1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This transformation analyzes and transforms the induction variables (and
10 // computations derived from them) into forms suitable for efficient execution
11 // on the target.
12 //
13 // This pass performs a strength reduction on array references inside loops that
14 // have as one or more of their components the loop induction variable, it
15 // rewrites expressions to take advantage of scaled-index addressing modes
16 // available on the target, and it performs a variety of other optimizations
17 // related to loop induction variables.
18 //
19 // Terminology note: this code has a lot of handling for "post-increment" or
20 // "post-inc" users. This is not talking about post-increment addressing modes;
21 // it is instead talking about code like this:
22 //
23 //   %i = phi [ 0, %entry ], [ %i.next, %latch ]
24 //   ...
25 //   %i.next = add %i, 1
26 //   %c = icmp eq %i.next, %n
27 //
28 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
29 // it's useful to think about these as the same register, with some uses using
30 // the value of the register before the add and some using it after. In this
31 // example, the icmp is a post-increment user, since it uses %i.next, which is
32 // the value of the induction variable after the increment. The other common
33 // case of post-increment users is users outside the loop.
34 //
35 // TODO: More sophistication in the way Formulae are generated and filtered.
36 //
37 // TODO: Handle multiple loops at a time.
38 //
39 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead
40 //       of a GlobalValue?
41 //
42 // TODO: When truncation is free, truncate ICmp users' operands to make it a
43 //       smaller encoding (on x86 at least).
44 //
45 // TODO: When a negated register is used by an add (such as in a list of
46 //       multiple base registers, or as the increment expression in an addrec),
47 //       we may not actually need both reg and (-1 * reg) in registers; the
48 //       negation can be implemented by using a sub instead of an add. The
49 //       lack of support for taking this into consideration when making
50 //       register pressure decisions is partly worked around by the "Special"
51 //       use kind.
52 //
53 //===----------------------------------------------------------------------===//
54 
55 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h"
56 #include "llvm/ADT/APInt.h"
57 #include "llvm/ADT/DenseMap.h"
58 #include "llvm/ADT/DenseSet.h"
59 #include "llvm/ADT/Hashing.h"
60 #include "llvm/ADT/PointerIntPair.h"
61 #include "llvm/ADT/STLExtras.h"
62 #include "llvm/ADT/SetVector.h"
63 #include "llvm/ADT/SmallBitVector.h"
64 #include "llvm/ADT/SmallPtrSet.h"
65 #include "llvm/ADT/SmallSet.h"
66 #include "llvm/ADT/SmallVector.h"
67 #include "llvm/ADT/iterator_range.h"
68 #include "llvm/Analysis/IVUsers.h"
69 #include "llvm/Analysis/LoopAnalysisManager.h"
70 #include "llvm/Analysis/LoopInfo.h"
71 #include "llvm/Analysis/LoopPass.h"
72 #include "llvm/Analysis/ScalarEvolution.h"
73 #include "llvm/Analysis/ScalarEvolutionExpander.h"
74 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
75 #include "llvm/Analysis/ScalarEvolutionNormalization.h"
76 #include "llvm/Analysis/TargetTransformInfo.h"
77 #include "llvm/Transforms/Utils/Local.h"
78 #include "llvm/Config/llvm-config.h"
79 #include "llvm/IR/BasicBlock.h"
80 #include "llvm/IR/Constant.h"
81 #include "llvm/IR/Constants.h"
82 #include "llvm/IR/DerivedTypes.h"
83 #include "llvm/IR/Dominators.h"
84 #include "llvm/IR/GlobalValue.h"
85 #include "llvm/IR/IRBuilder.h"
86 #include "llvm/IR/InstrTypes.h"
87 #include "llvm/IR/Instruction.h"
88 #include "llvm/IR/Instructions.h"
89 #include "llvm/IR/IntrinsicInst.h"
90 #include "llvm/IR/Intrinsics.h"
91 #include "llvm/IR/Module.h"
92 #include "llvm/IR/OperandTraits.h"
93 #include "llvm/IR/Operator.h"
94 #include "llvm/IR/PassManager.h"
95 #include "llvm/IR/Type.h"
96 #include "llvm/IR/Use.h"
97 #include "llvm/IR/User.h"
98 #include "llvm/IR/Value.h"
99 #include "llvm/IR/ValueHandle.h"
100 #include "llvm/Pass.h"
101 #include "llvm/Support/Casting.h"
102 #include "llvm/Support/CommandLine.h"
103 #include "llvm/Support/Compiler.h"
104 #include "llvm/Support/Debug.h"
105 #include "llvm/Support/ErrorHandling.h"
106 #include "llvm/Support/MathExtras.h"
107 #include "llvm/Support/raw_ostream.h"
108 #include "llvm/Transforms/Scalar.h"
109 #include "llvm/Transforms/Utils.h"
110 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
111 #include <algorithm>
112 #include <cassert>
113 #include <cstddef>
114 #include <cstdint>
115 #include <cstdlib>
116 #include <iterator>
117 #include <limits>
118 #include <map>
119 #include <utility>
120 
121 using namespace llvm;
122 
123 #define DEBUG_TYPE "loop-reduce"
124 
125 /// MaxIVUsers is an arbitrary threshold that provides an early opportunity for
126 /// bail out. This threshold is far beyond the number of users that LSR can
127 /// conceivably solve, so it should not affect generated code, but catches the
128 /// worst cases before LSR burns too much compile time and stack space.
129 static const unsigned MaxIVUsers = 200;
130 
131 // Temporary flag to cleanup congruent phis after LSR phi expansion.
132 // It's currently disabled until we can determine whether it's truly useful or
133 // not. The flag should be removed after the v3.0 release.
134 // This is now needed for ivchains.
135 static cl::opt<bool> EnablePhiElim(
136   "enable-lsr-phielim", cl::Hidden, cl::init(true),
137   cl::desc("Enable LSR phi elimination"));
138 
139 // The flag adds instruction count to solutions cost comparision.
140 static cl::opt<bool> InsnsCost(
141   "lsr-insns-cost", cl::Hidden, cl::init(true),
142   cl::desc("Add instruction count to a LSR cost model"));
143 
144 // Flag to choose how to narrow complex lsr solution
145 static cl::opt<bool> LSRExpNarrow(
146   "lsr-exp-narrow", cl::Hidden, cl::init(false),
147   cl::desc("Narrow LSR complex solution using"
148            " expectation of registers number"));
149 
150 // Flag to narrow search space by filtering non-optimal formulae with
151 // the same ScaledReg and Scale.
152 static cl::opt<bool> FilterSameScaledReg(
153     "lsr-filter-same-scaled-reg", cl::Hidden, cl::init(true),
154     cl::desc("Narrow LSR search space by filtering non-optimal formulae"
155              " with the same ScaledReg and Scale"));
156 
157 static cl::opt<bool> EnableBackedgeIndexing(
158   "lsr-backedge-indexing", cl::Hidden, cl::init(true),
159   cl::desc("Enable the generation of cross iteration indexed memops"));
160 
161 static cl::opt<unsigned> ComplexityLimit(
162   "lsr-complexity-limit", cl::Hidden,
163   cl::init(std::numeric_limits<uint16_t>::max()),
164   cl::desc("LSR search space complexity limit"));
165 
166 #ifndef NDEBUG
167 // Stress test IV chain generation.
168 static cl::opt<bool> StressIVChain(
169   "stress-ivchain", cl::Hidden, cl::init(false),
170   cl::desc("Stress test LSR IV chains"));
171 #else
172 static bool StressIVChain = false;
173 #endif
174 
175 namespace {
176 
177 struct MemAccessTy {
178   /// Used in situations where the accessed memory type is unknown.
179   static const unsigned UnknownAddressSpace =
180       std::numeric_limits<unsigned>::max();
181 
182   Type *MemTy = nullptr;
183   unsigned AddrSpace = UnknownAddressSpace;
184 
185   MemAccessTy() = default;
186   MemAccessTy(Type *Ty, unsigned AS) : MemTy(Ty), AddrSpace(AS) {}
187 
188   bool operator==(MemAccessTy Other) const {
189     return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace;
190   }
191 
192   bool operator!=(MemAccessTy Other) const { return !(*this == Other); }
193 
194   static MemAccessTy getUnknown(LLVMContext &Ctx,
195                                 unsigned AS = UnknownAddressSpace) {
196     return MemAccessTy(Type::getVoidTy(Ctx), AS);
197   }
198 
199   Type *getType() { return MemTy; }
200 };
201 
202 /// This class holds data which is used to order reuse candidates.
203 class RegSortData {
204 public:
205   /// This represents the set of LSRUse indices which reference
206   /// a particular register.
207   SmallBitVector UsedByIndices;
208 
209   void print(raw_ostream &OS) const;
210   void dump() const;
211 };
212 
213 } // end anonymous namespace
214 
215 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
216 void RegSortData::print(raw_ostream &OS) const {
217   OS << "[NumUses=" << UsedByIndices.count() << ']';
218 }
219 
220 LLVM_DUMP_METHOD void RegSortData::dump() const {
221   print(errs()); errs() << '\n';
222 }
223 #endif
224 
225 namespace {
226 
227 /// Map register candidates to information about how they are used.
228 class RegUseTracker {
229   using RegUsesTy = DenseMap<const SCEV *, RegSortData>;
230 
231   RegUsesTy RegUsesMap;
232   SmallVector<const SCEV *, 16> RegSequence;
233 
234 public:
235   void countRegister(const SCEV *Reg, size_t LUIdx);
236   void dropRegister(const SCEV *Reg, size_t LUIdx);
237   void swapAndDropUse(size_t LUIdx, size_t LastLUIdx);
238 
239   bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
240 
241   const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
242 
243   void clear();
244 
245   using iterator = SmallVectorImpl<const SCEV *>::iterator;
246   using const_iterator = SmallVectorImpl<const SCEV *>::const_iterator;
247 
248   iterator begin() { return RegSequence.begin(); }
249   iterator end()   { return RegSequence.end(); }
250   const_iterator begin() const { return RegSequence.begin(); }
251   const_iterator end() const   { return RegSequence.end(); }
252 };
253 
254 } // end anonymous namespace
255 
256 void
257 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) {
258   std::pair<RegUsesTy::iterator, bool> Pair =
259     RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
260   RegSortData &RSD = Pair.first->second;
261   if (Pair.second)
262     RegSequence.push_back(Reg);
263   RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
264   RSD.UsedByIndices.set(LUIdx);
265 }
266 
267 void
268 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) {
269   RegUsesTy::iterator It = RegUsesMap.find(Reg);
270   assert(It != RegUsesMap.end());
271   RegSortData &RSD = It->second;
272   assert(RSD.UsedByIndices.size() > LUIdx);
273   RSD.UsedByIndices.reset(LUIdx);
274 }
275 
276 void
277 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) {
278   assert(LUIdx <= LastLUIdx);
279 
280   // Update RegUses. The data structure is not optimized for this purpose;
281   // we must iterate through it and update each of the bit vectors.
282   for (auto &Pair : RegUsesMap) {
283     SmallBitVector &UsedByIndices = Pair.second.UsedByIndices;
284     if (LUIdx < UsedByIndices.size())
285       UsedByIndices[LUIdx] =
286         LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false;
287     UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx));
288   }
289 }
290 
291 bool
292 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
293   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
294   if (I == RegUsesMap.end())
295     return false;
296   const SmallBitVector &UsedByIndices = I->second.UsedByIndices;
297   int i = UsedByIndices.find_first();
298   if (i == -1) return false;
299   if ((size_t)i != LUIdx) return true;
300   return UsedByIndices.find_next(i) != -1;
301 }
302 
303 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
304   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
305   assert(I != RegUsesMap.end() && "Unknown register!");
306   return I->second.UsedByIndices;
307 }
308 
309 void RegUseTracker::clear() {
310   RegUsesMap.clear();
311   RegSequence.clear();
312 }
313 
314 namespace {
315 
316 /// This class holds information that describes a formula for computing
317 /// satisfying a use. It may include broken-out immediates and scaled registers.
318 struct Formula {
319   /// Global base address used for complex addressing.
320   GlobalValue *BaseGV = nullptr;
321 
322   /// Base offset for complex addressing.
323   int64_t BaseOffset = 0;
324 
325   /// Whether any complex addressing has a base register.
326   bool HasBaseReg = false;
327 
328   /// The scale of any complex addressing.
329   int64_t Scale = 0;
330 
331   /// The list of "base" registers for this use. When this is non-empty. The
332   /// canonical representation of a formula is
333   /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and
334   /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty().
335   /// 3. The reg containing recurrent expr related with currect loop in the
336   /// formula should be put in the ScaledReg.
337   /// #1 enforces that the scaled register is always used when at least two
338   /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2.
339   /// #2 enforces that 1 * reg is reg.
340   /// #3 ensures invariant regs with respect to current loop can be combined
341   /// together in LSR codegen.
342   /// This invariant can be temporarily broken while building a formula.
343   /// However, every formula inserted into the LSRInstance must be in canonical
344   /// form.
345   SmallVector<const SCEV *, 4> BaseRegs;
346 
347   /// The 'scaled' register for this use. This should be non-null when Scale is
348   /// not zero.
349   const SCEV *ScaledReg = nullptr;
350 
351   /// An additional constant offset which added near the use. This requires a
352   /// temporary register, but the offset itself can live in an add immediate
353   /// field rather than a register.
354   int64_t UnfoldedOffset = 0;
355 
356   Formula() = default;
357 
358   void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE);
359 
360   bool isCanonical(const Loop &L) const;
361 
362   void canonicalize(const Loop &L);
363 
364   bool unscale();
365 
366   bool hasZeroEnd() const;
367 
368   size_t getNumRegs() const;
369   Type *getType() const;
370 
371   void deleteBaseReg(const SCEV *&S);
372 
373   bool referencesReg(const SCEV *S) const;
374   bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
375                                   const RegUseTracker &RegUses) const;
376 
377   void print(raw_ostream &OS) const;
378   void dump() const;
379 };
380 
381 } // end anonymous namespace
382 
383 /// Recursion helper for initialMatch.
384 static void DoInitialMatch(const SCEV *S, Loop *L,
385                            SmallVectorImpl<const SCEV *> &Good,
386                            SmallVectorImpl<const SCEV *> &Bad,
387                            ScalarEvolution &SE) {
388   // Collect expressions which properly dominate the loop header.
389   if (SE.properlyDominates(S, L->getHeader())) {
390     Good.push_back(S);
391     return;
392   }
393 
394   // Look at add operands.
395   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
396     for (const SCEV *S : Add->operands())
397       DoInitialMatch(S, L, Good, Bad, SE);
398     return;
399   }
400 
401   // Look at addrec operands.
402   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
403     if (!AR->getStart()->isZero() && AR->isAffine()) {
404       DoInitialMatch(AR->getStart(), L, Good, Bad, SE);
405       DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
406                                       AR->getStepRecurrence(SE),
407                                       // FIXME: AR->getNoWrapFlags()
408                                       AR->getLoop(), SCEV::FlagAnyWrap),
409                      L, Good, Bad, SE);
410       return;
411     }
412 
413   // Handle a multiplication by -1 (negation) if it didn't fold.
414   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
415     if (Mul->getOperand(0)->isAllOnesValue()) {
416       SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end());
417       const SCEV *NewMul = SE.getMulExpr(Ops);
418 
419       SmallVector<const SCEV *, 4> MyGood;
420       SmallVector<const SCEV *, 4> MyBad;
421       DoInitialMatch(NewMul, L, MyGood, MyBad, SE);
422       const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
423         SE.getEffectiveSCEVType(NewMul->getType())));
424       for (const SCEV *S : MyGood)
425         Good.push_back(SE.getMulExpr(NegOne, S));
426       for (const SCEV *S : MyBad)
427         Bad.push_back(SE.getMulExpr(NegOne, S));
428       return;
429     }
430 
431   // Ok, we can't do anything interesting. Just stuff the whole thing into a
432   // register and hope for the best.
433   Bad.push_back(S);
434 }
435 
436 /// Incorporate loop-variant parts of S into this Formula, attempting to keep
437 /// all loop-invariant and loop-computable values in a single base register.
438 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) {
439   SmallVector<const SCEV *, 4> Good;
440   SmallVector<const SCEV *, 4> Bad;
441   DoInitialMatch(S, L, Good, Bad, SE);
442   if (!Good.empty()) {
443     const SCEV *Sum = SE.getAddExpr(Good);
444     if (!Sum->isZero())
445       BaseRegs.push_back(Sum);
446     HasBaseReg = true;
447   }
448   if (!Bad.empty()) {
449     const SCEV *Sum = SE.getAddExpr(Bad);
450     if (!Sum->isZero())
451       BaseRegs.push_back(Sum);
452     HasBaseReg = true;
453   }
454   canonicalize(*L);
455 }
456 
457 /// Check whether or not this formula satisfies the canonical
458 /// representation.
459 /// \see Formula::BaseRegs.
460 bool Formula::isCanonical(const Loop &L) const {
461   if (!ScaledReg)
462     return BaseRegs.size() <= 1;
463 
464   if (Scale != 1)
465     return true;
466 
467   if (Scale == 1 && BaseRegs.empty())
468     return false;
469 
470   const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg);
471   if (SAR && SAR->getLoop() == &L)
472     return true;
473 
474   // If ScaledReg is not a recurrent expr, or it is but its loop is not current
475   // loop, meanwhile BaseRegs contains a recurrent expr reg related with current
476   // loop, we want to swap the reg in BaseRegs with ScaledReg.
477   auto I =
478       find_if(make_range(BaseRegs.begin(), BaseRegs.end()), [&](const SCEV *S) {
479         return isa<const SCEVAddRecExpr>(S) &&
480                (cast<SCEVAddRecExpr>(S)->getLoop() == &L);
481       });
482   return I == BaseRegs.end();
483 }
484 
485 /// Helper method to morph a formula into its canonical representation.
486 /// \see Formula::BaseRegs.
487 /// Every formula having more than one base register, must use the ScaledReg
488 /// field. Otherwise, we would have to do special cases everywhere in LSR
489 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ...
490 /// On the other hand, 1*reg should be canonicalized into reg.
491 void Formula::canonicalize(const Loop &L) {
492   if (isCanonical(L))
493     return;
494   // So far we did not need this case. This is easy to implement but it is
495   // useless to maintain dead code. Beside it could hurt compile time.
496   assert(!BaseRegs.empty() && "1*reg => reg, should not be needed.");
497 
498   // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg.
499   if (!ScaledReg) {
500     ScaledReg = BaseRegs.back();
501     BaseRegs.pop_back();
502     Scale = 1;
503   }
504 
505   // If ScaledReg is an invariant with respect to L, find the reg from
506   // BaseRegs containing the recurrent expr related with Loop L. Swap the
507   // reg with ScaledReg.
508   const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg);
509   if (!SAR || SAR->getLoop() != &L) {
510     auto I = find_if(make_range(BaseRegs.begin(), BaseRegs.end()),
511                      [&](const SCEV *S) {
512                        return isa<const SCEVAddRecExpr>(S) &&
513                               (cast<SCEVAddRecExpr>(S)->getLoop() == &L);
514                      });
515     if (I != BaseRegs.end())
516       std::swap(ScaledReg, *I);
517   }
518 }
519 
520 /// Get rid of the scale in the formula.
521 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2.
522 /// \return true if it was possible to get rid of the scale, false otherwise.
523 /// \note After this operation the formula may not be in the canonical form.
524 bool Formula::unscale() {
525   if (Scale != 1)
526     return false;
527   Scale = 0;
528   BaseRegs.push_back(ScaledReg);
529   ScaledReg = nullptr;
530   return true;
531 }
532 
533 bool Formula::hasZeroEnd() const {
534   if (UnfoldedOffset || BaseOffset)
535     return false;
536   if (BaseRegs.size() != 1 || ScaledReg)
537     return false;
538   return true;
539 }
540 
541 /// Return the total number of register operands used by this formula. This does
542 /// not include register uses implied by non-constant addrec strides.
543 size_t Formula::getNumRegs() const {
544   return !!ScaledReg + BaseRegs.size();
545 }
546 
547 /// Return the type of this formula, if it has one, or null otherwise. This type
548 /// is meaningless except for the bit size.
549 Type *Formula::getType() const {
550   return !BaseRegs.empty() ? BaseRegs.front()->getType() :
551          ScaledReg ? ScaledReg->getType() :
552          BaseGV ? BaseGV->getType() :
553          nullptr;
554 }
555 
556 /// Delete the given base reg from the BaseRegs list.
557 void Formula::deleteBaseReg(const SCEV *&S) {
558   if (&S != &BaseRegs.back())
559     std::swap(S, BaseRegs.back());
560   BaseRegs.pop_back();
561 }
562 
563 /// Test if this formula references the given register.
564 bool Formula::referencesReg(const SCEV *S) const {
565   return S == ScaledReg || is_contained(BaseRegs, S);
566 }
567 
568 /// Test whether this formula uses registers which are used by uses other than
569 /// the use with the given index.
570 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
571                                          const RegUseTracker &RegUses) const {
572   if (ScaledReg)
573     if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
574       return true;
575   for (const SCEV *BaseReg : BaseRegs)
576     if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx))
577       return true;
578   return false;
579 }
580 
581 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
582 void Formula::print(raw_ostream &OS) const {
583   bool First = true;
584   if (BaseGV) {
585     if (!First) OS << " + "; else First = false;
586     BaseGV->printAsOperand(OS, /*PrintType=*/false);
587   }
588   if (BaseOffset != 0) {
589     if (!First) OS << " + "; else First = false;
590     OS << BaseOffset;
591   }
592   for (const SCEV *BaseReg : BaseRegs) {
593     if (!First) OS << " + "; else First = false;
594     OS << "reg(" << *BaseReg << ')';
595   }
596   if (HasBaseReg && BaseRegs.empty()) {
597     if (!First) OS << " + "; else First = false;
598     OS << "**error: HasBaseReg**";
599   } else if (!HasBaseReg && !BaseRegs.empty()) {
600     if (!First) OS << " + "; else First = false;
601     OS << "**error: !HasBaseReg**";
602   }
603   if (Scale != 0) {
604     if (!First) OS << " + "; else First = false;
605     OS << Scale << "*reg(";
606     if (ScaledReg)
607       OS << *ScaledReg;
608     else
609       OS << "<unknown>";
610     OS << ')';
611   }
612   if (UnfoldedOffset != 0) {
613     if (!First) OS << " + ";
614     OS << "imm(" << UnfoldedOffset << ')';
615   }
616 }
617 
618 LLVM_DUMP_METHOD void Formula::dump() const {
619   print(errs()); errs() << '\n';
620 }
621 #endif
622 
623 /// Return true if the given addrec can be sign-extended without changing its
624 /// value.
625 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
626   Type *WideTy =
627     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
628   return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
629 }
630 
631 /// Return true if the given add can be sign-extended without changing its
632 /// value.
633 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
634   Type *WideTy =
635     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
636   return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
637 }
638 
639 /// Return true if the given mul can be sign-extended without changing its
640 /// value.
641 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) {
642   Type *WideTy =
643     IntegerType::get(SE.getContext(),
644                      SE.getTypeSizeInBits(M->getType()) * M->getNumOperands());
645   return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy));
646 }
647 
648 /// Return an expression for LHS /s RHS, if it can be determined and if the
649 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits
650 /// is true, expressions like (X * Y) /s Y are simplified to Y, ignoring that
651 /// the multiplication may overflow, which is useful when the result will be
652 /// used in a context where the most significant bits are ignored.
653 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
654                                 ScalarEvolution &SE,
655                                 bool IgnoreSignificantBits = false) {
656   // Handle the trivial case, which works for any SCEV type.
657   if (LHS == RHS)
658     return SE.getConstant(LHS->getType(), 1);
659 
660   // Handle a few RHS special cases.
661   const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
662   if (RC) {
663     const APInt &RA = RC->getAPInt();
664     // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
665     // some folding.
666     if (RA.isAllOnesValue())
667       return SE.getMulExpr(LHS, RC);
668     // Handle x /s 1 as x.
669     if (RA == 1)
670       return LHS;
671   }
672 
673   // Check for a division of a constant by a constant.
674   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
675     if (!RC)
676       return nullptr;
677     const APInt &LA = C->getAPInt();
678     const APInt &RA = RC->getAPInt();
679     if (LA.srem(RA) != 0)
680       return nullptr;
681     return SE.getConstant(LA.sdiv(RA));
682   }
683 
684   // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
685   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
686     if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) {
687       const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
688                                       IgnoreSignificantBits);
689       if (!Step) return nullptr;
690       const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
691                                        IgnoreSignificantBits);
692       if (!Start) return nullptr;
693       // FlagNW is independent of the start value, step direction, and is
694       // preserved with smaller magnitude steps.
695       // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
696       return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap);
697     }
698     return nullptr;
699   }
700 
701   // Distribute the sdiv over add operands, if the add doesn't overflow.
702   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
703     if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
704       SmallVector<const SCEV *, 8> Ops;
705       for (const SCEV *S : Add->operands()) {
706         const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits);
707         if (!Op) return nullptr;
708         Ops.push_back(Op);
709       }
710       return SE.getAddExpr(Ops);
711     }
712     return nullptr;
713   }
714 
715   // Check for a multiply operand that we can pull RHS out of.
716   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) {
717     if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
718       SmallVector<const SCEV *, 4> Ops;
719       bool Found = false;
720       for (const SCEV *S : Mul->operands()) {
721         if (!Found)
722           if (const SCEV *Q = getExactSDiv(S, RHS, SE,
723                                            IgnoreSignificantBits)) {
724             S = Q;
725             Found = true;
726           }
727         Ops.push_back(S);
728       }
729       return Found ? SE.getMulExpr(Ops) : nullptr;
730     }
731     return nullptr;
732   }
733 
734   // Otherwise we don't know.
735   return nullptr;
736 }
737 
738 /// If S involves the addition of a constant integer value, return that integer
739 /// value, and mutate S to point to a new SCEV with that value excluded.
740 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
741   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
742     if (C->getAPInt().getMinSignedBits() <= 64) {
743       S = SE.getConstant(C->getType(), 0);
744       return C->getValue()->getSExtValue();
745     }
746   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
747     SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
748     int64_t Result = ExtractImmediate(NewOps.front(), SE);
749     if (Result != 0)
750       S = SE.getAddExpr(NewOps);
751     return Result;
752   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
753     SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
754     int64_t Result = ExtractImmediate(NewOps.front(), SE);
755     if (Result != 0)
756       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
757                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
758                            SCEV::FlagAnyWrap);
759     return Result;
760   }
761   return 0;
762 }
763 
764 /// If S involves the addition of a GlobalValue address, return that symbol, and
765 /// mutate S to point to a new SCEV with that value excluded.
