1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This transformation analyzes and transforms the induction variables (and
10 // computations derived from them) into forms suitable for efficient execution
11 // on the target.
12 //
13 // This pass performs a strength reduction on array references inside loops that
14 // have as one or more of their components the loop induction variable, it
15 // rewrites expressions to take advantage of scaled-index addressing modes
16 // available on the target, and it performs a variety of other optimizations
17 // related to loop induction variables.
18 //
19 // Terminology note: this code has a lot of handling for "post-increment" or
20 // "post-inc" users. This is not talking about post-increment addressing modes;
21 // it is instead talking about code like this:
22 //
23 //   %i = phi [ 0, %entry ], [ %i.next, %latch ]
24 //   ...
25 //   %i.next = add %i, 1
26 //   %c = icmp eq %i.next, %n
27 //
28 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
29 // it's useful to think about these as the same register, with some uses using
30 // the value of the register before the add and some using it after. In this
31 // example, the icmp is a post-increment user, since it uses %i.next, which is
32 // the value of the induction variable after the increment. The other common
33 // case of post-increment users is users outside the loop.
34 //
35 // TODO: More sophistication in the way Formulae are generated and filtered.
36 //
37 // TODO: Handle multiple loops at a time.
38 //
39 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead
40 //       of a GlobalValue?
41 //
42 // TODO: When truncation is free, truncate ICmp users' operands to make it a
43 //       smaller encoding (on x86 at least).
44 //
45 // TODO: When a negated register is used by an add (such as in a list of
46 //       multiple base registers, or as the increment expression in an addrec),
47 //       we may not actually need both reg and (-1 * reg) in registers; the
48 //       negation can be implemented by using a sub instead of an add. The
49 //       lack of support for taking this into consideration when making
50 //       register pressure decisions is partly worked around by the "Special"
51 //       use kind.
52 //
53 //===----------------------------------------------------------------------===//
54 
55 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h"
56 #include "llvm/ADT/APInt.h"
57 #include "llvm/ADT/DenseMap.h"
58 #include "llvm/ADT/DenseSet.h"
59 #include "llvm/ADT/Hashing.h"
60 #include "llvm/ADT/PointerIntPair.h"
61 #include "llvm/ADT/STLExtras.h"
62 #include "llvm/ADT/SetVector.h"
63 #include "llvm/ADT/SmallBitVector.h"
64 #include "llvm/ADT/SmallPtrSet.h"
65 #include "llvm/ADT/SmallSet.h"
66 #include "llvm/ADT/SmallVector.h"
67 #include "llvm/ADT/iterator_range.h"
68 #include "llvm/Analysis/AssumptionCache.h"
69 #include "llvm/Analysis/IVUsers.h"
70 #include "llvm/Analysis/LoopAnalysisManager.h"
71 #include "llvm/Analysis/LoopInfo.h"
72 #include "llvm/Analysis/LoopPass.h"
73 #include "llvm/Analysis/MemorySSA.h"
74 #include "llvm/Analysis/MemorySSAUpdater.h"
75 #include "llvm/Analysis/ScalarEvolution.h"
76 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
77 #include "llvm/Analysis/ScalarEvolutionNormalization.h"
78 #include "llvm/Analysis/TargetLibraryInfo.h"
79 #include "llvm/Analysis/TargetTransformInfo.h"
80 #include "llvm/Config/llvm-config.h"
81 #include "llvm/IR/BasicBlock.h"
82 #include "llvm/IR/Constant.h"
83 #include "llvm/IR/Constants.h"
84 #include "llvm/IR/DebugInfoMetadata.h"
85 #include "llvm/IR/DerivedTypes.h"
86 #include "llvm/IR/Dominators.h"
87 #include "llvm/IR/GlobalValue.h"
88 #include "llvm/IR/IRBuilder.h"
89 #include "llvm/IR/InstrTypes.h"
90 #include "llvm/IR/Instruction.h"
91 #include "llvm/IR/Instructions.h"
92 #include "llvm/IR/IntrinsicInst.h"
93 #include "llvm/IR/Intrinsics.h"
94 #include "llvm/IR/Module.h"
95 #include "llvm/IR/OperandTraits.h"
96 #include "llvm/IR/Operator.h"
97 #include "llvm/IR/PassManager.h"
98 #include "llvm/IR/Type.h"
99 #include "llvm/IR/Use.h"
100 #include "llvm/IR/User.h"
101 #include "llvm/IR/Value.h"
102 #include "llvm/IR/ValueHandle.h"
103 #include "llvm/InitializePasses.h"
104 #include "llvm/Pass.h"
105 #include "llvm/Support/Casting.h"
106 #include "llvm/Support/CommandLine.h"
107 #include "llvm/Support/Compiler.h"
108 #include "llvm/Support/Debug.h"
109 #include "llvm/Support/ErrorHandling.h"
110 #include "llvm/Support/MathExtras.h"
111 #include "llvm/Support/raw_ostream.h"
112 #include "llvm/Transforms/Scalar.h"
113 #include "llvm/Transforms/Utils.h"
114 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
115 #include "llvm/Transforms/Utils/Local.h"
116 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
117 #include <algorithm>
118 #include <cassert>
119 #include <cstddef>
120 #include <cstdint>
121 #include <cstdlib>
122 #include <iterator>
123 #include <limits>
124 #include <map>
125 #include <numeric>
126 #include <utility>
127 
128 using namespace llvm;
129 
130 #define DEBUG_TYPE "loop-reduce"
131 
132 /// MaxIVUsers is an arbitrary threshold that provides an early opportunity for
133 /// bail out. This threshold is far beyond the number of users that LSR can
134 /// conceivably solve, so it should not affect generated code, but catches the
135 /// worst cases before LSR burns too much compile time and stack space.
136 static const unsigned MaxIVUsers = 200;
137 
138 // Temporary flag to cleanup congruent phis after LSR phi expansion.
139 // It's currently disabled until we can determine whether it's truly useful or
140 // not. The flag should be removed after the v3.0 release.
141 // This is now needed for ivchains.
142 static cl::opt<bool> EnablePhiElim(
143   "enable-lsr-phielim", cl::Hidden, cl::init(true),
144   cl::desc("Enable LSR phi elimination"));
145 
146 // The flag adds instruction count to solutions cost comparision.
147 static cl::opt<bool> InsnsCost(
148   "lsr-insns-cost", cl::Hidden, cl::init(true),
149   cl::desc("Add instruction count to a LSR cost model"));
150 
151 // Flag to choose how to narrow complex lsr solution
152 static cl::opt<bool> LSRExpNarrow(
153   "lsr-exp-narrow", cl::Hidden, cl::init(false),
154   cl::desc("Narrow LSR complex solution using"
155            " expectation of registers number"));
156 
157 // Flag to narrow search space by filtering non-optimal formulae with
158 // the same ScaledReg and Scale.
159 static cl::opt<bool> FilterSameScaledReg(
160     "lsr-filter-same-scaled-reg", cl::Hidden, cl::init(true),
161     cl::desc("Narrow LSR search space by filtering non-optimal formulae"
162              " with the same ScaledReg and Scale"));
163 
164 static cl::opt<bool> EnableBackedgeIndexing(
165   "lsr-backedge-indexing", cl::Hidden, cl::init(true),
166   cl::desc("Enable the generation of cross iteration indexed memops"));
167 
168 static cl::opt<unsigned> ComplexityLimit(
169   "lsr-complexity-limit", cl::Hidden,
170   cl::init(std::numeric_limits<uint16_t>::max()),
171   cl::desc("LSR search space complexity limit"));
172 
173 static cl::opt<unsigned> SetupCostDepthLimit(
174     "lsr-setupcost-depth-limit", cl::Hidden, cl::init(7),
175     cl::desc("The limit on recursion depth for LSRs setup cost"));
176 
177 #ifndef NDEBUG
178 // Stress test IV chain generation.
179 static cl::opt<bool> StressIVChain(
180   "stress-ivchain", cl::Hidden, cl::init(false),
181   cl::desc("Stress test LSR IV chains"));
182 #else
183 static bool StressIVChain = false;
184 #endif
185 
186 namespace {
187 
188 struct MemAccessTy {
189   /// Used in situations where the accessed memory type is unknown.
190   static const unsigned UnknownAddressSpace =
191       std::numeric_limits<unsigned>::max();
192 
193   Type *MemTy = nullptr;
194   unsigned AddrSpace = UnknownAddressSpace;
195 
196   MemAccessTy() = default;
197   MemAccessTy(Type *Ty, unsigned AS) : MemTy(Ty), AddrSpace(AS) {}
198 
199   bool operator==(MemAccessTy Other) const {
200     return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace;
201   }
202 
203   bool operator!=(MemAccessTy Other) const { return !(*this == Other); }
204 
205   static MemAccessTy getUnknown(LLVMContext &Ctx,
206                                 unsigned AS = UnknownAddressSpace) {
207     return MemAccessTy(Type::getVoidTy(Ctx), AS);
208   }
209 
210   Type *getType() { return MemTy; }
211 };
212 
213 /// This class holds data which is used to order reuse candidates.
214 class RegSortData {
215 public:
216   /// This represents the set of LSRUse indices which reference
217   /// a particular register.
218   SmallBitVector UsedByIndices;
219 
220   void print(raw_ostream &OS) const;
221   void dump() const;
222 };
223 
224 } // end anonymous namespace
225 
226 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
227 void RegSortData::print(raw_ostream &OS) const {
228   OS << "[NumUses=" << UsedByIndices.count() << ']';
229 }
230 
231 LLVM_DUMP_METHOD void RegSortData::dump() const {
232   print(errs()); errs() << '\n';
233 }
234 #endif
235 
236 namespace {
237 
238 /// Map register candidates to information about how they are used.
239 class RegUseTracker {
240   using RegUsesTy = DenseMap<const SCEV *, RegSortData>;
241 
242   RegUsesTy RegUsesMap;
243   SmallVector<const SCEV *, 16> RegSequence;
244 
245 public:
246   void countRegister(const SCEV *Reg, size_t LUIdx);
247   void dropRegister(const SCEV *Reg, size_t LUIdx);
248   void swapAndDropUse(size_t LUIdx, size_t LastLUIdx);
249 
250   bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
251 
252   const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
253 
254   void clear();
255 
256   using iterator = SmallVectorImpl<const SCEV *>::iterator;
257   using const_iterator = SmallVectorImpl<const SCEV *>::const_iterator;
258 
259   iterator begin() { return RegSequence.begin(); }
260   iterator end()   { return RegSequence.end(); }
261   const_iterator begin() const { return RegSequence.begin(); }
262   const_iterator end() const   { return RegSequence.end(); }
263 };
264 
265 } // end anonymous namespace
266 
267 void
268 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) {
269   std::pair<RegUsesTy::iterator, bool> Pair =
270     RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
271   RegSortData &RSD = Pair.first->second;
272   if (Pair.second)
273     RegSequence.push_back(Reg);
274   RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
275   RSD.UsedByIndices.set(LUIdx);
276 }
277 
278 void
279 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) {
280   RegUsesTy::iterator It = RegUsesMap.find(Reg);
281   assert(It != RegUsesMap.end());
282   RegSortData &RSD = It->second;
283   assert(RSD.UsedByIndices.size() > LUIdx);
284   RSD.UsedByIndices.reset(LUIdx);
285 }
286 
287 void
288 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) {
289   assert(LUIdx <= LastLUIdx);
290 
291   // Update RegUses. The data structure is not optimized for this purpose;
292   // we must iterate through it and update each of the bit vectors.
293   for (auto &Pair : RegUsesMap) {
294     SmallBitVector &UsedByIndices = Pair.second.UsedByIndices;
295     if (LUIdx < UsedByIndices.size())
296       UsedByIndices[LUIdx] =
297         LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false;
298     UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx));
299   }
300 }
301 
302 bool
303 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
304   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
305   if (I == RegUsesMap.end())
306     return false;
307   const SmallBitVector &UsedByIndices = I->second.UsedByIndices;
308   int i = UsedByIndices.find_first();
309   if (i == -1) return false;
310   if ((size_t)i != LUIdx) return true;
311   return UsedByIndices.find_next(i) != -1;
312 }
313 
314 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
315   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
316   assert(I != RegUsesMap.end() && "Unknown register!");
317   return I->second.UsedByIndices;
318 }
319 
320 void RegUseTracker::clear() {
321   RegUsesMap.clear();
322   RegSequence.clear();
323 }
324 
325 namespace {
326 
327 /// This class holds information that describes a formula for computing
328 /// satisfying a use. It may include broken-out immediates and scaled registers.
329 struct Formula {
330   /// Global base address used for complex addressing.
331   GlobalValue *BaseGV = nullptr;
332 
333   /// Base offset for complex addressing.
334   int64_t BaseOffset = 0;
335 
336   /// Whether any complex addressing has a base register.
337   bool HasBaseReg = false;
338 
339   /// The scale of any complex addressing.
340   int64_t Scale = 0;
341 
342   /// The list of "base" registers for this use. When this is non-empty. The
343   /// canonical representation of a formula is
344   /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and
345   /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty().
346   /// 3. The reg containing recurrent expr related with currect loop in the
347   /// formula should be put in the ScaledReg.
348   /// #1 enforces that the scaled register is always used when at least two
349   /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2.
350   /// #2 enforces that 1 * reg is reg.
351   /// #3 ensures invariant regs with respect to current loop can be combined
352   /// together in LSR codegen.
353   /// This invariant can be temporarily broken while building a formula.
354   /// However, every formula inserted into the LSRInstance must be in canonical
355   /// form.
356   SmallVector<const SCEV *, 4> BaseRegs;
357 
358   /// The 'scaled' register for this use. This should be non-null when Scale is
359   /// not zero.
360   const SCEV *ScaledReg = nullptr;
361 
362   /// An additional constant offset which added near the use. This requires a
363   /// temporary register, but the offset itself can live in an add immediate
364   /// field rather than a register.
365   int64_t UnfoldedOffset = 0;
366 
367   Formula() = default;
368 
369   void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE);
370 
371   bool isCanonical(const Loop &L) const;
372 
373   void canonicalize(const Loop &L);
374 
375   bool unscale();
376 
377   bool hasZeroEnd() const;
378 
379   size_t getNumRegs() const;
380   Type *getType() const;
381 
382   void deleteBaseReg(const SCEV *&S);
383 
384   bool referencesReg(const SCEV *S) const;
385   bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
386                                   const RegUseTracker &RegUses) const;
387 
388   void print(raw_ostream &OS) const;
389   void dump() const;
390 };
391 
392 } // end anonymous namespace
393 
394 /// Recursion helper for initialMatch.
395 static void DoInitialMatch(const SCEV *S, Loop *L,
396                            SmallVectorImpl<const SCEV *> &Good,
397                            SmallVectorImpl<const SCEV *> &Bad,
398                            ScalarEvolution &SE) {
399   // Collect expressions which properly dominate the loop header.
400   if (SE.properlyDominates(S, L->getHeader())) {
401     Good.push_back(S);
402     return;
403   }
404 
405   // Look at add operands.
406   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
407     for (const SCEV *S : Add->operands())
408       DoInitialMatch(S, L, Good, Bad, SE);
409     return;
410   }
411 
412   // Look at addrec operands.
413   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
414     if (!AR->getStart()->isZero() && AR->isAffine()) {
415       DoInitialMatch(AR->getStart(), L, Good, Bad, SE);
416       DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
417                                       AR->getStepRecurrence(SE),
418                                       // FIXME: AR->getNoWrapFlags()
419                                       AR->getLoop(), SCEV::FlagAnyWrap),
420                      L, Good, Bad, SE);
421       return;
422     }
423 
424   // Handle a multiplication by -1 (negation) if it didn't fold.
425   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
426     if (Mul->getOperand(0)->isAllOnesValue()) {
427       SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end());
428       const SCEV *NewMul = SE.getMulExpr(Ops);
429 
430       SmallVector<const SCEV *, 4> MyGood;
431       SmallVector<const SCEV *, 4> MyBad;
432       DoInitialMatch(NewMul, L, MyGood, MyBad, SE);
433       const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
434         SE.getEffectiveSCEVType(NewMul->getType())));
435       for (const SCEV *S : MyGood)
436         Good.push_back(SE.getMulExpr(NegOne, S));
437       for (const SCEV *S : MyBad)
438         Bad.push_back(SE.getMulExpr(NegOne, S));
439       return;
440     }
441 
442   // Ok, we can't do anything interesting. Just stuff the whole thing into a
443   // register and hope for the best.
444   Bad.push_back(S);
445 }
446 
447 /// Incorporate loop-variant parts of S into this Formula, attempting to keep
448 /// all loop-invariant and loop-computable values in a single base register.
449 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) {
450   SmallVector<const SCEV *, 4> Good;
451   SmallVector<const SCEV *, 4> Bad;
452   DoInitialMatch(S, L, Good, Bad, SE);
453   if (!Good.empty()) {
454     const SCEV *Sum = SE.getAddExpr(Good);
455     if (!Sum->isZero())
456       BaseRegs.push_back(Sum);
457     HasBaseReg = true;
458   }
459   if (!Bad.empty()) {
460     const SCEV *Sum = SE.getAddExpr(Bad);
461     if (!Sum->isZero())
462       BaseRegs.push_back(Sum);
463     HasBaseReg = true;
464   }
465   canonicalize(*L);
466 }
467 
468 /// Check whether or not this formula satisfies the canonical
469 /// representation.
470 /// \see Formula::BaseRegs.
471 bool Formula::isCanonical(const Loop &L) const {
472   if (!ScaledReg)
473     return BaseRegs.size() <= 1;
474 
475   if (Scale != 1)
476     return true;
477 
478   if (Scale == 1 && BaseRegs.empty())
479     return false;
480 
481   const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg);
482   if (SAR && SAR->getLoop() == &L)
483     return true;
484 
485   // If ScaledReg is not a recurrent expr, or it is but its loop is not current
486   // loop, meanwhile BaseRegs contains a recurrent expr reg related with current
487   // loop, we want to swap the reg in BaseRegs with ScaledReg.
488   auto I = find_if(BaseRegs, [&](const SCEV *S) {
489     return isa<const SCEVAddRecExpr>(S) &&
490            (cast<SCEVAddRecExpr>(S)->getLoop() == &L);
491   });
492   return I == BaseRegs.end();
493 }
494 
495 /// Helper method to morph a formula into its canonical representation.
496 /// \see Formula::BaseRegs.
497 /// Every formula having more than one base register, must use the ScaledReg
498 /// field. Otherwise, we would have to do special cases everywhere in LSR
499 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ...
500 /// On the other hand, 1*reg should be canonicalized into reg.
501 void Formula::canonicalize(const Loop &L) {
502   if (isCanonical(L))
503     return;
504   // So far we did not need this case. This is easy to implement but it is
505   // useless to maintain dead code. Beside it could hurt compile time.
506   assert(!BaseRegs.empty() && "1*reg => reg, should not be needed.");
507 
508   // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg.
509   if (!ScaledReg) {
510     ScaledReg = BaseRegs.back();
511     BaseRegs.pop_back();
512     Scale = 1;
513   }
514 
515   // If ScaledReg is an invariant with respect to L, find the reg from
516   // BaseRegs containing the recurrent expr related with Loop L. Swap the
517   // reg with ScaledReg.
518   const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg);
519   if (!SAR || SAR->getLoop() != &L) {
520     auto I = find_if(BaseRegs, [&](const SCEV *S) {
521       return isa<const SCEVAddRecExpr>(S) &&
522              (cast<SCEVAddRecExpr>(S)->getLoop() == &L);
523     });
524     if (I != BaseRegs.end())
525       std::swap(ScaledReg, *I);
526   }
527 }
528 
529 /// Get rid of the scale in the formula.
530 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2.
531 /// \return true if it was possible to get rid of the scale, false otherwise.
532 /// \note After this operation the formula may not be in the canonical form.
533 bool Formula::unscale() {
534   if (Scale != 1)
535     return false;
536   Scale = 0;
537   BaseRegs.push_back(ScaledReg);
538   ScaledReg = nullptr;
539   return true;
540 }
541 
542 bool Formula::hasZeroEnd() const {
543   if (UnfoldedOffset || BaseOffset)
544     return false;
545   if (BaseRegs.size() != 1 || ScaledReg)
546     return false;
547   return true;
548 }
549 
550 /// Return the total number of register operands used by this formula. This does
551 /// not include register uses implied by non-constant addrec strides.
552 size_t Formula::getNumRegs() const {
553   return !!ScaledReg + BaseRegs.size();
554 }
555 
556 /// Return the type of this formula, if it has one, or null otherwise. This type
557 /// is meaningless except for the bit size.
558 Type *Formula::getType() const {
559   return !BaseRegs.empty() ? BaseRegs.front()->getType() :
560          ScaledReg ? ScaledReg->getType() :
561          BaseGV ? BaseGV->getType() :
562          nullptr;
563 }
564 
565 /// Delete the given base reg from the BaseRegs list.
566 void Formula::deleteBaseReg(const SCEV *&S) {
567   if (&S != &BaseRegs.back())
568     std::swap(S, BaseRegs.back());
569   BaseRegs.pop_back();
570 }
571 
572 /// Test if this formula references the given register.
573 bool Formula::referencesReg(const SCEV *S) const {
574   return S == ScaledReg || is_contained(BaseRegs, S);
575 }
576 
577 /// Test whether this formula uses registers which are used by uses other than
578 /// the use with the given index.
579 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
580                                          const RegUseTracker &RegUses) const {
581   if (ScaledReg)
582     if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
583       return true;
584   for (const SCEV *BaseReg : BaseRegs)
585     if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx))
586       return true;
587   return false;
588 }
589 
590 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
591 void Formula::print(raw_ostream &OS) const {
592   bool First = true;
593   if (BaseGV) {
594     if (!First) OS << " + "; else First = false;
595     BaseGV->printAsOperand(OS, /*PrintType=*/false);
596   }
597   if (BaseOffset != 0) {
598     if (!First) OS << " + "; else First = false;
599     OS << BaseOffset;
600   }
601   for (const SCEV *BaseReg : BaseRegs) {
602     if (!First) OS << " + "; else First = false;
603     OS << "reg(" << *BaseReg << ')';
604   }
605   if (HasBaseReg && BaseRegs.empty()) {
606     if (!First) OS << " + "; else First = false;
607     OS << "**error: HasBaseReg**";
608   } else if (!HasBaseReg && !BaseRegs.empty()) {
609     if (!First) OS << " + "; else First = false;
610     OS << "**error: !HasBaseReg**";
611   }
612   if (Scale != 0) {
613     if (!First) OS << " + "; else First = false;
614     OS << Scale << "*reg(";
615     if (ScaledReg)
616       OS << *ScaledReg;
617     else
618       OS << "<unknown>";
619     OS << ')';
620   }
621   if (UnfoldedOffset != 0) {
622     if (!First) OS << " + ";
623     OS << "imm(" << UnfoldedOffset << ')';
624   }
625 }
626 
627 LLVM_DUMP_METHOD void Formula::dump() const {
628   print(errs()); errs() << '\n';
629 }
630 #endif
631 
632 /// Return true if the given addrec can be sign-extended without changing its
633 /// value.
634 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
635   Type *WideTy =
636     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
637   return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
638 }
639 
640 /// Return true if the given add can be sign-extended without changing its
641 /// value.
642 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
643   Type *WideTy =
644     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
645   return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
646 }
647 
648 /// Return true if the given mul can be sign-extended without changing its
649 /// value.
650 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) {
651   Type *WideTy =
652     IntegerType::get(SE.getContext(),
653                      SE.getTypeSizeInBits(M->getType()) * M->getNumOperands());
654   return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy));
655 }
656 
657 /// Return an expression for LHS /s RHS, if it can be determined and if the
658 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits
659 /// is true, expressions like (X * Y) /s Y are simplified to Y, ignoring that
660 /// the multiplication may overflow, which is useful when the result will be
661 /// used in a context where the most significant bits are ignored.
662 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
663                                 ScalarEvolution &SE,
664                                 bool IgnoreSignificantBits = false) {
665   // Handle the trivial case, which works for any SCEV type.
666   if (LHS == RHS)
667     return SE.getConstant(LHS->getType(), 1);
668 
669   // Handle a few RHS special cases.
670   const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
671   if (RC) {
672     const APInt &RA = RC->getAPInt();
673     // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
674     // some folding.
675     if (RA.isAllOnesValue())
676       return SE.getMulExpr(LHS, RC);
677     // Handle x /s 1 as x.
678     if (RA == 1)
679       return LHS;
680   }
681 
682   // Check for a division of a constant by a constant.
683   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
684     if (!RC)
685       return nullptr;
686     const APInt &LA = C->getAPInt();
687     const APInt &RA = RC->getAPInt();
688     if (LA.srem(RA) != 0)
689       return nullptr;
690     return SE.getConstant(LA.sdiv(RA));
691   }
692 
693   // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
694   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
695     if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) {
696       const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
697                                       IgnoreSignificantBits);
698       if (!Step) return nullptr;
699       const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
700                                        IgnoreSignificantBits);
701       if (!Start) return nullptr;
702       // FlagNW is independent of the start value, step direction, and is
703       // preserved with smaller magnitude steps.
704       // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
705       return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap);
706     }
707     return nullptr;
708   }
709 
710   // Distribute the sdiv over add operands, if the add doesn't overflow.
711   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
712     if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
713       SmallVector<const SCEV *, 8> Ops;
714       for (const SCEV *S : Add->operands()) {
715         const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits);
716         if (!Op) return nullptr;
717         Ops.push_back(Op);
718       }
719       return SE.getAddExpr(Ops);
720     }
721     return nullptr;
722   }
723 
724   // Check for a multiply operand that we can pull RHS out of.
725   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) {
726     if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
727       SmallVector<const SCEV *, 4> Ops;
728       bool Found = false;
729       for (const SCEV *S : Mul->operands()) {
730         if (!Found)
731           if (const SCEV *Q = getExactSDiv(S, RHS, SE,
732                                            IgnoreSignificantBits)) {
733             S = Q;
734             Found = true;
735           }
736         Ops.push_back(S);
737       }
738       return Found ? SE.getMulExpr(Ops) : nullptr;
739     }
740     return nullptr;
741   }
742 
743   // Otherwise we don't know.
744   return nullptr;
745 }
746 
747 /// If S involves the addition of a constant integer value, return that integer
748 /// value, and mutate S to point to a new SCEV with that value excluded.
749 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
750   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
751     if (C->getAPInt().getMinSignedBits() <= 64) {
752       S = SE.getConstant(C->getType(), 0);
753       return C->getValue()->getSExtValue();
754     }
755   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
756     SmallVector<const SCEV *, 8> NewOps(Add->operands());
757     int64_t Result = ExtractImmediate(NewOps.front(), SE);
758     if (Result != 0)
759       S = SE.getAddExpr(NewOps);
760     return Result;
761   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
762     SmallVector<const SCEV *, 8> NewOps(AR->operands());
763     int64_t Result = ExtractImmediate(NewOps.front(), SE);
764     if (Result != 0)
765       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
766                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
767                            SCEV::FlagAnyWrap);
768     return Result;
769   }
770   return 0;
771 }
772 
773 /// If S involves the addition of a GlobalValue address, return that symbol, and
774 /// mutate S to point to a new SCEV with that value excluded.
775 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
776   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
777     if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
778       S = SE.getConstant(GV->getType(), 0);
779       return GV;
780     }
781   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
782     SmallVector<const SCEV *, 8> NewOps(Add->operands());
783     GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
784     if (Result)
785       S = SE.getAddExpr(NewOps);
786     return Result;
787   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
788     SmallVector<const SCEV *, 8> NewOps(AR->operands());
789     GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
790     if (Result)
791       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
792                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
793                            SCEV::FlagAnyWrap);
794     return Result;
795   }
796   return nullptr;
797 }
798 
799 /// Returns true if the specified instruction is using the specified value as an
800 /// address.
