1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This transformation analyzes and transforms the induction variables (and 10 // computations derived from them) into forms suitable for efficient execution 11 // on the target. 12 // 13 // This pass performs a strength reduction on array references inside loops that 14 // have as one or more of their components the loop induction variable, it 15 // rewrites expressions to take advantage of scaled-index addressing modes 16 // available on the target, and it performs a variety of other optimizations 17 // related to loop induction variables. 18 // 19 // Terminology note: this code has a lot of handling for "post-increment" or 20 // "post-inc" users. This is not talking about post-increment addressing modes; 21 // it is instead talking about code like this: 22 // 23 // %i = phi [ 0, %entry ], [ %i.next, %latch ] 24 // ... 25 // %i.next = add %i, 1 26 // %c = icmp eq %i.next, %n 27 // 28 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however 29 // it's useful to think about these as the same register, with some uses using 30 // the value of the register before the add and some using it after. In this 31 // example, the icmp is a post-increment user, since it uses %i.next, which is 32 // the value of the induction variable after the increment. The other common 33 // case of post-increment users is users outside the loop. 34 // 35 // TODO: More sophistication in the way Formulae are generated and filtered. 36 // 37 // TODO: Handle multiple loops at a time. 38 // 39 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead 40 // of a GlobalValue? 41 // 42 // TODO: When truncation is free, truncate ICmp users' operands to make it a 43 // smaller encoding (on x86 at least). 44 // 45 // TODO: When a negated register is used by an add (such as in a list of 46 // multiple base registers, or as the increment expression in an addrec), 47 // we may not actually need both reg and (-1 * reg) in registers; the 48 // negation can be implemented by using a sub instead of an add. The 49 // lack of support for taking this into consideration when making 50 // register pressure decisions is partly worked around by the "Special" 51 // use kind. 52 // 53 //===----------------------------------------------------------------------===// 54 55 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h" 56 #include "llvm/ADT/APInt.h" 57 #include "llvm/ADT/DenseMap.h" 58 #include "llvm/ADT/DenseSet.h" 59 #include "llvm/ADT/Hashing.h" 60 #include "llvm/ADT/PointerIntPair.h" 61 #include "llvm/ADT/STLExtras.h" 62 #include "llvm/ADT/SetVector.h" 63 #include "llvm/ADT/SmallBitVector.h" 64 #include "llvm/ADT/SmallPtrSet.h" 65 #include "llvm/ADT/SmallSet.h" 66 #include "llvm/ADT/SmallVector.h" 67 #include "llvm/ADT/iterator_range.h" 68 #include "llvm/Analysis/IVUsers.h" 69 #include "llvm/Analysis/LoopAnalysisManager.h" 70 #include "llvm/Analysis/LoopInfo.h" 71 #include "llvm/Analysis/LoopPass.h" 72 #include "llvm/Analysis/ScalarEvolution.h" 73 #include "llvm/Analysis/ScalarEvolutionExpander.h" 74 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 75 #include "llvm/Analysis/ScalarEvolutionNormalization.h" 76 #include "llvm/Analysis/TargetTransformInfo.h" 77 #include "llvm/Transforms/Utils/Local.h" 78 #include "llvm/Config/llvm-config.h" 79 #include "llvm/IR/BasicBlock.h" 80 #include "llvm/IR/Constant.h" 81 #include "llvm/IR/Constants.h" 82 #include "llvm/IR/DerivedTypes.h" 83 #include "llvm/IR/Dominators.h" 84 #include "llvm/IR/GlobalValue.h" 85 #include "llvm/IR/IRBuilder.h" 86 #include "llvm/IR/InstrTypes.h" 87 #include "llvm/IR/Instruction.h" 88 #include "llvm/IR/Instructions.h" 89 #include "llvm/IR/IntrinsicInst.h" 90 #include "llvm/IR/Intrinsics.h" 91 #include "llvm/IR/Module.h" 92 #include "llvm/IR/OperandTraits.h" 93 #include "llvm/IR/Operator.h" 94 #include "llvm/IR/PassManager.h" 95 #include "llvm/IR/Type.h" 96 #include "llvm/IR/Use.h" 97 #include "llvm/IR/User.h" 98 #include "llvm/IR/Value.h" 99 #include "llvm/IR/ValueHandle.h" 100 #include "llvm/Pass.h" 101 #include "llvm/Support/Casting.h" 102 #include "llvm/Support/CommandLine.h" 103 #include "llvm/Support/Compiler.h" 104 #include "llvm/Support/Debug.h" 105 #include "llvm/Support/ErrorHandling.h" 106 #include "llvm/Support/MathExtras.h" 107 #include "llvm/Support/raw_ostream.h" 108 #include "llvm/Transforms/Scalar.h" 109 #include "llvm/Transforms/Utils.h" 110 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 111 #include <algorithm> 112 #include <cassert> 113 #include <cstddef> 114 #include <cstdint> 115 #include <cstdlib> 116 #include <iterator> 117 #include <limits> 118 #include <map> 119 #include <utility> 120 121 using namespace llvm; 122 123 #define DEBUG_TYPE "loop-reduce" 124 125 /// MaxIVUsers is an arbitrary threshold that provides an early opportunity for 126 /// bail out. This threshold is far beyond the number of users that LSR can 127 /// conceivably solve, so it should not affect generated code, but catches the 128 /// worst cases before LSR burns too much compile time and stack space. 129 static const unsigned MaxIVUsers = 200; 130 131 // Temporary flag to cleanup congruent phis after LSR phi expansion. 132 // It's currently disabled until we can determine whether it's truly useful or 133 // not. The flag should be removed after the v3.0 release. 134 // This is now needed for ivchains. 135 static cl::opt<bool> EnablePhiElim( 136 "enable-lsr-phielim", cl::Hidden, cl::init(true), 137 cl::desc("Enable LSR phi elimination")); 138 139 // The flag adds instruction count to solutions cost comparision. 140 static cl::opt<bool> InsnsCost( 141 "lsr-insns-cost", cl::Hidden, cl::init(true), 142 cl::desc("Add instruction count to a LSR cost model")); 143 144 // Flag to choose how to narrow complex lsr solution 145 static cl::opt<bool> LSRExpNarrow( 146 "lsr-exp-narrow", cl::Hidden, cl::init(false), 147 cl::desc("Narrow LSR complex solution using" 148 " expectation of registers number")); 149 150 // Flag to narrow search space by filtering non-optimal formulae with 151 // the same ScaledReg and Scale. 152 static cl::opt<bool> FilterSameScaledReg( 153 "lsr-filter-same-scaled-reg", cl::Hidden, cl::init(true), 154 cl::desc("Narrow LSR search space by filtering non-optimal formulae" 155 " with the same ScaledReg and Scale")); 156 157 static cl::opt<bool> EnableBackedgeIndexing( 158 "lsr-backedge-indexing", cl::Hidden, cl::init(true), 159 cl::desc("Enable the generation of cross iteration indexed memops")); 160 161 static cl::opt<unsigned> ComplexityLimit( 162 "lsr-complexity-limit", cl::Hidden, 163 cl::init(std::numeric_limits<uint16_t>::max()), 164 cl::desc("LSR search space complexity limit")); 165 166 #ifndef NDEBUG 167 // Stress test IV chain generation. 168 static cl::opt<bool> StressIVChain( 169 "stress-ivchain", cl::Hidden, cl::init(false), 170 cl::desc("Stress test LSR IV chains")); 171 #else 172 static bool StressIVChain = false; 173 #endif 174 175 namespace { 176 177 struct MemAccessTy { 178 /// Used in situations where the accessed memory type is unknown. 179 static const unsigned UnknownAddressSpace = 180 std::numeric_limits<unsigned>::max(); 181 182 Type *MemTy = nullptr; 183 unsigned AddrSpace = UnknownAddressSpace; 184 185 MemAccessTy() = default; 186 MemAccessTy(Type *Ty, unsigned AS) : MemTy(Ty), AddrSpace(AS) {} 187 188 bool operator==(MemAccessTy Other) const { 189 return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace; 190 } 191 192 bool operator!=(MemAccessTy Other) const { return !(*this == Other); } 193 194 static MemAccessTy getUnknown(LLVMContext &Ctx, 195 unsigned AS = UnknownAddressSpace) { 196 return MemAccessTy(Type::getVoidTy(Ctx), AS); 197 } 198 199 Type *getType() { return MemTy; } 200 }; 201 202 /// This class holds data which is used to order reuse candidates. 203 class RegSortData { 204 public: 205 /// This represents the set of LSRUse indices which reference 206 /// a particular register. 207 SmallBitVector UsedByIndices; 208 209 void print(raw_ostream &OS) const; 210 void dump() const; 211 }; 212 213 } // end anonymous namespace 214 215 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 216 void RegSortData::print(raw_ostream &OS) const { 217 OS << "[NumUses=" << UsedByIndices.count() << ']'; 218 } 219 220 LLVM_DUMP_METHOD void RegSortData::dump() const { 221 print(errs()); errs() << '\n'; 222 } 223 #endif 224 225 namespace { 226 227 /// Map register candidates to information about how they are used. 228 class RegUseTracker { 229 using RegUsesTy = DenseMap<const SCEV *, RegSortData>; 230 231 RegUsesTy RegUsesMap; 232 SmallVector<const SCEV *, 16> RegSequence; 233 234 public: 235 void countRegister(const SCEV *Reg, size_t LUIdx); 236 void dropRegister(const SCEV *Reg, size_t LUIdx); 237 void swapAndDropUse(size_t LUIdx, size_t LastLUIdx); 238 239 bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const; 240 241 const SmallBitVector &getUsedByIndices(const SCEV *Reg) const; 242 243 void clear(); 244 245 using iterator = SmallVectorImpl<const SCEV *>::iterator; 246 using const_iterator = SmallVectorImpl<const SCEV *>::const_iterator; 247 248 iterator begin() { return RegSequence.begin(); } 249 iterator end() { return RegSequence.end(); } 250 const_iterator begin() const { return RegSequence.begin(); } 251 const_iterator end() const { return RegSequence.end(); } 252 }; 253 254 } // end anonymous namespace 255 256 void 257 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) { 258 std::pair<RegUsesTy::iterator, bool> Pair = 259 RegUsesMap.insert(std::make_pair(Reg, RegSortData())); 260 RegSortData &RSD = Pair.first->second; 261 if (Pair.second) 262 RegSequence.push_back(Reg); 263 RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1)); 264 RSD.UsedByIndices.set(LUIdx); 265 } 266 267 void 268 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) { 269 RegUsesTy::iterator It = RegUsesMap.find(Reg); 270 assert(It != RegUsesMap.end()); 271 RegSortData &RSD = It->second; 272 assert(RSD.UsedByIndices.size() > LUIdx); 273 RSD.UsedByIndices.reset(LUIdx); 274 } 275 276 void 277 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) { 278 assert(LUIdx <= LastLUIdx); 279 280 // Update RegUses. The data structure is not optimized for this purpose; 281 // we must iterate through it and update each of the bit vectors. 282 for (auto &Pair : RegUsesMap) { 283 SmallBitVector &UsedByIndices = Pair.second.UsedByIndices; 284 if (LUIdx < UsedByIndices.size()) 285 UsedByIndices[LUIdx] = 286 LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false; 287 UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx)); 288 } 289 } 290 291 bool 292 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const { 293 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 294 if (I == RegUsesMap.end()) 295 return false; 296 const SmallBitVector &UsedByIndices = I->second.UsedByIndices; 297 int i = UsedByIndices.find_first(); 298 if (i == -1) return false; 299 if ((size_t)i != LUIdx) return true; 300 return UsedByIndices.find_next(i) != -1; 301 } 302 303 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const { 304 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 305 assert(I != RegUsesMap.end() && "Unknown register!"); 306 return I->second.UsedByIndices; 307 } 308 309 void RegUseTracker::clear() { 310 RegUsesMap.clear(); 311 RegSequence.clear(); 312 } 313 314 namespace { 315 316 /// This class holds information that describes a formula for computing 317 /// satisfying a use. It may include broken-out immediates and scaled registers. 318 struct Formula { 319 /// Global base address used for complex addressing. 320 GlobalValue *BaseGV = nullptr; 321 322 /// Base offset for complex addressing. 323 int64_t BaseOffset = 0; 324 325 /// Whether any complex addressing has a base register. 326 bool HasBaseReg = false; 327 328 /// The scale of any complex addressing. 329 int64_t Scale = 0; 330 331 /// The list of "base" registers for this use. When this is non-empty. The 332 /// canonical representation of a formula is 333 /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and 334 /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty(). 335 /// 3. The reg containing recurrent expr related with currect loop in the 336 /// formula should be put in the ScaledReg. 337 /// #1 enforces that the scaled register is always used when at least two 338 /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2. 339 /// #2 enforces that 1 * reg is reg. 340 /// #3 ensures invariant regs with respect to current loop can be combined 341 /// together in LSR codegen. 342 /// This invariant can be temporarily broken while building a formula. 343 /// However, every formula inserted into the LSRInstance must be in canonical 344 /// form. 345 SmallVector<const SCEV *, 4> BaseRegs; 346 347 /// The 'scaled' register for this use. This should be non-null when Scale is 348 /// not zero. 349 const SCEV *ScaledReg = nullptr; 350 351 /// An additional constant offset which added near the use. This requires a 352 /// temporary register, but the offset itself can live in an add immediate 353 /// field rather than a register. 354 int64_t UnfoldedOffset = 0; 355 356 Formula() = default; 357 358 void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE); 359 360 bool isCanonical(const Loop &L) const; 361 362 void canonicalize(const Loop &L); 363 364 bool unscale(); 365 366 bool hasZeroEnd() const; 367 368 size_t getNumRegs() const; 369 Type *getType() const; 370 371 void deleteBaseReg(const SCEV *&S); 372 373 bool referencesReg(const SCEV *S) const; 374 bool hasRegsUsedByUsesOtherThan(size_t LUIdx, 375 const RegUseTracker &RegUses) const; 376 377 void print(raw_ostream &OS) const; 378 void dump() const; 379 }; 380 381 } // end anonymous namespace 382 383 /// Recursion helper for initialMatch. 384 static void DoInitialMatch(const SCEV *S, Loop *L, 385 SmallVectorImpl<const SCEV *> &Good, 386 SmallVectorImpl<const SCEV *> &Bad, 387 ScalarEvolution &SE) { 388 // Collect expressions which properly dominate the loop header. 389 if (SE.properlyDominates(S, L->getHeader())) { 390 Good.push_back(S); 391 return; 392 } 393 394 // Look at add operands. 395 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 396 for (const SCEV *S : Add->operands()) 397 DoInitialMatch(S, L, Good, Bad, SE); 398 return; 399 } 400 401 // Look at addrec operands. 402 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 403 if (!AR->getStart()->isZero() && AR->isAffine()) { 404 DoInitialMatch(AR->getStart(), L, Good, Bad, SE); 405 DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0), 406 AR->getStepRecurrence(SE), 407 // FIXME: AR->getNoWrapFlags() 408 AR->getLoop(), SCEV::FlagAnyWrap), 409 L, Good, Bad, SE); 410 return; 411 } 412 413 // Handle a multiplication by -1 (negation) if it didn't fold. 414 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) 415 if (Mul->getOperand(0)->isAllOnesValue()) { 416 SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end()); 417 const SCEV *NewMul = SE.getMulExpr(Ops); 418 419 SmallVector<const SCEV *, 4> MyGood; 420 SmallVector<const SCEV *, 4> MyBad; 421 DoInitialMatch(NewMul, L, MyGood, MyBad, SE); 422 const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue( 423 SE.getEffectiveSCEVType(NewMul->getType()))); 424 for (const SCEV *S : MyGood) 425 Good.push_back(SE.getMulExpr(NegOne, S)); 426 for (const SCEV *S : MyBad) 427 Bad.push_back(SE.getMulExpr(NegOne, S)); 428 return; 429 } 430 431 // Ok, we can't do anything interesting. Just stuff the whole thing into a 432 // register and hope for the best. 433 Bad.push_back(S); 434 } 435 436 /// Incorporate loop-variant parts of S into this Formula, attempting to keep 437 /// all loop-invariant and loop-computable values in a single base register. 438 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) { 439 SmallVector<const SCEV *, 4> Good; 440 SmallVector<const SCEV *, 4> Bad; 441 DoInitialMatch(S, L, Good, Bad, SE); 442 if (!Good.empty()) { 443 const SCEV *Sum = SE.getAddExpr(Good); 444 if (!Sum->isZero()) 445 BaseRegs.push_back(Sum); 446 HasBaseReg = true; 447 } 448 if (!Bad.empty()) { 449 const SCEV *Sum = SE.getAddExpr(Bad); 450 if (!Sum->isZero()) 451 BaseRegs.push_back(Sum); 452 HasBaseReg = true; 453 } 454 canonicalize(*L); 455 } 456 457 /// Check whether or not this formula satisfies the canonical 458 /// representation. 459 /// \see Formula::BaseRegs. 460 bool Formula::isCanonical(const Loop &L) const { 461 if (!ScaledReg) 462 return BaseRegs.size() <= 1; 463 464 if (Scale != 1) 465 return true; 466 467 if (Scale == 1 && BaseRegs.empty()) 468 return false; 469 470 const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg); 471 if (SAR && SAR->getLoop() == &L) 472 return true; 473 474 // If ScaledReg is not a recurrent expr, or it is but its loop is not current 475 // loop, meanwhile BaseRegs contains a recurrent expr reg related with current 476 // loop, we want to swap the reg in BaseRegs with ScaledReg. 477 auto I = 478 find_if(make_range(BaseRegs.begin(), BaseRegs.end()), [&](const SCEV *S) { 479 return isa<const SCEVAddRecExpr>(S) && 480 (cast<SCEVAddRecExpr>(S)->getLoop() == &L); 481 }); 482 return I == BaseRegs.end(); 483 } 484 485 /// Helper method to morph a formula into its canonical representation. 486 /// \see Formula::BaseRegs. 487 /// Every formula having more than one base register, must use the ScaledReg 488 /// field. Otherwise, we would have to do special cases everywhere in LSR 489 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ... 490 /// On the other hand, 1*reg should be canonicalized into reg. 491 void Formula::canonicalize(const Loop &L) { 492 if (isCanonical(L)) 493 return; 494 // So far we did not need this case. This is easy to implement but it is 495 // useless to maintain dead code. Beside it could hurt compile time. 496 assert(!BaseRegs.empty() && "1*reg => reg, should not be needed."); 497 498 // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg. 499 if (!ScaledReg) { 500 ScaledReg = BaseRegs.back(); 501 BaseRegs.pop_back(); 502 Scale = 1; 503 } 504 505 // If ScaledReg is an invariant with respect to L, find the reg from 506 // BaseRegs containing the recurrent expr related with Loop L. Swap the 507 // reg with ScaledReg. 508 const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg); 509 if (!SAR || SAR->getLoop() != &L) { 510 auto I = find_if(make_range(BaseRegs.begin(), BaseRegs.end()), 511 [&](const SCEV *S) { 512 return isa<const SCEVAddRecExpr>(S) && 513 (cast<SCEVAddRecExpr>(S)->getLoop() == &L); 514 }); 515 if (I != BaseRegs.end()) 516 std::swap(ScaledReg, *I); 517 } 518 } 519 520 /// Get rid of the scale in the formula. 521 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2. 522 /// \return true if it was possible to get rid of the scale, false otherwise. 523 /// \note After this operation the formula may not be in the canonical form. 524 bool Formula::unscale() { 525 if (Scale != 1) 526 return false; 527 Scale = 0; 528 BaseRegs.push_back(ScaledReg); 529 ScaledReg = nullptr; 530 return true; 531 } 532 533 bool Formula::hasZeroEnd() const { 534 if (UnfoldedOffset || BaseOffset) 535 return false; 536 if (BaseRegs.size() != 1 || ScaledReg) 537 return false; 538 return true; 539 } 540 541 /// Return the total number of register operands used by this formula. This does 542 /// not include register uses implied by non-constant addrec strides. 543 size_t Formula::getNumRegs() const { 544 return !!ScaledReg + BaseRegs.size(); 545 } 546 547 /// Return the type of this formula, if it has one, or null otherwise. This type 548 /// is meaningless except for the bit size. 549 Type *Formula::getType() const { 550 return !BaseRegs.empty() ? BaseRegs.front()->getType() : 551 ScaledReg ? ScaledReg->getType() : 552 BaseGV ? BaseGV->getType() : 553 nullptr; 554 } 555 556 /// Delete the given base reg from the BaseRegs list. 557 void Formula::deleteBaseReg(const SCEV *&S) { 558 if (&S != &BaseRegs.back()) 559 std::swap(S, BaseRegs.back()); 560 BaseRegs.pop_back(); 561 } 562 563 /// Test if this formula references the given register. 564 bool Formula::referencesReg(const SCEV *S) const { 565 return S == ScaledReg || is_contained(BaseRegs, S); 566 } 567 568 /// Test whether this formula uses registers which are used by uses other than 569 /// the use with the given index. 570 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx, 571 const RegUseTracker &RegUses) const { 572 if (ScaledReg) 573 if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx)) 574 return true; 575 for (const SCEV *BaseReg : BaseRegs) 576 if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx)) 577 return true; 578 return false; 579 } 580 581 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 582 void Formula::print(raw_ostream &OS) const { 583 bool First = true; 584 if (BaseGV) { 585 if (!First) OS << " + "; else First = false; 586 BaseGV->printAsOperand(OS, /*PrintType=*/false); 587 } 588 if (BaseOffset != 0) { 589 if (!First) OS << " + "; else First = false; 590 OS << BaseOffset; 591 } 592 for (const SCEV *BaseReg : BaseRegs) { 593 if (!First) OS << " + "; else First = false; 594 OS << "reg(" << *BaseReg << ')'; 595 } 596 if (HasBaseReg && BaseRegs.empty()) { 597 if (!First) OS << " + "; else First = false; 598 OS << "**error: HasBaseReg**"; 599 } else if (!HasBaseReg && !BaseRegs.empty()) { 600 if (!First) OS << " + "; else First = false; 601 OS << "**error: !HasBaseReg**"; 602 } 603 if (Scale != 0) { 604 if (!First) OS << " + "; else First = false; 605 OS << Scale << "*reg("; 606 if (ScaledReg) 607 OS << *ScaledReg; 608 else 609 OS << "<unknown>"; 610 OS << ')'; 611 } 612 if (UnfoldedOffset != 0) { 613 if (!First) OS << " + "; 614 OS << "imm(" << UnfoldedOffset << ')'; 615 } 616 } 617 618 LLVM_DUMP_METHOD void Formula::dump() const { 619 print(errs()); errs() << '\n'; 620 } 621 #endif 622 623 /// Return true if the given addrec can be sign-extended without changing its 624 /// value. 625 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 626 Type *WideTy = 627 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1); 628 return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy)); 629 } 630 631 /// Return true if the given add can be sign-extended without changing its 632 /// value. 633 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) { 634 Type *WideTy = 635 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1); 636 return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy)); 637 } 638 639 /// Return true if the given mul can be sign-extended without changing its 640 /// value. 641 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) { 642 Type *WideTy = 643 IntegerType::get(SE.getContext(), 644 SE.getTypeSizeInBits(M->getType()) * M->getNumOperands()); 645 return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy)); 646 } 647 648 /// Return an expression for LHS /s RHS, if it can be determined and if the 649 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits 650 /// is true, expressions like (X * Y) /s Y are simplified to Y, ignoring that 651 /// the multiplication may overflow, which is useful when the result will be 652 /// used in a context where the most significant bits are ignored. 653 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS, 654 ScalarEvolution &SE, 655 bool IgnoreSignificantBits = false) { 656 // Handle the trivial case, which works for any SCEV type. 657 if (LHS == RHS) 658 return SE.getConstant(LHS->getType(), 1); 659 660 // Handle a few RHS special cases. 661 const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS); 662 if (RC) { 663 const APInt &RA = RC->getAPInt(); 664 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do 665 // some folding. 666 if (RA.isAllOnesValue()) 667 return SE.getMulExpr(LHS, RC); 668 // Handle x /s 1 as x. 669 if (RA == 1) 670 return LHS; 671 } 672 673 // Check for a division of a constant by a constant. 674 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) { 675 if (!RC) 676 return nullptr; 677 const APInt &LA = C->getAPInt(); 678 const APInt &RA = RC->getAPInt(); 679 if (LA.srem(RA) != 0) 680 return nullptr; 681 return SE.getConstant(LA.sdiv(RA)); 682 } 683 684 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow. 685 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) { 686 if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) { 687 const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE, 688 IgnoreSignificantBits); 689 if (!Step) return nullptr; 690 const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE, 691 IgnoreSignificantBits); 692 if (!Start) return nullptr; 693 // FlagNW is independent of the start value, step direction, and is 694 // preserved with smaller magnitude steps. 695 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 696 return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap); 697 } 698 return nullptr; 699 } 700 701 // Distribute the sdiv over add operands, if the add doesn't overflow. 702 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) { 703 if (IgnoreSignificantBits || isAddSExtable(Add, SE)) { 704 SmallVector<const SCEV *, 8> Ops; 705 for (const SCEV *S : Add->operands()) { 706 const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits); 707 if (!Op) return nullptr; 708 Ops.push_back(Op); 709 } 710 return SE.getAddExpr(Ops); 711 } 712 return nullptr; 713 } 714 715 // Check for a multiply operand that we can pull RHS out of. 716 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) { 717 if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) { 718 SmallVector<const SCEV *, 4> Ops; 719 bool Found = false; 720 for (const SCEV *S : Mul->operands()) { 721 if (!Found) 722 if (const SCEV *Q = getExactSDiv(S, RHS, SE, 723 IgnoreSignificantBits)) { 724 S = Q; 725 Found = true; 726 } 727 Ops.push_back(S); 728 } 729 return Found ? SE.getMulExpr(Ops) : nullptr; 730 } 731 return nullptr; 732 } 733 734 // Otherwise we don't know. 735 return nullptr; 736 } 737 738 /// If S involves the addition of a constant integer value, return that integer 739 /// value, and mutate S to point to a new SCEV with that value excluded. 