1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This transformation analyzes and transforms the induction variables (and 11 // computations derived from them) into forms suitable for efficient execution 12 // on the target. 13 // 14 // This pass performs a strength reduction on array references inside loops that 15 // have as one or more of their components the loop induction variable, it 16 // rewrites expressions to take advantage of scaled-index addressing modes 17 // available on the target, and it performs a variety of other optimizations 18 // related to loop induction variables. 19 // 20 // Terminology note: this code has a lot of handling for "post-increment" or 21 // "post-inc" users. This is not talking about post-increment addressing modes; 22 // it is instead talking about code like this: 23 // 24 // %i = phi [ 0, %entry ], [ %i.next, %latch ] 25 // ... 26 // %i.next = add %i, 1 27 // %c = icmp eq %i.next, %n 28 // 29 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however 30 // it's useful to think about these as the same register, with some uses using 31 // the value of the register before the add and some using it after. In this 32 // example, the icmp is a post-increment user, since it uses %i.next, which is 33 // the value of the induction variable after the increment. The other common 34 // case of post-increment users is users outside the loop. 35 // 36 // TODO: More sophistication in the way Formulae are generated and filtered. 37 // 38 // TODO: Handle multiple loops at a time. 39 // 40 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead 41 // of a GlobalValue? 42 // 43 // TODO: When truncation is free, truncate ICmp users' operands to make it a 44 // smaller encoding (on x86 at least). 45 // 46 // TODO: When a negated register is used by an add (such as in a list of 47 // multiple base registers, or as the increment expression in an addrec), 48 // we may not actually need both reg and (-1 * reg) in registers; the 49 // negation can be implemented by using a sub instead of an add. The 50 // lack of support for taking this into consideration when making 51 // register pressure decisions is partly worked around by the "Special" 52 // use kind. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h" 57 #include "llvm/ADT/APInt.h" 58 #include "llvm/ADT/DenseMap.h" 59 #include "llvm/ADT/DenseSet.h" 60 #include "llvm/ADT/Hashing.h" 61 #include "llvm/ADT/PointerIntPair.h" 62 #include "llvm/ADT/STLExtras.h" 63 #include "llvm/ADT/SetVector.h" 64 #include "llvm/ADT/SmallBitVector.h" 65 #include "llvm/ADT/SmallPtrSet.h" 66 #include "llvm/ADT/SmallSet.h" 67 #include "llvm/ADT/SmallVector.h" 68 #include "llvm/ADT/iterator_range.h" 69 #include "llvm/Analysis/IVUsers.h" 70 #include "llvm/Analysis/LoopAnalysisManager.h" 71 #include "llvm/Analysis/LoopInfo.h" 72 #include "llvm/Analysis/LoopPass.h" 73 #include "llvm/Analysis/ScalarEvolution.h" 74 #include "llvm/Analysis/ScalarEvolutionExpander.h" 75 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 76 #include "llvm/Analysis/ScalarEvolutionNormalization.h" 77 #include "llvm/Analysis/TargetTransformInfo.h" 78 #include "llvm/Analysis/Utils/Local.h" 79 #include "llvm/IR/BasicBlock.h" 80 #include "llvm/IR/Constant.h" 81 #include "llvm/IR/Constants.h" 82 #include "llvm/IR/DerivedTypes.h" 83 #include "llvm/IR/Dominators.h" 84 #include "llvm/IR/GlobalValue.h" 85 #include "llvm/IR/IRBuilder.h" 86 #include "llvm/IR/InstrTypes.h" 87 #include "llvm/IR/Instruction.h" 88 #include "llvm/IR/Instructions.h" 89 #include "llvm/IR/IntrinsicInst.h" 90 #include "llvm/IR/Intrinsics.h" 91 #include "llvm/IR/Module.h" 92 #include "llvm/IR/OperandTraits.h" 93 #include "llvm/IR/Operator.h" 94 #include "llvm/IR/PassManager.h" 95 #include "llvm/IR/Type.h" 96 #include "llvm/IR/Use.h" 97 #include "llvm/IR/User.h" 98 #include "llvm/IR/Value.h" 99 #include "llvm/IR/ValueHandle.h" 100 #include "llvm/Pass.h" 101 #include "llvm/Support/Casting.h" 102 #include "llvm/Support/CommandLine.h" 103 #include "llvm/Support/Compiler.h" 104 #include "llvm/Support/Debug.h" 105 #include "llvm/Support/ErrorHandling.h" 106 #include "llvm/Support/MathExtras.h" 107 #include "llvm/Support/raw_ostream.h" 108 #include "llvm/Transforms/Scalar.h" 109 #include "llvm/Transforms/Utils.h" 110 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 111 #include <algorithm> 112 #include <cassert> 113 #include <cstddef> 114 #include <cstdint> 115 #include <cstdlib> 116 #include <iterator> 117 #include <limits> 118 #include <map> 119 #include <utility> 120 121 using namespace llvm; 122 123 #define DEBUG_TYPE "loop-reduce" 124 125 /// MaxIVUsers is an arbitrary threshold that provides an early opportunitiy for 126 /// bail out. This threshold is far beyond the number of users that LSR can 127 /// conceivably solve, so it should not affect generated code, but catches the 128 /// worst cases before LSR burns too much compile time and stack space. 129 static const unsigned MaxIVUsers = 200; 130 131 // Temporary flag to cleanup congruent phis after LSR phi expansion. 132 // It's currently disabled until we can determine whether it's truly useful or 133 // not. The flag should be removed after the v3.0 release. 134 // This is now needed for ivchains. 135 static cl::opt<bool> EnablePhiElim( 136 "enable-lsr-phielim", cl::Hidden, cl::init(true), 137 cl::desc("Enable LSR phi elimination")); 138 139 // The flag adds instruction count to solutions cost comparision. 140 static cl::opt<bool> InsnsCost( 141 "lsr-insns-cost", cl::Hidden, cl::init(true), 142 cl::desc("Add instruction count to a LSR cost model")); 143 144 // Flag to choose how to narrow complex lsr solution 145 static cl::opt<bool> LSRExpNarrow( 146 "lsr-exp-narrow", cl::Hidden, cl::init(false), 147 cl::desc("Narrow LSR complex solution using" 148 " expectation of registers number")); 149 150 // Flag to narrow search space by filtering non-optimal formulae with 151 // the same ScaledReg and Scale. 152 static cl::opt<bool> FilterSameScaledReg( 153 "lsr-filter-same-scaled-reg", cl::Hidden, cl::init(true), 154 cl::desc("Narrow LSR search space by filtering non-optimal formulae" 155 " with the same ScaledReg and Scale")); 156 157 #ifndef NDEBUG 158 // Stress test IV chain generation. 159 static cl::opt<bool> StressIVChain( 160 "stress-ivchain", cl::Hidden, cl::init(false), 161 cl::desc("Stress test LSR IV chains")); 162 #else 163 static bool StressIVChain = false; 164 #endif 165 166 namespace { 167 168 struct MemAccessTy { 169 /// Used in situations where the accessed memory type is unknown. 170 static const unsigned UnknownAddressSpace = 171 std::numeric_limits<unsigned>::max(); 172 173 Type *MemTy = nullptr; 174 unsigned AddrSpace = UnknownAddressSpace; 175 176 MemAccessTy() = default; 177 MemAccessTy(Type *Ty, unsigned AS) : MemTy(Ty), AddrSpace(AS) {} 178 179 bool operator==(MemAccessTy Other) const { 180 return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace; 181 } 182 183 bool operator!=(MemAccessTy Other) const { return !(*this == Other); } 184 185 static MemAccessTy getUnknown(LLVMContext &Ctx, 186 unsigned AS = UnknownAddressSpace) { 187 return MemAccessTy(Type::getVoidTy(Ctx), AS); 188 } 189 190 Type *getType() { return MemTy; } 191 }; 192 193 /// This class holds data which is used to order reuse candidates. 194 class RegSortData { 195 public: 196 /// This represents the set of LSRUse indices which reference 197 /// a particular register. 198 SmallBitVector UsedByIndices; 199 200 void print(raw_ostream &OS) const; 201 void dump() const; 202 }; 203 204 } // end anonymous namespace 205 206 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 207 void RegSortData::print(raw_ostream &OS) const { 208 OS << "[NumUses=" << UsedByIndices.count() << ']'; 209 } 210 211 LLVM_DUMP_METHOD void RegSortData::dump() const { 212 print(errs()); errs() << '\n'; 213 } 214 #endif 215 216 namespace { 217 218 /// Map register candidates to information about how they are used. 219 class RegUseTracker { 220 using RegUsesTy = DenseMap<const SCEV *, RegSortData>; 221 222 RegUsesTy RegUsesMap; 223 SmallVector<const SCEV *, 16> RegSequence; 224 225 public: 226 void countRegister(const SCEV *Reg, size_t LUIdx); 227 void dropRegister(const SCEV *Reg, size_t LUIdx); 228 void swapAndDropUse(size_t LUIdx, size_t LastLUIdx); 229 230 bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const; 231 232 const SmallBitVector &getUsedByIndices(const SCEV *Reg) const; 233 234 void clear(); 235 236 using iterator = SmallVectorImpl<const SCEV *>::iterator; 237 using const_iterator = SmallVectorImpl<const SCEV *>::const_iterator; 238 239 iterator begin() { return RegSequence.begin(); } 240 iterator end() { return RegSequence.end(); } 241 const_iterator begin() const { return RegSequence.begin(); } 242 const_iterator end() const { return RegSequence.end(); } 243 }; 244 245 } // end anonymous namespace 246 247 void 248 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) { 249 std::pair<RegUsesTy::iterator, bool> Pair = 250 RegUsesMap.insert(std::make_pair(Reg, RegSortData())); 251 RegSortData &RSD = Pair.first->second; 252 if (Pair.second) 253 RegSequence.push_back(Reg); 254 RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1)); 255 RSD.UsedByIndices.set(LUIdx); 256 } 257 258 void 259 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) { 260 RegUsesTy::iterator It = RegUsesMap.find(Reg); 261 assert(It != RegUsesMap.end()); 262 RegSortData &RSD = It->second; 263 assert(RSD.UsedByIndices.size() > LUIdx); 264 RSD.UsedByIndices.reset(LUIdx); 265 } 266 267 void 268 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) { 269 assert(LUIdx <= LastLUIdx); 270 271 // Update RegUses. The data structure is not optimized for this purpose; 272 // we must iterate through it and update each of the bit vectors. 273 for (auto &Pair : RegUsesMap) { 274 SmallBitVector &UsedByIndices = Pair.second.UsedByIndices; 275 if (LUIdx < UsedByIndices.size()) 276 UsedByIndices[LUIdx] = 277 LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false; 278 UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx)); 279 } 280 } 281 282 bool 283 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const { 284 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 285 if (I == RegUsesMap.end()) 286 return false; 287 const SmallBitVector &UsedByIndices = I->second.UsedByIndices; 288 int i = UsedByIndices.find_first(); 289 if (i == -1) return false; 290 if ((size_t)i != LUIdx) return true; 291 return UsedByIndices.find_next(i) != -1; 292 } 293 294 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const { 295 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 296 assert(I != RegUsesMap.end() && "Unknown register!"); 297 return I->second.UsedByIndices; 298 } 299 300 void RegUseTracker::clear() { 301 RegUsesMap.clear(); 302 RegSequence.clear(); 303 } 304 305 namespace { 306 307 /// This class holds information that describes a formula for computing 308 /// satisfying a use. It may include broken-out immediates and scaled registers. 309 struct Formula { 310 /// Global base address used for complex addressing. 311 GlobalValue *BaseGV = nullptr; 312 313 /// Base offset for complex addressing. 314 int64_t BaseOffset = 0; 315 316 /// Whether any complex addressing has a base register. 317 bool HasBaseReg = false; 318 319 /// The scale of any complex addressing. 320 int64_t Scale = 0; 321 322 /// The list of "base" registers for this use. When this is non-empty. The 323 /// canonical representation of a formula is 324 /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and 325 /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty(). 326 /// 3. The reg containing recurrent expr related with currect loop in the 327 /// formula should be put in the ScaledReg. 328 /// #1 enforces that the scaled register is always used when at least two 329 /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2. 330 /// #2 enforces that 1 * reg is reg. 331 /// #3 ensures invariant regs with respect to current loop can be combined 332 /// together in LSR codegen. 333 /// This invariant can be temporarly broken while building a formula. 334 /// However, every formula inserted into the LSRInstance must be in canonical 335 /// form. 336 SmallVector<const SCEV *, 4> BaseRegs; 337 338 /// The 'scaled' register for this use. This should be non-null when Scale is 339 /// not zero. 340 const SCEV *ScaledReg = nullptr; 341 342 /// An additional constant offset which added near the use. This requires a 343 /// temporary register, but the offset itself can live in an add immediate 344 /// field rather than a register. 345 int64_t UnfoldedOffset = 0; 346 347 Formula() = default; 348 349 void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE); 350 351 bool isCanonical(const Loop &L) const; 352 353 void canonicalize(const Loop &L); 354 355 bool unscale(); 356 357 bool hasZeroEnd() const; 358 359 size_t getNumRegs() const; 360 Type *getType() const; 361 362 void deleteBaseReg(const SCEV *&S); 363 364 bool referencesReg(const SCEV *S) const; 365 bool hasRegsUsedByUsesOtherThan(size_t LUIdx, 366 const RegUseTracker &RegUses) const; 367 368 void print(raw_ostream &OS) const; 369 void dump() const; 370 }; 371 372 } // end anonymous namespace 373 374 /// Recursion helper for initialMatch. 375 static void DoInitialMatch(const SCEV *S, Loop *L, 376 SmallVectorImpl<const SCEV *> &Good, 377 SmallVectorImpl<const SCEV *> &Bad, 378 ScalarEvolution &SE) { 379 // Collect expressions which properly dominate the loop header. 380 if (SE.properlyDominates(S, L->getHeader())) { 381 Good.push_back(S); 382 return; 383 } 384 385 // Look at add operands. 386 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 387 for (const SCEV *S : Add->operands()) 388 DoInitialMatch(S, L, Good, Bad, SE); 389 return; 390 } 391 392 // Look at addrec operands. 393 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 394 if (!AR->getStart()->isZero() && AR->isAffine()) { 395 DoInitialMatch(AR->getStart(), L, Good, Bad, SE); 396 DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0), 397 AR->getStepRecurrence(SE), 398 // FIXME: AR->getNoWrapFlags() 399 AR->getLoop(), SCEV::FlagAnyWrap), 400 L, Good, Bad, SE); 401 return; 402 } 403 404 // Handle a multiplication by -1 (negation) if it didn't fold. 405 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) 406 if (Mul->getOperand(0)->isAllOnesValue()) { 407 SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end()); 408 const SCEV *NewMul = SE.getMulExpr(Ops); 409 410 SmallVector<const SCEV *, 4> MyGood; 411 SmallVector<const SCEV *, 4> MyBad; 412 DoInitialMatch(NewMul, L, MyGood, MyBad, SE); 413 const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue( 414 SE.getEffectiveSCEVType(NewMul->getType()))); 415 for (const SCEV *S : MyGood) 416 Good.push_back(SE.getMulExpr(NegOne, S)); 417 for (const SCEV *S : MyBad) 418 Bad.push_back(SE.getMulExpr(NegOne, S)); 419 return; 420 } 421 422 // Ok, we can't do anything interesting. Just stuff the whole thing into a 423 // register and hope for the best. 424 Bad.push_back(S); 425 } 426 427 /// Incorporate loop-variant parts of S into this Formula, attempting to keep 428 /// all loop-invariant and loop-computable values in a single base register. 429 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) { 430 SmallVector<const SCEV *, 4> Good; 431 SmallVector<const SCEV *, 4> Bad; 432 DoInitialMatch(S, L, Good, Bad, SE); 433 if (!Good.empty()) { 434 const SCEV *Sum = SE.getAddExpr(Good); 435 if (!Sum->isZero()) 436 BaseRegs.push_back(Sum); 437 HasBaseReg = true; 438 } 439 if (!Bad.empty()) { 440 const SCEV *Sum = SE.getAddExpr(Bad); 441 if (!Sum->isZero()) 442 BaseRegs.push_back(Sum); 443 HasBaseReg = true; 444 } 445 canonicalize(*L); 446 } 447 448 /// \brief Check whether or not this formula satisfies the canonical 449 /// representation. 450 /// \see Formula::BaseRegs. 451 bool Formula::isCanonical(const Loop &L) const { 452 if (!ScaledReg) 453 return BaseRegs.size() <= 1; 454 455 if (Scale != 1) 456 return true; 457 458 if (Scale == 1 && BaseRegs.empty()) 459 return false; 460 461 const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg); 462 if (SAR && SAR->getLoop() == &L) 463 return true; 464 465 // If ScaledReg is not a recurrent expr, or it is but its loop is not current 466 // loop, meanwhile BaseRegs contains a recurrent expr reg related with current 467 // loop, we want to swap the reg in BaseRegs with ScaledReg. 468 auto I = 469 find_if(make_range(BaseRegs.begin(), BaseRegs.end()), [&](const SCEV *S) { 470 return isa<const SCEVAddRecExpr>(S) && 471 (cast<SCEVAddRecExpr>(S)->getLoop() == &L); 472 }); 473 return I == BaseRegs.end(); 474 } 475 476 /// \brief Helper method to morph a formula into its canonical representation. 477 /// \see Formula::BaseRegs. 478 /// Every formula having more than one base register, must use the ScaledReg 479 /// field. Otherwise, we would have to do special cases everywhere in LSR 480 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ... 481 /// On the other hand, 1*reg should be canonicalized into reg. 482 void Formula::canonicalize(const Loop &L) { 483 if (isCanonical(L)) 484 return; 485 // So far we did not need this case. This is easy to implement but it is 486 // useless to maintain dead code. Beside it could hurt compile time. 487 assert(!BaseRegs.empty() && "1*reg => reg, should not be needed."); 488 489 // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg. 490 if (!ScaledReg) { 491 ScaledReg = BaseRegs.back(); 492 BaseRegs.pop_back(); 493 Scale = 1; 494 } 495 496 // If ScaledReg is an invariant with respect to L, find the reg from 497 // BaseRegs containing the recurrent expr related with Loop L. Swap the 498 // reg with ScaledReg. 499 const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg); 500 if (!SAR || SAR->getLoop() != &L) { 501 auto I = find_if(make_range(BaseRegs.begin(), BaseRegs.end()), 502 [&](const SCEV *S) { 503 return isa<const SCEVAddRecExpr>(S) && 504 (cast<SCEVAddRecExpr>(S)->getLoop() == &L); 505 }); 506 if (I != BaseRegs.end()) 507 std::swap(ScaledReg, *I); 508 } 509 } 510 511 /// \brief Get rid of the scale in the formula. 512 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2. 513 /// \return true if it was possible to get rid of the scale, false otherwise. 514 /// \note After this operation the formula may not be in the canonical form. 515 bool Formula::unscale() { 516 if (Scale != 1) 517 return false; 518 Scale = 0; 519 BaseRegs.push_back(ScaledReg); 520 ScaledReg = nullptr; 521 return true; 522 } 523 524 bool Formula::hasZeroEnd() const { 525 if (UnfoldedOffset || BaseOffset) 526 return false; 527 if (BaseRegs.size() != 1 || ScaledReg) 528 return false; 529 return true; 530 } 531 532 /// Return the total number of register operands used by this formula. This does 533 /// not include register uses implied by non-constant addrec strides. 534 size_t Formula::getNumRegs() const { 535 return !!ScaledReg + BaseRegs.size(); 536 } 537 538 /// Return the type of this formula, if it has one, or null otherwise. This type 539 /// is meaningless except for the bit size. 540 Type *Formula::getType() const { 541 return !BaseRegs.empty() ? BaseRegs.front()->getType() : 542 ScaledReg ? ScaledReg->getType() : 543 BaseGV ? BaseGV->getType() : 544 nullptr; 545 } 546 547 /// Delete the given base reg from the BaseRegs list. 548 void Formula::deleteBaseReg(const SCEV *&S) { 549 if (&S != &BaseRegs.back()) 550 std::swap(S, BaseRegs.back()); 551 BaseRegs.pop_back(); 552 } 553 554 /// Test if this formula references the given register. 555 bool Formula::referencesReg(const SCEV *S) const { 556 return S == ScaledReg || is_contained(BaseRegs, S); 557 } 558 559 /// Test whether this formula uses registers which are used by uses other than 560 /// the use with the given index. 561 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx, 562 const RegUseTracker &RegUses) const { 563 if (ScaledReg) 564 if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx)) 565 return true; 566 for (const SCEV *BaseReg : BaseRegs) 567 if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx)) 568 return true; 569 return false; 570 } 571 572 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 573 void Formula::print(raw_ostream &OS) const { 574 bool First = true; 575 if (BaseGV) { 576 if (!First) OS << " + "; else First = false; 577 BaseGV->printAsOperand(OS, /*PrintType=*/false); 578 } 579 if (BaseOffset != 0) { 580 if (!First) OS << " + "; else First = false; 581 OS << BaseOffset; 582 } 583 for (const SCEV *BaseReg : BaseRegs) { 584 if (!First) OS << " + "; else First = false; 585 OS << "reg(" << *BaseReg << ')'; 586 } 587 if (HasBaseReg && BaseRegs.empty()) { 588 if (!First) OS << " + "; else First = false; 589 OS << "**error: HasBaseReg**"; 590 } else if (!HasBaseReg && !BaseRegs.empty()) { 591 if (!First) OS << " + "; else First = false; 592 OS << "**error: !HasBaseReg**"; 593 } 594 if (Scale != 0) { 595 if (!First) OS << " + "; else First = false; 596 OS << Scale << "*reg("; 597 if (ScaledReg) 598 OS << *ScaledReg; 599 else 600 OS << "<unknown>"; 601 OS << ')'; 602 } 603 if (UnfoldedOffset != 0) { 604 if (!First) OS << " + "; 605 OS << "imm(" << UnfoldedOffset << ')'; 606 } 607 } 608 609 LLVM_DUMP_METHOD void Formula::dump() const { 610 print(errs()); errs() << '\n'; 611 } 612 #endif 613 614 /// Return true if the given addrec can be sign-extended without changing its 615 /// value. 616 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 617 Type *WideTy = 618 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1); 619 return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy)); 620 } 621 622 /// Return true if the given add can be sign-extended without changing its 623 /// value. 624 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) { 625 Type *WideTy = 626 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1); 627 return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy)); 628 } 629 630 /// Return true if the given mul can be sign-extended without changing its 631 /// value. 632 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) { 633 Type *WideTy = 634 IntegerType::get(SE.getContext(), 635 SE.getTypeSizeInBits(M->getType()) * M->getNumOperands()); 636 return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy)); 637 } 638 639 /// Return an expression for LHS /s RHS, if it can be determined and if the 640 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits 641 /// is true, expressions like (X * Y) /s Y are simplified to Y, ignoring that 642 /// the multiplication may overflow, which is useful when the result will be 643 /// used in a context where the most significant bits are ignored. 644 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS, 645 ScalarEvolution &SE, 646 bool IgnoreSignificantBits = false) { 647 // Handle the trivial case, which works for any SCEV type. 648 if (LHS == RHS) 649 return SE.getConstant(LHS->getType(), 1); 650 651 // Handle a few RHS special cases. 652 const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS); 653 if (RC) { 654 const APInt &RA = RC->getAPInt(); 655 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do 656 // some folding. 657 if (RA.isAllOnesValue()) 658 return SE.getMulExpr(LHS, RC); 659 // Handle x /s 1 as x. 660 if (RA == 1) 661 return LHS; 662 } 663 664 // Check for a division of a constant by a constant. 665 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) { 666 if (!RC) 667 return nullptr; 668 const APInt &LA = C->getAPInt(); 669 const APInt &RA = RC->getAPInt(); 670 if (LA.srem(RA) != 0) 671 return nullptr; 672 return SE.getConstant(LA.sdiv(RA)); 673 } 674 675 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow. 676 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) { 677 if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) { 678 const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE, 679 IgnoreSignificantBits); 680 if (!Step) return nullptr; 681 const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE, 682 IgnoreSignificantBits); 683 if (!Start) return nullptr; 684 // FlagNW is independent of the start value, step direction, and is 685 // preserved with smaller magnitude steps. 686 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 687 return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap); 688 } 689 return nullptr; 690 } 691 692 // Distribute the sdiv over add operands, if the add doesn't overflow. 693 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) { 694 if (IgnoreSignificantBits || isAddSExtable(Add, SE)) { 695 SmallVector<const SCEV *, 8> Ops; 696 for (const SCEV *S : Add->operands()) { 697 const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits); 698 if (!Op) return nullptr; 699 Ops.push_back(Op); 700 } 701 return SE.getAddExpr(Ops); 702 } 703 return nullptr; 704 } 705 706 // Check for a multiply operand that we can pull RHS out of. 707 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) { 708 if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) { 709 SmallVector<const SCEV *, 4> Ops; 710 bool Found = false; 711 for (const SCEV *S : Mul->operands()) { 712 if (!Found) 713 if (const SCEV *Q = getExactSDiv(S, RHS, SE, 714 IgnoreSignificantBits)) { 715 S = Q; 716 Found = true; 717 } 718 Ops.push_back(S); 719 } 720 return Found ? SE.getMulExpr(Ops) : nullptr; 721 } 722 return nullptr; 723 } 724 725 // Otherwise we don't know. 726 return nullptr; 727 } 728 729 /// If S involves the addition of a constant integer value, return that integer 730 /// value, and mutate S to point to a new SCEV with that value excluded. 