 130 #define DEBUG_TYPE "loop-reduce" 131 132 /// MaxIVUsers is an arbitrary threshold that provides an early opportunity for 133 /// bail out. This threshold is far beyond the number of users that LSR can 134 /// conceivably solve, so it should not affect generated code, but catches the 135 /// worst cases before LSR burns too much compile time and stack space. 136 static const unsigned MaxIVUsers = 200; 137 138 // Temporary flag to cleanup congruent phis after LSR phi expansion. 139 // It's currently disabled until we can determine whether it's truly useful or 140 // not. The flag should be removed after the v3.0 release. 141 // This is now needed for ivchains. 142 static cl::opt<bool> EnablePhiElim( 143 "enable-lsr-phielim", cl::Hidden, cl::init(true), 144 cl::desc("Enable LSR phi elimination")); 145 146 // The flag adds instruction count to solutions cost comparision. 147 static cl::opt<bool> InsnsCost( 148 "lsr-insns-cost", cl::Hidden, cl::init(true), 149 cl::desc("Add instruction count to a LSR cost model")); 150 151 // Flag to choose how to narrow complex lsr solution 152 static cl::opt<bool> LSRExpNarrow( 153 "lsr-exp-narrow", cl::Hidden, cl::init(false), 154 cl::desc("Narrow LSR complex solution using" 155 " expectation of registers number")); 156 157 // Flag to narrow search space by filtering non-optimal formulae with 158 // the same ScaledReg and Scale. 159 static cl::opt<bool> FilterSameScaledReg( 160 "lsr-filter-same-scaled-reg", cl::Hidden, cl::init(true), 161 cl::desc("Narrow LSR search space by filtering non-optimal formulae" 162 " with the same ScaledReg and Scale")); 163 164 static cl::opt<bool> EnableBackedgeIndexing( 165 "lsr-backedge-indexing", cl::Hidden, cl::init(true), 166 cl::desc("Enable the generation of cross iteration indexed memops")); 167 168 static cl::opt<unsigned> ComplexityLimit( 169 "lsr-complexity-limit", cl::Hidden, 170 cl::init(std::numeric_limits<uint16_t>::max()), 171 cl::desc("LSR search space complexity limit")); 172 173 static cl::opt<unsigned> SetupCostDepthLimit( 174 "lsr-setupcost-depth-limit", cl::Hidden, cl::init(7), 175 cl::desc("The limit on recursion depth for LSRs setup cost")); 176 177 #ifndef NDEBUG 178 // Stress test IV chain generation. 179 static cl::opt<bool> StressIVChain( 180 "stress-ivchain", cl::Hidden, cl::init(false), 181 cl::desc("Stress test LSR IV chains")); 182 #else 183 static bool StressIVChain = false; 184 #endif 185 186 namespace { 187 188 struct MemAccessTy { 189 /// Used in situations where the accessed memory type is unknown. 190 static const unsigned UnknownAddressSpace = 191 std::numeric_limits<unsigned>::max(); 192 193 Type *MemTy = nullptr; 194 unsigned AddrSpace = UnknownAddressSpace; 195 196 MemAccessTy() = default; 197 MemAccessTy(Type *Ty, unsigned AS) : MemTy(Ty), AddrSpace(AS) {} 198 199 bool operator==(MemAccessTy Other) const { 200 return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace; 201 } 202 203 bool operator!=(MemAccessTy Other) const { return !(*this == Other); } 204 205 static MemAccessTy getUnknown(LLVMContext &Ctx, 206 unsigned AS = UnknownAddressSpace) { 207 return MemAccessTy(Type::getVoidTy(Ctx), AS); 208 } 209 210 Type *getType() { return MemTy; } 211 }; 212 213 /// This class holds data which is used to order reuse candidates. 214 class RegSortData { 215 public: 216 /// This represents the set of LSRUse indices which reference 217 /// a particular register. 218 SmallBitVector UsedByIndices; 219 220 void print(raw_ostream &OS) const; 221 void dump() const; 222 }; 223 224 } // end anonymous namespace 225 226 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 227 void RegSortData::print(raw_ostream &OS) const { 228 OS << "[NumUses=" << UsedByIndices.count() << ']'; 229 } 230 231 LLVM_DUMP_METHOD void RegSortData::dump() const { 232 print(errs()); errs() << '\n'; 233 } 234 #endif 235 236 namespace { 237 238 /// Map register candidates to information about how they are used. 239 class RegUseTracker { 240 using RegUsesTy = DenseMap<const SCEV *, RegSortData>; 241 242 RegUsesTy RegUsesMap; 243 SmallVector<const SCEV *, 16> RegSequence; 244 245 public: 246 void countRegister(const SCEV *Reg, size_t LUIdx); 247 void dropRegister(const SCEV *Reg, size_t LUIdx); 248 void swapAndDropUse(size_t LUIdx, size_t LastLUIdx); 249 250 bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const; 251 252 const SmallBitVector &getUsedByIndices(const SCEV *Reg) const; 253 254 void clear(); 255 256 using iterator = SmallVectorImpl<const SCEV *>::iterator; 257 using const_iterator = SmallVectorImpl<const SCEV *>::const_iterator; 258 259 iterator begin() { return RegSequence.begin(); } 260 iterator end() { return RegSequence.end(); } 261 const_iterator begin() const { return RegSequence.begin(); } 262 const_iterator end() const { return RegSequence.end(); } 263 }; 264 265 } // end anonymous namespace 266 267 void 268 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) { 269 std::pair<RegUsesTy::iterator, bool> Pair = 270 RegUsesMap.insert(std::make_pair(Reg, RegSortData())); 271 RegSortData &RSD = Pair.first->second; 272 if (Pair.second) 273 RegSequence.push_back(Reg); 274 RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1)); 275 RSD.UsedByIndices.set(LUIdx); 276 } 277 278 void 279 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) { 280 RegUsesTy::iterator It = RegUsesMap.find(Reg); 281 assert(It != RegUsesMap.end()); 282 RegSortData &RSD = It->second; 283 assert(RSD.UsedByIndices.size() > LUIdx); 284 RSD.UsedByIndices.reset(LUIdx); 285 } 286 287 void 288 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) { 289 assert(LUIdx <= LastLUIdx); 290 291 // Update RegUses. The data structure is not optimized for this purpose; 292 // we must iterate through it and update each of the bit vectors. 293 for (auto &Pair : RegUsesMap) { 294 SmallBitVector &UsedByIndices = Pair.second.UsedByIndices; 295 if (LUIdx < UsedByIndices.size()) 296 UsedByIndices[LUIdx] = 297 LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false; 298 UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx)); 299 } 300 } 301 302 bool 303 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const { 304 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 305 if (I == RegUsesMap.end()) 306 return false; 307 const SmallBitVector &UsedByIndices = I->second.UsedByIndices; 308 int i = UsedByIndices.find_first(); 309 if (i == -1) return false; 310 if ((size_t)i != LUIdx) return true; 311 return UsedByIndices.find_next(i) != -1; 312 } 313 314 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const { 315 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 316 assert(I != RegUsesMap.end() && "Unknown register!"); 317 return I->second.UsedByIndices; 318 } 319 320 void RegUseTracker::clear() { 321 RegUsesMap.clear(); 322 RegSequence.clear(); 323 } 324 325 namespace { 326 327 /// This class holds information that describes a formula for computing 328 /// satisfying a use. It may include broken-out immediates and scaled registers. 329 struct Formula { 330 /// Global base address used for complex addressing. 331 GlobalValue *BaseGV = nullptr; 332 333 /// Base offset for complex addressing. 334 int64_t BaseOffset = 0; 335 336 /// Whether any complex addressing has a base register. 337 bool HasBaseReg = false; 338 339 /// The scale of any complex addressing. 340 int64_t Scale = 0; 341 342 /// The list of "base" registers for this use. When this is non-empty. The 343 /// canonical representation of a formula is 344 /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and 345 /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty(). 346 /// 3. The reg containing recurrent expr related with currect loop in the 347 /// formula should be put in the ScaledReg. 348 /// #1 enforces that the scaled register is always used when at least two 349 /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2. 350 /// #2 enforces that 1 * reg is reg. 351 /// #3 ensures invariant regs with respect to current loop can be combined 352 /// together in LSR codegen. 353 /// This invariant can be temporarily broken while building a formula. 354 /// However, every formula inserted into the LSRInstance must be in canonical 355 /// form. 356 SmallVector<const SCEV *, 4> BaseRegs; 357 358 /// The 'scaled' register for this use. This should be non-null when Scale is 359 /// not zero. 360 const SCEV *ScaledReg = nullptr; 361 362 /// An additional constant offset which added near the use. This requires a 363 /// temporary register, but the offset itself can live in an add immediate 364 /// field rather than a register. 365 int64_t UnfoldedOffset = 0; 366 367 Formula() = default; 368 369 void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE); 370 371 bool isCanonical(const Loop &L) const; 372 373 void canonicalize(const Loop &L); 374 375 bool unscale(); 376 377 bool hasZeroEnd() const; 378 379 size_t getNumRegs() const; 380 Type *getType() const; 381 382 void deleteBaseReg(const SCEV *&S); 383 384 bool referencesReg(const SCEV *S) const; 385 bool hasRegsUsedByUsesOtherThan(size_t LUIdx, 386 const RegUseTracker &RegUses) const; 387 388 void print(raw_ostream &OS) const; 389 void dump() const; 390 }; 391 392 } // end anonymous namespace 393 394 /// Recursion helper for initialMatch. 395 static void DoInitialMatch(const SCEV *S, Loop *L, 396 SmallVectorImpl<const SCEV *> &Good, 397 SmallVectorImpl<const SCEV *> &Bad, 398 ScalarEvolution &SE) { 399 // Collect expressions which properly dominate the loop header. 400 if (SE.properlyDominates(S, L->getHeader())) { 401 Good.push_back(S); 402 return; 403 } 404 405 // Look at add operands. 406 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 407 for (const SCEV *S : Add->operands()) 408 DoInitialMatch(S, L, Good, Bad, SE); 409 return; 410 } 411 412 // Look at addrec operands. 413 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 414 if (!AR->getStart()->isZero() && AR->isAffine()) { 415 DoInitialMatch(AR->getStart(), L, Good, Bad, SE); 416 DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0), 417 AR->getStepRecurrence(SE), 418 // FIXME: AR->getNoWrapFlags() 419 AR->getLoop(), SCEV::FlagAnyWrap), 420 L, Good, Bad, SE); 421 return; 422 } 423 424 // Handle a multiplication by -1 (negation) if it didn't fold. 425 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) 426 if (Mul->getOperand(0)->isAllOnesValue()) { 427 SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end()); 428 const SCEV *NewMul = SE.getMulExpr(Ops); 429 430 SmallVector<const SCEV *, 4> MyGood; 431 SmallVector<const SCEV *, 4> MyBad; 432 DoInitialMatch(NewMul, L, MyGood, MyBad, SE); 433 const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue( 434 SE.getEffectiveSCEVType(NewMul->getType()))); 435 for (const SCEV *S : MyGood) 436 Good.push_back(SE.getMulExpr(NegOne, S)); 437 for (const SCEV *S : MyBad) 438 Bad.push_back(SE.getMulExpr(NegOne, S)); 439 return; 440 } 441 442 // Ok, we can't do anything interesting. Just stuff the whole thing into a 443 // register and hope for the best. 444 Bad.push_back(S); 445 } 446 447 /// Incorporate loop-variant parts of S into this Formula, attempting to keep 448 /// all loop-invariant and loop-computable values in a single base register. 449 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) { 450 SmallVector<const SCEV *, 4> Good; 451 SmallVector<const SCEV *, 4> Bad; 452 DoInitialMatch(S, L, Good, Bad, SE); 453 if (!Good.empty()) { 454 const SCEV *Sum = SE.getAddExpr(Good); 455 if (!Sum->isZero()) 456 BaseRegs.push_back(Sum); 457 HasBaseReg = true; 458 } 459 if (!Bad.empty()) { 460 const SCEV *Sum = SE.getAddExpr(Bad); 461 if (!Sum->isZero()) 462 BaseRegs.push_back(Sum); 463 HasBaseReg = true; 464 } 465 canonicalize(*L); 466 } 467 468 /// Check whether or not this formula satisfies the canonical 469 /// representation. 470 /// \see Formula::BaseRegs. 471 bool Formula::isCanonical(const Loop &L) const { 472 if (!ScaledReg) 473 return BaseRegs.size() <= 1; 474 475 if (Scale != 1) 476 return true; 477 478 if (Scale == 1 && BaseRegs.empty()) 479 return false; 480 481 const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg); 482 if (SAR && SAR->getLoop() == &L) 483 return true; 484 485 // If ScaledReg is not a recurrent expr, or it is but its loop is not current 486 // loop, meanwhile BaseRegs contains a recurrent expr reg related with current 487 // loop, we want to swap the reg in BaseRegs with ScaledReg. 488 auto I = find_if(BaseRegs, [&](const SCEV *S) { 489 return isa<const SCEVAddRecExpr>(S) && 490 (cast<SCEVAddRecExpr>(S)->getLoop() == &L); 491 }); 492 return I == BaseRegs.end(); 493 } 494 495 /// Helper method to morph a formula into its canonical representation. 496 /// \see Formula::BaseRegs. 497 /// Every formula having more than one base register, must use the ScaledReg 498 /// field. Otherwise, we would have to do special cases everywhere in LSR 499 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ... 500 /// On the other hand, 1*reg should be canonicalized into reg. 501 void Formula::canonicalize(const Loop &L) { 502 if (isCanonical(L)) 503 return; 504 // So far we did not need this case. This is easy to implement but it is 505 // useless to maintain dead code. Beside it could hurt compile time. 506 assert(!BaseRegs.empty() && "1*reg => reg, should not be needed."); 507 508 // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg. 509 if (!ScaledReg) { 510 ScaledReg = BaseRegs.back(); 511 BaseRegs.pop_back(); 512 Scale = 1; 513 } 514 515 // If ScaledReg is an invariant with respect to L, find the reg from 516 // BaseRegs containing the recurrent expr related with Loop L. Swap the 517 // reg with ScaledReg. 518 const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg); 519 if (!SAR || SAR->getLoop() != &L) { 520 auto I = find_if(BaseRegs, [&](const SCEV *S) { 521 return isa<const SCEVAddRecExpr>(S) && 522 (cast<SCEVAddRecExpr>(S)->getLoop() == &L); 523 }); 524 if (I != BaseRegs.end()) 525 std::swap(ScaledReg, *I); 526 } 527 } 528 529 /// Get rid of the scale in the formula. 530 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2. 531 /// \return true if it was possible to get rid of the scale, false otherwise. 532 /// \note After this operation the formula may not be in the canonical form. 533 bool Formula::unscale() { 534 if (Scale != 1) 535 return false; 536 Scale = 0; 537 BaseRegs.push_back(ScaledReg); 538 ScaledReg = nullptr; 539 return true; 540 } 541 542 bool Formula::hasZeroEnd() const { 543 if (UnfoldedOffset || BaseOffset) 544 return false; 545 if (BaseRegs.size() != 1 || ScaledReg) 546 return false; 547 return true; 548 } 549 550 /// Return the total number of register operands used by this formula. This does 551 /// not include register uses implied by non-constant addrec strides. 552 size_t Formula::getNumRegs() const { 553 return !!ScaledReg + BaseRegs.size(); 554 } 555 556 /// Return the type of this formula, if it has one, or null otherwise. This type 557 /// is meaningless except for the bit size. 558 Type *Formula::getType() const { 559 return !BaseRegs.empty() ? BaseRegs.front()->getType() : 560 ScaledReg ? ScaledReg->getType() : 561 BaseGV ? BaseGV->getType() : 562 nullptr; 563 } 564 565 /// Delete the given base reg from the BaseRegs list. 566 void Formula::deleteBaseReg(const SCEV *&S) { 567 if (&S != &BaseRegs.back()) 568 std::swap(S, BaseRegs.back()); 569 BaseRegs.pop_back(); 570 } 571 572 /// Test if this formula references the given register. 573 bool Formula::referencesReg(const SCEV *S) const { 574 return S == ScaledReg || is_contained(BaseRegs, S); 575 } 576 577 /// Test whether this formula uses registers which are used by uses other than 578 /// the use with the given index. 579 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx, 580 const RegUseTracker &RegUses) const { 581 if (ScaledReg) 582 if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx)) 583 return true; 584 for (const SCEV *BaseReg : BaseRegs) 585 if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx)) 586 return true; 587 return false; 588 } 589 590 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 591 void Formula::print(raw_ostream &OS) const { 592 bool First = true; 593 if (BaseGV) { 594 if (!First) OS << " + "; else First = false; 595 BaseGV->printAsOperand(OS, /*PrintType=*/false); 596 } 597 if (BaseOffset != 0) { 598 if (!First) OS << " + "; else First = false; 599 OS << BaseOffset; 600 } 601 for (const SCEV *BaseReg : BaseRegs) { 602 if (!First) OS << " + "; else First = false; 603 OS << "reg(" << *BaseReg << ')'; 604 } 605 if (HasBaseReg && BaseRegs.empty()) { 606 if (!First) OS << " + "; else First = false; 607 OS << "**error: HasBaseReg**"; 608 } else if (!HasBaseReg && !BaseRegs.empty()) { 609 if (!First) OS << " + "; else First = false; 610 OS << "**error: !HasBaseReg**"; 611 } 612 if (Scale != 0) { 613 if (!First) OS << " + "; else First = false; 614 OS << Scale << "*reg("; 615 if (ScaledReg) 616 OS << *ScaledReg; 617 else 618 OS << "<unknown>"; 619 OS << ')'; 620 } 621 if (UnfoldedOffset != 0) { 622 if (!First) OS << " + "; 623 OS << "imm(" << UnfoldedOffset << ')'; 624 } 625 } 626 627 LLVM_DUMP_METHOD void Formula::dump() const { 628 print(errs()); errs() << '\n'; 629 } 630 #endif 631 632 /// Return true if the given addrec can be sign-extended without changing its 633 /// value. 634 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 635 Type *WideTy = 636 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1); 637 return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy)); 638 } 639 640 /// Return true if the given add can be sign-extended without changing its 641 /// value. 642 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) { 643 Type *WideTy = 644 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1); 645 return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy)); 646 } 647 648 /// Return true if the given mul can be sign-extended without changing its 649 /// value. 650 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) { 651 Type *WideTy = 652 IntegerType::get(SE.getContext(), 653 SE.getTypeSizeInBits(M->getType()) * M->getNumOperands()); 654 return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy)); 655 } 656 657 /// Return an expression for LHS /s RHS, if it can be determined and if the 658 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits 659 /// is true, expressions like (X * Y) /s Y are simplified to Y, ignoring that 660 /// the multiplication may overflow, which is useful when the result will be 661 /// used in a context where the most significant bits are ignored. 662 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS, 663 ScalarEvolution &SE, 664 bool IgnoreSignificantBits = false) { 665 // Handle the trivial case, which works for any SCEV type. 666 if (LHS == RHS) 667 return SE.getConstant(LHS->getType(), 1); 668 669 // Handle a few RHS special cases. 670 const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS); 671 if (RC) { 672 const APInt &RA = RC->getAPInt(); 673 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do 674 // some folding. 675 if (RA.isAllOnesValue()) 676 return SE.getMulExpr(LHS, RC); 677 // Handle x /s 1 as x. 678 if (RA == 1) 679 return LHS; 680 } 681 682 // Check for a division of a constant by a constant. 683 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) { 684 if (!RC) 685 return nullptr; 686 const APInt &LA = C->getAPInt(); 687 const APInt &RA = RC->getAPInt(); 688 if (LA.srem(RA) != 0) 689 return nullptr; 690 return SE.getConstant(LA.sdiv(RA)); 691 } 692 693 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow. 694 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) { 695 if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) { 696 const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE, 697 IgnoreSignificantBits); 698 if (!Step) return nullptr; 699 const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE, 700 IgnoreSignificantBits); 701 if (!Start) return nullptr; 702 // FlagNW is independent of the start value, step direction, and is 703 // preserved with smaller magnitude steps. 704 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 705 return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap); 706 } 707 return nullptr; 708 } 709 710 // Distribute the sdiv over add operands, if the add doesn't overflow. 711 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) { 712 if (IgnoreSignificantBits || isAddSExtable(Add, SE)) { 713 SmallVector<const SCEV *, 8> Ops; 714 for (const SCEV *S : Add->operands()) { 715 const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits); 716 if (!Op) return nullptr; 717 Ops.push_back(Op); 718 } 719 return SE.getAddExpr(Ops); 720 } 721 return nullptr; 722 } 723 724 // Check for a multiply operand that we can pull RHS out of. 725 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) { 726 if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) { 727 SmallVector<const SCEV *, 4> Ops; 728 bool Found = false; 729 for (const SCEV *S : Mul->operands()) { 730 if (!Found) 731 if (const SCEV *Q = getExactSDiv(S, RHS, SE, 732 IgnoreSignificantBits)) { 733 S = Q; 734 Found = true; 735 } 736 Ops.push_back(S); 737 } 738 return Found ? SE.getMulExpr(Ops) : nullptr; 739 } 740 return nullptr; 741 } 742 743 // Otherwise we don't know. 744 return nullptr; 745 } 746 747 /// If S involves the addition of a constant integer value, return that integer 748 /// value, and mutate S to point to a new SCEV with that value excluded. 749 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) { 750 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 751 if (C->getAPInt().getMinSignedBits() <= 64) { 752 S = SE.getConstant(C->getType(), 0); 753 return C->getValue()->getSExtValue(); 754 } 755 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 756 SmallVector<const SCEV *, 8> NewOps(Add->operands()); 757 int64_t Result = ExtractImmediate(NewOps.front(), SE); 758 if (Result != 0) 759 S = SE.getAddExpr(NewOps); 760 return Result; 761 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 762 SmallVector<const SCEV *, 8> NewOps(AR->operands()); 763 int64_t Result = ExtractImmediate(NewOps.front(), SE); 764 if (Result != 0) 765 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 766 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 767 SCEV::FlagAnyWrap); 768 return Result; 769 } 770 return 0; 771 } 772 773 /// If S involves the addition of a GlobalValue address, return that symbol, and 774 /// mutate S to point to a new SCEV with that value excluded. 775 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) { 776 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 777 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) { 778 S = SE.getConstant(GV->getType(), 0); 779 return GV; 780 } 781 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 782 SmallVector<const SCEV *, 8> NewOps(Add->operands()); 783 GlobalValue *Result = ExtractSymbol(NewOps.back(), SE); 784 if (Result) 785 S = SE.getAddExpr(NewOps); 786 return Result; 787 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 788 SmallVector<const SCEV *, 8> NewOps(AR->operands()); 789 GlobalValue *Result = ExtractSymbol(NewOps.front(), SE); 790 if (Result) 791 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 792 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 793 SCEV::FlagAnyWrap); 794 return Result; 795 } 796 return nullptr; 797 } 798 799 /// Returns true if the specified instruction is using the specified value as an 800 /// address. 801 static bool isAddressUse(const TargetTransformInfo &TTI, 802 Instruction *Inst, Value *OperandVal) { 803 bool isAddress = isa<LoadInst>(Inst); 804 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 805 if (SI->getPointerOperand() == OperandVal) 806 isAddress = true; 807 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 808 // Addressing modes can also be folded into prefetches and a variety 809 // of intrinsics. 810 switch (II->getIntrinsicID()) { 811 case Intrinsic::memset: 812 case Intrinsic::prefetch: 813 case Intrinsic::masked_load: 814 if (II->getArgOperand(0) == OperandVal) 815 isAddress = true; 816 break; 817 case Intrinsic::masked_store: 818 if (II->getArgOperand(1) == OperandVal) 819 isAddress = true; 820 break; 821 case Intrinsic::memmove: 822 case Intrinsic::memcpy: 823 if (II->getArgOperand(0) == OperandVal || 824 II->getArgOperand(1) == OperandVal) 825 isAddress = true; 826 break; 827 default: { 828 MemIntrinsicInfo IntrInfo; 829 if (TTI.getTgtMemIntrinsic(II, IntrInfo)) { 830 if (IntrInfo.PtrVal == OperandVal) 831 isAddress = true; 832 } 833 } 834 } 835 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) { 836 if (RMW->getPointerOperand() == OperandVal) 837 isAddress = true; 838 } else if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 839 if (CmpX->getPointerOperand() == OperandVal) 840 isAddress = true; 841 } 842 return isAddress; 843 } 844 845 /// Return the type of the memory being accessed. 846 static MemAccessTy getAccessType(const TargetTransformInfo &TTI, 847 Instruction *Inst, Value *OperandVal) { 848 MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace); 849 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 850 AccessTy.MemTy = SI->getOperand(0)->getType(); 851 AccessTy.AddrSpace = SI->getPointerAddressSpace(); 852 } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 853 AccessTy.AddrSpace = LI->getPointerAddressSpace(); 854 } else if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) { 855 AccessTy.AddrSpace = RMW->getPointerAddressSpace(); 856 } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 857 AccessTy.AddrSpace = CmpX->getPointerAddressSpace(); 858 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 859 switch (II->getIntrinsicID()) { 860 case Intrinsic::prefetch: 861 case Intrinsic::memset: 862 AccessTy.AddrSpace = II->getArgOperand(0)->getType()->getPointerAddressSpace(); 863 AccessTy.MemTy = OperandVal->getType(); 864 break; 865 case Intrinsic::memmove: 866 case Intrinsic::memcpy: 867 AccessTy.AddrSpace = OperandVal->getType()->getPointerAddressSpace(); 868 AccessTy.MemTy = OperandVal->getType(); 869 break; 870 case Intrinsic::masked_load: 871 AccessTy.AddrSpace = 872 II->getArgOperand(0)->getType()->getPointerAddressSpace(); 873 break; 874 case Intrinsic::masked_store: 875 AccessTy.MemTy = II->getOperand(0)->getType(); 876 AccessTy.AddrSpace = 877 II->getArgOperand(1)->getType()->getPointerAddressSpace(); 878 break; 879 default: { 880 MemIntrinsicInfo IntrInfo; 881 if (TTI.getTgtMemIntrinsic(II, IntrInfo) && IntrInfo.PtrVal) { 882 AccessTy.AddrSpace 883 = IntrInfo.PtrVal->getType()->getPointerAddressSpace(); 884 } 885 886 break; 887 } 888 } 889 } 890 891 // All pointers have the same requirements, so canonicalize them to an 892 // arbitrary pointer type to minimize variation. 