740 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) { 741 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 742 if (C->getAPInt().getMinSignedBits() <= 64) { 743 S = SE.getConstant(C->getType(), 0); 744 return C->getValue()->getSExtValue(); 745 } 746 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 747 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 748 int64_t Result = ExtractImmediate(NewOps.front(), SE); 749 if (Result != 0) 750 S = SE.getAddExpr(NewOps); 751 return Result; 752 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 753 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 754 int64_t Result = ExtractImmediate(NewOps.front(), SE); 755 if (Result != 0) 756 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 757 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 758 SCEV::FlagAnyWrap); 759 return Result; 760 } 761 return 0; 762 } 763 764 /// If S involves the addition of a GlobalValue address, return that symbol, and 765 /// mutate S to point to a new SCEV with that value excluded. 766 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) { 767 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 768 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) { 769 S = SE.getConstant(GV->getType(), 0); 770 return GV; 771 } 772 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 773 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 774 GlobalValue *Result = ExtractSymbol(NewOps.back(), SE); 775 if (Result) 776 S = SE.getAddExpr(NewOps); 777 return Result; 778 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 779 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 780 GlobalValue *Result = ExtractSymbol(NewOps.front(), SE); 781 if (Result) 782 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 783 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 784 SCEV::FlagAnyWrap); 785 return Result; 786 } 787 return nullptr; 788 } 789 790 /// Returns true if the specified instruction is using the specified value as an 791 /// address. 792 static bool isAddressUse(const TargetTransformInfo &TTI, 793 Instruction *Inst, Value *OperandVal) { 794 bool isAddress = isa<LoadInst>(Inst); 795 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 796 if (SI->getPointerOperand() == OperandVal) 797 isAddress = true; 798 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 799 // Addressing modes can also be folded into prefetches and a variety 800 // of intrinsics. 801 switch (II->getIntrinsicID()) { 802 case Intrinsic::memset: 803 case Intrinsic::prefetch: 804 if (II->getArgOperand(0) == OperandVal) 805 isAddress = true; 806 break; 807 case Intrinsic::memmove: 808 case Intrinsic::memcpy: 809 if (II->getArgOperand(0) == OperandVal || 810 II->getArgOperand(1) == OperandVal) 811 isAddress = true; 812 break; 813 default: { 814 MemIntrinsicInfo IntrInfo; 815 if (TTI.getTgtMemIntrinsic(II, IntrInfo)) { 816 if (IntrInfo.PtrVal == OperandVal) 817 isAddress = true; 818 } 819 } 820 } 821 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) { 822 if (RMW->getPointerOperand() == OperandVal) 823 isAddress = true; 824 } else if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 825 if (CmpX->getPointerOperand() == OperandVal) 826 isAddress = true; 827 } 828 return isAddress; 829 } 830 831 /// Return the type of the memory being accessed. 832 static MemAccessTy getAccessType(const TargetTransformInfo &TTI, 833 Instruction *Inst, Value *OperandVal) { 834 MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace); 835 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 836 AccessTy.MemTy = SI->getOperand(0)->getType(); 837 AccessTy.AddrSpace = SI->getPointerAddressSpace(); 838 } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 839 AccessTy.AddrSpace = LI->getPointerAddressSpace(); 840 } else if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) { 841 AccessTy.AddrSpace = RMW->getPointerAddressSpace(); 842 } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 843 AccessTy.AddrSpace = CmpX->getPointerAddressSpace(); 844 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 845 switch (II->getIntrinsicID()) { 846 case Intrinsic::prefetch: 847 case Intrinsic::memset: 848 AccessTy.AddrSpace = II->getArgOperand(0)->getType()->getPointerAddressSpace(); 849 AccessTy.MemTy = OperandVal->getType(); 850 break; 851 case Intrinsic::memmove: 852 case Intrinsic::memcpy: 853 AccessTy.AddrSpace = OperandVal->getType()->getPointerAddressSpace(); 854 AccessTy.MemTy = OperandVal->getType(); 855 break; 856 default: { 857 MemIntrinsicInfo IntrInfo; 858 if (TTI.getTgtMemIntrinsic(II, IntrInfo) && IntrInfo.PtrVal) { 859 AccessTy.AddrSpace 860 = IntrInfo.PtrVal->getType()->getPointerAddressSpace(); 861 } 862 863 break; 864 } 865 } 866 } 867 868 // All pointers have the same requirements, so canonicalize them to an 869 // arbitrary pointer type to minimize variation. 870 if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy)) 871 AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1), 872 PTy->getAddressSpace()); 873 874 return AccessTy; 875 } 876 877 /// Return true if this AddRec is already a phi in its loop. 878 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 879 for (PHINode &PN : AR->getLoop()->getHeader()->phis()) { 880 if (SE.isSCEVable(PN.getType()) && 881 (SE.getEffectiveSCEVType(PN.getType()) == 882 SE.getEffectiveSCEVType(AR->getType())) && 883 SE.getSCEV(&PN) == AR) 884 return true; 885 } 886 return false; 887 } 888 889 /// Check if expanding this expression is likely to incur significant cost. This 890 /// is tricky because SCEV doesn't track which expressions are actually computed 891 /// by the current IR. 892 /// 893 /// We currently allow expansion of IV increments that involve adds, 894 /// multiplication by constants, and AddRecs from existing phis. 895 /// 896 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an 897 /// obvious multiple of the UDivExpr. 898 static bool isHighCostExpansion(const SCEV *S, 899 SmallPtrSetImpl<const SCEV*> &Processed, 900 ScalarEvolution &SE) { 901 // Zero/One operand expressions 902 switch (S->getSCEVType()) { 903 case scUnknown: 904 case scConstant: 905 return false; 906 case scTruncate: 907 return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(), 908 Processed, SE); 909 case scZeroExtend: 910 return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(), 911 Processed, SE); 912 case scSignExtend: 913 return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(), 914 Processed, SE); 915 } 916 917 if (!Processed.insert(S).second) 918 return false; 919 920 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 921 for (const SCEV *S : Add->operands()) { 922 if (isHighCostExpansion(S, Processed, SE)) 923 return true; 924 } 925 return false; 926 } 927 928 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 929 if (Mul->getNumOperands() == 2) { 930 // Multiplication by a constant is ok 931 if (isa<SCEVConstant>(Mul->getOperand(0))) 932 return isHighCostExpansion(Mul->getOperand(1), Processed, SE); 933 934 // If we have the value of one operand, check if an existing 935 // multiplication already generates this expression. 936 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) { 937 Value *UVal = U->getValue(); 938 for (User *UR : UVal->users()) { 939 // If U is a constant, it may be used by a ConstantExpr. 940 Instruction *UI = dyn_cast<Instruction>(UR); 941 if (UI && UI->getOpcode() == Instruction::Mul && 942 SE.isSCEVable(UI->getType())) { 943 return SE.getSCEV(UI) == Mul; 944 } 945 } 946 } 947 } 948 } 949 950 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 951 if (isExistingPhi(AR, SE)) 952 return false; 953 } 954 955 // Fow now, consider any other type of expression (div/mul/min/max) high cost. 956 return true; 957 } 958 959 /// If any of the instructions in the specified set are trivially dead, delete 960 /// them and see if this makes any of their operands subsequently dead. 961 static bool 962 DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 963 bool Changed = false; 964 965 while (!DeadInsts.empty()) { 966 Value *V = DeadInsts.pop_back_val(); 967 Instruction *I = dyn_cast_or_null<Instruction>(V); 968 969 if (!I || !isInstructionTriviallyDead(I)) 970 continue; 971 972 for (Use &O : I->operands()) 973 if (Instruction *U = dyn_cast<Instruction>(O)) { 974 O = nullptr; 975 if (U->use_empty()) 976 DeadInsts.emplace_back(U); 977 } 978 979 I->eraseFromParent(); 980 Changed = true; 981 } 982 983 return Changed; 984 } 985 986 namespace { 987 988 class LSRUse; 989 990 } // end anonymous namespace 991 992 /// Check if the addressing mode defined by \p F is completely 993 /// folded in \p LU at isel time. 994 /// This includes address-mode folding and special icmp tricks. 995 /// This function returns true if \p LU can accommodate what \p F 996 /// defines and up to 1 base + 1 scaled + offset. 997 /// In other words, if \p F has several base registers, this function may 998 /// still return true. Therefore, users still need to account for 999 /// additional base registers and/or unfolded offsets to derive an 1000 /// accurate cost model. 1001 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1002 const LSRUse &LU, const Formula &F); 1003 1004 // Get the cost of the scaling factor used in F for LU. 1005 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, 1006 const LSRUse &LU, const Formula &F, 1007 const Loop &L); 1008 1009 namespace { 1010 1011 /// This class is used to measure and compare candidate formulae. 1012 class Cost { 1013 TargetTransformInfo::LSRCost C; 1014 1015 public: 1016 Cost() { 1017 C.Insns = 0; 1018 C.NumRegs = 0; 1019 C.AddRecCost = 0; 1020 C.NumIVMuls = 0; 1021 C.NumBaseAdds = 0; 1022 C.ImmCost = 0; 1023 C.SetupCost = 0; 1024 C.ScaleCost = 0; 1025 } 1026 1027 bool isLess(Cost &Other, const TargetTransformInfo &TTI); 1028 1029 void Lose(); 1030 1031 #ifndef NDEBUG 1032 // Once any of the metrics loses, they must all remain losers. 1033 bool isValid() { 1034 return ((C.Insns | C.NumRegs | C.AddRecCost | C.NumIVMuls | C.NumBaseAdds 1035 | C.ImmCost | C.SetupCost | C.ScaleCost) != ~0u) 1036 || ((C.Insns & C.NumRegs & C.AddRecCost & C.NumIVMuls & C.NumBaseAdds 1037 & C.ImmCost & C.SetupCost & C.ScaleCost) == ~0u); 1038 } 1039 #endif 1040 1041 bool isLoser() { 1042 assert(isValid() && "invalid cost"); 1043 return C.NumRegs == ~0u; 1044 } 1045 1046 void RateFormula(const TargetTransformInfo &TTI, 1047 const Formula &F, 1048 SmallPtrSetImpl<const SCEV *> &Regs, 1049 const DenseSet<const SCEV *> &VisitedRegs, 1050 const Loop *L, 1051 ScalarEvolution &SE, DominatorTree &DT, 1052 const LSRUse &LU, 1053 SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr); 1054 1055 void print(raw_ostream &OS) const; 1056 void dump() const; 1057 1058 private: 1059 void RateRegister(const Formula &F, const SCEV *Reg, 1060 SmallPtrSetImpl<const SCEV *> &Regs, 1061 const Loop *L, 1062 ScalarEvolution &SE, DominatorTree &DT, 1063 const TargetTransformInfo &TTI); 1064 void RatePrimaryRegister(const Formula &F, const SCEV *Reg, 1065 SmallPtrSetImpl<const SCEV *> &Regs, 1066 const Loop *L, 1067 ScalarEvolution &SE, DominatorTree &DT, 1068 SmallPtrSetImpl<const SCEV *> *LoserRegs, 1069 const TargetTransformInfo &TTI); 1070 }; 1071 1072 /// An operand value in an instruction which is to be replaced with some 1073 /// equivalent, possibly strength-reduced, replacement. 1074 struct LSRFixup { 1075 /// The instruction which will be updated. 1076 Instruction *UserInst = nullptr; 1077 1078 /// The operand of the instruction which will be replaced. The operand may be 1079 /// used more than once; every instance will be replaced. 1080 Value *OperandValToReplace = nullptr; 1081 1082 /// If this user is to use the post-incremented value of an induction 1083 /// variable, this set is non-empty and holds the loops associated with the 1084 /// induction variable. 1085 PostIncLoopSet PostIncLoops; 1086 1087 /// A constant offset to be added to the LSRUse expression. This allows 1088 /// multiple fixups to share the same LSRUse with different offsets, for 1089 /// example in an unrolled loop. 1090 int64_t Offset = 0; 1091 1092 LSRFixup() = default; 1093 1094 bool isUseFullyOutsideLoop(const Loop *L) const; 1095 1096 void print(raw_ostream &OS) const; 1097 void dump() const; 1098 }; 1099 1100 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted 1101 /// SmallVectors of const SCEV*. 1102 struct UniquifierDenseMapInfo { 1103 static SmallVector<const SCEV *, 4> getEmptyKey() { 1104 SmallVector<const SCEV *, 4> V; 1105 V.push_back(reinterpret_cast<const SCEV *>(-1)); 1106 return V; 1107 } 1108 1109 static SmallVector<const SCEV *, 4> getTombstoneKey() { 1110 SmallVector<const SCEV *, 4> V; 1111 V.push_back(reinterpret_cast<const SCEV *>(-2)); 1112 return V; 1113 } 1114 1115 static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) { 1116 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 1117 } 1118 1119 static bool isEqual(const SmallVector<const SCEV *, 4> &LHS, 1120 const SmallVector<const SCEV *, 4> &RHS) { 1121 return LHS == RHS; 1122 } 1123 }; 1124 1125 /// This class holds the state that LSR keeps for each use in IVUsers, as well 1126 /// as uses invented by LSR itself. It includes information about what kinds of 1127 /// things can be folded into the user, information about the user itself, and 1128 /// information about how the use may be satisfied. TODO: Represent multiple 1129 /// users of the same expression in common? 1130 class LSRUse { 1131 DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier; 1132 1133 public: 1134 /// An enum for a kind of use, indicating what types of scaled and immediate 1135 /// operands it might support. 1136 enum KindType { 1137 Basic, ///< A normal use, with no folding. 1138 Special, ///< A special case of basic, allowing -1 scales. 1139 Address, ///< An address use; folding according to TargetLowering 1140 ICmpZero ///< An equality icmp with both operands folded into one. 1141 // TODO: Add a generic icmp too? 1142 }; 1143 1144 using SCEVUseKindPair = PointerIntPair<const SCEV *, 2, KindType>; 1145 1146 KindType Kind; 1147 MemAccessTy AccessTy; 1148 1149 /// The list of operands which are to be replaced. 1150 SmallVector<LSRFixup, 8> Fixups; 1151 1152 /// Keep track of the min and max offsets of the fixups. 1153 int64_t MinOffset = std::numeric_limits<int64_t>::max(); 1154 int64_t MaxOffset = std::numeric_limits<int64_t>::min(); 1155 1156 /// This records whether all of the fixups using this LSRUse are outside of 1157 /// the loop, in which case some special-case heuristics may be used. 1158 bool AllFixupsOutsideLoop = true; 1159 1160 /// RigidFormula is set to true to guarantee that this use will be associated 1161 /// with a single formula--the one that initially matched. Some SCEV 1162 /// expressions cannot be expanded. This allows LSR to consider the registers 1163 /// used by those expressions without the need to expand them later after 1164 /// changing the formula. 1165 bool RigidFormula = false; 1166 1167 /// This records the widest use type for any fixup using this 1168 /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max 1169 /// fixup widths to be equivalent, because the narrower one may be relying on 1170 /// the implicit truncation to truncate away bogus bits. 1171 Type *WidestFixupType = nullptr; 1172 1173 /// A list of ways to build a value that can satisfy this user. After the 1174 /// list is populated, one of these is selected heuristically and used to 1175 /// formulate a replacement for OperandValToReplace in UserInst. 1176 SmallVector<Formula, 12> Formulae; 1177 1178 /// The set of register candidates used by all formulae in this LSRUse. 1179 SmallPtrSet<const SCEV *, 4> Regs; 1180 1181 LSRUse(KindType K, MemAccessTy AT) : Kind(K), AccessTy(AT) {} 1182 1183 LSRFixup &getNewFixup() { 1184 Fixups.push_back(LSRFixup()); 1185 return Fixups.back(); 1186 } 1187 1188 void pushFixup(LSRFixup &f) { 1189 Fixups.push_back(f); 1190 if (f.Offset > MaxOffset) 1191 MaxOffset = f.Offset; 1192 if (f.Offset < MinOffset) 1193 MinOffset = f.Offset; 1194 } 1195 1196 bool HasFormulaWithSameRegs(const Formula &F) const; 1197 float getNotSelectedProbability(const SCEV *Reg) const; 1198 bool InsertFormula(const Formula &F, const Loop &L); 1199 void DeleteFormula(Formula &F); 1200 void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses); 1201 1202 void print(raw_ostream &OS) const; 1203 void dump() const; 1204 }; 1205 1206 } // end anonymous namespace 1207 1208 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1209 LSRUse::KindType Kind, MemAccessTy AccessTy, 1210 GlobalValue *BaseGV, int64_t BaseOffset, 1211 bool HasBaseReg, int64_t Scale, 1212 Instruction *Fixup = nullptr); 1213 1214 /// Tally up interesting quantities from the given register. 1215 void Cost::RateRegister(const Formula &F, const SCEV *Reg, 1216 SmallPtrSetImpl<const SCEV *> &Regs, 1217 const Loop *L, 1218 ScalarEvolution &SE, DominatorTree &DT, 1219 const TargetTransformInfo &TTI) { 1220 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) { 1221 // If this is an addrec for another loop, it should be an invariant 1222 // with respect to L since L is the innermost loop (at least 1223 // for now LSR only handles innermost loops). 1224 if (AR->getLoop() != L) { 1225 // If the AddRec exists, consider it's register free and leave it alone. 1226 if (isExistingPhi(AR, SE)) 1227 return; 1228 1229 // It is bad to allow LSR for current loop to add induction variables 1230 // for its sibling loops. 1231 if (!AR->getLoop()->contains(L)) { 1232 Lose(); 1233 return; 1234 } 1235 1236 // Otherwise, it will be an invariant with respect to Loop L. 1237 ++C.NumRegs; 1238 return; 1239 } 1240 1241 unsigned LoopCost = 1; 1242 if (TTI.isIndexedLoadLegal(TTI.MIM_PostInc, AR->getType()) || 1243 TTI.isIndexedStoreLegal(TTI.MIM_PostInc, AR->getType())) { 1244 1245 // If the step size matches the base offset, we could use pre-indexed 1246 // addressing. 1247 if (TTI.shouldFavorBackedgeIndex(L)) { 1248 if (auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) 1249 if (Step->getAPInt() == F.BaseOffset) 1250 LoopCost = 0; 1251 } 1252 1253 if (TTI.shouldFavorPostInc()) { 1254 const SCEV *LoopStep = AR->getStepRecurrence(SE); 1255 if (isa<SCEVConstant>(LoopStep)) { 1256 const SCEV *LoopStart = AR->getStart(); 1257 if (!isa<SCEVConstant>(LoopStart) && 1258 SE.isLoopInvariant(LoopStart, L)) 1259 LoopCost = 0; 1260 } 1261 } 1262 } 1263 C.AddRecCost += LoopCost; 1264 1265 // Add the step value register, if it needs one. 1266 // TODO: The non-affine case isn't precisely modeled here. 1267 if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) { 1268 if (!Regs.count(AR->getOperand(1))) { 1269 RateRegister(F, AR->getOperand(1), Regs, L, SE, DT, TTI); 1270 if (isLoser()) 1271 return; 1272 } 1273 } 1274 } 1275 ++C.NumRegs; 1276 1277 // Rough heuristic; favor registers which don't require extra setup 1278 // instructions in the preheader. 1279 if (!isa<SCEVUnknown>(Reg) && 1280 !isa<SCEVConstant>(Reg) && 1281 !(isa<SCEVAddRecExpr>(Reg) && 1282 (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) || 1283 isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart())))) 1284 ++C.SetupCost; 1285 1286 C.NumIVMuls += isa<SCEVMulExpr>(Reg) && 1287 SE.hasComputableLoopEvolution(Reg, L); 1288 } 1289 1290 /// Record this register in the set. If we haven't seen it before, rate 1291 /// it. Optional LoserRegs provides a way to declare any formula that refers to 1292 /// one of those regs an instant loser. 1293 void Cost::RatePrimaryRegister(const Formula &F, const SCEV *Reg, 1294 SmallPtrSetImpl<const SCEV *> &Regs, 1295 const Loop *L, 1296 ScalarEvolution &SE, DominatorTree &DT, 1297 SmallPtrSetImpl<const SCEV *> *LoserRegs, 1298 const TargetTransformInfo &TTI) { 1299 if (LoserRegs && LoserRegs->count(Reg)) { 1300 Lose(); 1301 return; 1302 } 1303 if (Regs.insert(Reg).second) { 1304 RateRegister(F, Reg, Regs, L, SE, DT, TTI); 1305 if (LoserRegs && isLoser()) 1306 LoserRegs->insert(Reg); 1307 } 1308 } 1309 1310 void Cost::RateFormula(const TargetTransformInfo &TTI, 1311 const Formula &F, 1312 SmallPtrSetImpl<const SCEV *> &Regs, 1313 const DenseSet<const SCEV *> &VisitedRegs, 1314 const Loop *L, 1315 ScalarEvolution &SE, DominatorTree &DT, 1316 const LSRUse &LU, 1317 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1318 assert(F.isCanonical(*L) && "Cost is accurate only for canonical formula"); 1319 // Tally up the registers. 1320 unsigned PrevAddRecCost = C.AddRecCost; 1321 unsigned PrevNumRegs = C.NumRegs; 1322 unsigned PrevNumBaseAdds = C.NumBaseAdds; 1323 if (const SCEV *ScaledReg = F.ScaledReg) { 1324 if (VisitedRegs.count(ScaledReg)) { 1325 Lose(); 1326 return; 1327 } 1328 RatePrimaryRegister(F, ScaledReg, Regs, L, SE, DT, LoserRegs, TTI); 1329 if (isLoser()) 1330 return; 1331 } 1332 for (const SCEV *BaseReg : F.BaseRegs) { 1333 if (VisitedRegs.count(BaseReg)) { 1334 Lose(); 1335 return; 1336 } 1337 RatePrimaryRegister(F, BaseReg, Regs, L, SE, DT, LoserRegs, TTI); 1338 if (isLoser()) 1339 return; 1340 } 1341 1342 // Determine how many (unfolded) adds we'll need inside the loop. 1343 size_t NumBaseParts = F.getNumRegs(); 1344 if (NumBaseParts > 1) 1345 // Do not count the base and a possible second register if the target 1346 // allows to fold 2 registers. 1347 C.NumBaseAdds += 1348 NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(TTI, LU, F))); 1349 C.NumBaseAdds += (F.UnfoldedOffset != 0); 1350 1351 // Accumulate non-free scaling amounts. 1352 C.ScaleCost += getScalingFactorCost(TTI, LU, F, *L); 1353 1354 // Tally up the non-zero immediates. 1355 for (const LSRFixup &Fixup : LU.Fixups) { 1356 int64_t O = Fixup.Offset; 1357 int64_t Offset = (uint64_t)O + F.BaseOffset; 1358 if (F.BaseGV) 1359 C.ImmCost += 64; // Handle symbolic values conservatively. 1360 // TODO: This should probably be the pointer size. 1361 else if (Offset != 0) 1362 C.ImmCost += APInt(64, Offset, true).getMinSignedBits(); 1363 1364 // Check with target if this offset with this instruction is 1365 // specifically not supported. 1366 if (LU.Kind == LSRUse::Address && Offset != 0 && 1367 !isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV, 1368 Offset, F.HasBaseReg, F.Scale, Fixup.UserInst)) 1369 C.NumBaseAdds++; 1370 } 1371 1372 // If we don't count instruction cost exit here. 1373 if (!InsnsCost) { 1374 assert(isValid() && "invalid cost"); 1375 return; 1376 } 1377 1378 // Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as 1379 // additional instruction (at least fill). 1380 unsigned TTIRegNum = TTI.getNumberOfRegisters(false) - 1; 1381 if (C.NumRegs > TTIRegNum) { 1382 // Cost already exceeded TTIRegNum, then only newly added register can add 1383 // new instructions. 1384 if (PrevNumRegs > TTIRegNum) 1385 C.Insns += (C.NumRegs - PrevNumRegs); 1386 else 1387 C.Insns += (C.NumRegs - TTIRegNum); 1388 } 1389 1390 // If ICmpZero formula ends with not 0, it could not be replaced by 1391 // just add or sub. We'll need to compare final result of AddRec. 1392 // That means we'll need an additional instruction. But if the target can 1393 // macro-fuse a compare with a branch, don't count this extra instruction. 1394 // For -10 + {0, +, 1}: 1395 // i = i + 1; 1396 // cmp i, 10 1397 // 1398 // For {-10, +, 1}: 1399 // i = i + 1; 1400 if (LU.Kind == LSRUse::ICmpZero && !F.hasZeroEnd() && !TTI.canMacroFuseCmp()) 1401 C.Insns++; 1402 // Each new AddRec adds 1 instruction to calculation. 1403 C.Insns += (C.AddRecCost - PrevAddRecCost); 1404 1405 // BaseAdds adds instructions for unfolded registers. 1406 if (LU.Kind != LSRUse::ICmpZero) 1407 C.Insns += C.NumBaseAdds - PrevNumBaseAdds; 1408 assert(isValid() && "invalid cost"); 1409 } 1410 1411 /// Set this cost to a losing value. 1412 void Cost::Lose() { 1413 C.Insns = std::numeric_limits<unsigned>::max(); 1414 C.NumRegs = std::numeric_limits<unsigned>::max(); 1415 C.AddRecCost = std::numeric_limits<unsigned>::max(); 1416 C.NumIVMuls = std::numeric_limits<unsigned>::max(); 1417 C.NumBaseAdds = std::numeric_limits<unsigned>::max(); 1418 C.ImmCost = std::numeric_limits<unsigned>::max(); 1419 C.SetupCost = std::numeric_limits<unsigned>::max(); 1420 C.ScaleCost = std::numeric_limits<unsigned>::max(); 1421 } 1422 1423 /// Choose the lower cost. 1424 bool Cost::isLess(Cost &Other, const TargetTransformInfo &TTI) { 1425 if (InsnsCost.getNumOccurrences() > 0 && InsnsCost && 1426 C.Insns != Other.C.Insns) 1427 return C.Insns < Other.C.Insns; 1428 return TTI.isLSRCostLess(C, Other.C); 1429 } 1430 1431 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1432 void Cost::print(raw_ostream &OS) const { 1433 if (InsnsCost) 1434 OS << C.Insns << " instruction" << (C.Insns == 1 ? " " : "s "); 1435 OS << C.NumRegs << " reg" << (C.NumRegs == 1 ? "" : "s"); 1436 if (C.AddRecCost != 0) 1437 OS << ", with addrec cost " << C.AddRecCost; 1438 if (C.NumIVMuls != 0) 1439 OS << ", plus " << C.NumIVMuls << " IV mul" 1440 << (C.NumIVMuls == 1 ? "" : "s"); 1441 if (C.NumBaseAdds != 0) 1442 OS << ", plus " << C.NumBaseAdds << " base add" 1443 << (C.NumBaseAdds == 1 ? "" : "s"); 1444 if (C.ScaleCost != 0) 1445 OS << ", plus " << C.ScaleCost << " scale cost"; 1446 if (C.ImmCost != 0) 1447 OS << ", plus " << C.ImmCost << " imm cost"; 1448 if (C.SetupCost != 0) 1449 OS << ", plus " << C.SetupCost << " setup cost"; 1450 } 1451 1452 LLVM_DUMP_METHOD void Cost::dump() const { 1453 print(errs()); errs() << '\n'; 1454 } 1455 #endif 1456 1457 /// Test whether this fixup always uses its value outside of the given loop. 1458 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const { 1459 // PHI nodes use their value in their incoming blocks. 1460 if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) { 1461 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1462 if (PN->getIncomingValue(i) == OperandValToReplace && 1463 L->contains(PN->getIncomingBlock(i))) 1464 return false; 1465 return true; 1466 } 1467 1468 return !L->contains(UserInst); 1469 } 1470 1471 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1472 void LSRFixup::print(raw_ostream &OS) const { 1473 OS << "UserInst="; 1474 // Store is common and interesting enough to be worth special-casing. 