1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This transformation analyzes and transforms the induction variables (and 11 // computations derived from them) into forms suitable for efficient execution 12 // on the target. 13 // 14 // This pass performs a strength reduction on array references inside loops that 15 // have as one or more of their components the loop induction variable, it 16 // rewrites expressions to take advantage of scaled-index addressing modes 17 // available on the target, and it performs a variety of other optimizations 18 // related to loop induction variables. 19 // 20 // Terminology note: this code has a lot of handling for "post-increment" or 21 // "post-inc" users. This is not talking about post-increment addressing modes; 22 // it is instead talking about code like this: 23 // 24 // %i = phi [ 0, %entry ], [ %i.next, %latch ] 25 // ... 26 // %i.next = add %i, 1 27 // %c = icmp eq %i.next, %n 28 // 29 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however 30 // it's useful to think about these as the same register, with some uses using 31 // the value of the register before the add and some using // it after. In this 32 // example, the icmp is a post-increment user, since it uses %i.next, which is 33 // the value of the induction variable after the increment. The other common 34 // case of post-increment users is users outside the loop. 35 // 36 // TODO: More sophistication in the way Formulae are generated and filtered. 37 // 38 // TODO: Handle multiple loops at a time. 39 // 40 // TODO: Should TargetLowering::AddrMode::BaseGV be changed to a ConstantExpr 41 // instead of a GlobalValue? 42 // 43 // TODO: When truncation is free, truncate ICmp users' operands to make it a 44 // smaller encoding (on x86 at least). 45 // 46 // TODO: When a negated register is used by an add (such as in a list of 47 // multiple base registers, or as the increment expression in an addrec), 48 // we may not actually need both reg and (-1 * reg) in registers; the 49 // negation can be implemented by using a sub instead of an add. The 50 // lack of support for taking this into consideration when making 51 // register pressure decisions is partly worked around by the "Special" 52 // use kind. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #define DEBUG_TYPE "loop-reduce" 57 #include "llvm/Transforms/Scalar.h" 58 #include "llvm/Constants.h" 59 #include "llvm/Instructions.h" 60 #include "llvm/IntrinsicInst.h" 61 #include "llvm/DerivedTypes.h" 62 #include "llvm/Analysis/IVUsers.h" 63 #include "llvm/Analysis/Dominators.h" 64 #include "llvm/Analysis/LoopPass.h" 65 #include "llvm/Analysis/ScalarEvolutionExpander.h" 66 #include "llvm/Assembly/Writer.h" 67 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 68 #include "llvm/Transforms/Utils/Local.h" 69 #include "llvm/ADT/SmallBitVector.h" 70 #include "llvm/ADT/SetVector.h" 71 #include "llvm/ADT/DenseSet.h" 72 #include "llvm/Support/Debug.h" 73 #include "llvm/Support/CommandLine.h" 74 #include "llvm/Support/ValueHandle.h" 75 #include "llvm/Support/raw_ostream.h" 76 #include "llvm/Target/TargetLowering.h" 77 #include <algorithm> 78 using namespace llvm; 79 80 static cl::opt<bool> EnableNested( 81 "enable-lsr-nested", cl::Hidden, cl::desc("Enable LSR on nested loops")); 82 83 static cl::opt<bool> EnableRetry( 84 "enable-lsr-retry", cl::Hidden, cl::desc("Enable LSR retry")); 85 86 // Temporary flag to cleanup congruent phis after LSR phi expansion. 87 // It's currently disabled until we can determine whether it's truly useful or 88 // not. The flag should be removed after the v3.0 release. 89 static cl::opt<bool> EnablePhiElim( 90 "enable-lsr-phielim", cl::Hidden, cl::desc("Enable LSR phi elimination")); 91 92 namespace { 93 94 /// RegSortData - This class holds data which is used to order reuse candidates. 95 class RegSortData { 96 public: 97 /// UsedByIndices - This represents the set of LSRUse indices which reference 98 /// a particular register. 99 SmallBitVector UsedByIndices; 100 101 RegSortData() {} 102 103 void print(raw_ostream &OS) const; 104 void dump() const; 105 }; 106 107 } 108 109 void RegSortData::print(raw_ostream &OS) const { 110 OS << "[NumUses=" << UsedByIndices.count() << ']'; 111 } 112 113 void RegSortData::dump() const { 114 print(errs()); errs() << '\n'; 115 } 116 117 namespace { 118 119 /// RegUseTracker - Map register candidates to information about how they are 120 /// used. 121 class RegUseTracker { 122 typedef DenseMap<const SCEV *, RegSortData> RegUsesTy; 123 124 RegUsesTy RegUsesMap; 125 SmallVector<const SCEV *, 16> RegSequence; 126 127 public: 128 void CountRegister(const SCEV *Reg, size_t LUIdx); 129 void DropRegister(const SCEV *Reg, size_t LUIdx); 130 void SwapAndDropUse(size_t LUIdx, size_t LastLUIdx); 131 132 bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const; 133 134 const SmallBitVector &getUsedByIndices(const SCEV *Reg) const; 135 136 void clear(); 137 138 typedef SmallVectorImpl<const SCEV *>::iterator iterator; 139 typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator; 140 iterator begin() { return RegSequence.begin(); } 141 iterator end() { return RegSequence.end(); } 142 const_iterator begin() const { return RegSequence.begin(); } 143 const_iterator end() const { return RegSequence.end(); } 144 }; 145 146 } 147 148 void 149 RegUseTracker::CountRegister(const SCEV *Reg, size_t LUIdx) { 150 std::pair<RegUsesTy::iterator, bool> Pair = 151 RegUsesMap.insert(std::make_pair(Reg, RegSortData())); 152 RegSortData &RSD = Pair.first->second; 153 if (Pair.second) 154 RegSequence.push_back(Reg); 155 RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1)); 156 RSD.UsedByIndices.set(LUIdx); 157 } 158 159 void 160 RegUseTracker::DropRegister(const SCEV *Reg, size_t LUIdx) { 161 RegUsesTy::iterator It = RegUsesMap.find(Reg); 162 assert(It != RegUsesMap.end()); 163 RegSortData &RSD = It->second; 164 assert(RSD.UsedByIndices.size() > LUIdx); 165 RSD.UsedByIndices.reset(LUIdx); 166 } 167 168 void 169 RegUseTracker::SwapAndDropUse(size_t LUIdx, size_t LastLUIdx) { 170 assert(LUIdx <= LastLUIdx); 171 172 // Update RegUses. The data structure is not optimized for this purpose; 173 // we must iterate through it and update each of the bit vectors. 174 for (RegUsesTy::iterator I = RegUsesMap.begin(), E = RegUsesMap.end(); 175 I != E; ++I) { 176 SmallBitVector &UsedByIndices = I->second.UsedByIndices; 177 if (LUIdx < UsedByIndices.size()) 178 UsedByIndices[LUIdx] = 179 LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : 0; 180 UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx)); 181 } 182 } 183 184 bool 185 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const { 186 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 187 if (I == RegUsesMap.end()) 188 return false; 189 const SmallBitVector &UsedByIndices = I->second.UsedByIndices; 190 int i = UsedByIndices.find_first(); 191 if (i == -1) return false; 192 if ((size_t)i != LUIdx) return true; 193 return UsedByIndices.find_next(i) != -1; 194 } 195 196 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const { 197 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 198 assert(I != RegUsesMap.end() && "Unknown register!"); 199 return I->second.UsedByIndices; 200 } 201 202 void RegUseTracker::clear() { 203 RegUsesMap.clear(); 204 RegSequence.clear(); 205 } 206 207 namespace { 208 209 /// Formula - This class holds information that describes a formula for 210 /// computing satisfying a use. It may include broken-out immediates and scaled 211 /// registers. 212 struct Formula { 213 /// AM - This is used to represent complex addressing, as well as other kinds 214 /// of interesting uses. 215 TargetLowering::AddrMode AM; 216 217 /// BaseRegs - The list of "base" registers for this use. When this is 218 /// non-empty, AM.HasBaseReg should be set to true. 219 SmallVector<const SCEV *, 2> BaseRegs; 220 221 /// ScaledReg - The 'scaled' register for this use. This should be non-null 222 /// when AM.Scale is not zero. 223 const SCEV *ScaledReg; 224 225 /// UnfoldedOffset - An additional constant offset which added near the 226 /// use. This requires a temporary register, but the offset itself can 227 /// live in an add immediate field rather than a register. 228 int64_t UnfoldedOffset; 229 230 Formula() : ScaledReg(0), UnfoldedOffset(0) {} 231 232 void InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE); 233 234 unsigned getNumRegs() const; 235 Type *getType() const; 236 237 void DeleteBaseReg(const SCEV *&S); 238 239 bool referencesReg(const SCEV *S) const; 240 bool hasRegsUsedByUsesOtherThan(size_t LUIdx, 241 const RegUseTracker &RegUses) const; 242 243 void print(raw_ostream &OS) const; 244 void dump() const; 245 }; 246 247 } 248 249 /// DoInitialMatch - Recursion helper for InitialMatch. 250 static void DoInitialMatch(const SCEV *S, Loop *L, 251 SmallVectorImpl<const SCEV *> &Good, 252 SmallVectorImpl<const SCEV *> &Bad, 253 ScalarEvolution &SE) { 254 // Collect expressions which properly dominate the loop header. 255 if (SE.properlyDominates(S, L->getHeader())) { 256 Good.push_back(S); 257 return; 258 } 259 260 // Look at add operands. 261 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 262 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); 263 I != E; ++I) 264 DoInitialMatch(*I, L, Good, Bad, SE); 265 return; 266 } 267 268 // Look at addrec operands. 269 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 270 if (!AR->getStart()->isZero()) { 271 DoInitialMatch(AR->getStart(), L, Good, Bad, SE); 272 DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0), 273 AR->getStepRecurrence(SE), 274 // FIXME: AR->getNoWrapFlags() 275 AR->getLoop(), SCEV::FlagAnyWrap), 276 L, Good, Bad, SE); 277 return; 278 } 279 280 // Handle a multiplication by -1 (negation) if it didn't fold. 281 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) 282 if (Mul->getOperand(0)->isAllOnesValue()) { 283 SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end()); 284 const SCEV *NewMul = SE.getMulExpr(Ops); 285 286 SmallVector<const SCEV *, 4> MyGood; 287 SmallVector<const SCEV *, 4> MyBad; 288 DoInitialMatch(NewMul, L, MyGood, MyBad, SE); 289 const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue( 290 SE.getEffectiveSCEVType(NewMul->getType()))); 291 for (SmallVectorImpl<const SCEV *>::const_iterator I = MyGood.begin(), 292 E = MyGood.end(); I != E; ++I) 293 Good.push_back(SE.getMulExpr(NegOne, *I)); 294 for (SmallVectorImpl<const SCEV *>::const_iterator I = MyBad.begin(), 295 E = MyBad.end(); I != E; ++I) 296 Bad.push_back(SE.getMulExpr(NegOne, *I)); 297 return; 298 } 299 300 // Ok, we can't do anything interesting. Just stuff the whole thing into a 301 // register and hope for the best. 302 Bad.push_back(S); 303 } 304 305 /// InitialMatch - Incorporate loop-variant parts of S into this Formula, 306 /// attempting to keep all loop-invariant and loop-computable values in a 307 /// single base register. 308 void Formula::InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) { 309 SmallVector<const SCEV *, 4> Good; 310 SmallVector<const SCEV *, 4> Bad; 311 DoInitialMatch(S, L, Good, Bad, SE); 312 if (!Good.empty()) { 313 const SCEV *Sum = SE.getAddExpr(Good); 314 if (!Sum->isZero()) 315 BaseRegs.push_back(Sum); 316 AM.HasBaseReg = true; 317 } 318 if (!Bad.empty()) { 319 const SCEV *Sum = SE.getAddExpr(Bad); 320 if (!Sum->isZero()) 321 BaseRegs.push_back(Sum); 322 AM.HasBaseReg = true; 323 } 324 } 325 326 /// getNumRegs - Return the total number of register operands used by this 327 /// formula. This does not include register uses implied by non-constant 328 /// addrec strides. 329 unsigned Formula::getNumRegs() const { 330 return !!ScaledReg + BaseRegs.size(); 331 } 332 333 /// getType - Return the type of this formula, if it has one, or null 334 /// otherwise. This type is meaningless except for the bit size. 335 Type *Formula::getType() const { 336 return !BaseRegs.empty() ? BaseRegs.front()->getType() : 337 ScaledReg ? ScaledReg->getType() : 338 AM.BaseGV ? AM.BaseGV->getType() : 339 0; 340 } 341 342 /// DeleteBaseReg - Delete the given base reg from the BaseRegs list. 343 void Formula::DeleteBaseReg(const SCEV *&S) { 344 if (&S != &BaseRegs.back()) 345 std::swap(S, BaseRegs.back()); 346 BaseRegs.pop_back(); 347 } 348 349 /// referencesReg - Test if this formula references the given register. 350 bool Formula::referencesReg(const SCEV *S) const { 351 return S == ScaledReg || 352 std::find(BaseRegs.begin(), BaseRegs.end(), S) != BaseRegs.end(); 353 } 354 355 /// hasRegsUsedByUsesOtherThan - Test whether this formula uses registers 356 /// which are used by uses other than the use with the given index. 357 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx, 358 const RegUseTracker &RegUses) const { 359 if (ScaledReg) 360 if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx)) 361 return true; 362 for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(), 363 E = BaseRegs.end(); I != E; ++I) 364 if (RegUses.isRegUsedByUsesOtherThan(*I, LUIdx)) 365 return true; 366 return false; 367 } 368 369 void Formula::print(raw_ostream &OS) const { 370 bool First = true; 371 if (AM.BaseGV) { 372 if (!First) OS << " + "; else First = false; 373 WriteAsOperand(OS, AM.BaseGV, /*PrintType=*/false); 374 } 375 if (AM.BaseOffs != 0) { 376 if (!First) OS << " + "; else First = false; 377 OS << AM.BaseOffs; 378 } 379 for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(), 380 E = BaseRegs.end(); I != E; ++I) { 381 if (!First) OS << " + "; else First = false; 382 OS << "reg(" << **I << ')'; 383 } 384 if (AM.HasBaseReg && BaseRegs.empty()) { 385 if (!First) OS << " + "; else First = false; 386 OS << "**error: HasBaseReg**"; 387 } else if (!AM.HasBaseReg && !BaseRegs.empty()) { 388 if (!First) OS << " + "; else First = false; 389 OS << "**error: !HasBaseReg**"; 390 } 391 if (AM.Scale != 0) { 392 if (!First) OS << " + "; else First = false; 393 OS << AM.Scale << "*reg("; 394 if (ScaledReg) 395 OS << *ScaledReg; 396 else 397 OS << "<unknown>"; 398 OS << ')'; 399 } 400 if (UnfoldedOffset != 0) { 401 if (!First) OS << " + "; else First = false; 402 OS << "imm(" << UnfoldedOffset << ')'; 403 } 404 } 405 406 void Formula::dump() const { 407 print(errs()); errs() << '\n'; 408 } 409 410 /// isAddRecSExtable - Return true if the given addrec can be sign-extended 411 /// without changing its value. 412 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 413 Type *WideTy = 414 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1); 415 return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy)); 416 } 417 418 /// isAddSExtable - Return true if the given add can be sign-extended 419 /// without changing its value. 420 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) { 421 Type *WideTy = 422 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1); 423 return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy)); 424 } 425 426 /// isMulSExtable - Return true if the given mul can be sign-extended 427 /// without changing its value. 428 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) { 429 Type *WideTy = 430 IntegerType::get(SE.getContext(), 431 SE.getTypeSizeInBits(M->getType()) * M->getNumOperands()); 432 return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy)); 433 } 434 435 /// getExactSDiv - Return an expression for LHS /s RHS, if it can be determined 436 /// and if the remainder is known to be zero, or null otherwise. If 437 /// IgnoreSignificantBits is true, expressions like (X * Y) /s Y are simplified 438 /// to Y, ignoring that the multiplication may overflow, which is useful when 439 /// the result will be used in a context where the most significant bits are 440 /// ignored. 441 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS, 442 ScalarEvolution &SE, 443 bool IgnoreSignificantBits = false) { 444 // Handle the trivial case, which works for any SCEV type. 445 if (LHS == RHS) 446 return SE.getConstant(LHS->getType(), 1); 447 448 // Handle a few RHS special cases. 449 const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS); 450 if (RC) { 451 const APInt &RA = RC->getValue()->getValue(); 452 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do 453 // some folding. 454 if (RA.isAllOnesValue()) 455 return SE.getMulExpr(LHS, RC); 456 // Handle x /s 1 as x. 457 if (RA == 1) 458 return LHS; 459 } 460 461 // Check for a division of a constant by a constant. 462 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) { 463 if (!RC) 464 return 0; 465 const APInt &LA = C->getValue()->getValue(); 466 const APInt &RA = RC->getValue()->getValue(); 467 if (LA.srem(RA) != 0) 468 return 0; 469 return SE.getConstant(LA.sdiv(RA)); 470 } 471 472 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow. 473 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) { 474 if (IgnoreSignificantBits || isAddRecSExtable(AR, SE)) { 475 const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE, 476 IgnoreSignificantBits); 477 if (!Step) return 0; 478 const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE, 479 IgnoreSignificantBits); 480 if (!Start) return 0; 481 // FlagNW is independent of the start value, step direction, and is 482 // preserved with smaller magnitude steps. 483 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 484 return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap); 485 } 486 return 0; 487 } 488 489 // Distribute the sdiv over add operands, if the add doesn't overflow. 490 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) { 491 if (IgnoreSignificantBits || isAddSExtable(Add, SE)) { 492 SmallVector<const SCEV *, 8> Ops; 493 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); 494 I != E; ++I) { 495 const SCEV *Op = getExactSDiv(*I, RHS, SE, 496 IgnoreSignificantBits); 497 if (!Op) return 0; 498 Ops.push_back(Op); 499 } 500 return SE.getAddExpr(Ops); 501 } 502 return 0; 503 } 504 505 // Check for a multiply operand that we can pull RHS out of. 506 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) { 507 if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) { 508 SmallVector<const SCEV *, 4> Ops; 509 bool Found = false; 510 for (SCEVMulExpr::op_iterator I = Mul->op_begin(), E = Mul->op_end(); 511 I != E; ++I) { 512 const SCEV *S = *I; 513 if (!Found) 514 if (const SCEV *Q = getExactSDiv(S, RHS, SE, 515 IgnoreSignificantBits)) { 516 S = Q; 517 Found = true; 518 } 519 Ops.push_back(S); 520 } 521 return Found ? SE.getMulExpr(Ops) : 0; 522 } 523 return 0; 524 } 525 526 // Otherwise we don't know. 527 return 0; 528 } 529 530 /// ExtractImmediate - If S involves the addition of a constant integer value, 531 /// return that integer value, and mutate S to point to a new SCEV with that 532 /// value excluded. 