731 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) { 732 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 733 if (C->getAPInt().getMinSignedBits() <= 64) { 734 S = SE.getConstant(C->getType(), 0); 735 return C->getValue()->getSExtValue(); 736 } 737 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 738 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 739 int64_t Result = ExtractImmediate(NewOps.front(), SE); 740 if (Result != 0) 741 S = SE.getAddExpr(NewOps); 742 return Result; 743 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 744 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 745 int64_t Result = ExtractImmediate(NewOps.front(), SE); 746 if (Result != 0) 747 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 748 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 749 SCEV::FlagAnyWrap); 750 return Result; 751 } 752 return 0; 753 } 754 755 /// If S involves the addition of a GlobalValue address, return that symbol, and 756 /// mutate S to point to a new SCEV with that value excluded. 757 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) { 758 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 759 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) { 760 S = SE.getConstant(GV->getType(), 0); 761 return GV; 762 } 763 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 764 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 765 GlobalValue *Result = ExtractSymbol(NewOps.back(), SE); 766 if (Result) 767 S = SE.getAddExpr(NewOps); 768 return Result; 769 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 770 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 771 GlobalValue *Result = ExtractSymbol(NewOps.front(), SE); 772 if (Result) 773 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 774 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 775 SCEV::FlagAnyWrap); 776 return Result; 777 } 778 return nullptr; 779 } 780 781 /// Returns true if the specified instruction is using the specified value as an 782 /// address. 783 static bool isAddressUse(const TargetTransformInfo &TTI, 784 Instruction *Inst, Value *OperandVal) { 785 bool isAddress = isa<LoadInst>(Inst); 786 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 787 if (SI->getPointerOperand() == OperandVal) 788 isAddress = true; 789 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 790 // Addressing modes can also be folded into prefetches and a variety 791 // of intrinsics. 792 switch (II->getIntrinsicID()) { 793 case Intrinsic::memset: 794 case Intrinsic::prefetch: 795 if (II->getArgOperand(0) == OperandVal) 796 isAddress = true; 797 break; 798 case Intrinsic::memmove: 799 case Intrinsic::memcpy: 800 if (II->getArgOperand(0) == OperandVal || 801 II->getArgOperand(1) == OperandVal) 802 isAddress = true; 803 break; 804 default: { 805 MemIntrinsicInfo IntrInfo; 806 if (TTI.getTgtMemIntrinsic(II, IntrInfo)) { 807 if (IntrInfo.PtrVal == OperandVal) 808 isAddress = true; 809 } 810 } 811 } 812 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) { 813 if (RMW->getPointerOperand() == OperandVal) 814 isAddress = true; 815 } else if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 816 if (CmpX->getPointerOperand() == OperandVal) 817 isAddress = true; 818 } 819 return isAddress; 820 } 821 822 /// Return the type of the memory being accessed. 823 static MemAccessTy getAccessType(const TargetTransformInfo &TTI, 824 Instruction *Inst) { 825 MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace); 826 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 827 AccessTy.MemTy = SI->getOperand(0)->getType(); 828 AccessTy.AddrSpace = SI->getPointerAddressSpace(); 829 } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 830 AccessTy.AddrSpace = LI->getPointerAddressSpace(); 831 } else if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) { 832 AccessTy.AddrSpace = RMW->getPointerAddressSpace(); 833 } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 834 AccessTy.AddrSpace = CmpX->getPointerAddressSpace(); 835 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 836 switch (II->getIntrinsicID()) { 837 case Intrinsic::prefetch: 838 AccessTy.AddrSpace = II->getArgOperand(0)->getType()->getPointerAddressSpace(); 839 break; 840 default: { 841 MemIntrinsicInfo IntrInfo; 842 if (TTI.getTgtMemIntrinsic(II, IntrInfo) && IntrInfo.PtrVal) { 843 AccessTy.AddrSpace 844 = IntrInfo.PtrVal->getType()->getPointerAddressSpace(); 845 } 846 847 break; 848 } 849 } 850 } 851 852 // All pointers have the same requirements, so canonicalize them to an 853 // arbitrary pointer type to minimize variation. 854 if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy)) 855 AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1), 856 PTy->getAddressSpace()); 857 858 return AccessTy; 859 } 860 861 /// Return true if this AddRec is already a phi in its loop. 862 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 863 for (PHINode &PN : AR->getLoop()->getHeader()->phis()) { 864 if (SE.isSCEVable(PN.getType()) && 865 (SE.getEffectiveSCEVType(PN.getType()) == 866 SE.getEffectiveSCEVType(AR->getType())) && 867 SE.getSCEV(&PN) == AR) 868 return true; 869 } 870 return false; 871 } 872 873 /// Check if expanding this expression is likely to incur significant cost. This 874 /// is tricky because SCEV doesn't track which expressions are actually computed 875 /// by the current IR. 876 /// 877 /// We currently allow expansion of IV increments that involve adds, 878 /// multiplication by constants, and AddRecs from existing phis. 879 /// 880 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an 881 /// obvious multiple of the UDivExpr. 882 static bool isHighCostExpansion(const SCEV *S, 883 SmallPtrSetImpl<const SCEV*> &Processed, 884 ScalarEvolution &SE) { 885 // Zero/One operand expressions 886 switch (S->getSCEVType()) { 887 case scUnknown: 888 case scConstant: 889 return false; 890 case scTruncate: 891 return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(), 892 Processed, SE); 893 case scZeroExtend: 894 return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(), 895 Processed, SE); 896 case scSignExtend: 897 return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(), 898 Processed, SE); 899 } 900 901 if (!Processed.insert(S).second) 902 return false; 903 904 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 905 for (const SCEV *S : Add->operands()) { 906 if (isHighCostExpansion(S, Processed, SE)) 907 return true; 908 } 909 return false; 910 } 911 912 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 913 if (Mul->getNumOperands() == 2) { 914 // Multiplication by a constant is ok 915 if (isa<SCEVConstant>(Mul->getOperand(0))) 916 return isHighCostExpansion(Mul->getOperand(1), Processed, SE); 917 918 // If we have the value of one operand, check if an existing 919 // multiplication already generates this expression. 920 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) { 921 Value *UVal = U->getValue(); 922 for (User *UR : UVal->users()) { 923 // If U is a constant, it may be used by a ConstantExpr. 924 Instruction *UI = dyn_cast<Instruction>(UR); 925 if (UI && UI->getOpcode() == Instruction::Mul && 926 SE.isSCEVable(UI->getType())) { 927 return SE.getSCEV(UI) == Mul; 928 } 929 } 930 } 931 } 932 } 933 934 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 935 if (isExistingPhi(AR, SE)) 936 return false; 937 } 938 939 // Fow now, consider any other type of expression (div/mul/min/max) high cost. 940 return true; 941 } 942 943 /// If any of the instructions in the specified set are trivially dead, delete 944 /// them and see if this makes any of their operands subsequently dead. 945 static bool 946 DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 947 bool Changed = false; 948 949 while (!DeadInsts.empty()) { 950 Value *V = DeadInsts.pop_back_val(); 951 Instruction *I = dyn_cast_or_null<Instruction>(V); 952 953 if (!I || !isInstructionTriviallyDead(I)) 954 continue; 955 956 for (Use &O : I->operands()) 957 if (Instruction *U = dyn_cast<Instruction>(O)) { 958 O = nullptr; 959 if (U->use_empty()) 960 DeadInsts.emplace_back(U); 961 } 962 963 I->eraseFromParent(); 964 Changed = true; 965 } 966 967 return Changed; 968 } 969 970 namespace { 971 972 class LSRUse; 973 974 } // end anonymous namespace 975 976 /// \brief Check if the addressing mode defined by \p F is completely 977 /// folded in \p LU at isel time. 978 /// This includes address-mode folding and special icmp tricks. 979 /// This function returns true if \p LU can accommodate what \p F 980 /// defines and up to 1 base + 1 scaled + offset. 981 /// In other words, if \p F has several base registers, this function may 982 /// still return true. Therefore, users still need to account for 983 /// additional base registers and/or unfolded offsets to derive an 984 /// accurate cost model. 985 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 986 const LSRUse &LU, const Formula &F); 987 988 // Get the cost of the scaling factor used in F for LU. 989 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, 990 const LSRUse &LU, const Formula &F, 991 const Loop &L); 992 993 namespace { 994 995 /// This class is used to measure and compare candidate formulae. 996 class Cost { 997 TargetTransformInfo::LSRCost C; 998 999 public: 1000 Cost() { 1001 C.Insns = 0; 1002 C.NumRegs = 0; 1003 C.AddRecCost = 0; 1004 C.NumIVMuls = 0; 1005 C.NumBaseAdds = 0; 1006 C.ImmCost = 0; 1007 C.SetupCost = 0; 1008 C.ScaleCost = 0; 1009 } 1010 1011 bool isLess(Cost &Other, const TargetTransformInfo &TTI); 1012 1013 void Lose(); 1014 1015 #ifndef NDEBUG 1016 // Once any of the metrics loses, they must all remain losers. 1017 bool isValid() { 1018 return ((C.Insns | C.NumRegs | C.AddRecCost | C.NumIVMuls | C.NumBaseAdds 1019 | C.ImmCost | C.SetupCost | C.ScaleCost) != ~0u) 1020 || ((C.Insns & C.NumRegs & C.AddRecCost & C.NumIVMuls & C.NumBaseAdds 1021 & C.ImmCost & C.SetupCost & C.ScaleCost) == ~0u); 1022 } 1023 #endif 1024 1025 bool isLoser() { 1026 assert(isValid() && "invalid cost"); 1027 return C.NumRegs == ~0u; 1028 } 1029 1030 void RateFormula(const TargetTransformInfo &TTI, 1031 const Formula &F, 1032 SmallPtrSetImpl<const SCEV *> &Regs, 1033 const DenseSet<const SCEV *> &VisitedRegs, 1034 const Loop *L, 1035 ScalarEvolution &SE, DominatorTree &DT, 1036 const LSRUse &LU, 1037 SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr); 1038 1039 void print(raw_ostream &OS) const; 1040 void dump() const; 1041 1042 private: 1043 void RateRegister(const SCEV *Reg, 1044 SmallPtrSetImpl<const SCEV *> &Regs, 1045 const Loop *L, 1046 ScalarEvolution &SE, DominatorTree &DT, 1047 const TargetTransformInfo &TTI); 1048 void RatePrimaryRegister(const SCEV *Reg, 1049 SmallPtrSetImpl<const SCEV *> &Regs, 1050 const Loop *L, 1051 ScalarEvolution &SE, DominatorTree &DT, 1052 SmallPtrSetImpl<const SCEV *> *LoserRegs, 1053 const TargetTransformInfo &TTI); 1054 }; 1055 1056 /// An operand value in an instruction which is to be replaced with some 1057 /// equivalent, possibly strength-reduced, replacement. 1058 struct LSRFixup { 1059 /// The instruction which will be updated. 1060 Instruction *UserInst = nullptr; 1061 1062 /// The operand of the instruction which will be replaced. The operand may be 1063 /// used more than once; every instance will be replaced. 1064 Value *OperandValToReplace = nullptr; 1065 1066 /// If this user is to use the post-incremented value of an induction 1067 /// variable, this set is non-empty and holds the loops associated with the 1068 /// induction variable. 1069 PostIncLoopSet PostIncLoops; 1070 1071 /// A constant offset to be added to the LSRUse expression. This allows 1072 /// multiple fixups to share the same LSRUse with different offsets, for 1073 /// example in an unrolled loop. 1074 int64_t Offset = 0; 1075 1076 LSRFixup() = default; 1077 1078 bool isUseFullyOutsideLoop(const Loop *L) const; 1079 1080 void print(raw_ostream &OS) const; 1081 void dump() const; 1082 }; 1083 1084 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted 1085 /// SmallVectors of const SCEV*. 1086 struct UniquifierDenseMapInfo { 1087 static SmallVector<const SCEV *, 4> getEmptyKey() { 1088 SmallVector<const SCEV *, 4> V; 1089 V.push_back(reinterpret_cast<const SCEV *>(-1)); 1090 return V; 1091 } 1092 1093 static SmallVector<const SCEV *, 4> getTombstoneKey() { 1094 SmallVector<const SCEV *, 4> V; 1095 V.push_back(reinterpret_cast<const SCEV *>(-2)); 1096 return V; 1097 } 1098 1099 static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) { 1100 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 1101 } 1102 1103 static bool isEqual(const SmallVector<const SCEV *, 4> &LHS, 1104 const SmallVector<const SCEV *, 4> &RHS) { 1105 return LHS == RHS; 1106 } 1107 }; 1108 1109 /// This class holds the state that LSR keeps for each use in IVUsers, as well 1110 /// as uses invented by LSR itself. It includes information about what kinds of 1111 /// things can be folded into the user, information about the user itself, and 1112 /// information about how the use may be satisfied. TODO: Represent multiple 1113 /// users of the same expression in common? 1114 class LSRUse { 1115 DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier; 1116 1117 public: 1118 /// An enum for a kind of use, indicating what types of scaled and immediate 1119 /// operands it might support. 1120 enum KindType { 1121 Basic, ///< A normal use, with no folding. 1122 Special, ///< A special case of basic, allowing -1 scales. 1123 Address, ///< An address use; folding according to TargetLowering 1124 ICmpZero ///< An equality icmp with both operands folded into one. 1125 // TODO: Add a generic icmp too? 1126 }; 1127 1128 using SCEVUseKindPair = PointerIntPair<const SCEV *, 2, KindType>; 1129 1130 KindType Kind; 1131 MemAccessTy AccessTy; 1132 1133 /// The list of operands which are to be replaced. 1134 SmallVector<LSRFixup, 8> Fixups; 1135 1136 /// Keep track of the min and max offsets of the fixups. 1137 int64_t MinOffset = std::numeric_limits<int64_t>::max(); 1138 int64_t MaxOffset = std::numeric_limits<int64_t>::min(); 1139 1140 /// This records whether all of the fixups using this LSRUse are outside of 1141 /// the loop, in which case some special-case heuristics may be used. 1142 bool AllFixupsOutsideLoop = true; 1143 1144 /// RigidFormula is set to true to guarantee that this use will be associated 1145 /// with a single formula--the one that initially matched. Some SCEV 1146 /// expressions cannot be expanded. This allows LSR to consider the registers 1147 /// used by those expressions without the need to expand them later after 1148 /// changing the formula. 1149 bool RigidFormula = false; 1150 1151 /// This records the widest use type for any fixup using this 1152 /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max 1153 /// fixup widths to be equivalent, because the narrower one may be relying on 1154 /// the implicit truncation to truncate away bogus bits. 1155 Type *WidestFixupType = nullptr; 1156 1157 /// A list of ways to build a value that can satisfy this user. After the 1158 /// list is populated, one of these is selected heuristically and used to 1159 /// formulate a replacement for OperandValToReplace in UserInst. 1160 SmallVector<Formula, 12> Formulae; 1161 1162 /// The set of register candidates used by all formulae in this LSRUse. 1163 SmallPtrSet<const SCEV *, 4> Regs; 1164 1165 LSRUse(KindType K, MemAccessTy AT) : Kind(K), AccessTy(AT) {} 1166 1167 LSRFixup &getNewFixup() { 1168 Fixups.push_back(LSRFixup()); 1169 return Fixups.back(); 1170 } 1171 1172 void pushFixup(LSRFixup &f) { 1173 Fixups.push_back(f); 1174 if (f.Offset > MaxOffset) 1175 MaxOffset = f.Offset; 1176 if (f.Offset < MinOffset) 1177 MinOffset = f.Offset; 1178 } 1179 1180 bool HasFormulaWithSameRegs(const Formula &F) const; 1181 float getNotSelectedProbability(const SCEV *Reg) const; 1182 bool InsertFormula(const Formula &F, const Loop &L); 1183 void DeleteFormula(Formula &F); 1184 void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses); 1185 1186 void print(raw_ostream &OS) const; 1187 void dump() const; 1188 }; 1189 1190 } // end anonymous namespace 1191 1192 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1193 LSRUse::KindType Kind, MemAccessTy AccessTy, 1194 GlobalValue *BaseGV, int64_t BaseOffset, 1195 bool HasBaseReg, int64_t Scale, 1196 Instruction *Fixup = nullptr); 1197 1198 /// Tally up interesting quantities from the given register. 1199 void Cost::RateRegister(const SCEV *Reg, 1200 SmallPtrSetImpl<const SCEV *> &Regs, 1201 const Loop *L, 1202 ScalarEvolution &SE, DominatorTree &DT, 1203 const TargetTransformInfo &TTI) { 1204 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) { 1205 // If this is an addrec for another loop, it should be an invariant 1206 // with respect to L since L is the innermost loop (at least 1207 // for now LSR only handles innermost loops). 1208 if (AR->getLoop() != L) { 1209 // If the AddRec exists, consider it's register free and leave it alone. 1210 if (isExistingPhi(AR, SE)) 1211 return; 1212 1213 // It is bad to allow LSR for current loop to add induction variables 1214 // for its sibling loops. 1215 if (!AR->getLoop()->contains(L)) { 1216 Lose(); 1217 return; 1218 } 1219 1220 // Otherwise, it will be an invariant with respect to Loop L. 1221 ++C.NumRegs; 1222 return; 1223 } 1224 1225 unsigned LoopCost = 1; 1226 if (TTI.shouldFavorPostInc()) { 1227 const SCEV *LoopStep = AR->getStepRecurrence(SE); 1228 if (isa<SCEVConstant>(LoopStep)) { 1229 // Check if a post-indexed load/store can be used. 1230 if (TTI.isIndexedLoadLegal(TTI.MIM_PostInc, AR->getType()) || 1231 TTI.isIndexedStoreLegal(TTI.MIM_PostInc, AR->getType())) { 1232 const SCEV *LoopStart = AR->getStart(); 1233 if (!isa<SCEVConstant>(LoopStart) && 1234 SE.isLoopInvariant(LoopStart, L)) 1235 LoopCost = 0; 1236 } 1237 } 1238 } 1239 C.AddRecCost += LoopCost; 1240 1241 // Add the step value register, if it needs one. 1242 // TODO: The non-affine case isn't precisely modeled here. 1243 if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) { 1244 if (!Regs.count(AR->getOperand(1))) { 1245 RateRegister(AR->getOperand(1), Regs, L, SE, DT, TTI); 1246 if (isLoser()) 1247 return; 1248 } 1249 } 1250 } 1251 ++C.NumRegs; 1252 1253 // Rough heuristic; favor registers which don't require extra setup 1254 // instructions in the preheader. 1255 if (!isa<SCEVUnknown>(Reg) && 1256 !isa<SCEVConstant>(Reg) && 1257 !(isa<SCEVAddRecExpr>(Reg) && 1258 (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) || 1259 isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart())))) 1260 ++C.SetupCost; 1261 1262 C.NumIVMuls += isa<SCEVMulExpr>(Reg) && 1263 SE.hasComputableLoopEvolution(Reg, L); 1264 } 1265 1266 /// Record this register in the set. If we haven't seen it before, rate 1267 /// it. Optional LoserRegs provides a way to declare any formula that refers to 1268 /// one of those regs an instant loser. 1269 void Cost::RatePrimaryRegister(const SCEV *Reg, 1270 SmallPtrSetImpl<const SCEV *> &Regs, 1271 const Loop *L, 1272 ScalarEvolution &SE, DominatorTree &DT, 1273 SmallPtrSetImpl<const SCEV *> *LoserRegs, 1274 const TargetTransformInfo &TTI) { 1275 if (LoserRegs && LoserRegs->count(Reg)) { 1276 Lose(); 1277 return; 1278 } 1279 if (Regs.insert(Reg).second) { 1280 RateRegister(Reg, Regs, L, SE, DT, TTI); 1281 if (LoserRegs && isLoser()) 1282 LoserRegs->insert(Reg); 1283 } 1284 } 1285 1286 void Cost::RateFormula(const TargetTransformInfo &TTI, 1287 const Formula &F, 1288 SmallPtrSetImpl<const SCEV *> &Regs, 1289 const DenseSet<const SCEV *> &VisitedRegs, 1290 const Loop *L, 1291 ScalarEvolution &SE, DominatorTree &DT, 1292 const LSRUse &LU, 1293 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1294 assert(F.isCanonical(*L) && "Cost is accurate only for canonical formula"); 1295 // Tally up the registers. 1296 unsigned PrevAddRecCost = C.AddRecCost; 1297 unsigned PrevNumRegs = C.NumRegs; 1298 unsigned PrevNumBaseAdds = C.NumBaseAdds; 1299 if (const SCEV *ScaledReg = F.ScaledReg) { 1300 if (VisitedRegs.count(ScaledReg)) { 1301 Lose(); 1302 return; 1303 } 1304 RatePrimaryRegister(ScaledReg, Regs, L, SE, DT, LoserRegs, TTI); 1305 if (isLoser()) 1306 return; 1307 } 1308 for (const SCEV *BaseReg : F.BaseRegs) { 1309 if (VisitedRegs.count(BaseReg)) { 1310 Lose(); 1311 return; 1312 } 1313 RatePrimaryRegister(BaseReg, Regs, L, SE, DT, LoserRegs, TTI); 1314 if (isLoser()) 1315 return; 1316 } 1317 1318 // Determine how many (unfolded) adds we'll need inside the loop. 1319 size_t NumBaseParts = F.getNumRegs(); 1320 if (NumBaseParts > 1) 1321 // Do not count the base and a possible second register if the target 1322 // allows to fold 2 registers. 1323 C.NumBaseAdds += 1324 NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(TTI, LU, F))); 1325 C.NumBaseAdds += (F.UnfoldedOffset != 0); 1326 1327 // Accumulate non-free scaling amounts. 1328 C.ScaleCost += getScalingFactorCost(TTI, LU, F, *L); 1329 1330 // Tally up the non-zero immediates. 1331 for (const LSRFixup &Fixup : LU.Fixups) { 1332 int64_t O = Fixup.Offset; 1333 int64_t Offset = (uint64_t)O + F.BaseOffset; 1334 if (F.BaseGV) 1335 C.ImmCost += 64; // Handle symbolic values conservatively. 1336 // TODO: This should probably be the pointer size. 1337 else if (Offset != 0) 1338 C.ImmCost += APInt(64, Offset, true).getMinSignedBits(); 1339 1340 // Check with target if this offset with this instruction is 1341 // specifically not supported. 1342 if (LU.Kind == LSRUse::Address && Offset != 0 && 1343 !isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV, 1344 Offset, F.HasBaseReg, F.Scale, Fixup.UserInst)) 1345 C.NumBaseAdds++; 1346 } 1347 1348 // If we don't count instruction cost exit here. 1349 if (!InsnsCost) { 1350 assert(isValid() && "invalid cost"); 1351 return; 1352 } 1353 1354 // Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as 1355 // additional instruction (at least fill). 1356 unsigned TTIRegNum = TTI.getNumberOfRegisters(false) - 1; 1357 if (C.NumRegs > TTIRegNum) { 1358 // Cost already exceeded TTIRegNum, then only newly added register can add 1359 // new instructions. 1360 if (PrevNumRegs > TTIRegNum) 1361 C.Insns += (C.NumRegs - PrevNumRegs); 1362 else 1363 C.Insns += (C.NumRegs - TTIRegNum); 1364 } 1365 1366 // If ICmpZero formula ends with not 0, it could not be replaced by 1367 // just add or sub. We'll need to compare final result of AddRec. 1368 // That means we'll need an additional instruction. But if the target can 1369 // macro-fuse a compare with a branch, don't count this extra instruction. 1370 // For -10 + {0, +, 1}: 1371 // i = i + 1; 1372 // cmp i, 10 1373 // 1374 // For {-10, +, 1}: 1375 // i = i + 1; 1376 if (LU.Kind == LSRUse::ICmpZero && !F.hasZeroEnd() && !TTI.canMacroFuseCmp()) 1377 C.Insns++; 1378 // Each new AddRec adds 1 instruction to calculation. 1379 C.Insns += (C.AddRecCost - PrevAddRecCost); 1380 1381 // BaseAdds adds instructions for unfolded registers. 1382 if (LU.Kind != LSRUse::ICmpZero) 1383 C.Insns += C.NumBaseAdds - PrevNumBaseAdds; 1384 assert(isValid() && "invalid cost"); 1385 } 1386 1387 /// Set this cost to a losing value. 1388 void Cost::Lose() { 1389 C.Insns = std::numeric_limits<unsigned>::max(); 1390 C.NumRegs = std::numeric_limits<unsigned>::max(); 1391 C.AddRecCost = std::numeric_limits<unsigned>::max(); 1392 C.NumIVMuls = std::numeric_limits<unsigned>::max(); 1393 C.NumBaseAdds = std::numeric_limits<unsigned>::max(); 1394 C.ImmCost = std::numeric_limits<unsigned>::max(); 1395 C.SetupCost = std::numeric_limits<unsigned>::max(); 1396 C.ScaleCost = std::numeric_limits<unsigned>::max(); 1397 } 1398 1399 /// Choose the lower cost. 1400 bool Cost::isLess(Cost &Other, const TargetTransformInfo &TTI) { 1401 if (InsnsCost.getNumOccurrences() > 0 && InsnsCost && 1402 C.Insns != Other.C.Insns) 1403 return C.Insns < Other.C.Insns; 1404 return TTI.isLSRCostLess(C, Other.C); 1405 } 1406 1407 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1408 void Cost::print(raw_ostream &OS) const { 1409 if (InsnsCost) 1410 OS << C.Insns << " instruction" << (C.Insns == 1 ? " " : "s "); 1411 OS << C.NumRegs << " reg" << (C.NumRegs == 1 ? "" : "s"); 1412 if (C.AddRecCost != 0) 1413 OS << ", with addrec cost " << C.AddRecCost; 1414 if (C.NumIVMuls != 0) 1415 OS << ", plus " << C.NumIVMuls << " IV mul" 1416 << (C.NumIVMuls == 1 ? "" : "s"); 1417 if (C.NumBaseAdds != 0) 1418 OS << ", plus " << C.NumBaseAdds << " base add" 1419 << (C.NumBaseAdds == 1 ? "" : "s"); 1420 if (C.ScaleCost != 0) 1421 OS << ", plus " << C.ScaleCost << " scale cost"; 1422 if (C.ImmCost != 0) 1423 OS << ", plus " << C.ImmCost << " imm cost"; 1424 if (C.SetupCost != 0) 1425 OS << ", plus " << C.SetupCost << " setup cost"; 1426 } 1427 1428 LLVM_DUMP_METHOD void Cost::dump() const { 1429 print(errs()); errs() << '\n'; 1430 } 1431 #endif 1432 1433 /// Test whether this fixup always uses its value outside of the given loop. 1434 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const { 1435 // PHI nodes use their value in their incoming blocks. 1436 if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) { 1437 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1438 if (PN->getIncomingValue(i) == OperandValToReplace && 1439 L->contains(PN->getIncomingBlock(i))) 1440 return false; 1441 return true; 1442 } 1443 1444 return !L->contains(UserInst); 1445 } 1446 1447 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1448 void LSRFixup::print(raw_ostream &OS) const { 1449 OS << "UserInst="; 1450 // Store is common and interesting enough to be worth special-casing. 