801 static bool isAddressUse(const TargetTransformInfo &TTI,
802                          Instruction *Inst, Value *OperandVal) {
803   bool isAddress = isa<LoadInst>(Inst);
804   if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
805     if (SI->getPointerOperand() == OperandVal)
806       isAddress = true;
807   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
808     // Addressing modes can also be folded into prefetches and a variety
809     // of intrinsics.
810     switch (II->getIntrinsicID()) {
811     case Intrinsic::memset:
812     case Intrinsic::prefetch:
813     case Intrinsic::masked_load:
814       if (II->getArgOperand(0) == OperandVal)
815         isAddress = true;
816       break;
817     case Intrinsic::masked_store:
818       if (II->getArgOperand(1) == OperandVal)
819         isAddress = true;
820       break;
821     case Intrinsic::memmove:
822     case Intrinsic::memcpy:
823       if (II->getArgOperand(0) == OperandVal ||
824           II->getArgOperand(1) == OperandVal)
825         isAddress = true;
826       break;
827     default: {
828       MemIntrinsicInfo IntrInfo;
829       if (TTI.getTgtMemIntrinsic(II, IntrInfo)) {
830         if (IntrInfo.PtrVal == OperandVal)
831           isAddress = true;
832       }
833     }
834     }
835   } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
836     if (RMW->getPointerOperand() == OperandVal)
837       isAddress = true;
838   } else if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
839     if (CmpX->getPointerOperand() == OperandVal)
840       isAddress = true;
841   }
842   return isAddress;
843 }
844 
845 /// Return the type of the memory being accessed.
846 static MemAccessTy getAccessType(const TargetTransformInfo &TTI,
847                                  Instruction *Inst, Value *OperandVal) {
848   MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace);
849   if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
850     AccessTy.MemTy = SI->getOperand(0)->getType();
851     AccessTy.AddrSpace = SI->getPointerAddressSpace();
852   } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
853     AccessTy.AddrSpace = LI->getPointerAddressSpace();
854   } else if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
855     AccessTy.AddrSpace = RMW->getPointerAddressSpace();
856   } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
857     AccessTy.AddrSpace = CmpX->getPointerAddressSpace();
858   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
859     switch (II->getIntrinsicID()) {
860     case Intrinsic::prefetch:
861     case Intrinsic::memset:
862       AccessTy.AddrSpace = II->getArgOperand(0)->getType()->getPointerAddressSpace();
863       AccessTy.MemTy = OperandVal->getType();
864       break;
865     case Intrinsic::memmove:
866     case Intrinsic::memcpy:
867       AccessTy.AddrSpace = OperandVal->getType()->getPointerAddressSpace();
868       AccessTy.MemTy = OperandVal->getType();
869       break;
870     case Intrinsic::masked_load:
871       AccessTy.AddrSpace =
872           II->getArgOperand(0)->getType()->getPointerAddressSpace();
873       break;
874     case Intrinsic::masked_store:
875       AccessTy.MemTy = II->getOperand(0)->getType();
876       AccessTy.AddrSpace =
877           II->getArgOperand(1)->getType()->getPointerAddressSpace();
878       break;
879     default: {
880       MemIntrinsicInfo IntrInfo;
881       if (TTI.getTgtMemIntrinsic(II, IntrInfo) && IntrInfo.PtrVal) {
882         AccessTy.AddrSpace
883           = IntrInfo.PtrVal->getType()->getPointerAddressSpace();
884       }
885 
886       break;
887     }
888     }
889   }
890 
891   // All pointers have the same requirements, so canonicalize them to an
892   // arbitrary pointer type to minimize variation.
893   if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy))
894     AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
895                                       PTy->getAddressSpace());
896 
897   return AccessTy;
898 }
899 
900 /// Return true if this AddRec is already a phi in its loop.
901 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
902   for (PHINode &PN : AR->getLoop()->getHeader()->phis()) {
903     if (SE.isSCEVable(PN.getType()) &&
904         (SE.getEffectiveSCEVType(PN.getType()) ==
905          SE.getEffectiveSCEVType(AR->getType())) &&
906         SE.getSCEV(&PN) == AR)
907       return true;
908   }
909   return false;
910 }
911 
912 /// Check if expanding this expression is likely to incur significant cost. This
913 /// is tricky because SCEV doesn't track which expressions are actually computed
914 /// by the current IR.
915 ///
916 /// We currently allow expansion of IV increments that involve adds,
917 /// multiplication by constants, and AddRecs from existing phis.
918 ///
919 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an
920 /// obvious multiple of the UDivExpr.
921 static bool isHighCostExpansion(const SCEV *S,
922                                 SmallPtrSetImpl<const SCEV*> &Processed,
923                                 ScalarEvolution &SE) {
924   // Zero/One operand expressions
925   switch (S->getSCEVType()) {
926   case scUnknown:
927   case scConstant:
928     return false;
929   case scTruncate:
930     return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(),
931                                Processed, SE);
932   case scZeroExtend:
933     return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(),
934                                Processed, SE);
935   case scSignExtend:
936     return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(),
937                                Processed, SE);
938   default:
939     break;
940   }
941 
942   if (!Processed.insert(S).second)
943     return false;
944 
945   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
946     for (const SCEV *S : Add->operands()) {
947       if (isHighCostExpansion(S, Processed, SE))
948         return true;
949     }
950     return false;
951   }
952 
953   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
954     if (Mul->getNumOperands() == 2) {
955       // Multiplication by a constant is ok
956       if (isa<SCEVConstant>(Mul->getOperand(0)))
957         return isHighCostExpansion(Mul->getOperand(1), Processed, SE);
958 
959       // If we have the value of one operand, check if an existing
960       // multiplication already generates this expression.
961       if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) {
962         Value *UVal = U->getValue();
963         for (User *UR : UVal->users()) {
964           // If U is a constant, it may be used by a ConstantExpr.
965           Instruction *UI = dyn_cast<Instruction>(UR);
966           if (UI && UI->getOpcode() == Instruction::Mul &&
967               SE.isSCEVable(UI->getType())) {
968             return SE.getSCEV(UI) == Mul;
969           }
970         }
971       }
972     }
973   }
974 
975   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
976     if (isExistingPhi(AR, SE))
977       return false;
978   }
979 
980   // Fow now, consider any other type of expression (div/mul/min/max) high cost.
981   return true;
982 }
983 
984 namespace {
985 
986 class LSRUse;
987 
988 } // end anonymous namespace
989 
990 /// Check if the addressing mode defined by \p F is completely
991 /// folded in \p LU at isel time.
992 /// This includes address-mode folding and special icmp tricks.
993 /// This function returns true if \p LU can accommodate what \p F
994 /// defines and up to 1 base + 1 scaled + offset.
995 /// In other words, if \p F has several base registers, this function may
996 /// still return true. Therefore, users still need to account for
997 /// additional base registers and/or unfolded offsets to derive an
998 /// accurate cost model.
999 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1000                                  const LSRUse &LU, const Formula &F);
1001 
1002 // Get the cost of the scaling factor used in F for LU.
1003 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
1004                                      const LSRUse &LU, const Formula &F,
1005                                      const Loop &L);
1006 
1007 namespace {
1008 
1009 /// This class is used to measure and compare candidate formulae.
1010 class Cost {
1011   const Loop *L = nullptr;
1012   ScalarEvolution *SE = nullptr;
1013   const TargetTransformInfo *TTI = nullptr;
1014   TargetTransformInfo::LSRCost C;
1015 
1016 public:
1017   Cost() = delete;
1018   Cost(const Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI) :
1019     L(L), SE(&SE), TTI(&TTI) {
1020     C.Insns = 0;
1021     C.NumRegs = 0;
1022     C.AddRecCost = 0;
1023     C.NumIVMuls = 0;
1024     C.NumBaseAdds = 0;
1025     C.ImmCost = 0;
1026     C.SetupCost = 0;
1027     C.ScaleCost = 0;
1028   }
1029 
1030   bool isLess(Cost &Other);
1031 
1032   void Lose();
1033 
1034 #ifndef NDEBUG
1035   // Once any of the metrics loses, they must all remain losers.
1036   bool isValid() {
1037     return ((C.Insns | C.NumRegs | C.AddRecCost | C.NumIVMuls | C.NumBaseAdds
1038              | C.ImmCost | C.SetupCost | C.ScaleCost) != ~0u)
1039       || ((C.Insns & C.NumRegs & C.AddRecCost & C.NumIVMuls & C.NumBaseAdds
1040            & C.ImmCost & C.SetupCost & C.ScaleCost) == ~0u);
1041   }
1042 #endif
1043 
1044   bool isLoser() {
1045     assert(isValid() && "invalid cost");
1046     return C.NumRegs == ~0u;
1047   }
1048 
1049   void RateFormula(const Formula &F,
1050                    SmallPtrSetImpl<const SCEV *> &Regs,
1051                    const DenseSet<const SCEV *> &VisitedRegs,
1052                    const LSRUse &LU,
1053                    SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr);
1054 
1055   void print(raw_ostream &OS) const;
1056   void dump() const;
1057 
1058 private:
1059   void RateRegister(const Formula &F, const SCEV *Reg,
1060                     SmallPtrSetImpl<const SCEV *> &Regs);
1061   void RatePrimaryRegister(const Formula &F, const SCEV *Reg,
1062                            SmallPtrSetImpl<const SCEV *> &Regs,
1063                            SmallPtrSetImpl<const SCEV *> *LoserRegs);
1064 };
1065 
1066 /// An operand value in an instruction which is to be replaced with some
1067 /// equivalent, possibly strength-reduced, replacement.
1068 struct LSRFixup {
1069   /// The instruction which will be updated.
1070   Instruction *UserInst = nullptr;
1071 
1072   /// The operand of the instruction which will be replaced. The operand may be
1073   /// used more than once; every instance will be replaced.
1074   Value *OperandValToReplace = nullptr;
1075 
1076   /// If this user is to use the post-incremented value of an induction
1077   /// variable, this set is non-empty and holds the loops associated with the
1078   /// induction variable.
1079   PostIncLoopSet PostIncLoops;
1080 
1081   /// A constant offset to be added to the LSRUse expression.  This allows
1082   /// multiple fixups to share the same LSRUse with different offsets, for
1083   /// example in an unrolled loop.
1084   int64_t Offset = 0;
1085 
1086   LSRFixup() = default;
1087 
1088   bool isUseFullyOutsideLoop(const Loop *L) const;
1089 
1090   void print(raw_ostream &OS) const;
1091   void dump() const;
1092 };
1093 
1094 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted
1095 /// SmallVectors of const SCEV*.
1096 struct UniquifierDenseMapInfo {
1097   static SmallVector<const SCEV *, 4> getEmptyKey() {
1098     SmallVector<const SCEV *, 4>  V;
1099     V.push_back(reinterpret_cast<const SCEV *>(-1));
1100     return V;
1101   }
1102 
1103   static SmallVector<const SCEV *, 4> getTombstoneKey() {
1104     SmallVector<const SCEV *, 4> V;
1105     V.push_back(reinterpret_cast<const SCEV *>(-2));
1106     return V;
1107   }
1108 
1109   static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) {
1110     return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
1111   }
1112 
1113   static bool isEqual(const SmallVector<const SCEV *, 4> &LHS,
1114                       const SmallVector<const SCEV *, 4> &RHS) {
1115     return LHS == RHS;
1116   }
1117 };
1118 
1119 /// This class holds the state that LSR keeps for each use in IVUsers, as well
1120 /// as uses invented by LSR itself. It includes information about what kinds of
1121 /// things can be folded into the user, information about the user itself, and
1122 /// information about how the use may be satisfied.  TODO: Represent multiple
1123 /// users of the same expression in common?
1124 class LSRUse {
1125   DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier;
1126 
1127 public:
1128   /// An enum for a kind of use, indicating what types of scaled and immediate
1129   /// operands it might support.
1130   enum KindType {
1131     Basic,   ///< A normal use, with no folding.
1132     Special, ///< A special case of basic, allowing -1 scales.
1133     Address, ///< An address use; folding according to TargetLowering
1134     ICmpZero ///< An equality icmp with both operands folded into one.
1135     // TODO: Add a generic icmp too?
1136   };
1137 
1138   using SCEVUseKindPair = PointerIntPair<const SCEV *, 2, KindType>;
1139 
1140   KindType Kind;
1141   MemAccessTy AccessTy;
1142 
1143   /// The list of operands which are to be replaced.
1144   SmallVector<LSRFixup, 8> Fixups;
1145 
1146   /// Keep track of the min and max offsets of the fixups.
1147   int64_t MinOffset = std::numeric_limits<int64_t>::max();
1148   int64_t MaxOffset = std::numeric_limits<int64_t>::min();
1149 
1150   /// This records whether all of the fixups using this LSRUse are outside of
1151   /// the loop, in which case some special-case heuristics may be used.
1152   bool AllFixupsOutsideLoop = true;
1153 
1154   /// RigidFormula is set to true to guarantee that this use will be associated
1155   /// with a single formula--the one that initially matched. Some SCEV
1156   /// expressions cannot be expanded. This allows LSR to consider the registers
1157   /// used by those expressions without the need to expand them later after
1158   /// changing the formula.
1159   bool RigidFormula = false;
1160 
1161   /// This records the widest use type for any fixup using this
1162   /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max
1163   /// fixup widths to be equivalent, because the narrower one may be relying on
1164   /// the implicit truncation to truncate away bogus bits.
1165   Type *WidestFixupType = nullptr;
1166 
1167   /// A list of ways to build a value that can satisfy this user.  After the
1168   /// list is populated, one of these is selected heuristically and used to
1169   /// formulate a replacement for OperandValToReplace in UserInst.
1170   SmallVector<Formula, 12> Formulae;
1171 
1172   /// The set of register candidates used by all formulae in this LSRUse.
1173   SmallPtrSet<const SCEV *, 4> Regs;
1174 
1175   LSRUse(KindType K, MemAccessTy AT) : Kind(K), AccessTy(AT) {}
1176 
1177   LSRFixup &getNewFixup() {
1178     Fixups.push_back(LSRFixup());
1179     return Fixups.back();
1180   }
1181 
1182   void pushFixup(LSRFixup &f) {
1183     Fixups.push_back(f);
1184     if (f.Offset > MaxOffset)
1185       MaxOffset = f.Offset;
1186     if (f.Offset < MinOffset)
1187       MinOffset = f.Offset;
1188   }
1189 
1190   bool HasFormulaWithSameRegs(const Formula &F) const;
1191   float getNotSelectedProbability(const SCEV *Reg) const;
1192   bool InsertFormula(const Formula &F, const Loop &L);
1193   void DeleteFormula(Formula &F);
1194   void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
1195 
1196   void print(raw_ostream &OS) const;
1197   void dump() const;
1198 };
1199 
1200 } // end anonymous namespace
1201 
1202 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1203                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1204                                  GlobalValue *BaseGV, int64_t BaseOffset,
1205                                  bool HasBaseReg, int64_t Scale,
1206                                  Instruction *Fixup = nullptr);
1207 
1208 static unsigned getSetupCost(const SCEV *Reg, unsigned Depth) {
1209   if (isa<SCEVUnknown>(Reg) || isa<SCEVConstant>(Reg))
1210     return 1;
1211   if (Depth == 0)
1212     return 0;
1213   if (const auto *S = dyn_cast<SCEVAddRecExpr>(Reg))
1214     return getSetupCost(S->getStart(), Depth - 1);
1215   if (auto S = dyn_cast<SCEVIntegralCastExpr>(Reg))
1216     return getSetupCost(S->getOperand(), Depth - 1);
1217   if (auto S = dyn_cast<SCEVNAryExpr>(Reg))
1218     return std::accumulate(S->op_begin(), S->op_end(), 0,
1219                            [&](unsigned i, const SCEV *Reg) {
1220                              return i + getSetupCost(Reg, Depth - 1);
1221                            });
1222   if (auto S = dyn_cast<SCEVUDivExpr>(Reg))
1223     return getSetupCost(S->getLHS(), Depth - 1) +
1224            getSetupCost(S->getRHS(), Depth - 1);
1225   return 0;
1226 }
1227 
1228 /// Tally up interesting quantities from the given register.
1229 void Cost::RateRegister(const Formula &F, const SCEV *Reg,
1230                         SmallPtrSetImpl<const SCEV *> &Regs) {
1231   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
1232     // If this is an addrec for another loop, it should be an invariant
1233     // with respect to L since L is the innermost loop (at least
1234     // for now LSR only handles innermost loops).
1235     if (AR->getLoop() != L) {
1236       // If the AddRec exists, consider it's register free and leave it alone.
1237       if (isExistingPhi(AR, *SE) && !TTI->shouldFavorPostInc())
1238         return;
1239 
1240       // It is bad to allow LSR for current loop to add induction variables
1241       // for its sibling loops.
1242       if (!AR->getLoop()->contains(L)) {
1243         Lose();
1244         return;
1245       }
1246 
1247       // Otherwise, it will be an invariant with respect to Loop L.
1248       ++C.NumRegs;
1249       return;
1250     }
1251 
1252     unsigned LoopCost = 1;
1253     if (TTI->isIndexedLoadLegal(TTI->MIM_PostInc, AR->getType()) ||
1254         TTI->isIndexedStoreLegal(TTI->MIM_PostInc, AR->getType())) {
1255 
1256       // If the step size matches the base offset, we could use pre-indexed
1257       // addressing.
1258       if (TTI->shouldFavorBackedgeIndex(L)) {
1259         if (auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)))
1260           if (Step->getAPInt() == F.BaseOffset)
1261             LoopCost = 0;
1262       }
1263 
1264       if (TTI->shouldFavorPostInc()) {
1265         const SCEV *LoopStep = AR->getStepRecurrence(*SE);
1266         if (isa<SCEVConstant>(LoopStep)) {
1267           const SCEV *LoopStart = AR->getStart();
1268           if (!isa<SCEVConstant>(LoopStart) &&
1269               SE->isLoopInvariant(LoopStart, L))
1270             LoopCost = 0;
1271         }
1272       }
1273     }
1274     C.AddRecCost += LoopCost;
1275 
1276     // Add the step value register, if it needs one.
1277     // TODO: The non-affine case isn't precisely modeled here.
1278     if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) {
1279       if (!Regs.count(AR->getOperand(1))) {
1280         RateRegister(F, AR->getOperand(1), Regs);
1281         if (isLoser())
1282           return;
1283       }
1284     }
1285   }
1286   ++C.NumRegs;
1287 
1288   // Rough heuristic; favor registers which don't require extra setup
1289   // instructions in the preheader.
1290   C.SetupCost += getSetupCost(Reg, SetupCostDepthLimit);
1291   // Ensure we don't, even with the recusion limit, produce invalid costs.
1292   C.SetupCost = std::min<unsigned>(C.SetupCost, 1 << 16);
1293 
1294   C.NumIVMuls += isa<SCEVMulExpr>(Reg) &&
1295                SE->hasComputableLoopEvolution(Reg, L);
1296 }
1297 
1298 /// Record this register in the set. If we haven't seen it before, rate
1299 /// it. Optional LoserRegs provides a way to declare any formula that refers to
1300 /// one of those regs an instant loser.
1301 void Cost::RatePrimaryRegister(const Formula &F, const SCEV *Reg,
1302                                SmallPtrSetImpl<const SCEV *> &Regs,
1303                                SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1304   if (LoserRegs && LoserRegs->count(Reg)) {
1305     Lose();
1306     return;
1307   }
1308   if (Regs.insert(Reg).second) {
1309     RateRegister(F, Reg, Regs);
1310     if (LoserRegs && isLoser())
1311       LoserRegs->insert(Reg);
1312   }
1313 }
1314 
1315 void Cost::RateFormula(const Formula &F,
1316                        SmallPtrSetImpl<const SCEV *> &Regs,
1317                        const DenseSet<const SCEV *> &VisitedRegs,
1318                        const LSRUse &LU,
1319                        SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1320   assert(F.isCanonical(*L) && "Cost is accurate only for canonical formula");
1321   // Tally up the registers.
1322   unsigned PrevAddRecCost = C.AddRecCost;
1323   unsigned PrevNumRegs = C.NumRegs;
1324   unsigned PrevNumBaseAdds = C.NumBaseAdds;
1325   if (const SCEV *ScaledReg = F.ScaledReg) {
1326     if (VisitedRegs.count(ScaledReg)) {
1327       Lose();
1328       return;
1329     }
1330     RatePrimaryRegister(F, ScaledReg, Regs, LoserRegs);
1331     if (isLoser())
1332       return;
1333   }
1334   for (const SCEV *BaseReg : F.BaseRegs) {
1335     if (VisitedRegs.count(BaseReg)) {
1336       Lose();
1337       return;
1338     }
1339     RatePrimaryRegister(F, BaseReg, Regs, LoserRegs);
1340     if (isLoser())
1341       return;
1342   }
1343 
1344   // Determine how many (unfolded) adds we'll need inside the loop.
1345   size_t NumBaseParts = F.getNumRegs();
1346   if (NumBaseParts > 1)
1347     // Do not count the base and a possible second register if the target
1348     // allows to fold 2 registers.
1349     C.NumBaseAdds +=
1350         NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(*TTI, LU, F)));
1351   C.NumBaseAdds += (F.UnfoldedOffset != 0);
1352 
1353   // Accumulate non-free scaling amounts.
1354   C.ScaleCost += getScalingFactorCost(*TTI, LU, F, *L);
1355 
1356   // Tally up the non-zero immediates.
1357   for (const LSRFixup &Fixup : LU.Fixups) {
1358     int64_t O = Fixup.Offset;
1359     int64_t Offset = (uint64_t)O + F.BaseOffset;
1360     if (F.BaseGV)
1361       C.ImmCost += 64; // Handle symbolic values conservatively.
1362                      // TODO: This should probably be the pointer size.
1363     else if (Offset != 0)
1364       C.ImmCost += APInt(64, Offset, true).getMinSignedBits();
1365 
1366     // Check with target if this offset with this instruction is
1367     // specifically not supported.
1368     if (LU.Kind == LSRUse::Address && Offset != 0 &&
1369         !isAMCompletelyFolded(*TTI, LSRUse::Address, LU.AccessTy, F.BaseGV,
1370                               Offset, F.HasBaseReg, F.Scale, Fixup.UserInst))
1371       C.NumBaseAdds++;
1372   }
1373 
1374   // If we don't count instruction cost exit here.
1375   if (!InsnsCost) {
1376     assert(isValid() && "invalid cost");
1377     return;
1378   }
1379 
1380   // Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as
1381   // additional instruction (at least fill).
1382   // TODO: Need distinguish register class?
1383   unsigned TTIRegNum = TTI->getNumberOfRegisters(
1384                        TTI->getRegisterClassForType(false, F.getType())) - 1;
1385   if (C.NumRegs > TTIRegNum) {
1386     // Cost already exceeded TTIRegNum, then only newly added register can add
1387     // new instructions.
1388     if (PrevNumRegs > TTIRegNum)
1389       C.Insns += (C.NumRegs - PrevNumRegs);
1390     else
1391       C.Insns += (C.NumRegs - TTIRegNum);
1392   }
1393 
1394   // If ICmpZero formula ends with not 0, it could not be replaced by
1395   // just add or sub. We'll need to compare final result of AddRec.
1396   // That means we'll need an additional instruction. But if the target can
1397   // macro-fuse a compare with a branch, don't count this extra instruction.
1398   // For -10 + {0, +, 1}:
1399   // i = i + 1;
1400   // cmp i, 10
1401   //
1402   // For {-10, +, 1}:
1403   // i = i + 1;
1404   if (LU.Kind == LSRUse::ICmpZero && !F.hasZeroEnd() &&
1405       !TTI->canMacroFuseCmp())
1406     C.Insns++;
1407   // Each new AddRec adds 1 instruction to calculation.
1408   C.Insns += (C.AddRecCost - PrevAddRecCost);
1409 
1410   // BaseAdds adds instructions for unfolded registers.
1411   if (LU.Kind != LSRUse::ICmpZero)
1412     C.Insns += C.NumBaseAdds - PrevNumBaseAdds;
1413   assert(isValid() && "invalid cost");
1414 }
1415 
1416 /// Set this cost to a losing value.
1417 void Cost::Lose() {
1418   C.Insns = std::numeric_limits<unsigned>::max();
1419   C.NumRegs = std::numeric_limits<unsigned>::max();
1420   C.AddRecCost = std::numeric_limits<unsigned>::max();
1421   C.NumIVMuls = std::numeric_limits<unsigned>::max();
1422   C.NumBaseAdds = std::numeric_limits<unsigned>::max();
1423   C.ImmCost = std::numeric_limits<unsigned>::max();
1424   C.SetupCost = std::numeric_limits<unsigned>::max();
1425   C.ScaleCost = std::numeric_limits<unsigned>::max();
1426 }
1427 
1428 /// Choose the lower cost.
1429 bool Cost::isLess(Cost &Other) {
1430   if (InsnsCost.getNumOccurrences() > 0 && InsnsCost &&
1431       C.Insns != Other.C.Insns)
1432     return C.Insns < Other.C.Insns;
1433   return TTI->isLSRCostLess(C, Other.C);
1434 }
1435 
1436 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1437 void Cost::print(raw_ostream &OS) const {
1438   if (InsnsCost)
1439     OS << C.Insns << " instruction" << (C.Insns == 1 ? " " : "s ");
1440   OS << C.NumRegs << " reg" << (C.NumRegs == 1 ? "" : "s");
1441   if (C.AddRecCost != 0)
1442     OS << ", with addrec cost " << C.AddRecCost;
1443   if (C.NumIVMuls != 0)
1444     OS << ", plus " << C.NumIVMuls << " IV mul"
1445        << (C.NumIVMuls == 1 ? "" : "s");
1446   if (C.NumBaseAdds != 0)
1447     OS << ", plus " << C.NumBaseAdds << " base add"
1448        << (C.NumBaseAdds == 1 ? "" : "s");
1449   if (C.ScaleCost != 0)
1450     OS << ", plus " << C.ScaleCost << " scale cost";
1451   if (C.ImmCost != 0)
1452     OS << ", plus " << C.ImmCost << " imm cost";
1453   if (C.SetupCost != 0)
1454     OS << ", plus " << C.SetupCost << " setup cost";
1455 }
1456 
1457 LLVM_DUMP_METHOD void Cost::dump() const {
1458   print(errs()); errs() << '\n';
1459 }
1460 #endif
1461 
1462 /// Test whether this fixup always uses its value outside of the given loop.
1463 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
1464   // PHI nodes use their value in their incoming blocks.
1465   if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
1466     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1467       if (PN->getIncomingValue(i) == OperandValToReplace &&
1468           L->contains(PN->getIncomingBlock(i)))
1469         return false;
1470     return true;
1471   }
1472 
1473   return !L->contains(UserInst);
1474 }
1475 
1476 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1477 void LSRFixup::print(raw_ostream &OS) const {
1478   OS << "UserInst=";
1479   // Store is common and interesting enough to be worth special-casing.
1480   if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
1481     OS << "store ";
1482     Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false);
1483   } else if (UserInst->getType()->isVoidTy())
1484     OS << UserInst->getOpcodeName();
1485   else
1486     UserInst->printAsOperand(OS, /*PrintType=*/false);
1487 
1488   OS << ", OperandValToReplace=";
1489   OperandValToReplace->printAsOperand(OS, /*PrintType=*/false);
1490 
1491   for (const Loop *PIL : PostIncLoops) {
1492     OS << ", PostIncLoop=";
1493     PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
1494   }
1495 
1496   if (Offset != 0)
1497     OS << ", Offset=" << Offset;
1498 }
1499 
1500 LLVM_DUMP_METHOD void LSRFixup::dump() const {
1501   print(errs()); errs() << '\n';
1502 }
1503 #endif
1504 
1505 /// Test whether this use as a formula which has the same registers as the given
1506 /// formula.
1507 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
1508   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1509   if (F.ScaledReg) Key.push_back(F.ScaledReg);
1510   // Unstable sort by host order ok, because this is only used for uniquifying.
