1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This transformation analyzes and transforms the induction variables (and 11 // computations derived from them) into forms suitable for efficient execution 12 // on the target. 13 // 14 // This pass performs a strength reduction on array references inside loops that 15 // have as one or more of their components the loop induction variable, it 16 // rewrites expressions to take advantage of scaled-index addressing modes 17 // available on the target, and it performs a variety of other optimizations 18 // related to loop induction variables. 19 // 20 // Terminology note: this code has a lot of handling for "post-increment" or 21 // "post-inc" users. This is not talking about post-increment addressing modes; 22 // it is instead talking about code like this: 23 // 24 // %i = phi [ 0, %entry ], [ %i.next, %latch ] 25 // ... 26 // %i.next = add %i, 1 27 // %c = icmp eq %i.next, %n 28 // 29 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however 30 // it's useful to think about these as the same register, with some uses using 31 // the value of the register before the add and some using it after. In this 32 // example, the icmp is a post-increment user, since it uses %i.next, which is 33 // the value of the induction variable after the increment. The other common 34 // case of post-increment users is users outside the loop. 35 // 36 // TODO: More sophistication in the way Formulae are generated and filtered. 37 // 38 // TODO: Handle multiple loops at a time. 39 // 40 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead 41 // of a GlobalValue? 42 // 43 // TODO: When truncation is free, truncate ICmp users' operands to make it a 44 // smaller encoding (on x86 at least). 45 // 46 // TODO: When a negated register is used by an add (such as in a list of 47 // multiple base registers, or as the increment expression in an addrec), 48 // we may not actually need both reg and (-1 * reg) in registers; the 49 // negation can be implemented by using a sub instead of an add. The 50 // lack of support for taking this into consideration when making 51 // register pressure decisions is partly worked around by the "Special" 52 // use kind. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h" 57 #include "llvm/ADT/APInt.h" 58 #include "llvm/ADT/DenseMap.h" 59 #include "llvm/ADT/DenseSet.h" 60 #include "llvm/ADT/Hashing.h" 61 #include "llvm/ADT/PointerIntPair.h" 62 #include "llvm/ADT/STLExtras.h" 63 #include "llvm/ADT/SetVector.h" 64 #include "llvm/ADT/SmallBitVector.h" 65 #include "llvm/ADT/SmallPtrSet.h" 66 #include "llvm/ADT/SmallSet.h" 67 #include "llvm/ADT/SmallVector.h" 68 #include "llvm/Analysis/IVUsers.h" 69 #include "llvm/Analysis/LoopInfo.h" 70 #include "llvm/Analysis/LoopPass.h" 71 #include "llvm/Analysis/ScalarEvolution.h" 72 #include "llvm/Analysis/ScalarEvolutionExpander.h" 73 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 74 #include "llvm/Analysis/ScalarEvolutionNormalization.h" 75 #include "llvm/Analysis/TargetTransformInfo.h" 76 #include "llvm/IR/BasicBlock.h" 77 #include "llvm/IR/Constant.h" 78 #include "llvm/IR/Constants.h" 79 #include "llvm/IR/DerivedTypes.h" 80 #include "llvm/IR/Dominators.h" 81 #include "llvm/IR/GlobalValue.h" 82 #include "llvm/IR/IRBuilder.h" 83 #include "llvm/IR/Instruction.h" 84 #include "llvm/IR/Instructions.h" 85 #include "llvm/IR/IntrinsicInst.h" 86 #include "llvm/IR/Module.h" 87 #include "llvm/IR/OperandTraits.h" 88 #include "llvm/IR/Operator.h" 89 #include "llvm/IR/Type.h" 90 #include "llvm/IR/Value.h" 91 #include "llvm/IR/ValueHandle.h" 92 #include "llvm/Pass.h" 93 #include "llvm/Support/Casting.h" 94 #include "llvm/Support/CommandLine.h" 95 #include "llvm/Support/Compiler.h" 96 #include "llvm/Support/Debug.h" 97 #include "llvm/Support/ErrorHandling.h" 98 #include "llvm/Support/MathExtras.h" 99 #include "llvm/Support/raw_ostream.h" 100 #include "llvm/Transforms/Scalar.h" 101 #include "llvm/Transforms/Scalar/LoopPassManager.h" 102 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 103 #include "llvm/Transforms/Utils/Local.h" 104 #include <algorithm> 105 #include <cassert> 106 #include <cstddef> 107 #include <cstdint> 108 #include <cstdlib> 109 #include <iterator> 110 #include <map> 111 #include <tuple> 112 #include <utility> 113 114 using namespace llvm; 115 116 #define DEBUG_TYPE "loop-reduce" 117 118 /// MaxIVUsers is an arbitrary threshold that provides an early opportunitiy for 119 /// bail out. This threshold is far beyond the number of users that LSR can 120 /// conceivably solve, so it should not affect generated code, but catches the 121 /// worst cases before LSR burns too much compile time and stack space. 122 static const unsigned MaxIVUsers = 200; 123 124 // Temporary flag to cleanup congruent phis after LSR phi expansion. 125 // It's currently disabled until we can determine whether it's truly useful or 126 // not. The flag should be removed after the v3.0 release. 127 // This is now needed for ivchains. 128 static cl::opt<bool> EnablePhiElim( 129 "enable-lsr-phielim", cl::Hidden, cl::init(true), 130 cl::desc("Enable LSR phi elimination")); 131 132 // The flag adds instruction count to solutions cost comparision. 133 static cl::opt<bool> InsnsCost( 134 "lsr-insns-cost", cl::Hidden, cl::init(true), 135 cl::desc("Add instruction count to a LSR cost model")); 136 137 // Flag to choose how to narrow complex lsr solution 138 static cl::opt<bool> LSRExpNarrow( 139 "lsr-exp-narrow", cl::Hidden, cl::init(false), 140 cl::desc("Narrow LSR complex solution using" 141 " expectation of registers number")); 142 143 // Flag to narrow search space by filtering non-optimal formulae with 144 // the same ScaledReg and Scale. 145 static cl::opt<bool> FilterSameScaledReg( 146 "lsr-filter-same-scaled-reg", cl::Hidden, cl::init(true), 147 cl::desc("Narrow LSR search space by filtering non-optimal formulae" 148 " with the same ScaledReg and Scale")); 149 150 #ifndef NDEBUG 151 // Stress test IV chain generation. 152 static cl::opt<bool> StressIVChain( 153 "stress-ivchain", cl::Hidden, cl::init(false), 154 cl::desc("Stress test LSR IV chains")); 155 #else 156 static bool StressIVChain = false; 157 #endif 158 159 namespace { 160 161 struct MemAccessTy { 162 /// Used in situations where the accessed memory type is unknown. 163 static const unsigned UnknownAddressSpace = ~0u; 164 165 Type *MemTy; 166 unsigned AddrSpace; 167 168 MemAccessTy() : MemTy(nullptr), AddrSpace(UnknownAddressSpace) {} 169 170 MemAccessTy(Type *Ty, unsigned AS) : 171 MemTy(Ty), AddrSpace(AS) {} 172 173 bool operator==(MemAccessTy Other) const { 174 return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace; 175 } 176 177 bool operator!=(MemAccessTy Other) const { return !(*this == Other); } 178 179 static MemAccessTy getUnknown(LLVMContext &Ctx, 180 unsigned AS = UnknownAddressSpace) { 181 return MemAccessTy(Type::getVoidTy(Ctx), AS); 182 } 183 }; 184 185 /// This class holds data which is used to order reuse candidates. 186 class RegSortData { 187 public: 188 /// This represents the set of LSRUse indices which reference 189 /// a particular register. 190 SmallBitVector UsedByIndices; 191 192 void print(raw_ostream &OS) const; 193 void dump() const; 194 }; 195 196 } // end anonymous namespace 197 198 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 199 void RegSortData::print(raw_ostream &OS) const { 200 OS << "[NumUses=" << UsedByIndices.count() << ']'; 201 } 202 203 LLVM_DUMP_METHOD void RegSortData::dump() const { 204 print(errs()); errs() << '\n'; 205 } 206 #endif 207 208 namespace { 209 210 /// Map register candidates to information about how they are used. 211 class RegUseTracker { 212 typedef DenseMap<const SCEV *, RegSortData> RegUsesTy; 213 214 RegUsesTy RegUsesMap; 215 SmallVector<const SCEV *, 16> RegSequence; 216 217 public: 218 void countRegister(const SCEV *Reg, size_t LUIdx); 219 void dropRegister(const SCEV *Reg, size_t LUIdx); 220 void swapAndDropUse(size_t LUIdx, size_t LastLUIdx); 221 222 bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const; 223 224 const SmallBitVector &getUsedByIndices(const SCEV *Reg) const; 225 226 void clear(); 227 228 typedef SmallVectorImpl<const SCEV *>::iterator iterator; 229 typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator; 230 iterator begin() { return RegSequence.begin(); } 231 iterator end() { return RegSequence.end(); } 232 const_iterator begin() const { return RegSequence.begin(); } 233 const_iterator end() const { return RegSequence.end(); } 234 }; 235 236 } // end anonymous namespace 237 238 void 239 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) { 240 std::pair<RegUsesTy::iterator, bool> Pair = 241 RegUsesMap.insert(std::make_pair(Reg, RegSortData())); 242 RegSortData &RSD = Pair.first->second; 243 if (Pair.second) 244 RegSequence.push_back(Reg); 245 RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1)); 246 RSD.UsedByIndices.set(LUIdx); 247 } 248 249 void 250 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) { 251 RegUsesTy::iterator It = RegUsesMap.find(Reg); 252 assert(It != RegUsesMap.end()); 253 RegSortData &RSD = It->second; 254 assert(RSD.UsedByIndices.size() > LUIdx); 255 RSD.UsedByIndices.reset(LUIdx); 256 } 257 258 void 259 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) { 260 assert(LUIdx <= LastLUIdx); 261 262 // Update RegUses. The data structure is not optimized for this purpose; 263 // we must iterate through it and update each of the bit vectors. 264 for (auto &Pair : RegUsesMap) { 265 SmallBitVector &UsedByIndices = Pair.second.UsedByIndices; 266 if (LUIdx < UsedByIndices.size()) 267 UsedByIndices[LUIdx] = 268 LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false; 269 UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx)); 270 } 271 } 272 273 bool 274 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const { 275 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 276 if (I == RegUsesMap.end()) 277 return false; 278 const SmallBitVector &UsedByIndices = I->second.UsedByIndices; 279 int i = UsedByIndices.find_first(); 280 if (i == -1) return false; 281 if ((size_t)i != LUIdx) return true; 282 return UsedByIndices.find_next(i) != -1; 283 } 284 285 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const { 286 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 287 assert(I != RegUsesMap.end() && "Unknown register!"); 288 return I->second.UsedByIndices; 289 } 290 291 void RegUseTracker::clear() { 292 RegUsesMap.clear(); 293 RegSequence.clear(); 294 } 295 296 namespace { 297 298 /// This class holds information that describes a formula for computing 299 /// satisfying a use. It may include broken-out immediates and scaled registers. 300 struct Formula { 301 /// Global base address used for complex addressing. 302 GlobalValue *BaseGV; 303 304 /// Base offset for complex addressing. 305 int64_t BaseOffset; 306 307 /// Whether any complex addressing has a base register. 308 bool HasBaseReg; 309 310 /// The scale of any complex addressing. 311 int64_t Scale; 312 313 /// The list of "base" registers for this use. When this is non-empty. The 314 /// canonical representation of a formula is 315 /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and 316 /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty(). 317 /// 3. The reg containing recurrent expr related with currect loop in the 318 /// formula should be put in the ScaledReg. 319 /// #1 enforces that the scaled register is always used when at least two 320 /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2. 321 /// #2 enforces that 1 * reg is reg. 322 /// #3 ensures invariant regs with respect to current loop can be combined 323 /// together in LSR codegen. 324 /// This invariant can be temporarly broken while building a formula. 325 /// However, every formula inserted into the LSRInstance must be in canonical 326 /// form. 327 SmallVector<const SCEV *, 4> BaseRegs; 328 329 /// The 'scaled' register for this use. This should be non-null when Scale is 330 /// not zero. 331 const SCEV *ScaledReg; 332 333 /// An additional constant offset which added near the use. This requires a 334 /// temporary register, but the offset itself can live in an add immediate 335 /// field rather than a register. 336 int64_t UnfoldedOffset; 337 338 Formula() 339 : BaseGV(nullptr), BaseOffset(0), HasBaseReg(false), Scale(0), 340 ScaledReg(nullptr), UnfoldedOffset(0) {} 341 342 void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE); 343 344 bool isCanonical(const Loop &L) const; 345 346 void canonicalize(const Loop &L); 347 348 bool unscale(); 349 350 bool hasZeroEnd() const; 351 352 size_t getNumRegs() const; 353 Type *getType() const; 354 355 void deleteBaseReg(const SCEV *&S); 356 357 bool referencesReg(const SCEV *S) const; 358 bool hasRegsUsedByUsesOtherThan(size_t LUIdx, 359 const RegUseTracker &RegUses) const; 360 361 void print(raw_ostream &OS) const; 362 void dump() const; 363 }; 364 365 } // end anonymous namespace 366 367 /// Recursion helper for initialMatch. 368 static void DoInitialMatch(const SCEV *S, Loop *L, 369 SmallVectorImpl<const SCEV *> &Good, 370 SmallVectorImpl<const SCEV *> &Bad, 371 ScalarEvolution &SE) { 372 // Collect expressions which properly dominate the loop header. 373 if (SE.properlyDominates(S, L->getHeader())) { 374 Good.push_back(S); 375 return; 376 } 377 378 // Look at add operands. 379 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 380 for (const SCEV *S : Add->operands()) 381 DoInitialMatch(S, L, Good, Bad, SE); 382 return; 383 } 384 385 // Look at addrec operands. 386 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 387 if (!AR->getStart()->isZero() && AR->isAffine()) { 388 DoInitialMatch(AR->getStart(), L, Good, Bad, SE); 389 DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0), 390 AR->getStepRecurrence(SE), 391 // FIXME: AR->getNoWrapFlags() 392 AR->getLoop(), SCEV::FlagAnyWrap), 393 L, Good, Bad, SE); 394 return; 395 } 396 397 // Handle a multiplication by -1 (negation) if it didn't fold. 398 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) 399 if (Mul->getOperand(0)->isAllOnesValue()) { 400 SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end()); 401 const SCEV *NewMul = SE.getMulExpr(Ops); 402 403 SmallVector<const SCEV *, 4> MyGood; 404 SmallVector<const SCEV *, 4> MyBad; 405 DoInitialMatch(NewMul, L, MyGood, MyBad, SE); 406 const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue( 407 SE.getEffectiveSCEVType(NewMul->getType()))); 408 for (const SCEV *S : MyGood) 409 Good.push_back(SE.getMulExpr(NegOne, S)); 410 for (const SCEV *S : MyBad) 411 Bad.push_back(SE.getMulExpr(NegOne, S)); 412 return; 413 } 414 415 // Ok, we can't do anything interesting. Just stuff the whole thing into a 416 // register and hope for the best. 417 Bad.push_back(S); 418 } 419 420 /// Incorporate loop-variant parts of S into this Formula, attempting to keep 421 /// all loop-invariant and loop-computable values in a single base register. 422 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) { 423 SmallVector<const SCEV *, 4> Good; 424 SmallVector<const SCEV *, 4> Bad; 425 DoInitialMatch(S, L, Good, Bad, SE); 426 if (!Good.empty()) { 427 const SCEV *Sum = SE.getAddExpr(Good); 428 if (!Sum->isZero()) 429 BaseRegs.push_back(Sum); 430 HasBaseReg = true; 431 } 432 if (!Bad.empty()) { 433 const SCEV *Sum = SE.getAddExpr(Bad); 434 if (!Sum->isZero()) 435 BaseRegs.push_back(Sum); 436 HasBaseReg = true; 437 } 438 canonicalize(*L); 439 } 440 441 /// \brief Check whether or not this formula statisfies the canonical 442 /// representation. 443 /// \see Formula::BaseRegs. 