1475 if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) { 1476 OS << "store "; 1477 Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false); 1478 } else if (UserInst->getType()->isVoidTy()) 1479 OS << UserInst->getOpcodeName(); 1480 else 1481 UserInst->printAsOperand(OS, /*PrintType=*/false); 1482 1483 OS << ", OperandValToReplace="; 1484 OperandValToReplace->printAsOperand(OS, /*PrintType=*/false); 1485 1486 for (const Loop *PIL : PostIncLoops) { 1487 OS << ", PostIncLoop="; 1488 PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 1489 } 1490 1491 if (Offset != 0) 1492 OS << ", Offset=" << Offset; 1493 } 1494 1495 LLVM_DUMP_METHOD void LSRFixup::dump() const { 1496 print(errs()); errs() << '\n'; 1497 } 1498 #endif 1499 1500 /// Test whether this use as a formula which has the same registers as the given 1501 /// formula. 1502 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const { 1503 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1504 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1505 // Unstable sort by host order ok, because this is only used for uniquifying. 1506 llvm::sort(Key); 1507 return Uniquifier.count(Key); 1508 } 1509 1510 /// The function returns a probability of selecting formula without Reg. 1511 float LSRUse::getNotSelectedProbability(const SCEV *Reg) const { 1512 unsigned FNum = 0; 1513 for (const Formula &F : Formulae) 1514 if (F.referencesReg(Reg)) 1515 FNum++; 1516 return ((float)(Formulae.size() - FNum)) / Formulae.size(); 1517 } 1518 1519 /// If the given formula has not yet been inserted, add it to the list, and 1520 /// return true. Return false otherwise. The formula must be in canonical form. 1521 bool LSRUse::InsertFormula(const Formula &F, const Loop &L) { 1522 assert(F.isCanonical(L) && "Invalid canonical representation"); 1523 1524 if (!Formulae.empty() && RigidFormula) 1525 return false; 1526 1527 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1528 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1529 // Unstable sort by host order ok, because this is only used for uniquifying. 1530 llvm::sort(Key); 1531 1532 if (!Uniquifier.insert(Key).second) 1533 return false; 1534 1535 // Using a register to hold the value of 0 is not profitable. 1536 assert((!F.ScaledReg || !F.ScaledReg->isZero()) && 1537 "Zero allocated in a scaled register!"); 1538 #ifndef NDEBUG 1539 for (const SCEV *BaseReg : F.BaseRegs) 1540 assert(!BaseReg->isZero() && "Zero allocated in a base register!"); 1541 #endif 1542 1543 // Add the formula to the list. 1544 Formulae.push_back(F); 1545 1546 // Record registers now being used by this use. 1547 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1548 if (F.ScaledReg) 1549 Regs.insert(F.ScaledReg); 1550 1551 return true; 1552 } 1553 1554 /// Remove the given formula from this use's list. 1555 void LSRUse::DeleteFormula(Formula &F) { 1556 if (&F != &Formulae.back()) 1557 std::swap(F, Formulae.back()); 1558 Formulae.pop_back(); 1559 } 1560 1561 /// Recompute the Regs field, and update RegUses. 1562 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) { 1563 // Now that we've filtered out some formulae, recompute the Regs set. 1564 SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs); 1565 Regs.clear(); 1566 for (const Formula &F : Formulae) { 1567 if (F.ScaledReg) Regs.insert(F.ScaledReg); 1568 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1569 } 1570 1571 // Update the RegTracker. 1572 for (const SCEV *S : OldRegs) 1573 if (!Regs.count(S)) 1574 RegUses.dropRegister(S, LUIdx); 1575 } 1576 1577 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1578 void LSRUse::print(raw_ostream &OS) const { 1579 OS << "LSR Use: Kind="; 1580 switch (Kind) { 1581 case Basic: OS << "Basic"; break; 1582 case Special: OS << "Special"; break; 1583 case ICmpZero: OS << "ICmpZero"; break; 1584 case Address: 1585 OS << "Address of "; 1586 if (AccessTy.MemTy->isPointerTy()) 1587 OS << "pointer"; // the full pointer type could be really verbose 1588 else { 1589 OS << *AccessTy.MemTy; 1590 } 1591 1592 OS << " in addrspace(" << AccessTy.AddrSpace << ')'; 1593 } 1594 1595 OS << ", Offsets={"; 1596 bool NeedComma = false; 1597 for (const LSRFixup &Fixup : Fixups) { 1598 if (NeedComma) OS << ','; 1599 OS << Fixup.Offset; 1600 NeedComma = true; 1601 } 1602 OS << '}'; 1603 1604 if (AllFixupsOutsideLoop) 1605 OS << ", all-fixups-outside-loop"; 1606 1607 if (WidestFixupType) 1608 OS << ", widest fixup type: " << *WidestFixupType; 1609 } 1610 1611 LLVM_DUMP_METHOD void LSRUse::dump() const { 1612 print(errs()); errs() << '\n'; 1613 } 1614 #endif 1615 1616 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1617 LSRUse::KindType Kind, MemAccessTy AccessTy, 1618 GlobalValue *BaseGV, int64_t BaseOffset, 1619 bool HasBaseReg, int64_t Scale, 1620 Instruction *Fixup/*= nullptr*/) { 1621 switch (Kind) { 1622 case LSRUse::Address: 1623 return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset, 1624 HasBaseReg, Scale, AccessTy.AddrSpace, Fixup); 1625 1626 case LSRUse::ICmpZero: 1627 // There's not even a target hook for querying whether it would be legal to 1628 // fold a GV into an ICmp. 1629 if (BaseGV) 1630 return false; 1631 1632 // ICmp only has two operands; don't allow more than two non-trivial parts. 1633 if (Scale != 0 && HasBaseReg && BaseOffset != 0) 1634 return false; 1635 1636 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by 1637 // putting the scaled register in the other operand of the icmp. 1638 if (Scale != 0 && Scale != -1) 1639 return false; 1640 1641 // If we have low-level target information, ask the target if it can fold an 1642 // integer immediate on an icmp. 1643 if (BaseOffset != 0) { 1644 // We have one of: 1645 // ICmpZero BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset 1646 // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset 1647 // Offs is the ICmp immediate. 1648 if (Scale == 0) 1649 // The cast does the right thing with 1650 // std::numeric_limits<int64_t>::min(). 1651 BaseOffset = -(uint64_t)BaseOffset; 1652 return TTI.isLegalICmpImmediate(BaseOffset); 1653 } 1654 1655 // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg 1656 return true; 1657 1658 case LSRUse::Basic: 1659 // Only handle single-register values. 1660 return !BaseGV && Scale == 0 && BaseOffset == 0; 1661 1662 case LSRUse::Special: 1663 // Special case Basic to handle -1 scales. 1664 return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0; 1665 } 1666 1667 llvm_unreachable("Invalid LSRUse Kind!"); 1668 } 1669 1670 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1671 int64_t MinOffset, int64_t MaxOffset, 1672 LSRUse::KindType Kind, MemAccessTy AccessTy, 1673 GlobalValue *BaseGV, int64_t BaseOffset, 1674 bool HasBaseReg, int64_t Scale) { 1675 // Check for overflow. 1676 if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) != 1677 (MinOffset > 0)) 1678 return false; 1679 MinOffset = (uint64_t)BaseOffset + MinOffset; 1680 if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) != 1681 (MaxOffset > 0)) 1682 return false; 1683 MaxOffset = (uint64_t)BaseOffset + MaxOffset; 1684 1685 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset, 1686 HasBaseReg, Scale) && 1687 isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset, 1688 HasBaseReg, Scale); 1689 } 1690 1691 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1692 int64_t MinOffset, int64_t MaxOffset, 1693 LSRUse::KindType Kind, MemAccessTy AccessTy, 1694 const Formula &F, const Loop &L) { 1695 // For the purpose of isAMCompletelyFolded either having a canonical formula 1696 // or a scale not equal to zero is correct. 1697 // Problems may arise from non canonical formulae having a scale == 0. 1698 // Strictly speaking it would best to just rely on canonical formulae. 1699 // However, when we generate the scaled formulae, we first check that the 1700 // scaling factor is profitable before computing the actual ScaledReg for 1701 // compile time sake. 1702 assert((F.isCanonical(L) || F.Scale != 0)); 1703 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1704 F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale); 1705 } 1706 1707 /// Test whether we know how to expand the current formula. 1708 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1709 int64_t MaxOffset, LSRUse::KindType Kind, 1710 MemAccessTy AccessTy, GlobalValue *BaseGV, 1711 int64_t BaseOffset, bool HasBaseReg, int64_t Scale) { 1712 // We know how to expand completely foldable formulae. 1713 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1714 BaseOffset, HasBaseReg, Scale) || 1715 // Or formulae that use a base register produced by a sum of base 1716 // registers. 1717 (Scale == 1 && 1718 isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1719 BaseGV, BaseOffset, true, 0)); 1720 } 1721 1722 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1723 int64_t MaxOffset, LSRUse::KindType Kind, 1724 MemAccessTy AccessTy, const Formula &F) { 1725 return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV, 1726 F.BaseOffset, F.HasBaseReg, F.Scale); 1727 } 1728 1729 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1730 const LSRUse &LU, const Formula &F) { 1731 // Target may want to look at the user instructions. 1732 if (LU.Kind == LSRUse::Address && TTI.LSRWithInstrQueries()) { 1733 for (const LSRFixup &Fixup : LU.Fixups) 1734 if (!isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV, 1735 (F.BaseOffset + Fixup.Offset), F.HasBaseReg, 1736 F.Scale, Fixup.UserInst)) 1737 return false; 1738 return true; 1739 } 1740 1741 return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1742 LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg, 1743 F.Scale); 1744 } 1745 1746 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, 1747 const LSRUse &LU, const Formula &F, 1748 const Loop &L) { 1749 if (!F.Scale) 1750 return 0; 1751 1752 // If the use is not completely folded in that instruction, we will have to 1753 // pay an extra cost only for scale != 1. 1754 if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1755 LU.AccessTy, F, L)) 1756 return F.Scale != 1; 1757 1758 switch (LU.Kind) { 1759 case LSRUse::Address: { 1760 // Check the scaling factor cost with both the min and max offsets. 1761 int ScaleCostMinOffset = TTI.getScalingFactorCost( 1762 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg, 1763 F.Scale, LU.AccessTy.AddrSpace); 1764 int ScaleCostMaxOffset = TTI.getScalingFactorCost( 1765 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg, 1766 F.Scale, LU.AccessTy.AddrSpace); 1767 1768 assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 && 1769 "Legal addressing mode has an illegal cost!"); 1770 return std::max(ScaleCostMinOffset, ScaleCostMaxOffset); 1771 } 1772 case LSRUse::ICmpZero: 1773 case LSRUse::Basic: 1774 case LSRUse::Special: 1775 // The use is completely folded, i.e., everything is folded into the 1776 // instruction. 1777 return 0; 1778 } 1779 1780 llvm_unreachable("Invalid LSRUse Kind!"); 1781 } 1782 1783 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1784 LSRUse::KindType Kind, MemAccessTy AccessTy, 1785 GlobalValue *BaseGV, int64_t BaseOffset, 1786 bool HasBaseReg) { 1787 // Fast-path: zero is always foldable. 1788 if (BaseOffset == 0 && !BaseGV) return true; 1789 1790 // Conservatively, create an address with an immediate and a 1791 // base and a scale. 1792 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1793 1794 // Canonicalize a scale of 1 to a base register if the formula doesn't 1795 // already have a base register. 1796 if (!HasBaseReg && Scale == 1) { 1797 Scale = 0; 1798 HasBaseReg = true; 1799 } 1800 1801 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset, 1802 HasBaseReg, Scale); 1803 } 1804 1805 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1806 ScalarEvolution &SE, int64_t MinOffset, 1807 int64_t MaxOffset, LSRUse::KindType Kind, 1808 MemAccessTy AccessTy, const SCEV *S, 1809 bool HasBaseReg) { 1810 // Fast-path: zero is always foldable. 1811 if (S->isZero()) return true; 1812 1813 // Conservatively, create an address with an immediate and a 1814 // base and a scale. 1815 int64_t BaseOffset = ExtractImmediate(S, SE); 1816 GlobalValue *BaseGV = ExtractSymbol(S, SE); 1817 1818 // If there's anything else involved, it's not foldable. 1819 if (!S->isZero()) return false; 1820 1821 // Fast-path: zero is always foldable. 1822 if (BaseOffset == 0 && !BaseGV) return true; 1823 1824 // Conservatively, create an address with an immediate and a 1825 // base and a scale. 1826 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1827 1828 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1829 BaseOffset, HasBaseReg, Scale); 1830 } 1831 1832 namespace { 1833 1834 /// An individual increment in a Chain of IV increments. Relate an IV user to 1835 /// an expression that computes the IV it uses from the IV used by the previous 1836 /// link in the Chain. 1837 /// 1838 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the 1839 /// original IVOperand. The head of the chain's IVOperand is only valid during 1840 /// chain collection, before LSR replaces IV users. During chain generation, 1841 /// IncExpr can be used to find the new IVOperand that computes the same 1842 /// expression. 1843 struct IVInc { 1844 Instruction *UserInst; 1845 Value* IVOperand; 1846 const SCEV *IncExpr; 1847 1848 IVInc(Instruction *U, Value *O, const SCEV *E) 1849 : UserInst(U), IVOperand(O), IncExpr(E) {} 1850 }; 1851 1852 // The list of IV increments in program order. We typically add the head of a 1853 // chain without finding subsequent links. 1854 struct IVChain { 1855 SmallVector<IVInc, 1> Incs; 1856 const SCEV *ExprBase = nullptr; 1857 1858 IVChain() = default; 1859 IVChain(const IVInc &Head, const SCEV *Base) 1860 : Incs(1, Head), ExprBase(Base) {} 1861 1862 using const_iterator = SmallVectorImpl<IVInc>::const_iterator; 1863 1864 // Return the first increment in the chain. 1865 const_iterator begin() const { 1866 assert(!Incs.empty()); 1867 return std::next(Incs.begin()); 1868 } 1869 const_iterator end() const { 1870 return Incs.end(); 1871 } 1872 1873 // Returns true if this chain contains any increments. 1874 bool hasIncs() const { return Incs.size() >= 2; } 1875 1876 // Add an IVInc to the end of this chain. 1877 void add(const IVInc &X) { Incs.push_back(X); } 1878 1879 // Returns the last UserInst in the chain. 1880 Instruction *tailUserInst() const { return Incs.back().UserInst; } 1881 1882 // Returns true if IncExpr can be profitably added to this chain. 1883 bool isProfitableIncrement(const SCEV *OperExpr, 1884 const SCEV *IncExpr, 1885 ScalarEvolution&); 1886 }; 1887 1888 /// Helper for CollectChains to track multiple IV increment uses. Distinguish 1889 /// between FarUsers that definitely cross IV increments and NearUsers that may 1890 /// be used between IV increments. 1891 struct ChainUsers { 1892 SmallPtrSet<Instruction*, 4> FarUsers; 1893 SmallPtrSet<Instruction*, 4> NearUsers; 1894 }; 1895 1896 /// This class holds state for the main loop strength reduction logic. 1897 class LSRInstance { 1898 IVUsers &IU; 1899 ScalarEvolution &SE; 1900 DominatorTree &DT; 1901 LoopInfo &LI; 1902 const TargetTransformInfo &TTI; 1903 Loop *const L; 1904 bool FavorBackedgeIndex = false; 1905 bool Changed = false; 1906 1907 /// This is the insert position that the current loop's induction variable 1908 /// increment should be placed. In simple loops, this is the latch block's 1909 /// terminator. But in more complicated cases, this is a position which will 1910 /// dominate all the in-loop post-increment users. 1911 Instruction *IVIncInsertPos = nullptr; 1912 1913 /// Interesting factors between use strides. 1914 /// 1915 /// We explicitly use a SetVector which contains a SmallSet, instead of the 1916 /// default, a SmallDenseSet, because we need to use the full range of 1917 /// int64_ts, and there's currently no good way of doing that with 1918 /// SmallDenseSet. 1919 SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors; 1920 1921 /// Interesting use types, to facilitate truncation reuse. 1922 SmallSetVector<Type *, 4> Types; 1923 1924 /// The list of interesting uses. 1925 SmallVector<LSRUse, 16> Uses; 1926 1927 /// Track which uses use which register candidates. 1928 RegUseTracker RegUses; 1929 1930 // Limit the number of chains to avoid quadratic behavior. We don't expect to 1931 // have more than a few IV increment chains in a loop. Missing a Chain falls 1932 // back to normal LSR behavior for those uses. 1933 static const unsigned MaxChains = 8; 1934 1935 /// IV users can form a chain of IV increments. 1936 SmallVector<IVChain, MaxChains> IVChainVec; 1937 1938 /// IV users that belong to profitable IVChains. 1939 SmallPtrSet<Use*, MaxChains> IVIncSet; 1940 1941 void OptimizeShadowIV(); 1942 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse); 1943 ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse); 1944 void OptimizeLoopTermCond(); 1945 1946 void ChainInstruction(Instruction *UserInst, Instruction *IVOper, 1947 SmallVectorImpl<ChainUsers> &ChainUsersVec); 1948 void FinalizeChain(IVChain &Chain); 1949 void CollectChains(); 1950 void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 1951 SmallVectorImpl<WeakTrackingVH> &DeadInsts); 1952 1953 void CollectInterestingTypesAndFactors(); 1954 void CollectFixupsAndInitialFormulae(); 1955 1956 // Support for sharing of LSRUses between LSRFixups. 1957 using UseMapTy = DenseMap<LSRUse::SCEVUseKindPair, size_t>; 1958 UseMapTy UseMap; 1959 1960 bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, 1961 LSRUse::KindType Kind, MemAccessTy AccessTy); 1962 1963 std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind, 1964 MemAccessTy AccessTy); 1965 1966 void DeleteUse(LSRUse &LU, size_t LUIdx); 1967 1968 LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU); 1969 1970 void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1971 void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1972 void CountRegisters(const Formula &F, size_t LUIdx); 1973 bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F); 1974 1975 void CollectLoopInvariantFixupsAndFormulae(); 1976 1977 void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base, 1978 unsigned Depth = 0); 1979 1980 void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 1981 const Formula &Base, unsigned Depth, 1982 size_t Idx, bool IsScaledReg = false); 1983 void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base); 1984 void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 1985 const Formula &Base, size_t Idx, 1986 bool IsScaledReg = false); 1987 void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1988 void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx, 1989 const Formula &Base, 1990 const SmallVectorImpl<int64_t> &Worklist, 1991 size_t Idx, bool IsScaledReg = false); 1992 void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1993 void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base); 1994 void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base); 1995 void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base); 1996 void GenerateCrossUseConstantOffsets(); 1997 void GenerateAllReuseFormulae(); 1998 1999 void FilterOutUndesirableDedicatedRegisters(); 2000 2001 size_t EstimateSearchSpaceComplexity() const; 2002 void NarrowSearchSpaceByDetectingSupersets(); 2003 void NarrowSearchSpaceByCollapsingUnrolledCode(); 2004 void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 2005 void NarrowSearchSpaceByFilterFormulaWithSameScaledReg(); 2006 void NarrowSearchSpaceByDeletingCostlyFormulas(); 2007 void NarrowSearchSpaceByPickingWinnerRegs(); 2008 void NarrowSearchSpaceUsingHeuristics(); 2009 2010 void SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 2011 Cost &SolutionCost, 2012 SmallVectorImpl<const Formula *> &Workspace, 2013 const Cost &CurCost, 2014 const SmallPtrSet<const SCEV *, 16> &CurRegs, 2015 DenseSet<const SCEV *> &VisitedRegs) const; 2016 void Solve(SmallVectorImpl<const Formula *> &Solution) const; 2017 2018 BasicBlock::iterator 2019 HoistInsertPosition(BasicBlock::iterator IP, 2020 const SmallVectorImpl<Instruction *> &Inputs) const; 2021 BasicBlock::iterator 2022 AdjustInsertPositionForExpand(BasicBlock::iterator IP, 2023 const LSRFixup &LF, 2024 const LSRUse &LU, 2025 SCEVExpander &Rewriter) const; 2026 2027 Value *Expand(const LSRUse &LU, const LSRFixup &LF, const Formula &F, 2028 BasicBlock::iterator IP, SCEVExpander &Rewriter, 2029 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 2030 void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF, 2031 const Formula &F, SCEVExpander &Rewriter, 2032 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 2033 void Rewrite(const LSRUse &LU, const LSRFixup &LF, const Formula &F, 2034 SCEVExpander &Rewriter, 2035 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 2036 void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution); 2037 2038 public: 2039 LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT, 2040 LoopInfo &LI, const TargetTransformInfo &TTI); 2041 2042 bool getChanged() const { return Changed; } 2043 2044 void print_factors_and_types(raw_ostream &OS) const; 2045 void print_fixups(raw_ostream &OS) const; 2046 void print_uses(raw_ostream &OS) const; 2047 void print(raw_ostream &OS) const; 2048 void dump() const; 2049 }; 2050 2051 } // end anonymous namespace 2052 2053 /// If IV is used in a int-to-float cast inside the loop then try to eliminate 2054 /// the cast operation. 2055 void LSRInstance::OptimizeShadowIV() { 2056 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 2057 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2058 return; 2059 2060 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); 2061 UI != E; /* empty */) { 2062 IVUsers::const_iterator CandidateUI = UI; 2063 ++UI; 2064 Instruction *ShadowUse = CandidateUI->getUser(); 2065 Type *DestTy = nullptr; 2066 bool IsSigned = false; 2067 2068 /* If shadow use is a int->float cast then insert a second IV 2069 to eliminate this cast. 2070 2071 for (unsigned i = 0; i < n; ++i) 2072 foo((double)i); 2073 2074 is transformed into 2075 2076 double d = 0.0; 2077 for (unsigned i = 0; i < n; ++i, ++d) 2078 foo(d); 2079 */ 2080 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) { 2081 IsSigned = false; 2082 DestTy = UCast->getDestTy(); 2083 } 2084 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) { 2085 IsSigned = true; 2086 DestTy = SCast->getDestTy(); 2087 } 2088 if (!DestTy) continue; 2089 2090 // If target does not support DestTy natively then do not apply 2091 // this transformation. 2092 if (!TTI.isTypeLegal(DestTy)) continue; 2093 2094 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0)); 2095 if (!PH) continue; 2096 if (PH->getNumIncomingValues() != 2) continue; 2097 2098 // If the calculation in integers overflows, the result in FP type will 2099 // differ. So we only can do this transformation if we are guaranteed to not 2100 // deal with overflowing values 2101 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PH)); 2102 if (!AR) continue; 2103 if (IsSigned && !AR->hasNoSignedWrap()) continue; 2104 if (!IsSigned && !AR->hasNoUnsignedWrap()) continue; 2105 2106 Type *SrcTy = PH->getType(); 2107 int Mantissa = DestTy->getFPMantissaWidth(); 2108 if (Mantissa == -1) continue; 2109 if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa) 2110 continue; 2111 2112 unsigned Entry, Latch; 2113 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) { 2114 Entry = 0; 2115 Latch = 1; 2116 } else { 2117 Entry = 1; 2118 Latch = 0; 2119 } 2120 2121 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry)); 2122 if (!Init) continue; 2123 Constant *NewInit = ConstantFP::get(DestTy, IsSigned ? 2124 (double)Init->getSExtValue() : 2125 (double)Init->getZExtValue()); 2126 2127 BinaryOperator *Incr = 2128 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch)); 2129 if (!Incr) continue; 2130 if (Incr->getOpcode() != Instruction::Add 2131 && Incr->getOpcode() != Instruction::Sub) 2132 continue; 2133 2134 /* Initialize new IV, double d = 0.0 in above example. */ 2135 ConstantInt *C = nullptr; 2136 if (Incr->getOperand(0) == PH) 2137 C = dyn_cast<ConstantInt>(Incr->getOperand(1)); 2138 else if (Incr->getOperand(1) == PH) 2139 C = dyn_cast<ConstantInt>(Incr->getOperand(0)); 2140 else 2141 continue; 2142 2143 if (!C) continue; 2144 2145 // Ignore negative constants, as the code below doesn't handle them 2146 // correctly. TODO: Remove this restriction. 2147 if (!C->getValue().isStrictlyPositive()) continue; 2148 2149 /* Add new PHINode. */ 2150 PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH); 2151 2152 /* create new increment. '++d' in above example. */ 2153 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue()); 2154 BinaryOperator *NewIncr = 2155 BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ? 2156 Instruction::FAdd : Instruction::FSub, 2157 NewPH, CFP, "IV.S.next.", Incr); 2158 2159 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry)); 2160 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch)); 2161 2162 /* Remove cast operation */ 2163 ShadowUse->replaceAllUsesWith(NewPH); 2164 ShadowUse->eraseFromParent(); 2165 Changed = true; 2166 break; 2167 } 2168 } 2169 2170 /// If Cond has an operand that is an expression of an IV, set the IV user and 2171 /// stride information and return true, otherwise return false. 2172 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) { 2173 for (IVStrideUse &U : IU) 2174 if (U.getUser() == Cond) { 2175 // NOTE: we could handle setcc instructions with multiple uses here, but 2176 // InstCombine does it as well for simple uses, it's not clear that it 2177 // occurs enough in real life to handle. 2178 CondUse = &U; 2179 return true; 2180 } 2181 return false; 2182 } 2183 2184 /// Rewrite the loop's terminating condition if it uses a max computation. 2185 /// 2186 /// This is a narrow solution to a specific, but acute, problem. For loops 2187 /// like this: 2188 /// 2189 /// i = 0; 2190 /// do { 2191 /// p[i] = 0.0; 2192 /// } while (++i < n); 2193 /// 2194 /// the trip count isn't just 'n', because 'n' might not be positive. And 2195 /// unfortunately this can come up even for loops where the user didn't use 2196 /// a C do-while loop. For example, seemingly well-behaved top-test loops 2197 /// will commonly be lowered like this: 2198 /// 2199 /// if (n > 0) { 2200 /// i = 0; 2201 /// do { 2202 /// p[i] = 0.0; 2203 /// } while (++i < n); 2204 /// } 2205 /// 2206 /// and then it's possible for subsequent optimization to obscure the if 2207 /// test in such a way that indvars can't find it. 2208 /// 2209 /// When indvars can't find the if test in loops like this, it creates a 2210 /// max expression, which allows it to give the loop a canonical 2211 /// induction variable: 2212 /// 2213 /// i = 0; 2214 /// max = n < 1 ? 