1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This transformation analyzes and transforms the induction variables (and
11 // computations derived from them) into forms suitable for efficient execution
12 // on the target.
13 //
14 // This pass performs a strength reduction on array references inside loops that
15 // have as one or more of their components the loop induction variable, it
16 // rewrites expressions to take advantage of scaled-index addressing modes
17 // available on the target, and it performs a variety of other optimizations
18 // related to loop induction variables.
19 //
20 // Terminology note: this code has a lot of handling for "post-increment" or
21 // "post-inc" users. This is not talking about post-increment addressing modes;
22 // it is instead talking about code like this:
23 //
24 //   %i = phi [ 0, %entry ], [ %i.next, %latch ]
25 //   ...
26 //   %i.next = add %i, 1
27 //   %c = icmp eq %i.next, %n
28 //
29 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
30 // it's useful to think about these as the same register, with some uses using
31 // the value of the register before the add and some using it after. In this
32 // example, the icmp is a post-increment user, since it uses %i.next, which is
33 // the value of the induction variable after the increment. The other common
34 // case of post-increment users is users outside the loop.
35 //
36 // TODO: More sophistication in the way Formulae are generated and filtered.
37 //
38 // TODO: Handle multiple loops at a time.
39 //
40 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead
41 //       of a GlobalValue?
42 //
43 // TODO: When truncation is free, truncate ICmp users' operands to make it a
44 //       smaller encoding (on x86 at least).
45 //
46 // TODO: When a negated register is used by an add (such as in a list of
47 //       multiple base registers, or as the increment expression in an addrec),
48 //       we may not actually need both reg and (-1 * reg) in registers; the
49 //       negation can be implemented by using a sub instead of an add. The
50 //       lack of support for taking this into consideration when making
51 //       register pressure decisions is partly worked around by the "Special"
52 //       use kind.
53 //
54 //===----------------------------------------------------------------------===//
55 
56 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h"
57 #include "llvm/ADT/APInt.h"
58 #include "llvm/ADT/DenseMap.h"
59 #include "llvm/ADT/DenseSet.h"
60 #include "llvm/ADT/Hashing.h"
61 #include "llvm/ADT/PointerIntPair.h"
62 #include "llvm/ADT/STLExtras.h"
63 #include "llvm/ADT/SetVector.h"
64 #include "llvm/ADT/SmallBitVector.h"
65 #include "llvm/ADT/SmallPtrSet.h"
66 #include "llvm/ADT/SmallSet.h"
67 #include "llvm/ADT/SmallVector.h"
68 #include "llvm/ADT/iterator_range.h"
69 #include "llvm/Analysis/IVUsers.h"
70 #include "llvm/Analysis/LoopAnalysisManager.h"
71 #include "llvm/Analysis/LoopInfo.h"
72 #include "llvm/Analysis/LoopPass.h"
73 #include "llvm/Analysis/ScalarEvolution.h"
74 #include "llvm/Analysis/ScalarEvolutionExpander.h"
75 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
76 #include "llvm/Analysis/ScalarEvolutionNormalization.h"
77 #include "llvm/Analysis/TargetTransformInfo.h"
78 #include "llvm/Analysis/Utils/Local.h"
79 #include "llvm/IR/BasicBlock.h"
80 #include "llvm/IR/Constant.h"
81 #include "llvm/IR/Constants.h"
82 #include "llvm/IR/DerivedTypes.h"
83 #include "llvm/IR/Dominators.h"
84 #include "llvm/IR/GlobalValue.h"
85 #include "llvm/IR/IRBuilder.h"
86 #include "llvm/IR/InstrTypes.h"
87 #include "llvm/IR/Instruction.h"
88 #include "llvm/IR/Instructions.h"
89 #include "llvm/IR/IntrinsicInst.h"
90 #include "llvm/IR/Intrinsics.h"
91 #include "llvm/IR/Module.h"
92 #include "llvm/IR/OperandTraits.h"
93 #include "llvm/IR/Operator.h"
94 #include "llvm/IR/PassManager.h"
95 #include "llvm/IR/Type.h"
96 #include "llvm/IR/Use.h"
97 #include "llvm/IR/User.h"
98 #include "llvm/IR/Value.h"
99 #include "llvm/IR/ValueHandle.h"
100 #include "llvm/Pass.h"
101 #include "llvm/Support/Casting.h"
102 #include "llvm/Support/CommandLine.h"
103 #include "llvm/Support/Compiler.h"
104 #include "llvm/Support/Debug.h"
105 #include "llvm/Support/ErrorHandling.h"
106 #include "llvm/Support/MathExtras.h"
107 #include "llvm/Support/raw_ostream.h"
108 #include "llvm/Transforms/Scalar.h"
109 #include "llvm/Transforms/Utils.h"
110 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
111 #include <algorithm>
112 #include <cassert>
113 #include <cstddef>
114 #include <cstdint>
115 #include <cstdlib>
116 #include <iterator>
117 #include <limits>
118 #include <map>
119 #include <utility>
120 
121 using namespace llvm;
122 
123 #define DEBUG_TYPE "loop-reduce"
124 
125 /// MaxIVUsers is an arbitrary threshold that provides an early opportunitiy for
126 /// bail out. This threshold is far beyond the number of users that LSR can
127 /// conceivably solve, so it should not affect generated code, but catches the
128 /// worst cases before LSR burns too much compile time and stack space.
129 static const unsigned MaxIVUsers = 200;
130 
131 // Temporary flag to cleanup congruent phis after LSR phi expansion.
132 // It's currently disabled until we can determine whether it's truly useful or
133 // not. The flag should be removed after the v3.0 release.
134 // This is now needed for ivchains.
135 static cl::opt<bool> EnablePhiElim(
136   "enable-lsr-phielim", cl::Hidden, cl::init(true),
137   cl::desc("Enable LSR phi elimination"));
138 
139 // The flag adds instruction count to solutions cost comparision.
140 static cl::opt<bool> InsnsCost(
141   "lsr-insns-cost", cl::Hidden, cl::init(true),
142   cl::desc("Add instruction count to a LSR cost model"));
143 
144 // Flag to choose how to narrow complex lsr solution
145 static cl::opt<bool> LSRExpNarrow(
146   "lsr-exp-narrow", cl::Hidden, cl::init(false),
147   cl::desc("Narrow LSR complex solution using"
148            " expectation of registers number"));
149 
150 // Flag to narrow search space by filtering non-optimal formulae with
151 // the same ScaledReg and Scale.
152 static cl::opt<bool> FilterSameScaledReg(
153     "lsr-filter-same-scaled-reg", cl::Hidden, cl::init(true),
154     cl::desc("Narrow LSR search space by filtering non-optimal formulae"
155              " with the same ScaledReg and Scale"));
156 
157 #ifndef NDEBUG
158 // Stress test IV chain generation.
159 static cl::opt<bool> StressIVChain(
160   "stress-ivchain", cl::Hidden, cl::init(false),
161   cl::desc("Stress test LSR IV chains"));
162 #else
163 static bool StressIVChain = false;
164 #endif
165 
166 namespace {
167 
168 struct MemAccessTy {
169   /// Used in situations where the accessed memory type is unknown.
170   static const unsigned UnknownAddressSpace =
171       std::numeric_limits<unsigned>::max();
172 
173   Type *MemTy = nullptr;
174   unsigned AddrSpace = UnknownAddressSpace;
175 
176   MemAccessTy() = default;
177   MemAccessTy(Type *Ty, unsigned AS) : MemTy(Ty), AddrSpace(AS) {}
178 
179   bool operator==(MemAccessTy Other) const {
180     return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace;
181   }
182 
183   bool operator!=(MemAccessTy Other) const { return !(*this == Other); }
184 
185   static MemAccessTy getUnknown(LLVMContext &Ctx,
186                                 unsigned AS = UnknownAddressSpace) {
187     return MemAccessTy(Type::getVoidTy(Ctx), AS);
188   }
189 
190   Type *getType() { return MemTy; }
191 };
192 
193 /// This class holds data which is used to order reuse candidates.
194 class RegSortData {
195 public:
196   /// This represents the set of LSRUse indices which reference
197   /// a particular register.
198   SmallBitVector UsedByIndices;
199 
200   void print(raw_ostream &OS) const;
201   void dump() const;
202 };
203 
204 } // end anonymous namespace
205 
206 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
207 void RegSortData::print(raw_ostream &OS) const {
208   OS << "[NumUses=" << UsedByIndices.count() << ']';
209 }
210 
211 LLVM_DUMP_METHOD void RegSortData::dump() const {
212   print(errs()); errs() << '\n';
213 }
214 #endif
215 
216 namespace {
217 
218 /// Map register candidates to information about how they are used.
219 class RegUseTracker {
220   using RegUsesTy = DenseMap<const SCEV *, RegSortData>;
221 
222   RegUsesTy RegUsesMap;
223   SmallVector<const SCEV *, 16> RegSequence;
224 
225 public:
226   void countRegister(const SCEV *Reg, size_t LUIdx);
227   void dropRegister(const SCEV *Reg, size_t LUIdx);
228   void swapAndDropUse(size_t LUIdx, size_t LastLUIdx);
229 
230   bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
231 
232   const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
233 
234   void clear();
235 
236   using iterator = SmallVectorImpl<const SCEV *>::iterator;
237   using const_iterator = SmallVectorImpl<const SCEV *>::const_iterator;
238 
239   iterator begin() { return RegSequence.begin(); }
240   iterator end()   { return RegSequence.end(); }
241   const_iterator begin() const { return RegSequence.begin(); }
242   const_iterator end() const   { return RegSequence.end(); }
243 };
244 
245 } // end anonymous namespace
246 
247 void
248 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) {
249   std::pair<RegUsesTy::iterator, bool> Pair =
250     RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
251   RegSortData &RSD = Pair.first->second;
252   if (Pair.second)
253     RegSequence.push_back(Reg);
254   RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
255   RSD.UsedByIndices.set(LUIdx);
256 }
257 
258 void
259 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) {
260   RegUsesTy::iterator It = RegUsesMap.find(Reg);
261   assert(It != RegUsesMap.end());
262   RegSortData &RSD = It->second;
263   assert(RSD.UsedByIndices.size() > LUIdx);
264   RSD.UsedByIndices.reset(LUIdx);
265 }
266 
267 void
268 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) {
269   assert(LUIdx <= LastLUIdx);
270 
271   // Update RegUses. The data structure is not optimized for this purpose;
272   // we must iterate through it and update each of the bit vectors.
273   for (auto &Pair : RegUsesMap) {
274     SmallBitVector &UsedByIndices = Pair.second.UsedByIndices;
275     if (LUIdx < UsedByIndices.size())
276       UsedByIndices[LUIdx] =
277         LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false;
278     UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx));
279   }
280 }
281 
282 bool
283 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
284   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
285   if (I == RegUsesMap.end())
286     return false;
287   const SmallBitVector &UsedByIndices = I->second.UsedByIndices;
288   int i = UsedByIndices.find_first();
289   if (i == -1) return false;
290   if ((size_t)i != LUIdx) return true;
291   return UsedByIndices.find_next(i) != -1;
292 }
293 
294 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
295   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
296   assert(I != RegUsesMap.end() && "Unknown register!");
297   return I->second.UsedByIndices;
298 }
299 
300 void RegUseTracker::clear() {
301   RegUsesMap.clear();
302   RegSequence.clear();
303 }
304 
305 namespace {
306 
307 /// This class holds information that describes a formula for computing
308 /// satisfying a use. It may include broken-out immediates and scaled registers.
309 struct Formula {
310   /// Global base address used for complex addressing.
311   GlobalValue *BaseGV = nullptr;
312 
313   /// Base offset for complex addressing.
314   int64_t BaseOffset = 0;
315 
316   /// Whether any complex addressing has a base register.
317   bool HasBaseReg = false;
318 
319   /// The scale of any complex addressing.
320   int64_t Scale = 0;
321 
322   /// The list of "base" registers for this use. When this is non-empty. The
323   /// canonical representation of a formula is
324   /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and
325   /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty().
326   /// 3. The reg containing recurrent expr related with currect loop in the
327   /// formula should be put in the ScaledReg.
328   /// #1 enforces that the scaled register is always used when at least two
329   /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2.
330   /// #2 enforces that 1 * reg is reg.
331   /// #3 ensures invariant regs with respect to current loop can be combined
332   /// together in LSR codegen.
333   /// This invariant can be temporarly broken while building a formula.
334   /// However, every formula inserted into the LSRInstance must be in canonical
335   /// form.
336   SmallVector<const SCEV *, 4> BaseRegs;
337 
338   /// The 'scaled' register for this use. This should be non-null when Scale is
339   /// not zero.
340   const SCEV *ScaledReg = nullptr;
341 
342   /// An additional constant offset which added near the use. This requires a
343   /// temporary register, but the offset itself can live in an add immediate
344   /// field rather than a register.
345   int64_t UnfoldedOffset = 0;
346 
347   Formula() = default;
348 
349   void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE);
350 
351   bool isCanonical(const Loop &L) const;
352 
353   void canonicalize(const Loop &L);
354 
355   bool unscale();
356 
357   bool hasZeroEnd() const;
358 
359   size_t getNumRegs() const;
360   Type *getType() const;
361 
362   void deleteBaseReg(const SCEV *&S);
363 
364   bool referencesReg(const SCEV *S) const;
365   bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
366                                   const RegUseTracker &RegUses) const;
367 
368   void print(raw_ostream &OS) const;
369   void dump() const;
370 };
371 
372 } // end anonymous namespace
373 
374 /// Recursion helper for initialMatch.
375 static void DoInitialMatch(const SCEV *S, Loop *L,
376                            SmallVectorImpl<const SCEV *> &Good,
377                            SmallVectorImpl<const SCEV *> &Bad,
378                            ScalarEvolution &SE) {
379   // Collect expressions which properly dominate the loop header.
380   if (SE.properlyDominates(S, L->getHeader())) {
381     Good.push_back(S);
382     return;
383   }
384 
385   // Look at add operands.
386   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
387     for (const SCEV *S : Add->operands())
388       DoInitialMatch(S, L, Good, Bad, SE);
389     return;
390   }
391 
392   // Look at addrec operands.
393   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
394     if (!AR->getStart()->isZero() && AR->isAffine()) {
395       DoInitialMatch(AR->getStart(), L, Good, Bad, SE);
396       DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
397                                       AR->getStepRecurrence(SE),
398                                       // FIXME: AR->getNoWrapFlags()
399                                       AR->getLoop(), SCEV::FlagAnyWrap),
400                      L, Good, Bad, SE);
401       return;
402     }
403 
404   // Handle a multiplication by -1 (negation) if it didn't fold.
405   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
406     if (Mul->getOperand(0)->isAllOnesValue()) {
407       SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end());
408       const SCEV *NewMul = SE.getMulExpr(Ops);
409 
410       SmallVector<const SCEV *, 4> MyGood;
411       SmallVector<const SCEV *, 4> MyBad;
412       DoInitialMatch(NewMul, L, MyGood, MyBad, SE);
413       const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
414         SE.getEffectiveSCEVType(NewMul->getType())));
415       for (const SCEV *S : MyGood)
416         Good.push_back(SE.getMulExpr(NegOne, S));
417       for (const SCEV *S : MyBad)
418         Bad.push_back(SE.getMulExpr(NegOne, S));
419       return;
420     }
421 
422   // Ok, we can't do anything interesting. Just stuff the whole thing into a
423   // register and hope for the best.
424   Bad.push_back(S);
425 }
426 
427 /// Incorporate loop-variant parts of S into this Formula, attempting to keep
428 /// all loop-invariant and loop-computable values in a single base register.
429 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) {
430   SmallVector<const SCEV *, 4> Good;
431   SmallVector<const SCEV *, 4> Bad;
432   DoInitialMatch(S, L, Good, Bad, SE);
433   if (!Good.empty()) {
434     const SCEV *Sum = SE.getAddExpr(Good);
435     if (!Sum->isZero())
436       BaseRegs.push_back(Sum);
437     HasBaseReg = true;
438   }
439   if (!Bad.empty()) {
440     const SCEV *Sum = SE.getAddExpr(Bad);
441     if (!Sum->isZero())
442       BaseRegs.push_back(Sum);
443     HasBaseReg = true;
444   }
445   canonicalize(*L);
446 }
447 
448 /// \brief Check whether or not this formula satisfies the canonical
449 /// representation.
450 /// \see Formula::BaseRegs.
451 bool Formula::isCanonical(const Loop &L) const {
452   if (!ScaledReg)
453     return BaseRegs.size() <= 1;
454 
455   if (Scale != 1)
456     return true;
457 
458   if (Scale == 1 && BaseRegs.empty())
459     return false;
460 
461   const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg);
462   if (SAR && SAR->getLoop() == &L)
463     return true;
464 
465   // If ScaledReg is not a recurrent expr, or it is but its loop is not current
466   // loop, meanwhile BaseRegs contains a recurrent expr reg related with current
467   // loop, we want to swap the reg in BaseRegs with ScaledReg.
468   auto I =
469       find_if(make_range(BaseRegs.begin(), BaseRegs.end()), [&](const SCEV *S) {
470         return isa<const SCEVAddRecExpr>(S) &&
471                (cast<SCEVAddRecExpr>(S)->getLoop() == &L);
472       });
473   return I == BaseRegs.end();
474 }
475 
476 /// \brief Helper method to morph a formula into its canonical representation.
477 /// \see Formula::BaseRegs.
478 /// Every formula having more than one base register, must use the ScaledReg
479 /// field. Otherwise, we would have to do special cases everywhere in LSR
480 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ...
481 /// On the other hand, 1*reg should be canonicalized into reg.
482 void Formula::canonicalize(const Loop &L) {
483   if (isCanonical(L))
484     return;
485   // So far we did not need this case. This is easy to implement but it is
486   // useless to maintain dead code. Beside it could hurt compile time.
487   assert(!BaseRegs.empty() && "1*reg => reg, should not be needed.");
488 
489   // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg.
490   if (!ScaledReg) {
491     ScaledReg = BaseRegs.back();
492     BaseRegs.pop_back();
493     Scale = 1;
494   }
495 
496   // If ScaledReg is an invariant with respect to L, find the reg from
497   // BaseRegs containing the recurrent expr related with Loop L. Swap the
498   // reg with ScaledReg.
499   const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg);
500   if (!SAR || SAR->getLoop() != &L) {
501     auto I = find_if(make_range(BaseRegs.begin(), BaseRegs.end()),
502                      [&](const SCEV *S) {
503                        return isa<const SCEVAddRecExpr>(S) &&
504                               (cast<SCEVAddRecExpr>(S)->getLoop() == &L);
505                      });
506     if (I != BaseRegs.end())
507       std::swap(ScaledReg, *I);
508   }
509 }
510 
511 /// \brief Get rid of the scale in the formula.
512 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2.
513 /// \return true if it was possible to get rid of the scale, false otherwise.
514 /// \note After this operation the formula may not be in the canonical form.
515 bool Formula::unscale() {
516   if (Scale != 1)
517     return false;
518   Scale = 0;
519   BaseRegs.push_back(ScaledReg);
520   ScaledReg = nullptr;
521   return true;
522 }
523 
524 bool Formula::hasZeroEnd() const {
525   if (UnfoldedOffset || BaseOffset)
526     return false;
527   if (BaseRegs.size() != 1 || ScaledReg)
528     return false;
529   return true;
530 }
531 
532 /// Return the total number of register operands used by this formula. This does
533 /// not include register uses implied by non-constant addrec strides.
534 size_t Formula::getNumRegs() const {
535   return !!ScaledReg + BaseRegs.size();
536 }
537 
538 /// Return the type of this formula, if it has one, or null otherwise. This type
539 /// is meaningless except for the bit size.
540 Type *Formula::getType() const {
541   return !BaseRegs.empty() ? BaseRegs.front()->getType() :
542          ScaledReg ? ScaledReg->getType() :
543          BaseGV ? BaseGV->getType() :
544          nullptr;
545 }
546 
547 /// Delete the given base reg from the BaseRegs list.
548 void Formula::deleteBaseReg(const SCEV *&S) {
549   if (&S != &BaseRegs.back())
550     std::swap(S, BaseRegs.back());
551   BaseRegs.pop_back();
552 }
553 
554 /// Test if this formula references the given register.
555 bool Formula::referencesReg(const SCEV *S) const {
556   return S == ScaledReg || is_contained(BaseRegs, S);
557 }
558 
559 /// Test whether this formula uses registers which are used by uses other than
560 /// the use with the given index.
561 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
562                                          const RegUseTracker &RegUses) const {
563   if (ScaledReg)
564     if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
565       return true;
566   for (const SCEV *BaseReg : BaseRegs)
567     if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx))
568       return true;
569   return false;
570 }
571 
572 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
573 void Formula::print(raw_ostream &OS) const {
574   bool First = true;
575   if (BaseGV) {
576     if (!First) OS << " + "; else First = false;
577     BaseGV->printAsOperand(OS, /*PrintType=*/false);
578   }
579   if (BaseOffset != 0) {
580     if (!First) OS << " + "; else First = false;
581     OS << BaseOffset;
582   }
583   for (const SCEV *BaseReg : BaseRegs) {
584     if (!First) OS << " + "; else First = false;
585     OS << "reg(" << *BaseReg << ')';
586   }
587   if (HasBaseReg && BaseRegs.empty()) {
588     if (!First) OS << " + "; else First = false;
589     OS << "**error: HasBaseReg**";
590   } else if (!HasBaseReg && !BaseRegs.empty()) {
591     if (!First) OS << " + "; else First = false;
592     OS << "**error: !HasBaseReg**";
593   }
594   if (Scale != 0) {
595     if (!First) OS << " + "; else First = false;
596     OS << Scale << "*reg(";
597     if (ScaledReg)
598       OS << *ScaledReg;
599     else
600       OS << "<unknown>";
601     OS << ')';
602   }
603   if (UnfoldedOffset != 0) {
604     if (!First) OS << " + ";
605     OS << "imm(" << UnfoldedOffset << ')';
606   }
607 }
608 
609 LLVM_DUMP_METHOD void Formula::dump() const {
610   print(errs()); errs() << '\n';
611 }
612 #endif
613 
614 /// Return true if the given addrec can be sign-extended without changing its
615 /// value.
616 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
617   Type *WideTy =
618     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
619   return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
620 }
621 
622 /// Return true if the given add can be sign-extended without changing its
623 /// value.
624 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
625   Type *WideTy =
626     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
627   return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
628 }
629 
630 /// Return true if the given mul can be sign-extended without changing its
631 /// value.
632 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) {
633   Type *WideTy =
634     IntegerType::get(SE.getContext(),
635                      SE.getTypeSizeInBits(M->getType()) * M->getNumOperands());
636   return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy));
637 }
638 
639 /// Return an expression for LHS /s RHS, if it can be determined and if the
640 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits
641 /// is true, expressions like (X * Y) /s Y are simplified to Y, ignoring that
642 /// the multiplication may overflow, which is useful when the result will be
643 /// used in a context where the most significant bits are ignored.
644 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
645                                 ScalarEvolution &SE,
646                                 bool IgnoreSignificantBits = false) {
647   // Handle the trivial case, which works for any SCEV type.
648   if (LHS == RHS)
649     return SE.getConstant(LHS->getType(), 1);
650 
651   // Handle a few RHS special cases.
652   const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
653   if (RC) {
654     const APInt &RA = RC->getAPInt();
655     // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
656     // some folding.
657     if (RA.isAllOnesValue())
658       return SE.getMulExpr(LHS, RC);
659     // Handle x /s 1 as x.
660     if (RA == 1)
661       return LHS;
662   }
663 
664   // Check for a division of a constant by a constant.
665   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
666     if (!RC)
667       return nullptr;
668     const APInt &LA = C->getAPInt();
669     const APInt &RA = RC->getAPInt();
670     if (LA.srem(RA) != 0)
671       return nullptr;
672     return SE.getConstant(LA.sdiv(RA));
673   }
674 
675   // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
676   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
677     if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) {
678       const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
679                                       IgnoreSignificantBits);
680       if (!Step) return nullptr;
681       const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
682                                        IgnoreSignificantBits);
683       if (!Start) return nullptr;
684       // FlagNW is independent of the start value, step direction, and is
685       // preserved with smaller magnitude steps.
686       // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
687       return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap);
688     }
689     return nullptr;
690   }
691 
692   // Distribute the sdiv over add operands, if the add doesn't overflow.
693   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
694     if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
695       SmallVector<const SCEV *, 8> Ops;
696       for (const SCEV *S : Add->operands()) {
697         const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits);
698         if (!Op) return nullptr;
699         Ops.push_back(Op);
700       }
701       return SE.getAddExpr(Ops);
702     }
703     return nullptr;
704   }
705 
706   // Check for a multiply operand that we can pull RHS out of.
707   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) {
708     if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
709       SmallVector<const SCEV *, 4> Ops;
710       bool Found = false;
711       for (const SCEV *S : Mul->operands()) {
712         if (!Found)
713           if (const SCEV *Q = getExactSDiv(S, RHS, SE,
714                                            IgnoreSignificantBits)) {
715             S = Q;
716             Found = true;
717           }
718         Ops.push_back(S);
719       }
720       return Found ? SE.getMulExpr(Ops) : nullptr;
721     }
722     return nullptr;
723   }
724 
725   // Otherwise we don't know.
726   return nullptr;
727 }
728 
729 /// If S involves the addition of a constant integer value, return that integer
730 /// value, and mutate S to point to a new SCEV with that value excluded.
731 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
732   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
733     if (C->getAPInt().getMinSignedBits() <= 64) {
734       S = SE.getConstant(C->getType(), 0);
735       return C->getValue()->getSExtValue();
736     }
737   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
738     SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
739     int64_t Result = ExtractImmediate(NewOps.front(), SE);
740     if (Result != 0)
741       S = SE.getAddExpr(NewOps);
742     return Result;
743   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
744     SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
745     int64_t Result = ExtractImmediate(NewOps.front(), SE);
746     if (Result != 0)
747       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
748                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
749                            SCEV::FlagAnyWrap);
750     return Result;
751   }
752   return 0;
753 }
754 
755 /// If S involves the addition of a GlobalValue address, return that symbol, and
756 /// mutate S to point to a new SCEV with that value excluded.