1511   llvm::sort(Key);
1512   return Uniquifier.count(Key);
1513 }
1514 
1515 /// The function returns a probability of selecting formula without Reg.
1516 float LSRUse::getNotSelectedProbability(const SCEV *Reg) const {
1517   unsigned FNum = 0;
1518   for (const Formula &F : Formulae)
1519     if (F.referencesReg(Reg))
1520       FNum++;
1521   return ((float)(Formulae.size() - FNum)) / Formulae.size();
1522 }
1523 
1524 /// If the given formula has not yet been inserted, add it to the list, and
1525 /// return true. Return false otherwise.  The formula must be in canonical form.
1526 bool LSRUse::InsertFormula(const Formula &F, const Loop &L) {
1527   assert(F.isCanonical(L) && "Invalid canonical representation");
1528 
1529   if (!Formulae.empty() && RigidFormula)
1530     return false;
1531 
1532   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1533   if (F.ScaledReg) Key.push_back(F.ScaledReg);
1534   // Unstable sort by host order ok, because this is only used for uniquifying.
1535   llvm::sort(Key);
1536 
1537   if (!Uniquifier.insert(Key).second)
1538     return false;
1539 
1540   // Using a register to hold the value of 0 is not profitable.
1541   assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
1542          "Zero allocated in a scaled register!");
1543 #ifndef NDEBUG
1544   for (const SCEV *BaseReg : F.BaseRegs)
1545     assert(!BaseReg->isZero() && "Zero allocated in a base register!");
1546 #endif
1547 
1548   // Add the formula to the list.
1549   Formulae.push_back(F);
1550 
1551   // Record registers now being used by this use.
1552   Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1553   if (F.ScaledReg)
1554     Regs.insert(F.ScaledReg);
1555 
1556   return true;
1557 }
1558 
1559 /// Remove the given formula from this use's list.
1560 void LSRUse::DeleteFormula(Formula &F) {
1561   if (&F != &Formulae.back())
1562     std::swap(F, Formulae.back());
1563   Formulae.pop_back();
1564 }
1565 
1566 /// Recompute the Regs field, and update RegUses.
1567 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
1568   // Now that we've filtered out some formulae, recompute the Regs set.
1569   SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs);
1570   Regs.clear();
1571   for (const Formula &F : Formulae) {
1572     if (F.ScaledReg) Regs.insert(F.ScaledReg);
1573     Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1574   }
1575 
1576   // Update the RegTracker.
1577   for (const SCEV *S : OldRegs)
1578     if (!Regs.count(S))
1579       RegUses.dropRegister(S, LUIdx);
1580 }
1581 
1582 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1583 void LSRUse::print(raw_ostream &OS) const {
1584   OS << "LSR Use: Kind=";
1585   switch (Kind) {
1586   case Basic:    OS << "Basic"; break;
1587   case Special:  OS << "Special"; break;
1588   case ICmpZero: OS << "ICmpZero"; break;
1589   case Address:
1590     OS << "Address of ";
1591     if (AccessTy.MemTy->isPointerTy())
1592       OS << "pointer"; // the full pointer type could be really verbose
1593     else {
1594       OS << *AccessTy.MemTy;
1595     }
1596 
1597     OS << " in addrspace(" << AccessTy.AddrSpace << ')';
1598   }
1599 
1600   OS << ", Offsets={";
1601   bool NeedComma = false;
1602   for (const LSRFixup &Fixup : Fixups) {
1603     if (NeedComma) OS << ',';
1604     OS << Fixup.Offset;
1605     NeedComma = true;
1606   }
1607   OS << '}';
1608 
1609   if (AllFixupsOutsideLoop)
1610     OS << ", all-fixups-outside-loop";
1611 
1612   if (WidestFixupType)
1613     OS << ", widest fixup type: " << *WidestFixupType;
1614 }
1615 
1616 LLVM_DUMP_METHOD void LSRUse::dump() const {
1617   print(errs()); errs() << '\n';
1618 }
1619 #endif
1620 
1621 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1622                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1623                                  GlobalValue *BaseGV, int64_t BaseOffset,
1624                                  bool HasBaseReg, int64_t Scale,
1625                                  Instruction *Fixup/*= nullptr*/) {
1626   switch (Kind) {
1627   case LSRUse::Address:
1628     return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset,
1629                                      HasBaseReg, Scale, AccessTy.AddrSpace, Fixup);
1630 
1631   case LSRUse::ICmpZero:
1632     // There's not even a target hook for querying whether it would be legal to
1633     // fold a GV into an ICmp.
1634     if (BaseGV)
1635       return false;
1636 
1637     // ICmp only has two operands; don't allow more than two non-trivial parts.
1638     if (Scale != 0 && HasBaseReg && BaseOffset != 0)
1639       return false;
1640 
1641     // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
1642     // putting the scaled register in the other operand of the icmp.
1643     if (Scale != 0 && Scale != -1)
1644       return false;
1645 
1646     // If we have low-level target information, ask the target if it can fold an
1647     // integer immediate on an icmp.
1648     if (BaseOffset != 0) {
1649       // We have one of:
1650       // ICmpZero     BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset
1651       // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset
1652       // Offs is the ICmp immediate.
1653       if (Scale == 0)
1654         // The cast does the right thing with
1655         // std::numeric_limits<int64_t>::min().
1656         BaseOffset = -(uint64_t)BaseOffset;
1657       return TTI.isLegalICmpImmediate(BaseOffset);
1658     }
1659 
1660     // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg
1661     return true;
1662 
1663   case LSRUse::Basic:
1664     // Only handle single-register values.
1665     return !BaseGV && Scale == 0 && BaseOffset == 0;
1666 
1667   case LSRUse::Special:
1668     // Special case Basic to handle -1 scales.
1669     return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0;
1670   }
1671 
1672   llvm_unreachable("Invalid LSRUse Kind!");
1673 }
1674 
1675 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1676                                  int64_t MinOffset, int64_t MaxOffset,
1677                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1678                                  GlobalValue *BaseGV, int64_t BaseOffset,
1679                                  bool HasBaseReg, int64_t Scale) {
1680   // Check for overflow.
1681   if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) !=
1682       (MinOffset > 0))
1683     return false;
1684   MinOffset = (uint64_t)BaseOffset + MinOffset;
1685   if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) !=
1686       (MaxOffset > 0))
1687     return false;
1688   MaxOffset = (uint64_t)BaseOffset + MaxOffset;
1689 
1690   return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset,
1691                               HasBaseReg, Scale) &&
1692          isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset,
1693                               HasBaseReg, Scale);
1694 }
1695 
1696 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1697                                  int64_t MinOffset, int64_t MaxOffset,
1698                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1699                                  const Formula &F, const Loop &L) {
1700   // For the purpose of isAMCompletelyFolded either having a canonical formula
1701   // or a scale not equal to zero is correct.
1702   // Problems may arise from non canonical formulae having a scale == 0.
1703   // Strictly speaking it would best to just rely on canonical formulae.
1704   // However, when we generate the scaled formulae, we first check that the
1705   // scaling factor is profitable before computing the actual ScaledReg for
1706   // compile time sake.
1707   assert((F.isCanonical(L) || F.Scale != 0));
1708   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1709                               F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale);
1710 }
1711 
1712 /// Test whether we know how to expand the current formula.
1713 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1714                        int64_t MaxOffset, LSRUse::KindType Kind,
1715                        MemAccessTy AccessTy, GlobalValue *BaseGV,
1716                        int64_t BaseOffset, bool HasBaseReg, int64_t Scale) {
1717   // We know how to expand completely foldable formulae.
1718   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1719                               BaseOffset, HasBaseReg, Scale) ||
1720          // Or formulae that use a base register produced by a sum of base
1721          // registers.
1722          (Scale == 1 &&
1723           isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1724                                BaseGV, BaseOffset, true, 0));
1725 }
1726 
1727 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1728                        int64_t MaxOffset, LSRUse::KindType Kind,
1729                        MemAccessTy AccessTy, const Formula &F) {
1730   return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV,
1731                     F.BaseOffset, F.HasBaseReg, F.Scale);
1732 }
1733 
1734 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1735                                  const LSRUse &LU, const Formula &F) {
1736   // Target may want to look at the user instructions.
1737   if (LU.Kind == LSRUse::Address && TTI.LSRWithInstrQueries()) {
1738     for (const LSRFixup &Fixup : LU.Fixups)
1739       if (!isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV,
1740                                 (F.BaseOffset + Fixup.Offset), F.HasBaseReg,
1741                                 F.Scale, Fixup.UserInst))
1742         return false;
1743     return true;
1744   }
1745 
1746   return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1747                               LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg,
1748                               F.Scale);
1749 }
1750 
1751 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
1752                                      const LSRUse &LU, const Formula &F,
1753                                      const Loop &L) {
1754   if (!F.Scale)
1755     return 0;
1756 
1757   // If the use is not completely folded in that instruction, we will have to
1758   // pay an extra cost only for scale != 1.
1759   if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1760                             LU.AccessTy, F, L))
1761     return F.Scale != 1;
1762 
1763   switch (LU.Kind) {
1764   case LSRUse::Address: {
1765     // Check the scaling factor cost with both the min and max offsets.
1766     int ScaleCostMinOffset = TTI.getScalingFactorCost(
1767         LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg,
1768         F.Scale, LU.AccessTy.AddrSpace);
1769     int ScaleCostMaxOffset = TTI.getScalingFactorCost(
1770         LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg,
1771         F.Scale, LU.AccessTy.AddrSpace);
1772 
1773     assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 &&
1774            "Legal addressing mode has an illegal cost!");
1775     return std::max(ScaleCostMinOffset, ScaleCostMaxOffset);
1776   }
1777   case LSRUse::ICmpZero:
1778   case LSRUse::Basic:
1779   case LSRUse::Special:
1780     // The use is completely folded, i.e., everything is folded into the
1781     // instruction.
1782     return 0;
1783   }
1784 
1785   llvm_unreachable("Invalid LSRUse Kind!");
1786 }
1787 
1788 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1789                              LSRUse::KindType Kind, MemAccessTy AccessTy,
1790                              GlobalValue *BaseGV, int64_t BaseOffset,
1791                              bool HasBaseReg) {
1792   // Fast-path: zero is always foldable.
1793   if (BaseOffset == 0 && !BaseGV) return true;
1794 
1795   // Conservatively, create an address with an immediate and a
1796   // base and a scale.
1797   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1798 
1799   // Canonicalize a scale of 1 to a base register if the formula doesn't
1800   // already have a base register.
1801   if (!HasBaseReg && Scale == 1) {
1802     Scale = 0;
1803     HasBaseReg = true;
1804   }
1805 
1806   return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset,
1807                               HasBaseReg, Scale);
1808 }
1809 
1810 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1811                              ScalarEvolution &SE, int64_t MinOffset,
1812                              int64_t MaxOffset, LSRUse::KindType Kind,
1813                              MemAccessTy AccessTy, const SCEV *S,
1814                              bool HasBaseReg) {
1815   // Fast-path: zero is always foldable.
1816   if (S->isZero()) return true;
1817 
1818   // Conservatively, create an address with an immediate and a
1819   // base and a scale.
1820   int64_t BaseOffset = ExtractImmediate(S, SE);
1821   GlobalValue *BaseGV = ExtractSymbol(S, SE);
1822 
1823   // If there's anything else involved, it's not foldable.
1824   if (!S->isZero()) return false;
1825 
1826   // Fast-path: zero is always foldable.
1827   if (BaseOffset == 0 && !BaseGV) return true;
1828 
1829   // Conservatively, create an address with an immediate and a
1830   // base and a scale.
1831   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1832 
1833   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1834                               BaseOffset, HasBaseReg, Scale);
1835 }
1836 
1837 namespace {
1838 
1839 /// An individual increment in a Chain of IV increments.  Relate an IV user to
1840 /// an expression that computes the IV it uses from the IV used by the previous
1841 /// link in the Chain.
1842 ///
1843 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the
1844 /// original IVOperand. The head of the chain's IVOperand is only valid during
1845 /// chain collection, before LSR replaces IV users. During chain generation,
1846 /// IncExpr can be used to find the new IVOperand that computes the same
1847 /// expression.
1848 struct IVInc {
1849   Instruction *UserInst;
1850   Value* IVOperand;
1851   const SCEV *IncExpr;
1852 
1853   IVInc(Instruction *U, Value *O, const SCEV *E)
1854       : UserInst(U), IVOperand(O), IncExpr(E) {}
1855 };
1856 
1857 // The list of IV increments in program order.  We typically add the head of a
1858 // chain without finding subsequent links.
1859 struct IVChain {
1860   SmallVector<IVInc, 1> Incs;
1861   const SCEV *ExprBase = nullptr;
1862 
1863   IVChain() = default;
1864   IVChain(const IVInc &Head, const SCEV *Base)
1865       : Incs(1, Head), ExprBase(Base) {}
1866 
1867   using const_iterator = SmallVectorImpl<IVInc>::const_iterator;
1868 
1869   // Return the first increment in the chain.
1870   const_iterator begin() const {
1871     assert(!Incs.empty());
1872     return std::next(Incs.begin());
1873   }
1874   const_iterator end() const {
1875     return Incs.end();
1876   }
1877 
1878   // Returns true if this chain contains any increments.
1879   bool hasIncs() const { return Incs.size() >= 2; }
1880 
1881   // Add an IVInc to the end of this chain.
1882   void add(const IVInc &X) { Incs.push_back(X); }
1883 
1884   // Returns the last UserInst in the chain.
1885   Instruction *tailUserInst() const { return Incs.back().UserInst; }
1886 
1887   // Returns true if IncExpr can be profitably added to this chain.
1888   bool isProfitableIncrement(const SCEV *OperExpr,
1889                              const SCEV *IncExpr,
1890                              ScalarEvolution&);
1891 };
1892 
1893 /// Helper for CollectChains to track multiple IV increment uses.  Distinguish
1894 /// between FarUsers that definitely cross IV increments and NearUsers that may
1895 /// be used between IV increments.
1896 struct ChainUsers {
1897   SmallPtrSet<Instruction*, 4> FarUsers;
1898   SmallPtrSet<Instruction*, 4> NearUsers;
1899 };
1900 
1901 /// This class holds state for the main loop strength reduction logic.
1902 class LSRInstance {
1903   IVUsers &IU;
1904   ScalarEvolution &SE;
1905   DominatorTree &DT;
1906   LoopInfo &LI;
1907   AssumptionCache &AC;
1908   TargetLibraryInfo &TLI;
1909   const TargetTransformInfo &TTI;
1910   Loop *const L;
1911   MemorySSAUpdater *MSSAU;
1912   bool FavorBackedgeIndex = false;
1913   bool Changed = false;
1914 
1915   /// This is the insert position that the current loop's induction variable
1916   /// increment should be placed. In simple loops, this is the latch block's
1917   /// terminator. But in more complicated cases, this is a position which will
1918   /// dominate all the in-loop post-increment users.
1919   Instruction *IVIncInsertPos = nullptr;
1920 
1921   /// Interesting factors between use strides.
1922   ///
1923   /// We explicitly use a SetVector which contains a SmallSet, instead of the
1924   /// default, a SmallDenseSet, because we need to use the full range of
1925   /// int64_ts, and there's currently no good way of doing that with
1926   /// SmallDenseSet.
1927   SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors;
1928 
1929   /// Interesting use types, to facilitate truncation reuse.
1930   SmallSetVector<Type *, 4> Types;
1931 
1932   /// The list of interesting uses.
1933   mutable SmallVector<LSRUse, 16> Uses;
1934 
1935   /// Track which uses use which register candidates.
1936   RegUseTracker RegUses;
1937 
1938   // Limit the number of chains to avoid quadratic behavior. We don't expect to
1939   // have more than a few IV increment chains in a loop. Missing a Chain falls
1940   // back to normal LSR behavior for those uses.
1941   static const unsigned MaxChains = 8;
1942 
1943   /// IV users can form a chain of IV increments.
1944   SmallVector<IVChain, MaxChains> IVChainVec;
1945 
1946   /// IV users that belong to profitable IVChains.
1947   SmallPtrSet<Use*, MaxChains> IVIncSet;
1948 
1949   void OptimizeShadowIV();
1950   bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
1951   ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
1952   void OptimizeLoopTermCond();
1953 
1954   void ChainInstruction(Instruction *UserInst, Instruction *IVOper,
1955                         SmallVectorImpl<ChainUsers> &ChainUsersVec);
1956   void FinalizeChain(IVChain &Chain);
1957   void CollectChains();
1958   void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
1959                        SmallVectorImpl<WeakTrackingVH> &DeadInsts);
1960 
1961   void CollectInterestingTypesAndFactors();
1962   void CollectFixupsAndInitialFormulae();
1963 
1964   // Support for sharing of LSRUses between LSRFixups.
1965   using UseMapTy = DenseMap<LSRUse::SCEVUseKindPair, size_t>;
1966   UseMapTy UseMap;
1967 
1968   bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
1969                           LSRUse::KindType Kind, MemAccessTy AccessTy);
1970 
1971   std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind,
1972                                     MemAccessTy AccessTy);
1973 
1974   void DeleteUse(LSRUse &LU, size_t LUIdx);
1975 
1976   LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
1977 
1978   void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1979   void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1980   void CountRegisters(const Formula &F, size_t LUIdx);
1981   bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
1982 
1983   void CollectLoopInvariantFixupsAndFormulae();
1984 
1985   void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
1986                               unsigned Depth = 0);
1987 
1988   void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
1989                                   const Formula &Base, unsigned Depth,
1990                                   size_t Idx, bool IsScaledReg = false);
1991   void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
1992   void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
1993                                    const Formula &Base, size_t Idx,
1994                                    bool IsScaledReg = false);
1995   void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1996   void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx,
1997                                    const Formula &Base,
1998                                    const SmallVectorImpl<int64_t> &Worklist,
1999                                    size_t Idx, bool IsScaledReg = false);
2000   void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
2001   void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
2002   void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
2003   void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
2004   void GenerateCrossUseConstantOffsets();
2005   void GenerateAllReuseFormulae();
2006 
2007   void FilterOutUndesirableDedicatedRegisters();
2008 
2009   size_t EstimateSearchSpaceComplexity() const;
2010   void NarrowSearchSpaceByDetectingSupersets();
2011   void NarrowSearchSpaceByCollapsingUnrolledCode();
2012   void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
2013   void NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
2014   void NarrowSearchSpaceByFilterPostInc();
2015   void NarrowSearchSpaceByDeletingCostlyFormulas();
2016   void NarrowSearchSpaceByPickingWinnerRegs();
2017   void NarrowSearchSpaceUsingHeuristics();
2018 
2019   void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
2020                     Cost &SolutionCost,
2021                     SmallVectorImpl<const Formula *> &Workspace,
2022                     const Cost &CurCost,
2023                     const SmallPtrSet<const SCEV *, 16> &CurRegs,
2024                     DenseSet<const SCEV *> &VisitedRegs) const;
2025   void Solve(SmallVectorImpl<const Formula *> &Solution) const;
2026 
2027   BasicBlock::iterator
2028     HoistInsertPosition(BasicBlock::iterator IP,
2029                         const SmallVectorImpl<Instruction *> &Inputs) const;
2030   BasicBlock::iterator
2031     AdjustInsertPositionForExpand(BasicBlock::iterator IP,
2032                                   const LSRFixup &LF,
2033                                   const LSRUse &LU,
2034                                   SCEVExpander &Rewriter) const;
2035 
2036   Value *Expand(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
2037                 BasicBlock::iterator IP, SCEVExpander &Rewriter,
2038                 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2039   void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF,
2040                      const Formula &F, SCEVExpander &Rewriter,
2041                      SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2042   void Rewrite(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
2043                SCEVExpander &Rewriter,
2044                SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2045   void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution);
2046 
2047 public:
2048   LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT,
2049               LoopInfo &LI, const TargetTransformInfo &TTI, AssumptionCache &AC,
2050               TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU);
2051 
2052   bool getChanged() const { return Changed; }
2053 
2054   void print_factors_and_types(raw_ostream &OS) const;
2055   void print_fixups(raw_ostream &OS) const;
2056   void print_uses(raw_ostream &OS) const;
2057   void print(raw_ostream &OS) const;
2058   void dump() const;
2059 };
2060 
2061 } // end anonymous namespace
2062 
2063 /// If IV is used in a int-to-float cast inside the loop then try to eliminate
2064 /// the cast operation.
2065 void LSRInstance::OptimizeShadowIV() {
2066   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
2067   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2068     return;
2069 
2070   for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
2071        UI != E; /* empty */) {
2072     IVUsers::const_iterator CandidateUI = UI;
2073     ++UI;
2074     Instruction *ShadowUse = CandidateUI->getUser();
2075     Type *DestTy = nullptr;
2076     bool IsSigned = false;
2077 
2078     /* If shadow use is a int->float cast then insert a second IV
2079        to eliminate this cast.
2080 
2081          for (unsigned i = 0; i < n; ++i)
2082            foo((double)i);
2083 
2084        is transformed into
2085 
2086          double d = 0.0;
2087          for (unsigned i = 0; i < n; ++i, ++d)
2088            foo(d);
2089     */
2090     if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) {
2091       IsSigned = false;
2092       DestTy = UCast->getDestTy();
2093     }
2094     else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) {
2095       IsSigned = true;
2096       DestTy = SCast->getDestTy();
2097     }
2098     if (!DestTy) continue;
2099 
2100     // If target does not support DestTy natively then do not apply
2101     // this transformation.
2102     if (!TTI.isTypeLegal(DestTy)) continue;
2103 
2104     PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
2105     if (!PH) continue;
2106     if (PH->getNumIncomingValues() != 2) continue;
2107 
2108     // If the calculation in integers overflows, the result in FP type will
2109     // differ. So we only can do this transformation if we are guaranteed to not
2110     // deal with overflowing values
2111     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PH));
2112     if (!AR) continue;
2113     if (IsSigned && !AR->hasNoSignedWrap()) continue;
2114     if (!IsSigned && !AR->hasNoUnsignedWrap()) continue;
2115 
2116     Type *SrcTy = PH->getType();
2117     int Mantissa = DestTy->getFPMantissaWidth();
2118     if (Mantissa == -1) continue;
2119     if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
2120       continue;
2121 
2122     unsigned Entry, Latch;
2123     if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
2124       Entry = 0;
2125       Latch = 1;
2126     } else {
2127       Entry = 1;
2128       Latch = 0;
2129     }
2130 
2131     ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
2132     if (!Init) continue;
2133     Constant *NewInit = ConstantFP::get(DestTy, IsSigned ?
2134                                         (double)Init->getSExtValue() :
2135                                         (double)Init->getZExtValue());
2136 
2137     BinaryOperator *Incr =
2138       dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
2139     if (!Incr) continue;
2140     if (Incr->getOpcode() != Instruction::Add
2141         && Incr->getOpcode() != Instruction::Sub)
2142       continue;
2143 
2144     /* Initialize new IV, double d = 0.0 in above example. */
2145     ConstantInt *C = nullptr;
2146     if (Incr->getOperand(0) == PH)
2147       C = dyn_cast<ConstantInt>(Incr->getOperand(1));
2148     else if (Incr->getOperand(1) == PH)
2149       C = dyn_cast<ConstantInt>(Incr->getOperand(0));
2150     else
2151       continue;
2152 
2153     if (!C) continue;
2154 
2155     // Ignore negative constants, as the code below doesn't handle them
2156     // correctly. TODO: Remove this restriction.
2157     if (!C->getValue().isStrictlyPositive()) continue;
2158 
2159     /* Add new PHINode. */
2160     PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH);
2161 
2162     /* create new increment. '++d' in above example. */
2163     Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
2164     BinaryOperator *NewIncr =
2165       BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
2166                                Instruction::FAdd : Instruction::FSub,
2167                              NewPH, CFP, "IV.S.next.", Incr);
2168 
2169     NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
2170     NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
2171 
2172     /* Remove cast operation */
2173     ShadowUse->replaceAllUsesWith(NewPH);
2174     ShadowUse->eraseFromParent();
2175     Changed = true;
2176     break;
2177   }
2178 }
2179 
2180 /// If Cond has an operand that is an expression of an IV, set the IV user and
2181 /// stride information and return true, otherwise return false.
2182 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
2183   for (IVStrideUse &U : IU)
2184     if (U.getUser() == Cond) {
2185       // NOTE: we could handle setcc instructions with multiple uses here, but
2186       // InstCombine does it as well for simple uses, it's not clear that it
2187       // occurs enough in real life to handle.
2188       CondUse = &U;
2189       return true;
2190     }
2191   return false;
2192 }
2193 
2194 /// Rewrite the loop's terminating condition if it uses a max computation.
2195 ///
2196 /// This is a narrow solution to a specific, but acute, problem. For loops
2197 /// like this:
2198 ///
2199 ///   i = 0;
2200 ///   do {
2201 ///     p[i] = 0.0;
2202 ///   } while (++i < n);
2203 ///
2204 /// the trip count isn't just 'n', because 'n' might not be positive. And
2205 /// unfortunately this can come up even for loops where the user didn't use
2206 /// a C do-while loop. For example, seemingly well-behaved top-test loops
2207 /// will commonly be lowered like this:
2208 ///
2209 ///   if (n > 0) {
2210 ///     i = 0;
2211 ///     do {
2212 ///       p[i] = 0.0;
2213 ///     } while (++i < n);
2214 ///   }
2215 ///
2216 /// and then it's possible for subsequent optimization to obscure the if
2217 /// test in such a way that indvars can't find it.
2218 ///
2219 /// When indvars can't find the if test in loops like this, it creates a
2220 /// max expression, which allows it to give the loop a canonical
2221 /// induction variable:
2222 ///
2223 ///   i = 0;
2224 ///   max = n < 1 ? 1 : n;
2225 ///   do {
2226 ///     p[i] = 0.0;
2227 ///   } while (++i != max);
2228 ///
2229 /// Canonical induction variables are necessary because the loop passes
2230 /// are designed around them. The most obvious example of this is the
2231 /// LoopInfo analysis, which doesn't remember trip count values. It
2232 /// expects to be able to rediscover the trip count each time it is
2233 /// needed, and it does this using a simple analysis that only succeeds if
2234 /// the loop has a canonical induction variable.
2235 ///
2236 /// However, when it comes time to generate code, the maximum operation
2237 /// can be quite costly, especially if it's inside of an outer loop.
2238 ///
2239 /// This function solves this problem by detecting this type of loop and
2240 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
2241 /// the instructions for the maximum computation.
2242 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
2243   // Check that the loop matches the pattern we're looking for.
2244   if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
2245       Cond->getPredicate() != CmpInst::ICMP_NE)
2246     return Cond;
2247 
2248   SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
2249   if (!Sel || !Sel->hasOneUse()) return Cond;
2250 
2251   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
2252   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2253     return Cond;
2254   const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
2255 
2256   // Add one to the backedge-taken count to get the trip count.
2257   const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount);
2258   if (IterationCount != SE.getSCEV(Sel)) return Cond;
2259 
2260   // Check for a max calculation that matches the pattern. There's no check
2261   // for ICMP_ULE here because the comparison would be with zero, which
2262   // isn't interesting.
2263   CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
2264   const SCEVNAryExpr *Max = nullptr;
2265   if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
2266     Pred = ICmpInst::ICMP_SLE;
2267     Max = S;
2268   } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
2269     Pred = ICmpInst::ICMP_SLT;
2270     Max = S;
2271   } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
2272     Pred = ICmpInst::ICMP_ULT;
2273     Max = U;
2274   } else {
2275     // No match; bail.
2276     return Cond;
2277   }
2278 
2279   // To handle a max with more than two operands, this optimization would
2280   // require additional checking and setup.
2281   if (Max->getNumOperands() != 2)
2282     return Cond;
2283 
2284   const SCEV *MaxLHS = Max->getOperand(0);
2285   const SCEV *MaxRHS = Max->getOperand(1);
2286 
2287   // ScalarEvolution canonicalizes constants to the left. For < and >, look
2288   // for a comparison with 1. For <= and >=, a comparison with zero.