766 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
767   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
768     if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
769       S = SE.getConstant(GV->getType(), 0);
770       return GV;
771     }
772   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
773     SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
774     GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
775     if (Result)
776       S = SE.getAddExpr(NewOps);
777     return Result;
778   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
779     SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
780     GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
781     if (Result)
782       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
783                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
784                            SCEV::FlagAnyWrap);
785     return Result;
786   }
787   return nullptr;
788 }
789 
790 /// Returns true if the specified instruction is using the specified value as an
791 /// address.
792 static bool isAddressUse(const TargetTransformInfo &TTI,
793                          Instruction *Inst, Value *OperandVal) {
794   bool isAddress = isa<LoadInst>(Inst);
795   if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
796     if (SI->getPointerOperand() == OperandVal)
797       isAddress = true;
798   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
799     // Addressing modes can also be folded into prefetches and a variety
800     // of intrinsics.
801     switch (II->getIntrinsicID()) {
802     case Intrinsic::memset:
803     case Intrinsic::prefetch:
804       if (II->getArgOperand(0) == OperandVal)
805         isAddress = true;
806       break;
807     case Intrinsic::memmove:
808     case Intrinsic::memcpy:
809       if (II->getArgOperand(0) == OperandVal ||
810           II->getArgOperand(1) == OperandVal)
811         isAddress = true;
812       break;
813     default: {
814       MemIntrinsicInfo IntrInfo;
815       if (TTI.getTgtMemIntrinsic(II, IntrInfo)) {
816         if (IntrInfo.PtrVal == OperandVal)
817           isAddress = true;
818       }
819     }
820     }
821   } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
822     if (RMW->getPointerOperand() == OperandVal)
823       isAddress = true;
824   } else if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
825     if (CmpX->getPointerOperand() == OperandVal)
826       isAddress = true;
827   }
828   return isAddress;
829 }
830 
831 /// Return the type of the memory being accessed.
832 static MemAccessTy getAccessType(const TargetTransformInfo &TTI,
833                                  Instruction *Inst, Value *OperandVal) {
834   MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace);
835   if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
836     AccessTy.MemTy = SI->getOperand(0)->getType();
837     AccessTy.AddrSpace = SI->getPointerAddressSpace();
838   } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
839     AccessTy.AddrSpace = LI->getPointerAddressSpace();
840   } else if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
841     AccessTy.AddrSpace = RMW->getPointerAddressSpace();
842   } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
843     AccessTy.AddrSpace = CmpX->getPointerAddressSpace();
844   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
845     switch (II->getIntrinsicID()) {
846     case Intrinsic::prefetch:
847     case Intrinsic::memset:
848       AccessTy.AddrSpace = II->getArgOperand(0)->getType()->getPointerAddressSpace();
849       AccessTy.MemTy = OperandVal->getType();
850       break;
851     case Intrinsic::memmove:
852     case Intrinsic::memcpy:
853       AccessTy.AddrSpace = OperandVal->getType()->getPointerAddressSpace();
854       AccessTy.MemTy = OperandVal->getType();
855       break;
856     default: {
857       MemIntrinsicInfo IntrInfo;
858       if (TTI.getTgtMemIntrinsic(II, IntrInfo) && IntrInfo.PtrVal) {
859         AccessTy.AddrSpace
860           = IntrInfo.PtrVal->getType()->getPointerAddressSpace();
861       }
862 
863       break;
864     }
865     }
866   }
867 
868   // All pointers have the same requirements, so canonicalize them to an
869   // arbitrary pointer type to minimize variation.
870   if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy))
871     AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
872                                       PTy->getAddressSpace());
873 
874   return AccessTy;
875 }
876 
877 /// Return true if this AddRec is already a phi in its loop.
878 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
879   for (PHINode &PN : AR->getLoop()->getHeader()->phis()) {
880     if (SE.isSCEVable(PN.getType()) &&
881         (SE.getEffectiveSCEVType(PN.getType()) ==
882          SE.getEffectiveSCEVType(AR->getType())) &&
883         SE.getSCEV(&PN) == AR)
884       return true;
885   }
886   return false;
887 }
888 
889 /// Check if expanding this expression is likely to incur significant cost. This
890 /// is tricky because SCEV doesn't track which expressions are actually computed
891 /// by the current IR.
892 ///
893 /// We currently allow expansion of IV increments that involve adds,
894 /// multiplication by constants, and AddRecs from existing phis.
895 ///
896 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an
897 /// obvious multiple of the UDivExpr.
898 static bool isHighCostExpansion(const SCEV *S,
899                                 SmallPtrSetImpl<const SCEV*> &Processed,
900                                 ScalarEvolution &SE) {
901   // Zero/One operand expressions
902   switch (S->getSCEVType()) {
903   case scUnknown:
904   case scConstant:
905     return false;
906   case scTruncate:
907     return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(),
908                                Processed, SE);
909   case scZeroExtend:
910     return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(),
911                                Processed, SE);
912   case scSignExtend:
913     return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(),
914                                Processed, SE);
915   }
916 
917   if (!Processed.insert(S).second)
918     return false;
919 
920   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
921     for (const SCEV *S : Add->operands()) {
922       if (isHighCostExpansion(S, Processed, SE))
923         return true;
924     }
925     return false;
926   }
927 
928   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
929     if (Mul->getNumOperands() == 2) {
930       // Multiplication by a constant is ok
931       if (isa<SCEVConstant>(Mul->getOperand(0)))
932         return isHighCostExpansion(Mul->getOperand(1), Processed, SE);
933 
934       // If we have the value of one operand, check if an existing
935       // multiplication already generates this expression.
936       if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) {
937         Value *UVal = U->getValue();
938         for (User *UR : UVal->users()) {
939           // If U is a constant, it may be used by a ConstantExpr.
940           Instruction *UI = dyn_cast<Instruction>(UR);
941           if (UI && UI->getOpcode() == Instruction::Mul &&
942               SE.isSCEVable(UI->getType())) {
943             return SE.getSCEV(UI) == Mul;
944           }
945         }
946       }
947     }
948   }
949 
950   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
951     if (isExistingPhi(AR, SE))
952       return false;
953   }
954 
955   // Fow now, consider any other type of expression (div/mul/min/max) high cost.
956   return true;
957 }
958 
959 /// If any of the instructions in the specified set are trivially dead, delete
960 /// them and see if this makes any of their operands subsequently dead.
961 static bool
962 DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
963   bool Changed = false;
964 
965   while (!DeadInsts.empty()) {
966     Value *V = DeadInsts.pop_back_val();
967     Instruction *I = dyn_cast_or_null<Instruction>(V);
968 
969     if (!I || !isInstructionTriviallyDead(I))
970       continue;
971 
972     for (Use &O : I->operands())
973       if (Instruction *U = dyn_cast<Instruction>(O)) {
974         O = nullptr;
975         if (U->use_empty())
976           DeadInsts.emplace_back(U);
977       }
978 
979     I->eraseFromParent();
980     Changed = true;
981   }
982 
983   return Changed;
984 }
985 
986 namespace {
987 
988 class LSRUse;
989 
990 } // end anonymous namespace
991 
992 /// Check if the addressing mode defined by \p F is completely
993 /// folded in \p LU at isel time.
994 /// This includes address-mode folding and special icmp tricks.
995 /// This function returns true if \p LU can accommodate what \p F
996 /// defines and up to 1 base + 1 scaled + offset.
997 /// In other words, if \p F has several base registers, this function may
998 /// still return true. Therefore, users still need to account for
999 /// additional base registers and/or unfolded offsets to derive an
1000 /// accurate cost model.
1001 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1002                                  const LSRUse &LU, const Formula &F);
1003 
1004 // Get the cost of the scaling factor used in F for LU.
1005 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
1006                                      const LSRUse &LU, const Formula &F,
1007                                      const Loop &L);
1008 
1009 namespace {
1010 
1011 /// This class is used to measure and compare candidate formulae.
1012 class Cost {
1013   TargetTransformInfo::LSRCost C;
1014 
1015 public:
1016   Cost() {
1017     C.Insns = 0;
1018     C.NumRegs = 0;
1019     C.AddRecCost = 0;
1020     C.NumIVMuls = 0;
1021     C.NumBaseAdds = 0;
1022     C.ImmCost = 0;
1023     C.SetupCost = 0;
1024     C.ScaleCost = 0;
1025   }
1026 
1027   bool isLess(Cost &Other, const TargetTransformInfo &TTI);
1028 
1029   void Lose();
1030 
1031 #ifndef NDEBUG
1032   // Once any of the metrics loses, they must all remain losers.
1033   bool isValid() {
1034     return ((C.Insns | C.NumRegs | C.AddRecCost | C.NumIVMuls | C.NumBaseAdds
1035              | C.ImmCost | C.SetupCost | C.ScaleCost) != ~0u)
1036       || ((C.Insns & C.NumRegs & C.AddRecCost & C.NumIVMuls & C.NumBaseAdds
1037            & C.ImmCost & C.SetupCost & C.ScaleCost) == ~0u);
1038   }
1039 #endif
1040 
1041   bool isLoser() {
1042     assert(isValid() && "invalid cost");
1043     return C.NumRegs == ~0u;
1044   }
1045 
1046   void RateFormula(const TargetTransformInfo &TTI,
1047                    const Formula &F,
1048                    SmallPtrSetImpl<const SCEV *> &Regs,
1049                    const DenseSet<const SCEV *> &VisitedRegs,
1050                    const Loop *L,
1051                    ScalarEvolution &SE, DominatorTree &DT,
1052                    const LSRUse &LU,
1053                    SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr);
1054 
1055   void print(raw_ostream &OS) const;
1056   void dump() const;
1057 
1058 private:
1059   void RateRegister(const Formula &F, const SCEV *Reg,
1060                     SmallPtrSetImpl<const SCEV *> &Regs,
1061                     const Loop *L,
1062                     ScalarEvolution &SE, DominatorTree &DT,
1063                     const TargetTransformInfo &TTI);
1064   void RatePrimaryRegister(const Formula &F, const SCEV *Reg,
1065                            SmallPtrSetImpl<const SCEV *> &Regs,
1066                            const Loop *L,
1067                            ScalarEvolution &SE, DominatorTree &DT,
1068                            SmallPtrSetImpl<const SCEV *> *LoserRegs,
1069                            const TargetTransformInfo &TTI);
1070 };
1071 
1072 /// An operand value in an instruction which is to be replaced with some
1073 /// equivalent, possibly strength-reduced, replacement.
1074 struct LSRFixup {
1075   /// The instruction which will be updated.
1076   Instruction *UserInst = nullptr;
1077 
1078   /// The operand of the instruction which will be replaced. The operand may be
1079   /// used more than once; every instance will be replaced.
1080   Value *OperandValToReplace = nullptr;
1081 
1082   /// If this user is to use the post-incremented value of an induction
1083   /// variable, this set is non-empty and holds the loops associated with the
1084   /// induction variable.
1085   PostIncLoopSet PostIncLoops;
1086 
1087   /// A constant offset to be added to the LSRUse expression.  This allows
1088   /// multiple fixups to share the same LSRUse with different offsets, for
1089   /// example in an unrolled loop.
1090   int64_t Offset = 0;
1091 
1092   LSRFixup() = default;
1093 
1094   bool isUseFullyOutsideLoop(const Loop *L) const;
1095 
1096   void print(raw_ostream &OS) const;
1097   void dump() const;
1098 };
1099 
1100 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted
1101 /// SmallVectors of const SCEV*.
1102 struct UniquifierDenseMapInfo {
1103   static SmallVector<const SCEV *, 4> getEmptyKey() {
1104     SmallVector<const SCEV *, 4>  V;
1105     V.push_back(reinterpret_cast<const SCEV *>(-1));
1106     return V;
1107   }
1108 
1109   static SmallVector<const SCEV *, 4> getTombstoneKey() {
1110     SmallVector<const SCEV *, 4> V;
1111     V.push_back(reinterpret_cast<const SCEV *>(-2));
1112     return V;
1113   }
1114 
1115   static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) {
1116     return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
1117   }
1118 
1119   static bool isEqual(const SmallVector<const SCEV *, 4> &LHS,
1120                       const SmallVector<const SCEV *, 4> &RHS) {
1121     return LHS == RHS;
1122   }
1123 };
1124 
1125 /// This class holds the state that LSR keeps for each use in IVUsers, as well
1126 /// as uses invented by LSR itself. It includes information about what kinds of
1127 /// things can be folded into the user, information about the user itself, and
1128 /// information about how the use may be satisfied.  TODO: Represent multiple
1129 /// users of the same expression in common?
1130 class LSRUse {
1131   DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier;
1132 
1133 public:
1134   /// An enum for a kind of use, indicating what types of scaled and immediate
1135   /// operands it might support.
1136   enum KindType {
1137     Basic,   ///< A normal use, with no folding.
1138     Special, ///< A special case of basic, allowing -1 scales.
1139     Address, ///< An address use; folding according to TargetLowering
1140     ICmpZero ///< An equality icmp with both operands folded into one.
1141     // TODO: Add a generic icmp too?
1142   };
1143 
1144   using SCEVUseKindPair = PointerIntPair<const SCEV *, 2, KindType>;
1145 
1146   KindType Kind;
1147   MemAccessTy AccessTy;
1148 
1149   /// The list of operands which are to be replaced.
1150   SmallVector<LSRFixup, 8> Fixups;
1151 
1152   /// Keep track of the min and max offsets of the fixups.
1153   int64_t MinOffset = std::numeric_limits<int64_t>::max();
1154   int64_t MaxOffset = std::numeric_limits<int64_t>::min();
1155 
1156   /// This records whether all of the fixups using this LSRUse are outside of
1157   /// the loop, in which case some special-case heuristics may be used.
1158   bool AllFixupsOutsideLoop = true;
1159 
1160   /// RigidFormula is set to true to guarantee that this use will be associated
1161   /// with a single formula--the one that initially matched. Some SCEV
1162   /// expressions cannot be expanded. This allows LSR to consider the registers
1163   /// used by those expressions without the need to expand them later after
1164   /// changing the formula.
1165   bool RigidFormula = false;
1166 
1167   /// This records the widest use type for any fixup using this
1168   /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max
1169   /// fixup widths to be equivalent, because the narrower one may be relying on
1170   /// the implicit truncation to truncate away bogus bits.
1171   Type *WidestFixupType = nullptr;
1172 
1173   /// A list of ways to build a value that can satisfy this user.  After the
1174   /// list is populated, one of these is selected heuristically and used to
1175   /// formulate a replacement for OperandValToReplace in UserInst.
1176   SmallVector<Formula, 12> Formulae;
1177 
1178   /// The set of register candidates used by all formulae in this LSRUse.
1179   SmallPtrSet<const SCEV *, 4> Regs;
1180 
1181   LSRUse(KindType K, MemAccessTy AT) : Kind(K), AccessTy(AT) {}
1182 
1183   LSRFixup &getNewFixup() {
1184     Fixups.push_back(LSRFixup());
1185     return Fixups.back();
1186   }
1187 
1188   void pushFixup(LSRFixup &f) {
1189     Fixups.push_back(f);
1190     if (f.Offset > MaxOffset)
1191       MaxOffset = f.Offset;
1192     if (f.Offset < MinOffset)
1193       MinOffset = f.Offset;
1194   }
1195 
1196   bool HasFormulaWithSameRegs(const Formula &F) const;
1197   float getNotSelectedProbability(const SCEV *Reg) const;
1198   bool InsertFormula(const Formula &F, const Loop &L);
1199   void DeleteFormula(Formula &F);
1200   void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
1201 
1202   void print(raw_ostream &OS) const;
1203   void dump() const;
1204 };
1205 
1206 } // end anonymous namespace
1207 
1208 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1209                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1210                                  GlobalValue *BaseGV, int64_t BaseOffset,
1211                                  bool HasBaseReg, int64_t Scale,
1212                                  Instruction *Fixup = nullptr);
1213 
1214 /// Tally up interesting quantities from the given register.
1215 void Cost::RateRegister(const Formula &F, const SCEV *Reg,
1216                         SmallPtrSetImpl<const SCEV *> &Regs,
1217                         const Loop *L,
1218                         ScalarEvolution &SE, DominatorTree &DT,
1219                         const TargetTransformInfo &TTI) {
1220   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
1221     // If this is an addrec for another loop, it should be an invariant
1222     // with respect to L since L is the innermost loop (at least
1223     // for now LSR only handles innermost loops).
1224     if (AR->getLoop() != L) {
1225       // If the AddRec exists, consider it's register free and leave it alone.
1226       if (isExistingPhi(AR, SE))
1227         return;
1228 
1229       // It is bad to allow LSR for current loop to add induction variables
1230       // for its sibling loops.
1231       if (!AR->getLoop()->contains(L)) {
1232         Lose();
1233         return;
1234       }
1235 
1236       // Otherwise, it will be an invariant with respect to Loop L.
1237       ++C.NumRegs;
1238       return;
1239     }
1240 
1241     unsigned LoopCost = 1;
1242     if (TTI.isIndexedLoadLegal(TTI.MIM_PostInc, AR->getType()) ||
1243         TTI.isIndexedStoreLegal(TTI.MIM_PostInc, AR->getType())) {
1244 
1245       // If the step size matches the base offset, we could use pre-indexed
1246       // addressing.
1247       if (TTI.shouldFavorBackedgeIndex(L)) {
1248         if (auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
1249           if (Step->getAPInt() == F.BaseOffset)
1250             LoopCost = 0;
1251       }
1252 
1253       if (TTI.shouldFavorPostInc()) {
1254         const SCEV *LoopStep = AR->getStepRecurrence(SE);
1255         if (isa<SCEVConstant>(LoopStep)) {
1256           const SCEV *LoopStart = AR->getStart();
1257           if (!isa<SCEVConstant>(LoopStart) &&
1258               SE.isLoopInvariant(LoopStart, L))
1259             LoopCost = 0;
1260         }
1261       }
1262     }
1263     C.AddRecCost += LoopCost;
1264 
1265     // Add the step value register, if it needs one.
1266     // TODO: The non-affine case isn't precisely modeled here.
1267     if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) {
1268       if (!Regs.count(AR->getOperand(1))) {
1269         RateRegister(F, AR->getOperand(1), Regs, L, SE, DT, TTI);
1270         if (isLoser())
1271           return;
1272       }
1273     }
1274   }
1275   ++C.NumRegs;
1276 
1277   // Rough heuristic; favor registers which don't require extra setup
1278   // instructions in the preheader.
1279   if (!isa<SCEVUnknown>(Reg) &&
1280       !isa<SCEVConstant>(Reg) &&
1281       !(isa<SCEVAddRecExpr>(Reg) &&
1282         (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) ||
1283          isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart()))))
1284     ++C.SetupCost;
1285 
1286   C.NumIVMuls += isa<SCEVMulExpr>(Reg) &&
1287                SE.hasComputableLoopEvolution(Reg, L);
1288 }
1289 
1290 /// Record this register in the set. If we haven't seen it before, rate
1291 /// it. Optional LoserRegs provides a way to declare any formula that refers to
1292 /// one of those regs an instant loser.
1293 void Cost::RatePrimaryRegister(const Formula &F, const SCEV *Reg,
1294                                SmallPtrSetImpl<const SCEV *> &Regs,
1295                                const Loop *L,
1296                                ScalarEvolution &SE, DominatorTree &DT,
1297                                SmallPtrSetImpl<const SCEV *> *LoserRegs,
1298                                const TargetTransformInfo &TTI) {
1299   if (LoserRegs && LoserRegs->count(Reg)) {
1300     Lose();
1301     return;
1302   }
1303   if (Regs.insert(Reg).second) {
1304     RateRegister(F, Reg, Regs, L, SE, DT, TTI);
1305     if (LoserRegs && isLoser())
1306       LoserRegs->insert(Reg);
1307   }
1308 }
1309 
1310 void Cost::RateFormula(const TargetTransformInfo &TTI,
1311                        const Formula &F,
1312                        SmallPtrSetImpl<const SCEV *> &Regs,
1313                        const DenseSet<const SCEV *> &VisitedRegs,
1314                        const Loop *L,
1315                        ScalarEvolution &SE, DominatorTree &DT,
1316                        const LSRUse &LU,
1317                        SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1318   assert(F.isCanonical(*L) && "Cost is accurate only for canonical formula");
1319   // Tally up the registers.
1320   unsigned PrevAddRecCost = C.AddRecCost;
1321   unsigned PrevNumRegs = C.NumRegs;
1322   unsigned PrevNumBaseAdds = C.NumBaseAdds;
1323   if (const SCEV *ScaledReg = F.ScaledReg) {
1324     if (VisitedRegs.count(ScaledReg)) {
1325       Lose();
1326       return;
1327     }
1328     RatePrimaryRegister(F, ScaledReg, Regs, L, SE, DT, LoserRegs, TTI);
1329     if (isLoser())
1330       return;
1331   }
1332   for (const SCEV *BaseReg : F.BaseRegs) {
1333     if (VisitedRegs.count(BaseReg)) {
1334       Lose();
1335       return;
1336     }
1337     RatePrimaryRegister(F, BaseReg, Regs, L, SE, DT, LoserRegs, TTI);
1338     if (isLoser())
1339       return;
1340   }
1341 
1342   // Determine how many (unfolded) adds we'll need inside the loop.
1343   size_t NumBaseParts = F.getNumRegs();
1344   if (NumBaseParts > 1)
1345     // Do not count the base and a possible second register if the target
1346     // allows to fold 2 registers.
1347     C.NumBaseAdds +=
1348         NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(TTI, LU, F)));
1349   C.NumBaseAdds += (F.UnfoldedOffset != 0);
1350 
1351   // Accumulate non-free scaling amounts.
1352   C.ScaleCost += getScalingFactorCost(TTI, LU, F, *L);
1353 
1354   // Tally up the non-zero immediates.
1355   for (const LSRFixup &Fixup : LU.Fixups) {
1356     int64_t O = Fixup.Offset;
1357     int64_t Offset = (uint64_t)O + F.BaseOffset;
1358     if (F.BaseGV)
1359       C.ImmCost += 64; // Handle symbolic values conservatively.
1360                      // TODO: This should probably be the pointer size.
1361     else if (Offset != 0)
1362       C.ImmCost += APInt(64, Offset, true).getMinSignedBits();
1363 
1364     // Check with target if this offset with this instruction is
1365     // specifically not supported.
1366     if (LU.Kind == LSRUse::Address && Offset != 0 &&
1367         !isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV,
1368                               Offset, F.HasBaseReg, F.Scale, Fixup.UserInst))
1369       C.NumBaseAdds++;
1370   }
1371 
1372   // If we don't count instruction cost exit here.
1373   if (!InsnsCost) {
1374     assert(isValid() && "invalid cost");
1375     return;
1376   }
1377 
1378   // Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as
1379   // additional instruction (at least fill).
1380   unsigned TTIRegNum = TTI.getNumberOfRegisters(false) - 1;
1381   if (C.NumRegs > TTIRegNum) {
1382     // Cost already exceeded TTIRegNum, then only newly added register can add
1383     // new instructions.
1384     if (PrevNumRegs > TTIRegNum)
1385       C.Insns += (C.NumRegs - PrevNumRegs);
1386     else
1387       C.Insns += (C.NumRegs - TTIRegNum);
1388   }
1389 
1390   // If ICmpZero formula ends with not 0, it could not be replaced by
1391   // just add or sub. We'll need to compare final result of AddRec.
1392   // That means we'll need an additional instruction. But if the target can
1393   // macro-fuse a compare with a branch, don't count this extra instruction.
1394   // For -10 + {0, +, 1}:
1395   // i = i + 1;
1396   // cmp i, 10
1397   //
1398   // For {-10, +, 1}:
1399   // i = i + 1;
1400   if (LU.Kind == LSRUse::ICmpZero && !F.hasZeroEnd() && !TTI.canMacroFuseCmp())
1401     C.Insns++;
1402   // Each new AddRec adds 1 instruction to calculation.
1403   C.Insns += (C.AddRecCost - PrevAddRecCost);
1404 
1405   // BaseAdds adds instructions for unfolded registers.
1406   if (LU.Kind != LSRUse::ICmpZero)
1407     C.Insns += C.NumBaseAdds - PrevNumBaseAdds;
1408   assert(isValid() && "invalid cost");
1409 }
1410 
1411 /// Set this cost to a losing value.
1412 void Cost::Lose() {
1413   C.Insns = std::numeric_limits<unsigned>::max();
1414   C.NumRegs = std::numeric_limits<unsigned>::max();
1415   C.AddRecCost = std::numeric_limits<unsigned>::max();
1416   C.NumIVMuls = std::numeric_limits<unsigned>::max();
1417   C.NumBaseAdds = std::numeric_limits<unsigned>::max();
1418   C.ImmCost = std::numeric_limits<unsigned>::max();
1419   C.SetupCost = std::numeric_limits<unsigned>::max();
1420   C.ScaleCost = std::numeric_limits<unsigned>::max();
1421 }
1422 
1423 /// Choose the lower cost.
1424 bool Cost::isLess(Cost &Other, const TargetTransformInfo &TTI) {
1425   if (InsnsCost.getNumOccurrences() > 0 && InsnsCost &&
1426       C.Insns != Other.C.Insns)
1427     return C.Insns < Other.C.Insns;
1428   return TTI.isLSRCostLess(C, Other.C);
1429 }
1430 
1431 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1432 void Cost::print(raw_ostream &OS) const {
1433   if (InsnsCost)
1434     OS << C.Insns << " instruction" << (C.Insns == 1 ? " " : "s ");
1435   OS << C.NumRegs << " reg" << (C.NumRegs == 1 ? "" : "s");
1436   if (C.AddRecCost != 0)
1437     OS << ", with addrec cost " << C.AddRecCost;
1438   if (C.NumIVMuls != 0)
1439     OS << ", plus " << C.NumIVMuls << " IV mul"
1440        << (C.NumIVMuls == 1 ? "" : "s");
1441   if (C.NumBaseAdds != 0)
1442     OS << ", plus " << C.NumBaseAdds << " base add"
1443        << (C.NumBaseAdds == 1 ? "" : "s");
1444   if (C.ScaleCost != 0)
1445     OS << ", plus " << C.ScaleCost << " scale cost";
1446   if (C.ImmCost != 0)
1447     OS << ", plus " << C.ImmCost << " imm cost";
1448   if (C.SetupCost != 0)
1449     OS << ", plus " << C.SetupCost << " setup cost";
1450 }
1451 
1452 LLVM_DUMP_METHOD void Cost::dump() const {
1453   print(errs()); errs() << '\n';
1454 }
1455 #endif
1456 
1457 /// Test whether this fixup always uses its value outside of the given loop.