444 bool Formula::isCanonical(const Loop &L) const { 445 if (!ScaledReg) 446 return BaseRegs.size() <= 1; 447 448 if (Scale != 1) 449 return true; 450 451 if (Scale == 1 && BaseRegs.empty()) 452 return false; 453 454 const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg); 455 if (SAR && SAR->getLoop() == &L) 456 return true; 457 458 // If ScaledReg is not a recurrent expr, or it is but its loop is not current 459 // loop, meanwhile BaseRegs contains a recurrent expr reg related with current 460 // loop, we want to swap the reg in BaseRegs with ScaledReg. 461 auto I = 462 find_if(make_range(BaseRegs.begin(), BaseRegs.end()), [&](const SCEV *S) { 463 return isa<const SCEVAddRecExpr>(S) && 464 (cast<SCEVAddRecExpr>(S)->getLoop() == &L); 465 }); 466 return I == BaseRegs.end(); 467 } 468 469 /// \brief Helper method to morph a formula into its canonical representation. 470 /// \see Formula::BaseRegs. 471 /// Every formula having more than one base register, must use the ScaledReg 472 /// field. Otherwise, we would have to do special cases everywhere in LSR 473 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ... 474 /// On the other hand, 1*reg should be canonicalized into reg. 475 void Formula::canonicalize(const Loop &L) { 476 if (isCanonical(L)) 477 return; 478 // So far we did not need this case. This is easy to implement but it is 479 // useless to maintain dead code. Beside it could hurt compile time. 480 assert(!BaseRegs.empty() && "1*reg => reg, should not be needed."); 481 482 // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg. 483 if (!ScaledReg) { 484 ScaledReg = BaseRegs.back(); 485 BaseRegs.pop_back(); 486 Scale = 1; 487 } 488 489 // If ScaledReg is an invariant with respect to L, find the reg from 490 // BaseRegs containing the recurrent expr related with Loop L. Swap the 491 // reg with ScaledReg. 492 const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg); 493 if (!SAR || SAR->getLoop() != &L) { 494 auto I = find_if(make_range(BaseRegs.begin(), BaseRegs.end()), 495 [&](const SCEV *S) { 496 return isa<const SCEVAddRecExpr>(S) && 497 (cast<SCEVAddRecExpr>(S)->getLoop() == &L); 498 }); 499 if (I != BaseRegs.end()) 500 std::swap(ScaledReg, *I); 501 } 502 } 503 504 /// \brief Get rid of the scale in the formula. 505 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2. 506 /// \return true if it was possible to get rid of the scale, false otherwise. 507 /// \note After this operation the formula may not be in the canonical form. 508 bool Formula::unscale() { 509 if (Scale != 1) 510 return false; 511 Scale = 0; 512 BaseRegs.push_back(ScaledReg); 513 ScaledReg = nullptr; 514 return true; 515 } 516 517 bool Formula::hasZeroEnd() const { 518 if (UnfoldedOffset || BaseOffset) 519 return false; 520 if (BaseRegs.size() != 1 || ScaledReg) 521 return false; 522 return true; 523 } 524 525 /// Return the total number of register operands used by this formula. This does 526 /// not include register uses implied by non-constant addrec strides. 527 size_t Formula::getNumRegs() const { 528 return !!ScaledReg + BaseRegs.size(); 529 } 530 531 /// Return the type of this formula, if it has one, or null otherwise. This type 532 /// is meaningless except for the bit size. 533 Type *Formula::getType() const { 534 return !BaseRegs.empty() ? BaseRegs.front()->getType() : 535 ScaledReg ? ScaledReg->getType() : 536 BaseGV ? BaseGV->getType() : 537 nullptr; 538 } 539 540 /// Delete the given base reg from the BaseRegs list. 541 void Formula::deleteBaseReg(const SCEV *&S) { 542 if (&S != &BaseRegs.back()) 543 std::swap(S, BaseRegs.back()); 544 BaseRegs.pop_back(); 545 } 546 547 /// Test if this formula references the given register. 548 bool Formula::referencesReg(const SCEV *S) const { 549 return S == ScaledReg || is_contained(BaseRegs, S); 550 } 551 552 /// Test whether this formula uses registers which are used by uses other than 553 /// the use with the given index. 554 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx, 555 const RegUseTracker &RegUses) const { 556 if (ScaledReg) 557 if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx)) 558 return true; 559 for (const SCEV *BaseReg : BaseRegs) 560 if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx)) 561 return true; 562 return false; 563 } 564 565 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 566 void Formula::print(raw_ostream &OS) const { 567 bool First = true; 568 if (BaseGV) { 569 if (!First) OS << " + "; else First = false; 570 BaseGV->printAsOperand(OS, /*PrintType=*/false); 571 } 572 if (BaseOffset != 0) { 573 if (!First) OS << " + "; else First = false; 574 OS << BaseOffset; 575 } 576 for (const SCEV *BaseReg : BaseRegs) { 577 if (!First) OS << " + "; else First = false; 578 OS << "reg(" << *BaseReg << ')'; 579 } 580 if (HasBaseReg && BaseRegs.empty()) { 581 if (!First) OS << " + "; else First = false; 582 OS << "**error: HasBaseReg**"; 583 } else if (!HasBaseReg && !BaseRegs.empty()) { 584 if (!First) OS << " + "; else First = false; 585 OS << "**error: !HasBaseReg**"; 586 } 587 if (Scale != 0) { 588 if (!First) OS << " + "; else First = false; 589 OS << Scale << "*reg("; 590 if (ScaledReg) 591 OS << *ScaledReg; 592 else 593 OS << "<unknown>"; 594 OS << ')'; 595 } 596 if (UnfoldedOffset != 0) { 597 if (!First) OS << " + "; 598 OS << "imm(" << UnfoldedOffset << ')'; 599 } 600 } 601 602 LLVM_DUMP_METHOD void Formula::dump() const { 603 print(errs()); errs() << '\n'; 604 } 605 #endif 606 607 /// Return true if the given addrec can be sign-extended without changing its 608 /// value. 609 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 610 Type *WideTy = 611 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1); 612 return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy)); 613 } 614 615 /// Return true if the given add can be sign-extended without changing its 616 /// value. 617 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) { 618 Type *WideTy = 619 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1); 620 return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy)); 621 } 622 623 /// Return true if the given mul can be sign-extended without changing its 624 /// value. 625 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) { 626 Type *WideTy = 627 IntegerType::get(SE.getContext(), 628 SE.getTypeSizeInBits(M->getType()) * M->getNumOperands()); 629 return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy)); 630 } 631 632 /// Return an expression for LHS /s RHS, if it can be determined and if the 633 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits 634 /// is true, expressions like (X * Y) /s Y are simplified to Y, ignoring that 635 /// the multiplication may overflow, which is useful when the result will be 636 /// used in a context where the most significant bits are ignored. 637 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS, 638 ScalarEvolution &SE, 639 bool IgnoreSignificantBits = false) { 640 // Handle the trivial case, which works for any SCEV type. 641 if (LHS == RHS) 642 return SE.getConstant(LHS->getType(), 1); 643 644 // Handle a few RHS special cases. 645 const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS); 646 if (RC) { 647 const APInt &RA = RC->getAPInt(); 648 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do 649 // some folding. 650 if (RA.isAllOnesValue()) 651 return SE.getMulExpr(LHS, RC); 652 // Handle x /s 1 as x. 653 if (RA == 1) 654 return LHS; 655 } 656 657 // Check for a division of a constant by a constant. 658 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) { 659 if (!RC) 660 return nullptr; 661 const APInt &LA = C->getAPInt(); 662 const APInt &RA = RC->getAPInt(); 663 if (LA.srem(RA) != 0) 664 return nullptr; 665 return SE.getConstant(LA.sdiv(RA)); 666 } 667 668 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow. 669 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) { 670 if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) { 671 const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE, 672 IgnoreSignificantBits); 673 if (!Step) return nullptr; 674 const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE, 675 IgnoreSignificantBits); 676 if (!Start) return nullptr; 677 // FlagNW is independent of the start value, step direction, and is 678 // preserved with smaller magnitude steps. 679 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 680 return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap); 681 } 682 return nullptr; 683 } 684 685 // Distribute the sdiv over add operands, if the add doesn't overflow. 686 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) { 687 if (IgnoreSignificantBits || isAddSExtable(Add, SE)) { 688 SmallVector<const SCEV *, 8> Ops; 689 for (const SCEV *S : Add->operands()) { 690 const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits); 691 if (!Op) return nullptr; 692 Ops.push_back(Op); 693 } 694 return SE.getAddExpr(Ops); 695 } 696 return nullptr; 697 } 698 699 // Check for a multiply operand that we can pull RHS out of. 700 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) { 701 if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) { 702 SmallVector<const SCEV *, 4> Ops; 703 bool Found = false; 704 for (const SCEV *S : Mul->operands()) { 705 if (!Found) 706 if (const SCEV *Q = getExactSDiv(S, RHS, SE, 707 IgnoreSignificantBits)) { 708 S = Q; 709 Found = true; 710 } 711 Ops.push_back(S); 712 } 713 return Found ? SE.getMulExpr(Ops) : nullptr; 714 } 715 return nullptr; 716 } 717 718 // Otherwise we don't know. 719 return nullptr; 720 } 721 722 /// If S involves the addition of a constant integer value, return that integer 723 /// value, and mutate S to point to a new SCEV with that value excluded. 724 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) { 725 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 726 if (C->getAPInt().getMinSignedBits() <= 64) { 727 S = SE.getConstant(C->getType(), 0); 728 return C->getValue()->getSExtValue(); 729 } 730 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 731 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 732 int64_t Result = ExtractImmediate(NewOps.front(), SE); 733 if (Result != 0) 734 S = SE.getAddExpr(NewOps); 735 return Result; 736 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 737 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 738 int64_t Result = ExtractImmediate(NewOps.front(), SE); 739 if (Result != 0) 740 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 741 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 742 SCEV::FlagAnyWrap); 743 return Result; 744 } 745 return 0; 746 } 747 748 /// If S involves the addition of a GlobalValue address, return that symbol, and 749 /// mutate S to point to a new SCEV with that value excluded. 750 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) { 751 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 752 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) { 753 S = SE.getConstant(GV->getType(), 0); 754 return GV; 755 } 756 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 757 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 758 GlobalValue *Result = ExtractSymbol(NewOps.back(), SE); 759 if (Result) 760 S = SE.getAddExpr(NewOps); 761 return Result; 762 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 763 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 764 GlobalValue *Result = ExtractSymbol(NewOps.front(), SE); 765 if (Result) 766 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 767 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 768 SCEV::FlagAnyWrap); 769 return Result; 770 } 771 return nullptr; 772 } 773 774 /// Returns true if the specified instruction is using the specified value as an 775 /// address. 776 static bool isAddressUse(Instruction *Inst, Value *OperandVal) { 777 bool isAddress = isa<LoadInst>(Inst); 778 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 779 if (SI->getPointerOperand() == OperandVal) 780 isAddress = true; 781 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 782 // Addressing modes can also be folded into prefetches and a variety 783 // of intrinsics. 784 switch (II->getIntrinsicID()) { 785 default: break; 786 case Intrinsic::memset: 787 case Intrinsic::prefetch: 788 if (II->getArgOperand(0) == OperandVal) 789 isAddress = true; 790 break; 791 case Intrinsic::memmove: 792 case Intrinsic::memcpy: 793 if (II->getArgOperand(0) == OperandVal || 794 II->getArgOperand(1) == OperandVal) 795 isAddress = true; 796 break; 797 } 798 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) { 799 if (RMW->getPointerOperand() == OperandVal) 800 isAddress = true; 801 } else if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 802 if (CmpX->getPointerOperand() == OperandVal) 803 isAddress = true; 804 } 805 return isAddress; 806 } 807 808 /// Return the type of the memory being accessed. 809 static MemAccessTy getAccessType(const Instruction *Inst) { 810 MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace); 811 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 812 AccessTy.MemTy = SI->getOperand(0)->getType(); 813 AccessTy.AddrSpace = SI->getPointerAddressSpace(); 814 } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 815 AccessTy.AddrSpace = LI->getPointerAddressSpace(); 816 } else if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) { 817 AccessTy.AddrSpace = RMW->getPointerAddressSpace(); 818 } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 819 AccessTy.AddrSpace = CmpX->getPointerAddressSpace(); 820 } 821 822 // All pointers have the same requirements, so canonicalize them to an 823 // arbitrary pointer type to minimize variation. 824 if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy)) 825 AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1), 826 PTy->getAddressSpace()); 827 828 return AccessTy; 829 } 830 831 /// Return true if this AddRec is already a phi in its loop. 832 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 833 for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin(); 834 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 835 if (SE.isSCEVable(PN->getType()) && 836 (SE.getEffectiveSCEVType(PN->getType()) == 837 SE.getEffectiveSCEVType(AR->getType())) && 838 SE.getSCEV(PN) == AR) 839 return true; 840 } 841 return false; 842 } 843 844 /// Check if expanding this expression is likely to incur significant cost. This 845 /// is tricky because SCEV doesn't track which expressions are actually computed 846 /// by the current IR. 847 /// 848 /// We currently allow expansion of IV increments that involve adds, 849 /// multiplication by constants, and AddRecs from existing phis. 850 /// 851 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an 852 /// obvious multiple of the UDivExpr. 853 static bool isHighCostExpansion(const SCEV *S, 854 SmallPtrSetImpl<const SCEV*> &Processed, 855 ScalarEvolution &SE) { 856 // Zero/One operand expressions 857 switch (S->getSCEVType()) { 858 case scUnknown: 859 case scConstant: 860 return false; 861 case scTruncate: 862 return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(), 863 Processed, SE); 864 case scZeroExtend: 865 return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(), 866 Processed, SE); 867 case scSignExtend: 868 return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(), 869 Processed, SE); 870 } 871 872 if (!Processed.insert(S).second) 873 return false; 874 875 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 876 for (const SCEV *S : Add->operands()) { 877 if (isHighCostExpansion(S, Processed, SE)) 878 return true; 879 } 880 return false; 881 } 882 883 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 884 if (Mul->getNumOperands() == 2) { 885 // Multiplication by a constant is ok 886 if (isa<SCEVConstant>(Mul->getOperand(0))) 887 return isHighCostExpansion(Mul->getOperand(1), Processed, SE); 888 889 // If we have the value of one operand, check if an existing 890 // multiplication already generates this expression. 