533 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) { 534 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 535 if (C->getValue()->getValue().getMinSignedBits() <= 64) { 536 S = SE.getConstant(C->getType(), 0); 537 return C->getValue()->getSExtValue(); 538 } 539 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 540 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 541 int64_t Result = ExtractImmediate(NewOps.front(), SE); 542 if (Result != 0) 543 S = SE.getAddExpr(NewOps); 544 return Result; 545 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 546 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 547 int64_t Result = ExtractImmediate(NewOps.front(), SE); 548 if (Result != 0) 549 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 550 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 551 SCEV::FlagAnyWrap); 552 return Result; 553 } 554 return 0; 555 } 556 557 /// ExtractSymbol - If S involves the addition of a GlobalValue address, 558 /// return that symbol, and mutate S to point to a new SCEV with that 559 /// value excluded. 560 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) { 561 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 562 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) { 563 S = SE.getConstant(GV->getType(), 0); 564 return GV; 565 } 566 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 567 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 568 GlobalValue *Result = ExtractSymbol(NewOps.back(), SE); 569 if (Result) 570 S = SE.getAddExpr(NewOps); 571 return Result; 572 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 573 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 574 GlobalValue *Result = ExtractSymbol(NewOps.front(), SE); 575 if (Result) 576 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 577 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 578 SCEV::FlagAnyWrap); 579 return Result; 580 } 581 return 0; 582 } 583 584 /// isAddressUse - Returns true if the specified instruction is using the 585 /// specified value as an address. 586 static bool isAddressUse(Instruction *Inst, Value *OperandVal) { 587 bool isAddress = isa<LoadInst>(Inst); 588 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 589 if (SI->getOperand(1) == OperandVal) 590 isAddress = true; 591 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 592 // Addressing modes can also be folded into prefetches and a variety 593 // of intrinsics. 594 switch (II->getIntrinsicID()) { 595 default: break; 596 case Intrinsic::prefetch: 597 case Intrinsic::x86_sse_storeu_ps: 598 case Intrinsic::x86_sse2_storeu_pd: 599 case Intrinsic::x86_sse2_storeu_dq: 600 case Intrinsic::x86_sse2_storel_dq: 601 if (II->getArgOperand(0) == OperandVal) 602 isAddress = true; 603 break; 604 } 605 } 606 return isAddress; 607 } 608 609 /// getAccessType - Return the type of the memory being accessed. 610 static Type *getAccessType(const Instruction *Inst) { 611 Type *AccessTy = Inst->getType(); 612 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) 613 AccessTy = SI->getOperand(0)->getType(); 614 else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 615 // Addressing modes can also be folded into prefetches and a variety 616 // of intrinsics. 617 switch (II->getIntrinsicID()) { 618 default: break; 619 case Intrinsic::x86_sse_storeu_ps: 620 case Intrinsic::x86_sse2_storeu_pd: 621 case Intrinsic::x86_sse2_storeu_dq: 622 case Intrinsic::x86_sse2_storel_dq: 623 AccessTy = II->getArgOperand(0)->getType(); 624 break; 625 } 626 } 627 628 // All pointers have the same requirements, so canonicalize them to an 629 // arbitrary pointer type to minimize variation. 630 if (PointerType *PTy = dyn_cast<PointerType>(AccessTy)) 631 AccessTy = PointerType::get(IntegerType::get(PTy->getContext(), 1), 632 PTy->getAddressSpace()); 633 634 return AccessTy; 635 } 636 637 /// isExistingPhi - Return true if this AddRec is already a phi in its loop. 638 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 639 for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin(); 640 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 641 if (SE.isSCEVable(PN->getType()) && 642 (SE.getEffectiveSCEVType(PN->getType()) == 643 SE.getEffectiveSCEVType(AR->getType())) && 644 SE.getSCEV(PN) == AR) 645 return true; 646 } 647 return false; 648 } 649 650 /// DeleteTriviallyDeadInstructions - If any of the instructions is the 651 /// specified set are trivially dead, delete them and see if this makes any of 652 /// their operands subsequently dead. 653 static bool 654 DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) { 655 bool Changed = false; 656 657 while (!DeadInsts.empty()) { 658 Instruction *I = dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()); 659 660 if (I == 0 || !isInstructionTriviallyDead(I)) 661 continue; 662 663 for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) 664 if (Instruction *U = dyn_cast<Instruction>(*OI)) { 665 *OI = 0; 666 if (U->use_empty()) 667 DeadInsts.push_back(U); 668 } 669 670 I->eraseFromParent(); 671 Changed = true; 672 } 673 674 return Changed; 675 } 676 677 namespace { 678 679 /// Cost - This class is used to measure and compare candidate formulae. 680 class Cost { 681 /// TODO: Some of these could be merged. Also, a lexical ordering 682 /// isn't always optimal. 683 unsigned NumRegs; 684 unsigned AddRecCost; 685 unsigned NumIVMuls; 686 unsigned NumBaseAdds; 687 unsigned ImmCost; 688 unsigned SetupCost; 689 690 public: 691 Cost() 692 : NumRegs(0), AddRecCost(0), NumIVMuls(0), NumBaseAdds(0), ImmCost(0), 693 SetupCost(0) {} 694 695 bool operator<(const Cost &Other) const; 696 697 void Loose(); 698 699 #ifndef NDEBUG 700 // Once any of the metrics loses, they must all remain losers. 701 bool isValid() { 702 return ((NumRegs | AddRecCost | NumIVMuls | NumBaseAdds 703 | ImmCost | SetupCost) != ~0u) 704 || ((NumRegs & AddRecCost & NumIVMuls & NumBaseAdds 705 & ImmCost & SetupCost) == ~0u); 706 } 707 #endif 708 709 bool isLoser() { 710 assert(isValid() && "invalid cost"); 711 return NumRegs == ~0u; 712 } 713 714 void RateFormula(const Formula &F, 715 SmallPtrSet<const SCEV *, 16> &Regs, 716 const DenseSet<const SCEV *> &VisitedRegs, 717 const Loop *L, 718 const SmallVectorImpl<int64_t> &Offsets, 719 ScalarEvolution &SE, DominatorTree &DT, 720 SmallPtrSet<const SCEV *, 16> *LoserRegs = 0); 721 722 void print(raw_ostream &OS) const; 723 void dump() const; 724 725 private: 726 void RateRegister(const SCEV *Reg, 727 SmallPtrSet<const SCEV *, 16> &Regs, 728 const Loop *L, 729 ScalarEvolution &SE, DominatorTree &DT); 730 void RatePrimaryRegister(const SCEV *Reg, 731 SmallPtrSet<const SCEV *, 16> &Regs, 732 const Loop *L, 733 ScalarEvolution &SE, DominatorTree &DT, 734 SmallPtrSet<const SCEV *, 16> *LoserRegs); 735 }; 736 737 } 738 739 /// RateRegister - Tally up interesting quantities from the given register. 740 void Cost::RateRegister(const SCEV *Reg, 741 SmallPtrSet<const SCEV *, 16> &Regs, 742 const Loop *L, 743 ScalarEvolution &SE, DominatorTree &DT) { 744 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) { 745 if (AR->getLoop() == L) 746 AddRecCost += 1; /// TODO: This should be a function of the stride. 747 748 // If this is an addrec for another loop, don't second-guess its addrec phi 749 // nodes. LSR isn't currently smart enough to reason about more than one 750 // loop at a time. LSR has either already run on inner loops, will not run 751 // on other loops, and cannot be expected to change sibling loops. If the 752 // AddRec exists, consider it's register free and leave it alone. Otherwise, 753 // do not consider this formula at all. 754 else if (!EnableNested || L->contains(AR->getLoop()) || 755 (!AR->getLoop()->contains(L) && 756 DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))) { 757 if (isExistingPhi(AR, SE)) 758 return; 759 760 // For !EnableNested, never rewrite IVs in other loops. 761 if (!EnableNested) { 762 Loose(); 763 return; 764 } 765 // If this isn't one of the addrecs that the loop already has, it 766 // would require a costly new phi and add. TODO: This isn't 767 // precisely modeled right now. 768 ++NumBaseAdds; 769 if (!Regs.count(AR->getStart())) { 770 RateRegister(AR->getStart(), Regs, L, SE, DT); 771 if (isLoser()) 772 return; 773 } 774 } 775 776 // Add the step value register, if it needs one. 777 // TODO: The non-affine case isn't precisely modeled here. 778 if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) { 779 if (!Regs.count(AR->getOperand(1))) { 780 RateRegister(AR->getOperand(1), Regs, L, SE, DT); 781 if (isLoser()) 782 return; 783 } 784 } 785 } 786 ++NumRegs; 787 788 // Rough heuristic; favor registers which don't require extra setup 789 // instructions in the preheader. 790 if (!isa<SCEVUnknown>(Reg) && 791 !isa<SCEVConstant>(Reg) && 792 !(isa<SCEVAddRecExpr>(Reg) && 793 (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) || 794 isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart())))) 795 ++SetupCost; 796 797 NumIVMuls += isa<SCEVMulExpr>(Reg) && 798 SE.hasComputableLoopEvolution(Reg, L); 799 } 800 801 /// RatePrimaryRegister - Record this register in the set. If we haven't seen it 802 /// before, rate it. Optional LoserRegs provides a way to declare any formula 803 /// that refers to one of those regs an instant loser. 804 void Cost::RatePrimaryRegister(const SCEV *Reg, 805 SmallPtrSet<const SCEV *, 16> &Regs, 806 const Loop *L, 807 ScalarEvolution &SE, DominatorTree &DT, 808 SmallPtrSet<const SCEV *, 16> *LoserRegs) { 809 if (LoserRegs && LoserRegs->count(Reg)) { 810 Loose(); 811 return; 812 } 813 if (Regs.insert(Reg)) { 814 RateRegister(Reg, Regs, L, SE, DT); 815 if (isLoser()) 816 LoserRegs->insert(Reg); 817 } 818 } 819 820 void Cost::RateFormula(const Formula &F, 821 SmallPtrSet<const SCEV *, 16> &Regs, 822 const DenseSet<const SCEV *> &VisitedRegs, 823 const Loop *L, 824 const SmallVectorImpl<int64_t> &Offsets, 825 ScalarEvolution &SE, DominatorTree &DT, 826 SmallPtrSet<const SCEV *, 16> *LoserRegs) { 827 // Tally up the registers. 828 if (const SCEV *ScaledReg = F.ScaledReg) { 829 if (VisitedRegs.count(ScaledReg)) { 830 Loose(); 831 return; 832 } 833 RatePrimaryRegister(ScaledReg, Regs, L, SE, DT, LoserRegs); 834 if (isLoser()) 835 return; 836 } 837 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(), 838 E = F.BaseRegs.end(); I != E; ++I) { 839 const SCEV *BaseReg = *I; 840 if (VisitedRegs.count(BaseReg)) { 841 Loose(); 842 return; 843 } 844 RatePrimaryRegister(BaseReg, Regs, L, SE, DT, LoserRegs); 845 if (isLoser()) 846 return; 847 } 848 849 // Determine how many (unfolded) adds we'll need inside the loop. 850 size_t NumBaseParts = F.BaseRegs.size() + (F.UnfoldedOffset != 0); 851 if (NumBaseParts > 1) 852 NumBaseAdds += NumBaseParts - 1; 853 854 // Tally up the non-zero immediates. 855 for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(), 856 E = Offsets.end(); I != E; ++I) { 857 int64_t Offset = (uint64_t)*I + F.AM.BaseOffs; 858 if (F.AM.BaseGV) 859 ImmCost += 64; // Handle symbolic values conservatively. 860 // TODO: This should probably be the pointer size. 861 else if (Offset != 0) 862 ImmCost += APInt(64, Offset, true).getMinSignedBits(); 863 } 864 assert(isValid() && "invalid cost"); 865 } 866 867 /// Loose - Set this cost to a losing value. 868 void Cost::Loose() { 869 NumRegs = ~0u; 870 AddRecCost = ~0u; 871 NumIVMuls = ~0u; 872 NumBaseAdds = ~0u; 873 ImmCost = ~0u; 874 SetupCost = ~0u; 875 } 876 877 /// operator< - Choose the lower cost. 878 bool Cost::operator<(const Cost &Other) const { 879 if (NumRegs != Other.NumRegs) 880 return NumRegs < Other.NumRegs; 881 if (AddRecCost != Other.AddRecCost) 882 return AddRecCost < Other.AddRecCost; 883 if (NumIVMuls != Other.NumIVMuls) 884 return NumIVMuls < Other.NumIVMuls; 885 if (NumBaseAdds != Other.NumBaseAdds) 886 return NumBaseAdds < Other.NumBaseAdds; 887 if (ImmCost != Other.ImmCost) 888 return ImmCost < Other.ImmCost; 889 if (SetupCost != Other.SetupCost) 890 return SetupCost < Other.SetupCost; 891 return false; 892 } 893 894 void Cost::print(raw_ostream &OS) const { 895 OS << NumRegs << " reg" << (NumRegs == 1 ? "" : "s"); 896 if (AddRecCost != 0) 897 OS << ", with addrec cost " << AddRecCost; 898 if (NumIVMuls != 0) 899 OS << ", plus " << NumIVMuls << " IV mul" << (NumIVMuls == 1 ? "" : "s"); 900 if (NumBaseAdds != 0) 901 OS << ", plus " << NumBaseAdds << " base add" 902 << (NumBaseAdds == 1 ? "" : "s"); 903 if (ImmCost != 0) 904 OS << ", plus " << ImmCost << " imm cost"; 905 if (SetupCost != 0) 906 OS << ", plus " << SetupCost << " setup cost"; 907 } 908 909 void Cost::dump() const { 910 print(errs()); errs() << '\n'; 911 } 912 913 namespace { 914 915 /// LSRFixup - An operand value in an instruction which is to be replaced 916 /// with some equivalent, possibly strength-reduced, replacement. 917 struct LSRFixup { 918 /// UserInst - The instruction which will be updated. 919 Instruction *UserInst; 920 921 /// OperandValToReplace - The operand of the instruction which will 922 /// be replaced. The operand may be used more than once; every instance 923 /// will be replaced. 924 Value *OperandValToReplace; 925 926 /// PostIncLoops - If this user is to use the post-incremented value of an 927 /// induction variable, this variable is non-null and holds the loop 928 /// associated with the induction variable. 929 PostIncLoopSet PostIncLoops; 930 931 /// LUIdx - The index of the LSRUse describing the expression which 932 /// this fixup needs, minus an offset (below). 933 size_t LUIdx; 934 935 /// Offset - A constant offset to be added to the LSRUse expression. 936 /// This allows multiple fixups to share the same LSRUse with different 937 /// offsets, for example in an unrolled loop. 938 int64_t Offset; 939 940 bool isUseFullyOutsideLoop(const Loop *L) const; 941 942 LSRFixup(); 943 944 void print(raw_ostream &OS) const; 945 void dump() const; 946 }; 947 948 } 949 950 LSRFixup::LSRFixup() 951 : UserInst(0), OperandValToReplace(0), LUIdx(~size_t(0)), Offset(0) {} 952 953 /// isUseFullyOutsideLoop - Test whether this fixup always uses its 954 /// value outside of the given loop. 955 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const { 956 // PHI nodes use their value in their incoming blocks. 957 if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) { 958 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 959 if (PN->getIncomingValue(i) == OperandValToReplace && 960 L->contains(PN->getIncomingBlock(i))) 961 return false; 962 return true; 963 } 964 965 return !L->contains(UserInst); 966 } 967 968 void LSRFixup::print(raw_ostream &OS) const { 969 OS << "UserInst="; 970 // Store is common and interesting enough to be worth special-casing. 971 if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) { 972 OS << "store "; 973 WriteAsOperand(OS, Store->getOperand(0), /*PrintType=*/false); 974 } else if (UserInst->getType()->isVoidTy()) 975 OS << UserInst->getOpcodeName(); 976 else 977 WriteAsOperand(OS, UserInst, /*PrintType=*/false); 978 979 OS << ", OperandValToReplace="; 980 WriteAsOperand(OS, OperandValToReplace, /*PrintType=*/false); 981 982 for (PostIncLoopSet::const_iterator I = PostIncLoops.begin(), 983 E = PostIncLoops.end(); I != E; ++I) { 984 OS << ", PostIncLoop="; 985 WriteAsOperand(OS, (*I)->getHeader(), /*PrintType=*/false); 986 } 987 988 if (LUIdx != ~size_t(0)) 989 OS << ", LUIdx=" << LUIdx; 990 991 if (Offset != 0) 992 OS << ", Offset=" << Offset; 993 } 994 995 void LSRFixup::dump() const { 996 print(errs()); errs() << '\n'; 997 } 998 999 namespace { 1000 1001 /// UniquifierDenseMapInfo - A DenseMapInfo implementation for holding 1002 /// DenseMaps and DenseSets of sorted SmallVectors of const SCEV*. 1003 struct UniquifierDenseMapInfo { 1004 static SmallVector<const SCEV *, 2> getEmptyKey() { 1005 SmallVector<const SCEV *, 2> V; 1006 V.push_back(reinterpret_cast<const SCEV *>(-1)); 1007 return V; 1008 } 1009 1010 static SmallVector<const SCEV *, 2> getTombstoneKey() { 1011 SmallVector<const SCEV *, 2> V; 1012 V.push_back(reinterpret_cast<const SCEV *>(-2)); 1013 return V; 1014 } 1015 1016 static unsigned getHashValue(const SmallVector<const SCEV *, 2> &V) { 1017 unsigned Result = 0; 1018 for (SmallVectorImpl<const SCEV *>::const_iterator I = V.begin(), 1019 E = V.end(); I != E; ++I) 1020 Result ^= DenseMapInfo<const SCEV *>::getHashValue(*I); 1021 return Result; 1022 } 1023 1024 static bool isEqual(const SmallVector<const SCEV *, 2> &LHS, 1025 const SmallVector<const SCEV *, 2> &RHS) { 1026 return LHS == RHS; 1027 } 1028 }; 1029 1030 /// LSRUse - This class holds the state that LSR keeps for each use in 1031 /// IVUsers, as well as uses invented by LSR itself. It includes information 1032 /// about what kinds of things can be folded into the user, information about 1033 /// the user itself, and information about how the use may be satisfied. 1034 /// TODO: Represent multiple users of the same expression in common? 1035 class LSRUse { 1036 DenseSet<SmallVector<const SCEV *, 2>, UniquifierDenseMapInfo> Uniquifier; 1037 1038 public: 1039 /// KindType - An enum for a kind of use, indicating what types of 1040 /// scaled and immediate operands it might support. 1041 enum KindType { 1042 Basic, ///< A normal use, with no folding. 1043 Special, ///< A special case of basic, allowing -1 scales. 