1458 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
1459   // PHI nodes use their value in their incoming blocks.
1460   if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
1461     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1462       if (PN->getIncomingValue(i) == OperandValToReplace &&
1463           L->contains(PN->getIncomingBlock(i)))
1464         return false;
1465     return true;
1466   }
1467 
1468   return !L->contains(UserInst);
1469 }
1470 
1471 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1472 void LSRFixup::print(raw_ostream &OS) const {
1473   OS << "UserInst=";
1474   // Store is common and interesting enough to be worth special-casing.
1475   if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
1476     OS << "store ";
1477     Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false);
1478   } else if (UserInst->getType()->isVoidTy())
1479     OS << UserInst->getOpcodeName();
1480   else
1481     UserInst->printAsOperand(OS, /*PrintType=*/false);
1482 
1483   OS << ", OperandValToReplace=";
1484   OperandValToReplace->printAsOperand(OS, /*PrintType=*/false);
1485 
1486   for (const Loop *PIL : PostIncLoops) {
1487     OS << ", PostIncLoop=";
1488     PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
1489   }
1490 
1491   if (Offset != 0)
1492     OS << ", Offset=" << Offset;
1493 }
1494 
1495 LLVM_DUMP_METHOD void LSRFixup::dump() const {
1496   print(errs()); errs() << '\n';
1497 }
1498 #endif
1499 
1500 /// Test whether this use as a formula which has the same registers as the given
1501 /// formula.
1502 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
1503   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1504   if (F.ScaledReg) Key.push_back(F.ScaledReg);
1505   // Unstable sort by host order ok, because this is only used for uniquifying.
1506   llvm::sort(Key);
1507   return Uniquifier.count(Key);
1508 }
1509 
1510 /// The function returns a probability of selecting formula without Reg.
1511 float LSRUse::getNotSelectedProbability(const SCEV *Reg) const {
1512   unsigned FNum = 0;
1513   for (const Formula &F : Formulae)
1514     if (F.referencesReg(Reg))
1515       FNum++;
1516   return ((float)(Formulae.size() - FNum)) / Formulae.size();
1517 }
1518 
1519 /// If the given formula has not yet been inserted, add it to the list, and
1520 /// return true. Return false otherwise.  The formula must be in canonical form.
1521 bool LSRUse::InsertFormula(const Formula &F, const Loop &L) {
1522   assert(F.isCanonical(L) && "Invalid canonical representation");
1523 
1524   if (!Formulae.empty() && RigidFormula)
1525     return false;
1526 
1527   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1528   if (F.ScaledReg) Key.push_back(F.ScaledReg);
1529   // Unstable sort by host order ok, because this is only used for uniquifying.
1530   llvm::sort(Key);
1531 
1532   if (!Uniquifier.insert(Key).second)
1533     return false;
1534 
1535   // Using a register to hold the value of 0 is not profitable.
1536   assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
1537          "Zero allocated in a scaled register!");
1538 #ifndef NDEBUG
1539   for (const SCEV *BaseReg : F.BaseRegs)
1540     assert(!BaseReg->isZero() && "Zero allocated in a base register!");
1541 #endif
1542 
1543   // Add the formula to the list.
1544   Formulae.push_back(F);
1545 
1546   // Record registers now being used by this use.
1547   Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1548   if (F.ScaledReg)
1549     Regs.insert(F.ScaledReg);
1550 
1551   return true;
1552 }
1553 
1554 /// Remove the given formula from this use's list.
1555 void LSRUse::DeleteFormula(Formula &F) {
1556   if (&F != &Formulae.back())
1557     std::swap(F, Formulae.back());
1558   Formulae.pop_back();
1559 }
1560 
1561 /// Recompute the Regs field, and update RegUses.
1562 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
1563   // Now that we've filtered out some formulae, recompute the Regs set.
1564   SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs);
1565   Regs.clear();
1566   for (const Formula &F : Formulae) {
1567     if (F.ScaledReg) Regs.insert(F.ScaledReg);
1568     Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1569   }
1570 
1571   // Update the RegTracker.
1572   for (const SCEV *S : OldRegs)
1573     if (!Regs.count(S))
1574       RegUses.dropRegister(S, LUIdx);
1575 }
1576 
1577 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1578 void LSRUse::print(raw_ostream &OS) const {
1579   OS << "LSR Use: Kind=";
1580   switch (Kind) {
1581   case Basic:    OS << "Basic"; break;
1582   case Special:  OS << "Special"; break;
1583   case ICmpZero: OS << "ICmpZero"; break;
1584   case Address:
1585     OS << "Address of ";
1586     if (AccessTy.MemTy->isPointerTy())
1587       OS << "pointer"; // the full pointer type could be really verbose
1588     else {
1589       OS << *AccessTy.MemTy;
1590     }
1591 
1592     OS << " in addrspace(" << AccessTy.AddrSpace << ')';
1593   }
1594 
1595   OS << ", Offsets={";
1596   bool NeedComma = false;
1597   for (const LSRFixup &Fixup : Fixups) {
1598     if (NeedComma) OS << ',';
1599     OS << Fixup.Offset;
1600     NeedComma = true;
1601   }
1602   OS << '}';
1603 
1604   if (AllFixupsOutsideLoop)
1605     OS << ", all-fixups-outside-loop";
1606 
1607   if (WidestFixupType)
1608     OS << ", widest fixup type: " << *WidestFixupType;
1609 }
1610 
1611 LLVM_DUMP_METHOD void LSRUse::dump() const {
1612   print(errs()); errs() << '\n';
1613 }
1614 #endif
1615 
1616 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1617                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1618                                  GlobalValue *BaseGV, int64_t BaseOffset,
1619                                  bool HasBaseReg, int64_t Scale,
1620                                  Instruction *Fixup/*= nullptr*/) {
1621   switch (Kind) {
1622   case LSRUse::Address:
1623     return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset,
1624                                      HasBaseReg, Scale, AccessTy.AddrSpace, Fixup);
1625 
1626   case LSRUse::ICmpZero:
1627     // There's not even a target hook for querying whether it would be legal to
1628     // fold a GV into an ICmp.
1629     if (BaseGV)
1630       return false;
1631 
1632     // ICmp only has two operands; don't allow more than two non-trivial parts.
1633     if (Scale != 0 && HasBaseReg && BaseOffset != 0)
1634       return false;
1635 
1636     // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
1637     // putting the scaled register in the other operand of the icmp.
1638     if (Scale != 0 && Scale != -1)
1639       return false;
1640 
1641     // If we have low-level target information, ask the target if it can fold an
1642     // integer immediate on an icmp.
1643     if (BaseOffset != 0) {
1644       // We have one of:
1645       // ICmpZero     BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset
1646       // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset
1647       // Offs is the ICmp immediate.
1648       if (Scale == 0)
1649         // The cast does the right thing with
1650         // std::numeric_limits<int64_t>::min().
1651         BaseOffset = -(uint64_t)BaseOffset;
1652       return TTI.isLegalICmpImmediate(BaseOffset);
1653     }
1654 
1655     // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg
1656     return true;
1657 
1658   case LSRUse::Basic:
1659     // Only handle single-register values.
1660     return !BaseGV && Scale == 0 && BaseOffset == 0;
1661 
1662   case LSRUse::Special:
1663     // Special case Basic to handle -1 scales.
1664     return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0;
1665   }
1666 
1667   llvm_unreachable("Invalid LSRUse Kind!");
1668 }
1669 
1670 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1671                                  int64_t MinOffset, int64_t MaxOffset,
1672                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1673                                  GlobalValue *BaseGV, int64_t BaseOffset,
1674                                  bool HasBaseReg, int64_t Scale) {
1675   // Check for overflow.
1676   if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) !=
1677       (MinOffset > 0))
1678     return false;
1679   MinOffset = (uint64_t)BaseOffset + MinOffset;
1680   if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) !=
1681       (MaxOffset > 0))
1682     return false;
1683   MaxOffset = (uint64_t)BaseOffset + MaxOffset;
1684 
1685   return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset,
1686                               HasBaseReg, Scale) &&
1687          isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset,
1688                               HasBaseReg, Scale);
1689 }
1690 
1691 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1692                                  int64_t MinOffset, int64_t MaxOffset,
1693                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1694                                  const Formula &F, const Loop &L) {
1695   // For the purpose of isAMCompletelyFolded either having a canonical formula
1696   // or a scale not equal to zero is correct.
1697   // Problems may arise from non canonical formulae having a scale == 0.
1698   // Strictly speaking it would best to just rely on canonical formulae.
1699   // However, when we generate the scaled formulae, we first check that the
1700   // scaling factor is profitable before computing the actual ScaledReg for
1701   // compile time sake.
1702   assert((F.isCanonical(L) || F.Scale != 0));
1703   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1704                               F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale);
1705 }
1706 
1707 /// Test whether we know how to expand the current formula.
1708 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1709                        int64_t MaxOffset, LSRUse::KindType Kind,
1710                        MemAccessTy AccessTy, GlobalValue *BaseGV,
1711                        int64_t BaseOffset, bool HasBaseReg, int64_t Scale) {
1712   // We know how to expand completely foldable formulae.
1713   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1714                               BaseOffset, HasBaseReg, Scale) ||
1715          // Or formulae that use a base register produced by a sum of base
1716          // registers.
1717          (Scale == 1 &&
1718           isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1719                                BaseGV, BaseOffset, true, 0));
1720 }
1721 
1722 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1723                        int64_t MaxOffset, LSRUse::KindType Kind,
1724                        MemAccessTy AccessTy, const Formula &F) {
1725   return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV,
1726                     F.BaseOffset, F.HasBaseReg, F.Scale);
1727 }
1728 
1729 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1730                                  const LSRUse &LU, const Formula &F) {
1731   // Target may want to look at the user instructions.
1732   if (LU.Kind == LSRUse::Address && TTI.LSRWithInstrQueries()) {
1733     for (const LSRFixup &Fixup : LU.Fixups)
1734       if (!isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV,
1735                                 (F.BaseOffset + Fixup.Offset), F.HasBaseReg,
1736                                 F.Scale, Fixup.UserInst))
1737         return false;
1738     return true;
1739   }
1740 
1741   return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1742                               LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg,
1743                               F.Scale);
1744 }
1745 
1746 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
1747                                      const LSRUse &LU, const Formula &F,
1748                                      const Loop &L) {
1749   if (!F.Scale)
1750     return 0;
1751 
1752   // If the use is not completely folded in that instruction, we will have to
1753   // pay an extra cost only for scale != 1.
1754   if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1755                             LU.AccessTy, F, L))
1756     return F.Scale != 1;
1757 
1758   switch (LU.Kind) {
1759   case LSRUse::Address: {
1760     // Check the scaling factor cost with both the min and max offsets.
1761     int ScaleCostMinOffset = TTI.getScalingFactorCost(
1762         LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg,
1763         F.Scale, LU.AccessTy.AddrSpace);
1764     int ScaleCostMaxOffset = TTI.getScalingFactorCost(
1765         LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg,
1766         F.Scale, LU.AccessTy.AddrSpace);
1767 
1768     assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 &&
1769            "Legal addressing mode has an illegal cost!");
1770     return std::max(ScaleCostMinOffset, ScaleCostMaxOffset);
1771   }
1772   case LSRUse::ICmpZero:
1773   case LSRUse::Basic:
1774   case LSRUse::Special:
1775     // The use is completely folded, i.e., everything is folded into the
1776     // instruction.
1777     return 0;
1778   }
1779 
1780   llvm_unreachable("Invalid LSRUse Kind!");
1781 }
1782 
1783 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1784                              LSRUse::KindType Kind, MemAccessTy AccessTy,
1785                              GlobalValue *BaseGV, int64_t BaseOffset,
1786                              bool HasBaseReg) {
1787   // Fast-path: zero is always foldable.
1788   if (BaseOffset == 0 && !BaseGV) return true;
1789 
1790   // Conservatively, create an address with an immediate and a
1791   // base and a scale.
1792   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1793 
1794   // Canonicalize a scale of 1 to a base register if the formula doesn't
1795   // already have a base register.
1796   if (!HasBaseReg && Scale == 1) {
1797     Scale = 0;
1798     HasBaseReg = true;
1799   }
1800 
1801   return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset,
1802                               HasBaseReg, Scale);
1803 }
1804 
1805 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1806                              ScalarEvolution &SE, int64_t MinOffset,
1807                              int64_t MaxOffset, LSRUse::KindType Kind,
1808                              MemAccessTy AccessTy, const SCEV *S,
1809                              bool HasBaseReg) {
1810   // Fast-path: zero is always foldable.
1811   if (S->isZero()) return true;
1812 
1813   // Conservatively, create an address with an immediate and a
1814   // base and a scale.
1815   int64_t BaseOffset = ExtractImmediate(S, SE);
1816   GlobalValue *BaseGV = ExtractSymbol(S, SE);
1817 
1818   // If there's anything else involved, it's not foldable.
1819   if (!S->isZero()) return false;
1820 
1821   // Fast-path: zero is always foldable.
1822   if (BaseOffset == 0 && !BaseGV) return true;
1823 
1824   // Conservatively, create an address with an immediate and a
1825   // base and a scale.
1826   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1827 
1828   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1829                               BaseOffset, HasBaseReg, Scale);
1830 }
1831 
1832 namespace {
1833 
1834 /// An individual increment in a Chain of IV increments.  Relate an IV user to
1835 /// an expression that computes the IV it uses from the IV used by the previous
1836 /// link in the Chain.
1837 ///
1838 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the
1839 /// original IVOperand. The head of the chain's IVOperand is only valid during
1840 /// chain collection, before LSR replaces IV users. During chain generation,
1841 /// IncExpr can be used to find the new IVOperand that computes the same
1842 /// expression.
1843 struct IVInc {
1844   Instruction *UserInst;
1845   Value* IVOperand;
1846   const SCEV *IncExpr;
1847 
1848   IVInc(Instruction *U, Value *O, const SCEV *E)
1849       : UserInst(U), IVOperand(O), IncExpr(E) {}
1850 };
1851 
1852 // The list of IV increments in program order.  We typically add the head of a
1853 // chain without finding subsequent links.
1854 struct IVChain {
1855   SmallVector<IVInc, 1> Incs;
1856   const SCEV *ExprBase = nullptr;
1857 
1858   IVChain() = default;
1859   IVChain(const IVInc &Head, const SCEV *Base)
1860       : Incs(1, Head), ExprBase(Base) {}
1861 
1862   using const_iterator = SmallVectorImpl<IVInc>::const_iterator;
1863 
1864   // Return the first increment in the chain.
1865   const_iterator begin() const {
1866     assert(!Incs.empty());
1867     return std::next(Incs.begin());
1868   }
1869   const_iterator end() const {
1870     return Incs.end();
1871   }
1872 
1873   // Returns true if this chain contains any increments.
1874   bool hasIncs() const { return Incs.size() >= 2; }
1875 
1876   // Add an IVInc to the end of this chain.
1877   void add(const IVInc &X) { Incs.push_back(X); }
1878 
1879   // Returns the last UserInst in the chain.
1880   Instruction *tailUserInst() const { return Incs.back().UserInst; }
1881 
1882   // Returns true if IncExpr can be profitably added to this chain.
1883   bool isProfitableIncrement(const SCEV *OperExpr,
1884                              const SCEV *IncExpr,
1885                              ScalarEvolution&);
1886 };
1887 
1888 /// Helper for CollectChains to track multiple IV increment uses.  Distinguish
1889 /// between FarUsers that definitely cross IV increments and NearUsers that may
1890 /// be used between IV increments.
1891 struct ChainUsers {
1892   SmallPtrSet<Instruction*, 4> FarUsers;
1893   SmallPtrSet<Instruction*, 4> NearUsers;
1894 };
1895 
1896 /// This class holds state for the main loop strength reduction logic.
1897 class LSRInstance {
1898   IVUsers &IU;
1899   ScalarEvolution &SE;
1900   DominatorTree &DT;
1901   LoopInfo &LI;
1902   const TargetTransformInfo &TTI;
1903   Loop *const L;
1904   bool FavorBackedgeIndex = false;
1905   bool Changed = false;
1906 
1907   /// This is the insert position that the current loop's induction variable
1908   /// increment should be placed. In simple loops, this is the latch block's
1909   /// terminator. But in more complicated cases, this is a position which will
1910   /// dominate all the in-loop post-increment users.
1911   Instruction *IVIncInsertPos = nullptr;
1912 
1913   /// Interesting factors between use strides.
1914   ///
1915   /// We explicitly use a SetVector which contains a SmallSet, instead of the
1916   /// default, a SmallDenseSet, because we need to use the full range of
1917   /// int64_ts, and there's currently no good way of doing that with
1918   /// SmallDenseSet.
1919   SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors;
1920 
1921   /// Interesting use types, to facilitate truncation reuse.
1922   SmallSetVector<Type *, 4> Types;
1923 
1924   /// The list of interesting uses.
1925   SmallVector<LSRUse, 16> Uses;
1926 
1927   /// Track which uses use which register candidates.
1928   RegUseTracker RegUses;
1929 
1930   // Limit the number of chains to avoid quadratic behavior. We don't expect to
1931   // have more than a few IV increment chains in a loop. Missing a Chain falls
1932   // back to normal LSR behavior for those uses.
1933   static const unsigned MaxChains = 8;
1934 
1935   /// IV users can form a chain of IV increments.
1936   SmallVector<IVChain, MaxChains> IVChainVec;
1937 
1938   /// IV users that belong to profitable IVChains.
1939   SmallPtrSet<Use*, MaxChains> IVIncSet;
1940 
1941   void OptimizeShadowIV();
1942   bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
1943   ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
1944   void OptimizeLoopTermCond();
1945 
1946   void ChainInstruction(Instruction *UserInst, Instruction *IVOper,
1947                         SmallVectorImpl<ChainUsers> &ChainUsersVec);
1948   void FinalizeChain(IVChain &Chain);
1949   void CollectChains();
1950   void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
1951                        SmallVectorImpl<WeakTrackingVH> &DeadInsts);
1952 
1953   void CollectInterestingTypesAndFactors();
1954   void CollectFixupsAndInitialFormulae();
1955 
1956   // Support for sharing of LSRUses between LSRFixups.
1957   using UseMapTy = DenseMap<LSRUse::SCEVUseKindPair, size_t>;
1958   UseMapTy UseMap;
1959 
1960   bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
1961                           LSRUse::KindType Kind, MemAccessTy AccessTy);
1962 
1963   std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind,
1964                                     MemAccessTy AccessTy);
1965 
1966   void DeleteUse(LSRUse &LU, size_t LUIdx);
1967 
1968   LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
1969 
1970   void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1971   void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1972   void CountRegisters(const Formula &F, size_t LUIdx);
1973   bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
1974 
1975   void CollectLoopInvariantFixupsAndFormulae();
1976 
1977   void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
1978                               unsigned Depth = 0);
1979 
1980   void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
1981                                   const Formula &Base, unsigned Depth,
1982                                   size_t Idx, bool IsScaledReg = false);
1983   void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
1984   void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
1985                                    const Formula &Base, size_t Idx,
1986                                    bool IsScaledReg = false);
1987   void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1988   void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx,
1989                                    const Formula &Base,
1990                                    const SmallVectorImpl<int64_t> &Worklist,
1991                                    size_t Idx, bool IsScaledReg = false);
1992   void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1993   void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1994   void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1995   void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
1996   void GenerateCrossUseConstantOffsets();
1997   void GenerateAllReuseFormulae();
1998 
1999   void FilterOutUndesirableDedicatedRegisters();
2000 
2001   size_t EstimateSearchSpaceComplexity() const;
2002   void NarrowSearchSpaceByDetectingSupersets();
2003   void NarrowSearchSpaceByCollapsingUnrolledCode();
2004   void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
2005   void NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
2006   void NarrowSearchSpaceByDeletingCostlyFormulas();
2007   void NarrowSearchSpaceByPickingWinnerRegs();
2008   void NarrowSearchSpaceUsingHeuristics();
2009 
2010   void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
2011                     Cost &SolutionCost,
2012                     SmallVectorImpl<const Formula *> &Workspace,
2013                     const Cost &CurCost,
2014                     const SmallPtrSet<const SCEV *, 16> &CurRegs,
2015                     DenseSet<const SCEV *> &VisitedRegs) const;
2016   void Solve(SmallVectorImpl<const Formula *> &Solution) const;
2017 
2018   BasicBlock::iterator
2019     HoistInsertPosition(BasicBlock::iterator IP,
2020                         const SmallVectorImpl<Instruction *> &Inputs) const;
2021   BasicBlock::iterator
2022     AdjustInsertPositionForExpand(BasicBlock::iterator IP,
2023                                   const LSRFixup &LF,
2024                                   const LSRUse &LU,
2025                                   SCEVExpander &Rewriter) const;
2026 
2027   Value *Expand(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
2028                 BasicBlock::iterator IP, SCEVExpander &Rewriter,
2029                 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2030   void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF,
2031                      const Formula &F, SCEVExpander &Rewriter,
2032                      SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2033   void Rewrite(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
2034                SCEVExpander &Rewriter,
2035                SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2036   void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution);
2037 
2038 public:
2039   LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT,
2040               LoopInfo &LI, const TargetTransformInfo &TTI);
2041 
2042   bool getChanged() const { return Changed; }
2043 
2044   void print_factors_and_types(raw_ostream &OS) const;
2045   void print_fixups(raw_ostream &OS) const;
2046   void print_uses(raw_ostream &OS) const;
2047   void print(raw_ostream &OS) const;
2048   void dump() const;
2049 };
2050 
2051 } // end anonymous namespace
2052 
2053 /// If IV is used in a int-to-float cast inside the loop then try to eliminate
2054 /// the cast operation.
2055 void LSRInstance::OptimizeShadowIV() {
2056   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
2057   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2058     return;
2059 
2060   for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
2061        UI != E; /* empty */) {
2062     IVUsers::const_iterator CandidateUI = UI;
2063     ++UI;
2064     Instruction *ShadowUse = CandidateUI->getUser();
2065     Type *DestTy = nullptr;
2066     bool IsSigned = false;
2067 
2068     /* If shadow use is a int->float cast then insert a second IV
2069        to eliminate this cast.
2070 
2071          for (unsigned i = 0; i < n; ++i)
2072            foo((double)i);
2073 
2074        is transformed into
2075 
2076          double d = 0.0;
2077          for (unsigned i = 0; i < n; ++i, ++d)
2078            foo(d);
2079     */
2080     if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) {
2081       IsSigned = false;
2082       DestTy = UCast->getDestTy();
2083     }
2084     else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) {
2085       IsSigned = true;
2086       DestTy = SCast->getDestTy();
2087     }
2088     if (!DestTy) continue;
2089 
2090     // If target does not support DestTy natively then do not apply
2091     // this transformation.
2092     if (!TTI.isTypeLegal(DestTy)) continue;
2093 
2094     PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
2095     if (!PH) continue;
2096     if (PH->getNumIncomingValues() != 2) continue;
2097 
2098     // If the calculation in integers overflows, the result in FP type will
2099     // differ. So we only can do this transformation if we are guaranteed to not
2100     // deal with overflowing values
2101     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PH));
2102     if (!AR) continue;
2103     if (IsSigned && !AR->hasNoSignedWrap()) continue;
2104     if (!IsSigned && !AR->hasNoUnsignedWrap()) continue;
2105 
2106     Type *SrcTy = PH->getType();
2107     int Mantissa = DestTy->getFPMantissaWidth();
2108     if (Mantissa == -1) continue;
2109     if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
2110       continue;
2111 
2112     unsigned Entry, Latch;
2113     if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
2114       Entry = 0;
2115       Latch = 1;
2116     } else {
2117       Entry = 1;
2118       Latch = 0;
2119     }
2120 
2121     ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
2122     if (!Init) continue;
2123     Constant *NewInit = ConstantFP::get(DestTy, IsSigned ?
2124                                         (double)Init->getSExtValue() :
2125                                         (double)Init->getZExtValue());
2126 
2127     BinaryOperator *Incr =
2128       dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
2129     if (!Incr) continue;
2130     if (Incr->getOpcode() != Instruction::Add
2131         && Incr->getOpcode() != Instruction::Sub)
2132       continue;
2133 
2134     /* Initialize new IV, double d = 0.0 in above example. */
2135     ConstantInt *C = nullptr;
2136     if (Incr->getOperand(0) == PH)
2137       C = dyn_cast<ConstantInt>(Incr->getOperand(1));
2138     else if (Incr->getOperand(1) == PH)
2139       C = dyn_cast<ConstantInt>(Incr->getOperand(0));
2140     else
2141       continue;
2142 
2143     if (!C) continue;
2144 
2145     // Ignore negative constants, as the code below doesn't handle them
2146     // correctly. TODO: Remove this restriction.
2147     if (!C->getValue().isStrictlyPositive()) continue;
2148 
2149     /* Add new PHINode. */
2150     PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH);
2151 
2152     /* create new increment. '++d' in above example. */
2153     Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
2154     BinaryOperator *NewIncr =
2155       BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
2156                                Instruction::FAdd : Instruction::FSub,
2157                              NewPH, CFP, "IV.S.next.", Incr);
2158 
2159     NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
2160     NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
2161 
2162     /* Remove cast operation */
2163     ShadowUse->replaceAllUsesWith(NewPH);
2164     ShadowUse->eraseFromParent();
2165     Changed = true;
2166     break;
2167   }
2168 }
2169 
2170 /// If Cond has an operand that is an expression of an IV, set the IV user and
2171 /// stride information and return true, otherwise return false.
2172 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
2173   for (IVStrideUse &U : IU)
2174     if (U.getUser() == Cond) {
2175       // NOTE: we could handle setcc instructions with multiple uses here, but
2176       // InstCombine does it as well for simple uses, it's not clear that it
2177       // occurs enough in real life to handle.
2178       CondUse = &U;
2179       return true;
2180     }
2181   return false;
2182 }
2183 
2184 /// Rewrite the loop's terminating condition if it uses a max computation.