891 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) { 892 Value *UVal = U->getValue(); 893 for (User *UR : UVal->users()) { 894 // If U is a constant, it may be used by a ConstantExpr. 895 Instruction *UI = dyn_cast<Instruction>(UR); 896 if (UI && UI->getOpcode() == Instruction::Mul && 897 SE.isSCEVable(UI->getType())) { 898 return SE.getSCEV(UI) == Mul; 899 } 900 } 901 } 902 } 903 } 904 905 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 906 if (isExistingPhi(AR, SE)) 907 return false; 908 } 909 910 // Fow now, consider any other type of expression (div/mul/min/max) high cost. 911 return true; 912 } 913 914 /// If any of the instructions is the specified set are trivially dead, delete 915 /// them and see if this makes any of their operands subsequently dead. 916 static bool 917 DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 918 bool Changed = false; 919 920 while (!DeadInsts.empty()) { 921 Value *V = DeadInsts.pop_back_val(); 922 Instruction *I = dyn_cast_or_null<Instruction>(V); 923 924 if (!I || !isInstructionTriviallyDead(I)) 925 continue; 926 927 for (Use &O : I->operands()) 928 if (Instruction *U = dyn_cast<Instruction>(O)) { 929 O = nullptr; 930 if (U->use_empty()) 931 DeadInsts.emplace_back(U); 932 } 933 934 I->eraseFromParent(); 935 Changed = true; 936 } 937 938 return Changed; 939 } 940 941 namespace { 942 943 class LSRUse; 944 945 } // end anonymous namespace 946 947 /// \brief Check if the addressing mode defined by \p F is completely 948 /// folded in \p LU at isel time. 949 /// This includes address-mode folding and special icmp tricks. 950 /// This function returns true if \p LU can accommodate what \p F 951 /// defines and up to 1 base + 1 scaled + offset. 952 /// In other words, if \p F has several base registers, this function may 953 /// still return true. Therefore, users still need to account for 954 /// additional base registers and/or unfolded offsets to derive an 955 /// accurate cost model. 956 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 957 const LSRUse &LU, const Formula &F); 958 // Get the cost of the scaling factor used in F for LU. 959 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, 960 const LSRUse &LU, const Formula &F, 961 const Loop &L); 962 963 namespace { 964 965 /// This class is used to measure and compare candidate formulae. 966 class Cost { 967 TargetTransformInfo::LSRCost C; 968 969 public: 970 Cost() { 971 C.Insns = 0; 972 C.NumRegs = 0; 973 C.AddRecCost = 0; 974 C.NumIVMuls = 0; 975 C.NumBaseAdds = 0; 976 C.ImmCost = 0; 977 C.SetupCost = 0; 978 C.ScaleCost = 0; 979 } 980 981 bool isLess(Cost &Other, const TargetTransformInfo &TTI); 982 983 void Lose(); 984 985 #ifndef NDEBUG 986 // Once any of the metrics loses, they must all remain losers. 987 bool isValid() { 988 return ((C.Insns | C.NumRegs | C.AddRecCost | C.NumIVMuls | C.NumBaseAdds 989 | C.ImmCost | C.SetupCost | C.ScaleCost) != ~0u) 990 || ((C.Insns & C.NumRegs & C.AddRecCost & C.NumIVMuls & C.NumBaseAdds 991 & C.ImmCost & C.SetupCost & C.ScaleCost) == ~0u); 992 } 993 #endif 994 995 bool isLoser() { 996 assert(isValid() && "invalid cost"); 997 return C.NumRegs == ~0u; 998 } 999 1000 void RateFormula(const TargetTransformInfo &TTI, 1001 const Formula &F, 1002 SmallPtrSetImpl<const SCEV *> &Regs, 1003 const DenseSet<const SCEV *> &VisitedRegs, 1004 const Loop *L, 1005 ScalarEvolution &SE, DominatorTree &DT, 1006 const LSRUse &LU, 1007 SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr); 1008 1009 void print(raw_ostream &OS) const; 1010 void dump() const; 1011 1012 private: 1013 void RateRegister(const SCEV *Reg, 1014 SmallPtrSetImpl<const SCEV *> &Regs, 1015 const Loop *L, 1016 ScalarEvolution &SE, DominatorTree &DT); 1017 void RatePrimaryRegister(const SCEV *Reg, 1018 SmallPtrSetImpl<const SCEV *> &Regs, 1019 const Loop *L, 1020 ScalarEvolution &SE, DominatorTree &DT, 1021 SmallPtrSetImpl<const SCEV *> *LoserRegs); 1022 }; 1023 1024 /// An operand value in an instruction which is to be replaced with some 1025 /// equivalent, possibly strength-reduced, replacement. 1026 struct LSRFixup { 1027 /// The instruction which will be updated. 1028 Instruction *UserInst; 1029 1030 /// The operand of the instruction which will be replaced. The operand may be 1031 /// used more than once; every instance will be replaced. 1032 Value *OperandValToReplace; 1033 1034 /// If this user is to use the post-incremented value of an induction 1035 /// variable, this variable is non-null and holds the loop associated with the 1036 /// induction variable. 1037 PostIncLoopSet PostIncLoops; 1038 1039 /// A constant offset to be added to the LSRUse expression. This allows 1040 /// multiple fixups to share the same LSRUse with different offsets, for 1041 /// example in an unrolled loop. 1042 int64_t Offset; 1043 1044 bool isUseFullyOutsideLoop(const Loop *L) const; 1045 1046 LSRFixup(); 1047 1048 void print(raw_ostream &OS) const; 1049 void dump() const; 1050 }; 1051 1052 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted 1053 /// SmallVectors of const SCEV*. 1054 struct UniquifierDenseMapInfo { 1055 static SmallVector<const SCEV *, 4> getEmptyKey() { 1056 SmallVector<const SCEV *, 4> V; 1057 V.push_back(reinterpret_cast<const SCEV *>(-1)); 1058 return V; 1059 } 1060 1061 static SmallVector<const SCEV *, 4> getTombstoneKey() { 1062 SmallVector<const SCEV *, 4> V; 1063 V.push_back(reinterpret_cast<const SCEV *>(-2)); 1064 return V; 1065 } 1066 1067 static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) { 1068 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 1069 } 1070 1071 static bool isEqual(const SmallVector<const SCEV *, 4> &LHS, 1072 const SmallVector<const SCEV *, 4> &RHS) { 1073 return LHS == RHS; 1074 } 1075 }; 1076 1077 /// This class holds the state that LSR keeps for each use in IVUsers, as well 1078 /// as uses invented by LSR itself. It includes information about what kinds of 1079 /// things can be folded into the user, information about the user itself, and 1080 /// information about how the use may be satisfied. TODO: Represent multiple 1081 /// users of the same expression in common? 1082 class LSRUse { 1083 DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier; 1084 1085 public: 1086 /// An enum for a kind of use, indicating what types of scaled and immediate 1087 /// operands it might support. 1088 enum KindType { 1089 Basic, ///< A normal use, with no folding. 1090 Special, ///< A special case of basic, allowing -1 scales. 1091 Address, ///< An address use; folding according to TargetLowering 1092 ICmpZero ///< An equality icmp with both operands folded into one. 1093 // TODO: Add a generic icmp too? 1094 }; 1095 1096 typedef PointerIntPair<const SCEV *, 2, KindType> SCEVUseKindPair; 1097 1098 KindType Kind; 1099 MemAccessTy AccessTy; 1100 1101 /// The list of operands which are to be replaced. 1102 SmallVector<LSRFixup, 8> Fixups; 1103 1104 /// Keep track of the min and max offsets of the fixups. 1105 int64_t MinOffset; 1106 int64_t MaxOffset; 1107 1108 /// This records whether all of the fixups using this LSRUse are outside of 1109 /// the loop, in which case some special-case heuristics may be used. 1110 bool AllFixupsOutsideLoop; 1111 1112 /// RigidFormula is set to true to guarantee that this use will be associated 1113 /// with a single formula--the one that initially matched. Some SCEV 1114 /// expressions cannot be expanded. This allows LSR to consider the registers 1115 /// used by those expressions without the need to expand them later after 1116 /// changing the formula. 1117 bool RigidFormula; 1118 1119 /// This records the widest use type for any fixup using this 1120 /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max 1121 /// fixup widths to be equivalent, because the narrower one may be relying on 1122 /// the implicit truncation to truncate away bogus bits. 1123 Type *WidestFixupType; 1124 1125 /// A list of ways to build a value that can satisfy this user. After the 1126 /// list is populated, one of these is selected heuristically and used to 1127 /// formulate a replacement for OperandValToReplace in UserInst. 1128 SmallVector<Formula, 12> Formulae; 1129 1130 /// The set of register candidates used by all formulae in this LSRUse. 1131 SmallPtrSet<const SCEV *, 4> Regs; 1132 1133 LSRUse(KindType K, MemAccessTy AT) 1134 : Kind(K), AccessTy(AT), MinOffset(INT64_MAX), MaxOffset(INT64_MIN), 1135 AllFixupsOutsideLoop(true), RigidFormula(false), 1136 WidestFixupType(nullptr) {} 1137 1138 LSRFixup &getNewFixup() { 1139 Fixups.push_back(LSRFixup()); 1140 return Fixups.back(); 1141 } 1142 1143 void pushFixup(LSRFixup &f) { 1144 Fixups.push_back(f); 1145 if (f.Offset > MaxOffset) 1146 MaxOffset = f.Offset; 1147 if (f.Offset < MinOffset) 1148 MinOffset = f.Offset; 1149 } 1150 1151 bool HasFormulaWithSameRegs(const Formula &F) const; 1152 float getNotSelectedProbability(const SCEV *Reg) const; 1153 bool InsertFormula(const Formula &F, const Loop &L); 1154 void DeleteFormula(Formula &F); 1155 void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses); 1156 1157 void print(raw_ostream &OS) const; 1158 void dump() const; 1159 }; 1160 1161 } // end anonymous namespace 1162 1163 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1164 LSRUse::KindType Kind, MemAccessTy AccessTy, 1165 GlobalValue *BaseGV, int64_t BaseOffset, 1166 bool HasBaseReg, int64_t Scale, 1167 Instruction *Fixup = nullptr); 1168 1169 /// Tally up interesting quantities from the given register. 1170 void Cost::RateRegister(const SCEV *Reg, 1171 SmallPtrSetImpl<const SCEV *> &Regs, 1172 const Loop *L, 1173 ScalarEvolution &SE, DominatorTree &DT) { 1174 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) { 1175 // If this is an addrec for another loop, it should be an invariant 1176 // with respect to L since L is the innermost loop (at least 1177 // for now LSR only handles innermost loops). 1178 if (AR->getLoop() != L) { 1179 // If the AddRec exists, consider it's register free and leave it alone. 1180 if (isExistingPhi(AR, SE)) 1181 return; 1182 1183 // It is bad to allow LSR for current loop to add induction variables 1184 // for its sibling loops. 1185 if (!AR->getLoop()->contains(L)) { 1186 Lose(); 1187 return; 1188 } 1189 1190 // Otherwise, it will be an invariant with respect to Loop L. 1191 ++C.NumRegs; 1192 return; 1193 } 1194 C.AddRecCost += 1; /// TODO: This should be a function of the stride. 1195 1196 // Add the step value register, if it needs one. 1197 // TODO: The non-affine case isn't precisely modeled here. 1198 if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) { 1199 if (!Regs.count(AR->getOperand(1))) { 1200 RateRegister(AR->getOperand(1), Regs, L, SE, DT); 1201 if (isLoser()) 1202 return; 1203 } 1204 } 1205 } 1206 ++C.NumRegs; 1207 1208 // Rough heuristic; favor registers which don't require extra setup 1209 // instructions in the preheader. 1210 if (!isa<SCEVUnknown>(Reg) && 1211 !isa<SCEVConstant>(Reg) && 1212 !(isa<SCEVAddRecExpr>(Reg) && 1213 (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) || 1214 isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart())))) 1215 ++C.SetupCost; 1216 1217 C.NumIVMuls += isa<SCEVMulExpr>(Reg) && 1218 SE.hasComputableLoopEvolution(Reg, L); 1219 } 1220 1221 /// Record this register in the set. If we haven't seen it before, rate 1222 /// it. Optional LoserRegs provides a way to declare any formula that refers to 1223 /// one of those regs an instant loser. 1224 void Cost::RatePrimaryRegister(const SCEV *Reg, 1225 SmallPtrSetImpl<const SCEV *> &Regs, 1226 const Loop *L, 1227 ScalarEvolution &SE, DominatorTree &DT, 1228 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1229 if (LoserRegs && LoserRegs->count(Reg)) { 1230 Lose(); 1231 return; 1232 } 1233 if (Regs.insert(Reg).second) { 1234 RateRegister(Reg, Regs, L, SE, DT); 1235 if (LoserRegs && isLoser()) 1236 LoserRegs->insert(Reg); 1237 } 1238 } 1239 1240 void Cost::RateFormula(const TargetTransformInfo &TTI, 1241 const Formula &F, 1242 SmallPtrSetImpl<const SCEV *> &Regs, 1243 const DenseSet<const SCEV *> &VisitedRegs, 1244 const Loop *L, 1245 ScalarEvolution &SE, DominatorTree &DT, 1246 const LSRUse &LU, 1247 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1248 assert(F.isCanonical(*L) && "Cost is accurate only for canonical formula"); 1249 // Tally up the registers. 1250 unsigned PrevAddRecCost = C.AddRecCost; 1251 unsigned PrevNumRegs = C.NumRegs; 1252 unsigned PrevNumBaseAdds = C.NumBaseAdds; 1253 if (const SCEV *ScaledReg = F.ScaledReg) { 1254 if (VisitedRegs.count(ScaledReg)) { 1255 Lose(); 1256 return; 1257 } 1258 RatePrimaryRegister(ScaledReg, Regs, L, SE, DT, LoserRegs); 1259 if (isLoser()) 1260 return; 1261 } 1262 for (const SCEV *BaseReg : F.BaseRegs) { 1263 if (VisitedRegs.count(BaseReg)) { 1264 Lose(); 1265 return; 1266 } 1267 RatePrimaryRegister(BaseReg, Regs, L, SE, DT, LoserRegs); 1268 if (isLoser()) 1269 return; 1270 } 1271 1272 // Determine how many (unfolded) adds we'll need inside the loop. 1273 size_t NumBaseParts = F.getNumRegs(); 1274 if (NumBaseParts > 1) 1275 // Do not count the base and a possible second register if the target 1276 // allows to fold 2 registers. 1277 C.NumBaseAdds += 1278 NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(TTI, LU, F))); 1279 C.NumBaseAdds += (F.UnfoldedOffset != 0); 1280 1281 // Accumulate non-free scaling amounts. 1282 C.ScaleCost += getScalingFactorCost(TTI, LU, F, *L); 1283 1284 // Tally up the non-zero immediates. 1285 for (const LSRFixup &Fixup : LU.Fixups) { 1286 int64_t O = Fixup.Offset; 1287 int64_t Offset = (uint64_t)O + F.BaseOffset; 1288 if (F.BaseGV) 1289 C.ImmCost += 64; // Handle symbolic values conservatively. 1290 // TODO: This should probably be the pointer size. 1291 else if (Offset != 0) 1292 C.ImmCost += APInt(64, Offset, true).getMinSignedBits(); 1293 1294 // Check with target if this offset with this instruction is 1295 // specifically not supported. 1296 if (LU.Kind == LSRUse::Address && Offset != 0 && 1297 !isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV, 1298 Offset, F.HasBaseReg, F.Scale, Fixup.UserInst)) 1299 C.NumBaseAdds++; 1300 } 1301 1302 // If we don't count instruction cost exit here. 1303 if (!InsnsCost) { 1304 assert(isValid() && "invalid cost"); 1305 return; 1306 } 1307 1308 // Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as 1309 // additional instruction (at least fill). 1310 unsigned TTIRegNum = TTI.getNumberOfRegisters(false) - 1; 1311 if (C.NumRegs > TTIRegNum) { 1312 // Cost already exceeded TTIRegNum, then only newly added register can add 1313 // new instructions. 1314 if (PrevNumRegs > TTIRegNum) 1315 C.Insns += (C.NumRegs - PrevNumRegs); 1316 else 1317 C.Insns += (C.NumRegs - TTIRegNum); 1318 } 1319 1320 // If ICmpZero formula ends with not 0, it could not be replaced by 1321 // just add or sub. We'll need to compare final result of AddRec. 1322 // That means we'll need an additional instruction. 1323 // For -10 + {0, +, 1}: 1324 // i = i + 1; 1325 // cmp i, 10 1326 // 1327 // For {-10, +, 1}: 1328 // i = i + 1; 1329 if (LU.Kind == LSRUse::ICmpZero && !F.hasZeroEnd()) 1330 C.Insns++; 1331 // Each new AddRec adds 1 instruction to calculation. 1332 C.Insns += (C.AddRecCost - PrevAddRecCost); 1333 1334 // BaseAdds adds instructions for unfolded registers. 1335 if (LU.Kind != LSRUse::ICmpZero) 1336 C.Insns += C.NumBaseAdds - PrevNumBaseAdds; 1337 assert(isValid() && "invalid cost"); 1338 } 1339 1340 /// Set this cost to a losing value. 