1044 Address, ///< An address use; folding according to TargetLowering 1045 ICmpZero ///< An equality icmp with both operands folded into one. 1046 // TODO: Add a generic icmp too? 1047 }; 1048 1049 KindType Kind; 1050 Type *AccessTy; 1051 1052 SmallVector<int64_t, 8> Offsets; 1053 int64_t MinOffset; 1054 int64_t MaxOffset; 1055 1056 /// AllFixupsOutsideLoop - This records whether all of the fixups using this 1057 /// LSRUse are outside of the loop, in which case some special-case heuristics 1058 /// may be used. 1059 bool AllFixupsOutsideLoop; 1060 1061 /// WidestFixupType - This records the widest use type for any fixup using 1062 /// this LSRUse. FindUseWithSimilarFormula can't consider uses with different 1063 /// max fixup widths to be equivalent, because the narrower one may be relying 1064 /// on the implicit truncation to truncate away bogus bits. 1065 Type *WidestFixupType; 1066 1067 /// Formulae - A list of ways to build a value that can satisfy this user. 1068 /// After the list is populated, one of these is selected heuristically and 1069 /// used to formulate a replacement for OperandValToReplace in UserInst. 1070 SmallVector<Formula, 12> Formulae; 1071 1072 /// Regs - The set of register candidates used by all formulae in this LSRUse. 1073 SmallPtrSet<const SCEV *, 4> Regs; 1074 1075 LSRUse(KindType K, Type *T) : Kind(K), AccessTy(T), 1076 MinOffset(INT64_MAX), 1077 MaxOffset(INT64_MIN), 1078 AllFixupsOutsideLoop(true), 1079 WidestFixupType(0) {} 1080 1081 bool HasFormulaWithSameRegs(const Formula &F) const; 1082 bool InsertFormula(const Formula &F); 1083 void DeleteFormula(Formula &F); 1084 void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses); 1085 1086 void print(raw_ostream &OS) const; 1087 void dump() const; 1088 }; 1089 1090 } 1091 1092 /// HasFormula - Test whether this use as a formula which has the same 1093 /// registers as the given formula. 1094 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const { 1095 SmallVector<const SCEV *, 2> Key = F.BaseRegs; 1096 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1097 // Unstable sort by host order ok, because this is only used for uniquifying. 1098 std::sort(Key.begin(), Key.end()); 1099 return Uniquifier.count(Key); 1100 } 1101 1102 /// InsertFormula - If the given formula has not yet been inserted, add it to 1103 /// the list, and return true. Return false otherwise. 1104 bool LSRUse::InsertFormula(const Formula &F) { 1105 SmallVector<const SCEV *, 2> Key = F.BaseRegs; 1106 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1107 // Unstable sort by host order ok, because this is only used for uniquifying. 1108 std::sort(Key.begin(), Key.end()); 1109 1110 if (!Uniquifier.insert(Key).second) 1111 return false; 1112 1113 // Using a register to hold the value of 0 is not profitable. 1114 assert((!F.ScaledReg || !F.ScaledReg->isZero()) && 1115 "Zero allocated in a scaled register!"); 1116 #ifndef NDEBUG 1117 for (SmallVectorImpl<const SCEV *>::const_iterator I = 1118 F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) 1119 assert(!(*I)->isZero() && "Zero allocated in a base register!"); 1120 #endif 1121 1122 // Add the formula to the list. 1123 Formulae.push_back(F); 1124 1125 // Record registers now being used by this use. 1126 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1127 1128 return true; 1129 } 1130 1131 /// DeleteFormula - Remove the given formula from this use's list. 1132 void LSRUse::DeleteFormula(Formula &F) { 1133 if (&F != &Formulae.back()) 1134 std::swap(F, Formulae.back()); 1135 Formulae.pop_back(); 1136 } 1137 1138 /// RecomputeRegs - Recompute the Regs field, and update RegUses. 1139 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) { 1140 // Now that we've filtered out some formulae, recompute the Regs set. 1141 SmallPtrSet<const SCEV *, 4> OldRegs = Regs; 1142 Regs.clear(); 1143 for (SmallVectorImpl<Formula>::const_iterator I = Formulae.begin(), 1144 E = Formulae.end(); I != E; ++I) { 1145 const Formula &F = *I; 1146 if (F.ScaledReg) Regs.insert(F.ScaledReg); 1147 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1148 } 1149 1150 // Update the RegTracker. 1151 for (SmallPtrSet<const SCEV *, 4>::iterator I = OldRegs.begin(), 1152 E = OldRegs.end(); I != E; ++I) 1153 if (!Regs.count(*I)) 1154 RegUses.DropRegister(*I, LUIdx); 1155 } 1156 1157 void LSRUse::print(raw_ostream &OS) const { 1158 OS << "LSR Use: Kind="; 1159 switch (Kind) { 1160 case Basic: OS << "Basic"; break; 1161 case Special: OS << "Special"; break; 1162 case ICmpZero: OS << "ICmpZero"; break; 1163 case Address: 1164 OS << "Address of "; 1165 if (AccessTy->isPointerTy()) 1166 OS << "pointer"; // the full pointer type could be really verbose 1167 else 1168 OS << *AccessTy; 1169 } 1170 1171 OS << ", Offsets={"; 1172 for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(), 1173 E = Offsets.end(); I != E; ++I) { 1174 OS << *I; 1175 if (llvm::next(I) != E) 1176 OS << ','; 1177 } 1178 OS << '}'; 1179 1180 if (AllFixupsOutsideLoop) 1181 OS << ", all-fixups-outside-loop"; 1182 1183 if (WidestFixupType) 1184 OS << ", widest fixup type: " << *WidestFixupType; 1185 } 1186 1187 void LSRUse::dump() const { 1188 print(errs()); errs() << '\n'; 1189 } 1190 1191 /// isLegalUse - Test whether the use described by AM is "legal", meaning it can 1192 /// be completely folded into the user instruction at isel time. This includes 1193 /// address-mode folding and special icmp tricks. 1194 static bool isLegalUse(const TargetLowering::AddrMode &AM, 1195 LSRUse::KindType Kind, Type *AccessTy, 1196 const TargetLowering *TLI) { 1197 switch (Kind) { 1198 case LSRUse::Address: 1199 // If we have low-level target information, ask the target if it can 1200 // completely fold this address. 1201 if (TLI) return TLI->isLegalAddressingMode(AM, AccessTy); 1202 1203 // Otherwise, just guess that reg+reg addressing is legal. 1204 return !AM.BaseGV && AM.BaseOffs == 0 && AM.Scale <= 1; 1205 1206 case LSRUse::ICmpZero: 1207 // There's not even a target hook for querying whether it would be legal to 1208 // fold a GV into an ICmp. 1209 if (AM.BaseGV) 1210 return false; 1211 1212 // ICmp only has two operands; don't allow more than two non-trivial parts. 1213 if (AM.Scale != 0 && AM.HasBaseReg && AM.BaseOffs != 0) 1214 return false; 1215 1216 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by 1217 // putting the scaled register in the other operand of the icmp. 1218 if (AM.Scale != 0 && AM.Scale != -1) 1219 return false; 1220 1221 // If we have low-level target information, ask the target if it can fold an 1222 // integer immediate on an icmp. 1223 if (AM.BaseOffs != 0) { 1224 if (TLI) return TLI->isLegalICmpImmediate(-(uint64_t)AM.BaseOffs); 1225 return false; 1226 } 1227 1228 return true; 1229 1230 case LSRUse::Basic: 1231 // Only handle single-register values. 1232 return !AM.BaseGV && AM.Scale == 0 && AM.BaseOffs == 0; 1233 1234 case LSRUse::Special: 1235 // Only handle -1 scales, or no scale. 1236 return AM.Scale == 0 || AM.Scale == -1; 1237 } 1238 1239 return false; 1240 } 1241 1242 static bool isLegalUse(TargetLowering::AddrMode AM, 1243 int64_t MinOffset, int64_t MaxOffset, 1244 LSRUse::KindType Kind, Type *AccessTy, 1245 const TargetLowering *TLI) { 1246 // Check for overflow. 1247 if (((int64_t)((uint64_t)AM.BaseOffs + MinOffset) > AM.BaseOffs) != 1248 (MinOffset > 0)) 1249 return false; 1250 AM.BaseOffs = (uint64_t)AM.BaseOffs + MinOffset; 1251 if (isLegalUse(AM, Kind, AccessTy, TLI)) { 1252 AM.BaseOffs = (uint64_t)AM.BaseOffs - MinOffset; 1253 // Check for overflow. 1254 if (((int64_t)((uint64_t)AM.BaseOffs + MaxOffset) > AM.BaseOffs) != 1255 (MaxOffset > 0)) 1256 return false; 1257 AM.BaseOffs = (uint64_t)AM.BaseOffs + MaxOffset; 1258 return isLegalUse(AM, Kind, AccessTy, TLI); 1259 } 1260 return false; 1261 } 1262 1263 static bool isAlwaysFoldable(int64_t BaseOffs, 1264 GlobalValue *BaseGV, 1265 bool HasBaseReg, 1266 LSRUse::KindType Kind, Type *AccessTy, 1267 const TargetLowering *TLI) { 1268 // Fast-path: zero is always foldable. 1269 if (BaseOffs == 0 && !BaseGV) return true; 1270 1271 // Conservatively, create an address with an immediate and a 1272 // base and a scale. 1273 TargetLowering::AddrMode AM; 1274 AM.BaseOffs = BaseOffs; 1275 AM.BaseGV = BaseGV; 1276 AM.HasBaseReg = HasBaseReg; 1277 AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1278 1279 // Canonicalize a scale of 1 to a base register if the formula doesn't 1280 // already have a base register. 1281 if (!AM.HasBaseReg && AM.Scale == 1) { 1282 AM.Scale = 0; 1283 AM.HasBaseReg = true; 1284 } 1285 1286 return isLegalUse(AM, Kind, AccessTy, TLI); 1287 } 1288 1289 static bool isAlwaysFoldable(const SCEV *S, 1290 int64_t MinOffset, int64_t MaxOffset, 1291 bool HasBaseReg, 1292 LSRUse::KindType Kind, Type *AccessTy, 1293 const TargetLowering *TLI, 1294 ScalarEvolution &SE) { 1295 // Fast-path: zero is always foldable. 1296 if (S->isZero()) return true; 1297 1298 // Conservatively, create an address with an immediate and a 1299 // base and a scale. 1300 int64_t BaseOffs = ExtractImmediate(S, SE); 1301 GlobalValue *BaseGV = ExtractSymbol(S, SE); 1302 1303 // If there's anything else involved, it's not foldable. 1304 if (!S->isZero()) return false; 1305 1306 // Fast-path: zero is always foldable. 1307 if (BaseOffs == 0 && !BaseGV) return true; 1308 1309 // Conservatively, create an address with an immediate and a 1310 // base and a scale. 1311 TargetLowering::AddrMode AM; 1312 AM.BaseOffs = BaseOffs; 1313 AM.BaseGV = BaseGV; 1314 AM.HasBaseReg = HasBaseReg; 1315 AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1316 1317 return isLegalUse(AM, MinOffset, MaxOffset, Kind, AccessTy, TLI); 1318 } 1319 1320 namespace { 1321 1322 /// UseMapDenseMapInfo - A DenseMapInfo implementation for holding 1323 /// DenseMaps and DenseSets of pairs of const SCEV* and LSRUse::Kind. 1324 struct UseMapDenseMapInfo { 1325 static std::pair<const SCEV *, LSRUse::KindType> getEmptyKey() { 1326 return std::make_pair(reinterpret_cast<const SCEV *>(-1), LSRUse::Basic); 1327 } 1328 1329 static std::pair<const SCEV *, LSRUse::KindType> getTombstoneKey() { 1330 return std::make_pair(reinterpret_cast<const SCEV *>(-2), LSRUse::Basic); 1331 } 1332 1333 static unsigned 1334 getHashValue(const std::pair<const SCEV *, LSRUse::KindType> &V) { 1335 unsigned Result = DenseMapInfo<const SCEV *>::getHashValue(V.first); 1336 Result ^= DenseMapInfo<unsigned>::getHashValue(unsigned(V.second)); 1337 return Result; 1338 } 1339 1340 static bool isEqual(const std::pair<const SCEV *, LSRUse::KindType> &LHS, 1341 const std::pair<const SCEV *, LSRUse::KindType> &RHS) { 1342 return LHS == RHS; 1343 } 1344 }; 1345 1346 /// LSRInstance - This class holds state for the main loop strength reduction 1347 /// logic. 1348 class LSRInstance { 1349 IVUsers &IU; 1350 ScalarEvolution &SE; 1351 DominatorTree &DT; 1352 LoopInfo &LI; 1353 const TargetLowering *const TLI; 1354 Loop *const L; 1355 bool Changed; 1356 1357 /// IVIncInsertPos - This is the insert position that the current loop's 1358 /// induction variable increment should be placed. In simple loops, this is 1359 /// the latch block's terminator. But in more complicated cases, this is a 1360 /// position which will dominate all the in-loop post-increment users. 1361 Instruction *IVIncInsertPos; 1362 1363 /// Factors - Interesting factors between use strides. 1364 SmallSetVector<int64_t, 8> Factors; 1365 1366 /// Types - Interesting use types, to facilitate truncation reuse. 1367 SmallSetVector<Type *, 4> Types; 1368 1369 /// Fixups - The list of operands which are to be replaced. 1370 SmallVector<LSRFixup, 16> Fixups; 1371 1372 /// Uses - The list of interesting uses. 1373 SmallVector<LSRUse, 16> Uses; 1374 1375 /// RegUses - Track which uses use which register candidates. 1376 RegUseTracker RegUses; 1377 1378 void OptimizeShadowIV(); 1379 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse); 1380 ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse); 1381 void OptimizeLoopTermCond(); 1382 1383 void CollectInterestingTypesAndFactors(); 1384 void CollectFixupsAndInitialFormulae(); 1385 1386 LSRFixup &getNewFixup() { 1387 Fixups.push_back(LSRFixup()); 1388 return Fixups.back(); 1389 } 1390 1391 // Support for sharing of LSRUses between LSRFixups. 1392 typedef DenseMap<std::pair<const SCEV *, LSRUse::KindType>, 1393 size_t, 1394 UseMapDenseMapInfo> UseMapTy; 1395 UseMapTy UseMap; 1396 1397 bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, 1398 LSRUse::KindType Kind, Type *AccessTy); 1399 1400 std::pair<size_t, int64_t> getUse(const SCEV *&Expr, 1401 LSRUse::KindType Kind, 1402 Type *AccessTy); 1403 1404 void DeleteUse(LSRUse &LU, size_t LUIdx); 1405 1406 LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU); 1407 1408 void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1409 void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1410 void CountRegisters(const Formula &F, size_t LUIdx); 1411 bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F); 1412 1413 void CollectLoopInvariantFixupsAndFormulae(); 1414 1415 void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base, 1416 unsigned Depth = 0); 1417 void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base); 1418 void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1419 void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1420 void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base); 1421 void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base); 1422 void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base); 1423 void GenerateCrossUseConstantOffsets(); 1424 void GenerateAllReuseFormulae(); 1425 1426 void FilterOutUndesirableDedicatedRegisters(); 1427 1428 size_t EstimateSearchSpaceComplexity() const; 1429 void NarrowSearchSpaceByDetectingSupersets(); 1430 void NarrowSearchSpaceByCollapsingUnrolledCode(); 1431 void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 1432 void NarrowSearchSpaceByPickingWinnerRegs(); 1433 void NarrowSearchSpaceUsingHeuristics(); 1434 1435 void SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 1436 Cost &SolutionCost, 1437 SmallVectorImpl<const Formula *> &Workspace, 1438 const Cost &CurCost, 1439 const SmallPtrSet<const SCEV *, 16> &CurRegs, 1440 DenseSet<const SCEV *> &VisitedRegs) const; 1441 void Solve(SmallVectorImpl<const Formula *> &Solution) const; 1442 1443 BasicBlock::iterator 1444 HoistInsertPosition(BasicBlock::iterator IP, 1445 const SmallVectorImpl<Instruction *> &Inputs) const; 1446 BasicBlock::iterator AdjustInsertPositionForExpand(BasicBlock::iterator IP, 1447 const LSRFixup &LF, 1448 const LSRUse &LU) const; 1449 1450 Value *Expand(const LSRFixup &LF, 1451 const Formula &F, 1452 BasicBlock::iterator IP, 1453 SCEVExpander &Rewriter, 1454 SmallVectorImpl<WeakVH> &DeadInsts) const; 1455 void RewriteForPHI(PHINode *PN, const LSRFixup &LF, 1456 const Formula &F, 1457 SCEVExpander &Rewriter, 1458 SmallVectorImpl<WeakVH> &DeadInsts, 1459 Pass *P) const; 1460 void Rewrite(const LSRFixup &LF, 1461 const Formula &F, 1462 SCEVExpander &Rewriter, 1463 SmallVectorImpl<WeakVH> &DeadInsts, 1464 Pass *P) const; 1465 void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution, 1466 Pass *P); 1467 1468 public: 1469 LSRInstance(const TargetLowering *tli, Loop *l, Pass *P); 1470 1471 bool getChanged() const { return Changed; } 1472 1473 void print_factors_and_types(raw_ostream &OS) const; 1474 void print_fixups(raw_ostream &OS) const; 1475 void print_uses(raw_ostream &OS) const; 1476 void print(raw_ostream &OS) const; 1477 void dump() const; 1478 }; 1479 1480 } 1481 1482 /// OptimizeShadowIV - If IV is used in a int-to-float cast 1483 /// inside the loop then try to eliminate the cast operation. 1484 void LSRInstance::OptimizeShadowIV() { 1485 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 1486 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 1487 return; 1488 1489 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); 1490 UI != E; /* empty */) { 1491 IVUsers::const_iterator CandidateUI = UI; 1492 ++UI; 1493 Instruction *ShadowUse = CandidateUI->getUser(); 1494 Type *DestTy = NULL; 1495 bool IsSigned = false; 1496 1497 /* If shadow use is a int->float cast then insert a second IV 1498 to eliminate this cast. 1499 1500 for (unsigned i = 0; i < n; ++i) 1501 foo((double)i); 1502 1503 is transformed into 1504 1505 double d = 0.0; 1506 for (unsigned i = 0; i < n; ++i, ++d) 1507 foo(d); 1508 */ 1509 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) { 1510 IsSigned = false; 1511 DestTy = UCast->getDestTy(); 1512 } 1513 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) { 1514 IsSigned = true; 1515 DestTy = SCast->getDestTy(); 1516 } 1517 if (!DestTy) continue; 1518 1519 if (TLI) { 1520 // If target does not support DestTy natively then do not apply 1521 // this transformation. 1522 EVT DVT = TLI->getValueType(DestTy); 1523 if (!TLI->isTypeLegal(DVT)) continue; 1524 } 1525 1526 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0)); 1527 if (!PH) continue; 1528 if (PH->getNumIncomingValues() != 2) continue; 1529 1530 Type *SrcTy = PH->getType(); 1531 int Mantissa = DestTy->getFPMantissaWidth(); 1532 if (Mantissa == -1) continue; 1533 if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa) 1534 continue; 1535 1536 unsigned Entry, Latch; 1537 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) { 1538 Entry = 0; 1539 Latch = 1; 1540 } else { 1541 Entry = 1; 1542 Latch = 0; 1543 } 1544 1545 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry)); 1546 if (!Init) continue; 1547 Constant *NewInit = ConstantFP::get(DestTy, IsSigned ? 1548 (double)Init->getSExtValue() : 1549 (double)Init->getZExtValue()); 1550 1551 BinaryOperator *Incr = 1552 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch)); 1553 if (!Incr) continue; 1554 if (Incr->getOpcode() != Instruction::Add 1555 && Incr->getOpcode() != Instruction::Sub) 1556 continue; 1557 1558 /* Initialize new IV, double d = 0.0 in above example. */ 1559 ConstantInt *C = NULL; 1560 if (Incr->getOperand(0) == PH) 1561 C = dyn_cast<ConstantInt>(Incr->getOperand(1)); 1562 else if (Incr->getOperand(1) == PH) 1563 C = dyn_cast<ConstantInt>(Incr->getOperand(0)); 1564 else 1565 continue; 1566 1567 if (!C) continue; 1568 1569 // Ignore negative constants, as the code below doesn't handle them 1570 // correctly. TODO: Remove this restriction. 1571 if (!C->getValue().isStrictlyPositive()) continue; 1572 1573 /* Add new PHINode. */ 1574 PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH); 1575 1576 /* create new increment. '++d' in above example. */ 1577 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue()); 1578 BinaryOperator *NewIncr = 1579 BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ? 