1451 if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) { 1452 OS << "store "; 1453 Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false); 1454 } else if (UserInst->getType()->isVoidTy()) 1455 OS << UserInst->getOpcodeName(); 1456 else 1457 UserInst->printAsOperand(OS, /*PrintType=*/false); 1458 1459 OS << ", OperandValToReplace="; 1460 OperandValToReplace->printAsOperand(OS, /*PrintType=*/false); 1461 1462 for (const Loop *PIL : PostIncLoops) { 1463 OS << ", PostIncLoop="; 1464 PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 1465 } 1466 1467 if (Offset != 0) 1468 OS << ", Offset=" << Offset; 1469 } 1470 1471 LLVM_DUMP_METHOD void LSRFixup::dump() const { 1472 print(errs()); errs() << '\n'; 1473 } 1474 #endif 1475 1476 /// Test whether this use as a formula which has the same registers as the given 1477 /// formula. 1478 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const { 1479 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1480 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1481 // Unstable sort by host order ok, because this is only used for uniquifying. 1482 llvm::sort(Key.begin(), Key.end()); 1483 return Uniquifier.count(Key); 1484 } 1485 1486 /// The function returns a probability of selecting formula without Reg. 1487 float LSRUse::getNotSelectedProbability(const SCEV *Reg) const { 1488 unsigned FNum = 0; 1489 for (const Formula &F : Formulae) 1490 if (F.referencesReg(Reg)) 1491 FNum++; 1492 return ((float)(Formulae.size() - FNum)) / Formulae.size(); 1493 } 1494 1495 /// If the given formula has not yet been inserted, add it to the list, and 1496 /// return true. Return false otherwise. The formula must be in canonical form. 1497 bool LSRUse::InsertFormula(const Formula &F, const Loop &L) { 1498 assert(F.isCanonical(L) && "Invalid canonical representation"); 1499 1500 if (!Formulae.empty() && RigidFormula) 1501 return false; 1502 1503 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1504 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1505 // Unstable sort by host order ok, because this is only used for uniquifying. 1506 llvm::sort(Key.begin(), Key.end()); 1507 1508 if (!Uniquifier.insert(Key).second) 1509 return false; 1510 1511 // Using a register to hold the value of 0 is not profitable. 1512 assert((!F.ScaledReg || !F.ScaledReg->isZero()) && 1513 "Zero allocated in a scaled register!"); 1514 #ifndef NDEBUG 1515 for (const SCEV *BaseReg : F.BaseRegs) 1516 assert(!BaseReg->isZero() && "Zero allocated in a base register!"); 1517 #endif 1518 1519 // Add the formula to the list. 1520 Formulae.push_back(F); 1521 1522 // Record registers now being used by this use. 1523 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1524 if (F.ScaledReg) 1525 Regs.insert(F.ScaledReg); 1526 1527 return true; 1528 } 1529 1530 /// Remove the given formula from this use's list. 1531 void LSRUse::DeleteFormula(Formula &F) { 1532 if (&F != &Formulae.back()) 1533 std::swap(F, Formulae.back()); 1534 Formulae.pop_back(); 1535 } 1536 1537 /// Recompute the Regs field, and update RegUses. 1538 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) { 1539 // Now that we've filtered out some formulae, recompute the Regs set. 1540 SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs); 1541 Regs.clear(); 1542 for (const Formula &F : Formulae) { 1543 if (F.ScaledReg) Regs.insert(F.ScaledReg); 1544 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1545 } 1546 1547 // Update the RegTracker. 1548 for (const SCEV *S : OldRegs) 1549 if (!Regs.count(S)) 1550 RegUses.dropRegister(S, LUIdx); 1551 } 1552 1553 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1554 void LSRUse::print(raw_ostream &OS) const { 1555 OS << "LSR Use: Kind="; 1556 switch (Kind) { 1557 case Basic: OS << "Basic"; break; 1558 case Special: OS << "Special"; break; 1559 case ICmpZero: OS << "ICmpZero"; break; 1560 case Address: 1561 OS << "Address of "; 1562 if (AccessTy.MemTy->isPointerTy()) 1563 OS << "pointer"; // the full pointer type could be really verbose 1564 else { 1565 OS << *AccessTy.MemTy; 1566 } 1567 1568 OS << " in addrspace(" << AccessTy.AddrSpace << ')'; 1569 } 1570 1571 OS << ", Offsets={"; 1572 bool NeedComma = false; 1573 for (const LSRFixup &Fixup : Fixups) { 1574 if (NeedComma) OS << ','; 1575 OS << Fixup.Offset; 1576 NeedComma = true; 1577 } 1578 OS << '}'; 1579 1580 if (AllFixupsOutsideLoop) 1581 OS << ", all-fixups-outside-loop"; 1582 1583 if (WidestFixupType) 1584 OS << ", widest fixup type: " << *WidestFixupType; 1585 } 1586 1587 LLVM_DUMP_METHOD void LSRUse::dump() const { 1588 print(errs()); errs() << '\n'; 1589 } 1590 #endif 1591 1592 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1593 LSRUse::KindType Kind, MemAccessTy AccessTy, 1594 GlobalValue *BaseGV, int64_t BaseOffset, 1595 bool HasBaseReg, int64_t Scale, 1596 Instruction *Fixup/*= nullptr*/) { 1597 switch (Kind) { 1598 case LSRUse::Address: 1599 return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset, 1600 HasBaseReg, Scale, AccessTy.AddrSpace, Fixup); 1601 1602 case LSRUse::ICmpZero: 1603 // There's not even a target hook for querying whether it would be legal to 1604 // fold a GV into an ICmp. 1605 if (BaseGV) 1606 return false; 1607 1608 // ICmp only has two operands; don't allow more than two non-trivial parts. 1609 if (Scale != 0 && HasBaseReg && BaseOffset != 0) 1610 return false; 1611 1612 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by 1613 // putting the scaled register in the other operand of the icmp. 1614 if (Scale != 0 && Scale != -1) 1615 return false; 1616 1617 // If we have low-level target information, ask the target if it can fold an 1618 // integer immediate on an icmp. 1619 if (BaseOffset != 0) { 1620 // We have one of: 1621 // ICmpZero BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset 1622 // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset 1623 // Offs is the ICmp immediate. 1624 if (Scale == 0) 1625 // The cast does the right thing with 1626 // std::numeric_limits<int64_t>::min(). 1627 BaseOffset = -(uint64_t)BaseOffset; 1628 return TTI.isLegalICmpImmediate(BaseOffset); 1629 } 1630 1631 // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg 1632 return true; 1633 1634 case LSRUse::Basic: 1635 // Only handle single-register values. 1636 return !BaseGV && Scale == 0 && BaseOffset == 0; 1637 1638 case LSRUse::Special: 1639 // Special case Basic to handle -1 scales. 1640 return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0; 1641 } 1642 1643 llvm_unreachable("Invalid LSRUse Kind!"); 1644 } 1645 1646 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1647 int64_t MinOffset, int64_t MaxOffset, 1648 LSRUse::KindType Kind, MemAccessTy AccessTy, 1649 GlobalValue *BaseGV, int64_t BaseOffset, 1650 bool HasBaseReg, int64_t Scale) { 1651 // Check for overflow. 1652 if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) != 1653 (MinOffset > 0)) 1654 return false; 1655 MinOffset = (uint64_t)BaseOffset + MinOffset; 1656 if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) != 1657 (MaxOffset > 0)) 1658 return false; 1659 MaxOffset = (uint64_t)BaseOffset + MaxOffset; 1660 1661 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset, 1662 HasBaseReg, Scale) && 1663 isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset, 1664 HasBaseReg, Scale); 1665 } 1666 1667 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1668 int64_t MinOffset, int64_t MaxOffset, 1669 LSRUse::KindType Kind, MemAccessTy AccessTy, 1670 const Formula &F, const Loop &L) { 1671 // For the purpose of isAMCompletelyFolded either having a canonical formula 1672 // or a scale not equal to zero is correct. 1673 // Problems may arise from non canonical formulae having a scale == 0. 1674 // Strictly speaking it would best to just rely on canonical formulae. 1675 // However, when we generate the scaled formulae, we first check that the 1676 // scaling factor is profitable before computing the actual ScaledReg for 1677 // compile time sake. 1678 assert((F.isCanonical(L) || F.Scale != 0)); 1679 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1680 F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale); 1681 } 1682 1683 /// Test whether we know how to expand the current formula. 1684 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1685 int64_t MaxOffset, LSRUse::KindType Kind, 1686 MemAccessTy AccessTy, GlobalValue *BaseGV, 1687 int64_t BaseOffset, bool HasBaseReg, int64_t Scale) { 1688 // We know how to expand completely foldable formulae. 1689 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1690 BaseOffset, HasBaseReg, Scale) || 1691 // Or formulae that use a base register produced by a sum of base 1692 // registers. 1693 (Scale == 1 && 1694 isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1695 BaseGV, BaseOffset, true, 0)); 1696 } 1697 1698 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1699 int64_t MaxOffset, LSRUse::KindType Kind, 1700 MemAccessTy AccessTy, const Formula &F) { 1701 return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV, 1702 F.BaseOffset, F.HasBaseReg, F.Scale); 1703 } 1704 1705 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1706 const LSRUse &LU, const Formula &F) { 1707 // Target may want to look at the user instructions. 1708 if (LU.Kind == LSRUse::Address && TTI.LSRWithInstrQueries()) { 1709 for (const LSRFixup &Fixup : LU.Fixups) 1710 if (!isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV, 1711 (F.BaseOffset + Fixup.Offset), F.HasBaseReg, 1712 F.Scale, Fixup.UserInst)) 1713 return false; 1714 return true; 1715 } 1716 1717 return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1718 LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg, 1719 F.Scale); 1720 } 1721 1722 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, 1723 const LSRUse &LU, const Formula &F, 1724 const Loop &L) { 1725 if (!F.Scale) 1726 return 0; 1727 1728 // If the use is not completely folded in that instruction, we will have to 1729 // pay an extra cost only for scale != 1. 1730 if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1731 LU.AccessTy, F, L)) 1732 return F.Scale != 1; 1733 1734 switch (LU.Kind) { 1735 case LSRUse::Address: { 1736 // Check the scaling factor cost with both the min and max offsets. 1737 int ScaleCostMinOffset = TTI.getScalingFactorCost( 1738 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg, 1739 F.Scale, LU.AccessTy.AddrSpace); 1740 int ScaleCostMaxOffset = TTI.getScalingFactorCost( 1741 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg, 1742 F.Scale, LU.AccessTy.AddrSpace); 1743 1744 assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 && 1745 "Legal addressing mode has an illegal cost!"); 1746 return std::max(ScaleCostMinOffset, ScaleCostMaxOffset); 1747 } 1748 case LSRUse::ICmpZero: 1749 case LSRUse::Basic: 1750 case LSRUse::Special: 1751 // The use is completely folded, i.e., everything is folded into the 1752 // instruction. 1753 return 0; 1754 } 1755 1756 llvm_unreachable("Invalid LSRUse Kind!"); 1757 } 1758 1759 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1760 LSRUse::KindType Kind, MemAccessTy AccessTy, 1761 GlobalValue *BaseGV, int64_t BaseOffset, 1762 bool HasBaseReg) { 1763 // Fast-path: zero is always foldable. 1764 if (BaseOffset == 0 && !BaseGV) return true; 1765 1766 // Conservatively, create an address with an immediate and a 1767 // base and a scale. 1768 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1769 1770 // Canonicalize a scale of 1 to a base register if the formula doesn't 1771 // already have a base register. 1772 if (!HasBaseReg && Scale == 1) { 1773 Scale = 0; 1774 HasBaseReg = true; 1775 } 1776 1777 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset, 1778 HasBaseReg, Scale); 1779 } 1780 1781 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1782 ScalarEvolution &SE, int64_t MinOffset, 1783 int64_t MaxOffset, LSRUse::KindType Kind, 1784 MemAccessTy AccessTy, const SCEV *S, 1785 bool HasBaseReg) { 1786 // Fast-path: zero is always foldable. 1787 if (S->isZero()) return true; 1788 1789 // Conservatively, create an address with an immediate and a 1790 // base and a scale. 1791 int64_t BaseOffset = ExtractImmediate(S, SE); 1792 GlobalValue *BaseGV = ExtractSymbol(S, SE); 1793 1794 // If there's anything else involved, it's not foldable. 1795 if (!S->isZero()) return false; 1796 1797 // Fast-path: zero is always foldable. 1798 if (BaseOffset == 0 && !BaseGV) return true; 1799 1800 // Conservatively, create an address with an immediate and a 1801 // base and a scale. 1802 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1803 1804 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1805 BaseOffset, HasBaseReg, Scale); 1806 } 1807 1808 namespace { 1809 1810 /// An individual increment in a Chain of IV increments. Relate an IV user to 1811 /// an expression that computes the IV it uses from the IV used by the previous 1812 /// link in the Chain. 1813 /// 1814 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the 1815 /// original IVOperand. The head of the chain's IVOperand is only valid during 1816 /// chain collection, before LSR replaces IV users. During chain generation, 1817 /// IncExpr can be used to find the new IVOperand that computes the same 1818 /// expression. 1819 struct IVInc { 1820 Instruction *UserInst; 1821 Value* IVOperand; 1822 const SCEV *IncExpr; 1823 1824 IVInc(Instruction *U, Value *O, const SCEV *E) 1825 : UserInst(U), IVOperand(O), IncExpr(E) {} 1826 }; 1827 1828 // The list of IV increments in program order. We typically add the head of a 1829 // chain without finding subsequent links. 1830 struct IVChain { 1831 SmallVector<IVInc, 1> Incs; 1832 const SCEV *ExprBase = nullptr; 1833 1834 IVChain() = default; 1835 IVChain(const IVInc &Head, const SCEV *Base) 1836 : Incs(1, Head), ExprBase(Base) {} 1837 1838 using const_iterator = SmallVectorImpl<IVInc>::const_iterator; 1839 1840 // Return the first increment in the chain. 1841 const_iterator begin() const { 1842 assert(!Incs.empty()); 1843 return std::next(Incs.begin()); 1844 } 1845 const_iterator end() const { 1846 return Incs.end(); 1847 } 1848 1849 // Returns true if this chain contains any increments. 1850 bool hasIncs() const { return Incs.size() >= 2; } 1851 1852 // Add an IVInc to the end of this chain. 1853 void add(const IVInc &X) { Incs.push_back(X); } 1854 1855 // Returns the last UserInst in the chain. 1856 Instruction *tailUserInst() const { return Incs.back().UserInst; } 1857 1858 // Returns true if IncExpr can be profitably added to this chain. 1859 bool isProfitableIncrement(const SCEV *OperExpr, 1860 const SCEV *IncExpr, 1861 ScalarEvolution&); 1862 }; 1863 1864 /// Helper for CollectChains to track multiple IV increment uses. Distinguish 1865 /// between FarUsers that definitely cross IV increments and NearUsers that may 1866 /// be used between IV increments. 1867 struct ChainUsers { 1868 SmallPtrSet<Instruction*, 4> FarUsers; 1869 SmallPtrSet<Instruction*, 4> NearUsers; 1870 }; 1871 1872 /// This class holds state for the main loop strength reduction logic. 1873 class LSRInstance { 1874 IVUsers &IU; 1875 ScalarEvolution &SE; 1876 DominatorTree &DT; 1877 LoopInfo &LI; 1878 const TargetTransformInfo &TTI; 1879 Loop *const L; 1880 bool Changed = false; 1881 1882 /// This is the insert position that the current loop's induction variable 1883 /// increment should be placed. In simple loops, this is the latch block's 1884 /// terminator. But in more complicated cases, this is a position which will 1885 /// dominate all the in-loop post-increment users. 1886 Instruction *IVIncInsertPos = nullptr; 1887 1888 /// Interesting factors between use strides. 1889 /// 1890 /// We explicitly use a SetVector which contains a SmallSet, instead of the 1891 /// default, a SmallDenseSet, because we need to use the full range of 1892 /// int64_ts, and there's currently no good way of doing that with 1893 /// SmallDenseSet. 1894 SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors; 1895 1896 /// Interesting use types, to facilitate truncation reuse. 1897 SmallSetVector<Type *, 4> Types; 1898 1899 /// The list of interesting uses. 1900 SmallVector<LSRUse, 16> Uses; 1901 1902 /// Track which uses use which register candidates. 1903 RegUseTracker RegUses; 1904 1905 // Limit the number of chains to avoid quadratic behavior. We don't expect to 1906 // have more than a few IV increment chains in a loop. Missing a Chain falls 1907 // back to normal LSR behavior for those uses. 1908 static const unsigned MaxChains = 8; 1909 1910 /// IV users can form a chain of IV increments. 1911 SmallVector<IVChain, MaxChains> IVChainVec; 1912 1913 /// IV users that belong to profitable IVChains. 1914 SmallPtrSet<Use*, MaxChains> IVIncSet; 1915 1916 void OptimizeShadowIV(); 1917 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse); 1918 ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse); 1919 void OptimizeLoopTermCond(); 1920 1921 void ChainInstruction(Instruction *UserInst, Instruction *IVOper, 1922 SmallVectorImpl<ChainUsers> &ChainUsersVec); 1923 void FinalizeChain(IVChain &Chain); 1924 void CollectChains(); 1925 void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 1926 SmallVectorImpl<WeakTrackingVH> &DeadInsts); 1927 1928 void CollectInterestingTypesAndFactors(); 1929 void CollectFixupsAndInitialFormulae(); 1930 1931 // Support for sharing of LSRUses between LSRFixups. 1932 using UseMapTy = DenseMap<LSRUse::SCEVUseKindPair, size_t>; 1933 UseMapTy UseMap; 1934 1935 bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, 1936 LSRUse::KindType Kind, MemAccessTy AccessTy); 1937 1938 std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind, 1939 MemAccessTy AccessTy); 1940 1941 void DeleteUse(LSRUse &LU, size_t LUIdx); 1942 1943 LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU); 1944 1945 void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1946 void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1947 void CountRegisters(const Formula &F, size_t LUIdx); 1948 bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F); 1949 1950 void CollectLoopInvariantFixupsAndFormulae(); 1951 1952 void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base, 1953 unsigned Depth = 0); 1954 1955 void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 1956 const Formula &Base, unsigned Depth, 1957 size_t Idx, bool IsScaledReg = false); 1958 void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base); 1959 void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 1960 const Formula &Base, size_t Idx, 1961 bool IsScaledReg = false); 1962 void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1963 void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx, 1964 const Formula &Base, 1965 const SmallVectorImpl<int64_t> &Worklist, 1966 size_t Idx, bool IsScaledReg = false); 1967 void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1968 void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base); 1969 void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base); 1970 void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base); 1971 void GenerateCrossUseConstantOffsets(); 1972 void GenerateAllReuseFormulae(); 1973 1974 void FilterOutUndesirableDedicatedRegisters(); 1975 1976 size_t EstimateSearchSpaceComplexity() const; 1977 void NarrowSearchSpaceByDetectingSupersets(); 1978 void NarrowSearchSpaceByCollapsingUnrolledCode(); 1979 void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 1980 void NarrowSearchSpaceByFilterFormulaWithSameScaledReg(); 1981 void NarrowSearchSpaceByDeletingCostlyFormulas(); 1982 void NarrowSearchSpaceByPickingWinnerRegs(); 1983 void NarrowSearchSpaceUsingHeuristics(); 1984 1985 void SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 1986 Cost &SolutionCost, 1987 SmallVectorImpl<const Formula *> &Workspace, 1988 const Cost &CurCost, 1989 const SmallPtrSet<const SCEV *, 16> &CurRegs, 1990 DenseSet<const SCEV *> &VisitedRegs) const; 1991 void Solve(SmallVectorImpl<const Formula *> &Solution) const; 1992 1993 BasicBlock::iterator 1994 HoistInsertPosition(BasicBlock::iterator IP, 1995 const SmallVectorImpl<Instruction *> &Inputs) const; 1996 BasicBlock::iterator 1997 AdjustInsertPositionForExpand(BasicBlock::iterator IP, 1998 const LSRFixup &LF, 1999 const LSRUse &LU, 2000 SCEVExpander &Rewriter) const; 2001 2002 Value *Expand(const LSRUse &LU, const LSRFixup &LF, const Formula &F, 2003 BasicBlock::iterator IP, SCEVExpander &Rewriter, 2004 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 2005 void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF, 2006 const Formula &F, SCEVExpander &Rewriter, 2007 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 2008 void Rewrite(const LSRUse &LU, const LSRFixup &LF, const Formula &F, 2009 SCEVExpander &Rewriter, 2010 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 2011 void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution); 2012 2013 public: 2014 LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT, 2015 LoopInfo &LI, const TargetTransformInfo &TTI); 2016 2017 bool getChanged() const { return Changed; } 2018 2019 void print_factors_and_types(raw_ostream &OS) const; 2020 void print_fixups(raw_ostream &OS) const; 2021 void print_uses(raw_ostream &OS) const; 2022 void print(raw_ostream &OS) const; 2023 void dump() const; 2024 }; 2025 2026 } // end anonymous namespace 2027 2028 /// If IV is used in a int-to-float cast inside the loop then try to eliminate 2029 /// the cast operation. 2030 void LSRInstance::OptimizeShadowIV() { 2031 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 2032 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2033 return; 2034 2035 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); 2036 UI != E; /* empty */) { 2037 IVUsers::const_iterator CandidateUI = UI; 2038 ++UI; 2039 Instruction *ShadowUse = CandidateUI->getUser(); 2040 Type *DestTy = nullptr; 2041 bool IsSigned = false; 2042 2043 /* If shadow use is a int->float cast then insert a second IV 2044 to eliminate this cast. 2045 2046 for (unsigned i = 0; i < n; ++i) 2047 foo((double)i); 2048 2049 is transformed into 2050 2051 double d = 0.0; 2052 for (unsigned i = 0; i < n; ++i, ++d) 2053 foo(d); 2054 */ 2055 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) { 2056 IsSigned = false; 2057 DestTy = UCast->getDestTy(); 2058 } 2059 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) { 2060 IsSigned = true; 2061 DestTy = SCast->getDestTy(); 2062 } 2063 if (!DestTy) continue; 2064 2065 // If target does not support DestTy natively then do not apply 2066 // this transformation. 2067 if (!TTI.isTypeLegal(DestTy)) continue; 2068 2069 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0)); 2070 if (!PH) continue; 2071 if (PH->getNumIncomingValues() != 2) continue; 2072 2073 // If the calculation in integers overflows, the result in FP type will 2074 // differ. So we only can do this transformation if we are guaranteed to not 2075 // deal with overflowing values 2076 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PH)); 2077 if (!AR) continue; 2078 if (IsSigned && !AR->hasNoSignedWrap()) continue; 2079 if (!IsSigned && !AR->hasNoUnsignedWrap()) continue; 2080 2081 Type *SrcTy = PH->getType(); 2082 int Mantissa = DestTy->getFPMantissaWidth(); 2083 if (Mantissa == -1) continue; 2084 if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa) 2085 continue; 2086 2087 unsigned Entry, Latch; 2088 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) { 2089 Entry = 0; 2090 Latch = 1; 2091 } else { 2092 Entry = 1; 2093 Latch = 0; 2094 } 2095 2096 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry)); 2097 if (!Init) continue; 2098 Constant *NewInit = ConstantFP::get(DestTy, IsSigned ? 2099 (double)Init->getSExtValue() : 2100 (double)Init->getZExtValue()); 2101 2102 BinaryOperator *Incr = 2103 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch)); 2104 if (!Incr) continue; 2105 if (Incr->getOpcode() != Instruction::Add 2106 && Incr->getOpcode() != Instruction::Sub) 2107 continue; 2108 2109 /* Initialize new IV, double d = 0.0 in above example. */ 2110 ConstantInt *C = nullptr; 2111 if (Incr->getOperand(0) == PH) 2112 C = dyn_cast<ConstantInt>(Incr->getOperand(1)); 2113 else if (Incr->getOperand(1) == PH) 2114 C = dyn_cast<ConstantInt>(Incr->getOperand(0)); 2115 else 2116 continue; 2117 2118 if (!C) continue; 2119 2120 // Ignore negative constants, as the code below doesn't handle them 2121 // correctly. TODO: Remove this restriction. 2122 if (!C->getValue().isStrictlyPositive()) continue; 2123 2124 /* Add new PHINode. */ 2125 PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH); 2126 2127 /* create new increment. '++d' in above example. */ 2128 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue()); 2129 BinaryOperator *NewIncr = 2130 BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ? 2131 Instruction::FAdd : Instruction::FSub, 2132 NewPH, CFP, "IV.S.next.", Incr); 2133 2134 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry)); 2135 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch)); 2136 2137 /* Remove cast operation */ 2138 ShadowUse->replaceAllUsesWith(NewPH); 2139 ShadowUse->eraseFromParent(); 2140 Changed = true; 2141 break; 2142 } 2143 } 2144 2145 /// If Cond has an operand that is an expression of an IV, set the IV user and 2146 /// stride information and return true, otherwise return false. 2147 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) { 2148 for (IVStrideUse &U : IU) 2149 if (U.getUser() == Cond) { 2150 // NOTE: we could handle setcc instructions with multiple uses here, but 2151 // InstCombine does it as well for simple uses, it's not clear that it 2152 // occurs enough in real life to handle. 2153 CondUse = &U; 2154 return true; 2155 } 2156 return false; 2157 } 2158 2159 /// Rewrite the loop's terminating condition if it uses a max computation. 