1341 void Cost::Lose() { 1342 C.Insns = ~0u; 1343 C.NumRegs = ~0u; 1344 C.AddRecCost = ~0u; 1345 C.NumIVMuls = ~0u; 1346 C.NumBaseAdds = ~0u; 1347 C.ImmCost = ~0u; 1348 C.SetupCost = ~0u; 1349 C.ScaleCost = ~0u; 1350 } 1351 1352 /// Choose the lower cost. 1353 bool Cost::isLess(Cost &Other, const TargetTransformInfo &TTI) { 1354 if (InsnsCost.getNumOccurrences() > 0 && InsnsCost && 1355 C.Insns != Other.C.Insns) 1356 return C.Insns < Other.C.Insns; 1357 return TTI.isLSRCostLess(C, Other.C); 1358 } 1359 1360 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1361 void Cost::print(raw_ostream &OS) const { 1362 if (InsnsCost) 1363 OS << C.Insns << " instruction" << (C.Insns == 1 ? " " : "s "); 1364 OS << C.NumRegs << " reg" << (C.NumRegs == 1 ? "" : "s"); 1365 if (C.AddRecCost != 0) 1366 OS << ", with addrec cost " << C.AddRecCost; 1367 if (C.NumIVMuls != 0) 1368 OS << ", plus " << C.NumIVMuls << " IV mul" 1369 << (C.NumIVMuls == 1 ? "" : "s"); 1370 if (C.NumBaseAdds != 0) 1371 OS << ", plus " << C.NumBaseAdds << " base add" 1372 << (C.NumBaseAdds == 1 ? "" : "s"); 1373 if (C.ScaleCost != 0) 1374 OS << ", plus " << C.ScaleCost << " scale cost"; 1375 if (C.ImmCost != 0) 1376 OS << ", plus " << C.ImmCost << " imm cost"; 1377 if (C.SetupCost != 0) 1378 OS << ", plus " << C.SetupCost << " setup cost"; 1379 } 1380 1381 LLVM_DUMP_METHOD void Cost::dump() const { 1382 print(errs()); errs() << '\n'; 1383 } 1384 #endif 1385 1386 LSRFixup::LSRFixup() 1387 : UserInst(nullptr), OperandValToReplace(nullptr), 1388 Offset(0) {} 1389 1390 /// Test whether this fixup always uses its value outside of the given loop. 1391 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const { 1392 // PHI nodes use their value in their incoming blocks. 1393 if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) { 1394 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1395 if (PN->getIncomingValue(i) == OperandValToReplace && 1396 L->contains(PN->getIncomingBlock(i))) 1397 return false; 1398 return true; 1399 } 1400 1401 return !L->contains(UserInst); 1402 } 1403 1404 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1405 void LSRFixup::print(raw_ostream &OS) const { 1406 OS << "UserInst="; 1407 // Store is common and interesting enough to be worth special-casing. 1408 if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) { 1409 OS << "store "; 1410 Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false); 1411 } else if (UserInst->getType()->isVoidTy()) 1412 OS << UserInst->getOpcodeName(); 1413 else 1414 UserInst->printAsOperand(OS, /*PrintType=*/false); 1415 1416 OS << ", OperandValToReplace="; 1417 OperandValToReplace->printAsOperand(OS, /*PrintType=*/false); 1418 1419 for (const Loop *PIL : PostIncLoops) { 1420 OS << ", PostIncLoop="; 1421 PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 1422 } 1423 1424 if (Offset != 0) 1425 OS << ", Offset=" << Offset; 1426 } 1427 1428 LLVM_DUMP_METHOD void LSRFixup::dump() const { 1429 print(errs()); errs() << '\n'; 1430 } 1431 #endif 1432 1433 /// Test whether this use as a formula which has the same registers as the given 1434 /// formula. 1435 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const { 1436 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1437 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1438 // Unstable sort by host order ok, because this is only used for uniquifying. 1439 std::sort(Key.begin(), Key.end()); 1440 return Uniquifier.count(Key); 1441 } 1442 1443 /// The function returns a probability of selecting formula without Reg. 1444 float LSRUse::getNotSelectedProbability(const SCEV *Reg) const { 1445 unsigned FNum = 0; 1446 for (const Formula &F : Formulae) 1447 if (F.referencesReg(Reg)) 1448 FNum++; 1449 return ((float)(Formulae.size() - FNum)) / Formulae.size(); 1450 } 1451 1452 /// If the given formula has not yet been inserted, add it to the list, and 1453 /// return true. Return false otherwise. The formula must be in canonical form. 1454 bool LSRUse::InsertFormula(const Formula &F, const Loop &L) { 1455 assert(F.isCanonical(L) && "Invalid canonical representation"); 1456 1457 if (!Formulae.empty() && RigidFormula) 1458 return false; 1459 1460 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1461 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1462 // Unstable sort by host order ok, because this is only used for uniquifying. 1463 std::sort(Key.begin(), Key.end()); 1464 1465 if (!Uniquifier.insert(Key).second) 1466 return false; 1467 1468 // Using a register to hold the value of 0 is not profitable. 1469 assert((!F.ScaledReg || !F.ScaledReg->isZero()) && 1470 "Zero allocated in a scaled register!"); 1471 #ifndef NDEBUG 1472 for (const SCEV *BaseReg : F.BaseRegs) 1473 assert(!BaseReg->isZero() && "Zero allocated in a base register!"); 1474 #endif 1475 1476 // Add the formula to the list. 1477 Formulae.push_back(F); 1478 1479 // Record registers now being used by this use. 1480 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1481 if (F.ScaledReg) 1482 Regs.insert(F.ScaledReg); 1483 1484 return true; 1485 } 1486 1487 /// Remove the given formula from this use's list. 1488 void LSRUse::DeleteFormula(Formula &F) { 1489 if (&F != &Formulae.back()) 1490 std::swap(F, Formulae.back()); 1491 Formulae.pop_back(); 1492 } 1493 1494 /// Recompute the Regs field, and update RegUses. 1495 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) { 1496 // Now that we've filtered out some formulae, recompute the Regs set. 1497 SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs); 1498 Regs.clear(); 1499 for (const Formula &F : Formulae) { 1500 if (F.ScaledReg) Regs.insert(F.ScaledReg); 1501 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1502 } 1503 1504 // Update the RegTracker. 1505 for (const SCEV *S : OldRegs) 1506 if (!Regs.count(S)) 1507 RegUses.dropRegister(S, LUIdx); 1508 } 1509 1510 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1511 void LSRUse::print(raw_ostream &OS) const { 1512 OS << "LSR Use: Kind="; 1513 switch (Kind) { 1514 case Basic: OS << "Basic"; break; 1515 case Special: OS << "Special"; break; 1516 case ICmpZero: OS << "ICmpZero"; break; 1517 case Address: 1518 OS << "Address of "; 1519 if (AccessTy.MemTy->isPointerTy()) 1520 OS << "pointer"; // the full pointer type could be really verbose 1521 else { 1522 OS << *AccessTy.MemTy; 1523 } 1524 1525 OS << " in addrspace(" << AccessTy.AddrSpace << ')'; 1526 } 1527 1528 OS << ", Offsets={"; 1529 bool NeedComma = false; 1530 for (const LSRFixup &Fixup : Fixups) { 1531 if (NeedComma) OS << ','; 1532 OS << Fixup.Offset; 1533 NeedComma = true; 1534 } 1535 OS << '}'; 1536 1537 if (AllFixupsOutsideLoop) 1538 OS << ", all-fixups-outside-loop"; 1539 1540 if (WidestFixupType) 1541 OS << ", widest fixup type: " << *WidestFixupType; 1542 } 1543 1544 LLVM_DUMP_METHOD void LSRUse::dump() const { 1545 print(errs()); errs() << '\n'; 1546 } 1547 #endif 1548 1549 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1550 LSRUse::KindType Kind, MemAccessTy AccessTy, 1551 GlobalValue *BaseGV, int64_t BaseOffset, 1552 bool HasBaseReg, int64_t Scale, 1553 Instruction *Fixup/*= nullptr*/) { 1554 switch (Kind) { 1555 case LSRUse::Address: 1556 return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset, 1557 HasBaseReg, Scale, AccessTy.AddrSpace, Fixup); 1558 1559 case LSRUse::ICmpZero: 1560 // There's not even a target hook for querying whether it would be legal to 1561 // fold a GV into an ICmp. 1562 if (BaseGV) 1563 return false; 1564 1565 // ICmp only has two operands; don't allow more than two non-trivial parts. 1566 if (Scale != 0 && HasBaseReg && BaseOffset != 0) 1567 return false; 1568 1569 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by 1570 // putting the scaled register in the other operand of the icmp. 1571 if (Scale != 0 && Scale != -1) 1572 return false; 1573 1574 // If we have low-level target information, ask the target if it can fold an 1575 // integer immediate on an icmp. 1576 if (BaseOffset != 0) { 1577 // We have one of: 1578 // ICmpZero BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset 1579 // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset 1580 // Offs is the ICmp immediate. 1581 if (Scale == 0) 1582 // The cast does the right thing with INT64_MIN. 1583 BaseOffset = -(uint64_t)BaseOffset; 1584 return TTI.isLegalICmpImmediate(BaseOffset); 1585 } 1586 1587 // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg 1588 return true; 1589 1590 case LSRUse::Basic: 1591 // Only handle single-register values. 1592 return !BaseGV && Scale == 0 && BaseOffset == 0; 1593 1594 case LSRUse::Special: 1595 // Special case Basic to handle -1 scales. 1596 return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0; 1597 } 1598 1599 llvm_unreachable("Invalid LSRUse Kind!"); 1600 } 1601 1602 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1603 int64_t MinOffset, int64_t MaxOffset, 1604 LSRUse::KindType Kind, MemAccessTy AccessTy, 1605 GlobalValue *BaseGV, int64_t BaseOffset, 1606 bool HasBaseReg, int64_t Scale) { 1607 // Check for overflow. 1608 if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) != 1609 (MinOffset > 0)) 1610 return false; 1611 MinOffset = (uint64_t)BaseOffset + MinOffset; 1612 if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) != 1613 (MaxOffset > 0)) 1614 return false; 1615 MaxOffset = (uint64_t)BaseOffset + MaxOffset; 1616 1617 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset, 1618 HasBaseReg, Scale) && 1619 isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset, 1620 HasBaseReg, Scale); 1621 } 1622 1623 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1624 int64_t MinOffset, int64_t MaxOffset, 1625 LSRUse::KindType Kind, MemAccessTy AccessTy, 1626 const Formula &F, const Loop &L) { 1627 // For the purpose of isAMCompletelyFolded either having a canonical formula 1628 // or a scale not equal to zero is correct. 1629 // Problems may arise from non canonical formulae having a scale == 0. 1630 // Strictly speaking it would best to just rely on canonical formulae. 1631 // However, when we generate the scaled formulae, we first check that the 1632 // scaling factor is profitable before computing the actual ScaledReg for 1633 // compile time sake. 1634 assert((F.isCanonical(L) || F.Scale != 0)); 1635 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1636 F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale); 1637 } 1638 1639 /// Test whether we know how to expand the current formula. 1640 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1641 int64_t MaxOffset, LSRUse::KindType Kind, 1642 MemAccessTy AccessTy, GlobalValue *BaseGV, 1643 int64_t BaseOffset, bool HasBaseReg, int64_t Scale) { 1644 // We know how to expand completely foldable formulae. 1645 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1646 BaseOffset, HasBaseReg, Scale) || 1647 // Or formulae that use a base register produced by a sum of base 1648 // registers. 1649 (Scale == 1 && 1650 isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1651 BaseGV, BaseOffset, true, 0)); 1652 } 1653 1654 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1655 int64_t MaxOffset, LSRUse::KindType Kind, 1656 MemAccessTy AccessTy, const Formula &F) { 1657 return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV, 1658 F.BaseOffset, F.HasBaseReg, F.Scale); 1659 } 1660 1661 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1662 const LSRUse &LU, const Formula &F) { 1663 // Target may want to look at the user instructions. 1664 if (LU.Kind == LSRUse::Address && TTI.LSRWithInstrQueries()) { 1665 for (const LSRFixup &Fixup : LU.Fixups) 1666 if (!isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV, 1667 (F.BaseOffset + Fixup.Offset), F.HasBaseReg, 1668 F.Scale, Fixup.UserInst)) 1669 return false; 1670 return true; 1671 } 1672 1673 return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1674 LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg, 1675 F.Scale); 1676 } 1677 1678 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, 1679 const LSRUse &LU, const Formula &F, 1680 const Loop &L) { 1681 if (!F.Scale) 1682 return 0; 1683 1684 // If the use is not completely folded in that instruction, we will have to 1685 // pay an extra cost only for scale != 1. 1686 if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1687 LU.AccessTy, F, L)) 1688 return F.Scale != 1; 1689 1690 switch (LU.Kind) { 1691 case LSRUse::Address: { 1692 // Check the scaling factor cost with both the min and max offsets. 1693 int ScaleCostMinOffset = TTI.getScalingFactorCost( 1694 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg, 1695 F.Scale, LU.AccessTy.AddrSpace); 1696 int ScaleCostMaxOffset = TTI.getScalingFactorCost( 1697 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg, 1698 F.Scale, LU.AccessTy.AddrSpace); 1699 1700 assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 && 1701 "Legal addressing mode has an illegal cost!"); 1702 return std::max(ScaleCostMinOffset, ScaleCostMaxOffset); 1703 } 1704 case LSRUse::ICmpZero: 1705 case LSRUse::Basic: 1706 case LSRUse::Special: 1707 // The use is completely folded, i.e., everything is folded into the 1708 // instruction. 1709 return 0; 1710 } 1711 1712 llvm_unreachable("Invalid LSRUse Kind!"); 1713 } 1714 1715 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1716 LSRUse::KindType Kind, MemAccessTy AccessTy, 1717 GlobalValue *BaseGV, int64_t BaseOffset, 1718 bool HasBaseReg) { 1719 // Fast-path: zero is always foldable. 1720 if (BaseOffset == 0 && !BaseGV) return true; 1721 1722 // Conservatively, create an address with an immediate and a 1723 // base and a scale. 1724 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1725 1726 // Canonicalize a scale of 1 to a base register if the formula doesn't 1727 // already have a base register. 1728 if (!HasBaseReg && Scale == 1) { 1729 Scale = 0; 1730 HasBaseReg = true; 1731 } 1732 1733 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset, 1734 HasBaseReg, Scale); 1735 } 1736 1737 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1738 ScalarEvolution &SE, int64_t MinOffset, 1739 int64_t MaxOffset, LSRUse::KindType Kind, 1740 MemAccessTy AccessTy, const SCEV *S, 1741 bool HasBaseReg) { 1742 // Fast-path: zero is always foldable. 1743 if (S->isZero()) return true; 1744 1745 // Conservatively, create an address with an immediate and a 1746 // base and a scale. 1747 int64_t BaseOffset = ExtractImmediate(S, SE); 1748 GlobalValue *BaseGV = ExtractSymbol(S, SE); 1749 1750 // If there's anything else involved, it's not foldable. 1751 if (!S->isZero()) return false; 1752 1753 // Fast-path: zero is always foldable. 1754 if (BaseOffset == 0 && !BaseGV) return true; 1755 1756 // Conservatively, create an address with an immediate and a 1757 // base and a scale. 1758 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1759 1760 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1761 BaseOffset, HasBaseReg, Scale); 1762 } 1763 1764 namespace { 1765 1766 /// An individual increment in a Chain of IV increments. Relate an IV user to 1767 /// an expression that computes the IV it uses from the IV used by the previous 1768 /// link in the Chain. 1769 /// 1770 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the 1771 /// original IVOperand. The head of the chain's IVOperand is only valid during 1772 /// chain collection, before LSR replaces IV users. During chain generation, 1773 /// IncExpr can be used to find the new IVOperand that computes the same 1774 /// expression. 1775 struct IVInc { 1776 Instruction *UserInst; 1777 Value* IVOperand; 1778 const SCEV *IncExpr; 1779 1780 IVInc(Instruction *U, Value *O, const SCEV *E): 1781 UserInst(U), IVOperand(O), IncExpr(E) {} 1782 }; 1783 1784 // The list of IV increments in program order. We typically add the head of a 1785 // chain without finding subsequent links. 