1580 Instruction::FAdd : Instruction::FSub, 1581 NewPH, CFP, "IV.S.next.", Incr); 1582 1583 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry)); 1584 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch)); 1585 1586 /* Remove cast operation */ 1587 ShadowUse->replaceAllUsesWith(NewPH); 1588 ShadowUse->eraseFromParent(); 1589 Changed = true; 1590 break; 1591 } 1592 } 1593 1594 /// FindIVUserForCond - If Cond has an operand that is an expression of an IV, 1595 /// set the IV user and stride information and return true, otherwise return 1596 /// false. 1597 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) { 1598 for (IVUsers::iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) 1599 if (UI->getUser() == Cond) { 1600 // NOTE: we could handle setcc instructions with multiple uses here, but 1601 // InstCombine does it as well for simple uses, it's not clear that it 1602 // occurs enough in real life to handle. 1603 CondUse = UI; 1604 return true; 1605 } 1606 return false; 1607 } 1608 1609 /// OptimizeMax - Rewrite the loop's terminating condition if it uses 1610 /// a max computation. 1611 /// 1612 /// This is a narrow solution to a specific, but acute, problem. For loops 1613 /// like this: 1614 /// 1615 /// i = 0; 1616 /// do { 1617 /// p[i] = 0.0; 1618 /// } while (++i < n); 1619 /// 1620 /// the trip count isn't just 'n', because 'n' might not be positive. And 1621 /// unfortunately this can come up even for loops where the user didn't use 1622 /// a C do-while loop. For example, seemingly well-behaved top-test loops 1623 /// will commonly be lowered like this: 1624 // 1625 /// if (n > 0) { 1626 /// i = 0; 1627 /// do { 1628 /// p[i] = 0.0; 1629 /// } while (++i < n); 1630 /// } 1631 /// 1632 /// and then it's possible for subsequent optimization to obscure the if 1633 /// test in such a way that indvars can't find it. 1634 /// 1635 /// When indvars can't find the if test in loops like this, it creates a 1636 /// max expression, which allows it to give the loop a canonical 1637 /// induction variable: 1638 /// 1639 /// i = 0; 1640 /// max = n < 1 ? 1 : n; 1641 /// do { 1642 /// p[i] = 0.0; 1643 /// } while (++i != max); 1644 /// 1645 /// Canonical induction variables are necessary because the loop passes 1646 /// are designed around them. The most obvious example of this is the 1647 /// LoopInfo analysis, which doesn't remember trip count values. It 1648 /// expects to be able to rediscover the trip count each time it is 1649 /// needed, and it does this using a simple analysis that only succeeds if 1650 /// the loop has a canonical induction variable. 1651 /// 1652 /// However, when it comes time to generate code, the maximum operation 1653 /// can be quite costly, especially if it's inside of an outer loop. 1654 /// 1655 /// This function solves this problem by detecting this type of loop and 1656 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting 1657 /// the instructions for the maximum computation. 1658 /// 1659 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) { 1660 // Check that the loop matches the pattern we're looking for. 1661 if (Cond->getPredicate() != CmpInst::ICMP_EQ && 1662 Cond->getPredicate() != CmpInst::ICMP_NE) 1663 return Cond; 1664 1665 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1)); 1666 if (!Sel || !Sel->hasOneUse()) return Cond; 1667 1668 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 1669 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 1670 return Cond; 1671 const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1); 1672 1673 // Add one to the backedge-taken count to get the trip count. 1674 const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount); 1675 if (IterationCount != SE.getSCEV(Sel)) return Cond; 1676 1677 // Check for a max calculation that matches the pattern. There's no check 1678 // for ICMP_ULE here because the comparison would be with zero, which 1679 // isn't interesting. 1680 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1681 const SCEVNAryExpr *Max = 0; 1682 if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) { 1683 Pred = ICmpInst::ICMP_SLE; 1684 Max = S; 1685 } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) { 1686 Pred = ICmpInst::ICMP_SLT; 1687 Max = S; 1688 } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) { 1689 Pred = ICmpInst::ICMP_ULT; 1690 Max = U; 1691 } else { 1692 // No match; bail. 1693 return Cond; 1694 } 1695 1696 // To handle a max with more than two operands, this optimization would 1697 // require additional checking and setup. 1698 if (Max->getNumOperands() != 2) 1699 return Cond; 1700 1701 const SCEV *MaxLHS = Max->getOperand(0); 1702 const SCEV *MaxRHS = Max->getOperand(1); 1703 1704 // ScalarEvolution canonicalizes constants to the left. For < and >, look 1705 // for a comparison with 1. For <= and >=, a comparison with zero. 1706 if (!MaxLHS || 1707 (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One))) 1708 return Cond; 1709 1710 // Check the relevant induction variable for conformance to 1711 // the pattern. 1712 const SCEV *IV = SE.getSCEV(Cond->getOperand(0)); 1713 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV); 1714 if (!AR || !AR->isAffine() || 1715 AR->getStart() != One || 1716 AR->getStepRecurrence(SE) != One) 1717 return Cond; 1718 1719 assert(AR->getLoop() == L && 1720 "Loop condition operand is an addrec in a different loop!"); 1721 1722 // Check the right operand of the select, and remember it, as it will 1723 // be used in the new comparison instruction. 1724 Value *NewRHS = 0; 1725 if (ICmpInst::isTrueWhenEqual(Pred)) { 1726 // Look for n+1, and grab n. 1727 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1))) 1728 if (isa<ConstantInt>(BO->getOperand(1)) && 1729 cast<ConstantInt>(BO->getOperand(1))->isOne() && 1730 SE.getSCEV(BO->getOperand(0)) == MaxRHS) 1731 NewRHS = BO->getOperand(0); 1732 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2))) 1733 if (isa<ConstantInt>(BO->getOperand(1)) && 1734 cast<ConstantInt>(BO->getOperand(1))->isOne() && 1735 SE.getSCEV(BO->getOperand(0)) == MaxRHS) 1736 NewRHS = BO->getOperand(0); 1737 if (!NewRHS) 1738 return Cond; 1739 } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS) 1740 NewRHS = Sel->getOperand(1); 1741 else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS) 1742 NewRHS = Sel->getOperand(2); 1743 else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS)) 1744 NewRHS = SU->getValue(); 1745 else 1746 // Max doesn't match expected pattern. 1747 return Cond; 1748 1749 // Determine the new comparison opcode. It may be signed or unsigned, 1750 // and the original comparison may be either equality or inequality. 1751 if (Cond->getPredicate() == CmpInst::ICMP_EQ) 1752 Pred = CmpInst::getInversePredicate(Pred); 1753 1754 // Ok, everything looks ok to change the condition into an SLT or SGE and 1755 // delete the max calculation. 1756 ICmpInst *NewCond = 1757 new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp"); 1758 1759 // Delete the max calculation instructions. 1760 Cond->replaceAllUsesWith(NewCond); 1761 CondUse->setUser(NewCond); 1762 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0)); 1763 Cond->eraseFromParent(); 1764 Sel->eraseFromParent(); 1765 if (Cmp->use_empty()) 1766 Cmp->eraseFromParent(); 1767 return NewCond; 1768 } 1769 1770 /// OptimizeLoopTermCond - Change loop terminating condition to use the 1771 /// postinc iv when possible. 1772 void 1773 LSRInstance::OptimizeLoopTermCond() { 1774 SmallPtrSet<Instruction *, 4> PostIncs; 1775 1776 BasicBlock *LatchBlock = L->getLoopLatch(); 1777 SmallVector<BasicBlock*, 8> ExitingBlocks; 1778 L->getExitingBlocks(ExitingBlocks); 1779 1780 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 1781 BasicBlock *ExitingBlock = ExitingBlocks[i]; 1782 1783 // Get the terminating condition for the loop if possible. If we 1784 // can, we want to change it to use a post-incremented version of its 1785 // induction variable, to allow coalescing the live ranges for the IV into 1786 // one register value. 1787 1788 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 1789 if (!TermBr) 1790 continue; 1791 // FIXME: Overly conservative, termination condition could be an 'or' etc.. 1792 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition())) 1793 continue; 1794 1795 // Search IVUsesByStride to find Cond's IVUse if there is one. 1796 IVStrideUse *CondUse = 0; 1797 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition()); 1798 if (!FindIVUserForCond(Cond, CondUse)) 1799 continue; 1800 1801 // If the trip count is computed in terms of a max (due to ScalarEvolution 1802 // being unable to find a sufficient guard, for example), change the loop 1803 // comparison to use SLT or ULT instead of NE. 1804 // One consequence of doing this now is that it disrupts the count-down 1805 // optimization. That's not always a bad thing though, because in such 1806 // cases it may still be worthwhile to avoid a max. 1807 Cond = OptimizeMax(Cond, CondUse); 1808 1809 // If this exiting block dominates the latch block, it may also use 1810 // the post-inc value if it won't be shared with other uses. 1811 // Check for dominance. 1812 if (!DT.dominates(ExitingBlock, LatchBlock)) 1813 continue; 1814 1815 // Conservatively avoid trying to use the post-inc value in non-latch 1816 // exits if there may be pre-inc users in intervening blocks. 1817 if (LatchBlock != ExitingBlock) 1818 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) 1819 // Test if the use is reachable from the exiting block. This dominator 1820 // query is a conservative approximation of reachability. 1821 if (&*UI != CondUse && 1822 !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) { 1823 // Conservatively assume there may be reuse if the quotient of their 1824 // strides could be a legal scale. 1825 const SCEV *A = IU.getStride(*CondUse, L); 1826 const SCEV *B = IU.getStride(*UI, L); 1827 if (!A || !B) continue; 1828 if (SE.getTypeSizeInBits(A->getType()) != 1829 SE.getTypeSizeInBits(B->getType())) { 1830 if (SE.getTypeSizeInBits(A->getType()) > 1831 SE.getTypeSizeInBits(B->getType())) 1832 B = SE.getSignExtendExpr(B, A->getType()); 1833 else 1834 A = SE.getSignExtendExpr(A, B->getType()); 1835 } 1836 if (const SCEVConstant *D = 1837 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) { 1838 const ConstantInt *C = D->getValue(); 1839 // Stride of one or negative one can have reuse with non-addresses. 1840 if (C->isOne() || C->isAllOnesValue()) 1841 goto decline_post_inc; 1842 // Avoid weird situations. 1843 if (C->getValue().getMinSignedBits() >= 64 || 1844 C->getValue().isMinSignedValue()) 1845 goto decline_post_inc; 1846 // Without TLI, assume that any stride might be valid, and so any 1847 // use might be shared. 1848 if (!TLI) 1849 goto decline_post_inc; 1850 // Check for possible scaled-address reuse. 1851 Type *AccessTy = getAccessType(UI->getUser()); 1852 TargetLowering::AddrMode AM; 1853 AM.Scale = C->getSExtValue(); 1854 if (TLI->isLegalAddressingMode(AM, AccessTy)) 1855 goto decline_post_inc; 1856 AM.Scale = -AM.Scale; 1857 if (TLI->isLegalAddressingMode(AM, AccessTy)) 1858 goto decline_post_inc; 1859 } 1860 } 1861 1862 DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: " 1863 << *Cond << '\n'); 1864 1865 // It's possible for the setcc instruction to be anywhere in the loop, and 1866 // possible for it to have multiple users. If it is not immediately before 1867 // the exiting block branch, move it. 1868 if (&*++BasicBlock::iterator(Cond) != TermBr) { 1869 if (Cond->hasOneUse()) { 1870 Cond->moveBefore(TermBr); 1871 } else { 1872 // Clone the terminating condition and insert into the loopend. 1873 ICmpInst *OldCond = Cond; 1874 Cond = cast<ICmpInst>(Cond->clone()); 1875 Cond->setName(L->getHeader()->getName() + ".termcond"); 1876 ExitingBlock->getInstList().insert(TermBr, Cond); 1877 1878 // Clone the IVUse, as the old use still exists! 1879 CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace()); 1880 TermBr->replaceUsesOfWith(OldCond, Cond); 1881 } 1882 } 1883 1884 // If we get to here, we know that we can transform the setcc instruction to 1885 // use the post-incremented version of the IV, allowing us to coalesce the 1886 // live ranges for the IV correctly. 1887 CondUse->transformToPostInc(L); 1888 Changed = true; 1889 1890 PostIncs.insert(Cond); 1891 decline_post_inc:; 1892 } 1893 1894 // Determine an insertion point for the loop induction variable increment. It 1895 // must dominate all the post-inc comparisons we just set up, and it must 1896 // dominate the loop latch edge. 1897 IVIncInsertPos = L->getLoopLatch()->getTerminator(); 1898 for (SmallPtrSet<Instruction *, 4>::const_iterator I = PostIncs.begin(), 1899 E = PostIncs.end(); I != E; ++I) { 1900 BasicBlock *BB = 1901 DT.findNearestCommonDominator(IVIncInsertPos->getParent(), 1902 (*I)->getParent()); 1903 if (BB == (*I)->getParent()) 1904 IVIncInsertPos = *I; 1905 else if (BB != IVIncInsertPos->getParent()) 1906 IVIncInsertPos = BB->getTerminator(); 1907 } 1908 } 1909 1910 /// reconcileNewOffset - Determine if the given use can accommodate a fixup 1911 /// at the given offset and other details. If so, update the use and 1912 /// return true. 1913 bool 1914 LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, 1915 LSRUse::KindType Kind, Type *AccessTy) { 1916 int64_t NewMinOffset = LU.MinOffset; 1917 int64_t NewMaxOffset = LU.MaxOffset; 1918 Type *NewAccessTy = AccessTy; 1919 1920 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to 1921 // something conservative, however this can pessimize in the case that one of 1922 // the uses will have all its uses outside the loop, for example. 1923 if (LU.Kind != Kind) 1924 return false; 1925 // Conservatively assume HasBaseReg is true for now. 1926 if (NewOffset < LU.MinOffset) { 1927 if (!isAlwaysFoldable(LU.MaxOffset - NewOffset, 0, HasBaseReg, 1928 Kind, AccessTy, TLI)) 1929 return false; 1930 NewMinOffset = NewOffset; 1931 } else if (NewOffset > LU.MaxOffset) { 1932 if (!isAlwaysFoldable(NewOffset - LU.MinOffset, 0, HasBaseReg, 1933 Kind, AccessTy, TLI)) 1934 return false; 1935 NewMaxOffset = NewOffset; 1936 } 1937 // Check for a mismatched access type, and fall back conservatively as needed. 1938 // TODO: Be less conservative when the type is similar and can use the same 1939 // addressing modes. 1940 if (Kind == LSRUse::Address && AccessTy != LU.AccessTy) 1941 NewAccessTy = Type::getVoidTy(AccessTy->getContext()); 1942 1943 // Update the use. 1944 LU.MinOffset = NewMinOffset; 1945 LU.MaxOffset = NewMaxOffset; 1946 LU.AccessTy = NewAccessTy; 1947 if (NewOffset != LU.Offsets.back()) 1948 LU.Offsets.push_back(NewOffset); 1949 return true; 1950 } 1951 1952 /// getUse - Return an LSRUse index and an offset value for a fixup which 1953 /// needs the given expression, with the given kind and optional access type. 1954 /// Either reuse an existing use or create a new one, as needed. 1955 std::pair<size_t, int64_t> 1956 LSRInstance::getUse(const SCEV *&Expr, 1957 LSRUse::KindType Kind, Type *AccessTy) { 1958 const SCEV *Copy = Expr; 1959 int64_t Offset = ExtractImmediate(Expr, SE); 1960 1961 // Basic uses can't accept any offset, for example. 1962 if (!isAlwaysFoldable(Offset, 0, /*HasBaseReg=*/true, Kind, AccessTy, TLI)) { 1963 Expr = Copy; 1964 Offset = 0; 1965 } 1966 1967 std::pair<UseMapTy::iterator, bool> P = 1968 UseMap.insert(std::make_pair(std::make_pair(Expr, Kind), 0)); 1969 if (!P.second) { 1970 // A use already existed with this base. 1971 size_t LUIdx = P.first->second; 1972 LSRUse &LU = Uses[LUIdx]; 1973 if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy)) 1974 // Reuse this use. 1975 return std::make_pair(LUIdx, Offset); 1976 } 1977 1978 // Create a new use. 1979 size_t LUIdx = Uses.size(); 1980 P.first->second = LUIdx; 1981 Uses.push_back(LSRUse(Kind, AccessTy)); 1982 LSRUse &LU = Uses[LUIdx]; 1983 1984 // We don't need to track redundant offsets, but we don't need to go out 1985 // of our way here to avoid them. 1986 if (LU.Offsets.empty() || Offset != LU.Offsets.back()) 1987 LU.Offsets.push_back(Offset); 1988 1989 LU.MinOffset = Offset; 1990 LU.MaxOffset = Offset; 1991 return std::make_pair(LUIdx, Offset); 1992 } 1993 1994 /// DeleteUse - Delete the given use from the Uses list. 1995 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) { 1996 if (&LU != &Uses.back()) 1997 std::swap(LU, Uses.back()); 1998 Uses.pop_back(); 1999 2000 // Update RegUses. 2001 RegUses.SwapAndDropUse(LUIdx, Uses.size()); 2002 } 2003 2004 /// FindUseWithFormula - Look for a use distinct from OrigLU which is has 2005 /// a formula that has the same registers as the given formula. 2006 LSRUse * 2007 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF, 2008 const LSRUse &OrigLU) { 2009 // Search all uses for the formula. This could be more clever. 2010 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 2011 LSRUse &LU = Uses[LUIdx]; 2012 // Check whether this use is close enough to OrigLU, to see whether it's 2013 // worthwhile looking through its formulae. 2014 // Ignore ICmpZero uses because they may contain formulae generated by 2015 // GenerateICmpZeroScales, in which case adding fixup offsets may 2016 // be invalid. 2017 if (&LU != &OrigLU && 2018 LU.Kind != LSRUse::ICmpZero && 2019 LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy && 2020 LU.WidestFixupType == OrigLU.WidestFixupType && 2021 LU.HasFormulaWithSameRegs(OrigF)) { 2022 // Scan through this use's formulae. 2023 for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(), 2024 E = LU.Formulae.end(); I != E; ++I) { 2025 const Formula &F = *I; 2026 // Check to see if this formula has the same registers and symbols 2027 // as OrigF. 2028 if (F.BaseRegs == OrigF.BaseRegs && 2029 F.ScaledReg == OrigF.ScaledReg && 2030 F.AM.BaseGV == OrigF.AM.BaseGV && 2031 F.AM.Scale == OrigF.AM.Scale && 2032 F.UnfoldedOffset == OrigF.UnfoldedOffset) { 2033 if (F.AM.BaseOffs == 0) 2034 return &LU; 2035 // This is the formula where all the registers and symbols matched; 2036 // there aren't going to be any others. Since we declined it, we 2037 // can skip the rest of the formulae and procede to the next LSRUse. 2038 break; 2039 } 2040 } 2041 } 2042 } 2043 2044 // Nothing looked good. 2045 return 0; 2046 } 2047 2048 void LSRInstance::CollectInterestingTypesAndFactors() { 2049 SmallSetVector<const SCEV *, 4> Strides; 2050 2051 // Collect interesting types and strides. 