757 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
758   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
759     if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
760       S = SE.getConstant(GV->getType(), 0);
761       return GV;
762     }
763   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
764     SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
765     GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
766     if (Result)
767       S = SE.getAddExpr(NewOps);
768     return Result;
769   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
770     SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
771     GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
772     if (Result)
773       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
774                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
775                            SCEV::FlagAnyWrap);
776     return Result;
777   }
778   return nullptr;
779 }
780 
781 /// Returns true if the specified instruction is using the specified value as an
782 /// address.
783 static bool isAddressUse(const TargetTransformInfo &TTI,
784                          Instruction *Inst, Value *OperandVal) {
785   bool isAddress = isa<LoadInst>(Inst);
786   if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
787     if (SI->getPointerOperand() == OperandVal)
788       isAddress = true;
789   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
790     // Addressing modes can also be folded into prefetches and a variety
791     // of intrinsics.
792     switch (II->getIntrinsicID()) {
793     case Intrinsic::memset:
794     case Intrinsic::prefetch:
795       if (II->getArgOperand(0) == OperandVal)
796         isAddress = true;
797       break;
798     case Intrinsic::memmove:
799     case Intrinsic::memcpy:
800       if (II->getArgOperand(0) == OperandVal ||
801           II->getArgOperand(1) == OperandVal)
802         isAddress = true;
803       break;
804     default: {
805       MemIntrinsicInfo IntrInfo;
806       if (TTI.getTgtMemIntrinsic(II, IntrInfo)) {
807         if (IntrInfo.PtrVal == OperandVal)
808           isAddress = true;
809       }
810     }
811     }
812   } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
813     if (RMW->getPointerOperand() == OperandVal)
814       isAddress = true;
815   } else if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
816     if (CmpX->getPointerOperand() == OperandVal)
817       isAddress = true;
818   }
819   return isAddress;
820 }
821 
822 /// Return the type of the memory being accessed.
823 static MemAccessTy getAccessType(const TargetTransformInfo &TTI,
824                                  Instruction *Inst) {
825   MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace);
826   if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
827     AccessTy.MemTy = SI->getOperand(0)->getType();
828     AccessTy.AddrSpace = SI->getPointerAddressSpace();
829   } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
830     AccessTy.AddrSpace = LI->getPointerAddressSpace();
831   } else if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
832     AccessTy.AddrSpace = RMW->getPointerAddressSpace();
833   } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
834     AccessTy.AddrSpace = CmpX->getPointerAddressSpace();
835   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
836     switch (II->getIntrinsicID()) {
837     case Intrinsic::prefetch:
838       AccessTy.AddrSpace = II->getArgOperand(0)->getType()->getPointerAddressSpace();
839       break;
840     default: {
841       MemIntrinsicInfo IntrInfo;
842       if (TTI.getTgtMemIntrinsic(II, IntrInfo) && IntrInfo.PtrVal) {
843         AccessTy.AddrSpace
844           = IntrInfo.PtrVal->getType()->getPointerAddressSpace();
845       }
846 
847       break;
848     }
849     }
850   }
851 
852   // All pointers have the same requirements, so canonicalize them to an
853   // arbitrary pointer type to minimize variation.
854   if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy))
855     AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
856                                       PTy->getAddressSpace());
857 
858   return AccessTy;
859 }
860 
861 /// Return true if this AddRec is already a phi in its loop.
862 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
863   for (PHINode &PN : AR->getLoop()->getHeader()->phis()) {
864     if (SE.isSCEVable(PN.getType()) &&
865         (SE.getEffectiveSCEVType(PN.getType()) ==
866          SE.getEffectiveSCEVType(AR->getType())) &&
867         SE.getSCEV(&PN) == AR)
868       return true;
869   }
870   return false;
871 }
872 
873 /// Check if expanding this expression is likely to incur significant cost. This
874 /// is tricky because SCEV doesn't track which expressions are actually computed
875 /// by the current IR.
876 ///
877 /// We currently allow expansion of IV increments that involve adds,
878 /// multiplication by constants, and AddRecs from existing phis.
879 ///
880 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an
881 /// obvious multiple of the UDivExpr.
882 static bool isHighCostExpansion(const SCEV *S,
883                                 SmallPtrSetImpl<const SCEV*> &Processed,
884                                 ScalarEvolution &SE) {
885   // Zero/One operand expressions
886   switch (S->getSCEVType()) {
887   case scUnknown:
888   case scConstant:
889     return false;
890   case scTruncate:
891     return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(),
892                                Processed, SE);
893   case scZeroExtend:
894     return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(),
895                                Processed, SE);
896   case scSignExtend:
897     return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(),
898                                Processed, SE);
899   }
900 
901   if (!Processed.insert(S).second)
902     return false;
903 
904   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
905     for (const SCEV *S : Add->operands()) {
906       if (isHighCostExpansion(S, Processed, SE))
907         return true;
908     }
909     return false;
910   }
911 
912   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
913     if (Mul->getNumOperands() == 2) {
914       // Multiplication by a constant is ok
915       if (isa<SCEVConstant>(Mul->getOperand(0)))
916         return isHighCostExpansion(Mul->getOperand(1), Processed, SE);
917 
918       // If we have the value of one operand, check if an existing
919       // multiplication already generates this expression.
920       if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) {
921         Value *UVal = U->getValue();
922         for (User *UR : UVal->users()) {
923           // If U is a constant, it may be used by a ConstantExpr.
924           Instruction *UI = dyn_cast<Instruction>(UR);
925           if (UI && UI->getOpcode() == Instruction::Mul &&
926               SE.isSCEVable(UI->getType())) {
927             return SE.getSCEV(UI) == Mul;
928           }
929         }
930       }
931     }
932   }
933 
934   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
935     if (isExistingPhi(AR, SE))
936       return false;
937   }
938 
939   // Fow now, consider any other type of expression (div/mul/min/max) high cost.
940   return true;
941 }
942 
943 /// If any of the instructions in the specified set are trivially dead, delete
944 /// them and see if this makes any of their operands subsequently dead.
945 static bool
946 DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
947   bool Changed = false;
948 
949   while (!DeadInsts.empty()) {
950     Value *V = DeadInsts.pop_back_val();
951     Instruction *I = dyn_cast_or_null<Instruction>(V);
952 
953     if (!I || !isInstructionTriviallyDead(I))
954       continue;
955 
956     for (Use &O : I->operands())
957       if (Instruction *U = dyn_cast<Instruction>(O)) {
958         O = nullptr;
959         if (U->use_empty())
960           DeadInsts.emplace_back(U);
961       }
962 
963     I->eraseFromParent();
964     Changed = true;
965   }
966 
967   return Changed;
968 }
969 
970 namespace {
971 
972 class LSRUse;
973 
974 } // end anonymous namespace
975 
976 /// \brief Check if the addressing mode defined by \p F is completely
977 /// folded in \p LU at isel time.
978 /// This includes address-mode folding and special icmp tricks.
979 /// This function returns true if \p LU can accommodate what \p F
980 /// defines and up to 1 base + 1 scaled + offset.
981 /// In other words, if \p F has several base registers, this function may
982 /// still return true. Therefore, users still need to account for
983 /// additional base registers and/or unfolded offsets to derive an
984 /// accurate cost model.
985 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
986                                  const LSRUse &LU, const Formula &F);
987 
988 // Get the cost of the scaling factor used in F for LU.
989 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
990                                      const LSRUse &LU, const Formula &F,
991                                      const Loop &L);
992 
993 namespace {
994 
995 /// This class is used to measure and compare candidate formulae.
996 class Cost {
997   TargetTransformInfo::LSRCost C;
998 
999 public:
1000   Cost() {
1001     C.Insns = 0;
1002     C.NumRegs = 0;
1003     C.AddRecCost = 0;
1004     C.NumIVMuls = 0;
1005     C.NumBaseAdds = 0;
1006     C.ImmCost = 0;
1007     C.SetupCost = 0;
1008     C.ScaleCost = 0;
1009   }
1010 
1011   bool isLess(Cost &Other, const TargetTransformInfo &TTI);
1012 
1013   void Lose();
1014 
1015 #ifndef NDEBUG
1016   // Once any of the metrics loses, they must all remain losers.
1017   bool isValid() {
1018     return ((C.Insns | C.NumRegs | C.AddRecCost | C.NumIVMuls | C.NumBaseAdds
1019              | C.ImmCost | C.SetupCost | C.ScaleCost) != ~0u)
1020       || ((C.Insns & C.NumRegs & C.AddRecCost & C.NumIVMuls & C.NumBaseAdds
1021            & C.ImmCost & C.SetupCost & C.ScaleCost) == ~0u);
1022   }
1023 #endif
1024 
1025   bool isLoser() {
1026     assert(isValid() && "invalid cost");
1027     return C.NumRegs == ~0u;
1028   }
1029 
1030   void RateFormula(const TargetTransformInfo &TTI,
1031                    const Formula &F,
1032                    SmallPtrSetImpl<const SCEV *> &Regs,
1033                    const DenseSet<const SCEV *> &VisitedRegs,
1034                    const Loop *L,
1035                    ScalarEvolution &SE, DominatorTree &DT,
1036                    const LSRUse &LU,
1037                    SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr);
1038 
1039   void print(raw_ostream &OS) const;
1040   void dump() const;
1041 
1042 private:
1043   void RateRegister(const SCEV *Reg,
1044                     SmallPtrSetImpl<const SCEV *> &Regs,
1045                     const Loop *L,
1046                     ScalarEvolution &SE, DominatorTree &DT,
1047                     const TargetTransformInfo &TTI);
1048   void RatePrimaryRegister(const SCEV *Reg,
1049                            SmallPtrSetImpl<const SCEV *> &Regs,
1050                            const Loop *L,
1051                            ScalarEvolution &SE, DominatorTree &DT,
1052                            SmallPtrSetImpl<const SCEV *> *LoserRegs,
1053                            const TargetTransformInfo &TTI);
1054 };
1055 
1056 /// An operand value in an instruction which is to be replaced with some
1057 /// equivalent, possibly strength-reduced, replacement.
1058 struct LSRFixup {
1059   /// The instruction which will be updated.
1060   Instruction *UserInst = nullptr;
1061 
1062   /// The operand of the instruction which will be replaced. The operand may be
1063   /// used more than once; every instance will be replaced.
1064   Value *OperandValToReplace = nullptr;
1065 
1066   /// If this user is to use the post-incremented value of an induction
1067   /// variable, this set is non-empty and holds the loops associated with the
1068   /// induction variable.
1069   PostIncLoopSet PostIncLoops;
1070 
1071   /// A constant offset to be added to the LSRUse expression.  This allows
1072   /// multiple fixups to share the same LSRUse with different offsets, for
1073   /// example in an unrolled loop.
1074   int64_t Offset = 0;
1075 
1076   LSRFixup() = default;
1077 
1078   bool isUseFullyOutsideLoop(const Loop *L) const;
1079 
1080   void print(raw_ostream &OS) const;
1081   void dump() const;
1082 };
1083 
1084 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted
1085 /// SmallVectors of const SCEV*.
1086 struct UniquifierDenseMapInfo {
1087   static SmallVector<const SCEV *, 4> getEmptyKey() {
1088     SmallVector<const SCEV *, 4>  V;
1089     V.push_back(reinterpret_cast<const SCEV *>(-1));
1090     return V;
1091   }
1092 
1093   static SmallVector<const SCEV *, 4> getTombstoneKey() {
1094     SmallVector<const SCEV *, 4> V;
1095     V.push_back(reinterpret_cast<const SCEV *>(-2));
1096     return V;
1097   }
1098 
1099   static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) {
1100     return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
1101   }
1102 
1103   static bool isEqual(const SmallVector<const SCEV *, 4> &LHS,
1104                       const SmallVector<const SCEV *, 4> &RHS) {
1105     return LHS == RHS;
1106   }
1107 };
1108 
1109 /// This class holds the state that LSR keeps for each use in IVUsers, as well
1110 /// as uses invented by LSR itself. It includes information about what kinds of
1111 /// things can be folded into the user, information about the user itself, and
1112 /// information about how the use may be satisfied.  TODO: Represent multiple
1113 /// users of the same expression in common?
1114 class LSRUse {
1115   DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier;
1116 
1117 public:
1118   /// An enum for a kind of use, indicating what types of scaled and immediate
1119   /// operands it might support.
1120   enum KindType {
1121     Basic,   ///< A normal use, with no folding.
1122     Special, ///< A special case of basic, allowing -1 scales.
1123     Address, ///< An address use; folding according to TargetLowering
1124     ICmpZero ///< An equality icmp with both operands folded into one.
1125     // TODO: Add a generic icmp too?
1126   };
1127 
1128   using SCEVUseKindPair = PointerIntPair<const SCEV *, 2, KindType>;
1129 
1130   KindType Kind;
1131   MemAccessTy AccessTy;
1132 
1133   /// The list of operands which are to be replaced.
1134   SmallVector<LSRFixup, 8> Fixups;
1135 
1136   /// Keep track of the min and max offsets of the fixups.
1137   int64_t MinOffset = std::numeric_limits<int64_t>::max();
1138   int64_t MaxOffset = std::numeric_limits<int64_t>::min();
1139 
1140   /// This records whether all of the fixups using this LSRUse are outside of
1141   /// the loop, in which case some special-case heuristics may be used.
1142   bool AllFixupsOutsideLoop = true;
1143 
1144   /// RigidFormula is set to true to guarantee that this use will be associated
1145   /// with a single formula--the one that initially matched. Some SCEV
1146   /// expressions cannot be expanded. This allows LSR to consider the registers
1147   /// used by those expressions without the need to expand them later after
1148   /// changing the formula.
1149   bool RigidFormula = false;
1150 
1151   /// This records the widest use type for any fixup using this
1152   /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max
1153   /// fixup widths to be equivalent, because the narrower one may be relying on
1154   /// the implicit truncation to truncate away bogus bits.
1155   Type *WidestFixupType = nullptr;
1156 
1157   /// A list of ways to build a value that can satisfy this user.  After the
1158   /// list is populated, one of these is selected heuristically and used to
1159   /// formulate a replacement for OperandValToReplace in UserInst.
1160   SmallVector<Formula, 12> Formulae;
1161 
1162   /// The set of register candidates used by all formulae in this LSRUse.
1163   SmallPtrSet<const SCEV *, 4> Regs;
1164 
1165   LSRUse(KindType K, MemAccessTy AT) : Kind(K), AccessTy(AT) {}
1166 
1167   LSRFixup &getNewFixup() {
1168     Fixups.push_back(LSRFixup());
1169     return Fixups.back();
1170   }
1171 
1172   void pushFixup(LSRFixup &f) {
1173     Fixups.push_back(f);
1174     if (f.Offset > MaxOffset)
1175       MaxOffset = f.Offset;
1176     if (f.Offset < MinOffset)
1177       MinOffset = f.Offset;
1178   }
1179 
1180   bool HasFormulaWithSameRegs(const Formula &F) const;
1181   float getNotSelectedProbability(const SCEV *Reg) const;
1182   bool InsertFormula(const Formula &F, const Loop &L);
1183   void DeleteFormula(Formula &F);
1184   void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
1185 
1186   void print(raw_ostream &OS) const;
1187   void dump() const;
1188 };
1189 
1190 } // end anonymous namespace
1191 
1192 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1193                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1194                                  GlobalValue *BaseGV, int64_t BaseOffset,
1195                                  bool HasBaseReg, int64_t Scale,
1196                                  Instruction *Fixup = nullptr);
1197 
1198 /// Tally up interesting quantities from the given register.
1199 void Cost::RateRegister(const SCEV *Reg,
1200                         SmallPtrSetImpl<const SCEV *> &Regs,
1201                         const Loop *L,
1202                         ScalarEvolution &SE, DominatorTree &DT,
1203                         const TargetTransformInfo &TTI) {
1204   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
1205     // If this is an addrec for another loop, it should be an invariant
1206     // with respect to L since L is the innermost loop (at least
1207     // for now LSR only handles innermost loops).
1208     if (AR->getLoop() != L) {
1209       // If the AddRec exists, consider it's register free and leave it alone.
1210       if (isExistingPhi(AR, SE))
1211         return;
1212 
1213       // It is bad to allow LSR for current loop to add induction variables
1214       // for its sibling loops.
1215       if (!AR->getLoop()->contains(L)) {
1216         Lose();
1217         return;
1218       }
1219 
1220       // Otherwise, it will be an invariant with respect to Loop L.
1221       ++C.NumRegs;
1222       return;
1223     }
1224 
1225     unsigned LoopCost = 1;
1226     if (TTI.shouldFavorPostInc()) {
1227       const SCEV *LoopStep = AR->getStepRecurrence(SE);
1228       if (isa<SCEVConstant>(LoopStep)) {
1229         // Check if a post-indexed load/store can be used.
1230         if (TTI.isIndexedLoadLegal(TTI.MIM_PostInc, AR->getType()) ||
1231             TTI.isIndexedStoreLegal(TTI.MIM_PostInc, AR->getType())) {
1232           const SCEV *LoopStart = AR->getStart();
1233           if (!isa<SCEVConstant>(LoopStart) &&
1234             SE.isLoopInvariant(LoopStart, L))
1235               LoopCost = 0;
1236         }
1237       }
1238     }
1239     C.AddRecCost += LoopCost;
1240 
1241     // Add the step value register, if it needs one.
1242     // TODO: The non-affine case isn't precisely modeled here.
1243     if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) {
1244       if (!Regs.count(AR->getOperand(1))) {
1245         RateRegister(AR->getOperand(1), Regs, L, SE, DT, TTI);
1246         if (isLoser())
1247           return;
1248       }
1249     }
1250   }
1251   ++C.NumRegs;
1252 
1253   // Rough heuristic; favor registers which don't require extra setup
1254   // instructions in the preheader.
1255   if (!isa<SCEVUnknown>(Reg) &&
1256       !isa<SCEVConstant>(Reg) &&
1257       !(isa<SCEVAddRecExpr>(Reg) &&
1258         (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) ||
1259          isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart()))))
1260     ++C.SetupCost;
1261 
1262   C.NumIVMuls += isa<SCEVMulExpr>(Reg) &&
1263                SE.hasComputableLoopEvolution(Reg, L);
1264 }
1265 
1266 /// Record this register in the set. If we haven't seen it before, rate
1267 /// it. Optional LoserRegs provides a way to declare any formula that refers to
1268 /// one of those regs an instant loser.
1269 void Cost::RatePrimaryRegister(const SCEV *Reg,
1270                                SmallPtrSetImpl<const SCEV *> &Regs,
1271                                const Loop *L,
1272                                ScalarEvolution &SE, DominatorTree &DT,
1273                                SmallPtrSetImpl<const SCEV *> *LoserRegs,
1274                                const TargetTransformInfo &TTI) {
1275   if (LoserRegs && LoserRegs->count(Reg)) {
1276     Lose();
1277     return;
1278   }
1279   if (Regs.insert(Reg).second) {
1280     RateRegister(Reg, Regs, L, SE, DT, TTI);
1281     if (LoserRegs && isLoser())
1282       LoserRegs->insert(Reg);
1283   }
1284 }
1285 
1286 void Cost::RateFormula(const TargetTransformInfo &TTI,
1287                        const Formula &F,
1288                        SmallPtrSetImpl<const SCEV *> &Regs,
1289                        const DenseSet<const SCEV *> &VisitedRegs,
1290                        const Loop *L,
1291                        ScalarEvolution &SE, DominatorTree &DT,
1292                        const LSRUse &LU,
1293                        SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1294   assert(F.isCanonical(*L) && "Cost is accurate only for canonical formula");
1295   // Tally up the registers.
1296   unsigned PrevAddRecCost = C.AddRecCost;
1297   unsigned PrevNumRegs = C.NumRegs;
1298   unsigned PrevNumBaseAdds = C.NumBaseAdds;
1299   if (const SCEV *ScaledReg = F.ScaledReg) {
1300     if (VisitedRegs.count(ScaledReg)) {
1301       Lose();
1302       return;
1303     }
1304     RatePrimaryRegister(ScaledReg, Regs, L, SE, DT, LoserRegs, TTI);
1305     if (isLoser())
1306       return;
1307   }
1308   for (const SCEV *BaseReg : F.BaseRegs) {
1309     if (VisitedRegs.count(BaseReg)) {
1310       Lose();
1311       return;
1312     }
1313     RatePrimaryRegister(BaseReg, Regs, L, SE, DT, LoserRegs, TTI);
1314     if (isLoser())
1315       return;
1316   }
1317 
1318   // Determine how many (unfolded) adds we'll need inside the loop.
1319   size_t NumBaseParts = F.getNumRegs();
1320   if (NumBaseParts > 1)
1321     // Do not count the base and a possible second register if the target
1322     // allows to fold 2 registers.
1323     C.NumBaseAdds +=
1324         NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(TTI, LU, F)));
1325   C.NumBaseAdds += (F.UnfoldedOffset != 0);
1326 
1327   // Accumulate non-free scaling amounts.
1328   C.ScaleCost += getScalingFactorCost(TTI, LU, F, *L);
1329 
1330   // Tally up the non-zero immediates.
1331   for (const LSRFixup &Fixup : LU.Fixups) {
1332     int64_t O = Fixup.Offset;
1333     int64_t Offset = (uint64_t)O + F.BaseOffset;
1334     if (F.BaseGV)
1335       C.ImmCost += 64; // Handle symbolic values conservatively.
1336                      // TODO: This should probably be the pointer size.
1337     else if (Offset != 0)
1338       C.ImmCost += APInt(64, Offset, true).getMinSignedBits();
1339 
1340     // Check with target if this offset with this instruction is
1341     // specifically not supported.
1342     if (LU.Kind == LSRUse::Address && Offset != 0 &&
1343         !isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV,
1344                               Offset, F.HasBaseReg, F.Scale, Fixup.UserInst))
1345       C.NumBaseAdds++;
1346   }
1347 
1348   // If we don't count instruction cost exit here.
1349   if (!InsnsCost) {
1350     assert(isValid() && "invalid cost");
1351     return;
1352   }
1353 
1354   // Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as
1355   // additional instruction (at least fill).
1356   unsigned TTIRegNum = TTI.getNumberOfRegisters(false) - 1;
1357   if (C.NumRegs > TTIRegNum) {
1358     // Cost already exceeded TTIRegNum, then only newly added register can add
1359     // new instructions.
1360     if (PrevNumRegs > TTIRegNum)
1361       C.Insns += (C.NumRegs - PrevNumRegs);
1362     else
1363       C.Insns += (C.NumRegs - TTIRegNum);
1364   }
1365 
1366   // If ICmpZero formula ends with not 0, it could not be replaced by
1367   // just add or sub. We'll need to compare final result of AddRec.
1368   // That means we'll need an additional instruction. But if the target can
1369   // macro-fuse a compare with a branch, don't count this extra instruction.
1370   // For -10 + {0, +, 1}:
1371   // i = i + 1;
1372   // cmp i, 10
1373   //
1374   // For {-10, +, 1}:
1375   // i = i + 1;
1376   if (LU.Kind == LSRUse::ICmpZero && !F.hasZeroEnd() && !TTI.canMacroFuseCmp())
1377     C.Insns++;
1378   // Each new AddRec adds 1 instruction to calculation.
1379   C.Insns += (C.AddRecCost - PrevAddRecCost);
1380 
1381   // BaseAdds adds instructions for unfolded registers.
1382   if (LU.Kind != LSRUse::ICmpZero)
1383     C.Insns += C.NumBaseAdds - PrevNumBaseAdds;
1384   assert(isValid() && "invalid cost");
1385 }
1386 
1387 /// Set this cost to a losing value.
1388 void Cost::Lose() {
1389   C.Insns = std::numeric_limits<unsigned>::max();
1390   C.NumRegs = std::numeric_limits<unsigned>::max();
1391   C.AddRecCost = std::numeric_limits<unsigned>::max();
1392   C.NumIVMuls = std::numeric_limits<unsigned>::max();
1393   C.NumBaseAdds = std::numeric_limits<unsigned>::max();
1394   C.ImmCost = std::numeric_limits<unsigned>::max();
1395   C.SetupCost = std::numeric_limits<unsigned>::max();
1396   C.ScaleCost = std::numeric_limits<unsigned>::max();
1397 }
1398 
1399 /// Choose the lower cost.
1400 bool Cost::isLess(Cost &Other, const TargetTransformInfo &TTI) {
1401   if (InsnsCost.getNumOccurrences() > 0 && InsnsCost &&
1402       C.Insns != Other.C.Insns)
1403     return C.Insns < Other.C.Insns;
1404   return TTI.isLSRCostLess(C, Other.C);
1405 }
1406 
1407 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1408 void Cost::print(raw_ostream &OS) const {
1409   if (InsnsCost)
1410     OS << C.Insns << " instruction" << (C.Insns == 1 ? " " : "s ");
1411   OS << C.NumRegs << " reg" << (C.NumRegs == 1 ? "" : "s");
1412   if (C.AddRecCost != 0)
1413     OS << ", with addrec cost " << C.AddRecCost;
1414   if (C.NumIVMuls != 0)
1415     OS << ", plus " << C.NumIVMuls << " IV mul"
1416        << (C.NumIVMuls == 1 ? "" : "s");
1417   if (C.NumBaseAdds != 0)
1418     OS << ", plus " << C.NumBaseAdds << " base add"
1419        << (C.NumBaseAdds == 1 ? "" : "s");
1420   if (C.ScaleCost != 0)
1421     OS << ", plus " << C.ScaleCost << " scale cost";
1422   if (C.ImmCost != 0)
1423     OS << ", plus " << C.ImmCost << " imm cost";
1424   if (C.SetupCost != 0)
1425     OS << ", plus " << C.SetupCost << " setup cost";
1426 }
1427 
1428 LLVM_DUMP_METHOD void Cost::dump() const {
1429   print(errs()); errs() << '\n';
1430 }
1431 #endif
1432 
1433 /// Test whether this fixup always uses its value outside of the given loop.