2160 /// 2161 /// This is a narrow solution to a specific, but acute, problem. For loops 2162 /// like this: 2163 /// 2164 /// i = 0; 2165 /// do { 2166 /// p[i] = 0.0; 2167 /// } while (++i < n); 2168 /// 2169 /// the trip count isn't just 'n', because 'n' might not be positive. And 2170 /// unfortunately this can come up even for loops where the user didn't use 2171 /// a C do-while loop. For example, seemingly well-behaved top-test loops 2172 /// will commonly be lowered like this: 2173 /// 2174 /// if (n > 0) { 2175 /// i = 0; 2176 /// do { 2177 /// p[i] = 0.0; 2178 /// } while (++i < n); 2179 /// } 2180 /// 2181 /// and then it's possible for subsequent optimization to obscure the if 2182 /// test in such a way that indvars can't find it. 2183 /// 2184 /// When indvars can't find the if test in loops like this, it creates a 2185 /// max expression, which allows it to give the loop a canonical 2186 /// induction variable: 2187 /// 2188 /// i = 0; 2189 /// max = n < 1 ? 1 : n; 2190 /// do { 2191 /// p[i] = 0.0; 2192 /// } while (++i != max); 2193 /// 2194 /// Canonical induction variables are necessary because the loop passes 2195 /// are designed around them. The most obvious example of this is the 2196 /// LoopInfo analysis, which doesn't remember trip count values. It 2197 /// expects to be able to rediscover the trip count each time it is 2198 /// needed, and it does this using a simple analysis that only succeeds if 2199 /// the loop has a canonical induction variable. 2200 /// 2201 /// However, when it comes time to generate code, the maximum operation 2202 /// can be quite costly, especially if it's inside of an outer loop. 2203 /// 2204 /// This function solves this problem by detecting this type of loop and 2205 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting 2206 /// the instructions for the maximum computation. 2207 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) { 2208 // Check that the loop matches the pattern we're looking for. 2209 if (Cond->getPredicate() != CmpInst::ICMP_EQ && 2210 Cond->getPredicate() != CmpInst::ICMP_NE) 2211 return Cond; 2212 2213 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1)); 2214 if (!Sel || !Sel->hasOneUse()) return Cond; 2215 2216 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 2217 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2218 return Cond; 2219 const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1); 2220 2221 // Add one to the backedge-taken count to get the trip count. 2222 const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount); 2223 if (IterationCount != SE.getSCEV(Sel)) return Cond; 2224 2225 // Check for a max calculation that matches the pattern. There's no check 2226 // for ICMP_ULE here because the comparison would be with zero, which 2227 // isn't interesting. 2228 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 2229 const SCEVNAryExpr *Max = nullptr; 2230 if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) { 2231 Pred = ICmpInst::ICMP_SLE; 2232 Max = S; 2233 } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) { 2234 Pred = ICmpInst::ICMP_SLT; 2235 Max = S; 2236 } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) { 2237 Pred = ICmpInst::ICMP_ULT; 2238 Max = U; 2239 } else { 2240 // No match; bail. 2241 return Cond; 2242 } 2243 2244 // To handle a max with more than two operands, this optimization would 2245 // require additional checking and setup. 2246 if (Max->getNumOperands() != 2) 2247 return Cond; 2248 2249 const SCEV *MaxLHS = Max->getOperand(0); 2250 const SCEV *MaxRHS = Max->getOperand(1); 2251 2252 // ScalarEvolution canonicalizes constants to the left. For < and >, look 2253 // for a comparison with 1. For <= and >=, a comparison with zero. 2254 if (!MaxLHS || 2255 (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One))) 2256 return Cond; 2257 2258 // Check the relevant induction variable for conformance to 2259 // the pattern. 2260 const SCEV *IV = SE.getSCEV(Cond->getOperand(0)); 2261 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV); 2262 if (!AR || !AR->isAffine() || 2263 AR->getStart() != One || 2264 AR->getStepRecurrence(SE) != One) 2265 return Cond; 2266 2267 assert(AR->getLoop() == L && 2268 "Loop condition operand is an addrec in a different loop!"); 2269 2270 // Check the right operand of the select, and remember it, as it will 2271 // be used in the new comparison instruction. 2272 Value *NewRHS = nullptr; 2273 if (ICmpInst::isTrueWhenEqual(Pred)) { 2274 // Look for n+1, and grab n. 2275 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1))) 2276 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2277 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2278 NewRHS = BO->getOperand(0); 2279 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2))) 2280 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2281 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2282 NewRHS = BO->getOperand(0); 2283 if (!NewRHS) 2284 return Cond; 2285 } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS) 2286 NewRHS = Sel->getOperand(1); 2287 else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS) 2288 NewRHS = Sel->getOperand(2); 2289 else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS)) 2290 NewRHS = SU->getValue(); 2291 else 2292 // Max doesn't match expected pattern. 2293 return Cond; 2294 2295 // Determine the new comparison opcode. It may be signed or unsigned, 2296 // and the original comparison may be either equality or inequality. 2297 if (Cond->getPredicate() == CmpInst::ICMP_EQ) 2298 Pred = CmpInst::getInversePredicate(Pred); 2299 2300 // Ok, everything looks ok to change the condition into an SLT or SGE and 2301 // delete the max calculation. 2302 ICmpInst *NewCond = 2303 new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp"); 2304 2305 // Delete the max calculation instructions. 2306 Cond->replaceAllUsesWith(NewCond); 2307 CondUse->setUser(NewCond); 2308 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0)); 2309 Cond->eraseFromParent(); 2310 Sel->eraseFromParent(); 2311 if (Cmp->use_empty()) 2312 Cmp->eraseFromParent(); 2313 return NewCond; 2314 } 2315 2316 /// Change loop terminating condition to use the postinc iv when possible. 2317 void 2318 LSRInstance::OptimizeLoopTermCond() { 2319 SmallPtrSet<Instruction *, 4> PostIncs; 2320 2321 // We need a different set of heuristics for rotated and non-rotated loops. 2322 // If a loop is rotated then the latch is also the backedge, so inserting 2323 // post-inc expressions just before the latch is ideal. To reduce live ranges 2324 // it also makes sense to rewrite terminating conditions to use post-inc 2325 // expressions. 2326 // 2327 // If the loop is not rotated then the latch is not a backedge; the latch 2328 // check is done in the loop head. Adding post-inc expressions before the 2329 // latch will cause overlapping live-ranges of pre-inc and post-inc expressions 2330 // in the loop body. In this case we do *not* want to use post-inc expressions 2331 // in the latch check, and we want to insert post-inc expressions before 2332 // the backedge. 2333 BasicBlock *LatchBlock = L->getLoopLatch(); 2334 SmallVector<BasicBlock*, 8> ExitingBlocks; 2335 L->getExitingBlocks(ExitingBlocks); 2336 if (llvm::all_of(ExitingBlocks, [&LatchBlock](const BasicBlock *BB) { 2337 return LatchBlock != BB; 2338 })) { 2339 // The backedge doesn't exit the loop; treat this as a head-tested loop. 2340 IVIncInsertPos = LatchBlock->getTerminator(); 2341 return; 2342 } 2343 2344 // Otherwise treat this as a rotated loop. 2345 for (BasicBlock *ExitingBlock : ExitingBlocks) { 2346 // Get the terminating condition for the loop if possible. If we 2347 // can, we want to change it to use a post-incremented version of its 2348 // induction variable, to allow coalescing the live ranges for the IV into 2349 // one register value. 2350 2351 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 2352 if (!TermBr) 2353 continue; 2354 // FIXME: Overly conservative, termination condition could be an 'or' etc.. 2355 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition())) 2356 continue; 2357 2358 // Search IVUsesByStride to find Cond's IVUse if there is one. 2359 IVStrideUse *CondUse = nullptr; 2360 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition()); 2361 if (!FindIVUserForCond(Cond, CondUse)) 2362 continue; 2363 2364 // If the trip count is computed in terms of a max (due to ScalarEvolution 2365 // being unable to find a sufficient guard, for example), change the loop 2366 // comparison to use SLT or ULT instead of NE. 2367 // One consequence of doing this now is that it disrupts the count-down 2368 // optimization. That's not always a bad thing though, because in such 2369 // cases it may still be worthwhile to avoid a max. 2370 Cond = OptimizeMax(Cond, CondUse); 2371 2372 // If this exiting block dominates the latch block, it may also use 2373 // the post-inc value if it won't be shared with other uses. 2374 // Check for dominance. 2375 if (!DT.dominates(ExitingBlock, LatchBlock)) 2376 continue; 2377 2378 // Conservatively avoid trying to use the post-inc value in non-latch 2379 // exits if there may be pre-inc users in intervening blocks. 2380 if (LatchBlock != ExitingBlock) 2381 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) 2382 // Test if the use is reachable from the exiting block. This dominator 2383 // query is a conservative approximation of reachability. 2384 if (&*UI != CondUse && 2385 !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) { 2386 // Conservatively assume there may be reuse if the quotient of their 2387 // strides could be a legal scale. 2388 const SCEV *A = IU.getStride(*CondUse, L); 2389 const SCEV *B = IU.getStride(*UI, L); 2390 if (!A || !B) continue; 2391 if (SE.getTypeSizeInBits(A->getType()) != 2392 SE.getTypeSizeInBits(B->getType())) { 2393 if (SE.getTypeSizeInBits(A->getType()) > 2394 SE.getTypeSizeInBits(B->getType())) 2395 B = SE.getSignExtendExpr(B, A->getType()); 2396 else 2397 A = SE.getSignExtendExpr(A, B->getType()); 2398 } 2399 if (const SCEVConstant *D = 2400 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) { 2401 const ConstantInt *C = D->getValue(); 2402 // Stride of one or negative one can have reuse with non-addresses. 2403 if (C->isOne() || C->isMinusOne()) 2404 goto decline_post_inc; 2405 // Avoid weird situations. 2406 if (C->getValue().getMinSignedBits() >= 64 || 2407 C->getValue().isMinSignedValue()) 2408 goto decline_post_inc; 2409 // Check for possible scaled-address reuse. 2410 MemAccessTy AccessTy = getAccessType(TTI, UI->getUser()); 2411 int64_t Scale = C->getSExtValue(); 2412 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2413 /*BaseOffset=*/0, 2414 /*HasBaseReg=*/false, Scale, 2415 AccessTy.AddrSpace)) 2416 goto decline_post_inc; 2417 Scale = -Scale; 2418 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2419 /*BaseOffset=*/0, 2420 /*HasBaseReg=*/false, Scale, 2421 AccessTy.AddrSpace)) 2422 goto decline_post_inc; 2423 } 2424 } 2425 2426 DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: " 2427 << *Cond << '\n'); 2428 2429 // It's possible for the setcc instruction to be anywhere in the loop, and 2430 // possible for it to have multiple users. If it is not immediately before 2431 // the exiting block branch, move it. 2432 if (&*++BasicBlock::iterator(Cond) != TermBr) { 2433 if (Cond->hasOneUse()) { 2434 Cond->moveBefore(TermBr); 2435 } else { 2436 // Clone the terminating condition and insert into the loopend. 2437 ICmpInst *OldCond = Cond; 2438 Cond = cast<ICmpInst>(Cond->clone()); 2439 Cond->setName(L->getHeader()->getName() + ".termcond"); 2440 ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond); 2441 2442 // Clone the IVUse, as the old use still exists! 2443 CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace()); 2444 TermBr->replaceUsesOfWith(OldCond, Cond); 2445 } 2446 } 2447 2448 // If we get to here, we know that we can transform the setcc instruction to 2449 // use the post-incremented version of the IV, allowing us to coalesce the 2450 // live ranges for the IV correctly. 2451 CondUse->transformToPostInc(L); 2452 Changed = true; 2453 2454 PostIncs.insert(Cond); 2455 decline_post_inc:; 2456 } 2457 2458 // Determine an insertion point for the loop induction variable increment. It 2459 // must dominate all the post-inc comparisons we just set up, and it must 2460 // dominate the loop latch edge. 2461 IVIncInsertPos = L->getLoopLatch()->getTerminator(); 2462 for (Instruction *Inst : PostIncs) { 2463 BasicBlock *BB = 2464 DT.findNearestCommonDominator(IVIncInsertPos->getParent(), 2465 Inst->getParent()); 2466 if (BB == Inst->getParent()) 2467 IVIncInsertPos = Inst; 2468 else if (BB != IVIncInsertPos->getParent()) 2469 IVIncInsertPos = BB->getTerminator(); 2470 } 2471 } 2472 2473 /// Determine if the given use can accommodate a fixup at the given offset and 2474 /// other details. If so, update the use and return true. 2475 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, 2476 bool HasBaseReg, LSRUse::KindType Kind, 2477 MemAccessTy AccessTy) { 2478 int64_t NewMinOffset = LU.MinOffset; 2479 int64_t NewMaxOffset = LU.MaxOffset; 2480 MemAccessTy NewAccessTy = AccessTy; 2481 2482 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to 2483 // something conservative, however this can pessimize in the case that one of 2484 // the uses will have all its uses outside the loop, for example. 2485 if (LU.Kind != Kind) 2486 return false; 2487 2488 // Check for a mismatched access type, and fall back conservatively as needed. 2489 // TODO: Be less conservative when the type is similar and can use the same 2490 // addressing modes. 2491 if (Kind == LSRUse::Address) { 2492 if (AccessTy.MemTy != LU.AccessTy.MemTy) { 2493 NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(), 2494 AccessTy.AddrSpace); 2495 } 2496 } 2497 2498 // Conservatively assume HasBaseReg is true for now. 2499 if (NewOffset < LU.MinOffset) { 2500 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2501 LU.MaxOffset - NewOffset, HasBaseReg)) 2502 return false; 2503 NewMinOffset = NewOffset; 2504 } else if (NewOffset > LU.MaxOffset) { 2505 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2506 NewOffset - LU.MinOffset, HasBaseReg)) 2507 return false; 2508 NewMaxOffset = NewOffset; 2509 } 2510 2511 // Update the use. 2512 LU.MinOffset = NewMinOffset; 2513 LU.MaxOffset = NewMaxOffset; 2514 LU.AccessTy = NewAccessTy; 2515 return true; 2516 } 2517 2518 /// Return an LSRUse index and an offset value for a fixup which needs the given 2519 /// expression, with the given kind and optional access type. Either reuse an 2520 /// existing use or create a new one, as needed. 2521 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr, 2522 LSRUse::KindType Kind, 2523 MemAccessTy AccessTy) { 2524 const SCEV *Copy = Expr; 2525 int64_t Offset = ExtractImmediate(Expr, SE); 2526 2527 // Basic uses can't accept any offset, for example. 2528 if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr, 2529 Offset, /*HasBaseReg=*/ true)) { 2530 Expr = Copy; 2531 Offset = 0; 2532 } 2533 2534 std::pair<UseMapTy::iterator, bool> P = 2535 UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0)); 2536 if (!P.second) { 2537 // A use already existed with this base. 2538 size_t LUIdx = P.first->second; 2539 LSRUse &LU = Uses[LUIdx]; 2540 if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy)) 2541 // Reuse this use. 2542 return std::make_pair(LUIdx, Offset); 2543 } 2544 2545 // Create a new use. 2546 size_t LUIdx = Uses.size(); 2547 P.first->second = LUIdx; 2548 Uses.push_back(LSRUse(Kind, AccessTy)); 2549 LSRUse &LU = Uses[LUIdx]; 2550 2551 LU.MinOffset = Offset; 2552 LU.MaxOffset = Offset; 2553 return std::make_pair(LUIdx, Offset); 2554 } 2555 2556 /// Delete the given use from the Uses list. 2557 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) { 2558 if (&LU != &Uses.back()) 2559 std::swap(LU, Uses.back()); 2560 Uses.pop_back(); 2561 2562 // Update RegUses. 2563 RegUses.swapAndDropUse(LUIdx, Uses.size()); 2564 } 2565 2566 /// Look for a use distinct from OrigLU which is has a formula that has the same 2567 /// registers as the given formula. 2568 LSRUse * 2569 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF, 2570 const LSRUse &OrigLU) { 2571 // Search all uses for the formula. This could be more clever. 2572 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 2573 LSRUse &LU = Uses[LUIdx]; 2574 // Check whether this use is close enough to OrigLU, to see whether it's 2575 // worthwhile looking through its formulae. 2576 // Ignore ICmpZero uses because they may contain formulae generated by 2577 // GenerateICmpZeroScales, in which case adding fixup offsets may 2578 // be invalid. 2579 if (&LU != &OrigLU && 2580 LU.Kind != LSRUse::ICmpZero && 2581 LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy && 2582 LU.WidestFixupType == OrigLU.WidestFixupType && 2583 LU.HasFormulaWithSameRegs(OrigF)) { 2584 // Scan through this use's formulae. 2585 for (const Formula &F : LU.Formulae) { 2586 // Check to see if this formula has the same registers and symbols 2587 // as OrigF. 2588 if (F.BaseRegs == OrigF.BaseRegs && 2589 F.ScaledReg == OrigF.ScaledReg && 2590 F.BaseGV == OrigF.BaseGV && 2591 F.Scale == OrigF.Scale && 2592 F.UnfoldedOffset == OrigF.UnfoldedOffset) { 2593 if (F.BaseOffset == 0) 2594 return &LU; 2595 // This is the formula where all the registers and symbols matched; 2596 // there aren't going to be any others. Since we declined it, we 2597 // can skip the rest of the formulae and proceed to the next LSRUse. 2598 break; 2599 } 2600 } 2601 } 2602 } 2603 2604 // Nothing looked good. 2605 return nullptr; 2606 } 2607 2608 void LSRInstance::CollectInterestingTypesAndFactors() { 2609 SmallSetVector<const SCEV *, 4> Strides; 2610 2611 // Collect interesting types and strides. 2612 SmallVector<const SCEV *, 4> Worklist; 2613 for (const IVStrideUse &U : IU) { 2614 const SCEV *Expr = IU.getExpr(U); 2615 2616 // Collect interesting types. 2617 Types.insert(SE.getEffectiveSCEVType(Expr->getType())); 2618 2619 // Add strides for mentioned loops. 2620 Worklist.push_back(Expr); 2621 do { 2622 const SCEV *S = Worklist.pop_back_val(); 2623 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2624 if (AR->getLoop() == L) 2625 Strides.insert(AR->getStepRecurrence(SE)); 2626 Worklist.push_back(AR->getStart()); 2627 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2628 Worklist.append(Add->op_begin(), Add->op_end()); 2629 } 2630 } while (!Worklist.empty()); 2631 } 2632 2633 // Compute interesting factors from the set of interesting strides. 2634 for (SmallSetVector<const SCEV *, 4>::const_iterator 2635 I = Strides.begin(), E = Strides.end(); I != E; ++I) 2636 for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter = 2637 std::next(I); NewStrideIter != E; ++NewStrideIter) { 2638 const SCEV *OldStride = *I; 2639 const SCEV *NewStride = *NewStrideIter; 2640 2641 if (SE.getTypeSizeInBits(OldStride->getType()) != 2642 SE.getTypeSizeInBits(NewStride->getType())) { 2643 if (SE.getTypeSizeInBits(OldStride->getType()) > 2644 SE.getTypeSizeInBits(NewStride->getType())) 2645 NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType()); 2646 else 2647 OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType()); 2648 } 2649 if (const SCEVConstant *Factor = 2650 dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride, 2651 SE, true))) { 2652 if (Factor->getAPInt().getMinSignedBits() <= 64) 2653 Factors.insert(Factor->getAPInt().getSExtValue()); 2654 } else if (const SCEVConstant *Factor = 2655 dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride, 2656 NewStride, 2657 SE, true))) { 2658 if (Factor->getAPInt().getMinSignedBits() <= 64) 2659 Factors.insert(Factor->getAPInt().getSExtValue()); 2660 } 2661 } 2662 2663 // If all uses use the same type, don't bother looking for truncation-based 2664 // reuse. 2665 if (Types.size() == 1) 2666 Types.clear(); 2667 2668 DEBUG(print_factors_and_types(dbgs())); 2669 } 2670 2671 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in 2672 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to 2673 /// IVStrideUses, we could partially skip this. 2674 static User::op_iterator 2675 findIVOperand(User::op_iterator OI, User::op_iterator OE, 2676 Loop *L, ScalarEvolution &SE) { 2677 for(; OI != OE; ++OI) { 2678 if (Instruction *Oper = dyn_cast<Instruction>(*OI)) { 2679 if (!SE.isSCEVable(Oper->getType())) 2680 continue; 2681 2682 if (const SCEVAddRecExpr *AR = 2683 dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) { 2684 if (AR->getLoop() == L) 2685 break; 2686 } 2687 } 2688 } 2689 return OI; 2690 } 2691 2692 /// IVChain logic must consistenctly peek base TruncInst operands, so wrap it in 2693 /// a convenient helper. 2694 static Value *getWideOperand(Value *Oper) { 2695 if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper)) 2696 return Trunc->getOperand(0); 2697 return Oper; 2698 } 2699 2700 /// Return true if we allow an IV chain to include both types. 2701 static bool isCompatibleIVType(Value *LVal, Value *RVal) { 2702 Type *LType = LVal->getType(); 2703 Type *RType = RVal->getType(); 2704 return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy() && 2705 // Different address spaces means (possibly) 2706 // different types of the pointer implementation, 2707 // e.g. i16 vs i32 so disallow that. 2708 (LType->getPointerAddressSpace() == 2709 RType->getPointerAddressSpace())); 2710 } 2711 2712 /// Return an approximation of this SCEV expression's "base", or NULL for any 2713 /// constant. Returning the expression itself is conservative. Returning a 2714 /// deeper subexpression is more precise and valid as long as it isn't less 2715 /// complex than another subexpression. For expressions involving multiple 2716 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids 2717 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i], 2718 /// IVInc==b-a. 2719 /// 2720 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost 2721 /// SCEVUnknown, we simply return the rightmost SCEV operand. 2722 static const SCEV *getExprBase(const SCEV *S) { 2723 switch (S->getSCEVType()) { 2724 default: // uncluding scUnknown. 2725 return S; 2726 case scConstant: 2727 return nullptr; 2728 case scTruncate: 2729 return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand()); 2730 case scZeroExtend: 2731 return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand()); 2732 case scSignExtend: 2733 return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand()); 2734 case scAddExpr: { 2735 // Skip over scaled operands (scMulExpr) to follow add operands as long as 2736 // there's nothing more complex. 2737 // FIXME: not sure if we want to recognize negation. 2738 const SCEVAddExpr *Add = cast<SCEVAddExpr>(S); 2739 for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()), 2740 E(Add->op_begin()); I != E; ++I) { 2741 const SCEV *SubExpr = *I; 2742 if (SubExpr->getSCEVType() == scAddExpr) 2743 return getExprBase(SubExpr); 2744 2745 if (SubExpr->getSCEVType() != scMulExpr) 2746 return SubExpr; 2747 } 2748 return S; // all operands are scaled, be conservative. 2749 } 2750 case scAddRecExpr: 2751 return getExprBase(cast<SCEVAddRecExpr>(S)->getStart()); 2752 } 2753 } 2754 2755 /// Return true if the chain increment is profitable to expand into a loop 2756 /// invariant value, which may require its own register. A profitable chain 2757 /// increment will be an offset relative to the same base. We allow such offsets 2758 /// to potentially be used as chain increment as long as it's not obviously 2759 /// expensive to expand using real instructions. 2760 bool IVChain::isProfitableIncrement(const SCEV *OperExpr, 2761 const SCEV *IncExpr, 2762 ScalarEvolution &SE) { 2763 // Aggressively form chains when -stress-ivchain. 2764 if (StressIVChain) 2765 return true; 2766 2767 // Do not replace a constant offset from IV head with a nonconstant IV 2768 // increment. 2769 if (!isa<SCEVConstant>(IncExpr)) { 2770 const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand)); 2771 if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr))) 2772 return false; 2773 } 2774 2775 SmallPtrSet<const SCEV*, 8> Processed; 2776 return !isHighCostExpansion(IncExpr, Processed, SE); 2777 } 2778 2779 /// Return true if the number of registers needed for the chain is estimated to 2780 /// be less than the number required for the individual IV users. First prohibit 2781 /// any IV users that keep the IV live across increments (the Users set should 2782 /// be empty). Next count the number and type of increments in the chain. 2783 /// 2784 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't 2785 /// effectively use postinc addressing modes. Only consider it profitable it the 2786 /// increments can be computed in fewer registers when chained. 2787 /// 2788 /// TODO: Consider IVInc free if it's already used in another chains. 2789 static bool 2790 isProfitableChain(IVChain &Chain, SmallPtrSetImpl<Instruction*> &Users, 2791 ScalarEvolution &SE, const TargetTransformInfo &TTI) { 2792 if (StressIVChain) 2793 return true; 2794 2795 if (!Chain.hasIncs()) 2796 return false; 2797 2798 if (!Users.empty()) { 2799 DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n"; 2800 for (Instruction *Inst : Users) { 2801 dbgs() << " " << *Inst << "\n"; 2802 }); 2803 return false; 2804 } 2805 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 2806 2807 // The chain itself may require a register, so intialize cost to 1. 2808 int cost = 1; 2809 2810 // A complete chain likely eliminates the need for keeping the original IV in 2811 // a register. LSR does not currently know how to form a complete chain unless 2812 // the header phi already exists. 