893 if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy)) 894 AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1), 895 PTy->getAddressSpace()); 896 897 return AccessTy; 898 } 899 900 /// Return true if this AddRec is already a phi in its loop. 901 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 902 for (PHINode &PN : AR->getLoop()->getHeader()->phis()) { 903 if (SE.isSCEVable(PN.getType()) && 904 (SE.getEffectiveSCEVType(PN.getType()) == 905 SE.getEffectiveSCEVType(AR->getType())) && 906 SE.getSCEV(&PN) == AR) 907 return true; 908 } 909 return false; 910 } 911 912 /// Check if expanding this expression is likely to incur significant cost. This 913 /// is tricky because SCEV doesn't track which expressions are actually computed 914 /// by the current IR. 915 /// 916 /// We currently allow expansion of IV increments that involve adds, 917 /// multiplication by constants, and AddRecs from existing phis. 918 /// 919 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an 920 /// obvious multiple of the UDivExpr. 921 static bool isHighCostExpansion(const SCEV *S, 922 SmallPtrSetImpl<const SCEV*> &Processed, 923 ScalarEvolution &SE) { 924 // Zero/One operand expressions 925 switch (S->getSCEVType()) { 926 case scUnknown: 927 case scConstant: 928 return false; 929 case scTruncate: 930 return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(), 931 Processed, SE); 932 case scZeroExtend: 933 return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(), 934 Processed, SE); 935 case scSignExtend: 936 return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(), 937 Processed, SE); 938 default: 939 break; 940 } 941 942 if (!Processed.insert(S).second) 943 return false; 944 945 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 946 for (const SCEV *S : Add->operands()) { 947 if (isHighCostExpansion(S, Processed, SE)) 948 return true; 949 } 950 return false; 951 } 952 953 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 954 if (Mul->getNumOperands() == 2) { 955 // Multiplication by a constant is ok 956 if (isa<SCEVConstant>(Mul->getOperand(0))) 957 return isHighCostExpansion(Mul->getOperand(1), Processed, SE); 958 959 // If we have the value of one operand, check if an existing 960 // multiplication already generates this expression. 961 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) { 962 Value *UVal = U->getValue(); 963 for (User *UR : UVal->users()) { 964 // If U is a constant, it may be used by a ConstantExpr. 965 Instruction *UI = dyn_cast<Instruction>(UR); 966 if (UI && UI->getOpcode() == Instruction::Mul && 967 SE.isSCEVable(UI->getType())) { 968 return SE.getSCEV(UI) == Mul; 969 } 970 } 971 } 972 } 973 } 974 975 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 976 if (isExistingPhi(AR, SE)) 977 return false; 978 } 979 980 // Fow now, consider any other type of expression (div/mul/min/max) high cost. 981 return true; 982 } 983 984 namespace { 985 986 class LSRUse; 987 988 } // end anonymous namespace 989 990 /// Check if the addressing mode defined by \p F is completely 991 /// folded in \p LU at isel time. 992 /// This includes address-mode folding and special icmp tricks. 993 /// This function returns true if \p LU can accommodate what \p F 994 /// defines and up to 1 base + 1 scaled + offset. 995 /// In other words, if \p F has several base registers, this function may 996 /// still return true. Therefore, users still need to account for 997 /// additional base registers and/or unfolded offsets to derive an 998 /// accurate cost model. 999 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1000 const LSRUse &LU, const Formula &F); 1001 1002 // Get the cost of the scaling factor used in F for LU. 1003 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, 1004 const LSRUse &LU, const Formula &F, 1005 const Loop &L); 1006 1007 namespace { 1008 1009 /// This class is used to measure and compare candidate formulae. 1010 class Cost { 1011 const Loop *L = nullptr; 1012 ScalarEvolution *SE = nullptr; 1013 const TargetTransformInfo *TTI = nullptr; 1014 TargetTransformInfo::LSRCost C; 1015 1016 public: 1017 Cost() = delete; 1018 Cost(const Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI) : 1019 L(L), SE(&SE), TTI(&TTI) { 1020 C.Insns = 0; 1021 C.NumRegs = 0; 1022 C.AddRecCost = 0; 1023 C.NumIVMuls = 0; 1024 C.NumBaseAdds = 0; 1025 C.ImmCost = 0; 1026 C.SetupCost = 0; 1027 C.ScaleCost = 0; 1028 } 1029 1030 bool isLess(Cost &Other); 1031 1032 void Lose(); 1033 1034 #ifndef NDEBUG 1035 // Once any of the metrics loses, they must all remain losers. 1036 bool isValid() { 1037 return ((C.Insns | C.NumRegs | C.AddRecCost | C.NumIVMuls | C.NumBaseAdds 1038 | C.ImmCost | C.SetupCost | C.ScaleCost) != ~0u) 1039 || ((C.Insns & C.NumRegs & C.AddRecCost & C.NumIVMuls & C.NumBaseAdds 1040 & C.ImmCost & C.SetupCost & C.ScaleCost) == ~0u); 1041 } 1042 #endif 1043 1044 bool isLoser() { 1045 assert(isValid() && "invalid cost"); 1046 return C.NumRegs == ~0u; 1047 } 1048 1049 void RateFormula(const Formula &F, 1050 SmallPtrSetImpl<const SCEV *> &Regs, 1051 const DenseSet<const SCEV *> &VisitedRegs, 1052 const LSRUse &LU, 1053 SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr); 1054 1055 void print(raw_ostream &OS) const; 1056 void dump() const; 1057 1058 private: 1059 void RateRegister(const Formula &F, const SCEV *Reg, 1060 SmallPtrSetImpl<const SCEV *> &Regs); 1061 void RatePrimaryRegister(const Formula &F, const SCEV *Reg, 1062 SmallPtrSetImpl<const SCEV *> &Regs, 1063 SmallPtrSetImpl<const SCEV *> *LoserRegs); 1064 }; 1065 1066 /// An operand value in an instruction which is to be replaced with some 1067 /// equivalent, possibly strength-reduced, replacement. 1068 struct LSRFixup { 1069 /// The instruction which will be updated. 1070 Instruction *UserInst = nullptr; 1071 1072 /// The operand of the instruction which will be replaced. The operand may be 1073 /// used more than once; every instance will be replaced. 1074 Value *OperandValToReplace = nullptr; 1075 1076 /// If this user is to use the post-incremented value of an induction 1077 /// variable, this set is non-empty and holds the loops associated with the 1078 /// induction variable. 1079 PostIncLoopSet PostIncLoops; 1080 1081 /// A constant offset to be added to the LSRUse expression. This allows 1082 /// multiple fixups to share the same LSRUse with different offsets, for 1083 /// example in an unrolled loop. 1084 int64_t Offset = 0; 1085 1086 LSRFixup() = default; 1087 1088 bool isUseFullyOutsideLoop(const Loop *L) const; 1089 1090 void print(raw_ostream &OS) const; 1091 void dump() const; 1092 }; 1093 1094 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted 1095 /// SmallVectors of const SCEV*. 1096 struct UniquifierDenseMapInfo { 1097 static SmallVector<const SCEV *, 4> getEmptyKey() { 1098 SmallVector<const SCEV *, 4> V; 1099 V.push_back(reinterpret_cast<const SCEV *>(-1)); 1100 return V; 1101 } 1102 1103 static SmallVector<const SCEV *, 4> getTombstoneKey() { 1104 SmallVector<const SCEV *, 4> V; 1105 V.push_back(reinterpret_cast<const SCEV *>(-2)); 1106 return V; 1107 } 1108 1109 static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) { 1110 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 1111 } 1112 1113 static bool isEqual(const SmallVector<const SCEV *, 4> &LHS, 1114 const SmallVector<const SCEV *, 4> &RHS) { 1115 return LHS == RHS; 1116 } 1117 }; 1118 1119 /// This class holds the state that LSR keeps for each use in IVUsers, as well 1120 /// as uses invented by LSR itself. It includes information about what kinds of 1121 /// things can be folded into the user, information about the user itself, and 1122 /// information about how the use may be satisfied. TODO: Represent multiple 1123 /// users of the same expression in common? 1124 class LSRUse { 1125 DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier; 1126 1127 public: 1128 /// An enum for a kind of use, indicating what types of scaled and immediate 1129 /// operands it might support. 1130 enum KindType { 1131 Basic, ///< A normal use, with no folding. 1132 Special, ///< A special case of basic, allowing -1 scales. 1133 Address, ///< An address use; folding according to TargetLowering 1134 ICmpZero ///< An equality icmp with both operands folded into one. 1135 // TODO: Add a generic icmp too? 1136 }; 1137 1138 using SCEVUseKindPair = PointerIntPair<const SCEV *, 2, KindType>; 1139 1140 KindType Kind; 1141 MemAccessTy AccessTy; 1142 1143 /// The list of operands which are to be replaced. 1144 SmallVector<LSRFixup, 8> Fixups; 1145 1146 /// Keep track of the min and max offsets of the fixups. 1147 int64_t MinOffset = std::numeric_limits<int64_t>::max(); 1148 int64_t MaxOffset = std::numeric_limits<int64_t>::min(); 1149 1150 /// This records whether all of the fixups using this LSRUse are outside of 1151 /// the loop, in which case some special-case heuristics may be used. 1152 bool AllFixupsOutsideLoop = true; 1153 1154 /// RigidFormula is set to true to guarantee that this use will be associated 1155 /// with a single formula--the one that initially matched. Some SCEV 1156 /// expressions cannot be expanded. This allows LSR to consider the registers 1157 /// used by those expressions without the need to expand them later after 1158 /// changing the formula. 1159 bool RigidFormula = false; 1160 1161 /// This records the widest use type for any fixup using this 1162 /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max 1163 /// fixup widths to be equivalent, because the narrower one may be relying on 1164 /// the implicit truncation to truncate away bogus bits. 1165 Type *WidestFixupType = nullptr; 1166 1167 /// A list of ways to build a value that can satisfy this user. After the 1168 /// list is populated, one of these is selected heuristically and used to 1169 /// formulate a replacement for OperandValToReplace in UserInst. 1170 SmallVector<Formula, 12> Formulae; 1171 1172 /// The set of register candidates used by all formulae in this LSRUse. 1173 SmallPtrSet<const SCEV *, 4> Regs; 1174 1175 LSRUse(KindType K, MemAccessTy AT) : Kind(K), AccessTy(AT) {} 1176 1177 LSRFixup &getNewFixup() { 1178 Fixups.push_back(LSRFixup()); 1179 return Fixups.back(); 1180 } 1181 1182 void pushFixup(LSRFixup &f) { 1183 Fixups.push_back(f); 1184 if (f.Offset > MaxOffset) 1185 MaxOffset = f.Offset; 1186 if (f.Offset < MinOffset) 1187 MinOffset = f.Offset; 1188 } 1189 1190 bool HasFormulaWithSameRegs(const Formula &F) const; 1191 float getNotSelectedProbability(const SCEV *Reg) const; 1192 bool InsertFormula(const Formula &F, const Loop &L); 1193 void DeleteFormula(Formula &F); 1194 void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses); 1195 1196 void print(raw_ostream &OS) const; 1197 void dump() const; 1198 }; 1199 1200 } // end anonymous namespace 1201 1202 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1203 LSRUse::KindType Kind, MemAccessTy AccessTy, 1204 GlobalValue *BaseGV, int64_t BaseOffset, 1205 bool HasBaseReg, int64_t Scale, 1206 Instruction *Fixup = nullptr); 1207 1208 static unsigned getSetupCost(const SCEV *Reg, unsigned Depth) { 1209 if (isa<SCEVUnknown>(Reg) || isa<SCEVConstant>(Reg)) 1210 return 1; 1211 if (Depth == 0) 1212 return 0; 1213 if (const auto *S = dyn_cast<SCEVAddRecExpr>(Reg)) 1214 return getSetupCost(S->getStart(), Depth - 1); 1215 if (auto S = dyn_cast<SCEVIntegralCastExpr>(Reg)) 1216 return getSetupCost(S->getOperand(), Depth - 1); 1217 if (auto S = dyn_cast<SCEVNAryExpr>(Reg)) 1218 return std::accumulate(S->op_begin(), S->op_end(), 0, 1219 [&](unsigned i, const SCEV *Reg) { 1220 return i + getSetupCost(Reg, Depth - 1); 1221 }); 1222 if (auto S = dyn_cast<SCEVUDivExpr>(Reg)) 1223 return getSetupCost(S->getLHS(), Depth - 1) + 1224 getSetupCost(S->getRHS(), Depth - 1); 1225 return 0; 1226 } 1227 1228 /// Tally up interesting quantities from the given register. 1229 void Cost::RateRegister(const Formula &F, const SCEV *Reg, 1230 SmallPtrSetImpl<const SCEV *> &Regs) { 1231 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) { 1232 // If this is an addrec for another loop, it should be an invariant 1233 // with respect to L since L is the innermost loop (at least 1234 // for now LSR only handles innermost loops). 1235 if (AR->getLoop() != L) { 1236 // If the AddRec exists, consider it's register free and leave it alone. 1237 if (isExistingPhi(AR, *SE) && !TTI->shouldFavorPostInc()) 1238 return; 1239 1240 // It is bad to allow LSR for current loop to add induction variables 1241 // for its sibling loops. 1242 if (!AR->getLoop()->contains(L)) { 1243 Lose(); 1244 return; 1245 } 1246 1247 // Otherwise, it will be an invariant with respect to Loop L. 1248 ++C.NumRegs; 1249 return; 1250 } 1251 1252 unsigned LoopCost = 1; 1253 if (TTI->isIndexedLoadLegal(TTI->MIM_PostInc, AR->getType()) || 1254 TTI->isIndexedStoreLegal(TTI->MIM_PostInc, AR->getType())) { 1255 1256 // If the step size matches the base offset, we could use pre-indexed 1257 // addressing. 1258 if (TTI->shouldFavorBackedgeIndex(L)) { 1259 if (auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE))) 1260 if (Step->getAPInt() == F.BaseOffset) 1261 LoopCost = 0; 1262 } 1263 1264 if (TTI->shouldFavorPostInc()) { 1265 const SCEV *LoopStep = AR->getStepRecurrence(*SE); 1266 if (isa<SCEVConstant>(LoopStep)) { 1267 const SCEV *LoopStart = AR->getStart(); 1268 if (!isa<SCEVConstant>(LoopStart) && 1269 SE->isLoopInvariant(LoopStart, L)) 1270 LoopCost = 0; 1271 } 1272 } 1273 } 1274 C.AddRecCost += LoopCost; 1275 1276 // Add the step value register, if it needs one. 1277 // TODO: The non-affine case isn't precisely modeled here. 1278 if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) { 1279 if (!Regs.count(AR->getOperand(1))) { 1280 RateRegister(F, AR->getOperand(1), Regs); 1281 if (isLoser()) 1282 return; 1283 } 1284 } 1285 } 1286 ++C.NumRegs; 1287 1288 // Rough heuristic; favor registers which don't require extra setup 1289 // instructions in the preheader. 1290 C.SetupCost += getSetupCost(Reg, SetupCostDepthLimit); 1291 // Ensure we don't, even with the recusion limit, produce invalid costs. 1292 C.SetupCost = std::min<unsigned>(C.SetupCost, 1 << 16); 1293 1294 C.NumIVMuls += isa<SCEVMulExpr>(Reg) && 1295 SE->hasComputableLoopEvolution(Reg, L); 1296 } 1297 1298 /// Record this register in the set. If we haven't seen it before, rate 1299 /// it. Optional LoserRegs provides a way to declare any formula that refers to 1300 /// one of those regs an instant loser. 1301 void Cost::RatePrimaryRegister(const Formula &F, const SCEV *Reg, 1302 SmallPtrSetImpl<const SCEV *> &Regs, 1303 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1304 if (LoserRegs && LoserRegs->count(Reg)) { 1305 Lose(); 1306 return; 1307 } 1308 if (Regs.insert(Reg).second) { 1309 RateRegister(F, Reg, Regs); 1310 if (LoserRegs && isLoser()) 1311 LoserRegs->insert(Reg); 1312 } 1313 } 1314 1315 void Cost::RateFormula(const Formula &F, 1316 SmallPtrSetImpl<const SCEV *> &Regs, 1317 const DenseSet<const SCEV *> &VisitedRegs, 1318 const LSRUse &LU, 1319 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1320 assert(F.isCanonical(*L) && "Cost is accurate only for canonical formula"); 1321 // Tally up the registers. 1322 unsigned PrevAddRecCost = C.AddRecCost; 1323 unsigned PrevNumRegs = C.NumRegs; 1324 unsigned PrevNumBaseAdds = C.NumBaseAdds; 1325 if (const SCEV *ScaledReg = F.ScaledReg) { 1326 if (VisitedRegs.count(ScaledReg)) { 1327 Lose(); 1328 return; 1329 } 1330 RatePrimaryRegister(F, ScaledReg, Regs, LoserRegs); 1331 if (isLoser()) 1332 return; 1333 } 1334 for (const SCEV *BaseReg : F.BaseRegs) { 1335 if (VisitedRegs.count(BaseReg)) { 1336 Lose(); 1337 return; 1338 } 1339 RatePrimaryRegister(F, BaseReg, Regs, LoserRegs); 1340 if (isLoser()) 1341 return; 1342 } 1343 1344 // Determine how many (unfolded) adds we'll need inside the loop. 1345 size_t NumBaseParts = F.getNumRegs(); 1346 if (NumBaseParts > 1) 1347 // Do not count the base and a possible second register if the target 1348 // allows to fold 2 registers. 1349 C.NumBaseAdds += 1350 NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(*TTI, LU, F))); 1351 C.NumBaseAdds += (F.UnfoldedOffset != 0); 1352 1353 // Accumulate non-free scaling amounts. 1354 C.ScaleCost += getScalingFactorCost(*TTI, LU, F, *L); 1355 1356 // Tally up the non-zero immediates. 1357 for (const LSRFixup &Fixup : LU.Fixups) { 1358 int64_t O = Fixup.Offset; 1359 int64_t Offset = (uint64_t)O + F.BaseOffset; 1360 if (F.BaseGV) 1361 C.ImmCost += 64; // Handle symbolic values conservatively. 1362 // TODO: This should probably be the pointer size. 1363 else if (Offset != 0) 1364 C.ImmCost += APInt(64, Offset, true).getMinSignedBits(); 1365 1366 // Check with target if this offset with this instruction is 1367 // specifically not supported. 1368 if (LU.Kind == LSRUse::Address && Offset != 0 && 1369 !isAMCompletelyFolded(*TTI, LSRUse::Address, LU.AccessTy, F.BaseGV, 1370 Offset, F.HasBaseReg, F.Scale, Fixup.UserInst)) 1371 C.NumBaseAdds++; 1372 } 1373 1374 // If we don't count instruction cost exit here. 1375 if (!InsnsCost) { 1376 assert(isValid() && "invalid cost"); 1377 return; 1378 } 1379 1380 // Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as 1381 // additional instruction (at least fill). 1382 // TODO: Need distinguish register class? 1383 unsigned TTIRegNum = TTI->getNumberOfRegisters( 1384 TTI->getRegisterClassForType(false, F.getType())) - 1; 1385 if (C.NumRegs > TTIRegNum) { 1386 // Cost already exceeded TTIRegNum, then only newly added register can add 1387 // new instructions. 1388 if (PrevNumRegs > TTIRegNum) 1389 C.Insns += (C.NumRegs - PrevNumRegs); 1390 else 1391 C.Insns += (C.NumRegs - TTIRegNum); 1392 } 1393 1394 // If ICmpZero formula ends with not 0, it could not be replaced by 1395 // just add or sub. We'll need to compare final result of AddRec. 1396 // That means we'll need an additional instruction. But if the target can 1397 // macro-fuse a compare with a branch, don't count this extra instruction. 1398 // For -10 + {0, +, 1}: 1399 // i = i + 1; 1400 // cmp i, 10 1401 // 1402 // For {-10, +, 1}: 1403 // i = i + 1; 1404 if (LU.Kind == LSRUse::ICmpZero && !F.hasZeroEnd() && 1405 !TTI->canMacroFuseCmp()) 1406 C.Insns++; 1407 // Each new AddRec adds 1 instruction to calculation. 1408 C.Insns += (C.AddRecCost - PrevAddRecCost); 1409 1410 // BaseAdds adds instructions for unfolded registers. 1411 if (LU.Kind != LSRUse::ICmpZero) 1412 C.Insns += C.NumBaseAdds - PrevNumBaseAdds; 1413 assert(isValid() && "invalid cost"); 1414 } 1415 1416 /// Set this cost to a losing value. 1417 void Cost::Lose() { 1418 C.Insns = std::numeric_limits<unsigned>::max(); 1419 C.NumRegs = std::numeric_limits<unsigned>::max(); 1420 C.AddRecCost = std::numeric_limits<unsigned>::max(); 1421 C.NumIVMuls = std::numeric_limits<unsigned>::max(); 1422 C.NumBaseAdds = std::numeric_limits<unsigned>::max(); 1423 C.ImmCost = std::numeric_limits<unsigned>::max(); 1424 C.SetupCost = std::numeric_limits<unsigned>::max(); 1425 C.ScaleCost = std::numeric_limits<unsigned>::max(); 1426 } 1427 1428 /// Choose the lower cost. 1429 bool Cost::isLess(Cost &Other) { 1430 if (InsnsCost.getNumOccurrences() > 0 && InsnsCost && 1431 C.Insns != Other.C.Insns) 1432 return C.Insns < Other.C.Insns; 1433 return TTI->isLSRCostLess(C, Other.C); 1434 } 1435 1436 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1437 void Cost::print(raw_ostream &OS) const { 1438 if (InsnsCost) 1439 OS << C.Insns << " instruction" << (C.Insns == 1 ? " " : "s "); 1440 OS << C.NumRegs << " reg" << (C.NumRegs == 1 ? "" : "s"); 1441 if (C.AddRecCost != 0) 1442 OS << ", with addrec cost " << C.AddRecCost; 1443 if (C.NumIVMuls != 0) 1444 OS << ", plus " << C.NumIVMuls << " IV mul" 1445 << (C.NumIVMuls == 1 ? "" : "s"); 1446 if (C.NumBaseAdds != 0) 1447 OS << ", plus " << C.NumBaseAdds << " base add" 1448 << (C.NumBaseAdds == 1 ? "" : "s"); 1449 if (C.ScaleCost != 0) 1450 OS << ", plus " << C.ScaleCost << " scale cost"; 1451 if (C.ImmCost != 0) 1452 OS << ", plus " << C.ImmCost << " imm cost"; 1453 if (C.SetupCost != 0) 1454 OS << ", plus " << C.SetupCost << " setup cost"; 1455 } 1456 1457 LLVM_DUMP_METHOD void Cost::dump() const { 1458 print(errs()); errs() << '\n'; 1459 } 1460 #endif 1461 1462 /// Test whether this fixup always uses its value outside of the given loop. 1463 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const { 1464 // PHI nodes use their value in their incoming blocks. 1465 if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) { 1466 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1467 if (PN->getIncomingValue(i) == OperandValToReplace && 1468 L->contains(PN->getIncomingBlock(i))) 1469 return false; 1470 return true; 1471 } 1472 1473 return !L->contains(UserInst); 1474 } 1475 1476 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1477 void LSRFixup::print(raw_ostream &OS) const { 1478 OS << "UserInst="; 1479 // Store is common and interesting enough to be worth special-casing. 1480 if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) { 1481 OS << "store "; 1482 Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false); 1483 } else if (UserInst->getType()->isVoidTy()) 1484 OS << UserInst->getOpcodeName(); 1485 else 1486 UserInst->printAsOperand(OS, /*PrintType=*/false); 1487 1488 OS << ", OperandValToReplace="; 1489 OperandValToReplace->printAsOperand(OS, /*PrintType=*/false); 1490 1491 for (const Loop *PIL : PostIncLoops) { 1492 OS << ", PostIncLoop="; 1493 PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 1494 } 1495 1496 if (Offset != 0) 1497 OS << ", Offset=" << Offset; 1498 } 1499 1500 LLVM_DUMP_METHOD void LSRFixup::dump() const { 1501 print(errs()); errs() << '\n'; 1502 } 1503 #endif 1504 1505 /// Test whether this use as a formula which has the same registers as the given 1506 /// formula. 1507 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const { 1508 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1509 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1510 // Unstable sort by host order ok, because this is only used for uniquifying. 1511 llvm::sort(Key); 1512 return Uniquifier.count(Key); 1513 } 1514 1515 /// The function returns a probability of selecting formula without Reg. 1516 float LSRUse::getNotSelectedProbability(const SCEV *Reg) const { 1517 unsigned FNum = 0; 1518 for (const Formula &F : Formulae) 1519 if (F.referencesReg(Reg)) 1520 FNum++; 1521 return ((float)(Formulae.size() - FNum)) / Formulae.size(); 1522 } 1523 1524 /// If the given formula has not yet been inserted, add it to the list, and 1525 /// return true. Return false otherwise. The formula must be in canonical form. 1526 bool LSRUse::InsertFormula(const Formula &F, const Loop &L) { 1527 assert(F.isCanonical(L) && "Invalid canonical representation"); 1528 1529 if (!Formulae.empty() && RigidFormula) 1530 return false; 1531 1532 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1533 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1534 // Unstable sort by host order ok, because this is only used for uniquifying. 1535 llvm::sort(Key); 1536 1537 if (!Uniquifier.insert(Key).second) 1538 return false; 1539 1540 // Using a register to hold the value of 0 is not profitable. 1541 assert((!F.ScaledReg || !F.ScaledReg->isZero()) && 1542 "Zero allocated in a scaled register!"); 1543 #ifndef NDEBUG 1544 for (const SCEV *BaseReg : F.BaseRegs) 1545 assert(!BaseReg->isZero() && "Zero allocated in a base register!"); 1546 #endif 1547 1548 // Add the formula to the list. 1549 Formulae.push_back(F); 1550 1551 // Record registers now being used by this use. 1552 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1553 if (F.ScaledReg) 1554 Regs.insert(F.ScaledReg); 1555 1556 return true; 1557 } 1558 1559 /// Remove the given formula from this use's list. 1560 void LSRUse::DeleteFormula(Formula &F) { 1561 if (&F != &Formulae.back()) 1562 std::swap(F, Formulae.back()); 1563 Formulae.pop_back(); 1564 } 1565 1566 /// Recompute the Regs field, and update RegUses. 1567 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) { 1568 // Now that we've filtered out some formulae, recompute the Regs set. 1569 SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs); 1570 Regs.clear(); 1571 for (const Formula &F : Formulae) { 1572 if (F.ScaledReg) Regs.insert(F.ScaledReg); 1573 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1574 } 1575 1576 // Update the RegTracker. 1577 for (const SCEV *S : OldRegs) 1578 if (!Regs.count(S)) 1579 RegUses.dropRegister(S, LUIdx); 1580 } 1581 1582 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1583 void LSRUse::print(raw_ostream &OS) const { 1584 OS << "LSR Use: Kind="; 1585 switch (Kind) { 1586 case Basic: OS << "Basic"; break; 1587 case Special: OS << "Special"; break; 1588 case ICmpZero: OS << "ICmpZero"; break; 1589 case Address: 1590 OS << "Address of "; 1591 if (AccessTy.MemTy->isPointerTy()) 1592 OS << "pointer"; // the full pointer type could be really verbose 1593 else { 1594 OS << *AccessTy.MemTy; 1595 } 1596 1597 OS << " in addrspace(" << AccessTy.AddrSpace << ')'; 1598 } 1599 1600 OS << ", Offsets={"; 1601 bool NeedComma = false; 1602 for (const LSRFixup &Fixup : Fixups) { 1603 if (NeedComma) OS << ','; 1604 OS << Fixup.Offset; 1605 NeedComma = true; 1606 } 1607 OS << '}'; 1608 1609 if (AllFixupsOutsideLoop) 1610 OS << ", all-fixups-outside-loop"; 1611 1612 if (WidestFixupType) 1613 OS << ", widest fixup type: " << *WidestFixupType; 1614 } 1615 1616 LLVM_DUMP_METHOD void LSRUse::dump() const { 1617 print(errs()); errs() << '\n'; 1618 } 1619 #endif 1620 1621 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1622 LSRUse::KindType Kind, MemAccessTy AccessTy, 1623 GlobalValue *BaseGV, int64_t BaseOffset, 1624 bool HasBaseReg, int64_t Scale, 1625 Instruction *Fixup/*= nullptr*/) { 1626 switch (Kind) { 1627 case LSRUse::Address: 1628 return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset, 1629 HasBaseReg, Scale, AccessTy.AddrSpace, Fixup); 1630 1631 case LSRUse::ICmpZero: 1632 // There's not even a target hook for querying whether it would be legal to 1633 // fold a GV into an ICmp. 1634 if (BaseGV) 1635 return false; 1636 1637 // ICmp only has two operands; don't allow more than two non-trivial parts. 1638 if (Scale != 0 && HasBaseReg && BaseOffset != 0) 1639 return false; 1640 1641 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by 1642 // putting the scaled register in the other operand of the icmp. 1643 if (Scale != 0 && Scale != -1) 1644 return false; 1645 1646 // If we have low-level target information, ask the target if it can fold an 1647 // integer immediate on an icmp. 1648 if (BaseOffset != 0) { 1649 // We have one of: 1650 // ICmpZero BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset 1651 // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset 1652 // Offs is the ICmp immediate. 