1434 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
1435   // PHI nodes use their value in their incoming blocks.
1436   if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
1437     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1438       if (PN->getIncomingValue(i) == OperandValToReplace &&
1439           L->contains(PN->getIncomingBlock(i)))
1440         return false;
1441     return true;
1442   }
1443 
1444   return !L->contains(UserInst);
1445 }
1446 
1447 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1448 void LSRFixup::print(raw_ostream &OS) const {
1449   OS << "UserInst=";
1450   // Store is common and interesting enough to be worth special-casing.
1451   if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
1452     OS << "store ";
1453     Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false);
1454   } else if (UserInst->getType()->isVoidTy())
1455     OS << UserInst->getOpcodeName();
1456   else
1457     UserInst->printAsOperand(OS, /*PrintType=*/false);
1458 
1459   OS << ", OperandValToReplace=";
1460   OperandValToReplace->printAsOperand(OS, /*PrintType=*/false);
1461 
1462   for (const Loop *PIL : PostIncLoops) {
1463     OS << ", PostIncLoop=";
1464     PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
1465   }
1466 
1467   if (Offset != 0)
1468     OS << ", Offset=" << Offset;
1469 }
1470 
1471 LLVM_DUMP_METHOD void LSRFixup::dump() const {
1472   print(errs()); errs() << '\n';
1473 }
1474 #endif
1475 
1476 /// Test whether this use as a formula which has the same registers as the given
1477 /// formula.
1478 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
1479   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1480   if (F.ScaledReg) Key.push_back(F.ScaledReg);
1481   // Unstable sort by host order ok, because this is only used for uniquifying.
1482   llvm::sort(Key.begin(), Key.end());
1483   return Uniquifier.count(Key);
1484 }
1485 
1486 /// The function returns a probability of selecting formula without Reg.
1487 float LSRUse::getNotSelectedProbability(const SCEV *Reg) const {
1488   unsigned FNum = 0;
1489   for (const Formula &F : Formulae)
1490     if (F.referencesReg(Reg))
1491       FNum++;
1492   return ((float)(Formulae.size() - FNum)) / Formulae.size();
1493 }
1494 
1495 /// If the given formula has not yet been inserted, add it to the list, and
1496 /// return true. Return false otherwise.  The formula must be in canonical form.
1497 bool LSRUse::InsertFormula(const Formula &F, const Loop &L) {
1498   assert(F.isCanonical(L) && "Invalid canonical representation");
1499 
1500   if (!Formulae.empty() && RigidFormula)
1501     return false;
1502 
1503   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1504   if (F.ScaledReg) Key.push_back(F.ScaledReg);
1505   // Unstable sort by host order ok, because this is only used for uniquifying.
1506   llvm::sort(Key.begin(), Key.end());
1507 
1508   if (!Uniquifier.insert(Key).second)
1509     return false;
1510 
1511   // Using a register to hold the value of 0 is not profitable.
1512   assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
1513          "Zero allocated in a scaled register!");
1514 #ifndef NDEBUG
1515   for (const SCEV *BaseReg : F.BaseRegs)
1516     assert(!BaseReg->isZero() && "Zero allocated in a base register!");
1517 #endif
1518 
1519   // Add the formula to the list.
1520   Formulae.push_back(F);
1521 
1522   // Record registers now being used by this use.
1523   Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1524   if (F.ScaledReg)
1525     Regs.insert(F.ScaledReg);
1526 
1527   return true;
1528 }
1529 
1530 /// Remove the given formula from this use's list.
1531 void LSRUse::DeleteFormula(Formula &F) {
1532   if (&F != &Formulae.back())
1533     std::swap(F, Formulae.back());
1534   Formulae.pop_back();
1535 }
1536 
1537 /// Recompute the Regs field, and update RegUses.
1538 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
1539   // Now that we've filtered out some formulae, recompute the Regs set.
1540   SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs);
1541   Regs.clear();
1542   for (const Formula &F : Formulae) {
1543     if (F.ScaledReg) Regs.insert(F.ScaledReg);
1544     Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1545   }
1546 
1547   // Update the RegTracker.
1548   for (const SCEV *S : OldRegs)
1549     if (!Regs.count(S))
1550       RegUses.dropRegister(S, LUIdx);
1551 }
1552 
1553 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1554 void LSRUse::print(raw_ostream &OS) const {
1555   OS << "LSR Use: Kind=";
1556   switch (Kind) {
1557   case Basic:    OS << "Basic"; break;
1558   case Special:  OS << "Special"; break;
1559   case ICmpZero: OS << "ICmpZero"; break;
1560   case Address:
1561     OS << "Address of ";
1562     if (AccessTy.MemTy->isPointerTy())
1563       OS << "pointer"; // the full pointer type could be really verbose
1564     else {
1565       OS << *AccessTy.MemTy;
1566     }
1567 
1568     OS << " in addrspace(" << AccessTy.AddrSpace << ')';
1569   }
1570 
1571   OS << ", Offsets={";
1572   bool NeedComma = false;
1573   for (const LSRFixup &Fixup : Fixups) {
1574     if (NeedComma) OS << ',';
1575     OS << Fixup.Offset;
1576     NeedComma = true;
1577   }
1578   OS << '}';
1579 
1580   if (AllFixupsOutsideLoop)
1581     OS << ", all-fixups-outside-loop";
1582 
1583   if (WidestFixupType)
1584     OS << ", widest fixup type: " << *WidestFixupType;
1585 }
1586 
1587 LLVM_DUMP_METHOD void LSRUse::dump() const {
1588   print(errs()); errs() << '\n';
1589 }
1590 #endif
1591 
1592 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1593                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1594                                  GlobalValue *BaseGV, int64_t BaseOffset,
1595                                  bool HasBaseReg, int64_t Scale,
1596                                  Instruction *Fixup/*= nullptr*/) {
1597   switch (Kind) {
1598   case LSRUse::Address:
1599     return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset,
1600                                      HasBaseReg, Scale, AccessTy.AddrSpace, Fixup);
1601 
1602   case LSRUse::ICmpZero:
1603     // There's not even a target hook for querying whether it would be legal to
1604     // fold a GV into an ICmp.
1605     if (BaseGV)
1606       return false;
1607 
1608     // ICmp only has two operands; don't allow more than two non-trivial parts.
1609     if (Scale != 0 && HasBaseReg && BaseOffset != 0)
1610       return false;
1611 
1612     // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
1613     // putting the scaled register in the other operand of the icmp.
1614     if (Scale != 0 && Scale != -1)
1615       return false;
1616 
1617     // If we have low-level target information, ask the target if it can fold an
1618     // integer immediate on an icmp.
1619     if (BaseOffset != 0) {
1620       // We have one of:
1621       // ICmpZero     BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset
1622       // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset
1623       // Offs is the ICmp immediate.
1624       if (Scale == 0)
1625         // The cast does the right thing with
1626         // std::numeric_limits<int64_t>::min().
1627         BaseOffset = -(uint64_t)BaseOffset;
1628       return TTI.isLegalICmpImmediate(BaseOffset);
1629     }
1630 
1631     // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg
1632     return true;
1633 
1634   case LSRUse::Basic:
1635     // Only handle single-register values.
1636     return !BaseGV && Scale == 0 && BaseOffset == 0;
1637 
1638   case LSRUse::Special:
1639     // Special case Basic to handle -1 scales.
1640     return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0;
1641   }
1642 
1643   llvm_unreachable("Invalid LSRUse Kind!");
1644 }
1645 
1646 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1647                                  int64_t MinOffset, int64_t MaxOffset,
1648                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1649                                  GlobalValue *BaseGV, int64_t BaseOffset,
1650                                  bool HasBaseReg, int64_t Scale) {
1651   // Check for overflow.
1652   if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) !=
1653       (MinOffset > 0))
1654     return false;
1655   MinOffset = (uint64_t)BaseOffset + MinOffset;
1656   if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) !=
1657       (MaxOffset > 0))
1658     return false;
1659   MaxOffset = (uint64_t)BaseOffset + MaxOffset;
1660 
1661   return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset,
1662                               HasBaseReg, Scale) &&
1663          isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset,
1664                               HasBaseReg, Scale);
1665 }
1666 
1667 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1668                                  int64_t MinOffset, int64_t MaxOffset,
1669                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1670                                  const Formula &F, const Loop &L) {
1671   // For the purpose of isAMCompletelyFolded either having a canonical formula
1672   // or a scale not equal to zero is correct.
1673   // Problems may arise from non canonical formulae having a scale == 0.
1674   // Strictly speaking it would best to just rely on canonical formulae.
1675   // However, when we generate the scaled formulae, we first check that the
1676   // scaling factor is profitable before computing the actual ScaledReg for
1677   // compile time sake.
1678   assert((F.isCanonical(L) || F.Scale != 0));
1679   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1680                               F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale);
1681 }
1682 
1683 /// Test whether we know how to expand the current formula.
1684 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1685                        int64_t MaxOffset, LSRUse::KindType Kind,
1686                        MemAccessTy AccessTy, GlobalValue *BaseGV,
1687                        int64_t BaseOffset, bool HasBaseReg, int64_t Scale) {
1688   // We know how to expand completely foldable formulae.
1689   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1690                               BaseOffset, HasBaseReg, Scale) ||
1691          // Or formulae that use a base register produced by a sum of base
1692          // registers.
1693          (Scale == 1 &&
1694           isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1695                                BaseGV, BaseOffset, true, 0));
1696 }
1697 
1698 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1699                        int64_t MaxOffset, LSRUse::KindType Kind,
1700                        MemAccessTy AccessTy, const Formula &F) {
1701   return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV,
1702                     F.BaseOffset, F.HasBaseReg, F.Scale);
1703 }
1704 
1705 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1706                                  const LSRUse &LU, const Formula &F) {
1707   // Target may want to look at the user instructions.
1708   if (LU.Kind == LSRUse::Address && TTI.LSRWithInstrQueries()) {
1709     for (const LSRFixup &Fixup : LU.Fixups)
1710       if (!isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV,
1711                                 (F.BaseOffset + Fixup.Offset), F.HasBaseReg,
1712                                 F.Scale, Fixup.UserInst))
1713         return false;
1714     return true;
1715   }
1716 
1717   return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1718                               LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg,
1719                               F.Scale);
1720 }
1721 
1722 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
1723                                      const LSRUse &LU, const Formula &F,
1724                                      const Loop &L) {
1725   if (!F.Scale)
1726     return 0;
1727 
1728   // If the use is not completely folded in that instruction, we will have to
1729   // pay an extra cost only for scale != 1.
1730   if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1731                             LU.AccessTy, F, L))
1732     return F.Scale != 1;
1733 
1734   switch (LU.Kind) {
1735   case LSRUse::Address: {
1736     // Check the scaling factor cost with both the min and max offsets.
1737     int ScaleCostMinOffset = TTI.getScalingFactorCost(
1738         LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg,
1739         F.Scale, LU.AccessTy.AddrSpace);
1740     int ScaleCostMaxOffset = TTI.getScalingFactorCost(
1741         LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg,
1742         F.Scale, LU.AccessTy.AddrSpace);
1743 
1744     assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 &&
1745            "Legal addressing mode has an illegal cost!");
1746     return std::max(ScaleCostMinOffset, ScaleCostMaxOffset);
1747   }
1748   case LSRUse::ICmpZero:
1749   case LSRUse::Basic:
1750   case LSRUse::Special:
1751     // The use is completely folded, i.e., everything is folded into the
1752     // instruction.
1753     return 0;
1754   }
1755 
1756   llvm_unreachable("Invalid LSRUse Kind!");
1757 }
1758 
1759 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1760                              LSRUse::KindType Kind, MemAccessTy AccessTy,
1761                              GlobalValue *BaseGV, int64_t BaseOffset,
1762                              bool HasBaseReg) {
1763   // Fast-path: zero is always foldable.
1764   if (BaseOffset == 0 && !BaseGV) return true;
1765 
1766   // Conservatively, create an address with an immediate and a
1767   // base and a scale.
1768   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1769 
1770   // Canonicalize a scale of 1 to a base register if the formula doesn't
1771   // already have a base register.
1772   if (!HasBaseReg && Scale == 1) {
1773     Scale = 0;
1774     HasBaseReg = true;
1775   }
1776 
1777   return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset,
1778                               HasBaseReg, Scale);
1779 }
1780 
1781 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1782                              ScalarEvolution &SE, int64_t MinOffset,
1783                              int64_t MaxOffset, LSRUse::KindType Kind,
1784                              MemAccessTy AccessTy, const SCEV *S,
1785                              bool HasBaseReg) {
1786   // Fast-path: zero is always foldable.
1787   if (S->isZero()) return true;
1788 
1789   // Conservatively, create an address with an immediate and a
1790   // base and a scale.
1791   int64_t BaseOffset = ExtractImmediate(S, SE);
1792   GlobalValue *BaseGV = ExtractSymbol(S, SE);
1793 
1794   // If there's anything else involved, it's not foldable.
1795   if (!S->isZero()) return false;
1796 
1797   // Fast-path: zero is always foldable.
1798   if (BaseOffset == 0 && !BaseGV) return true;
1799 
1800   // Conservatively, create an address with an immediate and a
1801   // base and a scale.
1802   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1803 
1804   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1805                               BaseOffset, HasBaseReg, Scale);
1806 }
1807 
1808 namespace {
1809 
1810 /// An individual increment in a Chain of IV increments.  Relate an IV user to
1811 /// an expression that computes the IV it uses from the IV used by the previous
1812 /// link in the Chain.
1813 ///
1814 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the
1815 /// original IVOperand. The head of the chain's IVOperand is only valid during
1816 /// chain collection, before LSR replaces IV users. During chain generation,
1817 /// IncExpr can be used to find the new IVOperand that computes the same
1818 /// expression.
1819 struct IVInc {
1820   Instruction *UserInst;
1821   Value* IVOperand;
1822   const SCEV *IncExpr;
1823 
1824   IVInc(Instruction *U, Value *O, const SCEV *E)
1825       : UserInst(U), IVOperand(O), IncExpr(E) {}
1826 };
1827 
1828 // The list of IV increments in program order.  We typically add the head of a
1829 // chain without finding subsequent links.
1830 struct IVChain {
1831   SmallVector<IVInc, 1> Incs;
1832   const SCEV *ExprBase = nullptr;
1833 
1834   IVChain() = default;
1835   IVChain(const IVInc &Head, const SCEV *Base)
1836       : Incs(1, Head), ExprBase(Base) {}
1837 
1838   using const_iterator = SmallVectorImpl<IVInc>::const_iterator;
1839 
1840   // Return the first increment in the chain.
1841   const_iterator begin() const {
1842     assert(!Incs.empty());
1843     return std::next(Incs.begin());
1844   }
1845   const_iterator end() const {
1846     return Incs.end();
1847   }
1848 
1849   // Returns true if this chain contains any increments.
1850   bool hasIncs() const { return Incs.size() >= 2; }
1851 
1852   // Add an IVInc to the end of this chain.
1853   void add(const IVInc &X) { Incs.push_back(X); }
1854 
1855   // Returns the last UserInst in the chain.
1856   Instruction *tailUserInst() const { return Incs.back().UserInst; }
1857 
1858   // Returns true if IncExpr can be profitably added to this chain.
1859   bool isProfitableIncrement(const SCEV *OperExpr,
1860                              const SCEV *IncExpr,
1861                              ScalarEvolution&);
1862 };
1863 
1864 /// Helper for CollectChains to track multiple IV increment uses.  Distinguish
1865 /// between FarUsers that definitely cross IV increments and NearUsers that may
1866 /// be used between IV increments.
1867 struct ChainUsers {
1868   SmallPtrSet<Instruction*, 4> FarUsers;
1869   SmallPtrSet<Instruction*, 4> NearUsers;
1870 };
1871 
1872 /// This class holds state for the main loop strength reduction logic.
1873 class LSRInstance {
1874   IVUsers &IU;
1875   ScalarEvolution &SE;
1876   DominatorTree &DT;
1877   LoopInfo &LI;
1878   const TargetTransformInfo &TTI;
1879   Loop *const L;
1880   bool Changed = false;
1881 
1882   /// This is the insert position that the current loop's induction variable
1883   /// increment should be placed. In simple loops, this is the latch block's
1884   /// terminator. But in more complicated cases, this is a position which will
1885   /// dominate all the in-loop post-increment users.
1886   Instruction *IVIncInsertPos = nullptr;
1887 
1888   /// Interesting factors between use strides.
1889   ///
1890   /// We explicitly use a SetVector which contains a SmallSet, instead of the
1891   /// default, a SmallDenseSet, because we need to use the full range of
1892   /// int64_ts, and there's currently no good way of doing that with
1893   /// SmallDenseSet.
1894   SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors;
1895 
1896   /// Interesting use types, to facilitate truncation reuse.
1897   SmallSetVector<Type *, 4> Types;
1898 
1899   /// The list of interesting uses.
1900   SmallVector<LSRUse, 16> Uses;
1901 
1902   /// Track which uses use which register candidates.
1903   RegUseTracker RegUses;
1904 
1905   // Limit the number of chains to avoid quadratic behavior. We don't expect to
1906   // have more than a few IV increment chains in a loop. Missing a Chain falls
1907   // back to normal LSR behavior for those uses.
1908   static const unsigned MaxChains = 8;
1909 
1910   /// IV users can form a chain of IV increments.
1911   SmallVector<IVChain, MaxChains> IVChainVec;
1912 
1913   /// IV users that belong to profitable IVChains.
1914   SmallPtrSet<Use*, MaxChains> IVIncSet;
1915 
1916   void OptimizeShadowIV();
1917   bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
1918   ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
1919   void OptimizeLoopTermCond();
1920 
1921   void ChainInstruction(Instruction *UserInst, Instruction *IVOper,
1922                         SmallVectorImpl<ChainUsers> &ChainUsersVec);
1923   void FinalizeChain(IVChain &Chain);
1924   void CollectChains();
1925   void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
1926                        SmallVectorImpl<WeakTrackingVH> &DeadInsts);
1927 
1928   void CollectInterestingTypesAndFactors();
1929   void CollectFixupsAndInitialFormulae();
1930 
1931   // Support for sharing of LSRUses between LSRFixups.
1932   using UseMapTy = DenseMap<LSRUse::SCEVUseKindPair, size_t>;
1933   UseMapTy UseMap;
1934 
1935   bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
1936                           LSRUse::KindType Kind, MemAccessTy AccessTy);
1937 
1938   std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind,
1939                                     MemAccessTy AccessTy);
1940 
1941   void DeleteUse(LSRUse &LU, size_t LUIdx);
1942 
1943   LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
1944 
1945   void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1946   void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1947   void CountRegisters(const Formula &F, size_t LUIdx);
1948   bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
1949 
1950   void CollectLoopInvariantFixupsAndFormulae();
1951 
1952   void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
1953                               unsigned Depth = 0);
1954 
1955   void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
1956                                   const Formula &Base, unsigned Depth,
1957                                   size_t Idx, bool IsScaledReg = false);
1958   void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
1959   void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
1960                                    const Formula &Base, size_t Idx,
1961                                    bool IsScaledReg = false);
1962   void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1963   void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx,
1964                                    const Formula &Base,
1965                                    const SmallVectorImpl<int64_t> &Worklist,
1966                                    size_t Idx, bool IsScaledReg = false);
1967   void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1968   void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1969   void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1970   void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
1971   void GenerateCrossUseConstantOffsets();
1972   void GenerateAllReuseFormulae();
1973 
1974   void FilterOutUndesirableDedicatedRegisters();
1975 
1976   size_t EstimateSearchSpaceComplexity() const;
1977   void NarrowSearchSpaceByDetectingSupersets();
1978   void NarrowSearchSpaceByCollapsingUnrolledCode();
1979   void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
1980   void NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
1981   void NarrowSearchSpaceByDeletingCostlyFormulas();
1982   void NarrowSearchSpaceByPickingWinnerRegs();
1983   void NarrowSearchSpaceUsingHeuristics();
1984 
1985   void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
1986                     Cost &SolutionCost,
1987                     SmallVectorImpl<const Formula *> &Workspace,
1988                     const Cost &CurCost,
1989                     const SmallPtrSet<const SCEV *, 16> &CurRegs,
1990                     DenseSet<const SCEV *> &VisitedRegs) const;
1991   void Solve(SmallVectorImpl<const Formula *> &Solution) const;
1992 
1993   BasicBlock::iterator
1994     HoistInsertPosition(BasicBlock::iterator IP,
1995                         const SmallVectorImpl<Instruction *> &Inputs) const;
1996   BasicBlock::iterator
1997     AdjustInsertPositionForExpand(BasicBlock::iterator IP,
1998                                   const LSRFixup &LF,
1999                                   const LSRUse &LU,
2000                                   SCEVExpander &Rewriter) const;
2001 
2002   Value *Expand(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
2003                 BasicBlock::iterator IP, SCEVExpander &Rewriter,
2004                 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2005   void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF,
2006                      const Formula &F, SCEVExpander &Rewriter,
2007                      SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2008   void Rewrite(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
2009                SCEVExpander &Rewriter,
2010                SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2011   void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution);
2012 
2013 public:
2014   LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT,
2015               LoopInfo &LI, const TargetTransformInfo &TTI);
2016 
2017   bool getChanged() const { return Changed; }
2018 
2019   void print_factors_and_types(raw_ostream &OS) const;
2020   void print_fixups(raw_ostream &OS) const;
2021   void print_uses(raw_ostream &OS) const;
2022   void print(raw_ostream &OS) const;
2023   void dump() const;
2024 };
2025 
2026 } // end anonymous namespace
2027 
2028 /// If IV is used in a int-to-float cast inside the loop then try to eliminate
2029 /// the cast operation.
2030 void LSRInstance::OptimizeShadowIV() {
2031   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
2032   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2033     return;
2034 
2035   for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
2036        UI != E; /* empty */) {
2037     IVUsers::const_iterator CandidateUI = UI;
2038     ++UI;
2039     Instruction *ShadowUse = CandidateUI->getUser();
2040     Type *DestTy = nullptr;
2041     bool IsSigned = false;
2042 
2043     /* If shadow use is a int->float cast then insert a second IV
2044        to eliminate this cast.
2045 
2046          for (unsigned i = 0; i < n; ++i)
2047            foo((double)i);
2048 
2049        is transformed into
2050 
2051          double d = 0.0;
2052          for (unsigned i = 0; i < n; ++i, ++d)
2053            foo(d);
2054     */
2055     if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) {
2056       IsSigned = false;
2057       DestTy = UCast->getDestTy();
2058     }
2059     else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) {
2060       IsSigned = true;
2061       DestTy = SCast->getDestTy();
2062     }
2063     if (!DestTy) continue;
2064 
2065     // If target does not support DestTy natively then do not apply
2066     // this transformation.
2067     if (!TTI.isTypeLegal(DestTy)) continue;
2068 
2069     PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
2070     if (!PH) continue;
2071     if (PH->getNumIncomingValues() != 2) continue;
2072 
2073     // If the calculation in integers overflows, the result in FP type will
2074     // differ. So we only can do this transformation if we are guaranteed to not
2075     // deal with overflowing values
2076     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PH));
2077     if (!AR) continue;
2078     if (IsSigned && !AR->hasNoSignedWrap()) continue;
2079     if (!IsSigned && !AR->hasNoUnsignedWrap()) continue;
2080 
2081     Type *SrcTy = PH->getType();
2082     int Mantissa = DestTy->getFPMantissaWidth();
2083     if (Mantissa == -1) continue;
2084     if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
2085       continue;
2086 
2087     unsigned Entry, Latch;
2088     if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
2089       Entry = 0;
2090       Latch = 1;
2091     } else {
2092       Entry = 1;
2093       Latch = 0;
2094     }
2095 
2096     ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
2097     if (!Init) continue;
2098     Constant *NewInit = ConstantFP::get(DestTy, IsSigned ?
2099                                         (double)Init->getSExtValue() :
2100                                         (double)Init->getZExtValue());
2101 
2102     BinaryOperator *Incr =
2103       dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
2104     if (!Incr) continue;
2105     if (Incr->getOpcode() != Instruction::Add
2106         && Incr->getOpcode() != Instruction::Sub)
2107       continue;
2108 
2109     /* Initialize new IV, double d = 0.0 in above example. */
2110     ConstantInt *C = nullptr;
2111     if (Incr->getOperand(0) == PH)
2112       C = dyn_cast<ConstantInt>(Incr->getOperand(1));
2113     else if (Incr->getOperand(1) == PH)
2114       C = dyn_cast<ConstantInt>(Incr->getOperand(0));
2115     else
2116       continue;
2117 
2118     if (!C) continue;
2119 
2120     // Ignore negative constants, as the code below doesn't handle them
2121     // correctly. TODO: Remove this restriction.
2122     if (!C->getValue().isStrictlyPositive()) continue;
2123 
2124     /* Add new PHINode. */
2125     PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH);
2126 
2127     /* create new increment. '++d' in above example. */
2128     Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
2129     BinaryOperator *NewIncr =
2130       BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
2131                                Instruction::FAdd : Instruction::FSub,
2132                              NewPH, CFP, "IV.S.next.", Incr);
2133 
2134     NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
2135     NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
2136 
2137     /* Remove cast operation */
2138     ShadowUse->replaceAllUsesWith(NewPH);
2139     ShadowUse->eraseFromParent();
2140     Changed = true;
2141     break;
2142   }
2143 }
2144 
2145 /// If Cond has an operand that is an expression of an IV, set the IV user and
2146 /// stride information and return true, otherwise return false.