2052 SmallVector<const SCEV *, 4> Worklist; 2053 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) { 2054 const SCEV *Expr = IU.getExpr(*UI); 2055 2056 // Collect interesting types. 2057 Types.insert(SE.getEffectiveSCEVType(Expr->getType())); 2058 2059 // Add strides for mentioned loops. 2060 Worklist.push_back(Expr); 2061 do { 2062 const SCEV *S = Worklist.pop_back_val(); 2063 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2064 if (EnableNested || AR->getLoop() == L) 2065 Strides.insert(AR->getStepRecurrence(SE)); 2066 Worklist.push_back(AR->getStart()); 2067 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2068 Worklist.append(Add->op_begin(), Add->op_end()); 2069 } 2070 } while (!Worklist.empty()); 2071 } 2072 2073 // Compute interesting factors from the set of interesting strides. 2074 for (SmallSetVector<const SCEV *, 4>::const_iterator 2075 I = Strides.begin(), E = Strides.end(); I != E; ++I) 2076 for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter = 2077 llvm::next(I); NewStrideIter != E; ++NewStrideIter) { 2078 const SCEV *OldStride = *I; 2079 const SCEV *NewStride = *NewStrideIter; 2080 2081 if (SE.getTypeSizeInBits(OldStride->getType()) != 2082 SE.getTypeSizeInBits(NewStride->getType())) { 2083 if (SE.getTypeSizeInBits(OldStride->getType()) > 2084 SE.getTypeSizeInBits(NewStride->getType())) 2085 NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType()); 2086 else 2087 OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType()); 2088 } 2089 if (const SCEVConstant *Factor = 2090 dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride, 2091 SE, true))) { 2092 if (Factor->getValue()->getValue().getMinSignedBits() <= 64) 2093 Factors.insert(Factor->getValue()->getValue().getSExtValue()); 2094 } else if (const SCEVConstant *Factor = 2095 dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride, 2096 NewStride, 2097 SE, true))) { 2098 if (Factor->getValue()->getValue().getMinSignedBits() <= 64) 2099 Factors.insert(Factor->getValue()->getValue().getSExtValue()); 2100 } 2101 } 2102 2103 // If all uses use the same type, don't bother looking for truncation-based 2104 // reuse. 2105 if (Types.size() == 1) 2106 Types.clear(); 2107 2108 DEBUG(print_factors_and_types(dbgs())); 2109 } 2110 2111 void LSRInstance::CollectFixupsAndInitialFormulae() { 2112 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) { 2113 // Record the uses. 2114 LSRFixup &LF = getNewFixup(); 2115 LF.UserInst = UI->getUser(); 2116 LF.OperandValToReplace = UI->getOperandValToReplace(); 2117 LF.PostIncLoops = UI->getPostIncLoops(); 2118 2119 LSRUse::KindType Kind = LSRUse::Basic; 2120 Type *AccessTy = 0; 2121 if (isAddressUse(LF.UserInst, LF.OperandValToReplace)) { 2122 Kind = LSRUse::Address; 2123 AccessTy = getAccessType(LF.UserInst); 2124 } 2125 2126 const SCEV *S = IU.getExpr(*UI); 2127 2128 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as 2129 // (N - i == 0), and this allows (N - i) to be the expression that we work 2130 // with rather than just N or i, so we can consider the register 2131 // requirements for both N and i at the same time. Limiting this code to 2132 // equality icmps is not a problem because all interesting loops use 2133 // equality icmps, thanks to IndVarSimplify. 2134 if (ICmpInst *CI = dyn_cast<ICmpInst>(LF.UserInst)) 2135 if (CI->isEquality()) { 2136 // Swap the operands if needed to put the OperandValToReplace on the 2137 // left, for consistency. 2138 Value *NV = CI->getOperand(1); 2139 if (NV == LF.OperandValToReplace) { 2140 CI->setOperand(1, CI->getOperand(0)); 2141 CI->setOperand(0, NV); 2142 NV = CI->getOperand(1); 2143 Changed = true; 2144 } 2145 2146 // x == y --> x - y == 0 2147 const SCEV *N = SE.getSCEV(NV); 2148 if (SE.isLoopInvariant(N, L)) { 2149 // S is normalized, so normalize N before folding it into S 2150 // to keep the result normalized. 2151 N = TransformForPostIncUse(Normalize, N, CI, 0, 2152 LF.PostIncLoops, SE, DT); 2153 Kind = LSRUse::ICmpZero; 2154 S = SE.getMinusSCEV(N, S); 2155 } 2156 2157 // -1 and the negations of all interesting strides (except the negation 2158 // of -1) are now also interesting. 2159 for (size_t i = 0, e = Factors.size(); i != e; ++i) 2160 if (Factors[i] != -1) 2161 Factors.insert(-(uint64_t)Factors[i]); 2162 Factors.insert(-1); 2163 } 2164 2165 // Set up the initial formula for this use. 2166 std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy); 2167 LF.LUIdx = P.first; 2168 LF.Offset = P.second; 2169 LSRUse &LU = Uses[LF.LUIdx]; 2170 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 2171 if (!LU.WidestFixupType || 2172 SE.getTypeSizeInBits(LU.WidestFixupType) < 2173 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 2174 LU.WidestFixupType = LF.OperandValToReplace->getType(); 2175 2176 // If this is the first use of this LSRUse, give it a formula. 2177 if (LU.Formulae.empty()) { 2178 InsertInitialFormula(S, LU, LF.LUIdx); 2179 CountRegisters(LU.Formulae.back(), LF.LUIdx); 2180 } 2181 } 2182 2183 DEBUG(print_fixups(dbgs())); 2184 } 2185 2186 /// InsertInitialFormula - Insert a formula for the given expression into 2187 /// the given use, separating out loop-variant portions from loop-invariant 2188 /// and loop-computable portions. 2189 void 2190 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) { 2191 Formula F; 2192 F.InitialMatch(S, L, SE); 2193 bool Inserted = InsertFormula(LU, LUIdx, F); 2194 assert(Inserted && "Initial formula already exists!"); (void)Inserted; 2195 } 2196 2197 /// InsertSupplementalFormula - Insert a simple single-register formula for 2198 /// the given expression into the given use. 2199 void 2200 LSRInstance::InsertSupplementalFormula(const SCEV *S, 2201 LSRUse &LU, size_t LUIdx) { 2202 Formula F; 2203 F.BaseRegs.push_back(S); 2204 F.AM.HasBaseReg = true; 2205 bool Inserted = InsertFormula(LU, LUIdx, F); 2206 assert(Inserted && "Supplemental formula already exists!"); (void)Inserted; 2207 } 2208 2209 /// CountRegisters - Note which registers are used by the given formula, 2210 /// updating RegUses. 2211 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) { 2212 if (F.ScaledReg) 2213 RegUses.CountRegister(F.ScaledReg, LUIdx); 2214 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(), 2215 E = F.BaseRegs.end(); I != E; ++I) 2216 RegUses.CountRegister(*I, LUIdx); 2217 } 2218 2219 /// InsertFormula - If the given formula has not yet been inserted, add it to 2220 /// the list, and return true. Return false otherwise. 2221 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) { 2222 if (!LU.InsertFormula(F)) 2223 return false; 2224 2225 CountRegisters(F, LUIdx); 2226 return true; 2227 } 2228 2229 /// CollectLoopInvariantFixupsAndFormulae - Check for other uses of 2230 /// loop-invariant values which we're tracking. These other uses will pin these 2231 /// values in registers, making them less profitable for elimination. 2232 /// TODO: This currently misses non-constant addrec step registers. 2233 /// TODO: Should this give more weight to users inside the loop? 2234 void 2235 LSRInstance::CollectLoopInvariantFixupsAndFormulae() { 2236 SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end()); 2237 SmallPtrSet<const SCEV *, 8> Inserted; 2238 2239 while (!Worklist.empty()) { 2240 const SCEV *S = Worklist.pop_back_val(); 2241 2242 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) 2243 Worklist.append(N->op_begin(), N->op_end()); 2244 else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) 2245 Worklist.push_back(C->getOperand()); 2246 else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 2247 Worklist.push_back(D->getLHS()); 2248 Worklist.push_back(D->getRHS()); 2249 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 2250 if (!Inserted.insert(U)) continue; 2251 const Value *V = U->getValue(); 2252 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 2253 // Look for instructions defined outside the loop. 2254 if (L->contains(Inst)) continue; 2255 } else if (isa<UndefValue>(V)) 2256 // Undef doesn't have a live range, so it doesn't matter. 2257 continue; 2258 for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end(); 2259 UI != UE; ++UI) { 2260 const Instruction *UserInst = dyn_cast<Instruction>(*UI); 2261 // Ignore non-instructions. 2262 if (!UserInst) 2263 continue; 2264 // Ignore instructions in other functions (as can happen with 2265 // Constants). 2266 if (UserInst->getParent()->getParent() != L->getHeader()->getParent()) 2267 continue; 2268 // Ignore instructions not dominated by the loop. 2269 const BasicBlock *UseBB = !isa<PHINode>(UserInst) ? 2270 UserInst->getParent() : 2271 cast<PHINode>(UserInst)->getIncomingBlock( 2272 PHINode::getIncomingValueNumForOperand(UI.getOperandNo())); 2273 if (!DT.dominates(L->getHeader(), UseBB)) 2274 continue; 2275 // Ignore uses which are part of other SCEV expressions, to avoid 2276 // analyzing them multiple times. 2277 if (SE.isSCEVable(UserInst->getType())) { 2278 const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst)); 2279 // If the user is a no-op, look through to its uses. 2280 if (!isa<SCEVUnknown>(UserS)) 2281 continue; 2282 if (UserS == U) { 2283 Worklist.push_back( 2284 SE.getUnknown(const_cast<Instruction *>(UserInst))); 2285 continue; 2286 } 2287 } 2288 // Ignore icmp instructions which are already being analyzed. 2289 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) { 2290 unsigned OtherIdx = !UI.getOperandNo(); 2291 Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx)); 2292 if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L)) 2293 continue; 2294 } 2295 2296 LSRFixup &LF = getNewFixup(); 2297 LF.UserInst = const_cast<Instruction *>(UserInst); 2298 LF.OperandValToReplace = UI.getUse(); 2299 std::pair<size_t, int64_t> P = getUse(S, LSRUse::Basic, 0); 2300 LF.LUIdx = P.first; 2301 LF.Offset = P.second; 2302 LSRUse &LU = Uses[LF.LUIdx]; 2303 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 2304 if (!LU.WidestFixupType || 2305 SE.getTypeSizeInBits(LU.WidestFixupType) < 2306 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 2307 LU.WidestFixupType = LF.OperandValToReplace->getType(); 2308 InsertSupplementalFormula(U, LU, LF.LUIdx); 2309 CountRegisters(LU.Formulae.back(), Uses.size() - 1); 2310 break; 2311 } 2312 } 2313 } 2314 } 2315 2316 /// CollectSubexprs - Split S into subexpressions which can be pulled out into 2317 /// separate registers. If C is non-null, multiply each subexpression by C. 2318 static void CollectSubexprs(const SCEV *S, const SCEVConstant *C, 2319 SmallVectorImpl<const SCEV *> &Ops, 2320 const Loop *L, 2321 ScalarEvolution &SE) { 2322 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2323 // Break out add operands. 2324 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); 2325 I != E; ++I) 2326 CollectSubexprs(*I, C, Ops, L, SE); 2327 return; 2328 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2329 // Split a non-zero base out of an addrec. 2330 if (!AR->getStart()->isZero()) { 2331 CollectSubexprs(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0), 2332 AR->getStepRecurrence(SE), 2333 AR->getLoop(), 2334 //FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 2335 SCEV::FlagAnyWrap), 2336 C, Ops, L, SE); 2337 CollectSubexprs(AR->getStart(), C, Ops, L, SE); 2338 return; 2339 } 2340 } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 2341 // Break (C * (a + b + c)) into C*a + C*b + C*c. 2342 if (Mul->getNumOperands() == 2) 2343 if (const SCEVConstant *Op0 = 2344 dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 2345 CollectSubexprs(Mul->getOperand(1), 2346 C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0, 2347 Ops, L, SE); 2348 return; 2349 } 2350 } 2351 2352 // Otherwise use the value itself, optionally with a scale applied. 2353 Ops.push_back(C ? SE.getMulExpr(C, S) : S); 2354 } 2355 2356 /// GenerateReassociations - Split out subexpressions from adds and the bases of 2357 /// addrecs. 2358 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx, 2359 Formula Base, 2360 unsigned Depth) { 2361 // Arbitrarily cap recursion to protect compile time. 2362 if (Depth >= 3) return; 2363 2364 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { 2365 const SCEV *BaseReg = Base.BaseRegs[i]; 2366 2367 SmallVector<const SCEV *, 8> AddOps; 2368 CollectSubexprs(BaseReg, 0, AddOps, L, SE); 2369 2370 if (AddOps.size() == 1) continue; 2371 2372 for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(), 2373 JE = AddOps.end(); J != JE; ++J) { 2374 2375 // Loop-variant "unknown" values are uninteresting; we won't be able to 2376 // do anything meaningful with them. 2377 if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L)) 2378 continue; 2379 2380 // Don't pull a constant into a register if the constant could be folded 2381 // into an immediate field. 2382 if (isAlwaysFoldable(*J, LU.MinOffset, LU.MaxOffset, 2383 Base.getNumRegs() > 1, 2384 LU.Kind, LU.AccessTy, TLI, SE)) 2385 continue; 2386 2387 // Collect all operands except *J. 2388 SmallVector<const SCEV *, 8> InnerAddOps 2389 (((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J); 2390 InnerAddOps.append 2391 (llvm::next(J), ((const SmallVector<const SCEV *, 8> &)AddOps).end()); 2392 2393 // Don't leave just a constant behind in a register if the constant could 2394 // be folded into an immediate field. 2395 if (InnerAddOps.size() == 1 && 2396 isAlwaysFoldable(InnerAddOps[0], LU.MinOffset, LU.MaxOffset, 2397 Base.getNumRegs() > 1, 2398 LU.Kind, LU.AccessTy, TLI, SE)) 2399 continue; 2400 2401 const SCEV *InnerSum = SE.getAddExpr(InnerAddOps); 2402 if (InnerSum->isZero()) 2403 continue; 2404 Formula F = Base; 2405 2406 // Add the remaining pieces of the add back into the new formula. 2407 const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum); 2408 if (TLI && InnerSumSC && 2409 SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 && 2410 TLI->isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 2411 InnerSumSC->getValue()->getZExtValue())) { 2412 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset + 2413 InnerSumSC->getValue()->getZExtValue(); 2414 F.BaseRegs.erase(F.BaseRegs.begin() + i); 2415 } else 2416 F.BaseRegs[i] = InnerSum; 2417 2418 // Add J as its own register, or an unfolded immediate. 2419 const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J); 2420 if (TLI && SC && SE.getTypeSizeInBits(SC->getType()) <= 64 && 2421 TLI->isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 2422 SC->getValue()->getZExtValue())) 2423 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset + 2424 SC->getValue()->getZExtValue(); 2425 else 2426 F.BaseRegs.push_back(*J); 2427 2428 if (InsertFormula(LU, LUIdx, F)) 2429 // If that formula hadn't been seen before, recurse to find more like 2430 // it. 2431 GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth+1); 2432 } 2433 } 2434 } 2435 2436 /// GenerateCombinations - Generate a formula consisting of all of the 2437 /// loop-dominating registers added into a single register. 2438 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx, 2439 Formula Base) { 2440 // This method is only interesting on a plurality of registers. 2441 if (Base.BaseRegs.size() <= 1) return; 2442 2443 Formula F = Base; 2444 F.BaseRegs.clear(); 2445 SmallVector<const SCEV *, 4> Ops; 2446 for (SmallVectorImpl<const SCEV *>::const_iterator 2447 I = Base.BaseRegs.begin(), E = Base.BaseRegs.end(); I != E; ++I) { 2448 const SCEV *BaseReg = *I; 2449 if (SE.properlyDominates(BaseReg, L->getHeader()) && 2450 !SE.hasComputableLoopEvolution(BaseReg, L)) 2451 Ops.push_back(BaseReg); 2452 else 2453 F.BaseRegs.push_back(BaseReg); 2454 } 2455 if (Ops.size() > 1) { 2456 const SCEV *Sum = SE.getAddExpr(Ops); 2457 // TODO: If Sum is zero, it probably means ScalarEvolution missed an 2458 // opportunity to fold something. For now, just ignore such cases 2459 // rather than proceed with zero in a register. 2460 if (!Sum->isZero()) { 2461 F.BaseRegs.push_back(Sum); 2462 (void)InsertFormula(LU, LUIdx, F); 2463 } 2464 } 2465 } 2466 2467 /// GenerateSymbolicOffsets - Generate reuse formulae using symbolic offsets. 2468 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, 2469 Formula Base) { 2470 // We can't add a symbolic offset if the address already contains one. 2471 if (Base.AM.BaseGV) return; 2472 2473 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { 2474 const SCEV *G = Base.BaseRegs[i]; 2475 GlobalValue *GV = ExtractSymbol(G, SE); 2476 if (G->isZero() || !GV) 2477 continue; 2478 Formula F = Base; 2479 F.AM.BaseGV = GV; 2480 if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset, 2481 LU.Kind, LU.AccessTy, TLI)) 2482 continue; 2483 F.BaseRegs[i] = G; 2484 (void)InsertFormula(LU, LUIdx, F); 2485 } 2486 } 2487 2488 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets. 2489 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, 2490 Formula Base) { 2491 // TODO: For now, just add the min and max offset, because it usually isn't 2492 // worthwhile looking at everything inbetween. 2493 SmallVector<int64_t, 2> Worklist; 2494 Worklist.push_back(LU.MinOffset); 2495 if (LU.MaxOffset != LU.MinOffset) 2496 Worklist.push_back(LU.MaxOffset); 2497 2498 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { 2499 const SCEV *G = Base.BaseRegs[i]; 2500 2501 for (SmallVectorImpl<int64_t>::const_iterator I = Worklist.begin(), 2502 E = Worklist.end(); I != E; ++I) { 2503 Formula F = Base; 2504 F.AM.BaseOffs = (uint64_t)Base.AM.BaseOffs - *I; 2505 if (isLegalUse(F.AM, LU.MinOffset - *I, LU.MaxOffset - *I, 2506 LU.Kind, LU.AccessTy, TLI)) { 2507 // Add the offset to the base register. 2508 const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), *I), G); 2509 // If it cancelled out, drop the base register, otherwise update it. 2510 if (NewG->isZero()) { 2511 std::swap(F.BaseRegs[i], F.BaseRegs.back()); 2512 F.BaseRegs.pop_back(); 2513 } else 2514 F.BaseRegs[i] = NewG; 2515 2516 (void)InsertFormula(LU, LUIdx, F); 2517 } 2518 } 2519 2520 int64_t Imm = ExtractImmediate(G, SE); 2521 if (G->isZero() || Imm == 0) 2522 continue; 2523 Formula F = Base; 2524 F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Imm; 2525 if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset, 2526 LU.Kind, LU.AccessTy, TLI)) 2527 continue; 2528 F.BaseRegs[i] = G; 2529 (void)InsertFormula(LU, LUIdx, F); 2530 } 2531 } 2532 2533 /// GenerateICmpZeroScales - For ICmpZero, check to see if we can scale up 2534 /// the comparison. For example, x == y -> x*c == y*c. 2535 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, 2536 Formula Base) { 2537 if (LU.Kind != LSRUse::ICmpZero) return; 2538 2539 // Determine the integer type for the base formula. 