2289   if (!MaxLHS ||
2290       (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
2291     return Cond;
2292 
2293   // Check the relevant induction variable for conformance to
2294   // the pattern.
2295   const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
2296   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
2297   if (!AR || !AR->isAffine() ||
2298       AR->getStart() != One ||
2299       AR->getStepRecurrence(SE) != One)
2300     return Cond;
2301 
2302   assert(AR->getLoop() == L &&
2303          "Loop condition operand is an addrec in a different loop!");
2304 
2305   // Check the right operand of the select, and remember it, as it will
2306   // be used in the new comparison instruction.
2307   Value *NewRHS = nullptr;
2308   if (ICmpInst::isTrueWhenEqual(Pred)) {
2309     // Look for n+1, and grab n.
2310     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
2311       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2312          if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2313            NewRHS = BO->getOperand(0);
2314     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
2315       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2316         if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2317           NewRHS = BO->getOperand(0);
2318     if (!NewRHS)
2319       return Cond;
2320   } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
2321     NewRHS = Sel->getOperand(1);
2322   else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
2323     NewRHS = Sel->getOperand(2);
2324   else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS))
2325     NewRHS = SU->getValue();
2326   else
2327     // Max doesn't match expected pattern.
2328     return Cond;
2329 
2330   // Determine the new comparison opcode. It may be signed or unsigned,
2331   // and the original comparison may be either equality or inequality.
2332   if (Cond->getPredicate() == CmpInst::ICMP_EQ)
2333     Pred = CmpInst::getInversePredicate(Pred);
2334 
2335   // Ok, everything looks ok to change the condition into an SLT or SGE and
2336   // delete the max calculation.
2337   ICmpInst *NewCond =
2338     new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
2339 
2340   // Delete the max calculation instructions.
2341   Cond->replaceAllUsesWith(NewCond);
2342   CondUse->setUser(NewCond);
2343   Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
2344   Cond->eraseFromParent();
2345   Sel->eraseFromParent();
2346   if (Cmp->use_empty())
2347     Cmp->eraseFromParent();
2348   return NewCond;
2349 }
2350 
2351 /// Change loop terminating condition to use the postinc iv when possible.
2352 void
2353 LSRInstance::OptimizeLoopTermCond() {
2354   SmallPtrSet<Instruction *, 4> PostIncs;
2355 
2356   // We need a different set of heuristics for rotated and non-rotated loops.
2357   // If a loop is rotated then the latch is also the backedge, so inserting
2358   // post-inc expressions just before the latch is ideal. To reduce live ranges
2359   // it also makes sense to rewrite terminating conditions to use post-inc
2360   // expressions.
2361   //
2362   // If the loop is not rotated then the latch is not a backedge; the latch
2363   // check is done in the loop head. Adding post-inc expressions before the
2364   // latch will cause overlapping live-ranges of pre-inc and post-inc expressions
2365   // in the loop body. In this case we do *not* want to use post-inc expressions
2366   // in the latch check, and we want to insert post-inc expressions before
2367   // the backedge.
2368   BasicBlock *LatchBlock = L->getLoopLatch();
2369   SmallVector<BasicBlock*, 8> ExitingBlocks;
2370   L->getExitingBlocks(ExitingBlocks);
2371   if (llvm::all_of(ExitingBlocks, [&LatchBlock](const BasicBlock *BB) {
2372         return LatchBlock != BB;
2373       })) {
2374     // The backedge doesn't exit the loop; treat this as a head-tested loop.
2375     IVIncInsertPos = LatchBlock->getTerminator();
2376     return;
2377   }
2378 
2379   // Otherwise treat this as a rotated loop.
2380   for (BasicBlock *ExitingBlock : ExitingBlocks) {
2381     // Get the terminating condition for the loop if possible.  If we
2382     // can, we want to change it to use a post-incremented version of its
2383     // induction variable, to allow coalescing the live ranges for the IV into
2384     // one register value.
2385 
2386     BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
2387     if (!TermBr)
2388       continue;
2389     // FIXME: Overly conservative, termination condition could be an 'or' etc..
2390     if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
2391       continue;
2392 
2393     // Search IVUsesByStride to find Cond's IVUse if there is one.
2394     IVStrideUse *CondUse = nullptr;
2395     ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
2396     if (!FindIVUserForCond(Cond, CondUse))
2397       continue;
2398 
2399     // If the trip count is computed in terms of a max (due to ScalarEvolution
2400     // being unable to find a sufficient guard, for example), change the loop
2401     // comparison to use SLT or ULT instead of NE.
2402     // One consequence of doing this now is that it disrupts the count-down
2403     // optimization. That's not always a bad thing though, because in such
2404     // cases it may still be worthwhile to avoid a max.
2405     Cond = OptimizeMax(Cond, CondUse);
2406 
2407     // If this exiting block dominates the latch block, it may also use
2408     // the post-inc value if it won't be shared with other uses.
2409     // Check for dominance.
2410     if (!DT.dominates(ExitingBlock, LatchBlock))
2411       continue;
2412 
2413     // Conservatively avoid trying to use the post-inc value in non-latch
2414     // exits if there may be pre-inc users in intervening blocks.
2415     if (LatchBlock != ExitingBlock)
2416       for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
2417         // Test if the use is reachable from the exiting block. This dominator
2418         // query is a conservative approximation of reachability.
2419         if (&*UI != CondUse &&
2420             !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
2421           // Conservatively assume there may be reuse if the quotient of their
2422           // strides could be a legal scale.
2423           const SCEV *A = IU.getStride(*CondUse, L);
2424           const SCEV *B = IU.getStride(*UI, L);
2425           if (!A || !B) continue;
2426           if (SE.getTypeSizeInBits(A->getType()) !=
2427               SE.getTypeSizeInBits(B->getType())) {
2428             if (SE.getTypeSizeInBits(A->getType()) >
2429                 SE.getTypeSizeInBits(B->getType()))
2430               B = SE.getSignExtendExpr(B, A->getType());
2431             else
2432               A = SE.getSignExtendExpr(A, B->getType());
2433           }
2434           if (const SCEVConstant *D =
2435                 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
2436             const ConstantInt *C = D->getValue();
2437             // Stride of one or negative one can have reuse with non-addresses.
2438             if (C->isOne() || C->isMinusOne())
2439               goto decline_post_inc;
2440             // Avoid weird situations.
2441             if (C->getValue().getMinSignedBits() >= 64 ||
2442                 C->getValue().isMinSignedValue())
2443               goto decline_post_inc;
2444             // Check for possible scaled-address reuse.
2445             if (isAddressUse(TTI, UI->getUser(), UI->getOperandValToReplace())) {
2446               MemAccessTy AccessTy = getAccessType(
2447                   TTI, UI->getUser(), UI->getOperandValToReplace());
2448               int64_t Scale = C->getSExtValue();
2449               if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2450                                             /*BaseOffset=*/0,
2451                                             /*HasBaseReg=*/false, Scale,
2452                                             AccessTy.AddrSpace))
2453                 goto decline_post_inc;
2454               Scale = -Scale;
2455               if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2456                                             /*BaseOffset=*/0,
2457                                             /*HasBaseReg=*/false, Scale,
2458                                             AccessTy.AddrSpace))
2459                 goto decline_post_inc;
2460             }
2461           }
2462         }
2463 
2464     LLVM_DEBUG(dbgs() << "  Change loop exiting icmp to use postinc iv: "
2465                       << *Cond << '\n');
2466 
2467     // It's possible for the setcc instruction to be anywhere in the loop, and
2468     // possible for it to have multiple users.  If it is not immediately before
2469     // the exiting block branch, move it.
2470     if (&*++BasicBlock::iterator(Cond) != TermBr) {
2471       if (Cond->hasOneUse()) {
2472         Cond->moveBefore(TermBr);
2473       } else {
2474         // Clone the terminating condition and insert into the loopend.
2475         ICmpInst *OldCond = Cond;
2476         Cond = cast<ICmpInst>(Cond->clone());
2477         Cond->setName(L->getHeader()->getName() + ".termcond");
2478         ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond);
2479 
2480         // Clone the IVUse, as the old use still exists!
2481         CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
2482         TermBr->replaceUsesOfWith(OldCond, Cond);
2483       }
2484     }
2485 
2486     // If we get to here, we know that we can transform the setcc instruction to
2487     // use the post-incremented version of the IV, allowing us to coalesce the
2488     // live ranges for the IV correctly.
2489     CondUse->transformToPostInc(L);
2490     Changed = true;
2491 
2492     PostIncs.insert(Cond);
2493   decline_post_inc:;
2494   }
2495 
2496   // Determine an insertion point for the loop induction variable increment. It
2497   // must dominate all the post-inc comparisons we just set up, and it must
2498   // dominate the loop latch edge.
2499   IVIncInsertPos = L->getLoopLatch()->getTerminator();
2500   for (Instruction *Inst : PostIncs) {
2501     BasicBlock *BB =
2502       DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
2503                                     Inst->getParent());
2504     if (BB == Inst->getParent())
2505       IVIncInsertPos = Inst;
2506     else if (BB != IVIncInsertPos->getParent())
2507       IVIncInsertPos = BB->getTerminator();
2508   }
2509 }
2510 
2511 /// Determine if the given use can accommodate a fixup at the given offset and
2512 /// other details. If so, update the use and return true.
2513 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset,
2514                                      bool HasBaseReg, LSRUse::KindType Kind,
2515                                      MemAccessTy AccessTy) {
2516   int64_t NewMinOffset = LU.MinOffset;
2517   int64_t NewMaxOffset = LU.MaxOffset;
2518   MemAccessTy NewAccessTy = AccessTy;
2519 
2520   // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
2521   // something conservative, however this can pessimize in the case that one of
2522   // the uses will have all its uses outside the loop, for example.
2523   if (LU.Kind != Kind)
2524     return false;
2525 
2526   // Check for a mismatched access type, and fall back conservatively as needed.
2527   // TODO: Be less conservative when the type is similar and can use the same
2528   // addressing modes.
2529   if (Kind == LSRUse::Address) {
2530     if (AccessTy.MemTy != LU.AccessTy.MemTy) {
2531       NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(),
2532                                             AccessTy.AddrSpace);
2533     }
2534   }
2535 
2536   // Conservatively assume HasBaseReg is true for now.
2537   if (NewOffset < LU.MinOffset) {
2538     if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2539                           LU.MaxOffset - NewOffset, HasBaseReg))
2540       return false;
2541     NewMinOffset = NewOffset;
2542   } else if (NewOffset > LU.MaxOffset) {
2543     if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2544                           NewOffset - LU.MinOffset, HasBaseReg))
2545       return false;
2546     NewMaxOffset = NewOffset;
2547   }
2548 
2549   // Update the use.
2550   LU.MinOffset = NewMinOffset;
2551   LU.MaxOffset = NewMaxOffset;
2552   LU.AccessTy = NewAccessTy;
2553   return true;
2554 }
2555 
2556 /// Return an LSRUse index and an offset value for a fixup which needs the given
2557 /// expression, with the given kind and optional access type.  Either reuse an
2558 /// existing use or create a new one, as needed.
2559 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr,
2560                                                LSRUse::KindType Kind,
2561                                                MemAccessTy AccessTy) {
2562   const SCEV *Copy = Expr;
2563   int64_t Offset = ExtractImmediate(Expr, SE);
2564 
2565   // Basic uses can't accept any offset, for example.
2566   if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr,
2567                         Offset, /*HasBaseReg=*/ true)) {
2568     Expr = Copy;
2569     Offset = 0;
2570   }
2571 
2572   std::pair<UseMapTy::iterator, bool> P =
2573     UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0));
2574   if (!P.second) {
2575     // A use already existed with this base.
2576     size_t LUIdx = P.first->second;
2577     LSRUse &LU = Uses[LUIdx];
2578     if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
2579       // Reuse this use.
2580       return std::make_pair(LUIdx, Offset);
2581   }
2582 
2583   // Create a new use.
2584   size_t LUIdx = Uses.size();
2585   P.first->second = LUIdx;
2586   Uses.push_back(LSRUse(Kind, AccessTy));
2587   LSRUse &LU = Uses[LUIdx];
2588 
2589   LU.MinOffset = Offset;
2590   LU.MaxOffset = Offset;
2591   return std::make_pair(LUIdx, Offset);
2592 }
2593 
2594 /// Delete the given use from the Uses list.
2595 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) {
2596   if (&LU != &Uses.back())
2597     std::swap(LU, Uses.back());
2598   Uses.pop_back();
2599 
2600   // Update RegUses.
2601   RegUses.swapAndDropUse(LUIdx, Uses.size());
2602 }
2603 
2604 /// Look for a use distinct from OrigLU which is has a formula that has the same
2605 /// registers as the given formula.
2606 LSRUse *
2607 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
2608                                        const LSRUse &OrigLU) {
2609   // Search all uses for the formula. This could be more clever.
2610   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2611     LSRUse &LU = Uses[LUIdx];
2612     // Check whether this use is close enough to OrigLU, to see whether it's
2613     // worthwhile looking through its formulae.
2614     // Ignore ICmpZero uses because they may contain formulae generated by
2615     // GenerateICmpZeroScales, in which case adding fixup offsets may
2616     // be invalid.
2617     if (&LU != &OrigLU &&
2618         LU.Kind != LSRUse::ICmpZero &&
2619         LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
2620         LU.WidestFixupType == OrigLU.WidestFixupType &&
2621         LU.HasFormulaWithSameRegs(OrigF)) {
2622       // Scan through this use's formulae.
2623       for (const Formula &F : LU.Formulae) {
2624         // Check to see if this formula has the same registers and symbols
2625         // as OrigF.
2626         if (F.BaseRegs == OrigF.BaseRegs &&
2627             F.ScaledReg == OrigF.ScaledReg &&
2628             F.BaseGV == OrigF.BaseGV &&
2629             F.Scale == OrigF.Scale &&
2630             F.UnfoldedOffset == OrigF.UnfoldedOffset) {
2631           if (F.BaseOffset == 0)
2632             return &LU;
2633           // This is the formula where all the registers and symbols matched;
2634           // there aren't going to be any others. Since we declined it, we
2635           // can skip the rest of the formulae and proceed to the next LSRUse.
2636           break;
2637         }
2638       }
2639     }
2640   }
2641 
2642   // Nothing looked good.
2643   return nullptr;
2644 }
2645 
2646 void LSRInstance::CollectInterestingTypesAndFactors() {
2647   SmallSetVector<const SCEV *, 4> Strides;
2648 
2649   // Collect interesting types and strides.
2650   SmallVector<const SCEV *, 4> Worklist;
2651   for (const IVStrideUse &U : IU) {
2652     const SCEV *Expr = IU.getExpr(U);
2653 
2654     // Collect interesting types.
2655     Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
2656 
2657     // Add strides for mentioned loops.
2658     Worklist.push_back(Expr);
2659     do {
2660       const SCEV *S = Worklist.pop_back_val();
2661       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2662         if (AR->getLoop() == L)
2663           Strides.insert(AR->getStepRecurrence(SE));
2664         Worklist.push_back(AR->getStart());
2665       } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2666         Worklist.append(Add->op_begin(), Add->op_end());
2667       }
2668     } while (!Worklist.empty());
2669   }
2670 
2671   // Compute interesting factors from the set of interesting strides.
2672   for (SmallSetVector<const SCEV *, 4>::const_iterator
2673        I = Strides.begin(), E = Strides.end(); I != E; ++I)
2674     for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
2675          std::next(I); NewStrideIter != E; ++NewStrideIter) {
2676       const SCEV *OldStride = *I;
2677       const SCEV *NewStride = *NewStrideIter;
2678 
2679       if (SE.getTypeSizeInBits(OldStride->getType()) !=
2680           SE.getTypeSizeInBits(NewStride->getType())) {
2681         if (SE.getTypeSizeInBits(OldStride->getType()) >
2682             SE.getTypeSizeInBits(NewStride->getType()))
2683           NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
2684         else
2685           OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
2686       }
2687       if (const SCEVConstant *Factor =
2688             dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
2689                                                         SE, true))) {
2690         if (Factor->getAPInt().getMinSignedBits() <= 64)
2691           Factors.insert(Factor->getAPInt().getSExtValue());
2692       } else if (const SCEVConstant *Factor =
2693                    dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
2694                                                                NewStride,
2695                                                                SE, true))) {
2696         if (Factor->getAPInt().getMinSignedBits() <= 64)
2697           Factors.insert(Factor->getAPInt().getSExtValue());
2698       }
2699     }
2700 
2701   // If all uses use the same type, don't bother looking for truncation-based
2702   // reuse.
2703   if (Types.size() == 1)
2704     Types.clear();
2705 
2706   LLVM_DEBUG(print_factors_and_types(dbgs()));
2707 }
2708 
2709 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in
2710 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to
2711 /// IVStrideUses, we could partially skip this.
2712 static User::op_iterator
2713 findIVOperand(User::op_iterator OI, User::op_iterator OE,
2714               Loop *L, ScalarEvolution &SE) {
2715   for(; OI != OE; ++OI) {
2716     if (Instruction *Oper = dyn_cast<Instruction>(*OI)) {
2717       if (!SE.isSCEVable(Oper->getType()))
2718         continue;
2719 
2720       if (const SCEVAddRecExpr *AR =
2721           dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) {
2722         if (AR->getLoop() == L)
2723           break;
2724       }
2725     }
2726   }
2727   return OI;
2728 }
2729 
2730 /// IVChain logic must consistently peek base TruncInst operands, so wrap it in
2731 /// a convenient helper.
2732 static Value *getWideOperand(Value *Oper) {
2733   if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper))
2734     return Trunc->getOperand(0);
2735   return Oper;
2736 }
2737 
2738 /// Return true if we allow an IV chain to include both types.
2739 static bool isCompatibleIVType(Value *LVal, Value *RVal) {
2740   Type *LType = LVal->getType();
2741   Type *RType = RVal->getType();
2742   return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy() &&
2743                               // Different address spaces means (possibly)
2744                               // different types of the pointer implementation,
2745                               // e.g. i16 vs i32 so disallow that.
2746                               (LType->getPointerAddressSpace() ==
2747                                RType->getPointerAddressSpace()));
2748 }
2749 
2750 /// Return an approximation of this SCEV expression's "base", or NULL for any
2751 /// constant. Returning the expression itself is conservative. Returning a
2752 /// deeper subexpression is more precise and valid as long as it isn't less
2753 /// complex than another subexpression. For expressions involving multiple
2754 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids
2755 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i],
2756 /// IVInc==b-a.
2757 ///
2758 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost
2759 /// SCEVUnknown, we simply return the rightmost SCEV operand.
2760 static const SCEV *getExprBase(const SCEV *S) {
2761   switch (S->getSCEVType()) {
2762   default: // uncluding scUnknown.
2763     return S;
2764   case scConstant:
2765     return nullptr;
2766   case scTruncate:
2767     return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand());
2768   case scZeroExtend:
2769     return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand());
2770   case scSignExtend:
2771     return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand());
2772   case scAddExpr: {
2773     // Skip over scaled operands (scMulExpr) to follow add operands as long as
2774     // there's nothing more complex.
2775     // FIXME: not sure if we want to recognize negation.
2776     const SCEVAddExpr *Add = cast<SCEVAddExpr>(S);
2777     for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()),
2778            E(Add->op_begin()); I != E; ++I) {
2779       const SCEV *SubExpr = *I;
2780       if (SubExpr->getSCEVType() == scAddExpr)
2781         return getExprBase(SubExpr);
2782 
2783       if (SubExpr->getSCEVType() != scMulExpr)
2784         return SubExpr;
2785     }
2786     return S; // all operands are scaled, be conservative.
2787   }
2788   case scAddRecExpr:
2789     return getExprBase(cast<SCEVAddRecExpr>(S)->getStart());
2790   }
2791   llvm_unreachable("Unknown SCEV kind!");
2792 }
2793 
2794 /// Return true if the chain increment is profitable to expand into a loop
2795 /// invariant value, which may require its own register. A profitable chain
2796 /// increment will be an offset relative to the same base. We allow such offsets
2797 /// to potentially be used as chain increment as long as it's not obviously
2798 /// expensive to expand using real instructions.
2799 bool IVChain::isProfitableIncrement(const SCEV *OperExpr,
2800                                     const SCEV *IncExpr,
2801                                     ScalarEvolution &SE) {
2802   // Aggressively form chains when -stress-ivchain.
2803   if (StressIVChain)
2804     return true;
2805 
2806   // Do not replace a constant offset from IV head with a nonconstant IV
2807   // increment.
2808   if (!isa<SCEVConstant>(IncExpr)) {
2809     const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand));
2810     if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr)))
2811       return false;
2812   }
2813 
2814   SmallPtrSet<const SCEV*, 8> Processed;
2815   return !isHighCostExpansion(IncExpr, Processed, SE);
2816 }
2817 
2818 /// Return true if the number of registers needed for the chain is estimated to
2819 /// be less than the number required for the individual IV users. First prohibit
2820 /// any IV users that keep the IV live across increments (the Users set should
2821 /// be empty). Next count the number and type of increments in the chain.
2822 ///
2823 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't
2824 /// effectively use postinc addressing modes. Only consider it profitable it the
2825 /// increments can be computed in fewer registers when chained.
2826 ///
2827 /// TODO: Consider IVInc free if it's already used in another chains.
2828 static bool isProfitableChain(IVChain &Chain,
2829                               SmallPtrSetImpl<Instruction *> &Users,
2830                               ScalarEvolution &SE,
2831                               const TargetTransformInfo &TTI) {
2832   if (StressIVChain)
2833     return true;
2834 
2835   if (!Chain.hasIncs())
2836     return false;
2837 
2838   if (!Users.empty()) {
2839     LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n";
2840                for (Instruction *Inst
2841                     : Users) { dbgs() << "  " << *Inst << "\n"; });
2842     return false;
2843   }
2844   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
2845 
2846   // The chain itself may require a register, so intialize cost to 1.
2847   int cost = 1;
2848 
2849   // A complete chain likely eliminates the need for keeping the original IV in
2850   // a register. LSR does not currently know how to form a complete chain unless
2851   // the header phi already exists.
2852   if (isa<PHINode>(Chain.tailUserInst())
2853       && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) {
2854     --cost;
2855   }
2856   const SCEV *LastIncExpr = nullptr;
2857   unsigned NumConstIncrements = 0;
2858   unsigned NumVarIncrements = 0;
2859   unsigned NumReusedIncrements = 0;
2860 
2861   if (TTI.isProfitableLSRChainElement(Chain.Incs[0].UserInst))
2862     return true;
2863 
2864   for (const IVInc &Inc : Chain) {
2865     if (TTI.isProfitableLSRChainElement(Inc.UserInst))
2866       return true;
2867     if (Inc.IncExpr->isZero())
2868       continue;
2869 
2870     // Incrementing by zero or some constant is neutral. We assume constants can
2871     // be folded into an addressing mode or an add's immediate operand.
2872     if (isa<SCEVConstant>(Inc.IncExpr)) {
2873       ++NumConstIncrements;
2874       continue;
2875     }
2876 
2877     if (Inc.IncExpr == LastIncExpr)
2878       ++NumReusedIncrements;
2879     else
2880       ++NumVarIncrements;
2881 
2882     LastIncExpr = Inc.IncExpr;
2883   }
2884   // An IV chain with a single increment is handled by LSR's postinc
2885   // uses. However, a chain with multiple increments requires keeping the IV's
2886   // value live longer than it needs to be if chained.
2887   if (NumConstIncrements > 1)
2888     --cost;
2889 
2890   // Materializing increment expressions in the preheader that didn't exist in
2891   // the original code may cost a register. For example, sign-extended array
2892   // indices can produce ridiculous increments like this:
2893   // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64)))
2894   cost += NumVarIncrements;
2895 
2896   // Reusing variable increments likely saves a register to hold the multiple of
2897   // the stride.
2898   cost -= NumReusedIncrements;
2899 
2900   LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost
2901                     << "\n");
2902 
2903   return cost < 0;
2904 }
2905 
2906 /// Add this IV user to an existing chain or make it the head of a new chain.
2907 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper,
2908                                    SmallVectorImpl<ChainUsers> &ChainUsersVec) {
2909   // When IVs are used as types of varying widths, they are generally converted
2910   // to a wider type with some uses remaining narrow under a (free) trunc.
2911   Value *const NextIV = getWideOperand(IVOper);
2912   const SCEV *const OperExpr = SE.getSCEV(NextIV);
2913   const SCEV *const OperExprBase = getExprBase(OperExpr);
2914 
2915   // Visit all existing chains. Check if its IVOper can be computed as a
2916   // profitable loop invariant increment from the last link in the Chain.
2917   unsigned ChainIdx = 0, NChains = IVChainVec.size();
2918   const SCEV *LastIncExpr = nullptr;
2919   for (; ChainIdx < NChains; ++ChainIdx) {
2920     IVChain &Chain = IVChainVec[ChainIdx];
2921 
2922     // Prune the solution space aggressively by checking that both IV operands
2923     // are expressions that operate on the same unscaled SCEVUnknown. This
2924     // "base" will be canceled by the subsequent getMinusSCEV call. Checking
2925     // first avoids creating extra SCEV expressions.
2926     if (!StressIVChain && Chain.ExprBase != OperExprBase)
2927       continue;
2928 
2929     Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand);
2930     if (!isCompatibleIVType(PrevIV, NextIV))
2931       continue;
2932 
2933     // A phi node terminates a chain.
2934     if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst()))
2935       continue;
2936 
2937     // The increment must be loop-invariant so it can be kept in a register.
2938     const SCEV *PrevExpr = SE.getSCEV(PrevIV);
2939     const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr);
2940     if (!SE.isLoopInvariant(IncExpr, L))
2941       continue;
2942 
2943     if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) {
2944       LastIncExpr = IncExpr;
2945       break;
2946     }
2947   }
2948   // If we haven't found a chain, create a new one, unless we hit the max. Don't
2949   // bother for phi nodes, because they must be last in the chain.
2950   if (ChainIdx == NChains) {
2951     if (isa<PHINode>(UserInst))
2952       return;
2953     if (NChains >= MaxChains && !StressIVChain) {
2954       LLVM_DEBUG(dbgs() << "IV Chain Limit\n");
2955       return;
2956     }
2957     LastIncExpr = OperExpr;
2958     // IVUsers may have skipped over sign/zero extensions. We don't currently
2959     // attempt to form chains involving extensions unless they can be hoisted
2960     // into this loop's AddRec.
2961     if (!isa<SCEVAddRecExpr>(LastIncExpr))
2962       return;
2963     ++NChains;
2964     IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr),
2965                                  OperExprBase));
2966     ChainUsersVec.resize(NChains);
2967     LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst
2968                       << ") IV=" << *LastIncExpr << "\n");
2969   } else {
2970     LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << "  Inc: (" << *UserInst
2971                       << ") IV+" << *LastIncExpr << "\n");
2972     // Add this IV user to the end of the chain.
2973     IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr));
2974   }
2975   IVChain &Chain = IVChainVec[ChainIdx];
2976 
2977   SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers;
2978   // This chain's NearUsers become FarUsers.
2979   if (!LastIncExpr->isZero()) {
2980     ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(),
2981                                             NearUsers.end());
2982     NearUsers.clear();
2983   }
2984 
2985   // All other uses of IVOperand become near uses of the chain.
2986   // We currently ignore intermediate values within SCEV expressions, assuming
2987   // they will eventually be used be the current chain, or can be computed
2988   // from one of the chain increments. To be more precise we could
2989   // transitively follow its user and only add leaf IV users to the set.
2990   for (User *U : IVOper->users()) {
2991     Instruction *OtherUse = dyn_cast<Instruction>(U);
2992     if (!OtherUse)
2993       continue;
2994     // Uses in the chain will no longer be uses if the chain is formed.
2995     // Include the head of the chain in this iteration (not Chain.begin()).