2813 if (isa<PHINode>(Chain.tailUserInst()) 2814 && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) { 2815 --cost; 2816 } 2817 const SCEV *LastIncExpr = nullptr; 2818 unsigned NumConstIncrements = 0; 2819 unsigned NumVarIncrements = 0; 2820 unsigned NumReusedIncrements = 0; 2821 for (const IVInc &Inc : Chain) { 2822 if (Inc.IncExpr->isZero()) 2823 continue; 2824 2825 // Incrementing by zero or some constant is neutral. We assume constants can 2826 // be folded into an addressing mode or an add's immediate operand. 2827 if (isa<SCEVConstant>(Inc.IncExpr)) { 2828 ++NumConstIncrements; 2829 continue; 2830 } 2831 2832 if (Inc.IncExpr == LastIncExpr) 2833 ++NumReusedIncrements; 2834 else 2835 ++NumVarIncrements; 2836 2837 LastIncExpr = Inc.IncExpr; 2838 } 2839 // An IV chain with a single increment is handled by LSR's postinc 2840 // uses. However, a chain with multiple increments requires keeping the IV's 2841 // value live longer than it needs to be if chained. 2842 if (NumConstIncrements > 1) 2843 --cost; 2844 2845 // Materializing increment expressions in the preheader that didn't exist in 2846 // the original code may cost a register. For example, sign-extended array 2847 // indices can produce ridiculous increments like this: 2848 // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64))) 2849 cost += NumVarIncrements; 2850 2851 // Reusing variable increments likely saves a register to hold the multiple of 2852 // the stride. 2853 cost -= NumReusedIncrements; 2854 2855 DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost 2856 << "\n"); 2857 2858 return cost < 0; 2859 } 2860 2861 /// Add this IV user to an existing chain or make it the head of a new chain. 2862 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper, 2863 SmallVectorImpl<ChainUsers> &ChainUsersVec) { 2864 // When IVs are used as types of varying widths, they are generally converted 2865 // to a wider type with some uses remaining narrow under a (free) trunc. 2866 Value *const NextIV = getWideOperand(IVOper); 2867 const SCEV *const OperExpr = SE.getSCEV(NextIV); 2868 const SCEV *const OperExprBase = getExprBase(OperExpr); 2869 2870 // Visit all existing chains. Check if its IVOper can be computed as a 2871 // profitable loop invariant increment from the last link in the Chain. 2872 unsigned ChainIdx = 0, NChains = IVChainVec.size(); 2873 const SCEV *LastIncExpr = nullptr; 2874 for (; ChainIdx < NChains; ++ChainIdx) { 2875 IVChain &Chain = IVChainVec[ChainIdx]; 2876 2877 // Prune the solution space aggressively by checking that both IV operands 2878 // are expressions that operate on the same unscaled SCEVUnknown. This 2879 // "base" will be canceled by the subsequent getMinusSCEV call. Checking 2880 // first avoids creating extra SCEV expressions. 2881 if (!StressIVChain && Chain.ExprBase != OperExprBase) 2882 continue; 2883 2884 Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand); 2885 if (!isCompatibleIVType(PrevIV, NextIV)) 2886 continue; 2887 2888 // A phi node terminates a chain. 2889 if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst())) 2890 continue; 2891 2892 // The increment must be loop-invariant so it can be kept in a register. 2893 const SCEV *PrevExpr = SE.getSCEV(PrevIV); 2894 const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr); 2895 if (!SE.isLoopInvariant(IncExpr, L)) 2896 continue; 2897 2898 if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) { 2899 LastIncExpr = IncExpr; 2900 break; 2901 } 2902 } 2903 // If we haven't found a chain, create a new one, unless we hit the max. Don't 2904 // bother for phi nodes, because they must be last in the chain. 2905 if (ChainIdx == NChains) { 2906 if (isa<PHINode>(UserInst)) 2907 return; 2908 if (NChains >= MaxChains && !StressIVChain) { 2909 DEBUG(dbgs() << "IV Chain Limit\n"); 2910 return; 2911 } 2912 LastIncExpr = OperExpr; 2913 // IVUsers may have skipped over sign/zero extensions. We don't currently 2914 // attempt to form chains involving extensions unless they can be hoisted 2915 // into this loop's AddRec. 2916 if (!isa<SCEVAddRecExpr>(LastIncExpr)) 2917 return; 2918 ++NChains; 2919 IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr), 2920 OperExprBase)); 2921 ChainUsersVec.resize(NChains); 2922 DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst 2923 << ") IV=" << *LastIncExpr << "\n"); 2924 } else { 2925 DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Inc: (" << *UserInst 2926 << ") IV+" << *LastIncExpr << "\n"); 2927 // Add this IV user to the end of the chain. 2928 IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr)); 2929 } 2930 IVChain &Chain = IVChainVec[ChainIdx]; 2931 2932 SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers; 2933 // This chain's NearUsers become FarUsers. 2934 if (!LastIncExpr->isZero()) { 2935 ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(), 2936 NearUsers.end()); 2937 NearUsers.clear(); 2938 } 2939 2940 // All other uses of IVOperand become near uses of the chain. 2941 // We currently ignore intermediate values within SCEV expressions, assuming 2942 // they will eventually be used be the current chain, or can be computed 2943 // from one of the chain increments. To be more precise we could 2944 // transitively follow its user and only add leaf IV users to the set. 2945 for (User *U : IVOper->users()) { 2946 Instruction *OtherUse = dyn_cast<Instruction>(U); 2947 if (!OtherUse) 2948 continue; 2949 // Uses in the chain will no longer be uses if the chain is formed. 2950 // Include the head of the chain in this iteration (not Chain.begin()). 2951 IVChain::const_iterator IncIter = Chain.Incs.begin(); 2952 IVChain::const_iterator IncEnd = Chain.Incs.end(); 2953 for( ; IncIter != IncEnd; ++IncIter) { 2954 if (IncIter->UserInst == OtherUse) 2955 break; 2956 } 2957 if (IncIter != IncEnd) 2958 continue; 2959 2960 if (SE.isSCEVable(OtherUse->getType()) 2961 && !isa<SCEVUnknown>(SE.getSCEV(OtherUse)) 2962 && IU.isIVUserOrOperand(OtherUse)) { 2963 continue; 2964 } 2965 NearUsers.insert(OtherUse); 2966 } 2967 2968 // Since this user is part of the chain, it's no longer considered a use 2969 // of the chain. 2970 ChainUsersVec[ChainIdx].FarUsers.erase(UserInst); 2971 } 2972 2973 /// Populate the vector of Chains. 2974 /// 2975 /// This decreases ILP at the architecture level. Targets with ample registers, 2976 /// multiple memory ports, and no register renaming probably don't want 2977 /// this. However, such targets should probably disable LSR altogether. 2978 /// 2979 /// The job of LSR is to make a reasonable choice of induction variables across 2980 /// the loop. Subsequent passes can easily "unchain" computation exposing more 2981 /// ILP *within the loop* if the target wants it. 2982 /// 2983 /// Finding the best IV chain is potentially a scheduling problem. Since LSR 2984 /// will not reorder memory operations, it will recognize this as a chain, but 2985 /// will generate redundant IV increments. Ideally this would be corrected later 2986 /// by a smart scheduler: 2987 /// = A[i] 2988 /// = A[i+x] 2989 /// A[i] = 2990 /// A[i+x] = 2991 /// 2992 /// TODO: Walk the entire domtree within this loop, not just the path to the 2993 /// loop latch. This will discover chains on side paths, but requires 2994 /// maintaining multiple copies of the Chains state. 2995 void LSRInstance::CollectChains() { 2996 DEBUG(dbgs() << "Collecting IV Chains.\n"); 2997 SmallVector<ChainUsers, 8> ChainUsersVec; 2998 2999 SmallVector<BasicBlock *,8> LatchPath; 3000 BasicBlock *LoopHeader = L->getHeader(); 3001 for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch()); 3002 Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) { 3003 LatchPath.push_back(Rung->getBlock()); 3004 } 3005 LatchPath.push_back(LoopHeader); 3006 3007 // Walk the instruction stream from the loop header to the loop latch. 3008 for (BasicBlock *BB : reverse(LatchPath)) { 3009 for (Instruction &I : *BB) { 3010 // Skip instructions that weren't seen by IVUsers analysis. 3011 if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I)) 3012 continue; 3013 3014 // Ignore users that are part of a SCEV expression. This way we only 3015 // consider leaf IV Users. This effectively rediscovers a portion of 3016 // IVUsers analysis but in program order this time. 3017 if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I))) 3018 continue; 3019 3020 // Remove this instruction from any NearUsers set it may be in. 3021 for (unsigned ChainIdx = 0, NChains = IVChainVec.size(); 3022 ChainIdx < NChains; ++ChainIdx) { 3023 ChainUsersVec[ChainIdx].NearUsers.erase(&I); 3024 } 3025 // Search for operands that can be chained. 3026 SmallPtrSet<Instruction*, 4> UniqueOperands; 3027 User::op_iterator IVOpEnd = I.op_end(); 3028 User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE); 3029 while (IVOpIter != IVOpEnd) { 3030 Instruction *IVOpInst = cast<Instruction>(*IVOpIter); 3031 if (UniqueOperands.insert(IVOpInst).second) 3032 ChainInstruction(&I, IVOpInst, ChainUsersVec); 3033 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 3034 } 3035 } // Continue walking down the instructions. 3036 } // Continue walking down the domtree. 3037 // Visit phi backedges to determine if the chain can generate the IV postinc. 3038 for (PHINode &PN : L->getHeader()->phis()) { 3039 if (!SE.isSCEVable(PN.getType())) 3040 continue; 3041 3042 Instruction *IncV = 3043 dyn_cast<Instruction>(PN.getIncomingValueForBlock(L->getLoopLatch())); 3044 if (IncV) 3045 ChainInstruction(&PN, IncV, ChainUsersVec); 3046 } 3047 // Remove any unprofitable chains. 3048 unsigned ChainIdx = 0; 3049 for (unsigned UsersIdx = 0, NChains = IVChainVec.size(); 3050 UsersIdx < NChains; ++UsersIdx) { 3051 if (!isProfitableChain(IVChainVec[UsersIdx], 3052 ChainUsersVec[UsersIdx].FarUsers, SE, TTI)) 3053 continue; 3054 // Preserve the chain at UsesIdx. 3055 if (ChainIdx != UsersIdx) 3056 IVChainVec[ChainIdx] = IVChainVec[UsersIdx]; 3057 FinalizeChain(IVChainVec[ChainIdx]); 3058 ++ChainIdx; 3059 } 3060 IVChainVec.resize(ChainIdx); 3061 } 3062 3063 void LSRInstance::FinalizeChain(IVChain &Chain) { 3064 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 3065 DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n"); 3066 3067 for (const IVInc &Inc : Chain) { 3068 DEBUG(dbgs() << " Inc: " << *Inc.UserInst << "\n"); 3069 auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand); 3070 assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand"); 3071 IVIncSet.insert(UseI); 3072 } 3073 } 3074 3075 /// Return true if the IVInc can be folded into an addressing mode. 3076 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst, 3077 Value *Operand, const TargetTransformInfo &TTI) { 3078 const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr); 3079 if (!IncConst || !isAddressUse(TTI, UserInst, Operand)) 3080 return false; 3081 3082 if (IncConst->getAPInt().getMinSignedBits() > 64) 3083 return false; 3084 3085 MemAccessTy AccessTy = getAccessType(TTI, UserInst); 3086 int64_t IncOffset = IncConst->getValue()->getSExtValue(); 3087 if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr, 3088 IncOffset, /*HaseBaseReg=*/false)) 3089 return false; 3090 3091 return true; 3092 } 3093 3094 /// Generate an add or subtract for each IVInc in a chain to materialize the IV 3095 /// user's operand from the previous IV user's operand. 3096 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 3097 SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 3098 // Find the new IVOperand for the head of the chain. It may have been replaced 3099 // by LSR. 3100 const IVInc &Head = Chain.Incs[0]; 3101 User::op_iterator IVOpEnd = Head.UserInst->op_end(); 3102 // findIVOperand returns IVOpEnd if it can no longer find a valid IV user. 3103 User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(), 3104 IVOpEnd, L, SE); 3105 Value *IVSrc = nullptr; 3106 while (IVOpIter != IVOpEnd) { 3107 IVSrc = getWideOperand(*IVOpIter); 3108 3109 // If this operand computes the expression that the chain needs, we may use 3110 // it. (Check this after setting IVSrc which is used below.) 3111 // 3112 // Note that if Head.IncExpr is wider than IVSrc, then this phi is too 3113 // narrow for the chain, so we can no longer use it. We do allow using a 3114 // wider phi, assuming the LSR checked for free truncation. In that case we 3115 // should already have a truncate on this operand such that 3116 // getSCEV(IVSrc) == IncExpr. 3117 if (SE.getSCEV(*IVOpIter) == Head.IncExpr 3118 || SE.getSCEV(IVSrc) == Head.IncExpr) { 3119 break; 3120 } 3121 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 3122 } 3123 if (IVOpIter == IVOpEnd) { 3124 // Gracefully give up on this chain. 3125 DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n"); 3126 return; 3127 } 3128 3129 DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n"); 3130 Type *IVTy = IVSrc->getType(); 3131 Type *IntTy = SE.getEffectiveSCEVType(IVTy); 3132 const SCEV *LeftOverExpr = nullptr; 3133 for (const IVInc &Inc : Chain) { 3134 Instruction *InsertPt = Inc.UserInst; 3135 if (isa<PHINode>(InsertPt)) 3136 InsertPt = L->getLoopLatch()->getTerminator(); 3137 3138 // IVOper will replace the current IV User's operand. IVSrc is the IV 3139 // value currently held in a register. 3140 Value *IVOper = IVSrc; 3141 if (!Inc.IncExpr->isZero()) { 3142 // IncExpr was the result of subtraction of two narrow values, so must 3143 // be signed. 3144 const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy); 3145 LeftOverExpr = LeftOverExpr ? 3146 SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr; 3147 } 3148 if (LeftOverExpr && !LeftOverExpr->isZero()) { 3149 // Expand the IV increment. 3150 Rewriter.clearPostInc(); 3151 Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt); 3152 const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc), 3153 SE.getUnknown(IncV)); 3154 IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt); 3155 3156 // If an IV increment can't be folded, use it as the next IV value. 3157 if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) { 3158 assert(IVTy == IVOper->getType() && "inconsistent IV increment type"); 3159 IVSrc = IVOper; 3160 LeftOverExpr = nullptr; 3161 } 3162 } 3163 Type *OperTy = Inc.IVOperand->getType(); 3164 if (IVTy != OperTy) { 3165 assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) && 3166 "cannot extend a chained IV"); 3167 IRBuilder<> Builder(InsertPt); 3168 IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain"); 3169 } 3170 Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper); 3171 DeadInsts.emplace_back(Inc.IVOperand); 3172 } 3173 // If LSR created a new, wider phi, we may also replace its postinc. We only 3174 // do this if we also found a wide value for the head of the chain. 3175 if (isa<PHINode>(Chain.tailUserInst())) { 3176 for (PHINode &Phi : L->getHeader()->phis()) { 3177 if (!isCompatibleIVType(&Phi, IVSrc)) 3178 continue; 3179 Instruction *PostIncV = dyn_cast<Instruction>( 3180 Phi.getIncomingValueForBlock(L->getLoopLatch())); 3181 if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc))) 3182 continue; 3183 Value *IVOper = IVSrc; 3184 Type *PostIncTy = PostIncV->getType(); 3185 if (IVTy != PostIncTy) { 3186 assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types"); 3187 IRBuilder<> Builder(L->getLoopLatch()->getTerminator()); 3188 Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc()); 3189 IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain"); 3190 } 3191 Phi.replaceUsesOfWith(PostIncV, IVOper); 3192 DeadInsts.emplace_back(PostIncV); 3193 } 3194 } 3195 } 3196 3197 void LSRInstance::CollectFixupsAndInitialFormulae() { 3198 for (const IVStrideUse &U : IU) { 3199 Instruction *UserInst = U.getUser(); 3200 // Skip IV users that are part of profitable IV Chains. 3201 User::op_iterator UseI = 3202 find(UserInst->operands(), U.getOperandValToReplace()); 3203 assert(UseI != UserInst->op_end() && "cannot find IV operand"); 3204 if (IVIncSet.count(UseI)) { 3205 DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n'); 3206 continue; 3207 } 3208 3209 LSRUse::KindType Kind = LSRUse::Basic; 3210 MemAccessTy AccessTy; 3211 if (isAddressUse(TTI, UserInst, U.getOperandValToReplace())) { 3212 Kind = LSRUse::Address; 3213 AccessTy = getAccessType(TTI, UserInst); 3214 } 3215 3216 const SCEV *S = IU.getExpr(U); 3217 PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops(); 3218 3219 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as 3220 // (N - i == 0), and this allows (N - i) to be the expression that we work 3221 // with rather than just N or i, so we can consider the register 3222 // requirements for both N and i at the same time. Limiting this code to 3223 // equality icmps is not a problem because all interesting loops use 3224 // equality icmps, thanks to IndVarSimplify. 3225 if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst)) 3226 if (CI->isEquality()) { 3227 // Swap the operands if needed to put the OperandValToReplace on the 3228 // left, for consistency. 3229 Value *NV = CI->getOperand(1); 3230 if (NV == U.getOperandValToReplace()) { 3231 CI->setOperand(1, CI->getOperand(0)); 3232 CI->setOperand(0, NV); 3233 NV = CI->getOperand(1); 3234 Changed = true; 3235 } 3236 3237 // x == y --> x - y == 0 3238 const SCEV *N = SE.getSCEV(NV); 3239 if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) { 3240 // S is normalized, so normalize N before folding it into S 3241 // to keep the result normalized. 3242 N = normalizeForPostIncUse(N, TmpPostIncLoops, SE); 3243 Kind = LSRUse::ICmpZero; 3244 S = SE.getMinusSCEV(N, S); 3245 } 3246 3247 // -1 and the negations of all interesting strides (except the negation 3248 // of -1) are now also interesting. 3249 for (size_t i = 0, e = Factors.size(); i != e; ++i) 3250 if (Factors[i] != -1) 3251 Factors.insert(-(uint64_t)Factors[i]); 3252 Factors.insert(-1); 3253 } 3254 3255 // Get or create an LSRUse. 3256 std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy); 3257 size_t LUIdx = P.first; 3258 int64_t Offset = P.second; 3259 LSRUse &LU = Uses[LUIdx]; 3260 3261 // Record the fixup. 3262 LSRFixup &LF = LU.getNewFixup(); 3263 LF.UserInst = UserInst; 3264 LF.OperandValToReplace = U.getOperandValToReplace(); 3265 LF.PostIncLoops = TmpPostIncLoops; 3266 LF.Offset = Offset; 3267 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3268 3269 if (!LU.WidestFixupType || 3270 SE.getTypeSizeInBits(LU.WidestFixupType) < 3271 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3272 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3273 3274 // If this is the first use of this LSRUse, give it a formula. 3275 if (LU.Formulae.empty()) { 3276 InsertInitialFormula(S, LU, LUIdx); 3277 CountRegisters(LU.Formulae.back(), LUIdx); 3278 } 3279 } 3280 3281 DEBUG(print_fixups(dbgs())); 3282 } 3283 3284 /// Insert a formula for the given expression into the given use, separating out 3285 /// loop-variant portions from loop-invariant and loop-computable portions. 3286 void 3287 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) { 3288 // Mark uses whose expressions cannot be expanded. 3289 if (!isSafeToExpand(S, SE)) 3290 LU.RigidFormula = true; 3291 3292 Formula F; 3293 F.initialMatch(S, L, SE); 3294 bool Inserted = InsertFormula(LU, LUIdx, F); 3295 assert(Inserted && "Initial formula already exists!"); (void)Inserted; 3296 } 3297 3298 /// Insert a simple single-register formula for the given expression into the 3299 /// given use. 3300 void 3301 LSRInstance::InsertSupplementalFormula(const SCEV *S, 3302 LSRUse &LU, size_t LUIdx) { 3303 Formula F; 3304 F.BaseRegs.push_back(S); 3305 F.HasBaseReg = true; 3306 bool Inserted = InsertFormula(LU, LUIdx, F); 3307 assert(Inserted && "Supplemental formula already exists!"); (void)Inserted; 3308 } 3309 3310 /// Note which registers are used by the given formula, updating RegUses. 3311 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) { 3312 if (F.ScaledReg) 3313 RegUses.countRegister(F.ScaledReg, LUIdx); 3314 for (const SCEV *BaseReg : F.BaseRegs) 3315 RegUses.countRegister(BaseReg, LUIdx); 3316 } 3317 3318 /// If the given formula has not yet been inserted, add it to the list, and 3319 /// return true. Return false otherwise. 3320 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) { 3321 // Do not insert formula that we will not be able to expand. 3322 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) && 3323 "Formula is illegal"); 3324 3325 if (!LU.InsertFormula(F, *L)) 3326 return false; 3327 3328 CountRegisters(F, LUIdx); 3329 return true; 3330 } 3331 3332 /// Check for other uses of loop-invariant values which we're tracking. These 3333 /// other uses will pin these values in registers, making them less profitable 3334 /// for elimination. 3335 /// TODO: This currently misses non-constant addrec step registers. 3336 /// TODO: Should this give more weight to users inside the loop? 3337 void 3338 LSRInstance::CollectLoopInvariantFixupsAndFormulae() { 3339 SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end()); 3340 SmallPtrSet<const SCEV *, 32> Visited; 3341 3342 while (!Worklist.empty()) { 3343 const SCEV *S = Worklist.pop_back_val(); 3344 3345 // Don't process the same SCEV twice 3346 if (!Visited.insert(S).second) 3347 continue; 3348 3349 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) 3350 Worklist.append(N->op_begin(), N->op_end()); 3351 else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) 3352 Worklist.push_back(C->getOperand()); 3353 else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 3354 Worklist.push_back(D->getLHS()); 3355 Worklist.push_back(D->getRHS()); 3356 } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) { 3357 const Value *V = US->getValue(); 3358 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 3359 // Look for instructions defined outside the loop. 3360 if (L->contains(Inst)) continue; 3361 } else if (isa<UndefValue>(V)) 3362 // Undef doesn't have a live range, so it doesn't matter. 3363 continue; 3364 for (const Use &U : V->uses()) { 3365 const Instruction *UserInst = dyn_cast<Instruction>(U.getUser()); 3366 // Ignore non-instructions. 3367 if (!UserInst) 3368 continue; 3369 // Ignore instructions in other functions (as can happen with 3370 // Constants). 3371 if (UserInst->getParent()->getParent() != L->getHeader()->getParent()) 3372 continue; 3373 // Ignore instructions not dominated by the loop. 3374 const BasicBlock *UseBB = !isa<PHINode>(UserInst) ? 3375 UserInst->getParent() : 3376 cast<PHINode>(UserInst)->getIncomingBlock( 3377 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 3378 if (!DT.dominates(L->getHeader(), UseBB)) 3379 continue; 3380 // Don't bother if the instruction is in a BB which ends in an EHPad. 3381 if (UseBB->getTerminator()->isEHPad()) 3382 continue; 3383 // Don't bother rewriting PHIs in catchswitch blocks. 3384 if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator())) 3385 continue; 3386 // Ignore uses which are part of other SCEV expressions, to avoid 3387 // analyzing them multiple times. 3388 if (SE.isSCEVable(UserInst->getType())) { 3389 const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst)); 3390 // If the user is a no-op, look through to its uses. 3391 if (!isa<SCEVUnknown>(UserS)) 3392 continue; 3393 if (UserS == US) { 3394 Worklist.push_back( 3395 SE.getUnknown(const_cast<Instruction *>(UserInst))); 3396 continue; 3397 } 3398 } 3399 // Ignore icmp instructions which are already being analyzed. 3400 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) { 3401 unsigned OtherIdx = !U.getOperandNo(); 3402 Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx)); 3403 if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L)) 3404 continue; 3405 } 3406 3407 std::pair<size_t, int64_t> P = getUse( 3408 S, LSRUse::Basic, MemAccessTy()); 3409 size_t LUIdx = P.first; 3410 int64_t Offset = P.second; 3411 LSRUse &LU = Uses[LUIdx]; 3412 LSRFixup &LF = LU.getNewFixup(); 3413 LF.UserInst = const_cast<Instruction *>(UserInst); 3414 LF.OperandValToReplace = U; 3415 LF.Offset = Offset; 3416 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3417 if (!LU.WidestFixupType || 3418 SE.getTypeSizeInBits(LU.WidestFixupType) < 3419 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3420 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3421 InsertSupplementalFormula(US, LU, LUIdx); 3422 CountRegisters(LU.Formulae.back(), Uses.size() - 1); 3423 break; 3424 } 3425 } 3426 } 3427 } 3428 3429 /// Split S into subexpressions which can be pulled out into separate 3430 /// registers. If C is non-null, multiply each subexpression by C. 3431 /// 3432 /// Return remainder expression after factoring the subexpressions captured by 3433 /// Ops. If Ops is complete, return NULL. 3434 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C, 3435 SmallVectorImpl<const SCEV *> &Ops, 3436 const Loop *L, 3437 ScalarEvolution &SE, 3438 unsigned Depth = 0) { 3439 // Arbitrarily cap recursion to protect compile time. 3440 if (Depth >= 3) 3441 return S; 3442 3443 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3444 // Break out add operands. 3445 for (const SCEV *S : Add->operands()) { 3446 const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1); 3447 if (Remainder) 3448 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3449 } 3450 return nullptr; 3451 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 3452 // Split a non-zero base out of an addrec. 