1 : n; 2215 /// do { 2216 /// p[i] = 0.0; 2217 /// } while (++i != max); 2218 /// 2219 /// Canonical induction variables are necessary because the loop passes 2220 /// are designed around them. The most obvious example of this is the 2221 /// LoopInfo analysis, which doesn't remember trip count values. It 2222 /// expects to be able to rediscover the trip count each time it is 2223 /// needed, and it does this using a simple analysis that only succeeds if 2224 /// the loop has a canonical induction variable. 2225 /// 2226 /// However, when it comes time to generate code, the maximum operation 2227 /// can be quite costly, especially if it's inside of an outer loop. 2228 /// 2229 /// This function solves this problem by detecting this type of loop and 2230 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting 2231 /// the instructions for the maximum computation. 2232 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) { 2233 // Check that the loop matches the pattern we're looking for. 2234 if (Cond->getPredicate() != CmpInst::ICMP_EQ && 2235 Cond->getPredicate() != CmpInst::ICMP_NE) 2236 return Cond; 2237 2238 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1)); 2239 if (!Sel || !Sel->hasOneUse()) return Cond; 2240 2241 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 2242 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2243 return Cond; 2244 const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1); 2245 2246 // Add one to the backedge-taken count to get the trip count. 2247 const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount); 2248 if (IterationCount != SE.getSCEV(Sel)) return Cond; 2249 2250 // Check for a max calculation that matches the pattern. There's no check 2251 // for ICMP_ULE here because the comparison would be with zero, which 2252 // isn't interesting. 2253 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 2254 const SCEVNAryExpr *Max = nullptr; 2255 if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) { 2256 Pred = ICmpInst::ICMP_SLE; 2257 Max = S; 2258 } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) { 2259 Pred = ICmpInst::ICMP_SLT; 2260 Max = S; 2261 } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) { 2262 Pred = ICmpInst::ICMP_ULT; 2263 Max = U; 2264 } else { 2265 // No match; bail. 2266 return Cond; 2267 } 2268 2269 // To handle a max with more than two operands, this optimization would 2270 // require additional checking and setup. 2271 if (Max->getNumOperands() != 2) 2272 return Cond; 2273 2274 const SCEV *MaxLHS = Max->getOperand(0); 2275 const SCEV *MaxRHS = Max->getOperand(1); 2276 2277 // ScalarEvolution canonicalizes constants to the left. For < and >, look 2278 // for a comparison with 1. For <= and >=, a comparison with zero. 2279 if (!MaxLHS || 2280 (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One))) 2281 return Cond; 2282 2283 // Check the relevant induction variable for conformance to 2284 // the pattern. 2285 const SCEV *IV = SE.getSCEV(Cond->getOperand(0)); 2286 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV); 2287 if (!AR || !AR->isAffine() || 2288 AR->getStart() != One || 2289 AR->getStepRecurrence(SE) != One) 2290 return Cond; 2291 2292 assert(AR->getLoop() == L && 2293 "Loop condition operand is an addrec in a different loop!"); 2294 2295 // Check the right operand of the select, and remember it, as it will 2296 // be used in the new comparison instruction. 2297 Value *NewRHS = nullptr; 2298 if (ICmpInst::isTrueWhenEqual(Pred)) { 2299 // Look for n+1, and grab n. 2300 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1))) 2301 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2302 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2303 NewRHS = BO->getOperand(0); 2304 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2))) 2305 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2306 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2307 NewRHS = BO->getOperand(0); 2308 if (!NewRHS) 2309 return Cond; 2310 } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS) 2311 NewRHS = Sel->getOperand(1); 2312 else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS) 2313 NewRHS = Sel->getOperand(2); 2314 else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS)) 2315 NewRHS = SU->getValue(); 2316 else 2317 // Max doesn't match expected pattern. 2318 return Cond; 2319 2320 // Determine the new comparison opcode. It may be signed or unsigned, 2321 // and the original comparison may be either equality or inequality. 2322 if (Cond->getPredicate() == CmpInst::ICMP_EQ) 2323 Pred = CmpInst::getInversePredicate(Pred); 2324 2325 // Ok, everything looks ok to change the condition into an SLT or SGE and 2326 // delete the max calculation. 2327 ICmpInst *NewCond = 2328 new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp"); 2329 2330 // Delete the max calculation instructions. 2331 Cond->replaceAllUsesWith(NewCond); 2332 CondUse->setUser(NewCond); 2333 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0)); 2334 Cond->eraseFromParent(); 2335 Sel->eraseFromParent(); 2336 if (Cmp->use_empty()) 2337 Cmp->eraseFromParent(); 2338 return NewCond; 2339 } 2340 2341 /// Change loop terminating condition to use the postinc iv when possible. 2342 void 2343 LSRInstance::OptimizeLoopTermCond() { 2344 SmallPtrSet<Instruction *, 4> PostIncs; 2345 2346 // We need a different set of heuristics for rotated and non-rotated loops. 2347 // If a loop is rotated then the latch is also the backedge, so inserting 2348 // post-inc expressions just before the latch is ideal. To reduce live ranges 2349 // it also makes sense to rewrite terminating conditions to use post-inc 2350 // expressions. 2351 // 2352 // If the loop is not rotated then the latch is not a backedge; the latch 2353 // check is done in the loop head. Adding post-inc expressions before the 2354 // latch will cause overlapping live-ranges of pre-inc and post-inc expressions 2355 // in the loop body. In this case we do *not* want to use post-inc expressions 2356 // in the latch check, and we want to insert post-inc expressions before 2357 // the backedge. 2358 BasicBlock *LatchBlock = L->getLoopLatch(); 2359 SmallVector<BasicBlock*, 8> ExitingBlocks; 2360 L->getExitingBlocks(ExitingBlocks); 2361 if (llvm::all_of(ExitingBlocks, [&LatchBlock](const BasicBlock *BB) { 2362 return LatchBlock != BB; 2363 })) { 2364 // The backedge doesn't exit the loop; treat this as a head-tested loop. 2365 IVIncInsertPos = LatchBlock->getTerminator(); 2366 return; 2367 } 2368 2369 // Otherwise treat this as a rotated loop. 2370 for (BasicBlock *ExitingBlock : ExitingBlocks) { 2371 // Get the terminating condition for the loop if possible. If we 2372 // can, we want to change it to use a post-incremented version of its 2373 // induction variable, to allow coalescing the live ranges for the IV into 2374 // one register value. 2375 2376 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 2377 if (!TermBr) 2378 continue; 2379 // FIXME: Overly conservative, termination condition could be an 'or' etc.. 2380 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition())) 2381 continue; 2382 2383 // Search IVUsesByStride to find Cond's IVUse if there is one. 2384 IVStrideUse *CondUse = nullptr; 2385 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition()); 2386 if (!FindIVUserForCond(Cond, CondUse)) 2387 continue; 2388 2389 // If the trip count is computed in terms of a max (due to ScalarEvolution 2390 // being unable to find a sufficient guard, for example), change the loop 2391 // comparison to use SLT or ULT instead of NE. 2392 // One consequence of doing this now is that it disrupts the count-down 2393 // optimization. That's not always a bad thing though, because in such 2394 // cases it may still be worthwhile to avoid a max. 2395 Cond = OptimizeMax(Cond, CondUse); 2396 2397 // If this exiting block dominates the latch block, it may also use 2398 // the post-inc value if it won't be shared with other uses. 2399 // Check for dominance. 2400 if (!DT.dominates(ExitingBlock, LatchBlock)) 2401 continue; 2402 2403 // Conservatively avoid trying to use the post-inc value in non-latch 2404 // exits if there may be pre-inc users in intervening blocks. 2405 if (LatchBlock != ExitingBlock) 2406 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) 2407 // Test if the use is reachable from the exiting block. This dominator 2408 // query is a conservative approximation of reachability. 2409 if (&*UI != CondUse && 2410 !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) { 2411 // Conservatively assume there may be reuse if the quotient of their 2412 // strides could be a legal scale. 2413 const SCEV *A = IU.getStride(*CondUse, L); 2414 const SCEV *B = IU.getStride(*UI, L); 2415 if (!A || !B) continue; 2416 if (SE.getTypeSizeInBits(A->getType()) != 2417 SE.getTypeSizeInBits(B->getType())) { 2418 if (SE.getTypeSizeInBits(A->getType()) > 2419 SE.getTypeSizeInBits(B->getType())) 2420 B = SE.getSignExtendExpr(B, A->getType()); 2421 else 2422 A = SE.getSignExtendExpr(A, B->getType()); 2423 } 2424 if (const SCEVConstant *D = 2425 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) { 2426 const ConstantInt *C = D->getValue(); 2427 // Stride of one or negative one can have reuse with non-addresses. 2428 if (C->isOne() || C->isMinusOne()) 2429 goto decline_post_inc; 2430 // Avoid weird situations. 2431 if (C->getValue().getMinSignedBits() >= 64 || 2432 C->getValue().isMinSignedValue()) 2433 goto decline_post_inc; 2434 // Check for possible scaled-address reuse. 2435 if (isAddressUse(TTI, UI->getUser(), UI->getOperandValToReplace())) { 2436 MemAccessTy AccessTy = getAccessType( 2437 TTI, UI->getUser(), UI->getOperandValToReplace()); 2438 int64_t Scale = C->getSExtValue(); 2439 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2440 /*BaseOffset=*/0, 2441 /*HasBaseReg=*/false, Scale, 2442 AccessTy.AddrSpace)) 2443 goto decline_post_inc; 2444 Scale = -Scale; 2445 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2446 /*BaseOffset=*/0, 2447 /*HasBaseReg=*/false, Scale, 2448 AccessTy.AddrSpace)) 2449 goto decline_post_inc; 2450 } 2451 } 2452 } 2453 2454 LLVM_DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: " 2455 << *Cond << '\n'); 2456 2457 // It's possible for the setcc instruction to be anywhere in the loop, and 2458 // possible for it to have multiple users. If it is not immediately before 2459 // the exiting block branch, move it. 2460 if (&*++BasicBlock::iterator(Cond) != TermBr) { 2461 if (Cond->hasOneUse()) { 2462 Cond->moveBefore(TermBr); 2463 } else { 2464 // Clone the terminating condition and insert into the loopend. 2465 ICmpInst *OldCond = Cond; 2466 Cond = cast<ICmpInst>(Cond->clone()); 2467 Cond->setName(L->getHeader()->getName() + ".termcond"); 2468 ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond); 2469 2470 // Clone the IVUse, as the old use still exists! 2471 CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace()); 2472 TermBr->replaceUsesOfWith(OldCond, Cond); 2473 } 2474 } 2475 2476 // If we get to here, we know that we can transform the setcc instruction to 2477 // use the post-incremented version of the IV, allowing us to coalesce the 2478 // live ranges for the IV correctly. 2479 CondUse->transformToPostInc(L); 2480 Changed = true; 2481 2482 PostIncs.insert(Cond); 2483 decline_post_inc:; 2484 } 2485 2486 // Determine an insertion point for the loop induction variable increment. It 2487 // must dominate all the post-inc comparisons we just set up, and it must 2488 // dominate the loop latch edge. 2489 IVIncInsertPos = L->getLoopLatch()->getTerminator(); 2490 for (Instruction *Inst : PostIncs) { 2491 BasicBlock *BB = 2492 DT.findNearestCommonDominator(IVIncInsertPos->getParent(), 2493 Inst->getParent()); 2494 if (BB == Inst->getParent()) 2495 IVIncInsertPos = Inst; 2496 else if (BB != IVIncInsertPos->getParent()) 2497 IVIncInsertPos = BB->getTerminator(); 2498 } 2499 } 2500 2501 /// Determine if the given use can accommodate a fixup at the given offset and 2502 /// other details. If so, update the use and return true. 2503 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, 2504 bool HasBaseReg, LSRUse::KindType Kind, 2505 MemAccessTy AccessTy) { 2506 int64_t NewMinOffset = LU.MinOffset; 2507 int64_t NewMaxOffset = LU.MaxOffset; 2508 MemAccessTy NewAccessTy = AccessTy; 2509 2510 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to 2511 // something conservative, however this can pessimize in the case that one of 2512 // the uses will have all its uses outside the loop, for example. 2513 if (LU.Kind != Kind) 2514 return false; 2515 2516 // Check for a mismatched access type, and fall back conservatively as needed. 2517 // TODO: Be less conservative when the type is similar and can use the same 2518 // addressing modes. 2519 if (Kind == LSRUse::Address) { 2520 if (AccessTy.MemTy != LU.AccessTy.MemTy) { 2521 NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(), 2522 AccessTy.AddrSpace); 2523 } 2524 } 2525 2526 // Conservatively assume HasBaseReg is true for now. 2527 if (NewOffset < LU.MinOffset) { 2528 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2529 LU.MaxOffset - NewOffset, HasBaseReg)) 2530 return false; 2531 NewMinOffset = NewOffset; 2532 } else if (NewOffset > LU.MaxOffset) { 2533 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2534 NewOffset - LU.MinOffset, HasBaseReg)) 2535 return false; 2536 NewMaxOffset = NewOffset; 2537 } 2538 2539 // Update the use. 2540 LU.MinOffset = NewMinOffset; 2541 LU.MaxOffset = NewMaxOffset; 2542 LU.AccessTy = NewAccessTy; 2543 return true; 2544 } 2545 2546 /// Return an LSRUse index and an offset value for a fixup which needs the given 2547 /// expression, with the given kind and optional access type. Either reuse an 2548 /// existing use or create a new one, as needed. 2549 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr, 2550 LSRUse::KindType Kind, 2551 MemAccessTy AccessTy) { 2552 const SCEV *Copy = Expr; 2553 int64_t Offset = ExtractImmediate(Expr, SE); 2554 2555 // Basic uses can't accept any offset, for example. 2556 if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr, 2557 Offset, /*HasBaseReg=*/ true)) { 2558 Expr = Copy; 2559 Offset = 0; 2560 } 2561 2562 std::pair<UseMapTy::iterator, bool> P = 2563 UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0)); 2564 if (!P.second) { 2565 // A use already existed with this base. 2566 size_t LUIdx = P.first->second; 2567 LSRUse &LU = Uses[LUIdx]; 2568 if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy)) 2569 // Reuse this use. 2570 return std::make_pair(LUIdx, Offset); 2571 } 2572 2573 // Create a new use. 2574 size_t LUIdx = Uses.size(); 2575 P.first->second = LUIdx; 2576 Uses.push_back(LSRUse(Kind, AccessTy)); 2577 LSRUse &LU = Uses[LUIdx]; 2578 2579 LU.MinOffset = Offset; 2580 LU.MaxOffset = Offset; 2581 return std::make_pair(LUIdx, Offset); 2582 } 2583 2584 /// Delete the given use from the Uses list. 2585 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) { 2586 if (&LU != &Uses.back()) 2587 std::swap(LU, Uses.back()); 2588 Uses.pop_back(); 2589 2590 // Update RegUses. 2591 RegUses.swapAndDropUse(LUIdx, Uses.size()); 2592 } 2593 2594 /// Look for a use distinct from OrigLU which is has a formula that has the same 2595 /// registers as the given formula. 2596 LSRUse * 2597 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF, 2598 const LSRUse &OrigLU) { 2599 // Search all uses for the formula. This could be more clever. 2600 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 2601 LSRUse &LU = Uses[LUIdx]; 2602 // Check whether this use is close enough to OrigLU, to see whether it's 2603 // worthwhile looking through its formulae. 2604 // Ignore ICmpZero uses because they may contain formulae generated by 2605 // GenerateICmpZeroScales, in which case adding fixup offsets may 2606 // be invalid. 2607 if (&LU != &OrigLU && 2608 LU.Kind != LSRUse::ICmpZero && 2609 LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy && 2610 LU.WidestFixupType == OrigLU.WidestFixupType && 2611 LU.HasFormulaWithSameRegs(OrigF)) { 2612 // Scan through this use's formulae. 2613 for (const Formula &F : LU.Formulae) { 2614 // Check to see if this formula has the same registers and symbols 2615 // as OrigF. 2616 if (F.BaseRegs == OrigF.BaseRegs && 2617 F.ScaledReg == OrigF.ScaledReg && 2618 F.BaseGV == OrigF.BaseGV && 2619 F.Scale == OrigF.Scale && 2620 F.UnfoldedOffset == OrigF.UnfoldedOffset) { 2621 if (F.BaseOffset == 0) 2622 return &LU; 2623 // This is the formula where all the registers and symbols matched; 2624 // there aren't going to be any others. Since we declined it, we 2625 // can skip the rest of the formulae and proceed to the next LSRUse. 2626 break; 2627 } 2628 } 2629 } 2630 } 2631 2632 // Nothing looked good. 2633 return nullptr; 2634 } 2635 2636 void LSRInstance::CollectInterestingTypesAndFactors() { 2637 SmallSetVector<const SCEV *, 4> Strides; 2638 2639 // Collect interesting types and strides. 2640 SmallVector<const SCEV *, 4> Worklist; 2641 for (const IVStrideUse &U : IU) { 2642 const SCEV *Expr = IU.getExpr(U); 2643 2644 // Collect interesting types. 2645 Types.insert(SE.getEffectiveSCEVType(Expr->getType())); 2646 2647 // Add strides for mentioned loops. 2648 Worklist.push_back(Expr); 2649 do { 2650 const SCEV *S = Worklist.pop_back_val(); 2651 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2652 if (AR->getLoop() == L) 2653 Strides.insert(AR->getStepRecurrence(SE)); 2654 Worklist.push_back(AR->getStart()); 2655 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2656 Worklist.append(Add->op_begin(), Add->op_end()); 2657 } 2658 } while (!Worklist.empty()); 2659 } 2660 2661 // Compute interesting factors from the set of interesting strides. 2662 for (SmallSetVector<const SCEV *, 4>::const_iterator 2663 I = Strides.begin(), E = Strides.end(); I != E; ++I) 2664 for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter = 2665 std::next(I); NewStrideIter != E; ++NewStrideIter) { 2666 const SCEV *OldStride = *I; 2667 const SCEV *NewStride = *NewStrideIter; 2668 2669 if (SE.getTypeSizeInBits(OldStride->getType()) != 2670 SE.getTypeSizeInBits(NewStride->getType())) { 2671 if (SE.getTypeSizeInBits(OldStride->getType()) > 2672 SE.getTypeSizeInBits(NewStride->getType())) 2673 NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType()); 2674 else 2675 OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType()); 2676 } 2677 if (const SCEVConstant *Factor = 2678 dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride, 2679 SE, true))) { 2680 if (Factor->getAPInt().getMinSignedBits() <= 64) 2681 Factors.insert(Factor->getAPInt().getSExtValue()); 2682 } else if (const SCEVConstant *Factor = 2683 dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride, 2684 NewStride, 2685 SE, true))) { 2686 if (Factor->getAPInt().getMinSignedBits() <= 64) 2687 Factors.insert(Factor->getAPInt().getSExtValue()); 2688 } 2689 } 2690 2691 // If all uses use the same type, don't bother looking for truncation-based 2692 // reuse. 2693 if (Types.size() == 1) 2694 Types.clear(); 2695 2696 LLVM_DEBUG(print_factors_and_types(dbgs())); 2697 } 2698 2699 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in 2700 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to 2701 /// IVStrideUses, we could partially skip this. 2702 static User::op_iterator 2703 findIVOperand(User::op_iterator OI, User::op_iterator OE, 2704 Loop *L, ScalarEvolution &SE) { 2705 for(; OI != OE; ++OI) { 2706 if (Instruction *Oper = dyn_cast<Instruction>(*OI)) { 2707 if (!SE.isSCEVable(Oper->getType())) 2708 continue; 2709 2710 if (const SCEVAddRecExpr *AR = 2711 dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) { 2712 if (AR->getLoop() == L) 2713 break; 2714 } 2715 } 2716 } 2717 return OI; 2718 } 2719 2720 /// IVChain logic must consistently peek base TruncInst operands, so wrap it in 2721 /// a convenient helper. 2722 static Value *getWideOperand(Value *Oper) { 2723 if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper)) 2724 return Trunc->getOperand(0); 2725 return Oper; 2726 } 2727 2728 /// Return true if we allow an IV chain to include both types. 2729 static bool isCompatibleIVType(Value *LVal, Value *RVal) { 2730 Type *LType = LVal->getType(); 2731 Type *RType = RVal->getType(); 2732 return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy() && 2733 // Different address spaces means (possibly) 2734 // different types of the pointer implementation, 2735 // e.g. i16 vs i32 so disallow that. 2736 (LType->getPointerAddressSpace() == 2737 RType->getPointerAddressSpace())); 2738 } 2739 2740 /// Return an approximation of this SCEV expression's "base", or NULL for any 2741 /// constant. Returning the expression itself is conservative. Returning a 2742 /// deeper subexpression is more precise and valid as long as it isn't less 2743 /// complex than another subexpression. For expressions involving multiple 2744 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids 2745 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i], 2746 /// IVInc==b-a. 2747 /// 2748 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost 2749 /// SCEVUnknown, we simply return the rightmost SCEV operand. 2750 static const SCEV *getExprBase(const SCEV *S) { 2751 switch (S->getSCEVType()) { 2752 default: // uncluding scUnknown. 2753 return S; 2754 case scConstant: 2755 return nullptr; 2756 case scTruncate: 2757 return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand()); 2758 case scZeroExtend: 2759 return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand()); 2760 case scSignExtend: 2761 return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand()); 2762 case scAddExpr: { 2763 // Skip over scaled operands (scMulExpr) to follow add operands as long as 2764 // there's nothing more complex. 2765 // FIXME: not sure if we want to recognize negation. 2766 const SCEVAddExpr *Add = cast<SCEVAddExpr>(S); 2767 for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()), 2768 E(Add->op_begin()); I != E; ++I) { 2769 const SCEV *SubExpr = *I; 2770 if (SubExpr->getSCEVType() == scAddExpr) 2771 return getExprBase(SubExpr); 2772 2773 if (SubExpr->getSCEVType() != scMulExpr) 2774 return SubExpr; 2775 } 2776 return S; // all operands are scaled, be conservative. 2777 } 2778 case scAddRecExpr: 2779 return getExprBase(cast<SCEVAddRecExpr>(S)->getStart()); 2780 } 2781 } 2782 2783 /// Return true if the chain increment is profitable to expand into a loop 2784 /// invariant value, which may require its own register. A profitable chain 2785 /// increment will be an offset relative to the same base. We allow such offsets 2786 /// to potentially be used as chain increment as long as it's not obviously 2787 /// expensive to expand using real instructions. 2788 bool IVChain::isProfitableIncrement(const SCEV *OperExpr, 2789 const SCEV *IncExpr, 2790 ScalarEvolution &SE) { 2791 // Aggressively form chains when -stress-ivchain. 2792 if (StressIVChain) 2793 return true; 2794 2795 // Do not replace a constant offset from IV head with a nonconstant IV 2796 // increment. 2797 if (!isa<SCEVConstant>(IncExpr)) { 2798 const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand)); 2799 if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr))) 2800 return false; 2801 } 2802 2803 SmallPtrSet<const SCEV*, 8> Processed; 2804 return !isHighCostExpansion(IncExpr, Processed, SE); 2805 } 2806 2807 /// Return true if the number of registers needed for the chain is estimated to 2808 /// be less than the number required for the individual IV users. First prohibit 2809 /// any IV users that keep the IV live across increments (the Users set should 2810 /// be empty). Next count the number and type of increments in the chain. 2811 /// 2812 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't 2813 /// effectively use postinc addressing modes. Only consider it profitable it the 2814 /// increments can be computed in fewer registers when chained. 2815 /// 2816 /// TODO: Consider IVInc free if it's already used in another chains. 2817 static bool 2818 isProfitableChain(IVChain &Chain, SmallPtrSetImpl<Instruction*> &Users, 2819 ScalarEvolution &SE) { 2820 if (StressIVChain) 2821 return true; 2822 2823 if (!Chain.hasIncs()) 2824 return false; 2825 2826 if (!Users.empty()) { 2827 LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n"; 2828 for (Instruction *Inst 2829 : Users) { dbgs() << " " << *Inst << "\n"; }); 2830 return false; 2831 } 2832 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 2833 2834 // The chain itself may require a register, so intialize cost to 1. 2835 int cost = 1; 2836 2837 // A complete chain likely eliminates the need for keeping the original IV in 2838 // a register. LSR does not currently know how to form a complete chain unless 2839 // the header phi already exists. 2840 if (isa<PHINode>(Chain.tailUserInst()) 2841 && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) { 2842 --cost; 2843 } 2844 const SCEV *LastIncExpr = nullptr; 2845 unsigned NumConstIncrements = 0; 2846 unsigned NumVarIncrements = 0; 2847 unsigned NumReusedIncrements = 0; 2848 for (const IVInc &Inc : Chain) { 2849 if (Inc.IncExpr->isZero()) 2850 continue; 2851 2852 // Incrementing by zero or some constant is neutral. We assume constants can 2853 // be folded into an addressing mode or an add's immediate operand. 2854 if (isa<SCEVConstant>(Inc.IncExpr)) { 2855 ++NumConstIncrements; 2856 continue; 2857 } 2858 2859 if (Inc.IncExpr == LastIncExpr) 2860 ++NumReusedIncrements; 2861 else 2862 ++NumVarIncrements; 2863 2864 LastIncExpr = Inc.IncExpr; 2865 } 2866 // An IV chain with a single increment is handled by LSR's postinc 2867 // uses. However, a chain with multiple increments requires keeping the IV's 2868 // value live longer than it needs to be if chained. 