2540 Type *IntTy = Base.getType(); 2541 if (!IntTy) return; 2542 if (SE.getTypeSizeInBits(IntTy) > 64) return; 2543 2544 // Don't do this if there is more than one offset. 2545 if (LU.MinOffset != LU.MaxOffset) return; 2546 2547 assert(!Base.AM.BaseGV && "ICmpZero use is not legal!"); 2548 2549 // Check each interesting stride. 2550 for (SmallSetVector<int64_t, 8>::const_iterator 2551 I = Factors.begin(), E = Factors.end(); I != E; ++I) { 2552 int64_t Factor = *I; 2553 2554 // Check that the multiplication doesn't overflow. 2555 if (Base.AM.BaseOffs == INT64_MIN && Factor == -1) 2556 continue; 2557 int64_t NewBaseOffs = (uint64_t)Base.AM.BaseOffs * Factor; 2558 if (NewBaseOffs / Factor != Base.AM.BaseOffs) 2559 continue; 2560 2561 // Check that multiplying with the use offset doesn't overflow. 2562 int64_t Offset = LU.MinOffset; 2563 if (Offset == INT64_MIN && Factor == -1) 2564 continue; 2565 Offset = (uint64_t)Offset * Factor; 2566 if (Offset / Factor != LU.MinOffset) 2567 continue; 2568 2569 Formula F = Base; 2570 F.AM.BaseOffs = NewBaseOffs; 2571 2572 // Check that this scale is legal. 2573 if (!isLegalUse(F.AM, Offset, Offset, LU.Kind, LU.AccessTy, TLI)) 2574 continue; 2575 2576 // Compensate for the use having MinOffset built into it. 2577 F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Offset - LU.MinOffset; 2578 2579 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 2580 2581 // Check that multiplying with each base register doesn't overflow. 2582 for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) { 2583 F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS); 2584 if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i]) 2585 goto next; 2586 } 2587 2588 // Check that multiplying with the scaled register doesn't overflow. 2589 if (F.ScaledReg) { 2590 F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS); 2591 if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg) 2592 continue; 2593 } 2594 2595 // Check that multiplying with the unfolded offset doesn't overflow. 2596 if (F.UnfoldedOffset != 0) { 2597 if (F.UnfoldedOffset == INT64_MIN && Factor == -1) 2598 continue; 2599 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor; 2600 if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset) 2601 continue; 2602 } 2603 2604 // If we make it here and it's legal, add it. 2605 (void)InsertFormula(LU, LUIdx, F); 2606 next:; 2607 } 2608 } 2609 2610 /// GenerateScales - Generate stride factor reuse formulae by making use of 2611 /// scaled-offset address modes, for example. 2612 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) { 2613 // Determine the integer type for the base formula. 2614 Type *IntTy = Base.getType(); 2615 if (!IntTy) return; 2616 2617 // If this Formula already has a scaled register, we can't add another one. 2618 if (Base.AM.Scale != 0) return; 2619 2620 // Check each interesting stride. 2621 for (SmallSetVector<int64_t, 8>::const_iterator 2622 I = Factors.begin(), E = Factors.end(); I != E; ++I) { 2623 int64_t Factor = *I; 2624 2625 Base.AM.Scale = Factor; 2626 Base.AM.HasBaseReg = Base.BaseRegs.size() > 1; 2627 // Check whether this scale is going to be legal. 2628 if (!isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset, 2629 LU.Kind, LU.AccessTy, TLI)) { 2630 // As a special-case, handle special out-of-loop Basic users specially. 2631 // TODO: Reconsider this special case. 2632 if (LU.Kind == LSRUse::Basic && 2633 isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset, 2634 LSRUse::Special, LU.AccessTy, TLI) && 2635 LU.AllFixupsOutsideLoop) 2636 LU.Kind = LSRUse::Special; 2637 else 2638 continue; 2639 } 2640 // For an ICmpZero, negating a solitary base register won't lead to 2641 // new solutions. 2642 if (LU.Kind == LSRUse::ICmpZero && 2643 !Base.AM.HasBaseReg && Base.AM.BaseOffs == 0 && !Base.AM.BaseGV) 2644 continue; 2645 // For each addrec base reg, apply the scale, if possible. 2646 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 2647 if (const SCEVAddRecExpr *AR = 2648 dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i])) { 2649 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 2650 if (FactorS->isZero()) 2651 continue; 2652 // Divide out the factor, ignoring high bits, since we'll be 2653 // scaling the value back up in the end. 2654 if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) { 2655 // TODO: This could be optimized to avoid all the copying. 2656 Formula F = Base; 2657 F.ScaledReg = Quotient; 2658 F.DeleteBaseReg(F.BaseRegs[i]); 2659 (void)InsertFormula(LU, LUIdx, F); 2660 } 2661 } 2662 } 2663 } 2664 2665 /// GenerateTruncates - Generate reuse formulae from different IV types. 2666 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) { 2667 // This requires TargetLowering to tell us which truncates are free. 2668 if (!TLI) return; 2669 2670 // Don't bother truncating symbolic values. 2671 if (Base.AM.BaseGV) return; 2672 2673 // Determine the integer type for the base formula. 2674 Type *DstTy = Base.getType(); 2675 if (!DstTy) return; 2676 DstTy = SE.getEffectiveSCEVType(DstTy); 2677 2678 for (SmallSetVector<Type *, 4>::const_iterator 2679 I = Types.begin(), E = Types.end(); I != E; ++I) { 2680 Type *SrcTy = *I; 2681 if (SrcTy != DstTy && TLI->isTruncateFree(SrcTy, DstTy)) { 2682 Formula F = Base; 2683 2684 if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, *I); 2685 for (SmallVectorImpl<const SCEV *>::iterator J = F.BaseRegs.begin(), 2686 JE = F.BaseRegs.end(); J != JE; ++J) 2687 *J = SE.getAnyExtendExpr(*J, SrcTy); 2688 2689 // TODO: This assumes we've done basic processing on all uses and 2690 // have an idea what the register usage is. 2691 if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses)) 2692 continue; 2693 2694 (void)InsertFormula(LU, LUIdx, F); 2695 } 2696 } 2697 } 2698 2699 namespace { 2700 2701 /// WorkItem - Helper class for GenerateCrossUseConstantOffsets. It's used to 2702 /// defer modifications so that the search phase doesn't have to worry about 2703 /// the data structures moving underneath it. 2704 struct WorkItem { 2705 size_t LUIdx; 2706 int64_t Imm; 2707 const SCEV *OrigReg; 2708 2709 WorkItem(size_t LI, int64_t I, const SCEV *R) 2710 : LUIdx(LI), Imm(I), OrigReg(R) {} 2711 2712 void print(raw_ostream &OS) const; 2713 void dump() const; 2714 }; 2715 2716 } 2717 2718 void WorkItem::print(raw_ostream &OS) const { 2719 OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx 2720 << " , add offset " << Imm; 2721 } 2722 2723 void WorkItem::dump() const { 2724 print(errs()); errs() << '\n'; 2725 } 2726 2727 /// GenerateCrossUseConstantOffsets - Look for registers which are a constant 2728 /// distance apart and try to form reuse opportunities between them. 2729 void LSRInstance::GenerateCrossUseConstantOffsets() { 2730 // Group the registers by their value without any added constant offset. 2731 typedef std::map<int64_t, const SCEV *> ImmMapTy; 2732 typedef DenseMap<const SCEV *, ImmMapTy> RegMapTy; 2733 RegMapTy Map; 2734 DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap; 2735 SmallVector<const SCEV *, 8> Sequence; 2736 for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end(); 2737 I != E; ++I) { 2738 const SCEV *Reg = *I; 2739 int64_t Imm = ExtractImmediate(Reg, SE); 2740 std::pair<RegMapTy::iterator, bool> Pair = 2741 Map.insert(std::make_pair(Reg, ImmMapTy())); 2742 if (Pair.second) 2743 Sequence.push_back(Reg); 2744 Pair.first->second.insert(std::make_pair(Imm, *I)); 2745 UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(*I); 2746 } 2747 2748 // Now examine each set of registers with the same base value. Build up 2749 // a list of work to do and do the work in a separate step so that we're 2750 // not adding formulae and register counts while we're searching. 2751 SmallVector<WorkItem, 32> WorkItems; 2752 SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems; 2753 for (SmallVectorImpl<const SCEV *>::const_iterator I = Sequence.begin(), 2754 E = Sequence.end(); I != E; ++I) { 2755 const SCEV *Reg = *I; 2756 const ImmMapTy &Imms = Map.find(Reg)->second; 2757 2758 // It's not worthwhile looking for reuse if there's only one offset. 2759 if (Imms.size() == 1) 2760 continue; 2761 2762 DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':'; 2763 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); 2764 J != JE; ++J) 2765 dbgs() << ' ' << J->first; 2766 dbgs() << '\n'); 2767 2768 // Examine each offset. 2769 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); 2770 J != JE; ++J) { 2771 const SCEV *OrigReg = J->second; 2772 2773 int64_t JImm = J->first; 2774 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg); 2775 2776 if (!isa<SCEVConstant>(OrigReg) && 2777 UsedByIndicesMap[Reg].count() == 1) { 2778 DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n'); 2779 continue; 2780 } 2781 2782 // Conservatively examine offsets between this orig reg a few selected 2783 // other orig regs. 2784 ImmMapTy::const_iterator OtherImms[] = { 2785 Imms.begin(), prior(Imms.end()), 2786 Imms.lower_bound((Imms.begin()->first + prior(Imms.end())->first) / 2) 2787 }; 2788 for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) { 2789 ImmMapTy::const_iterator M = OtherImms[i]; 2790 if (M == J || M == JE) continue; 2791 2792 // Compute the difference between the two. 2793 int64_t Imm = (uint64_t)JImm - M->first; 2794 for (int LUIdx = UsedByIndices.find_first(); LUIdx != -1; 2795 LUIdx = UsedByIndices.find_next(LUIdx)) 2796 // Make a memo of this use, offset, and register tuple. 2797 if (UniqueItems.insert(std::make_pair(LUIdx, Imm))) 2798 WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg)); 2799 } 2800 } 2801 } 2802 2803 Map.clear(); 2804 Sequence.clear(); 2805 UsedByIndicesMap.clear(); 2806 UniqueItems.clear(); 2807 2808 // Now iterate through the worklist and add new formulae. 2809 for (SmallVectorImpl<WorkItem>::const_iterator I = WorkItems.begin(), 2810 E = WorkItems.end(); I != E; ++I) { 2811 const WorkItem &WI = *I; 2812 size_t LUIdx = WI.LUIdx; 2813 LSRUse &LU = Uses[LUIdx]; 2814 int64_t Imm = WI.Imm; 2815 const SCEV *OrigReg = WI.OrigReg; 2816 2817 Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType()); 2818 const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm)); 2819 unsigned BitWidth = SE.getTypeSizeInBits(IntTy); 2820 2821 // TODO: Use a more targeted data structure. 2822 for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) { 2823 const Formula &F = LU.Formulae[L]; 2824 // Use the immediate in the scaled register. 2825 if (F.ScaledReg == OrigReg) { 2826 int64_t Offs = (uint64_t)F.AM.BaseOffs + 2827 Imm * (uint64_t)F.AM.Scale; 2828 // Don't create 50 + reg(-50). 2829 if (F.referencesReg(SE.getSCEV( 2830 ConstantInt::get(IntTy, -(uint64_t)Offs)))) 2831 continue; 2832 Formula NewF = F; 2833 NewF.AM.BaseOffs = Offs; 2834 if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset, 2835 LU.Kind, LU.AccessTy, TLI)) 2836 continue; 2837 NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg); 2838 2839 // If the new scale is a constant in a register, and adding the constant 2840 // value to the immediate would produce a value closer to zero than the 2841 // immediate itself, then the formula isn't worthwhile. 2842 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg)) 2843 if (C->getValue()->isNegative() != 2844 (NewF.AM.BaseOffs < 0) && 2845 (C->getValue()->getValue().abs() * APInt(BitWidth, F.AM.Scale)) 2846 .ule(abs64(NewF.AM.BaseOffs))) 2847 continue; 2848 2849 // OK, looks good. 2850 (void)InsertFormula(LU, LUIdx, NewF); 2851 } else { 2852 // Use the immediate in a base register. 2853 for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) { 2854 const SCEV *BaseReg = F.BaseRegs[N]; 2855 if (BaseReg != OrigReg) 2856 continue; 2857 Formula NewF = F; 2858 NewF.AM.BaseOffs = (uint64_t)NewF.AM.BaseOffs + Imm; 2859 if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset, 2860 LU.Kind, LU.AccessTy, TLI)) { 2861 if (!TLI || 2862 !TLI->isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm)) 2863 continue; 2864 NewF = F; 2865 NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm; 2866 } 2867 NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg); 2868 2869 // If the new formula has a constant in a register, and adding the 2870 // constant value to the immediate would produce a value closer to 2871 // zero than the immediate itself, then the formula isn't worthwhile. 2872 for (SmallVectorImpl<const SCEV *>::const_iterator 2873 J = NewF.BaseRegs.begin(), JE = NewF.BaseRegs.end(); 2874 J != JE; ++J) 2875 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*J)) 2876 if ((C->getValue()->getValue() + NewF.AM.BaseOffs).abs().slt( 2877 abs64(NewF.AM.BaseOffs)) && 2878 (C->getValue()->getValue() + 2879 NewF.AM.BaseOffs).countTrailingZeros() >= 2880 CountTrailingZeros_64(NewF.AM.BaseOffs)) 2881 goto skip_formula; 2882 2883 // Ok, looks good. 2884 (void)InsertFormula(LU, LUIdx, NewF); 2885 break; 2886 skip_formula:; 2887 } 2888 } 2889 } 2890 } 2891 } 2892 2893 /// GenerateAllReuseFormulae - Generate formulae for each use. 2894 void 2895 LSRInstance::GenerateAllReuseFormulae() { 2896 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan 2897 // queries are more precise. 2898 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 2899 LSRUse &LU = Uses[LUIdx]; 2900 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 2901 GenerateReassociations(LU, LUIdx, LU.Formulae[i]); 2902 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 2903 GenerateCombinations(LU, LUIdx, LU.Formulae[i]); 2904 } 2905 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 2906 LSRUse &LU = Uses[LUIdx]; 2907 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 2908 GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]); 2909 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 2910 GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]); 2911 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 2912 GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]); 2913 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 2914 GenerateScales(LU, LUIdx, LU.Formulae[i]); 2915 } 2916 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 2917 LSRUse &LU = Uses[LUIdx]; 2918 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 2919 GenerateTruncates(LU, LUIdx, LU.Formulae[i]); 2920 } 2921 2922 GenerateCrossUseConstantOffsets(); 2923 2924 DEBUG(dbgs() << "\n" 2925 "After generating reuse formulae:\n"; 2926 print_uses(dbgs())); 2927 } 2928 2929 /// If there are multiple formulae with the same set of registers used 2930 /// by other uses, pick the best one and delete the others. 2931 void LSRInstance::FilterOutUndesirableDedicatedRegisters() { 2932 DenseSet<const SCEV *> VisitedRegs; 2933 SmallPtrSet<const SCEV *, 16> Regs; 2934 SmallPtrSet<const SCEV *, 16> LoserRegs; 2935 #ifndef NDEBUG 2936 bool ChangedFormulae = false; 2937 #endif 2938 2939 // Collect the best formula for each unique set of shared registers. This 2940 // is reset for each use. 2941 typedef DenseMap<SmallVector<const SCEV *, 2>, size_t, UniquifierDenseMapInfo> 2942 BestFormulaeTy; 2943 BestFormulaeTy BestFormulae; 2944 2945 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 2946 LSRUse &LU = Uses[LUIdx]; 2947 DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n'); 2948 2949 bool Any = false; 2950 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); 2951 FIdx != NumForms; ++FIdx) { 2952 Formula &F = LU.Formulae[FIdx]; 2953 2954 // Some formulas are instant losers. For example, they may depend on 2955 // nonexistent AddRecs from other loops. These need to be filtered 2956 // immediately, otherwise heuristics could choose them over others leading 2957 // to an unsatisfactory solution. Passing LoserRegs into RateFormula here 2958 // avoids the need to recompute this information across formulae using the 2959 // same bad AddRec. Passing LoserRegs is also essential unless we remove 2960 // the corresponding bad register from the Regs set. 2961 Cost CostF; 2962 Regs.clear(); 2963 CostF.RateFormula(F, Regs, VisitedRegs, L, LU.Offsets, SE, DT, 2964 &LoserRegs); 2965 if (CostF.isLoser()) { 2966 // During initial formula generation, undesirable formulae are generated 2967 // by uses within other loops that have some non-trivial address mode or 2968 // use the postinc form of the IV. LSR needs to provide these formulae 2969 // as the basis of rediscovering the desired formula that uses an AddRec 2970 // corresponding to the existing phi. Once all formulae have been 2971 // generated, these initial losers may be pruned. 2972 DEBUG(dbgs() << " Filtering loser "; F.print(dbgs()); 2973 dbgs() << "\n"); 2974 } 2975 else { 2976 SmallVector<const SCEV *, 2> Key; 2977 for (SmallVectorImpl<const SCEV *>::const_iterator J = F.BaseRegs.begin(), 2978 JE = F.BaseRegs.end(); J != JE; ++J) { 2979 const SCEV *Reg = *J; 2980 if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx)) 2981 Key.push_back(Reg); 2982 } 2983 if (F.ScaledReg && 2984 RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx)) 2985 Key.push_back(F.ScaledReg); 2986 // Unstable sort by host order ok, because this is only used for 2987 // uniquifying. 2988 std::sort(Key.begin(), Key.end()); 2989 2990 std::pair<BestFormulaeTy::const_iterator, bool> P = 2991 BestFormulae.insert(std::make_pair(Key, FIdx)); 2992 if (P.second) 2993 continue; 2994 2995 Formula &Best = LU.Formulae[P.first->second]; 2996 2997 Cost CostBest; 2998 Regs.clear(); 2999 CostBest.RateFormula(Best, Regs, VisitedRegs, L, LU.Offsets, SE, DT); 3000 if (CostF < CostBest) 3001 std::swap(F, Best); 3002 DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 3003 dbgs() << "\n" 3004 " in favor of formula "; Best.print(dbgs()); 3005 dbgs() << '\n'); 3006 } 3007 #ifndef NDEBUG 3008 ChangedFormulae = true; 3009 #endif 3010 LU.DeleteFormula(F); 3011 --FIdx; 3012 --NumForms; 3013 Any = true; 3014 } 3015 3016 // Now that we've filtered out some formulae, recompute the Regs set. 3017 if (Any) 3018 LU.RecomputeRegs(LUIdx, RegUses); 3019 3020 // Reset this to prepare for the next use. 3021 BestFormulae.clear(); 3022 } 3023 3024 DEBUG(if (ChangedFormulae) { 3025 dbgs() << "\n" 3026 "After filtering out undesirable candidates:\n"; 3027 print_uses(dbgs()); 3028 }); 3029 } 3030 3031 // This is a rough guess that seems to work fairly well. 3032 static const size_t ComplexityLimit = UINT16_MAX; 3033 3034 /// EstimateSearchSpaceComplexity - Estimate the worst-case number of 3035 /// solutions the solver might have to consider. It almost never considers 3036 /// this many solutions because it prune the search space, but the pruning 3037 /// isn't always sufficient. 