3453 if (AR->getStart()->isZero() || !AR->isAffine()) 3454 return S; 3455 3456 const SCEV *Remainder = CollectSubexprs(AR->getStart(), 3457 C, Ops, L, SE, Depth+1); 3458 // Split the non-zero AddRec unless it is part of a nested recurrence that 3459 // does not pertain to this loop. 3460 if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) { 3461 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3462 Remainder = nullptr; 3463 } 3464 if (Remainder != AR->getStart()) { 3465 if (!Remainder) 3466 Remainder = SE.getConstant(AR->getType(), 0); 3467 return SE.getAddRecExpr(Remainder, 3468 AR->getStepRecurrence(SE), 3469 AR->getLoop(), 3470 //FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 3471 SCEV::FlagAnyWrap); 3472 } 3473 } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3474 // Break (C * (a + b + c)) into C*a + C*b + C*c. 3475 if (Mul->getNumOperands() != 2) 3476 return S; 3477 if (const SCEVConstant *Op0 = 3478 dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3479 C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0; 3480 const SCEV *Remainder = 3481 CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1); 3482 if (Remainder) 3483 Ops.push_back(SE.getMulExpr(C, Remainder)); 3484 return nullptr; 3485 } 3486 } 3487 return S; 3488 } 3489 3490 /// Return true if the SCEV represents a value that may end up as a 3491 /// post-increment operation. 3492 static bool mayUsePostIncMode(const TargetTransformInfo &TTI, 3493 LSRUse &LU, const SCEV *S, const Loop *L, 3494 ScalarEvolution &SE) { 3495 if (LU.Kind != LSRUse::Address || 3496 !LU.AccessTy.getType()->isIntOrIntVectorTy()) 3497 return false; 3498 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S); 3499 if (!AR) 3500 return false; 3501 const SCEV *LoopStep = AR->getStepRecurrence(SE); 3502 if (!isa<SCEVConstant>(LoopStep)) 3503 return false; 3504 if (LU.AccessTy.getType()->getScalarSizeInBits() != 3505 LoopStep->getType()->getScalarSizeInBits()) 3506 return false; 3507 // Check if a post-indexed load/store can be used. 3508 if (TTI.isIndexedLoadLegal(TTI.MIM_PostInc, AR->getType()) || 3509 TTI.isIndexedStoreLegal(TTI.MIM_PostInc, AR->getType())) { 3510 const SCEV *LoopStart = AR->getStart(); 3511 if (!isa<SCEVConstant>(LoopStart) && SE.isLoopInvariant(LoopStart, L)) 3512 return true; 3513 } 3514 return false; 3515 } 3516 3517 /// \brief Helper function for LSRInstance::GenerateReassociations. 3518 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 3519 const Formula &Base, 3520 unsigned Depth, size_t Idx, 3521 bool IsScaledReg) { 3522 const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3523 // Don't generate reassociations for the base register of a value that 3524 // may generate a post-increment operator. The reason is that the 3525 // reassociations cause extra base+register formula to be created, 3526 // and possibly chosen, but the post-increment is more efficient. 3527 if (TTI.shouldFavorPostInc() && mayUsePostIncMode(TTI, LU, BaseReg, L, SE)) 3528 return; 3529 SmallVector<const SCEV *, 8> AddOps; 3530 const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE); 3531 if (Remainder) 3532 AddOps.push_back(Remainder); 3533 3534 if (AddOps.size() == 1) 3535 return; 3536 3537 for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(), 3538 JE = AddOps.end(); 3539 J != JE; ++J) { 3540 // Loop-variant "unknown" values are uninteresting; we won't be able to 3541 // do anything meaningful with them. 3542 if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L)) 3543 continue; 3544 3545 // Don't pull a constant into a register if the constant could be folded 3546 // into an immediate field. 3547 if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3548 LU.AccessTy, *J, Base.getNumRegs() > 1)) 3549 continue; 3550 3551 // Collect all operands except *J. 3552 SmallVector<const SCEV *, 8> InnerAddOps( 3553 ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J); 3554 InnerAddOps.append(std::next(J), 3555 ((const SmallVector<const SCEV *, 8> &)AddOps).end()); 3556 3557 // Don't leave just a constant behind in a register if the constant could 3558 // be folded into an immediate field. 3559 if (InnerAddOps.size() == 1 && 3560 isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3561 LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1)) 3562 continue; 3563 3564 const SCEV *InnerSum = SE.getAddExpr(InnerAddOps); 3565 if (InnerSum->isZero()) 3566 continue; 3567 Formula F = Base; 3568 3569 // Add the remaining pieces of the add back into the new formula. 3570 const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum); 3571 if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 && 3572 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3573 InnerSumSC->getValue()->getZExtValue())) { 3574 F.UnfoldedOffset = 3575 (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue(); 3576 if (IsScaledReg) 3577 F.ScaledReg = nullptr; 3578 else 3579 F.BaseRegs.erase(F.BaseRegs.begin() + Idx); 3580 } else if (IsScaledReg) 3581 F.ScaledReg = InnerSum; 3582 else 3583 F.BaseRegs[Idx] = InnerSum; 3584 3585 // Add J as its own register, or an unfolded immediate. 3586 const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J); 3587 if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 && 3588 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3589 SC->getValue()->getZExtValue())) 3590 F.UnfoldedOffset = 3591 (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue(); 3592 else 3593 F.BaseRegs.push_back(*J); 3594 // We may have changed the number of register in base regs, adjust the 3595 // formula accordingly. 3596 F.canonicalize(*L); 3597 3598 if (InsertFormula(LU, LUIdx, F)) 3599 // If that formula hadn't been seen before, recurse to find more like 3600 // it. 3601 GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth + 1); 3602 } 3603 } 3604 3605 /// Split out subexpressions from adds and the bases of addrecs. 3606 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx, 3607 Formula Base, unsigned Depth) { 3608 assert(Base.isCanonical(*L) && "Input must be in the canonical form"); 3609 // Arbitrarily cap recursion to protect compile time. 3610 if (Depth >= 3) 3611 return; 3612 3613 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3614 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i); 3615 3616 if (Base.Scale == 1) 3617 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, 3618 /* Idx */ -1, /* IsScaledReg */ true); 3619 } 3620 3621 /// Generate a formula consisting of all of the loop-dominating registers added 3622 /// into a single register. 3623 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx, 3624 Formula Base) { 3625 // This method is only interesting on a plurality of registers. 3626 if (Base.BaseRegs.size() + (Base.Scale == 1) <= 1) 3627 return; 3628 3629 // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before 3630 // processing the formula. 3631 Base.unscale(); 3632 Formula F = Base; 3633 F.BaseRegs.clear(); 3634 SmallVector<const SCEV *, 4> Ops; 3635 for (const SCEV *BaseReg : Base.BaseRegs) { 3636 if (SE.properlyDominates(BaseReg, L->getHeader()) && 3637 !SE.hasComputableLoopEvolution(BaseReg, L)) 3638 Ops.push_back(BaseReg); 3639 else 3640 F.BaseRegs.push_back(BaseReg); 3641 } 3642 if (Ops.size() > 1) { 3643 const SCEV *Sum = SE.getAddExpr(Ops); 3644 // TODO: If Sum is zero, it probably means ScalarEvolution missed an 3645 // opportunity to fold something. For now, just ignore such cases 3646 // rather than proceed with zero in a register. 3647 if (!Sum->isZero()) { 3648 F.BaseRegs.push_back(Sum); 3649 F.canonicalize(*L); 3650 (void)InsertFormula(LU, LUIdx, F); 3651 } 3652 } 3653 } 3654 3655 /// \brief Helper function for LSRInstance::GenerateSymbolicOffsets. 3656 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 3657 const Formula &Base, size_t Idx, 3658 bool IsScaledReg) { 3659 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3660 GlobalValue *GV = ExtractSymbol(G, SE); 3661 if (G->isZero() || !GV) 3662 return; 3663 Formula F = Base; 3664 F.BaseGV = GV; 3665 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3666 return; 3667 if (IsScaledReg) 3668 F.ScaledReg = G; 3669 else 3670 F.BaseRegs[Idx] = G; 3671 (void)InsertFormula(LU, LUIdx, F); 3672 } 3673 3674 /// Generate reuse formulae using symbolic offsets. 3675 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, 3676 Formula Base) { 3677 // We can't add a symbolic offset if the address already contains one. 3678 if (Base.BaseGV) return; 3679 3680 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3681 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i); 3682 if (Base.Scale == 1) 3683 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1, 3684 /* IsScaledReg */ true); 3685 } 3686 3687 /// \brief Helper function for LSRInstance::GenerateConstantOffsets. 3688 void LSRInstance::GenerateConstantOffsetsImpl( 3689 LSRUse &LU, unsigned LUIdx, const Formula &Base, 3690 const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) { 3691 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3692 for (int64_t Offset : Worklist) { 3693 Formula F = Base; 3694 F.BaseOffset = (uint64_t)Base.BaseOffset - Offset; 3695 if (isLegalUse(TTI, LU.MinOffset - Offset, LU.MaxOffset - Offset, LU.Kind, 3696 LU.AccessTy, F)) { 3697 // Add the offset to the base register. 3698 const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G); 3699 // If it cancelled out, drop the base register, otherwise update it. 3700 if (NewG->isZero()) { 3701 if (IsScaledReg) { 3702 F.Scale = 0; 3703 F.ScaledReg = nullptr; 3704 } else 3705 F.deleteBaseReg(F.BaseRegs[Idx]); 3706 F.canonicalize(*L); 3707 } else if (IsScaledReg) 3708 F.ScaledReg = NewG; 3709 else 3710 F.BaseRegs[Idx] = NewG; 3711 3712 (void)InsertFormula(LU, LUIdx, F); 3713 } 3714 } 3715 3716 int64_t Imm = ExtractImmediate(G, SE); 3717 if (G->isZero() || Imm == 0) 3718 return; 3719 Formula F = Base; 3720 F.BaseOffset = (uint64_t)F.BaseOffset + Imm; 3721 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3722 return; 3723 if (IsScaledReg) 3724 F.ScaledReg = G; 3725 else 3726 F.BaseRegs[Idx] = G; 3727 (void)InsertFormula(LU, LUIdx, F); 3728 } 3729 3730 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets. 3731 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, 3732 Formula Base) { 3733 // TODO: For now, just add the min and max offset, because it usually isn't 3734 // worthwhile looking at everything inbetween. 3735 SmallVector<int64_t, 2> Worklist; 3736 Worklist.push_back(LU.MinOffset); 3737 if (LU.MaxOffset != LU.MinOffset) 3738 Worklist.push_back(LU.MaxOffset); 3739 3740 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3741 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i); 3742 if (Base.Scale == 1) 3743 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1, 3744 /* IsScaledReg */ true); 3745 } 3746 3747 /// For ICmpZero, check to see if we can scale up the comparison. For example, x 3748 /// == y -> x*c == y*c. 3749 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, 3750 Formula Base) { 3751 if (LU.Kind != LSRUse::ICmpZero) return; 3752 3753 // Determine the integer type for the base formula. 3754 Type *IntTy = Base.getType(); 3755 if (!IntTy) return; 3756 if (SE.getTypeSizeInBits(IntTy) > 64) return; 3757 3758 // Don't do this if there is more than one offset. 3759 if (LU.MinOffset != LU.MaxOffset) return; 3760 3761 // Check if transformation is valid. It is illegal to multiply pointer. 3762 if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy()) 3763 return; 3764 for (const SCEV *BaseReg : Base.BaseRegs) 3765 if (BaseReg->getType()->isPointerTy()) 3766 return; 3767 assert(!Base.BaseGV && "ICmpZero use is not legal!"); 3768 3769 // Check each interesting stride. 3770 for (int64_t Factor : Factors) { 3771 // Check that the multiplication doesn't overflow. 3772 if (Base.BaseOffset == std::numeric_limits<int64_t>::min() && Factor == -1) 3773 continue; 3774 int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor; 3775 if (NewBaseOffset / Factor != Base.BaseOffset) 3776 continue; 3777 // If the offset will be truncated at this use, check that it is in bounds. 3778 if (!IntTy->isPointerTy() && 3779 !ConstantInt::isValueValidForType(IntTy, NewBaseOffset)) 3780 continue; 3781 3782 // Check that multiplying with the use offset doesn't overflow. 3783 int64_t Offset = LU.MinOffset; 3784 if (Offset == std::numeric_limits<int64_t>::min() && Factor == -1) 3785 continue; 3786 Offset = (uint64_t)Offset * Factor; 3787 if (Offset / Factor != LU.MinOffset) 3788 continue; 3789 // If the offset will be truncated at this use, check that it is in bounds. 3790 if (!IntTy->isPointerTy() && 3791 !ConstantInt::isValueValidForType(IntTy, Offset)) 3792 continue; 3793 3794 Formula F = Base; 3795 F.BaseOffset = NewBaseOffset; 3796 3797 // Check that this scale is legal. 3798 if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F)) 3799 continue; 3800 3801 // Compensate for the use having MinOffset built into it. 3802 F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset; 3803 3804 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3805 3806 // Check that multiplying with each base register doesn't overflow. 3807 for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) { 3808 F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS); 3809 if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i]) 3810 goto next; 3811 } 3812 3813 // Check that multiplying with the scaled register doesn't overflow. 3814 if (F.ScaledReg) { 3815 F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS); 3816 if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg) 3817 continue; 3818 } 3819 3820 // Check that multiplying with the unfolded offset doesn't overflow. 3821 if (F.UnfoldedOffset != 0) { 3822 if (F.UnfoldedOffset == std::numeric_limits<int64_t>::min() && 3823 Factor == -1) 3824 continue; 3825 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor; 3826 if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset) 3827 continue; 3828 // If the offset will be truncated, check that it is in bounds. 3829 if (!IntTy->isPointerTy() && 3830 !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset)) 3831 continue; 3832 } 3833 3834 // If we make it here and it's legal, add it. 3835 (void)InsertFormula(LU, LUIdx, F); 3836 next:; 3837 } 3838 } 3839 3840 /// Generate stride factor reuse formulae by making use of scaled-offset address 3841 /// modes, for example. 3842 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) { 3843 // Determine the integer type for the base formula. 3844 Type *IntTy = Base.getType(); 3845 if (!IntTy) return; 3846 3847 // If this Formula already has a scaled register, we can't add another one. 3848 // Try to unscale the formula to generate a better scale. 3849 if (Base.Scale != 0 && !Base.unscale()) 3850 return; 3851 3852 assert(Base.Scale == 0 && "unscale did not did its job!"); 3853 3854 // Check each interesting stride. 3855 for (int64_t Factor : Factors) { 3856 Base.Scale = Factor; 3857 Base.HasBaseReg = Base.BaseRegs.size() > 1; 3858 // Check whether this scale is going to be legal. 3859 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 3860 Base)) { 3861 // As a special-case, handle special out-of-loop Basic users specially. 3862 // TODO: Reconsider this special case. 3863 if (LU.Kind == LSRUse::Basic && 3864 isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special, 3865 LU.AccessTy, Base) && 3866 LU.AllFixupsOutsideLoop) 3867 LU.Kind = LSRUse::Special; 3868 else 3869 continue; 3870 } 3871 // For an ICmpZero, negating a solitary base register won't lead to 3872 // new solutions. 3873 if (LU.Kind == LSRUse::ICmpZero && 3874 !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV) 3875 continue; 3876 // For each addrec base reg, if its loop is current loop, apply the scale. 3877 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { 3878 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i]); 3879 if (AR && (AR->getLoop() == L || LU.AllFixupsOutsideLoop)) { 3880 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3881 if (FactorS->isZero()) 3882 continue; 3883 // Divide out the factor, ignoring high bits, since we'll be 3884 // scaling the value back up in the end. 3885 if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) { 3886 // TODO: This could be optimized to avoid all the copying. 3887 Formula F = Base; 3888 F.ScaledReg = Quotient; 3889 F.deleteBaseReg(F.BaseRegs[i]); 3890 // The canonical representation of 1*reg is reg, which is already in 3891 // Base. In that case, do not try to insert the formula, it will be 3892 // rejected anyway. 3893 if (F.Scale == 1 && (F.BaseRegs.empty() || 3894 (AR->getLoop() != L && LU.AllFixupsOutsideLoop))) 3895 continue; 3896 // If AllFixupsOutsideLoop is true and F.Scale is 1, we may generate 3897 // non canonical Formula with ScaledReg's loop not being L. 3898 if (F.Scale == 1 && LU.AllFixupsOutsideLoop) 3899 F.canonicalize(*L); 3900 (void)InsertFormula(LU, LUIdx, F); 3901 } 3902 } 3903 } 3904 } 3905 } 3906 3907 /// Generate reuse formulae from different IV types. 3908 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) { 3909 // Don't bother truncating symbolic values. 3910 if (Base.BaseGV) return; 3911 3912 // Determine the integer type for the base formula. 3913 Type *DstTy = Base.getType(); 3914 if (!DstTy) return; 3915 DstTy = SE.getEffectiveSCEVType(DstTy); 3916 3917 for (Type *SrcTy : Types) { 3918 if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) { 3919 Formula F = Base; 3920 3921 if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy); 3922 for (const SCEV *&BaseReg : F.BaseRegs) 3923 BaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy); 3924 3925 // TODO: This assumes we've done basic processing on all uses and 3926 // have an idea what the register usage is. 3927 if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses)) 3928 continue; 3929 3930 F.canonicalize(*L); 3931 (void)InsertFormula(LU, LUIdx, F); 3932 } 3933 } 3934 } 3935 3936 namespace { 3937 3938 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer 3939 /// modifications so that the search phase doesn't have to worry about the data 3940 /// structures moving underneath it. 3941 struct WorkItem { 3942 size_t LUIdx; 3943 int64_t Imm; 3944 const SCEV *OrigReg; 3945 3946 WorkItem(size_t LI, int64_t I, const SCEV *R) 3947 : LUIdx(LI), Imm(I), OrigReg(R) {} 3948 3949 void print(raw_ostream &OS) const; 3950 void dump() const; 3951 }; 3952 3953 } // end anonymous namespace 3954 3955 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 3956 void WorkItem::print(raw_ostream &OS) const { 3957 OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx 3958 << " , add offset " << Imm; 3959 } 3960 3961 LLVM_DUMP_METHOD void WorkItem::dump() const { 3962 print(errs()); errs() << '\n'; 3963 } 3964 #endif 3965 3966 /// Look for registers which are a constant distance apart and try to form reuse 3967 /// opportunities between them. 3968 void LSRInstance::GenerateCrossUseConstantOffsets() { 3969 // Group the registers by their value without any added constant offset. 3970 using ImmMapTy = std::map<int64_t, const SCEV *>; 3971 3972 DenseMap<const SCEV *, ImmMapTy> Map; 3973 DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap; 3974 SmallVector<const SCEV *, 8> Sequence; 3975 for (const SCEV *Use : RegUses) { 3976 const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify. 3977 int64_t Imm = ExtractImmediate(Reg, SE); 3978 auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy())); 3979 if (Pair.second) 3980 Sequence.push_back(Reg); 3981 Pair.first->second.insert(std::make_pair(Imm, Use)); 3982 UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use); 3983 } 3984 3985 // Now examine each set of registers with the same base value. Build up 3986 // a list of work to do and do the work in a separate step so that we're 3987 // not adding formulae and register counts while we're searching. 3988 SmallVector<WorkItem, 32> WorkItems; 3989 SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems; 3990 for (const SCEV *Reg : Sequence) { 3991 const ImmMapTy &Imms = Map.find(Reg)->second; 3992 3993 // It's not worthwhile looking for reuse if there's only one offset. 3994 if (Imms.size() == 1) 3995 continue; 3996 3997 DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':'; 3998 for (const auto &Entry : Imms) 3999 dbgs() << ' ' << Entry.first; 4000 dbgs() << '\n'); 4001 4002 // Examine each offset. 4003 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); 4004 J != JE; ++J) { 4005 const SCEV *OrigReg = J->second; 4006 4007 int64_t JImm = J->first; 4008 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg); 4009 4010 if (!isa<SCEVConstant>(OrigReg) && 4011 UsedByIndicesMap[Reg].count() == 1) { 4012 DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n'); 4013 continue; 4014 } 4015 4016 // Conservatively examine offsets between this orig reg a few selected 4017 // other orig regs. 4018 ImmMapTy::const_iterator OtherImms[] = { 4019 Imms.begin(), std::prev(Imms.end()), 4020 Imms.lower_bound((Imms.begin()->first + std::prev(Imms.end())->first) / 4021 2) 4022 }; 4023 for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) { 4024 ImmMapTy::const_iterator M = OtherImms[i]; 4025 if (M == J || M == JE) continue; 4026 4027 // Compute the difference between the two. 4028 int64_t Imm = (uint64_t)JImm - M->first; 4029 for (unsigned LUIdx : UsedByIndices.set_bits()) 4030 // Make a memo of this use, offset, and register tuple. 4031 if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second) 4032 WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg)); 4033 } 4034 } 4035 } 4036 4037 Map.clear(); 4038 Sequence.clear(); 4039 UsedByIndicesMap.clear(); 4040 UniqueItems.clear(); 4041 4042 // Now iterate through the worklist and add new formulae. 4043 for (const WorkItem &WI : WorkItems) { 4044 size_t LUIdx = WI.LUIdx; 4045 LSRUse &LU = Uses[LUIdx]; 4046 int64_t Imm = WI.Imm; 4047 const SCEV *OrigReg = WI.OrigReg; 4048 4049 Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType()); 4050 const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm)); 4051 unsigned BitWidth = SE.getTypeSizeInBits(IntTy); 4052 4053 // TODO: Use a more targeted data structure. 4054 for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) { 4055 Formula F = LU.Formulae[L]; 4056 // FIXME: The code for the scaled and unscaled registers looks 4057 // very similar but slightly different. Investigate if they 4058 // could be merged. That way, we would not have to unscale the 4059 // Formula. 4060 F.unscale(); 4061 // Use the immediate in the scaled register. 4062 if (F.ScaledReg == OrigReg) { 4063 int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale; 4064 // Don't create 50 + reg(-50). 4065 if (F.referencesReg(SE.getSCEV( 4066 ConstantInt::get(IntTy, -(uint64_t)Offset)))) 4067 continue; 4068 Formula NewF = F; 4069 NewF.BaseOffset = Offset; 4070 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 4071 NewF)) 4072 continue; 4073 NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg); 4074 4075 // If the new scale is a constant in a register, and adding the constant 4076 // value to the immediate would produce a value closer to zero than the 4077 // immediate itself, then the formula isn't worthwhile. 4078 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg)) 4079 if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) && 4080 (C->getAPInt().abs() * APInt(BitWidth, F.Scale)) 4081 .ule(std::abs(NewF.BaseOffset))) 4082 continue; 4083 4084 // OK, looks good. 4085 NewF.canonicalize(*this->L); 4086 (void)InsertFormula(LU, LUIdx, NewF); 4087 } else { 4088 // Use the immediate in a base register. 4089 for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) { 4090 const SCEV *BaseReg = F.BaseRegs[N]; 4091 if (BaseReg != OrigReg) 4092 continue; 4093 Formula NewF = F; 4094 NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm; 4095 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, 4096 LU.Kind, LU.AccessTy, NewF)) { 4097 if (TTI.shouldFavorPostInc() && 4098 mayUsePostIncMode(TTI, LU, OrigReg, this->L, SE)) 4099 continue; 4100 if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm)) 4101 continue; 4102 NewF = F; 4103 NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm; 4104 } 4105 NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg); 4106 4107 // If the new formula has a constant in a register, and adding the 4108 // constant value to the immediate would produce a value closer to 4109 // zero than the immediate itself, then the formula isn't worthwhile. 4110 for (const SCEV *NewReg : NewF.BaseRegs) 4111 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg)) 4112 if ((C->getAPInt() + NewF.BaseOffset) 4113 .abs() 4114 .slt(std::abs(NewF.BaseOffset)) && 4115 (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >= 4116 countTrailingZeros<uint64_t>(NewF.BaseOffset)) 4117 goto skip_formula; 4118 4119 // Ok, looks good. 4120 NewF.canonicalize(*this->L); 4121 (void)InsertFormula(LU, LUIdx, NewF); 4122 break; 4123 skip_formula:; 4124 } 4125 } 4126 } 4127 } 4128 } 4129 4130 /// Generate formulae for each use. 4131 void 4132 LSRInstance::GenerateAllReuseFormulae() { 4133 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan 4134 // queries are more precise. 4135 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4136 LSRUse &LU = Uses[LUIdx]; 4137 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4138 GenerateReassociations(LU, LUIdx, LU.Formulae[i]); 4139 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4140 GenerateCombinations(LU, LUIdx, LU.Formulae[i]); 4141 } 4142 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4143 LSRUse &LU = Uses[LUIdx]; 4144 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4145 GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]); 4146 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4147 GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]); 4148 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4149 GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]); 4150 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4151 GenerateScales(LU, LUIdx, LU.Formulae[i]); 4152 } 4153 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4154 LSRUse &LU = Uses[LUIdx]; 4155 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4156 GenerateTruncates(LU, LUIdx, LU.Formulae[i]); 4157 } 4158 4159 GenerateCrossUseConstantOffsets(); 4160 4161 DEBUG(dbgs() << "\n" 4162 "After generating reuse formulae:\n"; 4163 print_uses(dbgs())); 4164 } 4165 4166 /// If there are multiple formulae with the same set of registers used 4167 /// by other uses, pick the best one and delete the others. 