2869 if (NumConstIncrements > 1) 2870 --cost; 2871 2872 // Materializing increment expressions in the preheader that didn't exist in 2873 // the original code may cost a register. For example, sign-extended array 2874 // indices can produce ridiculous increments like this: 2875 // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64))) 2876 cost += NumVarIncrements; 2877 2878 // Reusing variable increments likely saves a register to hold the multiple of 2879 // the stride. 2880 cost -= NumReusedIncrements; 2881 2882 LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost 2883 << "\n"); 2884 2885 return cost < 0; 2886 } 2887 2888 /// Add this IV user to an existing chain or make it the head of a new chain. 2889 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper, 2890 SmallVectorImpl<ChainUsers> &ChainUsersVec) { 2891 // When IVs are used as types of varying widths, they are generally converted 2892 // to a wider type with some uses remaining narrow under a (free) trunc. 2893 Value *const NextIV = getWideOperand(IVOper); 2894 const SCEV *const OperExpr = SE.getSCEV(NextIV); 2895 const SCEV *const OperExprBase = getExprBase(OperExpr); 2896 2897 // Visit all existing chains. Check if its IVOper can be computed as a 2898 // profitable loop invariant increment from the last link in the Chain. 2899 unsigned ChainIdx = 0, NChains = IVChainVec.size(); 2900 const SCEV *LastIncExpr = nullptr; 2901 for (; ChainIdx < NChains; ++ChainIdx) { 2902 IVChain &Chain = IVChainVec[ChainIdx]; 2903 2904 // Prune the solution space aggressively by checking that both IV operands 2905 // are expressions that operate on the same unscaled SCEVUnknown. This 2906 // "base" will be canceled by the subsequent getMinusSCEV call. Checking 2907 // first avoids creating extra SCEV expressions. 2908 if (!StressIVChain && Chain.ExprBase != OperExprBase) 2909 continue; 2910 2911 Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand); 2912 if (!isCompatibleIVType(PrevIV, NextIV)) 2913 continue; 2914 2915 // A phi node terminates a chain. 2916 if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst())) 2917 continue; 2918 2919 // The increment must be loop-invariant so it can be kept in a register. 2920 const SCEV *PrevExpr = SE.getSCEV(PrevIV); 2921 const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr); 2922 if (!SE.isLoopInvariant(IncExpr, L)) 2923 continue; 2924 2925 if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) { 2926 LastIncExpr = IncExpr; 2927 break; 2928 } 2929 } 2930 // If we haven't found a chain, create a new one, unless we hit the max. Don't 2931 // bother for phi nodes, because they must be last in the chain. 2932 if (ChainIdx == NChains) { 2933 if (isa<PHINode>(UserInst)) 2934 return; 2935 if (NChains >= MaxChains && !StressIVChain) { 2936 LLVM_DEBUG(dbgs() << "IV Chain Limit\n"); 2937 return; 2938 } 2939 LastIncExpr = OperExpr; 2940 // IVUsers may have skipped over sign/zero extensions. We don't currently 2941 // attempt to form chains involving extensions unless they can be hoisted 2942 // into this loop's AddRec. 2943 if (!isa<SCEVAddRecExpr>(LastIncExpr)) 2944 return; 2945 ++NChains; 2946 IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr), 2947 OperExprBase)); 2948 ChainUsersVec.resize(NChains); 2949 LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst 2950 << ") IV=" << *LastIncExpr << "\n"); 2951 } else { 2952 LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Inc: (" << *UserInst 2953 << ") IV+" << *LastIncExpr << "\n"); 2954 // Add this IV user to the end of the chain. 2955 IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr)); 2956 } 2957 IVChain &Chain = IVChainVec[ChainIdx]; 2958 2959 SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers; 2960 // This chain's NearUsers become FarUsers. 2961 if (!LastIncExpr->isZero()) { 2962 ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(), 2963 NearUsers.end()); 2964 NearUsers.clear(); 2965 } 2966 2967 // All other uses of IVOperand become near uses of the chain. 2968 // We currently ignore intermediate values within SCEV expressions, assuming 2969 // they will eventually be used be the current chain, or can be computed 2970 // from one of the chain increments. To be more precise we could 2971 // transitively follow its user and only add leaf IV users to the set. 2972 for (User *U : IVOper->users()) { 2973 Instruction *OtherUse = dyn_cast<Instruction>(U); 2974 if (!OtherUse) 2975 continue; 2976 // Uses in the chain will no longer be uses if the chain is formed. 2977 // Include the head of the chain in this iteration (not Chain.begin()). 2978 IVChain::const_iterator IncIter = Chain.Incs.begin(); 2979 IVChain::const_iterator IncEnd = Chain.Incs.end(); 2980 for( ; IncIter != IncEnd; ++IncIter) { 2981 if (IncIter->UserInst == OtherUse) 2982 break; 2983 } 2984 if (IncIter != IncEnd) 2985 continue; 2986 2987 if (SE.isSCEVable(OtherUse->getType()) 2988 && !isa<SCEVUnknown>(SE.getSCEV(OtherUse)) 2989 && IU.isIVUserOrOperand(OtherUse)) { 2990 continue; 2991 } 2992 NearUsers.insert(OtherUse); 2993 } 2994 2995 // Since this user is part of the chain, it's no longer considered a use 2996 // of the chain. 2997 ChainUsersVec[ChainIdx].FarUsers.erase(UserInst); 2998 } 2999 3000 /// Populate the vector of Chains. 3001 /// 3002 /// This decreases ILP at the architecture level. Targets with ample registers, 3003 /// multiple memory ports, and no register renaming probably don't want 3004 /// this. However, such targets should probably disable LSR altogether. 3005 /// 3006 /// The job of LSR is to make a reasonable choice of induction variables across 3007 /// the loop. Subsequent passes can easily "unchain" computation exposing more 3008 /// ILP *within the loop* if the target wants it. 3009 /// 3010 /// Finding the best IV chain is potentially a scheduling problem. Since LSR 3011 /// will not reorder memory operations, it will recognize this as a chain, but 3012 /// will generate redundant IV increments. Ideally this would be corrected later 3013 /// by a smart scheduler: 3014 /// = A[i] 3015 /// = A[i+x] 3016 /// A[i] = 3017 /// A[i+x] = 3018 /// 3019 /// TODO: Walk the entire domtree within this loop, not just the path to the 3020 /// loop latch. This will discover chains on side paths, but requires 3021 /// maintaining multiple copies of the Chains state. 3022 void LSRInstance::CollectChains() { 3023 LLVM_DEBUG(dbgs() << "Collecting IV Chains.\n"); 3024 SmallVector<ChainUsers, 8> ChainUsersVec; 3025 3026 SmallVector<BasicBlock *,8> LatchPath; 3027 BasicBlock *LoopHeader = L->getHeader(); 3028 for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch()); 3029 Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) { 3030 LatchPath.push_back(Rung->getBlock()); 3031 } 3032 LatchPath.push_back(LoopHeader); 3033 3034 // Walk the instruction stream from the loop header to the loop latch. 3035 for (BasicBlock *BB : reverse(LatchPath)) { 3036 for (Instruction &I : *BB) { 3037 // Skip instructions that weren't seen by IVUsers analysis. 3038 if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I)) 3039 continue; 3040 3041 // Ignore users that are part of a SCEV expression. This way we only 3042 // consider leaf IV Users. This effectively rediscovers a portion of 3043 // IVUsers analysis but in program order this time. 3044 if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I))) 3045 continue; 3046 3047 // Remove this instruction from any NearUsers set it may be in. 3048 for (unsigned ChainIdx = 0, NChains = IVChainVec.size(); 3049 ChainIdx < NChains; ++ChainIdx) { 3050 ChainUsersVec[ChainIdx].NearUsers.erase(&I); 3051 } 3052 // Search for operands that can be chained. 3053 SmallPtrSet<Instruction*, 4> UniqueOperands; 3054 User::op_iterator IVOpEnd = I.op_end(); 3055 User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE); 3056 while (IVOpIter != IVOpEnd) { 3057 Instruction *IVOpInst = cast<Instruction>(*IVOpIter); 3058 if (UniqueOperands.insert(IVOpInst).second) 3059 ChainInstruction(&I, IVOpInst, ChainUsersVec); 3060 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 3061 } 3062 } // Continue walking down the instructions. 3063 } // Continue walking down the domtree. 3064 // Visit phi backedges to determine if the chain can generate the IV postinc. 3065 for (PHINode &PN : L->getHeader()->phis()) { 3066 if (!SE.isSCEVable(PN.getType())) 3067 continue; 3068 3069 Instruction *IncV = 3070 dyn_cast<Instruction>(PN.getIncomingValueForBlock(L->getLoopLatch())); 3071 if (IncV) 3072 ChainInstruction(&PN, IncV, ChainUsersVec); 3073 } 3074 // Remove any unprofitable chains. 3075 unsigned ChainIdx = 0; 3076 for (unsigned UsersIdx = 0, NChains = IVChainVec.size(); 3077 UsersIdx < NChains; ++UsersIdx) { 3078 if (!isProfitableChain(IVChainVec[UsersIdx], 3079 ChainUsersVec[UsersIdx].FarUsers, SE)) 3080 continue; 3081 // Preserve the chain at UsesIdx. 3082 if (ChainIdx != UsersIdx) 3083 IVChainVec[ChainIdx] = IVChainVec[UsersIdx]; 3084 FinalizeChain(IVChainVec[ChainIdx]); 3085 ++ChainIdx; 3086 } 3087 IVChainVec.resize(ChainIdx); 3088 } 3089 3090 void LSRInstance::FinalizeChain(IVChain &Chain) { 3091 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 3092 LLVM_DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n"); 3093 3094 for (const IVInc &Inc : Chain) { 3095 LLVM_DEBUG(dbgs() << " Inc: " << *Inc.UserInst << "\n"); 3096 auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand); 3097 assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand"); 3098 IVIncSet.insert(UseI); 3099 } 3100 } 3101 3102 /// Return true if the IVInc can be folded into an addressing mode. 3103 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst, 3104 Value *Operand, const TargetTransformInfo &TTI) { 3105 const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr); 3106 if (!IncConst || !isAddressUse(TTI, UserInst, Operand)) 3107 return false; 3108 3109 if (IncConst->getAPInt().getMinSignedBits() > 64) 3110 return false; 3111 3112 MemAccessTy AccessTy = getAccessType(TTI, UserInst, Operand); 3113 int64_t IncOffset = IncConst->getValue()->getSExtValue(); 3114 if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr, 3115 IncOffset, /*HaseBaseReg=*/false)) 3116 return false; 3117 3118 return true; 3119 } 3120 3121 /// Generate an add or subtract for each IVInc in a chain to materialize the IV 3122 /// user's operand from the previous IV user's operand. 3123 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 3124 SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 3125 // Find the new IVOperand for the head of the chain. It may have been replaced 3126 // by LSR. 3127 const IVInc &Head = Chain.Incs[0]; 3128 User::op_iterator IVOpEnd = Head.UserInst->op_end(); 3129 // findIVOperand returns IVOpEnd if it can no longer find a valid IV user. 3130 User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(), 3131 IVOpEnd, L, SE); 3132 Value *IVSrc = nullptr; 3133 while (IVOpIter != IVOpEnd) { 3134 IVSrc = getWideOperand(*IVOpIter); 3135 3136 // If this operand computes the expression that the chain needs, we may use 3137 // it. (Check this after setting IVSrc which is used below.) 3138 // 3139 // Note that if Head.IncExpr is wider than IVSrc, then this phi is too 3140 // narrow for the chain, so we can no longer use it. We do allow using a 3141 // wider phi, assuming the LSR checked for free truncation. In that case we 3142 // should already have a truncate on this operand such that 3143 // getSCEV(IVSrc) == IncExpr. 3144 if (SE.getSCEV(*IVOpIter) == Head.IncExpr 3145 || SE.getSCEV(IVSrc) == Head.IncExpr) { 3146 break; 3147 } 3148 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 3149 } 3150 if (IVOpIter == IVOpEnd) { 3151 // Gracefully give up on this chain. 3152 LLVM_DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n"); 3153 return; 3154 } 3155 3156 LLVM_DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n"); 3157 Type *IVTy = IVSrc->getType(); 3158 Type *IntTy = SE.getEffectiveSCEVType(IVTy); 3159 const SCEV *LeftOverExpr = nullptr; 3160 for (const IVInc &Inc : Chain) { 3161 Instruction *InsertPt = Inc.UserInst; 3162 if (isa<PHINode>(InsertPt)) 3163 InsertPt = L->getLoopLatch()->getTerminator(); 3164 3165 // IVOper will replace the current IV User's operand. IVSrc is the IV 3166 // value currently held in a register. 3167 Value *IVOper = IVSrc; 3168 if (!Inc.IncExpr->isZero()) { 3169 // IncExpr was the result of subtraction of two narrow values, so must 3170 // be signed. 3171 const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy); 3172 LeftOverExpr = LeftOverExpr ? 3173 SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr; 3174 } 3175 if (LeftOverExpr && !LeftOverExpr->isZero()) { 3176 // Expand the IV increment. 3177 Rewriter.clearPostInc(); 3178 Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt); 3179 const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc), 3180 SE.getUnknown(IncV)); 3181 IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt); 3182 3183 // If an IV increment can't be folded, use it as the next IV value. 3184 if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) { 3185 assert(IVTy == IVOper->getType() && "inconsistent IV increment type"); 3186 IVSrc = IVOper; 3187 LeftOverExpr = nullptr; 3188 } 3189 } 3190 Type *OperTy = Inc.IVOperand->getType(); 3191 if (IVTy != OperTy) { 3192 assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) && 3193 "cannot extend a chained IV"); 3194 IRBuilder<> Builder(InsertPt); 3195 IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain"); 3196 } 3197 Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper); 3198 DeadInsts.emplace_back(Inc.IVOperand); 3199 } 3200 // If LSR created a new, wider phi, we may also replace its postinc. We only 3201 // do this if we also found a wide value for the head of the chain. 3202 if (isa<PHINode>(Chain.tailUserInst())) { 3203 for (PHINode &Phi : L->getHeader()->phis()) { 3204 if (!isCompatibleIVType(&Phi, IVSrc)) 3205 continue; 3206 Instruction *PostIncV = dyn_cast<Instruction>( 3207 Phi.getIncomingValueForBlock(L->getLoopLatch())); 3208 if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc))) 3209 continue; 3210 Value *IVOper = IVSrc; 3211 Type *PostIncTy = PostIncV->getType(); 3212 if (IVTy != PostIncTy) { 3213 assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types"); 3214 IRBuilder<> Builder(L->getLoopLatch()->getTerminator()); 3215 Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc()); 3216 IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain"); 3217 } 3218 Phi.replaceUsesOfWith(PostIncV, IVOper); 3219 DeadInsts.emplace_back(PostIncV); 3220 } 3221 } 3222 } 3223 3224 void LSRInstance::CollectFixupsAndInitialFormulae() { 3225 for (const IVStrideUse &U : IU) { 3226 Instruction *UserInst = U.getUser(); 3227 // Skip IV users that are part of profitable IV Chains. 3228 User::op_iterator UseI = 3229 find(UserInst->operands(), U.getOperandValToReplace()); 3230 assert(UseI != UserInst->op_end() && "cannot find IV operand"); 3231 if (IVIncSet.count(UseI)) { 3232 LLVM_DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n'); 3233 continue; 3234 } 3235 3236 LSRUse::KindType Kind = LSRUse::Basic; 3237 MemAccessTy AccessTy; 3238 if (isAddressUse(TTI, UserInst, U.getOperandValToReplace())) { 3239 Kind = LSRUse::Address; 3240 AccessTy = getAccessType(TTI, UserInst, U.getOperandValToReplace()); 3241 } 3242 3243 const SCEV *S = IU.getExpr(U); 3244 PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops(); 3245 3246 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as 3247 // (N - i == 0), and this allows (N - i) to be the expression that we work 3248 // with rather than just N or i, so we can consider the register 3249 // requirements for both N and i at the same time. Limiting this code to 3250 // equality icmps is not a problem because all interesting loops use 3251 // equality icmps, thanks to IndVarSimplify. 3252 if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst)) 3253 if (CI->isEquality()) { 3254 // Swap the operands if needed to put the OperandValToReplace on the 3255 // left, for consistency. 3256 Value *NV = CI->getOperand(1); 3257 if (NV == U.getOperandValToReplace()) { 3258 CI->setOperand(1, CI->getOperand(0)); 3259 CI->setOperand(0, NV); 3260 NV = CI->getOperand(1); 3261 Changed = true; 3262 } 3263 3264 // x == y --> x - y == 0 3265 const SCEV *N = SE.getSCEV(NV); 3266 if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) { 3267 // S is normalized, so normalize N before folding it into S 3268 // to keep the result normalized. 3269 N = normalizeForPostIncUse(N, TmpPostIncLoops, SE); 3270 Kind = LSRUse::ICmpZero; 3271 S = SE.getMinusSCEV(N, S); 3272 } 3273 3274 // -1 and the negations of all interesting strides (except the negation 3275 // of -1) are now also interesting. 3276 for (size_t i = 0, e = Factors.size(); i != e; ++i) 3277 if (Factors[i] != -1) 3278 Factors.insert(-(uint64_t)Factors[i]); 3279 Factors.insert(-1); 3280 } 3281 3282 // Get or create an LSRUse. 3283 std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy); 3284 size_t LUIdx = P.first; 3285 int64_t Offset = P.second; 3286 LSRUse &LU = Uses[LUIdx]; 3287 3288 // Record the fixup. 3289 LSRFixup &LF = LU.getNewFixup(); 3290 LF.UserInst = UserInst; 3291 LF.OperandValToReplace = U.getOperandValToReplace(); 3292 LF.PostIncLoops = TmpPostIncLoops; 3293 LF.Offset = Offset; 3294 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3295 3296 if (!LU.WidestFixupType || 3297 SE.getTypeSizeInBits(LU.WidestFixupType) < 3298 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3299 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3300 3301 // If this is the first use of this LSRUse, give it a formula. 3302 if (LU.Formulae.empty()) { 3303 InsertInitialFormula(S, LU, LUIdx); 3304 CountRegisters(LU.Formulae.back(), LUIdx); 3305 } 3306 } 3307 3308 LLVM_DEBUG(print_fixups(dbgs())); 3309 } 3310 3311 /// Insert a formula for the given expression into the given use, separating out 3312 /// loop-variant portions from loop-invariant and loop-computable portions. 3313 void 3314 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) { 3315 // Mark uses whose expressions cannot be expanded. 3316 if (!isSafeToExpand(S, SE)) 3317 LU.RigidFormula = true; 3318 3319 Formula F; 3320 F.initialMatch(S, L, SE); 3321 bool Inserted = InsertFormula(LU, LUIdx, F); 3322 assert(Inserted && "Initial formula already exists!"); (void)Inserted; 3323 } 3324 3325 /// Insert a simple single-register formula for the given expression into the 3326 /// given use. 3327 void 3328 LSRInstance::InsertSupplementalFormula(const SCEV *S, 3329 LSRUse &LU, size_t LUIdx) { 3330 Formula F; 3331 F.BaseRegs.push_back(S); 3332 F.HasBaseReg = true; 3333 bool Inserted = InsertFormula(LU, LUIdx, F); 3334 assert(Inserted && "Supplemental formula already exists!"); (void)Inserted; 3335 } 3336 3337 /// Note which registers are used by the given formula, updating RegUses. 3338 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) { 3339 if (F.ScaledReg) 3340 RegUses.countRegister(F.ScaledReg, LUIdx); 3341 for (const SCEV *BaseReg : F.BaseRegs) 3342 RegUses.countRegister(BaseReg, LUIdx); 3343 } 3344 3345 /// If the given formula has not yet been inserted, add it to the list, and 3346 /// return true. Return false otherwise. 3347 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) { 3348 // Do not insert formula that we will not be able to expand. 3349 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) && 3350 "Formula is illegal"); 3351 3352 if (!LU.InsertFormula(F, *L)) 3353 return false; 3354 3355 CountRegisters(F, LUIdx); 3356 return true; 3357 } 3358 3359 /// Check for other uses of loop-invariant values which we're tracking. These 3360 /// other uses will pin these values in registers, making them less profitable 3361 /// for elimination. 3362 /// TODO: This currently misses non-constant addrec step registers. 3363 /// TODO: Should this give more weight to users inside the loop? 3364 void 3365 LSRInstance::CollectLoopInvariantFixupsAndFormulae() { 3366 SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end()); 3367 SmallPtrSet<const SCEV *, 32> Visited; 3368 3369 while (!Worklist.empty()) { 3370 const SCEV *S = Worklist.pop_back_val(); 3371 3372 // Don't process the same SCEV twice 3373 if (!Visited.insert(S).second) 3374 continue; 3375 3376 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) 3377 Worklist.append(N->op_begin(), N->op_end()); 3378 else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) 3379 Worklist.push_back(C->getOperand()); 3380 else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 3381 Worklist.push_back(D->getLHS()); 3382 Worklist.push_back(D->getRHS()); 3383 } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) { 3384 const Value *V = US->getValue(); 3385 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 3386 // Look for instructions defined outside the loop. 3387 if (L->contains(Inst)) continue; 3388 } else if (isa<UndefValue>(V)) 3389 // Undef doesn't have a live range, so it doesn't matter. 3390 continue; 3391 for (const Use &U : V->uses()) { 3392 const Instruction *UserInst = dyn_cast<Instruction>(U.getUser()); 3393 // Ignore non-instructions. 3394 if (!UserInst) 3395 continue; 3396 // Ignore instructions in other functions (as can happen with 3397 // Constants). 3398 if (UserInst->getParent()->getParent() != L->getHeader()->getParent()) 3399 continue; 3400 // Ignore instructions not dominated by the loop. 3401 const BasicBlock *UseBB = !isa<PHINode>(UserInst) ? 3402 UserInst->getParent() : 3403 cast<PHINode>(UserInst)->getIncomingBlock( 3404 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 3405 if (!DT.dominates(L->getHeader(), UseBB)) 3406 continue; 3407 // Don't bother if the instruction is in a BB which ends in an EHPad. 3408 if (UseBB->getTerminator()->isEHPad()) 3409 continue; 3410 // Don't bother rewriting PHIs in catchswitch blocks. 3411 if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator())) 3412 continue; 3413 // Ignore uses which are part of other SCEV expressions, to avoid 3414 // analyzing them multiple times. 3415 if (SE.isSCEVable(UserInst->getType())) { 3416 const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst)); 3417 // If the user is a no-op, look through to its uses. 3418 if (!isa<SCEVUnknown>(UserS)) 3419 continue; 3420 if (UserS == US) { 3421 Worklist.push_back( 3422 SE.getUnknown(const_cast<Instruction *>(UserInst))); 3423 continue; 3424 } 3425 } 3426 // Ignore icmp instructions which are already being analyzed. 3427 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) { 3428 unsigned OtherIdx = !U.getOperandNo(); 3429 Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx)); 3430 if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L)) 3431 continue; 3432 } 3433 3434 std::pair<size_t, int64_t> P = getUse( 3435 S, LSRUse::Basic, MemAccessTy()); 3436 size_t LUIdx = P.first; 3437 int64_t Offset = P.second; 3438 LSRUse &LU = Uses[LUIdx]; 3439 LSRFixup &LF = LU.getNewFixup(); 3440 LF.UserInst = const_cast<Instruction *>(UserInst); 3441 LF.OperandValToReplace = U; 3442 LF.Offset = Offset; 3443 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3444 if (!LU.WidestFixupType || 3445 SE.getTypeSizeInBits(LU.WidestFixupType) < 3446 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3447 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3448 InsertSupplementalFormula(US, LU, LUIdx); 3449 CountRegisters(LU.Formulae.back(), Uses.size() - 1); 3450 break; 3451 } 3452 } 3453 } 3454 } 3455 3456 /// Split S into subexpressions which can be pulled out into separate 3457 /// registers. If C is non-null, multiply each subexpression by C. 3458 /// 3459 /// Return remainder expression after factoring the subexpressions captured by 3460 /// Ops. If Ops is complete, return NULL. 3461 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C, 3462 SmallVectorImpl<const SCEV *> &Ops, 3463 const Loop *L, 3464 ScalarEvolution &SE, 3465 unsigned Depth = 0) { 3466 // Arbitrarily cap recursion to protect compile time. 3467 if (Depth >= 3) 3468 return S; 3469 3470 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3471 // Break out add operands. 3472 for (const SCEV *S : Add->operands()) { 3473 const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1); 3474 if (Remainder) 3475 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3476 } 3477 return nullptr; 3478 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 3479 // Split a non-zero base out of an addrec. 3480 if (AR->getStart()->isZero() || !AR->isAffine()) 3481 return S; 3482 3483 const SCEV *Remainder = CollectSubexprs(AR->getStart(), 3484 C, Ops, L, SE, Depth+1); 3485 // Split the non-zero AddRec unless it is part of a nested recurrence that 3486 // does not pertain to this loop. 3487 if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) { 3488 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3489 Remainder = nullptr; 3490 } 3491 if (Remainder != AR->getStart()) { 3492 if (!Remainder) 3493 Remainder = SE.getConstant(AR->getType(), 0); 3494 return SE.getAddRecExpr(Remainder, 3495 AR->getStepRecurrence(SE), 3496 AR->getLoop(), 3497 //FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 3498 SCEV::FlagAnyWrap); 3499 } 3500 } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3501 // Break (C * (a + b + c)) into C*a + C*b + C*c. 3502 if (Mul->getNumOperands() != 2) 3503 return S; 3504 if (const SCEVConstant *Op0 = 3505 dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3506 C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0; 3507 const SCEV *Remainder = 3508 CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1); 3509 if (Remainder) 3510 Ops.push_back(SE.getMulExpr(C, Remainder)); 3511 return nullptr; 3512 } 3513 } 3514 return S; 3515 } 3516 3517 /// Return true if the SCEV represents a value that may end up as a 3518 /// post-increment operation. 