2185 ///
2186 /// This is a narrow solution to a specific, but acute, problem. For loops
2187 /// like this:
2188 ///
2189 ///   i = 0;
2190 ///   do {
2191 ///     p[i] = 0.0;
2192 ///   } while (++i < n);
2193 ///
2194 /// the trip count isn't just 'n', because 'n' might not be positive. And
2195 /// unfortunately this can come up even for loops where the user didn't use
2196 /// a C do-while loop. For example, seemingly well-behaved top-test loops
2197 /// will commonly be lowered like this:
2198 ///
2199 ///   if (n > 0) {
2200 ///     i = 0;
2201 ///     do {
2202 ///       p[i] = 0.0;
2203 ///     } while (++i < n);
2204 ///   }
2205 ///
2206 /// and then it's possible for subsequent optimization to obscure the if
2207 /// test in such a way that indvars can't find it.
2208 ///
2209 /// When indvars can't find the if test in loops like this, it creates a
2210 /// max expression, which allows it to give the loop a canonical
2211 /// induction variable:
2212 ///
2213 ///   i = 0;
2214 ///   max = n < 1 ? 1 : n;
2215 ///   do {
2216 ///     p[i] = 0.0;
2217 ///   } while (++i != max);
2218 ///
2219 /// Canonical induction variables are necessary because the loop passes
2220 /// are designed around them. The most obvious example of this is the
2221 /// LoopInfo analysis, which doesn't remember trip count values. It
2222 /// expects to be able to rediscover the trip count each time it is
2223 /// needed, and it does this using a simple analysis that only succeeds if
2224 /// the loop has a canonical induction variable.
2225 ///
2226 /// However, when it comes time to generate code, the maximum operation
2227 /// can be quite costly, especially if it's inside of an outer loop.
2228 ///
2229 /// This function solves this problem by detecting this type of loop and
2230 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
2231 /// the instructions for the maximum computation.
2232 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
2233   // Check that the loop matches the pattern we're looking for.
2234   if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
2235       Cond->getPredicate() != CmpInst::ICMP_NE)
2236     return Cond;
2237 
2238   SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
2239   if (!Sel || !Sel->hasOneUse()) return Cond;
2240 
2241   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
2242   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2243     return Cond;
2244   const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
2245 
2246   // Add one to the backedge-taken count to get the trip count.
2247   const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount);
2248   if (IterationCount != SE.getSCEV(Sel)) return Cond;
2249 
2250   // Check for a max calculation that matches the pattern. There's no check
2251   // for ICMP_ULE here because the comparison would be with zero, which
2252   // isn't interesting.
2253   CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
2254   const SCEVNAryExpr *Max = nullptr;
2255   if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
2256     Pred = ICmpInst::ICMP_SLE;
2257     Max = S;
2258   } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
2259     Pred = ICmpInst::ICMP_SLT;
2260     Max = S;
2261   } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
2262     Pred = ICmpInst::ICMP_ULT;
2263     Max = U;
2264   } else {
2265     // No match; bail.
2266     return Cond;
2267   }
2268 
2269   // To handle a max with more than two operands, this optimization would
2270   // require additional checking and setup.
2271   if (Max->getNumOperands() != 2)
2272     return Cond;
2273 
2274   const SCEV *MaxLHS = Max->getOperand(0);
2275   const SCEV *MaxRHS = Max->getOperand(1);
2276 
2277   // ScalarEvolution canonicalizes constants to the left. For < and >, look
2278   // for a comparison with 1. For <= and >=, a comparison with zero.
2279   if (!MaxLHS ||
2280       (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
2281     return Cond;
2282 
2283   // Check the relevant induction variable for conformance to
2284   // the pattern.
2285   const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
2286   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
2287   if (!AR || !AR->isAffine() ||
2288       AR->getStart() != One ||
2289       AR->getStepRecurrence(SE) != One)
2290     return Cond;
2291 
2292   assert(AR->getLoop() == L &&
2293          "Loop condition operand is an addrec in a different loop!");
2294 
2295   // Check the right operand of the select, and remember it, as it will
2296   // be used in the new comparison instruction.
2297   Value *NewRHS = nullptr;
2298   if (ICmpInst::isTrueWhenEqual(Pred)) {
2299     // Look for n+1, and grab n.
2300     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
2301       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2302          if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2303            NewRHS = BO->getOperand(0);
2304     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
2305       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2306         if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2307           NewRHS = BO->getOperand(0);
2308     if (!NewRHS)
2309       return Cond;
2310   } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
2311     NewRHS = Sel->getOperand(1);
2312   else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
2313     NewRHS = Sel->getOperand(2);
2314   else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS))
2315     NewRHS = SU->getValue();
2316   else
2317     // Max doesn't match expected pattern.
2318     return Cond;
2319 
2320   // Determine the new comparison opcode. It may be signed or unsigned,
2321   // and the original comparison may be either equality or inequality.
2322   if (Cond->getPredicate() == CmpInst::ICMP_EQ)
2323     Pred = CmpInst::getInversePredicate(Pred);
2324 
2325   // Ok, everything looks ok to change the condition into an SLT or SGE and
2326   // delete the max calculation.
2327   ICmpInst *NewCond =
2328     new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
2329 
2330   // Delete the max calculation instructions.
2331   Cond->replaceAllUsesWith(NewCond);
2332   CondUse->setUser(NewCond);
2333   Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
2334   Cond->eraseFromParent();
2335   Sel->eraseFromParent();
2336   if (Cmp->use_empty())
2337     Cmp->eraseFromParent();
2338   return NewCond;
2339 }
2340 
2341 /// Change loop terminating condition to use the postinc iv when possible.
2342 void
2343 LSRInstance::OptimizeLoopTermCond() {
2344   SmallPtrSet<Instruction *, 4> PostIncs;
2345 
2346   // We need a different set of heuristics for rotated and non-rotated loops.
2347   // If a loop is rotated then the latch is also the backedge, so inserting
2348   // post-inc expressions just before the latch is ideal. To reduce live ranges
2349   // it also makes sense to rewrite terminating conditions to use post-inc
2350   // expressions.
2351   //
2352   // If the loop is not rotated then the latch is not a backedge; the latch
2353   // check is done in the loop head. Adding post-inc expressions before the
2354   // latch will cause overlapping live-ranges of pre-inc and post-inc expressions
2355   // in the loop body. In this case we do *not* want to use post-inc expressions
2356   // in the latch check, and we want to insert post-inc expressions before
2357   // the backedge.
2358   BasicBlock *LatchBlock = L->getLoopLatch();
2359   SmallVector<BasicBlock*, 8> ExitingBlocks;
2360   L->getExitingBlocks(ExitingBlocks);
2361   if (llvm::all_of(ExitingBlocks, [&LatchBlock](const BasicBlock *BB) {
2362         return LatchBlock != BB;
2363       })) {
2364     // The backedge doesn't exit the loop; treat this as a head-tested loop.
2365     IVIncInsertPos = LatchBlock->getTerminator();
2366     return;
2367   }
2368 
2369   // Otherwise treat this as a rotated loop.
2370   for (BasicBlock *ExitingBlock : ExitingBlocks) {
2371     // Get the terminating condition for the loop if possible.  If we
2372     // can, we want to change it to use a post-incremented version of its
2373     // induction variable, to allow coalescing the live ranges for the IV into
2374     // one register value.
2375 
2376     BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
2377     if (!TermBr)
2378       continue;
2379     // FIXME: Overly conservative, termination condition could be an 'or' etc..
2380     if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
2381       continue;
2382 
2383     // Search IVUsesByStride to find Cond's IVUse if there is one.
2384     IVStrideUse *CondUse = nullptr;
2385     ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
2386     if (!FindIVUserForCond(Cond, CondUse))
2387       continue;
2388 
2389     // If the trip count is computed in terms of a max (due to ScalarEvolution
2390     // being unable to find a sufficient guard, for example), change the loop
2391     // comparison to use SLT or ULT instead of NE.
2392     // One consequence of doing this now is that it disrupts the count-down
2393     // optimization. That's not always a bad thing though, because in such
2394     // cases it may still be worthwhile to avoid a max.
2395     Cond = OptimizeMax(Cond, CondUse);
2396 
2397     // If this exiting block dominates the latch block, it may also use
2398     // the post-inc value if it won't be shared with other uses.
2399     // Check for dominance.
2400     if (!DT.dominates(ExitingBlock, LatchBlock))
2401       continue;
2402 
2403     // Conservatively avoid trying to use the post-inc value in non-latch
2404     // exits if there may be pre-inc users in intervening blocks.
2405     if (LatchBlock != ExitingBlock)
2406       for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
2407         // Test if the use is reachable from the exiting block. This dominator
2408         // query is a conservative approximation of reachability.
2409         if (&*UI != CondUse &&
2410             !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
2411           // Conservatively assume there may be reuse if the quotient of their
2412           // strides could be a legal scale.
2413           const SCEV *A = IU.getStride(*CondUse, L);
2414           const SCEV *B = IU.getStride(*UI, L);
2415           if (!A || !B) continue;
2416           if (SE.getTypeSizeInBits(A->getType()) !=
2417               SE.getTypeSizeInBits(B->getType())) {
2418             if (SE.getTypeSizeInBits(A->getType()) >
2419                 SE.getTypeSizeInBits(B->getType()))
2420               B = SE.getSignExtendExpr(B, A->getType());
2421             else
2422               A = SE.getSignExtendExpr(A, B->getType());
2423           }
2424           if (const SCEVConstant *D =
2425                 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
2426             const ConstantInt *C = D->getValue();
2427             // Stride of one or negative one can have reuse with non-addresses.
2428             if (C->isOne() || C->isMinusOne())
2429               goto decline_post_inc;
2430             // Avoid weird situations.
2431             if (C->getValue().getMinSignedBits() >= 64 ||
2432                 C->getValue().isMinSignedValue())
2433               goto decline_post_inc;
2434             // Check for possible scaled-address reuse.
2435             if (isAddressUse(TTI, UI->getUser(), UI->getOperandValToReplace())) {
2436               MemAccessTy AccessTy = getAccessType(
2437                   TTI, UI->getUser(), UI->getOperandValToReplace());
2438               int64_t Scale = C->getSExtValue();
2439               if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2440                                             /*BaseOffset=*/0,
2441                                             /*HasBaseReg=*/false, Scale,
2442                                             AccessTy.AddrSpace))
2443                 goto decline_post_inc;
2444               Scale = -Scale;
2445               if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2446                                             /*BaseOffset=*/0,
2447                                             /*HasBaseReg=*/false, Scale,
2448                                             AccessTy.AddrSpace))
2449                 goto decline_post_inc;
2450             }
2451           }
2452         }
2453 
2454     LLVM_DEBUG(dbgs() << "  Change loop exiting icmp to use postinc iv: "
2455                       << *Cond << '\n');
2456 
2457     // It's possible for the setcc instruction to be anywhere in the loop, and
2458     // possible for it to have multiple users.  If it is not immediately before
2459     // the exiting block branch, move it.
2460     if (&*++BasicBlock::iterator(Cond) != TermBr) {
2461       if (Cond->hasOneUse()) {
2462         Cond->moveBefore(TermBr);
2463       } else {
2464         // Clone the terminating condition and insert into the loopend.
2465         ICmpInst *OldCond = Cond;
2466         Cond = cast<ICmpInst>(Cond->clone());
2467         Cond->setName(L->getHeader()->getName() + ".termcond");
2468         ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond);
2469 
2470         // Clone the IVUse, as the old use still exists!
2471         CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
2472         TermBr->replaceUsesOfWith(OldCond, Cond);
2473       }
2474     }
2475 
2476     // If we get to here, we know that we can transform the setcc instruction to
2477     // use the post-incremented version of the IV, allowing us to coalesce the
2478     // live ranges for the IV correctly.
2479     CondUse->transformToPostInc(L);
2480     Changed = true;
2481 
2482     PostIncs.insert(Cond);
2483   decline_post_inc:;
2484   }
2485 
2486   // Determine an insertion point for the loop induction variable increment. It
2487   // must dominate all the post-inc comparisons we just set up, and it must
2488   // dominate the loop latch edge.
2489   IVIncInsertPos = L->getLoopLatch()->getTerminator();
2490   for (Instruction *Inst : PostIncs) {
2491     BasicBlock *BB =
2492       DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
2493                                     Inst->getParent());
2494     if (BB == Inst->getParent())
2495       IVIncInsertPos = Inst;
2496     else if (BB != IVIncInsertPos->getParent())
2497       IVIncInsertPos = BB->getTerminator();
2498   }
2499 }
2500 
2501 /// Determine if the given use can accommodate a fixup at the given offset and
2502 /// other details. If so, update the use and return true.
2503 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset,
2504                                      bool HasBaseReg, LSRUse::KindType Kind,
2505                                      MemAccessTy AccessTy) {
2506   int64_t NewMinOffset = LU.MinOffset;
2507   int64_t NewMaxOffset = LU.MaxOffset;
2508   MemAccessTy NewAccessTy = AccessTy;
2509 
2510   // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
2511   // something conservative, however this can pessimize in the case that one of
2512   // the uses will have all its uses outside the loop, for example.
2513   if (LU.Kind != Kind)
2514     return false;
2515 
2516   // Check for a mismatched access type, and fall back conservatively as needed.
2517   // TODO: Be less conservative when the type is similar and can use the same
2518   // addressing modes.
2519   if (Kind == LSRUse::Address) {
2520     if (AccessTy.MemTy != LU.AccessTy.MemTy) {
2521       NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(),
2522                                             AccessTy.AddrSpace);
2523     }
2524   }
2525 
2526   // Conservatively assume HasBaseReg is true for now.
2527   if (NewOffset < LU.MinOffset) {
2528     if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2529                           LU.MaxOffset - NewOffset, HasBaseReg))
2530       return false;
2531     NewMinOffset = NewOffset;
2532   } else if (NewOffset > LU.MaxOffset) {
2533     if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2534                           NewOffset - LU.MinOffset, HasBaseReg))
2535       return false;
2536     NewMaxOffset = NewOffset;
2537   }
2538 
2539   // Update the use.
2540   LU.MinOffset = NewMinOffset;
2541   LU.MaxOffset = NewMaxOffset;
2542   LU.AccessTy = NewAccessTy;
2543   return true;
2544 }
2545 
2546 /// Return an LSRUse index and an offset value for a fixup which needs the given
2547 /// expression, with the given kind and optional access type.  Either reuse an
2548 /// existing use or create a new one, as needed.
2549 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr,
2550                                                LSRUse::KindType Kind,
2551                                                MemAccessTy AccessTy) {
2552   const SCEV *Copy = Expr;
2553   int64_t Offset = ExtractImmediate(Expr, SE);
2554 
2555   // Basic uses can't accept any offset, for example.
2556   if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr,
2557                         Offset, /*HasBaseReg=*/ true)) {
2558     Expr = Copy;
2559     Offset = 0;
2560   }
2561 
2562   std::pair<UseMapTy::iterator, bool> P =
2563     UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0));
2564   if (!P.second) {
2565     // A use already existed with this base.
2566     size_t LUIdx = P.first->second;
2567     LSRUse &LU = Uses[LUIdx];
2568     if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
2569       // Reuse this use.
2570       return std::make_pair(LUIdx, Offset);
2571   }
2572 
2573   // Create a new use.
2574   size_t LUIdx = Uses.size();
2575   P.first->second = LUIdx;
2576   Uses.push_back(LSRUse(Kind, AccessTy));
2577   LSRUse &LU = Uses[LUIdx];
2578 
2579   LU.MinOffset = Offset;
2580   LU.MaxOffset = Offset;
2581   return std::make_pair(LUIdx, Offset);
2582 }
2583 
2584 /// Delete the given use from the Uses list.
2585 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) {
2586   if (&LU != &Uses.back())
2587     std::swap(LU, Uses.back());
2588   Uses.pop_back();
2589 
2590   // Update RegUses.
2591   RegUses.swapAndDropUse(LUIdx, Uses.size());
2592 }
2593 
2594 /// Look for a use distinct from OrigLU which is has a formula that has the same
2595 /// registers as the given formula.
2596 LSRUse *
2597 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
2598                                        const LSRUse &OrigLU) {
2599   // Search all uses for the formula. This could be more clever.
2600   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2601     LSRUse &LU = Uses[LUIdx];
2602     // Check whether this use is close enough to OrigLU, to see whether it's
2603     // worthwhile looking through its formulae.
2604     // Ignore ICmpZero uses because they may contain formulae generated by
2605     // GenerateICmpZeroScales, in which case adding fixup offsets may
2606     // be invalid.
2607     if (&LU != &OrigLU &&
2608         LU.Kind != LSRUse::ICmpZero &&
2609         LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
2610         LU.WidestFixupType == OrigLU.WidestFixupType &&
2611         LU.HasFormulaWithSameRegs(OrigF)) {
2612       // Scan through this use's formulae.
2613       for (const Formula &F : LU.Formulae) {
2614         // Check to see if this formula has the same registers and symbols
2615         // as OrigF.
2616         if (F.BaseRegs == OrigF.BaseRegs &&
2617             F.ScaledReg == OrigF.ScaledReg &&
2618             F.BaseGV == OrigF.BaseGV &&
2619             F.Scale == OrigF.Scale &&
2620             F.UnfoldedOffset == OrigF.UnfoldedOffset) {
2621           if (F.BaseOffset == 0)
2622             return &LU;
2623           // This is the formula where all the registers and symbols matched;
2624           // there aren't going to be any others. Since we declined it, we
2625           // can skip the rest of the formulae and proceed to the next LSRUse.
2626           break;
2627         }
2628       }
2629     }
2630   }
2631 
2632   // Nothing looked good.
2633   return nullptr;
2634 }
2635 
2636 void LSRInstance::CollectInterestingTypesAndFactors() {
2637   SmallSetVector<const SCEV *, 4> Strides;
2638 
2639   // Collect interesting types and strides.
2640   SmallVector<const SCEV *, 4> Worklist;
2641   for (const IVStrideUse &U : IU) {
2642     const SCEV *Expr = IU.getExpr(U);
2643 
2644     // Collect interesting types.
2645     Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
2646 
2647     // Add strides for mentioned loops.
2648     Worklist.push_back(Expr);
2649     do {
2650       const SCEV *S = Worklist.pop_back_val();
2651       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2652         if (AR->getLoop() == L)
2653           Strides.insert(AR->getStepRecurrence(SE));
2654         Worklist.push_back(AR->getStart());
2655       } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2656         Worklist.append(Add->op_begin(), Add->op_end());
2657       }
2658     } while (!Worklist.empty());
2659   }
2660 
2661   // Compute interesting factors from the set of interesting strides.
2662   for (SmallSetVector<const SCEV *, 4>::const_iterator
2663        I = Strides.begin(), E = Strides.end(); I != E; ++I)
2664     for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
2665          std::next(I); NewStrideIter != E; ++NewStrideIter) {
2666       const SCEV *OldStride = *I;
2667       const SCEV *NewStride = *NewStrideIter;
2668 
2669       if (SE.getTypeSizeInBits(OldStride->getType()) !=
2670           SE.getTypeSizeInBits(NewStride->getType())) {
2671         if (SE.getTypeSizeInBits(OldStride->getType()) >
2672             SE.getTypeSizeInBits(NewStride->getType()))
2673           NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
2674         else
2675           OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
2676       }
2677       if (const SCEVConstant *Factor =
2678             dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
2679                                                         SE, true))) {
2680         if (Factor->getAPInt().getMinSignedBits() <= 64)
2681           Factors.insert(Factor->getAPInt().getSExtValue());
2682       } else if (const SCEVConstant *Factor =
2683                    dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
2684                                                                NewStride,
2685                                                                SE, true))) {
2686         if (Factor->getAPInt().getMinSignedBits() <= 64)
2687           Factors.insert(Factor->getAPInt().getSExtValue());
2688       }
2689     }
2690 
2691   // If all uses use the same type, don't bother looking for truncation-based
2692   // reuse.
2693   if (Types.size() == 1)
2694     Types.clear();
2695 
2696   LLVM_DEBUG(print_factors_and_types(dbgs()));
2697 }
2698 
2699 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in
2700 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to
2701 /// IVStrideUses, we could partially skip this.
2702 static User::op_iterator
2703 findIVOperand(User::op_iterator OI, User::op_iterator OE,
2704               Loop *L, ScalarEvolution &SE) {
2705   for(; OI != OE; ++OI) {
2706     if (Instruction *Oper = dyn_cast<Instruction>(*OI)) {
2707       if (!SE.isSCEVable(Oper->getType()))
2708         continue;
2709 
2710       if (const SCEVAddRecExpr *AR =
2711           dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) {
2712         if (AR->getLoop() == L)
2713           break;
2714       }
2715     }
2716   }
2717   return OI;
2718 }
2719 
2720 /// IVChain logic must consistently peek base TruncInst operands, so wrap it in
2721 /// a convenient helper.
2722 static Value *getWideOperand(Value *Oper) {
2723   if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper))
2724     return Trunc->getOperand(0);
2725   return Oper;
2726 }
2727 
2728 /// Return true if we allow an IV chain to include both types.
2729 static bool isCompatibleIVType(Value *LVal, Value *RVal) {
2730   Type *LType = LVal->getType();
2731   Type *RType = RVal->getType();
2732   return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy() &&
2733                               // Different address spaces means (possibly)
2734                               // different types of the pointer implementation,
2735                               // e.g. i16 vs i32 so disallow that.
2736                               (LType->getPointerAddressSpace() ==
2737                                RType->getPointerAddressSpace()));
2738 }
2739 
2740 /// Return an approximation of this SCEV expression's "base", or NULL for any
2741 /// constant. Returning the expression itself is conservative. Returning a
2742 /// deeper subexpression is more precise and valid as long as it isn't less
2743 /// complex than another subexpression. For expressions involving multiple
2744 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids
2745 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i],
2746 /// IVInc==b-a.
2747 ///
2748 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost
2749 /// SCEVUnknown, we simply return the rightmost SCEV operand.
2750 static const SCEV *getExprBase(const SCEV *S) {
2751   switch (S->getSCEVType()) {
2752   default: // uncluding scUnknown.
2753     return S;
2754   case scConstant:
2755     return nullptr;
2756   case scTruncate:
2757     return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand());
2758   case scZeroExtend:
2759     return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand());
2760   case scSignExtend:
2761     return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand());
2762   case scAddExpr: {
2763     // Skip over scaled operands (scMulExpr) to follow add operands as long as
2764     // there's nothing more complex.
2765     // FIXME: not sure if we want to recognize negation.
2766     const SCEVAddExpr *Add = cast<SCEVAddExpr>(S);
2767     for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()),
2768            E(Add->op_begin()); I != E; ++I) {
2769       const SCEV *SubExpr = *I;
2770       if (SubExpr->getSCEVType() == scAddExpr)
2771         return getExprBase(SubExpr);
2772 
2773       if (SubExpr->getSCEVType() != scMulExpr)
2774         return SubExpr;
2775     }
2776     return S; // all operands are scaled, be conservative.
2777   }
2778   case scAddRecExpr:
2779     return getExprBase(cast<SCEVAddRecExpr>(S)->getStart());
2780   }
2781 }
2782 
2783 /// Return true if the chain increment is profitable to expand into a loop
2784 /// invariant value, which may require its own register. A profitable chain
2785 /// increment will be an offset relative to the same base. We allow such offsets
2786 /// to potentially be used as chain increment as long as it's not obviously
2787 /// expensive to expand using real instructions.
2788 bool IVChain::isProfitableIncrement(const SCEV *OperExpr,
2789                                     const SCEV *IncExpr,
2790                                     ScalarEvolution &SE) {
2791   // Aggressively form chains when -stress-ivchain.
2792   if (StressIVChain)
2793     return true;
2794 
2795   // Do not replace a constant offset from IV head with a nonconstant IV
2796   // increment.
2797   if (!isa<SCEVConstant>(IncExpr)) {
2798     const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand));
2799     if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr)))
2800       return false;
2801   }
2802 
2803   SmallPtrSet<const SCEV*, 8> Processed;
2804   return !isHighCostExpansion(IncExpr, Processed, SE);
2805 }
2806 
2807 /// Return true if the number of registers needed for the chain is estimated to
2808 /// be less than the number required for the individual IV users. First prohibit
2809 /// any IV users that keep the IV live across increments (the Users set should
2810 /// be empty). Next count the number and type of increments in the chain.
2811 ///
2812 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't
2813 /// effectively use postinc addressing modes. Only consider it profitable it the
2814 /// increments can be computed in fewer registers when chained.
2815 ///
2816 /// TODO: Consider IVInc free if it's already used in another chains.
2817 static bool
2818 isProfitableChain(IVChain &Chain, SmallPtrSetImpl<Instruction*> &Users,
2819                   ScalarEvolution &SE) {
2820   if (StressIVChain)
2821     return true;
2822 
2823   if (!Chain.hasIncs())
2824     return false;
2825 
2826   if (!Users.empty()) {
2827     LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n";
2828                for (Instruction *Inst
2829                     : Users) { dbgs() << "  " << *Inst << "\n"; });
2830     return false;
2831   }
2832   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
2833 
2834   // The chain itself may require a register, so intialize cost to 1.
2835   int cost = 1;
2836 
2837   // A complete chain likely eliminates the need for keeping the original IV in
2838   // a register. LSR does not currently know how to form a complete chain unless
2839   // the header phi already exists.
2840   if (isa<PHINode>(Chain.tailUserInst())
2841       && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) {
2842     --cost;
2843   }
2844   const SCEV *LastIncExpr = nullptr;
2845   unsigned NumConstIncrements = 0;
2846   unsigned NumVarIncrements = 0;
2847   unsigned NumReusedIncrements = 0;
2848   for (const IVInc &Inc : Chain) {
2849     if (Inc.IncExpr->isZero())
2850       continue;
2851 
2852     // Incrementing by zero or some constant is neutral. We assume constants can
2853     // be folded into an addressing mode or an add's immediate operand.
2854     if (isa<SCEVConstant>(Inc.IncExpr)) {
2855       ++NumConstIncrements;
2856       continue;
2857     }
2858 
2859     if (Inc.IncExpr == LastIncExpr)
2860       ++NumReusedIncrements;
2861     else
2862       ++NumVarIncrements;
2863 
2864     LastIncExpr = Inc.IncExpr;
2865   }
2866   // An IV chain with a single increment is handled by LSR's postinc
2867   // uses. However, a chain with multiple increments requires keeping the IV's
2868   // value live longer than it needs to be if chained.
2869   if (NumConstIncrements > 1)
2870     --cost;
2871 
2872   // Materializing increment expressions in the preheader that didn't exist in
2873   // the original code may cost a register. For example, sign-extended array
2874   // indices can produce ridiculous increments like this:
2875   // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64)))
2876   cost += NumVarIncrements;
2877 
2878   // Reusing variable increments likely saves a register to hold the multiple of
2879   // the stride.