1653 if (Scale == 0) 1654 // The cast does the right thing with 1655 // std::numeric_limits<int64_t>::min(). 1656 BaseOffset = -(uint64_t)BaseOffset; 1657 return TTI.isLegalICmpImmediate(BaseOffset); 1658 } 1659 1660 // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg 1661 return true; 1662 1663 case LSRUse::Basic: 1664 // Only handle single-register values. 1665 return !BaseGV && Scale == 0 && BaseOffset == 0; 1666 1667 case LSRUse::Special: 1668 // Special case Basic to handle -1 scales. 1669 return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0; 1670 } 1671 1672 llvm_unreachable("Invalid LSRUse Kind!"); 1673 } 1674 1675 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1676 int64_t MinOffset, int64_t MaxOffset, 1677 LSRUse::KindType Kind, MemAccessTy AccessTy, 1678 GlobalValue *BaseGV, int64_t BaseOffset, 1679 bool HasBaseReg, int64_t Scale) { 1680 // Check for overflow. 1681 if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) != 1682 (MinOffset > 0)) 1683 return false; 1684 MinOffset = (uint64_t)BaseOffset + MinOffset; 1685 if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) != 1686 (MaxOffset > 0)) 1687 return false; 1688 MaxOffset = (uint64_t)BaseOffset + MaxOffset; 1689 1690 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset, 1691 HasBaseReg, Scale) && 1692 isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset, 1693 HasBaseReg, Scale); 1694 } 1695 1696 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1697 int64_t MinOffset, int64_t MaxOffset, 1698 LSRUse::KindType Kind, MemAccessTy AccessTy, 1699 const Formula &F, const Loop &L) { 1700 // For the purpose of isAMCompletelyFolded either having a canonical formula 1701 // or a scale not equal to zero is correct. 1702 // Problems may arise from non canonical formulae having a scale == 0. 1703 // Strictly speaking it would best to just rely on canonical formulae. 1704 // However, when we generate the scaled formulae, we first check that the 1705 // scaling factor is profitable before computing the actual ScaledReg for 1706 // compile time sake. 1707 assert((F.isCanonical(L) || F.Scale != 0)); 1708 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1709 F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale); 1710 } 1711 1712 /// Test whether we know how to expand the current formula. 1713 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1714 int64_t MaxOffset, LSRUse::KindType Kind, 1715 MemAccessTy AccessTy, GlobalValue *BaseGV, 1716 int64_t BaseOffset, bool HasBaseReg, int64_t Scale) { 1717 // We know how to expand completely foldable formulae. 1718 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1719 BaseOffset, HasBaseReg, Scale) || 1720 // Or formulae that use a base register produced by a sum of base 1721 // registers. 1722 (Scale == 1 && 1723 isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1724 BaseGV, BaseOffset, true, 0)); 1725 } 1726 1727 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1728 int64_t MaxOffset, LSRUse::KindType Kind, 1729 MemAccessTy AccessTy, const Formula &F) { 1730 return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV, 1731 F.BaseOffset, F.HasBaseReg, F.Scale); 1732 } 1733 1734 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1735 const LSRUse &LU, const Formula &F) { 1736 // Target may want to look at the user instructions. 1737 if (LU.Kind == LSRUse::Address && TTI.LSRWithInstrQueries()) { 1738 for (const LSRFixup &Fixup : LU.Fixups) 1739 if (!isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV, 1740 (F.BaseOffset + Fixup.Offset), F.HasBaseReg, 1741 F.Scale, Fixup.UserInst)) 1742 return false; 1743 return true; 1744 } 1745 1746 return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1747 LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg, 1748 F.Scale); 1749 } 1750 1751 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, 1752 const LSRUse &LU, const Formula &F, 1753 const Loop &L) { 1754 if (!F.Scale) 1755 return 0; 1756 1757 // If the use is not completely folded in that instruction, we will have to 1758 // pay an extra cost only for scale != 1. 1759 if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1760 LU.AccessTy, F, L)) 1761 return F.Scale != 1; 1762 1763 switch (LU.Kind) { 1764 case LSRUse::Address: { 1765 // Check the scaling factor cost with both the min and max offsets. 1766 int ScaleCostMinOffset = TTI.getScalingFactorCost( 1767 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg, 1768 F.Scale, LU.AccessTy.AddrSpace); 1769 int ScaleCostMaxOffset = TTI.getScalingFactorCost( 1770 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg, 1771 F.Scale, LU.AccessTy.AddrSpace); 1772 1773 assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 && 1774 "Legal addressing mode has an illegal cost!"); 1775 return std::max(ScaleCostMinOffset, ScaleCostMaxOffset); 1776 } 1777 case LSRUse::ICmpZero: 1778 case LSRUse::Basic: 1779 case LSRUse::Special: 1780 // The use is completely folded, i.e., everything is folded into the 1781 // instruction. 1782 return 0; 1783 } 1784 1785 llvm_unreachable("Invalid LSRUse Kind!"); 1786 } 1787 1788 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1789 LSRUse::KindType Kind, MemAccessTy AccessTy, 1790 GlobalValue *BaseGV, int64_t BaseOffset, 1791 bool HasBaseReg) { 1792 // Fast-path: zero is always foldable. 1793 if (BaseOffset == 0 && !BaseGV) return true; 1794 1795 // Conservatively, create an address with an immediate and a 1796 // base and a scale. 1797 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1798 1799 // Canonicalize a scale of 1 to a base register if the formula doesn't 1800 // already have a base register. 1801 if (!HasBaseReg && Scale == 1) { 1802 Scale = 0; 1803 HasBaseReg = true; 1804 } 1805 1806 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset, 1807 HasBaseReg, Scale); 1808 } 1809 1810 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1811 ScalarEvolution &SE, int64_t MinOffset, 1812 int64_t MaxOffset, LSRUse::KindType Kind, 1813 MemAccessTy AccessTy, const SCEV *S, 1814 bool HasBaseReg) { 1815 // Fast-path: zero is always foldable. 1816 if (S->isZero()) return true; 1817 1818 // Conservatively, create an address with an immediate and a 1819 // base and a scale. 1820 int64_t BaseOffset = ExtractImmediate(S, SE); 1821 GlobalValue *BaseGV = ExtractSymbol(S, SE); 1822 1823 // If there's anything else involved, it's not foldable. 1824 if (!S->isZero()) return false; 1825 1826 // Fast-path: zero is always foldable. 1827 if (BaseOffset == 0 && !BaseGV) return true; 1828 1829 // Conservatively, create an address with an immediate and a 1830 // base and a scale. 1831 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1832 1833 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1834 BaseOffset, HasBaseReg, Scale); 1835 } 1836 1837 namespace { 1838 1839 /// An individual increment in a Chain of IV increments. Relate an IV user to 1840 /// an expression that computes the IV it uses from the IV used by the previous 1841 /// link in the Chain. 1842 /// 1843 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the 1844 /// original IVOperand. The head of the chain's IVOperand is only valid during 1845 /// chain collection, before LSR replaces IV users. During chain generation, 1846 /// IncExpr can be used to find the new IVOperand that computes the same 1847 /// expression. 1848 struct IVInc { 1849 Instruction *UserInst; 1850 Value* IVOperand; 1851 const SCEV *IncExpr; 1852 1853 IVInc(Instruction *U, Value *O, const SCEV *E) 1854 : UserInst(U), IVOperand(O), IncExpr(E) {} 1855 }; 1856 1857 // The list of IV increments in program order. We typically add the head of a 1858 // chain without finding subsequent links. 1859 struct IVChain { 1860 SmallVector<IVInc, 1> Incs; 1861 const SCEV *ExprBase = nullptr; 1862 1863 IVChain() = default; 1864 IVChain(const IVInc &Head, const SCEV *Base) 1865 : Incs(1, Head), ExprBase(Base) {} 1866 1867 using const_iterator = SmallVectorImpl<IVInc>::const_iterator; 1868 1869 // Return the first increment in the chain. 1870 const_iterator begin() const { 1871 assert(!Incs.empty()); 1872 return std::next(Incs.begin()); 1873 } 1874 const_iterator end() const { 1875 return Incs.end(); 1876 } 1877 1878 // Returns true if this chain contains any increments. 1879 bool hasIncs() const { return Incs.size() >= 2; } 1880 1881 // Add an IVInc to the end of this chain. 1882 void add(const IVInc &X) { Incs.push_back(X); } 1883 1884 // Returns the last UserInst in the chain. 1885 Instruction *tailUserInst() const { return Incs.back().UserInst; } 1886 1887 // Returns true if IncExpr can be profitably added to this chain. 1888 bool isProfitableIncrement(const SCEV *OperExpr, 1889 const SCEV *IncExpr, 1890 ScalarEvolution&); 1891 }; 1892 1893 /// Helper for CollectChains to track multiple IV increment uses. Distinguish 1894 /// between FarUsers that definitely cross IV increments and NearUsers that may 1895 /// be used between IV increments. 1896 struct ChainUsers { 1897 SmallPtrSet<Instruction*, 4> FarUsers; 1898 SmallPtrSet<Instruction*, 4> NearUsers; 1899 }; 1900 1901 /// This class holds state for the main loop strength reduction logic. 1902 class LSRInstance { 1903 IVUsers &IU; 1904 ScalarEvolution &SE; 1905 DominatorTree &DT; 1906 LoopInfo &LI; 1907 AssumptionCache &AC; 1908 TargetLibraryInfo &TLI; 1909 const TargetTransformInfo &TTI; 1910 Loop *const L; 1911 MemorySSAUpdater *MSSAU; 1912 bool FavorBackedgeIndex = false; 1913 bool Changed = false; 1914 1915 /// This is the insert position that the current loop's induction variable 1916 /// increment should be placed. In simple loops, this is the latch block's 1917 /// terminator. But in more complicated cases, this is a position which will 1918 /// dominate all the in-loop post-increment users. 1919 Instruction *IVIncInsertPos = nullptr; 1920 1921 /// Interesting factors between use strides. 1922 /// 1923 /// We explicitly use a SetVector which contains a SmallSet, instead of the 1924 /// default, a SmallDenseSet, because we need to use the full range of 1925 /// int64_ts, and there's currently no good way of doing that with 1926 /// SmallDenseSet. 1927 SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors; 1928 1929 /// Interesting use types, to facilitate truncation reuse. 1930 SmallSetVector<Type *, 4> Types; 1931 1932 /// The list of interesting uses. 1933 mutable SmallVector<LSRUse, 16> Uses; 1934 1935 /// Track which uses use which register candidates. 1936 RegUseTracker RegUses; 1937 1938 // Limit the number of chains to avoid quadratic behavior. We don't expect to 1939 // have more than a few IV increment chains in a loop. Missing a Chain falls 1940 // back to normal LSR behavior for those uses. 1941 static const unsigned MaxChains = 8; 1942 1943 /// IV users can form a chain of IV increments. 1944 SmallVector<IVChain, MaxChains> IVChainVec; 1945 1946 /// IV users that belong to profitable IVChains. 1947 SmallPtrSet<Use*, MaxChains> IVIncSet; 1948 1949 void OptimizeShadowIV(); 1950 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse); 1951 ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse); 1952 void OptimizeLoopTermCond(); 1953 1954 void ChainInstruction(Instruction *UserInst, Instruction *IVOper, 1955 SmallVectorImpl<ChainUsers> &ChainUsersVec); 1956 void FinalizeChain(IVChain &Chain); 1957 void CollectChains(); 1958 void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 1959 SmallVectorImpl<WeakTrackingVH> &DeadInsts); 1960 1961 void CollectInterestingTypesAndFactors(); 1962 void CollectFixupsAndInitialFormulae(); 1963 1964 // Support for sharing of LSRUses between LSRFixups. 1965 using UseMapTy = DenseMap<LSRUse::SCEVUseKindPair, size_t>; 1966 UseMapTy UseMap; 1967 1968 bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, 1969 LSRUse::KindType Kind, MemAccessTy AccessTy); 1970 1971 std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind, 1972 MemAccessTy AccessTy); 1973 1974 void DeleteUse(LSRUse &LU, size_t LUIdx); 1975 1976 LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU); 1977 1978 void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1979 void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1980 void CountRegisters(const Formula &F, size_t LUIdx); 1981 bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F); 1982 1983 void CollectLoopInvariantFixupsAndFormulae(); 1984 1985 void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base, 1986 unsigned Depth = 0); 1987 1988 void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 1989 const Formula &Base, unsigned Depth, 1990 size_t Idx, bool IsScaledReg = false); 1991 void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base); 1992 void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 1993 const Formula &Base, size_t Idx, 1994 bool IsScaledReg = false); 1995 void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1996 void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx, 1997 const Formula &Base, 1998 const SmallVectorImpl<int64_t> &Worklist, 1999 size_t Idx, bool IsScaledReg = false); 2000 void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 2001 void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base); 2002 void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base); 2003 void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base); 2004 void GenerateCrossUseConstantOffsets(); 2005 void GenerateAllReuseFormulae(); 2006 2007 void FilterOutUndesirableDedicatedRegisters(); 2008 2009 size_t EstimateSearchSpaceComplexity() const; 2010 void NarrowSearchSpaceByDetectingSupersets(); 2011 void NarrowSearchSpaceByCollapsingUnrolledCode(); 2012 void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 2013 void NarrowSearchSpaceByFilterFormulaWithSameScaledReg(); 2014 void NarrowSearchSpaceByFilterPostInc(); 2015 void NarrowSearchSpaceByDeletingCostlyFormulas(); 2016 void NarrowSearchSpaceByPickingWinnerRegs(); 2017 void NarrowSearchSpaceUsingHeuristics(); 2018 2019 void SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 2020 Cost &SolutionCost, 2021 SmallVectorImpl<const Formula *> &Workspace, 2022 const Cost &CurCost, 2023 const SmallPtrSet<const SCEV *, 16> &CurRegs, 2024 DenseSet<const SCEV *> &VisitedRegs) const; 2025 void Solve(SmallVectorImpl<const Formula *> &Solution) const; 2026 2027 BasicBlock::iterator 2028 HoistInsertPosition(BasicBlock::iterator IP, 2029 const SmallVectorImpl<Instruction *> &Inputs) const; 2030 BasicBlock::iterator 2031 AdjustInsertPositionForExpand(BasicBlock::iterator IP, 2032 const LSRFixup &LF, 2033 const LSRUse &LU, 2034 SCEVExpander &Rewriter) const; 2035 2036 Value *Expand(const LSRUse &LU, const LSRFixup &LF, const Formula &F, 2037 BasicBlock::iterator IP, SCEVExpander &Rewriter, 2038 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 2039 void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF, 2040 const Formula &F, SCEVExpander &Rewriter, 2041 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 2042 void Rewrite(const LSRUse &LU, const LSRFixup &LF, const Formula &F, 2043 SCEVExpander &Rewriter, 2044 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 2045 void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution); 2046 2047 public: 2048 LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT, 2049 LoopInfo &LI, const TargetTransformInfo &TTI, AssumptionCache &AC, 2050 TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU); 2051 2052 bool getChanged() const { return Changed; } 2053 2054 void print_factors_and_types(raw_ostream &OS) const; 2055 void print_fixups(raw_ostream &OS) const; 2056 void print_uses(raw_ostream &OS) const; 2057 void print(raw_ostream &OS) const; 2058 void dump() const; 2059 }; 2060 2061 } // end anonymous namespace 2062 2063 /// If IV is used in a int-to-float cast inside the loop then try to eliminate 2064 /// the cast operation. 2065 void LSRInstance::OptimizeShadowIV() { 2066 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 2067 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2068 return; 2069 2070 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); 2071 UI != E; /* empty */) { 2072 IVUsers::const_iterator CandidateUI = UI; 2073 ++UI; 2074 Instruction *ShadowUse = CandidateUI->getUser(); 2075 Type *DestTy = nullptr; 2076 bool IsSigned = false; 2077 2078 /* If shadow use is a int->float cast then insert a second IV 2079 to eliminate this cast. 2080 2081 for (unsigned i = 0; i < n; ++i) 2082 foo((double)i); 2083 2084 is transformed into 2085 2086 double d = 0.0; 2087 for (unsigned i = 0; i < n; ++i, ++d) 2088 foo(d); 2089 */ 2090 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) { 2091 IsSigned = false; 2092 DestTy = UCast->getDestTy(); 2093 } 2094 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) { 2095 IsSigned = true; 2096 DestTy = SCast->getDestTy(); 2097 } 2098 if (!DestTy) continue; 2099 2100 // If target does not support DestTy natively then do not apply 2101 // this transformation. 2102 if (!TTI.isTypeLegal(DestTy)) continue; 2103 2104 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0)); 2105 if (!PH) continue; 2106 if (PH->getNumIncomingValues() != 2) continue; 2107 2108 // If the calculation in integers overflows, the result in FP type will 2109 // differ. So we only can do this transformation if we are guaranteed to not 2110 // deal with overflowing values 2111 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PH)); 2112 if (!AR) continue; 2113 if (IsSigned && !AR->hasNoSignedWrap()) continue; 2114 if (!IsSigned && !AR->hasNoUnsignedWrap()) continue; 2115 2116 Type *SrcTy = PH->getType(); 2117 int Mantissa = DestTy->getFPMantissaWidth(); 2118 if (Mantissa == -1) continue; 2119 if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa) 2120 continue; 2121 2122 unsigned Entry, Latch; 2123 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) { 2124 Entry = 0; 2125 Latch = 1; 2126 } else { 2127 Entry = 1; 2128 Latch = 0; 2129 } 2130 2131 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry)); 2132 if (!Init) continue; 2133 Constant *NewInit = ConstantFP::get(DestTy, IsSigned ? 2134 (double)Init->getSExtValue() : 2135 (double)Init->getZExtValue()); 2136 2137 BinaryOperator *Incr = 2138 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch)); 2139 if (!Incr) continue; 2140 if (Incr->getOpcode() != Instruction::Add 2141 && Incr->getOpcode() != Instruction::Sub) 2142 continue; 2143 2144 /* Initialize new IV, double d = 0.0 in above example. */ 2145 ConstantInt *C = nullptr; 2146 if (Incr->getOperand(0) == PH) 2147 C = dyn_cast<ConstantInt>(Incr->getOperand(1)); 2148 else if (Incr->getOperand(1) == PH) 2149 C = dyn_cast<ConstantInt>(Incr->getOperand(0)); 2150 else 2151 continue; 2152 2153 if (!C) continue; 2154 2155 // Ignore negative constants, as the code below doesn't handle them 2156 // correctly. TODO: Remove this restriction. 2157 if (!C->getValue().isStrictlyPositive()) continue; 2158 2159 /* Add new PHINode. */ 2160 PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH); 2161 2162 /* create new increment. '++d' in above example. */ 2163 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue()); 2164 BinaryOperator *NewIncr = 2165 BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ? 2166 Instruction::FAdd : Instruction::FSub, 2167 NewPH, CFP, "IV.S.next.", Incr); 2168 2169 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry)); 2170 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch)); 2171 2172 /* Remove cast operation */ 2173 ShadowUse->replaceAllUsesWith(NewPH); 2174 ShadowUse->eraseFromParent(); 2175 Changed = true; 2176 break; 2177 } 2178 } 2179 2180 /// If Cond has an operand that is an expression of an IV, set the IV user and 2181 /// stride information and return true, otherwise return false. 2182 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) { 2183 for (IVStrideUse &U : IU) 2184 if (U.getUser() == Cond) { 2185 // NOTE: we could handle setcc instructions with multiple uses here, but 2186 // InstCombine does it as well for simple uses, it's not clear that it 2187 // occurs enough in real life to handle. 2188 CondUse = &U; 2189 return true; 2190 } 2191 return false; 2192 } 2193 2194 /// Rewrite the loop's terminating condition if it uses a max computation. 2195 /// 2196 /// This is a narrow solution to a specific, but acute, problem. For loops 2197 /// like this: 2198 /// 2199 /// i = 0; 2200 /// do { 2201 /// p[i] = 0.0; 2202 /// } while (++i < n); 2203 /// 2204 /// the trip count isn't just 'n', because 'n' might not be positive. And 2205 /// unfortunately this can come up even for loops where the user didn't use 2206 /// a C do-while loop. For example, seemingly well-behaved top-test loops 2207 /// will commonly be lowered like this: 2208 /// 2209 /// if (n > 0) { 2210 /// i = 0; 2211 /// do { 2212 /// p[i] = 0.0; 2213 /// } while (++i < n); 2214 /// } 2215 /// 2216 /// and then it's possible for subsequent optimization to obscure the if 2217 /// test in such a way that indvars can't find it. 2218 /// 2219 /// When indvars can't find the if test in loops like this, it creates a 2220 /// max expression, which allows it to give the loop a canonical 2221 /// induction variable: 2222 /// 2223 /// i = 0; 2224 /// max = n < 1 ? 1 : n; 2225 /// do { 2226 /// p[i] = 0.0; 2227 /// } while (++i != max); 2228 /// 2229 /// Canonical induction variables are necessary because the loop passes 2230 /// are designed around them. The most obvious example of this is the 2231 /// LoopInfo analysis, which doesn't remember trip count values. It 2232 /// expects to be able to rediscover the trip count each time it is 2233 /// needed, and it does this using a simple analysis that only succeeds if 2234 /// the loop has a canonical induction variable. 2235 /// 2236 /// However, when it comes time to generate code, the maximum operation 2237 /// can be quite costly, especially if it's inside of an outer loop. 2238 /// 2239 /// This function solves this problem by detecting this type of loop and 2240 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting 2241 /// the instructions for the maximum computation. 2242 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) { 2243 // Check that the loop matches the pattern we're looking for. 2244 if (Cond->getPredicate() != CmpInst::ICMP_EQ && 2245 Cond->getPredicate() != CmpInst::ICMP_NE) 2246 return Cond; 2247 2248 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1)); 2249 if (!Sel || !Sel->hasOneUse()) return Cond; 2250 2251 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 2252 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2253 return Cond; 2254 const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1); 2255 2256 // Add one to the backedge-taken count to get the trip count. 2257 const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount); 2258 if (IterationCount != SE.getSCEV(Sel)) return Cond; 2259 2260 // Check for a max calculation that matches the pattern. There's no check 2261 // for ICMP_ULE here because the comparison would be with zero, which 2262 // isn't interesting. 2263 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 2264 const SCEVNAryExpr *Max = nullptr; 2265 if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) { 2266 Pred = ICmpInst::ICMP_SLE; 2267 Max = S; 2268 } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) { 2269 Pred = ICmpInst::ICMP_SLT; 2270 Max = S; 2271 } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) { 2272 Pred = ICmpInst::ICMP_ULT; 2273 Max = U; 2274 } else { 2275 // No match; bail. 2276 return Cond; 2277 } 2278 2279 // To handle a max with more than two operands, this optimization would 2280 // require additional checking and setup. 2281 if (Max->getNumOperands() != 2) 2282 return Cond; 2283 2284 const SCEV *MaxLHS = Max->getOperand(0); 2285 const SCEV *MaxRHS = Max->getOperand(1); 2286 2287 // ScalarEvolution canonicalizes constants to the left. For < and >, look 2288 // for a comparison with 1. For <= and >=, a comparison with zero. 2289 if (!MaxLHS || 2290 (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One))) 2291 return Cond; 2292 2293 // Check the relevant induction variable for conformance to 2294 // the pattern. 2295 const SCEV *IV = SE.getSCEV(Cond->getOperand(0)); 2296 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV); 2297 if (!AR || !AR->isAffine() || 2298 AR->getStart() != One || 2299 AR->getStepRecurrence(SE) != One) 2300 return Cond; 2301 2302 assert(AR->getLoop() == L && 2303 "Loop condition operand is an addrec in a different loop!"); 2304 2305 // Check the right operand of the select, and remember it, as it will 2306 // be used in the new comparison instruction. 2307 Value *NewRHS = nullptr; 2308 if (ICmpInst::isTrueWhenEqual(Pred)) { 2309 // Look for n+1, and grab n. 2310 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1))) 2311 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2312 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2313 NewRHS = BO->getOperand(0); 2314 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2))) 2315 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2316 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2317 NewRHS = BO->getOperand(0); 2318 if (!NewRHS) 2319 return Cond; 2320 } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS) 2321 NewRHS = Sel->getOperand(1); 2322 else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS) 2323 NewRHS = Sel->getOperand(2); 2324 else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS)) 2325 NewRHS = SU->getValue(); 2326 else 2327 // Max doesn't match expected pattern. 2328 return Cond; 2329 2330 // Determine the new comparison opcode. It may be signed or unsigned, 2331 // and the original comparison may be either equality or inequality. 2332 if (Cond->getPredicate() == CmpInst::ICMP_EQ) 2333 Pred = CmpInst::getInversePredicate(Pred); 2334 2335 // Ok, everything looks ok to change the condition into an SLT or SGE and 2336 // delete the max calculation. 2337 ICmpInst *NewCond = 2338 new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp"); 2339 2340 // Delete the max calculation instructions. 2341 Cond->replaceAllUsesWith(NewCond); 2342 CondUse->setUser(NewCond); 2343 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0)); 2344 Cond->eraseFromParent(); 2345 Sel->eraseFromParent(); 2346 if (Cmp->use_empty()) 2347 Cmp->eraseFromParent(); 2348 return NewCond; 2349 } 2350 2351 /// Change loop terminating condition to use the postinc iv when possible. 2352 void 2353 LSRInstance::OptimizeLoopTermCond() { 2354 SmallPtrSet<Instruction *, 4> PostIncs; 2355 2356 // We need a different set of heuristics for rotated and non-rotated loops. 2357 // If a loop is rotated then the latch is also the backedge, so inserting 2358 // post-inc expressions just before the latch is ideal. To reduce live ranges 2359 // it also makes sense to rewrite terminating conditions to use post-inc 2360 // expressions. 