2147 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
2148   for (IVStrideUse &U : IU)
2149     if (U.getUser() == Cond) {
2150       // NOTE: we could handle setcc instructions with multiple uses here, but
2151       // InstCombine does it as well for simple uses, it's not clear that it
2152       // occurs enough in real life to handle.
2153       CondUse = &U;
2154       return true;
2155     }
2156   return false;
2157 }
2158 
2159 /// Rewrite the loop's terminating condition if it uses a max computation.
2160 ///
2161 /// This is a narrow solution to a specific, but acute, problem. For loops
2162 /// like this:
2163 ///
2164 ///   i = 0;
2165 ///   do {
2166 ///     p[i] = 0.0;
2167 ///   } while (++i < n);
2168 ///
2169 /// the trip count isn't just 'n', because 'n' might not be positive. And
2170 /// unfortunately this can come up even for loops where the user didn't use
2171 /// a C do-while loop. For example, seemingly well-behaved top-test loops
2172 /// will commonly be lowered like this:
2173 ///
2174 ///   if (n > 0) {
2175 ///     i = 0;
2176 ///     do {
2177 ///       p[i] = 0.0;
2178 ///     } while (++i < n);
2179 ///   }
2180 ///
2181 /// and then it's possible for subsequent optimization to obscure the if
2182 /// test in such a way that indvars can't find it.
2183 ///
2184 /// When indvars can't find the if test in loops like this, it creates a
2185 /// max expression, which allows it to give the loop a canonical
2186 /// induction variable:
2187 ///
2188 ///   i = 0;
2189 ///   max = n < 1 ? 1 : n;
2190 ///   do {
2191 ///     p[i] = 0.0;
2192 ///   } while (++i != max);
2193 ///
2194 /// Canonical induction variables are necessary because the loop passes
2195 /// are designed around them. The most obvious example of this is the
2196 /// LoopInfo analysis, which doesn't remember trip count values. It
2197 /// expects to be able to rediscover the trip count each time it is
2198 /// needed, and it does this using a simple analysis that only succeeds if
2199 /// the loop has a canonical induction variable.
2200 ///
2201 /// However, when it comes time to generate code, the maximum operation
2202 /// can be quite costly, especially if it's inside of an outer loop.
2203 ///
2204 /// This function solves this problem by detecting this type of loop and
2205 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
2206 /// the instructions for the maximum computation.
2207 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
2208   // Check that the loop matches the pattern we're looking for.
2209   if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
2210       Cond->getPredicate() != CmpInst::ICMP_NE)
2211     return Cond;
2212 
2213   SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
2214   if (!Sel || !Sel->hasOneUse()) return Cond;
2215 
2216   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
2217   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2218     return Cond;
2219   const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
2220 
2221   // Add one to the backedge-taken count to get the trip count.
2222   const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount);
2223   if (IterationCount != SE.getSCEV(Sel)) return Cond;
2224 
2225   // Check for a max calculation that matches the pattern. There's no check
2226   // for ICMP_ULE here because the comparison would be with zero, which
2227   // isn't interesting.
2228   CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
2229   const SCEVNAryExpr *Max = nullptr;
2230   if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
2231     Pred = ICmpInst::ICMP_SLE;
2232     Max = S;
2233   } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
2234     Pred = ICmpInst::ICMP_SLT;
2235     Max = S;
2236   } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
2237     Pred = ICmpInst::ICMP_ULT;
2238     Max = U;
2239   } else {
2240     // No match; bail.
2241     return Cond;
2242   }
2243 
2244   // To handle a max with more than two operands, this optimization would
2245   // require additional checking and setup.
2246   if (Max->getNumOperands() != 2)
2247     return Cond;
2248 
2249   const SCEV *MaxLHS = Max->getOperand(0);
2250   const SCEV *MaxRHS = Max->getOperand(1);
2251 
2252   // ScalarEvolution canonicalizes constants to the left. For < and >, look
2253   // for a comparison with 1. For <= and >=, a comparison with zero.
2254   if (!MaxLHS ||
2255       (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
2256     return Cond;
2257 
2258   // Check the relevant induction variable for conformance to
2259   // the pattern.
2260   const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
2261   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
2262   if (!AR || !AR->isAffine() ||
2263       AR->getStart() != One ||
2264       AR->getStepRecurrence(SE) != One)
2265     return Cond;
2266 
2267   assert(AR->getLoop() == L &&
2268          "Loop condition operand is an addrec in a different loop!");
2269 
2270   // Check the right operand of the select, and remember it, as it will
2271   // be used in the new comparison instruction.
2272   Value *NewRHS = nullptr;
2273   if (ICmpInst::isTrueWhenEqual(Pred)) {
2274     // Look for n+1, and grab n.
2275     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
2276       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2277          if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2278            NewRHS = BO->getOperand(0);
2279     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
2280       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2281         if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2282           NewRHS = BO->getOperand(0);
2283     if (!NewRHS)
2284       return Cond;
2285   } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
2286     NewRHS = Sel->getOperand(1);
2287   else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
2288     NewRHS = Sel->getOperand(2);
2289   else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS))
2290     NewRHS = SU->getValue();
2291   else
2292     // Max doesn't match expected pattern.
2293     return Cond;
2294 
2295   // Determine the new comparison opcode. It may be signed or unsigned,
2296   // and the original comparison may be either equality or inequality.
2297   if (Cond->getPredicate() == CmpInst::ICMP_EQ)
2298     Pred = CmpInst::getInversePredicate(Pred);
2299 
2300   // Ok, everything looks ok to change the condition into an SLT or SGE and
2301   // delete the max calculation.
2302   ICmpInst *NewCond =
2303     new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
2304 
2305   // Delete the max calculation instructions.
2306   Cond->replaceAllUsesWith(NewCond);
2307   CondUse->setUser(NewCond);
2308   Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
2309   Cond->eraseFromParent();
2310   Sel->eraseFromParent();
2311   if (Cmp->use_empty())
2312     Cmp->eraseFromParent();
2313   return NewCond;
2314 }
2315 
2316 /// Change loop terminating condition to use the postinc iv when possible.
2317 void
2318 LSRInstance::OptimizeLoopTermCond() {
2319   SmallPtrSet<Instruction *, 4> PostIncs;
2320 
2321   // We need a different set of heuristics for rotated and non-rotated loops.
2322   // If a loop is rotated then the latch is also the backedge, so inserting
2323   // post-inc expressions just before the latch is ideal. To reduce live ranges
2324   // it also makes sense to rewrite terminating conditions to use post-inc
2325   // expressions.
2326   //
2327   // If the loop is not rotated then the latch is not a backedge; the latch
2328   // check is done in the loop head. Adding post-inc expressions before the
2329   // latch will cause overlapping live-ranges of pre-inc and post-inc expressions
2330   // in the loop body. In this case we do *not* want to use post-inc expressions
2331   // in the latch check, and we want to insert post-inc expressions before
2332   // the backedge.
2333   BasicBlock *LatchBlock = L->getLoopLatch();
2334   SmallVector<BasicBlock*, 8> ExitingBlocks;
2335   L->getExitingBlocks(ExitingBlocks);
2336   if (llvm::all_of(ExitingBlocks, [&LatchBlock](const BasicBlock *BB) {
2337         return LatchBlock != BB;
2338       })) {
2339     // The backedge doesn't exit the loop; treat this as a head-tested loop.
2340     IVIncInsertPos = LatchBlock->getTerminator();
2341     return;
2342   }
2343 
2344   // Otherwise treat this as a rotated loop.
2345   for (BasicBlock *ExitingBlock : ExitingBlocks) {
2346     // Get the terminating condition for the loop if possible.  If we
2347     // can, we want to change it to use a post-incremented version of its
2348     // induction variable, to allow coalescing the live ranges for the IV into
2349     // one register value.
2350 
2351     BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
2352     if (!TermBr)
2353       continue;
2354     // FIXME: Overly conservative, termination condition could be an 'or' etc..
2355     if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
2356       continue;
2357 
2358     // Search IVUsesByStride to find Cond's IVUse if there is one.
2359     IVStrideUse *CondUse = nullptr;
2360     ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
2361     if (!FindIVUserForCond(Cond, CondUse))
2362       continue;
2363 
2364     // If the trip count is computed in terms of a max (due to ScalarEvolution
2365     // being unable to find a sufficient guard, for example), change the loop
2366     // comparison to use SLT or ULT instead of NE.
2367     // One consequence of doing this now is that it disrupts the count-down
2368     // optimization. That's not always a bad thing though, because in such
2369     // cases it may still be worthwhile to avoid a max.
2370     Cond = OptimizeMax(Cond, CondUse);
2371 
2372     // If this exiting block dominates the latch block, it may also use
2373     // the post-inc value if it won't be shared with other uses.
2374     // Check for dominance.
2375     if (!DT.dominates(ExitingBlock, LatchBlock))
2376       continue;
2377 
2378     // Conservatively avoid trying to use the post-inc value in non-latch
2379     // exits if there may be pre-inc users in intervening blocks.
2380     if (LatchBlock != ExitingBlock)
2381       for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
2382         // Test if the use is reachable from the exiting block. This dominator
2383         // query is a conservative approximation of reachability.
2384         if (&*UI != CondUse &&
2385             !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
2386           // Conservatively assume there may be reuse if the quotient of their
2387           // strides could be a legal scale.
2388           const SCEV *A = IU.getStride(*CondUse, L);
2389           const SCEV *B = IU.getStride(*UI, L);
2390           if (!A || !B) continue;
2391           if (SE.getTypeSizeInBits(A->getType()) !=
2392               SE.getTypeSizeInBits(B->getType())) {
2393             if (SE.getTypeSizeInBits(A->getType()) >
2394                 SE.getTypeSizeInBits(B->getType()))
2395               B = SE.getSignExtendExpr(B, A->getType());
2396             else
2397               A = SE.getSignExtendExpr(A, B->getType());
2398           }
2399           if (const SCEVConstant *D =
2400                 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
2401             const ConstantInt *C = D->getValue();
2402             // Stride of one or negative one can have reuse with non-addresses.
2403             if (C->isOne() || C->isMinusOne())
2404               goto decline_post_inc;
2405             // Avoid weird situations.
2406             if (C->getValue().getMinSignedBits() >= 64 ||
2407                 C->getValue().isMinSignedValue())
2408               goto decline_post_inc;
2409             // Check for possible scaled-address reuse.
2410             MemAccessTy AccessTy = getAccessType(TTI, UI->getUser());
2411             int64_t Scale = C->getSExtValue();
2412             if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2413                                           /*BaseOffset=*/0,
2414                                           /*HasBaseReg=*/false, Scale,
2415                                           AccessTy.AddrSpace))
2416               goto decline_post_inc;
2417             Scale = -Scale;
2418             if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2419                                           /*BaseOffset=*/0,
2420                                           /*HasBaseReg=*/false, Scale,
2421                                           AccessTy.AddrSpace))
2422               goto decline_post_inc;
2423           }
2424         }
2425 
2426     DEBUG(dbgs() << "  Change loop exiting icmp to use postinc iv: "
2427                  << *Cond << '\n');
2428 
2429     // It's possible for the setcc instruction to be anywhere in the loop, and
2430     // possible for it to have multiple users.  If it is not immediately before
2431     // the exiting block branch, move it.
2432     if (&*++BasicBlock::iterator(Cond) != TermBr) {
2433       if (Cond->hasOneUse()) {
2434         Cond->moveBefore(TermBr);
2435       } else {
2436         // Clone the terminating condition and insert into the loopend.
2437         ICmpInst *OldCond = Cond;
2438         Cond = cast<ICmpInst>(Cond->clone());
2439         Cond->setName(L->getHeader()->getName() + ".termcond");
2440         ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond);
2441 
2442         // Clone the IVUse, as the old use still exists!
2443         CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
2444         TermBr->replaceUsesOfWith(OldCond, Cond);
2445       }
2446     }
2447 
2448     // If we get to here, we know that we can transform the setcc instruction to
2449     // use the post-incremented version of the IV, allowing us to coalesce the
2450     // live ranges for the IV correctly.
2451     CondUse->transformToPostInc(L);
2452     Changed = true;
2453 
2454     PostIncs.insert(Cond);
2455   decline_post_inc:;
2456   }
2457 
2458   // Determine an insertion point for the loop induction variable increment. It
2459   // must dominate all the post-inc comparisons we just set up, and it must
2460   // dominate the loop latch edge.
2461   IVIncInsertPos = L->getLoopLatch()->getTerminator();
2462   for (Instruction *Inst : PostIncs) {
2463     BasicBlock *BB =
2464       DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
2465                                     Inst->getParent());
2466     if (BB == Inst->getParent())
2467       IVIncInsertPos = Inst;
2468     else if (BB != IVIncInsertPos->getParent())
2469       IVIncInsertPos = BB->getTerminator();
2470   }
2471 }
2472 
2473 /// Determine if the given use can accommodate a fixup at the given offset and
2474 /// other details. If so, update the use and return true.
2475 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset,
2476                                      bool HasBaseReg, LSRUse::KindType Kind,
2477                                      MemAccessTy AccessTy) {
2478   int64_t NewMinOffset = LU.MinOffset;
2479   int64_t NewMaxOffset = LU.MaxOffset;
2480   MemAccessTy NewAccessTy = AccessTy;
2481 
2482   // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
2483   // something conservative, however this can pessimize in the case that one of
2484   // the uses will have all its uses outside the loop, for example.
2485   if (LU.Kind != Kind)
2486     return false;
2487 
2488   // Check for a mismatched access type, and fall back conservatively as needed.
2489   // TODO: Be less conservative when the type is similar and can use the same
2490   // addressing modes.
2491   if (Kind == LSRUse::Address) {
2492     if (AccessTy.MemTy != LU.AccessTy.MemTy) {
2493       NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(),
2494                                             AccessTy.AddrSpace);
2495     }
2496   }
2497 
2498   // Conservatively assume HasBaseReg is true for now.
2499   if (NewOffset < LU.MinOffset) {
2500     if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2501                           LU.MaxOffset - NewOffset, HasBaseReg))
2502       return false;
2503     NewMinOffset = NewOffset;
2504   } else if (NewOffset > LU.MaxOffset) {
2505     if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2506                           NewOffset - LU.MinOffset, HasBaseReg))
2507       return false;
2508     NewMaxOffset = NewOffset;
2509   }
2510 
2511   // Update the use.
2512   LU.MinOffset = NewMinOffset;
2513   LU.MaxOffset = NewMaxOffset;
2514   LU.AccessTy = NewAccessTy;
2515   return true;
2516 }
2517 
2518 /// Return an LSRUse index and an offset value for a fixup which needs the given
2519 /// expression, with the given kind and optional access type.  Either reuse an
2520 /// existing use or create a new one, as needed.
2521 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr,
2522                                                LSRUse::KindType Kind,
2523                                                MemAccessTy AccessTy) {
2524   const SCEV *Copy = Expr;
2525   int64_t Offset = ExtractImmediate(Expr, SE);
2526 
2527   // Basic uses can't accept any offset, for example.
2528   if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr,
2529                         Offset, /*HasBaseReg=*/ true)) {
2530     Expr = Copy;
2531     Offset = 0;
2532   }
2533 
2534   std::pair<UseMapTy::iterator, bool> P =
2535     UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0));
2536   if (!P.second) {
2537     // A use already existed with this base.
2538     size_t LUIdx = P.first->second;
2539     LSRUse &LU = Uses[LUIdx];
2540     if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
2541       // Reuse this use.
2542       return std::make_pair(LUIdx, Offset);
2543   }
2544 
2545   // Create a new use.
2546   size_t LUIdx = Uses.size();
2547   P.first->second = LUIdx;
2548   Uses.push_back(LSRUse(Kind, AccessTy));
2549   LSRUse &LU = Uses[LUIdx];
2550 
2551   LU.MinOffset = Offset;
2552   LU.MaxOffset = Offset;
2553   return std::make_pair(LUIdx, Offset);
2554 }
2555 
2556 /// Delete the given use from the Uses list.
2557 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) {
2558   if (&LU != &Uses.back())
2559     std::swap(LU, Uses.back());
2560   Uses.pop_back();
2561 
2562   // Update RegUses.
2563   RegUses.swapAndDropUse(LUIdx, Uses.size());
2564 }
2565 
2566 /// Look for a use distinct from OrigLU which is has a formula that has the same
2567 /// registers as the given formula.
2568 LSRUse *
2569 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
2570                                        const LSRUse &OrigLU) {
2571   // Search all uses for the formula. This could be more clever.
2572   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2573     LSRUse &LU = Uses[LUIdx];
2574     // Check whether this use is close enough to OrigLU, to see whether it's
2575     // worthwhile looking through its formulae.
2576     // Ignore ICmpZero uses because they may contain formulae generated by
2577     // GenerateICmpZeroScales, in which case adding fixup offsets may
2578     // be invalid.
2579     if (&LU != &OrigLU &&
2580         LU.Kind != LSRUse::ICmpZero &&
2581         LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
2582         LU.WidestFixupType == OrigLU.WidestFixupType &&
2583         LU.HasFormulaWithSameRegs(OrigF)) {
2584       // Scan through this use's formulae.
2585       for (const Formula &F : LU.Formulae) {
2586         // Check to see if this formula has the same registers and symbols
2587         // as OrigF.
2588         if (F.BaseRegs == OrigF.BaseRegs &&
2589             F.ScaledReg == OrigF.ScaledReg &&
2590             F.BaseGV == OrigF.BaseGV &&
2591             F.Scale == OrigF.Scale &&
2592             F.UnfoldedOffset == OrigF.UnfoldedOffset) {
2593           if (F.BaseOffset == 0)
2594             return &LU;
2595           // This is the formula where all the registers and symbols matched;
2596           // there aren't going to be any others. Since we declined it, we
2597           // can skip the rest of the formulae and proceed to the next LSRUse.
2598           break;
2599         }
2600       }
2601     }
2602   }
2603 
2604   // Nothing looked good.
2605   return nullptr;
2606 }
2607 
2608 void LSRInstance::CollectInterestingTypesAndFactors() {
2609   SmallSetVector<const SCEV *, 4> Strides;
2610 
2611   // Collect interesting types and strides.
2612   SmallVector<const SCEV *, 4> Worklist;
2613   for (const IVStrideUse &U : IU) {
2614     const SCEV *Expr = IU.getExpr(U);
2615 
2616     // Collect interesting types.
2617     Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
2618 
2619     // Add strides for mentioned loops.
2620     Worklist.push_back(Expr);
2621     do {
2622       const SCEV *S = Worklist.pop_back_val();
2623       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2624         if (AR->getLoop() == L)
2625           Strides.insert(AR->getStepRecurrence(SE));
2626         Worklist.push_back(AR->getStart());
2627       } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2628         Worklist.append(Add->op_begin(), Add->op_end());
2629       }
2630     } while (!Worklist.empty());
2631   }
2632 
2633   // Compute interesting factors from the set of interesting strides.
2634   for (SmallSetVector<const SCEV *, 4>::const_iterator
2635        I = Strides.begin(), E = Strides.end(); I != E; ++I)
2636     for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
2637          std::next(I); NewStrideIter != E; ++NewStrideIter) {
2638       const SCEV *OldStride = *I;
2639       const SCEV *NewStride = *NewStrideIter;
2640 
2641       if (SE.getTypeSizeInBits(OldStride->getType()) !=
2642           SE.getTypeSizeInBits(NewStride->getType())) {
2643         if (SE.getTypeSizeInBits(OldStride->getType()) >
2644             SE.getTypeSizeInBits(NewStride->getType()))
2645           NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
2646         else
2647           OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
2648       }
2649       if (const SCEVConstant *Factor =
2650             dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
2651                                                         SE, true))) {
2652         if (Factor->getAPInt().getMinSignedBits() <= 64)
2653           Factors.insert(Factor->getAPInt().getSExtValue());
2654       } else if (const SCEVConstant *Factor =
2655                    dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
2656                                                                NewStride,
2657                                                                SE, true))) {
2658         if (Factor->getAPInt().getMinSignedBits() <= 64)
2659           Factors.insert(Factor->getAPInt().getSExtValue());
2660       }
2661     }
2662 
2663   // If all uses use the same type, don't bother looking for truncation-based
2664   // reuse.
2665   if (Types.size() == 1)
2666     Types.clear();
2667 
2668   DEBUG(print_factors_and_types(dbgs()));
2669 }
2670 
2671 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in
2672 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to
2673 /// IVStrideUses, we could partially skip this.
2674 static User::op_iterator
2675 findIVOperand(User::op_iterator OI, User::op_iterator OE,
2676               Loop *L, ScalarEvolution &SE) {
2677   for(; OI != OE; ++OI) {
2678     if (Instruction *Oper = dyn_cast<Instruction>(*OI)) {
2679       if (!SE.isSCEVable(Oper->getType()))
2680         continue;
2681 
2682       if (const SCEVAddRecExpr *AR =
2683           dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) {
2684         if (AR->getLoop() == L)
2685           break;
2686       }
2687     }
2688   }
2689   return OI;
2690 }
2691 
2692 /// IVChain logic must consistenctly peek base TruncInst operands, so wrap it in
2693 /// a convenient helper.
2694 static Value *getWideOperand(Value *Oper) {
2695   if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper))
2696     return Trunc->getOperand(0);
2697   return Oper;
2698 }
2699 
2700 /// Return true if we allow an IV chain to include both types.
2701 static bool isCompatibleIVType(Value *LVal, Value *RVal) {
2702   Type *LType = LVal->getType();
2703   Type *RType = RVal->getType();
2704   return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy() &&
2705                               // Different address spaces means (possibly)
2706                               // different types of the pointer implementation,
2707                               // e.g. i16 vs i32 so disallow that.
2708                               (LType->getPointerAddressSpace() ==
2709                                RType->getPointerAddressSpace()));
2710 }
2711 
2712 /// Return an approximation of this SCEV expression's "base", or NULL for any
2713 /// constant. Returning the expression itself is conservative. Returning a
2714 /// deeper subexpression is more precise and valid as long as it isn't less
2715 /// complex than another subexpression. For expressions involving multiple
2716 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids
2717 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i],
2718 /// IVInc==b-a.
2719 ///
2720 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost
2721 /// SCEVUnknown, we simply return the rightmost SCEV operand.
2722 static const SCEV *getExprBase(const SCEV *S) {
2723   switch (S->getSCEVType()) {
2724   default: // uncluding scUnknown.
2725     return S;
2726   case scConstant:
2727     return nullptr;
2728   case scTruncate:
2729     return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand());
2730   case scZeroExtend:
2731     return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand());
2732   case scSignExtend:
2733     return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand());
2734   case scAddExpr: {
2735     // Skip over scaled operands (scMulExpr) to follow add operands as long as
2736     // there's nothing more complex.
2737     // FIXME: not sure if we want to recognize negation.
2738     const SCEVAddExpr *Add = cast<SCEVAddExpr>(S);
2739     for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()),
2740            E(Add->op_begin()); I != E; ++I) {
2741       const SCEV *SubExpr = *I;
2742       if (SubExpr->getSCEVType() == scAddExpr)
2743         return getExprBase(SubExpr);
2744 
2745       if (SubExpr->getSCEVType() != scMulExpr)
2746         return SubExpr;
2747     }
2748     return S; // all operands are scaled, be conservative.
2749   }
2750   case scAddRecExpr:
2751     return getExprBase(cast<SCEVAddRecExpr>(S)->getStart());
2752   }
2753 }
2754 
2755 /// Return true if the chain increment is profitable to expand into a loop
2756 /// invariant value, which may require its own register. A profitable chain
2757 /// increment will be an offset relative to the same base. We allow such offsets
2758 /// to potentially be used as chain increment as long as it's not obviously
2759 /// expensive to expand using real instructions.
2760 bool IVChain::isProfitableIncrement(const SCEV *OperExpr,
2761                                     const SCEV *IncExpr,
2762                                     ScalarEvolution &SE) {
2763   // Aggressively form chains when -stress-ivchain.
2764   if (StressIVChain)
2765     return true;
2766 
2767   // Do not replace a constant offset from IV head with a nonconstant IV
2768   // increment.
2769   if (!isa<SCEVConstant>(IncExpr)) {
2770     const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand));
2771     if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr)))
2772       return false;
2773   }
2774 
2775   SmallPtrSet<const SCEV*, 8> Processed;
2776   return !isHighCostExpansion(IncExpr, Processed, SE);
2777 }
2778 
2779 /// Return true if the number of registers needed for the chain is estimated to
2780 /// be less than the number required for the individual IV users. First prohibit
2781 /// any IV users that keep the IV live across increments (the Users set should
2782 /// be empty). Next count the number and type of increments in the chain.
2783 ///
2784 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't
2785 /// effectively use postinc addressing modes. Only consider it profitable it the
2786 /// increments can be computed in fewer registers when chained.
2787 ///
2788 /// TODO: Consider IVInc free if it's already used in another chains.
2789 static bool
2790 isProfitableChain(IVChain &Chain, SmallPtrSetImpl<Instruction*> &Users,
2791                   ScalarEvolution &SE, const TargetTransformInfo &TTI) {
2792   if (StressIVChain)
2793     return true;
2794 
2795   if (!Chain.hasIncs())
2796     return false;
2797 
2798   if (!Users.empty()) {
2799     DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n";
2800           for (Instruction *Inst : Users) {
2801             dbgs() << "  " << *Inst << "\n";
2802           });
2803     return false;
2804   }
2805   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
2806 
2807   // The chain itself may require a register, so intialize cost to 1.
2808   int cost = 1;
2809 
2810   // A complete chain likely eliminates the need for keeping the original IV in
2811   // a register. LSR does not currently know how to form a complete chain unless
2812   // the header phi already exists.
2813   if (isa<PHINode>(Chain.tailUserInst())
2814       && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) {
2815     --cost;
2816   }
2817   const SCEV *LastIncExpr = nullptr;
2818   unsigned NumConstIncrements = 0;
2819   unsigned NumVarIncrements = 0;
2820   unsigned NumReusedIncrements = 0;
2821   for (const IVInc &Inc : Chain) {
2822     if (Inc.IncExpr->isZero())
2823       continue;
2824 
2825     // Incrementing by zero or some constant is neutral. We assume constants can
2826     // be folded into an addressing mode or an add's immediate operand.