2880   cost -= NumReusedIncrements;
2881 
2882   LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost
2883                     << "\n");
2884 
2885   return cost < 0;
2886 }
2887 
2888 /// Add this IV user to an existing chain or make it the head of a new chain.
2889 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper,
2890                                    SmallVectorImpl<ChainUsers> &ChainUsersVec) {
2891   // When IVs are used as types of varying widths, they are generally converted
2892   // to a wider type with some uses remaining narrow under a (free) trunc.
2893   Value *const NextIV = getWideOperand(IVOper);
2894   const SCEV *const OperExpr = SE.getSCEV(NextIV);
2895   const SCEV *const OperExprBase = getExprBase(OperExpr);
2896 
2897   // Visit all existing chains. Check if its IVOper can be computed as a
2898   // profitable loop invariant increment from the last link in the Chain.
2899   unsigned ChainIdx = 0, NChains = IVChainVec.size();
2900   const SCEV *LastIncExpr = nullptr;
2901   for (; ChainIdx < NChains; ++ChainIdx) {
2902     IVChain &Chain = IVChainVec[ChainIdx];
2903 
2904     // Prune the solution space aggressively by checking that both IV operands
2905     // are expressions that operate on the same unscaled SCEVUnknown. This
2906     // "base" will be canceled by the subsequent getMinusSCEV call. Checking
2907     // first avoids creating extra SCEV expressions.
2908     if (!StressIVChain && Chain.ExprBase != OperExprBase)
2909       continue;
2910 
2911     Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand);
2912     if (!isCompatibleIVType(PrevIV, NextIV))
2913       continue;
2914 
2915     // A phi node terminates a chain.
2916     if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst()))
2917       continue;
2918 
2919     // The increment must be loop-invariant so it can be kept in a register.
2920     const SCEV *PrevExpr = SE.getSCEV(PrevIV);
2921     const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr);
2922     if (!SE.isLoopInvariant(IncExpr, L))
2923       continue;
2924 
2925     if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) {
2926       LastIncExpr = IncExpr;
2927       break;
2928     }
2929   }
2930   // If we haven't found a chain, create a new one, unless we hit the max. Don't
2931   // bother for phi nodes, because they must be last in the chain.
2932   if (ChainIdx == NChains) {
2933     if (isa<PHINode>(UserInst))
2934       return;
2935     if (NChains >= MaxChains && !StressIVChain) {
2936       LLVM_DEBUG(dbgs() << "IV Chain Limit\n");
2937       return;
2938     }
2939     LastIncExpr = OperExpr;
2940     // IVUsers may have skipped over sign/zero extensions. We don't currently
2941     // attempt to form chains involving extensions unless they can be hoisted
2942     // into this loop's AddRec.
2943     if (!isa<SCEVAddRecExpr>(LastIncExpr))
2944       return;
2945     ++NChains;
2946     IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr),
2947                                  OperExprBase));
2948     ChainUsersVec.resize(NChains);
2949     LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst
2950                       << ") IV=" << *LastIncExpr << "\n");
2951   } else {
2952     LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << "  Inc: (" << *UserInst
2953                       << ") IV+" << *LastIncExpr << "\n");
2954     // Add this IV user to the end of the chain.
2955     IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr));
2956   }
2957   IVChain &Chain = IVChainVec[ChainIdx];
2958 
2959   SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers;
2960   // This chain's NearUsers become FarUsers.
2961   if (!LastIncExpr->isZero()) {
2962     ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(),
2963                                             NearUsers.end());
2964     NearUsers.clear();
2965   }
2966 
2967   // All other uses of IVOperand become near uses of the chain.
2968   // We currently ignore intermediate values within SCEV expressions, assuming
2969   // they will eventually be used be the current chain, or can be computed
2970   // from one of the chain increments. To be more precise we could
2971   // transitively follow its user and only add leaf IV users to the set.
2972   for (User *U : IVOper->users()) {
2973     Instruction *OtherUse = dyn_cast<Instruction>(U);
2974     if (!OtherUse)
2975       continue;
2976     // Uses in the chain will no longer be uses if the chain is formed.
2977     // Include the head of the chain in this iteration (not Chain.begin()).
2978     IVChain::const_iterator IncIter = Chain.Incs.begin();
2979     IVChain::const_iterator IncEnd = Chain.Incs.end();
2980     for( ; IncIter != IncEnd; ++IncIter) {
2981       if (IncIter->UserInst == OtherUse)
2982         break;
2983     }
2984     if (IncIter != IncEnd)
2985       continue;
2986 
2987     if (SE.isSCEVable(OtherUse->getType())
2988         && !isa<SCEVUnknown>(SE.getSCEV(OtherUse))
2989         && IU.isIVUserOrOperand(OtherUse)) {
2990       continue;
2991     }
2992     NearUsers.insert(OtherUse);
2993   }
2994 
2995   // Since this user is part of the chain, it's no longer considered a use
2996   // of the chain.
2997   ChainUsersVec[ChainIdx].FarUsers.erase(UserInst);
2998 }
2999 
3000 /// Populate the vector of Chains.
3001 ///
3002 /// This decreases ILP at the architecture level. Targets with ample registers,
3003 /// multiple memory ports, and no register renaming probably don't want
3004 /// this. However, such targets should probably disable LSR altogether.
3005 ///
3006 /// The job of LSR is to make a reasonable choice of induction variables across
3007 /// the loop. Subsequent passes can easily "unchain" computation exposing more
3008 /// ILP *within the loop* if the target wants it.
3009 ///
3010 /// Finding the best IV chain is potentially a scheduling problem. Since LSR
3011 /// will not reorder memory operations, it will recognize this as a chain, but
3012 /// will generate redundant IV increments. Ideally this would be corrected later
3013 /// by a smart scheduler:
3014 ///        = A[i]
3015 ///        = A[i+x]
3016 /// A[i]   =
3017 /// A[i+x] =
3018 ///
3019 /// TODO: Walk the entire domtree within this loop, not just the path to the
3020 /// loop latch. This will discover chains on side paths, but requires
3021 /// maintaining multiple copies of the Chains state.
3022 void LSRInstance::CollectChains() {
3023   LLVM_DEBUG(dbgs() << "Collecting IV Chains.\n");
3024   SmallVector<ChainUsers, 8> ChainUsersVec;
3025 
3026   SmallVector<BasicBlock *,8> LatchPath;
3027   BasicBlock *LoopHeader = L->getHeader();
3028   for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch());
3029        Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) {
3030     LatchPath.push_back(Rung->getBlock());
3031   }
3032   LatchPath.push_back(LoopHeader);
3033 
3034   // Walk the instruction stream from the loop header to the loop latch.
3035   for (BasicBlock *BB : reverse(LatchPath)) {
3036     for (Instruction &I : *BB) {
3037       // Skip instructions that weren't seen by IVUsers analysis.
3038       if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I))
3039         continue;
3040 
3041       // Ignore users that are part of a SCEV expression. This way we only
3042       // consider leaf IV Users. This effectively rediscovers a portion of
3043       // IVUsers analysis but in program order this time.
3044       if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I)))
3045           continue;
3046 
3047       // Remove this instruction from any NearUsers set it may be in.
3048       for (unsigned ChainIdx = 0, NChains = IVChainVec.size();
3049            ChainIdx < NChains; ++ChainIdx) {
3050         ChainUsersVec[ChainIdx].NearUsers.erase(&I);
3051       }
3052       // Search for operands that can be chained.
3053       SmallPtrSet<Instruction*, 4> UniqueOperands;
3054       User::op_iterator IVOpEnd = I.op_end();
3055       User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE);
3056       while (IVOpIter != IVOpEnd) {
3057         Instruction *IVOpInst = cast<Instruction>(*IVOpIter);
3058         if (UniqueOperands.insert(IVOpInst).second)
3059           ChainInstruction(&I, IVOpInst, ChainUsersVec);
3060         IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
3061       }
3062     } // Continue walking down the instructions.
3063   } // Continue walking down the domtree.
3064   // Visit phi backedges to determine if the chain can generate the IV postinc.
3065   for (PHINode &PN : L->getHeader()->phis()) {
3066     if (!SE.isSCEVable(PN.getType()))
3067       continue;
3068 
3069     Instruction *IncV =
3070         dyn_cast<Instruction>(PN.getIncomingValueForBlock(L->getLoopLatch()));
3071     if (IncV)
3072       ChainInstruction(&PN, IncV, ChainUsersVec);
3073   }
3074   // Remove any unprofitable chains.
3075   unsigned ChainIdx = 0;
3076   for (unsigned UsersIdx = 0, NChains = IVChainVec.size();
3077        UsersIdx < NChains; ++UsersIdx) {
3078     if (!isProfitableChain(IVChainVec[UsersIdx],
3079                            ChainUsersVec[UsersIdx].FarUsers, SE))
3080       continue;
3081     // Preserve the chain at UsesIdx.
3082     if (ChainIdx != UsersIdx)
3083       IVChainVec[ChainIdx] = IVChainVec[UsersIdx];
3084     FinalizeChain(IVChainVec[ChainIdx]);
3085     ++ChainIdx;
3086   }
3087   IVChainVec.resize(ChainIdx);
3088 }
3089 
3090 void LSRInstance::FinalizeChain(IVChain &Chain) {
3091   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
3092   LLVM_DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n");
3093 
3094   for (const IVInc &Inc : Chain) {
3095     LLVM_DEBUG(dbgs() << "        Inc: " << *Inc.UserInst << "\n");
3096     auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand);
3097     assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand");
3098     IVIncSet.insert(UseI);
3099   }
3100 }
3101 
3102 /// Return true if the IVInc can be folded into an addressing mode.
3103 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst,
3104                              Value *Operand, const TargetTransformInfo &TTI) {
3105   const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr);
3106   if (!IncConst || !isAddressUse(TTI, UserInst, Operand))
3107     return false;
3108 
3109   if (IncConst->getAPInt().getMinSignedBits() > 64)
3110     return false;
3111 
3112   MemAccessTy AccessTy = getAccessType(TTI, UserInst, Operand);
3113   int64_t IncOffset = IncConst->getValue()->getSExtValue();
3114   if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr,
3115                         IncOffset, /*HaseBaseReg=*/false))
3116     return false;
3117 
3118   return true;
3119 }
3120 
3121 /// Generate an add or subtract for each IVInc in a chain to materialize the IV
3122 /// user's operand from the previous IV user's operand.
3123 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
3124                                   SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
3125   // Find the new IVOperand for the head of the chain. It may have been replaced
3126   // by LSR.
3127   const IVInc &Head = Chain.Incs[0];
3128   User::op_iterator IVOpEnd = Head.UserInst->op_end();
3129   // findIVOperand returns IVOpEnd if it can no longer find a valid IV user.
3130   User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(),
3131                                              IVOpEnd, L, SE);
3132   Value *IVSrc = nullptr;
3133   while (IVOpIter != IVOpEnd) {
3134     IVSrc = getWideOperand(*IVOpIter);
3135 
3136     // If this operand computes the expression that the chain needs, we may use
3137     // it. (Check this after setting IVSrc which is used below.)
3138     //
3139     // Note that if Head.IncExpr is wider than IVSrc, then this phi is too
3140     // narrow for the chain, so we can no longer use it. We do allow using a
3141     // wider phi, assuming the LSR checked for free truncation. In that case we
3142     // should already have a truncate on this operand such that
3143     // getSCEV(IVSrc) == IncExpr.
3144     if (SE.getSCEV(*IVOpIter) == Head.IncExpr
3145         || SE.getSCEV(IVSrc) == Head.IncExpr) {
3146       break;
3147     }
3148     IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
3149   }
3150   if (IVOpIter == IVOpEnd) {
3151     // Gracefully give up on this chain.
3152     LLVM_DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n");
3153     return;
3154   }
3155 
3156   LLVM_DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n");
3157   Type *IVTy = IVSrc->getType();
3158   Type *IntTy = SE.getEffectiveSCEVType(IVTy);
3159   const SCEV *LeftOverExpr = nullptr;
3160   for (const IVInc &Inc : Chain) {
3161     Instruction *InsertPt = Inc.UserInst;
3162     if (isa<PHINode>(InsertPt))
3163       InsertPt = L->getLoopLatch()->getTerminator();
3164 
3165     // IVOper will replace the current IV User's operand. IVSrc is the IV
3166     // value currently held in a register.
3167     Value *IVOper = IVSrc;
3168     if (!Inc.IncExpr->isZero()) {
3169       // IncExpr was the result of subtraction of two narrow values, so must
3170       // be signed.
3171       const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy);
3172       LeftOverExpr = LeftOverExpr ?
3173         SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr;
3174     }
3175     if (LeftOverExpr && !LeftOverExpr->isZero()) {
3176       // Expand the IV increment.
3177       Rewriter.clearPostInc();
3178       Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt);
3179       const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc),
3180                                              SE.getUnknown(IncV));
3181       IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt);
3182 
3183       // If an IV increment can't be folded, use it as the next IV value.
3184       if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) {
3185         assert(IVTy == IVOper->getType() && "inconsistent IV increment type");
3186         IVSrc = IVOper;
3187         LeftOverExpr = nullptr;
3188       }
3189     }
3190     Type *OperTy = Inc.IVOperand->getType();
3191     if (IVTy != OperTy) {
3192       assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) &&
3193              "cannot extend a chained IV");
3194       IRBuilder<> Builder(InsertPt);
3195       IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain");
3196     }
3197     Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper);
3198     DeadInsts.emplace_back(Inc.IVOperand);
3199   }
3200   // If LSR created a new, wider phi, we may also replace its postinc. We only
3201   // do this if we also found a wide value for the head of the chain.
3202   if (isa<PHINode>(Chain.tailUserInst())) {
3203     for (PHINode &Phi : L->getHeader()->phis()) {
3204       if (!isCompatibleIVType(&Phi, IVSrc))
3205         continue;
3206       Instruction *PostIncV = dyn_cast<Instruction>(
3207           Phi.getIncomingValueForBlock(L->getLoopLatch()));
3208       if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc)))
3209         continue;
3210       Value *IVOper = IVSrc;
3211       Type *PostIncTy = PostIncV->getType();
3212       if (IVTy != PostIncTy) {
3213         assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types");
3214         IRBuilder<> Builder(L->getLoopLatch()->getTerminator());
3215         Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc());
3216         IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain");
3217       }
3218       Phi.replaceUsesOfWith(PostIncV, IVOper);
3219       DeadInsts.emplace_back(PostIncV);
3220     }
3221   }
3222 }
3223 
3224 void LSRInstance::CollectFixupsAndInitialFormulae() {
3225   for (const IVStrideUse &U : IU) {
3226     Instruction *UserInst = U.getUser();
3227     // Skip IV users that are part of profitable IV Chains.
3228     User::op_iterator UseI =
3229         find(UserInst->operands(), U.getOperandValToReplace());
3230     assert(UseI != UserInst->op_end() && "cannot find IV operand");
3231     if (IVIncSet.count(UseI)) {
3232       LLVM_DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n');
3233       continue;
3234     }
3235 
3236     LSRUse::KindType Kind = LSRUse::Basic;
3237     MemAccessTy AccessTy;
3238     if (isAddressUse(TTI, UserInst, U.getOperandValToReplace())) {
3239       Kind = LSRUse::Address;
3240       AccessTy = getAccessType(TTI, UserInst, U.getOperandValToReplace());
3241     }
3242 
3243     const SCEV *S = IU.getExpr(U);
3244     PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops();
3245 
3246     // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
3247     // (N - i == 0), and this allows (N - i) to be the expression that we work
3248     // with rather than just N or i, so we can consider the register
3249     // requirements for both N and i at the same time. Limiting this code to
3250     // equality icmps is not a problem because all interesting loops use
3251     // equality icmps, thanks to IndVarSimplify.
3252     if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst))
3253       if (CI->isEquality()) {
3254         // Swap the operands if needed to put the OperandValToReplace on the
3255         // left, for consistency.
3256         Value *NV = CI->getOperand(1);
3257         if (NV == U.getOperandValToReplace()) {
3258           CI->setOperand(1, CI->getOperand(0));
3259           CI->setOperand(0, NV);
3260           NV = CI->getOperand(1);
3261           Changed = true;
3262         }
3263 
3264         // x == y  -->  x - y == 0
3265         const SCEV *N = SE.getSCEV(NV);
3266         if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) {
3267           // S is normalized, so normalize N before folding it into S
3268           // to keep the result normalized.
3269           N = normalizeForPostIncUse(N, TmpPostIncLoops, SE);
3270           Kind = LSRUse::ICmpZero;
3271           S = SE.getMinusSCEV(N, S);
3272         }
3273 
3274         // -1 and the negations of all interesting strides (except the negation
3275         // of -1) are now also interesting.
3276         for (size_t i = 0, e = Factors.size(); i != e; ++i)
3277           if (Factors[i] != -1)
3278             Factors.insert(-(uint64_t)Factors[i]);
3279         Factors.insert(-1);
3280       }
3281 
3282     // Get or create an LSRUse.
3283     std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
3284     size_t LUIdx = P.first;
3285     int64_t Offset = P.second;
3286     LSRUse &LU = Uses[LUIdx];
3287 
3288     // Record the fixup.
3289     LSRFixup &LF = LU.getNewFixup();
3290     LF.UserInst = UserInst;
3291     LF.OperandValToReplace = U.getOperandValToReplace();
3292     LF.PostIncLoops = TmpPostIncLoops;
3293     LF.Offset = Offset;
3294     LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3295 
3296     if (!LU.WidestFixupType ||
3297         SE.getTypeSizeInBits(LU.WidestFixupType) <
3298         SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3299       LU.WidestFixupType = LF.OperandValToReplace->getType();
3300 
3301     // If this is the first use of this LSRUse, give it a formula.
3302     if (LU.Formulae.empty()) {
3303       InsertInitialFormula(S, LU, LUIdx);
3304       CountRegisters(LU.Formulae.back(), LUIdx);
3305     }
3306   }
3307 
3308   LLVM_DEBUG(print_fixups(dbgs()));
3309 }
3310 
3311 /// Insert a formula for the given expression into the given use, separating out
3312 /// loop-variant portions from loop-invariant and loop-computable portions.
3313 void
3314 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
3315   // Mark uses whose expressions cannot be expanded.
3316   if (!isSafeToExpand(S, SE))
3317     LU.RigidFormula = true;
3318 
3319   Formula F;
3320   F.initialMatch(S, L, SE);
3321   bool Inserted = InsertFormula(LU, LUIdx, F);
3322   assert(Inserted && "Initial formula already exists!"); (void)Inserted;
3323 }
3324 
3325 /// Insert a simple single-register formula for the given expression into the
3326 /// given use.
3327 void
3328 LSRInstance::InsertSupplementalFormula(const SCEV *S,
3329                                        LSRUse &LU, size_t LUIdx) {
3330   Formula F;
3331   F.BaseRegs.push_back(S);
3332   F.HasBaseReg = true;
3333   bool Inserted = InsertFormula(LU, LUIdx, F);
3334   assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
3335 }
3336 
3337 /// Note which registers are used by the given formula, updating RegUses.
3338 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
3339   if (F.ScaledReg)
3340     RegUses.countRegister(F.ScaledReg, LUIdx);
3341   for (const SCEV *BaseReg : F.BaseRegs)
3342     RegUses.countRegister(BaseReg, LUIdx);
3343 }
3344 
3345 /// If the given formula has not yet been inserted, add it to the list, and
3346 /// return true. Return false otherwise.
3347 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
3348   // Do not insert formula that we will not be able to expand.
3349   assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) &&
3350          "Formula is illegal");
3351 
3352   if (!LU.InsertFormula(F, *L))
3353     return false;
3354 
3355   CountRegisters(F, LUIdx);
3356   return true;
3357 }
3358 
3359 /// Check for other uses of loop-invariant values which we're tracking. These
3360 /// other uses will pin these values in registers, making them less profitable
3361 /// for elimination.
3362 /// TODO: This currently misses non-constant addrec step registers.
3363 /// TODO: Should this give more weight to users inside the loop?
3364 void
3365 LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
3366   SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
3367   SmallPtrSet<const SCEV *, 32> Visited;
3368 
3369   while (!Worklist.empty()) {
3370     const SCEV *S = Worklist.pop_back_val();
3371 
3372     // Don't process the same SCEV twice
3373     if (!Visited.insert(S).second)
3374       continue;
3375 
3376     if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
3377       Worklist.append(N->op_begin(), N->op_end());
3378     else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
3379       Worklist.push_back(C->getOperand());
3380     else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
3381       Worklist.push_back(D->getLHS());
3382       Worklist.push_back(D->getRHS());
3383     } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) {
3384       const Value *V = US->getValue();
3385       if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
3386         // Look for instructions defined outside the loop.
3387         if (L->contains(Inst)) continue;
3388       } else if (isa<UndefValue>(V))
3389         // Undef doesn't have a live range, so it doesn't matter.
3390         continue;
3391       for (const Use &U : V->uses()) {
3392         const Instruction *UserInst = dyn_cast<Instruction>(U.getUser());
3393         // Ignore non-instructions.
3394         if (!UserInst)
3395           continue;
3396         // Ignore instructions in other functions (as can happen with
3397         // Constants).
3398         if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
3399           continue;
3400         // Ignore instructions not dominated by the loop.
3401         const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
3402           UserInst->getParent() :
3403           cast<PHINode>(UserInst)->getIncomingBlock(
3404             PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
3405         if (!DT.dominates(L->getHeader(), UseBB))
3406           continue;
3407         // Don't bother if the instruction is in a BB which ends in an EHPad.
3408         if (UseBB->getTerminator()->isEHPad())
3409           continue;
3410         // Don't bother rewriting PHIs in catchswitch blocks.
3411         if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator()))
3412           continue;
3413         // Ignore uses which are part of other SCEV expressions, to avoid
3414         // analyzing them multiple times.
3415         if (SE.isSCEVable(UserInst->getType())) {
3416           const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
3417           // If the user is a no-op, look through to its uses.
3418           if (!isa<SCEVUnknown>(UserS))
3419             continue;
3420           if (UserS == US) {
3421             Worklist.push_back(
3422               SE.getUnknown(const_cast<Instruction *>(UserInst)));
3423             continue;
3424           }
3425         }
3426         // Ignore icmp instructions which are already being analyzed.
3427         if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
3428           unsigned OtherIdx = !U.getOperandNo();
3429           Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
3430           if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L))
3431             continue;
3432         }
3433 
3434         std::pair<size_t, int64_t> P = getUse(
3435             S, LSRUse::Basic, MemAccessTy());
3436         size_t LUIdx = P.first;
3437         int64_t Offset = P.second;
3438         LSRUse &LU = Uses[LUIdx];
3439         LSRFixup &LF = LU.getNewFixup();
3440         LF.UserInst = const_cast<Instruction *>(UserInst);
3441         LF.OperandValToReplace = U;
3442         LF.Offset = Offset;
3443         LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3444         if (!LU.WidestFixupType ||
3445             SE.getTypeSizeInBits(LU.WidestFixupType) <
3446             SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3447           LU.WidestFixupType = LF.OperandValToReplace->getType();
3448         InsertSupplementalFormula(US, LU, LUIdx);
3449         CountRegisters(LU.Formulae.back(), Uses.size() - 1);
3450         break;
3451       }
3452     }
3453   }
3454 }
3455 
3456 /// Split S into subexpressions which can be pulled out into separate
3457 /// registers. If C is non-null, multiply each subexpression by C.
3458 ///
3459 /// Return remainder expression after factoring the subexpressions captured by
3460 /// Ops. If Ops is complete, return NULL.
3461 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C,
3462                                    SmallVectorImpl<const SCEV *> &Ops,
3463                                    const Loop *L,
3464                                    ScalarEvolution &SE,
3465                                    unsigned Depth = 0) {
3466   // Arbitrarily cap recursion to protect compile time.
3467   if (Depth >= 3)
3468     return S;
3469 
3470   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3471     // Break out add operands.
3472     for (const SCEV *S : Add->operands()) {
3473       const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1);
3474       if (Remainder)
3475         Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3476     }
3477     return nullptr;
3478   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
3479     // Split a non-zero base out of an addrec.
3480     if (AR->getStart()->isZero() || !AR->isAffine())
3481       return S;
3482 
3483     const SCEV *Remainder = CollectSubexprs(AR->getStart(),
3484                                             C, Ops, L, SE, Depth+1);
3485     // Split the non-zero AddRec unless it is part of a nested recurrence that
3486     // does not pertain to this loop.
3487     if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) {
3488       Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3489       Remainder = nullptr;
3490     }
3491     if (Remainder != AR->getStart()) {
3492       if (!Remainder)
3493         Remainder = SE.getConstant(AR->getType(), 0);
3494       return SE.getAddRecExpr(Remainder,
3495                               AR->getStepRecurrence(SE),
3496                               AR->getLoop(),
3497                               //FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
3498                               SCEV::FlagAnyWrap);
3499     }
3500   } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3501     // Break (C * (a + b + c)) into C*a + C*b + C*c.
3502     if (Mul->getNumOperands() != 2)
3503       return S;
3504     if (const SCEVConstant *Op0 =
3505         dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3506       C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0;
3507       const SCEV *Remainder =
3508         CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1);
3509       if (Remainder)
3510         Ops.push_back(SE.getMulExpr(C, Remainder));
3511       return nullptr;
3512     }
3513   }
3514   return S;
3515 }
3516 
3517 /// Return true if the SCEV represents a value that may end up as a
3518 /// post-increment operation.
3519 static bool mayUsePostIncMode(const TargetTransformInfo &TTI,
3520                               LSRUse &LU, const SCEV *S, const Loop *L,
3521                               ScalarEvolution &SE) {
3522   if (LU.Kind != LSRUse::Address ||
3523       !LU.AccessTy.getType()->isIntOrIntVectorTy())
3524     return false;
3525   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S);
3526   if (!AR)
3527     return false;
3528   const SCEV *LoopStep = AR->getStepRecurrence(SE);
3529   if (!isa<SCEVConstant>(LoopStep))
3530     return false;
3531   if (LU.AccessTy.getType()->getScalarSizeInBits() !=
3532       LoopStep->getType()->getScalarSizeInBits())
3533     return false;
3534   // Check if a post-indexed load/store can be used.
3535   if (TTI.isIndexedLoadLegal(TTI.MIM_PostInc, AR->getType()) ||
3536       TTI.isIndexedStoreLegal(TTI.MIM_PostInc, AR->getType())) {
3537     const SCEV *LoopStart = AR->getStart();
3538     if (!isa<SCEVConstant>(LoopStart) && SE.isLoopInvariant(LoopStart, L))
3539       return true;
3540   }
3541   return false;
3542 }
3543 
3544 /// Helper function for LSRInstance::GenerateReassociations.