2361 // 2362 // If the loop is not rotated then the latch is not a backedge; the latch 2363 // check is done in the loop head. Adding post-inc expressions before the 2364 // latch will cause overlapping live-ranges of pre-inc and post-inc expressions 2365 // in the loop body. In this case we do *not* want to use post-inc expressions 2366 // in the latch check, and we want to insert post-inc expressions before 2367 // the backedge. 2368 BasicBlock *LatchBlock = L->getLoopLatch(); 2369 SmallVector<BasicBlock*, 8> ExitingBlocks; 2370 L->getExitingBlocks(ExitingBlocks); 2371 if (llvm::all_of(ExitingBlocks, [&LatchBlock](const BasicBlock *BB) { 2372 return LatchBlock != BB; 2373 })) { 2374 // The backedge doesn't exit the loop; treat this as a head-tested loop. 2375 IVIncInsertPos = LatchBlock->getTerminator(); 2376 return; 2377 } 2378 2379 // Otherwise treat this as a rotated loop. 2380 for (BasicBlock *ExitingBlock : ExitingBlocks) { 2381 // Get the terminating condition for the loop if possible. If we 2382 // can, we want to change it to use a post-incremented version of its 2383 // induction variable, to allow coalescing the live ranges for the IV into 2384 // one register value. 2385 2386 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 2387 if (!TermBr) 2388 continue; 2389 // FIXME: Overly conservative, termination condition could be an 'or' etc.. 2390 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition())) 2391 continue; 2392 2393 // Search IVUsesByStride to find Cond's IVUse if there is one. 2394 IVStrideUse *CondUse = nullptr; 2395 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition()); 2396 if (!FindIVUserForCond(Cond, CondUse)) 2397 continue; 2398 2399 // If the trip count is computed in terms of a max (due to ScalarEvolution 2400 // being unable to find a sufficient guard, for example), change the loop 2401 // comparison to use SLT or ULT instead of NE. 2402 // One consequence of doing this now is that it disrupts the count-down 2403 // optimization. That's not always a bad thing though, because in such 2404 // cases it may still be worthwhile to avoid a max. 2405 Cond = OptimizeMax(Cond, CondUse); 2406 2407 // If this exiting block dominates the latch block, it may also use 2408 // the post-inc value if it won't be shared with other uses. 2409 // Check for dominance. 2410 if (!DT.dominates(ExitingBlock, LatchBlock)) 2411 continue; 2412 2413 // Conservatively avoid trying to use the post-inc value in non-latch 2414 // exits if there may be pre-inc users in intervening blocks. 2415 if (LatchBlock != ExitingBlock) 2416 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) 2417 // Test if the use is reachable from the exiting block. This dominator 2418 // query is a conservative approximation of reachability. 2419 if (&*UI != CondUse && 2420 !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) { 2421 // Conservatively assume there may be reuse if the quotient of their 2422 // strides could be a legal scale. 2423 const SCEV *A = IU.getStride(*CondUse, L); 2424 const SCEV *B = IU.getStride(*UI, L); 2425 if (!A || !B) continue; 2426 if (SE.getTypeSizeInBits(A->getType()) != 2427 SE.getTypeSizeInBits(B->getType())) { 2428 if (SE.getTypeSizeInBits(A->getType()) > 2429 SE.getTypeSizeInBits(B->getType())) 2430 B = SE.getSignExtendExpr(B, A->getType()); 2431 else 2432 A = SE.getSignExtendExpr(A, B->getType()); 2433 } 2434 if (const SCEVConstant *D = 2435 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) { 2436 const ConstantInt *C = D->getValue(); 2437 // Stride of one or negative one can have reuse with non-addresses. 2438 if (C->isOne() || C->isMinusOne()) 2439 goto decline_post_inc; 2440 // Avoid weird situations. 2441 if (C->getValue().getMinSignedBits() >= 64 || 2442 C->getValue().isMinSignedValue()) 2443 goto decline_post_inc; 2444 // Check for possible scaled-address reuse. 2445 if (isAddressUse(TTI, UI->getUser(), UI->getOperandValToReplace())) { 2446 MemAccessTy AccessTy = getAccessType( 2447 TTI, UI->getUser(), UI->getOperandValToReplace()); 2448 int64_t Scale = C->getSExtValue(); 2449 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2450 /*BaseOffset=*/0, 2451 /*HasBaseReg=*/false, Scale, 2452 AccessTy.AddrSpace)) 2453 goto decline_post_inc; 2454 Scale = -Scale; 2455 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2456 /*BaseOffset=*/0, 2457 /*HasBaseReg=*/false, Scale, 2458 AccessTy.AddrSpace)) 2459 goto decline_post_inc; 2460 } 2461 } 2462 } 2463 2464 LLVM_DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: " 2465 << *Cond << '\n'); 2466 2467 // It's possible for the setcc instruction to be anywhere in the loop, and 2468 // possible for it to have multiple users. If it is not immediately before 2469 // the exiting block branch, move it. 2470 if (&*++BasicBlock::iterator(Cond) != TermBr) { 2471 if (Cond->hasOneUse()) { 2472 Cond->moveBefore(TermBr); 2473 } else { 2474 // Clone the terminating condition and insert into the loopend. 2475 ICmpInst *OldCond = Cond; 2476 Cond = cast<ICmpInst>(Cond->clone()); 2477 Cond->setName(L->getHeader()->getName() + ".termcond"); 2478 ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond); 2479 2480 // Clone the IVUse, as the old use still exists! 2481 CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace()); 2482 TermBr->replaceUsesOfWith(OldCond, Cond); 2483 } 2484 } 2485 2486 // If we get to here, we know that we can transform the setcc instruction to 2487 // use the post-incremented version of the IV, allowing us to coalesce the 2488 // live ranges for the IV correctly. 2489 CondUse->transformToPostInc(L); 2490 Changed = true; 2491 2492 PostIncs.insert(Cond); 2493 decline_post_inc:; 2494 } 2495 2496 // Determine an insertion point for the loop induction variable increment. It 2497 // must dominate all the post-inc comparisons we just set up, and it must 2498 // dominate the loop latch edge. 2499 IVIncInsertPos = L->getLoopLatch()->getTerminator(); 2500 for (Instruction *Inst : PostIncs) { 2501 BasicBlock *BB = 2502 DT.findNearestCommonDominator(IVIncInsertPos->getParent(), 2503 Inst->getParent()); 2504 if (BB == Inst->getParent()) 2505 IVIncInsertPos = Inst; 2506 else if (BB != IVIncInsertPos->getParent()) 2507 IVIncInsertPos = BB->getTerminator(); 2508 } 2509 } 2510 2511 /// Determine if the given use can accommodate a fixup at the given offset and 2512 /// other details. If so, update the use and return true. 2513 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, 2514 bool HasBaseReg, LSRUse::KindType Kind, 2515 MemAccessTy AccessTy) { 2516 int64_t NewMinOffset = LU.MinOffset; 2517 int64_t NewMaxOffset = LU.MaxOffset; 2518 MemAccessTy NewAccessTy = AccessTy; 2519 2520 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to 2521 // something conservative, however this can pessimize in the case that one of 2522 // the uses will have all its uses outside the loop, for example. 2523 if (LU.Kind != Kind) 2524 return false; 2525 2526 // Check for a mismatched access type, and fall back conservatively as needed. 2527 // TODO: Be less conservative when the type is similar and can use the same 2528 // addressing modes. 2529 if (Kind == LSRUse::Address) { 2530 if (AccessTy.MemTy != LU.AccessTy.MemTy) { 2531 NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(), 2532 AccessTy.AddrSpace); 2533 } 2534 } 2535 2536 // Conservatively assume HasBaseReg is true for now. 2537 if (NewOffset < LU.MinOffset) { 2538 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2539 LU.MaxOffset - NewOffset, HasBaseReg)) 2540 return false; 2541 NewMinOffset = NewOffset; 2542 } else if (NewOffset > LU.MaxOffset) { 2543 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2544 NewOffset - LU.MinOffset, HasBaseReg)) 2545 return false; 2546 NewMaxOffset = NewOffset; 2547 } 2548 2549 // Update the use. 2550 LU.MinOffset = NewMinOffset; 2551 LU.MaxOffset = NewMaxOffset; 2552 LU.AccessTy = NewAccessTy; 2553 return true; 2554 } 2555 2556 /// Return an LSRUse index and an offset value for a fixup which needs the given 2557 /// expression, with the given kind and optional access type. Either reuse an 2558 /// existing use or create a new one, as needed. 2559 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr, 2560 LSRUse::KindType Kind, 2561 MemAccessTy AccessTy) { 2562 const SCEV *Copy = Expr; 2563 int64_t Offset = ExtractImmediate(Expr, SE); 2564 2565 // Basic uses can't accept any offset, for example. 2566 if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr, 2567 Offset, /*HasBaseReg=*/ true)) { 2568 Expr = Copy; 2569 Offset = 0; 2570 } 2571 2572 std::pair<UseMapTy::iterator, bool> P = 2573 UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0)); 2574 if (!P.second) { 2575 // A use already existed with this base. 2576 size_t LUIdx = P.first->second; 2577 LSRUse &LU = Uses[LUIdx]; 2578 if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy)) 2579 // Reuse this use. 2580 return std::make_pair(LUIdx, Offset); 2581 } 2582 2583 // Create a new use. 2584 size_t LUIdx = Uses.size(); 2585 P.first->second = LUIdx; 2586 Uses.push_back(LSRUse(Kind, AccessTy)); 2587 LSRUse &LU = Uses[LUIdx]; 2588 2589 LU.MinOffset = Offset; 2590 LU.MaxOffset = Offset; 2591 return std::make_pair(LUIdx, Offset); 2592 } 2593 2594 /// Delete the given use from the Uses list. 2595 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) { 2596 if (&LU != &Uses.back()) 2597 std::swap(LU, Uses.back()); 2598 Uses.pop_back(); 2599 2600 // Update RegUses. 2601 RegUses.swapAndDropUse(LUIdx, Uses.size()); 2602 } 2603 2604 /// Look for a use distinct from OrigLU which is has a formula that has the same 2605 /// registers as the given formula. 2606 LSRUse * 2607 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF, 2608 const LSRUse &OrigLU) { 2609 // Search all uses for the formula. This could be more clever. 2610 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 2611 LSRUse &LU = Uses[LUIdx]; 2612 // Check whether this use is close enough to OrigLU, to see whether it's 2613 // worthwhile looking through its formulae. 2614 // Ignore ICmpZero uses because they may contain formulae generated by 2615 // GenerateICmpZeroScales, in which case adding fixup offsets may 2616 // be invalid. 2617 if (&LU != &OrigLU && 2618 LU.Kind != LSRUse::ICmpZero && 2619 LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy && 2620 LU.WidestFixupType == OrigLU.WidestFixupType && 2621 LU.HasFormulaWithSameRegs(OrigF)) { 2622 // Scan through this use's formulae. 2623 for (const Formula &F : LU.Formulae) { 2624 // Check to see if this formula has the same registers and symbols 2625 // as OrigF. 2626 if (F.BaseRegs == OrigF.BaseRegs && 2627 F.ScaledReg == OrigF.ScaledReg && 2628 F.BaseGV == OrigF.BaseGV && 2629 F.Scale == OrigF.Scale && 2630 F.UnfoldedOffset == OrigF.UnfoldedOffset) { 2631 if (F.BaseOffset == 0) 2632 return &LU; 2633 // This is the formula where all the registers and symbols matched; 2634 // there aren't going to be any others. Since we declined it, we 2635 // can skip the rest of the formulae and proceed to the next LSRUse. 2636 break; 2637 } 2638 } 2639 } 2640 } 2641 2642 // Nothing looked good. 2643 return nullptr; 2644 } 2645 2646 void LSRInstance::CollectInterestingTypesAndFactors() { 2647 SmallSetVector<const SCEV *, 4> Strides; 2648 2649 // Collect interesting types and strides. 2650 SmallVector<const SCEV *, 4> Worklist; 2651 for (const IVStrideUse &U : IU) { 2652 const SCEV *Expr = IU.getExpr(U); 2653 2654 // Collect interesting types. 2655 Types.insert(SE.getEffectiveSCEVType(Expr->getType())); 2656 2657 // Add strides for mentioned loops. 2658 Worklist.push_back(Expr); 2659 do { 2660 const SCEV *S = Worklist.pop_back_val(); 2661 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2662 if (AR->getLoop() == L) 2663 Strides.insert(AR->getStepRecurrence(SE)); 2664 Worklist.push_back(AR->getStart()); 2665 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2666 Worklist.append(Add->op_begin(), Add->op_end()); 2667 } 2668 } while (!Worklist.empty()); 2669 } 2670 2671 // Compute interesting factors from the set of interesting strides. 2672 for (SmallSetVector<const SCEV *, 4>::const_iterator 2673 I = Strides.begin(), E = Strides.end(); I != E; ++I) 2674 for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter = 2675 std::next(I); NewStrideIter != E; ++NewStrideIter) { 2676 const SCEV *OldStride = *I; 2677 const SCEV *NewStride = *NewStrideIter; 2678 2679 if (SE.getTypeSizeInBits(OldStride->getType()) != 2680 SE.getTypeSizeInBits(NewStride->getType())) { 2681 if (SE.getTypeSizeInBits(OldStride->getType()) > 2682 SE.getTypeSizeInBits(NewStride->getType())) 2683 NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType()); 2684 else 2685 OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType()); 2686 } 2687 if (const SCEVConstant *Factor = 2688 dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride, 2689 SE, true))) { 2690 if (Factor->getAPInt().getMinSignedBits() <= 64) 2691 Factors.insert(Factor->getAPInt().getSExtValue()); 2692 } else if (const SCEVConstant *Factor = 2693 dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride, 2694 NewStride, 2695 SE, true))) { 2696 if (Factor->getAPInt().getMinSignedBits() <= 64) 2697 Factors.insert(Factor->getAPInt().getSExtValue()); 2698 } 2699 } 2700 2701 // If all uses use the same type, don't bother looking for truncation-based 2702 // reuse. 2703 if (Types.size() == 1) 2704 Types.clear(); 2705 2706 LLVM_DEBUG(print_factors_and_types(dbgs())); 2707 } 2708 2709 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in 2710 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to 2711 /// IVStrideUses, we could partially skip this. 2712 static User::op_iterator 2713 findIVOperand(User::op_iterator OI, User::op_iterator OE, 2714 Loop *L, ScalarEvolution &SE) { 2715 for(; OI != OE; ++OI) { 2716 if (Instruction *Oper = dyn_cast<Instruction>(*OI)) { 2717 if (!SE.isSCEVable(Oper->getType())) 2718 continue; 2719 2720 if (const SCEVAddRecExpr *AR = 2721 dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) { 2722 if (AR->getLoop() == L) 2723 break; 2724 } 2725 } 2726 } 2727 return OI; 2728 } 2729 2730 /// IVChain logic must consistently peek base TruncInst operands, so wrap it in 2731 /// a convenient helper. 2732 static Value *getWideOperand(Value *Oper) { 2733 if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper)) 2734 return Trunc->getOperand(0); 2735 return Oper; 2736 } 2737 2738 /// Return true if we allow an IV chain to include both types. 2739 static bool isCompatibleIVType(Value *LVal, Value *RVal) { 2740 Type *LType = LVal->getType(); 2741 Type *RType = RVal->getType(); 2742 return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy() && 2743 // Different address spaces means (possibly) 2744 // different types of the pointer implementation, 2745 // e.g. i16 vs i32 so disallow that. 2746 (LType->getPointerAddressSpace() == 2747 RType->getPointerAddressSpace())); 2748 } 2749 2750 /// Return an approximation of this SCEV expression's "base", or NULL for any 2751 /// constant. Returning the expression itself is conservative. Returning a 2752 /// deeper subexpression is more precise and valid as long as it isn't less 2753 /// complex than another subexpression. For expressions involving multiple 2754 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids 2755 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i], 2756 /// IVInc==b-a. 2757 /// 2758 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost 2759 /// SCEVUnknown, we simply return the rightmost SCEV operand. 2760 static const SCEV *getExprBase(const SCEV *S) { 2761 switch (S->getSCEVType()) { 2762 default: // uncluding scUnknown. 2763 return S; 2764 case scConstant: 2765 return nullptr; 2766 case scTruncate: 2767 return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand()); 2768 case scZeroExtend: 2769 return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand()); 2770 case scSignExtend: 2771 return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand()); 2772 case scAddExpr: { 2773 // Skip over scaled operands (scMulExpr) to follow add operands as long as 2774 // there's nothing more complex. 2775 // FIXME: not sure if we want to recognize negation. 2776 const SCEVAddExpr *Add = cast<SCEVAddExpr>(S); 2777 for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()), 2778 E(Add->op_begin()); I != E; ++I) { 2779 const SCEV *SubExpr = *I; 2780 if (SubExpr->getSCEVType() == scAddExpr) 2781 return getExprBase(SubExpr); 2782 2783 if (SubExpr->getSCEVType() != scMulExpr) 2784 return SubExpr; 2785 } 2786 return S; // all operands are scaled, be conservative. 2787 } 2788 case scAddRecExpr: 2789 return getExprBase(cast<SCEVAddRecExpr>(S)->getStart()); 2790 } 2791 llvm_unreachable("Unknown SCEV kind!"); 2792 } 2793 2794 /// Return true if the chain increment is profitable to expand into a loop 2795 /// invariant value, which may require its own register. A profitable chain 2796 /// increment will be an offset relative to the same base. We allow such offsets 2797 /// to potentially be used as chain increment as long as it's not obviously 2798 /// expensive to expand using real instructions. 2799 bool IVChain::isProfitableIncrement(const SCEV *OperExpr, 2800 const SCEV *IncExpr, 2801 ScalarEvolution &SE) { 2802 // Aggressively form chains when -stress-ivchain. 2803 if (StressIVChain) 2804 return true; 2805 2806 // Do not replace a constant offset from IV head with a nonconstant IV 2807 // increment. 2808 if (!isa<SCEVConstant>(IncExpr)) { 2809 const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand)); 2810 if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr))) 2811 return false; 2812 } 2813 2814 SmallPtrSet<const SCEV*, 8> Processed; 2815 return !isHighCostExpansion(IncExpr, Processed, SE); 2816 } 2817 2818 /// Return true if the number of registers needed for the chain is estimated to 2819 /// be less than the number required for the individual IV users. First prohibit 2820 /// any IV users that keep the IV live across increments (the Users set should 2821 /// be empty). Next count the number and type of increments in the chain. 2822 /// 2823 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't 2824 /// effectively use postinc addressing modes. Only consider it profitable it the 2825 /// increments can be computed in fewer registers when chained. 2826 /// 2827 /// TODO: Consider IVInc free if it's already used in another chains. 2828 static bool isProfitableChain(IVChain &Chain, 2829 SmallPtrSetImpl<Instruction *> &Users, 2830 ScalarEvolution &SE, 2831 const TargetTransformInfo &TTI) { 2832 if (StressIVChain) 2833 return true; 2834 2835 if (!Chain.hasIncs()) 2836 return false; 2837 2838 if (!Users.empty()) { 2839 LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n"; 2840 for (Instruction *Inst 2841 : Users) { dbgs() << " " << *Inst << "\n"; }); 2842 return false; 2843 } 2844 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 2845 2846 // The chain itself may require a register, so intialize cost to 1. 2847 int cost = 1; 2848 2849 // A complete chain likely eliminates the need for keeping the original IV in 2850 // a register. LSR does not currently know how to form a complete chain unless 2851 // the header phi already exists. 2852 if (isa<PHINode>(Chain.tailUserInst()) 2853 && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) { 2854 --cost; 2855 } 2856 const SCEV *LastIncExpr = nullptr; 2857 unsigned NumConstIncrements = 0; 2858 unsigned NumVarIncrements = 0; 2859 unsigned NumReusedIncrements = 0; 2860 2861 if (TTI.isProfitableLSRChainElement(Chain.Incs[0].UserInst)) 2862 return true; 2863 2864 for (const IVInc &Inc : Chain) { 2865 if (TTI.isProfitableLSRChainElement(Inc.UserInst)) 2866 return true; 2867 if (Inc.IncExpr->isZero()) 2868 continue; 2869 2870 // Incrementing by zero or some constant is neutral. We assume constants can 2871 // be folded into an addressing mode or an add's immediate operand. 2872 if (isa<SCEVConstant>(Inc.IncExpr)) { 2873 ++NumConstIncrements; 2874 continue; 2875 } 2876 2877 if (Inc.IncExpr == LastIncExpr) 2878 ++NumReusedIncrements; 2879 else 2880 ++NumVarIncrements; 2881 2882 LastIncExpr = Inc.IncExpr; 2883 } 2884 // An IV chain with a single increment is handled by LSR's postinc 2885 // uses. However, a chain with multiple increments requires keeping the IV's 2886 // value live longer than it needs to be if chained. 2887 if (NumConstIncrements > 1) 2888 --cost; 2889 2890 // Materializing increment expressions in the preheader that didn't exist in 2891 // the original code may cost a register. For example, sign-extended array 2892 // indices can produce ridiculous increments like this: 2893 // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64))) 2894 cost += NumVarIncrements; 2895 2896 // Reusing variable increments likely saves a register to hold the multiple of 2897 // the stride. 2898 cost -= NumReusedIncrements; 2899 2900 LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost 2901 << "\n"); 2902 2903 return cost < 0; 2904 } 2905 2906 /// Add this IV user to an existing chain or make it the head of a new chain. 2907 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper, 2908 SmallVectorImpl<ChainUsers> &ChainUsersVec) { 2909 // When IVs are used as types of varying widths, they are generally converted 2910 // to a wider type with some uses remaining narrow under a (free) trunc. 2911 Value *const NextIV = getWideOperand(IVOper); 2912 const SCEV *const OperExpr = SE.getSCEV(NextIV); 2913 const SCEV *const OperExprBase = getExprBase(OperExpr); 2914 2915 // Visit all existing chains. Check if its IVOper can be computed as a 2916 // profitable loop invariant increment from the last link in the Chain. 2917 unsigned ChainIdx = 0, NChains = IVChainVec.size(); 2918 const SCEV *LastIncExpr = nullptr; 2919 for (; ChainIdx < NChains; ++ChainIdx) { 2920 IVChain &Chain = IVChainVec[ChainIdx]; 2921 2922 // Prune the solution space aggressively by checking that both IV operands 2923 // are expressions that operate on the same unscaled SCEVUnknown. This 2924 // "base" will be canceled by the subsequent getMinusSCEV call. Checking 2925 // first avoids creating extra SCEV expressions. 2926 if (!StressIVChain && Chain.ExprBase != OperExprBase) 2927 continue; 2928 2929 Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand); 2930 if (!isCompatibleIVType(PrevIV, NextIV)) 2931 continue; 2932 2933 // A phi node terminates a chain. 2934 if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst())) 2935 continue; 2936 2937 // The increment must be loop-invariant so it can be kept in a register. 2938 const SCEV *PrevExpr = SE.getSCEV(PrevIV); 2939 const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr); 2940 if (!SE.isLoopInvariant(IncExpr, L)) 2941 continue; 2942 2943 if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) { 2944 LastIncExpr = IncExpr; 2945 break; 2946 } 2947 } 2948 // If we haven't found a chain, create a new one, unless we hit the max. Don't 2949 // bother for phi nodes, because they must be last in the chain. 2950 if (ChainIdx == NChains) { 2951 if (isa<PHINode>(UserInst)) 2952 return; 2953 if (NChains >= MaxChains && !StressIVChain) { 2954 LLVM_DEBUG(dbgs() << "IV Chain Limit\n"); 2955 return; 2956 } 2957 LastIncExpr = OperExpr; 2958 // IVUsers may have skipped over sign/zero extensions. We don't currently 2959 // attempt to form chains involving extensions unless they can be hoisted 2960 // into this loop's AddRec. 2961 if (!isa<SCEVAddRecExpr>(LastIncExpr)) 2962 return; 2963 ++NChains; 2964 IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr), 2965 OperExprBase)); 2966 ChainUsersVec.resize(NChains); 2967 LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst 2968 << ") IV=" << *LastIncExpr << "\n"); 2969 } else { 2970 LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Inc: (" << *UserInst 2971 << ") IV+" << *LastIncExpr << "\n"); 2972 // Add this IV user to the end of the chain. 2973 IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr)); 2974 } 2975 IVChain &Chain = IVChainVec[ChainIdx]; 2976 2977 SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers; 2978 // This chain's NearUsers become FarUsers. 2979 if (!LastIncExpr->isZero()) { 2980 ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(), 2981 NearUsers.end()); 2982 NearUsers.clear(); 2983 } 2984 2985 // All other uses of IVOperand become near uses of the chain. 2986 // We currently ignore intermediate values within SCEV expressions, assuming 2987 // they will eventually be used be the current chain, or can be computed 2988 // from one of the chain increments. To be more precise we could 2989 // transitively follow its user and only add leaf IV users to the set. 2990 for (User *U : IVOper->users()) { 2991 Instruction *OtherUse = dyn_cast<Instruction>(U); 2992 if (!OtherUse) 2993 continue; 2994 // Uses in the chain will no longer be uses if the chain is formed. 2995 // Include the head of the chain in this iteration (not Chain.begin()). 2996 IVChain::const_iterator IncIter = Chain.Incs.begin(); 2997 IVChain::const_iterator IncEnd = Chain.Incs.end(); 2998 for( ; IncIter != IncEnd; ++IncIter) { 2999 if (IncIter->UserInst == OtherUse) 3000 break; 3001 } 3002 if (IncIter != IncEnd) 3003 continue; 3004 3005 if (SE.isSCEVable(OtherUse->getType()) 3006 && !isa<SCEVUnknown>(SE.getSCEV(OtherUse)) 3007 && IU.isIVUserOrOperand(OtherUse)) { 3008 continue; 3009 } 3010 NearUsers.insert(OtherUse); 3011 } 3012 3013 // Since this user is part of the chain, it's no longer considered a use 3014 // of the chain. 3015 ChainUsersVec[ChainIdx].FarUsers.erase(UserInst); 3016 } 3017 3018 /// Populate the vector of Chains. 3019 /// 3020 /// This decreases ILP at the architecture level. Targets with ample registers, 3021 /// multiple memory ports, and no register renaming probably don't want 3022 /// this. However, such targets should probably disable LSR altogether. 3023 /// 3024 /// The job of LSR is to make a reasonable choice of induction variables across 3025 /// the loop. Subsequent passes can easily "unchain" computation exposing more 3026 /// ILP *within the loop* if the target wants it. 3027 /// 3028 /// Finding the best IV chain is potentially a scheduling problem. Since LSR 3029 /// will not reorder memory operations, it will recognize this as a chain, but 3030 /// will generate redundant IV increments. Ideally this would be corrected later 3031 /// by a smart scheduler: 3032 /// = A[i] 3033 /// = A[i+x] 3034 /// A[i] = 3035 /// A[i+x] = 3036 /// 3037 /// TODO: Walk the entire domtree within this loop, not just the path to the 3038 /// loop latch. This will discover chains on side paths, but requires 3039 /// maintaining multiple copies of the Chains state. 