1786 struct IVChain { 1787 SmallVector<IVInc,1> Incs; 1788 const SCEV *ExprBase; 1789 1790 IVChain() : ExprBase(nullptr) {} 1791 1792 IVChain(const IVInc &Head, const SCEV *Base) 1793 : Incs(1, Head), ExprBase(Base) {} 1794 1795 typedef SmallVectorImpl<IVInc>::const_iterator const_iterator; 1796 1797 // Return the first increment in the chain. 1798 const_iterator begin() const { 1799 assert(!Incs.empty()); 1800 return std::next(Incs.begin()); 1801 } 1802 const_iterator end() const { 1803 return Incs.end(); 1804 } 1805 1806 // Returns true if this chain contains any increments. 1807 bool hasIncs() const { return Incs.size() >= 2; } 1808 1809 // Add an IVInc to the end of this chain. 1810 void add(const IVInc &X) { Incs.push_back(X); } 1811 1812 // Returns the last UserInst in the chain. 1813 Instruction *tailUserInst() const { return Incs.back().UserInst; } 1814 1815 // Returns true if IncExpr can be profitably added to this chain. 1816 bool isProfitableIncrement(const SCEV *OperExpr, 1817 const SCEV *IncExpr, 1818 ScalarEvolution&); 1819 }; 1820 1821 /// Helper for CollectChains to track multiple IV increment uses. Distinguish 1822 /// between FarUsers that definitely cross IV increments and NearUsers that may 1823 /// be used between IV increments. 1824 struct ChainUsers { 1825 SmallPtrSet<Instruction*, 4> FarUsers; 1826 SmallPtrSet<Instruction*, 4> NearUsers; 1827 }; 1828 1829 /// This class holds state for the main loop strength reduction logic. 1830 class LSRInstance { 1831 IVUsers &IU; 1832 ScalarEvolution &SE; 1833 DominatorTree &DT; 1834 LoopInfo &LI; 1835 const TargetTransformInfo &TTI; 1836 Loop *const L; 1837 bool Changed; 1838 1839 /// This is the insert position that the current loop's induction variable 1840 /// increment should be placed. In simple loops, this is the latch block's 1841 /// terminator. But in more complicated cases, this is a position which will 1842 /// dominate all the in-loop post-increment users. 1843 Instruction *IVIncInsertPos; 1844 1845 /// Interesting factors between use strides. 1846 /// 1847 /// We explicitly use a SetVector which contains a SmallSet, instead of the 1848 /// default, a SmallDenseSet, because we need to use the full range of 1849 /// int64_ts, and there's currently no good way of doing that with 1850 /// SmallDenseSet. 1851 SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors; 1852 1853 /// Interesting use types, to facilitate truncation reuse. 1854 SmallSetVector<Type *, 4> Types; 1855 1856 /// The list of interesting uses. 1857 SmallVector<LSRUse, 16> Uses; 1858 1859 /// Track which uses use which register candidates. 1860 RegUseTracker RegUses; 1861 1862 // Limit the number of chains to avoid quadratic behavior. We don't expect to 1863 // have more than a few IV increment chains in a loop. Missing a Chain falls 1864 // back to normal LSR behavior for those uses. 1865 static const unsigned MaxChains = 8; 1866 1867 /// IV users can form a chain of IV increments. 1868 SmallVector<IVChain, MaxChains> IVChainVec; 1869 1870 /// IV users that belong to profitable IVChains. 1871 SmallPtrSet<Use*, MaxChains> IVIncSet; 1872 1873 void OptimizeShadowIV(); 1874 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse); 1875 ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse); 1876 void OptimizeLoopTermCond(); 1877 1878 void ChainInstruction(Instruction *UserInst, Instruction *IVOper, 1879 SmallVectorImpl<ChainUsers> &ChainUsersVec); 1880 void FinalizeChain(IVChain &Chain); 1881 void CollectChains(); 1882 void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 1883 SmallVectorImpl<WeakTrackingVH> &DeadInsts); 1884 1885 void CollectInterestingTypesAndFactors(); 1886 void CollectFixupsAndInitialFormulae(); 1887 1888 // Support for sharing of LSRUses between LSRFixups. 1889 typedef DenseMap<LSRUse::SCEVUseKindPair, size_t> UseMapTy; 1890 UseMapTy UseMap; 1891 1892 bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, 1893 LSRUse::KindType Kind, MemAccessTy AccessTy); 1894 1895 std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind, 1896 MemAccessTy AccessTy); 1897 1898 void DeleteUse(LSRUse &LU, size_t LUIdx); 1899 1900 LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU); 1901 1902 void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1903 void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1904 void CountRegisters(const Formula &F, size_t LUIdx); 1905 bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F); 1906 1907 void CollectLoopInvariantFixupsAndFormulae(); 1908 1909 void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base, 1910 unsigned Depth = 0); 1911 1912 void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 1913 const Formula &Base, unsigned Depth, 1914 size_t Idx, bool IsScaledReg = false); 1915 void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base); 1916 void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 1917 const Formula &Base, size_t Idx, 1918 bool IsScaledReg = false); 1919 void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1920 void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx, 1921 const Formula &Base, 1922 const SmallVectorImpl<int64_t> &Worklist, 1923 size_t Idx, bool IsScaledReg = false); 1924 void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1925 void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base); 1926 void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base); 1927 void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base); 1928 void GenerateCrossUseConstantOffsets(); 1929 void GenerateAllReuseFormulae(); 1930 1931 void FilterOutUndesirableDedicatedRegisters(); 1932 1933 size_t EstimateSearchSpaceComplexity() const; 1934 void NarrowSearchSpaceByDetectingSupersets(); 1935 void NarrowSearchSpaceByCollapsingUnrolledCode(); 1936 void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 1937 void NarrowSearchSpaceByFilterFormulaWithSameScaledReg(); 1938 void NarrowSearchSpaceByDeletingCostlyFormulas(); 1939 void NarrowSearchSpaceByPickingWinnerRegs(); 1940 void NarrowSearchSpaceUsingHeuristics(); 1941 1942 void SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 1943 Cost &SolutionCost, 1944 SmallVectorImpl<const Formula *> &Workspace, 1945 const Cost &CurCost, 1946 const SmallPtrSet<const SCEV *, 16> &CurRegs, 1947 DenseSet<const SCEV *> &VisitedRegs) const; 1948 void Solve(SmallVectorImpl<const Formula *> &Solution) const; 1949 1950 BasicBlock::iterator 1951 HoistInsertPosition(BasicBlock::iterator IP, 1952 const SmallVectorImpl<Instruction *> &Inputs) const; 1953 BasicBlock::iterator 1954 AdjustInsertPositionForExpand(BasicBlock::iterator IP, 1955 const LSRFixup &LF, 1956 const LSRUse &LU, 1957 SCEVExpander &Rewriter) const; 1958 1959 Value *Expand(const LSRUse &LU, const LSRFixup &LF, const Formula &F, 1960 BasicBlock::iterator IP, SCEVExpander &Rewriter, 1961 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 1962 void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF, 1963 const Formula &F, SCEVExpander &Rewriter, 1964 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 1965 void Rewrite(const LSRUse &LU, const LSRFixup &LF, const Formula &F, 1966 SCEVExpander &Rewriter, 1967 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 1968 void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution); 1969 1970 public: 1971 LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT, 1972 LoopInfo &LI, const TargetTransformInfo &TTI); 1973 1974 bool getChanged() const { return Changed; } 1975 1976 void print_factors_and_types(raw_ostream &OS) const; 1977 void print_fixups(raw_ostream &OS) const; 1978 void print_uses(raw_ostream &OS) const; 1979 void print(raw_ostream &OS) const; 1980 void dump() const; 1981 }; 1982 1983 } // end anonymous namespace 1984 1985 /// If IV is used in a int-to-float cast inside the loop then try to eliminate 1986 /// the cast operation. 1987 void LSRInstance::OptimizeShadowIV() { 1988 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 1989 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 1990 return; 1991 1992 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); 1993 UI != E; /* empty */) { 1994 IVUsers::const_iterator CandidateUI = UI; 1995 ++UI; 1996 Instruction *ShadowUse = CandidateUI->getUser(); 1997 Type *DestTy = nullptr; 1998 bool IsSigned = false; 1999 2000 /* If shadow use is a int->float cast then insert a second IV 2001 to eliminate this cast. 2002 2003 for (unsigned i = 0; i < n; ++i) 2004 foo((double)i); 2005 2006 is transformed into 2007 2008 double d = 0.0; 2009 for (unsigned i = 0; i < n; ++i, ++d) 2010 foo(d); 2011 */ 2012 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) { 2013 IsSigned = false; 2014 DestTy = UCast->getDestTy(); 2015 } 2016 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) { 2017 IsSigned = true; 2018 DestTy = SCast->getDestTy(); 2019 } 2020 if (!DestTy) continue; 2021 2022 // If target does not support DestTy natively then do not apply 2023 // this transformation. 2024 if (!TTI.isTypeLegal(DestTy)) continue; 2025 2026 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0)); 2027 if (!PH) continue; 2028 if (PH->getNumIncomingValues() != 2) continue; 2029 2030 // If the calculation in integers overflows, the result in FP type will 2031 // differ. So we only can do this transformation if we are guaranteed to not 2032 // deal with overflowing values 2033 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PH)); 2034 if (!AR) continue; 2035 if (IsSigned && !AR->hasNoSignedWrap()) continue; 2036 if (!IsSigned && !AR->hasNoUnsignedWrap()) continue; 2037 2038 Type *SrcTy = PH->getType(); 2039 int Mantissa = DestTy->getFPMantissaWidth(); 2040 if (Mantissa == -1) continue; 2041 if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa) 2042 continue; 2043 2044 unsigned Entry, Latch; 2045 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) { 2046 Entry = 0; 2047 Latch = 1; 2048 } else { 2049 Entry = 1; 2050 Latch = 0; 2051 } 2052 2053 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry)); 2054 if (!Init) continue; 2055 Constant *NewInit = ConstantFP::get(DestTy, IsSigned ? 2056 (double)Init->getSExtValue() : 2057 (double)Init->getZExtValue()); 2058 2059 BinaryOperator *Incr = 2060 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch)); 2061 if (!Incr) continue; 2062 if (Incr->getOpcode() != Instruction::Add 2063 && Incr->getOpcode() != Instruction::Sub) 2064 continue; 2065 2066 /* Initialize new IV, double d = 0.0 in above example. */ 2067 ConstantInt *C = nullptr; 2068 if (Incr->getOperand(0) == PH) 2069 C = dyn_cast<ConstantInt>(Incr->getOperand(1)); 2070 else if (Incr->getOperand(1) == PH) 2071 C = dyn_cast<ConstantInt>(Incr->getOperand(0)); 2072 else 2073 continue; 2074 2075 if (!C) continue; 2076 2077 // Ignore negative constants, as the code below doesn't handle them 2078 // correctly. TODO: Remove this restriction. 2079 if (!C->getValue().isStrictlyPositive()) continue; 2080 2081 /* Add new PHINode. */ 2082 PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH); 2083 2084 /* create new increment. '++d' in above example. */ 2085 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue()); 2086 BinaryOperator *NewIncr = 2087 BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ? 2088 Instruction::FAdd : Instruction::FSub, 2089 NewPH, CFP, "IV.S.next.", Incr); 2090 2091 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry)); 2092 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch)); 2093 2094 /* Remove cast operation */ 2095 ShadowUse->replaceAllUsesWith(NewPH); 2096 ShadowUse->eraseFromParent(); 2097 Changed = true; 2098 break; 2099 } 2100 } 2101 2102 /// If Cond has an operand that is an expression of an IV, set the IV user and 2103 /// stride information and return true, otherwise return false. 2104 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) { 2105 for (IVStrideUse &U : IU) 2106 if (U.getUser() == Cond) { 2107 // NOTE: we could handle setcc instructions with multiple uses here, but 2108 // InstCombine does it as well for simple uses, it's not clear that it 2109 // occurs enough in real life to handle. 2110 CondUse = &U; 2111 return true; 2112 } 2113 return false; 2114 } 2115 2116 /// Rewrite the loop's terminating condition if it uses a max computation. 2117 /// 2118 /// This is a narrow solution to a specific, but acute, problem. For loops 2119 /// like this: 2120 /// 2121 /// i = 0; 2122 /// do { 2123 /// p[i] = 0.0; 2124 /// } while (++i < n); 2125 /// 2126 /// the trip count isn't just 'n', because 'n' might not be positive. And 2127 /// unfortunately this can come up even for loops where the user didn't use 2128 /// a C do-while loop. For example, seemingly well-behaved top-test loops 2129 /// will commonly be lowered like this: 2130 // 2131 /// if (n > 0) { 2132 /// i = 0; 2133 /// do { 2134 /// p[i] = 0.0; 2135 /// } while (++i < n); 2136 /// } 2137 /// 2138 /// and then it's possible for subsequent optimization to obscure the if 2139 /// test in such a way that indvars can't find it. 2140 /// 2141 /// When indvars can't find the if test in loops like this, it creates a 2142 /// max expression, which allows it to give the loop a canonical 2143 /// induction variable: 2144 /// 2145 /// i = 0; 2146 /// max = n < 1 ? 1 : n; 2147 /// do { 2148 /// p[i] = 0.0; 2149 /// } while (++i != max); 2150 /// 2151 /// Canonical induction variables are necessary because the loop passes 2152 /// are designed around them. The most obvious example of this is the 2153 /// LoopInfo analysis, which doesn't remember trip count values. It 2154 /// expects to be able to rediscover the trip count each time it is 2155 /// needed, and it does this using a simple analysis that only succeeds if 2156 /// the loop has a canonical induction variable. 2157 /// 2158 /// However, when it comes time to generate code, the maximum operation 2159 /// can be quite costly, especially if it's inside of an outer loop. 2160 /// 2161 /// This function solves this problem by detecting this type of loop and 2162 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting 2163 /// the instructions for the maximum computation. 2164 /// 2165 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) { 2166 // Check that the loop matches the pattern we're looking for. 2167 if (Cond->getPredicate() != CmpInst::ICMP_EQ && 2168 Cond->getPredicate() != CmpInst::ICMP_NE) 2169 return Cond; 2170 2171 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1)); 2172 if (!Sel || !Sel->hasOneUse()) return Cond; 2173 2174 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 2175 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2176 return Cond; 2177 const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1); 2178 2179 // Add one to the backedge-taken count to get the trip count. 2180 const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount); 2181 if (IterationCount != SE.getSCEV(Sel)) return Cond; 2182 2183 // Check for a max calculation that matches the pattern. There's no check 2184 // for ICMP_ULE here because the comparison would be with zero, which 2185 // isn't interesting. 2186 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 2187 const SCEVNAryExpr *Max = nullptr; 2188 if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) { 2189 Pred = ICmpInst::ICMP_SLE; 2190 Max = S; 2191 } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) { 2192 Pred = ICmpInst::ICMP_SLT; 2193 Max = S; 2194 } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) { 2195 Pred = ICmpInst::ICMP_ULT; 2196 Max = U; 2197 } else { 2198 // No match; bail. 2199 return Cond; 2200 } 2201 2202 // To handle a max with more than two operands, this optimization would 2203 // require additional checking and setup. 