2996     IVChain::const_iterator IncIter = Chain.Incs.begin();
2997     IVChain::const_iterator IncEnd = Chain.Incs.end();
2998     for( ; IncIter != IncEnd; ++IncIter) {
2999       if (IncIter->UserInst == OtherUse)
3000         break;
3001     }
3002     if (IncIter != IncEnd)
3003       continue;
3004 
3005     if (SE.isSCEVable(OtherUse->getType())
3006         && !isa<SCEVUnknown>(SE.getSCEV(OtherUse))
3007         && IU.isIVUserOrOperand(OtherUse)) {
3008       continue;
3009     }
3010     NearUsers.insert(OtherUse);
3011   }
3012 
3013   // Since this user is part of the chain, it's no longer considered a use
3014   // of the chain.
3015   ChainUsersVec[ChainIdx].FarUsers.erase(UserInst);
3016 }
3017 
3018 /// Populate the vector of Chains.
3019 ///
3020 /// This decreases ILP at the architecture level. Targets with ample registers,
3021 /// multiple memory ports, and no register renaming probably don't want
3022 /// this. However, such targets should probably disable LSR altogether.
3023 ///
3024 /// The job of LSR is to make a reasonable choice of induction variables across
3025 /// the loop. Subsequent passes can easily "unchain" computation exposing more
3026 /// ILP *within the loop* if the target wants it.
3027 ///
3028 /// Finding the best IV chain is potentially a scheduling problem. Since LSR
3029 /// will not reorder memory operations, it will recognize this as a chain, but
3030 /// will generate redundant IV increments. Ideally this would be corrected later
3031 /// by a smart scheduler:
3032 ///        = A[i]
3033 ///        = A[i+x]
3034 /// A[i]   =
3035 /// A[i+x] =
3036 ///
3037 /// TODO: Walk the entire domtree within this loop, not just the path to the
3038 /// loop latch. This will discover chains on side paths, but requires
3039 /// maintaining multiple copies of the Chains state.
3040 void LSRInstance::CollectChains() {
3041   LLVM_DEBUG(dbgs() << "Collecting IV Chains.\n");
3042   SmallVector<ChainUsers, 8> ChainUsersVec;
3043 
3044   SmallVector<BasicBlock *,8> LatchPath;
3045   BasicBlock *LoopHeader = L->getHeader();
3046   for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch());
3047        Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) {
3048     LatchPath.push_back(Rung->getBlock());
3049   }
3050   LatchPath.push_back(LoopHeader);
3051 
3052   // Walk the instruction stream from the loop header to the loop latch.
3053   for (BasicBlock *BB : reverse(LatchPath)) {
3054     for (Instruction &I : *BB) {
3055       // Skip instructions that weren't seen by IVUsers analysis.
3056       if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I))
3057         continue;
3058 
3059       // Ignore users that are part of a SCEV expression. This way we only
3060       // consider leaf IV Users. This effectively rediscovers a portion of
3061       // IVUsers analysis but in program order this time.
3062       if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I)))
3063           continue;
3064 
3065       // Remove this instruction from any NearUsers set it may be in.
3066       for (unsigned ChainIdx = 0, NChains = IVChainVec.size();
3067            ChainIdx < NChains; ++ChainIdx) {
3068         ChainUsersVec[ChainIdx].NearUsers.erase(&I);
3069       }
3070       // Search for operands that can be chained.
3071       SmallPtrSet<Instruction*, 4> UniqueOperands;
3072       User::op_iterator IVOpEnd = I.op_end();
3073       User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE);
3074       while (IVOpIter != IVOpEnd) {
3075         Instruction *IVOpInst = cast<Instruction>(*IVOpIter);
3076         if (UniqueOperands.insert(IVOpInst).second)
3077           ChainInstruction(&I, IVOpInst, ChainUsersVec);
3078         IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
3079       }
3080     } // Continue walking down the instructions.
3081   } // Continue walking down the domtree.
3082   // Visit phi backedges to determine if the chain can generate the IV postinc.
3083   for (PHINode &PN : L->getHeader()->phis()) {
3084     if (!SE.isSCEVable(PN.getType()))
3085       continue;
3086 
3087     Instruction *IncV =
3088         dyn_cast<Instruction>(PN.getIncomingValueForBlock(L->getLoopLatch()));
3089     if (IncV)
3090       ChainInstruction(&PN, IncV, ChainUsersVec);
3091   }
3092   // Remove any unprofitable chains.
3093   unsigned ChainIdx = 0;
3094   for (unsigned UsersIdx = 0, NChains = IVChainVec.size();
3095        UsersIdx < NChains; ++UsersIdx) {
3096     if (!isProfitableChain(IVChainVec[UsersIdx],
3097                            ChainUsersVec[UsersIdx].FarUsers, SE, TTI))
3098       continue;
3099     // Preserve the chain at UsesIdx.
3100     if (ChainIdx != UsersIdx)
3101       IVChainVec[ChainIdx] = IVChainVec[UsersIdx];
3102     FinalizeChain(IVChainVec[ChainIdx]);
3103     ++ChainIdx;
3104   }
3105   IVChainVec.resize(ChainIdx);
3106 }
3107 
3108 void LSRInstance::FinalizeChain(IVChain &Chain) {
3109   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
3110   LLVM_DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n");
3111 
3112   for (const IVInc &Inc : Chain) {
3113     LLVM_DEBUG(dbgs() << "        Inc: " << *Inc.UserInst << "\n");
3114     auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand);
3115     assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand");
3116     IVIncSet.insert(UseI);
3117   }
3118 }
3119 
3120 /// Return true if the IVInc can be folded into an addressing mode.
3121 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst,
3122                              Value *Operand, const TargetTransformInfo &TTI) {
3123   const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr);
3124   if (!IncConst || !isAddressUse(TTI, UserInst, Operand))
3125     return false;
3126 
3127   if (IncConst->getAPInt().getMinSignedBits() > 64)
3128     return false;
3129 
3130   MemAccessTy AccessTy = getAccessType(TTI, UserInst, Operand);
3131   int64_t IncOffset = IncConst->getValue()->getSExtValue();
3132   if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr,
3133                         IncOffset, /*HasBaseReg=*/false))
3134     return false;
3135 
3136   return true;
3137 }
3138 
3139 /// Generate an add or subtract for each IVInc in a chain to materialize the IV
3140 /// user's operand from the previous IV user's operand.
3141 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
3142                                   SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
3143   // Find the new IVOperand for the head of the chain. It may have been replaced
3144   // by LSR.
3145   const IVInc &Head = Chain.Incs[0];
3146   User::op_iterator IVOpEnd = Head.UserInst->op_end();
3147   // findIVOperand returns IVOpEnd if it can no longer find a valid IV user.
3148   User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(),
3149                                              IVOpEnd, L, SE);
3150   Value *IVSrc = nullptr;
3151   while (IVOpIter != IVOpEnd) {
3152     IVSrc = getWideOperand(*IVOpIter);
3153 
3154     // If this operand computes the expression that the chain needs, we may use
3155     // it. (Check this after setting IVSrc which is used below.)
3156     //
3157     // Note that if Head.IncExpr is wider than IVSrc, then this phi is too
3158     // narrow for the chain, so we can no longer use it. We do allow using a
3159     // wider phi, assuming the LSR checked for free truncation. In that case we
3160     // should already have a truncate on this operand such that
3161     // getSCEV(IVSrc) == IncExpr.
3162     if (SE.getSCEV(*IVOpIter) == Head.IncExpr
3163         || SE.getSCEV(IVSrc) == Head.IncExpr) {
3164       break;
3165     }
3166     IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
3167   }
3168   if (IVOpIter == IVOpEnd) {
3169     // Gracefully give up on this chain.
3170     LLVM_DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n");
3171     return;
3172   }
3173   assert(IVSrc && "Failed to find IV chain source");
3174 
3175   LLVM_DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n");
3176   Type *IVTy = IVSrc->getType();
3177   Type *IntTy = SE.getEffectiveSCEVType(IVTy);
3178   const SCEV *LeftOverExpr = nullptr;
3179   for (const IVInc &Inc : Chain) {
3180     Instruction *InsertPt = Inc.UserInst;
3181     if (isa<PHINode>(InsertPt))
3182       InsertPt = L->getLoopLatch()->getTerminator();
3183 
3184     // IVOper will replace the current IV User's operand. IVSrc is the IV
3185     // value currently held in a register.
3186     Value *IVOper = IVSrc;
3187     if (!Inc.IncExpr->isZero()) {
3188       // IncExpr was the result of subtraction of two narrow values, so must
3189       // be signed.
3190       const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy);
3191       LeftOverExpr = LeftOverExpr ?
3192         SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr;
3193     }
3194     if (LeftOverExpr && !LeftOverExpr->isZero()) {
3195       // Expand the IV increment.
3196       Rewriter.clearPostInc();
3197       Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt);
3198       const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc),
3199                                              SE.getUnknown(IncV));
3200       IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt);
3201 
3202       // If an IV increment can't be folded, use it as the next IV value.
3203       if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) {
3204         assert(IVTy == IVOper->getType() && "inconsistent IV increment type");
3205         IVSrc = IVOper;
3206         LeftOverExpr = nullptr;
3207       }
3208     }
3209     Type *OperTy = Inc.IVOperand->getType();
3210     if (IVTy != OperTy) {
3211       assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) &&
3212              "cannot extend a chained IV");
3213       IRBuilder<> Builder(InsertPt);
3214       IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain");
3215     }
3216     Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper);
3217     if (auto *OperandIsInstr = dyn_cast<Instruction>(Inc.IVOperand))
3218       DeadInsts.emplace_back(OperandIsInstr);
3219   }
3220   // If LSR created a new, wider phi, we may also replace its postinc. We only
3221   // do this if we also found a wide value for the head of the chain.
3222   if (isa<PHINode>(Chain.tailUserInst())) {
3223     for (PHINode &Phi : L->getHeader()->phis()) {
3224       if (!isCompatibleIVType(&Phi, IVSrc))
3225         continue;
3226       Instruction *PostIncV = dyn_cast<Instruction>(
3227           Phi.getIncomingValueForBlock(L->getLoopLatch()));
3228       if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc)))
3229         continue;
3230       Value *IVOper = IVSrc;
3231       Type *PostIncTy = PostIncV->getType();
3232       if (IVTy != PostIncTy) {
3233         assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types");
3234         IRBuilder<> Builder(L->getLoopLatch()->getTerminator());
3235         Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc());
3236         IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain");
3237       }
3238       Phi.replaceUsesOfWith(PostIncV, IVOper);
3239       DeadInsts.emplace_back(PostIncV);
3240     }
3241   }
3242 }
3243 
3244 void LSRInstance::CollectFixupsAndInitialFormulae() {
3245   BranchInst *ExitBranch = nullptr;
3246   bool SaveCmp = TTI.canSaveCmp(L, &ExitBranch, &SE, &LI, &DT, &AC, &TLI);
3247 
3248   for (const IVStrideUse &U : IU) {
3249     Instruction *UserInst = U.getUser();
3250     // Skip IV users that are part of profitable IV Chains.
3251     User::op_iterator UseI =
3252         find(UserInst->operands(), U.getOperandValToReplace());
3253     assert(UseI != UserInst->op_end() && "cannot find IV operand");
3254     if (IVIncSet.count(UseI)) {
3255       LLVM_DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n');
3256       continue;
3257     }
3258 
3259     LSRUse::KindType Kind = LSRUse::Basic;
3260     MemAccessTy AccessTy;
3261     if (isAddressUse(TTI, UserInst, U.getOperandValToReplace())) {
3262       Kind = LSRUse::Address;
3263       AccessTy = getAccessType(TTI, UserInst, U.getOperandValToReplace());
3264     }
3265 
3266     const SCEV *S = IU.getExpr(U);
3267     PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops();
3268 
3269     // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
3270     // (N - i == 0), and this allows (N - i) to be the expression that we work
3271     // with rather than just N or i, so we can consider the register
3272     // requirements for both N and i at the same time. Limiting this code to
3273     // equality icmps is not a problem because all interesting loops use
3274     // equality icmps, thanks to IndVarSimplify.
3275     if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst)) {
3276       // If CI can be saved in some target, like replaced inside hardware loop
3277       // in PowerPC, no need to generate initial formulae for it.
3278       if (SaveCmp && CI == dyn_cast<ICmpInst>(ExitBranch->getCondition()))
3279         continue;
3280       if (CI->isEquality()) {
3281         // Swap the operands if needed to put the OperandValToReplace on the
3282         // left, for consistency.
3283         Value *NV = CI->getOperand(1);
3284         if (NV == U.getOperandValToReplace()) {
3285           CI->setOperand(1, CI->getOperand(0));
3286           CI->setOperand(0, NV);
3287           NV = CI->getOperand(1);
3288           Changed = true;
3289         }
3290 
3291         // x == y  -->  x - y == 0
3292         const SCEV *N = SE.getSCEV(NV);
3293         if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) {
3294           // S is normalized, so normalize N before folding it into S
3295           // to keep the result normalized.
3296           N = normalizeForPostIncUse(N, TmpPostIncLoops, SE);
3297           Kind = LSRUse::ICmpZero;
3298           S = SE.getMinusSCEV(N, S);
3299         }
3300 
3301         // -1 and the negations of all interesting strides (except the negation
3302         // of -1) are now also interesting.
3303         for (size_t i = 0, e = Factors.size(); i != e; ++i)
3304           if (Factors[i] != -1)
3305             Factors.insert(-(uint64_t)Factors[i]);
3306         Factors.insert(-1);
3307       }
3308     }
3309 
3310     // Get or create an LSRUse.
3311     std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
3312     size_t LUIdx = P.first;
3313     int64_t Offset = P.second;
3314     LSRUse &LU = Uses[LUIdx];
3315 
3316     // Record the fixup.
3317     LSRFixup &LF = LU.getNewFixup();
3318     LF.UserInst = UserInst;
3319     LF.OperandValToReplace = U.getOperandValToReplace();
3320     LF.PostIncLoops = TmpPostIncLoops;
3321     LF.Offset = Offset;
3322     LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3323 
3324     if (!LU.WidestFixupType ||
3325         SE.getTypeSizeInBits(LU.WidestFixupType) <
3326         SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3327       LU.WidestFixupType = LF.OperandValToReplace->getType();
3328 
3329     // If this is the first use of this LSRUse, give it a formula.
3330     if (LU.Formulae.empty()) {
3331       InsertInitialFormula(S, LU, LUIdx);
3332       CountRegisters(LU.Formulae.back(), LUIdx);
3333     }
3334   }
3335 
3336   LLVM_DEBUG(print_fixups(dbgs()));
3337 }
3338 
3339 /// Insert a formula for the given expression into the given use, separating out
3340 /// loop-variant portions from loop-invariant and loop-computable portions.
3341 void
3342 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
3343   // Mark uses whose expressions cannot be expanded.
3344   if (!isSafeToExpand(S, SE))
3345     LU.RigidFormula = true;
3346 
3347   Formula F;
3348   F.initialMatch(S, L, SE);
3349   bool Inserted = InsertFormula(LU, LUIdx, F);
3350   assert(Inserted && "Initial formula already exists!"); (void)Inserted;
3351 }
3352 
3353 /// Insert a simple single-register formula for the given expression into the
3354 /// given use.
3355 void
3356 LSRInstance::InsertSupplementalFormula(const SCEV *S,
3357                                        LSRUse &LU, size_t LUIdx) {
3358   Formula F;
3359   F.BaseRegs.push_back(S);
3360   F.HasBaseReg = true;
3361   bool Inserted = InsertFormula(LU, LUIdx, F);
3362   assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
3363 }
3364 
3365 /// Note which registers are used by the given formula, updating RegUses.
3366 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
3367   if (F.ScaledReg)
3368     RegUses.countRegister(F.ScaledReg, LUIdx);
3369   for (const SCEV *BaseReg : F.BaseRegs)
3370     RegUses.countRegister(BaseReg, LUIdx);
3371 }
3372 
3373 /// If the given formula has not yet been inserted, add it to the list, and
3374 /// return true. Return false otherwise.
3375 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
3376   // Do not insert formula that we will not be able to expand.
3377   assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) &&
3378          "Formula is illegal");
3379 
3380   if (!LU.InsertFormula(F, *L))
3381     return false;
3382 
3383   CountRegisters(F, LUIdx);
3384   return true;
3385 }
3386 
3387 /// Check for other uses of loop-invariant values which we're tracking. These
3388 /// other uses will pin these values in registers, making them less profitable
3389 /// for elimination.
3390 /// TODO: This currently misses non-constant addrec step registers.
3391 /// TODO: Should this give more weight to users inside the loop?
3392 void
3393 LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
3394   SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
3395   SmallPtrSet<const SCEV *, 32> Visited;
3396 
3397   while (!Worklist.empty()) {
3398     const SCEV *S = Worklist.pop_back_val();
3399 
3400     // Don't process the same SCEV twice
3401     if (!Visited.insert(S).second)
3402       continue;
3403 
3404     if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
3405       Worklist.append(N->op_begin(), N->op_end());
3406     else if (const SCEVIntegralCastExpr *C = dyn_cast<SCEVIntegralCastExpr>(S))
3407       Worklist.push_back(C->getOperand());
3408     else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
3409       Worklist.push_back(D->getLHS());
3410       Worklist.push_back(D->getRHS());
3411     } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) {
3412       const Value *V = US->getValue();
3413       if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
3414         // Look for instructions defined outside the loop.
3415         if (L->contains(Inst)) continue;
3416       } else if (isa<UndefValue>(V))
3417         // Undef doesn't have a live range, so it doesn't matter.
3418         continue;
3419       for (const Use &U : V->uses()) {
3420         const Instruction *UserInst = dyn_cast<Instruction>(U.getUser());
3421         // Ignore non-instructions.
3422         if (!UserInst)
3423           continue;
3424         // Ignore instructions in other functions (as can happen with
3425         // Constants).
3426         if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
3427           continue;
3428         // Ignore instructions not dominated by the loop.
3429         const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
3430           UserInst->getParent() :
3431           cast<PHINode>(UserInst)->getIncomingBlock(
3432             PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
3433         if (!DT.dominates(L->getHeader(), UseBB))
3434           continue;
3435         // Don't bother if the instruction is in a BB which ends in an EHPad.
3436         if (UseBB->getTerminator()->isEHPad())
3437           continue;
3438         // Don't bother rewriting PHIs in catchswitch blocks.
3439         if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator()))
3440           continue;
3441         // Ignore uses which are part of other SCEV expressions, to avoid
3442         // analyzing them multiple times.
3443         if (SE.isSCEVable(UserInst->getType())) {
3444           const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
3445           // If the user is a no-op, look through to its uses.
3446           if (!isa<SCEVUnknown>(UserS))
3447             continue;
3448           if (UserS == US) {
3449             Worklist.push_back(
3450               SE.getUnknown(const_cast<Instruction *>(UserInst)));
3451             continue;
3452           }
3453         }
3454         // Ignore icmp instructions which are already being analyzed.
3455         if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
3456           unsigned OtherIdx = !U.getOperandNo();
3457           Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
3458           if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L))
3459             continue;
3460         }
3461 
3462         std::pair<size_t, int64_t> P = getUse(
3463             S, LSRUse::Basic, MemAccessTy());
3464         size_t LUIdx = P.first;
3465         int64_t Offset = P.second;
3466         LSRUse &LU = Uses[LUIdx];
3467         LSRFixup &LF = LU.getNewFixup();
3468         LF.UserInst = const_cast<Instruction *>(UserInst);
3469         LF.OperandValToReplace = U;
3470         LF.Offset = Offset;
3471         LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3472         if (!LU.WidestFixupType ||
3473             SE.getTypeSizeInBits(LU.WidestFixupType) <
3474             SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3475           LU.WidestFixupType = LF.OperandValToReplace->getType();
3476         InsertSupplementalFormula(US, LU, LUIdx);
3477         CountRegisters(LU.Formulae.back(), Uses.size() - 1);
3478         break;
3479       }
3480     }
3481   }
3482 }
3483 
3484 /// Split S into subexpressions which can be pulled out into separate
3485 /// registers. If C is non-null, multiply each subexpression by C.
3486 ///
3487 /// Return remainder expression after factoring the subexpressions captured by
3488 /// Ops. If Ops is complete, return NULL.
3489 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C,
3490                                    SmallVectorImpl<const SCEV *> &Ops,
3491                                    const Loop *L,
3492                                    ScalarEvolution &SE,
3493                                    unsigned Depth = 0) {
3494   // Arbitrarily cap recursion to protect compile time.
3495   if (Depth >= 3)
3496     return S;
3497 
3498   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3499     // Break out add operands.
3500     for (const SCEV *S : Add->operands()) {
3501       const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1);
3502       if (Remainder)
3503         Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3504     }
3505     return nullptr;
3506   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
3507     // Split a non-zero base out of an addrec.
3508     if (AR->getStart()->isZero() || !AR->isAffine())
3509       return S;
3510 
3511     const SCEV *Remainder = CollectSubexprs(AR->getStart(),
3512                                             C, Ops, L, SE, Depth+1);
3513     // Split the non-zero AddRec unless it is part of a nested recurrence that
3514     // does not pertain to this loop.
3515     if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) {
3516       Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3517       Remainder = nullptr;
3518     }
3519     if (Remainder != AR->getStart()) {
3520       if (!Remainder)
3521         Remainder = SE.getConstant(AR->getType(), 0);
3522       return SE.getAddRecExpr(Remainder,
3523                               AR->getStepRecurrence(SE),
3524                               AR->getLoop(),
3525                               //FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
3526                               SCEV::FlagAnyWrap);
3527     }
3528   } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3529     // Break (C * (a + b + c)) into C*a + C*b + C*c.
3530     if (Mul->getNumOperands() != 2)
3531       return S;
3532     if (const SCEVConstant *Op0 =
3533         dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3534       C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0;
3535       const SCEV *Remainder =
3536         CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1);
3537       if (Remainder)
3538         Ops.push_back(SE.getMulExpr(C, Remainder));
3539       return nullptr;
3540     }
3541   }
3542   return S;
3543 }
3544 
3545 /// Return true if the SCEV represents a value that may end up as a
3546 /// post-increment operation.
3547 static bool mayUsePostIncMode(const TargetTransformInfo &TTI,
3548                               LSRUse &LU, const SCEV *S, const Loop *L,
3549                               ScalarEvolution &SE) {
3550   if (LU.Kind != LSRUse::Address ||
3551       !LU.AccessTy.getType()->isIntOrIntVectorTy())
3552     return false;
3553   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S);
3554   if (!AR)
3555     return false;
3556   const SCEV *LoopStep = AR->getStepRecurrence(SE);
3557   if (!isa<SCEVConstant>(LoopStep))
3558     return false;
3559   // Check if a post-indexed load/store can be used.
3560   if (TTI.isIndexedLoadLegal(TTI.MIM_PostInc, AR->getType()) ||
3561       TTI.isIndexedStoreLegal(TTI.MIM_PostInc, AR->getType())) {
3562     const SCEV *LoopStart = AR->getStart();
3563     if (!isa<SCEVConstant>(LoopStart) && SE.isLoopInvariant(LoopStart, L))
3564       return true;
3565   }
3566   return false;
3567 }
3568 
3569 /// Helper function for LSRInstance::GenerateReassociations.
3570 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
3571                                              const Formula &Base,
3572                                              unsigned Depth, size_t Idx,
3573                                              bool IsScaledReg) {
3574   const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3575   // Don't generate reassociations for the base register of a value that
3576   // may generate a post-increment operator. The reason is that the
3577   // reassociations cause extra base+register formula to be created,
3578   // and possibly chosen, but the post-increment is more efficient.
3579   if (TTI.shouldFavorPostInc() && mayUsePostIncMode(TTI, LU, BaseReg, L, SE))
3580     return;
3581   SmallVector<const SCEV *, 8> AddOps;
3582   const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE);
3583   if (Remainder)
3584     AddOps.push_back(Remainder);
3585 
3586   if (AddOps.size() == 1)
3587     return;
3588 
3589   for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
3590                                                      JE = AddOps.end();
3591        J != JE; ++J) {
3592     // Loop-variant "unknown" values are uninteresting; we won't be able to
3593     // do anything meaningful with them.
3594     if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L))
3595       continue;
3596 
3597     // Don't pull a constant into a register if the constant could be folded
3598     // into an immediate field.
3599     if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3600                          LU.AccessTy, *J, Base.getNumRegs() > 1))
3601       continue;
3602 
3603     // Collect all operands except *J.
3604     SmallVector<const SCEV *, 8> InnerAddOps(
3605         ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J);
3606     InnerAddOps.append(std::next(J),
3607                        ((const SmallVector<const SCEV *, 8> &)AddOps).end());
3608 
3609     // Don't leave just a constant behind in a register if the constant could
3610     // be folded into an immediate field.
3611     if (InnerAddOps.size() == 1 &&
3612         isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3613                          LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1))
3614       continue;
3615 
3616     const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
3617     if (InnerSum->isZero())
3618       continue;
3619     Formula F = Base;
3620 
3621     // Add the remaining pieces of the add back into the new formula.
3622     const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum);
3623     if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 &&
3624         TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3625                                 InnerSumSC->getValue()->getZExtValue())) {
3626       F.UnfoldedOffset =
3627           (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue();
3628       if (IsScaledReg)
3629         F.ScaledReg = nullptr;
3630       else
3631         F.BaseRegs.erase(F.BaseRegs.begin() + Idx);
3632     } else if (IsScaledReg)
3633       F.ScaledReg = InnerSum;
3634     else
3635       F.BaseRegs[Idx] = InnerSum;
3636 
3637     // Add J as its own register, or an unfolded immediate.
3638     const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J);
3639     if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 &&
3640         TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3641                                 SC->getValue()->getZExtValue()))
3642       F.UnfoldedOffset =
3643           (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue();
3644     else
3645       F.BaseRegs.push_back(*J);
3646     // We may have changed the number of register in base regs, adjust the
3647     // formula accordingly.
3648     F.canonicalize(*L);
3649 
3650     if (InsertFormula(LU, LUIdx, F))
3651       // If that formula hadn't been seen before, recurse to find more like
3652       // it.
3653       // Add check on Log16(AddOps.size()) - same as Log2_32(AddOps.size()) >> 2)
3654       // Because just Depth is not enough to bound compile time.
3655       // This means that every time AddOps.size() is greater 16^x we will add
3656       // x to Depth.
3657       GenerateReassociations(LU, LUIdx, LU.Formulae.back(),
3658                              Depth + 1 + (Log2_32(AddOps.size()) >> 2));
3659   }
3660 }
3661 
3662 /// Split out subexpressions from adds and the bases of addrecs.
3663 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
3664                                          Formula Base, unsigned Depth) {
3665   assert(Base.isCanonical(*L) && "Input must be in the canonical form");
3666   // Arbitrarily cap recursion to protect compile time.
3667   if (Depth >= 3)
3668     return;
3669 
3670   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3671     GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i);
3672 
3673   if (Base.Scale == 1)
3674     GenerateReassociationsImpl(LU, LUIdx, Base, Depth,
3675                                /* Idx */ -1, /* IsScaledReg */ true);
3676 }
3677 
3678 ///  Generate a formula consisting of all of the loop-dominating registers added
3679 /// into a single register.
3680 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
3681                                        Formula Base) {
3682   // This method is only interesting on a plurality of registers.
3683   if (Base.BaseRegs.size() + (Base.Scale == 1) +
3684       (Base.UnfoldedOffset != 0) <= 1)
3685     return;
3686 
3687   // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before
3688   // processing the formula.
3689   Base.unscale();
3690   SmallVector<const SCEV *, 4> Ops;
3691   Formula NewBase = Base;
3692   NewBase.BaseRegs.clear();
3693   Type *CombinedIntegerType = nullptr;
3694   for (const SCEV *BaseReg : Base.BaseRegs) {
3695     if (SE.properlyDominates(BaseReg, L->getHeader()) &&
3696         !SE.hasComputableLoopEvolution(BaseReg, L)) {
3697       if (!CombinedIntegerType)
3698         CombinedIntegerType = SE.getEffectiveSCEVType(BaseReg->getType());
3699       Ops.push_back(BaseReg);
3700     }
3701     else
3702       NewBase.BaseRegs.push_back(BaseReg);
3703   }
3704 
3705   // If no register is relevant, we're done.