3040 void LSRInstance::CollectChains() { 3041 LLVM_DEBUG(dbgs() << "Collecting IV Chains.\n"); 3042 SmallVector<ChainUsers, 8> ChainUsersVec; 3043 3044 SmallVector<BasicBlock *,8> LatchPath; 3045 BasicBlock *LoopHeader = L->getHeader(); 3046 for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch()); 3047 Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) { 3048 LatchPath.push_back(Rung->getBlock()); 3049 } 3050 LatchPath.push_back(LoopHeader); 3051 3052 // Walk the instruction stream from the loop header to the loop latch. 3053 for (BasicBlock *BB : reverse(LatchPath)) { 3054 for (Instruction &I : *BB) { 3055 // Skip instructions that weren't seen by IVUsers analysis. 3056 if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I)) 3057 continue; 3058 3059 // Ignore users that are part of a SCEV expression. This way we only 3060 // consider leaf IV Users. This effectively rediscovers a portion of 3061 // IVUsers analysis but in program order this time. 3062 if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I))) 3063 continue; 3064 3065 // Remove this instruction from any NearUsers set it may be in. 3066 for (unsigned ChainIdx = 0, NChains = IVChainVec.size(); 3067 ChainIdx < NChains; ++ChainIdx) { 3068 ChainUsersVec[ChainIdx].NearUsers.erase(&I); 3069 } 3070 // Search for operands that can be chained. 3071 SmallPtrSet<Instruction*, 4> UniqueOperands; 3072 User::op_iterator IVOpEnd = I.op_end(); 3073 User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE); 3074 while (IVOpIter != IVOpEnd) { 3075 Instruction *IVOpInst = cast<Instruction>(*IVOpIter); 3076 if (UniqueOperands.insert(IVOpInst).second) 3077 ChainInstruction(&I, IVOpInst, ChainUsersVec); 3078 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 3079 } 3080 } // Continue walking down the instructions. 3081 } // Continue walking down the domtree. 3082 // Visit phi backedges to determine if the chain can generate the IV postinc. 3083 for (PHINode &PN : L->getHeader()->phis()) { 3084 if (!SE.isSCEVable(PN.getType())) 3085 continue; 3086 3087 Instruction *IncV = 3088 dyn_cast<Instruction>(PN.getIncomingValueForBlock(L->getLoopLatch())); 3089 if (IncV) 3090 ChainInstruction(&PN, IncV, ChainUsersVec); 3091 } 3092 // Remove any unprofitable chains. 3093 unsigned ChainIdx = 0; 3094 for (unsigned UsersIdx = 0, NChains = IVChainVec.size(); 3095 UsersIdx < NChains; ++UsersIdx) { 3096 if (!isProfitableChain(IVChainVec[UsersIdx], 3097 ChainUsersVec[UsersIdx].FarUsers, SE, TTI)) 3098 continue; 3099 // Preserve the chain at UsesIdx. 3100 if (ChainIdx != UsersIdx) 3101 IVChainVec[ChainIdx] = IVChainVec[UsersIdx]; 3102 FinalizeChain(IVChainVec[ChainIdx]); 3103 ++ChainIdx; 3104 } 3105 IVChainVec.resize(ChainIdx); 3106 } 3107 3108 void LSRInstance::FinalizeChain(IVChain &Chain) { 3109 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 3110 LLVM_DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n"); 3111 3112 for (const IVInc &Inc : Chain) { 3113 LLVM_DEBUG(dbgs() << " Inc: " << *Inc.UserInst << "\n"); 3114 auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand); 3115 assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand"); 3116 IVIncSet.insert(UseI); 3117 } 3118 } 3119 3120 /// Return true if the IVInc can be folded into an addressing mode. 3121 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst, 3122 Value *Operand, const TargetTransformInfo &TTI) { 3123 const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr); 3124 if (!IncConst || !isAddressUse(TTI, UserInst, Operand)) 3125 return false; 3126 3127 if (IncConst->getAPInt().getMinSignedBits() > 64) 3128 return false; 3129 3130 MemAccessTy AccessTy = getAccessType(TTI, UserInst, Operand); 3131 int64_t IncOffset = IncConst->getValue()->getSExtValue(); 3132 if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr, 3133 IncOffset, /*HasBaseReg=*/false)) 3134 return false; 3135 3136 return true; 3137 } 3138 3139 /// Generate an add or subtract for each IVInc in a chain to materialize the IV 3140 /// user's operand from the previous IV user's operand. 3141 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 3142 SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 3143 // Find the new IVOperand for the head of the chain. It may have been replaced 3144 // by LSR. 3145 const IVInc &Head = Chain.Incs[0]; 3146 User::op_iterator IVOpEnd = Head.UserInst->op_end(); 3147 // findIVOperand returns IVOpEnd if it can no longer find a valid IV user. 3148 User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(), 3149 IVOpEnd, L, SE); 3150 Value *IVSrc = nullptr; 3151 while (IVOpIter != IVOpEnd) { 3152 IVSrc = getWideOperand(*IVOpIter); 3153 3154 // If this operand computes the expression that the chain needs, we may use 3155 // it. (Check this after setting IVSrc which is used below.) 3156 // 3157 // Note that if Head.IncExpr is wider than IVSrc, then this phi is too 3158 // narrow for the chain, so we can no longer use it. We do allow using a 3159 // wider phi, assuming the LSR checked for free truncation. In that case we 3160 // should already have a truncate on this operand such that 3161 // getSCEV(IVSrc) == IncExpr. 3162 if (SE.getSCEV(*IVOpIter) == Head.IncExpr 3163 || SE.getSCEV(IVSrc) == Head.IncExpr) { 3164 break; 3165 } 3166 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 3167 } 3168 if (IVOpIter == IVOpEnd) { 3169 // Gracefully give up on this chain. 3170 LLVM_DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n"); 3171 return; 3172 } 3173 assert(IVSrc && "Failed to find IV chain source"); 3174 3175 LLVM_DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n"); 3176 Type *IVTy = IVSrc->getType(); 3177 Type *IntTy = SE.getEffectiveSCEVType(IVTy); 3178 const SCEV *LeftOverExpr = nullptr; 3179 for (const IVInc &Inc : Chain) { 3180 Instruction *InsertPt = Inc.UserInst; 3181 if (isa<PHINode>(InsertPt)) 3182 InsertPt = L->getLoopLatch()->getTerminator(); 3183 3184 // IVOper will replace the current IV User's operand. IVSrc is the IV 3185 // value currently held in a register. 3186 Value *IVOper = IVSrc; 3187 if (!Inc.IncExpr->isZero()) { 3188 // IncExpr was the result of subtraction of two narrow values, so must 3189 // be signed. 3190 const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy); 3191 LeftOverExpr = LeftOverExpr ? 3192 SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr; 3193 } 3194 if (LeftOverExpr && !LeftOverExpr->isZero()) { 3195 // Expand the IV increment. 3196 Rewriter.clearPostInc(); 3197 Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt); 3198 const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc), 3199 SE.getUnknown(IncV)); 3200 IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt); 3201 3202 // If an IV increment can't be folded, use it as the next IV value. 3203 if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) { 3204 assert(IVTy == IVOper->getType() && "inconsistent IV increment type"); 3205 IVSrc = IVOper; 3206 LeftOverExpr = nullptr; 3207 } 3208 } 3209 Type *OperTy = Inc.IVOperand->getType(); 3210 if (IVTy != OperTy) { 3211 assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) && 3212 "cannot extend a chained IV"); 3213 IRBuilder<> Builder(InsertPt); 3214 IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain"); 3215 } 3216 Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper); 3217 if (auto *OperandIsInstr = dyn_cast<Instruction>(Inc.IVOperand)) 3218 DeadInsts.emplace_back(OperandIsInstr); 3219 } 3220 // If LSR created a new, wider phi, we may also replace its postinc. We only 3221 // do this if we also found a wide value for the head of the chain. 3222 if (isa<PHINode>(Chain.tailUserInst())) { 3223 for (PHINode &Phi : L->getHeader()->phis()) { 3224 if (!isCompatibleIVType(&Phi, IVSrc)) 3225 continue; 3226 Instruction *PostIncV = dyn_cast<Instruction>( 3227 Phi.getIncomingValueForBlock(L->getLoopLatch())); 3228 if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc))) 3229 continue; 3230 Value *IVOper = IVSrc; 3231 Type *PostIncTy = PostIncV->getType(); 3232 if (IVTy != PostIncTy) { 3233 assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types"); 3234 IRBuilder<> Builder(L->getLoopLatch()->getTerminator()); 3235 Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc()); 3236 IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain"); 3237 } 3238 Phi.replaceUsesOfWith(PostIncV, IVOper); 3239 DeadInsts.emplace_back(PostIncV); 3240 } 3241 } 3242 } 3243 3244 void LSRInstance::CollectFixupsAndInitialFormulae() { 3245 BranchInst *ExitBranch = nullptr; 3246 bool SaveCmp = TTI.canSaveCmp(L, &ExitBranch, &SE, &LI, &DT, &AC, &TLI); 3247 3248 for (const IVStrideUse &U : IU) { 3249 Instruction *UserInst = U.getUser(); 3250 // Skip IV users that are part of profitable IV Chains. 3251 User::op_iterator UseI = 3252 find(UserInst->operands(), U.getOperandValToReplace()); 3253 assert(UseI != UserInst->op_end() && "cannot find IV operand"); 3254 if (IVIncSet.count(UseI)) { 3255 LLVM_DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n'); 3256 continue; 3257 } 3258 3259 LSRUse::KindType Kind = LSRUse::Basic; 3260 MemAccessTy AccessTy; 3261 if (isAddressUse(TTI, UserInst, U.getOperandValToReplace())) { 3262 Kind = LSRUse::Address; 3263 AccessTy = getAccessType(TTI, UserInst, U.getOperandValToReplace()); 3264 } 3265 3266 const SCEV *S = IU.getExpr(U); 3267 PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops(); 3268 3269 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as 3270 // (N - i == 0), and this allows (N - i) to be the expression that we work 3271 // with rather than just N or i, so we can consider the register 3272 // requirements for both N and i at the same time. Limiting this code to 3273 // equality icmps is not a problem because all interesting loops use 3274 // equality icmps, thanks to IndVarSimplify. 3275 if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst)) { 3276 // If CI can be saved in some target, like replaced inside hardware loop 3277 // in PowerPC, no need to generate initial formulae for it. 3278 if (SaveCmp && CI == dyn_cast<ICmpInst>(ExitBranch->getCondition())) 3279 continue; 3280 if (CI->isEquality()) { 3281 // Swap the operands if needed to put the OperandValToReplace on the 3282 // left, for consistency. 3283 Value *NV = CI->getOperand(1); 3284 if (NV == U.getOperandValToReplace()) { 3285 CI->setOperand(1, CI->getOperand(0)); 3286 CI->setOperand(0, NV); 3287 NV = CI->getOperand(1); 3288 Changed = true; 3289 } 3290 3291 // x == y --> x - y == 0 3292 const SCEV *N = SE.getSCEV(NV); 3293 if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) { 3294 // S is normalized, so normalize N before folding it into S 3295 // to keep the result normalized. 3296 N = normalizeForPostIncUse(N, TmpPostIncLoops, SE); 3297 Kind = LSRUse::ICmpZero; 3298 S = SE.getMinusSCEV(N, S); 3299 } 3300 3301 // -1 and the negations of all interesting strides (except the negation 3302 // of -1) are now also interesting. 3303 for (size_t i = 0, e = Factors.size(); i != e; ++i) 3304 if (Factors[i] != -1) 3305 Factors.insert(-(uint64_t)Factors[i]); 3306 Factors.insert(-1); 3307 } 3308 } 3309 3310 // Get or create an LSRUse. 3311 std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy); 3312 size_t LUIdx = P.first; 3313 int64_t Offset = P.second; 3314 LSRUse &LU = Uses[LUIdx]; 3315 3316 // Record the fixup. 3317 LSRFixup &LF = LU.getNewFixup(); 3318 LF.UserInst = UserInst; 3319 LF.OperandValToReplace = U.getOperandValToReplace(); 3320 LF.PostIncLoops = TmpPostIncLoops; 3321 LF.Offset = Offset; 3322 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3323 3324 if (!LU.WidestFixupType || 3325 SE.getTypeSizeInBits(LU.WidestFixupType) < 3326 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3327 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3328 3329 // If this is the first use of this LSRUse, give it a formula. 3330 if (LU.Formulae.empty()) { 3331 InsertInitialFormula(S, LU, LUIdx); 3332 CountRegisters(LU.Formulae.back(), LUIdx); 3333 } 3334 } 3335 3336 LLVM_DEBUG(print_fixups(dbgs())); 3337 } 3338 3339 /// Insert a formula for the given expression into the given use, separating out 3340 /// loop-variant portions from loop-invariant and loop-computable portions. 3341 void 3342 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) { 3343 // Mark uses whose expressions cannot be expanded. 3344 if (!isSafeToExpand(S, SE)) 3345 LU.RigidFormula = true; 3346 3347 Formula F; 3348 F.initialMatch(S, L, SE); 3349 bool Inserted = InsertFormula(LU, LUIdx, F); 3350 assert(Inserted && "Initial formula already exists!"); (void)Inserted; 3351 } 3352 3353 /// Insert a simple single-register formula for the given expression into the 3354 /// given use. 3355 void 3356 LSRInstance::InsertSupplementalFormula(const SCEV *S, 3357 LSRUse &LU, size_t LUIdx) { 3358 Formula F; 3359 F.BaseRegs.push_back(S); 3360 F.HasBaseReg = true; 3361 bool Inserted = InsertFormula(LU, LUIdx, F); 3362 assert(Inserted && "Supplemental formula already exists!"); (void)Inserted; 3363 } 3364 3365 /// Note which registers are used by the given formula, updating RegUses. 3366 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) { 3367 if (F.ScaledReg) 3368 RegUses.countRegister(F.ScaledReg, LUIdx); 3369 for (const SCEV *BaseReg : F.BaseRegs) 3370 RegUses.countRegister(BaseReg, LUIdx); 3371 } 3372 3373 /// If the given formula has not yet been inserted, add it to the list, and 3374 /// return true. Return false otherwise. 3375 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) { 3376 // Do not insert formula that we will not be able to expand. 3377 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) && 3378 "Formula is illegal"); 3379 3380 if (!LU.InsertFormula(F, *L)) 3381 return false; 3382 3383 CountRegisters(F, LUIdx); 3384 return true; 3385 } 3386 3387 /// Check for other uses of loop-invariant values which we're tracking. These 3388 /// other uses will pin these values in registers, making them less profitable 3389 /// for elimination. 3390 /// TODO: This currently misses non-constant addrec step registers. 3391 /// TODO: Should this give more weight to users inside the loop? 3392 void 3393 LSRInstance::CollectLoopInvariantFixupsAndFormulae() { 3394 SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end()); 3395 SmallPtrSet<const SCEV *, 32> Visited; 3396 3397 while (!Worklist.empty()) { 3398 const SCEV *S = Worklist.pop_back_val(); 3399 3400 // Don't process the same SCEV twice 3401 if (!Visited.insert(S).second) 3402 continue; 3403 3404 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) 3405 Worklist.append(N->op_begin(), N->op_end()); 3406 else if (const SCEVIntegralCastExpr *C = dyn_cast<SCEVIntegralCastExpr>(S)) 3407 Worklist.push_back(C->getOperand()); 3408 else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 3409 Worklist.push_back(D->getLHS()); 3410 Worklist.push_back(D->getRHS()); 3411 } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) { 3412 const Value *V = US->getValue(); 3413 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 3414 // Look for instructions defined outside the loop. 3415 if (L->contains(Inst)) continue; 3416 } else if (isa<UndefValue>(V)) 3417 // Undef doesn't have a live range, so it doesn't matter. 3418 continue; 3419 for (const Use &U : V->uses()) { 3420 const Instruction *UserInst = dyn_cast<Instruction>(U.getUser()); 3421 // Ignore non-instructions. 3422 if (!UserInst) 3423 continue; 3424 // Ignore instructions in other functions (as can happen with 3425 // Constants). 3426 if (UserInst->getParent()->getParent() != L->getHeader()->getParent()) 3427 continue; 3428 // Ignore instructions not dominated by the loop. 3429 const BasicBlock *UseBB = !isa<PHINode>(UserInst) ? 3430 UserInst->getParent() : 3431 cast<PHINode>(UserInst)->getIncomingBlock( 3432 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 3433 if (!DT.dominates(L->getHeader(), UseBB)) 3434 continue; 3435 // Don't bother if the instruction is in a BB which ends in an EHPad. 3436 if (UseBB->getTerminator()->isEHPad()) 3437 continue; 3438 // Don't bother rewriting PHIs in catchswitch blocks. 3439 if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator())) 3440 continue; 3441 // Ignore uses which are part of other SCEV expressions, to avoid 3442 // analyzing them multiple times. 3443 if (SE.isSCEVable(UserInst->getType())) { 3444 const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst)); 3445 // If the user is a no-op, look through to its uses. 3446 if (!isa<SCEVUnknown>(UserS)) 3447 continue; 3448 if (UserS == US) { 3449 Worklist.push_back( 3450 SE.getUnknown(const_cast<Instruction *>(UserInst))); 3451 continue; 3452 } 3453 } 3454 // Ignore icmp instructions which are already being analyzed. 3455 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) { 3456 unsigned OtherIdx = !U.getOperandNo(); 3457 Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx)); 3458 if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L)) 3459 continue; 3460 } 3461 3462 std::pair<size_t, int64_t> P = getUse( 3463 S, LSRUse::Basic, MemAccessTy()); 3464 size_t LUIdx = P.first; 3465 int64_t Offset = P.second; 3466 LSRUse &LU = Uses[LUIdx]; 3467 LSRFixup &LF = LU.getNewFixup(); 3468 LF.UserInst = const_cast<Instruction *>(UserInst); 3469 LF.OperandValToReplace = U; 3470 LF.Offset = Offset; 3471 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3472 if (!LU.WidestFixupType || 3473 SE.getTypeSizeInBits(LU.WidestFixupType) < 3474 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3475 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3476 InsertSupplementalFormula(US, LU, LUIdx); 3477 CountRegisters(LU.Formulae.back(), Uses.size() - 1); 3478 break; 3479 } 3480 } 3481 } 3482 } 3483 3484 /// Split S into subexpressions which can be pulled out into separate 3485 /// registers. If C is non-null, multiply each subexpression by C. 3486 /// 3487 /// Return remainder expression after factoring the subexpressions captured by 3488 /// Ops. If Ops is complete, return NULL. 3489 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C, 3490 SmallVectorImpl<const SCEV *> &Ops, 3491 const Loop *L, 3492 ScalarEvolution &SE, 3493 unsigned Depth = 0) { 3494 // Arbitrarily cap recursion to protect compile time. 3495 if (Depth >= 3) 3496 return S; 3497 3498 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3499 // Break out add operands. 3500 for (const SCEV *S : Add->operands()) { 3501 const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1); 3502 if (Remainder) 3503 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3504 } 3505 return nullptr; 3506 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 3507 // Split a non-zero base out of an addrec. 3508 if (AR->getStart()->isZero() || !AR->isAffine()) 3509 return S; 3510 3511 const SCEV *Remainder = CollectSubexprs(AR->getStart(), 3512 C, Ops, L, SE, Depth+1); 3513 // Split the non-zero AddRec unless it is part of a nested recurrence that 3514 // does not pertain to this loop. 3515 if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) { 3516 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3517 Remainder = nullptr; 3518 } 3519 if (Remainder != AR->getStart()) { 3520 if (!Remainder) 3521 Remainder = SE.getConstant(AR->getType(), 0); 3522 return SE.getAddRecExpr(Remainder, 3523 AR->getStepRecurrence(SE), 3524 AR->getLoop(), 3525 //FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 3526 SCEV::FlagAnyWrap); 3527 } 3528 } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3529 // Break (C * (a + b + c)) into C*a + C*b + C*c. 3530 if (Mul->getNumOperands() != 2) 3531 return S; 3532 if (const SCEVConstant *Op0 = 3533 dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3534 C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0; 3535 const SCEV *Remainder = 3536 CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1); 3537 if (Remainder) 3538 Ops.push_back(SE.getMulExpr(C, Remainder)); 3539 return nullptr; 3540 } 3541 } 3542 return S; 3543 } 3544 3545 /// Return true if the SCEV represents a value that may end up as a 3546 /// post-increment operation. 3547 static bool mayUsePostIncMode(const TargetTransformInfo &TTI, 3548 LSRUse &LU, const SCEV *S, const Loop *L, 3549 ScalarEvolution &SE) { 3550 if (LU.Kind != LSRUse::Address || 3551 !LU.AccessTy.getType()->isIntOrIntVectorTy()) 3552 return false; 3553 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S); 3554 if (!AR) 3555 return false; 3556 const SCEV *LoopStep = AR->getStepRecurrence(SE); 3557 if (!isa<SCEVConstant>(LoopStep)) 3558 return false; 3559 // Check if a post-indexed load/store can be used. 3560 if (TTI.isIndexedLoadLegal(TTI.MIM_PostInc, AR->getType()) || 3561 TTI.isIndexedStoreLegal(TTI.MIM_PostInc, AR->getType())) { 3562 const SCEV *LoopStart = AR->getStart(); 3563 if (!isa<SCEVConstant>(LoopStart) && SE.isLoopInvariant(LoopStart, L)) 3564 return true; 3565 } 3566 return false; 3567 } 3568 3569 /// Helper function for LSRInstance::GenerateReassociations. 3570 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 3571 const Formula &Base, 3572 unsigned Depth, size_t Idx, 3573 bool IsScaledReg) { 3574 const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3575 // Don't generate reassociations for the base register of a value that 3576 // may generate a post-increment operator. The reason is that the 3577 // reassociations cause extra base+register formula to be created, 3578 // and possibly chosen, but the post-increment is more efficient. 3579 if (TTI.shouldFavorPostInc() && mayUsePostIncMode(TTI, LU, BaseReg, L, SE)) 3580 return; 3581 SmallVector<const SCEV *, 8> AddOps; 3582 const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE); 3583 if (Remainder) 3584 AddOps.push_back(Remainder); 3585 3586 if (AddOps.size() == 1) 3587 return; 3588 3589 for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(), 3590 JE = AddOps.end(); 3591 J != JE; ++J) { 3592 // Loop-variant "unknown" values are uninteresting; we won't be able to 3593 // do anything meaningful with them. 3594 if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L)) 3595 continue; 3596 3597 // Don't pull a constant into a register if the constant could be folded 3598 // into an immediate field. 3599 if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3600 LU.AccessTy, *J, Base.getNumRegs() > 1)) 3601 continue; 3602 3603 // Collect all operands except *J. 3604 SmallVector<const SCEV *, 8> InnerAddOps( 3605 ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J); 3606 InnerAddOps.append(std::next(J), 3607 ((const SmallVector<const SCEV *, 8> &)AddOps).end()); 3608 3609 // Don't leave just a constant behind in a register if the constant could 3610 // be folded into an immediate field. 3611 if (InnerAddOps.size() == 1 && 3612 isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3613 LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1)) 3614 continue; 3615 3616 const SCEV *InnerSum = SE.getAddExpr(InnerAddOps); 3617 if (InnerSum->isZero()) 3618 continue; 3619 Formula F = Base; 3620 3621 // Add the remaining pieces of the add back into the new formula. 3622 const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum); 3623 if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 && 3624 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3625 InnerSumSC->getValue()->getZExtValue())) { 3626 F.UnfoldedOffset = 3627 (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue(); 3628 if (IsScaledReg) 3629 F.ScaledReg = nullptr; 3630 else 3631 F.BaseRegs.erase(F.BaseRegs.begin() + Idx); 3632 } else if (IsScaledReg) 3633 F.ScaledReg = InnerSum; 3634 else 3635 F.BaseRegs[Idx] = InnerSum; 3636 3637 // Add J as its own register, or an unfolded immediate. 3638 const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J); 3639 if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 && 3640 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3641 SC->getValue()->getZExtValue())) 3642 F.UnfoldedOffset = 3643 (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue(); 3644 else 3645 F.BaseRegs.push_back(*J); 3646 // We may have changed the number of register in base regs, adjust the 3647 // formula accordingly. 3648 F.canonicalize(*L); 3649 3650 if (InsertFormula(LU, LUIdx, F)) 3651 // If that formula hadn't been seen before, recurse to find more like 3652 // it. 3653 // Add check on Log16(AddOps.size()) - same as Log2_32(AddOps.size()) >> 2) 3654 // Because just Depth is not enough to bound compile time. 3655 // This means that every time AddOps.size() is greater 16^x we will add 3656 // x to Depth. 3657 GenerateReassociations(LU, LUIdx, LU.Formulae.back(), 3658 Depth + 1 + (Log2_32(AddOps.size()) >> 2)); 3659 } 3660 } 3661 3662 /// Split out subexpressions from adds and the bases of addrecs. 3663 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx, 3664 Formula Base, unsigned Depth) { 3665 assert(Base.isCanonical(*L) && "Input must be in the canonical form"); 3666 // Arbitrarily cap recursion to protect compile time. 3667 if (Depth >= 3) 3668 return; 3669 3670 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3671 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i); 3672 3673 if (Base.Scale == 1) 3674 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, 3675 /* Idx */ -1, /* IsScaledReg */ true); 3676 } 3677 3678 /// Generate a formula consisting of all of the loop-dominating registers added 3679 /// into a single register. 3680 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx, 3681 Formula Base) { 3682 // This method is only interesting on a plurality of registers. 3683 if (Base.BaseRegs.size() + (Base.Scale == 1) + 3684 (Base.UnfoldedOffset != 0) <= 1) 3685 return; 3686 3687 // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before 3688 // processing the formula. 3689 Base.unscale(); 3690 SmallVector<const SCEV *, 4> Ops; 3691 Formula NewBase = Base; 3692 NewBase.BaseRegs.clear(); 3693 Type *CombinedIntegerType = nullptr; 3694 for (const SCEV *BaseReg : Base.BaseRegs) { 3695 if (SE.properlyDominates(BaseReg, L->getHeader()) && 3696 !SE.hasComputableLoopEvolution(BaseReg, L)) { 3697 if (!CombinedIntegerType) 3698 CombinedIntegerType = SE.getEffectiveSCEVType(BaseReg->getType()); 3699 Ops.push_back(BaseReg); 3700 } 3701 else 3702 NewBase.BaseRegs.push_back(BaseReg); 3703 } 3704 3705 // If no register is relevant, we're done. 3706 if (Ops.size() == 0) 3707 return; 3708 3709 // Utility function for generating the required variants of the combined 3710 // registers. 3711 auto GenerateFormula = [&](const SCEV *Sum) { 3712 Formula F = NewBase; 3713 3714 // TODO: If Sum is zero, it probably means ScalarEvolution missed an 3715 // opportunity to fold something. For now, just ignore such cases 3716 // rather than proceed with zero in a register. 