2827     if (isa<SCEVConstant>(Inc.IncExpr)) {
2828       ++NumConstIncrements;
2829       continue;
2830     }
2831 
2832     if (Inc.IncExpr == LastIncExpr)
2833       ++NumReusedIncrements;
2834     else
2835       ++NumVarIncrements;
2836 
2837     LastIncExpr = Inc.IncExpr;
2838   }
2839   // An IV chain with a single increment is handled by LSR's postinc
2840   // uses. However, a chain with multiple increments requires keeping the IV's
2841   // value live longer than it needs to be if chained.
2842   if (NumConstIncrements > 1)
2843     --cost;
2844 
2845   // Materializing increment expressions in the preheader that didn't exist in
2846   // the original code may cost a register. For example, sign-extended array
2847   // indices can produce ridiculous increments like this:
2848   // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64)))
2849   cost += NumVarIncrements;
2850 
2851   // Reusing variable increments likely saves a register to hold the multiple of
2852   // the stride.
2853   cost -= NumReusedIncrements;
2854 
2855   DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost
2856                << "\n");
2857 
2858   return cost < 0;
2859 }
2860 
2861 /// Add this IV user to an existing chain or make it the head of a new chain.
2862 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper,
2863                                    SmallVectorImpl<ChainUsers> &ChainUsersVec) {
2864   // When IVs are used as types of varying widths, they are generally converted
2865   // to a wider type with some uses remaining narrow under a (free) trunc.
2866   Value *const NextIV = getWideOperand(IVOper);
2867   const SCEV *const OperExpr = SE.getSCEV(NextIV);
2868   const SCEV *const OperExprBase = getExprBase(OperExpr);
2869 
2870   // Visit all existing chains. Check if its IVOper can be computed as a
2871   // profitable loop invariant increment from the last link in the Chain.
2872   unsigned ChainIdx = 0, NChains = IVChainVec.size();
2873   const SCEV *LastIncExpr = nullptr;
2874   for (; ChainIdx < NChains; ++ChainIdx) {
2875     IVChain &Chain = IVChainVec[ChainIdx];
2876 
2877     // Prune the solution space aggressively by checking that both IV operands
2878     // are expressions that operate on the same unscaled SCEVUnknown. This
2879     // "base" will be canceled by the subsequent getMinusSCEV call. Checking
2880     // first avoids creating extra SCEV expressions.
2881     if (!StressIVChain && Chain.ExprBase != OperExprBase)
2882       continue;
2883 
2884     Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand);
2885     if (!isCompatibleIVType(PrevIV, NextIV))
2886       continue;
2887 
2888     // A phi node terminates a chain.
2889     if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst()))
2890       continue;
2891 
2892     // The increment must be loop-invariant so it can be kept in a register.
2893     const SCEV *PrevExpr = SE.getSCEV(PrevIV);
2894     const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr);
2895     if (!SE.isLoopInvariant(IncExpr, L))
2896       continue;
2897 
2898     if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) {
2899       LastIncExpr = IncExpr;
2900       break;
2901     }
2902   }
2903   // If we haven't found a chain, create a new one, unless we hit the max. Don't
2904   // bother for phi nodes, because they must be last in the chain.
2905   if (ChainIdx == NChains) {
2906     if (isa<PHINode>(UserInst))
2907       return;
2908     if (NChains >= MaxChains && !StressIVChain) {
2909       DEBUG(dbgs() << "IV Chain Limit\n");
2910       return;
2911     }
2912     LastIncExpr = OperExpr;
2913     // IVUsers may have skipped over sign/zero extensions. We don't currently
2914     // attempt to form chains involving extensions unless they can be hoisted
2915     // into this loop's AddRec.
2916     if (!isa<SCEVAddRecExpr>(LastIncExpr))
2917       return;
2918     ++NChains;
2919     IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr),
2920                                  OperExprBase));
2921     ChainUsersVec.resize(NChains);
2922     DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst
2923                  << ") IV=" << *LastIncExpr << "\n");
2924   } else {
2925     DEBUG(dbgs() << "IV Chain#" << ChainIdx << "  Inc: (" << *UserInst
2926                  << ") IV+" << *LastIncExpr << "\n");
2927     // Add this IV user to the end of the chain.
2928     IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr));
2929   }
2930   IVChain &Chain = IVChainVec[ChainIdx];
2931 
2932   SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers;
2933   // This chain's NearUsers become FarUsers.
2934   if (!LastIncExpr->isZero()) {
2935     ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(),
2936                                             NearUsers.end());
2937     NearUsers.clear();
2938   }
2939 
2940   // All other uses of IVOperand become near uses of the chain.
2941   // We currently ignore intermediate values within SCEV expressions, assuming
2942   // they will eventually be used be the current chain, or can be computed
2943   // from one of the chain increments. To be more precise we could
2944   // transitively follow its user and only add leaf IV users to the set.
2945   for (User *U : IVOper->users()) {
2946     Instruction *OtherUse = dyn_cast<Instruction>(U);
2947     if (!OtherUse)
2948       continue;
2949     // Uses in the chain will no longer be uses if the chain is formed.
2950     // Include the head of the chain in this iteration (not Chain.begin()).
2951     IVChain::const_iterator IncIter = Chain.Incs.begin();
2952     IVChain::const_iterator IncEnd = Chain.Incs.end();
2953     for( ; IncIter != IncEnd; ++IncIter) {
2954       if (IncIter->UserInst == OtherUse)
2955         break;
2956     }
2957     if (IncIter != IncEnd)
2958       continue;
2959 
2960     if (SE.isSCEVable(OtherUse->getType())
2961         && !isa<SCEVUnknown>(SE.getSCEV(OtherUse))
2962         && IU.isIVUserOrOperand(OtherUse)) {
2963       continue;
2964     }
2965     NearUsers.insert(OtherUse);
2966   }
2967 
2968   // Since this user is part of the chain, it's no longer considered a use
2969   // of the chain.
2970   ChainUsersVec[ChainIdx].FarUsers.erase(UserInst);
2971 }
2972 
2973 /// Populate the vector of Chains.
2974 ///
2975 /// This decreases ILP at the architecture level. Targets with ample registers,
2976 /// multiple memory ports, and no register renaming probably don't want
2977 /// this. However, such targets should probably disable LSR altogether.
2978 ///
2979 /// The job of LSR is to make a reasonable choice of induction variables across
2980 /// the loop. Subsequent passes can easily "unchain" computation exposing more
2981 /// ILP *within the loop* if the target wants it.
2982 ///
2983 /// Finding the best IV chain is potentially a scheduling problem. Since LSR
2984 /// will not reorder memory operations, it will recognize this as a chain, but
2985 /// will generate redundant IV increments. Ideally this would be corrected later
2986 /// by a smart scheduler:
2987 ///        = A[i]
2988 ///        = A[i+x]
2989 /// A[i]   =
2990 /// A[i+x] =
2991 ///
2992 /// TODO: Walk the entire domtree within this loop, not just the path to the
2993 /// loop latch. This will discover chains on side paths, but requires
2994 /// maintaining multiple copies of the Chains state.
2995 void LSRInstance::CollectChains() {
2996   DEBUG(dbgs() << "Collecting IV Chains.\n");
2997   SmallVector<ChainUsers, 8> ChainUsersVec;
2998 
2999   SmallVector<BasicBlock *,8> LatchPath;
3000   BasicBlock *LoopHeader = L->getHeader();
3001   for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch());
3002        Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) {
3003     LatchPath.push_back(Rung->getBlock());
3004   }
3005   LatchPath.push_back(LoopHeader);
3006 
3007   // Walk the instruction stream from the loop header to the loop latch.
3008   for (BasicBlock *BB : reverse(LatchPath)) {
3009     for (Instruction &I : *BB) {
3010       // Skip instructions that weren't seen by IVUsers analysis.
3011       if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I))
3012         continue;
3013 
3014       // Ignore users that are part of a SCEV expression. This way we only
3015       // consider leaf IV Users. This effectively rediscovers a portion of
3016       // IVUsers analysis but in program order this time.
3017       if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I)))
3018           continue;
3019 
3020       // Remove this instruction from any NearUsers set it may be in.
3021       for (unsigned ChainIdx = 0, NChains = IVChainVec.size();
3022            ChainIdx < NChains; ++ChainIdx) {
3023         ChainUsersVec[ChainIdx].NearUsers.erase(&I);
3024       }
3025       // Search for operands that can be chained.
3026       SmallPtrSet<Instruction*, 4> UniqueOperands;
3027       User::op_iterator IVOpEnd = I.op_end();
3028       User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE);
3029       while (IVOpIter != IVOpEnd) {
3030         Instruction *IVOpInst = cast<Instruction>(*IVOpIter);
3031         if (UniqueOperands.insert(IVOpInst).second)
3032           ChainInstruction(&I, IVOpInst, ChainUsersVec);
3033         IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
3034       }
3035     } // Continue walking down the instructions.
3036   } // Continue walking down the domtree.
3037   // Visit phi backedges to determine if the chain can generate the IV postinc.
3038   for (PHINode &PN : L->getHeader()->phis()) {
3039     if (!SE.isSCEVable(PN.getType()))
3040       continue;
3041 
3042     Instruction *IncV =
3043         dyn_cast<Instruction>(PN.getIncomingValueForBlock(L->getLoopLatch()));
3044     if (IncV)
3045       ChainInstruction(&PN, IncV, ChainUsersVec);
3046   }
3047   // Remove any unprofitable chains.
3048   unsigned ChainIdx = 0;
3049   for (unsigned UsersIdx = 0, NChains = IVChainVec.size();
3050        UsersIdx < NChains; ++UsersIdx) {
3051     if (!isProfitableChain(IVChainVec[UsersIdx],
3052                            ChainUsersVec[UsersIdx].FarUsers, SE, TTI))
3053       continue;
3054     // Preserve the chain at UsesIdx.
3055     if (ChainIdx != UsersIdx)
3056       IVChainVec[ChainIdx] = IVChainVec[UsersIdx];
3057     FinalizeChain(IVChainVec[ChainIdx]);
3058     ++ChainIdx;
3059   }
3060   IVChainVec.resize(ChainIdx);
3061 }
3062 
3063 void LSRInstance::FinalizeChain(IVChain &Chain) {
3064   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
3065   DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n");
3066 
3067   for (const IVInc &Inc : Chain) {
3068     DEBUG(dbgs() << "        Inc: " << *Inc.UserInst << "\n");
3069     auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand);
3070     assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand");
3071     IVIncSet.insert(UseI);
3072   }
3073 }
3074 
3075 /// Return true if the IVInc can be folded into an addressing mode.
3076 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst,
3077                              Value *Operand, const TargetTransformInfo &TTI) {
3078   const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr);
3079   if (!IncConst || !isAddressUse(TTI, UserInst, Operand))
3080     return false;
3081 
3082   if (IncConst->getAPInt().getMinSignedBits() > 64)
3083     return false;
3084 
3085   MemAccessTy AccessTy = getAccessType(TTI, UserInst);
3086   int64_t IncOffset = IncConst->getValue()->getSExtValue();
3087   if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr,
3088                         IncOffset, /*HaseBaseReg=*/false))
3089     return false;
3090 
3091   return true;
3092 }
3093 
3094 /// Generate an add or subtract for each IVInc in a chain to materialize the IV
3095 /// user's operand from the previous IV user's operand.
3096 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
3097                                   SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
3098   // Find the new IVOperand for the head of the chain. It may have been replaced
3099   // by LSR.
3100   const IVInc &Head = Chain.Incs[0];
3101   User::op_iterator IVOpEnd = Head.UserInst->op_end();
3102   // findIVOperand returns IVOpEnd if it can no longer find a valid IV user.
3103   User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(),
3104                                              IVOpEnd, L, SE);
3105   Value *IVSrc = nullptr;
3106   while (IVOpIter != IVOpEnd) {
3107     IVSrc = getWideOperand(*IVOpIter);
3108 
3109     // If this operand computes the expression that the chain needs, we may use
3110     // it. (Check this after setting IVSrc which is used below.)
3111     //
3112     // Note that if Head.IncExpr is wider than IVSrc, then this phi is too
3113     // narrow for the chain, so we can no longer use it. We do allow using a
3114     // wider phi, assuming the LSR checked for free truncation. In that case we
3115     // should already have a truncate on this operand such that
3116     // getSCEV(IVSrc) == IncExpr.
3117     if (SE.getSCEV(*IVOpIter) == Head.IncExpr
3118         || SE.getSCEV(IVSrc) == Head.IncExpr) {
3119       break;
3120     }
3121     IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
3122   }
3123   if (IVOpIter == IVOpEnd) {
3124     // Gracefully give up on this chain.
3125     DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n");
3126     return;
3127   }
3128 
3129   DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n");
3130   Type *IVTy = IVSrc->getType();
3131   Type *IntTy = SE.getEffectiveSCEVType(IVTy);
3132   const SCEV *LeftOverExpr = nullptr;
3133   for (const IVInc &Inc : Chain) {
3134     Instruction *InsertPt = Inc.UserInst;
3135     if (isa<PHINode>(InsertPt))
3136       InsertPt = L->getLoopLatch()->getTerminator();
3137 
3138     // IVOper will replace the current IV User's operand. IVSrc is the IV
3139     // value currently held in a register.
3140     Value *IVOper = IVSrc;
3141     if (!Inc.IncExpr->isZero()) {
3142       // IncExpr was the result of subtraction of two narrow values, so must
3143       // be signed.
3144       const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy);
3145       LeftOverExpr = LeftOverExpr ?
3146         SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr;
3147     }
3148     if (LeftOverExpr && !LeftOverExpr->isZero()) {
3149       // Expand the IV increment.
3150       Rewriter.clearPostInc();
3151       Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt);
3152       const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc),
3153                                              SE.getUnknown(IncV));
3154       IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt);
3155 
3156       // If an IV increment can't be folded, use it as the next IV value.
3157       if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) {
3158         assert(IVTy == IVOper->getType() && "inconsistent IV increment type");
3159         IVSrc = IVOper;
3160         LeftOverExpr = nullptr;
3161       }
3162     }
3163     Type *OperTy = Inc.IVOperand->getType();
3164     if (IVTy != OperTy) {
3165       assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) &&
3166              "cannot extend a chained IV");
3167       IRBuilder<> Builder(InsertPt);
3168       IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain");
3169     }
3170     Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper);
3171     DeadInsts.emplace_back(Inc.IVOperand);
3172   }
3173   // If LSR created a new, wider phi, we may also replace its postinc. We only
3174   // do this if we also found a wide value for the head of the chain.
3175   if (isa<PHINode>(Chain.tailUserInst())) {
3176     for (PHINode &Phi : L->getHeader()->phis()) {
3177       if (!isCompatibleIVType(&Phi, IVSrc))
3178         continue;
3179       Instruction *PostIncV = dyn_cast<Instruction>(
3180           Phi.getIncomingValueForBlock(L->getLoopLatch()));
3181       if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc)))
3182         continue;
3183       Value *IVOper = IVSrc;
3184       Type *PostIncTy = PostIncV->getType();
3185       if (IVTy != PostIncTy) {
3186         assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types");
3187         IRBuilder<> Builder(L->getLoopLatch()->getTerminator());
3188         Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc());
3189         IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain");
3190       }
3191       Phi.replaceUsesOfWith(PostIncV, IVOper);
3192       DeadInsts.emplace_back(PostIncV);
3193     }
3194   }
3195 }
3196 
3197 void LSRInstance::CollectFixupsAndInitialFormulae() {
3198   for (const IVStrideUse &U : IU) {
3199     Instruction *UserInst = U.getUser();
3200     // Skip IV users that are part of profitable IV Chains.
3201     User::op_iterator UseI =
3202         find(UserInst->operands(), U.getOperandValToReplace());
3203     assert(UseI != UserInst->op_end() && "cannot find IV operand");
3204     if (IVIncSet.count(UseI)) {
3205       DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n');
3206       continue;
3207     }
3208 
3209     LSRUse::KindType Kind = LSRUse::Basic;
3210     MemAccessTy AccessTy;
3211     if (isAddressUse(TTI, UserInst, U.getOperandValToReplace())) {
3212       Kind = LSRUse::Address;
3213       AccessTy = getAccessType(TTI, UserInst);
3214     }
3215 
3216     const SCEV *S = IU.getExpr(U);
3217     PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops();
3218 
3219     // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
3220     // (N - i == 0), and this allows (N - i) to be the expression that we work
3221     // with rather than just N or i, so we can consider the register
3222     // requirements for both N and i at the same time. Limiting this code to
3223     // equality icmps is not a problem because all interesting loops use
3224     // equality icmps, thanks to IndVarSimplify.
3225     if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst))
3226       if (CI->isEquality()) {
3227         // Swap the operands if needed to put the OperandValToReplace on the
3228         // left, for consistency.
3229         Value *NV = CI->getOperand(1);
3230         if (NV == U.getOperandValToReplace()) {
3231           CI->setOperand(1, CI->getOperand(0));
3232           CI->setOperand(0, NV);
3233           NV = CI->getOperand(1);
3234           Changed = true;
3235         }
3236 
3237         // x == y  -->  x - y == 0
3238         const SCEV *N = SE.getSCEV(NV);
3239         if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) {
3240           // S is normalized, so normalize N before folding it into S
3241           // to keep the result normalized.
3242           N = normalizeForPostIncUse(N, TmpPostIncLoops, SE);
3243           Kind = LSRUse::ICmpZero;
3244           S = SE.getMinusSCEV(N, S);
3245         }
3246 
3247         // -1 and the negations of all interesting strides (except the negation
3248         // of -1) are now also interesting.
3249         for (size_t i = 0, e = Factors.size(); i != e; ++i)
3250           if (Factors[i] != -1)
3251             Factors.insert(-(uint64_t)Factors[i]);
3252         Factors.insert(-1);
3253       }
3254 
3255     // Get or create an LSRUse.
3256     std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
3257     size_t LUIdx = P.first;
3258     int64_t Offset = P.second;
3259     LSRUse &LU = Uses[LUIdx];
3260 
3261     // Record the fixup.
3262     LSRFixup &LF = LU.getNewFixup();
3263     LF.UserInst = UserInst;
3264     LF.OperandValToReplace = U.getOperandValToReplace();
3265     LF.PostIncLoops = TmpPostIncLoops;
3266     LF.Offset = Offset;
3267     LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3268 
3269     if (!LU.WidestFixupType ||
3270         SE.getTypeSizeInBits(LU.WidestFixupType) <
3271         SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3272       LU.WidestFixupType = LF.OperandValToReplace->getType();
3273 
3274     // If this is the first use of this LSRUse, give it a formula.
3275     if (LU.Formulae.empty()) {
3276       InsertInitialFormula(S, LU, LUIdx);
3277       CountRegisters(LU.Formulae.back(), LUIdx);
3278     }
3279   }
3280 
3281   DEBUG(print_fixups(dbgs()));
3282 }
3283 
3284 /// Insert a formula for the given expression into the given use, separating out
3285 /// loop-variant portions from loop-invariant and loop-computable portions.
3286 void
3287 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
3288   // Mark uses whose expressions cannot be expanded.
3289   if (!isSafeToExpand(S, SE))
3290     LU.RigidFormula = true;
3291 
3292   Formula F;
3293   F.initialMatch(S, L, SE);
3294   bool Inserted = InsertFormula(LU, LUIdx, F);
3295   assert(Inserted && "Initial formula already exists!"); (void)Inserted;
3296 }
3297 
3298 /// Insert a simple single-register formula for the given expression into the
3299 /// given use.
3300 void
3301 LSRInstance::InsertSupplementalFormula(const SCEV *S,
3302                                        LSRUse &LU, size_t LUIdx) {
3303   Formula F;
3304   F.BaseRegs.push_back(S);
3305   F.HasBaseReg = true;
3306   bool Inserted = InsertFormula(LU, LUIdx, F);
3307   assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
3308 }
3309 
3310 /// Note which registers are used by the given formula, updating RegUses.
3311 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
3312   if (F.ScaledReg)
3313     RegUses.countRegister(F.ScaledReg, LUIdx);
3314   for (const SCEV *BaseReg : F.BaseRegs)
3315     RegUses.countRegister(BaseReg, LUIdx);
3316 }
3317 
3318 /// If the given formula has not yet been inserted, add it to the list, and
3319 /// return true. Return false otherwise.
3320 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
3321   // Do not insert formula that we will not be able to expand.
3322   assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) &&
3323          "Formula is illegal");
3324 
3325   if (!LU.InsertFormula(F, *L))
3326     return false;
3327 
3328   CountRegisters(F, LUIdx);
3329   return true;
3330 }
3331 
3332 /// Check for other uses of loop-invariant values which we're tracking. These
3333 /// other uses will pin these values in registers, making them less profitable
3334 /// for elimination.
3335 /// TODO: This currently misses non-constant addrec step registers.
3336 /// TODO: Should this give more weight to users inside the loop?
3337 void
3338 LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
3339   SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
3340   SmallPtrSet<const SCEV *, 32> Visited;
3341 
3342   while (!Worklist.empty()) {
3343     const SCEV *S = Worklist.pop_back_val();
3344 
3345     // Don't process the same SCEV twice
3346     if (!Visited.insert(S).second)
3347       continue;
3348 
3349     if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
3350       Worklist.append(N->op_begin(), N->op_end());
3351     else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
3352       Worklist.push_back(C->getOperand());
3353     else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
3354       Worklist.push_back(D->getLHS());
3355       Worklist.push_back(D->getRHS());
3356     } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) {
3357       const Value *V = US->getValue();
3358       if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
3359         // Look for instructions defined outside the loop.
3360         if (L->contains(Inst)) continue;
3361       } else if (isa<UndefValue>(V))
3362         // Undef doesn't have a live range, so it doesn't matter.
3363         continue;
3364       for (const Use &U : V->uses()) {
3365         const Instruction *UserInst = dyn_cast<Instruction>(U.getUser());
3366         // Ignore non-instructions.
3367         if (!UserInst)
3368           continue;
3369         // Ignore instructions in other functions (as can happen with
3370         // Constants).
3371         if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
3372           continue;
3373         // Ignore instructions not dominated by the loop.
3374         const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
3375           UserInst->getParent() :
3376           cast<PHINode>(UserInst)->getIncomingBlock(
3377             PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
3378         if (!DT.dominates(L->getHeader(), UseBB))
3379           continue;
3380         // Don't bother if the instruction is in a BB which ends in an EHPad.
3381         if (UseBB->getTerminator()->isEHPad())
3382           continue;
3383         // Don't bother rewriting PHIs in catchswitch blocks.
3384         if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator()))
3385           continue;
3386         // Ignore uses which are part of other SCEV expressions, to avoid
3387         // analyzing them multiple times.
3388         if (SE.isSCEVable(UserInst->getType())) {
3389           const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
3390           // If the user is a no-op, look through to its uses.
3391           if (!isa<SCEVUnknown>(UserS))
3392             continue;
3393           if (UserS == US) {
3394             Worklist.push_back(
3395               SE.getUnknown(const_cast<Instruction *>(UserInst)));
3396             continue;
3397           }
3398         }
3399         // Ignore icmp instructions which are already being analyzed.
3400         if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
3401           unsigned OtherIdx = !U.getOperandNo();
3402           Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
3403           if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L))
3404             continue;
3405         }
3406 
3407         std::pair<size_t, int64_t> P = getUse(
3408             S, LSRUse::Basic, MemAccessTy());
3409         size_t LUIdx = P.first;
3410         int64_t Offset = P.second;
3411         LSRUse &LU = Uses[LUIdx];
3412         LSRFixup &LF = LU.getNewFixup();
3413         LF.UserInst = const_cast<Instruction *>(UserInst);
3414         LF.OperandValToReplace = U;
3415         LF.Offset = Offset;
3416         LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3417         if (!LU.WidestFixupType ||
3418             SE.getTypeSizeInBits(LU.WidestFixupType) <
3419             SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3420           LU.WidestFixupType = LF.OperandValToReplace->getType();
3421         InsertSupplementalFormula(US, LU, LUIdx);
3422         CountRegisters(LU.Formulae.back(), Uses.size() - 1);
3423         break;
3424       }
3425     }
3426   }
3427 }
3428 
3429 /// Split S into subexpressions which can be pulled out into separate
3430 /// registers. If C is non-null, multiply each subexpression by C.
3431 ///
3432 /// Return remainder expression after factoring the subexpressions captured by
3433 /// Ops. If Ops is complete, return NULL.
3434 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C,
3435                                    SmallVectorImpl<const SCEV *> &Ops,
3436                                    const Loop *L,
3437                                    ScalarEvolution &SE,
3438                                    unsigned Depth = 0) {
3439   // Arbitrarily cap recursion to protect compile time.
3440   if (Depth >= 3)
3441     return S;
3442 
3443   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3444     // Break out add operands.
3445     for (const SCEV *S : Add->operands()) {
3446       const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1);
3447       if (Remainder)
3448         Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3449     }
3450     return nullptr;
3451   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
3452     // Split a non-zero base out of an addrec.
3453     if (AR->getStart()->isZero() || !AR->isAffine())
3454       return S;
3455 
3456     const SCEV *Remainder = CollectSubexprs(AR->getStart(),
3457                                             C, Ops, L, SE, Depth+1);
3458     // Split the non-zero AddRec unless it is part of a nested recurrence that
3459     // does not pertain to this loop.
3460     if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) {
3461       Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3462       Remainder = nullptr;
3463     }
3464     if (Remainder != AR->getStart()) {
3465       if (!Remainder)
3466         Remainder = SE.getConstant(AR->getType(), 0);
3467       return SE.getAddRecExpr(Remainder,
3468                               AR->getStepRecurrence(SE),
3469                               AR->getLoop(),
3470                               //FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
3471                               SCEV::FlagAnyWrap);
3472     }
3473   } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3474     // Break (C * (a + b + c)) into C*a + C*b + C*c.