3519 static bool mayUsePostIncMode(const TargetTransformInfo &TTI, 3520 LSRUse &LU, const SCEV *S, const Loop *L, 3521 ScalarEvolution &SE) { 3522 if (LU.Kind != LSRUse::Address || 3523 !LU.AccessTy.getType()->isIntOrIntVectorTy()) 3524 return false; 3525 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S); 3526 if (!AR) 3527 return false; 3528 const SCEV *LoopStep = AR->getStepRecurrence(SE); 3529 if (!isa<SCEVConstant>(LoopStep)) 3530 return false; 3531 if (LU.AccessTy.getType()->getScalarSizeInBits() != 3532 LoopStep->getType()->getScalarSizeInBits()) 3533 return false; 3534 // Check if a post-indexed load/store can be used. 3535 if (TTI.isIndexedLoadLegal(TTI.MIM_PostInc, AR->getType()) || 3536 TTI.isIndexedStoreLegal(TTI.MIM_PostInc, AR->getType())) { 3537 const SCEV *LoopStart = AR->getStart(); 3538 if (!isa<SCEVConstant>(LoopStart) && SE.isLoopInvariant(LoopStart, L)) 3539 return true; 3540 } 3541 return false; 3542 } 3543 3544 /// Helper function for LSRInstance::GenerateReassociations. 3545 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 3546 const Formula &Base, 3547 unsigned Depth, size_t Idx, 3548 bool IsScaledReg) { 3549 const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3550 // Don't generate reassociations for the base register of a value that 3551 // may generate a post-increment operator. The reason is that the 3552 // reassociations cause extra base+register formula to be created, 3553 // and possibly chosen, but the post-increment is more efficient. 3554 if (TTI.shouldFavorPostInc() && mayUsePostIncMode(TTI, LU, BaseReg, L, SE)) 3555 return; 3556 SmallVector<const SCEV *, 8> AddOps; 3557 const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE); 3558 if (Remainder) 3559 AddOps.push_back(Remainder); 3560 3561 if (AddOps.size() == 1) 3562 return; 3563 3564 for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(), 3565 JE = AddOps.end(); 3566 J != JE; ++J) { 3567 // Loop-variant "unknown" values are uninteresting; we won't be able to 3568 // do anything meaningful with them. 3569 if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L)) 3570 continue; 3571 3572 // Don't pull a constant into a register if the constant could be folded 3573 // into an immediate field. 3574 if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3575 LU.AccessTy, *J, Base.getNumRegs() > 1)) 3576 continue; 3577 3578 // Collect all operands except *J. 3579 SmallVector<const SCEV *, 8> InnerAddOps( 3580 ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J); 3581 InnerAddOps.append(std::next(J), 3582 ((const SmallVector<const SCEV *, 8> &)AddOps).end()); 3583 3584 // Don't leave just a constant behind in a register if the constant could 3585 // be folded into an immediate field. 3586 if (InnerAddOps.size() == 1 && 3587 isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3588 LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1)) 3589 continue; 3590 3591 const SCEV *InnerSum = SE.getAddExpr(InnerAddOps); 3592 if (InnerSum->isZero()) 3593 continue; 3594 Formula F = Base; 3595 3596 // Add the remaining pieces of the add back into the new formula. 3597 const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum); 3598 if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 && 3599 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3600 InnerSumSC->getValue()->getZExtValue())) { 3601 F.UnfoldedOffset = 3602 (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue(); 3603 if (IsScaledReg) 3604 F.ScaledReg = nullptr; 3605 else 3606 F.BaseRegs.erase(F.BaseRegs.begin() + Idx); 3607 } else if (IsScaledReg) 3608 F.ScaledReg = InnerSum; 3609 else 3610 F.BaseRegs[Idx] = InnerSum; 3611 3612 // Add J as its own register, or an unfolded immediate. 3613 const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J); 3614 if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 && 3615 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3616 SC->getValue()->getZExtValue())) 3617 F.UnfoldedOffset = 3618 (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue(); 3619 else 3620 F.BaseRegs.push_back(*J); 3621 // We may have changed the number of register in base regs, adjust the 3622 // formula accordingly. 3623 F.canonicalize(*L); 3624 3625 if (InsertFormula(LU, LUIdx, F)) 3626 // If that formula hadn't been seen before, recurse to find more like 3627 // it. 3628 // Add check on Log16(AddOps.size()) - same as Log2_32(AddOps.size()) >> 2) 3629 // Because just Depth is not enough to bound compile time. 3630 // This means that every time AddOps.size() is greater 16^x we will add 3631 // x to Depth. 3632 GenerateReassociations(LU, LUIdx, LU.Formulae.back(), 3633 Depth + 1 + (Log2_32(AddOps.size()) >> 2)); 3634 } 3635 } 3636 3637 /// Split out subexpressions from adds and the bases of addrecs. 3638 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx, 3639 Formula Base, unsigned Depth) { 3640 assert(Base.isCanonical(*L) && "Input must be in the canonical form"); 3641 // Arbitrarily cap recursion to protect compile time. 3642 if (Depth >= 3) 3643 return; 3644 3645 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3646 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i); 3647 3648 if (Base.Scale == 1) 3649 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, 3650 /* Idx */ -1, /* IsScaledReg */ true); 3651 } 3652 3653 /// Generate a formula consisting of all of the loop-dominating registers added 3654 /// into a single register. 3655 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx, 3656 Formula Base) { 3657 // This method is only interesting on a plurality of registers. 3658 if (Base.BaseRegs.size() + (Base.Scale == 1) + 3659 (Base.UnfoldedOffset != 0) <= 1) 3660 return; 3661 3662 // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before 3663 // processing the formula. 3664 Base.unscale(); 3665 SmallVector<const SCEV *, 4> Ops; 3666 Formula NewBase = Base; 3667 NewBase.BaseRegs.clear(); 3668 Type *CombinedIntegerType = nullptr; 3669 for (const SCEV *BaseReg : Base.BaseRegs) { 3670 if (SE.properlyDominates(BaseReg, L->getHeader()) && 3671 !SE.hasComputableLoopEvolution(BaseReg, L)) { 3672 if (!CombinedIntegerType) 3673 CombinedIntegerType = SE.getEffectiveSCEVType(BaseReg->getType()); 3674 Ops.push_back(BaseReg); 3675 } 3676 else 3677 NewBase.BaseRegs.push_back(BaseReg); 3678 } 3679 3680 // If no register is relevant, we're done. 3681 if (Ops.size() == 0) 3682 return; 3683 3684 // Utility function for generating the required variants of the combined 3685 // registers. 3686 auto GenerateFormula = [&](const SCEV *Sum) { 3687 Formula F = NewBase; 3688 3689 // TODO: If Sum is zero, it probably means ScalarEvolution missed an 3690 // opportunity to fold something. For now, just ignore such cases 3691 // rather than proceed with zero in a register. 3692 if (Sum->isZero()) 3693 return; 3694 3695 F.BaseRegs.push_back(Sum); 3696 F.canonicalize(*L); 3697 (void)InsertFormula(LU, LUIdx, F); 3698 }; 3699 3700 // If we collected at least two registers, generate a formula combining them. 3701 if (Ops.size() > 1) { 3702 SmallVector<const SCEV *, 4> OpsCopy(Ops); // Don't let SE modify Ops. 3703 GenerateFormula(SE.getAddExpr(OpsCopy)); 3704 } 3705 3706 // If we have an unfolded offset, generate a formula combining it with the 3707 // registers collected. 3708 if (NewBase.UnfoldedOffset) { 3709 assert(CombinedIntegerType && "Missing a type for the unfolded offset"); 3710 Ops.push_back(SE.getConstant(CombinedIntegerType, NewBase.UnfoldedOffset, 3711 true)); 3712 NewBase.UnfoldedOffset = 0; 3713 GenerateFormula(SE.getAddExpr(Ops)); 3714 } 3715 } 3716 3717 /// Helper function for LSRInstance::GenerateSymbolicOffsets. 3718 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 3719 const Formula &Base, size_t Idx, 3720 bool IsScaledReg) { 3721 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3722 GlobalValue *GV = ExtractSymbol(G, SE); 3723 if (G->isZero() || !GV) 3724 return; 3725 Formula F = Base; 3726 F.BaseGV = GV; 3727 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3728 return; 3729 if (IsScaledReg) 3730 F.ScaledReg = G; 3731 else 3732 F.BaseRegs[Idx] = G; 3733 (void)InsertFormula(LU, LUIdx, F); 3734 } 3735 3736 /// Generate reuse formulae using symbolic offsets. 3737 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, 3738 Formula Base) { 3739 // We can't add a symbolic offset if the address already contains one. 3740 if (Base.BaseGV) return; 3741 3742 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3743 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i); 3744 if (Base.Scale == 1) 3745 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1, 3746 /* IsScaledReg */ true); 3747 } 3748 3749 /// Helper function for LSRInstance::GenerateConstantOffsets. 3750 void LSRInstance::GenerateConstantOffsetsImpl( 3751 LSRUse &LU, unsigned LUIdx, const Formula &Base, 3752 const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) { 3753 3754 auto GenerateOffset = [&](const SCEV *G, int64_t Offset) { 3755 Formula F = Base; 3756 F.BaseOffset = (uint64_t)Base.BaseOffset - Offset; 3757 3758 if (isLegalUse(TTI, LU.MinOffset - Offset, LU.MaxOffset - Offset, LU.Kind, 3759 LU.AccessTy, F)) { 3760 // Add the offset to the base register. 3761 const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G); 3762 // If it cancelled out, drop the base register, otherwise update it. 3763 if (NewG->isZero()) { 3764 if (IsScaledReg) { 3765 F.Scale = 0; 3766 F.ScaledReg = nullptr; 3767 } else 3768 F.deleteBaseReg(F.BaseRegs[Idx]); 3769 F.canonicalize(*L); 3770 } else if (IsScaledReg) 3771 F.ScaledReg = NewG; 3772 else 3773 F.BaseRegs[Idx] = NewG; 3774 3775 (void)InsertFormula(LU, LUIdx, F); 3776 } 3777 }; 3778 3779 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3780 3781 // With constant offsets and constant steps, we can generate pre-inc 3782 // accesses by having the offset equal the step. So, for access #0 with a 3783 // step of 8, we generate a G - 8 base which would require the first access 3784 // to be ((G - 8) + 8),+,8. The pre-indexed access then updates the pointer 3785 // for itself and hopefully becomes the base for other accesses. This means 3786 // means that a single pre-indexed access can be generated to become the new 3787 // base pointer for each iteration of the loop, resulting in no extra add/sub 3788 // instructions for pointer updating. 3789 if (FavorBackedgeIndex && LU.Kind == LSRUse::Address) { 3790 if (auto *GAR = dyn_cast<SCEVAddRecExpr>(G)) { 3791 if (auto *StepRec = 3792 dyn_cast<SCEVConstant>(GAR->getStepRecurrence(SE))) { 3793 const APInt &StepInt = StepRec->getAPInt(); 3794 int64_t Step = StepInt.isNegative() ? 3795 StepInt.getSExtValue() : StepInt.getZExtValue(); 3796 3797 for (int64_t Offset : Worklist) { 3798 Offset -= Step; 3799 GenerateOffset(G, Offset); 3800 } 3801 } 3802 } 3803 } 3804 for (int64_t Offset : Worklist) 3805 GenerateOffset(G, Offset); 3806 3807 int64_t Imm = ExtractImmediate(G, SE); 3808 if (G->isZero() || Imm == 0) 3809 return; 3810 Formula F = Base; 3811 F.BaseOffset = (uint64_t)F.BaseOffset + Imm; 3812 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3813 return; 3814 if (IsScaledReg) 3815 F.ScaledReg = G; 3816 else 3817 F.BaseRegs[Idx] = G; 3818 (void)InsertFormula(LU, LUIdx, F); 3819 } 3820 3821 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets. 3822 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, 3823 Formula Base) { 3824 // TODO: For now, just add the min and max offset, because it usually isn't 3825 // worthwhile looking at everything inbetween. 3826 SmallVector<int64_t, 2> Worklist; 3827 Worklist.push_back(LU.MinOffset); 3828 if (LU.MaxOffset != LU.MinOffset) 3829 Worklist.push_back(LU.MaxOffset); 3830 3831 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3832 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i); 3833 if (Base.Scale == 1) 3834 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1, 3835 /* IsScaledReg */ true); 3836 } 3837 3838 /// For ICmpZero, check to see if we can scale up the comparison. For example, x 3839 /// == y -> x*c == y*c. 3840 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, 3841 Formula Base) { 3842 if (LU.Kind != LSRUse::ICmpZero) return; 3843 3844 // Determine the integer type for the base formula. 3845 Type *IntTy = Base.getType(); 3846 if (!IntTy) return; 3847 if (SE.getTypeSizeInBits(IntTy) > 64) return; 3848 3849 // Don't do this if there is more than one offset. 3850 if (LU.MinOffset != LU.MaxOffset) return; 3851 3852 // Check if transformation is valid. It is illegal to multiply pointer. 3853 if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy()) 3854 return; 3855 for (const SCEV *BaseReg : Base.BaseRegs) 3856 if (BaseReg->getType()->isPointerTy()) 3857 return; 3858 assert(!Base.BaseGV && "ICmpZero use is not legal!"); 3859 3860 // Check each interesting stride. 3861 for (int64_t Factor : Factors) { 3862 // Check that the multiplication doesn't overflow. 3863 if (Base.BaseOffset == std::numeric_limits<int64_t>::min() && Factor == -1) 3864 continue; 3865 int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor; 3866 if (NewBaseOffset / Factor != Base.BaseOffset) 3867 continue; 3868 // If the offset will be truncated at this use, check that it is in bounds. 3869 if (!IntTy->isPointerTy() && 3870 !ConstantInt::isValueValidForType(IntTy, NewBaseOffset)) 3871 continue; 3872 3873 // Check that multiplying with the use offset doesn't overflow. 3874 int64_t Offset = LU.MinOffset; 3875 if (Offset == std::numeric_limits<int64_t>::min() && Factor == -1) 3876 continue; 3877 Offset = (uint64_t)Offset * Factor; 3878 if (Offset / Factor != LU.MinOffset) 3879 continue; 3880 // If the offset will be truncated at this use, check that it is in bounds. 3881 if (!IntTy->isPointerTy() && 3882 !ConstantInt::isValueValidForType(IntTy, Offset)) 3883 continue; 3884 3885 Formula F = Base; 3886 F.BaseOffset = NewBaseOffset; 3887 3888 // Check that this scale is legal. 3889 if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F)) 3890 continue; 3891 3892 // Compensate for the use having MinOffset built into it. 3893 F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset; 3894 3895 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3896 3897 // Check that multiplying with each base register doesn't overflow. 3898 for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) { 3899 F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS); 3900 if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i]) 3901 goto next; 3902 } 3903 3904 // Check that multiplying with the scaled register doesn't overflow. 3905 if (F.ScaledReg) { 3906 F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS); 3907 if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg) 3908 continue; 3909 } 3910 3911 // Check that multiplying with the unfolded offset doesn't overflow. 3912 if (F.UnfoldedOffset != 0) { 3913 if (F.UnfoldedOffset == std::numeric_limits<int64_t>::min() && 3914 Factor == -1) 3915 continue; 3916 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor; 3917 if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset) 3918 continue; 3919 // If the offset will be truncated, check that it is in bounds. 3920 if (!IntTy->isPointerTy() && 3921 !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset)) 3922 continue; 3923 } 3924 3925 // If we make it here and it's legal, add it. 3926 (void)InsertFormula(LU, LUIdx, F); 3927 next:; 3928 } 3929 } 3930 3931 /// Generate stride factor reuse formulae by making use of scaled-offset address 3932 /// modes, for example. 3933 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) { 3934 // Determine the integer type for the base formula. 3935 Type *IntTy = Base.getType(); 3936 if (!IntTy) return; 3937 3938 // If this Formula already has a scaled register, we can't add another one. 3939 // Try to unscale the formula to generate a better scale. 3940 if (Base.Scale != 0 && !Base.unscale()) 3941 return; 3942 3943 assert(Base.Scale == 0 && "unscale did not did its job!"); 3944 3945 // Check each interesting stride. 3946 for (int64_t Factor : Factors) { 3947 Base.Scale = Factor; 3948 Base.HasBaseReg = Base.BaseRegs.size() > 1; 3949 // Check whether this scale is going to be legal. 3950 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 3951 Base)) { 3952 // As a special-case, handle special out-of-loop Basic users specially. 3953 // TODO: Reconsider this special case. 3954 if (LU.Kind == LSRUse::Basic && 3955 isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special, 3956 LU.AccessTy, Base) && 3957 LU.AllFixupsOutsideLoop) 3958 LU.Kind = LSRUse::Special; 3959 else 3960 continue; 3961 } 3962 // For an ICmpZero, negating a solitary base register won't lead to 3963 // new solutions. 3964 if (LU.Kind == LSRUse::ICmpZero && 3965 !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV) 3966 continue; 3967 // For each addrec base reg, if its loop is current loop, apply the scale. 3968 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { 3969 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i]); 3970 if (AR && (AR->getLoop() == L || LU.AllFixupsOutsideLoop)) { 3971 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3972 if (FactorS->isZero()) 3973 continue; 3974 // Divide out the factor, ignoring high bits, since we'll be 3975 // scaling the value back up in the end. 3976 if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) { 3977 // TODO: This could be optimized to avoid all the copying. 3978 Formula F = Base; 3979 F.ScaledReg = Quotient; 3980 F.deleteBaseReg(F.BaseRegs[i]); 3981 // The canonical representation of 1*reg is reg, which is already in 3982 // Base. In that case, do not try to insert the formula, it will be 3983 // rejected anyway. 3984 if (F.Scale == 1 && (F.BaseRegs.empty() || 3985 (AR->getLoop() != L && LU.AllFixupsOutsideLoop))) 3986 continue; 3987 // If AllFixupsOutsideLoop is true and F.Scale is 1, we may generate 3988 // non canonical Formula with ScaledReg's loop not being L. 3989 if (F.Scale == 1 && LU.AllFixupsOutsideLoop) 3990 F.canonicalize(*L); 3991 (void)InsertFormula(LU, LUIdx, F); 3992 } 3993 } 3994 } 3995 } 3996 } 3997 3998 /// Generate reuse formulae from different IV types. 3999 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) { 4000 // Don't bother truncating symbolic values. 4001 if (Base.BaseGV) return; 4002 4003 // Determine the integer type for the base formula. 4004 Type *DstTy = Base.getType(); 4005 if (!DstTy) return; 4006 DstTy = SE.getEffectiveSCEVType(DstTy); 4007 4008 for (Type *SrcTy : Types) { 4009 if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) { 4010 Formula F = Base; 4011 4012 // Sometimes SCEV is able to prove zero during ext transform. It may 4013 // happen if SCEV did not do all possible transforms while creating the 4014 // initial node (maybe due to depth limitations), but it can do them while 4015 // taking ext. 4016 if (F.ScaledReg) { 4017 const SCEV *NewScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy); 4018 if (NewScaledReg->isZero()) 4019 continue; 4020 F.ScaledReg = NewScaledReg; 4021 } 4022 bool HasZeroBaseReg = false; 4023 for (const SCEV *&BaseReg : F.BaseRegs) { 4024 const SCEV *NewBaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy); 4025 if (NewBaseReg->isZero()) { 4026 HasZeroBaseReg = true; 4027 break; 4028 } 4029 BaseReg = NewBaseReg; 4030 } 4031 if (HasZeroBaseReg) 4032 continue; 4033 4034 // TODO: This assumes we've done basic processing on all uses and 4035 // have an idea what the register usage is. 4036 if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses)) 4037 continue; 4038 4039 F.canonicalize(*L); 4040 (void)InsertFormula(LU, LUIdx, F); 4041 } 4042 } 4043 } 4044 4045 namespace { 4046 4047 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer 4048 /// modifications so that the search phase doesn't have to worry about the data 4049 /// structures moving underneath it. 4050 struct WorkItem { 4051 size_t LUIdx; 4052 int64_t Imm; 4053 const SCEV *OrigReg; 4054 4055 WorkItem(size_t LI, int64_t I, const SCEV *R) 4056 : LUIdx(LI), Imm(I), OrigReg(R) {} 4057 4058 void print(raw_ostream &OS) const; 4059 void dump() const; 4060 }; 4061 4062 } // end anonymous namespace 4063 4064 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 4065 void WorkItem::print(raw_ostream &OS) const { 4066 OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx 4067 << " , add offset " << Imm; 4068 } 4069 4070 LLVM_DUMP_METHOD void WorkItem::dump() const { 4071 print(errs()); errs() << '\n'; 4072 } 4073 #endif 4074 4075 /// Look for registers which are a constant distance apart and try to form reuse 4076 /// opportunities between them. 4077 void LSRInstance::GenerateCrossUseConstantOffsets() { 4078 // Group the registers by their value without any added constant offset. 4079 using ImmMapTy = std::map<int64_t, const SCEV *>; 4080 4081 DenseMap<const SCEV *, ImmMapTy> Map; 4082 DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap; 4083 SmallVector<const SCEV *, 8> Sequence; 4084 for (const SCEV *Use : RegUses) { 4085 const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify. 4086 int64_t Imm = ExtractImmediate(Reg, SE); 4087 auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy())); 4088 if (Pair.second) 4089 Sequence.push_back(Reg); 4090 Pair.first->second.insert(std::make_pair(Imm, Use)); 4091 UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use); 4092 } 4093 4094 // Now examine each set of registers with the same base value. Build up 4095 // a list of work to do and do the work in a separate step so that we're 4096 // not adding formulae and register counts while we're searching. 4097 SmallVector<WorkItem, 32> WorkItems; 4098 SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems; 4099 for (const SCEV *Reg : Sequence) { 4100 const ImmMapTy &Imms = Map.find(Reg)->second; 4101 4102 // It's not worthwhile looking for reuse if there's only one offset. 4103 if (Imms.size() == 1) 4104 continue; 4105 4106 LLVM_DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':'; 4107 for (const auto &Entry 4108 : Imms) dbgs() 4109 << ' ' << Entry.first; 4110 dbgs() << '\n'); 4111 4112 // Examine each offset. 4113 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); 4114 J != JE; ++J) { 4115 const SCEV *OrigReg = J->second; 4116 4117 int64_t JImm = J->first; 4118 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg); 4119 4120 if (!isa<SCEVConstant>(OrigReg) && 4121 UsedByIndicesMap[Reg].count() == 1) { 4122 LLVM_DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg 4123 << '\n'); 4124 continue; 4125 } 4126 4127 // Conservatively examine offsets between this orig reg a few selected 4128 // other orig regs. 4129 ImmMapTy::const_iterator OtherImms[] = { 4130 Imms.begin(), std::prev(Imms.end()), 4131 Imms.lower_bound((Imms.begin()->first + std::prev(Imms.end())->first) / 4132 2) 4133 }; 4134 for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) { 4135 ImmMapTy::const_iterator M = OtherImms[i]; 4136 if (M == J || M == JE) continue; 4137 4138 // Compute the difference between the two. 4139 int64_t Imm = (uint64_t)JImm - M->first; 4140 for (unsigned LUIdx : UsedByIndices.set_bits()) 4141 // Make a memo of this use, offset, and register tuple. 4142 if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second) 4143 WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg)); 4144 } 4145 } 4146 } 4147 4148 Map.clear(); 4149 Sequence.clear(); 4150 UsedByIndicesMap.clear(); 4151 UniqueItems.clear(); 4152 4153 // Now iterate through the worklist and add new formulae. 4154 for (const WorkItem &WI : WorkItems) { 4155 size_t LUIdx = WI.LUIdx; 4156 LSRUse &LU = Uses[LUIdx]; 4157 int64_t Imm = WI.Imm; 4158 const SCEV *OrigReg = WI.OrigReg; 4159 4160 Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType()); 4161 const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm)); 4162 unsigned BitWidth = SE.getTypeSizeInBits(IntTy); 4163 4164 // TODO: Use a more targeted data structure. 4165 for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) { 4166 Formula F = LU.Formulae[L]; 4167 // FIXME: The code for the scaled and unscaled registers looks 4168 // very similar but slightly different. Investigate if they 4169 // could be merged. That way, we would not have to unscale the 4170 // Formula. 4171 F.unscale(); 4172 // Use the immediate in the scaled register. 4173 if (F.ScaledReg == OrigReg) { 4174 int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale; 4175 // Don't create 50 + reg(-50). 4176 if (F.referencesReg(SE.getSCEV( 4177 ConstantInt::get(IntTy, -(uint64_t)Offset)))) 4178 continue; 4179 Formula NewF = F; 4180 NewF.BaseOffset = Offset; 4181 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 4182 NewF)) 4183 continue; 4184 NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg); 4185 4186 // If the new scale is a constant in a register, and adding the constant 4187 // value to the immediate would produce a value closer to zero than the 4188 // immediate itself, then the formula isn't worthwhile. 4189 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg)) 4190 if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) && 4191 (C->getAPInt().abs() * APInt(BitWidth, F.Scale)) 4192 .ule(std::abs(NewF.BaseOffset))) 4193 continue; 4194 4195 // OK, looks good. 4196 NewF.canonicalize(*this->L); 4197 (void)InsertFormula(LU, LUIdx, NewF); 4198 } else { 4199 // Use the immediate in a base register. 4200 for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) { 4201 const SCEV *BaseReg = F.BaseRegs[N]; 4202 if (BaseReg != OrigReg) 4203 continue; 4204 Formula NewF = F; 4205 NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm; 4206 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, 4207 LU.Kind, LU.AccessTy, NewF)) { 4208 if (TTI.shouldFavorPostInc() && 4209 mayUsePostIncMode(TTI, LU, OrigReg, this->L, SE)) 4210 continue; 4211 if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm)) 4212 continue; 4213 NewF = F; 4214 NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm; 4215 } 4216 NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg); 4217 4218 // If the new formula has a constant in a register, and adding the 4219 // constant value to the immediate would produce a value closer to 4220 // zero than the immediate itself, then the formula isn't worthwhile. 4221 for (const SCEV *NewReg : NewF.BaseRegs) 4222 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg)) 4223 if ((C->getAPInt() + NewF.BaseOffset) 4224 .abs() 4225 .slt(std::abs(NewF.BaseOffset)) && 4226 (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >= 4227 countTrailingZeros<uint64_t>(NewF.BaseOffset)) 4228 goto skip_formula; 4229 4230 // Ok, looks good. 4231 NewF.canonicalize(*this->L); 4232 (void)InsertFormula(LU, LUIdx, NewF); 4233 break; 4234 skip_formula:; 4235 } 4236 } 4237 } 4238 } 4239 } 4240 4241 /// Generate formulae for each use. 4242 void 4243 LSRInstance::GenerateAllReuseFormulae() { 4244 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan 4245 // queries are more precise. 