3038 size_t LSRInstance::EstimateSearchSpaceComplexity() const { 3039 size_t Power = 1; 3040 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(), 3041 E = Uses.end(); I != E; ++I) { 3042 size_t FSize = I->Formulae.size(); 3043 if (FSize >= ComplexityLimit) { 3044 Power = ComplexityLimit; 3045 break; 3046 } 3047 Power *= FSize; 3048 if (Power >= ComplexityLimit) 3049 break; 3050 } 3051 return Power; 3052 } 3053 3054 /// NarrowSearchSpaceByDetectingSupersets - When one formula uses a superset 3055 /// of the registers of another formula, it won't help reduce register 3056 /// pressure (though it may not necessarily hurt register pressure); remove 3057 /// it to simplify the system. 3058 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() { 3059 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 3060 DEBUG(dbgs() << "The search space is too complex.\n"); 3061 3062 DEBUG(dbgs() << "Narrowing the search space by eliminating formulae " 3063 "which use a superset of registers used by other " 3064 "formulae.\n"); 3065 3066 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3067 LSRUse &LU = Uses[LUIdx]; 3068 bool Any = false; 3069 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 3070 Formula &F = LU.Formulae[i]; 3071 // Look for a formula with a constant or GV in a register. If the use 3072 // also has a formula with that same value in an immediate field, 3073 // delete the one that uses a register. 3074 for (SmallVectorImpl<const SCEV *>::const_iterator 3075 I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) { 3076 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) { 3077 Formula NewF = F; 3078 NewF.AM.BaseOffs += C->getValue()->getSExtValue(); 3079 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 3080 (I - F.BaseRegs.begin())); 3081 if (LU.HasFormulaWithSameRegs(NewF)) { 3082 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 3083 LU.DeleteFormula(F); 3084 --i; 3085 --e; 3086 Any = true; 3087 break; 3088 } 3089 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) { 3090 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) 3091 if (!F.AM.BaseGV) { 3092 Formula NewF = F; 3093 NewF.AM.BaseGV = GV; 3094 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 3095 (I - F.BaseRegs.begin())); 3096 if (LU.HasFormulaWithSameRegs(NewF)) { 3097 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 3098 dbgs() << '\n'); 3099 LU.DeleteFormula(F); 3100 --i; 3101 --e; 3102 Any = true; 3103 break; 3104 } 3105 } 3106 } 3107 } 3108 } 3109 if (Any) 3110 LU.RecomputeRegs(LUIdx, RegUses); 3111 } 3112 3113 DEBUG(dbgs() << "After pre-selection:\n"; 3114 print_uses(dbgs())); 3115 } 3116 } 3117 3118 /// NarrowSearchSpaceByCollapsingUnrolledCode - When there are many registers 3119 /// for expressions like A, A+1, A+2, etc., allocate a single register for 3120 /// them. 3121 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() { 3122 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 3123 DEBUG(dbgs() << "The search space is too complex.\n"); 3124 3125 DEBUG(dbgs() << "Narrowing the search space by assuming that uses " 3126 "separated by a constant offset will use the same " 3127 "registers.\n"); 3128 3129 // This is especially useful for unrolled loops. 3130 3131 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3132 LSRUse &LU = Uses[LUIdx]; 3133 for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(), 3134 E = LU.Formulae.end(); I != E; ++I) { 3135 const Formula &F = *I; 3136 if (F.AM.BaseOffs != 0 && F.AM.Scale == 0) { 3137 if (LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU)) { 3138 if (reconcileNewOffset(*LUThatHas, F.AM.BaseOffs, 3139 /*HasBaseReg=*/false, 3140 LU.Kind, LU.AccessTy)) { 3141 DEBUG(dbgs() << " Deleting use "; LU.print(dbgs()); 3142 dbgs() << '\n'); 3143 3144 LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop; 3145 3146 // Update the relocs to reference the new use. 3147 for (SmallVectorImpl<LSRFixup>::iterator I = Fixups.begin(), 3148 E = Fixups.end(); I != E; ++I) { 3149 LSRFixup &Fixup = *I; 3150 if (Fixup.LUIdx == LUIdx) { 3151 Fixup.LUIdx = LUThatHas - &Uses.front(); 3152 Fixup.Offset += F.AM.BaseOffs; 3153 // Add the new offset to LUThatHas' offset list. 3154 if (LUThatHas->Offsets.back() != Fixup.Offset) { 3155 LUThatHas->Offsets.push_back(Fixup.Offset); 3156 if (Fixup.Offset > LUThatHas->MaxOffset) 3157 LUThatHas->MaxOffset = Fixup.Offset; 3158 if (Fixup.Offset < LUThatHas->MinOffset) 3159 LUThatHas->MinOffset = Fixup.Offset; 3160 } 3161 DEBUG(dbgs() << "New fixup has offset " 3162 << Fixup.Offset << '\n'); 3163 } 3164 if (Fixup.LUIdx == NumUses-1) 3165 Fixup.LUIdx = LUIdx; 3166 } 3167 3168 // Delete formulae from the new use which are no longer legal. 3169 bool Any = false; 3170 for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) { 3171 Formula &F = LUThatHas->Formulae[i]; 3172 if (!isLegalUse(F.AM, 3173 LUThatHas->MinOffset, LUThatHas->MaxOffset, 3174 LUThatHas->Kind, LUThatHas->AccessTy, TLI)) { 3175 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 3176 dbgs() << '\n'); 3177 LUThatHas->DeleteFormula(F); 3178 --i; 3179 --e; 3180 Any = true; 3181 } 3182 } 3183 if (Any) 3184 LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses); 3185 3186 // Delete the old use. 3187 DeleteUse(LU, LUIdx); 3188 --LUIdx; 3189 --NumUses; 3190 break; 3191 } 3192 } 3193 } 3194 } 3195 } 3196 3197 DEBUG(dbgs() << "After pre-selection:\n"; 3198 print_uses(dbgs())); 3199 } 3200 } 3201 3202 /// NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters - Call 3203 /// FilterOutUndesirableDedicatedRegisters again, if necessary, now that 3204 /// we've done more filtering, as it may be able to find more formulae to 3205 /// eliminate. 3206 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){ 3207 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 3208 DEBUG(dbgs() << "The search space is too complex.\n"); 3209 3210 DEBUG(dbgs() << "Narrowing the search space by re-filtering out " 3211 "undesirable dedicated registers.\n"); 3212 3213 FilterOutUndesirableDedicatedRegisters(); 3214 3215 DEBUG(dbgs() << "After pre-selection:\n"; 3216 print_uses(dbgs())); 3217 } 3218 } 3219 3220 /// NarrowSearchSpaceByPickingWinnerRegs - Pick a register which seems likely 3221 /// to be profitable, and then in any use which has any reference to that 3222 /// register, delete all formulae which do not reference that register. 3223 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() { 3224 // With all other options exhausted, loop until the system is simple 3225 // enough to handle. 3226 SmallPtrSet<const SCEV *, 4> Taken; 3227 while (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 3228 // Ok, we have too many of formulae on our hands to conveniently handle. 3229 // Use a rough heuristic to thin out the list. 3230 DEBUG(dbgs() << "The search space is too complex.\n"); 3231 3232 // Pick the register which is used by the most LSRUses, which is likely 3233 // to be a good reuse register candidate. 3234 const SCEV *Best = 0; 3235 unsigned BestNum = 0; 3236 for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end(); 3237 I != E; ++I) { 3238 const SCEV *Reg = *I; 3239 if (Taken.count(Reg)) 3240 continue; 3241 if (!Best) 3242 Best = Reg; 3243 else { 3244 unsigned Count = RegUses.getUsedByIndices(Reg).count(); 3245 if (Count > BestNum) { 3246 Best = Reg; 3247 BestNum = Count; 3248 } 3249 } 3250 } 3251 3252 DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best 3253 << " will yield profitable reuse.\n"); 3254 Taken.insert(Best); 3255 3256 // In any use with formulae which references this register, delete formulae 3257 // which don't reference it. 3258 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3259 LSRUse &LU = Uses[LUIdx]; 3260 if (!LU.Regs.count(Best)) continue; 3261 3262 bool Any = false; 3263 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 3264 Formula &F = LU.Formulae[i]; 3265 if (!F.referencesReg(Best)) { 3266 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 3267 LU.DeleteFormula(F); 3268 --e; 3269 --i; 3270 Any = true; 3271 assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?"); 3272 continue; 3273 } 3274 } 3275 3276 if (Any) 3277 LU.RecomputeRegs(LUIdx, RegUses); 3278 } 3279 3280 DEBUG(dbgs() << "After pre-selection:\n"; 3281 print_uses(dbgs())); 3282 } 3283 } 3284 3285 /// NarrowSearchSpaceUsingHeuristics - If there are an extraordinary number of 3286 /// formulae to choose from, use some rough heuristics to prune down the number 3287 /// of formulae. This keeps the main solver from taking an extraordinary amount 3288 /// of time in some worst-case scenarios. 3289 void LSRInstance::NarrowSearchSpaceUsingHeuristics() { 3290 NarrowSearchSpaceByDetectingSupersets(); 3291 NarrowSearchSpaceByCollapsingUnrolledCode(); 3292 NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 3293 NarrowSearchSpaceByPickingWinnerRegs(); 3294 } 3295 3296 /// SolveRecurse - This is the recursive solver. 3297 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 3298 Cost &SolutionCost, 3299 SmallVectorImpl<const Formula *> &Workspace, 3300 const Cost &CurCost, 3301 const SmallPtrSet<const SCEV *, 16> &CurRegs, 3302 DenseSet<const SCEV *> &VisitedRegs) const { 3303 // Some ideas: 3304 // - prune more: 3305 // - use more aggressive filtering 3306 // - sort the formula so that the most profitable solutions are found first 3307 // - sort the uses too 3308 // - search faster: 3309 // - don't compute a cost, and then compare. compare while computing a cost 3310 // and bail early. 3311 // - track register sets with SmallBitVector 3312 3313 const LSRUse &LU = Uses[Workspace.size()]; 3314 3315 // If this use references any register that's already a part of the 3316 // in-progress solution, consider it a requirement that a formula must 3317 // reference that register in order to be considered. This prunes out 3318 // unprofitable searching. 3319 SmallSetVector<const SCEV *, 4> ReqRegs; 3320 for (SmallPtrSet<const SCEV *, 16>::const_iterator I = CurRegs.begin(), 3321 E = CurRegs.end(); I != E; ++I) 3322 if (LU.Regs.count(*I)) 3323 ReqRegs.insert(*I); 3324 3325 bool AnySatisfiedReqRegs = false; 3326 SmallPtrSet<const SCEV *, 16> NewRegs; 3327 Cost NewCost; 3328 retry: 3329 for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(), 3330 E = LU.Formulae.end(); I != E; ++I) { 3331 const Formula &F = *I; 3332 3333 // Ignore formulae which do not use any of the required registers. 3334 for (SmallSetVector<const SCEV *, 4>::const_iterator J = ReqRegs.begin(), 3335 JE = ReqRegs.end(); J != JE; ++J) { 3336 const SCEV *Reg = *J; 3337 if ((!F.ScaledReg || F.ScaledReg != Reg) && 3338 std::find(F.BaseRegs.begin(), F.BaseRegs.end(), Reg) == 3339 F.BaseRegs.end()) 3340 goto skip; 3341 } 3342 AnySatisfiedReqRegs = true; 3343 3344 // Evaluate the cost of the current formula. If it's already worse than 3345 // the current best, prune the search at that point. 3346 NewCost = CurCost; 3347 NewRegs = CurRegs; 3348 NewCost.RateFormula(F, NewRegs, VisitedRegs, L, LU.Offsets, SE, DT); 3349 if (NewCost < SolutionCost) { 3350 Workspace.push_back(&F); 3351 if (Workspace.size() != Uses.size()) { 3352 SolveRecurse(Solution, SolutionCost, Workspace, NewCost, 3353 NewRegs, VisitedRegs); 3354 if (F.getNumRegs() == 1 && Workspace.size() == 1) 3355 VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]); 3356 } else { 3357 DEBUG(dbgs() << "New best at "; NewCost.print(dbgs()); 3358 dbgs() << ". Regs:"; 3359 for (SmallPtrSet<const SCEV *, 16>::const_iterator 3360 I = NewRegs.begin(), E = NewRegs.end(); I != E; ++I) 3361 dbgs() << ' ' << **I; 3362 dbgs() << '\n'); 3363 3364 SolutionCost = NewCost; 3365 Solution = Workspace; 3366 } 3367 Workspace.pop_back(); 3368 } 3369 skip:; 3370 } 3371 3372 if (!EnableRetry && !AnySatisfiedReqRegs) 3373 return; 3374 3375 // If none of the formulae had all of the required registers, relax the 3376 // constraint so that we don't exclude all formulae. 3377 if (!AnySatisfiedReqRegs) { 3378 assert(!ReqRegs.empty() && "Solver failed even without required registers"); 3379 ReqRegs.clear(); 3380 goto retry; 3381 } 3382 } 3383 3384 /// Solve - Choose one formula from each use. Return the results in the given 3385 /// Solution vector. 3386 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const { 3387 SmallVector<const Formula *, 8> Workspace; 3388 Cost SolutionCost; 3389 SolutionCost.Loose(); 3390 Cost CurCost; 3391 SmallPtrSet<const SCEV *, 16> CurRegs; 3392 DenseSet<const SCEV *> VisitedRegs; 3393 Workspace.reserve(Uses.size()); 3394 3395 // SolveRecurse does all the work. 3396 SolveRecurse(Solution, SolutionCost, Workspace, CurCost, 3397 CurRegs, VisitedRegs); 3398 if (Solution.empty()) { 3399 DEBUG(dbgs() << "\nNo Satisfactory Solution\n"); 3400 return; 3401 } 3402 3403 // Ok, we've now made all our decisions. 3404 DEBUG(dbgs() << "\n" 3405 "The chosen solution requires "; SolutionCost.print(dbgs()); 3406 dbgs() << ":\n"; 3407 for (size_t i = 0, e = Uses.size(); i != e; ++i) { 3408 dbgs() << " "; 3409 Uses[i].print(dbgs()); 3410 dbgs() << "\n" 3411 " "; 3412 Solution[i]->print(dbgs()); 3413 dbgs() << '\n'; 3414 }); 3415 3416 assert(Solution.size() == Uses.size() && "Malformed solution!"); 3417 } 3418 3419 /// HoistInsertPosition - Helper for AdjustInsertPositionForExpand. Climb up 3420 /// the dominator tree far as we can go while still being dominated by the 3421 /// input positions. This helps canonicalize the insert position, which 3422 /// encourages sharing. 3423 BasicBlock::iterator 3424 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP, 3425 const SmallVectorImpl<Instruction *> &Inputs) 3426 const { 3427 for (;;) { 3428 const Loop *IPLoop = LI.getLoopFor(IP->getParent()); 3429 unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0; 3430 3431 BasicBlock *IDom; 3432 for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) { 3433 if (!Rung) return IP; 3434 Rung = Rung->getIDom(); 3435 if (!Rung) return IP; 3436 IDom = Rung->getBlock(); 3437 3438 // Don't climb into a loop though. 3439 const Loop *IDomLoop = LI.getLoopFor(IDom); 3440 unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0; 3441 if (IDomDepth <= IPLoopDepth && 3442 (IDomDepth != IPLoopDepth || IDomLoop == IPLoop)) 3443 break; 3444 } 3445 3446 bool AllDominate = true; 3447 Instruction *BetterPos = 0; 3448 Instruction *Tentative = IDom->getTerminator(); 3449 for (SmallVectorImpl<Instruction *>::const_iterator I = Inputs.begin(), 3450 E = Inputs.end(); I != E; ++I) { 3451 Instruction *Inst = *I; 3452 if (Inst == Tentative || !DT.dominates(Inst, Tentative)) { 3453 AllDominate = false; 3454 break; 3455 } 3456 // Attempt to find an insert position in the middle of the block, 3457 // instead of at the end, so that it can be used for other expansions. 3458 if (IDom == Inst->getParent() && 3459 (!BetterPos || DT.dominates(BetterPos, Inst))) 3460 BetterPos = llvm::next(BasicBlock::iterator(Inst)); 3461 } 3462 if (!AllDominate) 3463 break; 3464 if (BetterPos) 3465 IP = BetterPos; 3466 else 3467 IP = Tentative; 3468 } 3469 3470 return IP; 3471 } 3472 3473 /// AdjustInsertPositionForExpand - Determine an input position which will be 3474 /// dominated by the operands and which will dominate the result. 3475 BasicBlock::iterator 3476 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator IP, 3477 const LSRFixup &LF, 3478 const LSRUse &LU) const { 3479 // Collect some instructions which must be dominated by the 3480 // expanding replacement. These must be dominated by any operands that 3481 // will be required in the expansion. 3482 SmallVector<Instruction *, 4> Inputs; 3483 if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace)) 3484 Inputs.push_back(I); 3485 if (LU.Kind == LSRUse::ICmpZero) 3486 if (Instruction *I = 3487 dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1))) 3488 Inputs.push_back(I); 3489 if (LF.PostIncLoops.count(L)) { 3490 if (LF.isUseFullyOutsideLoop(L)) 3491 Inputs.push_back(L->getLoopLatch()->getTerminator()); 3492 else 3493 Inputs.push_back(IVIncInsertPos); 3494 } 3495 // The expansion must also be dominated by the increment positions of any 3496 // loops it for which it is using post-inc mode. 3497 for (PostIncLoopSet::const_iterator I = LF.PostIncLoops.begin(), 3498 E = LF.PostIncLoops.end(); I != E; ++I) { 3499 const Loop *PIL = *I; 3500 if (PIL == L) continue; 3501 3502 // Be dominated by the loop exit. 3503 SmallVector<BasicBlock *, 4> ExitingBlocks; 3504 PIL->getExitingBlocks(ExitingBlocks); 3505 if (!ExitingBlocks.empty()) { 3506 BasicBlock *BB = ExitingBlocks[0]; 3507 for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i) 3508 BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]); 3509 Inputs.push_back(BB->getTerminator()); 3510 } 3511 } 3512 3513 // Then, climb up the immediate dominator tree as far as we can go while 3514 // still being dominated by the input positions. 3515 IP = HoistInsertPosition(IP, Inputs); 3516 3517 // Don't insert instructions before PHI nodes. 3518 while (isa<PHINode>(IP)) ++IP; 3519 3520 // Ignore landingpad instructions. 3521 while (isa<LandingPadInst>(IP)) ++IP; 3522 3523 // Ignore debug intrinsics. 3524 while (isa<DbgInfoIntrinsic>(IP)) ++IP; 3525 3526 return IP; 3527 } 3528 3529 /// Expand - Emit instructions for the leading candidate expression for this 3530 /// LSRUse (this is called "expanding"). 3531 Value *LSRInstance::Expand(const LSRFixup &LF, 3532 const Formula &F, 3533 BasicBlock::iterator IP, 3534 SCEVExpander &Rewriter, 3535 SmallVectorImpl<WeakVH> &DeadInsts) const { 3536 const LSRUse &LU = Uses[LF.LUIdx]; 3537 3538 // Determine an input position which will be dominated by the operands and 3539 // which will dominate the result. 