3706   if (Ops.size() == 0)
3707     return;
3708 
3709   // Utility function for generating the required variants of the combined
3710   // registers.
3711   auto GenerateFormula = [&](const SCEV *Sum) {
3712     Formula F = NewBase;
3713 
3714     // TODO: If Sum is zero, it probably means ScalarEvolution missed an
3715     // opportunity to fold something. For now, just ignore such cases
3716     // rather than proceed with zero in a register.
3717     if (Sum->isZero())
3718       return;
3719 
3720     F.BaseRegs.push_back(Sum);
3721     F.canonicalize(*L);
3722     (void)InsertFormula(LU, LUIdx, F);
3723   };
3724 
3725   // If we collected at least two registers, generate a formula combining them.
3726   if (Ops.size() > 1) {
3727     SmallVector<const SCEV *, 4> OpsCopy(Ops); // Don't let SE modify Ops.
3728     GenerateFormula(SE.getAddExpr(OpsCopy));
3729   }
3730 
3731   // If we have an unfolded offset, generate a formula combining it with the
3732   // registers collected.
3733   if (NewBase.UnfoldedOffset) {
3734     assert(CombinedIntegerType && "Missing a type for the unfolded offset");
3735     Ops.push_back(SE.getConstant(CombinedIntegerType, NewBase.UnfoldedOffset,
3736                                  true));
3737     NewBase.UnfoldedOffset = 0;
3738     GenerateFormula(SE.getAddExpr(Ops));
3739   }
3740 }
3741 
3742 /// Helper function for LSRInstance::GenerateSymbolicOffsets.
3743 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
3744                                               const Formula &Base, size_t Idx,
3745                                               bool IsScaledReg) {
3746   const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3747   GlobalValue *GV = ExtractSymbol(G, SE);
3748   if (G->isZero() || !GV)
3749     return;
3750   Formula F = Base;
3751   F.BaseGV = GV;
3752   if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3753     return;
3754   if (IsScaledReg)
3755     F.ScaledReg = G;
3756   else
3757     F.BaseRegs[Idx] = G;
3758   (void)InsertFormula(LU, LUIdx, F);
3759 }
3760 
3761 /// Generate reuse formulae using symbolic offsets.
3762 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
3763                                           Formula Base) {
3764   // We can't add a symbolic offset if the address already contains one.
3765   if (Base.BaseGV) return;
3766 
3767   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3768     GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i);
3769   if (Base.Scale == 1)
3770     GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1,
3771                                 /* IsScaledReg */ true);
3772 }
3773 
3774 /// Helper function for LSRInstance::GenerateConstantOffsets.
3775 void LSRInstance::GenerateConstantOffsetsImpl(
3776     LSRUse &LU, unsigned LUIdx, const Formula &Base,
3777     const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) {
3778 
3779   auto GenerateOffset = [&](const SCEV *G, int64_t Offset) {
3780     Formula F = Base;
3781     F.BaseOffset = (uint64_t)Base.BaseOffset - Offset;
3782 
3783     if (isLegalUse(TTI, LU.MinOffset - Offset, LU.MaxOffset - Offset, LU.Kind,
3784                    LU.AccessTy, F)) {
3785       // Add the offset to the base register.
3786       const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G);
3787       // If it cancelled out, drop the base register, otherwise update it.
3788       if (NewG->isZero()) {
3789         if (IsScaledReg) {
3790           F.Scale = 0;
3791           F.ScaledReg = nullptr;
3792         } else
3793           F.deleteBaseReg(F.BaseRegs[Idx]);
3794         F.canonicalize(*L);
3795       } else if (IsScaledReg)
3796         F.ScaledReg = NewG;
3797       else
3798         F.BaseRegs[Idx] = NewG;
3799 
3800       (void)InsertFormula(LU, LUIdx, F);
3801     }
3802   };
3803 
3804   const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3805 
3806   // With constant offsets and constant steps, we can generate pre-inc
3807   // accesses by having the offset equal the step. So, for access #0 with a
3808   // step of 8, we generate a G - 8 base which would require the first access
3809   // to be ((G - 8) + 8),+,8. The pre-indexed access then updates the pointer
3810   // for itself and hopefully becomes the base for other accesses. This means
3811   // means that a single pre-indexed access can be generated to become the new
3812   // base pointer for each iteration of the loop, resulting in no extra add/sub
3813   // instructions for pointer updating.
3814   if (FavorBackedgeIndex && LU.Kind == LSRUse::Address) {
3815     if (auto *GAR = dyn_cast<SCEVAddRecExpr>(G)) {
3816       if (auto *StepRec =
3817           dyn_cast<SCEVConstant>(GAR->getStepRecurrence(SE))) {
3818         const APInt &StepInt = StepRec->getAPInt();
3819         int64_t Step = StepInt.isNegative() ?
3820           StepInt.getSExtValue() : StepInt.getZExtValue();
3821 
3822         for (int64_t Offset : Worklist) {
3823           Offset -= Step;
3824           GenerateOffset(G, Offset);
3825         }
3826       }
3827     }
3828   }
3829   for (int64_t Offset : Worklist)
3830     GenerateOffset(G, Offset);
3831 
3832   int64_t Imm = ExtractImmediate(G, SE);
3833   if (G->isZero() || Imm == 0)
3834     return;
3835   Formula F = Base;
3836   F.BaseOffset = (uint64_t)F.BaseOffset + Imm;
3837   if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3838     return;
3839   if (IsScaledReg) {
3840     F.ScaledReg = G;
3841   } else {
3842     F.BaseRegs[Idx] = G;
3843     // We may generate non canonical Formula if G is a recurrent expr reg
3844     // related with current loop while F.ScaledReg is not.
3845     F.canonicalize(*L);
3846   }
3847   (void)InsertFormula(LU, LUIdx, F);
3848 }
3849 
3850 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
3851 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
3852                                           Formula Base) {
3853   // TODO: For now, just add the min and max offset, because it usually isn't
3854   // worthwhile looking at everything inbetween.
3855   SmallVector<int64_t, 2> Worklist;
3856   Worklist.push_back(LU.MinOffset);
3857   if (LU.MaxOffset != LU.MinOffset)
3858     Worklist.push_back(LU.MaxOffset);
3859 
3860   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3861     GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i);
3862   if (Base.Scale == 1)
3863     GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1,
3864                                 /* IsScaledReg */ true);
3865 }
3866 
3867 /// For ICmpZero, check to see if we can scale up the comparison. For example, x
3868 /// == y -> x*c == y*c.
3869 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
3870                                          Formula Base) {
3871   if (LU.Kind != LSRUse::ICmpZero) return;
3872 
3873   // Determine the integer type for the base formula.
3874   Type *IntTy = Base.getType();
3875   if (!IntTy) return;
3876   if (SE.getTypeSizeInBits(IntTy) > 64) return;
3877 
3878   // Don't do this if there is more than one offset.
3879   if (LU.MinOffset != LU.MaxOffset) return;
3880 
3881   // Check if transformation is valid. It is illegal to multiply pointer.
3882   if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy())
3883     return;
3884   for (const SCEV *BaseReg : Base.BaseRegs)
3885     if (BaseReg->getType()->isPointerTy())
3886       return;
3887   assert(!Base.BaseGV && "ICmpZero use is not legal!");
3888 
3889   // Check each interesting stride.
3890   for (int64_t Factor : Factors) {
3891     // Check that the multiplication doesn't overflow.
3892     if (Base.BaseOffset == std::numeric_limits<int64_t>::min() && Factor == -1)
3893       continue;
3894     int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor;
3895     if (NewBaseOffset / Factor != Base.BaseOffset)
3896       continue;
3897     // If the offset will be truncated at this use, check that it is in bounds.
3898     if (!IntTy->isPointerTy() &&
3899         !ConstantInt::isValueValidForType(IntTy, NewBaseOffset))
3900       continue;
3901 
3902     // Check that multiplying with the use offset doesn't overflow.
3903     int64_t Offset = LU.MinOffset;
3904     if (Offset == std::numeric_limits<int64_t>::min() && Factor == -1)
3905       continue;
3906     Offset = (uint64_t)Offset * Factor;
3907     if (Offset / Factor != LU.MinOffset)
3908       continue;
3909     // If the offset will be truncated at this use, check that it is in bounds.
3910     if (!IntTy->isPointerTy() &&
3911         !ConstantInt::isValueValidForType(IntTy, Offset))
3912       continue;
3913 
3914     Formula F = Base;
3915     F.BaseOffset = NewBaseOffset;
3916 
3917     // Check that this scale is legal.
3918     if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F))
3919       continue;
3920 
3921     // Compensate for the use having MinOffset built into it.
3922     F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset;
3923 
3924     const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3925 
3926     // Check that multiplying with each base register doesn't overflow.
3927     for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
3928       F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
3929       if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
3930         goto next;
3931     }
3932 
3933     // Check that multiplying with the scaled register doesn't overflow.
3934     if (F.ScaledReg) {
3935       F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
3936       if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
3937         continue;
3938     }
3939 
3940     // Check that multiplying with the unfolded offset doesn't overflow.
3941     if (F.UnfoldedOffset != 0) {
3942       if (F.UnfoldedOffset == std::numeric_limits<int64_t>::min() &&
3943           Factor == -1)
3944         continue;
3945       F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor;
3946       if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset)
3947         continue;
3948       // If the offset will be truncated, check that it is in bounds.
3949       if (!IntTy->isPointerTy() &&
3950           !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset))
3951         continue;
3952     }
3953 
3954     // If we make it here and it's legal, add it.
3955     (void)InsertFormula(LU, LUIdx, F);
3956   next:;
3957   }
3958 }
3959 
3960 /// Generate stride factor reuse formulae by making use of scaled-offset address
3961 /// modes, for example.
3962 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
3963   // Determine the integer type for the base formula.
3964   Type *IntTy = Base.getType();
3965   if (!IntTy) return;
3966 
3967   // If this Formula already has a scaled register, we can't add another one.
3968   // Try to unscale the formula to generate a better scale.
3969   if (Base.Scale != 0 && !Base.unscale())
3970     return;
3971 
3972   assert(Base.Scale == 0 && "unscale did not did its job!");
3973 
3974   // Check each interesting stride.
3975   for (int64_t Factor : Factors) {
3976     Base.Scale = Factor;
3977     Base.HasBaseReg = Base.BaseRegs.size() > 1;
3978     // Check whether this scale is going to be legal.
3979     if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
3980                     Base)) {
3981       // As a special-case, handle special out-of-loop Basic users specially.
3982       // TODO: Reconsider this special case.
3983       if (LU.Kind == LSRUse::Basic &&
3984           isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special,
3985                      LU.AccessTy, Base) &&
3986           LU.AllFixupsOutsideLoop)
3987         LU.Kind = LSRUse::Special;
3988       else
3989         continue;
3990     }
3991     // For an ICmpZero, negating a solitary base register won't lead to
3992     // new solutions.
3993     if (LU.Kind == LSRUse::ICmpZero &&
3994         !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV)
3995       continue;
3996     // For each addrec base reg, if its loop is current loop, apply the scale.
3997     for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
3998       const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i]);
3999       if (AR && (AR->getLoop() == L || LU.AllFixupsOutsideLoop)) {
4000         const SCEV *FactorS = SE.getConstant(IntTy, Factor);
4001         if (FactorS->isZero())
4002           continue;
4003         // Divide out the factor, ignoring high bits, since we'll be
4004         // scaling the value back up in the end.
4005         if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) {
4006           // TODO: This could be optimized to avoid all the copying.
4007           Formula F = Base;
4008           F.ScaledReg = Quotient;
4009           F.deleteBaseReg(F.BaseRegs[i]);
4010           // The canonical representation of 1*reg is reg, which is already in
4011           // Base. In that case, do not try to insert the formula, it will be
4012           // rejected anyway.
4013           if (F.Scale == 1 && (F.BaseRegs.empty() ||
4014                                (AR->getLoop() != L && LU.AllFixupsOutsideLoop)))
4015             continue;
4016           // If AllFixupsOutsideLoop is true and F.Scale is 1, we may generate
4017           // non canonical Formula with ScaledReg's loop not being L.
4018           if (F.Scale == 1 && LU.AllFixupsOutsideLoop)
4019             F.canonicalize(*L);
4020           (void)InsertFormula(LU, LUIdx, F);
4021         }
4022       }
4023     }
4024   }
4025 }
4026 
4027 /// Generate reuse formulae from different IV types.
4028 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
4029   // Don't bother truncating symbolic values.
4030   if (Base.BaseGV) return;
4031 
4032   // Determine the integer type for the base formula.
4033   Type *DstTy = Base.getType();
4034   if (!DstTy) return;
4035   DstTy = SE.getEffectiveSCEVType(DstTy);
4036 
4037   for (Type *SrcTy : Types) {
4038     if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) {
4039       Formula F = Base;
4040 
4041       // Sometimes SCEV is able to prove zero during ext transform. It may
4042       // happen if SCEV did not do all possible transforms while creating the
4043       // initial node (maybe due to depth limitations), but it can do them while
4044       // taking ext.
4045       if (F.ScaledReg) {
4046         const SCEV *NewScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy);
4047         if (NewScaledReg->isZero())
4048          continue;
4049         F.ScaledReg = NewScaledReg;
4050       }
4051       bool HasZeroBaseReg = false;
4052       for (const SCEV *&BaseReg : F.BaseRegs) {
4053         const SCEV *NewBaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy);
4054         if (NewBaseReg->isZero()) {
4055           HasZeroBaseReg = true;
4056           break;
4057         }
4058         BaseReg = NewBaseReg;
4059       }
4060       if (HasZeroBaseReg)
4061         continue;
4062 
4063       // TODO: This assumes we've done basic processing on all uses and
4064       // have an idea what the register usage is.
4065       if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
4066         continue;
4067 
4068       F.canonicalize(*L);
4069       (void)InsertFormula(LU, LUIdx, F);
4070     }
4071   }
4072 }
4073 
4074 namespace {
4075 
4076 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer
4077 /// modifications so that the search phase doesn't have to worry about the data
4078 /// structures moving underneath it.
4079 struct WorkItem {
4080   size_t LUIdx;
4081   int64_t Imm;
4082   const SCEV *OrigReg;
4083 
4084   WorkItem(size_t LI, int64_t I, const SCEV *R)
4085       : LUIdx(LI), Imm(I), OrigReg(R) {}
4086 
4087   void print(raw_ostream &OS) const;
4088   void dump() const;
4089 };
4090 
4091 } // end anonymous namespace
4092 
4093 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4094 void WorkItem::print(raw_ostream &OS) const {
4095   OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
4096      << " , add offset " << Imm;
4097 }
4098 
4099 LLVM_DUMP_METHOD void WorkItem::dump() const {
4100   print(errs()); errs() << '\n';
4101 }
4102 #endif
4103 
4104 /// Look for registers which are a constant distance apart and try to form reuse
4105 /// opportunities between them.
4106 void LSRInstance::GenerateCrossUseConstantOffsets() {
4107   // Group the registers by their value without any added constant offset.
4108   using ImmMapTy = std::map<int64_t, const SCEV *>;
4109 
4110   DenseMap<const SCEV *, ImmMapTy> Map;
4111   DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
4112   SmallVector<const SCEV *, 8> Sequence;
4113   for (const SCEV *Use : RegUses) {
4114     const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify.
4115     int64_t Imm = ExtractImmediate(Reg, SE);
4116     auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy()));
4117     if (Pair.second)
4118       Sequence.push_back(Reg);
4119     Pair.first->second.insert(std::make_pair(Imm, Use));
4120     UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use);
4121   }
4122 
4123   // Now examine each set of registers with the same base value. Build up
4124   // a list of work to do and do the work in a separate step so that we're
4125   // not adding formulae and register counts while we're searching.
4126   SmallVector<WorkItem, 32> WorkItems;
4127   SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
4128   for (const SCEV *Reg : Sequence) {
4129     const ImmMapTy &Imms = Map.find(Reg)->second;
4130 
4131     // It's not worthwhile looking for reuse if there's only one offset.
4132     if (Imms.size() == 1)
4133       continue;
4134 
4135     LLVM_DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
4136                for (const auto &Entry
4137                     : Imms) dbgs()
4138                << ' ' << Entry.first;
4139                dbgs() << '\n');
4140 
4141     // Examine each offset.
4142     for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
4143          J != JE; ++J) {
4144       const SCEV *OrigReg = J->second;
4145 
4146       int64_t JImm = J->first;
4147       const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
4148 
4149       if (!isa<SCEVConstant>(OrigReg) &&
4150           UsedByIndicesMap[Reg].count() == 1) {
4151         LLVM_DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg
4152                           << '\n');
4153         continue;
4154       }
4155 
4156       // Conservatively examine offsets between this orig reg a few selected
4157       // other orig regs.
4158       int64_t First = Imms.begin()->first;
4159       int64_t Last = std::prev(Imms.end())->first;
4160       // Compute (First + Last)  / 2 without overflow using the fact that
4161       // First + Last = 2 * (First + Last) + (First ^ Last).
4162       int64_t Avg = (First & Last) + ((First ^ Last) >> 1);
4163       // If the result is negative and First is odd and Last even (or vice versa),
4164       // we rounded towards -inf. Add 1 in that case, to round towards 0.
4165       Avg = Avg + ((First ^ Last) & ((uint64_t)Avg >> 63));
4166       ImmMapTy::const_iterator OtherImms[] = {
4167           Imms.begin(), std::prev(Imms.end()),
4168          Imms.lower_bound(Avg)};
4169       for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
4170         ImmMapTy::const_iterator M = OtherImms[i];
4171         if (M == J || M == JE) continue;
4172 
4173         // Compute the difference between the two.
4174         int64_t Imm = (uint64_t)JImm - M->first;
4175         for (unsigned LUIdx : UsedByIndices.set_bits())
4176           // Make a memo of this use, offset, and register tuple.
4177           if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second)
4178             WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
4179       }
4180     }
4181   }
4182 
4183   Map.clear();
4184   Sequence.clear();
4185   UsedByIndicesMap.clear();
4186   UniqueItems.clear();
4187 
4188   // Now iterate through the worklist and add new formulae.
4189   for (const WorkItem &WI : WorkItems) {
4190     size_t LUIdx = WI.LUIdx;
4191     LSRUse &LU = Uses[LUIdx];
4192     int64_t Imm = WI.Imm;
4193     const SCEV *OrigReg = WI.OrigReg;
4194 
4195     Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
4196     const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
4197     unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
4198 
4199     // TODO: Use a more targeted data structure.
4200     for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
4201       Formula F = LU.Formulae[L];
4202       // FIXME: The code for the scaled and unscaled registers looks
4203       // very similar but slightly different. Investigate if they
4204       // could be merged. That way, we would not have to unscale the
4205       // Formula.
4206       F.unscale();
4207       // Use the immediate in the scaled register.
4208       if (F.ScaledReg == OrigReg) {
4209         int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale;
4210         // Don't create 50 + reg(-50).
4211         if (F.referencesReg(SE.getSCEV(
4212                    ConstantInt::get(IntTy, -(uint64_t)Offset))))
4213           continue;
4214         Formula NewF = F;
4215         NewF.BaseOffset = Offset;
4216         if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
4217                         NewF))
4218           continue;
4219         NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
4220 
4221         // If the new scale is a constant in a register, and adding the constant
4222         // value to the immediate would produce a value closer to zero than the
4223         // immediate itself, then the formula isn't worthwhile.
4224         if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
4225           if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) &&
4226               (C->getAPInt().abs() * APInt(BitWidth, F.Scale))
4227                   .ule(std::abs(NewF.BaseOffset)))
4228             continue;
4229 
4230         // OK, looks good.
4231         NewF.canonicalize(*this->L);
4232         (void)InsertFormula(LU, LUIdx, NewF);
4233       } else {
4234         // Use the immediate in a base register.
4235         for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
4236           const SCEV *BaseReg = F.BaseRegs[N];
4237           if (BaseReg != OrigReg)
4238             continue;
4239           Formula NewF = F;
4240           NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm;
4241           if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset,
4242                           LU.Kind, LU.AccessTy, NewF)) {
4243             if (TTI.shouldFavorPostInc() &&
4244                 mayUsePostIncMode(TTI, LU, OrigReg, this->L, SE))
4245               continue;
4246             if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm))
4247               continue;
4248             NewF = F;
4249             NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm;
4250           }
4251           NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
4252 
4253           // If the new formula has a constant in a register, and adding the
4254           // constant value to the immediate would produce a value closer to
4255           // zero than the immediate itself, then the formula isn't worthwhile.
4256           for (const SCEV *NewReg : NewF.BaseRegs)
4257             if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg))
4258               if ((C->getAPInt() + NewF.BaseOffset)
4259                       .abs()
4260                       .slt(std::abs(NewF.BaseOffset)) &&
4261                   (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >=
4262                       countTrailingZeros<uint64_t>(NewF.BaseOffset))
4263                 goto skip_formula;
4264 
4265           // Ok, looks good.
4266           NewF.canonicalize(*this->L);
4267           (void)InsertFormula(LU, LUIdx, NewF);
4268           break;
4269         skip_formula:;
4270         }
4271       }
4272     }
4273   }
4274 }
4275 
4276 /// Generate formulae for each use.
4277 void
4278 LSRInstance::GenerateAllReuseFormulae() {
4279   // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
4280   // queries are more precise.
4281   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4282     LSRUse &LU = Uses[LUIdx];
4283     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4284       GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
4285     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4286       GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
4287   }
4288   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4289     LSRUse &LU = Uses[LUIdx];
4290     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4291       GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
4292     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4293       GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
4294     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4295       GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
4296     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4297       GenerateScales(LU, LUIdx, LU.Formulae[i]);
4298   }
4299   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4300     LSRUse &LU = Uses[LUIdx];
4301     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4302       GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
4303   }
4304 
4305   GenerateCrossUseConstantOffsets();
4306 
4307   LLVM_DEBUG(dbgs() << "\n"
4308                        "After generating reuse formulae:\n";
4309              print_uses(dbgs()));
4310 }
4311 
4312 /// If there are multiple formulae with the same set of registers used
4313 /// by other uses, pick the best one and delete the others.
4314 void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
4315   DenseSet<const SCEV *> VisitedRegs;
4316   SmallPtrSet<const SCEV *, 16> Regs;
4317   SmallPtrSet<const SCEV *, 16> LoserRegs;
4318 #ifndef NDEBUG
4319   bool ChangedFormulae = false;
4320 #endif
4321 
4322   // Collect the best formula for each unique set of shared registers. This
4323   // is reset for each use.
4324   using BestFormulaeTy =
4325       DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>;
4326 
4327   BestFormulaeTy BestFormulae;
4328 
4329   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4330     LSRUse &LU = Uses[LUIdx];
4331     LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs());
4332                dbgs() << '\n');
4333 
4334     bool Any = false;
4335     for (size_t FIdx = 0, NumForms = LU.Formulae.size();
4336          FIdx != NumForms; ++FIdx) {
4337       Formula &F = LU.Formulae[FIdx];
4338 
4339       // Some formulas are instant losers. For example, they may depend on
4340       // nonexistent AddRecs from other loops. These need to be filtered
4341       // immediately, otherwise heuristics could choose them over others leading
4342       // to an unsatisfactory solution. Passing LoserRegs into RateFormula here
4343       // avoids the need to recompute this information across formulae using the
4344       // same bad AddRec. Passing LoserRegs is also essential unless we remove
4345       // the corresponding bad register from the Regs set.
4346       Cost CostF(L, SE, TTI);
4347       Regs.clear();
4348       CostF.RateFormula(F, Regs, VisitedRegs, LU, &LoserRegs);
4349       if (CostF.isLoser()) {
4350         // During initial formula generation, undesirable formulae are generated
4351         // by uses within other loops that have some non-trivial address mode or
4352         // use the postinc form of the IV. LSR needs to provide these formulae
4353         // as the basis of rediscovering the desired formula that uses an AddRec
4354         // corresponding to the existing phi. Once all formulae have been
4355         // generated, these initial losers may be pruned.
4356         LLVM_DEBUG(dbgs() << "  Filtering loser "; F.print(dbgs());
4357                    dbgs() << "\n");
4358       }
4359       else {
4360         SmallVector<const SCEV *, 4> Key;
4361         for (const SCEV *Reg : F.BaseRegs) {
4362           if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
4363             Key.push_back(Reg);
4364         }
4365         if (F.ScaledReg &&
4366             RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
4367           Key.push_back(F.ScaledReg);
4368         // Unstable sort by host order ok, because this is only used for
4369         // uniquifying.
4370         llvm::sort(Key);
4371 
4372         std::pair<BestFormulaeTy::const_iterator, bool> P =
4373           BestFormulae.insert(std::make_pair(Key, FIdx));
4374         if (P.second)
4375           continue;
4376 
4377         Formula &Best = LU.Formulae[P.first->second];
4378 
4379         Cost CostBest(L, SE, TTI);
4380         Regs.clear();
4381         CostBest.RateFormula(Best, Regs, VisitedRegs, LU);
4382         if (CostF.isLess(CostBest))
4383           std::swap(F, Best);
4384         LLVM_DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
4385                    dbgs() << "\n"
4386                              "    in favor of formula ";
4387                    Best.print(dbgs()); dbgs() << '\n');
4388       }
4389 #ifndef NDEBUG
4390       ChangedFormulae = true;
4391 #endif
4392       LU.DeleteFormula(F);
4393       --FIdx;
4394       --NumForms;
4395       Any = true;
4396     }
4397 
4398     // Now that we've filtered out some formulae, recompute the Regs set.
4399     if (Any)
4400       LU.RecomputeRegs(LUIdx, RegUses);
4401 
4402     // Reset this to prepare for the next use.
4403     BestFormulae.clear();
4404   }
4405 
4406   LLVM_DEBUG(if (ChangedFormulae) {
4407     dbgs() << "\n"
4408               "After filtering out undesirable candidates:\n";
4409     print_uses(dbgs());
4410   });
4411 }
4412 
4413 /// Estimate the worst-case number of solutions the solver might have to
4414 /// consider. It almost never considers this many solutions because it prune the
4415 /// search space, but the pruning isn't always sufficient.
4416 size_t LSRInstance::EstimateSearchSpaceComplexity() const {
4417   size_t Power = 1;
4418   for (const LSRUse &LU : Uses) {
4419     size_t FSize = LU.Formulae.size();
4420     if (FSize >= ComplexityLimit) {
4421       Power = ComplexityLimit;
4422       break;
4423     }
4424     Power *= FSize;
4425     if (Power >= ComplexityLimit)
4426       break;
4427   }
4428   return Power;
4429 }
4430 
4431 /// When one formula uses a superset of the registers of another formula, it
4432 /// won't help reduce register pressure (though it may not necessarily hurt
4433 /// register pressure); remove it to simplify the system.
4434 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
4435   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4436     LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4437 
4438     LLVM_DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
4439                          "which use a superset of registers used by other "
4440                          "formulae.\n");
4441 
4442     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4443       LSRUse &LU = Uses[LUIdx];
4444       bool Any = false;
4445       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4446         Formula &F = LU.Formulae[i];
4447         // Look for a formula with a constant or GV in a register. If the use
4448         // also has a formula with that same value in an immediate field,
4449         // delete the one that uses a register.
4450         for (SmallVectorImpl<const SCEV *>::const_iterator
4451              I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
4452           if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
4453             Formula NewF = F;
4454             //FIXME: Formulas should store bitwidth to do wrapping properly.
4455             //       See PR41034.