3717 if (Sum->isZero()) 3718 return; 3719 3720 F.BaseRegs.push_back(Sum); 3721 F.canonicalize(*L); 3722 (void)InsertFormula(LU, LUIdx, F); 3723 }; 3724 3725 // If we collected at least two registers, generate a formula combining them. 3726 if (Ops.size() > 1) { 3727 SmallVector<const SCEV *, 4> OpsCopy(Ops); // Don't let SE modify Ops. 3728 GenerateFormula(SE.getAddExpr(OpsCopy)); 3729 } 3730 3731 // If we have an unfolded offset, generate a formula combining it with the 3732 // registers collected. 3733 if (NewBase.UnfoldedOffset) { 3734 assert(CombinedIntegerType && "Missing a type for the unfolded offset"); 3735 Ops.push_back(SE.getConstant(CombinedIntegerType, NewBase.UnfoldedOffset, 3736 true)); 3737 NewBase.UnfoldedOffset = 0; 3738 GenerateFormula(SE.getAddExpr(Ops)); 3739 } 3740 } 3741 3742 /// Helper function for LSRInstance::GenerateSymbolicOffsets. 3743 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 3744 const Formula &Base, size_t Idx, 3745 bool IsScaledReg) { 3746 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3747 GlobalValue *GV = ExtractSymbol(G, SE); 3748 if (G->isZero() || !GV) 3749 return; 3750 Formula F = Base; 3751 F.BaseGV = GV; 3752 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3753 return; 3754 if (IsScaledReg) 3755 F.ScaledReg = G; 3756 else 3757 F.BaseRegs[Idx] = G; 3758 (void)InsertFormula(LU, LUIdx, F); 3759 } 3760 3761 /// Generate reuse formulae using symbolic offsets. 3762 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, 3763 Formula Base) { 3764 // We can't add a symbolic offset if the address already contains one. 3765 if (Base.BaseGV) return; 3766 3767 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3768 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i); 3769 if (Base.Scale == 1) 3770 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1, 3771 /* IsScaledReg */ true); 3772 } 3773 3774 /// Helper function for LSRInstance::GenerateConstantOffsets. 3775 void LSRInstance::GenerateConstantOffsetsImpl( 3776 LSRUse &LU, unsigned LUIdx, const Formula &Base, 3777 const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) { 3778 3779 auto GenerateOffset = [&](const SCEV *G, int64_t Offset) { 3780 Formula F = Base; 3781 F.BaseOffset = (uint64_t)Base.BaseOffset - Offset; 3782 3783 if (isLegalUse(TTI, LU.MinOffset - Offset, LU.MaxOffset - Offset, LU.Kind, 3784 LU.AccessTy, F)) { 3785 // Add the offset to the base register. 3786 const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G); 3787 // If it cancelled out, drop the base register, otherwise update it. 3788 if (NewG->isZero()) { 3789 if (IsScaledReg) { 3790 F.Scale = 0; 3791 F.ScaledReg = nullptr; 3792 } else 3793 F.deleteBaseReg(F.BaseRegs[Idx]); 3794 F.canonicalize(*L); 3795 } else if (IsScaledReg) 3796 F.ScaledReg = NewG; 3797 else 3798 F.BaseRegs[Idx] = NewG; 3799 3800 (void)InsertFormula(LU, LUIdx, F); 3801 } 3802 }; 3803 3804 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3805 3806 // With constant offsets and constant steps, we can generate pre-inc 3807 // accesses by having the offset equal the step. So, for access #0 with a 3808 // step of 8, we generate a G - 8 base which would require the first access 3809 // to be ((G - 8) + 8),+,8. The pre-indexed access then updates the pointer 3810 // for itself and hopefully becomes the base for other accesses. This means 3811 // means that a single pre-indexed access can be generated to become the new 3812 // base pointer for each iteration of the loop, resulting in no extra add/sub 3813 // instructions for pointer updating. 3814 if (FavorBackedgeIndex && LU.Kind == LSRUse::Address) { 3815 if (auto *GAR = dyn_cast<SCEVAddRecExpr>(G)) { 3816 if (auto *StepRec = 3817 dyn_cast<SCEVConstant>(GAR->getStepRecurrence(SE))) { 3818 const APInt &StepInt = StepRec->getAPInt(); 3819 int64_t Step = StepInt.isNegative() ? 3820 StepInt.getSExtValue() : StepInt.getZExtValue(); 3821 3822 for (int64_t Offset : Worklist) { 3823 Offset -= Step; 3824 GenerateOffset(G, Offset); 3825 } 3826 } 3827 } 3828 } 3829 for (int64_t Offset : Worklist) 3830 GenerateOffset(G, Offset); 3831 3832 int64_t Imm = ExtractImmediate(G, SE); 3833 if (G->isZero() || Imm == 0) 3834 return; 3835 Formula F = Base; 3836 F.BaseOffset = (uint64_t)F.BaseOffset + Imm; 3837 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3838 return; 3839 if (IsScaledReg) { 3840 F.ScaledReg = G; 3841 } else { 3842 F.BaseRegs[Idx] = G; 3843 // We may generate non canonical Formula if G is a recurrent expr reg 3844 // related with current loop while F.ScaledReg is not. 3845 F.canonicalize(*L); 3846 } 3847 (void)InsertFormula(LU, LUIdx, F); 3848 } 3849 3850 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets. 3851 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, 3852 Formula Base) { 3853 // TODO: For now, just add the min and max offset, because it usually isn't 3854 // worthwhile looking at everything inbetween. 3855 SmallVector<int64_t, 2> Worklist; 3856 Worklist.push_back(LU.MinOffset); 3857 if (LU.MaxOffset != LU.MinOffset) 3858 Worklist.push_back(LU.MaxOffset); 3859 3860 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3861 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i); 3862 if (Base.Scale == 1) 3863 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1, 3864 /* IsScaledReg */ true); 3865 } 3866 3867 /// For ICmpZero, check to see if we can scale up the comparison. For example, x 3868 /// == y -> x*c == y*c. 3869 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, 3870 Formula Base) { 3871 if (LU.Kind != LSRUse::ICmpZero) return; 3872 3873 // Determine the integer type for the base formula. 3874 Type *IntTy = Base.getType(); 3875 if (!IntTy) return; 3876 if (SE.getTypeSizeInBits(IntTy) > 64) return; 3877 3878 // Don't do this if there is more than one offset. 3879 if (LU.MinOffset != LU.MaxOffset) return; 3880 3881 // Check if transformation is valid. It is illegal to multiply pointer. 3882 if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy()) 3883 return; 3884 for (const SCEV *BaseReg : Base.BaseRegs) 3885 if (BaseReg->getType()->isPointerTy()) 3886 return; 3887 assert(!Base.BaseGV && "ICmpZero use is not legal!"); 3888 3889 // Check each interesting stride. 3890 for (int64_t Factor : Factors) { 3891 // Check that the multiplication doesn't overflow. 3892 if (Base.BaseOffset == std::numeric_limits<int64_t>::min() && Factor == -1) 3893 continue; 3894 int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor; 3895 if (NewBaseOffset / Factor != Base.BaseOffset) 3896 continue; 3897 // If the offset will be truncated at this use, check that it is in bounds. 3898 if (!IntTy->isPointerTy() && 3899 !ConstantInt::isValueValidForType(IntTy, NewBaseOffset)) 3900 continue; 3901 3902 // Check that multiplying with the use offset doesn't overflow. 3903 int64_t Offset = LU.MinOffset; 3904 if (Offset == std::numeric_limits<int64_t>::min() && Factor == -1) 3905 continue; 3906 Offset = (uint64_t)Offset * Factor; 3907 if (Offset / Factor != LU.MinOffset) 3908 continue; 3909 // If the offset will be truncated at this use, check that it is in bounds. 3910 if (!IntTy->isPointerTy() && 3911 !ConstantInt::isValueValidForType(IntTy, Offset)) 3912 continue; 3913 3914 Formula F = Base; 3915 F.BaseOffset = NewBaseOffset; 3916 3917 // Check that this scale is legal. 3918 if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F)) 3919 continue; 3920 3921 // Compensate for the use having MinOffset built into it. 3922 F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset; 3923 3924 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3925 3926 // Check that multiplying with each base register doesn't overflow. 3927 for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) { 3928 F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS); 3929 if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i]) 3930 goto next; 3931 } 3932 3933 // Check that multiplying with the scaled register doesn't overflow. 3934 if (F.ScaledReg) { 3935 F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS); 3936 if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg) 3937 continue; 3938 } 3939 3940 // Check that multiplying with the unfolded offset doesn't overflow. 3941 if (F.UnfoldedOffset != 0) { 3942 if (F.UnfoldedOffset == std::numeric_limits<int64_t>::min() && 3943 Factor == -1) 3944 continue; 3945 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor; 3946 if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset) 3947 continue; 3948 // If the offset will be truncated, check that it is in bounds. 3949 if (!IntTy->isPointerTy() && 3950 !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset)) 3951 continue; 3952 } 3953 3954 // If we make it here and it's legal, add it. 3955 (void)InsertFormula(LU, LUIdx, F); 3956 next:; 3957 } 3958 } 3959 3960 /// Generate stride factor reuse formulae by making use of scaled-offset address 3961 /// modes, for example. 3962 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) { 3963 // Determine the integer type for the base formula. 3964 Type *IntTy = Base.getType(); 3965 if (!IntTy) return; 3966 3967 // If this Formula already has a scaled register, we can't add another one. 3968 // Try to unscale the formula to generate a better scale. 3969 if (Base.Scale != 0 && !Base.unscale()) 3970 return; 3971 3972 assert(Base.Scale == 0 && "unscale did not did its job!"); 3973 3974 // Check each interesting stride. 3975 for (int64_t Factor : Factors) { 3976 Base.Scale = Factor; 3977 Base.HasBaseReg = Base.BaseRegs.size() > 1; 3978 // Check whether this scale is going to be legal. 3979 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 3980 Base)) { 3981 // As a special-case, handle special out-of-loop Basic users specially. 3982 // TODO: Reconsider this special case. 3983 if (LU.Kind == LSRUse::Basic && 3984 isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special, 3985 LU.AccessTy, Base) && 3986 LU.AllFixupsOutsideLoop) 3987 LU.Kind = LSRUse::Special; 3988 else 3989 continue; 3990 } 3991 // For an ICmpZero, negating a solitary base register won't lead to 3992 // new solutions. 3993 if (LU.Kind == LSRUse::ICmpZero && 3994 !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV) 3995 continue; 3996 // For each addrec base reg, if its loop is current loop, apply the scale. 3997 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { 3998 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i]); 3999 if (AR && (AR->getLoop() == L || LU.AllFixupsOutsideLoop)) { 4000 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 4001 if (FactorS->isZero()) 4002 continue; 4003 // Divide out the factor, ignoring high bits, since we'll be 4004 // scaling the value back up in the end. 4005 if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) { 4006 // TODO: This could be optimized to avoid all the copying. 4007 Formula F = Base; 4008 F.ScaledReg = Quotient; 4009 F.deleteBaseReg(F.BaseRegs[i]); 4010 // The canonical representation of 1*reg is reg, which is already in 4011 // Base. In that case, do not try to insert the formula, it will be 4012 // rejected anyway. 4013 if (F.Scale == 1 && (F.BaseRegs.empty() || 4014 (AR->getLoop() != L && LU.AllFixupsOutsideLoop))) 4015 continue; 4016 // If AllFixupsOutsideLoop is true and F.Scale is 1, we may generate 4017 // non canonical Formula with ScaledReg's loop not being L. 4018 if (F.Scale == 1 && LU.AllFixupsOutsideLoop) 4019 F.canonicalize(*L); 4020 (void)InsertFormula(LU, LUIdx, F); 4021 } 4022 } 4023 } 4024 } 4025 } 4026 4027 /// Generate reuse formulae from different IV types. 4028 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) { 4029 // Don't bother truncating symbolic values. 4030 if (Base.BaseGV) return; 4031 4032 // Determine the integer type for the base formula. 4033 Type *DstTy = Base.getType(); 4034 if (!DstTy) return; 4035 DstTy = SE.getEffectiveSCEVType(DstTy); 4036 4037 for (Type *SrcTy : Types) { 4038 if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) { 4039 Formula F = Base; 4040 4041 // Sometimes SCEV is able to prove zero during ext transform. It may 4042 // happen if SCEV did not do all possible transforms while creating the 4043 // initial node (maybe due to depth limitations), but it can do them while 4044 // taking ext. 4045 if (F.ScaledReg) { 4046 const SCEV *NewScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy); 4047 if (NewScaledReg->isZero()) 4048 continue; 4049 F.ScaledReg = NewScaledReg; 4050 } 4051 bool HasZeroBaseReg = false; 4052 for (const SCEV *&BaseReg : F.BaseRegs) { 4053 const SCEV *NewBaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy); 4054 if (NewBaseReg->isZero()) { 4055 HasZeroBaseReg = true; 4056 break; 4057 } 4058 BaseReg = NewBaseReg; 4059 } 4060 if (HasZeroBaseReg) 4061 continue; 4062 4063 // TODO: This assumes we've done basic processing on all uses and 4064 // have an idea what the register usage is. 4065 if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses)) 4066 continue; 4067 4068 F.canonicalize(*L); 4069 (void)InsertFormula(LU, LUIdx, F); 4070 } 4071 } 4072 } 4073 4074 namespace { 4075 4076 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer 4077 /// modifications so that the search phase doesn't have to worry about the data 4078 /// structures moving underneath it. 4079 struct WorkItem { 4080 size_t LUIdx; 4081 int64_t Imm; 4082 const SCEV *OrigReg; 4083 4084 WorkItem(size_t LI, int64_t I, const SCEV *R) 4085 : LUIdx(LI), Imm(I), OrigReg(R) {} 4086 4087 void print(raw_ostream &OS) const; 4088 void dump() const; 4089 }; 4090 4091 } // end anonymous namespace 4092 4093 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 4094 void WorkItem::print(raw_ostream &OS) const { 4095 OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx 4096 << " , add offset " << Imm; 4097 } 4098 4099 LLVM_DUMP_METHOD void WorkItem::dump() const { 4100 print(errs()); errs() << '\n'; 4101 } 4102 #endif 4103 4104 /// Look for registers which are a constant distance apart and try to form reuse 4105 /// opportunities between them. 4106 void LSRInstance::GenerateCrossUseConstantOffsets() { 4107 // Group the registers by their value without any added constant offset. 4108 using ImmMapTy = std::map<int64_t, const SCEV *>; 4109 4110 DenseMap<const SCEV *, ImmMapTy> Map; 4111 DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap; 4112 SmallVector<const SCEV *, 8> Sequence; 4113 for (const SCEV *Use : RegUses) { 4114 const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify. 4115 int64_t Imm = ExtractImmediate(Reg, SE); 4116 auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy())); 4117 if (Pair.second) 4118 Sequence.push_back(Reg); 4119 Pair.first->second.insert(std::make_pair(Imm, Use)); 4120 UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use); 4121 } 4122 4123 // Now examine each set of registers with the same base value. Build up 4124 // a list of work to do and do the work in a separate step so that we're 4125 // not adding formulae and register counts while we're searching. 4126 SmallVector<WorkItem, 32> WorkItems; 4127 SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems; 4128 for (const SCEV *Reg : Sequence) { 4129 const ImmMapTy &Imms = Map.find(Reg)->second; 4130 4131 // It's not worthwhile looking for reuse if there's only one offset. 4132 if (Imms.size() == 1) 4133 continue; 4134 4135 LLVM_DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':'; 4136 for (const auto &Entry 4137 : Imms) dbgs() 4138 << ' ' << Entry.first; 4139 dbgs() << '\n'); 4140 4141 // Examine each offset. 4142 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); 4143 J != JE; ++J) { 4144 const SCEV *OrigReg = J->second; 4145 4146 int64_t JImm = J->first; 4147 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg); 4148 4149 if (!isa<SCEVConstant>(OrigReg) && 4150 UsedByIndicesMap[Reg].count() == 1) { 4151 LLVM_DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg 4152 << '\n'); 4153 continue; 4154 } 4155 4156 // Conservatively examine offsets between this orig reg a few selected 4157 // other orig regs. 4158 int64_t First = Imms.begin()->first; 4159 int64_t Last = std::prev(Imms.end())->first; 4160 // Compute (First + Last) / 2 without overflow using the fact that 4161 // First + Last = 2 * (First + Last) + (First ^ Last). 4162 int64_t Avg = (First & Last) + ((First ^ Last) >> 1); 4163 // If the result is negative and First is odd and Last even (or vice versa), 4164 // we rounded towards -inf. Add 1 in that case, to round towards 0. 4165 Avg = Avg + ((First ^ Last) & ((uint64_t)Avg >> 63)); 4166 ImmMapTy::const_iterator OtherImms[] = { 4167 Imms.begin(), std::prev(Imms.end()), 4168 Imms.lower_bound(Avg)}; 4169 for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) { 4170 ImmMapTy::const_iterator M = OtherImms[i]; 4171 if (M == J || M == JE) continue; 4172 4173 // Compute the difference between the two. 4174 int64_t Imm = (uint64_t)JImm - M->first; 4175 for (unsigned LUIdx : UsedByIndices.set_bits()) 4176 // Make a memo of this use, offset, and register tuple. 4177 if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second) 4178 WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg)); 4179 } 4180 } 4181 } 4182 4183 Map.clear(); 4184 Sequence.clear(); 4185 UsedByIndicesMap.clear(); 4186 UniqueItems.clear(); 4187 4188 // Now iterate through the worklist and add new formulae. 4189 for (const WorkItem &WI : WorkItems) { 4190 size_t LUIdx = WI.LUIdx; 4191 LSRUse &LU = Uses[LUIdx]; 4192 int64_t Imm = WI.Imm; 4193 const SCEV *OrigReg = WI.OrigReg; 4194 4195 Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType()); 4196 const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm)); 4197 unsigned BitWidth = SE.getTypeSizeInBits(IntTy); 4198 4199 // TODO: Use a more targeted data structure. 4200 for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) { 4201 Formula F = LU.Formulae[L]; 4202 // FIXME: The code for the scaled and unscaled registers looks 4203 // very similar but slightly different. Investigate if they 4204 // could be merged. That way, we would not have to unscale the 4205 // Formula. 4206 F.unscale(); 4207 // Use the immediate in the scaled register. 4208 if (F.ScaledReg == OrigReg) { 4209 int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale; 4210 // Don't create 50 + reg(-50). 4211 if (F.referencesReg(SE.getSCEV( 4212 ConstantInt::get(IntTy, -(uint64_t)Offset)))) 4213 continue; 4214 Formula NewF = F; 4215 NewF.BaseOffset = Offset; 4216 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 4217 NewF)) 4218 continue; 4219 NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg); 4220 4221 // If the new scale is a constant in a register, and adding the constant 4222 // value to the immediate would produce a value closer to zero than the 4223 // immediate itself, then the formula isn't worthwhile. 4224 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg)) 4225 if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) && 4226 (C->getAPInt().abs() * APInt(BitWidth, F.Scale)) 4227 .ule(std::abs(NewF.BaseOffset))) 4228 continue; 4229 4230 // OK, looks good. 4231 NewF.canonicalize(*this->L); 4232 (void)InsertFormula(LU, LUIdx, NewF); 4233 } else { 4234 // Use the immediate in a base register. 4235 for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) { 4236 const SCEV *BaseReg = F.BaseRegs[N]; 4237 if (BaseReg != OrigReg) 4238 continue; 4239 Formula NewF = F; 4240 NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm; 4241 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, 4242 LU.Kind, LU.AccessTy, NewF)) { 4243 if (TTI.shouldFavorPostInc() && 4244 mayUsePostIncMode(TTI, LU, OrigReg, this->L, SE)) 4245 continue; 4246 if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm)) 4247 continue; 4248 NewF = F; 4249 NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm; 4250 } 4251 NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg); 4252 4253 // If the new formula has a constant in a register, and adding the 4254 // constant value to the immediate would produce a value closer to 4255 // zero than the immediate itself, then the formula isn't worthwhile. 4256 for (const SCEV *NewReg : NewF.BaseRegs) 4257 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg)) 4258 if ((C->getAPInt() + NewF.BaseOffset) 4259 .abs() 4260 .slt(std::abs(NewF.BaseOffset)) && 4261 (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >= 4262 countTrailingZeros<uint64_t>(NewF.BaseOffset)) 4263 goto skip_formula; 4264 4265 // Ok, looks good. 4266 NewF.canonicalize(*this->L); 4267 (void)InsertFormula(LU, LUIdx, NewF); 4268 break; 4269 skip_formula:; 4270 } 4271 } 4272 } 4273 } 4274 } 4275 4276 /// Generate formulae for each use. 4277 void 4278 LSRInstance::GenerateAllReuseFormulae() { 4279 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan 4280 // queries are more precise. 4281 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4282 LSRUse &LU = Uses[LUIdx]; 4283 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4284 GenerateReassociations(LU, LUIdx, LU.Formulae[i]); 4285 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4286 GenerateCombinations(LU, LUIdx, LU.Formulae[i]); 4287 } 4288 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4289 LSRUse &LU = Uses[LUIdx]; 4290 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4291 GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]); 4292 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4293 GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]); 4294 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4295 GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]); 4296 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4297 GenerateScales(LU, LUIdx, LU.Formulae[i]); 4298 } 4299 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4300 LSRUse &LU = Uses[LUIdx]; 4301 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4302 GenerateTruncates(LU, LUIdx, LU.Formulae[i]); 4303 } 4304 4305 GenerateCrossUseConstantOffsets(); 4306 4307 LLVM_DEBUG(dbgs() << "\n" 4308 "After generating reuse formulae:\n"; 4309 print_uses(dbgs())); 4310 } 4311 4312 /// If there are multiple formulae with the same set of registers used 4313 /// by other uses, pick the best one and delete the others. 4314 void LSRInstance::FilterOutUndesirableDedicatedRegisters() { 4315 DenseSet<const SCEV *> VisitedRegs; 4316 SmallPtrSet<const SCEV *, 16> Regs; 4317 SmallPtrSet<const SCEV *, 16> LoserRegs; 4318 #ifndef NDEBUG 4319 bool ChangedFormulae = false; 4320 #endif 4321 4322 // Collect the best formula for each unique set of shared registers. This 4323 // is reset for each use. 4324 using BestFormulaeTy = 4325 DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>; 4326 4327 BestFormulaeTy BestFormulae; 4328 4329 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4330 LSRUse &LU = Uses[LUIdx]; 4331 LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); 4332 dbgs() << '\n'); 4333 4334 bool Any = false; 4335 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); 4336 FIdx != NumForms; ++FIdx) { 4337 Formula &F = LU.Formulae[FIdx]; 4338 4339 // Some formulas are instant losers. For example, they may depend on 4340 // nonexistent AddRecs from other loops. These need to be filtered 4341 // immediately, otherwise heuristics could choose them over others leading 4342 // to an unsatisfactory solution. Passing LoserRegs into RateFormula here 4343 // avoids the need to recompute this information across formulae using the 4344 // same bad AddRec. Passing LoserRegs is also essential unless we remove 4345 // the corresponding bad register from the Regs set. 4346 Cost CostF(L, SE, TTI); 4347 Regs.clear(); 4348 CostF.RateFormula(F, Regs, VisitedRegs, LU, &LoserRegs); 4349 if (CostF.isLoser()) { 4350 // During initial formula generation, undesirable formulae are generated 4351 // by uses within other loops that have some non-trivial address mode or 4352 // use the postinc form of the IV. LSR needs to provide these formulae 4353 // as the basis of rediscovering the desired formula that uses an AddRec 4354 // corresponding to the existing phi. Once all formulae have been 4355 // generated, these initial losers may be pruned. 4356 LLVM_DEBUG(dbgs() << " Filtering loser "; F.print(dbgs()); 4357 dbgs() << "\n"); 4358 } 4359 else { 4360 SmallVector<const SCEV *, 4> Key; 4361 for (const SCEV *Reg : F.BaseRegs) { 4362 if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx)) 4363 Key.push_back(Reg); 4364 } 4365 if (F.ScaledReg && 4366 RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx)) 4367 Key.push_back(F.ScaledReg); 4368 // Unstable sort by host order ok, because this is only used for 4369 // uniquifying. 4370 llvm::sort(Key); 4371 4372 std::pair<BestFormulaeTy::const_iterator, bool> P = 4373 BestFormulae.insert(std::make_pair(Key, FIdx)); 4374 if (P.second) 4375 continue; 4376 4377 Formula &Best = LU.Formulae[P.first->second]; 4378 4379 Cost CostBest(L, SE, TTI); 4380 Regs.clear(); 4381 CostBest.RateFormula(Best, Regs, VisitedRegs, LU); 4382 if (CostF.isLess(CostBest)) 4383 std::swap(F, Best); 4384 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 4385 dbgs() << "\n" 4386 " in favor of formula "; 4387 Best.print(dbgs()); dbgs() << '\n'); 4388 } 4389 #ifndef NDEBUG 4390 ChangedFormulae = true; 4391 #endif 4392 LU.DeleteFormula(F); 4393 --FIdx; 4394 --NumForms; 4395 Any = true; 4396 } 4397 4398 // Now that we've filtered out some formulae, recompute the Regs set. 4399 if (Any) 4400 LU.RecomputeRegs(LUIdx, RegUses); 4401 4402 // Reset this to prepare for the next use. 4403 BestFormulae.clear(); 4404 } 4405 4406 LLVM_DEBUG(if (ChangedFormulae) { 4407 dbgs() << "\n" 4408 "After filtering out undesirable candidates:\n"; 4409 print_uses(dbgs()); 4410 }); 4411 } 4412 4413 /// Estimate the worst-case number of solutions the solver might have to 4414 /// consider. It almost never considers this many solutions because it prune the 4415 /// search space, but the pruning isn't always sufficient. 4416 size_t LSRInstance::EstimateSearchSpaceComplexity() const { 4417 size_t Power = 1; 4418 for (const LSRUse &LU : Uses) { 4419 size_t FSize = LU.Formulae.size(); 4420 if (FSize >= ComplexityLimit) { 4421 Power = ComplexityLimit; 4422 break; 4423 } 4424 Power *= FSize; 4425 if (Power >= ComplexityLimit) 4426 break; 4427 } 4428 return Power; 4429 } 4430 4431 /// When one formula uses a superset of the registers of another formula, it 4432 /// won't help reduce register pressure (though it may not necessarily hurt 4433 /// register pressure); remove it to simplify the system. 4434 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() { 4435 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4436 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4437 4438 LLVM_DEBUG(dbgs() << "Narrowing the search space by eliminating formulae " 4439 "which use a superset of registers used by other " 4440 "formulae.