4168 void LSRInstance::FilterOutUndesirableDedicatedRegisters() { 4169 DenseSet<const SCEV *> VisitedRegs; 4170 SmallPtrSet<const SCEV *, 16> Regs; 4171 SmallPtrSet<const SCEV *, 16> LoserRegs; 4172 #ifndef NDEBUG 4173 bool ChangedFormulae = false; 4174 #endif 4175 4176 // Collect the best formula for each unique set of shared registers. This 4177 // is reset for each use. 4178 using BestFormulaeTy = 4179 DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>; 4180 4181 BestFormulaeTy BestFormulae; 4182 4183 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4184 LSRUse &LU = Uses[LUIdx]; 4185 DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n'); 4186 4187 bool Any = false; 4188 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); 4189 FIdx != NumForms; ++FIdx) { 4190 Formula &F = LU.Formulae[FIdx]; 4191 4192 // Some formulas are instant losers. For example, they may depend on 4193 // nonexistent AddRecs from other loops. These need to be filtered 4194 // immediately, otherwise heuristics could choose them over others leading 4195 // to an unsatisfactory solution. Passing LoserRegs into RateFormula here 4196 // avoids the need to recompute this information across formulae using the 4197 // same bad AddRec. Passing LoserRegs is also essential unless we remove 4198 // the corresponding bad register from the Regs set. 4199 Cost CostF; 4200 Regs.clear(); 4201 CostF.RateFormula(TTI, F, Regs, VisitedRegs, L, SE, DT, LU, &LoserRegs); 4202 if (CostF.isLoser()) { 4203 // During initial formula generation, undesirable formulae are generated 4204 // by uses within other loops that have some non-trivial address mode or 4205 // use the postinc form of the IV. LSR needs to provide these formulae 4206 // as the basis of rediscovering the desired formula that uses an AddRec 4207 // corresponding to the existing phi. Once all formulae have been 4208 // generated, these initial losers may be pruned. 4209 DEBUG(dbgs() << " Filtering loser "; F.print(dbgs()); 4210 dbgs() << "\n"); 4211 } 4212 else { 4213 SmallVector<const SCEV *, 4> Key; 4214 for (const SCEV *Reg : F.BaseRegs) { 4215 if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx)) 4216 Key.push_back(Reg); 4217 } 4218 if (F.ScaledReg && 4219 RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx)) 4220 Key.push_back(F.ScaledReg); 4221 // Unstable sort by host order ok, because this is only used for 4222 // uniquifying. 4223 llvm::sort(Key.begin(), Key.end()); 4224 4225 std::pair<BestFormulaeTy::const_iterator, bool> P = 4226 BestFormulae.insert(std::make_pair(Key, FIdx)); 4227 if (P.second) 4228 continue; 4229 4230 Formula &Best = LU.Formulae[P.first->second]; 4231 4232 Cost CostBest; 4233 Regs.clear(); 4234 CostBest.RateFormula(TTI, Best, Regs, VisitedRegs, L, SE, DT, LU); 4235 if (CostF.isLess(CostBest, TTI)) 4236 std::swap(F, Best); 4237 DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 4238 dbgs() << "\n" 4239 " in favor of formula "; Best.print(dbgs()); 4240 dbgs() << '\n'); 4241 } 4242 #ifndef NDEBUG 4243 ChangedFormulae = true; 4244 #endif 4245 LU.DeleteFormula(F); 4246 --FIdx; 4247 --NumForms; 4248 Any = true; 4249 } 4250 4251 // Now that we've filtered out some formulae, recompute the Regs set. 4252 if (Any) 4253 LU.RecomputeRegs(LUIdx, RegUses); 4254 4255 // Reset this to prepare for the next use. 4256 BestFormulae.clear(); 4257 } 4258 4259 DEBUG(if (ChangedFormulae) { 4260 dbgs() << "\n" 4261 "After filtering out undesirable candidates:\n"; 4262 print_uses(dbgs()); 4263 }); 4264 } 4265 4266 // This is a rough guess that seems to work fairly well. 4267 static const size_t ComplexityLimit = std::numeric_limits<uint16_t>::max(); 4268 4269 /// Estimate the worst-case number of solutions the solver might have to 4270 /// consider. It almost never considers this many solutions because it prune the 4271 /// search space, but the pruning isn't always sufficient. 4272 size_t LSRInstance::EstimateSearchSpaceComplexity() const { 4273 size_t Power = 1; 4274 for (const LSRUse &LU : Uses) { 4275 size_t FSize = LU.Formulae.size(); 4276 if (FSize >= ComplexityLimit) { 4277 Power = ComplexityLimit; 4278 break; 4279 } 4280 Power *= FSize; 4281 if (Power >= ComplexityLimit) 4282 break; 4283 } 4284 return Power; 4285 } 4286 4287 /// When one formula uses a superset of the registers of another formula, it 4288 /// won't help reduce register pressure (though it may not necessarily hurt 4289 /// register pressure); remove it to simplify the system. 4290 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() { 4291 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4292 DEBUG(dbgs() << "The search space is too complex.\n"); 4293 4294 DEBUG(dbgs() << "Narrowing the search space by eliminating formulae " 4295 "which use a superset of registers used by other " 4296 "formulae.\n"); 4297 4298 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4299 LSRUse &LU = Uses[LUIdx]; 4300 bool Any = false; 4301 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4302 Formula &F = LU.Formulae[i]; 4303 // Look for a formula with a constant or GV in a register. If the use 4304 // also has a formula with that same value in an immediate field, 4305 // delete the one that uses a register. 4306 for (SmallVectorImpl<const SCEV *>::const_iterator 4307 I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) { 4308 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) { 4309 Formula NewF = F; 4310 NewF.BaseOffset += C->getValue()->getSExtValue(); 4311 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4312 (I - F.BaseRegs.begin())); 4313 if (LU.HasFormulaWithSameRegs(NewF)) { 4314 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4315 LU.DeleteFormula(F); 4316 --i; 4317 --e; 4318 Any = true; 4319 break; 4320 } 4321 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) { 4322 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) 4323 if (!F.BaseGV) { 4324 Formula NewF = F; 4325 NewF.BaseGV = GV; 4326 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4327 (I - F.BaseRegs.begin())); 4328 if (LU.HasFormulaWithSameRegs(NewF)) { 4329 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4330 dbgs() << '\n'); 4331 LU.DeleteFormula(F); 4332 --i; 4333 --e; 4334 Any = true; 4335 break; 4336 } 4337 } 4338 } 4339 } 4340 } 4341 if (Any) 4342 LU.RecomputeRegs(LUIdx, RegUses); 4343 } 4344 4345 DEBUG(dbgs() << "After pre-selection:\n"; 4346 print_uses(dbgs())); 4347 } 4348 } 4349 4350 /// When there are many registers for expressions like A, A+1, A+2, etc., 4351 /// allocate a single register for them. 4352 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() { 4353 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4354 return; 4355 4356 DEBUG(dbgs() << "The search space is too complex.\n" 4357 "Narrowing the search space by assuming that uses separated " 4358 "by a constant offset will use the same registers.\n"); 4359 4360 // This is especially useful for unrolled loops. 4361 4362 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4363 LSRUse &LU = Uses[LUIdx]; 4364 for (const Formula &F : LU.Formulae) { 4365 if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1)) 4366 continue; 4367 4368 LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU); 4369 if (!LUThatHas) 4370 continue; 4371 4372 if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false, 4373 LU.Kind, LU.AccessTy)) 4374 continue; 4375 4376 DEBUG(dbgs() << " Deleting use "; LU.print(dbgs()); dbgs() << '\n'); 4377 4378 LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop; 4379 4380 // Transfer the fixups of LU to LUThatHas. 4381 for (LSRFixup &Fixup : LU.Fixups) { 4382 Fixup.Offset += F.BaseOffset; 4383 LUThatHas->pushFixup(Fixup); 4384 DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n'); 4385 } 4386 4387 // Delete formulae from the new use which are no longer legal. 4388 bool Any = false; 4389 for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) { 4390 Formula &F = LUThatHas->Formulae[i]; 4391 if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset, 4392 LUThatHas->Kind, LUThatHas->AccessTy, F)) { 4393 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4394 dbgs() << '\n'); 4395 LUThatHas->DeleteFormula(F); 4396 --i; 4397 --e; 4398 Any = true; 4399 } 4400 } 4401 4402 if (Any) 4403 LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses); 4404 4405 // Delete the old use. 4406 DeleteUse(LU, LUIdx); 4407 --LUIdx; 4408 --NumUses; 4409 break; 4410 } 4411 } 4412 4413 DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4414 } 4415 4416 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that 4417 /// we've done more filtering, as it may be able to find more formulae to 4418 /// eliminate. 4419 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){ 4420 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4421 DEBUG(dbgs() << "The search space is too complex.\n"); 4422 4423 DEBUG(dbgs() << "Narrowing the search space by re-filtering out " 4424 "undesirable dedicated registers.\n"); 4425 4426 FilterOutUndesirableDedicatedRegisters(); 4427 4428 DEBUG(dbgs() << "After pre-selection:\n"; 4429 print_uses(dbgs())); 4430 } 4431 } 4432 4433 /// If a LSRUse has multiple formulae with the same ScaledReg and Scale. 4434 /// Pick the best one and delete the others. 4435 /// This narrowing heuristic is to keep as many formulae with different 4436 /// Scale and ScaledReg pair as possible while narrowing the search space. 4437 /// The benefit is that it is more likely to find out a better solution 4438 /// from a formulae set with more Scale and ScaledReg variations than 4439 /// a formulae set with the same Scale and ScaledReg. The picking winner 4440 /// reg heurstic will often keep the formulae with the same Scale and 4441 /// ScaledReg and filter others, and we want to avoid that if possible. 4442 void LSRInstance::NarrowSearchSpaceByFilterFormulaWithSameScaledReg() { 4443 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4444 return; 4445 4446 DEBUG(dbgs() << "The search space is too complex.\n" 4447 "Narrowing the search space by choosing the best Formula " 4448 "from the Formulae with the same Scale and ScaledReg.\n"); 4449 4450 // Map the "Scale * ScaledReg" pair to the best formula of current LSRUse. 4451 using BestFormulaeTy = DenseMap<std::pair<const SCEV *, int64_t>, size_t>; 4452 4453 BestFormulaeTy BestFormulae; 4454 #ifndef NDEBUG 4455 bool ChangedFormulae = false; 4456 #endif 4457 DenseSet<const SCEV *> VisitedRegs; 4458 SmallPtrSet<const SCEV *, 16> Regs; 4459 4460 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4461 LSRUse &LU = Uses[LUIdx]; 4462 DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n'); 4463 4464 // Return true if Formula FA is better than Formula FB. 4465 auto IsBetterThan = [&](Formula &FA, Formula &FB) { 4466 // First we will try to choose the Formula with fewer new registers. 4467 // For a register used by current Formula, the more the register is 4468 // shared among LSRUses, the less we increase the register number 4469 // counter of the formula. 4470 size_t FARegNum = 0; 4471 for (const SCEV *Reg : FA.BaseRegs) { 4472 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg); 4473 FARegNum += (NumUses - UsedByIndices.count() + 1); 4474 } 4475 size_t FBRegNum = 0; 4476 for (const SCEV *Reg : FB.BaseRegs) { 4477 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg); 4478 FBRegNum += (NumUses - UsedByIndices.count() + 1); 4479 } 4480 if (FARegNum != FBRegNum) 4481 return FARegNum < FBRegNum; 4482 4483 // If the new register numbers are the same, choose the Formula with 4484 // less Cost. 4485 Cost CostFA, CostFB; 4486 Regs.clear(); 4487 CostFA.RateFormula(TTI, FA, Regs, VisitedRegs, L, SE, DT, LU); 4488 Regs.clear(); 4489 CostFB.RateFormula(TTI, FB, Regs, VisitedRegs, L, SE, DT, LU); 4490 return CostFA.isLess(CostFB, TTI); 4491 }; 4492 4493 bool Any = false; 4494 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms; 4495 ++FIdx) { 4496 Formula &F = LU.Formulae[FIdx]; 4497 if (!F.ScaledReg) 4498 continue; 4499 auto P = BestFormulae.insert({{F.ScaledReg, F.Scale}, FIdx}); 4500 if (P.second) 4501 continue; 4502 4503 Formula &Best = LU.Formulae[P.first->second]; 4504 if (IsBetterThan(F, Best)) 4505 std::swap(F, Best); 4506 DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 4507 dbgs() << "\n" 4508 " in favor of formula "; 4509 Best.print(dbgs()); dbgs() << '\n'); 4510 #ifndef NDEBUG 4511 ChangedFormulae = true; 4512 #endif 4513 LU.DeleteFormula(F); 4514 --FIdx; 4515 --NumForms; 4516 Any = true; 4517 } 4518 if (Any) 4519 LU.RecomputeRegs(LUIdx, RegUses); 4520 4521 // Reset this to prepare for the next use. 4522 BestFormulae.clear(); 4523 } 4524 4525 DEBUG(if (ChangedFormulae) { 4526 dbgs() << "\n" 4527 "After filtering out undesirable candidates:\n"; 4528 print_uses(dbgs()); 4529 }); 4530 } 4531 4532 /// The function delete formulas with high registers number expectation. 4533 /// Assuming we don't know the value of each formula (already delete 4534 /// all inefficient), generate probability of not selecting for each 4535 /// register. 4536 /// For example, 4537 /// Use1: 4538 /// reg(a) + reg({0,+,1}) 4539 /// reg(a) + reg({-1,+,1}) + 1 4540 /// reg({a,+,1}) 4541 /// Use2: 4542 /// reg(b) + reg({0,+,1}) 4543 /// reg(b) + reg({-1,+,1}) + 1 4544 /// reg({b,+,1}) 4545 /// Use3: 4546 /// reg(c) + reg(b) + reg({0,+,1}) 4547 /// reg(c) + reg({b,+,1}) 4548 /// 4549 /// Probability of not selecting 4550 /// Use1 Use2 Use3 4551 /// reg(a) (1/3) * 1 * 1 4552 /// reg(b) 1 * (1/3) * (1/2) 4553 /// reg({0,+,1}) (2/3) * (2/3) * (1/2) 4554 /// reg({-1,+,1}) (2/3) * (2/3) * 1 4555 /// reg({a,+,1}) (2/3) * 1 * 1 4556 /// reg({b,+,1}) 1 * (2/3) * (2/3) 4557 /// reg(c) 1 * 1 * 0 4558 /// 4559 /// Now count registers number mathematical expectation for each formula: 4560 /// Note that for each use we exclude probability if not selecting for the use. 4561 /// For example for Use1 probability for reg(a) would be just 1 * 1 (excluding 4562 /// probabilty 1/3 of not selecting for Use1). 4563 /// Use1: 4564 /// reg(a) + reg({0,+,1}) 1 + 1/3 -- to be deleted 4565 /// reg(a) + reg({-1,+,1}) + 1 1 + 4/9 -- to be deleted 4566 /// reg({a,+,1}) 1 4567 /// Use2: 4568 /// reg(b) + reg({0,+,1}) 1/2 + 1/3 -- to be deleted 4569 /// reg(b) + reg({-1,+,1}) + 1 1/2 + 2/3 -- to be deleted 4570 /// reg({b,+,1}) 2/3 4571 /// Use3: 4572 /// reg(c) + reg(b) + reg({0,+,1}) 1 + 1/3 + 4/9 -- to be deleted 4573 /// reg(c) + reg({b,+,1}) 1 + 2/3 4574 void LSRInstance::NarrowSearchSpaceByDeletingCostlyFormulas() { 4575 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4576 return; 4577 // Ok, we have too many of formulae on our hands to conveniently handle. 4578 // Use a rough heuristic to thin out the list. 4579 4580 // Set of Regs wich will be 100% used in final solution. 4581 // Used in each formula of a solution (in example above this is reg(c)). 4582 // We can skip them in calculations. 4583 SmallPtrSet<const SCEV *, 4> UniqRegs; 4584 DEBUG(dbgs() << "The search space is too complex.\n"); 4585 4586 // Map each register to probability of not selecting 4587 DenseMap <const SCEV *, float> RegNumMap; 4588 for (const SCEV *Reg : RegUses) { 4589 if (UniqRegs.count(Reg)) 4590 continue; 4591 float PNotSel = 1; 4592 for (const LSRUse &LU : Uses) { 4593 if (!LU.Regs.count(Reg)) 4594 continue; 4595 float P = LU.getNotSelectedProbability(Reg); 4596 if (P != 0.0) 4597 PNotSel *= P; 4598 else 4599 UniqRegs.insert(Reg); 4600 } 4601 RegNumMap.insert(std::make_pair(Reg, PNotSel)); 4602 } 4603 4604 DEBUG(dbgs() << "Narrowing the search space by deleting costly formulas\n"); 4605 4606 // Delete formulas where registers number expectation is high. 4607 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4608 LSRUse &LU = Uses[LUIdx]; 4609 // If nothing to delete - continue. 4610 if (LU.Formulae.size() < 2) 4611 continue; 4612 // This is temporary solution to test performance. Float should be 4613 // replaced with round independent type (based on integers) to avoid 4614 // different results for different target builds. 4615 float FMinRegNum = LU.Formulae[0].getNumRegs(); 4616 float FMinARegNum = LU.Formulae[0].getNumRegs(); 4617 size_t MinIdx = 0; 4618 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4619 Formula &F = LU.Formulae[i]; 4620 float FRegNum = 0; 4621 float FARegNum = 0; 4622 for (const SCEV *BaseReg : F.BaseRegs) { 4623 if (UniqRegs.count(BaseReg)) 4624 continue; 4625 FRegNum += RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg); 4626 if (isa<SCEVAddRecExpr>(BaseReg)) 4627 FARegNum += 4628 RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg); 4629 } 4630 if (const SCEV *ScaledReg = F.ScaledReg) { 4631 if (!UniqRegs.count(ScaledReg)) { 4632 FRegNum += 4633 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg); 4634 if (isa<SCEVAddRecExpr>(ScaledReg)) 4635 FARegNum += 4636 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg); 4637 } 4638 } 4639 if (FMinRegNum > FRegNum || 4640 (FMinRegNum == FRegNum && FMinARegNum > FARegNum)) { 4641 FMinRegNum = FRegNum; 4642 FMinARegNum = FARegNum; 4643 MinIdx = i; 4644 } 4645 } 4646 DEBUG(dbgs() << " The formula "; LU.Formulae[MinIdx].print(dbgs()); 4647 dbgs() << " with min reg num " << FMinRegNum << '\n'); 4648 if (MinIdx != 0) 4649 std::swap(LU.Formulae[MinIdx], LU.Formulae[0]); 4650 while (LU.Formulae.size() != 1) { 4651 DEBUG(dbgs() << " Deleting "; LU.Formulae.back().print(dbgs()); 4652 dbgs() << '\n'); 4653 LU.Formulae.pop_back(); 4654 } 4655 LU.RecomputeRegs(LUIdx, RegUses); 4656 assert(LU.Formulae.size() == 1 && "Should be exactly 1 min regs formula"); 4657 Formula &F = LU.Formulae[0]; 4658 DEBUG(dbgs() << " Leaving only "; F.print(dbgs()); dbgs() << '\n'); 4659 // When we choose the formula, the regs become unique. 4660 UniqRegs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 4661 if (F.ScaledReg) 4662 UniqRegs.insert(F.ScaledReg); 4663 } 4664 DEBUG(dbgs() << "After pre-selection:\n"; 4665 print_uses(dbgs())); 4666 } 4667 4668 /// Pick a register which seems likely to be profitable, and then in any use 4669 /// which has any reference to that register, delete all formulae which do not 4670 /// reference that register. 4671 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() { 4672 // With all other options exhausted, loop until the system is simple 4673 // enough to handle. 4674 SmallPtrSet<const SCEV *, 4> Taken; 4675 while (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4676 // Ok, we have too many of formulae on our hands to conveniently handle. 4677 // Use a rough heuristic to thin out the list. 4678 DEBUG(dbgs() << "The search space is too complex.\n"); 4679 4680 // Pick the register which is used by the most LSRUses, which is likely 4681 // to be a good reuse register candidate. 4682 const SCEV *Best = nullptr; 4683 unsigned BestNum = 0; 4684 for (const SCEV *Reg : RegUses) { 4685 if (Taken.count(Reg)) 4686 continue; 4687 if (!Best) { 4688 Best = Reg; 4689 BestNum = RegUses.getUsedByIndices(Reg).count(); 4690 } else { 4691 unsigned Count = RegUses.getUsedByIndices(Reg).count(); 4692 if (Count > BestNum) { 4693 Best = Reg; 4694 BestNum = Count; 4695 } 4696 } 4697 } 4698 4699 DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best 4700 << " will yield profitable reuse.\n"); 4701 Taken.insert(Best); 4702 4703 // In any use with formulae which references this register, delete formulae 4704 // which don't reference it. 4705 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4706 LSRUse &LU = Uses[LUIdx]; 4707 if (!LU.Regs.count(Best)) continue; 4708 4709 bool Any = false; 4710 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4711 Formula &F = LU.Formulae[i]; 4712 if (!F.referencesReg(Best)) { 4713 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4714 LU.DeleteFormula(F); 4715 --e; 4716 --i; 4717 Any = true; 4718 assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?"); 4719 continue; 4720 } 4721 } 4722 4723 if (Any) 4724 LU.RecomputeRegs(LUIdx, RegUses); 4725 } 4726 4727 DEBUG(dbgs() << "After pre-selection:\n"; 4728 print_uses(dbgs())); 4729 } 4730 } 4731 4732 /// If there are an extraordinary number of formulae to choose from, use some 4733 /// rough heuristics to prune down the number of formulae. This keeps the main 4734 /// solver from taking an extraordinary amount of time in some worst-case 4735 /// scenarios. 4736 void LSRInstance::NarrowSearchSpaceUsingHeuristics() { 4737 NarrowSearchSpaceByDetectingSupersets(); 4738 NarrowSearchSpaceByCollapsingUnrolledCode(); 4739 NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 4740 if (FilterSameScaledReg) 4741 NarrowSearchSpaceByFilterFormulaWithSameScaledReg(); 4742 if (LSRExpNarrow) 4743 NarrowSearchSpaceByDeletingCostlyFormulas(); 4744 else 4745 NarrowSearchSpaceByPickingWinnerRegs(); 4746 } 4747 4748 /// This is the recursive solver. 4749 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 4750 Cost &SolutionCost, 4751 SmallVectorImpl<const Formula *> &Workspace, 4752 const Cost &CurCost, 4753 const SmallPtrSet<const SCEV *, 16> &CurRegs, 4754 DenseSet<const SCEV *> &VisitedRegs) const { 4755 // Some ideas: 4756 // - prune more: 4757 // - use more aggressive filtering 4758 // - sort the formula so that the most profitable solutions are found first 4759 // - sort the uses too 4760 // - search faster: 4761 // - don't compute a cost, and then compare. compare while computing a cost 4762 // and bail early. 4763 // - track register sets with SmallBitVector 4764 4765 const LSRUse &LU = Uses[Workspace.size()]; 4766 4767 // If this use references any register that's already a part of the 4768 // in-progress solution, consider it a requirement that a formula must 4769 // reference that register in order to be considered. This prunes out 4770 // unprofitable searching. 4771 SmallSetVector<const SCEV *, 4> ReqRegs; 4772 for (const SCEV *S : CurRegs) 4773 if (LU.Regs.count(S)) 4774 ReqRegs.insert(S); 4775 4776 SmallPtrSet<const SCEV *, 16> NewRegs; 4777 Cost NewCost; 4778 for (const Formula &F : LU.Formulae) { 4779 // Ignore formulae which may not be ideal in terms of register reuse of 4780 // ReqRegs. The formula should use all required registers before 4781 // introducing new ones. 4782 int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size()); 4783 for (const SCEV *Reg : ReqRegs) { 4784 if ((F.ScaledReg && F.ScaledReg == Reg) || 4785 is_contained(F.BaseRegs, Reg)) { 4786 --NumReqRegsToFind; 4787 if (NumReqRegsToFind == 0) 4788 break; 4789 } 4790 } 4791 if (NumReqRegsToFind != 0) { 4792 // If none of the formulae satisfied the required registers, then we could 4793 // clear ReqRegs and try again. Currently, we simply give up in this case. 4794 continue; 4795 } 4796 4797 // Evaluate the cost of the current formula. If it's already worse than 4798 // the current best, prune the search at that point. 4799 NewCost = CurCost; 4800 NewRegs = CurRegs; 4801 NewCost.RateFormula(TTI, F, NewRegs, VisitedRegs, L, SE, DT, LU); 4802 if (NewCost.isLess(SolutionCost, TTI)) { 4803 Workspace.push_back(&F); 4804 if (Workspace.size() != Uses.size()) { 4805 SolveRecurse(Solution, SolutionCost, Workspace, NewCost, 4806 NewRegs, VisitedRegs); 4807 if (F.getNumRegs() == 1 && Workspace.size() == 1) 4808 VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]); 4809 } else { 4810 DEBUG(dbgs() << "New best at "; NewCost.print(dbgs()); 4811 dbgs() << ".\n Regs:"; 4812 for (const SCEV *S : NewRegs) 4813 dbgs() << ' ' << *S; 4814 dbgs() << '\n'); 4815 4816 SolutionCost = NewCost; 4817 Solution = Workspace; 4818 } 4819 Workspace.pop_back(); 4820 } 4821 } 4822 } 4823 4824 /// Choose one formula from each use. Return the results in the given Solution 4825 /// vector. 4826 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const { 4827 SmallVector<const Formula *, 8> Workspace; 4828 Cost SolutionCost; 4829 SolutionCost.Lose(); 4830 Cost CurCost; 4831 SmallPtrSet<const SCEV *, 16> CurRegs; 4832 DenseSet<const SCEV *> VisitedRegs; 4833 Workspace.reserve(Uses.size()); 4834 4835 // SolveRecurse does all the work. 4836 SolveRecurse(Solution, SolutionCost, Workspace, CurCost, 4837 CurRegs, VisitedRegs); 4838 if (Solution.empty()) { 4839 DEBUG(dbgs() << "\nNo Satisfactory Solution\n"); 4840 return; 4841 } 4842 4843 // Ok, we've now made all our decisions. 4844 DEBUG(dbgs() << "\n" 4845 "The chosen solution requires "; SolutionCost.print(dbgs()); 4846 dbgs() << ":\n"; 4847 for (size_t i = 0, e = Uses.size(); i != e; ++i) { 4848 dbgs() << " "; 4849 Uses[i].print(dbgs()); 4850 dbgs() << "\n" 4851 " "; 4852 Solution[i]->print(dbgs()); 4853 dbgs() << '\n'; 4854 }); 4855 4856 assert(Solution.size() == Uses.size() && "Malformed solution!"); 4857 } 4858 4859 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as 4860 /// we can go while still being dominated by the input positions. This helps 4861 /// canonicalize the insert position, which encourages sharing. 4862 BasicBlock::iterator 4863 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP, 4864 const SmallVectorImpl<Instruction *> &Inputs) 4865 const { 4866 Instruction *Tentative = &*IP; 4867 while (true) { 4868 bool AllDominate = true; 4869 Instruction *BetterPos = nullptr; 4870 // Don't bother attempting to insert before a catchswitch, their basic block 4871 // cannot have other non-PHI instructions. 