3545 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
3546                                              const Formula &Base,
3547                                              unsigned Depth, size_t Idx,
3548                                              bool IsScaledReg) {
3549   const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3550   // Don't generate reassociations for the base register of a value that
3551   // may generate a post-increment operator. The reason is that the
3552   // reassociations cause extra base+register formula to be created,
3553   // and possibly chosen, but the post-increment is more efficient.
3554   if (TTI.shouldFavorPostInc() && mayUsePostIncMode(TTI, LU, BaseReg, L, SE))
3555     return;
3556   SmallVector<const SCEV *, 8> AddOps;
3557   const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE);
3558   if (Remainder)
3559     AddOps.push_back(Remainder);
3560 
3561   if (AddOps.size() == 1)
3562     return;
3563 
3564   for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
3565                                                      JE = AddOps.end();
3566        J != JE; ++J) {
3567     // Loop-variant "unknown" values are uninteresting; we won't be able to
3568     // do anything meaningful with them.
3569     if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L))
3570       continue;
3571 
3572     // Don't pull a constant into a register if the constant could be folded
3573     // into an immediate field.
3574     if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3575                          LU.AccessTy, *J, Base.getNumRegs() > 1))
3576       continue;
3577 
3578     // Collect all operands except *J.
3579     SmallVector<const SCEV *, 8> InnerAddOps(
3580         ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J);
3581     InnerAddOps.append(std::next(J),
3582                        ((const SmallVector<const SCEV *, 8> &)AddOps).end());
3583 
3584     // Don't leave just a constant behind in a register if the constant could
3585     // be folded into an immediate field.
3586     if (InnerAddOps.size() == 1 &&
3587         isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3588                          LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1))
3589       continue;
3590 
3591     const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
3592     if (InnerSum->isZero())
3593       continue;
3594     Formula F = Base;
3595 
3596     // Add the remaining pieces of the add back into the new formula.
3597     const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum);
3598     if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 &&
3599         TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3600                                 InnerSumSC->getValue()->getZExtValue())) {
3601       F.UnfoldedOffset =
3602           (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue();
3603       if (IsScaledReg)
3604         F.ScaledReg = nullptr;
3605       else
3606         F.BaseRegs.erase(F.BaseRegs.begin() + Idx);
3607     } else if (IsScaledReg)
3608       F.ScaledReg = InnerSum;
3609     else
3610       F.BaseRegs[Idx] = InnerSum;
3611 
3612     // Add J as its own register, or an unfolded immediate.
3613     const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J);
3614     if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 &&
3615         TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3616                                 SC->getValue()->getZExtValue()))
3617       F.UnfoldedOffset =
3618           (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue();
3619     else
3620       F.BaseRegs.push_back(*J);
3621     // We may have changed the number of register in base regs, adjust the
3622     // formula accordingly.
3623     F.canonicalize(*L);
3624 
3625     if (InsertFormula(LU, LUIdx, F))
3626       // If that formula hadn't been seen before, recurse to find more like
3627       // it.
3628       // Add check on Log16(AddOps.size()) - same as Log2_32(AddOps.size()) >> 2)
3629       // Because just Depth is not enough to bound compile time.
3630       // This means that every time AddOps.size() is greater 16^x we will add
3631       // x to Depth.
3632       GenerateReassociations(LU, LUIdx, LU.Formulae.back(),
3633                              Depth + 1 + (Log2_32(AddOps.size()) >> 2));
3634   }
3635 }
3636 
3637 /// Split out subexpressions from adds and the bases of addrecs.
3638 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
3639                                          Formula Base, unsigned Depth) {
3640   assert(Base.isCanonical(*L) && "Input must be in the canonical form");
3641   // Arbitrarily cap recursion to protect compile time.
3642   if (Depth >= 3)
3643     return;
3644 
3645   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3646     GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i);
3647 
3648   if (Base.Scale == 1)
3649     GenerateReassociationsImpl(LU, LUIdx, Base, Depth,
3650                                /* Idx */ -1, /* IsScaledReg */ true);
3651 }
3652 
3653 ///  Generate a formula consisting of all of the loop-dominating registers added
3654 /// into a single register.
3655 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
3656                                        Formula Base) {
3657   // This method is only interesting on a plurality of registers.
3658   if (Base.BaseRegs.size() + (Base.Scale == 1) +
3659       (Base.UnfoldedOffset != 0) <= 1)
3660     return;
3661 
3662   // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before
3663   // processing the formula.
3664   Base.unscale();
3665   SmallVector<const SCEV *, 4> Ops;
3666   Formula NewBase = Base;
3667   NewBase.BaseRegs.clear();
3668   Type *CombinedIntegerType = nullptr;
3669   for (const SCEV *BaseReg : Base.BaseRegs) {
3670     if (SE.properlyDominates(BaseReg, L->getHeader()) &&
3671         !SE.hasComputableLoopEvolution(BaseReg, L)) {
3672       if (!CombinedIntegerType)
3673         CombinedIntegerType = SE.getEffectiveSCEVType(BaseReg->getType());
3674       Ops.push_back(BaseReg);
3675     }
3676     else
3677       NewBase.BaseRegs.push_back(BaseReg);
3678   }
3679 
3680   // If no register is relevant, we're done.
3681   if (Ops.size() == 0)
3682     return;
3683 
3684   // Utility function for generating the required variants of the combined
3685   // registers.
3686   auto GenerateFormula = [&](const SCEV *Sum) {
3687     Formula F = NewBase;
3688 
3689     // TODO: If Sum is zero, it probably means ScalarEvolution missed an
3690     // opportunity to fold something. For now, just ignore such cases
3691     // rather than proceed with zero in a register.
3692     if (Sum->isZero())
3693       return;
3694 
3695     F.BaseRegs.push_back(Sum);
3696     F.canonicalize(*L);
3697     (void)InsertFormula(LU, LUIdx, F);
3698   };
3699 
3700   // If we collected at least two registers, generate a formula combining them.
3701   if (Ops.size() > 1) {
3702     SmallVector<const SCEV *, 4> OpsCopy(Ops); // Don't let SE modify Ops.
3703     GenerateFormula(SE.getAddExpr(OpsCopy));
3704   }
3705 
3706   // If we have an unfolded offset, generate a formula combining it with the
3707   // registers collected.
3708   if (NewBase.UnfoldedOffset) {
3709     assert(CombinedIntegerType && "Missing a type for the unfolded offset");
3710     Ops.push_back(SE.getConstant(CombinedIntegerType, NewBase.UnfoldedOffset,
3711                                  true));
3712     NewBase.UnfoldedOffset = 0;
3713     GenerateFormula(SE.getAddExpr(Ops));
3714   }
3715 }
3716 
3717 /// Helper function for LSRInstance::GenerateSymbolicOffsets.
3718 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
3719                                               const Formula &Base, size_t Idx,
3720                                               bool IsScaledReg) {
3721   const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3722   GlobalValue *GV = ExtractSymbol(G, SE);
3723   if (G->isZero() || !GV)
3724     return;
3725   Formula F = Base;
3726   F.BaseGV = GV;
3727   if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3728     return;
3729   if (IsScaledReg)
3730     F.ScaledReg = G;
3731   else
3732     F.BaseRegs[Idx] = G;
3733   (void)InsertFormula(LU, LUIdx, F);
3734 }
3735 
3736 /// Generate reuse formulae using symbolic offsets.
3737 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
3738                                           Formula Base) {
3739   // We can't add a symbolic offset if the address already contains one.
3740   if (Base.BaseGV) return;
3741 
3742   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3743     GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i);
3744   if (Base.Scale == 1)
3745     GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1,
3746                                 /* IsScaledReg */ true);
3747 }
3748 
3749 /// Helper function for LSRInstance::GenerateConstantOffsets.
3750 void LSRInstance::GenerateConstantOffsetsImpl(
3751     LSRUse &LU, unsigned LUIdx, const Formula &Base,
3752     const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) {
3753 
3754   auto GenerateOffset = [&](const SCEV *G, int64_t Offset) {
3755     Formula F = Base;
3756     F.BaseOffset = (uint64_t)Base.BaseOffset - Offset;
3757 
3758     if (isLegalUse(TTI, LU.MinOffset - Offset, LU.MaxOffset - Offset, LU.Kind,
3759                    LU.AccessTy, F)) {
3760       // Add the offset to the base register.
3761       const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G);
3762       // If it cancelled out, drop the base register, otherwise update it.
3763       if (NewG->isZero()) {
3764         if (IsScaledReg) {
3765           F.Scale = 0;
3766           F.ScaledReg = nullptr;
3767         } else
3768           F.deleteBaseReg(F.BaseRegs[Idx]);
3769         F.canonicalize(*L);
3770       } else if (IsScaledReg)
3771         F.ScaledReg = NewG;
3772       else
3773         F.BaseRegs[Idx] = NewG;
3774 
3775       (void)InsertFormula(LU, LUIdx, F);
3776     }
3777   };
3778 
3779   const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3780 
3781   // With constant offsets and constant steps, we can generate pre-inc
3782   // accesses by having the offset equal the step. So, for access #0 with a
3783   // step of 8, we generate a G - 8 base which would require the first access
3784   // to be ((G - 8) + 8),+,8. The pre-indexed access then updates the pointer
3785   // for itself and hopefully becomes the base for other accesses. This means
3786   // means that a single pre-indexed access can be generated to become the new
3787   // base pointer for each iteration of the loop, resulting in no extra add/sub
3788   // instructions for pointer updating.
3789   if (FavorBackedgeIndex && LU.Kind == LSRUse::Address) {
3790     if (auto *GAR = dyn_cast<SCEVAddRecExpr>(G)) {
3791       if (auto *StepRec =
3792           dyn_cast<SCEVConstant>(GAR->getStepRecurrence(SE))) {
3793         const APInt &StepInt = StepRec->getAPInt();
3794         int64_t Step = StepInt.isNegative() ?
3795           StepInt.getSExtValue() : StepInt.getZExtValue();
3796 
3797         for (int64_t Offset : Worklist) {
3798           Offset -= Step;
3799           GenerateOffset(G, Offset);
3800         }
3801       }
3802     }
3803   }
3804   for (int64_t Offset : Worklist)
3805     GenerateOffset(G, Offset);
3806 
3807   int64_t Imm = ExtractImmediate(G, SE);
3808   if (G->isZero() || Imm == 0)
3809     return;
3810   Formula F = Base;
3811   F.BaseOffset = (uint64_t)F.BaseOffset + Imm;
3812   if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3813     return;
3814   if (IsScaledReg)
3815     F.ScaledReg = G;
3816   else
3817     F.BaseRegs[Idx] = G;
3818   (void)InsertFormula(LU, LUIdx, F);
3819 }
3820 
3821 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
3822 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
3823                                           Formula Base) {
3824   // TODO: For now, just add the min and max offset, because it usually isn't
3825   // worthwhile looking at everything inbetween.
3826   SmallVector<int64_t, 2> Worklist;
3827   Worklist.push_back(LU.MinOffset);
3828   if (LU.MaxOffset != LU.MinOffset)
3829     Worklist.push_back(LU.MaxOffset);
3830 
3831   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3832     GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i);
3833   if (Base.Scale == 1)
3834     GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1,
3835                                 /* IsScaledReg */ true);
3836 }
3837 
3838 /// For ICmpZero, check to see if we can scale up the comparison. For example, x
3839 /// == y -> x*c == y*c.
3840 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
3841                                          Formula Base) {
3842   if (LU.Kind != LSRUse::ICmpZero) return;
3843 
3844   // Determine the integer type for the base formula.
3845   Type *IntTy = Base.getType();
3846   if (!IntTy) return;
3847   if (SE.getTypeSizeInBits(IntTy) > 64) return;
3848 
3849   // Don't do this if there is more than one offset.
3850   if (LU.MinOffset != LU.MaxOffset) return;
3851 
3852   // Check if transformation is valid. It is illegal to multiply pointer.
3853   if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy())
3854     return;
3855   for (const SCEV *BaseReg : Base.BaseRegs)
3856     if (BaseReg->getType()->isPointerTy())
3857       return;
3858   assert(!Base.BaseGV && "ICmpZero use is not legal!");
3859 
3860   // Check each interesting stride.
3861   for (int64_t Factor : Factors) {
3862     // Check that the multiplication doesn't overflow.
3863     if (Base.BaseOffset == std::numeric_limits<int64_t>::min() && Factor == -1)
3864       continue;
3865     int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor;
3866     if (NewBaseOffset / Factor != Base.BaseOffset)
3867       continue;
3868     // If the offset will be truncated at this use, check that it is in bounds.
3869     if (!IntTy->isPointerTy() &&
3870         !ConstantInt::isValueValidForType(IntTy, NewBaseOffset))
3871       continue;
3872 
3873     // Check that multiplying with the use offset doesn't overflow.
3874     int64_t Offset = LU.MinOffset;
3875     if (Offset == std::numeric_limits<int64_t>::min() && Factor == -1)
3876       continue;
3877     Offset = (uint64_t)Offset * Factor;
3878     if (Offset / Factor != LU.MinOffset)
3879       continue;
3880     // If the offset will be truncated at this use, check that it is in bounds.
3881     if (!IntTy->isPointerTy() &&
3882         !ConstantInt::isValueValidForType(IntTy, Offset))
3883       continue;
3884 
3885     Formula F = Base;
3886     F.BaseOffset = NewBaseOffset;
3887 
3888     // Check that this scale is legal.
3889     if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F))
3890       continue;
3891 
3892     // Compensate for the use having MinOffset built into it.
3893     F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset;
3894 
3895     const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3896 
3897     // Check that multiplying with each base register doesn't overflow.
3898     for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
3899       F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
3900       if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
3901         goto next;
3902     }
3903 
3904     // Check that multiplying with the scaled register doesn't overflow.
3905     if (F.ScaledReg) {
3906       F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
3907       if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
3908         continue;
3909     }
3910 
3911     // Check that multiplying with the unfolded offset doesn't overflow.
3912     if (F.UnfoldedOffset != 0) {
3913       if (F.UnfoldedOffset == std::numeric_limits<int64_t>::min() &&
3914           Factor == -1)
3915         continue;
3916       F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor;
3917       if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset)
3918         continue;
3919       // If the offset will be truncated, check that it is in bounds.
3920       if (!IntTy->isPointerTy() &&
3921           !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset))
3922         continue;
3923     }
3924 
3925     // If we make it here and it's legal, add it.
3926     (void)InsertFormula(LU, LUIdx, F);
3927   next:;
3928   }
3929 }
3930 
3931 /// Generate stride factor reuse formulae by making use of scaled-offset address
3932 /// modes, for example.
3933 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
3934   // Determine the integer type for the base formula.
3935   Type *IntTy = Base.getType();
3936   if (!IntTy) return;
3937 
3938   // If this Formula already has a scaled register, we can't add another one.
3939   // Try to unscale the formula to generate a better scale.
3940   if (Base.Scale != 0 && !Base.unscale())
3941     return;
3942 
3943   assert(Base.Scale == 0 && "unscale did not did its job!");
3944 
3945   // Check each interesting stride.
3946   for (int64_t Factor : Factors) {
3947     Base.Scale = Factor;
3948     Base.HasBaseReg = Base.BaseRegs.size() > 1;
3949     // Check whether this scale is going to be legal.
3950     if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
3951                     Base)) {
3952       // As a special-case, handle special out-of-loop Basic users specially.
3953       // TODO: Reconsider this special case.
3954       if (LU.Kind == LSRUse::Basic &&
3955           isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special,
3956                      LU.AccessTy, Base) &&
3957           LU.AllFixupsOutsideLoop)
3958         LU.Kind = LSRUse::Special;
3959       else
3960         continue;
3961     }
3962     // For an ICmpZero, negating a solitary base register won't lead to
3963     // new solutions.
3964     if (LU.Kind == LSRUse::ICmpZero &&
3965         !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV)
3966       continue;
3967     // For each addrec base reg, if its loop is current loop, apply the scale.
3968     for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
3969       const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i]);
3970       if (AR && (AR->getLoop() == L || LU.AllFixupsOutsideLoop)) {
3971         const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3972         if (FactorS->isZero())
3973           continue;
3974         // Divide out the factor, ignoring high bits, since we'll be
3975         // scaling the value back up in the end.
3976         if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) {
3977           // TODO: This could be optimized to avoid all the copying.
3978           Formula F = Base;
3979           F.ScaledReg = Quotient;
3980           F.deleteBaseReg(F.BaseRegs[i]);
3981           // The canonical representation of 1*reg is reg, which is already in
3982           // Base. In that case, do not try to insert the formula, it will be
3983           // rejected anyway.
3984           if (F.Scale == 1 && (F.BaseRegs.empty() ||
3985                                (AR->getLoop() != L && LU.AllFixupsOutsideLoop)))
3986             continue;
3987           // If AllFixupsOutsideLoop is true and F.Scale is 1, we may generate
3988           // non canonical Formula with ScaledReg's loop not being L.
3989           if (F.Scale == 1 && LU.AllFixupsOutsideLoop)
3990             F.canonicalize(*L);
3991           (void)InsertFormula(LU, LUIdx, F);
3992         }
3993       }
3994     }
3995   }
3996 }
3997 
3998 /// Generate reuse formulae from different IV types.
3999 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
4000   // Don't bother truncating symbolic values.
4001   if (Base.BaseGV) return;
4002 
4003   // Determine the integer type for the base formula.
4004   Type *DstTy = Base.getType();
4005   if (!DstTy) return;
4006   DstTy = SE.getEffectiveSCEVType(DstTy);
4007 
4008   for (Type *SrcTy : Types) {
4009     if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) {
4010       Formula F = Base;
4011 
4012       // Sometimes SCEV is able to prove zero during ext transform. It may
4013       // happen if SCEV did not do all possible transforms while creating the
4014       // initial node (maybe due to depth limitations), but it can do them while
4015       // taking ext.
4016       if (F.ScaledReg) {
4017         const SCEV *NewScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy);
4018         if (NewScaledReg->isZero())
4019          continue;
4020         F.ScaledReg = NewScaledReg;
4021       }
4022       bool HasZeroBaseReg = false;
4023       for (const SCEV *&BaseReg : F.BaseRegs) {
4024         const SCEV *NewBaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy);
4025         if (NewBaseReg->isZero()) {
4026           HasZeroBaseReg = true;
4027           break;
4028         }
4029         BaseReg = NewBaseReg;
4030       }
4031       if (HasZeroBaseReg)
4032         continue;
4033 
4034       // TODO: This assumes we've done basic processing on all uses and
4035       // have an idea what the register usage is.
4036       if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
4037         continue;
4038 
4039       F.canonicalize(*L);
4040       (void)InsertFormula(LU, LUIdx, F);
4041     }
4042   }
4043 }
4044 
4045 namespace {
4046 
4047 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer
4048 /// modifications so that the search phase doesn't have to worry about the data
4049 /// structures moving underneath it.
4050 struct WorkItem {
4051   size_t LUIdx;
4052   int64_t Imm;
4053   const SCEV *OrigReg;
4054 
4055   WorkItem(size_t LI, int64_t I, const SCEV *R)
4056       : LUIdx(LI), Imm(I), OrigReg(R) {}
4057 
4058   void print(raw_ostream &OS) const;
4059   void dump() const;
4060 };
4061 
4062 } // end anonymous namespace
4063 
4064 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4065 void WorkItem::print(raw_ostream &OS) const {
4066   OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
4067      << " , add offset " << Imm;
4068 }
4069 
4070 LLVM_DUMP_METHOD void WorkItem::dump() const {
4071   print(errs()); errs() << '\n';
4072 }
4073 #endif
4074 
4075 /// Look for registers which are a constant distance apart and try to form reuse
4076 /// opportunities between them.
4077 void LSRInstance::GenerateCrossUseConstantOffsets() {
4078   // Group the registers by their value without any added constant offset.
4079   using ImmMapTy = std::map<int64_t, const SCEV *>;
4080 
4081   DenseMap<const SCEV *, ImmMapTy> Map;
4082   DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
4083   SmallVector<const SCEV *, 8> Sequence;
4084   for (const SCEV *Use : RegUses) {
4085     const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify.
4086     int64_t Imm = ExtractImmediate(Reg, SE);
4087     auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy()));
4088     if (Pair.second)
4089       Sequence.push_back(Reg);
4090     Pair.first->second.insert(std::make_pair(Imm, Use));
4091     UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use);
4092   }
4093 
4094   // Now examine each set of registers with the same base value. Build up
4095   // a list of work to do and do the work in a separate step so that we're
4096   // not adding formulae and register counts while we're searching.
4097   SmallVector<WorkItem, 32> WorkItems;
4098   SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
4099   for (const SCEV *Reg : Sequence) {
4100     const ImmMapTy &Imms = Map.find(Reg)->second;
4101 
4102     // It's not worthwhile looking for reuse if there's only one offset.
4103     if (Imms.size() == 1)
4104       continue;
4105 
4106     LLVM_DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
4107                for (const auto &Entry
4108                     : Imms) dbgs()
4109                << ' ' << Entry.first;
4110                dbgs() << '\n');
4111 
4112     // Examine each offset.
4113     for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
4114          J != JE; ++J) {
4115       const SCEV *OrigReg = J->second;
4116 
4117       int64_t JImm = J->first;
4118       const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
4119 
4120       if (!isa<SCEVConstant>(OrigReg) &&
4121           UsedByIndicesMap[Reg].count() == 1) {
4122         LLVM_DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg
4123                           << '\n');
4124         continue;
4125       }
4126 
4127       // Conservatively examine offsets between this orig reg a few selected
4128       // other orig regs.
4129       ImmMapTy::const_iterator OtherImms[] = {
4130         Imms.begin(), std::prev(Imms.end()),
4131         Imms.lower_bound((Imms.begin()->first + std::prev(Imms.end())->first) /
4132                          2)
4133       };
4134       for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
4135         ImmMapTy::const_iterator M = OtherImms[i];
4136         if (M == J || M == JE) continue;
4137 
4138         // Compute the difference between the two.
4139         int64_t Imm = (uint64_t)JImm - M->first;
4140         for (unsigned LUIdx : UsedByIndices.set_bits())
4141           // Make a memo of this use, offset, and register tuple.
4142           if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second)
4143             WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
4144       }
4145     }
4146   }
4147 
4148   Map.clear();
4149   Sequence.clear();
4150   UsedByIndicesMap.clear();
4151   UniqueItems.clear();
4152 
4153   // Now iterate through the worklist and add new formulae.
4154   for (const WorkItem &WI : WorkItems) {
4155     size_t LUIdx = WI.LUIdx;
4156     LSRUse &LU = Uses[LUIdx];
4157     int64_t Imm = WI.Imm;
4158     const SCEV *OrigReg = WI.OrigReg;
4159 
4160     Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
4161     const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
4162     unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
4163 
4164     // TODO: Use a more targeted data structure.
4165     for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
4166       Formula F = LU.Formulae[L];
4167       // FIXME: The code for the scaled and unscaled registers looks
4168       // very similar but slightly different. Investigate if they
4169       // could be merged. That way, we would not have to unscale the
4170       // Formula.
4171       F.unscale();
4172       // Use the immediate in the scaled register.
4173       if (F.ScaledReg == OrigReg) {
4174         int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale;
4175         // Don't create 50 + reg(-50).
4176         if (F.referencesReg(SE.getSCEV(
4177                    ConstantInt::get(IntTy, -(uint64_t)Offset))))
4178           continue;
4179         Formula NewF = F;
4180         NewF.BaseOffset = Offset;
4181         if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
4182                         NewF))
4183           continue;
4184         NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
4185 
4186         // If the new scale is a constant in a register, and adding the constant
4187         // value to the immediate would produce a value closer to zero than the
4188         // immediate itself, then the formula isn't worthwhile.
4189         if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
4190           if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) &&
4191               (C->getAPInt().abs() * APInt(BitWidth, F.Scale))
4192                   .ule(std::abs(NewF.BaseOffset)))
4193             continue;
4194 
4195         // OK, looks good.
4196         NewF.canonicalize(*this->L);
4197         (void)InsertFormula(LU, LUIdx, NewF);
4198       } else {
4199         // Use the immediate in a base register.
4200         for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
4201           const SCEV *BaseReg = F.BaseRegs[N];
4202           if (BaseReg != OrigReg)
4203             continue;
4204           Formula NewF = F;
4205           NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm;
4206           if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset,
4207                           LU.Kind, LU.AccessTy, NewF)) {
4208             if (TTI.shouldFavorPostInc() &&
4209                 mayUsePostIncMode(TTI, LU, OrigReg, this->L, SE))
4210               continue;
4211             if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm))
4212               continue;
4213             NewF = F;
4214             NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm;
4215           }
4216           NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
4217 
4218           // If the new formula has a constant in a register, and adding the
4219           // constant value to the immediate would produce a value closer to
4220           // zero than the immediate itself, then the formula isn't worthwhile.
4221           for (const SCEV *NewReg : NewF.BaseRegs)
4222             if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg))
4223               if ((C->getAPInt() + NewF.BaseOffset)
4224                       .abs()
4225                       .slt(std::abs(NewF.BaseOffset)) &&
4226                   (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >=
4227                       countTrailingZeros<uint64_t>(NewF.BaseOffset))
4228                 goto skip_formula;
4229 
4230           // Ok, looks good.
4231           NewF.canonicalize(*this->L);
4232           (void)InsertFormula(LU, LUIdx, NewF);
4233           break;
4234         skip_formula:;
4235         }
4236       }
4237     }
4238   }
4239 }
4240 
4241 /// Generate formulae for each use.
4242 void
4243 LSRInstance::GenerateAllReuseFormulae() {
4244   // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
4245   // queries are more precise.
4246   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4247     LSRUse &LU = Uses[LUIdx];
4248     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4249       GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
4250     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4251       GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
4252   }
4253   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4254     LSRUse &LU = Uses[LUIdx];
4255     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4256       GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
4257     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4258       GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
4259     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4260       GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
4261     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4262       GenerateScales(LU, LUIdx, LU.Formulae[i]);
4263   }
4264   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4265     LSRUse &LU = Uses[LUIdx];
4266     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4267       GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
4268   }
4269 
4270   GenerateCrossUseConstantOffsets();
4271 
4272   LLVM_DEBUG(dbgs() << "\n"
4273                        "After generating reuse formulae:\n";
4274              print_uses(dbgs()));
4275 }
4276 
4277 /// If there are multiple formulae with the same set of registers used
4278 /// by other uses, pick the best one and delete the others.