4246 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4247 LSRUse &LU = Uses[LUIdx]; 4248 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4249 GenerateReassociations(LU, LUIdx, LU.Formulae[i]); 4250 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4251 GenerateCombinations(LU, LUIdx, LU.Formulae[i]); 4252 } 4253 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4254 LSRUse &LU = Uses[LUIdx]; 4255 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4256 GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]); 4257 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4258 GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]); 4259 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4260 GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]); 4261 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4262 GenerateScales(LU, LUIdx, LU.Formulae[i]); 4263 } 4264 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4265 LSRUse &LU = Uses[LUIdx]; 4266 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4267 GenerateTruncates(LU, LUIdx, LU.Formulae[i]); 4268 } 4269 4270 GenerateCrossUseConstantOffsets(); 4271 4272 LLVM_DEBUG(dbgs() << "\n" 4273 "After generating reuse formulae:\n"; 4274 print_uses(dbgs())); 4275 } 4276 4277 /// If there are multiple formulae with the same set of registers used 4278 /// by other uses, pick the best one and delete the others. 4279 void LSRInstance::FilterOutUndesirableDedicatedRegisters() { 4280 DenseSet<const SCEV *> VisitedRegs; 4281 SmallPtrSet<const SCEV *, 16> Regs; 4282 SmallPtrSet<const SCEV *, 16> LoserRegs; 4283 #ifndef NDEBUG 4284 bool ChangedFormulae = false; 4285 #endif 4286 4287 // Collect the best formula for each unique set of shared registers. This 4288 // is reset for each use. 4289 using BestFormulaeTy = 4290 DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>; 4291 4292 BestFormulaeTy BestFormulae; 4293 4294 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4295 LSRUse &LU = Uses[LUIdx]; 4296 LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); 4297 dbgs() << '\n'); 4298 4299 bool Any = false; 4300 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); 4301 FIdx != NumForms; ++FIdx) { 4302 Formula &F = LU.Formulae[FIdx]; 4303 4304 // Some formulas are instant losers. For example, they may depend on 4305 // nonexistent AddRecs from other loops. These need to be filtered 4306 // immediately, otherwise heuristics could choose them over others leading 4307 // to an unsatisfactory solution. Passing LoserRegs into RateFormula here 4308 // avoids the need to recompute this information across formulae using the 4309 // same bad AddRec. Passing LoserRegs is also essential unless we remove 4310 // the corresponding bad register from the Regs set. 4311 Cost CostF; 4312 Regs.clear(); 4313 CostF.RateFormula(TTI, F, Regs, VisitedRegs, L, SE, DT, LU, &LoserRegs); 4314 if (CostF.isLoser()) { 4315 // During initial formula generation, undesirable formulae are generated 4316 // by uses within other loops that have some non-trivial address mode or 4317 // use the postinc form of the IV. LSR needs to provide these formulae 4318 // as the basis of rediscovering the desired formula that uses an AddRec 4319 // corresponding to the existing phi. Once all formulae have been 4320 // generated, these initial losers may be pruned. 4321 LLVM_DEBUG(dbgs() << " Filtering loser "; F.print(dbgs()); 4322 dbgs() << "\n"); 4323 } 4324 else { 4325 SmallVector<const SCEV *, 4> Key; 4326 for (const SCEV *Reg : F.BaseRegs) { 4327 if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx)) 4328 Key.push_back(Reg); 4329 } 4330 if (F.ScaledReg && 4331 RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx)) 4332 Key.push_back(F.ScaledReg); 4333 // Unstable sort by host order ok, because this is only used for 4334 // uniquifying. 4335 llvm::sort(Key); 4336 4337 std::pair<BestFormulaeTy::const_iterator, bool> P = 4338 BestFormulae.insert(std::make_pair(Key, FIdx)); 4339 if (P.second) 4340 continue; 4341 4342 Formula &Best = LU.Formulae[P.first->second]; 4343 4344 Cost CostBest; 4345 Regs.clear(); 4346 CostBest.RateFormula(TTI, Best, Regs, VisitedRegs, L, SE, DT, LU); 4347 if (CostF.isLess(CostBest, TTI)) 4348 std::swap(F, Best); 4349 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 4350 dbgs() << "\n" 4351 " in favor of formula "; 4352 Best.print(dbgs()); dbgs() << '\n'); 4353 } 4354 #ifndef NDEBUG 4355 ChangedFormulae = true; 4356 #endif 4357 LU.DeleteFormula(F); 4358 --FIdx; 4359 --NumForms; 4360 Any = true; 4361 } 4362 4363 // Now that we've filtered out some formulae, recompute the Regs set. 4364 if (Any) 4365 LU.RecomputeRegs(LUIdx, RegUses); 4366 4367 // Reset this to prepare for the next use. 4368 BestFormulae.clear(); 4369 } 4370 4371 LLVM_DEBUG(if (ChangedFormulae) { 4372 dbgs() << "\n" 4373 "After filtering out undesirable candidates:\n"; 4374 print_uses(dbgs()); 4375 }); 4376 } 4377 4378 /// Estimate the worst-case number of solutions the solver might have to 4379 /// consider. It almost never considers this many solutions because it prune the 4380 /// search space, but the pruning isn't always sufficient. 4381 size_t LSRInstance::EstimateSearchSpaceComplexity() const { 4382 size_t Power = 1; 4383 for (const LSRUse &LU : Uses) { 4384 size_t FSize = LU.Formulae.size(); 4385 if (FSize >= ComplexityLimit) { 4386 Power = ComplexityLimit; 4387 break; 4388 } 4389 Power *= FSize; 4390 if (Power >= ComplexityLimit) 4391 break; 4392 } 4393 return Power; 4394 } 4395 4396 /// When one formula uses a superset of the registers of another formula, it 4397 /// won't help reduce register pressure (though it may not necessarily hurt 4398 /// register pressure); remove it to simplify the system. 4399 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() { 4400 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4401 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4402 4403 LLVM_DEBUG(dbgs() << "Narrowing the search space by eliminating formulae " 4404 "which use a superset of registers used by other " 4405 "formulae.\n"); 4406 4407 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4408 LSRUse &LU = Uses[LUIdx]; 4409 bool Any = false; 4410 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4411 Formula &F = LU.Formulae[i]; 4412 // Look for a formula with a constant or GV in a register. If the use 4413 // also has a formula with that same value in an immediate field, 4414 // delete the one that uses a register. 4415 for (SmallVectorImpl<const SCEV *>::const_iterator 4416 I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) { 4417 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) { 4418 Formula NewF = F; 4419 NewF.BaseOffset += C->getValue()->getSExtValue(); 4420 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4421 (I - F.BaseRegs.begin())); 4422 if (LU.HasFormulaWithSameRegs(NewF)) { 4423 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4424 dbgs() << '\n'); 4425 LU.DeleteFormula(F); 4426 --i; 4427 --e; 4428 Any = true; 4429 break; 4430 } 4431 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) { 4432 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) 4433 if (!F.BaseGV) { 4434 Formula NewF = F; 4435 NewF.BaseGV = GV; 4436 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4437 (I - F.BaseRegs.begin())); 4438 if (LU.HasFormulaWithSameRegs(NewF)) { 4439 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4440 dbgs() << '\n'); 4441 LU.DeleteFormula(F); 4442 --i; 4443 --e; 4444 Any = true; 4445 break; 4446 } 4447 } 4448 } 4449 } 4450 } 4451 if (Any) 4452 LU.RecomputeRegs(LUIdx, RegUses); 4453 } 4454 4455 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4456 } 4457 } 4458 4459 /// When there are many registers for expressions like A, A+1, A+2, etc., 4460 /// allocate a single register for them. 4461 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() { 4462 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4463 return; 4464 4465 LLVM_DEBUG( 4466 dbgs() << "The search space is too complex.\n" 4467 "Narrowing the search space by assuming that uses separated " 4468 "by a constant offset will use the same registers.\n"); 4469 4470 // This is especially useful for unrolled loops. 4471 4472 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4473 LSRUse &LU = Uses[LUIdx]; 4474 for (const Formula &F : LU.Formulae) { 4475 if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1)) 4476 continue; 4477 4478 LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU); 4479 if (!LUThatHas) 4480 continue; 4481 4482 if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false, 4483 LU.Kind, LU.AccessTy)) 4484 continue; 4485 4486 LLVM_DEBUG(dbgs() << " Deleting use "; LU.print(dbgs()); dbgs() << '\n'); 4487 4488 LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop; 4489 4490 // Transfer the fixups of LU to LUThatHas. 4491 for (LSRFixup &Fixup : LU.Fixups) { 4492 Fixup.Offset += F.BaseOffset; 4493 LUThatHas->pushFixup(Fixup); 4494 LLVM_DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n'); 4495 } 4496 4497 // Delete formulae from the new use which are no longer legal. 4498 bool Any = false; 4499 for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) { 4500 Formula &F = LUThatHas->Formulae[i]; 4501 if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset, 4502 LUThatHas->Kind, LUThatHas->AccessTy, F)) { 4503 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4504 LUThatHas->DeleteFormula(F); 4505 --i; 4506 --e; 4507 Any = true; 4508 } 4509 } 4510 4511 if (Any) 4512 LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses); 4513 4514 // Delete the old use. 4515 DeleteUse(LU, LUIdx); 4516 --LUIdx; 4517 --NumUses; 4518 break; 4519 } 4520 } 4521 4522 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4523 } 4524 4525 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that 4526 /// we've done more filtering, as it may be able to find more formulae to 4527 /// eliminate. 4528 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){ 4529 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4530 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4531 4532 LLVM_DEBUG(dbgs() << "Narrowing the search space by re-filtering out " 4533 "undesirable dedicated registers.\n"); 4534 4535 FilterOutUndesirableDedicatedRegisters(); 4536 4537 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4538 } 4539 } 4540 4541 /// If a LSRUse has multiple formulae with the same ScaledReg and Scale. 4542 /// Pick the best one and delete the others. 4543 /// This narrowing heuristic is to keep as many formulae with different 4544 /// Scale and ScaledReg pair as possible while narrowing the search space. 4545 /// The benefit is that it is more likely to find out a better solution 4546 /// from a formulae set with more Scale and ScaledReg variations than 4547 /// a formulae set with the same Scale and ScaledReg. The picking winner 4548 /// reg heuristic will often keep the formulae with the same Scale and 4549 /// ScaledReg and filter others, and we want to avoid that if possible. 4550 void LSRInstance::NarrowSearchSpaceByFilterFormulaWithSameScaledReg() { 4551 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4552 return; 4553 4554 LLVM_DEBUG( 4555 dbgs() << "The search space is too complex.\n" 4556 "Narrowing the search space by choosing the best Formula " 4557 "from the Formulae with the same Scale and ScaledReg.\n"); 4558 4559 // Map the "Scale * ScaledReg" pair to the best formula of current LSRUse. 4560 using BestFormulaeTy = DenseMap<std::pair<const SCEV *, int64_t>, size_t>; 4561 4562 BestFormulaeTy BestFormulae; 4563 #ifndef NDEBUG 4564 bool ChangedFormulae = false; 4565 #endif 4566 DenseSet<const SCEV *> VisitedRegs; 4567 SmallPtrSet<const SCEV *, 16> Regs; 4568 4569 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4570 LSRUse &LU = Uses[LUIdx]; 4571 LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); 4572 dbgs() << '\n'); 4573 4574 // Return true if Formula FA is better than Formula FB. 4575 auto IsBetterThan = [&](Formula &FA, Formula &FB) { 4576 // First we will try to choose the Formula with fewer new registers. 4577 // For a register used by current Formula, the more the register is 4578 // shared among LSRUses, the less we increase the register number 4579 // counter of the formula. 4580 size_t FARegNum = 0; 4581 for (const SCEV *Reg : FA.BaseRegs) { 4582 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg); 4583 FARegNum += (NumUses - UsedByIndices.count() + 1); 4584 } 4585 size_t FBRegNum = 0; 4586 for (const SCEV *Reg : FB.BaseRegs) { 4587 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg); 4588 FBRegNum += (NumUses - UsedByIndices.count() + 1); 4589 } 4590 if (FARegNum != FBRegNum) 4591 return FARegNum < FBRegNum; 4592 4593 // If the new register numbers are the same, choose the Formula with 4594 // less Cost. 4595 Cost CostFA, CostFB; 4596 Regs.clear(); 4597 CostFA.RateFormula(TTI, FA, Regs, VisitedRegs, L, SE, DT, LU); 4598 Regs.clear(); 4599 CostFB.RateFormula(TTI, FB, Regs, VisitedRegs, L, SE, DT, LU); 4600 return CostFA.isLess(CostFB, TTI); 4601 }; 4602 4603 bool Any = false; 4604 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms; 4605 ++FIdx) { 4606 Formula &F = LU.Formulae[FIdx]; 4607 if (!F.ScaledReg) 4608 continue; 4609 auto P = BestFormulae.insert({{F.ScaledReg, F.Scale}, FIdx}); 4610 if (P.second) 4611 continue; 4612 4613 Formula &Best = LU.Formulae[P.first->second]; 4614 if (IsBetterThan(F, Best)) 4615 std::swap(F, Best); 4616 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 4617 dbgs() << "\n" 4618 " in favor of formula "; 4619 Best.print(dbgs()); dbgs() << '\n'); 4620 #ifndef NDEBUG 4621 ChangedFormulae = true; 4622 #endif 4623 LU.DeleteFormula(F); 4624 --FIdx; 4625 --NumForms; 4626 Any = true; 4627 } 4628 if (Any) 4629 LU.RecomputeRegs(LUIdx, RegUses); 4630 4631 // Reset this to prepare for the next use. 4632 BestFormulae.clear(); 4633 } 4634 4635 LLVM_DEBUG(if (ChangedFormulae) { 4636 dbgs() << "\n" 4637 "After filtering out undesirable candidates:\n"; 4638 print_uses(dbgs()); 4639 }); 4640 } 4641 4642 /// The function delete formulas with high registers number expectation. 4643 /// Assuming we don't know the value of each formula (already delete 4644 /// all inefficient), generate probability of not selecting for each 4645 /// register. 4646 /// For example, 4647 /// Use1: 4648 /// reg(a) + reg({0,+,1}) 4649 /// reg(a) + reg({-1,+,1}) + 1 4650 /// reg({a,+,1}) 4651 /// Use2: 4652 /// reg(b) + reg({0,+,1}) 4653 /// reg(b) + reg({-1,+,1}) + 1 4654 /// reg({b,+,1}) 4655 /// Use3: 4656 /// reg(c) + reg(b) + reg({0,+,1}) 4657 /// reg(c) + reg({b,+,1}) 4658 /// 4659 /// Probability of not selecting 4660 /// Use1 Use2 Use3 4661 /// reg(a) (1/3) * 1 * 1 4662 /// reg(b) 1 * (1/3) * (1/2) 4663 /// reg({0,+,1}) (2/3) * (2/3) * (1/2) 4664 /// reg({-1,+,1}) (2/3) * (2/3) * 1 4665 /// reg({a,+,1}) (2/3) * 1 * 1 4666 /// reg({b,+,1}) 1 * (2/3) * (2/3) 4667 /// reg(c) 1 * 1 * 0 4668 /// 4669 /// Now count registers number mathematical expectation for each formula: 4670 /// Note that for each use we exclude probability if not selecting for the use. 4671 /// For example for Use1 probability for reg(a) would be just 1 * 1 (excluding 4672 /// probabilty 1/3 of not selecting for Use1). 4673 /// Use1: 4674 /// reg(a) + reg({0,+,1}) 1 + 1/3 -- to be deleted 4675 /// reg(a) + reg({-1,+,1}) + 1 1 + 4/9 -- to be deleted 4676 /// reg({a,+,1}) 1 4677 /// Use2: 4678 /// reg(b) + reg({0,+,1}) 1/2 + 1/3 -- to be deleted 4679 /// reg(b) + reg({-1,+,1}) + 1 1/2 + 2/3 -- to be deleted 4680 /// reg({b,+,1}) 2/3 4681 /// Use3: 4682 /// reg(c) + reg(b) + reg({0,+,1}) 1 + 1/3 + 4/9 -- to be deleted 4683 /// reg(c) + reg({b,+,1}) 1 + 2/3 4684 void LSRInstance::NarrowSearchSpaceByDeletingCostlyFormulas() { 4685 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4686 return; 4687 // Ok, we have too many of formulae on our hands to conveniently handle. 4688 // Use a rough heuristic to thin out the list. 4689 4690 // Set of Regs wich will be 100% used in final solution. 4691 // Used in each formula of a solution (in example above this is reg(c)). 4692 // We can skip them in calculations. 4693 SmallPtrSet<const SCEV *, 4> UniqRegs; 4694 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4695 4696 // Map each register to probability of not selecting 4697 DenseMap <const SCEV *, float> RegNumMap; 4698 for (const SCEV *Reg : RegUses) { 4699 if (UniqRegs.count(Reg)) 4700 continue; 4701 float PNotSel = 1; 4702 for (const LSRUse &LU : Uses) { 4703 if (!LU.Regs.count(Reg)) 4704 continue; 4705 float P = LU.getNotSelectedProbability(Reg); 4706 if (P != 0.0) 4707 PNotSel *= P; 4708 else 4709 UniqRegs.insert(Reg); 4710 } 4711 RegNumMap.insert(std::make_pair(Reg, PNotSel)); 4712 } 4713 4714 LLVM_DEBUG( 4715 dbgs() << "Narrowing the search space by deleting costly formulas\n"); 4716 4717 // Delete formulas where registers number expectation is high. 4718 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4719 LSRUse &LU = Uses[LUIdx]; 4720 // If nothing to delete - continue. 4721 if (LU.Formulae.size() < 2) 4722 continue; 4723 // This is temporary solution to test performance. Float should be 4724 // replaced with round independent type (based on integers) to avoid 4725 // different results for different target builds. 4726 float FMinRegNum = LU.Formulae[0].getNumRegs(); 4727 float FMinARegNum = LU.Formulae[0].getNumRegs(); 4728 size_t MinIdx = 0; 4729 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4730 Formula &F = LU.Formulae[i]; 4731 float FRegNum = 0; 4732 float FARegNum = 0; 4733 for (const SCEV *BaseReg : F.BaseRegs) { 4734 if (UniqRegs.count(BaseReg)) 4735 continue; 4736 FRegNum += RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg); 4737 if (isa<SCEVAddRecExpr>(BaseReg)) 4738 FARegNum += 4739 RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg); 4740 } 4741 if (const SCEV *ScaledReg = F.ScaledReg) { 4742 if (!UniqRegs.count(ScaledReg)) { 4743 FRegNum += 4744 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg); 4745 if (isa<SCEVAddRecExpr>(ScaledReg)) 4746 FARegNum += 4747 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg); 4748 } 4749 } 4750 if (FMinRegNum > FRegNum || 4751 (FMinRegNum == FRegNum && FMinARegNum > FARegNum)) { 4752 FMinRegNum = FRegNum; 4753 FMinARegNum = FARegNum; 4754 MinIdx = i; 4755 } 4756 } 4757 LLVM_DEBUG(dbgs() << " The formula "; LU.Formulae[MinIdx].print(dbgs()); 4758 dbgs() << " with min reg num " << FMinRegNum << '\n'); 4759 if (MinIdx != 0) 4760 std::swap(LU.Formulae[MinIdx], LU.Formulae[0]); 4761 while (LU.Formulae.size() != 1) { 4762 LLVM_DEBUG(dbgs() << " Deleting "; LU.Formulae.back().print(dbgs()); 4763 dbgs() << '\n'); 4764 LU.Formulae.pop_back(); 4765 } 4766 LU.RecomputeRegs(LUIdx, RegUses); 4767 assert(LU.Formulae.size() == 1 && "Should be exactly 1 min regs formula"); 4768 Formula &F = LU.Formulae[0]; 4769 LLVM_DEBUG(dbgs() << " Leaving only "; F.print(dbgs()); dbgs() << '\n'); 4770 // When we choose the formula, the regs become unique. 4771 UniqRegs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 4772 if (F.ScaledReg) 4773 UniqRegs.insert(F.ScaledReg); 4774 } 4775 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4776 } 4777 4778 /// Pick a register which seems likely to be profitable, and then in any use 4779 /// which has any reference to that register, delete all formulae which do not 4780 /// reference that register. 4781 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() { 4782 // With all other options exhausted, loop until the system is simple 4783 // enough to handle. 4784 SmallPtrSet<const SCEV *, 4> Taken; 4785 while (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4786 // Ok, we have too many of formulae on our hands to conveniently handle. 4787 // Use a rough heuristic to thin out the list. 4788 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4789 4790 // Pick the register which is used by the most LSRUses, which is likely 4791 // to be a good reuse register candidate. 4792 const SCEV *Best = nullptr; 4793 unsigned BestNum = 0; 4794 for (const SCEV *Reg : RegUses) { 4795 if (Taken.count(Reg)) 4796 continue; 4797 if (!Best) { 4798 Best = Reg; 4799 BestNum = RegUses.getUsedByIndices(Reg).count(); 4800 } else { 4801 unsigned Count = RegUses.getUsedByIndices(Reg).count(); 4802 if (Count > BestNum) { 4803 Best = Reg; 4804 BestNum = Count; 4805 } 4806 } 4807 } 4808 4809 LLVM_DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best 4810 << " will yield profitable reuse.\n"); 4811 Taken.insert(Best); 4812 4813 // In any use with formulae which references this register, delete formulae 4814 // which don't reference it. 4815 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4816 LSRUse &LU = Uses[LUIdx]; 4817 if (!LU.Regs.count(Best)) continue; 4818 4819 bool Any = false; 4820 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4821 Formula &F = LU.Formulae[i]; 4822 if (!F.referencesReg(Best)) { 4823 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4824 LU.DeleteFormula(F); 4825 --e; 4826 --i; 4827 Any = true; 4828 assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?"); 4829 continue; 4830 } 4831 } 4832 4833 if (Any) 4834 LU.RecomputeRegs(LUIdx, RegUses); 4835 } 4836 4837 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4838 } 4839 } 4840 4841 /// If there are an extraordinary number of formulae to choose from, use some 4842 /// rough heuristics to prune down the number of formulae. This keeps the main 4843 /// solver from taking an extraordinary amount of time in some worst-case 4844 /// scenarios. 4845 void LSRInstance::NarrowSearchSpaceUsingHeuristics() { 4846 NarrowSearchSpaceByDetectingSupersets(); 4847 NarrowSearchSpaceByCollapsingUnrolledCode(); 4848 NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 4849 if (FilterSameScaledReg) 4850 NarrowSearchSpaceByFilterFormulaWithSameScaledReg(); 4851 if (LSRExpNarrow) 4852 NarrowSearchSpaceByDeletingCostlyFormulas(); 4853 else 4854 NarrowSearchSpaceByPickingWinnerRegs(); 4855 } 4856 4857 /// This is the recursive solver. 4858 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 4859 Cost &SolutionCost, 4860 SmallVectorImpl<const Formula *> &Workspace, 4861 const Cost &CurCost, 4862 const SmallPtrSet<const SCEV *, 16> &CurRegs, 4863 DenseSet<const SCEV *> &VisitedRegs) const { 4864 // Some ideas: 4865 // - prune more: 4866 // - use more aggressive filtering 4867 // - sort the formula so that the most profitable solutions are found first 4868 // - sort the uses too 4869 // - search faster: 4870 // - don't compute a cost, and then compare. compare while computing a cost 4871 // and bail early. 4872 // - track register sets with SmallBitVector 4873 4874 const LSRUse &LU = Uses[Workspace.size()]; 4875 4876 // If this use references any register that's already a part of the 4877 // in-progress solution, consider it a requirement that a formula must 4878 // reference that register in order to be considered. This prunes out 4879 // unprofitable searching. 4880 SmallSetVector<const SCEV *, 4> ReqRegs; 4881 for (const SCEV *S : CurRegs) 4882 if (LU.Regs.count(S)) 4883 ReqRegs.insert(S); 4884 4885 SmallPtrSet<const SCEV *, 16> NewRegs; 4886 Cost NewCost; 4887 for (const Formula &F : LU.Formulae) { 4888 // Ignore formulae which may not be ideal in terms of register reuse of 4889 // ReqRegs. The formula should use all required registers before 4890 // introducing new ones. 4891 int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size()); 4892 for (const SCEV *Reg : ReqRegs) { 4893 if ((F.ScaledReg && F.ScaledReg == Reg) || 4894 is_contained(F.BaseRegs, Reg)) { 4895 --NumReqRegsToFind; 4896 if (NumReqRegsToFind == 0) 4897 break; 4898 } 4899 } 4900 if (NumReqRegsToFind != 0) { 4901 // If none of the formulae satisfied the required registers, then we could 4902 // clear ReqRegs and try again. Currently, we simply give up in this case. 4903 continue; 4904 } 4905 4906 // Evaluate the cost of the current formula. If it's already worse than 4907 // the current best, prune the search at that point. 4908 NewCost = CurCost; 4909 NewRegs = CurRegs; 4910 NewCost.RateFormula(TTI, F, NewRegs, VisitedRegs, L, SE, DT, LU); 4911 if (NewCost.isLess(SolutionCost, TTI)) { 4912 Workspace.push_back(&F); 4913 if (Workspace.size() != Uses.size()) { 4914 SolveRecurse(Solution, SolutionCost, Workspace, NewCost, 4915 NewRegs, VisitedRegs); 4916 if (F.getNumRegs() == 1 && Workspace.size() == 1) 4917 VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]); 4918 } else { 4919 LLVM_DEBUG(dbgs() << "New best at "; NewCost.print(dbgs()); 4920 dbgs() << ".\n Regs:"; for (const SCEV *S 4921 : NewRegs) dbgs() 4922 << ' ' << *S; 4923 dbgs() << '\n'); 4924 4925 SolutionCost = NewCost; 4926 Solution = Workspace; 4927 } 4928 Workspace.pop_back(); 4929 } 4930 } 4931 } 4932 4933 /// Choose one formula from each use. Return the results in the given Solution 4934 /// vector. 4935 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const { 4936 SmallVector<const Formula *, 8> Workspace; 4937 Cost SolutionCost; 4938 SolutionCost.Lose(); 4939 Cost CurCost; 4940 SmallPtrSet<const SCEV *, 16> CurRegs; 4941 DenseSet<const SCEV *> VisitedRegs; 4942 Workspace.reserve(Uses.size()); 4943 4944 // SolveRecurse does all the work. 4945 SolveRecurse(Solution, SolutionCost, Workspace, CurCost, 4946 CurRegs, VisitedRegs); 4947 if (Solution.empty()) { 4948 LLVM_DEBUG(dbgs() << "\nNo Satisfactory Solution\n"); 4949 return; 4950 } 4951 4952 // Ok, we've now made all our decisions. 4953 LLVM_DEBUG(dbgs() << "\n" 4954 "The chosen solution requires "; 4955 SolutionCost.print(dbgs()); dbgs() << ":\n"; 4956 for (size_t i = 0, e = Uses.size(); i != e; ++i) { 4957 dbgs() << " "; 4958 Uses[i].print(dbgs()); 4959 dbgs() << "\n" 4960 " "; 4961 Solution[i]->print(dbgs()); 4962 dbgs() << '\n'; 4963 }); 4964 4965 assert(Solution.size() == Uses.size() && "Malformed solution!"); 4966 } 4967 4968 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as 4969 /// we can go while still being dominated by the input positions. This helps 4970 /// canonicalize the insert position, which encourages sharing. 