\n"); 4441 4442 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4443 LSRUse &LU = Uses[LUIdx]; 4444 bool Any = false; 4445 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4446 Formula &F = LU.Formulae[i]; 4447 // Look for a formula with a constant or GV in a register. If the use 4448 // also has a formula with that same value in an immediate field, 4449 // delete the one that uses a register. 4450 for (SmallVectorImpl<const SCEV *>::const_iterator 4451 I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) { 4452 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) { 4453 Formula NewF = F; 4454 //FIXME: Formulas should store bitwidth to do wrapping properly. 4455 // See PR41034. 4456 NewF.BaseOffset += (uint64_t)C->getValue()->getSExtValue(); 4457 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4458 (I - F.BaseRegs.begin())); 4459 if (LU.HasFormulaWithSameRegs(NewF)) { 4460 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4461 dbgs() << '\n'); 4462 LU.DeleteFormula(F); 4463 --i; 4464 --e; 4465 Any = true; 4466 break; 4467 } 4468 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) { 4469 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) 4470 if (!F.BaseGV) { 4471 Formula NewF = F; 4472 NewF.BaseGV = GV; 4473 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4474 (I - F.BaseRegs.begin())); 4475 if (LU.HasFormulaWithSameRegs(NewF)) { 4476 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4477 dbgs() << '\n'); 4478 LU.DeleteFormula(F); 4479 --i; 4480 --e; 4481 Any = true; 4482 break; 4483 } 4484 } 4485 } 4486 } 4487 } 4488 if (Any) 4489 LU.RecomputeRegs(LUIdx, RegUses); 4490 } 4491 4492 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4493 } 4494 } 4495 4496 /// When there are many registers for expressions like A, A+1, A+2, etc., 4497 /// allocate a single register for them. 4498 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() { 4499 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4500 return; 4501 4502 LLVM_DEBUG( 4503 dbgs() << "The search space is too complex.\n" 4504 "Narrowing the search space by assuming that uses separated " 4505 "by a constant offset will use the same registers.\n"); 4506 4507 // This is especially useful for unrolled loops. 4508 4509 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4510 LSRUse &LU = Uses[LUIdx]; 4511 for (const Formula &F : LU.Formulae) { 4512 if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1)) 4513 continue; 4514 4515 LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU); 4516 if (!LUThatHas) 4517 continue; 4518 4519 if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false, 4520 LU.Kind, LU.AccessTy)) 4521 continue; 4522 4523 LLVM_DEBUG(dbgs() << " Deleting use "; LU.print(dbgs()); dbgs() << '\n'); 4524 4525 LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop; 4526 4527 // Transfer the fixups of LU to LUThatHas. 4528 for (LSRFixup &Fixup : LU.Fixups) { 4529 Fixup.Offset += F.BaseOffset; 4530 LUThatHas->pushFixup(Fixup); 4531 LLVM_DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n'); 4532 } 4533 4534 // Delete formulae from the new use which are no longer legal. 4535 bool Any = false; 4536 for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) { 4537 Formula &F = LUThatHas->Formulae[i]; 4538 if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset, 4539 LUThatHas->Kind, LUThatHas->AccessTy, F)) { 4540 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4541 LUThatHas->DeleteFormula(F); 4542 --i; 4543 --e; 4544 Any = true; 4545 } 4546 } 4547 4548 if (Any) 4549 LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses); 4550 4551 // Delete the old use. 4552 DeleteUse(LU, LUIdx); 4553 --LUIdx; 4554 --NumUses; 4555 break; 4556 } 4557 } 4558 4559 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4560 } 4561 4562 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that 4563 /// we've done more filtering, as it may be able to find more formulae to 4564 /// eliminate. 4565 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){ 4566 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4567 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4568 4569 LLVM_DEBUG(dbgs() << "Narrowing the search space by re-filtering out " 4570 "undesirable dedicated registers.\n"); 4571 4572 FilterOutUndesirableDedicatedRegisters(); 4573 4574 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4575 } 4576 } 4577 4578 /// If a LSRUse has multiple formulae with the same ScaledReg and Scale. 4579 /// Pick the best one and delete the others. 4580 /// This narrowing heuristic is to keep as many formulae with different 4581 /// Scale and ScaledReg pair as possible while narrowing the search space. 4582 /// The benefit is that it is more likely to find out a better solution 4583 /// from a formulae set with more Scale and ScaledReg variations than 4584 /// a formulae set with the same Scale and ScaledReg. The picking winner 4585 /// reg heuristic will often keep the formulae with the same Scale and 4586 /// ScaledReg and filter others, and we want to avoid that if possible. 4587 void LSRInstance::NarrowSearchSpaceByFilterFormulaWithSameScaledReg() { 4588 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4589 return; 4590 4591 LLVM_DEBUG( 4592 dbgs() << "The search space is too complex.\n" 4593 "Narrowing the search space by choosing the best Formula " 4594 "from the Formulae with the same Scale and ScaledReg.\n"); 4595 4596 // Map the "Scale * ScaledReg" pair to the best formula of current LSRUse. 4597 using BestFormulaeTy = DenseMap<std::pair<const SCEV *, int64_t>, size_t>; 4598 4599 BestFormulaeTy BestFormulae; 4600 #ifndef NDEBUG 4601 bool ChangedFormulae = false; 4602 #endif 4603 DenseSet<const SCEV *> VisitedRegs; 4604 SmallPtrSet<const SCEV *, 16> Regs; 4605 4606 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4607 LSRUse &LU = Uses[LUIdx]; 4608 LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); 4609 dbgs() << '\n'); 4610 4611 // Return true if Formula FA is better than Formula FB. 4612 auto IsBetterThan = [&](Formula &FA, Formula &FB) { 4613 // First we will try to choose the Formula with fewer new registers. 4614 // For a register used by current Formula, the more the register is 4615 // shared among LSRUses, the less we increase the register number 4616 // counter of the formula. 4617 size_t FARegNum = 0; 4618 for (const SCEV *Reg : FA.BaseRegs) { 4619 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg); 4620 FARegNum += (NumUses - UsedByIndices.count() + 1); 4621 } 4622 size_t FBRegNum = 0; 4623 for (const SCEV *Reg : FB.BaseRegs) { 4624 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg); 4625 FBRegNum += (NumUses - UsedByIndices.count() + 1); 4626 } 4627 if (FARegNum != FBRegNum) 4628 return FARegNum < FBRegNum; 4629 4630 // If the new register numbers are the same, choose the Formula with 4631 // less Cost. 4632 Cost CostFA(L, SE, TTI); 4633 Cost CostFB(L, SE, TTI); 4634 Regs.clear(); 4635 CostFA.RateFormula(FA, Regs, VisitedRegs, LU); 4636 Regs.clear(); 4637 CostFB.RateFormula(FB, Regs, VisitedRegs, LU); 4638 return CostFA.isLess(CostFB); 4639 }; 4640 4641 bool Any = false; 4642 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms; 4643 ++FIdx) { 4644 Formula &F = LU.Formulae[FIdx]; 4645 if (!F.ScaledReg) 4646 continue; 4647 auto P = BestFormulae.insert({{F.ScaledReg, F.Scale}, FIdx}); 4648 if (P.second) 4649 continue; 4650 4651 Formula &Best = LU.Formulae[P.first->second]; 4652 if (IsBetterThan(F, Best)) 4653 std::swap(F, Best); 4654 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 4655 dbgs() << "\n" 4656 " in favor of formula "; 4657 Best.print(dbgs()); dbgs() << '\n'); 4658 #ifndef NDEBUG 4659 ChangedFormulae = true; 4660 #endif 4661 LU.DeleteFormula(F); 4662 --FIdx; 4663 --NumForms; 4664 Any = true; 4665 } 4666 if (Any) 4667 LU.RecomputeRegs(LUIdx, RegUses); 4668 4669 // Reset this to prepare for the next use. 4670 BestFormulae.clear(); 4671 } 4672 4673 LLVM_DEBUG(if (ChangedFormulae) { 4674 dbgs() << "\n" 4675 "After filtering out undesirable candidates:\n"; 4676 print_uses(dbgs()); 4677 }); 4678 } 4679 4680 /// If we are over the complexity limit, filter out any post-inc prefering 4681 /// variables to only post-inc values. 4682 void LSRInstance::NarrowSearchSpaceByFilterPostInc() { 4683 if (!TTI.shouldFavorPostInc()) 4684 return; 4685 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4686 return; 4687 4688 LLVM_DEBUG(dbgs() << "The search space is too complex.\n" 4689 "Narrowing the search space by choosing the lowest " 4690 "register Formula for PostInc Uses.\n"); 4691 4692 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4693 LSRUse &LU = Uses[LUIdx]; 4694 4695 if (LU.Kind != LSRUse::Address) 4696 continue; 4697 if (!TTI.isIndexedLoadLegal(TTI.MIM_PostInc, LU.AccessTy.getType()) && 4698 !TTI.isIndexedStoreLegal(TTI.MIM_PostInc, LU.AccessTy.getType())) 4699 continue; 4700 4701 size_t MinRegs = std::numeric_limits<size_t>::max(); 4702 for (const Formula &F : LU.Formulae) 4703 MinRegs = std::min(F.getNumRegs(), MinRegs); 4704 4705 bool Any = false; 4706 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms; 4707 ++FIdx) { 4708 Formula &F = LU.Formulae[FIdx]; 4709 if (F.getNumRegs() > MinRegs) { 4710 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 4711 dbgs() << "\n"); 4712 LU.DeleteFormula(F); 4713 --FIdx; 4714 --NumForms; 4715 Any = true; 4716 } 4717 } 4718 if (Any) 4719 LU.RecomputeRegs(LUIdx, RegUses); 4720 4721 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4722 break; 4723 } 4724 4725 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4726 } 4727 4728 /// The function delete formulas with high registers number expectation. 4729 /// Assuming we don't know the value of each formula (already delete 4730 /// all inefficient), generate probability of not selecting for each 4731 /// register. 4732 /// For example, 4733 /// Use1: 4734 /// reg(a) + reg({0,+,1}) 4735 /// reg(a) + reg({-1,+,1}) + 1 4736 /// reg({a,+,1}) 4737 /// Use2: 4738 /// reg(b) + reg({0,+,1}) 4739 /// reg(b) + reg({-1,+,1}) + 1 4740 /// reg({b,+,1}) 4741 /// Use3: 4742 /// reg(c) + reg(b) + reg({0,+,1}) 4743 /// reg(c) + reg({b,+,1}) 4744 /// 4745 /// Probability of not selecting 4746 /// Use1 Use2 Use3 4747 /// reg(a) (1/3) * 1 * 1 4748 /// reg(b) 1 * (1/3) * (1/2) 4749 /// reg({0,+,1}) (2/3) * (2/3) * (1/2) 4750 /// reg({-1,+,1}) (2/3) * (2/3) * 1 4751 /// reg({a,+,1}) (2/3) * 1 * 1 4752 /// reg({b,+,1}) 1 * (2/3) * (2/3) 4753 /// reg(c) 1 * 1 * 0 4754 /// 4755 /// Now count registers number mathematical expectation for each formula: 4756 /// Note that for each use we exclude probability if not selecting for the use. 4757 /// For example for Use1 probability for reg(a) would be just 1 * 1 (excluding 4758 /// probabilty 1/3 of not selecting for Use1). 4759 /// Use1: 4760 /// reg(a) + reg({0,+,1}) 1 + 1/3 -- to be deleted 4761 /// reg(a) + reg({-1,+,1}) + 1 1 + 4/9 -- to be deleted 4762 /// reg({a,+,1}) 1 4763 /// Use2: 4764 /// reg(b) + reg({0,+,1}) 1/2 + 1/3 -- to be deleted 4765 /// reg(b) + reg({-1,+,1}) + 1 1/2 + 2/3 -- to be deleted 4766 /// reg({b,+,1}) 2/3 4767 /// Use3: 4768 /// reg(c) + reg(b) + reg({0,+,1}) 1 + 1/3 + 4/9 -- to be deleted 4769 /// reg(c) + reg({b,+,1}) 1 + 2/3 4770 void LSRInstance::NarrowSearchSpaceByDeletingCostlyFormulas() { 4771 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4772 return; 4773 // Ok, we have too many of formulae on our hands to conveniently handle. 4774 // Use a rough heuristic to thin out the list. 4775 4776 // Set of Regs wich will be 100% used in final solution. 4777 // Used in each formula of a solution (in example above this is reg(c)). 4778 // We can skip them in calculations. 4779 SmallPtrSet<const SCEV *, 4> UniqRegs; 4780 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4781 4782 // Map each register to probability of not selecting 4783 DenseMap <const SCEV *, float> RegNumMap; 4784 for (const SCEV *Reg : RegUses) { 4785 if (UniqRegs.count(Reg)) 4786 continue; 4787 float PNotSel = 1; 4788 for (const LSRUse &LU : Uses) { 4789 if (!LU.Regs.count(Reg)) 4790 continue; 4791 float P = LU.getNotSelectedProbability(Reg); 4792 if (P != 0.0) 4793 PNotSel *= P; 4794 else 4795 UniqRegs.insert(Reg); 4796 } 4797 RegNumMap.insert(std::make_pair(Reg, PNotSel)); 4798 } 4799 4800 LLVM_DEBUG( 4801 dbgs() << "Narrowing the search space by deleting costly formulas\n"); 4802 4803 // Delete formulas where registers number expectation is high. 4804 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4805 LSRUse &LU = Uses[LUIdx]; 4806 // If nothing to delete - continue. 4807 if (LU.Formulae.size() < 2) 4808 continue; 4809 // This is temporary solution to test performance. Float should be 4810 // replaced with round independent type (based on integers) to avoid 4811 // different results for different target builds. 4812 float FMinRegNum = LU.Formulae[0].getNumRegs(); 4813 float FMinARegNum = LU.Formulae[0].getNumRegs(); 4814 size_t MinIdx = 0; 4815 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4816 Formula &F = LU.Formulae[i]; 4817 float FRegNum = 0; 4818 float FARegNum = 0; 4819 for (const SCEV *BaseReg : F.BaseRegs) { 4820 if (UniqRegs.count(BaseReg)) 4821 continue; 4822 FRegNum += RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg); 4823 if (isa<SCEVAddRecExpr>(BaseReg)) 4824 FARegNum += 4825 RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg); 4826 } 4827 if (const SCEV *ScaledReg = F.ScaledReg) { 4828 if (!UniqRegs.count(ScaledReg)) { 4829 FRegNum += 4830 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg); 4831 if (isa<SCEVAddRecExpr>(ScaledReg)) 4832 FARegNum += 4833 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg); 4834 } 4835 } 4836 if (FMinRegNum > FRegNum || 4837 (FMinRegNum == FRegNum && FMinARegNum > FARegNum)) { 4838 FMinRegNum = FRegNum; 4839 FMinARegNum = FARegNum; 4840 MinIdx = i; 4841 } 4842 } 4843 LLVM_DEBUG(dbgs() << " The formula "; LU.Formulae[MinIdx].print(dbgs()); 4844 dbgs() << " with min reg num " << FMinRegNum << '\n'); 4845 if (MinIdx != 0) 4846 std::swap(LU.Formulae[MinIdx], LU.Formulae[0]); 4847 while (LU.Formulae.size() != 1) { 4848 LLVM_DEBUG(dbgs() << " Deleting "; LU.Formulae.back().print(dbgs()); 4849 dbgs() << '\n'); 4850 LU.Formulae.pop_back(); 4851 } 4852 LU.RecomputeRegs(LUIdx, RegUses); 4853 assert(LU.Formulae.size() == 1 && "Should be exactly 1 min regs formula"); 4854 Formula &F = LU.Formulae[0]; 4855 LLVM_DEBUG(dbgs() << " Leaving only "; F.print(dbgs()); dbgs() << '\n'); 4856 // When we choose the formula, the regs become unique. 4857 UniqRegs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 4858 if (F.ScaledReg) 4859 UniqRegs.insert(F.ScaledReg); 4860 } 4861 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4862 } 4863 4864 /// Pick a register which seems likely to be profitable, and then in any use 4865 /// which has any reference to that register, delete all formulae which do not 4866 /// reference that register. 4867 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() { 4868 // With all other options exhausted, loop until the system is simple 4869 // enough to handle. 4870 SmallPtrSet<const SCEV *, 4> Taken; 4871 while (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4872 // Ok, we have too many of formulae on our hands to conveniently handle. 4873 // Use a rough heuristic to thin out the list. 4874 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4875 4876 // Pick the register which is used by the most LSRUses, which is likely 4877 // to be a good reuse register candidate. 4878 const SCEV *Best = nullptr; 4879 unsigned BestNum = 0; 4880 for (const SCEV *Reg : RegUses) { 4881 if (Taken.count(Reg)) 4882 continue; 4883 if (!Best) { 4884 Best = Reg; 4885 BestNum = RegUses.getUsedByIndices(Reg).count(); 4886 } else { 4887 unsigned Count = RegUses.getUsedByIndices(Reg).count(); 4888 if (Count > BestNum) { 4889 Best = Reg; 4890 BestNum = Count; 4891 } 4892 } 4893 } 4894 assert(Best && "Failed to find best LSRUse candidate"); 4895 4896 LLVM_DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best 4897 << " will yield profitable reuse.\n"); 4898 Taken.insert(Best); 4899 4900 // In any use with formulae which references this register, delete formulae 4901 // which don't reference it. 4902 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4903 LSRUse &LU = Uses[LUIdx]; 4904 if (!LU.Regs.count(Best)) continue; 4905 4906 bool Any = false; 4907 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4908 Formula &F = LU.Formulae[i]; 4909 if (!F.referencesReg(Best)) { 4910 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4911 LU.DeleteFormula(F); 4912 --e; 4913 --i; 4914 Any = true; 4915 assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?"); 4916 continue; 4917 } 4918 } 4919 4920 if (Any) 4921 LU.RecomputeRegs(LUIdx, RegUses); 4922 } 4923 4924 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4925 } 4926 } 4927 4928 /// If there are an extraordinary number of formulae to choose from, use some 4929 /// rough heuristics to prune down the number of formulae. This keeps the main 4930 /// solver from taking an extraordinary amount of time in some worst-case 4931 /// scenarios. 4932 void LSRInstance::NarrowSearchSpaceUsingHeuristics() { 4933 NarrowSearchSpaceByDetectingSupersets(); 4934 NarrowSearchSpaceByCollapsingUnrolledCode(); 4935 NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 4936 if (FilterSameScaledReg) 4937 NarrowSearchSpaceByFilterFormulaWithSameScaledReg(); 4938 NarrowSearchSpaceByFilterPostInc(); 4939 if (LSRExpNarrow) 4940 NarrowSearchSpaceByDeletingCostlyFormulas(); 4941 else 4942 NarrowSearchSpaceByPickingWinnerRegs(); 4943 } 4944 4945 /// This is the recursive solver. 4946 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 4947 Cost &SolutionCost, 4948 SmallVectorImpl<const Formula *> &Workspace, 4949 const Cost &CurCost, 4950 const SmallPtrSet<const SCEV *, 16> &CurRegs, 4951 DenseSet<const SCEV *> &VisitedRegs) const { 4952 // Some ideas: 4953 // - prune more: 4954 // - use more aggressive filtering 4955 // - sort the formula so that the most profitable solutions are found first 4956 // - sort the uses too 4957 // - search faster: 4958 // - don't compute a cost, and then compare. compare while computing a cost 4959 // and bail early. 4960 // - track register sets with SmallBitVector 4961 4962 const LSRUse &LU = Uses[Workspace.size()]; 4963 4964 // If this use references any register that's already a part of the 4965 // in-progress solution, consider it a requirement that a formula must 4966 // reference that register in order to be considered. This prunes out 4967 // unprofitable searching. 4968 SmallSetVector<const SCEV *, 4> ReqRegs; 4969 for (const SCEV *S : CurRegs) 4970 if (LU.Regs.count(S)) 4971 ReqRegs.insert(S); 4972 4973 SmallPtrSet<const SCEV *, 16> NewRegs; 4974 Cost NewCost(L, SE, TTI); 4975 for (const Formula &F : LU.Formulae) { 4976 // Ignore formulae which may not be ideal in terms of register reuse of 4977 // ReqRegs. The formula should use all required registers before 4978 // introducing new ones. 4979 // This can sometimes (notably when trying to favour postinc) lead to 4980 // sub-optimial decisions. There it is best left to the cost modelling to 4981 // get correct. 4982 if (!TTI.shouldFavorPostInc() || LU.Kind != LSRUse::Address) { 4983 int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size()); 4984 for (const SCEV *Reg : ReqRegs) { 4985 if ((F.ScaledReg && F.ScaledReg == Reg) || 4986 is_contained(F.BaseRegs, Reg)) { 4987 --NumReqRegsToFind; 4988 if (NumReqRegsToFind == 0) 4989 break; 4990 } 4991 } 4992 if (NumReqRegsToFind != 0) { 4993 // If none of the formulae satisfied the required registers, then we could 4994 // clear ReqRegs and try again. Currently, we simply give up in this case. 4995 continue; 4996 } 4997 } 4998 4999 // Evaluate the cost of the current formula. If it's already worse than 5000 // the current best, prune the search at that point. 5001 NewCost = CurCost; 5002 NewRegs = CurRegs; 5003 NewCost.RateFormula(F, NewRegs, VisitedRegs, LU); 5004 if (NewCost.isLess(SolutionCost)) { 5005 Workspace.push_back(&F); 5006 if (Workspace.size() != Uses.size()) { 5007 SolveRecurse(Solution, SolutionCost, Workspace, NewCost, 5008 NewRegs, VisitedRegs); 5009 if (F.getNumRegs() == 1 && Workspace.size() == 1) 5010 VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]); 5011 } else { 5012 LLVM_DEBUG(dbgs() << "New best at "; NewCost.print(dbgs()); 5013 dbgs() << ".\nRegs:\n"; 5014 for (const SCEV *S : NewRegs) dbgs() 5015 << "- " << *S << "\n"; 5016 dbgs() << '\n'); 5017 5018 SolutionCost = NewCost; 5019 Solution = Workspace; 5020 } 5021 Workspace.pop_back(); 5022 } 5023 } 5024 } 5025 5026 /// Choose one formula from each use. Return the results in the given Solution 5027 /// vector. 5028 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const { 5029 SmallVector<const Formula *, 8> Workspace; 5030 Cost SolutionCost(L, SE, TTI); 5031 SolutionCost.Lose(); 5032 Cost CurCost(L, SE, TTI); 5033 SmallPtrSet<const SCEV *, 16> CurRegs; 5034 DenseSet<const SCEV *> VisitedRegs; 5035 Workspace.reserve(Uses.size()); 5036 5037 // SolveRecurse does all the work. 5038 SolveRecurse(Solution, SolutionCost, Workspace, CurCost, 5039 CurRegs, VisitedRegs); 5040 if (Solution.empty()) { 5041 LLVM_DEBUG(dbgs() << "\nNo Satisfactory Solution\n"); 5042 return; 5043 } 5044 5045 // Ok, we've now made all our decisions. 5046 LLVM_DEBUG(dbgs() << "\n" 5047 "The chosen solution requires "; 5048 SolutionCost.print(dbgs()); dbgs() << ":\n"; 5049 for (size_t i = 0, e = Uses.size(); i != e; ++i) { 5050 dbgs() << " "; 5051 Uses[i].print(dbgs()); 5052 dbgs() << "\n" 5053 " "; 5054 Solution[i]->print(dbgs()); 5055 dbgs() << '\n'; 5056 }); 5057 5058 assert(Solution.size() == Uses.size() && "Malformed solution!"); 5059 } 5060 5061 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as 5062 /// we can go while still being dominated by the input positions. This helps 5063 /// canonicalize the insert position, which encourages sharing. 5064 BasicBlock::iterator 5065 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP, 5066 const SmallVectorImpl<Instruction *> &Inputs) 5067 const { 5068 Instruction *Tentative = &*IP; 5069 while (true) { 5070 bool AllDominate = true; 5071 Instruction *BetterPos = nullptr; 5072 // Don't bother attempting to insert before a catchswitch, their basic block 5073 // cannot have other non-PHI instructions. 5074 if (isa<CatchSwitchInst>(Tentative)) 5075 return IP; 5076 5077 for (Instruction *Inst : Inputs) { 5078 if (Inst == Tentative || !DT.dominates(Inst, Tentative)) { 5079 AllDominate = false; 5080 break; 5081 } 5082 // Attempt to find an insert position in the middle of the block, 5083 // instead of at the end, so that it can be used for other expansions. 5084 if (Tentative->getParent() == Inst->getParent() && 5085 (!BetterPos || !DT.dominates(Inst, BetterPos))) 5086 BetterPos = &*std::next(BasicBlock::iterator(Inst)); 5087 } 5088 if (!AllDominate) 5089 break; 5090 if (BetterPos) 5091 IP = BetterPos->getIterator(); 5092 else 5093 IP = Tentative->getIterator(); 5094 5095 const Loop *IPLoop = LI.getLoopFor(IP->getParent()); 5096 unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0; 5097 5098 BasicBlock *IDom; 5099 for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) { 5100 if (!Rung) return IP; 5101 Rung = Rung->getIDom(); 5102 if (!Rung) return IP; 5103 IDom = Rung->getBlock(); 5104 5105 // Don't climb into a loop though. 5106 const Loop *IDomLoop = LI.getLoopFor(IDom); 5107 unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0; 5108 if (IDomDepth <= IPLoopDepth && 5109 (IDomDepth != IPLoopDepth || IDomLoop == IPLoop)) 5110 break; 5111 } 5112 5113 Tentative = IDom->getTerminator(); 5114 } 5115 5116 return IP; 5117 } 5118 5119 /// Determine an input position which will be dominated by the operands and 5120 /// which will dominate the result. 5121 BasicBlock::iterator 5122 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP, 5123 const LSRFixup &LF, 5124 const LSRUse &LU, 5125 SCEVExpander &Rewriter) const { 5126 // Collect some instructions which must be dominated by the 5127 // expanding replacement. These must be dominated by any operands that 5128 // will be required in the expansion. 5129 SmallVector<Instruction *, 4> Inputs; 5130 if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace)) 5131 Inputs.push_back(I); 5132 if (LU.Kind == LSRUse::ICmpZero) 5133 if (Instruction *I = 5134 dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1))) 5135 Inputs.push_back(I); 5136 if (LF.PostIncLoops.count(L)) { 5137 if (LF.isUseFullyOutsideLoop(L)) 5138 Inputs.push_back(L->getLoopLatch()->getTerminator()); 5139 else 5140 Inputs.push_back(IVIncInsertPos); 5141 } 5142 // The expansion must also be dominated by the increment positions of any 5143 // loops it for which it is using post-inc mode. 5144 for (const Loop *PIL : LF.PostIncLoops) { 5145 if (PIL == L) continue; 5146 5147 // Be dominated by the loop exit. 5148 SmallVector<BasicBlock *, 4> ExitingBlocks; 5149 PIL->getExitingBlocks(ExitingBlocks); 5150 if (!ExitingBlocks.empty()) { 5151 BasicBlock *BB = ExitingBlocks[0]; 5152 for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i) 5153 BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]); 5154 Inputs.push_back(BB->getTerminator()); 5155 } 5156 } 5157 5158 assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad() 5159 && !isa<DbgInfoIntrinsic>(LowestIP) && 5160 "Insertion point must be a normal instruction"); 5161 5162 // Then, climb up the immediate dominator tree as far as we can go while 5163 // still being dominated by the input positions. 5164 BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs); 5165 5166 // Don't insert instructions before PHI nodes. 5167 while (isa<PHINode>(IP)) ++IP; 5168 5169 // Ignore landingpad instructions. 5170 while (IP->isEHPad()) ++IP; 5171 5172 // Ignore debug intrinsics. 5173 while (isa<DbgInfoIntrinsic>(IP)) ++IP; 5174 5175 // Set IP below instructions recently inserted by SCEVExpander. This keeps the 5176 // IP consistent across expansions and allows the previously inserted 5177 // instructions to be reused by subsequent expansion. 5178 while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP) 5179 ++IP; 5180 5181 return IP; 5182 } 5183 5184 /// Emit instructions for the leading candidate expression for this LSRUse (this 5185 /// is called "expanding"). 5186 Value *LSRInstance::Expand(const LSRUse &LU, const LSRFixup &LF, 5187 const Formula &F, BasicBlock::iterator IP, 5188 SCEVExpander &Rewriter, 5189 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5190 if (LU.RigidFormula) 5191 return LF.OperandValToReplace; 5192 5193 // Determine an input position which will be dominated by the operands and 5194 // which will dominate the result. 