4279 void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
4280   DenseSet<const SCEV *> VisitedRegs;
4281   SmallPtrSet<const SCEV *, 16> Regs;
4282   SmallPtrSet<const SCEV *, 16> LoserRegs;
4283 #ifndef NDEBUG
4284   bool ChangedFormulae = false;
4285 #endif
4286 
4287   // Collect the best formula for each unique set of shared registers. This
4288   // is reset for each use.
4289   using BestFormulaeTy =
4290       DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>;
4291 
4292   BestFormulaeTy BestFormulae;
4293 
4294   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4295     LSRUse &LU = Uses[LUIdx];
4296     LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs());
4297                dbgs() << '\n');
4298 
4299     bool Any = false;
4300     for (size_t FIdx = 0, NumForms = LU.Formulae.size();
4301          FIdx != NumForms; ++FIdx) {
4302       Formula &F = LU.Formulae[FIdx];
4303 
4304       // Some formulas are instant losers. For example, they may depend on
4305       // nonexistent AddRecs from other loops. These need to be filtered
4306       // immediately, otherwise heuristics could choose them over others leading
4307       // to an unsatisfactory solution. Passing LoserRegs into RateFormula here
4308       // avoids the need to recompute this information across formulae using the
4309       // same bad AddRec. Passing LoserRegs is also essential unless we remove
4310       // the corresponding bad register from the Regs set.
4311       Cost CostF;
4312       Regs.clear();
4313       CostF.RateFormula(TTI, F, Regs, VisitedRegs, L, SE, DT, LU, &LoserRegs);
4314       if (CostF.isLoser()) {
4315         // During initial formula generation, undesirable formulae are generated
4316         // by uses within other loops that have some non-trivial address mode or
4317         // use the postinc form of the IV. LSR needs to provide these formulae
4318         // as the basis of rediscovering the desired formula that uses an AddRec
4319         // corresponding to the existing phi. Once all formulae have been
4320         // generated, these initial losers may be pruned.
4321         LLVM_DEBUG(dbgs() << "  Filtering loser "; F.print(dbgs());
4322                    dbgs() << "\n");
4323       }
4324       else {
4325         SmallVector<const SCEV *, 4> Key;
4326         for (const SCEV *Reg : F.BaseRegs) {
4327           if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
4328             Key.push_back(Reg);
4329         }
4330         if (F.ScaledReg &&
4331             RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
4332           Key.push_back(F.ScaledReg);
4333         // Unstable sort by host order ok, because this is only used for
4334         // uniquifying.
4335         llvm::sort(Key);
4336 
4337         std::pair<BestFormulaeTy::const_iterator, bool> P =
4338           BestFormulae.insert(std::make_pair(Key, FIdx));
4339         if (P.second)
4340           continue;
4341 
4342         Formula &Best = LU.Formulae[P.first->second];
4343 
4344         Cost CostBest;
4345         Regs.clear();
4346         CostBest.RateFormula(TTI, Best, Regs, VisitedRegs, L, SE, DT, LU);
4347         if (CostF.isLess(CostBest, TTI))
4348           std::swap(F, Best);
4349         LLVM_DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
4350                    dbgs() << "\n"
4351                              "    in favor of formula ";
4352                    Best.print(dbgs()); dbgs() << '\n');
4353       }
4354 #ifndef NDEBUG
4355       ChangedFormulae = true;
4356 #endif
4357       LU.DeleteFormula(F);
4358       --FIdx;
4359       --NumForms;
4360       Any = true;
4361     }
4362 
4363     // Now that we've filtered out some formulae, recompute the Regs set.
4364     if (Any)
4365       LU.RecomputeRegs(LUIdx, RegUses);
4366 
4367     // Reset this to prepare for the next use.
4368     BestFormulae.clear();
4369   }
4370 
4371   LLVM_DEBUG(if (ChangedFormulae) {
4372     dbgs() << "\n"
4373               "After filtering out undesirable candidates:\n";
4374     print_uses(dbgs());
4375   });
4376 }
4377 
4378 /// Estimate the worst-case number of solutions the solver might have to
4379 /// consider. It almost never considers this many solutions because it prune the
4380 /// search space, but the pruning isn't always sufficient.
4381 size_t LSRInstance::EstimateSearchSpaceComplexity() const {
4382   size_t Power = 1;
4383   for (const LSRUse &LU : Uses) {
4384     size_t FSize = LU.Formulae.size();
4385     if (FSize >= ComplexityLimit) {
4386       Power = ComplexityLimit;
4387       break;
4388     }
4389     Power *= FSize;
4390     if (Power >= ComplexityLimit)
4391       break;
4392   }
4393   return Power;
4394 }
4395 
4396 /// When one formula uses a superset of the registers of another formula, it
4397 /// won't help reduce register pressure (though it may not necessarily hurt
4398 /// register pressure); remove it to simplify the system.
4399 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
4400   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4401     LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4402 
4403     LLVM_DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
4404                          "which use a superset of registers used by other "
4405                          "formulae.\n");
4406 
4407     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4408       LSRUse &LU = Uses[LUIdx];
4409       bool Any = false;
4410       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4411         Formula &F = LU.Formulae[i];
4412         // Look for a formula with a constant or GV in a register. If the use
4413         // also has a formula with that same value in an immediate field,
4414         // delete the one that uses a register.
4415         for (SmallVectorImpl<const SCEV *>::const_iterator
4416              I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
4417           if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
4418             Formula NewF = F;
4419             NewF.BaseOffset += C->getValue()->getSExtValue();
4420             NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4421                                 (I - F.BaseRegs.begin()));
4422             if (LU.HasFormulaWithSameRegs(NewF)) {
4423               LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4424                          dbgs() << '\n');
4425               LU.DeleteFormula(F);
4426               --i;
4427               --e;
4428               Any = true;
4429               break;
4430             }
4431           } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
4432             if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
4433               if (!F.BaseGV) {
4434                 Formula NewF = F;
4435                 NewF.BaseGV = GV;
4436                 NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4437                                     (I - F.BaseRegs.begin()));
4438                 if (LU.HasFormulaWithSameRegs(NewF)) {
4439                   LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4440                              dbgs() << '\n');
4441                   LU.DeleteFormula(F);
4442                   --i;
4443                   --e;
4444                   Any = true;
4445                   break;
4446                 }
4447               }
4448           }
4449         }
4450       }
4451       if (Any)
4452         LU.RecomputeRegs(LUIdx, RegUses);
4453     }
4454 
4455     LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4456   }
4457 }
4458 
4459 /// When there are many registers for expressions like A, A+1, A+2, etc.,
4460 /// allocate a single register for them.
4461 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
4462   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4463     return;
4464 
4465   LLVM_DEBUG(
4466       dbgs() << "The search space is too complex.\n"
4467                 "Narrowing the search space by assuming that uses separated "
4468                 "by a constant offset will use the same registers.\n");
4469 
4470   // This is especially useful for unrolled loops.
4471 
4472   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4473     LSRUse &LU = Uses[LUIdx];
4474     for (const Formula &F : LU.Formulae) {
4475       if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1))
4476         continue;
4477 
4478       LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU);
4479       if (!LUThatHas)
4480         continue;
4481 
4482       if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false,
4483                               LU.Kind, LU.AccessTy))
4484         continue;
4485 
4486       LLVM_DEBUG(dbgs() << "  Deleting use "; LU.print(dbgs()); dbgs() << '\n');
4487 
4488       LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
4489 
4490       // Transfer the fixups of LU to LUThatHas.
4491       for (LSRFixup &Fixup : LU.Fixups) {
4492         Fixup.Offset += F.BaseOffset;
4493         LUThatHas->pushFixup(Fixup);
4494         LLVM_DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n');
4495       }
4496 
4497       // Delete formulae from the new use which are no longer legal.
4498       bool Any = false;
4499       for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
4500         Formula &F = LUThatHas->Formulae[i];
4501         if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset,
4502                         LUThatHas->Kind, LUThatHas->AccessTy, F)) {
4503           LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
4504           LUThatHas->DeleteFormula(F);
4505           --i;
4506           --e;
4507           Any = true;
4508         }
4509       }
4510 
4511       if (Any)
4512         LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
4513 
4514       // Delete the old use.
4515       DeleteUse(LU, LUIdx);
4516       --LUIdx;
4517       --NumUses;
4518       break;
4519     }
4520   }
4521 
4522   LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4523 }
4524 
4525 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that
4526 /// we've done more filtering, as it may be able to find more formulae to
4527 /// eliminate.
4528 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){
4529   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4530     LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4531 
4532     LLVM_DEBUG(dbgs() << "Narrowing the search space by re-filtering out "
4533                          "undesirable dedicated registers.\n");
4534 
4535     FilterOutUndesirableDedicatedRegisters();
4536 
4537     LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4538   }
4539 }
4540 
4541 /// If a LSRUse has multiple formulae with the same ScaledReg and Scale.
4542 /// Pick the best one and delete the others.
4543 /// This narrowing heuristic is to keep as many formulae with different
4544 /// Scale and ScaledReg pair as possible while narrowing the search space.
4545 /// The benefit is that it is more likely to find out a better solution
4546 /// from a formulae set with more Scale and ScaledReg variations than
4547 /// a formulae set with the same Scale and ScaledReg. The picking winner
4548 /// reg heuristic will often keep the formulae with the same Scale and
4549 /// ScaledReg and filter others, and we want to avoid that if possible.
4550 void LSRInstance::NarrowSearchSpaceByFilterFormulaWithSameScaledReg() {
4551   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4552     return;
4553 
4554   LLVM_DEBUG(
4555       dbgs() << "The search space is too complex.\n"
4556                 "Narrowing the search space by choosing the best Formula "
4557                 "from the Formulae with the same Scale and ScaledReg.\n");
4558 
4559   // Map the "Scale * ScaledReg" pair to the best formula of current LSRUse.
4560   using BestFormulaeTy = DenseMap<std::pair<const SCEV *, int64_t>, size_t>;
4561 
4562   BestFormulaeTy BestFormulae;
4563 #ifndef NDEBUG
4564   bool ChangedFormulae = false;
4565 #endif
4566   DenseSet<const SCEV *> VisitedRegs;
4567   SmallPtrSet<const SCEV *, 16> Regs;
4568 
4569   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4570     LSRUse &LU = Uses[LUIdx];
4571     LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs());
4572                dbgs() << '\n');
4573 
4574     // Return true if Formula FA is better than Formula FB.
4575     auto IsBetterThan = [&](Formula &FA, Formula &FB) {
4576       // First we will try to choose the Formula with fewer new registers.
4577       // For a register used by current Formula, the more the register is
4578       // shared among LSRUses, the less we increase the register number
4579       // counter of the formula.
4580       size_t FARegNum = 0;
4581       for (const SCEV *Reg : FA.BaseRegs) {
4582         const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg);
4583         FARegNum += (NumUses - UsedByIndices.count() + 1);
4584       }
4585       size_t FBRegNum = 0;
4586       for (const SCEV *Reg : FB.BaseRegs) {
4587         const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg);
4588         FBRegNum += (NumUses - UsedByIndices.count() + 1);
4589       }
4590       if (FARegNum != FBRegNum)
4591         return FARegNum < FBRegNum;
4592 
4593       // If the new register numbers are the same, choose the Formula with
4594       // less Cost.
4595       Cost CostFA, CostFB;
4596       Regs.clear();
4597       CostFA.RateFormula(TTI, FA, Regs, VisitedRegs, L, SE, DT, LU);
4598       Regs.clear();
4599       CostFB.RateFormula(TTI, FB, Regs, VisitedRegs, L, SE, DT, LU);
4600       return CostFA.isLess(CostFB, TTI);
4601     };
4602 
4603     bool Any = false;
4604     for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms;
4605          ++FIdx) {
4606       Formula &F = LU.Formulae[FIdx];
4607       if (!F.ScaledReg)
4608         continue;
4609       auto P = BestFormulae.insert({{F.ScaledReg, F.Scale}, FIdx});
4610       if (P.second)
4611         continue;
4612 
4613       Formula &Best = LU.Formulae[P.first->second];
4614       if (IsBetterThan(F, Best))
4615         std::swap(F, Best);
4616       LLVM_DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
4617                  dbgs() << "\n"
4618                            "    in favor of formula ";
4619                  Best.print(dbgs()); dbgs() << '\n');
4620 #ifndef NDEBUG
4621       ChangedFormulae = true;
4622 #endif
4623       LU.DeleteFormula(F);
4624       --FIdx;
4625       --NumForms;
4626       Any = true;
4627     }
4628     if (Any)
4629       LU.RecomputeRegs(LUIdx, RegUses);
4630 
4631     // Reset this to prepare for the next use.
4632     BestFormulae.clear();
4633   }
4634 
4635   LLVM_DEBUG(if (ChangedFormulae) {
4636     dbgs() << "\n"
4637               "After filtering out undesirable candidates:\n";
4638     print_uses(dbgs());
4639   });
4640 }
4641 
4642 /// The function delete formulas with high registers number expectation.
4643 /// Assuming we don't know the value of each formula (already delete
4644 /// all inefficient), generate probability of not selecting for each
4645 /// register.
4646 /// For example,
4647 /// Use1:
4648 ///  reg(a) + reg({0,+,1})
4649 ///  reg(a) + reg({-1,+,1}) + 1
4650 ///  reg({a,+,1})
4651 /// Use2:
4652 ///  reg(b) + reg({0,+,1})
4653 ///  reg(b) + reg({-1,+,1}) + 1
4654 ///  reg({b,+,1})
4655 /// Use3:
4656 ///  reg(c) + reg(b) + reg({0,+,1})
4657 ///  reg(c) + reg({b,+,1})
4658 ///
4659 /// Probability of not selecting
4660 ///                 Use1   Use2    Use3
4661 /// reg(a)         (1/3) *   1   *   1
4662 /// reg(b)           1   * (1/3) * (1/2)
4663 /// reg({0,+,1})   (2/3) * (2/3) * (1/2)
4664 /// reg({-1,+,1})  (2/3) * (2/3) *   1
4665 /// reg({a,+,1})   (2/3) *   1   *   1
4666 /// reg({b,+,1})     1   * (2/3) * (2/3)
4667 /// reg(c)           1   *   1   *   0
4668 ///
4669 /// Now count registers number mathematical expectation for each formula:
4670 /// Note that for each use we exclude probability if not selecting for the use.
4671 /// For example for Use1 probability for reg(a) would be just 1 * 1 (excluding
4672 /// probabilty 1/3 of not selecting for Use1).
4673 /// Use1:
4674 ///  reg(a) + reg({0,+,1})          1 + 1/3       -- to be deleted
4675 ///  reg(a) + reg({-1,+,1}) + 1     1 + 4/9       -- to be deleted
4676 ///  reg({a,+,1})                   1
4677 /// Use2:
4678 ///  reg(b) + reg({0,+,1})          1/2 + 1/3     -- to be deleted
4679 ///  reg(b) + reg({-1,+,1}) + 1     1/2 + 2/3     -- to be deleted
4680 ///  reg({b,+,1})                   2/3
4681 /// Use3:
4682 ///  reg(c) + reg(b) + reg({0,+,1}) 1 + 1/3 + 4/9 -- to be deleted
4683 ///  reg(c) + reg({b,+,1})          1 + 2/3
4684 void LSRInstance::NarrowSearchSpaceByDeletingCostlyFormulas() {
4685   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4686     return;
4687   // Ok, we have too many of formulae on our hands to conveniently handle.
4688   // Use a rough heuristic to thin out the list.
4689 
4690   // Set of Regs wich will be 100% used in final solution.
4691   // Used in each formula of a solution (in example above this is reg(c)).
4692   // We can skip them in calculations.
4693   SmallPtrSet<const SCEV *, 4> UniqRegs;
4694   LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4695 
4696   // Map each register to probability of not selecting
4697   DenseMap <const SCEV *, float> RegNumMap;
4698   for (const SCEV *Reg : RegUses) {
4699     if (UniqRegs.count(Reg))
4700       continue;
4701     float PNotSel = 1;
4702     for (const LSRUse &LU : Uses) {
4703       if (!LU.Regs.count(Reg))
4704         continue;
4705       float P = LU.getNotSelectedProbability(Reg);
4706       if (P != 0.0)
4707         PNotSel *= P;
4708       else
4709         UniqRegs.insert(Reg);
4710     }
4711     RegNumMap.insert(std::make_pair(Reg, PNotSel));
4712   }
4713 
4714   LLVM_DEBUG(
4715       dbgs() << "Narrowing the search space by deleting costly formulas\n");
4716 
4717   // Delete formulas where registers number expectation is high.
4718   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4719     LSRUse &LU = Uses[LUIdx];
4720     // If nothing to delete - continue.
4721     if (LU.Formulae.size() < 2)
4722       continue;
4723     // This is temporary solution to test performance. Float should be
4724     // replaced with round independent type (based on integers) to avoid
4725     // different results for different target builds.
4726     float FMinRegNum = LU.Formulae[0].getNumRegs();
4727     float FMinARegNum = LU.Formulae[0].getNumRegs();
4728     size_t MinIdx = 0;
4729     for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4730       Formula &F = LU.Formulae[i];
4731       float FRegNum = 0;
4732       float FARegNum = 0;
4733       for (const SCEV *BaseReg : F.BaseRegs) {
4734         if (UniqRegs.count(BaseReg))
4735           continue;
4736         FRegNum += RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg);
4737         if (isa<SCEVAddRecExpr>(BaseReg))
4738           FARegNum +=
4739               RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg);
4740       }
4741       if (const SCEV *ScaledReg = F.ScaledReg) {
4742         if (!UniqRegs.count(ScaledReg)) {
4743           FRegNum +=
4744               RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg);
4745           if (isa<SCEVAddRecExpr>(ScaledReg))
4746             FARegNum +=
4747                 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg);
4748         }
4749       }
4750       if (FMinRegNum > FRegNum ||
4751           (FMinRegNum == FRegNum && FMinARegNum > FARegNum)) {
4752         FMinRegNum = FRegNum;
4753         FMinARegNum = FARegNum;
4754         MinIdx = i;
4755       }
4756     }
4757     LLVM_DEBUG(dbgs() << "  The formula "; LU.Formulae[MinIdx].print(dbgs());
4758                dbgs() << " with min reg num " << FMinRegNum << '\n');
4759     if (MinIdx != 0)
4760       std::swap(LU.Formulae[MinIdx], LU.Formulae[0]);
4761     while (LU.Formulae.size() != 1) {
4762       LLVM_DEBUG(dbgs() << "  Deleting "; LU.Formulae.back().print(dbgs());
4763                  dbgs() << '\n');
4764       LU.Formulae.pop_back();
4765     }
4766     LU.RecomputeRegs(LUIdx, RegUses);
4767     assert(LU.Formulae.size() == 1 && "Should be exactly 1 min regs formula");
4768     Formula &F = LU.Formulae[0];
4769     LLVM_DEBUG(dbgs() << "  Leaving only "; F.print(dbgs()); dbgs() << '\n');
4770     // When we choose the formula, the regs become unique.
4771     UniqRegs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
4772     if (F.ScaledReg)
4773       UniqRegs.insert(F.ScaledReg);
4774   }
4775   LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4776 }
4777 
4778 /// Pick a register which seems likely to be profitable, and then in any use
4779 /// which has any reference to that register, delete all formulae which do not
4780 /// reference that register.
4781 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() {
4782   // With all other options exhausted, loop until the system is simple
4783   // enough to handle.
4784   SmallPtrSet<const SCEV *, 4> Taken;
4785   while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4786     // Ok, we have too many of formulae on our hands to conveniently handle.
4787     // Use a rough heuristic to thin out the list.
4788     LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4789 
4790     // Pick the register which is used by the most LSRUses, which is likely
4791     // to be a good reuse register candidate.
4792     const SCEV *Best = nullptr;
4793     unsigned BestNum = 0;
4794     for (const SCEV *Reg : RegUses) {
4795       if (Taken.count(Reg))
4796         continue;
4797       if (!Best) {
4798         Best = Reg;
4799         BestNum = RegUses.getUsedByIndices(Reg).count();
4800       } else {
4801         unsigned Count = RegUses.getUsedByIndices(Reg).count();
4802         if (Count > BestNum) {
4803           Best = Reg;
4804           BestNum = Count;
4805         }
4806       }
4807     }
4808 
4809     LLVM_DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
4810                       << " will yield profitable reuse.\n");
4811     Taken.insert(Best);
4812 
4813     // In any use with formulae which references this register, delete formulae
4814     // which don't reference it.
4815     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4816       LSRUse &LU = Uses[LUIdx];
4817       if (!LU.Regs.count(Best)) continue;
4818 
4819       bool Any = false;
4820       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4821         Formula &F = LU.Formulae[i];
4822         if (!F.referencesReg(Best)) {
4823           LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
4824           LU.DeleteFormula(F);
4825           --e;
4826           --i;
4827           Any = true;
4828           assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
4829           continue;
4830         }
4831       }
4832 
4833       if (Any)
4834         LU.RecomputeRegs(LUIdx, RegUses);
4835     }
4836 
4837     LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4838   }
4839 }
4840 
4841 /// If there are an extraordinary number of formulae to choose from, use some
4842 /// rough heuristics to prune down the number of formulae. This keeps the main
4843 /// solver from taking an extraordinary amount of time in some worst-case
4844 /// scenarios.
4845 void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
4846   NarrowSearchSpaceByDetectingSupersets();
4847   NarrowSearchSpaceByCollapsingUnrolledCode();
4848   NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
4849   if (FilterSameScaledReg)
4850     NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
4851   if (LSRExpNarrow)
4852     NarrowSearchSpaceByDeletingCostlyFormulas();
4853   else
4854     NarrowSearchSpaceByPickingWinnerRegs();
4855 }
4856 
4857 /// This is the recursive solver.
4858 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
4859                                Cost &SolutionCost,
4860                                SmallVectorImpl<const Formula *> &Workspace,
4861                                const Cost &CurCost,
4862                                const SmallPtrSet<const SCEV *, 16> &CurRegs,
4863                                DenseSet<const SCEV *> &VisitedRegs) const {
4864   // Some ideas:
4865   //  - prune more:
4866   //    - use more aggressive filtering
4867   //    - sort the formula so that the most profitable solutions are found first
4868   //    - sort the uses too
4869   //  - search faster:
4870   //    - don't compute a cost, and then compare. compare while computing a cost
4871   //      and bail early.
4872   //    - track register sets with SmallBitVector
4873 
4874   const LSRUse &LU = Uses[Workspace.size()];
4875 
4876   // If this use references any register that's already a part of the
4877   // in-progress solution, consider it a requirement that a formula must
4878   // reference that register in order to be considered. This prunes out
4879   // unprofitable searching.
4880   SmallSetVector<const SCEV *, 4> ReqRegs;
4881   for (const SCEV *S : CurRegs)
4882     if (LU.Regs.count(S))
4883       ReqRegs.insert(S);
4884 
4885   SmallPtrSet<const SCEV *, 16> NewRegs;
4886   Cost NewCost;
4887   for (const Formula &F : LU.Formulae) {
4888     // Ignore formulae which may not be ideal in terms of register reuse of
4889     // ReqRegs.  The formula should use all required registers before
4890     // introducing new ones.
4891     int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size());
4892     for (const SCEV *Reg : ReqRegs) {
4893       if ((F.ScaledReg && F.ScaledReg == Reg) ||
4894           is_contained(F.BaseRegs, Reg)) {
4895         --NumReqRegsToFind;
4896         if (NumReqRegsToFind == 0)
4897           break;
4898       }
4899     }
4900     if (NumReqRegsToFind != 0) {
4901       // If none of the formulae satisfied the required registers, then we could
4902       // clear ReqRegs and try again. Currently, we simply give up in this case.
4903       continue;
4904     }
4905 
4906     // Evaluate the cost of the current formula. If it's already worse than
4907     // the current best, prune the search at that point.
4908     NewCost = CurCost;
4909     NewRegs = CurRegs;
4910     NewCost.RateFormula(TTI, F, NewRegs, VisitedRegs, L, SE, DT, LU);
4911     if (NewCost.isLess(SolutionCost, TTI)) {
4912       Workspace.push_back(&F);
4913       if (Workspace.size() != Uses.size()) {
4914         SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
4915                      NewRegs, VisitedRegs);
4916         if (F.getNumRegs() == 1 && Workspace.size() == 1)
4917           VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
4918       } else {
4919         LLVM_DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
4920                    dbgs() << ".\n Regs:"; for (const SCEV *S
4921                                                : NewRegs) dbgs()
4922                                           << ' ' << *S;
4923                    dbgs() << '\n');
4924 
4925         SolutionCost = NewCost;
4926         Solution = Workspace;
4927       }
4928       Workspace.pop_back();
4929     }
4930   }
4931 }
4932 
4933 /// Choose one formula from each use. Return the results in the given Solution
4934 /// vector.
4935 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
4936   SmallVector<const Formula *, 8> Workspace;
4937   Cost SolutionCost;
4938   SolutionCost.Lose();
4939   Cost CurCost;
4940   SmallPtrSet<const SCEV *, 16> CurRegs;
4941   DenseSet<const SCEV *> VisitedRegs;
4942   Workspace.reserve(Uses.size());
4943 
4944   // SolveRecurse does all the work.
4945   SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
4946                CurRegs, VisitedRegs);
4947   if (Solution.empty()) {
4948     LLVM_DEBUG(dbgs() << "\nNo Satisfactory Solution\n");
4949     return;
4950   }
4951 
4952   // Ok, we've now made all our decisions.
4953   LLVM_DEBUG(dbgs() << "\n"
4954                        "The chosen solution requires ";
4955              SolutionCost.print(dbgs()); dbgs() << ":\n";
4956              for (size_t i = 0, e = Uses.size(); i != e; ++i) {
4957                dbgs() << "  ";
4958                Uses[i].print(dbgs());
4959                dbgs() << "\n"
4960                          "    ";
4961                Solution[i]->print(dbgs());
4962                dbgs() << '\n';
4963              });
4964 
4965   assert(Solution.size() == Uses.size() && "Malformed solution!");
4966 }
4967 
4968 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as
4969 /// we can go while still being dominated by the input positions. This helps
4970 /// canonicalize the insert position, which encourages sharing.
4971 BasicBlock::iterator
4972 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
4973                                  const SmallVectorImpl<Instruction *> &Inputs)
4974                                                                          const {
4975   Instruction *Tentative = &*IP;
4976   while (true) {
4977     bool AllDominate = true;
4978     Instruction *BetterPos = nullptr;
4979     // Don't bother attempting to insert before a catchswitch, their basic block
4980     // cannot have other non-PHI instructions.