4872 if (isa<CatchSwitchInst>(Tentative)) 4873 return IP; 4874 4875 for (Instruction *Inst : Inputs) { 4876 if (Inst == Tentative || !DT.dominates(Inst, Tentative)) { 4877 AllDominate = false; 4878 break; 4879 } 4880 // Attempt to find an insert position in the middle of the block, 4881 // instead of at the end, so that it can be used for other expansions. 4882 if (Tentative->getParent() == Inst->getParent() && 4883 (!BetterPos || !DT.dominates(Inst, BetterPos))) 4884 BetterPos = &*std::next(BasicBlock::iterator(Inst)); 4885 } 4886 if (!AllDominate) 4887 break; 4888 if (BetterPos) 4889 IP = BetterPos->getIterator(); 4890 else 4891 IP = Tentative->getIterator(); 4892 4893 const Loop *IPLoop = LI.getLoopFor(IP->getParent()); 4894 unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0; 4895 4896 BasicBlock *IDom; 4897 for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) { 4898 if (!Rung) return IP; 4899 Rung = Rung->getIDom(); 4900 if (!Rung) return IP; 4901 IDom = Rung->getBlock(); 4902 4903 // Don't climb into a loop though. 4904 const Loop *IDomLoop = LI.getLoopFor(IDom); 4905 unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0; 4906 if (IDomDepth <= IPLoopDepth && 4907 (IDomDepth != IPLoopDepth || IDomLoop == IPLoop)) 4908 break; 4909 } 4910 4911 Tentative = IDom->getTerminator(); 4912 } 4913 4914 return IP; 4915 } 4916 4917 /// Determine an input position which will be dominated by the operands and 4918 /// which will dominate the result. 4919 BasicBlock::iterator 4920 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP, 4921 const LSRFixup &LF, 4922 const LSRUse &LU, 4923 SCEVExpander &Rewriter) const { 4924 // Collect some instructions which must be dominated by the 4925 // expanding replacement. These must be dominated by any operands that 4926 // will be required in the expansion. 4927 SmallVector<Instruction *, 4> Inputs; 4928 if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace)) 4929 Inputs.push_back(I); 4930 if (LU.Kind == LSRUse::ICmpZero) 4931 if (Instruction *I = 4932 dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1))) 4933 Inputs.push_back(I); 4934 if (LF.PostIncLoops.count(L)) { 4935 if (LF.isUseFullyOutsideLoop(L)) 4936 Inputs.push_back(L->getLoopLatch()->getTerminator()); 4937 else 4938 Inputs.push_back(IVIncInsertPos); 4939 } 4940 // The expansion must also be dominated by the increment positions of any 4941 // loops it for which it is using post-inc mode. 4942 for (const Loop *PIL : LF.PostIncLoops) { 4943 if (PIL == L) continue; 4944 4945 // Be dominated by the loop exit. 4946 SmallVector<BasicBlock *, 4> ExitingBlocks; 4947 PIL->getExitingBlocks(ExitingBlocks); 4948 if (!ExitingBlocks.empty()) { 4949 BasicBlock *BB = ExitingBlocks[0]; 4950 for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i) 4951 BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]); 4952 Inputs.push_back(BB->getTerminator()); 4953 } 4954 } 4955 4956 assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad() 4957 && !isa<DbgInfoIntrinsic>(LowestIP) && 4958 "Insertion point must be a normal instruction"); 4959 4960 // Then, climb up the immediate dominator tree as far as we can go while 4961 // still being dominated by the input positions. 4962 BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs); 4963 4964 // Don't insert instructions before PHI nodes. 4965 while (isa<PHINode>(IP)) ++IP; 4966 4967 // Ignore landingpad instructions. 4968 while (IP->isEHPad()) ++IP; 4969 4970 // Ignore debug intrinsics. 4971 while (isa<DbgInfoIntrinsic>(IP)) ++IP; 4972 4973 // Set IP below instructions recently inserted by SCEVExpander. This keeps the 4974 // IP consistent across expansions and allows the previously inserted 4975 // instructions to be reused by subsequent expansion. 4976 while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP) 4977 ++IP; 4978 4979 return IP; 4980 } 4981 4982 /// Emit instructions for the leading candidate expression for this LSRUse (this 4983 /// is called "expanding"). 4984 Value *LSRInstance::Expand(const LSRUse &LU, const LSRFixup &LF, 4985 const Formula &F, BasicBlock::iterator IP, 4986 SCEVExpander &Rewriter, 4987 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 4988 if (LU.RigidFormula) 4989 return LF.OperandValToReplace; 4990 4991 // Determine an input position which will be dominated by the operands and 4992 // which will dominate the result. 4993 IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter); 4994 Rewriter.setInsertPoint(&*IP); 4995 4996 // Inform the Rewriter if we have a post-increment use, so that it can 4997 // perform an advantageous expansion. 4998 Rewriter.setPostInc(LF.PostIncLoops); 4999 5000 // This is the type that the user actually needs. 5001 Type *OpTy = LF.OperandValToReplace->getType(); 5002 // This will be the type that we'll initially expand to. 5003 Type *Ty = F.getType(); 5004 if (!Ty) 5005 // No type known; just expand directly to the ultimate type. 5006 Ty = OpTy; 5007 else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy)) 5008 // Expand directly to the ultimate type if it's the right size. 5009 Ty = OpTy; 5010 // This is the type to do integer arithmetic in. 5011 Type *IntTy = SE.getEffectiveSCEVType(Ty); 5012 5013 // Build up a list of operands to add together to form the full base. 5014 SmallVector<const SCEV *, 8> Ops; 5015 5016 // Expand the BaseRegs portion. 5017 for (const SCEV *Reg : F.BaseRegs) { 5018 assert(!Reg->isZero() && "Zero allocated in a base register!"); 5019 5020 // If we're expanding for a post-inc user, make the post-inc adjustment. 5021 Reg = denormalizeForPostIncUse(Reg, LF.PostIncLoops, SE); 5022 Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr))); 5023 } 5024 5025 // Expand the ScaledReg portion. 5026 Value *ICmpScaledV = nullptr; 5027 if (F.Scale != 0) { 5028 const SCEV *ScaledS = F.ScaledReg; 5029 5030 // If we're expanding for a post-inc user, make the post-inc adjustment. 5031 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 5032 ScaledS = denormalizeForPostIncUse(ScaledS, Loops, SE); 5033 5034 if (LU.Kind == LSRUse::ICmpZero) { 5035 // Expand ScaleReg as if it was part of the base regs. 5036 if (F.Scale == 1) 5037 Ops.push_back( 5038 SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr))); 5039 else { 5040 // An interesting way of "folding" with an icmp is to use a negated 5041 // scale, which we'll implement by inserting it into the other operand 5042 // of the icmp. 5043 assert(F.Scale == -1 && 5044 "The only scale supported by ICmpZero uses is -1!"); 5045 ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr); 5046 } 5047 } else { 5048 // Otherwise just expand the scaled register and an explicit scale, 5049 // which is expected to be matched as part of the address. 5050 5051 // Flush the operand list to suppress SCEVExpander hoisting address modes. 5052 // Unless the addressing mode will not be folded. 5053 if (!Ops.empty() && LU.Kind == LSRUse::Address && 5054 isAMCompletelyFolded(TTI, LU, F)) { 5055 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), nullptr); 5056 Ops.clear(); 5057 Ops.push_back(SE.getUnknown(FullV)); 5058 } 5059 ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)); 5060 if (F.Scale != 1) 5061 ScaledS = 5062 SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale)); 5063 Ops.push_back(ScaledS); 5064 } 5065 } 5066 5067 // Expand the GV portion. 5068 if (F.BaseGV) { 5069 // Flush the operand list to suppress SCEVExpander hoisting. 5070 if (!Ops.empty()) { 5071 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 5072 Ops.clear(); 5073 Ops.push_back(SE.getUnknown(FullV)); 5074 } 5075 Ops.push_back(SE.getUnknown(F.BaseGV)); 5076 } 5077 5078 // Flush the operand list to suppress SCEVExpander hoisting of both folded and 5079 // unfolded offsets. LSR assumes they both live next to their uses. 5080 if (!Ops.empty()) { 5081 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 5082 Ops.clear(); 5083 Ops.push_back(SE.getUnknown(FullV)); 5084 } 5085 5086 // Expand the immediate portion. 5087 int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset; 5088 if (Offset != 0) { 5089 if (LU.Kind == LSRUse::ICmpZero) { 5090 // The other interesting way of "folding" with an ICmpZero is to use a 5091 // negated immediate. 5092 if (!ICmpScaledV) 5093 ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset); 5094 else { 5095 Ops.push_back(SE.getUnknown(ICmpScaledV)); 5096 ICmpScaledV = ConstantInt::get(IntTy, Offset); 5097 } 5098 } else { 5099 // Just add the immediate values. These again are expected to be matched 5100 // as part of the address. 5101 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset))); 5102 } 5103 } 5104 5105 // Expand the unfolded offset portion. 5106 int64_t UnfoldedOffset = F.UnfoldedOffset; 5107 if (UnfoldedOffset != 0) { 5108 // Just add the immediate values. 5109 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, 5110 UnfoldedOffset))); 5111 } 5112 5113 // Emit instructions summing all the operands. 5114 const SCEV *FullS = Ops.empty() ? 5115 SE.getConstant(IntTy, 0) : 5116 SE.getAddExpr(Ops); 5117 Value *FullV = Rewriter.expandCodeFor(FullS, Ty); 5118 5119 // We're done expanding now, so reset the rewriter. 5120 Rewriter.clearPostInc(); 5121 5122 // An ICmpZero Formula represents an ICmp which we're handling as a 5123 // comparison against zero. Now that we've expanded an expression for that 5124 // form, update the ICmp's other operand. 5125 if (LU.Kind == LSRUse::ICmpZero) { 5126 ICmpInst *CI = cast<ICmpInst>(LF.UserInst); 5127 DeadInsts.emplace_back(CI->getOperand(1)); 5128 assert(!F.BaseGV && "ICmp does not support folding a global value and " 5129 "a scale at the same time!"); 5130 if (F.Scale == -1) { 5131 if (ICmpScaledV->getType() != OpTy) { 5132 Instruction *Cast = 5133 CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false, 5134 OpTy, false), 5135 ICmpScaledV, OpTy, "tmp", CI); 5136 ICmpScaledV = Cast; 5137 } 5138 CI->setOperand(1, ICmpScaledV); 5139 } else { 5140 // A scale of 1 means that the scale has been expanded as part of the 5141 // base regs. 5142 assert((F.Scale == 0 || F.Scale == 1) && 5143 "ICmp does not support folding a global value and " 5144 "a scale at the same time!"); 5145 Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy), 5146 -(uint64_t)Offset); 5147 if (C->getType() != OpTy) 5148 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 5149 OpTy, false), 5150 C, OpTy); 5151 5152 CI->setOperand(1, C); 5153 } 5154 } 5155 5156 return FullV; 5157 } 5158 5159 /// Helper for Rewrite. PHI nodes are special because the use of their operands 5160 /// effectively happens in their predecessor blocks, so the expression may need 5161 /// to be expanded in multiple places. 5162 void LSRInstance::RewriteForPHI( 5163 PHINode *PN, const LSRUse &LU, const LSRFixup &LF, const Formula &F, 5164 SCEVExpander &Rewriter, SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5165 DenseMap<BasicBlock *, Value *> Inserted; 5166 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 5167 if (PN->getIncomingValue(i) == LF.OperandValToReplace) { 5168 BasicBlock *BB = PN->getIncomingBlock(i); 5169 5170 // If this is a critical edge, split the edge so that we do not insert 5171 // the code on all predecessor/successor paths. We do this unless this 5172 // is the canonical backedge for this loop, which complicates post-inc 5173 // users. 5174 if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 && 5175 !isa<IndirectBrInst>(BB->getTerminator()) && 5176 !isa<CatchSwitchInst>(BB->getTerminator())) { 5177 BasicBlock *Parent = PN->getParent(); 5178 Loop *PNLoop = LI.getLoopFor(Parent); 5179 if (!PNLoop || Parent != PNLoop->getHeader()) { 5180 // Split the critical edge. 5181 BasicBlock *NewBB = nullptr; 5182 if (!Parent->isLandingPad()) { 5183 NewBB = SplitCriticalEdge(BB, Parent, 5184 CriticalEdgeSplittingOptions(&DT, &LI) 5185 .setMergeIdenticalEdges() 5186 .setDontDeleteUselessPHIs()); 5187 } else { 5188 SmallVector<BasicBlock*, 2> NewBBs; 5189 SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI); 5190 NewBB = NewBBs[0]; 5191 } 5192 // If NewBB==NULL, then SplitCriticalEdge refused to split because all 5193 // phi predecessors are identical. The simple thing to do is skip 5194 // splitting in this case rather than complicate the API. 5195 if (NewBB) { 5196 // If PN is outside of the loop and BB is in the loop, we want to 5197 // move the block to be immediately before the PHI block, not 5198 // immediately after BB. 5199 if (L->contains(BB) && !L->contains(PN)) 5200 NewBB->moveBefore(PN->getParent()); 5201 5202 // Splitting the edge can reduce the number of PHI entries we have. 5203 e = PN->getNumIncomingValues(); 5204 BB = NewBB; 5205 i = PN->getBasicBlockIndex(BB); 5206 } 5207 } 5208 } 5209 5210 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair = 5211 Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr))); 5212 if (!Pair.second) 5213 PN->setIncomingValue(i, Pair.first->second); 5214 else { 5215 Value *FullV = Expand(LU, LF, F, BB->getTerminator()->getIterator(), 5216 Rewriter, DeadInsts); 5217 5218 // If this is reuse-by-noop-cast, insert the noop cast. 5219 Type *OpTy = LF.OperandValToReplace->getType(); 5220 if (FullV->getType() != OpTy) 5221 FullV = 5222 CastInst::Create(CastInst::getCastOpcode(FullV, false, 5223 OpTy, false), 5224 FullV, LF.OperandValToReplace->getType(), 5225 "tmp", BB->getTerminator()); 5226 5227 PN->setIncomingValue(i, FullV); 5228 Pair.first->second = FullV; 5229 } 5230 } 5231 } 5232 5233 /// Emit instructions for the leading candidate expression for this LSRUse (this 5234 /// is called "expanding"), and update the UserInst to reference the newly 5235 /// expanded value. 5236 void LSRInstance::Rewrite(const LSRUse &LU, const LSRFixup &LF, 5237 const Formula &F, SCEVExpander &Rewriter, 5238 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5239 // First, find an insertion point that dominates UserInst. For PHI nodes, 5240 // find the nearest block which dominates all the relevant uses. 5241 if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) { 5242 RewriteForPHI(PN, LU, LF, F, Rewriter, DeadInsts); 5243 } else { 5244 Value *FullV = 5245 Expand(LU, LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts); 5246 5247 // If this is reuse-by-noop-cast, insert the noop cast. 5248 Type *OpTy = LF.OperandValToReplace->getType(); 5249 if (FullV->getType() != OpTy) { 5250 Instruction *Cast = 5251 CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false), 5252 FullV, OpTy, "tmp", LF.UserInst); 5253 FullV = Cast; 5254 } 5255 5256 // Update the user. ICmpZero is handled specially here (for now) because 5257 // Expand may have updated one of the operands of the icmp already, and 5258 // its new value may happen to be equal to LF.OperandValToReplace, in 5259 // which case doing replaceUsesOfWith leads to replacing both operands 5260 // with the same value. TODO: Reorganize this. 5261 if (LU.Kind == LSRUse::ICmpZero) 5262 LF.UserInst->setOperand(0, FullV); 5263 else 5264 LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV); 5265 } 5266 5267 DeadInsts.emplace_back(LF.OperandValToReplace); 5268 } 5269 5270 /// Rewrite all the fixup locations with new values, following the chosen 5271 /// solution. 5272 void LSRInstance::ImplementSolution( 5273 const SmallVectorImpl<const Formula *> &Solution) { 5274 // Keep track of instructions we may have made dead, so that 5275 // we can remove them after we are done working. 5276 SmallVector<WeakTrackingVH, 16> DeadInsts; 5277 5278 SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(), 5279 "lsr"); 5280 #ifndef NDEBUG 5281 Rewriter.setDebugType(DEBUG_TYPE); 5282 #endif 5283 Rewriter.disableCanonicalMode(); 5284 Rewriter.enableLSRMode(); 5285 Rewriter.setIVIncInsertPos(L, IVIncInsertPos); 5286 5287 // Mark phi nodes that terminate chains so the expander tries to reuse them. 5288 for (const IVChain &Chain : IVChainVec) { 5289 if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst())) 5290 Rewriter.setChainedPhi(PN); 5291 } 5292 5293 // Expand the new value definitions and update the users. 5294 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) 5295 for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) { 5296 Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], Rewriter, DeadInsts); 5297 Changed = true; 5298 } 5299 5300 for (const IVChain &Chain : IVChainVec) { 5301 GenerateIVChain(Chain, Rewriter, DeadInsts); 5302 Changed = true; 5303 } 5304 // Clean up after ourselves. This must be done before deleting any 5305 // instructions. 5306 Rewriter.clear(); 5307 5308 Changed |= DeleteTriviallyDeadInstructions(DeadInsts); 5309 } 5310 5311 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, 5312 DominatorTree &DT, LoopInfo &LI, 5313 const TargetTransformInfo &TTI) 5314 : IU(IU), SE(SE), DT(DT), LI(LI), TTI(TTI), L(L) { 5315 // If LoopSimplify form is not available, stay out of trouble. 5316 if (!L->isLoopSimplifyForm()) 5317 return; 5318 5319 // If there's no interesting work to be done, bail early. 5320 if (IU.empty()) return; 5321 5322 // If there's too much analysis to be done, bail early. We won't be able to 5323 // model the problem anyway. 5324 unsigned NumUsers = 0; 5325 for (const IVStrideUse &U : IU) { 5326 if (++NumUsers > MaxIVUsers) { 5327 (void)U; 5328 DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U << "\n"); 5329 return; 5330 } 5331 // Bail out if we have a PHI on an EHPad that gets a value from a 5332 // CatchSwitchInst. Because the CatchSwitchInst cannot be split, there is 5333 // no good place to stick any instructions. 5334 if (auto *PN = dyn_cast<PHINode>(U.getUser())) { 5335 auto *FirstNonPHI = PN->getParent()->getFirstNonPHI(); 5336 if (isa<FuncletPadInst>(FirstNonPHI) || 5337 isa<CatchSwitchInst>(FirstNonPHI)) 5338 for (BasicBlock *PredBB : PN->blocks()) 5339 if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI())) 5340 return; 5341 } 5342 } 5343 5344 #ifndef NDEBUG 5345 // All dominating loops must have preheaders, or SCEVExpander may not be able 5346 // to materialize an AddRecExpr whose Start is an outer AddRecExpr. 5347 // 5348 // IVUsers analysis should only create users that are dominated by simple loop 5349 // headers. Since this loop should dominate all of its users, its user list 5350 // should be empty if this loop itself is not within a simple loop nest. 5351 for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader()); 5352 Rung; Rung = Rung->getIDom()) { 5353 BasicBlock *BB = Rung->getBlock(); 5354 const Loop *DomLoop = LI.getLoopFor(BB); 5355 if (DomLoop && DomLoop->getHeader() == BB) { 5356 assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest"); 5357 } 5358 } 5359 #endif // DEBUG 5360 5361 DEBUG(dbgs() << "\nLSR on loop "; 5362 L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false); 5363 dbgs() << ":\n"); 5364 5365 // First, perform some low-level loop optimizations. 5366 OptimizeShadowIV(); 5367 OptimizeLoopTermCond(); 5368 5369 // If loop preparation eliminates all interesting IV users, bail. 5370 if (IU.empty()) return; 5371 5372 // Skip nested loops until we can model them better with formulae. 5373 if (!L->empty()) { 5374 DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n"); 5375 return; 5376 } 5377 5378 // Start collecting data and preparing for the solver. 5379 CollectChains(); 5380 CollectInterestingTypesAndFactors(); 5381 CollectFixupsAndInitialFormulae(); 5382 CollectLoopInvariantFixupsAndFormulae(); 5383 5384 assert(!Uses.empty() && "IVUsers reported at least one use"); 5385 DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n"; 5386 print_uses(dbgs())); 5387 5388 // Now use the reuse data to generate a bunch of interesting ways 5389 // to formulate the values needed for the uses. 5390 GenerateAllReuseFormulae(); 5391 5392 FilterOutUndesirableDedicatedRegisters(); 5393 NarrowSearchSpaceUsingHeuristics(); 5394 5395 SmallVector<const Formula *, 8> Solution; 5396 Solve(Solution); 5397 5398 // Release memory that is no longer needed. 5399 Factors.clear(); 5400 Types.clear(); 5401 RegUses.clear(); 5402 5403 if (Solution.empty()) 5404 return; 5405 5406 #ifndef NDEBUG 5407 // Formulae should be legal. 5408 for (const LSRUse &LU : Uses) { 5409 for (const Formula &F : LU.Formulae) 5410 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 5411 F) && "Illegal formula generated!"); 5412 }; 5413 #endif 5414 5415 // Now that we've decided what we want, make it so. 5416 ImplementSolution(Solution); 5417 } 5418 5419 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 5420 void LSRInstance::print_factors_and_types(raw_ostream &OS) const { 5421 if (Factors.empty() && Types.empty()) return; 5422 5423 OS << "LSR has identified the following interesting factors and types: "; 5424 bool First = true; 5425 5426 for (int64_t Factor : Factors) { 5427 if (!First) OS << ", "; 5428 First = false; 5429 OS << '*' << Factor; 5430 } 5431 5432 for (Type *Ty : Types) { 5433 if (!First) OS << ", "; 5434 First = false; 5435 OS << '(' << *Ty << ')'; 5436 } 5437 OS << '\n'; 5438 } 5439 5440 void LSRInstance::print_fixups(raw_ostream &OS) const { 5441 OS << "LSR is examining the following fixup sites:\n"; 5442 for (const LSRUse &LU : Uses) 5443 for (const LSRFixup &LF : LU.Fixups) { 5444 dbgs() << " "; 5445 LF.print(OS); 5446 OS << '\n'; 5447 } 5448 } 5449 5450 void LSRInstance::print_uses(raw_ostream &OS) const { 5451 OS << "LSR is examining the following uses:\n"; 5452 for (const LSRUse &LU : Uses) { 5453 dbgs() << " "; 5454 LU.print(OS); 5455 OS << '\n'; 5456 for (const Formula &F : LU.Formulae) { 5457 OS << " "; 5458 F.print(OS); 5459 OS << '\n'; 5460 } 5461 } 5462 } 5463 5464 void LSRInstance::print(raw_ostream &OS) const { 5465 print_factors_and_types(OS); 5466 print_fixups(OS); 5467 print_uses(OS); 5468 } 5469 5470 LLVM_DUMP_METHOD void LSRInstance::dump() const { 5471 print(errs()); errs() << '\n'; 5472 } 5473 #endif 5474 5475 namespace { 5476 5477 class LoopStrengthReduce : public LoopPass { 5478 public: 5479 static char ID; // Pass ID, replacement for typeid 5480 5481 LoopStrengthReduce(); 5482 5483 private: 5484 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 5485 void getAnalysisUsage(AnalysisUsage &AU) const override; 5486 }; 5487 5488 } // end anonymous namespace 5489 5490 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) { 5491 initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry()); 5492 } 5493 5494 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const { 5495 // We split critical edges, so we change the CFG. However, we do update 5496 // many analyses if they are around. 5497 AU.addPreservedID(LoopSimplifyID); 5498 5499 AU.addRequired<LoopInfoWrapperPass>(); 5500 AU.addPreserved<LoopInfoWrapperPass>(); 5501 AU.addRequiredID(LoopSimplifyID); 5502 AU.addRequired<DominatorTreeWrapperPass>(); 5503 AU.addPreserved<DominatorTreeWrapperPass>(); 5504 AU.addRequired<ScalarEvolutionWrapperPass>(); 5505 AU.addPreserved<ScalarEvolutionWrapperPass>(); 5506 // Requiring LoopSimplify a second time here prevents IVUsers from running 5507 // twice, since LoopSimplify was invalidated by running ScalarEvolution. 5508 AU.addRequiredID(LoopSimplifyID); 5509 AU.addRequired<IVUsersWrapperPass>(); 5510 AU.addPreserved<IVUsersWrapperPass>(); 5511 AU.addRequired<TargetTransformInfoWrapperPass>(); 5512 } 5513 5514 static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE, 5515 DominatorTree &DT, LoopInfo &LI, 5516 const TargetTransformInfo &TTI) { 5517 bool Changed = false; 5518 5519 // Run the main LSR transformation. 5520 Changed |= LSRInstance(L, IU, SE, DT, LI, TTI).getChanged(); 5521 5522 // Remove any extra phis created by processing inner loops. 5523 Changed |= DeleteDeadPHIs(L->getHeader()); 5524 if (EnablePhiElim && L->isLoopSimplifyForm()) { 5525 SmallVector<WeakTrackingVH, 16> DeadInsts; 5526 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 5527 SCEVExpander Rewriter(SE, DL, "lsr"); 5528 #ifndef NDEBUG 5529 Rewriter.setDebugType(DEBUG_TYPE); 5530 #endif 5531 unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI); 5532 if (numFolded) { 5533 Changed = true; 5534 DeleteTriviallyDeadInstructions(DeadInsts); 5535 DeleteDeadPHIs(L->getHeader()); 5536 } 5537 } 5538 return Changed; 5539 } 5540 5541 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) { 5542 if (skipLoop(L)) 5543 return false; 5544 5545 auto &IU = getAnalysis<IVUsersWrapperPass>().getIU(); 5546 auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 5547 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 5548 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 5549 const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI( 5550 *L->getHeader()->getParent()); 5551 return ReduceLoopStrength(L, IU, SE, DT, LI, TTI); 5552 } 5553 5554 PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM, 5555 LoopStandardAnalysisResults &AR, 5556 LPMUpdater &) { 5557 if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE, 5558 AR.DT, AR.LI, AR.TTI)) 5559 return PreservedAnalyses::all(); 5560 5561 return getLoopPassPreservedAnalyses(); 5562 } 5563 5564 char LoopStrengthReduce::ID = 0; 5565 5566 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce", 5567 "Loop Strength Reduction", false, false) 5568 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 5569 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 5570 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 5571 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass) 5572 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 5573 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 5574 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce", 5575 "Loop Strength Reduction", false, false) 5576 5577 Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); } 5578