4456             NewF.BaseOffset += (uint64_t)C->getValue()->getSExtValue();
4457             NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4458                                 (I - F.BaseRegs.begin()));
4459             if (LU.HasFormulaWithSameRegs(NewF)) {
4460               LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4461                          dbgs() << '\n');
4462               LU.DeleteFormula(F);
4463               --i;
4464               --e;
4465               Any = true;
4466               break;
4467             }
4468           } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
4469             if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
4470               if (!F.BaseGV) {
4471                 Formula NewF = F;
4472                 NewF.BaseGV = GV;
4473                 NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4474                                     (I - F.BaseRegs.begin()));
4475                 if (LU.HasFormulaWithSameRegs(NewF)) {
4476                   LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4477                              dbgs() << '\n');
4478                   LU.DeleteFormula(F);
4479                   --i;
4480                   --e;
4481                   Any = true;
4482                   break;
4483                 }
4484               }
4485           }
4486         }
4487       }
4488       if (Any)
4489         LU.RecomputeRegs(LUIdx, RegUses);
4490     }
4491 
4492     LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4493   }
4494 }
4495 
4496 /// When there are many registers for expressions like A, A+1, A+2, etc.,
4497 /// allocate a single register for them.
4498 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
4499   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4500     return;
4501 
4502   LLVM_DEBUG(
4503       dbgs() << "The search space is too complex.\n"
4504                 "Narrowing the search space by assuming that uses separated "
4505                 "by a constant offset will use the same registers.\n");
4506 
4507   // This is especially useful for unrolled loops.
4508 
4509   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4510     LSRUse &LU = Uses[LUIdx];
4511     for (const Formula &F : LU.Formulae) {
4512       if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1))
4513         continue;
4514 
4515       LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU);
4516       if (!LUThatHas)
4517         continue;
4518 
4519       if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false,
4520                               LU.Kind, LU.AccessTy))
4521         continue;
4522 
4523       LLVM_DEBUG(dbgs() << "  Deleting use "; LU.print(dbgs()); dbgs() << '\n');
4524 
4525       LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
4526 
4527       // Transfer the fixups of LU to LUThatHas.
4528       for (LSRFixup &Fixup : LU.Fixups) {
4529         Fixup.Offset += F.BaseOffset;
4530         LUThatHas->pushFixup(Fixup);
4531         LLVM_DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n');
4532       }
4533 
4534       // Delete formulae from the new use which are no longer legal.
4535       bool Any = false;
4536       for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
4537         Formula &F = LUThatHas->Formulae[i];
4538         if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset,
4539                         LUThatHas->Kind, LUThatHas->AccessTy, F)) {
4540           LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
4541           LUThatHas->DeleteFormula(F);
4542           --i;
4543           --e;
4544           Any = true;
4545         }
4546       }
4547 
4548       if (Any)
4549         LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
4550 
4551       // Delete the old use.
4552       DeleteUse(LU, LUIdx);
4553       --LUIdx;
4554       --NumUses;
4555       break;
4556     }
4557   }
4558 
4559   LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4560 }
4561 
4562 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that
4563 /// we've done more filtering, as it may be able to find more formulae to
4564 /// eliminate.
4565 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){
4566   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4567     LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4568 
4569     LLVM_DEBUG(dbgs() << "Narrowing the search space by re-filtering out "
4570                          "undesirable dedicated registers.\n");
4571 
4572     FilterOutUndesirableDedicatedRegisters();
4573 
4574     LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4575   }
4576 }
4577 
4578 /// If a LSRUse has multiple formulae with the same ScaledReg and Scale.
4579 /// Pick the best one and delete the others.
4580 /// This narrowing heuristic is to keep as many formulae with different
4581 /// Scale and ScaledReg pair as possible while narrowing the search space.
4582 /// The benefit is that it is more likely to find out a better solution
4583 /// from a formulae set with more Scale and ScaledReg variations than
4584 /// a formulae set with the same Scale and ScaledReg. The picking winner
4585 /// reg heuristic will often keep the formulae with the same Scale and
4586 /// ScaledReg and filter others, and we want to avoid that if possible.
4587 void LSRInstance::NarrowSearchSpaceByFilterFormulaWithSameScaledReg() {
4588   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4589     return;
4590 
4591   LLVM_DEBUG(
4592       dbgs() << "The search space is too complex.\n"
4593                 "Narrowing the search space by choosing the best Formula "
4594                 "from the Formulae with the same Scale and ScaledReg.\n");
4595 
4596   // Map the "Scale * ScaledReg" pair to the best formula of current LSRUse.
4597   using BestFormulaeTy = DenseMap<std::pair<const SCEV *, int64_t>, size_t>;
4598 
4599   BestFormulaeTy BestFormulae;
4600 #ifndef NDEBUG
4601   bool ChangedFormulae = false;
4602 #endif
4603   DenseSet<const SCEV *> VisitedRegs;
4604   SmallPtrSet<const SCEV *, 16> Regs;
4605 
4606   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4607     LSRUse &LU = Uses[LUIdx];
4608     LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs());
4609                dbgs() << '\n');
4610 
4611     // Return true if Formula FA is better than Formula FB.
4612     auto IsBetterThan = [&](Formula &FA, Formula &FB) {
4613       // First we will try to choose the Formula with fewer new registers.
4614       // For a register used by current Formula, the more the register is
4615       // shared among LSRUses, the less we increase the register number
4616       // counter of the formula.
4617       size_t FARegNum = 0;
4618       for (const SCEV *Reg : FA.BaseRegs) {
4619         const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg);
4620         FARegNum += (NumUses - UsedByIndices.count() + 1);
4621       }
4622       size_t FBRegNum = 0;
4623       for (const SCEV *Reg : FB.BaseRegs) {
4624         const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg);
4625         FBRegNum += (NumUses - UsedByIndices.count() + 1);
4626       }
4627       if (FARegNum != FBRegNum)
4628         return FARegNum < FBRegNum;
4629 
4630       // If the new register numbers are the same, choose the Formula with
4631       // less Cost.
4632       Cost CostFA(L, SE, TTI);
4633       Cost CostFB(L, SE, TTI);
4634       Regs.clear();
4635       CostFA.RateFormula(FA, Regs, VisitedRegs, LU);
4636       Regs.clear();
4637       CostFB.RateFormula(FB, Regs, VisitedRegs, LU);
4638       return CostFA.isLess(CostFB);
4639     };
4640 
4641     bool Any = false;
4642     for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms;
4643          ++FIdx) {
4644       Formula &F = LU.Formulae[FIdx];
4645       if (!F.ScaledReg)
4646         continue;
4647       auto P = BestFormulae.insert({{F.ScaledReg, F.Scale}, FIdx});
4648       if (P.second)
4649         continue;
4650 
4651       Formula &Best = LU.Formulae[P.first->second];
4652       if (IsBetterThan(F, Best))
4653         std::swap(F, Best);
4654       LLVM_DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
4655                  dbgs() << "\n"
4656                            "    in favor of formula ";
4657                  Best.print(dbgs()); dbgs() << '\n');
4658 #ifndef NDEBUG
4659       ChangedFormulae = true;
4660 #endif
4661       LU.DeleteFormula(F);
4662       --FIdx;
4663       --NumForms;
4664       Any = true;
4665     }
4666     if (Any)
4667       LU.RecomputeRegs(LUIdx, RegUses);
4668 
4669     // Reset this to prepare for the next use.
4670     BestFormulae.clear();
4671   }
4672 
4673   LLVM_DEBUG(if (ChangedFormulae) {
4674     dbgs() << "\n"
4675               "After filtering out undesirable candidates:\n";
4676     print_uses(dbgs());
4677   });
4678 }
4679 
4680 /// If we are over the complexity limit, filter out any post-inc prefering
4681 /// variables to only post-inc values.
4682 void LSRInstance::NarrowSearchSpaceByFilterPostInc() {
4683   if (!TTI.shouldFavorPostInc())
4684     return;
4685   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4686     return;
4687 
4688   LLVM_DEBUG(dbgs() << "The search space is too complex.\n"
4689                        "Narrowing the search space by choosing the lowest "
4690                        "register Formula for PostInc Uses.\n");
4691 
4692   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4693     LSRUse &LU = Uses[LUIdx];
4694 
4695     if (LU.Kind != LSRUse::Address)
4696       continue;
4697     if (!TTI.isIndexedLoadLegal(TTI.MIM_PostInc, LU.AccessTy.getType()) &&
4698         !TTI.isIndexedStoreLegal(TTI.MIM_PostInc, LU.AccessTy.getType()))
4699       continue;
4700 
4701     size_t MinRegs = std::numeric_limits<size_t>::max();
4702     for (const Formula &F : LU.Formulae)
4703       MinRegs = std::min(F.getNumRegs(), MinRegs);
4704 
4705     bool Any = false;
4706     for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms;
4707          ++FIdx) {
4708       Formula &F = LU.Formulae[FIdx];
4709       if (F.getNumRegs() > MinRegs) {
4710         LLVM_DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
4711                    dbgs() << "\n");
4712         LU.DeleteFormula(F);
4713         --FIdx;
4714         --NumForms;
4715         Any = true;
4716       }
4717     }
4718     if (Any)
4719       LU.RecomputeRegs(LUIdx, RegUses);
4720 
4721     if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4722       break;
4723   }
4724 
4725   LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4726 }
4727 
4728 /// The function delete formulas with high registers number expectation.
4729 /// Assuming we don't know the value of each formula (already delete
4730 /// all inefficient), generate probability of not selecting for each
4731 /// register.
4732 /// For example,
4733 /// Use1:
4734 ///  reg(a) + reg({0,+,1})
4735 ///  reg(a) + reg({-1,+,1}) + 1
4736 ///  reg({a,+,1})
4737 /// Use2:
4738 ///  reg(b) + reg({0,+,1})
4739 ///  reg(b) + reg({-1,+,1}) + 1
4740 ///  reg({b,+,1})
4741 /// Use3:
4742 ///  reg(c) + reg(b) + reg({0,+,1})
4743 ///  reg(c) + reg({b,+,1})
4744 ///
4745 /// Probability of not selecting
4746 ///                 Use1   Use2    Use3
4747 /// reg(a)         (1/3) *   1   *   1
4748 /// reg(b)           1   * (1/3) * (1/2)
4749 /// reg({0,+,1})   (2/3) * (2/3) * (1/2)
4750 /// reg({-1,+,1})  (2/3) * (2/3) *   1
4751 /// reg({a,+,1})   (2/3) *   1   *   1
4752 /// reg({b,+,1})     1   * (2/3) * (2/3)
4753 /// reg(c)           1   *   1   *   0
4754 ///
4755 /// Now count registers number mathematical expectation for each formula:
4756 /// Note that for each use we exclude probability if not selecting for the use.
4757 /// For example for Use1 probability for reg(a) would be just 1 * 1 (excluding
4758 /// probabilty 1/3 of not selecting for Use1).
4759 /// Use1:
4760 ///  reg(a) + reg({0,+,1})          1 + 1/3       -- to be deleted
4761 ///  reg(a) + reg({-1,+,1}) + 1     1 + 4/9       -- to be deleted
4762 ///  reg({a,+,1})                   1
4763 /// Use2:
4764 ///  reg(b) + reg({0,+,1})          1/2 + 1/3     -- to be deleted
4765 ///  reg(b) + reg({-1,+,1}) + 1     1/2 + 2/3     -- to be deleted
4766 ///  reg({b,+,1})                   2/3
4767 /// Use3:
4768 ///  reg(c) + reg(b) + reg({0,+,1}) 1 + 1/3 + 4/9 -- to be deleted
4769 ///  reg(c) + reg({b,+,1})          1 + 2/3
4770 void LSRInstance::NarrowSearchSpaceByDeletingCostlyFormulas() {
4771   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4772     return;
4773   // Ok, we have too many of formulae on our hands to conveniently handle.
4774   // Use a rough heuristic to thin out the list.
4775 
4776   // Set of Regs wich will be 100% used in final solution.
4777   // Used in each formula of a solution (in example above this is reg(c)).
4778   // We can skip them in calculations.
4779   SmallPtrSet<const SCEV *, 4> UniqRegs;
4780   LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4781 
4782   // Map each register to probability of not selecting
4783   DenseMap <const SCEV *, float> RegNumMap;
4784   for (const SCEV *Reg : RegUses) {
4785     if (UniqRegs.count(Reg))
4786       continue;
4787     float PNotSel = 1;
4788     for (const LSRUse &LU : Uses) {
4789       if (!LU.Regs.count(Reg))
4790         continue;
4791       float P = LU.getNotSelectedProbability(Reg);
4792       if (P != 0.0)
4793         PNotSel *= P;
4794       else
4795         UniqRegs.insert(Reg);
4796     }
4797     RegNumMap.insert(std::make_pair(Reg, PNotSel));
4798   }
4799 
4800   LLVM_DEBUG(
4801       dbgs() << "Narrowing the search space by deleting costly formulas\n");
4802 
4803   // Delete formulas where registers number expectation is high.
4804   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4805     LSRUse &LU = Uses[LUIdx];
4806     // If nothing to delete - continue.
4807     if (LU.Formulae.size() < 2)
4808       continue;
4809     // This is temporary solution to test performance. Float should be
4810     // replaced with round independent type (based on integers) to avoid
4811     // different results for different target builds.
4812     float FMinRegNum = LU.Formulae[0].getNumRegs();
4813     float FMinARegNum = LU.Formulae[0].getNumRegs();
4814     size_t MinIdx = 0;
4815     for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4816       Formula &F = LU.Formulae[i];
4817       float FRegNum = 0;
4818       float FARegNum = 0;
4819       for (const SCEV *BaseReg : F.BaseRegs) {
4820         if (UniqRegs.count(BaseReg))
4821           continue;
4822         FRegNum += RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg);
4823         if (isa<SCEVAddRecExpr>(BaseReg))
4824           FARegNum +=
4825               RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg);
4826       }
4827       if (const SCEV *ScaledReg = F.ScaledReg) {
4828         if (!UniqRegs.count(ScaledReg)) {
4829           FRegNum +=
4830               RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg);
4831           if (isa<SCEVAddRecExpr>(ScaledReg))
4832             FARegNum +=
4833                 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg);
4834         }
4835       }
4836       if (FMinRegNum > FRegNum ||
4837           (FMinRegNum == FRegNum && FMinARegNum > FARegNum)) {
4838         FMinRegNum = FRegNum;
4839         FMinARegNum = FARegNum;
4840         MinIdx = i;
4841       }
4842     }
4843     LLVM_DEBUG(dbgs() << "  The formula "; LU.Formulae[MinIdx].print(dbgs());
4844                dbgs() << " with min reg num " << FMinRegNum << '\n');
4845     if (MinIdx != 0)
4846       std::swap(LU.Formulae[MinIdx], LU.Formulae[0]);
4847     while (LU.Formulae.size() != 1) {
4848       LLVM_DEBUG(dbgs() << "  Deleting "; LU.Formulae.back().print(dbgs());
4849                  dbgs() << '\n');
4850       LU.Formulae.pop_back();
4851     }
4852     LU.RecomputeRegs(LUIdx, RegUses);
4853     assert(LU.Formulae.size() == 1 && "Should be exactly 1 min regs formula");
4854     Formula &F = LU.Formulae[0];
4855     LLVM_DEBUG(dbgs() << "  Leaving only "; F.print(dbgs()); dbgs() << '\n');
4856     // When we choose the formula, the regs become unique.
4857     UniqRegs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
4858     if (F.ScaledReg)
4859       UniqRegs.insert(F.ScaledReg);
4860   }
4861   LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4862 }
4863 
4864 /// Pick a register which seems likely to be profitable, and then in any use
4865 /// which has any reference to that register, delete all formulae which do not
4866 /// reference that register.
4867 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() {
4868   // With all other options exhausted, loop until the system is simple
4869   // enough to handle.
4870   SmallPtrSet<const SCEV *, 4> Taken;
4871   while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4872     // Ok, we have too many of formulae on our hands to conveniently handle.
4873     // Use a rough heuristic to thin out the list.
4874     LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4875 
4876     // Pick the register which is used by the most LSRUses, which is likely
4877     // to be a good reuse register candidate.
4878     const SCEV *Best = nullptr;
4879     unsigned BestNum = 0;
4880     for (const SCEV *Reg : RegUses) {
4881       if (Taken.count(Reg))
4882         continue;
4883       if (!Best) {
4884         Best = Reg;
4885         BestNum = RegUses.getUsedByIndices(Reg).count();
4886       } else {
4887         unsigned Count = RegUses.getUsedByIndices(Reg).count();
4888         if (Count > BestNum) {
4889           Best = Reg;
4890           BestNum = Count;
4891         }
4892       }
4893     }
4894     assert(Best && "Failed to find best LSRUse candidate");
4895 
4896     LLVM_DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
4897                       << " will yield profitable reuse.\n");
4898     Taken.insert(Best);
4899 
4900     // In any use with formulae which references this register, delete formulae
4901     // which don't reference it.
4902     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4903       LSRUse &LU = Uses[LUIdx];
4904       if (!LU.Regs.count(Best)) continue;
4905 
4906       bool Any = false;
4907       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4908         Formula &F = LU.Formulae[i];
4909         if (!F.referencesReg(Best)) {
4910           LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
4911           LU.DeleteFormula(F);
4912           --e;
4913           --i;
4914           Any = true;
4915           assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
4916           continue;
4917         }
4918       }
4919 
4920       if (Any)
4921         LU.RecomputeRegs(LUIdx, RegUses);
4922     }
4923 
4924     LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4925   }
4926 }
4927 
4928 /// If there are an extraordinary number of formulae to choose from, use some
4929 /// rough heuristics to prune down the number of formulae. This keeps the main
4930 /// solver from taking an extraordinary amount of time in some worst-case
4931 /// scenarios.
4932 void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
4933   NarrowSearchSpaceByDetectingSupersets();
4934   NarrowSearchSpaceByCollapsingUnrolledCode();
4935   NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
4936   if (FilterSameScaledReg)
4937     NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
4938   NarrowSearchSpaceByFilterPostInc();
4939   if (LSRExpNarrow)
4940     NarrowSearchSpaceByDeletingCostlyFormulas();
4941   else
4942     NarrowSearchSpaceByPickingWinnerRegs();
4943 }
4944 
4945 /// This is the recursive solver.
4946 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
4947                                Cost &SolutionCost,
4948                                SmallVectorImpl<const Formula *> &Workspace,
4949                                const Cost &CurCost,
4950                                const SmallPtrSet<const SCEV *, 16> &CurRegs,
4951                                DenseSet<const SCEV *> &VisitedRegs) const {
4952   // Some ideas:
4953   //  - prune more:
4954   //    - use more aggressive filtering
4955   //    - sort the formula so that the most profitable solutions are found first
4956   //    - sort the uses too
4957   //  - search faster:
4958   //    - don't compute a cost, and then compare. compare while computing a cost
4959   //      and bail early.
4960   //    - track register sets with SmallBitVector
4961 
4962   const LSRUse &LU = Uses[Workspace.size()];
4963 
4964   // If this use references any register that's already a part of the
4965   // in-progress solution, consider it a requirement that a formula must
4966   // reference that register in order to be considered. This prunes out
4967   // unprofitable searching.
4968   SmallSetVector<const SCEV *, 4> ReqRegs;
4969   for (const SCEV *S : CurRegs)
4970     if (LU.Regs.count(S))
4971       ReqRegs.insert(S);
4972 
4973   SmallPtrSet<const SCEV *, 16> NewRegs;
4974   Cost NewCost(L, SE, TTI);
4975   for (const Formula &F : LU.Formulae) {
4976     // Ignore formulae which may not be ideal in terms of register reuse of
4977     // ReqRegs.  The formula should use all required registers before
4978     // introducing new ones.
4979     // This can sometimes (notably when trying to favour postinc) lead to
4980     // sub-optimial decisions. There it is best left to the cost modelling to
4981     // get correct.
4982     if (!TTI.shouldFavorPostInc() || LU.Kind != LSRUse::Address) {
4983       int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size());
4984       for (const SCEV *Reg : ReqRegs) {
4985         if ((F.ScaledReg && F.ScaledReg == Reg) ||
4986             is_contained(F.BaseRegs, Reg)) {
4987           --NumReqRegsToFind;
4988           if (NumReqRegsToFind == 0)
4989             break;
4990         }
4991       }
4992       if (NumReqRegsToFind != 0) {
4993         // If none of the formulae satisfied the required registers, then we could
4994         // clear ReqRegs and try again. Currently, we simply give up in this case.
4995         continue;
4996       }
4997     }
4998 
4999     // Evaluate the cost of the current formula. If it's already worse than
5000     // the current best, prune the search at that point.
5001     NewCost = CurCost;
5002     NewRegs = CurRegs;
5003     NewCost.RateFormula(F, NewRegs, VisitedRegs, LU);
5004     if (NewCost.isLess(SolutionCost)) {
5005       Workspace.push_back(&F);
5006       if (Workspace.size() != Uses.size()) {
5007         SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
5008                      NewRegs, VisitedRegs);
5009         if (F.getNumRegs() == 1 && Workspace.size() == 1)
5010           VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
5011       } else {
5012         LLVM_DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
5013                    dbgs() << ".\nRegs:\n";
5014                    for (const SCEV *S : NewRegs) dbgs()
5015                       << "- " << *S << "\n";
5016                    dbgs() << '\n');
5017 
5018         SolutionCost = NewCost;
5019         Solution = Workspace;
5020       }
5021       Workspace.pop_back();
5022     }
5023   }
5024 }
5025 
5026 /// Choose one formula from each use. Return the results in the given Solution
5027 /// vector.
5028 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
5029   SmallVector<const Formula *, 8> Workspace;
5030   Cost SolutionCost(L, SE, TTI);
5031   SolutionCost.Lose();
5032   Cost CurCost(L, SE, TTI);
5033   SmallPtrSet<const SCEV *, 16> CurRegs;
5034   DenseSet<const SCEV *> VisitedRegs;
5035   Workspace.reserve(Uses.size());
5036 
5037   // SolveRecurse does all the work.
5038   SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
5039                CurRegs, VisitedRegs);
5040   if (Solution.empty()) {
5041     LLVM_DEBUG(dbgs() << "\nNo Satisfactory Solution\n");
5042     return;
5043   }
5044 
5045   // Ok, we've now made all our decisions.
5046   LLVM_DEBUG(dbgs() << "\n"
5047                        "The chosen solution requires ";
5048              SolutionCost.print(dbgs()); dbgs() << ":\n";
5049              for (size_t i = 0, e = Uses.size(); i != e; ++i) {
5050                dbgs() << "  ";
5051                Uses[i].print(dbgs());
5052                dbgs() << "\n"
5053                          "    ";
5054                Solution[i]->print(dbgs());
5055                dbgs() << '\n';
5056              });
5057 
5058   assert(Solution.size() == Uses.size() && "Malformed solution!");
5059 }
5060 
5061 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as
5062 /// we can go while still being dominated by the input positions. This helps
5063 /// canonicalize the insert position, which encourages sharing.
5064 BasicBlock::iterator
5065 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
5066                                  const SmallVectorImpl<Instruction *> &Inputs)
5067                                                                          const {
5068   Instruction *Tentative = &*IP;
5069   while (true) {
5070     bool AllDominate = true;
5071     Instruction *BetterPos = nullptr;
5072     // Don't bother attempting to insert before a catchswitch, their basic block
5073     // cannot have other non-PHI instructions.
5074     if (isa<CatchSwitchInst>(Tentative))
5075       return IP;
5076 
5077     for (Instruction *Inst : Inputs) {
5078       if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
5079         AllDominate = false;
5080         break;
5081       }
5082       // Attempt to find an insert position in the middle of the block,
5083       // instead of at the end, so that it can be used for other expansions.
5084       if (Tentative->getParent() == Inst->getParent() &&
5085           (!BetterPos || !DT.dominates(Inst, BetterPos)))
5086         BetterPos = &*std::next(BasicBlock::iterator(Inst));
5087     }
5088     if (!AllDominate)
5089       break;
5090     if (BetterPos)
5091       IP = BetterPos->getIterator();
5092     else
5093       IP = Tentative->getIterator();
5094 
5095     const Loop *IPLoop = LI.getLoopFor(IP->getParent());
5096     unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
5097 
5098     BasicBlock *IDom;
5099     for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) {
5100       if (!Rung) return IP;
5101       Rung = Rung->getIDom();
5102       if (!Rung) return IP;
5103       IDom = Rung->getBlock();
5104 
5105       // Don't climb into a loop though.
5106       const Loop *IDomLoop = LI.getLoopFor(IDom);
5107       unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
5108       if (IDomDepth <= IPLoopDepth &&
5109           (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
5110         break;
5111     }
5112 
5113     Tentative = IDom->getTerminator();
5114   }
5115 
5116   return IP;
5117 }
5118 
5119 /// Determine an input position which will be dominated by the operands and
5120 /// which will dominate the result.
5121 BasicBlock::iterator
5122 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP,
5123                                            const LSRFixup &LF,
5124                                            const LSRUse &LU,
5125                                            SCEVExpander &Rewriter) const {
5126   // Collect some instructions which must be dominated by the
5127   // expanding replacement. These must be dominated by any operands that
5128   // will be required in the expansion.
5129   SmallVector<Instruction *, 4> Inputs;
5130   if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
5131     Inputs.push_back(I);
5132   if (LU.Kind == LSRUse::ICmpZero)
5133     if (Instruction *I =
5134           dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
5135       Inputs.push_back(I);
5136   if (LF.PostIncLoops.count(L)) {
5137     if (LF.isUseFullyOutsideLoop(L))
5138       Inputs.push_back(L->getLoopLatch()->getTerminator());
5139     else
5140       Inputs.push_back(IVIncInsertPos);
5141   }
5142   // The expansion must also be dominated by the increment positions of any
5143   // loops it for which it is using post-inc mode.
5144   for (const Loop *PIL : LF.PostIncLoops) {
5145     if (PIL == L) continue;
5146 
5147     // Be dominated by the loop exit.
5148     SmallVector<BasicBlock *, 4> ExitingBlocks;
5149     PIL->getExitingBlocks(ExitingBlocks);
5150     if (!ExitingBlocks.empty()) {
5151       BasicBlock *BB = ExitingBlocks[0];
5152       for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
5153         BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
5154       Inputs.push_back(BB->getTerminator());
5155     }
5156   }
5157 
5158   assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad()
5159          && !isa<DbgInfoIntrinsic>(LowestIP) &&
5160          "Insertion point must be a normal instruction");
5161 
5162   // Then, climb up the immediate dominator tree as far as we can go while
5163   // still being dominated by the input positions.
5164   BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs);
5165 
5166   // Don't insert instructions before PHI nodes.
5167   while (isa<PHINode>(IP)) ++IP;
5168 
5169   // Ignore landingpad instructions.
5170   while (IP->isEHPad()) ++IP;
5171 
5172   // Ignore debug intrinsics.
5173   while (isa<DbgInfoIntrinsic>(IP)) ++IP;
5174 
5175   // Set IP below instructions recently inserted by SCEVExpander. This keeps the
5176   // IP consistent across expansions and allows the previously inserted
5177   // instructions to be reused by subsequent expansion.
5178   while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP)
5179     ++IP;
5180 
5181   return IP;
5182 }
5183 
5184 /// Emit instructions for the leading candidate expression for this LSRUse (this
5185 /// is called "expanding").
5186 Value *LSRInstance::Expand(const LSRUse &LU, const LSRFixup &LF,
5187                            const Formula &F, BasicBlock::iterator IP,
5188                            SCEVExpander &Rewriter,
5189                            SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5190   if (LU.RigidFormula)
5191     return LF.OperandValToReplace;
5192 
5193   // Determine an input position which will be dominated by the operands and
5194   // which will dominate the result.
5195   IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter);
5196   Rewriter.setInsertPoint(&*IP);
5197 
5198   // Inform the Rewriter if we have a post-increment use, so that it can
5199   // perform an advantageous expansion.
5200   Rewriter.setPostInc(LF.PostIncLoops);
5201 
5202   // This is the type that the user actually needs.
5203   Type *OpTy = LF.OperandValToReplace->getType();
5204   // This will be the type that we'll initially expand to.