2204 if (Max->getNumOperands() != 2) 2205 return Cond; 2206 2207 const SCEV *MaxLHS = Max->getOperand(0); 2208 const SCEV *MaxRHS = Max->getOperand(1); 2209 2210 // ScalarEvolution canonicalizes constants to the left. For < and >, look 2211 // for a comparison with 1. For <= and >=, a comparison with zero. 2212 if (!MaxLHS || 2213 (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One))) 2214 return Cond; 2215 2216 // Check the relevant induction variable for conformance to 2217 // the pattern. 2218 const SCEV *IV = SE.getSCEV(Cond->getOperand(0)); 2219 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV); 2220 if (!AR || !AR->isAffine() || 2221 AR->getStart() != One || 2222 AR->getStepRecurrence(SE) != One) 2223 return Cond; 2224 2225 assert(AR->getLoop() == L && 2226 "Loop condition operand is an addrec in a different loop!"); 2227 2228 // Check the right operand of the select, and remember it, as it will 2229 // be used in the new comparison instruction. 2230 Value *NewRHS = nullptr; 2231 if (ICmpInst::isTrueWhenEqual(Pred)) { 2232 // Look for n+1, and grab n. 2233 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1))) 2234 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2235 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2236 NewRHS = BO->getOperand(0); 2237 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2))) 2238 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2239 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2240 NewRHS = BO->getOperand(0); 2241 if (!NewRHS) 2242 return Cond; 2243 } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS) 2244 NewRHS = Sel->getOperand(1); 2245 else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS) 2246 NewRHS = Sel->getOperand(2); 2247 else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS)) 2248 NewRHS = SU->getValue(); 2249 else 2250 // Max doesn't match expected pattern. 2251 return Cond; 2252 2253 // Determine the new comparison opcode. It may be signed or unsigned, 2254 // and the original comparison may be either equality or inequality. 2255 if (Cond->getPredicate() == CmpInst::ICMP_EQ) 2256 Pred = CmpInst::getInversePredicate(Pred); 2257 2258 // Ok, everything looks ok to change the condition into an SLT or SGE and 2259 // delete the max calculation. 2260 ICmpInst *NewCond = 2261 new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp"); 2262 2263 // Delete the max calculation instructions. 2264 Cond->replaceAllUsesWith(NewCond); 2265 CondUse->setUser(NewCond); 2266 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0)); 2267 Cond->eraseFromParent(); 2268 Sel->eraseFromParent(); 2269 if (Cmp->use_empty()) 2270 Cmp->eraseFromParent(); 2271 return NewCond; 2272 } 2273 2274 /// Change loop terminating condition to use the postinc iv when possible. 2275 void 2276 LSRInstance::OptimizeLoopTermCond() { 2277 SmallPtrSet<Instruction *, 4> PostIncs; 2278 2279 // We need a different set of heuristics for rotated and non-rotated loops. 2280 // If a loop is rotated then the latch is also the backedge, so inserting 2281 // post-inc expressions just before the latch is ideal. To reduce live ranges 2282 // it also makes sense to rewrite terminating conditions to use post-inc 2283 // expressions. 2284 // 2285 // If the loop is not rotated then the latch is not a backedge; the latch 2286 // check is done in the loop head. Adding post-inc expressions before the 2287 // latch will cause overlapping live-ranges of pre-inc and post-inc expressions 2288 // in the loop body. In this case we do *not* want to use post-inc expressions 2289 // in the latch check, and we want to insert post-inc expressions before 2290 // the backedge. 2291 BasicBlock *LatchBlock = L->getLoopLatch(); 2292 SmallVector<BasicBlock*, 8> ExitingBlocks; 2293 L->getExitingBlocks(ExitingBlocks); 2294 if (llvm::all_of(ExitingBlocks, [&LatchBlock](const BasicBlock *BB) { 2295 return LatchBlock != BB; 2296 })) { 2297 // The backedge doesn't exit the loop; treat this as a head-tested loop. 2298 IVIncInsertPos = LatchBlock->getTerminator(); 2299 return; 2300 } 2301 2302 // Otherwise treat this as a rotated loop. 2303 for (BasicBlock *ExitingBlock : ExitingBlocks) { 2304 2305 // Get the terminating condition for the loop if possible. If we 2306 // can, we want to change it to use a post-incremented version of its 2307 // induction variable, to allow coalescing the live ranges for the IV into 2308 // one register value. 2309 2310 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 2311 if (!TermBr) 2312 continue; 2313 // FIXME: Overly conservative, termination condition could be an 'or' etc.. 2314 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition())) 2315 continue; 2316 2317 // Search IVUsesByStride to find Cond's IVUse if there is one. 2318 IVStrideUse *CondUse = nullptr; 2319 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition()); 2320 if (!FindIVUserForCond(Cond, CondUse)) 2321 continue; 2322 2323 // If the trip count is computed in terms of a max (due to ScalarEvolution 2324 // being unable to find a sufficient guard, for example), change the loop 2325 // comparison to use SLT or ULT instead of NE. 2326 // One consequence of doing this now is that it disrupts the count-down 2327 // optimization. That's not always a bad thing though, because in such 2328 // cases it may still be worthwhile to avoid a max. 2329 Cond = OptimizeMax(Cond, CondUse); 2330 2331 // If this exiting block dominates the latch block, it may also use 2332 // the post-inc value if it won't be shared with other uses. 2333 // Check for dominance. 2334 if (!DT.dominates(ExitingBlock, LatchBlock)) 2335 continue; 2336 2337 // Conservatively avoid trying to use the post-inc value in non-latch 2338 // exits if there may be pre-inc users in intervening blocks. 2339 if (LatchBlock != ExitingBlock) 2340 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) 2341 // Test if the use is reachable from the exiting block. This dominator 2342 // query is a conservative approximation of reachability. 2343 if (&*UI != CondUse && 2344 !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) { 2345 // Conservatively assume there may be reuse if the quotient of their 2346 // strides could be a legal scale. 2347 const SCEV *A = IU.getStride(*CondUse, L); 2348 const SCEV *B = IU.getStride(*UI, L); 2349 if (!A || !B) continue; 2350 if (SE.getTypeSizeInBits(A->getType()) != 2351 SE.getTypeSizeInBits(B->getType())) { 2352 if (SE.getTypeSizeInBits(A->getType()) > 2353 SE.getTypeSizeInBits(B->getType())) 2354 B = SE.getSignExtendExpr(B, A->getType()); 2355 else 2356 A = SE.getSignExtendExpr(A, B->getType()); 2357 } 2358 if (const SCEVConstant *D = 2359 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) { 2360 const ConstantInt *C = D->getValue(); 2361 // Stride of one or negative one can have reuse with non-addresses. 2362 if (C->isOne() || C->isMinusOne()) 2363 goto decline_post_inc; 2364 // Avoid weird situations. 2365 if (C->getValue().getMinSignedBits() >= 64 || 2366 C->getValue().isMinSignedValue()) 2367 goto decline_post_inc; 2368 // Check for possible scaled-address reuse. 2369 MemAccessTy AccessTy = getAccessType(UI->getUser()); 2370 int64_t Scale = C->getSExtValue(); 2371 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2372 /*BaseOffset=*/0, 2373 /*HasBaseReg=*/false, Scale, 2374 AccessTy.AddrSpace)) 2375 goto decline_post_inc; 2376 Scale = -Scale; 2377 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2378 /*BaseOffset=*/0, 2379 /*HasBaseReg=*/false, Scale, 2380 AccessTy.AddrSpace)) 2381 goto decline_post_inc; 2382 } 2383 } 2384 2385 DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: " 2386 << *Cond << '\n'); 2387 2388 // It's possible for the setcc instruction to be anywhere in the loop, and 2389 // possible for it to have multiple users. If it is not immediately before 2390 // the exiting block branch, move it. 2391 if (&*++BasicBlock::iterator(Cond) != TermBr) { 2392 if (Cond->hasOneUse()) { 2393 Cond->moveBefore(TermBr); 2394 } else { 2395 // Clone the terminating condition and insert into the loopend. 2396 ICmpInst *OldCond = Cond; 2397 Cond = cast<ICmpInst>(Cond->clone()); 2398 Cond->setName(L->getHeader()->getName() + ".termcond"); 2399 ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond); 2400 2401 // Clone the IVUse, as the old use still exists! 2402 CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace()); 2403 TermBr->replaceUsesOfWith(OldCond, Cond); 2404 } 2405 } 2406 2407 // If we get to here, we know that we can transform the setcc instruction to 2408 // use the post-incremented version of the IV, allowing us to coalesce the 2409 // live ranges for the IV correctly. 2410 CondUse->transformToPostInc(L); 2411 Changed = true; 2412 2413 PostIncs.insert(Cond); 2414 decline_post_inc:; 2415 } 2416 2417 // Determine an insertion point for the loop induction variable increment. It 2418 // must dominate all the post-inc comparisons we just set up, and it must 2419 // dominate the loop latch edge. 2420 IVIncInsertPos = L->getLoopLatch()->getTerminator(); 2421 for (Instruction *Inst : PostIncs) { 2422 BasicBlock *BB = 2423 DT.findNearestCommonDominator(IVIncInsertPos->getParent(), 2424 Inst->getParent()); 2425 if (BB == Inst->getParent()) 2426 IVIncInsertPos = Inst; 2427 else if (BB != IVIncInsertPos->getParent()) 2428 IVIncInsertPos = BB->getTerminator(); 2429 } 2430 } 2431 2432 /// Determine if the given use can accommodate a fixup at the given offset and 2433 /// other details. If so, update the use and return true. 2434 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, 2435 bool HasBaseReg, LSRUse::KindType Kind, 2436 MemAccessTy AccessTy) { 2437 int64_t NewMinOffset = LU.MinOffset; 2438 int64_t NewMaxOffset = LU.MaxOffset; 2439 MemAccessTy NewAccessTy = AccessTy; 2440 2441 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to 2442 // something conservative, however this can pessimize in the case that one of 2443 // the uses will have all its uses outside the loop, for example. 2444 if (LU.Kind != Kind) 2445 return false; 2446 2447 // Check for a mismatched access type, and fall back conservatively as needed. 2448 // TODO: Be less conservative when the type is similar and can use the same 2449 // addressing modes. 2450 if (Kind == LSRUse::Address) { 2451 if (AccessTy.MemTy != LU.AccessTy.MemTy) { 2452 NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(), 2453 AccessTy.AddrSpace); 2454 } 2455 } 2456 2457 // Conservatively assume HasBaseReg is true for now. 2458 if (NewOffset < LU.MinOffset) { 2459 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2460 LU.MaxOffset - NewOffset, HasBaseReg)) 2461 return false; 2462 NewMinOffset = NewOffset; 2463 } else if (NewOffset > LU.MaxOffset) { 2464 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2465 NewOffset - LU.MinOffset, HasBaseReg)) 2466 return false; 2467 NewMaxOffset = NewOffset; 2468 } 2469 2470 // Update the use. 2471 LU.MinOffset = NewMinOffset; 2472 LU.MaxOffset = NewMaxOffset; 2473 LU.AccessTy = NewAccessTy; 2474 return true; 2475 } 2476 2477 /// Return an LSRUse index and an offset value for a fixup which needs the given 2478 /// expression, with the given kind and optional access type. Either reuse an 2479 /// existing use or create a new one, as needed. 2480 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr, 2481 LSRUse::KindType Kind, 2482 MemAccessTy AccessTy) { 2483 const SCEV *Copy = Expr; 2484 int64_t Offset = ExtractImmediate(Expr, SE); 2485 2486 // Basic uses can't accept any offset, for example. 2487 if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr, 2488 Offset, /*HasBaseReg=*/ true)) { 2489 Expr = Copy; 2490 Offset = 0; 2491 } 2492 2493 std::pair<UseMapTy::iterator, bool> P = 2494 UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0)); 2495 if (!P.second) { 2496 // A use already existed with this base. 2497 size_t LUIdx = P.first->second; 2498 LSRUse &LU = Uses[LUIdx]; 2499 if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy)) 2500 // Reuse this use. 2501 return std::make_pair(LUIdx, Offset); 2502 } 2503 2504 // Create a new use. 2505 size_t LUIdx = Uses.size(); 2506 P.first->second = LUIdx; 2507 Uses.push_back(LSRUse(Kind, AccessTy)); 2508 LSRUse &LU = Uses[LUIdx]; 2509 2510 LU.MinOffset = Offset; 2511 LU.MaxOffset = Offset; 2512 return std::make_pair(LUIdx, Offset); 2513 } 2514 2515 /// Delete the given use from the Uses list. 2516 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) { 2517 if (&LU != &Uses.back()) 2518 std::swap(LU, Uses.back()); 2519 Uses.pop_back(); 2520 2521 // Update RegUses. 2522 RegUses.swapAndDropUse(LUIdx, Uses.size()); 2523 } 2524 2525 /// Look for a use distinct from OrigLU which is has a formula that has the same 2526 /// registers as the given formula. 2527 LSRUse * 2528 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF, 2529 const LSRUse &OrigLU) { 2530 // Search all uses for the formula. This could be more clever. 2531 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 2532 LSRUse &LU = Uses[LUIdx]; 2533 // Check whether this use is close enough to OrigLU, to see whether it's 2534 // worthwhile looking through its formulae. 2535 // Ignore ICmpZero uses because they may contain formulae generated by 2536 // GenerateICmpZeroScales, in which case adding fixup offsets may 2537 // be invalid. 2538 if (&LU != &OrigLU && 2539 LU.Kind != LSRUse::ICmpZero && 2540 LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy && 2541 LU.WidestFixupType == OrigLU.WidestFixupType && 2542 LU.HasFormulaWithSameRegs(OrigF)) { 2543 // Scan through this use's formulae. 2544 for (const Formula &F : LU.Formulae) { 2545 // Check to see if this formula has the same registers and symbols 2546 // as OrigF. 2547 if (F.BaseRegs == OrigF.BaseRegs && 2548 F.ScaledReg == OrigF.ScaledReg && 2549 F.BaseGV == OrigF.BaseGV && 2550 F.Scale == OrigF.Scale && 2551 F.UnfoldedOffset == OrigF.UnfoldedOffset) { 2552 if (F.BaseOffset == 0) 2553 return &LU; 2554 // This is the formula where all the registers and symbols matched; 2555 // there aren't going to be any others. Since we declined it, we 2556 // can skip the rest of the formulae and proceed to the next LSRUse. 2557 break; 2558 } 2559 } 2560 } 2561 } 2562 2563 // Nothing looked good. 2564 return nullptr; 2565 } 2566 2567 void LSRInstance::CollectInterestingTypesAndFactors() { 2568 SmallSetVector<const SCEV *, 4> Strides; 2569 2570 // Collect interesting types and strides. 2571 SmallVector<const SCEV *, 4> Worklist; 2572 for (const IVStrideUse &U : IU) { 2573 const SCEV *Expr = IU.getExpr(U); 2574 2575 // Collect interesting types. 2576 Types.insert(SE.getEffectiveSCEVType(Expr->getType())); 2577 2578 // Add strides for mentioned loops. 2579 Worklist.push_back(Expr); 2580 do { 2581 const SCEV *S = Worklist.pop_back_val(); 2582 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2583 if (AR->getLoop() == L) 2584 Strides.insert(AR->getStepRecurrence(SE)); 2585 Worklist.push_back(AR->getStart()); 2586 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2587 Worklist.append(Add->op_begin(), Add->op_end()); 2588 } 2589 } while (!Worklist.empty()); 2590 } 2591 2592 // Compute interesting factors from the set of interesting strides. 