4971 BasicBlock::iterator 4972 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP, 4973 const SmallVectorImpl<Instruction *> &Inputs) 4974 const { 4975 Instruction *Tentative = &*IP; 4976 while (true) { 4977 bool AllDominate = true; 4978 Instruction *BetterPos = nullptr; 4979 // Don't bother attempting to insert before a catchswitch, their basic block 4980 // cannot have other non-PHI instructions. 4981 if (isa<CatchSwitchInst>(Tentative)) 4982 return IP; 4983 4984 for (Instruction *Inst : Inputs) { 4985 if (Inst == Tentative || !DT.dominates(Inst, Tentative)) { 4986 AllDominate = false; 4987 break; 4988 } 4989 // Attempt to find an insert position in the middle of the block, 4990 // instead of at the end, so that it can be used for other expansions. 4991 if (Tentative->getParent() == Inst->getParent() && 4992 (!BetterPos || !DT.dominates(Inst, BetterPos))) 4993 BetterPos = &*std::next(BasicBlock::iterator(Inst)); 4994 } 4995 if (!AllDominate) 4996 break; 4997 if (BetterPos) 4998 IP = BetterPos->getIterator(); 4999 else 5000 IP = Tentative->getIterator(); 5001 5002 const Loop *IPLoop = LI.getLoopFor(IP->getParent()); 5003 unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0; 5004 5005 BasicBlock *IDom; 5006 for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) { 5007 if (!Rung) return IP; 5008 Rung = Rung->getIDom(); 5009 if (!Rung) return IP; 5010 IDom = Rung->getBlock(); 5011 5012 // Don't climb into a loop though. 5013 const Loop *IDomLoop = LI.getLoopFor(IDom); 5014 unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0; 5015 if (IDomDepth <= IPLoopDepth && 5016 (IDomDepth != IPLoopDepth || IDomLoop == IPLoop)) 5017 break; 5018 } 5019 5020 Tentative = IDom->getTerminator(); 5021 } 5022 5023 return IP; 5024 } 5025 5026 /// Determine an input position which will be dominated by the operands and 5027 /// which will dominate the result. 5028 BasicBlock::iterator 5029 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP, 5030 const LSRFixup &LF, 5031 const LSRUse &LU, 5032 SCEVExpander &Rewriter) const { 5033 // Collect some instructions which must be dominated by the 5034 // expanding replacement. These must be dominated by any operands that 5035 // will be required in the expansion. 5036 SmallVector<Instruction *, 4> Inputs; 5037 if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace)) 5038 Inputs.push_back(I); 5039 if (LU.Kind == LSRUse::ICmpZero) 5040 if (Instruction *I = 5041 dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1))) 5042 Inputs.push_back(I); 5043 if (LF.PostIncLoops.count(L)) { 5044 if (LF.isUseFullyOutsideLoop(L)) 5045 Inputs.push_back(L->getLoopLatch()->getTerminator()); 5046 else 5047 Inputs.push_back(IVIncInsertPos); 5048 } 5049 // The expansion must also be dominated by the increment positions of any 5050 // loops it for which it is using post-inc mode. 5051 for (const Loop *PIL : LF.PostIncLoops) { 5052 if (PIL == L) continue; 5053 5054 // Be dominated by the loop exit. 5055 SmallVector<BasicBlock *, 4> ExitingBlocks; 5056 PIL->getExitingBlocks(ExitingBlocks); 5057 if (!ExitingBlocks.empty()) { 5058 BasicBlock *BB = ExitingBlocks[0]; 5059 for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i) 5060 BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]); 5061 Inputs.push_back(BB->getTerminator()); 5062 } 5063 } 5064 5065 assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad() 5066 && !isa<DbgInfoIntrinsic>(LowestIP) && 5067 "Insertion point must be a normal instruction"); 5068 5069 // Then, climb up the immediate dominator tree as far as we can go while 5070 // still being dominated by the input positions. 5071 BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs); 5072 5073 // Don't insert instructions before PHI nodes. 5074 while (isa<PHINode>(IP)) ++IP; 5075 5076 // Ignore landingpad instructions. 5077 while (IP->isEHPad()) ++IP; 5078 5079 // Ignore debug intrinsics. 5080 while (isa<DbgInfoIntrinsic>(IP)) ++IP; 5081 5082 // Set IP below instructions recently inserted by SCEVExpander. This keeps the 5083 // IP consistent across expansions and allows the previously inserted 5084 // instructions to be reused by subsequent expansion. 5085 while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP) 5086 ++IP; 5087 5088 return IP; 5089 } 5090 5091 /// Emit instructions for the leading candidate expression for this LSRUse (this 5092 /// is called "expanding"). 5093 Value *LSRInstance::Expand(const LSRUse &LU, const LSRFixup &LF, 5094 const Formula &F, BasicBlock::iterator IP, 5095 SCEVExpander &Rewriter, 5096 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5097 if (LU.RigidFormula) 5098 return LF.OperandValToReplace; 5099 5100 // Determine an input position which will be dominated by the operands and 5101 // which will dominate the result. 5102 IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter); 5103 Rewriter.setInsertPoint(&*IP); 5104 5105 // Inform the Rewriter if we have a post-increment use, so that it can 5106 // perform an advantageous expansion. 5107 Rewriter.setPostInc(LF.PostIncLoops); 5108 5109 // This is the type that the user actually needs. 5110 Type *OpTy = LF.OperandValToReplace->getType(); 5111 // This will be the type that we'll initially expand to. 5112 Type *Ty = F.getType(); 5113 if (!Ty) 5114 // No type known; just expand directly to the ultimate type. 5115 Ty = OpTy; 5116 else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy)) 5117 // Expand directly to the ultimate type if it's the right size. 5118 Ty = OpTy; 5119 // This is the type to do integer arithmetic in. 5120 Type *IntTy = SE.getEffectiveSCEVType(Ty); 5121 5122 // Build up a list of operands to add together to form the full base. 5123 SmallVector<const SCEV *, 8> Ops; 5124 5125 // Expand the BaseRegs portion. 5126 for (const SCEV *Reg : F.BaseRegs) { 5127 assert(!Reg->isZero() && "Zero allocated in a base register!"); 5128 5129 // If we're expanding for a post-inc user, make the post-inc adjustment. 5130 Reg = denormalizeForPostIncUse(Reg, LF.PostIncLoops, SE); 5131 Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr))); 5132 } 5133 5134 // Expand the ScaledReg portion. 5135 Value *ICmpScaledV = nullptr; 5136 if (F.Scale != 0) { 5137 const SCEV *ScaledS = F.ScaledReg; 5138 5139 // If we're expanding for a post-inc user, make the post-inc adjustment. 5140 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 5141 ScaledS = denormalizeForPostIncUse(ScaledS, Loops, SE); 5142 5143 if (LU.Kind == LSRUse::ICmpZero) { 5144 // Expand ScaleReg as if it was part of the base regs. 5145 if (F.Scale == 1) 5146 Ops.push_back( 5147 SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr))); 5148 else { 5149 // An interesting way of "folding" with an icmp is to use a negated 5150 // scale, which we'll implement by inserting it into the other operand 5151 // of the icmp. 5152 assert(F.Scale == -1 && 5153 "The only scale supported by ICmpZero uses is -1!"); 5154 ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr); 5155 } 5156 } else { 5157 // Otherwise just expand the scaled register and an explicit scale, 5158 // which is expected to be matched as part of the address. 5159 5160 // Flush the operand list to suppress SCEVExpander hoisting address modes. 5161 // Unless the addressing mode will not be folded. 5162 if (!Ops.empty() && LU.Kind == LSRUse::Address && 5163 isAMCompletelyFolded(TTI, LU, F)) { 5164 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), nullptr); 5165 Ops.clear(); 5166 Ops.push_back(SE.getUnknown(FullV)); 5167 } 5168 ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)); 5169 if (F.Scale != 1) 5170 ScaledS = 5171 SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale)); 5172 Ops.push_back(ScaledS); 5173 } 5174 } 5175 5176 // Expand the GV portion. 5177 if (F.BaseGV) { 5178 // Flush the operand list to suppress SCEVExpander hoisting. 5179 if (!Ops.empty()) { 5180 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 5181 Ops.clear(); 5182 Ops.push_back(SE.getUnknown(FullV)); 5183 } 5184 Ops.push_back(SE.getUnknown(F.BaseGV)); 5185 } 5186 5187 // Flush the operand list to suppress SCEVExpander hoisting of both folded and 5188 // unfolded offsets. LSR assumes they both live next to their uses. 5189 if (!Ops.empty()) { 5190 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 5191 Ops.clear(); 5192 Ops.push_back(SE.getUnknown(FullV)); 5193 } 5194 5195 // Expand the immediate portion. 5196 int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset; 5197 if (Offset != 0) { 5198 if (LU.Kind == LSRUse::ICmpZero) { 5199 // The other interesting way of "folding" with an ICmpZero is to use a 5200 // negated immediate. 5201 if (!ICmpScaledV) 5202 ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset); 5203 else { 5204 Ops.push_back(SE.getUnknown(ICmpScaledV)); 5205 ICmpScaledV = ConstantInt::get(IntTy, Offset); 5206 } 5207 } else { 5208 // Just add the immediate values. These again are expected to be matched 5209 // as part of the address. 5210 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset))); 5211 } 5212 } 5213 5214 // Expand the unfolded offset portion. 5215 int64_t UnfoldedOffset = F.UnfoldedOffset; 5216 if (UnfoldedOffset != 0) { 5217 // Just add the immediate values. 5218 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, 5219 UnfoldedOffset))); 5220 } 5221 5222 // Emit instructions summing all the operands. 5223 const SCEV *FullS = Ops.empty() ? 5224 SE.getConstant(IntTy, 0) : 5225 SE.getAddExpr(Ops); 5226 Value *FullV = Rewriter.expandCodeFor(FullS, Ty); 5227 5228 // We're done expanding now, so reset the rewriter. 5229 Rewriter.clearPostInc(); 5230 5231 // An ICmpZero Formula represents an ICmp which we're handling as a 5232 // comparison against zero. Now that we've expanded an expression for that 5233 // form, update the ICmp's other operand. 5234 if (LU.Kind == LSRUse::ICmpZero) { 5235 ICmpInst *CI = cast<ICmpInst>(LF.UserInst); 5236 DeadInsts.emplace_back(CI->getOperand(1)); 5237 assert(!F.BaseGV && "ICmp does not support folding a global value and " 5238 "a scale at the same time!"); 5239 if (F.Scale == -1) { 5240 if (ICmpScaledV->getType() != OpTy) { 5241 Instruction *Cast = 5242 CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false, 5243 OpTy, false), 5244 ICmpScaledV, OpTy, "tmp", CI); 5245 ICmpScaledV = Cast; 5246 } 5247 CI->setOperand(1, ICmpScaledV); 5248 } else { 5249 // A scale of 1 means that the scale has been expanded as part of the 5250 // base regs. 5251 assert((F.Scale == 0 || F.Scale == 1) && 5252 "ICmp does not support folding a global value and " 5253 "a scale at the same time!"); 5254 Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy), 5255 -(uint64_t)Offset); 5256 if (C->getType() != OpTy) 5257 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 5258 OpTy, false), 5259 C, OpTy); 5260 5261 CI->setOperand(1, C); 5262 } 5263 } 5264 5265 return FullV; 5266 } 5267 5268 /// Helper for Rewrite. PHI nodes are special because the use of their operands 5269 /// effectively happens in their predecessor blocks, so the expression may need 5270 /// to be expanded in multiple places. 5271 void LSRInstance::RewriteForPHI( 5272 PHINode *PN, const LSRUse &LU, const LSRFixup &LF, const Formula &F, 5273 SCEVExpander &Rewriter, SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5274 DenseMap<BasicBlock *, Value *> Inserted; 5275 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 5276 if (PN->getIncomingValue(i) == LF.OperandValToReplace) { 5277 BasicBlock *BB = PN->getIncomingBlock(i); 5278 5279 // If this is a critical edge, split the edge so that we do not insert 5280 // the code on all predecessor/successor paths. We do this unless this 5281 // is the canonical backedge for this loop, which complicates post-inc 5282 // users. 5283 if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 && 5284 !isa<IndirectBrInst>(BB->getTerminator()) && 5285 !isa<CatchSwitchInst>(BB->getTerminator())) { 5286 BasicBlock *Parent = PN->getParent(); 5287 Loop *PNLoop = LI.getLoopFor(Parent); 5288 if (!PNLoop || Parent != PNLoop->getHeader()) { 5289 // Split the critical edge. 5290 BasicBlock *NewBB = nullptr; 5291 if (!Parent->isLandingPad()) { 5292 NewBB = SplitCriticalEdge(BB, Parent, 5293 CriticalEdgeSplittingOptions(&DT, &LI) 5294 .setMergeIdenticalEdges() 5295 .setKeepOneInputPHIs()); 5296 } else { 5297 SmallVector<BasicBlock*, 2> NewBBs; 5298 SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI); 5299 NewBB = NewBBs[0]; 5300 } 5301 // If NewBB==NULL, then SplitCriticalEdge refused to split because all 5302 // phi predecessors are identical. The simple thing to do is skip 5303 // splitting in this case rather than complicate the API. 5304 if (NewBB) { 5305 // If PN is outside of the loop and BB is in the loop, we want to 5306 // move the block to be immediately before the PHI block, not 5307 // immediately after BB. 5308 if (L->contains(BB) && !L->contains(PN)) 5309 NewBB->moveBefore(PN->getParent()); 5310 5311 // Splitting the edge can reduce the number of PHI entries we have. 5312 e = PN->getNumIncomingValues(); 5313 BB = NewBB; 5314 i = PN->getBasicBlockIndex(BB); 5315 } 5316 } 5317 } 5318 5319 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair = 5320 Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr))); 5321 if (!Pair.second) 5322 PN->setIncomingValue(i, Pair.first->second); 5323 else { 5324 Value *FullV = Expand(LU, LF, F, BB->getTerminator()->getIterator(), 5325 Rewriter, DeadInsts); 5326 5327 // If this is reuse-by-noop-cast, insert the noop cast. 5328 Type *OpTy = LF.OperandValToReplace->getType(); 5329 if (FullV->getType() != OpTy) 5330 FullV = 5331 CastInst::Create(CastInst::getCastOpcode(FullV, false, 5332 OpTy, false), 5333 FullV, LF.OperandValToReplace->getType(), 5334 "tmp", BB->getTerminator()); 5335 5336 PN->setIncomingValue(i, FullV); 5337 Pair.first->second = FullV; 5338 } 5339 } 5340 } 5341 5342 /// Emit instructions for the leading candidate expression for this LSRUse (this 5343 /// is called "expanding"), and update the UserInst to reference the newly 5344 /// expanded value. 5345 void LSRInstance::Rewrite(const LSRUse &LU, const LSRFixup &LF, 5346 const Formula &F, SCEVExpander &Rewriter, 5347 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5348 // First, find an insertion point that dominates UserInst. For PHI nodes, 5349 // find the nearest block which dominates all the relevant uses. 5350 if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) { 5351 RewriteForPHI(PN, LU, LF, F, Rewriter, DeadInsts); 5352 } else { 5353 Value *FullV = 5354 Expand(LU, LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts); 5355 5356 // If this is reuse-by-noop-cast, insert the noop cast. 5357 Type *OpTy = LF.OperandValToReplace->getType(); 5358 if (FullV->getType() != OpTy) { 5359 Instruction *Cast = 5360 CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false), 5361 FullV, OpTy, "tmp", LF.UserInst); 5362 FullV = Cast; 5363 } 5364 5365 // Update the user. ICmpZero is handled specially here (for now) because 5366 // Expand may have updated one of the operands of the icmp already, and 5367 // its new value may happen to be equal to LF.OperandValToReplace, in 5368 // which case doing replaceUsesOfWith leads to replacing both operands 5369 // with the same value. TODO: Reorganize this. 5370 if (LU.Kind == LSRUse::ICmpZero) 5371 LF.UserInst->setOperand(0, FullV); 5372 else 5373 LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV); 5374 } 5375 5376 DeadInsts.emplace_back(LF.OperandValToReplace); 5377 } 5378 5379 /// Rewrite all the fixup locations with new values, following the chosen 5380 /// solution. 5381 void LSRInstance::ImplementSolution( 5382 const SmallVectorImpl<const Formula *> &Solution) { 5383 // Keep track of instructions we may have made dead, so that 5384 // we can remove them after we are done working. 5385 SmallVector<WeakTrackingVH, 16> DeadInsts; 5386 5387 SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(), 5388 "lsr"); 5389 #ifndef NDEBUG 5390 Rewriter.setDebugType(DEBUG_TYPE); 5391 #endif 5392 Rewriter.disableCanonicalMode(); 5393 Rewriter.enableLSRMode(); 5394 Rewriter.setIVIncInsertPos(L, IVIncInsertPos); 5395 5396 // Mark phi nodes that terminate chains so the expander tries to reuse them. 5397 for (const IVChain &Chain : IVChainVec) { 5398 if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst())) 5399 Rewriter.setChainedPhi(PN); 5400 } 5401 5402 // Expand the new value definitions and update the users. 5403 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) 5404 for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) { 5405 Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], Rewriter, DeadInsts); 5406 Changed = true; 5407 } 5408 5409 for (const IVChain &Chain : IVChainVec) { 5410 GenerateIVChain(Chain, Rewriter, DeadInsts); 5411 Changed = true; 5412 } 5413 // Clean up after ourselves. This must be done before deleting any 5414 // instructions. 5415 Rewriter.clear(); 5416 5417 Changed |= DeleteTriviallyDeadInstructions(DeadInsts); 5418 } 5419 5420 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, 5421 DominatorTree &DT, LoopInfo &LI, 5422 const TargetTransformInfo &TTI) 5423 : IU(IU), SE(SE), DT(DT), LI(LI), TTI(TTI), L(L), 5424 FavorBackedgeIndex(EnableBackedgeIndexing && 5425 TTI.shouldFavorBackedgeIndex(L)) { 5426 // If LoopSimplify form is not available, stay out of trouble. 5427 if (!L->isLoopSimplifyForm()) 5428 return; 5429 5430 // If there's no interesting work to be done, bail early. 5431 if (IU.empty()) return; 5432 5433 // If there's too much analysis to be done, bail early. We won't be able to 5434 // model the problem anyway. 5435 unsigned NumUsers = 0; 5436 for (const IVStrideUse &U : IU) { 5437 if (++NumUsers > MaxIVUsers) { 5438 (void)U; 5439 LLVM_DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U 5440 << "\n"); 5441 return; 5442 } 5443 // Bail out if we have a PHI on an EHPad that gets a value from a 5444 // CatchSwitchInst. Because the CatchSwitchInst cannot be split, there is 5445 // no good place to stick any instructions. 5446 if (auto *PN = dyn_cast<PHINode>(U.getUser())) { 5447 auto *FirstNonPHI = PN->getParent()->getFirstNonPHI(); 5448 if (isa<FuncletPadInst>(FirstNonPHI) || 5449 isa<CatchSwitchInst>(FirstNonPHI)) 5450 for (BasicBlock *PredBB : PN->blocks()) 5451 if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI())) 5452 return; 5453 } 5454 } 5455 5456 #ifndef NDEBUG 5457 // All dominating loops must have preheaders, or SCEVExpander may not be able 5458 // to materialize an AddRecExpr whose Start is an outer AddRecExpr. 5459 // 5460 // IVUsers analysis should only create users that are dominated by simple loop 5461 // headers. Since this loop should dominate all of its users, its user list 5462 // should be empty if this loop itself is not within a simple loop nest. 5463 for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader()); 5464 Rung; Rung = Rung->getIDom()) { 5465 BasicBlock *BB = Rung->getBlock(); 5466 const Loop *DomLoop = LI.getLoopFor(BB); 5467 if (DomLoop && DomLoop->getHeader() == BB) { 5468 assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest"); 5469 } 5470 } 5471 #endif // DEBUG 5472 5473 LLVM_DEBUG(dbgs() << "\nLSR on loop "; 5474 L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false); 5475 dbgs() << ":\n"); 5476 5477 // First, perform some low-level loop optimizations. 5478 OptimizeShadowIV(); 5479 OptimizeLoopTermCond(); 5480 5481 // If loop preparation eliminates all interesting IV users, bail. 5482 if (IU.empty()) return; 5483 5484 // Skip nested loops until we can model them better with formulae. 5485 if (!L->empty()) { 5486 LLVM_DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n"); 5487 return; 5488 } 5489 5490 // Start collecting data and preparing for the solver. 5491 CollectChains(); 5492 CollectInterestingTypesAndFactors(); 5493 CollectFixupsAndInitialFormulae(); 5494 CollectLoopInvariantFixupsAndFormulae(); 5495 5496 if (Uses.empty()) 5497 return; 5498 5499 LLVM_DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n"; 5500 print_uses(dbgs())); 5501 5502 // Now use the reuse data to generate a bunch of interesting ways 5503 // to formulate the values needed for the uses. 5504 GenerateAllReuseFormulae(); 5505 5506 FilterOutUndesirableDedicatedRegisters(); 5507 NarrowSearchSpaceUsingHeuristics(); 5508 5509 SmallVector<const Formula *, 8> Solution; 5510 Solve(Solution); 5511 5512 // Release memory that is no longer needed. 5513 Factors.clear(); 5514 Types.clear(); 5515 RegUses.clear(); 5516 5517 if (Solution.empty()) 5518 return; 5519 5520 #ifndef NDEBUG 5521 // Formulae should be legal. 5522 for (const LSRUse &LU : Uses) { 5523 for (const Formula &F : LU.Formulae) 5524 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 5525 F) && "Illegal formula generated!"); 5526 }; 5527 #endif 5528 5529 // Now that we've decided what we want, make it so. 5530 ImplementSolution(Solution); 5531 } 5532 5533 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 5534 void LSRInstance::print_factors_and_types(raw_ostream &OS) const { 5535 if (Factors.empty() && Types.empty()) return; 5536 5537 OS << "LSR has identified the following interesting factors and types: "; 5538 bool First = true; 5539 5540 for (int64_t Factor : Factors) { 5541 if (!First) OS << ", "; 5542 First = false; 5543 OS << '*' << Factor; 5544 } 5545 5546 for (Type *Ty : Types) { 5547 if (!First) OS << ", "; 5548 First = false; 5549 OS << '(' << *Ty << ')'; 5550 } 5551 OS << '\n'; 5552 } 5553 5554 void LSRInstance::print_fixups(raw_ostream &OS) const { 5555 OS << "LSR is examining the following fixup sites:\n"; 5556 for (const LSRUse &LU : Uses) 5557 for (const LSRFixup &LF : LU.Fixups) { 5558 dbgs() << " "; 5559 LF.print(OS); 5560 OS << '\n'; 5561 } 5562 } 5563 5564 void LSRInstance::print_uses(raw_ostream &OS) const { 5565 OS << "LSR is examining the following uses:\n"; 5566 for (const LSRUse &LU : Uses) { 5567 dbgs() << " "; 5568 LU.print(OS); 5569 OS << '\n'; 5570 for (const Formula &F : LU.Formulae) { 5571 OS << " "; 5572 F.print(OS); 5573 OS << '\n'; 5574 } 5575 } 5576 } 5577 5578 void LSRInstance::print(raw_ostream &OS) const { 5579 print_factors_and_types(OS); 5580 print_fixups(OS); 5581 print_uses(OS); 5582 } 5583 5584 LLVM_DUMP_METHOD void LSRInstance::dump() const { 5585 print(errs()); errs() << '\n'; 5586 } 5587 #endif 5588 5589 namespace { 5590 5591 class LoopStrengthReduce : public LoopPass { 5592 public: 5593 static char ID; // Pass ID, replacement for typeid 5594 5595 LoopStrengthReduce(); 5596 5597 private: 5598 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 5599 void getAnalysisUsage(AnalysisUsage &AU) const override; 5600 }; 5601 5602 } // end anonymous namespace 5603 5604 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) { 5605 initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry()); 5606 } 5607 5608 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const { 5609 // We split critical edges, so we change the CFG. However, we do update 5610 // many analyses if they are around. 5611 AU.addPreservedID(LoopSimplifyID); 5612 5613 AU.addRequired<LoopInfoWrapperPass>(); 5614 AU.addPreserved<LoopInfoWrapperPass>(); 5615 AU.addRequiredID(LoopSimplifyID); 5616 AU.addRequired<DominatorTreeWrapperPass>(); 5617 AU.addPreserved<DominatorTreeWrapperPass>(); 5618 AU.addRequired<ScalarEvolutionWrapperPass>(); 5619 AU.addPreserved<ScalarEvolutionWrapperPass>(); 5620 // Requiring LoopSimplify a second time here prevents IVUsers from running 5621 // twice, since LoopSimplify was invalidated by running ScalarEvolution. 5622 AU.addRequiredID(LoopSimplifyID); 5623 AU.addRequired<IVUsersWrapperPass>(); 5624 AU.addPreserved<IVUsersWrapperPass>(); 5625 AU.addRequired<TargetTransformInfoWrapperPass>(); 5626 } 5627 5628 static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE, 5629 DominatorTree &DT, LoopInfo &LI, 5630 const TargetTransformInfo &TTI) { 5631 bool Changed = false; 5632 5633 // Run the main LSR transformation. 5634 Changed |= LSRInstance(L, IU, SE, DT, LI, TTI).getChanged(); 5635 5636 // Remove any extra phis created by processing inner loops. 5637 Changed |= DeleteDeadPHIs(L->getHeader()); 5638 if (EnablePhiElim && L->isLoopSimplifyForm()) { 5639 SmallVector<WeakTrackingVH, 16> DeadInsts; 5640 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 5641 SCEVExpander Rewriter(SE, DL, "lsr"); 5642 #ifndef NDEBUG 5643 Rewriter.setDebugType(DEBUG_TYPE); 5644 #endif 5645 unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI); 5646 if (numFolded) { 5647 Changed = true; 5648 DeleteTriviallyDeadInstructions(DeadInsts); 5649 DeleteDeadPHIs(L->getHeader()); 5650 } 5651 } 5652 return Changed; 5653 } 5654 5655 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) { 5656 if (skipLoop(L)) 5657 return false; 5658 5659 auto &IU = getAnalysis<IVUsersWrapperPass>().getIU(); 5660 auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 5661 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 5662 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 5663 const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI( 5664 *L->getHeader()->getParent()); 5665 return ReduceLoopStrength(L, IU, SE, DT, LI, TTI); 5666 } 5667 5668 PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM, 5669 LoopStandardAnalysisResults &AR, 5670 LPMUpdater &) { 5671 if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE, 5672 AR.DT, AR.LI, AR.TTI)) 5673 return PreservedAnalyses::all(); 5674 5675 return getLoopPassPreservedAnalyses(); 5676 } 5677 5678 char LoopStrengthReduce::ID = 0; 5679 5680 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce", 5681 "Loop Strength Reduction", false, false) 5682 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 5683 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 5684 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 5685 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass) 5686 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 5687 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 5688 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce", 5689 "Loop Strength Reduction", false, false) 5690 5691 Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); } 5692