5205   Type *Ty = F.getType();
5206   if (!Ty)
5207     // No type known; just expand directly to the ultimate type.
5208     Ty = OpTy;
5209   else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
5210     // Expand directly to the ultimate type if it's the right size.
5211     Ty = OpTy;
5212   // This is the type to do integer arithmetic in.
5213   Type *IntTy = SE.getEffectiveSCEVType(Ty);
5214 
5215   // Build up a list of operands to add together to form the full base.
5216   SmallVector<const SCEV *, 8> Ops;
5217 
5218   // Expand the BaseRegs portion.
5219   for (const SCEV *Reg : F.BaseRegs) {
5220     assert(!Reg->isZero() && "Zero allocated in a base register!");
5221 
5222     // If we're expanding for a post-inc user, make the post-inc adjustment.
5223     Reg = denormalizeForPostIncUse(Reg, LF.PostIncLoops, SE);
5224     Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr)));
5225   }
5226 
5227   // Expand the ScaledReg portion.
5228   Value *ICmpScaledV = nullptr;
5229   if (F.Scale != 0) {
5230     const SCEV *ScaledS = F.ScaledReg;
5231 
5232     // If we're expanding for a post-inc user, make the post-inc adjustment.
5233     PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
5234     ScaledS = denormalizeForPostIncUse(ScaledS, Loops, SE);
5235 
5236     if (LU.Kind == LSRUse::ICmpZero) {
5237       // Expand ScaleReg as if it was part of the base regs.
5238       if (F.Scale == 1)
5239         Ops.push_back(
5240             SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)));
5241       else {
5242         // An interesting way of "folding" with an icmp is to use a negated
5243         // scale, which we'll implement by inserting it into the other operand
5244         // of the icmp.
5245         assert(F.Scale == -1 &&
5246                "The only scale supported by ICmpZero uses is -1!");
5247         ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr);
5248       }
5249     } else {
5250       // Otherwise just expand the scaled register and an explicit scale,
5251       // which is expected to be matched as part of the address.
5252 
5253       // Flush the operand list to suppress SCEVExpander hoisting address modes.
5254       // Unless the addressing mode will not be folded.
5255       if (!Ops.empty() && LU.Kind == LSRUse::Address &&
5256           isAMCompletelyFolded(TTI, LU, F)) {
5257         Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), nullptr);
5258         Ops.clear();
5259         Ops.push_back(SE.getUnknown(FullV));
5260       }
5261       ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr));
5262       if (F.Scale != 1)
5263         ScaledS =
5264             SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale));
5265       Ops.push_back(ScaledS);
5266     }
5267   }
5268 
5269   // Expand the GV portion.
5270   if (F.BaseGV) {
5271     // Flush the operand list to suppress SCEVExpander hoisting.
5272     if (!Ops.empty()) {
5273       Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
5274       Ops.clear();
5275       Ops.push_back(SE.getUnknown(FullV));
5276     }
5277     Ops.push_back(SE.getUnknown(F.BaseGV));
5278   }
5279 
5280   // Flush the operand list to suppress SCEVExpander hoisting of both folded and
5281   // unfolded offsets. LSR assumes they both live next to their uses.
5282   if (!Ops.empty()) {
5283     Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
5284     Ops.clear();
5285     Ops.push_back(SE.getUnknown(FullV));
5286   }
5287 
5288   // Expand the immediate portion.
5289   int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset;
5290   if (Offset != 0) {
5291     if (LU.Kind == LSRUse::ICmpZero) {
5292       // The other interesting way of "folding" with an ICmpZero is to use a
5293       // negated immediate.
5294       if (!ICmpScaledV)
5295         ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset);
5296       else {
5297         Ops.push_back(SE.getUnknown(ICmpScaledV));
5298         ICmpScaledV = ConstantInt::get(IntTy, Offset);
5299       }
5300     } else {
5301       // Just add the immediate values. These again are expected to be matched
5302       // as part of the address.
5303       Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
5304     }
5305   }
5306 
5307   // Expand the unfolded offset portion.
5308   int64_t UnfoldedOffset = F.UnfoldedOffset;
5309   if (UnfoldedOffset != 0) {
5310     // Just add the immediate values.
5311     Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy,
5312                                                        UnfoldedOffset)));
5313   }
5314 
5315   // Emit instructions summing all the operands.
5316   const SCEV *FullS = Ops.empty() ?
5317                       SE.getConstant(IntTy, 0) :
5318                       SE.getAddExpr(Ops);
5319   Value *FullV = Rewriter.expandCodeFor(FullS, Ty);
5320 
5321   // We're done expanding now, so reset the rewriter.
5322   Rewriter.clearPostInc();
5323 
5324   // An ICmpZero Formula represents an ICmp which we're handling as a
5325   // comparison against zero. Now that we've expanded an expression for that
5326   // form, update the ICmp's other operand.
5327   if (LU.Kind == LSRUse::ICmpZero) {
5328     ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
5329     if (auto *OperandIsInstr = dyn_cast<Instruction>(CI->getOperand(1)))
5330       DeadInsts.emplace_back(OperandIsInstr);
5331     assert(!F.BaseGV && "ICmp does not support folding a global value and "
5332                            "a scale at the same time!");
5333     if (F.Scale == -1) {
5334       if (ICmpScaledV->getType() != OpTy) {
5335         Instruction *Cast =
5336           CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
5337                                                    OpTy, false),
5338                            ICmpScaledV, OpTy, "tmp", CI);
5339         ICmpScaledV = Cast;
5340       }
5341       CI->setOperand(1, ICmpScaledV);
5342     } else {
5343       // A scale of 1 means that the scale has been expanded as part of the
5344       // base regs.
5345       assert((F.Scale == 0 || F.Scale == 1) &&
5346              "ICmp does not support folding a global value and "
5347              "a scale at the same time!");
5348       Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
5349                                            -(uint64_t)Offset);
5350       if (C->getType() != OpTy)
5351         C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
5352                                                           OpTy, false),
5353                                   C, OpTy);
5354 
5355       CI->setOperand(1, C);
5356     }
5357   }
5358 
5359   return FullV;
5360 }
5361 
5362 /// Helper for Rewrite. PHI nodes are special because the use of their operands
5363 /// effectively happens in their predecessor blocks, so the expression may need
5364 /// to be expanded in multiple places.
5365 void LSRInstance::RewriteForPHI(
5366     PHINode *PN, const LSRUse &LU, const LSRFixup &LF, const Formula &F,
5367     SCEVExpander &Rewriter, SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5368   DenseMap<BasicBlock *, Value *> Inserted;
5369   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
5370     if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
5371       bool needUpdateFixups = false;
5372       BasicBlock *BB = PN->getIncomingBlock(i);
5373 
5374       // If this is a critical edge, split the edge so that we do not insert
5375       // the code on all predecessor/successor paths.  We do this unless this
5376       // is the canonical backedge for this loop, which complicates post-inc
5377       // users.
5378       if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
5379           !isa<IndirectBrInst>(BB->getTerminator()) &&
5380           !isa<CatchSwitchInst>(BB->getTerminator())) {
5381         BasicBlock *Parent = PN->getParent();
5382         Loop *PNLoop = LI.getLoopFor(Parent);
5383         if (!PNLoop || Parent != PNLoop->getHeader()) {
5384           // Split the critical edge.
5385           BasicBlock *NewBB = nullptr;
5386           if (!Parent->isLandingPad()) {
5387             NewBB =
5388                 SplitCriticalEdge(BB, Parent,
5389                                   CriticalEdgeSplittingOptions(&DT, &LI, MSSAU)
5390                                       .setMergeIdenticalEdges()
5391                                       .setKeepOneInputPHIs());
5392           } else {
5393             SmallVector<BasicBlock*, 2> NewBBs;
5394             SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI);
5395             NewBB = NewBBs[0];
5396           }
5397           // If NewBB==NULL, then SplitCriticalEdge refused to split because all
5398           // phi predecessors are identical. The simple thing to do is skip
5399           // splitting in this case rather than complicate the API.
5400           if (NewBB) {
5401             // If PN is outside of the loop and BB is in the loop, we want to
5402             // move the block to be immediately before the PHI block, not
5403             // immediately after BB.
5404             if (L->contains(BB) && !L->contains(PN))
5405               NewBB->moveBefore(PN->getParent());
5406 
5407             // Splitting the edge can reduce the number of PHI entries we have.
5408             e = PN->getNumIncomingValues();
5409             BB = NewBB;
5410             i = PN->getBasicBlockIndex(BB);
5411 
5412             needUpdateFixups = true;
5413           }
5414         }
5415       }
5416 
5417       std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
5418         Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr)));
5419       if (!Pair.second)
5420         PN->setIncomingValue(i, Pair.first->second);
5421       else {
5422         Value *FullV = Expand(LU, LF, F, BB->getTerminator()->getIterator(),
5423                               Rewriter, DeadInsts);
5424 
5425         // If this is reuse-by-noop-cast, insert the noop cast.
5426         Type *OpTy = LF.OperandValToReplace->getType();
5427         if (FullV->getType() != OpTy)
5428           FullV =
5429             CastInst::Create(CastInst::getCastOpcode(FullV, false,
5430                                                      OpTy, false),
5431                              FullV, LF.OperandValToReplace->getType(),
5432                              "tmp", BB->getTerminator());
5433 
5434         PN->setIncomingValue(i, FullV);
5435         Pair.first->second = FullV;
5436       }
5437 
5438       // If LSR splits critical edge and phi node has other pending
5439       // fixup operands, we need to update those pending fixups. Otherwise
5440       // formulae will not be implemented completely and some instructions
5441       // will not be eliminated.
5442       if (needUpdateFixups) {
5443         for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx)
5444           for (LSRFixup &Fixup : Uses[LUIdx].Fixups)
5445             // If fixup is supposed to rewrite some operand in the phi
5446             // that was just updated, it may be already moved to
5447             // another phi node. Such fixup requires update.
5448             if (Fixup.UserInst == PN) {
5449               // Check if the operand we try to replace still exists in the
5450               // original phi.
5451               bool foundInOriginalPHI = false;
5452               for (const auto &val : PN->incoming_values())
5453                 if (val == Fixup.OperandValToReplace) {
5454                   foundInOriginalPHI = true;
5455                   break;
5456                 }
5457 
5458               // If fixup operand found in original PHI - nothing to do.
5459               if (foundInOriginalPHI)
5460                 continue;
5461 
5462               // Otherwise it might be moved to another PHI and requires update.
5463               // If fixup operand not found in any of the incoming blocks that
5464               // means we have already rewritten it - nothing to do.
5465               for (const auto &Block : PN->blocks())
5466                 for (BasicBlock::iterator I = Block->begin(); isa<PHINode>(I);
5467                      ++I) {
5468                   PHINode *NewPN = cast<PHINode>(I);
5469                   for (const auto &val : NewPN->incoming_values())
5470                     if (val == Fixup.OperandValToReplace)
5471                       Fixup.UserInst = NewPN;
5472                 }
5473             }
5474       }
5475     }
5476 }
5477 
5478 /// Emit instructions for the leading candidate expression for this LSRUse (this
5479 /// is called "expanding"), and update the UserInst to reference the newly
5480 /// expanded value.
5481 void LSRInstance::Rewrite(const LSRUse &LU, const LSRFixup &LF,
5482                           const Formula &F, SCEVExpander &Rewriter,
5483                           SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5484   // First, find an insertion point that dominates UserInst. For PHI nodes,
5485   // find the nearest block which dominates all the relevant uses.
5486   if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
5487     RewriteForPHI(PN, LU, LF, F, Rewriter, DeadInsts);
5488   } else {
5489     Value *FullV =
5490       Expand(LU, LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts);
5491 
5492     // If this is reuse-by-noop-cast, insert the noop cast.
5493     Type *OpTy = LF.OperandValToReplace->getType();
5494     if (FullV->getType() != OpTy) {
5495       Instruction *Cast =
5496         CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
5497                          FullV, OpTy, "tmp", LF.UserInst);
5498       FullV = Cast;
5499     }
5500 
5501     // Update the user. ICmpZero is handled specially here (for now) because
5502     // Expand may have updated one of the operands of the icmp already, and
5503     // its new value may happen to be equal to LF.OperandValToReplace, in
5504     // which case doing replaceUsesOfWith leads to replacing both operands
5505     // with the same value. TODO: Reorganize this.
5506     if (LU.Kind == LSRUse::ICmpZero)
5507       LF.UserInst->setOperand(0, FullV);
5508     else
5509       LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
5510   }
5511 
5512   if (auto *OperandIsInstr = dyn_cast<Instruction>(LF.OperandValToReplace))
5513     DeadInsts.emplace_back(OperandIsInstr);
5514 }
5515 
5516 /// Rewrite all the fixup locations with new values, following the chosen
5517 /// solution.
5518 void LSRInstance::ImplementSolution(
5519     const SmallVectorImpl<const Formula *> &Solution) {
5520   // Keep track of instructions we may have made dead, so that
5521   // we can remove them after we are done working.
5522   SmallVector<WeakTrackingVH, 16> DeadInsts;
5523 
5524   SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(), "lsr",
5525                         false);
5526 #ifndef NDEBUG
5527   Rewriter.setDebugType(DEBUG_TYPE);
5528 #endif
5529   Rewriter.disableCanonicalMode();
5530   Rewriter.enableLSRMode();
5531   Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
5532 
5533   // Mark phi nodes that terminate chains so the expander tries to reuse them.
5534   for (const IVChain &Chain : IVChainVec) {
5535     if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst()))
5536       Rewriter.setChainedPhi(PN);
5537   }
5538 
5539   // Expand the new value definitions and update the users.
5540   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx)
5541     for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) {
5542       Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], Rewriter, DeadInsts);
5543       Changed = true;
5544     }
5545 
5546   for (const IVChain &Chain : IVChainVec) {
5547     GenerateIVChain(Chain, Rewriter, DeadInsts);
5548     Changed = true;
5549   }
5550   // Clean up after ourselves. This must be done before deleting any
5551   // instructions.
5552   Rewriter.clear();
5553 
5554   Changed |= RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts,
5555                                                                   &TLI, MSSAU);
5556 }
5557 
5558 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE,
5559                          DominatorTree &DT, LoopInfo &LI,
5560                          const TargetTransformInfo &TTI, AssumptionCache &AC,
5561                          TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU)
5562     : IU(IU), SE(SE), DT(DT), LI(LI), AC(AC), TLI(TLI), TTI(TTI), L(L),
5563       MSSAU(MSSAU), FavorBackedgeIndex(EnableBackedgeIndexing &&
5564                                        TTI.shouldFavorBackedgeIndex(L)) {
5565   // If LoopSimplify form is not available, stay out of trouble.
5566   if (!L->isLoopSimplifyForm())
5567     return;
5568 
5569   // If there's no interesting work to be done, bail early.
5570   if (IU.empty()) return;
5571 
5572   // If there's too much analysis to be done, bail early. We won't be able to
5573   // model the problem anyway.
5574   unsigned NumUsers = 0;
5575   for (const IVStrideUse &U : IU) {
5576     if (++NumUsers > MaxIVUsers) {
5577       (void)U;
5578       LLVM_DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U
5579                         << "\n");
5580       return;
5581     }
5582     // Bail out if we have a PHI on an EHPad that gets a value from a
5583     // CatchSwitchInst.  Because the CatchSwitchInst cannot be split, there is
5584     // no good place to stick any instructions.
5585     if (auto *PN = dyn_cast<PHINode>(U.getUser())) {
5586        auto *FirstNonPHI = PN->getParent()->getFirstNonPHI();
5587        if (isa<FuncletPadInst>(FirstNonPHI) ||
5588            isa<CatchSwitchInst>(FirstNonPHI))
5589          for (BasicBlock *PredBB : PN->blocks())
5590            if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI()))
5591              return;
5592     }
5593   }
5594 
5595 #ifndef NDEBUG
5596   // All dominating loops must have preheaders, or SCEVExpander may not be able
5597   // to materialize an AddRecExpr whose Start is an outer AddRecExpr.
5598   //
5599   // IVUsers analysis should only create users that are dominated by simple loop
5600   // headers. Since this loop should dominate all of its users, its user list
5601   // should be empty if this loop itself is not within a simple loop nest.
5602   for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader());
5603        Rung; Rung = Rung->getIDom()) {
5604     BasicBlock *BB = Rung->getBlock();
5605     const Loop *DomLoop = LI.getLoopFor(BB);
5606     if (DomLoop && DomLoop->getHeader() == BB) {
5607       assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest");
5608     }
5609   }
5610 #endif // DEBUG
5611 
5612   LLVM_DEBUG(dbgs() << "\nLSR on loop ";
5613              L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false);
5614              dbgs() << ":\n");
5615 
5616   // First, perform some low-level loop optimizations.
5617   OptimizeShadowIV();
5618   OptimizeLoopTermCond();
5619 
5620   // If loop preparation eliminates all interesting IV users, bail.
5621   if (IU.empty()) return;
5622 
5623   // Skip nested loops until we can model them better with formulae.
5624   if (!L->isInnermost()) {
5625     LLVM_DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n");
5626     return;
5627   }
5628 
5629   // Start collecting data and preparing for the solver.
5630   // If number of registers is not the major cost, we cannot benefit from the
5631   // current profitable chain optimization which is based on number of
5632   // registers.
5633   // FIXME: add profitable chain optimization for other kinds major cost, for
5634   // example number of instructions.
5635   if (TTI.isNumRegsMajorCostOfLSR() || StressIVChain)
5636     CollectChains();
5637   CollectInterestingTypesAndFactors();
5638   CollectFixupsAndInitialFormulae();
5639   CollectLoopInvariantFixupsAndFormulae();
5640 
5641   if (Uses.empty())
5642     return;
5643 
5644   LLVM_DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
5645              print_uses(dbgs()));
5646 
5647   // Now use the reuse data to generate a bunch of interesting ways
5648   // to formulate the values needed for the uses.
5649   GenerateAllReuseFormulae();
5650 
5651   FilterOutUndesirableDedicatedRegisters();
5652   NarrowSearchSpaceUsingHeuristics();
5653 
5654   SmallVector<const Formula *, 8> Solution;
5655   Solve(Solution);
5656 
5657   // Release memory that is no longer needed.
5658   Factors.clear();
5659   Types.clear();
5660   RegUses.clear();
5661 
5662   if (Solution.empty())
5663     return;
5664 
5665 #ifndef NDEBUG
5666   // Formulae should be legal.
5667   for (const LSRUse &LU : Uses) {
5668     for (const Formula &F : LU.Formulae)
5669       assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
5670                         F) && "Illegal formula generated!");
5671   };
5672 #endif
5673 
5674   // Now that we've decided what we want, make it so.
5675   ImplementSolution(Solution);
5676 }
5677 
5678 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
5679 void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
5680   if (Factors.empty() && Types.empty()) return;
5681 
5682   OS << "LSR has identified the following interesting factors and types: ";
5683   bool First = true;
5684 
5685   for (int64_t Factor : Factors) {
5686     if (!First) OS << ", ";
5687     First = false;
5688     OS << '*' << Factor;
5689   }
5690 
5691   for (Type *Ty : Types) {
5692     if (!First) OS << ", ";
5693     First = false;
5694     OS << '(' << *Ty << ')';
5695   }
5696   OS << '\n';
5697 }
5698 
5699 void LSRInstance::print_fixups(raw_ostream &OS) const {
5700   OS << "LSR is examining the following fixup sites:\n";
5701   for (const LSRUse &LU : Uses)
5702     for (const LSRFixup &LF : LU.Fixups) {
5703       dbgs() << "  ";
5704       LF.print(OS);
5705       OS << '\n';
5706     }
5707 }
5708 
5709 void LSRInstance::print_uses(raw_ostream &OS) const {
5710   OS << "LSR is examining the following uses:\n";
5711   for (const LSRUse &LU : Uses) {
5712     dbgs() << "  ";
5713     LU.print(OS);
5714     OS << '\n';
5715     for (const Formula &F : LU.Formulae) {
5716       OS << "    ";
5717       F.print(OS);
5718       OS << '\n';
5719     }
5720   }
5721 }
5722 
5723 void LSRInstance::print(raw_ostream &OS) const {
5724   print_factors_and_types(OS);
5725   print_fixups(OS);
5726   print_uses(OS);
5727 }
5728 
5729 LLVM_DUMP_METHOD void LSRInstance::dump() const {
5730   print(errs()); errs() << '\n';
5731 }
5732 #endif
5733 
5734 namespace {
5735 
5736 class LoopStrengthReduce : public LoopPass {
5737 public:
5738   static char ID; // Pass ID, replacement for typeid
5739 
5740   LoopStrengthReduce();
5741 
5742 private:
5743   bool runOnLoop(Loop *L, LPPassManager &LPM) override;
5744   void getAnalysisUsage(AnalysisUsage &AU) const override;
5745 };
5746 
5747 } // end anonymous namespace
5748 
5749 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) {
5750   initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
5751 }
5752 
5753 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
5754   // We split critical edges, so we change the CFG.  However, we do update
5755   // many analyses if they are around.
5756   AU.addPreservedID(LoopSimplifyID);
5757 
5758   AU.addRequired<LoopInfoWrapperPass>();
5759   AU.addPreserved<LoopInfoWrapperPass>();
5760   AU.addRequiredID(LoopSimplifyID);
5761   AU.addRequired<DominatorTreeWrapperPass>();
5762   AU.addPreserved<DominatorTreeWrapperPass>();
5763   AU.addRequired<ScalarEvolutionWrapperPass>();
5764   AU.addPreserved<ScalarEvolutionWrapperPass>();
5765   AU.addRequired<AssumptionCacheTracker>();
5766   AU.addRequired<TargetLibraryInfoWrapperPass>();
5767   // Requiring LoopSimplify a second time here prevents IVUsers from running
5768   // twice, since LoopSimplify was invalidated by running ScalarEvolution.
5769   AU.addRequiredID(LoopSimplifyID);
5770   AU.addRequired<IVUsersWrapperPass>();
5771   AU.addPreserved<IVUsersWrapperPass>();
5772   AU.addRequired<TargetTransformInfoWrapperPass>();
5773   AU.addPreserved<MemorySSAWrapperPass>();
5774 }
5775 
5776 using EqualValues = SmallVector<std::tuple<WeakVH, int64_t, DIExpression *>, 4>;
5777 using EqualValuesMap = DenseMap<DbgValueInst *, EqualValues>;
5778 
5779 static void DbgGatherEqualValues(Loop *L, ScalarEvolution &SE,
5780                                  EqualValuesMap &DbgValueToEqualSet) {
5781   for (auto &B : L->getBlocks()) {
5782     for (auto &I : *B) {
5783       auto DVI = dyn_cast<DbgValueInst>(&I);
5784       if (!DVI)
5785         continue;
5786       auto V = DVI->getVariableLocation();
5787       if (!V || !SE.isSCEVable(V->getType()))
5788         continue;
5789       auto DbgValueSCEV = SE.getSCEV(V);
5790       EqualValues EqSet;
5791       for (PHINode &Phi : L->getHeader()->phis()) {
5792         if (V->getType() != Phi.getType())
5793           continue;
5794         if (!SE.isSCEVable(Phi.getType()))
5795           continue;
5796         auto PhiSCEV = SE.getSCEV(&Phi);
5797         Optional<APInt> Offset =
5798                 SE.computeConstantDifference(DbgValueSCEV, PhiSCEV);
5799         if (Offset && Offset->getMinSignedBits() <= 64)
5800           EqSet.emplace_back(std::make_tuple(
5801               &Phi, Offset.getValue().getSExtValue(), DVI->getExpression()));
5802       }
5803       DbgValueToEqualSet[DVI] = std::move(EqSet);
5804     }
5805   }
5806 }
5807 
5808 static void DbgApplyEqualValues(EqualValuesMap &DbgValueToEqualSet) {
5809   for (auto A : DbgValueToEqualSet) {
5810     auto DVI = A.first;
5811     // Only update those that are now undef.
5812     if (!isa_and_nonnull<UndefValue>(DVI->getVariableLocation()))
5813       continue;
5814     for (auto EV : A.second) {
5815       auto V = std::get<WeakVH>(EV);
5816       if (!V)
5817         continue;
5818       auto DbgDIExpr = std::get<DIExpression *>(EV);
5819       auto Offset = std::get<int64_t>(EV);
5820       auto &Ctx = DVI->getContext();
5821       DVI->setOperand(0, MetadataAsValue::get(Ctx, ValueAsMetadata::get(V)));
5822       if (Offset) {
5823         SmallVector<uint64_t, 8> Ops;
5824         DIExpression::appendOffset(Ops, Offset);
5825         DbgDIExpr = DIExpression::prependOpcodes(DbgDIExpr, Ops, true);
5826       }
5827       DVI->setOperand(2, MetadataAsValue::get(Ctx, DbgDIExpr));
5828       break;
5829     }
5830   }
5831 }
5832 
5833 static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE,
5834                                DominatorTree &DT, LoopInfo &LI,
5835                                const TargetTransformInfo &TTI,
5836                                AssumptionCache &AC, TargetLibraryInfo &TLI,
5837                                MemorySSA *MSSA) {
5838 
5839   bool Changed = false;
5840   std::unique_ptr<MemorySSAUpdater> MSSAU;
5841   if (MSSA)
5842     MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
5843 
5844   // Run the main LSR transformation.
5845   Changed |=
5846       LSRInstance(L, IU, SE, DT, LI, TTI, AC, TLI, MSSAU.get()).getChanged();
5847 
5848   // Debug preservation - before we start removing anything create equivalence
5849   // sets for the llvm.dbg.value intrinsics.
5850   EqualValuesMap DbgValueToEqualSet;
5851   DbgGatherEqualValues(L, SE, DbgValueToEqualSet);
5852 
5853   // Remove any extra phis created by processing inner loops.
5854   Changed |= DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get());
5855   if (EnablePhiElim && L->isLoopSimplifyForm()) {
5856     SmallVector<WeakTrackingVH, 16> DeadInsts;
5857     const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
5858     SCEVExpander Rewriter(SE, DL, "lsr", false);
5859 #ifndef NDEBUG
5860     Rewriter.setDebugType(DEBUG_TYPE);
5861 #endif
5862     unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI);
5863     if (numFolded) {
5864       Changed = true;
5865       RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts, &TLI,
5866                                                            MSSAU.get());
5867       DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get());
5868     }
5869   }
5870 
5871   DbgApplyEqualValues(DbgValueToEqualSet);
5872 
5873   return Changed;
5874 }
5875 
5876 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
5877   if (skipLoop(L))
5878     return false;
5879 
5880   auto &IU = getAnalysis<IVUsersWrapperPass>().getIU();
5881   auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
5882   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
5883   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
5884   const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
5885       *L->getHeader()->getParent());
5886   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
5887       *L->getHeader()->getParent());
5888   auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
5889       *L->getHeader()->getParent());
5890   auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>();
5891   MemorySSA *MSSA = nullptr;
5892   if (MSSAAnalysis)
5893     MSSA = &MSSAAnalysis->getMSSA();
5894   return ReduceLoopStrength(L, IU, SE, DT, LI, TTI, AC, TLI, MSSA);
5895 }
5896 
5897 PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM,
5898                                               LoopStandardAnalysisResults &AR,
5899                                               LPMUpdater &) {
5900   if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE,
5901                           AR.DT, AR.LI, AR.TTI, AR.AC, AR.TLI, AR.MSSA))
5902     return PreservedAnalyses::all();
5903 
5904   auto PA = getLoopPassPreservedAnalyses();
5905   if (AR.MSSA)
5906     PA.preserve<MemorySSAAnalysis>();
5907   return PA;
5908 }
5909 
5910 char LoopStrengthReduce::ID = 0;
5911 
5912 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce",
5913                       "Loop Strength Reduction", false, false)
5914 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
5915 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
5916 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
5917 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass)
5918 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
5919 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
5920 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce",
5921                     "Loop Strength Reduction", false, false)
5922 
5923 Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); }
5924