4981     if (isa<CatchSwitchInst>(Tentative))
4982       return IP;
4983 
4984     for (Instruction *Inst : Inputs) {
4985       if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
4986         AllDominate = false;
4987         break;
4988       }
4989       // Attempt to find an insert position in the middle of the block,
4990       // instead of at the end, so that it can be used for other expansions.
4991       if (Tentative->getParent() == Inst->getParent() &&
4992           (!BetterPos || !DT.dominates(Inst, BetterPos)))
4993         BetterPos = &*std::next(BasicBlock::iterator(Inst));
4994     }
4995     if (!AllDominate)
4996       break;
4997     if (BetterPos)
4998       IP = BetterPos->getIterator();
4999     else
5000       IP = Tentative->getIterator();
5001 
5002     const Loop *IPLoop = LI.getLoopFor(IP->getParent());
5003     unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
5004 
5005     BasicBlock *IDom;
5006     for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) {
5007       if (!Rung) return IP;
5008       Rung = Rung->getIDom();
5009       if (!Rung) return IP;
5010       IDom = Rung->getBlock();
5011 
5012       // Don't climb into a loop though.
5013       const Loop *IDomLoop = LI.getLoopFor(IDom);
5014       unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
5015       if (IDomDepth <= IPLoopDepth &&
5016           (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
5017         break;
5018     }
5019 
5020     Tentative = IDom->getTerminator();
5021   }
5022 
5023   return IP;
5024 }
5025 
5026 /// Determine an input position which will be dominated by the operands and
5027 /// which will dominate the result.
5028 BasicBlock::iterator
5029 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP,
5030                                            const LSRFixup &LF,
5031                                            const LSRUse &LU,
5032                                            SCEVExpander &Rewriter) const {
5033   // Collect some instructions which must be dominated by the
5034   // expanding replacement. These must be dominated by any operands that
5035   // will be required in the expansion.
5036   SmallVector<Instruction *, 4> Inputs;
5037   if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
5038     Inputs.push_back(I);
5039   if (LU.Kind == LSRUse::ICmpZero)
5040     if (Instruction *I =
5041           dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
5042       Inputs.push_back(I);
5043   if (LF.PostIncLoops.count(L)) {
5044     if (LF.isUseFullyOutsideLoop(L))
5045       Inputs.push_back(L->getLoopLatch()->getTerminator());
5046     else
5047       Inputs.push_back(IVIncInsertPos);
5048   }
5049   // The expansion must also be dominated by the increment positions of any
5050   // loops it for which it is using post-inc mode.
5051   for (const Loop *PIL : LF.PostIncLoops) {
5052     if (PIL == L) continue;
5053 
5054     // Be dominated by the loop exit.
5055     SmallVector<BasicBlock *, 4> ExitingBlocks;
5056     PIL->getExitingBlocks(ExitingBlocks);
5057     if (!ExitingBlocks.empty()) {
5058       BasicBlock *BB = ExitingBlocks[0];
5059       for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
5060         BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
5061       Inputs.push_back(BB->getTerminator());
5062     }
5063   }
5064 
5065   assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad()
5066          && !isa<DbgInfoIntrinsic>(LowestIP) &&
5067          "Insertion point must be a normal instruction");
5068 
5069   // Then, climb up the immediate dominator tree as far as we can go while
5070   // still being dominated by the input positions.
5071   BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs);
5072 
5073   // Don't insert instructions before PHI nodes.
5074   while (isa<PHINode>(IP)) ++IP;
5075 
5076   // Ignore landingpad instructions.
5077   while (IP->isEHPad()) ++IP;
5078 
5079   // Ignore debug intrinsics.
5080   while (isa<DbgInfoIntrinsic>(IP)) ++IP;
5081 
5082   // Set IP below instructions recently inserted by SCEVExpander. This keeps the
5083   // IP consistent across expansions and allows the previously inserted
5084   // instructions to be reused by subsequent expansion.
5085   while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP)
5086     ++IP;
5087 
5088   return IP;
5089 }
5090 
5091 /// Emit instructions for the leading candidate expression for this LSRUse (this
5092 /// is called "expanding").
5093 Value *LSRInstance::Expand(const LSRUse &LU, const LSRFixup &LF,
5094                            const Formula &F, BasicBlock::iterator IP,
5095                            SCEVExpander &Rewriter,
5096                            SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5097   if (LU.RigidFormula)
5098     return LF.OperandValToReplace;
5099 
5100   // Determine an input position which will be dominated by the operands and
5101   // which will dominate the result.
5102   IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter);
5103   Rewriter.setInsertPoint(&*IP);
5104 
5105   // Inform the Rewriter if we have a post-increment use, so that it can
5106   // perform an advantageous expansion.
5107   Rewriter.setPostInc(LF.PostIncLoops);
5108 
5109   // This is the type that the user actually needs.
5110   Type *OpTy = LF.OperandValToReplace->getType();
5111   // This will be the type that we'll initially expand to.
5112   Type *Ty = F.getType();
5113   if (!Ty)
5114     // No type known; just expand directly to the ultimate type.
5115     Ty = OpTy;
5116   else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
5117     // Expand directly to the ultimate type if it's the right size.
5118     Ty = OpTy;
5119   // This is the type to do integer arithmetic in.
5120   Type *IntTy = SE.getEffectiveSCEVType(Ty);
5121 
5122   // Build up a list of operands to add together to form the full base.
5123   SmallVector<const SCEV *, 8> Ops;
5124 
5125   // Expand the BaseRegs portion.
5126   for (const SCEV *Reg : F.BaseRegs) {
5127     assert(!Reg->isZero() && "Zero allocated in a base register!");
5128 
5129     // If we're expanding for a post-inc user, make the post-inc adjustment.
5130     Reg = denormalizeForPostIncUse(Reg, LF.PostIncLoops, SE);
5131     Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr)));
5132   }
5133 
5134   // Expand the ScaledReg portion.
5135   Value *ICmpScaledV = nullptr;
5136   if (F.Scale != 0) {
5137     const SCEV *ScaledS = F.ScaledReg;
5138 
5139     // If we're expanding for a post-inc user, make the post-inc adjustment.
5140     PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
5141     ScaledS = denormalizeForPostIncUse(ScaledS, Loops, SE);
5142 
5143     if (LU.Kind == LSRUse::ICmpZero) {
5144       // Expand ScaleReg as if it was part of the base regs.
5145       if (F.Scale == 1)
5146         Ops.push_back(
5147             SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)));
5148       else {
5149         // An interesting way of "folding" with an icmp is to use a negated
5150         // scale, which we'll implement by inserting it into the other operand
5151         // of the icmp.
5152         assert(F.Scale == -1 &&
5153                "The only scale supported by ICmpZero uses is -1!");
5154         ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr);
5155       }
5156     } else {
5157       // Otherwise just expand the scaled register and an explicit scale,
5158       // which is expected to be matched as part of the address.
5159 
5160       // Flush the operand list to suppress SCEVExpander hoisting address modes.
5161       // Unless the addressing mode will not be folded.
5162       if (!Ops.empty() && LU.Kind == LSRUse::Address &&
5163           isAMCompletelyFolded(TTI, LU, F)) {
5164         Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), nullptr);
5165         Ops.clear();
5166         Ops.push_back(SE.getUnknown(FullV));
5167       }
5168       ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr));
5169       if (F.Scale != 1)
5170         ScaledS =
5171             SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale));
5172       Ops.push_back(ScaledS);
5173     }
5174   }
5175 
5176   // Expand the GV portion.
5177   if (F.BaseGV) {
5178     // Flush the operand list to suppress SCEVExpander hoisting.
5179     if (!Ops.empty()) {
5180       Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
5181       Ops.clear();
5182       Ops.push_back(SE.getUnknown(FullV));
5183     }
5184     Ops.push_back(SE.getUnknown(F.BaseGV));
5185   }
5186 
5187   // Flush the operand list to suppress SCEVExpander hoisting of both folded and
5188   // unfolded offsets. LSR assumes they both live next to their uses.
5189   if (!Ops.empty()) {
5190     Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
5191     Ops.clear();
5192     Ops.push_back(SE.getUnknown(FullV));
5193   }
5194 
5195   // Expand the immediate portion.
5196   int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset;
5197   if (Offset != 0) {
5198     if (LU.Kind == LSRUse::ICmpZero) {
5199       // The other interesting way of "folding" with an ICmpZero is to use a
5200       // negated immediate.
5201       if (!ICmpScaledV)
5202         ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset);
5203       else {
5204         Ops.push_back(SE.getUnknown(ICmpScaledV));
5205         ICmpScaledV = ConstantInt::get(IntTy, Offset);
5206       }
5207     } else {
5208       // Just add the immediate values. These again are expected to be matched
5209       // as part of the address.
5210       Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
5211     }
5212   }
5213 
5214   // Expand the unfolded offset portion.
5215   int64_t UnfoldedOffset = F.UnfoldedOffset;
5216   if (UnfoldedOffset != 0) {
5217     // Just add the immediate values.
5218     Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy,
5219                                                        UnfoldedOffset)));
5220   }
5221 
5222   // Emit instructions summing all the operands.
5223   const SCEV *FullS = Ops.empty() ?
5224                       SE.getConstant(IntTy, 0) :
5225                       SE.getAddExpr(Ops);
5226   Value *FullV = Rewriter.expandCodeFor(FullS, Ty);
5227 
5228   // We're done expanding now, so reset the rewriter.
5229   Rewriter.clearPostInc();
5230 
5231   // An ICmpZero Formula represents an ICmp which we're handling as a
5232   // comparison against zero. Now that we've expanded an expression for that
5233   // form, update the ICmp's other operand.
5234   if (LU.Kind == LSRUse::ICmpZero) {
5235     ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
5236     DeadInsts.emplace_back(CI->getOperand(1));
5237     assert(!F.BaseGV && "ICmp does not support folding a global value and "
5238                            "a scale at the same time!");
5239     if (F.Scale == -1) {
5240       if (ICmpScaledV->getType() != OpTy) {
5241         Instruction *Cast =
5242           CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
5243                                                    OpTy, false),
5244                            ICmpScaledV, OpTy, "tmp", CI);
5245         ICmpScaledV = Cast;
5246       }
5247       CI->setOperand(1, ICmpScaledV);
5248     } else {
5249       // A scale of 1 means that the scale has been expanded as part of the
5250       // base regs.
5251       assert((F.Scale == 0 || F.Scale == 1) &&
5252              "ICmp does not support folding a global value and "
5253              "a scale at the same time!");
5254       Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
5255                                            -(uint64_t)Offset);
5256       if (C->getType() != OpTy)
5257         C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
5258                                                           OpTy, false),
5259                                   C, OpTy);
5260 
5261       CI->setOperand(1, C);
5262     }
5263   }
5264 
5265   return FullV;
5266 }
5267 
5268 /// Helper for Rewrite. PHI nodes are special because the use of their operands
5269 /// effectively happens in their predecessor blocks, so the expression may need
5270 /// to be expanded in multiple places.
5271 void LSRInstance::RewriteForPHI(
5272     PHINode *PN, const LSRUse &LU, const LSRFixup &LF, const Formula &F,
5273     SCEVExpander &Rewriter, SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5274   DenseMap<BasicBlock *, Value *> Inserted;
5275   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
5276     if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
5277       BasicBlock *BB = PN->getIncomingBlock(i);
5278 
5279       // If this is a critical edge, split the edge so that we do not insert
5280       // the code on all predecessor/successor paths.  We do this unless this
5281       // is the canonical backedge for this loop, which complicates post-inc
5282       // users.
5283       if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
5284           !isa<IndirectBrInst>(BB->getTerminator()) &&
5285           !isa<CatchSwitchInst>(BB->getTerminator())) {
5286         BasicBlock *Parent = PN->getParent();
5287         Loop *PNLoop = LI.getLoopFor(Parent);
5288         if (!PNLoop || Parent != PNLoop->getHeader()) {
5289           // Split the critical edge.
5290           BasicBlock *NewBB = nullptr;
5291           if (!Parent->isLandingPad()) {
5292             NewBB = SplitCriticalEdge(BB, Parent,
5293                                       CriticalEdgeSplittingOptions(&DT, &LI)
5294                                           .setMergeIdenticalEdges()
5295                                           .setKeepOneInputPHIs());
5296           } else {
5297             SmallVector<BasicBlock*, 2> NewBBs;
5298             SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI);
5299             NewBB = NewBBs[0];
5300           }
5301           // If NewBB==NULL, then SplitCriticalEdge refused to split because all
5302           // phi predecessors are identical. The simple thing to do is skip
5303           // splitting in this case rather than complicate the API.
5304           if (NewBB) {
5305             // If PN is outside of the loop and BB is in the loop, we want to
5306             // move the block to be immediately before the PHI block, not
5307             // immediately after BB.
5308             if (L->contains(BB) && !L->contains(PN))
5309               NewBB->moveBefore(PN->getParent());
5310 
5311             // Splitting the edge can reduce the number of PHI entries we have.
5312             e = PN->getNumIncomingValues();
5313             BB = NewBB;
5314             i = PN->getBasicBlockIndex(BB);
5315           }
5316         }
5317       }
5318 
5319       std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
5320         Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr)));
5321       if (!Pair.second)
5322         PN->setIncomingValue(i, Pair.first->second);
5323       else {
5324         Value *FullV = Expand(LU, LF, F, BB->getTerminator()->getIterator(),
5325                               Rewriter, DeadInsts);
5326 
5327         // If this is reuse-by-noop-cast, insert the noop cast.
5328         Type *OpTy = LF.OperandValToReplace->getType();
5329         if (FullV->getType() != OpTy)
5330           FullV =
5331             CastInst::Create(CastInst::getCastOpcode(FullV, false,
5332                                                      OpTy, false),
5333                              FullV, LF.OperandValToReplace->getType(),
5334                              "tmp", BB->getTerminator());
5335 
5336         PN->setIncomingValue(i, FullV);
5337         Pair.first->second = FullV;
5338       }
5339     }
5340 }
5341 
5342 /// Emit instructions for the leading candidate expression for this LSRUse (this
5343 /// is called "expanding"), and update the UserInst to reference the newly
5344 /// expanded value.
5345 void LSRInstance::Rewrite(const LSRUse &LU, const LSRFixup &LF,
5346                           const Formula &F, SCEVExpander &Rewriter,
5347                           SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5348   // First, find an insertion point that dominates UserInst. For PHI nodes,
5349   // find the nearest block which dominates all the relevant uses.
5350   if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
5351     RewriteForPHI(PN, LU, LF, F, Rewriter, DeadInsts);
5352   } else {
5353     Value *FullV =
5354       Expand(LU, LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts);
5355 
5356     // If this is reuse-by-noop-cast, insert the noop cast.
5357     Type *OpTy = LF.OperandValToReplace->getType();
5358     if (FullV->getType() != OpTy) {
5359       Instruction *Cast =
5360         CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
5361                          FullV, OpTy, "tmp", LF.UserInst);
5362       FullV = Cast;
5363     }
5364 
5365     // Update the user. ICmpZero is handled specially here (for now) because
5366     // Expand may have updated one of the operands of the icmp already, and
5367     // its new value may happen to be equal to LF.OperandValToReplace, in
5368     // which case doing replaceUsesOfWith leads to replacing both operands
5369     // with the same value. TODO: Reorganize this.
5370     if (LU.Kind == LSRUse::ICmpZero)
5371       LF.UserInst->setOperand(0, FullV);
5372     else
5373       LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
5374   }
5375 
5376   DeadInsts.emplace_back(LF.OperandValToReplace);
5377 }
5378 
5379 /// Rewrite all the fixup locations with new values, following the chosen
5380 /// solution.
5381 void LSRInstance::ImplementSolution(
5382     const SmallVectorImpl<const Formula *> &Solution) {
5383   // Keep track of instructions we may have made dead, so that
5384   // we can remove them after we are done working.
5385   SmallVector<WeakTrackingVH, 16> DeadInsts;
5386 
5387   SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(),
5388                         "lsr");
5389 #ifndef NDEBUG
5390   Rewriter.setDebugType(DEBUG_TYPE);
5391 #endif
5392   Rewriter.disableCanonicalMode();
5393   Rewriter.enableLSRMode();
5394   Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
5395 
5396   // Mark phi nodes that terminate chains so the expander tries to reuse them.
5397   for (const IVChain &Chain : IVChainVec) {
5398     if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst()))
5399       Rewriter.setChainedPhi(PN);
5400   }
5401 
5402   // Expand the new value definitions and update the users.
5403   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx)
5404     for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) {
5405       Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], Rewriter, DeadInsts);
5406       Changed = true;
5407     }
5408 
5409   for (const IVChain &Chain : IVChainVec) {
5410     GenerateIVChain(Chain, Rewriter, DeadInsts);
5411     Changed = true;
5412   }
5413   // Clean up after ourselves. This must be done before deleting any
5414   // instructions.
5415   Rewriter.clear();
5416 
5417   Changed |= DeleteTriviallyDeadInstructions(DeadInsts);
5418 }
5419 
5420 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE,
5421                          DominatorTree &DT, LoopInfo &LI,
5422                          const TargetTransformInfo &TTI)
5423     : IU(IU), SE(SE), DT(DT), LI(LI), TTI(TTI), L(L),
5424       FavorBackedgeIndex(EnableBackedgeIndexing &&
5425                          TTI.shouldFavorBackedgeIndex(L)) {
5426   // If LoopSimplify form is not available, stay out of trouble.
5427   if (!L->isLoopSimplifyForm())
5428     return;
5429 
5430   // If there's no interesting work to be done, bail early.
5431   if (IU.empty()) return;
5432 
5433   // If there's too much analysis to be done, bail early. We won't be able to
5434   // model the problem anyway.
5435   unsigned NumUsers = 0;
5436   for (const IVStrideUse &U : IU) {
5437     if (++NumUsers > MaxIVUsers) {
5438       (void)U;
5439       LLVM_DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U
5440                         << "\n");
5441       return;
5442     }
5443     // Bail out if we have a PHI on an EHPad that gets a value from a
5444     // CatchSwitchInst.  Because the CatchSwitchInst cannot be split, there is
5445     // no good place to stick any instructions.
5446     if (auto *PN = dyn_cast<PHINode>(U.getUser())) {
5447        auto *FirstNonPHI = PN->getParent()->getFirstNonPHI();
5448        if (isa<FuncletPadInst>(FirstNonPHI) ||
5449            isa<CatchSwitchInst>(FirstNonPHI))
5450          for (BasicBlock *PredBB : PN->blocks())
5451            if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI()))
5452              return;
5453     }
5454   }
5455 
5456 #ifndef NDEBUG
5457   // All dominating loops must have preheaders, or SCEVExpander may not be able
5458   // to materialize an AddRecExpr whose Start is an outer AddRecExpr.
5459   //
5460   // IVUsers analysis should only create users that are dominated by simple loop
5461   // headers. Since this loop should dominate all of its users, its user list
5462   // should be empty if this loop itself is not within a simple loop nest.
5463   for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader());
5464        Rung; Rung = Rung->getIDom()) {
5465     BasicBlock *BB = Rung->getBlock();
5466     const Loop *DomLoop = LI.getLoopFor(BB);
5467     if (DomLoop && DomLoop->getHeader() == BB) {
5468       assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest");
5469     }
5470   }
5471 #endif // DEBUG
5472 
5473   LLVM_DEBUG(dbgs() << "\nLSR on loop ";
5474              L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false);
5475              dbgs() << ":\n");
5476 
5477   // First, perform some low-level loop optimizations.
5478   OptimizeShadowIV();
5479   OptimizeLoopTermCond();
5480 
5481   // If loop preparation eliminates all interesting IV users, bail.
5482   if (IU.empty()) return;
5483 
5484   // Skip nested loops until we can model them better with formulae.
5485   if (!L->empty()) {
5486     LLVM_DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n");
5487     return;
5488   }
5489 
5490   // Start collecting data and preparing for the solver.
5491   CollectChains();
5492   CollectInterestingTypesAndFactors();
5493   CollectFixupsAndInitialFormulae();
5494   CollectLoopInvariantFixupsAndFormulae();
5495 
5496   if (Uses.empty())
5497     return;
5498 
5499   LLVM_DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
5500              print_uses(dbgs()));
5501 
5502   // Now use the reuse data to generate a bunch of interesting ways
5503   // to formulate the values needed for the uses.
5504   GenerateAllReuseFormulae();
5505 
5506   FilterOutUndesirableDedicatedRegisters();
5507   NarrowSearchSpaceUsingHeuristics();
5508 
5509   SmallVector<const Formula *, 8> Solution;
5510   Solve(Solution);
5511 
5512   // Release memory that is no longer needed.
5513   Factors.clear();
5514   Types.clear();
5515   RegUses.clear();
5516 
5517   if (Solution.empty())
5518     return;
5519 
5520 #ifndef NDEBUG
5521   // Formulae should be legal.
5522   for (const LSRUse &LU : Uses) {
5523     for (const Formula &F : LU.Formulae)
5524       assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
5525                         F) && "Illegal formula generated!");
5526   };
5527 #endif
5528 
5529   // Now that we've decided what we want, make it so.
5530   ImplementSolution(Solution);
5531 }
5532 
5533 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
5534 void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
5535   if (Factors.empty() && Types.empty()) return;
5536 
5537   OS << "LSR has identified the following interesting factors and types: ";
5538   bool First = true;
5539 
5540   for (int64_t Factor : Factors) {
5541     if (!First) OS << ", ";
5542     First = false;
5543     OS << '*' << Factor;
5544   }
5545 
5546   for (Type *Ty : Types) {
5547     if (!First) OS << ", ";
5548     First = false;
5549     OS << '(' << *Ty << ')';
5550   }
5551   OS << '\n';
5552 }
5553 
5554 void LSRInstance::print_fixups(raw_ostream &OS) const {
5555   OS << "LSR is examining the following fixup sites:\n";
5556   for (const LSRUse &LU : Uses)
5557     for (const LSRFixup &LF : LU.Fixups) {
5558       dbgs() << "  ";
5559       LF.print(OS);
5560       OS << '\n';
5561     }
5562 }
5563 
5564 void LSRInstance::print_uses(raw_ostream &OS) const {
5565   OS << "LSR is examining the following uses:\n";
5566   for (const LSRUse &LU : Uses) {
5567     dbgs() << "  ";
5568     LU.print(OS);
5569     OS << '\n';
5570     for (const Formula &F : LU.Formulae) {
5571       OS << "    ";
5572       F.print(OS);
5573       OS << '\n';
5574     }
5575   }
5576 }
5577 
5578 void LSRInstance::print(raw_ostream &OS) const {
5579   print_factors_and_types(OS);
5580   print_fixups(OS);
5581   print_uses(OS);
5582 }
5583 
5584 LLVM_DUMP_METHOD void LSRInstance::dump() const {
5585   print(errs()); errs() << '\n';
5586 }
5587 #endif
5588 
5589 namespace {
5590 
5591 class LoopStrengthReduce : public LoopPass {
5592 public:
5593   static char ID; // Pass ID, replacement for typeid
5594 
5595   LoopStrengthReduce();
5596 
5597 private:
5598   bool runOnLoop(Loop *L, LPPassManager &LPM) override;
5599   void getAnalysisUsage(AnalysisUsage &AU) const override;
5600 };
5601 
5602 } // end anonymous namespace
5603 
5604 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) {
5605   initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
5606 }
5607 
5608 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
5609   // We split critical edges, so we change the CFG.  However, we do update
5610   // many analyses if they are around.
5611   AU.addPreservedID(LoopSimplifyID);
5612 
5613   AU.addRequired<LoopInfoWrapperPass>();
5614   AU.addPreserved<LoopInfoWrapperPass>();
5615   AU.addRequiredID(LoopSimplifyID);
5616   AU.addRequired<DominatorTreeWrapperPass>();
5617   AU.addPreserved<DominatorTreeWrapperPass>();
5618   AU.addRequired<ScalarEvolutionWrapperPass>();
5619   AU.addPreserved<ScalarEvolutionWrapperPass>();
5620   // Requiring LoopSimplify a second time here prevents IVUsers from running
5621   // twice, since LoopSimplify was invalidated by running ScalarEvolution.
5622   AU.addRequiredID(LoopSimplifyID);
5623   AU.addRequired<IVUsersWrapperPass>();
5624   AU.addPreserved<IVUsersWrapperPass>();
5625   AU.addRequired<TargetTransformInfoWrapperPass>();
5626 }
5627 
5628 static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE,
5629                                DominatorTree &DT, LoopInfo &LI,
5630                                const TargetTransformInfo &TTI) {
5631   bool Changed = false;
5632 
5633   // Run the main LSR transformation.
5634   Changed |= LSRInstance(L, IU, SE, DT, LI, TTI).getChanged();
5635 
5636   // Remove any extra phis created by processing inner loops.
5637   Changed |= DeleteDeadPHIs(L->getHeader());
5638   if (EnablePhiElim && L->isLoopSimplifyForm()) {
5639     SmallVector<WeakTrackingVH, 16> DeadInsts;
5640     const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
5641     SCEVExpander Rewriter(SE, DL, "lsr");
5642 #ifndef NDEBUG
5643     Rewriter.setDebugType(DEBUG_TYPE);
5644 #endif
5645     unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI);
5646     if (numFolded) {
5647       Changed = true;
5648       DeleteTriviallyDeadInstructions(DeadInsts);
5649       DeleteDeadPHIs(L->getHeader());
5650     }
5651   }
5652   return Changed;
5653 }
5654 
5655 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
5656   if (skipLoop(L))
5657     return false;
5658 
5659   auto &IU = getAnalysis<IVUsersWrapperPass>().getIU();
5660   auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
5661   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
5662   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
5663   const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
5664       *L->getHeader()->getParent());
5665   return ReduceLoopStrength(L, IU, SE, DT, LI, TTI);
5666 }
5667 
5668 PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM,
5669                                               LoopStandardAnalysisResults &AR,
5670                                               LPMUpdater &) {
5671   if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE,
5672                           AR.DT, AR.LI, AR.TTI))
5673     return PreservedAnalyses::all();
5674 
5675   return getLoopPassPreservedAnalyses();
5676 }
5677 
5678 char LoopStrengthReduce::ID = 0;
5679 
5680 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce",
5681                       "Loop Strength Reduction", false, false)
5682 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
5683 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
5684 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
5685 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass)
5686 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
5687 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
5688 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce",
5689                     "Loop Strength Reduction", false, false)
5690 
5691 Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); }
5692