3475     if (Mul->getNumOperands() != 2)
3476       return S;
3477     if (const SCEVConstant *Op0 =
3478         dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3479       C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0;
3480       const SCEV *Remainder =
3481         CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1);
3482       if (Remainder)
3483         Ops.push_back(SE.getMulExpr(C, Remainder));
3484       return nullptr;
3485     }
3486   }
3487   return S;
3488 }
3489 
3490 /// Return true if the SCEV represents a value that may end up as a
3491 /// post-increment operation.
3492 static bool mayUsePostIncMode(const TargetTransformInfo &TTI,
3493                               LSRUse &LU, const SCEV *S, const Loop *L,
3494                               ScalarEvolution &SE) {
3495   if (LU.Kind != LSRUse::Address ||
3496       !LU.AccessTy.getType()->isIntOrIntVectorTy())
3497     return false;
3498   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S);
3499   if (!AR)
3500     return false;
3501   const SCEV *LoopStep = AR->getStepRecurrence(SE);
3502   if (!isa<SCEVConstant>(LoopStep))
3503     return false;
3504   if (LU.AccessTy.getType()->getScalarSizeInBits() !=
3505       LoopStep->getType()->getScalarSizeInBits())
3506     return false;
3507   // Check if a post-indexed load/store can be used.
3508   if (TTI.isIndexedLoadLegal(TTI.MIM_PostInc, AR->getType()) ||
3509       TTI.isIndexedStoreLegal(TTI.MIM_PostInc, AR->getType())) {
3510     const SCEV *LoopStart = AR->getStart();
3511     if (!isa<SCEVConstant>(LoopStart) && SE.isLoopInvariant(LoopStart, L))
3512       return true;
3513   }
3514   return false;
3515 }
3516 
3517 /// \brief Helper function for LSRInstance::GenerateReassociations.
3518 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
3519                                              const Formula &Base,
3520                                              unsigned Depth, size_t Idx,
3521                                              bool IsScaledReg) {
3522   const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3523   // Don't generate reassociations for the base register of a value that
3524   // may generate a post-increment operator. The reason is that the
3525   // reassociations cause extra base+register formula to be created,
3526   // and possibly chosen, but the post-increment is more efficient.
3527   if (TTI.shouldFavorPostInc() && mayUsePostIncMode(TTI, LU, BaseReg, L, SE))
3528     return;
3529   SmallVector<const SCEV *, 8> AddOps;
3530   const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE);
3531   if (Remainder)
3532     AddOps.push_back(Remainder);
3533 
3534   if (AddOps.size() == 1)
3535     return;
3536 
3537   for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
3538                                                      JE = AddOps.end();
3539        J != JE; ++J) {
3540     // Loop-variant "unknown" values are uninteresting; we won't be able to
3541     // do anything meaningful with them.
3542     if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L))
3543       continue;
3544 
3545     // Don't pull a constant into a register if the constant could be folded
3546     // into an immediate field.
3547     if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3548                          LU.AccessTy, *J, Base.getNumRegs() > 1))
3549       continue;
3550 
3551     // Collect all operands except *J.
3552     SmallVector<const SCEV *, 8> InnerAddOps(
3553         ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J);
3554     InnerAddOps.append(std::next(J),
3555                        ((const SmallVector<const SCEV *, 8> &)AddOps).end());
3556 
3557     // Don't leave just a constant behind in a register if the constant could
3558     // be folded into an immediate field.
3559     if (InnerAddOps.size() == 1 &&
3560         isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3561                          LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1))
3562       continue;
3563 
3564     const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
3565     if (InnerSum->isZero())
3566       continue;
3567     Formula F = Base;
3568 
3569     // Add the remaining pieces of the add back into the new formula.
3570     const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum);
3571     if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 &&
3572         TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3573                                 InnerSumSC->getValue()->getZExtValue())) {
3574       F.UnfoldedOffset =
3575           (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue();
3576       if (IsScaledReg)
3577         F.ScaledReg = nullptr;
3578       else
3579         F.BaseRegs.erase(F.BaseRegs.begin() + Idx);
3580     } else if (IsScaledReg)
3581       F.ScaledReg = InnerSum;
3582     else
3583       F.BaseRegs[Idx] = InnerSum;
3584 
3585     // Add J as its own register, or an unfolded immediate.
3586     const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J);
3587     if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 &&
3588         TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3589                                 SC->getValue()->getZExtValue()))
3590       F.UnfoldedOffset =
3591           (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue();
3592     else
3593       F.BaseRegs.push_back(*J);
3594     // We may have changed the number of register in base regs, adjust the
3595     // formula accordingly.
3596     F.canonicalize(*L);
3597 
3598     if (InsertFormula(LU, LUIdx, F))
3599       // If that formula hadn't been seen before, recurse to find more like
3600       // it.
3601       GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth + 1);
3602   }
3603 }
3604 
3605 /// Split out subexpressions from adds and the bases of addrecs.
3606 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
3607                                          Formula Base, unsigned Depth) {
3608   assert(Base.isCanonical(*L) && "Input must be in the canonical form");
3609   // Arbitrarily cap recursion to protect compile time.
3610   if (Depth >= 3)
3611     return;
3612 
3613   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3614     GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i);
3615 
3616   if (Base.Scale == 1)
3617     GenerateReassociationsImpl(LU, LUIdx, Base, Depth,
3618                                /* Idx */ -1, /* IsScaledReg */ true);
3619 }
3620 
3621 ///  Generate a formula consisting of all of the loop-dominating registers added
3622 /// into a single register.
3623 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
3624                                        Formula Base) {
3625   // This method is only interesting on a plurality of registers.
3626   if (Base.BaseRegs.size() + (Base.Scale == 1) <= 1)
3627     return;
3628 
3629   // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before
3630   // processing the formula.
3631   Base.unscale();
3632   Formula F = Base;
3633   F.BaseRegs.clear();
3634   SmallVector<const SCEV *, 4> Ops;
3635   for (const SCEV *BaseReg : Base.BaseRegs) {
3636     if (SE.properlyDominates(BaseReg, L->getHeader()) &&
3637         !SE.hasComputableLoopEvolution(BaseReg, L))
3638       Ops.push_back(BaseReg);
3639     else
3640       F.BaseRegs.push_back(BaseReg);
3641   }
3642   if (Ops.size() > 1) {
3643     const SCEV *Sum = SE.getAddExpr(Ops);
3644     // TODO: If Sum is zero, it probably means ScalarEvolution missed an
3645     // opportunity to fold something. For now, just ignore such cases
3646     // rather than proceed with zero in a register.
3647     if (!Sum->isZero()) {
3648       F.BaseRegs.push_back(Sum);
3649       F.canonicalize(*L);
3650       (void)InsertFormula(LU, LUIdx, F);
3651     }
3652   }
3653 }
3654 
3655 /// \brief Helper function for LSRInstance::GenerateSymbolicOffsets.
3656 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
3657                                               const Formula &Base, size_t Idx,
3658                                               bool IsScaledReg) {
3659   const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3660   GlobalValue *GV = ExtractSymbol(G, SE);
3661   if (G->isZero() || !GV)
3662     return;
3663   Formula F = Base;
3664   F.BaseGV = GV;
3665   if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3666     return;
3667   if (IsScaledReg)
3668     F.ScaledReg = G;
3669   else
3670     F.BaseRegs[Idx] = G;
3671   (void)InsertFormula(LU, LUIdx, F);
3672 }
3673 
3674 /// Generate reuse formulae using symbolic offsets.
3675 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
3676                                           Formula Base) {
3677   // We can't add a symbolic offset if the address already contains one.
3678   if (Base.BaseGV) return;
3679 
3680   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3681     GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i);
3682   if (Base.Scale == 1)
3683     GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1,
3684                                 /* IsScaledReg */ true);
3685 }
3686 
3687 /// \brief Helper function for LSRInstance::GenerateConstantOffsets.
3688 void LSRInstance::GenerateConstantOffsetsImpl(
3689     LSRUse &LU, unsigned LUIdx, const Formula &Base,
3690     const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) {
3691   const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3692   for (int64_t Offset : Worklist) {
3693     Formula F = Base;
3694     F.BaseOffset = (uint64_t)Base.BaseOffset - Offset;
3695     if (isLegalUse(TTI, LU.MinOffset - Offset, LU.MaxOffset - Offset, LU.Kind,
3696                    LU.AccessTy, F)) {
3697       // Add the offset to the base register.
3698       const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G);
3699       // If it cancelled out, drop the base register, otherwise update it.
3700       if (NewG->isZero()) {
3701         if (IsScaledReg) {
3702           F.Scale = 0;
3703           F.ScaledReg = nullptr;
3704         } else
3705           F.deleteBaseReg(F.BaseRegs[Idx]);
3706         F.canonicalize(*L);
3707       } else if (IsScaledReg)
3708         F.ScaledReg = NewG;
3709       else
3710         F.BaseRegs[Idx] = NewG;
3711 
3712       (void)InsertFormula(LU, LUIdx, F);
3713     }
3714   }
3715 
3716   int64_t Imm = ExtractImmediate(G, SE);
3717   if (G->isZero() || Imm == 0)
3718     return;
3719   Formula F = Base;
3720   F.BaseOffset = (uint64_t)F.BaseOffset + Imm;
3721   if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3722     return;
3723   if (IsScaledReg)
3724     F.ScaledReg = G;
3725   else
3726     F.BaseRegs[Idx] = G;
3727   (void)InsertFormula(LU, LUIdx, F);
3728 }
3729 
3730 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
3731 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
3732                                           Formula Base) {
3733   // TODO: For now, just add the min and max offset, because it usually isn't
3734   // worthwhile looking at everything inbetween.
3735   SmallVector<int64_t, 2> Worklist;
3736   Worklist.push_back(LU.MinOffset);
3737   if (LU.MaxOffset != LU.MinOffset)
3738     Worklist.push_back(LU.MaxOffset);
3739 
3740   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3741     GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i);
3742   if (Base.Scale == 1)
3743     GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1,
3744                                 /* IsScaledReg */ true);
3745 }
3746 
3747 /// For ICmpZero, check to see if we can scale up the comparison. For example, x
3748 /// == y -> x*c == y*c.
3749 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
3750                                          Formula Base) {
3751   if (LU.Kind != LSRUse::ICmpZero) return;
3752 
3753   // Determine the integer type for the base formula.
3754   Type *IntTy = Base.getType();
3755   if (!IntTy) return;
3756   if (SE.getTypeSizeInBits(IntTy) > 64) return;
3757 
3758   // Don't do this if there is more than one offset.
3759   if (LU.MinOffset != LU.MaxOffset) return;
3760 
3761   // Check if transformation is valid. It is illegal to multiply pointer.
3762   if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy())
3763     return;
3764   for (const SCEV *BaseReg : Base.BaseRegs)
3765     if (BaseReg->getType()->isPointerTy())
3766       return;
3767   assert(!Base.BaseGV && "ICmpZero use is not legal!");
3768 
3769   // Check each interesting stride.
3770   for (int64_t Factor : Factors) {
3771     // Check that the multiplication doesn't overflow.
3772     if (Base.BaseOffset == std::numeric_limits<int64_t>::min() && Factor == -1)
3773       continue;
3774     int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor;
3775     if (NewBaseOffset / Factor != Base.BaseOffset)
3776       continue;
3777     // If the offset will be truncated at this use, check that it is in bounds.
3778     if (!IntTy->isPointerTy() &&
3779         !ConstantInt::isValueValidForType(IntTy, NewBaseOffset))
3780       continue;
3781 
3782     // Check that multiplying with the use offset doesn't overflow.
3783     int64_t Offset = LU.MinOffset;
3784     if (Offset == std::numeric_limits<int64_t>::min() && Factor == -1)
3785       continue;
3786     Offset = (uint64_t)Offset * Factor;
3787     if (Offset / Factor != LU.MinOffset)
3788       continue;
3789     // If the offset will be truncated at this use, check that it is in bounds.
3790     if (!IntTy->isPointerTy() &&
3791         !ConstantInt::isValueValidForType(IntTy, Offset))
3792       continue;
3793 
3794     Formula F = Base;
3795     F.BaseOffset = NewBaseOffset;
3796 
3797     // Check that this scale is legal.
3798     if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F))
3799       continue;
3800 
3801     // Compensate for the use having MinOffset built into it.
3802     F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset;
3803 
3804     const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3805 
3806     // Check that multiplying with each base register doesn't overflow.
3807     for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
3808       F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
3809       if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
3810         goto next;
3811     }
3812 
3813     // Check that multiplying with the scaled register doesn't overflow.
3814     if (F.ScaledReg) {
3815       F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
3816       if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
3817         continue;
3818     }
3819 
3820     // Check that multiplying with the unfolded offset doesn't overflow.
3821     if (F.UnfoldedOffset != 0) {
3822       if (F.UnfoldedOffset == std::numeric_limits<int64_t>::min() &&
3823           Factor == -1)
3824         continue;
3825       F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor;
3826       if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset)
3827         continue;
3828       // If the offset will be truncated, check that it is in bounds.
3829       if (!IntTy->isPointerTy() &&
3830           !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset))
3831         continue;
3832     }
3833 
3834     // If we make it here and it's legal, add it.
3835     (void)InsertFormula(LU, LUIdx, F);
3836   next:;
3837   }
3838 }
3839 
3840 /// Generate stride factor reuse formulae by making use of scaled-offset address
3841 /// modes, for example.
3842 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
3843   // Determine the integer type for the base formula.
3844   Type *IntTy = Base.getType();
3845   if (!IntTy) return;
3846 
3847   // If this Formula already has a scaled register, we can't add another one.
3848   // Try to unscale the formula to generate a better scale.
3849   if (Base.Scale != 0 && !Base.unscale())
3850     return;
3851 
3852   assert(Base.Scale == 0 && "unscale did not did its job!");
3853 
3854   // Check each interesting stride.
3855   for (int64_t Factor : Factors) {
3856     Base.Scale = Factor;
3857     Base.HasBaseReg = Base.BaseRegs.size() > 1;
3858     // Check whether this scale is going to be legal.
3859     if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
3860                     Base)) {
3861       // As a special-case, handle special out-of-loop Basic users specially.
3862       // TODO: Reconsider this special case.
3863       if (LU.Kind == LSRUse::Basic &&
3864           isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special,
3865                      LU.AccessTy, Base) &&
3866           LU.AllFixupsOutsideLoop)
3867         LU.Kind = LSRUse::Special;
3868       else
3869         continue;
3870     }
3871     // For an ICmpZero, negating a solitary base register won't lead to
3872     // new solutions.
3873     if (LU.Kind == LSRUse::ICmpZero &&
3874         !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV)
3875       continue;
3876     // For each addrec base reg, if its loop is current loop, apply the scale.
3877     for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
3878       const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i]);
3879       if (AR && (AR->getLoop() == L || LU.AllFixupsOutsideLoop)) {
3880         const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3881         if (FactorS->isZero())
3882           continue;
3883         // Divide out the factor, ignoring high bits, since we'll be
3884         // scaling the value back up in the end.
3885         if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) {
3886           // TODO: This could be optimized to avoid all the copying.
3887           Formula F = Base;
3888           F.ScaledReg = Quotient;
3889           F.deleteBaseReg(F.BaseRegs[i]);
3890           // The canonical representation of 1*reg is reg, which is already in
3891           // Base. In that case, do not try to insert the formula, it will be
3892           // rejected anyway.
3893           if (F.Scale == 1 && (F.BaseRegs.empty() ||
3894                                (AR->getLoop() != L && LU.AllFixupsOutsideLoop)))
3895             continue;
3896           // If AllFixupsOutsideLoop is true and F.Scale is 1, we may generate
3897           // non canonical Formula with ScaledReg's loop not being L.
3898           if (F.Scale == 1 && LU.AllFixupsOutsideLoop)
3899             F.canonicalize(*L);
3900           (void)InsertFormula(LU, LUIdx, F);
3901         }
3902       }
3903     }
3904   }
3905 }
3906 
3907 /// Generate reuse formulae from different IV types.
3908 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
3909   // Don't bother truncating symbolic values.
3910   if (Base.BaseGV) return;
3911 
3912   // Determine the integer type for the base formula.
3913   Type *DstTy = Base.getType();
3914   if (!DstTy) return;
3915   DstTy = SE.getEffectiveSCEVType(DstTy);
3916 
3917   for (Type *SrcTy : Types) {
3918     if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) {
3919       Formula F = Base;
3920 
3921       if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy);
3922       for (const SCEV *&BaseReg : F.BaseRegs)
3923         BaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy);
3924 
3925       // TODO: This assumes we've done basic processing on all uses and
3926       // have an idea what the register usage is.
3927       if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
3928         continue;
3929 
3930       F.canonicalize(*L);
3931       (void)InsertFormula(LU, LUIdx, F);
3932     }
3933   }
3934 }
3935 
3936 namespace {
3937 
3938 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer
3939 /// modifications so that the search phase doesn't have to worry about the data
3940 /// structures moving underneath it.
3941 struct WorkItem {
3942   size_t LUIdx;
3943   int64_t Imm;
3944   const SCEV *OrigReg;
3945 
3946   WorkItem(size_t LI, int64_t I, const SCEV *R)
3947       : LUIdx(LI), Imm(I), OrigReg(R) {}
3948 
3949   void print(raw_ostream &OS) const;
3950   void dump() const;
3951 };
3952 
3953 } // end anonymous namespace
3954 
3955 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3956 void WorkItem::print(raw_ostream &OS) const {
3957   OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
3958      << " , add offset " << Imm;
3959 }
3960 
3961 LLVM_DUMP_METHOD void WorkItem::dump() const {
3962   print(errs()); errs() << '\n';
3963 }
3964 #endif
3965 
3966 /// Look for registers which are a constant distance apart and try to form reuse
3967 /// opportunities between them.
3968 void LSRInstance::GenerateCrossUseConstantOffsets() {
3969   // Group the registers by their value without any added constant offset.
3970   using ImmMapTy = std::map<int64_t, const SCEV *>;
3971 
3972   DenseMap<const SCEV *, ImmMapTy> Map;
3973   DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
3974   SmallVector<const SCEV *, 8> Sequence;
3975   for (const SCEV *Use : RegUses) {
3976     const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify.
3977     int64_t Imm = ExtractImmediate(Reg, SE);
3978     auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy()));
3979     if (Pair.second)
3980       Sequence.push_back(Reg);
3981     Pair.first->second.insert(std::make_pair(Imm, Use));
3982     UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use);
3983   }
3984 
3985   // Now examine each set of registers with the same base value. Build up
3986   // a list of work to do and do the work in a separate step so that we're
3987   // not adding formulae and register counts while we're searching.
3988   SmallVector<WorkItem, 32> WorkItems;
3989   SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
3990   for (const SCEV *Reg : Sequence) {
3991     const ImmMapTy &Imms = Map.find(Reg)->second;
3992 
3993     // It's not worthwhile looking for reuse if there's only one offset.
3994     if (Imms.size() == 1)
3995       continue;
3996 
3997     DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
3998           for (const auto &Entry : Imms)
3999             dbgs() << ' ' << Entry.first;
4000           dbgs() << '\n');
4001 
4002     // Examine each offset.
4003     for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
4004          J != JE; ++J) {
4005       const SCEV *OrigReg = J->second;
4006 
4007       int64_t JImm = J->first;
4008       const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
4009 
4010       if (!isa<SCEVConstant>(OrigReg) &&
4011           UsedByIndicesMap[Reg].count() == 1) {
4012         DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n');
4013         continue;
4014       }
4015 
4016       // Conservatively examine offsets between this orig reg a few selected
4017       // other orig regs.
4018       ImmMapTy::const_iterator OtherImms[] = {
4019         Imms.begin(), std::prev(Imms.end()),
4020         Imms.lower_bound((Imms.begin()->first + std::prev(Imms.end())->first) /
4021                          2)
4022       };
4023       for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
4024         ImmMapTy::const_iterator M = OtherImms[i];
4025         if (M == J || M == JE) continue;
4026 
4027         // Compute the difference between the two.
4028         int64_t Imm = (uint64_t)JImm - M->first;
4029         for (unsigned LUIdx : UsedByIndices.set_bits())
4030           // Make a memo of this use, offset, and register tuple.
4031           if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second)
4032             WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
4033       }
4034     }
4035   }
4036 
4037   Map.clear();
4038   Sequence.clear();
4039   UsedByIndicesMap.clear();
4040   UniqueItems.clear();
4041 
4042   // Now iterate through the worklist and add new formulae.
4043   for (const WorkItem &WI : WorkItems) {
4044     size_t LUIdx = WI.LUIdx;
4045     LSRUse &LU = Uses[LUIdx];
4046     int64_t Imm = WI.Imm;
4047     const SCEV *OrigReg = WI.OrigReg;
4048 
4049     Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
4050     const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
4051     unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
4052 
4053     // TODO: Use a more targeted data structure.
4054     for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
4055       Formula F = LU.Formulae[L];
4056       // FIXME: The code for the scaled and unscaled registers looks
4057       // very similar but slightly different. Investigate if they
4058       // could be merged. That way, we would not have to unscale the
4059       // Formula.
4060       F.unscale();
4061       // Use the immediate in the scaled register.
4062       if (F.ScaledReg == OrigReg) {
4063         int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale;
4064         // Don't create 50 + reg(-50).
4065         if (F.referencesReg(SE.getSCEV(
4066                    ConstantInt::get(IntTy, -(uint64_t)Offset))))
4067           continue;
4068         Formula NewF = F;
4069         NewF.BaseOffset = Offset;
4070         if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
4071                         NewF))
4072           continue;
4073         NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
4074 
4075         // If the new scale is a constant in a register, and adding the constant
4076         // value to the immediate would produce a value closer to zero than the
4077         // immediate itself, then the formula isn't worthwhile.
4078         if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
4079           if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) &&
4080               (C->getAPInt().abs() * APInt(BitWidth, F.Scale))
4081                   .ule(std::abs(NewF.BaseOffset)))
4082             continue;
4083 
4084         // OK, looks good.
4085         NewF.canonicalize(*this->L);
4086         (void)InsertFormula(LU, LUIdx, NewF);
4087       } else {
4088         // Use the immediate in a base register.
4089         for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
4090           const SCEV *BaseReg = F.BaseRegs[N];
4091           if (BaseReg != OrigReg)
4092             continue;
4093           Formula NewF = F;
4094           NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm;
4095           if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset,
4096                           LU.Kind, LU.AccessTy, NewF)) {
4097             if (TTI.shouldFavorPostInc() &&
4098                 mayUsePostIncMode(TTI, LU, OrigReg, this->L, SE))
4099               continue;
4100             if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm))
4101               continue;
4102             NewF = F;
4103             NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm;
4104           }
4105           NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
4106 
4107           // If the new formula has a constant in a register, and adding the
4108           // constant value to the immediate would produce a value closer to
4109           // zero than the immediate itself, then the formula isn't worthwhile.
4110           for (const SCEV *NewReg : NewF.BaseRegs)
4111             if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg))
4112               if ((C->getAPInt() + NewF.BaseOffset)
4113                       .abs()
4114                       .slt(std::abs(NewF.BaseOffset)) &&
4115                   (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >=
4116                       countTrailingZeros<uint64_t>(NewF.BaseOffset))
4117                 goto skip_formula;
4118 
4119           // Ok, looks good.
4120           NewF.canonicalize(*this->L);
4121           (void)InsertFormula(LU, LUIdx, NewF);
4122           break;
4123         skip_formula:;
4124         }
4125       }
4126     }
4127   }
4128 }
4129 
4130 /// Generate formulae for each use.
4131 void
4132 LSRInstance::GenerateAllReuseFormulae() {
4133   // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
4134   // queries are more precise.
4135   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4136     LSRUse &LU = Uses[LUIdx];
4137     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4138       GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
4139     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4140       GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
4141   }
4142   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4143     LSRUse &LU = Uses[LUIdx];
4144     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4145       GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
4146     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4147       GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
4148     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4149       GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
4150     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4151       GenerateScales(LU, LUIdx, LU.Formulae[i]);
4152   }
4153   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4154     LSRUse &LU = Uses[LUIdx];
4155     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4156       GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
4157   }
4158 
4159   GenerateCrossUseConstantOffsets();
4160 
4161   DEBUG(dbgs() << "\n"
4162                   "After generating reuse formulae:\n";
4163         print_uses(dbgs()));
4164 }
4165 
4166 /// If there are multiple formulae with the same set of registers used
4167 /// by other uses, pick the best one and delete the others.
4168 void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
4169   DenseSet<const SCEV *> VisitedRegs;
4170   SmallPtrSet<const SCEV *, 16> Regs;
4171   SmallPtrSet<const SCEV *, 16> LoserRegs;
4172 #ifndef NDEBUG
4173   bool ChangedFormulae = false;
4174 #endif
4175 
4176   // Collect the best formula for each unique set of shared registers. This
4177   // is reset for each use.
4178   using BestFormulaeTy =
4179       DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>;
4180 
4181   BestFormulaeTy BestFormulae;
4182 
4183   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4184     LSRUse &LU = Uses[LUIdx];
4185     DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n');
4186 
4187     bool Any = false;
4188     for (size_t FIdx = 0, NumForms = LU.Formulae.size();
4189          FIdx != NumForms; ++FIdx) {
4190       Formula &F = LU.Formulae[FIdx];
4191 
4192       // Some formulas are instant losers. For example, they may depend on
4193       // nonexistent AddRecs from other loops. These need to be filtered
4194       // immediately, otherwise heuristics could choose them over others leading
4195       // to an unsatisfactory solution. Passing LoserRegs into RateFormula here
4196       // avoids the need to recompute this information across formulae using the
4197       // same bad AddRec. Passing LoserRegs is also essential unless we remove
4198       // the corresponding bad register from the Regs set.