3540 IP = AdjustInsertPositionForExpand(IP, LF, LU); 3541 3542 // Inform the Rewriter if we have a post-increment use, so that it can 3543 // perform an advantageous expansion. 3544 Rewriter.setPostInc(LF.PostIncLoops); 3545 3546 // This is the type that the user actually needs. 3547 Type *OpTy = LF.OperandValToReplace->getType(); 3548 // This will be the type that we'll initially expand to. 3549 Type *Ty = F.getType(); 3550 if (!Ty) 3551 // No type known; just expand directly to the ultimate type. 3552 Ty = OpTy; 3553 else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy)) 3554 // Expand directly to the ultimate type if it's the right size. 3555 Ty = OpTy; 3556 // This is the type to do integer arithmetic in. 3557 Type *IntTy = SE.getEffectiveSCEVType(Ty); 3558 3559 // Build up a list of operands to add together to form the full base. 3560 SmallVector<const SCEV *, 8> Ops; 3561 3562 // Expand the BaseRegs portion. 3563 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(), 3564 E = F.BaseRegs.end(); I != E; ++I) { 3565 const SCEV *Reg = *I; 3566 assert(!Reg->isZero() && "Zero allocated in a base register!"); 3567 3568 // If we're expanding for a post-inc user, make the post-inc adjustment. 3569 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 3570 Reg = TransformForPostIncUse(Denormalize, Reg, 3571 LF.UserInst, LF.OperandValToReplace, 3572 Loops, SE, DT); 3573 3574 Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, 0, IP))); 3575 } 3576 3577 // Flush the operand list to suppress SCEVExpander hoisting. 3578 if (!Ops.empty()) { 3579 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP); 3580 Ops.clear(); 3581 Ops.push_back(SE.getUnknown(FullV)); 3582 } 3583 3584 // Expand the ScaledReg portion. 3585 Value *ICmpScaledV = 0; 3586 if (F.AM.Scale != 0) { 3587 const SCEV *ScaledS = F.ScaledReg; 3588 3589 // If we're expanding for a post-inc user, make the post-inc adjustment. 3590 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 3591 ScaledS = TransformForPostIncUse(Denormalize, ScaledS, 3592 LF.UserInst, LF.OperandValToReplace, 3593 Loops, SE, DT); 3594 3595 if (LU.Kind == LSRUse::ICmpZero) { 3596 // An interesting way of "folding" with an icmp is to use a negated 3597 // scale, which we'll implement by inserting it into the other operand 3598 // of the icmp. 3599 assert(F.AM.Scale == -1 && 3600 "The only scale supported by ICmpZero uses is -1!"); 3601 ICmpScaledV = Rewriter.expandCodeFor(ScaledS, 0, IP); 3602 } else { 3603 // Otherwise just expand the scaled register and an explicit scale, 3604 // which is expected to be matched as part of the address. 3605 ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, 0, IP)); 3606 ScaledS = SE.getMulExpr(ScaledS, 3607 SE.getConstant(ScaledS->getType(), F.AM.Scale)); 3608 Ops.push_back(ScaledS); 3609 3610 // Flush the operand list to suppress SCEVExpander hoisting. 3611 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP); 3612 Ops.clear(); 3613 Ops.push_back(SE.getUnknown(FullV)); 3614 } 3615 } 3616 3617 // Expand the GV portion. 3618 if (F.AM.BaseGV) { 3619 Ops.push_back(SE.getUnknown(F.AM.BaseGV)); 3620 3621 // Flush the operand list to suppress SCEVExpander hoisting. 3622 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP); 3623 Ops.clear(); 3624 Ops.push_back(SE.getUnknown(FullV)); 3625 } 3626 3627 // Expand the immediate portion. 3628 int64_t Offset = (uint64_t)F.AM.BaseOffs + LF.Offset; 3629 if (Offset != 0) { 3630 if (LU.Kind == LSRUse::ICmpZero) { 3631 // The other interesting way of "folding" with an ICmpZero is to use a 3632 // negated immediate. 3633 if (!ICmpScaledV) 3634 ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset); 3635 else { 3636 Ops.push_back(SE.getUnknown(ICmpScaledV)); 3637 ICmpScaledV = ConstantInt::get(IntTy, Offset); 3638 } 3639 } else { 3640 // Just add the immediate values. These again are expected to be matched 3641 // as part of the address. 3642 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset))); 3643 } 3644 } 3645 3646 // Expand the unfolded offset portion. 3647 int64_t UnfoldedOffset = F.UnfoldedOffset; 3648 if (UnfoldedOffset != 0) { 3649 // Just add the immediate values. 3650 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, 3651 UnfoldedOffset))); 3652 } 3653 3654 // Emit instructions summing all the operands. 3655 const SCEV *FullS = Ops.empty() ? 3656 SE.getConstant(IntTy, 0) : 3657 SE.getAddExpr(Ops); 3658 Value *FullV = Rewriter.expandCodeFor(FullS, Ty, IP); 3659 3660 // We're done expanding now, so reset the rewriter. 3661 Rewriter.clearPostInc(); 3662 3663 // An ICmpZero Formula represents an ICmp which we're handling as a 3664 // comparison against zero. Now that we've expanded an expression for that 3665 // form, update the ICmp's other operand. 3666 if (LU.Kind == LSRUse::ICmpZero) { 3667 ICmpInst *CI = cast<ICmpInst>(LF.UserInst); 3668 DeadInsts.push_back(CI->getOperand(1)); 3669 assert(!F.AM.BaseGV && "ICmp does not support folding a global value and " 3670 "a scale at the same time!"); 3671 if (F.AM.Scale == -1) { 3672 if (ICmpScaledV->getType() != OpTy) { 3673 Instruction *Cast = 3674 CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false, 3675 OpTy, false), 3676 ICmpScaledV, OpTy, "tmp", CI); 3677 ICmpScaledV = Cast; 3678 } 3679 CI->setOperand(1, ICmpScaledV); 3680 } else { 3681 assert(F.AM.Scale == 0 && 3682 "ICmp does not support folding a global value and " 3683 "a scale at the same time!"); 3684 Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy), 3685 -(uint64_t)Offset); 3686 if (C->getType() != OpTy) 3687 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 3688 OpTy, false), 3689 C, OpTy); 3690 3691 CI->setOperand(1, C); 3692 } 3693 } 3694 3695 return FullV; 3696 } 3697 3698 /// RewriteForPHI - Helper for Rewrite. PHI nodes are special because the use 3699 /// of their operands effectively happens in their predecessor blocks, so the 3700 /// expression may need to be expanded in multiple places. 3701 void LSRInstance::RewriteForPHI(PHINode *PN, 3702 const LSRFixup &LF, 3703 const Formula &F, 3704 SCEVExpander &Rewriter, 3705 SmallVectorImpl<WeakVH> &DeadInsts, 3706 Pass *P) const { 3707 DenseMap<BasicBlock *, Value *> Inserted; 3708 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 3709 if (PN->getIncomingValue(i) == LF.OperandValToReplace) { 3710 BasicBlock *BB = PN->getIncomingBlock(i); 3711 3712 // If this is a critical edge, split the edge so that we do not insert 3713 // the code on all predecessor/successor paths. We do this unless this 3714 // is the canonical backedge for this loop, which complicates post-inc 3715 // users. 3716 if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 && 3717 !isa<IndirectBrInst>(BB->getTerminator())) { 3718 BasicBlock *Parent = PN->getParent(); 3719 Loop *PNLoop = LI.getLoopFor(Parent); 3720 if (!PNLoop || Parent != PNLoop->getHeader()) { 3721 // Split the critical edge. 3722 BasicBlock *NewBB = 0; 3723 if (!Parent->isLandingPad()) { 3724 NewBB = SplitCriticalEdge(BB, Parent, P, 3725 /*MergeIdenticalEdges=*/true, 3726 /*DontDeleteUselessPhis=*/true); 3727 } else { 3728 SmallVector<BasicBlock*, 2> NewBBs; 3729 SplitLandingPadPredecessors(Parent, BB, "", "", P, NewBBs); 3730 NewBB = NewBBs[0]; 3731 } 3732 3733 // If PN is outside of the loop and BB is in the loop, we want to 3734 // move the block to be immediately before the PHI block, not 3735 // immediately after BB. 3736 if (L->contains(BB) && !L->contains(PN)) 3737 NewBB->moveBefore(PN->getParent()); 3738 3739 // Splitting the edge can reduce the number of PHI entries we have. 3740 e = PN->getNumIncomingValues(); 3741 BB = NewBB; 3742 i = PN->getBasicBlockIndex(BB); 3743 } 3744 } 3745 3746 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair = 3747 Inserted.insert(std::make_pair(BB, static_cast<Value *>(0))); 3748 if (!Pair.second) 3749 PN->setIncomingValue(i, Pair.first->second); 3750 else { 3751 Value *FullV = Expand(LF, F, BB->getTerminator(), Rewriter, DeadInsts); 3752 3753 // If this is reuse-by-noop-cast, insert the noop cast. 3754 Type *OpTy = LF.OperandValToReplace->getType(); 3755 if (FullV->getType() != OpTy) 3756 FullV = 3757 CastInst::Create(CastInst::getCastOpcode(FullV, false, 3758 OpTy, false), 3759 FullV, LF.OperandValToReplace->getType(), 3760 "tmp", BB->getTerminator()); 3761 3762 PN->setIncomingValue(i, FullV); 3763 Pair.first->second = FullV; 3764 } 3765 } 3766 } 3767 3768 /// Rewrite - Emit instructions for the leading candidate expression for this 3769 /// LSRUse (this is called "expanding"), and update the UserInst to reference 3770 /// the newly expanded value. 3771 void LSRInstance::Rewrite(const LSRFixup &LF, 3772 const Formula &F, 3773 SCEVExpander &Rewriter, 3774 SmallVectorImpl<WeakVH> &DeadInsts, 3775 Pass *P) const { 3776 // First, find an insertion point that dominates UserInst. For PHI nodes, 3777 // find the nearest block which dominates all the relevant uses. 3778 if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) { 3779 RewriteForPHI(PN, LF, F, Rewriter, DeadInsts, P); 3780 } else { 3781 Value *FullV = Expand(LF, F, LF.UserInst, Rewriter, DeadInsts); 3782 3783 // If this is reuse-by-noop-cast, insert the noop cast. 3784 Type *OpTy = LF.OperandValToReplace->getType(); 3785 if (FullV->getType() != OpTy) { 3786 Instruction *Cast = 3787 CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false), 3788 FullV, OpTy, "tmp", LF.UserInst); 3789 FullV = Cast; 3790 } 3791 3792 // Update the user. ICmpZero is handled specially here (for now) because 3793 // Expand may have updated one of the operands of the icmp already, and 3794 // its new value may happen to be equal to LF.OperandValToReplace, in 3795 // which case doing replaceUsesOfWith leads to replacing both operands 3796 // with the same value. TODO: Reorganize this. 3797 if (Uses[LF.LUIdx].Kind == LSRUse::ICmpZero) 3798 LF.UserInst->setOperand(0, FullV); 3799 else 3800 LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV); 3801 } 3802 3803 DeadInsts.push_back(LF.OperandValToReplace); 3804 } 3805 3806 /// ImplementSolution - Rewrite all the fixup locations with new values, 3807 /// following the chosen solution. 3808 void 3809 LSRInstance::ImplementSolution(const SmallVectorImpl<const Formula *> &Solution, 3810 Pass *P) { 3811 // Keep track of instructions we may have made dead, so that 3812 // we can remove them after we are done working. 3813 SmallVector<WeakVH, 16> DeadInsts; 3814 3815 SCEVExpander Rewriter(SE, "lsr"); 3816 Rewriter.disableCanonicalMode(); 3817 Rewriter.enableLSRMode(); 3818 Rewriter.setIVIncInsertPos(L, IVIncInsertPos); 3819 3820 // Expand the new value definitions and update the users. 3821 for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(), 3822 E = Fixups.end(); I != E; ++I) { 3823 const LSRFixup &Fixup = *I; 3824 3825 Rewrite(Fixup, *Solution[Fixup.LUIdx], Rewriter, DeadInsts, P); 3826 3827 Changed = true; 3828 } 3829 3830 // Clean up after ourselves. This must be done before deleting any 3831 // instructions. 3832 Rewriter.clear(); 3833 3834 Changed |= DeleteTriviallyDeadInstructions(DeadInsts); 3835 } 3836 3837 LSRInstance::LSRInstance(const TargetLowering *tli, Loop *l, Pass *P) 3838 : IU(P->getAnalysis<IVUsers>()), 3839 SE(P->getAnalysis<ScalarEvolution>()), 3840 DT(P->getAnalysis<DominatorTree>()), 3841 LI(P->getAnalysis<LoopInfo>()), 3842 TLI(tli), L(l), Changed(false), IVIncInsertPos(0) { 3843 3844 // If LoopSimplify form is not available, stay out of trouble. 3845 if (!L->isLoopSimplifyForm()) return; 3846 3847 // If there's no interesting work to be done, bail early. 3848 if (IU.empty()) return; 3849 3850 DEBUG(dbgs() << "\nLSR on loop "; 3851 WriteAsOperand(dbgs(), L->getHeader(), /*PrintType=*/false); 3852 dbgs() << ":\n"); 3853 3854 // First, perform some low-level loop optimizations. 3855 OptimizeShadowIV(); 3856 OptimizeLoopTermCond(); 3857 3858 // If loop preparation eliminates all interesting IV users, bail. 3859 if (IU.empty()) return; 3860 3861 // Skip nested loops until we can model them better with formulae. 3862 if (!EnableNested && !L->empty()) { 3863 3864 if (EnablePhiElim) { 3865 // Remove any extra phis created by processing inner loops. 3866 SmallVector<WeakVH, 16> DeadInsts; 3867 SCEVExpander Rewriter(SE, "lsr"); 3868 Changed |= (bool)Rewriter.replaceCongruentIVs(L, &DT, DeadInsts); 3869 Changed |= (bool)DeleteTriviallyDeadInstructions(DeadInsts); 3870 } 3871 DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n"); 3872 return; 3873 } 3874 3875 // Start collecting data and preparing for the solver. 3876 CollectInterestingTypesAndFactors(); 3877 CollectFixupsAndInitialFormulae(); 3878 CollectLoopInvariantFixupsAndFormulae(); 3879 3880 DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n"; 3881 print_uses(dbgs())); 3882 3883 // Now use the reuse data to generate a bunch of interesting ways 3884 // to formulate the values needed for the uses. 3885 GenerateAllReuseFormulae(); 3886 3887 FilterOutUndesirableDedicatedRegisters(); 3888 NarrowSearchSpaceUsingHeuristics(); 3889 3890 SmallVector<const Formula *, 8> Solution; 3891 Solve(Solution); 3892 3893 // Release memory that is no longer needed. 3894 Factors.clear(); 3895 Types.clear(); 3896 RegUses.clear(); 3897 3898 if (Solution.empty()) 3899 return; 3900 3901 #ifndef NDEBUG 3902 // Formulae should be legal. 3903 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(), 3904 E = Uses.end(); I != E; ++I) { 3905 const LSRUse &LU = *I; 3906 for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(), 3907 JE = LU.Formulae.end(); J != JE; ++J) 3908 assert(isLegalUse(J->AM, LU.MinOffset, LU.MaxOffset, 3909 LU.Kind, LU.AccessTy, TLI) && 3910 "Illegal formula generated!"); 3911 }; 3912 #endif 3913 3914 // Now that we've decided what we want, make it so. 3915 ImplementSolution(Solution, P); 3916 3917 if (EnablePhiElim) { 3918 // Remove any extra phis created by processing inner loops. 3919 SmallVector<WeakVH, 16> DeadInsts; 3920 SCEVExpander Rewriter(SE, "lsr"); 3921 Changed |= (bool)Rewriter.replaceCongruentIVs(L, &DT, DeadInsts); 3922 Changed |= (bool)DeleteTriviallyDeadInstructions(DeadInsts); 3923 } 3924 } 3925 3926 void LSRInstance::print_factors_and_types(raw_ostream &OS) const { 3927 if (Factors.empty() && Types.empty()) return; 3928 3929 OS << "LSR has identified the following interesting factors and types: "; 3930 bool First = true; 3931 3932 for (SmallSetVector<int64_t, 8>::const_iterator 3933 I = Factors.begin(), E = Factors.end(); I != E; ++I) { 3934 if (!First) OS << ", "; 3935 First = false; 3936 OS << '*' << *I; 3937 } 3938 3939 for (SmallSetVector<Type *, 4>::const_iterator 3940 I = Types.begin(), E = Types.end(); I != E; ++I) { 3941 if (!First) OS << ", "; 3942 First = false; 3943 OS << '(' << **I << ')'; 3944 } 3945 OS << '\n'; 3946 } 3947 3948 void LSRInstance::print_fixups(raw_ostream &OS) const { 3949 OS << "LSR is examining the following fixup sites:\n"; 3950 for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(), 3951 E = Fixups.end(); I != E; ++I) { 3952 dbgs() << " "; 3953 I->print(OS); 3954 OS << '\n'; 3955 } 3956 } 3957 3958 void LSRInstance::print_uses(raw_ostream &OS) const { 3959 OS << "LSR is examining the following uses:\n"; 3960 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(), 3961 E = Uses.end(); I != E; ++I) { 3962 const LSRUse &LU = *I; 3963 dbgs() << " "; 3964 LU.print(OS); 3965 OS << '\n'; 3966 for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(), 3967 JE = LU.Formulae.end(); J != JE; ++J) { 3968 OS << " "; 3969 J->print(OS); 3970 OS << '\n'; 3971 } 3972 } 3973 } 3974 3975 void LSRInstance::print(raw_ostream &OS) const { 3976 print_factors_and_types(OS); 3977 print_fixups(OS); 3978 print_uses(OS); 3979 } 3980 3981 void LSRInstance::dump() const { 3982 print(errs()); errs() << '\n'; 3983 } 3984 3985 namespace { 3986 3987 class LoopStrengthReduce : public LoopPass { 3988 /// TLI - Keep a pointer of a TargetLowering to consult for determining 3989 /// transformation profitability. 3990 const TargetLowering *const TLI; 3991 3992 public: 3993 static char ID; // Pass ID, replacement for typeid 3994 explicit LoopStrengthReduce(const TargetLowering *tli = 0); 3995 3996 private: 3997 bool runOnLoop(Loop *L, LPPassManager &LPM); 3998 void getAnalysisUsage(AnalysisUsage &AU) const; 3999 }; 4000 4001 } 4002 4003 char LoopStrengthReduce::ID = 0; 4004 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce", 4005 "Loop Strength Reduction", false, false) 4006 INITIALIZE_PASS_DEPENDENCY(DominatorTree) 4007 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 4008 INITIALIZE_PASS_DEPENDENCY(IVUsers) 4009 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 4010 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 4011 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce", 4012 "Loop Strength Reduction", false, false) 4013 4014 4015 Pass *llvm::createLoopStrengthReducePass(const TargetLowering *TLI) { 4016 return new LoopStrengthReduce(TLI); 4017 } 4018 4019 LoopStrengthReduce::LoopStrengthReduce(const TargetLowering *tli) 4020 : LoopPass(ID), TLI(tli) { 4021 initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry()); 4022 } 4023 4024 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const { 4025 // We split critical edges, so we change the CFG. However, we do update 4026 // many analyses if they are around. 4027 AU.addPreservedID(LoopSimplifyID); 4028 4029 AU.addRequired<LoopInfo>(); 4030 AU.addPreserved<LoopInfo>(); 4031 AU.addRequiredID(LoopSimplifyID); 4032 AU.addRequired<DominatorTree>(); 4033 AU.addPreserved<DominatorTree>(); 4034 AU.addRequired<ScalarEvolution>(); 4035 AU.addPreserved<ScalarEvolution>(); 4036 // Requiring LoopSimplify a second time here prevents IVUsers from running 4037 // twice, since LoopSimplify was invalidated by running ScalarEvolution. 4038 AU.addRequiredID(LoopSimplifyID); 4039 AU.addRequired<IVUsers>(); 4040 AU.addPreserved<IVUsers>(); 4041 } 4042 4043 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) { 4044 bool Changed = false; 4045 4046 // Run the main LSR transformation. 4047 Changed |= LSRInstance(TLI, L, this).getChanged(); 4048 4049 // At this point, it is worth checking to see if any recurrence PHIs are also 4050 // dead, so that we can remove them as well. 4051 Changed |= DeleteDeadPHIs(L->getHeader()); 4052 4053 return Changed; 4054 } 4055