2593 for (SmallSetVector<const SCEV *, 4>::const_iterator 2594 I = Strides.begin(), E = Strides.end(); I != E; ++I) 2595 for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter = 2596 std::next(I); NewStrideIter != E; ++NewStrideIter) { 2597 const SCEV *OldStride = *I; 2598 const SCEV *NewStride = *NewStrideIter; 2599 2600 if (SE.getTypeSizeInBits(OldStride->getType()) != 2601 SE.getTypeSizeInBits(NewStride->getType())) { 2602 if (SE.getTypeSizeInBits(OldStride->getType()) > 2603 SE.getTypeSizeInBits(NewStride->getType())) 2604 NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType()); 2605 else 2606 OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType()); 2607 } 2608 if (const SCEVConstant *Factor = 2609 dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride, 2610 SE, true))) { 2611 if (Factor->getAPInt().getMinSignedBits() <= 64) 2612 Factors.insert(Factor->getAPInt().getSExtValue()); 2613 } else if (const SCEVConstant *Factor = 2614 dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride, 2615 NewStride, 2616 SE, true))) { 2617 if (Factor->getAPInt().getMinSignedBits() <= 64) 2618 Factors.insert(Factor->getAPInt().getSExtValue()); 2619 } 2620 } 2621 2622 // If all uses use the same type, don't bother looking for truncation-based 2623 // reuse. 2624 if (Types.size() == 1) 2625 Types.clear(); 2626 2627 DEBUG(print_factors_and_types(dbgs())); 2628 } 2629 2630 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in 2631 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to 2632 /// IVStrideUses, we could partially skip this. 2633 static User::op_iterator 2634 findIVOperand(User::op_iterator OI, User::op_iterator OE, 2635 Loop *L, ScalarEvolution &SE) { 2636 for(; OI != OE; ++OI) { 2637 if (Instruction *Oper = dyn_cast<Instruction>(*OI)) { 2638 if (!SE.isSCEVable(Oper->getType())) 2639 continue; 2640 2641 if (const SCEVAddRecExpr *AR = 2642 dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) { 2643 if (AR->getLoop() == L) 2644 break; 2645 } 2646 } 2647 } 2648 return OI; 2649 } 2650 2651 /// IVChain logic must consistenctly peek base TruncInst operands, so wrap it in 2652 /// a convenient helper. 2653 static Value *getWideOperand(Value *Oper) { 2654 if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper)) 2655 return Trunc->getOperand(0); 2656 return Oper; 2657 } 2658 2659 /// Return true if we allow an IV chain to include both types. 2660 static bool isCompatibleIVType(Value *LVal, Value *RVal) { 2661 Type *LType = LVal->getType(); 2662 Type *RType = RVal->getType(); 2663 return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy() && 2664 // Different address spaces means (possibly) 2665 // different types of the pointer implementation, 2666 // e.g. i16 vs i32 so disallow that. 2667 (LType->getPointerAddressSpace() == 2668 RType->getPointerAddressSpace())); 2669 } 2670 2671 /// Return an approximation of this SCEV expression's "base", or NULL for any 2672 /// constant. Returning the expression itself is conservative. Returning a 2673 /// deeper subexpression is more precise and valid as long as it isn't less 2674 /// complex than another subexpression. For expressions involving multiple 2675 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids 2676 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i], 2677 /// IVInc==b-a. 2678 /// 2679 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost 2680 /// SCEVUnknown, we simply return the rightmost SCEV operand. 2681 static const SCEV *getExprBase(const SCEV *S) { 2682 switch (S->getSCEVType()) { 2683 default: // uncluding scUnknown. 2684 return S; 2685 case scConstant: 2686 return nullptr; 2687 case scTruncate: 2688 return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand()); 2689 case scZeroExtend: 2690 return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand()); 2691 case scSignExtend: 2692 return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand()); 2693 case scAddExpr: { 2694 // Skip over scaled operands (scMulExpr) to follow add operands as long as 2695 // there's nothing more complex. 2696 // FIXME: not sure if we want to recognize negation. 2697 const SCEVAddExpr *Add = cast<SCEVAddExpr>(S); 2698 for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()), 2699 E(Add->op_begin()); I != E; ++I) { 2700 const SCEV *SubExpr = *I; 2701 if (SubExpr->getSCEVType() == scAddExpr) 2702 return getExprBase(SubExpr); 2703 2704 if (SubExpr->getSCEVType() != scMulExpr) 2705 return SubExpr; 2706 } 2707 return S; // all operands are scaled, be conservative. 2708 } 2709 case scAddRecExpr: 2710 return getExprBase(cast<SCEVAddRecExpr>(S)->getStart()); 2711 } 2712 } 2713 2714 /// Return true if the chain increment is profitable to expand into a loop 2715 /// invariant value, which may require its own register. A profitable chain 2716 /// increment will be an offset relative to the same base. We allow such offsets 2717 /// to potentially be used as chain increment as long as it's not obviously 2718 /// expensive to expand using real instructions. 2719 bool IVChain::isProfitableIncrement(const SCEV *OperExpr, 2720 const SCEV *IncExpr, 2721 ScalarEvolution &SE) { 2722 // Aggressively form chains when -stress-ivchain. 2723 if (StressIVChain) 2724 return true; 2725 2726 // Do not replace a constant offset from IV head with a nonconstant IV 2727 // increment. 2728 if (!isa<SCEVConstant>(IncExpr)) { 2729 const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand)); 2730 if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr))) 2731 return false; 2732 } 2733 2734 SmallPtrSet<const SCEV*, 8> Processed; 2735 return !isHighCostExpansion(IncExpr, Processed, SE); 2736 } 2737 2738 /// Return true if the number of registers needed for the chain is estimated to 2739 /// be less than the number required for the individual IV users. First prohibit 2740 /// any IV users that keep the IV live across increments (the Users set should 2741 /// be empty). Next count the number and type of increments in the chain. 2742 /// 2743 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't 2744 /// effectively use postinc addressing modes. Only consider it profitable it the 2745 /// increments can be computed in fewer registers when chained. 2746 /// 2747 /// TODO: Consider IVInc free if it's already used in another chains. 2748 static bool 2749 isProfitableChain(IVChain &Chain, SmallPtrSetImpl<Instruction*> &Users, 2750 ScalarEvolution &SE, const TargetTransformInfo &TTI) { 2751 if (StressIVChain) 2752 return true; 2753 2754 if (!Chain.hasIncs()) 2755 return false; 2756 2757 if (!Users.empty()) { 2758 DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n"; 2759 for (Instruction *Inst : Users) { 2760 dbgs() << " " << *Inst << "\n"; 2761 }); 2762 return false; 2763 } 2764 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 2765 2766 // The chain itself may require a register, so intialize cost to 1. 2767 int cost = 1; 2768 2769 // A complete chain likely eliminates the need for keeping the original IV in 2770 // a register. LSR does not currently know how to form a complete chain unless 2771 // the header phi already exists. 2772 if (isa<PHINode>(Chain.tailUserInst()) 2773 && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) { 2774 --cost; 2775 } 2776 const SCEV *LastIncExpr = nullptr; 2777 unsigned NumConstIncrements = 0; 2778 unsigned NumVarIncrements = 0; 2779 unsigned NumReusedIncrements = 0; 2780 for (const IVInc &Inc : Chain) { 2781 if (Inc.IncExpr->isZero()) 2782 continue; 2783 2784 // Incrementing by zero or some constant is neutral. We assume constants can 2785 // be folded into an addressing mode or an add's immediate operand. 2786 if (isa<SCEVConstant>(Inc.IncExpr)) { 2787 ++NumConstIncrements; 2788 continue; 2789 } 2790 2791 if (Inc.IncExpr == LastIncExpr) 2792 ++NumReusedIncrements; 2793 else 2794 ++NumVarIncrements; 2795 2796 LastIncExpr = Inc.IncExpr; 2797 } 2798 // An IV chain with a single increment is handled by LSR's postinc 2799 // uses. However, a chain with multiple increments requires keeping the IV's 2800 // value live longer than it needs to be if chained. 2801 if (NumConstIncrements > 1) 2802 --cost; 2803 2804 // Materializing increment expressions in the preheader that didn't exist in 2805 // the original code may cost a register. For example, sign-extended array 2806 // indices can produce ridiculous increments like this: 2807 // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64))) 2808 cost += NumVarIncrements; 2809 2810 // Reusing variable increments likely saves a register to hold the multiple of 2811 // the stride. 2812 cost -= NumReusedIncrements; 2813 2814 DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost 2815 << "\n"); 2816 2817 return cost < 0; 2818 } 2819 2820 /// Add this IV user to an existing chain or make it the head of a new chain. 2821 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper, 2822 SmallVectorImpl<ChainUsers> &ChainUsersVec) { 2823 // When IVs are used as types of varying widths, they are generally converted 2824 // to a wider type with some uses remaining narrow under a (free) trunc. 2825 Value *const NextIV = getWideOperand(IVOper); 2826 const SCEV *const OperExpr = SE.getSCEV(NextIV); 2827 const SCEV *const OperExprBase = getExprBase(OperExpr); 2828 2829 // Visit all existing chains. Check if its IVOper can be computed as a 2830 // profitable loop invariant increment from the last link in the Chain. 2831 unsigned ChainIdx = 0, NChains = IVChainVec.size(); 2832 const SCEV *LastIncExpr = nullptr; 2833 for (; ChainIdx < NChains; ++ChainIdx) { 2834 IVChain &Chain = IVChainVec[ChainIdx]; 2835 2836 // Prune the solution space aggressively by checking that both IV operands 2837 // are expressions that operate on the same unscaled SCEVUnknown. This 2838 // "base" will be canceled by the subsequent getMinusSCEV call. Checking 2839 // first avoids creating extra SCEV expressions. 2840 if (!StressIVChain && Chain.ExprBase != OperExprBase) 2841 continue; 2842 2843 Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand); 2844 if (!isCompatibleIVType(PrevIV, NextIV)) 2845 continue; 2846 2847 // A phi node terminates a chain. 2848 if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst())) 2849 continue; 2850 2851 // The increment must be loop-invariant so it can be kept in a register. 2852 const SCEV *PrevExpr = SE.getSCEV(PrevIV); 2853 const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr); 2854 if (!SE.isLoopInvariant(IncExpr, L)) 2855 continue; 2856 2857 if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) { 2858 LastIncExpr = IncExpr; 2859 break; 2860 } 2861 } 2862 // If we haven't found a chain, create a new one, unless we hit the max. Don't 2863 // bother for phi nodes, because they must be last in the chain. 2864 if (ChainIdx == NChains) { 2865 if (isa<PHINode>(UserInst)) 2866 return; 2867 if (NChains >= MaxChains && !StressIVChain) { 2868 DEBUG(dbgs() << "IV Chain Limit\n"); 2869 return; 2870 } 2871 LastIncExpr = OperExpr; 2872 // IVUsers may have skipped over sign/zero extensions. We don't currently 2873 // attempt to form chains involving extensions unless they can be hoisted 2874 // into this loop's AddRec. 2875 if (!isa<SCEVAddRecExpr>(LastIncExpr)) 2876 return; 2877 ++NChains; 2878 IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr), 2879 OperExprBase)); 2880 ChainUsersVec.resize(NChains); 2881 DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst 2882 << ") IV=" << *LastIncExpr << "\n"); 2883 } else { 2884 DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Inc: (" << *UserInst 2885 << ") IV+" << *LastIncExpr << "\n"); 2886 // Add this IV user to the end of the chain. 2887 IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr)); 2888 } 2889 IVChain &Chain = IVChainVec[ChainIdx]; 2890 2891 SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers; 2892 // This chain's NearUsers become FarUsers. 2893 if (!LastIncExpr->isZero()) { 2894 ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(), 2895 NearUsers.end()); 2896 NearUsers.clear(); 2897 } 2898 2899 // All other uses of IVOperand become near uses of the chain. 2900 // We currently ignore intermediate values within SCEV expressions, assuming 2901 // they will eventually be used be the current chain, or can be computed 2902 // from one of the chain increments. To be more precise we could 2903 // transitively follow its user and only add leaf IV users to the set. 2904 for (User *U : IVOper->users()) { 2905 Instruction *OtherUse = dyn_cast<Instruction>(U); 2906 if (!OtherUse) 2907 continue; 2908 // Uses in the chain will no longer be uses if the chain is formed. 2909 // Include the head of the chain in this iteration (not Chain.begin()). 2910 IVChain::const_iterator IncIter = Chain.Incs.begin(); 2911 IVChain::const_iterator IncEnd = Chain.Incs.end(); 2912 for( ; IncIter != IncEnd; ++IncIter) { 2913 if (IncIter->UserInst == OtherUse) 2914 break; 2915 } 2916 if (IncIter != IncEnd) 2917 continue; 2918 2919 if (SE.isSCEVable(OtherUse->getType()) 2920 && !isa<SCEVUnknown>(SE.getSCEV(OtherUse)) 2921 && IU.isIVUserOrOperand(OtherUse)) { 2922 continue; 2923 } 2924 NearUsers.insert(OtherUse); 2925 } 2926 2927 // Since this user is part of the chain, it's no longer considered a use 2928 // of the chain. 2929 ChainUsersVec[ChainIdx].FarUsers.erase(UserInst); 2930 } 2931 2932 /// Populate the vector of Chains. 2933 /// 2934 /// This decreases ILP at the architecture level. Targets with ample registers, 2935 /// multiple memory ports, and no register renaming probably don't want 2936 /// this. However, such targets should probably disable LSR altogether. 2937 /// 2938 /// The job of LSR is to make a reasonable choice of induction variables across 2939 /// the loop. Subsequent passes can easily "unchain" computation exposing more 2940 /// ILP *within the loop* if the target wants it. 2941 /// 2942 /// Finding the best IV chain is potentially a scheduling problem. Since LSR 2943 /// will not reorder memory operations, it will recognize this as a chain, but 2944 /// will generate redundant IV increments. Ideally this would be corrected later 2945 /// by a smart scheduler: 2946 /// = A[i] 2947 /// = A[i+x] 2948 /// A[i] = 2949 /// A[i+x] = 2950 /// 2951 /// TODO: Walk the entire domtree within this loop, not just the path to the 2952 /// loop latch. This will discover chains on side paths, but requires 2953 /// maintaining multiple copies of the Chains state. 2954 void LSRInstance::CollectChains() { 2955 DEBUG(dbgs() << "Collecting IV Chains.\n"); 2956 SmallVector<ChainUsers, 8> ChainUsersVec; 2957 2958 SmallVector<BasicBlock *,8> LatchPath; 2959 BasicBlock *LoopHeader = L->getHeader(); 2960 for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch()); 2961 Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) { 2962 LatchPath.push_back(Rung->getBlock()); 2963 } 2964 LatchPath.push_back(LoopHeader); 2965 2966 // Walk the instruction stream from the loop header to the loop latch. 2967 for (BasicBlock *BB : reverse(LatchPath)) { 2968 for (Instruction &I : *BB) { 2969 // Skip instructions that weren't seen by IVUsers analysis. 2970 if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I)) 2971 continue; 2972 2973 // Ignore users that are part of a SCEV expression. This way we only 2974 // consider leaf IV Users. This effectively rediscovers a portion of 2975 // IVUsers analysis but in program order this time. 2976 if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I))) 2977 continue; 2978 2979 // Remove this instruction from any NearUsers set it may be in. 2980 for (unsigned ChainIdx = 0, NChains = IVChainVec.size(); 2981 ChainIdx < NChains; ++ChainIdx) { 2982 ChainUsersVec[ChainIdx].NearUsers.erase(&I); 2983 } 2984 // Search for operands that can be chained. 2985 SmallPtrSet<Instruction*, 4> UniqueOperands; 2986 User::op_iterator IVOpEnd = I.op_end(); 2987 User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE); 2988 while (IVOpIter != IVOpEnd) { 2989 Instruction *IVOpInst = cast<Instruction>(*IVOpIter); 2990 if (UniqueOperands.insert(IVOpInst).second) 2991 ChainInstruction(&I, IVOpInst, ChainUsersVec); 2992 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 2993 } 2994 } // Continue walking down the instructions. 