4199       Cost CostF;
4200       Regs.clear();
4201       CostF.RateFormula(TTI, F, Regs, VisitedRegs, L, SE, DT, LU, &LoserRegs);
4202       if (CostF.isLoser()) {
4203         // During initial formula generation, undesirable formulae are generated
4204         // by uses within other loops that have some non-trivial address mode or
4205         // use the postinc form of the IV. LSR needs to provide these formulae
4206         // as the basis of rediscovering the desired formula that uses an AddRec
4207         // corresponding to the existing phi. Once all formulae have been
4208         // generated, these initial losers may be pruned.
4209         DEBUG(dbgs() << "  Filtering loser "; F.print(dbgs());
4210               dbgs() << "\n");
4211       }
4212       else {
4213         SmallVector<const SCEV *, 4> Key;
4214         for (const SCEV *Reg : F.BaseRegs) {
4215           if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
4216             Key.push_back(Reg);
4217         }
4218         if (F.ScaledReg &&
4219             RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
4220           Key.push_back(F.ScaledReg);
4221         // Unstable sort by host order ok, because this is only used for
4222         // uniquifying.
4223         llvm::sort(Key.begin(), Key.end());
4224 
4225         std::pair<BestFormulaeTy::const_iterator, bool> P =
4226           BestFormulae.insert(std::make_pair(Key, FIdx));
4227         if (P.second)
4228           continue;
4229 
4230         Formula &Best = LU.Formulae[P.first->second];
4231 
4232         Cost CostBest;
4233         Regs.clear();
4234         CostBest.RateFormula(TTI, Best, Regs, VisitedRegs, L, SE, DT, LU);
4235         if (CostF.isLess(CostBest, TTI))
4236           std::swap(F, Best);
4237         DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
4238               dbgs() << "\n"
4239                         "    in favor of formula "; Best.print(dbgs());
4240               dbgs() << '\n');
4241       }
4242 #ifndef NDEBUG
4243       ChangedFormulae = true;
4244 #endif
4245       LU.DeleteFormula(F);
4246       --FIdx;
4247       --NumForms;
4248       Any = true;
4249     }
4250 
4251     // Now that we've filtered out some formulae, recompute the Regs set.
4252     if (Any)
4253       LU.RecomputeRegs(LUIdx, RegUses);
4254 
4255     // Reset this to prepare for the next use.
4256     BestFormulae.clear();
4257   }
4258 
4259   DEBUG(if (ChangedFormulae) {
4260           dbgs() << "\n"
4261                     "After filtering out undesirable candidates:\n";
4262           print_uses(dbgs());
4263         });
4264 }
4265 
4266 // This is a rough guess that seems to work fairly well.
4267 static const size_t ComplexityLimit = std::numeric_limits<uint16_t>::max();
4268 
4269 /// Estimate the worst-case number of solutions the solver might have to
4270 /// consider. It almost never considers this many solutions because it prune the
4271 /// search space, but the pruning isn't always sufficient.
4272 size_t LSRInstance::EstimateSearchSpaceComplexity() const {
4273   size_t Power = 1;
4274   for (const LSRUse &LU : Uses) {
4275     size_t FSize = LU.Formulae.size();
4276     if (FSize >= ComplexityLimit) {
4277       Power = ComplexityLimit;
4278       break;
4279     }
4280     Power *= FSize;
4281     if (Power >= ComplexityLimit)
4282       break;
4283   }
4284   return Power;
4285 }
4286 
4287 /// When one formula uses a superset of the registers of another formula, it
4288 /// won't help reduce register pressure (though it may not necessarily hurt
4289 /// register pressure); remove it to simplify the system.
4290 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
4291   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4292     DEBUG(dbgs() << "The search space is too complex.\n");
4293 
4294     DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
4295                     "which use a superset of registers used by other "
4296                     "formulae.\n");
4297 
4298     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4299       LSRUse &LU = Uses[LUIdx];
4300       bool Any = false;
4301       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4302         Formula &F = LU.Formulae[i];
4303         // Look for a formula with a constant or GV in a register. If the use
4304         // also has a formula with that same value in an immediate field,
4305         // delete the one that uses a register.
4306         for (SmallVectorImpl<const SCEV *>::const_iterator
4307              I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
4308           if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
4309             Formula NewF = F;
4310             NewF.BaseOffset += C->getValue()->getSExtValue();
4311             NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4312                                 (I - F.BaseRegs.begin()));
4313             if (LU.HasFormulaWithSameRegs(NewF)) {
4314               DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
4315               LU.DeleteFormula(F);
4316               --i;
4317               --e;
4318               Any = true;
4319               break;
4320             }
4321           } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
4322             if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
4323               if (!F.BaseGV) {
4324                 Formula NewF = F;
4325                 NewF.BaseGV = GV;
4326                 NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4327                                     (I - F.BaseRegs.begin()));
4328                 if (LU.HasFormulaWithSameRegs(NewF)) {
4329                   DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4330                         dbgs() << '\n');
4331                   LU.DeleteFormula(F);
4332                   --i;
4333                   --e;
4334                   Any = true;
4335                   break;
4336                 }
4337               }
4338           }
4339         }
4340       }
4341       if (Any)
4342         LU.RecomputeRegs(LUIdx, RegUses);
4343     }
4344 
4345     DEBUG(dbgs() << "After pre-selection:\n";
4346           print_uses(dbgs()));
4347   }
4348 }
4349 
4350 /// When there are many registers for expressions like A, A+1, A+2, etc.,
4351 /// allocate a single register for them.
4352 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
4353   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4354     return;
4355 
4356   DEBUG(dbgs() << "The search space is too complex.\n"
4357                   "Narrowing the search space by assuming that uses separated "
4358                   "by a constant offset will use the same registers.\n");
4359 
4360   // This is especially useful for unrolled loops.
4361 
4362   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4363     LSRUse &LU = Uses[LUIdx];
4364     for (const Formula &F : LU.Formulae) {
4365       if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1))
4366         continue;
4367 
4368       LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU);
4369       if (!LUThatHas)
4370         continue;
4371 
4372       if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false,
4373                               LU.Kind, LU.AccessTy))
4374         continue;
4375 
4376       DEBUG(dbgs() << "  Deleting use "; LU.print(dbgs()); dbgs() << '\n');
4377 
4378       LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
4379 
4380       // Transfer the fixups of LU to LUThatHas.
4381       for (LSRFixup &Fixup : LU.Fixups) {
4382         Fixup.Offset += F.BaseOffset;
4383         LUThatHas->pushFixup(Fixup);
4384         DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n');
4385       }
4386 
4387       // Delete formulae from the new use which are no longer legal.
4388       bool Any = false;
4389       for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
4390         Formula &F = LUThatHas->Formulae[i];
4391         if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset,
4392                         LUThatHas->Kind, LUThatHas->AccessTy, F)) {
4393           DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4394                 dbgs() << '\n');
4395           LUThatHas->DeleteFormula(F);
4396           --i;
4397           --e;
4398           Any = true;
4399         }
4400       }
4401 
4402       if (Any)
4403         LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
4404 
4405       // Delete the old use.
4406       DeleteUse(LU, LUIdx);
4407       --LUIdx;
4408       --NumUses;
4409       break;
4410     }
4411   }
4412 
4413   DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4414 }
4415 
4416 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that
4417 /// we've done more filtering, as it may be able to find more formulae to
4418 /// eliminate.
4419 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){
4420   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4421     DEBUG(dbgs() << "The search space is too complex.\n");
4422 
4423     DEBUG(dbgs() << "Narrowing the search space by re-filtering out "
4424                     "undesirable dedicated registers.\n");
4425 
4426     FilterOutUndesirableDedicatedRegisters();
4427 
4428     DEBUG(dbgs() << "After pre-selection:\n";
4429           print_uses(dbgs()));
4430   }
4431 }
4432 
4433 /// If a LSRUse has multiple formulae with the same ScaledReg and Scale.
4434 /// Pick the best one and delete the others.
4435 /// This narrowing heuristic is to keep as many formulae with different
4436 /// Scale and ScaledReg pair as possible while narrowing the search space.
4437 /// The benefit is that it is more likely to find out a better solution
4438 /// from a formulae set with more Scale and ScaledReg variations than
4439 /// a formulae set with the same Scale and ScaledReg. The picking winner
4440 /// reg heurstic will often keep the formulae with the same Scale and
4441 /// ScaledReg and filter others, and we want to avoid that if possible.
4442 void LSRInstance::NarrowSearchSpaceByFilterFormulaWithSameScaledReg() {
4443   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4444     return;
4445 
4446   DEBUG(dbgs() << "The search space is too complex.\n"
4447                   "Narrowing the search space by choosing the best Formula "
4448                   "from the Formulae with the same Scale and ScaledReg.\n");
4449 
4450   // Map the "Scale * ScaledReg" pair to the best formula of current LSRUse.
4451   using BestFormulaeTy = DenseMap<std::pair<const SCEV *, int64_t>, size_t>;
4452 
4453   BestFormulaeTy BestFormulae;
4454 #ifndef NDEBUG
4455   bool ChangedFormulae = false;
4456 #endif
4457   DenseSet<const SCEV *> VisitedRegs;
4458   SmallPtrSet<const SCEV *, 16> Regs;
4459 
4460   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4461     LSRUse &LU = Uses[LUIdx];
4462     DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n');
4463 
4464     // Return true if Formula FA is better than Formula FB.
4465     auto IsBetterThan = [&](Formula &FA, Formula &FB) {
4466       // First we will try to choose the Formula with fewer new registers.
4467       // For a register used by current Formula, the more the register is
4468       // shared among LSRUses, the less we increase the register number
4469       // counter of the formula.
4470       size_t FARegNum = 0;
4471       for (const SCEV *Reg : FA.BaseRegs) {
4472         const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg);
4473         FARegNum += (NumUses - UsedByIndices.count() + 1);
4474       }
4475       size_t FBRegNum = 0;
4476       for (const SCEV *Reg : FB.BaseRegs) {
4477         const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg);
4478         FBRegNum += (NumUses - UsedByIndices.count() + 1);
4479       }
4480       if (FARegNum != FBRegNum)
4481         return FARegNum < FBRegNum;
4482 
4483       // If the new register numbers are the same, choose the Formula with
4484       // less Cost.
4485       Cost CostFA, CostFB;
4486       Regs.clear();
4487       CostFA.RateFormula(TTI, FA, Regs, VisitedRegs, L, SE, DT, LU);
4488       Regs.clear();
4489       CostFB.RateFormula(TTI, FB, Regs, VisitedRegs, L, SE, DT, LU);
4490       return CostFA.isLess(CostFB, TTI);
4491     };
4492 
4493     bool Any = false;
4494     for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms;
4495          ++FIdx) {
4496       Formula &F = LU.Formulae[FIdx];
4497       if (!F.ScaledReg)
4498         continue;
4499       auto P = BestFormulae.insert({{F.ScaledReg, F.Scale}, FIdx});
4500       if (P.second)
4501         continue;
4502 
4503       Formula &Best = LU.Formulae[P.first->second];
4504       if (IsBetterThan(F, Best))
4505         std::swap(F, Best);
4506       DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
4507             dbgs() << "\n"
4508                       "    in favor of formula ";
4509             Best.print(dbgs()); dbgs() << '\n');
4510 #ifndef NDEBUG
4511       ChangedFormulae = true;
4512 #endif
4513       LU.DeleteFormula(F);
4514       --FIdx;
4515       --NumForms;
4516       Any = true;
4517     }
4518     if (Any)
4519       LU.RecomputeRegs(LUIdx, RegUses);
4520 
4521     // Reset this to prepare for the next use.
4522     BestFormulae.clear();
4523   }
4524 
4525   DEBUG(if (ChangedFormulae) {
4526     dbgs() << "\n"
4527               "After filtering out undesirable candidates:\n";
4528     print_uses(dbgs());
4529   });
4530 }
4531 
4532 /// The function delete formulas with high registers number expectation.
4533 /// Assuming we don't know the value of each formula (already delete
4534 /// all inefficient), generate probability of not selecting for each
4535 /// register.
4536 /// For example,
4537 /// Use1:
4538 ///  reg(a) + reg({0,+,1})
4539 ///  reg(a) + reg({-1,+,1}) + 1
4540 ///  reg({a,+,1})
4541 /// Use2:
4542 ///  reg(b) + reg({0,+,1})
4543 ///  reg(b) + reg({-1,+,1}) + 1
4544 ///  reg({b,+,1})
4545 /// Use3:
4546 ///  reg(c) + reg(b) + reg({0,+,1})
4547 ///  reg(c) + reg({b,+,1})
4548 ///
4549 /// Probability of not selecting
4550 ///                 Use1   Use2    Use3
4551 /// reg(a)         (1/3) *   1   *   1
4552 /// reg(b)           1   * (1/3) * (1/2)
4553 /// reg({0,+,1})   (2/3) * (2/3) * (1/2)
4554 /// reg({-1,+,1})  (2/3) * (2/3) *   1
4555 /// reg({a,+,1})   (2/3) *   1   *   1
4556 /// reg({b,+,1})     1   * (2/3) * (2/3)
4557 /// reg(c)           1   *   1   *   0
4558 ///
4559 /// Now count registers number mathematical expectation for each formula:
4560 /// Note that for each use we exclude probability if not selecting for the use.
4561 /// For example for Use1 probability for reg(a) would be just 1 * 1 (excluding
4562 /// probabilty 1/3 of not selecting for Use1).
4563 /// Use1:
4564 ///  reg(a) + reg({0,+,1})          1 + 1/3       -- to be deleted
4565 ///  reg(a) + reg({-1,+,1}) + 1     1 + 4/9       -- to be deleted
4566 ///  reg({a,+,1})                   1
4567 /// Use2:
4568 ///  reg(b) + reg({0,+,1})          1/2 + 1/3     -- to be deleted
4569 ///  reg(b) + reg({-1,+,1}) + 1     1/2 + 2/3     -- to be deleted
4570 ///  reg({b,+,1})                   2/3
4571 /// Use3:
4572 ///  reg(c) + reg(b) + reg({0,+,1}) 1 + 1/3 + 4/9 -- to be deleted
4573 ///  reg(c) + reg({b,+,1})          1 + 2/3
4574 void LSRInstance::NarrowSearchSpaceByDeletingCostlyFormulas() {
4575   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4576     return;
4577   // Ok, we have too many of formulae on our hands to conveniently handle.
4578   // Use a rough heuristic to thin out the list.
4579 
4580   // Set of Regs wich will be 100% used in final solution.
4581   // Used in each formula of a solution (in example above this is reg(c)).
4582   // We can skip them in calculations.
4583   SmallPtrSet<const SCEV *, 4> UniqRegs;
4584   DEBUG(dbgs() << "The search space is too complex.\n");
4585 
4586   // Map each register to probability of not selecting
4587   DenseMap <const SCEV *, float> RegNumMap;
4588   for (const SCEV *Reg : RegUses) {
4589     if (UniqRegs.count(Reg))
4590       continue;
4591     float PNotSel = 1;
4592     for (const LSRUse &LU : Uses) {
4593       if (!LU.Regs.count(Reg))
4594         continue;
4595       float P = LU.getNotSelectedProbability(Reg);
4596       if (P != 0.0)
4597         PNotSel *= P;
4598       else
4599         UniqRegs.insert(Reg);
4600     }
4601     RegNumMap.insert(std::make_pair(Reg, PNotSel));
4602   }
4603 
4604   DEBUG(dbgs() << "Narrowing the search space by deleting costly formulas\n");
4605 
4606   // Delete formulas where registers number expectation is high.
4607   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4608     LSRUse &LU = Uses[LUIdx];
4609     // If nothing to delete - continue.
4610     if (LU.Formulae.size() < 2)
4611       continue;
4612     // This is temporary solution to test performance. Float should be
4613     // replaced with round independent type (based on integers) to avoid
4614     // different results for different target builds.
4615     float FMinRegNum = LU.Formulae[0].getNumRegs();
4616     float FMinARegNum = LU.Formulae[0].getNumRegs();
4617     size_t MinIdx = 0;
4618     for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4619       Formula &F = LU.Formulae[i];
4620       float FRegNum = 0;
4621       float FARegNum = 0;
4622       for (const SCEV *BaseReg : F.BaseRegs) {
4623         if (UniqRegs.count(BaseReg))
4624           continue;
4625         FRegNum += RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg);
4626         if (isa<SCEVAddRecExpr>(BaseReg))
4627           FARegNum +=
4628               RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg);
4629       }
4630       if (const SCEV *ScaledReg = F.ScaledReg) {
4631         if (!UniqRegs.count(ScaledReg)) {
4632           FRegNum +=
4633               RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg);
4634           if (isa<SCEVAddRecExpr>(ScaledReg))
4635             FARegNum +=
4636                 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg);
4637         }
4638       }
4639       if (FMinRegNum > FRegNum ||
4640           (FMinRegNum == FRegNum && FMinARegNum > FARegNum)) {
4641         FMinRegNum = FRegNum;
4642         FMinARegNum = FARegNum;
4643         MinIdx = i;
4644       }
4645     }
4646     DEBUG(dbgs() << "  The formula "; LU.Formulae[MinIdx].print(dbgs());
4647           dbgs() << " with min reg num " << FMinRegNum << '\n');
4648     if (MinIdx != 0)
4649       std::swap(LU.Formulae[MinIdx], LU.Formulae[0]);
4650     while (LU.Formulae.size() != 1) {
4651       DEBUG(dbgs() << "  Deleting "; LU.Formulae.back().print(dbgs());
4652             dbgs() << '\n');
4653       LU.Formulae.pop_back();
4654     }
4655     LU.RecomputeRegs(LUIdx, RegUses);
4656     assert(LU.Formulae.size() == 1 && "Should be exactly 1 min regs formula");
4657     Formula &F = LU.Formulae[0];
4658     DEBUG(dbgs() << "  Leaving only "; F.print(dbgs()); dbgs() << '\n');
4659     // When we choose the formula, the regs become unique.
4660     UniqRegs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
4661     if (F.ScaledReg)
4662       UniqRegs.insert(F.ScaledReg);
4663   }
4664   DEBUG(dbgs() << "After pre-selection:\n";
4665   print_uses(dbgs()));
4666 }
4667 
4668 /// Pick a register which seems likely to be profitable, and then in any use
4669 /// which has any reference to that register, delete all formulae which do not
4670 /// reference that register.
4671 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() {
4672   // With all other options exhausted, loop until the system is simple
4673   // enough to handle.
4674   SmallPtrSet<const SCEV *, 4> Taken;
4675   while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4676     // Ok, we have too many of formulae on our hands to conveniently handle.
4677     // Use a rough heuristic to thin out the list.
4678     DEBUG(dbgs() << "The search space is too complex.\n");
4679 
4680     // Pick the register which is used by the most LSRUses, which is likely
4681     // to be a good reuse register candidate.
4682     const SCEV *Best = nullptr;
4683     unsigned BestNum = 0;
4684     for (const SCEV *Reg : RegUses) {
4685       if (Taken.count(Reg))
4686         continue;
4687       if (!Best) {
4688         Best = Reg;
4689         BestNum = RegUses.getUsedByIndices(Reg).count();
4690       } else {
4691         unsigned Count = RegUses.getUsedByIndices(Reg).count();
4692         if (Count > BestNum) {
4693           Best = Reg;
4694           BestNum = Count;
4695         }
4696       }
4697     }
4698 
4699     DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
4700                  << " will yield profitable reuse.\n");
4701     Taken.insert(Best);
4702 
4703     // In any use with formulae which references this register, delete formulae
4704     // which don't reference it.
4705     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4706       LSRUse &LU = Uses[LUIdx];
4707       if (!LU.Regs.count(Best)) continue;
4708 
4709       bool Any = false;
4710       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4711         Formula &F = LU.Formulae[i];
4712         if (!F.referencesReg(Best)) {
4713           DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
4714           LU.DeleteFormula(F);
4715           --e;
4716           --i;
4717           Any = true;
4718           assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
4719           continue;
4720         }
4721       }
4722 
4723       if (Any)
4724         LU.RecomputeRegs(LUIdx, RegUses);
4725     }
4726 
4727     DEBUG(dbgs() << "After pre-selection:\n";
4728           print_uses(dbgs()));
4729   }
4730 }
4731 
4732 /// If there are an extraordinary number of formulae to choose from, use some
4733 /// rough heuristics to prune down the number of formulae. This keeps the main
4734 /// solver from taking an extraordinary amount of time in some worst-case
4735 /// scenarios.
4736 void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
4737   NarrowSearchSpaceByDetectingSupersets();
4738   NarrowSearchSpaceByCollapsingUnrolledCode();
4739   NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
4740   if (FilterSameScaledReg)
4741     NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
4742   if (LSRExpNarrow)
4743     NarrowSearchSpaceByDeletingCostlyFormulas();
4744   else
4745     NarrowSearchSpaceByPickingWinnerRegs();
4746 }
4747 
4748 /// This is the recursive solver.
4749 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
4750                                Cost &SolutionCost,
4751                                SmallVectorImpl<const Formula *> &Workspace,
4752                                const Cost &CurCost,
4753                                const SmallPtrSet<const SCEV *, 16> &CurRegs,
4754                                DenseSet<const SCEV *> &VisitedRegs) const {
4755   // Some ideas:
4756   //  - prune more:
4757   //    - use more aggressive filtering
4758   //    - sort the formula so that the most profitable solutions are found first
4759   //    - sort the uses too
4760   //  - search faster:
4761   //    - don't compute a cost, and then compare. compare while computing a cost
4762   //      and bail early.
4763   //    - track register sets with SmallBitVector
4764 
4765   const LSRUse &LU = Uses[Workspace.size()];
4766 
4767   // If this use references any register that's already a part of the
4768   // in-progress solution, consider it a requirement that a formula must
4769   // reference that register in order to be considered. This prunes out
4770   // unprofitable searching.
4771   SmallSetVector<const SCEV *, 4> ReqRegs;
4772   for (const SCEV *S : CurRegs)
4773     if (LU.Regs.count(S))
4774       ReqRegs.insert(S);
4775 
4776   SmallPtrSet<const SCEV *, 16> NewRegs;
4777   Cost NewCost;
4778   for (const Formula &F : LU.Formulae) {
4779     // Ignore formulae which may not be ideal in terms of register reuse of
4780     // ReqRegs.  The formula should use all required registers before
4781     // introducing new ones.
4782     int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size());
4783     for (const SCEV *Reg : ReqRegs) {
4784       if ((F.ScaledReg && F.ScaledReg == Reg) ||
4785           is_contained(F.BaseRegs, Reg)) {
4786         --NumReqRegsToFind;
4787         if (NumReqRegsToFind == 0)
4788           break;
4789       }
4790     }
4791     if (NumReqRegsToFind != 0) {
4792       // If none of the formulae satisfied the required registers, then we could
4793       // clear ReqRegs and try again. Currently, we simply give up in this case.
4794       continue;
4795     }
4796 
4797     // Evaluate the cost of the current formula. If it's already worse than
4798     // the current best, prune the search at that point.
4799     NewCost = CurCost;
4800     NewRegs = CurRegs;
4801     NewCost.RateFormula(TTI, F, NewRegs, VisitedRegs, L, SE, DT, LU);
4802     if (NewCost.isLess(SolutionCost, TTI)) {
4803       Workspace.push_back(&F);
4804       if (Workspace.size() != Uses.size()) {
4805         SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
4806                      NewRegs, VisitedRegs);
4807         if (F.getNumRegs() == 1 && Workspace.size() == 1)
4808           VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
4809       } else {
4810         DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
4811               dbgs() << ".\n Regs:";
4812               for (const SCEV *S : NewRegs)
4813                 dbgs() << ' ' << *S;
4814               dbgs() << '\n');
4815 
4816         SolutionCost = NewCost;
4817         Solution = Workspace;
4818       }
4819       Workspace.pop_back();
4820     }
4821   }
4822 }
4823 
4824 /// Choose one formula from each use. Return the results in the given Solution
4825 /// vector.
4826 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
4827   SmallVector<const Formula *, 8> Workspace;
4828   Cost SolutionCost;
4829   SolutionCost.Lose();
4830   Cost CurCost;
4831   SmallPtrSet<const SCEV *, 16> CurRegs;
4832   DenseSet<const SCEV *> VisitedRegs;
4833   Workspace.reserve(Uses.size());
4834 
4835   // SolveRecurse does all the work.
4836   SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
4837                CurRegs, VisitedRegs);
4838   if (Solution.empty()) {
4839     DEBUG(dbgs() << "\nNo Satisfactory Solution\n");
4840     return;
4841   }
4842 
4843   // Ok, we've now made all our decisions.
4844   DEBUG(dbgs() << "\n"
4845                   "The chosen solution requires "; SolutionCost.print(dbgs());
4846         dbgs() << ":\n";
4847         for (size_t i = 0, e = Uses.size(); i != e; ++i) {
4848           dbgs() << "  ";
4849           Uses[i].print(dbgs());
4850           dbgs() << "\n"
4851                     "    ";
4852           Solution[i]->print(dbgs());
4853           dbgs() << '\n';
4854         });
4855 
4856   assert(Solution.size() == Uses.size() && "Malformed solution!");
4857 }
4858 
4859 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as
4860 /// we can go while still being dominated by the input positions. This helps
4861 /// canonicalize the insert position, which encourages sharing.
4862 BasicBlock::iterator
4863 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
4864                                  const SmallVectorImpl<Instruction *> &Inputs)
4865                                                                          const {
4866   Instruction *Tentative = &*IP;
4867   while (true) {
4868     bool AllDominate = true;
4869     Instruction *BetterPos = nullptr;
4870     // Don't bother attempting to insert before a catchswitch, their basic block
4871     // cannot have other non-PHI instructions.
4872     if (isa<CatchSwitchInst>(Tentative))
4873       return IP;
4874 
4875     for (Instruction *Inst : Inputs) {
4876       if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
4877         AllDominate = false;
4878         break;
4879       }
4880       // Attempt to find an insert position in the middle of the block,
4881       // instead of at the end, so that it can be used for other expansions.