5195 IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter); 5196 Rewriter.setInsertPoint(&*IP); 5197 5198 // Inform the Rewriter if we have a post-increment use, so that it can 5199 // perform an advantageous expansion. 5200 Rewriter.setPostInc(LF.PostIncLoops); 5201 5202 // This is the type that the user actually needs. 5203 Type *OpTy = LF.OperandValToReplace->getType(); 5204 // This will be the type that we'll initially expand to. 5205 Type *Ty = F.getType(); 5206 if (!Ty) 5207 // No type known; just expand directly to the ultimate type. 5208 Ty = OpTy; 5209 else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy)) 5210 // Expand directly to the ultimate type if it's the right size. 5211 Ty = OpTy; 5212 // This is the type to do integer arithmetic in. 5213 Type *IntTy = SE.getEffectiveSCEVType(Ty); 5214 5215 // Build up a list of operands to add together to form the full base. 5216 SmallVector<const SCEV *, 8> Ops; 5217 5218 // Expand the BaseRegs portion. 5219 for (const SCEV *Reg : F.BaseRegs) { 5220 assert(!Reg->isZero() && "Zero allocated in a base register!"); 5221 5222 // If we're expanding for a post-inc user, make the post-inc adjustment. 5223 Reg = denormalizeForPostIncUse(Reg, LF.PostIncLoops, SE); 5224 Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr))); 5225 } 5226 5227 // Expand the ScaledReg portion. 5228 Value *ICmpScaledV = nullptr; 5229 if (F.Scale != 0) { 5230 const SCEV *ScaledS = F.ScaledReg; 5231 5232 // If we're expanding for a post-inc user, make the post-inc adjustment. 5233 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 5234 ScaledS = denormalizeForPostIncUse(ScaledS, Loops, SE); 5235 5236 if (LU.Kind == LSRUse::ICmpZero) { 5237 // Expand ScaleReg as if it was part of the base regs. 5238 if (F.Scale == 1) 5239 Ops.push_back( 5240 SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr))); 5241 else { 5242 // An interesting way of "folding" with an icmp is to use a negated 5243 // scale, which we'll implement by inserting it into the other operand 5244 // of the icmp. 5245 assert(F.Scale == -1 && 5246 "The only scale supported by ICmpZero uses is -1!"); 5247 ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr); 5248 } 5249 } else { 5250 // Otherwise just expand the scaled register and an explicit scale, 5251 // which is expected to be matched as part of the address. 5252 5253 // Flush the operand list to suppress SCEVExpander hoisting address modes. 5254 // Unless the addressing mode will not be folded. 5255 if (!Ops.empty() && LU.Kind == LSRUse::Address && 5256 isAMCompletelyFolded(TTI, LU, F)) { 5257 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), nullptr); 5258 Ops.clear(); 5259 Ops.push_back(SE.getUnknown(FullV)); 5260 } 5261 ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)); 5262 if (F.Scale != 1) 5263 ScaledS = 5264 SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale)); 5265 Ops.push_back(ScaledS); 5266 } 5267 } 5268 5269 // Expand the GV portion. 5270 if (F.BaseGV) { 5271 // Flush the operand list to suppress SCEVExpander hoisting. 5272 if (!Ops.empty()) { 5273 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 5274 Ops.clear(); 5275 Ops.push_back(SE.getUnknown(FullV)); 5276 } 5277 Ops.push_back(SE.getUnknown(F.BaseGV)); 5278 } 5279 5280 // Flush the operand list to suppress SCEVExpander hoisting of both folded and 5281 // unfolded offsets. LSR assumes they both live next to their uses. 5282 if (!Ops.empty()) { 5283 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 5284 Ops.clear(); 5285 Ops.push_back(SE.getUnknown(FullV)); 5286 } 5287 5288 // Expand the immediate portion. 5289 int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset; 5290 if (Offset != 0) { 5291 if (LU.Kind == LSRUse::ICmpZero) { 5292 // The other interesting way of "folding" with an ICmpZero is to use a 5293 // negated immediate. 5294 if (!ICmpScaledV) 5295 ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset); 5296 else { 5297 Ops.push_back(SE.getUnknown(ICmpScaledV)); 5298 ICmpScaledV = ConstantInt::get(IntTy, Offset); 5299 } 5300 } else { 5301 // Just add the immediate values. These again are expected to be matched 5302 // as part of the address. 5303 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset))); 5304 } 5305 } 5306 5307 // Expand the unfolded offset portion. 5308 int64_t UnfoldedOffset = F.UnfoldedOffset; 5309 if (UnfoldedOffset != 0) { 5310 // Just add the immediate values. 5311 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, 5312 UnfoldedOffset))); 5313 } 5314 5315 // Emit instructions summing all the operands. 5316 const SCEV *FullS = Ops.empty() ? 5317 SE.getConstant(IntTy, 0) : 5318 SE.getAddExpr(Ops); 5319 Value *FullV = Rewriter.expandCodeFor(FullS, Ty); 5320 5321 // We're done expanding now, so reset the rewriter. 5322 Rewriter.clearPostInc(); 5323 5324 // An ICmpZero Formula represents an ICmp which we're handling as a 5325 // comparison against zero. Now that we've expanded an expression for that 5326 // form, update the ICmp's other operand. 5327 if (LU.Kind == LSRUse::ICmpZero) { 5328 ICmpInst *CI = cast<ICmpInst>(LF.UserInst); 5329 if (auto *OperandIsInstr = dyn_cast<Instruction>(CI->getOperand(1))) 5330 DeadInsts.emplace_back(OperandIsInstr); 5331 assert(!F.BaseGV && "ICmp does not support folding a global value and " 5332 "a scale at the same time!"); 5333 if (F.Scale == -1) { 5334 if (ICmpScaledV->getType() != OpTy) { 5335 Instruction *Cast = 5336 CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false, 5337 OpTy, false), 5338 ICmpScaledV, OpTy, "tmp", CI); 5339 ICmpScaledV = Cast; 5340 } 5341 CI->setOperand(1, ICmpScaledV); 5342 } else { 5343 // A scale of 1 means that the scale has been expanded as part of the 5344 // base regs. 5345 assert((F.Scale == 0 || F.Scale == 1) && 5346 "ICmp does not support folding a global value and " 5347 "a scale at the same time!"); 5348 Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy), 5349 -(uint64_t)Offset); 5350 if (C->getType() != OpTy) 5351 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 5352 OpTy, false), 5353 C, OpTy); 5354 5355 CI->setOperand(1, C); 5356 } 5357 } 5358 5359 return FullV; 5360 } 5361 5362 /// Helper for Rewrite. PHI nodes are special because the use of their operands 5363 /// effectively happens in their predecessor blocks, so the expression may need 5364 /// to be expanded in multiple places. 5365 void LSRInstance::RewriteForPHI( 5366 PHINode *PN, const LSRUse &LU, const LSRFixup &LF, const Formula &F, 5367 SCEVExpander &Rewriter, SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5368 DenseMap<BasicBlock *, Value *> Inserted; 5369 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 5370 if (PN->getIncomingValue(i) == LF.OperandValToReplace) { 5371 bool needUpdateFixups = false; 5372 BasicBlock *BB = PN->getIncomingBlock(i); 5373 5374 // If this is a critical edge, split the edge so that we do not insert 5375 // the code on all predecessor/successor paths. We do this unless this 5376 // is the canonical backedge for this loop, which complicates post-inc 5377 // users. 5378 if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 && 5379 !isa<IndirectBrInst>(BB->getTerminator()) && 5380 !isa<CatchSwitchInst>(BB->getTerminator())) { 5381 BasicBlock *Parent = PN->getParent(); 5382 Loop *PNLoop = LI.getLoopFor(Parent); 5383 if (!PNLoop || Parent != PNLoop->getHeader()) { 5384 // Split the critical edge. 5385 BasicBlock *NewBB = nullptr; 5386 if (!Parent->isLandingPad()) { 5387 NewBB = 5388 SplitCriticalEdge(BB, Parent, 5389 CriticalEdgeSplittingOptions(&DT, &LI, MSSAU) 5390 .setMergeIdenticalEdges() 5391 .setKeepOneInputPHIs()); 5392 } else { 5393 SmallVector<BasicBlock*, 2> NewBBs; 5394 SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI); 5395 NewBB = NewBBs[0]; 5396 } 5397 // If NewBB==NULL, then SplitCriticalEdge refused to split because all 5398 // phi predecessors are identical. The simple thing to do is skip 5399 // splitting in this case rather than complicate the API. 5400 if (NewBB) { 5401 // If PN is outside of the loop and BB is in the loop, we want to 5402 // move the block to be immediately before the PHI block, not 5403 // immediately after BB. 5404 if (L->contains(BB) && !L->contains(PN)) 5405 NewBB->moveBefore(PN->getParent()); 5406 5407 // Splitting the edge can reduce the number of PHI entries we have. 5408 e = PN->getNumIncomingValues(); 5409 BB = NewBB; 5410 i = PN->getBasicBlockIndex(BB); 5411 5412 needUpdateFixups = true; 5413 } 5414 } 5415 } 5416 5417 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair = 5418 Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr))); 5419 if (!Pair.second) 5420 PN->setIncomingValue(i, Pair.first->second); 5421 else { 5422 Value *FullV = Expand(LU, LF, F, BB->getTerminator()->getIterator(), 5423 Rewriter, DeadInsts); 5424 5425 // If this is reuse-by-noop-cast, insert the noop cast. 5426 Type *OpTy = LF.OperandValToReplace->getType(); 5427 if (FullV->getType() != OpTy) 5428 FullV = 5429 CastInst::Create(CastInst::getCastOpcode(FullV, false, 5430 OpTy, false), 5431 FullV, LF.OperandValToReplace->getType(), 5432 "tmp", BB->getTerminator()); 5433 5434 PN->setIncomingValue(i, FullV); 5435 Pair.first->second = FullV; 5436 } 5437 5438 // If LSR splits critical edge and phi node has other pending 5439 // fixup operands, we need to update those pending fixups. Otherwise 5440 // formulae will not be implemented completely and some instructions 5441 // will not be eliminated. 5442 if (needUpdateFixups) { 5443 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) 5444 for (LSRFixup &Fixup : Uses[LUIdx].Fixups) 5445 // If fixup is supposed to rewrite some operand in the phi 5446 // that was just updated, it may be already moved to 5447 // another phi node. Such fixup requires update. 5448 if (Fixup.UserInst == PN) { 5449 // Check if the operand we try to replace still exists in the 5450 // original phi. 5451 bool foundInOriginalPHI = false; 5452 for (const auto &val : PN->incoming_values()) 5453 if (val == Fixup.OperandValToReplace) { 5454 foundInOriginalPHI = true; 5455 break; 5456 } 5457 5458 // If fixup operand found in original PHI - nothing to do. 5459 if (foundInOriginalPHI) 5460 continue; 5461 5462 // Otherwise it might be moved to another PHI and requires update. 5463 // If fixup operand not found in any of the incoming blocks that 5464 // means we have already rewritten it - nothing to do. 5465 for (const auto &Block : PN->blocks()) 5466 for (BasicBlock::iterator I = Block->begin(); isa<PHINode>(I); 5467 ++I) { 5468 PHINode *NewPN = cast<PHINode>(I); 5469 for (const auto &val : NewPN->incoming_values()) 5470 if (val == Fixup.OperandValToReplace) 5471 Fixup.UserInst = NewPN; 5472 } 5473 } 5474 } 5475 } 5476 } 5477 5478 /// Emit instructions for the leading candidate expression for this LSRUse (this 5479 /// is called "expanding"), and update the UserInst to reference the newly 5480 /// expanded value. 5481 void LSRInstance::Rewrite(const LSRUse &LU, const LSRFixup &LF, 5482 const Formula &F, SCEVExpander &Rewriter, 5483 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5484 // First, find an insertion point that dominates UserInst. For PHI nodes, 5485 // find the nearest block which dominates all the relevant uses. 5486 if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) { 5487 RewriteForPHI(PN, LU, LF, F, Rewriter, DeadInsts); 5488 } else { 5489 Value *FullV = 5490 Expand(LU, LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts); 5491 5492 // If this is reuse-by-noop-cast, insert the noop cast. 5493 Type *OpTy = LF.OperandValToReplace->getType(); 5494 if (FullV->getType() != OpTy) { 5495 Instruction *Cast = 5496 CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false), 5497 FullV, OpTy, "tmp", LF.UserInst); 5498 FullV = Cast; 5499 } 5500 5501 // Update the user. ICmpZero is handled specially here (for now) because 5502 // Expand may have updated one of the operands of the icmp already, and 5503 // its new value may happen to be equal to LF.OperandValToReplace, in 5504 // which case doing replaceUsesOfWith leads to replacing both operands 5505 // with the same value. TODO: Reorganize this. 5506 if (LU.Kind == LSRUse::ICmpZero) 5507 LF.UserInst->setOperand(0, FullV); 5508 else 5509 LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV); 5510 } 5511 5512 if (auto *OperandIsInstr = dyn_cast<Instruction>(LF.OperandValToReplace)) 5513 DeadInsts.emplace_back(OperandIsInstr); 5514 } 5515 5516 /// Rewrite all the fixup locations with new values, following the chosen 5517 /// solution. 5518 void LSRInstance::ImplementSolution( 5519 const SmallVectorImpl<const Formula *> &Solution) { 5520 // Keep track of instructions we may have made dead, so that 5521 // we can remove them after we are done working. 5522 SmallVector<WeakTrackingVH, 16> DeadInsts; 5523 5524 SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(), "lsr", 5525 false); 5526 #ifndef NDEBUG 5527 Rewriter.setDebugType(DEBUG_TYPE); 5528 #endif 5529 Rewriter.disableCanonicalMode(); 5530 Rewriter.enableLSRMode(); 5531 Rewriter.setIVIncInsertPos(L, IVIncInsertPos); 5532 5533 // Mark phi nodes that terminate chains so the expander tries to reuse them. 5534 for (const IVChain &Chain : IVChainVec) { 5535 if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst())) 5536 Rewriter.setChainedPhi(PN); 5537 } 5538 5539 // Expand the new value definitions and update the users. 5540 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) 5541 for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) { 5542 Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], Rewriter, DeadInsts); 5543 Changed = true; 5544 } 5545 5546 for (const IVChain &Chain : IVChainVec) { 5547 GenerateIVChain(Chain, Rewriter, DeadInsts); 5548 Changed = true; 5549 } 5550 // Clean up after ourselves. This must be done before deleting any 5551 // instructions. 5552 Rewriter.clear(); 5553 5554 Changed |= RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts, 5555 &TLI, MSSAU); 5556 } 5557 5558 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, 5559 DominatorTree &DT, LoopInfo &LI, 5560 const TargetTransformInfo &TTI, AssumptionCache &AC, 5561 TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU) 5562 : IU(IU), SE(SE), DT(DT), LI(LI), AC(AC), TLI(TLI), TTI(TTI), L(L), 5563 MSSAU(MSSAU), FavorBackedgeIndex(EnableBackedgeIndexing && 5564 TTI.shouldFavorBackedgeIndex(L)) { 5565 // If LoopSimplify form is not available, stay out of trouble. 5566 if (!L->isLoopSimplifyForm()) 5567 return; 5568 5569 // If there's no interesting work to be done, bail early. 5570 if (IU.empty()) return; 5571 5572 // If there's too much analysis to be done, bail early. We won't be able to 5573 // model the problem anyway. 5574 unsigned NumUsers = 0; 5575 for (const IVStrideUse &U : IU) { 5576 if (++NumUsers > MaxIVUsers) { 5577 (void)U; 5578 LLVM_DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U 5579 << "\n"); 5580 return; 5581 } 5582 // Bail out if we have a PHI on an EHPad that gets a value from a 5583 // CatchSwitchInst. Because the CatchSwitchInst cannot be split, there is 5584 // no good place to stick any instructions. 5585 if (auto *PN = dyn_cast<PHINode>(U.getUser())) { 5586 auto *FirstNonPHI = PN->getParent()->getFirstNonPHI(); 5587 if (isa<FuncletPadInst>(FirstNonPHI) || 5588 isa<CatchSwitchInst>(FirstNonPHI)) 5589 for (BasicBlock *PredBB : PN->blocks()) 5590 if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI())) 5591 return; 5592 } 5593 } 5594 5595 #ifndef NDEBUG 5596 // All dominating loops must have preheaders, or SCEVExpander may not be able 5597 // to materialize an AddRecExpr whose Start is an outer AddRecExpr. 5598 // 5599 // IVUsers analysis should only create users that are dominated by simple loop 5600 // headers. Since this loop should dominate all of its users, its user list 5601 // should be empty if this loop itself is not within a simple loop nest. 5602 for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader()); 5603 Rung; Rung = Rung->getIDom()) { 5604 BasicBlock *BB = Rung->getBlock(); 5605 const Loop *DomLoop = LI.getLoopFor(BB); 5606 if (DomLoop && DomLoop->getHeader() == BB) { 5607 assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest"); 5608 } 5609 } 5610 #endif // DEBUG 5611 5612 LLVM_DEBUG(dbgs() << "\nLSR on loop "; 5613 L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false); 5614 dbgs() << ":\n"); 5615 5616 // First, perform some low-level loop optimizations. 5617 OptimizeShadowIV(); 5618 OptimizeLoopTermCond(); 5619 5620 // If loop preparation eliminates all interesting IV users, bail. 5621 if (IU.empty()) return; 5622 5623 // Skip nested loops until we can model them better with formulae. 5624 if (!L->isInnermost()) { 5625 LLVM_DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n"); 5626 return; 5627 } 5628 5629 // Start collecting data and preparing for the solver. 5630 // If number of registers is not the major cost, we cannot benefit from the 5631 // current profitable chain optimization which is based on number of 5632 // registers. 5633 // FIXME: add profitable chain optimization for other kinds major cost, for 5634 // example number of instructions. 5635 if (TTI.isNumRegsMajorCostOfLSR() || StressIVChain) 5636 CollectChains(); 5637 CollectInterestingTypesAndFactors(); 5638 CollectFixupsAndInitialFormulae(); 5639 CollectLoopInvariantFixupsAndFormulae(); 5640 5641 if (Uses.empty()) 5642 return; 5643 5644 LLVM_DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n"; 5645 print_uses(dbgs())); 5646 5647 // Now use the reuse data to generate a bunch of interesting ways 5648 // to formulate the values needed for the uses. 5649 GenerateAllReuseFormulae(); 5650 5651 FilterOutUndesirableDedicatedRegisters(); 5652 NarrowSearchSpaceUsingHeuristics(); 5653 5654 SmallVector<const Formula *, 8> Solution; 5655 Solve(Solution); 5656 5657 // Release memory that is no longer needed. 5658 Factors.clear(); 5659 Types.clear(); 5660 RegUses.clear(); 5661 5662 if (Solution.empty()) 5663 return; 5664 5665 #ifndef NDEBUG 5666 // Formulae should be legal. 5667 for (const LSRUse &LU : Uses) { 5668 for (const Formula &F : LU.Formulae) 5669 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 5670 F) && "Illegal formula generated!"); 5671 }; 5672 #endif 5673 5674 // Now that we've decided what we want, make it so. 5675 ImplementSolution(Solution); 5676 } 5677 5678 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 5679 void LSRInstance::print_factors_and_types(raw_ostream &OS) const { 5680 if (Factors.empty() && Types.empty()) return; 5681 5682 OS << "LSR has identified the following interesting factors and types: "; 5683 bool First = true; 5684 5685 for (int64_t Factor : Factors) { 5686 if (!First) OS << ", "; 5687 First = false; 5688 OS << '*' << Factor; 5689 } 5690 5691 for (Type *Ty : Types) { 5692 if (!First) OS << ", "; 5693 First = false; 5694 OS << '(' << *Ty << ')'; 5695 } 5696 OS << '\n'; 5697 } 5698 5699 void LSRInstance::print_fixups(raw_ostream &OS) const { 5700 OS << "LSR is examining the following fixup sites:\n"; 5701 for (const LSRUse &LU : Uses) 5702 for (const LSRFixup &LF : LU.Fixups) { 5703 dbgs() << " "; 5704 LF.print(OS); 5705 OS << '\n'; 5706 } 5707 } 5708 5709 void LSRInstance::print_uses(raw_ostream &OS) const { 5710 OS << "LSR is examining the following uses:\n"; 5711 for (const LSRUse &LU : Uses) { 5712 dbgs() << " "; 5713 LU.print(OS); 5714 OS << '\n'; 5715 for (const Formula &F : LU.Formulae) { 5716 OS << " "; 5717 F.print(OS); 5718 OS << '\n'; 5719 } 5720 } 5721 } 5722 5723 void LSRInstance::print(raw_ostream &OS) const { 5724 print_factors_and_types(OS); 5725 print_fixups(OS); 5726 print_uses(OS); 5727 } 5728 5729 LLVM_DUMP_METHOD void LSRInstance::dump() const { 5730 print(errs()); errs() << '\n'; 5731 } 5732 #endif 5733 5734 namespace { 5735 5736 class LoopStrengthReduce : public LoopPass { 5737 public: 5738 static char ID; // Pass ID, replacement for typeid 5739 5740 LoopStrengthReduce(); 5741 5742 private: 5743 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 5744 void getAnalysisUsage(AnalysisUsage &AU) const override; 5745 }; 5746 5747 } // end anonymous namespace 5748 5749 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) { 5750 initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry()); 5751 } 5752 5753 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const { 5754 // We split critical edges, so we change the CFG. However, we do update 5755 // many analyses if they are around. 5756 AU.addPreservedID(LoopSimplifyID); 5757 5758 AU.addRequired<LoopInfoWrapperPass>(); 5759 AU.addPreserved<LoopInfoWrapperPass>(); 5760 AU.addRequiredID(LoopSimplifyID); 5761 AU.addRequired<DominatorTreeWrapperPass>(); 5762 AU.addPreserved<DominatorTreeWrapperPass>(); 5763 AU.addRequired<ScalarEvolutionWrapperPass>(); 5764 AU.addPreserved<ScalarEvolutionWrapperPass>(); 5765 AU.addRequired<AssumptionCacheTracker>(); 5766 AU.addRequired<TargetLibraryInfoWrapperPass>(); 5767 // Requiring LoopSimplify a second time here prevents IVUsers from running 5768 // twice, since LoopSimplify was invalidated by running ScalarEvolution. 5769 AU.addRequiredID(LoopSimplifyID); 5770 AU.addRequired<IVUsersWrapperPass>(); 5771 AU.addPreserved<IVUsersWrapperPass>(); 5772 AU.addRequired<TargetTransformInfoWrapperPass>(); 5773 AU.addPreserved<MemorySSAWrapperPass>(); 5774 } 5775 5776 using EqualValues = SmallVector<std::tuple<WeakVH, int64_t, DIExpression *>, 4>; 5777 using EqualValuesMap = DenseMap<DbgValueInst *, EqualValues>; 5778 5779 static void DbgGatherEqualValues(Loop *L, ScalarEvolution &SE, 5780 EqualValuesMap &DbgValueToEqualSet) { 5781 for (auto &B : L->getBlocks()) { 5782 for (auto &I : *B) { 5783 auto DVI = dyn_cast<DbgValueInst>(&I); 5784 if (!DVI) 5785 continue; 5786 auto V = DVI->getVariableLocation(); 5787 if (!V || !SE.isSCEVable(V->getType())) 5788 continue; 5789 auto DbgValueSCEV = SE.getSCEV(V); 5790 EqualValues EqSet; 5791 for (PHINode &Phi : L->getHeader()->phis()) { 5792 if (V->getType() != Phi.getType()) 5793 continue; 5794 if (!SE.isSCEVable(Phi.getType())) 5795 continue; 5796 auto PhiSCEV = SE.getSCEV(&Phi); 5797 Optional<APInt> Offset = 5798 SE.computeConstantDifference(DbgValueSCEV, PhiSCEV); 5799 if (Offset && Offset->getMinSignedBits() <= 64) 5800 EqSet.emplace_back(std::make_tuple( 5801 &Phi, Offset.getValue().getSExtValue(), DVI->getExpression())); 5802 } 5803 DbgValueToEqualSet[DVI] = std::move(EqSet); 5804 } 5805 } 5806 } 5807 5808 static void DbgApplyEqualValues(EqualValuesMap &DbgValueToEqualSet) { 5809 for (auto A : DbgValueToEqualSet) { 5810 auto DVI = A.first; 5811 // Only update those that are now undef. 5812 if (!isa_and_nonnull<UndefValue>(DVI->getVariableLocation())) 5813 continue; 5814 for (auto EV : A.second) { 5815 auto V = std::get<WeakVH>(EV); 5816 if (!V) 5817 continue; 5818 auto DbgDIExpr = std::get<DIExpression *>(EV); 5819 auto Offset = std::get<int64_t>(EV); 5820 auto &Ctx = DVI->getContext(); 5821 DVI->setOperand(0, MetadataAsValue::get(Ctx, ValueAsMetadata::get(V))); 5822 if (Offset) { 5823 SmallVector<uint64_t, 8> Ops; 5824 DIExpression::appendOffset(Ops, Offset); 5825 DbgDIExpr = DIExpression::prependOpcodes(DbgDIExpr, Ops, true); 5826 } 5827 DVI->setOperand(2, MetadataAsValue::get(Ctx, DbgDIExpr)); 5828 break; 5829 } 5830 } 5831 } 5832 5833 static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE, 5834 DominatorTree &DT, LoopInfo &LI, 5835 const TargetTransformInfo &TTI, 5836 AssumptionCache &AC, TargetLibraryInfo &TLI, 5837 MemorySSA *MSSA) { 5838 5839 bool Changed = false; 5840 std::unique_ptr<MemorySSAUpdater> MSSAU; 5841 if (MSSA) 5842 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 5843 5844 // Run the main LSR transformation. 5845 Changed |= 5846 LSRInstance(L, IU, SE, DT, LI, TTI, AC, TLI, MSSAU.get()).getChanged(); 5847 5848 // Debug preservation - before we start removing anything create equivalence 5849 // sets for the llvm.dbg.value intrinsics. 5850 EqualValuesMap DbgValueToEqualSet; 5851 DbgGatherEqualValues(L, SE, DbgValueToEqualSet); 5852 5853 // Remove any extra phis created by processing inner loops. 5854 Changed |= DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get()); 5855 if (EnablePhiElim && L->isLoopSimplifyForm()) { 5856 SmallVector<WeakTrackingVH, 16> DeadInsts; 5857 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 5858 SCEVExpander Rewriter(SE, DL, "lsr", false); 5859 #ifndef NDEBUG 5860 Rewriter.setDebugType(DEBUG_TYPE); 5861 #endif 5862 unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI); 5863 if (numFolded) { 5864 Changed = true; 5865 RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts, &TLI, 5866 MSSAU.get()); 5867 DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get()); 5868 } 5869 } 5870 5871 DbgApplyEqualValues(DbgValueToEqualSet); 5872 5873 return Changed; 5874 } 5875 5876 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) { 5877 if (skipLoop(L)) 5878 return false; 5879 5880 auto &IU = getAnalysis<IVUsersWrapperPass>().getIU(); 5881 auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 5882 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 5883 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 5884 const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI( 5885 *L->getHeader()->getParent()); 5886 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache( 5887 *L->getHeader()->getParent()); 5888 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI( 5889 *L->getHeader()->getParent()); 5890 auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>(); 5891 MemorySSA *MSSA = nullptr; 5892 if (MSSAAnalysis) 5893 MSSA = &MSSAAnalysis->getMSSA(); 5894 return ReduceLoopStrength(L, IU, SE, DT, LI, TTI, AC, TLI, MSSA); 5895 } 5896 5897 PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM, 5898 LoopStandardAnalysisResults &AR, 5899 LPMUpdater &) { 5900 if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE, 5901 AR.DT, AR.LI, AR.TTI, AR.AC, AR.TLI, AR.MSSA)) 5902 return PreservedAnalyses::all(); 5903 5904 auto PA = getLoopPassPreservedAnalyses(); 5905 if (AR.MSSA) 5906 PA.preserve<MemorySSAAnalysis>(); 5907 return PA; 5908 } 5909 5910 char LoopStrengthReduce::ID = 0; 5911 5912 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce", 5913 "Loop Strength Reduction", false, false) 5914 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 5915 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 5916 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 5917 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass) 5918 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 5919 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 5920 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce", 5921 "Loop Strength Reduction", false, false) 5922 5923 Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); } 5924