4882       if (Tentative->getParent() == Inst->getParent() &&
4883           (!BetterPos || !DT.dominates(Inst, BetterPos)))
4884         BetterPos = &*std::next(BasicBlock::iterator(Inst));
4885     }
4886     if (!AllDominate)
4887       break;
4888     if (BetterPos)
4889       IP = BetterPos->getIterator();
4890     else
4891       IP = Tentative->getIterator();
4892 
4893     const Loop *IPLoop = LI.getLoopFor(IP->getParent());
4894     unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
4895 
4896     BasicBlock *IDom;
4897     for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) {
4898       if (!Rung) return IP;
4899       Rung = Rung->getIDom();
4900       if (!Rung) return IP;
4901       IDom = Rung->getBlock();
4902 
4903       // Don't climb into a loop though.
4904       const Loop *IDomLoop = LI.getLoopFor(IDom);
4905       unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
4906       if (IDomDepth <= IPLoopDepth &&
4907           (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
4908         break;
4909     }
4910 
4911     Tentative = IDom->getTerminator();
4912   }
4913 
4914   return IP;
4915 }
4916 
4917 /// Determine an input position which will be dominated by the operands and
4918 /// which will dominate the result.
4919 BasicBlock::iterator
4920 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP,
4921                                            const LSRFixup &LF,
4922                                            const LSRUse &LU,
4923                                            SCEVExpander &Rewriter) const {
4924   // Collect some instructions which must be dominated by the
4925   // expanding replacement. These must be dominated by any operands that
4926   // will be required in the expansion.
4927   SmallVector<Instruction *, 4> Inputs;
4928   if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
4929     Inputs.push_back(I);
4930   if (LU.Kind == LSRUse::ICmpZero)
4931     if (Instruction *I =
4932           dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
4933       Inputs.push_back(I);
4934   if (LF.PostIncLoops.count(L)) {
4935     if (LF.isUseFullyOutsideLoop(L))
4936       Inputs.push_back(L->getLoopLatch()->getTerminator());
4937     else
4938       Inputs.push_back(IVIncInsertPos);
4939   }
4940   // The expansion must also be dominated by the increment positions of any
4941   // loops it for which it is using post-inc mode.
4942   for (const Loop *PIL : LF.PostIncLoops) {
4943     if (PIL == L) continue;
4944 
4945     // Be dominated by the loop exit.
4946     SmallVector<BasicBlock *, 4> ExitingBlocks;
4947     PIL->getExitingBlocks(ExitingBlocks);
4948     if (!ExitingBlocks.empty()) {
4949       BasicBlock *BB = ExitingBlocks[0];
4950       for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
4951         BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
4952       Inputs.push_back(BB->getTerminator());
4953     }
4954   }
4955 
4956   assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad()
4957          && !isa<DbgInfoIntrinsic>(LowestIP) &&
4958          "Insertion point must be a normal instruction");
4959 
4960   // Then, climb up the immediate dominator tree as far as we can go while
4961   // still being dominated by the input positions.
4962   BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs);
4963 
4964   // Don't insert instructions before PHI nodes.
4965   while (isa<PHINode>(IP)) ++IP;
4966 
4967   // Ignore landingpad instructions.
4968   while (IP->isEHPad()) ++IP;
4969 
4970   // Ignore debug intrinsics.
4971   while (isa<DbgInfoIntrinsic>(IP)) ++IP;
4972 
4973   // Set IP below instructions recently inserted by SCEVExpander. This keeps the
4974   // IP consistent across expansions and allows the previously inserted
4975   // instructions to be reused by subsequent expansion.
4976   while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP)
4977     ++IP;
4978 
4979   return IP;
4980 }
4981 
4982 /// Emit instructions for the leading candidate expression for this LSRUse (this
4983 /// is called "expanding").
4984 Value *LSRInstance::Expand(const LSRUse &LU, const LSRFixup &LF,
4985                            const Formula &F, BasicBlock::iterator IP,
4986                            SCEVExpander &Rewriter,
4987                            SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
4988   if (LU.RigidFormula)
4989     return LF.OperandValToReplace;
4990 
4991   // Determine an input position which will be dominated by the operands and
4992   // which will dominate the result.
4993   IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter);
4994   Rewriter.setInsertPoint(&*IP);
4995 
4996   // Inform the Rewriter if we have a post-increment use, so that it can
4997   // perform an advantageous expansion.
4998   Rewriter.setPostInc(LF.PostIncLoops);
4999 
5000   // This is the type that the user actually needs.
5001   Type *OpTy = LF.OperandValToReplace->getType();
5002   // This will be the type that we'll initially expand to.
5003   Type *Ty = F.getType();
5004   if (!Ty)
5005     // No type known; just expand directly to the ultimate type.
5006     Ty = OpTy;
5007   else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
5008     // Expand directly to the ultimate type if it's the right size.
5009     Ty = OpTy;
5010   // This is the type to do integer arithmetic in.
5011   Type *IntTy = SE.getEffectiveSCEVType(Ty);
5012 
5013   // Build up a list of operands to add together to form the full base.
5014   SmallVector<const SCEV *, 8> Ops;
5015 
5016   // Expand the BaseRegs portion.
5017   for (const SCEV *Reg : F.BaseRegs) {
5018     assert(!Reg->isZero() && "Zero allocated in a base register!");
5019 
5020     // If we're expanding for a post-inc user, make the post-inc adjustment.
5021     Reg = denormalizeForPostIncUse(Reg, LF.PostIncLoops, SE);
5022     Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr)));
5023   }
5024 
5025   // Expand the ScaledReg portion.
5026   Value *ICmpScaledV = nullptr;
5027   if (F.Scale != 0) {
5028     const SCEV *ScaledS = F.ScaledReg;
5029 
5030     // If we're expanding for a post-inc user, make the post-inc adjustment.
5031     PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
5032     ScaledS = denormalizeForPostIncUse(ScaledS, Loops, SE);
5033 
5034     if (LU.Kind == LSRUse::ICmpZero) {
5035       // Expand ScaleReg as if it was part of the base regs.
5036       if (F.Scale == 1)
5037         Ops.push_back(
5038             SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)));
5039       else {
5040         // An interesting way of "folding" with an icmp is to use a negated
5041         // scale, which we'll implement by inserting it into the other operand
5042         // of the icmp.
5043         assert(F.Scale == -1 &&
5044                "The only scale supported by ICmpZero uses is -1!");
5045         ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr);
5046       }
5047     } else {
5048       // Otherwise just expand the scaled register and an explicit scale,
5049       // which is expected to be matched as part of the address.
5050 
5051       // Flush the operand list to suppress SCEVExpander hoisting address modes.
5052       // Unless the addressing mode will not be folded.
5053       if (!Ops.empty() && LU.Kind == LSRUse::Address &&
5054           isAMCompletelyFolded(TTI, LU, F)) {
5055         Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), nullptr);
5056         Ops.clear();
5057         Ops.push_back(SE.getUnknown(FullV));
5058       }
5059       ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr));
5060       if (F.Scale != 1)
5061         ScaledS =
5062             SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale));
5063       Ops.push_back(ScaledS);
5064     }
5065   }
5066 
5067   // Expand the GV portion.
5068   if (F.BaseGV) {
5069     // Flush the operand list to suppress SCEVExpander hoisting.
5070     if (!Ops.empty()) {
5071       Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
5072       Ops.clear();
5073       Ops.push_back(SE.getUnknown(FullV));
5074     }
5075     Ops.push_back(SE.getUnknown(F.BaseGV));
5076   }
5077 
5078   // Flush the operand list to suppress SCEVExpander hoisting of both folded and
5079   // unfolded offsets. LSR assumes they both live next to their uses.
5080   if (!Ops.empty()) {
5081     Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
5082     Ops.clear();
5083     Ops.push_back(SE.getUnknown(FullV));
5084   }
5085 
5086   // Expand the immediate portion.
5087   int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset;
5088   if (Offset != 0) {
5089     if (LU.Kind == LSRUse::ICmpZero) {
5090       // The other interesting way of "folding" with an ICmpZero is to use a
5091       // negated immediate.
5092       if (!ICmpScaledV)
5093         ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset);
5094       else {
5095         Ops.push_back(SE.getUnknown(ICmpScaledV));
5096         ICmpScaledV = ConstantInt::get(IntTy, Offset);
5097       }
5098     } else {
5099       // Just add the immediate values. These again are expected to be matched
5100       // as part of the address.
5101       Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
5102     }
5103   }
5104 
5105   // Expand the unfolded offset portion.
5106   int64_t UnfoldedOffset = F.UnfoldedOffset;
5107   if (UnfoldedOffset != 0) {
5108     // Just add the immediate values.
5109     Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy,
5110                                                        UnfoldedOffset)));
5111   }
5112 
5113   // Emit instructions summing all the operands.
5114   const SCEV *FullS = Ops.empty() ?
5115                       SE.getConstant(IntTy, 0) :
5116                       SE.getAddExpr(Ops);
5117   Value *FullV = Rewriter.expandCodeFor(FullS, Ty);
5118 
5119   // We're done expanding now, so reset the rewriter.
5120   Rewriter.clearPostInc();
5121 
5122   // An ICmpZero Formula represents an ICmp which we're handling as a
5123   // comparison against zero. Now that we've expanded an expression for that
5124   // form, update the ICmp's other operand.
5125   if (LU.Kind == LSRUse::ICmpZero) {
5126     ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
5127     DeadInsts.emplace_back(CI->getOperand(1));
5128     assert(!F.BaseGV && "ICmp does not support folding a global value and "
5129                            "a scale at the same time!");
5130     if (F.Scale == -1) {
5131       if (ICmpScaledV->getType() != OpTy) {
5132         Instruction *Cast =
5133           CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
5134                                                    OpTy, false),
5135                            ICmpScaledV, OpTy, "tmp", CI);
5136         ICmpScaledV = Cast;
5137       }
5138       CI->setOperand(1, ICmpScaledV);
5139     } else {
5140       // A scale of 1 means that the scale has been expanded as part of the
5141       // base regs.
5142       assert((F.Scale == 0 || F.Scale == 1) &&
5143              "ICmp does not support folding a global value and "
5144              "a scale at the same time!");
5145       Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
5146                                            -(uint64_t)Offset);
5147       if (C->getType() != OpTy)
5148         C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
5149                                                           OpTy, false),
5150                                   C, OpTy);
5151 
5152       CI->setOperand(1, C);
5153     }
5154   }
5155 
5156   return FullV;
5157 }
5158 
5159 /// Helper for Rewrite. PHI nodes are special because the use of their operands
5160 /// effectively happens in their predecessor blocks, so the expression may need
5161 /// to be expanded in multiple places.
5162 void LSRInstance::RewriteForPHI(
5163     PHINode *PN, const LSRUse &LU, const LSRFixup &LF, const Formula &F,
5164     SCEVExpander &Rewriter, SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5165   DenseMap<BasicBlock *, Value *> Inserted;
5166   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
5167     if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
5168       BasicBlock *BB = PN->getIncomingBlock(i);
5169 
5170       // If this is a critical edge, split the edge so that we do not insert
5171       // the code on all predecessor/successor paths.  We do this unless this
5172       // is the canonical backedge for this loop, which complicates post-inc
5173       // users.
5174       if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
5175           !isa<IndirectBrInst>(BB->getTerminator()) &&
5176           !isa<CatchSwitchInst>(BB->getTerminator())) {
5177         BasicBlock *Parent = PN->getParent();
5178         Loop *PNLoop = LI.getLoopFor(Parent);
5179         if (!PNLoop || Parent != PNLoop->getHeader()) {
5180           // Split the critical edge.
5181           BasicBlock *NewBB = nullptr;
5182           if (!Parent->isLandingPad()) {
5183             NewBB = SplitCriticalEdge(BB, Parent,
5184                                       CriticalEdgeSplittingOptions(&DT, &LI)
5185                                           .setMergeIdenticalEdges()
5186                                           .setDontDeleteUselessPHIs());
5187           } else {
5188             SmallVector<BasicBlock*, 2> NewBBs;
5189             SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI);
5190             NewBB = NewBBs[0];
5191           }
5192           // If NewBB==NULL, then SplitCriticalEdge refused to split because all
5193           // phi predecessors are identical. The simple thing to do is skip
5194           // splitting in this case rather than complicate the API.
5195           if (NewBB) {
5196             // If PN is outside of the loop and BB is in the loop, we want to
5197             // move the block to be immediately before the PHI block, not
5198             // immediately after BB.
5199             if (L->contains(BB) && !L->contains(PN))
5200               NewBB->moveBefore(PN->getParent());
5201 
5202             // Splitting the edge can reduce the number of PHI entries we have.
5203             e = PN->getNumIncomingValues();
5204             BB = NewBB;
5205             i = PN->getBasicBlockIndex(BB);
5206           }
5207         }
5208       }
5209 
5210       std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
5211         Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr)));
5212       if (!Pair.second)
5213         PN->setIncomingValue(i, Pair.first->second);
5214       else {
5215         Value *FullV = Expand(LU, LF, F, BB->getTerminator()->getIterator(),
5216                               Rewriter, DeadInsts);
5217 
5218         // If this is reuse-by-noop-cast, insert the noop cast.
5219         Type *OpTy = LF.OperandValToReplace->getType();
5220         if (FullV->getType() != OpTy)
5221           FullV =
5222             CastInst::Create(CastInst::getCastOpcode(FullV, false,
5223                                                      OpTy, false),
5224                              FullV, LF.OperandValToReplace->getType(),
5225                              "tmp", BB->getTerminator());
5226 
5227         PN->setIncomingValue(i, FullV);
5228         Pair.first->second = FullV;
5229       }
5230     }
5231 }
5232 
5233 /// Emit instructions for the leading candidate expression for this LSRUse (this
5234 /// is called "expanding"), and update the UserInst to reference the newly
5235 /// expanded value.
5236 void LSRInstance::Rewrite(const LSRUse &LU, const LSRFixup &LF,
5237                           const Formula &F, SCEVExpander &Rewriter,
5238                           SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5239   // First, find an insertion point that dominates UserInst. For PHI nodes,
5240   // find the nearest block which dominates all the relevant uses.
5241   if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
5242     RewriteForPHI(PN, LU, LF, F, Rewriter, DeadInsts);
5243   } else {
5244     Value *FullV =
5245       Expand(LU, LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts);
5246 
5247     // If this is reuse-by-noop-cast, insert the noop cast.
5248     Type *OpTy = LF.OperandValToReplace->getType();
5249     if (FullV->getType() != OpTy) {
5250       Instruction *Cast =
5251         CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
5252                          FullV, OpTy, "tmp", LF.UserInst);
5253       FullV = Cast;
5254     }
5255 
5256     // Update the user. ICmpZero is handled specially here (for now) because
5257     // Expand may have updated one of the operands of the icmp already, and
5258     // its new value may happen to be equal to LF.OperandValToReplace, in
5259     // which case doing replaceUsesOfWith leads to replacing both operands
5260     // with the same value. TODO: Reorganize this.
5261     if (LU.Kind == LSRUse::ICmpZero)
5262       LF.UserInst->setOperand(0, FullV);
5263     else
5264       LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
5265   }
5266 
5267   DeadInsts.emplace_back(LF.OperandValToReplace);
5268 }
5269 
5270 /// Rewrite all the fixup locations with new values, following the chosen
5271 /// solution.
5272 void LSRInstance::ImplementSolution(
5273     const SmallVectorImpl<const Formula *> &Solution) {
5274   // Keep track of instructions we may have made dead, so that
5275   // we can remove them after we are done working.
5276   SmallVector<WeakTrackingVH, 16> DeadInsts;
5277 
5278   SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(),
5279                         "lsr");
5280 #ifndef NDEBUG
5281   Rewriter.setDebugType(DEBUG_TYPE);
5282 #endif
5283   Rewriter.disableCanonicalMode();
5284   Rewriter.enableLSRMode();
5285   Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
5286 
5287   // Mark phi nodes that terminate chains so the expander tries to reuse them.
5288   for (const IVChain &Chain : IVChainVec) {
5289     if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst()))
5290       Rewriter.setChainedPhi(PN);
5291   }
5292 
5293   // Expand the new value definitions and update the users.
5294   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx)
5295     for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) {
5296       Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], Rewriter, DeadInsts);
5297       Changed = true;
5298     }
5299 
5300   for (const IVChain &Chain : IVChainVec) {
5301     GenerateIVChain(Chain, Rewriter, DeadInsts);
5302     Changed = true;
5303   }
5304   // Clean up after ourselves. This must be done before deleting any
5305   // instructions.
5306   Rewriter.clear();
5307 
5308   Changed |= DeleteTriviallyDeadInstructions(DeadInsts);
5309 }
5310 
5311 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE,
5312                          DominatorTree &DT, LoopInfo &LI,
5313                          const TargetTransformInfo &TTI)
5314     : IU(IU), SE(SE), DT(DT), LI(LI), TTI(TTI), L(L) {
5315   // If LoopSimplify form is not available, stay out of trouble.
5316   if (!L->isLoopSimplifyForm())
5317     return;
5318 
5319   // If there's no interesting work to be done, bail early.
5320   if (IU.empty()) return;
5321 
5322   // If there's too much analysis to be done, bail early. We won't be able to
5323   // model the problem anyway.
5324   unsigned NumUsers = 0;
5325   for (const IVStrideUse &U : IU) {
5326     if (++NumUsers > MaxIVUsers) {
5327       (void)U;
5328       DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U << "\n");
5329       return;
5330     }
5331     // Bail out if we have a PHI on an EHPad that gets a value from a
5332     // CatchSwitchInst.  Because the CatchSwitchInst cannot be split, there is
5333     // no good place to stick any instructions.
5334     if (auto *PN = dyn_cast<PHINode>(U.getUser())) {
5335        auto *FirstNonPHI = PN->getParent()->getFirstNonPHI();
5336        if (isa<FuncletPadInst>(FirstNonPHI) ||
5337            isa<CatchSwitchInst>(FirstNonPHI))
5338          for (BasicBlock *PredBB : PN->blocks())
5339            if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI()))
5340              return;
5341     }
5342   }
5343 
5344 #ifndef NDEBUG
5345   // All dominating loops must have preheaders, or SCEVExpander may not be able
5346   // to materialize an AddRecExpr whose Start is an outer AddRecExpr.
5347   //
5348   // IVUsers analysis should only create users that are dominated by simple loop
5349   // headers. Since this loop should dominate all of its users, its user list
5350   // should be empty if this loop itself is not within a simple loop nest.
5351   for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader());
5352        Rung; Rung = Rung->getIDom()) {
5353     BasicBlock *BB = Rung->getBlock();
5354     const Loop *DomLoop = LI.getLoopFor(BB);
5355     if (DomLoop && DomLoop->getHeader() == BB) {
5356       assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest");
5357     }
5358   }
5359 #endif // DEBUG
5360 
5361   DEBUG(dbgs() << "\nLSR on loop ";
5362         L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false);
5363         dbgs() << ":\n");
5364 
5365   // First, perform some low-level loop optimizations.
5366   OptimizeShadowIV();
5367   OptimizeLoopTermCond();
5368 
5369   // If loop preparation eliminates all interesting IV users, bail.
5370   if (IU.empty()) return;
5371 
5372   // Skip nested loops until we can model them better with formulae.
5373   if (!L->empty()) {
5374     DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n");
5375     return;
5376   }
5377 
5378   // Start collecting data and preparing for the solver.
5379   CollectChains();
5380   CollectInterestingTypesAndFactors();
5381   CollectFixupsAndInitialFormulae();
5382   CollectLoopInvariantFixupsAndFormulae();
5383 
5384   assert(!Uses.empty() && "IVUsers reported at least one use");
5385   DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
5386         print_uses(dbgs()));
5387 
5388   // Now use the reuse data to generate a bunch of interesting ways
5389   // to formulate the values needed for the uses.
5390   GenerateAllReuseFormulae();
5391 
5392   FilterOutUndesirableDedicatedRegisters();
5393   NarrowSearchSpaceUsingHeuristics();
5394 
5395   SmallVector<const Formula *, 8> Solution;
5396   Solve(Solution);
5397 
5398   // Release memory that is no longer needed.
5399   Factors.clear();
5400   Types.clear();
5401   RegUses.clear();
5402 
5403   if (Solution.empty())
5404     return;
5405 
5406 #ifndef NDEBUG
5407   // Formulae should be legal.
5408   for (const LSRUse &LU : Uses) {
5409     for (const Formula &F : LU.Formulae)
5410       assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
5411                         F) && "Illegal formula generated!");
5412   };
5413 #endif
5414 
5415   // Now that we've decided what we want, make it so.
5416   ImplementSolution(Solution);
5417 }
5418 
5419 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
5420 void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
5421   if (Factors.empty() && Types.empty()) return;
5422 
5423   OS << "LSR has identified the following interesting factors and types: ";
5424   bool First = true;
5425 
5426   for (int64_t Factor : Factors) {
5427     if (!First) OS << ", ";
5428     First = false;
5429     OS << '*' << Factor;
5430   }
5431 
5432   for (Type *Ty : Types) {
5433     if (!First) OS << ", ";
5434     First = false;
5435     OS << '(' << *Ty << ')';
5436   }
5437   OS << '\n';
5438 }
5439 
5440 void LSRInstance::print_fixups(raw_ostream &OS) const {
5441   OS << "LSR is examining the following fixup sites:\n";
5442   for (const LSRUse &LU : Uses)
5443     for (const LSRFixup &LF : LU.Fixups) {
5444       dbgs() << "  ";
5445       LF.print(OS);
5446       OS << '\n';
5447     }
5448 }
5449 
5450 void LSRInstance::print_uses(raw_ostream &OS) const {
5451   OS << "LSR is examining the following uses:\n";
5452   for (const LSRUse &LU : Uses) {
5453     dbgs() << "  ";
5454     LU.print(OS);
5455     OS << '\n';
5456     for (const Formula &F : LU.Formulae) {
5457       OS << "    ";
5458       F.print(OS);
5459       OS << '\n';
5460     }
5461   }
5462 }
5463 
5464 void LSRInstance::print(raw_ostream &OS) const {
5465   print_factors_and_types(OS);
5466   print_fixups(OS);
5467   print_uses(OS);
5468 }
5469 
5470 LLVM_DUMP_METHOD void LSRInstance::dump() const {
5471   print(errs()); errs() << '\n';
5472 }
5473 #endif
5474 
5475 namespace {
5476 
5477 class LoopStrengthReduce : public LoopPass {
5478 public:
5479   static char ID; // Pass ID, replacement for typeid
5480 
5481   LoopStrengthReduce();
5482 
5483 private:
5484   bool runOnLoop(Loop *L, LPPassManager &LPM) override;
5485   void getAnalysisUsage(AnalysisUsage &AU) const override;
5486 };
5487 
5488 } // end anonymous namespace
5489 
5490 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) {
5491   initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
5492 }
5493 
5494 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
5495   // We split critical edges, so we change the CFG.  However, we do update
5496   // many analyses if they are around.
5497   AU.addPreservedID(LoopSimplifyID);
5498 
5499   AU.addRequired<LoopInfoWrapperPass>();
5500   AU.addPreserved<LoopInfoWrapperPass>();
5501   AU.addRequiredID(LoopSimplifyID);
5502   AU.addRequired<DominatorTreeWrapperPass>();
5503   AU.addPreserved<DominatorTreeWrapperPass>();
5504   AU.addRequired<ScalarEvolutionWrapperPass>();
5505   AU.addPreserved<ScalarEvolutionWrapperPass>();
5506   // Requiring LoopSimplify a second time here prevents IVUsers from running
5507   // twice, since LoopSimplify was invalidated by running ScalarEvolution.
5508   AU.addRequiredID(LoopSimplifyID);
5509   AU.addRequired<IVUsersWrapperPass>();
5510   AU.addPreserved<IVUsersWrapperPass>();
5511   AU.addRequired<TargetTransformInfoWrapperPass>();
5512 }
5513 
5514 static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE,
5515                                DominatorTree &DT, LoopInfo &LI,
5516                                const TargetTransformInfo &TTI) {
5517   bool Changed = false;
5518 
5519   // Run the main LSR transformation.
5520   Changed |= LSRInstance(L, IU, SE, DT, LI, TTI).getChanged();
5521 
5522   // Remove any extra phis created by processing inner loops.
5523   Changed |= DeleteDeadPHIs(L->getHeader());
5524   if (EnablePhiElim && L->isLoopSimplifyForm()) {
5525     SmallVector<WeakTrackingVH, 16> DeadInsts;
5526     const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
5527     SCEVExpander Rewriter(SE, DL, "lsr");
5528 #ifndef NDEBUG
5529     Rewriter.setDebugType(DEBUG_TYPE);
5530 #endif
5531     unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI);
5532     if (numFolded) {
5533       Changed = true;
5534       DeleteTriviallyDeadInstructions(DeadInsts);
5535       DeleteDeadPHIs(L->getHeader());
5536     }
5537   }
5538   return Changed;
5539 }
5540 
5541 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
5542   if (skipLoop(L))
5543     return false;
5544 
5545   auto &IU = getAnalysis<IVUsersWrapperPass>().getIU();
5546   auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
5547   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
5548   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
5549   const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
5550       *L->getHeader()->getParent());
5551   return ReduceLoopStrength(L, IU, SE, DT, LI, TTI);
5552 }
5553 
5554 PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM,
5555                                               LoopStandardAnalysisResults &AR,
5556                                               LPMUpdater &) {
5557   if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE,
5558                           AR.DT, AR.LI, AR.TTI))
5559     return PreservedAnalyses::all();
5560 
5561   return getLoopPassPreservedAnalyses();
5562 }
5563 
5564 char LoopStrengthReduce::ID = 0;
5565 
5566 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce",
5567                       "Loop Strength Reduction", false, false)
5568 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
5569 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
5570 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
5571 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass)
5572 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
5573 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
5574 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce",
5575                     "Loop Strength Reduction", false, false)
5576 
5577 Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); }
5578