2995 } // Continue walking down the domtree. 2996 // Visit phi backedges to determine if the chain can generate the IV postinc. 2997 for (BasicBlock::iterator I = L->getHeader()->begin(); 2998 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 2999 if (!SE.isSCEVable(PN->getType())) 3000 continue; 3001 3002 Instruction *IncV = 3003 dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch())); 3004 if (IncV) 3005 ChainInstruction(PN, IncV, ChainUsersVec); 3006 } 3007 // Remove any unprofitable chains. 3008 unsigned ChainIdx = 0; 3009 for (unsigned UsersIdx = 0, NChains = IVChainVec.size(); 3010 UsersIdx < NChains; ++UsersIdx) { 3011 if (!isProfitableChain(IVChainVec[UsersIdx], 3012 ChainUsersVec[UsersIdx].FarUsers, SE, TTI)) 3013 continue; 3014 // Preserve the chain at UsesIdx. 3015 if (ChainIdx != UsersIdx) 3016 IVChainVec[ChainIdx] = IVChainVec[UsersIdx]; 3017 FinalizeChain(IVChainVec[ChainIdx]); 3018 ++ChainIdx; 3019 } 3020 IVChainVec.resize(ChainIdx); 3021 } 3022 3023 void LSRInstance::FinalizeChain(IVChain &Chain) { 3024 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 3025 DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n"); 3026 3027 for (const IVInc &Inc : Chain) { 3028 DEBUG(dbgs() << " Inc: " << *Inc.UserInst << "\n"); 3029 auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand); 3030 assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand"); 3031 IVIncSet.insert(UseI); 3032 } 3033 } 3034 3035 /// Return true if the IVInc can be folded into an addressing mode. 3036 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst, 3037 Value *Operand, const TargetTransformInfo &TTI) { 3038 const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr); 3039 if (!IncConst || !isAddressUse(UserInst, Operand)) 3040 return false; 3041 3042 if (IncConst->getAPInt().getMinSignedBits() > 64) 3043 return false; 3044 3045 MemAccessTy AccessTy = getAccessType(UserInst); 3046 int64_t IncOffset = IncConst->getValue()->getSExtValue(); 3047 if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr, 3048 IncOffset, /*HaseBaseReg=*/false)) 3049 return false; 3050 3051 return true; 3052 } 3053 3054 /// Generate an add or subtract for each IVInc in a chain to materialize the IV 3055 /// user's operand from the previous IV user's operand. 3056 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 3057 SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 3058 // Find the new IVOperand for the head of the chain. It may have been replaced 3059 // by LSR. 3060 const IVInc &Head = Chain.Incs[0]; 3061 User::op_iterator IVOpEnd = Head.UserInst->op_end(); 3062 // findIVOperand returns IVOpEnd if it can no longer find a valid IV user. 3063 User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(), 3064 IVOpEnd, L, SE); 3065 Value *IVSrc = nullptr; 3066 while (IVOpIter != IVOpEnd) { 3067 IVSrc = getWideOperand(*IVOpIter); 3068 3069 // If this operand computes the expression that the chain needs, we may use 3070 // it. (Check this after setting IVSrc which is used below.) 3071 // 3072 // Note that if Head.IncExpr is wider than IVSrc, then this phi is too 3073 // narrow for the chain, so we can no longer use it. We do allow using a 3074 // wider phi, assuming the LSR checked for free truncation. In that case we 3075 // should already have a truncate on this operand such that 3076 // getSCEV(IVSrc) == IncExpr. 3077 if (SE.getSCEV(*IVOpIter) == Head.IncExpr 3078 || SE.getSCEV(IVSrc) == Head.IncExpr) { 3079 break; 3080 } 3081 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 3082 } 3083 if (IVOpIter == IVOpEnd) { 3084 // Gracefully give up on this chain. 3085 DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n"); 3086 return; 3087 } 3088 3089 DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n"); 3090 Type *IVTy = IVSrc->getType(); 3091 Type *IntTy = SE.getEffectiveSCEVType(IVTy); 3092 const SCEV *LeftOverExpr = nullptr; 3093 for (const IVInc &Inc : Chain) { 3094 Instruction *InsertPt = Inc.UserInst; 3095 if (isa<PHINode>(InsertPt)) 3096 InsertPt = L->getLoopLatch()->getTerminator(); 3097 3098 // IVOper will replace the current IV User's operand. IVSrc is the IV 3099 // value currently held in a register. 3100 Value *IVOper = IVSrc; 3101 if (!Inc.IncExpr->isZero()) { 3102 // IncExpr was the result of subtraction of two narrow values, so must 3103 // be signed. 3104 const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy); 3105 LeftOverExpr = LeftOverExpr ? 3106 SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr; 3107 } 3108 if (LeftOverExpr && !LeftOverExpr->isZero()) { 3109 // Expand the IV increment. 3110 Rewriter.clearPostInc(); 3111 Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt); 3112 const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc), 3113 SE.getUnknown(IncV)); 3114 IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt); 3115 3116 // If an IV increment can't be folded, use it as the next IV value. 3117 if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) { 3118 assert(IVTy == IVOper->getType() && "inconsistent IV increment type"); 3119 IVSrc = IVOper; 3120 LeftOverExpr = nullptr; 3121 } 3122 } 3123 Type *OperTy = Inc.IVOperand->getType(); 3124 if (IVTy != OperTy) { 3125 assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) && 3126 "cannot extend a chained IV"); 3127 IRBuilder<> Builder(InsertPt); 3128 IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain"); 3129 } 3130 Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper); 3131 DeadInsts.emplace_back(Inc.IVOperand); 3132 } 3133 // If LSR created a new, wider phi, we may also replace its postinc. We only 3134 // do this if we also found a wide value for the head of the chain. 3135 if (isa<PHINode>(Chain.tailUserInst())) { 3136 for (BasicBlock::iterator I = L->getHeader()->begin(); 3137 PHINode *Phi = dyn_cast<PHINode>(I); ++I) { 3138 if (!isCompatibleIVType(Phi, IVSrc)) 3139 continue; 3140 Instruction *PostIncV = dyn_cast<Instruction>( 3141 Phi->getIncomingValueForBlock(L->getLoopLatch())); 3142 if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc))) 3143 continue; 3144 Value *IVOper = IVSrc; 3145 Type *PostIncTy = PostIncV->getType(); 3146 if (IVTy != PostIncTy) { 3147 assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types"); 3148 IRBuilder<> Builder(L->getLoopLatch()->getTerminator()); 3149 Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc()); 3150 IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain"); 3151 } 3152 Phi->replaceUsesOfWith(PostIncV, IVOper); 3153 DeadInsts.emplace_back(PostIncV); 3154 } 3155 } 3156 } 3157 3158 void LSRInstance::CollectFixupsAndInitialFormulae() { 3159 for (const IVStrideUse &U : IU) { 3160 Instruction *UserInst = U.getUser(); 3161 // Skip IV users that are part of profitable IV Chains. 3162 User::op_iterator UseI = 3163 find(UserInst->operands(), U.getOperandValToReplace()); 3164 assert(UseI != UserInst->op_end() && "cannot find IV operand"); 3165 if (IVIncSet.count(UseI)) { 3166 DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n'); 3167 continue; 3168 } 3169 3170 LSRUse::KindType Kind = LSRUse::Basic; 3171 MemAccessTy AccessTy; 3172 if (isAddressUse(UserInst, U.getOperandValToReplace())) { 3173 Kind = LSRUse::Address; 3174 AccessTy = getAccessType(UserInst); 3175 } 3176 3177 const SCEV *S = IU.getExpr(U); 3178 PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops(); 3179 3180 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as 3181 // (N - i == 0), and this allows (N - i) to be the expression that we work 3182 // with rather than just N or i, so we can consider the register 3183 // requirements for both N and i at the same time. Limiting this code to 3184 // equality icmps is not a problem because all interesting loops use 3185 // equality icmps, thanks to IndVarSimplify. 3186 if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst)) 3187 if (CI->isEquality()) { 3188 // Swap the operands if needed to put the OperandValToReplace on the 3189 // left, for consistency. 3190 Value *NV = CI->getOperand(1); 3191 if (NV == U.getOperandValToReplace()) { 3192 CI->setOperand(1, CI->getOperand(0)); 3193 CI->setOperand(0, NV); 3194 NV = CI->getOperand(1); 3195 Changed = true; 3196 } 3197 3198 // x == y --> x - y == 0 3199 const SCEV *N = SE.getSCEV(NV); 3200 if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) { 3201 // S is normalized, so normalize N before folding it into S 3202 // to keep the result normalized. 3203 N = normalizeForPostIncUse(N, TmpPostIncLoops, SE); 3204 Kind = LSRUse::ICmpZero; 3205 S = SE.getMinusSCEV(N, S); 3206 } 3207 3208 // -1 and the negations of all interesting strides (except the negation 3209 // of -1) are now also interesting. 3210 for (size_t i = 0, e = Factors.size(); i != e; ++i) 3211 if (Factors[i] != -1) 3212 Factors.insert(-(uint64_t)Factors[i]); 3213 Factors.insert(-1); 3214 } 3215 3216 // Get or create an LSRUse. 3217 std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy); 3218 size_t LUIdx = P.first; 3219 int64_t Offset = P.second; 3220 LSRUse &LU = Uses[LUIdx]; 3221 3222 // Record the fixup. 3223 LSRFixup &LF = LU.getNewFixup(); 3224 LF.UserInst = UserInst; 3225 LF.OperandValToReplace = U.getOperandValToReplace(); 3226 LF.PostIncLoops = TmpPostIncLoops; 3227 LF.Offset = Offset; 3228 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3229 3230 if (!LU.WidestFixupType || 3231 SE.getTypeSizeInBits(LU.WidestFixupType) < 3232 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3233 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3234 3235 // If this is the first use of this LSRUse, give it a formula. 3236 if (LU.Formulae.empty()) { 3237 InsertInitialFormula(S, LU, LUIdx); 3238 CountRegisters(LU.Formulae.back(), LUIdx); 3239 } 3240 } 3241 3242 DEBUG(print_fixups(dbgs())); 3243 } 3244 3245 /// Insert a formula for the given expression into the given use, separating out 3246 /// loop-variant portions from loop-invariant and loop-computable portions. 3247 void 3248 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) { 3249 // Mark uses whose expressions cannot be expanded. 3250 if (!isSafeToExpand(S, SE)) 3251 LU.RigidFormula = true; 3252 3253 Formula F; 3254 F.initialMatch(S, L, SE); 3255 bool Inserted = InsertFormula(LU, LUIdx, F); 3256 assert(Inserted && "Initial formula already exists!"); (void)Inserted; 3257 } 3258 3259 /// Insert a simple single-register formula for the given expression into the 3260 /// given use. 3261 void 3262 LSRInstance::InsertSupplementalFormula(const SCEV *S, 3263 LSRUse &LU, size_t LUIdx) { 3264 Formula F; 3265 F.BaseRegs.push_back(S); 3266 F.HasBaseReg = true; 3267 bool Inserted = InsertFormula(LU, LUIdx, F); 3268 assert(Inserted && "Supplemental formula already exists!"); (void)Inserted; 3269 } 3270 3271 /// Note which registers are used by the given formula, updating RegUses. 3272 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) { 3273 if (F.ScaledReg) 3274 RegUses.countRegister(F.ScaledReg, LUIdx); 3275 for (const SCEV *BaseReg : F.BaseRegs) 3276 RegUses.countRegister(BaseReg, LUIdx); 3277 } 3278 3279 /// If the given formula has not yet been inserted, add it to the list, and 3280 /// return true. Return false otherwise. 3281 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) { 3282 // Do not insert formula that we will not be able to expand. 3283 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) && 3284 "Formula is illegal"); 3285 3286 if (!LU.InsertFormula(F, *L)) 3287 return false; 3288 3289 CountRegisters(F, LUIdx); 3290 return true; 3291 } 3292 3293 /// Check for other uses of loop-invariant values which we're tracking. These 3294 /// other uses will pin these values in registers, making them less profitable 3295 /// for elimination. 3296 /// TODO: This currently misses non-constant addrec step registers. 3297 /// TODO: Should this give more weight to users inside the loop? 3298 void 3299 LSRInstance::CollectLoopInvariantFixupsAndFormulae() { 3300 SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end()); 3301 SmallPtrSet<const SCEV *, 32> Visited; 3302 3303 while (!Worklist.empty()) { 3304 const SCEV *S = Worklist.pop_back_val(); 3305 3306 // Don't process the same SCEV twice 3307 if (!Visited.insert(S).second) 3308 continue; 3309 3310 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) 3311 Worklist.append(N->op_begin(), N->op_end()); 3312 else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) 3313 Worklist.push_back(C->getOperand()); 3314 else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 3315 Worklist.push_back(D->getLHS()); 3316 Worklist.push_back(D->getRHS()); 3317 } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) { 3318 const Value *V = US->getValue(); 3319 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 3320 // Look for instructions defined outside the loop. 3321 if (L->contains(Inst)) continue; 3322 } else if (isa<UndefValue>(V)) 3323 // Undef doesn't have a live range, so it doesn't matter. 3324 continue; 3325 for (const Use &U : V->uses()) { 3326 const Instruction *UserInst = dyn_cast<Instruction>(U.getUser()); 3327 // Ignore non-instructions. 3328 if (!UserInst) 3329 continue; 3330 // Ignore instructions in other functions (as can happen with 3331 // Constants). 3332 if (UserInst->getParent()->getParent() != L->getHeader()->getParent()) 3333 continue; 3334 // Ignore instructions not dominated by the loop. 3335 const BasicBlock *UseBB = !isa<PHINode>(UserInst) ? 3336 UserInst->getParent() : 3337 cast<PHINode>(UserInst)->getIncomingBlock( 3338 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 3339 if (!DT.dominates(L->getHeader(), UseBB)) 3340 continue; 3341 // Don't bother if the instruction is in a BB which ends in an EHPad. 3342 if (UseBB->getTerminator()->isEHPad()) 3343 continue; 3344 // Don't bother rewriting PHIs in catchswitch blocks. 3345 if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator())) 3346 continue; 3347 // Ignore uses which are part of other SCEV expressions, to avoid 3348 // analyzing them multiple times. 3349 if (SE.isSCEVable(UserInst->getType())) { 3350 const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst)); 3351 // If the user is a no-op, look through to its uses. 3352 if (!isa<SCEVUnknown>(UserS)) 3353 continue; 3354 if (UserS == US) { 3355 Worklist.push_back( 3356 SE.getUnknown(const_cast<Instruction *>(UserInst))); 3357 continue; 3358 } 3359 } 3360 // Ignore icmp instructions which are already being analyzed. 3361 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) { 3362 unsigned OtherIdx = !U.getOperandNo(); 3363 Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx)); 3364 if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L)) 3365 continue; 3366 } 3367 3368 std::pair<size_t, int64_t> P = getUse( 3369 S, LSRUse::Basic, MemAccessTy()); 3370 size_t LUIdx = P.first; 3371 int64_t Offset = P.second; 3372 LSRUse &LU = Uses[LUIdx]; 3373 LSRFixup &LF = LU.getNewFixup(); 3374 LF.UserInst = const_cast<Instruction *>(UserInst); 3375 LF.OperandValToReplace = U; 3376 LF.Offset = Offset; 3377 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3378 if (!LU.WidestFixupType || 3379 SE.getTypeSizeInBits(LU.WidestFixupType) < 3380 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3381 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3382 InsertSupplementalFormula(US, LU, LUIdx); 3383 CountRegisters(LU.Formulae.back(), Uses.size() - 1); 3384 break; 3385 } 3386 } 3387 } 3388 } 3389 3390 /// Split S into subexpressions which can be pulled out into separate 3391 /// registers. If C is non-null, multiply each subexpression by C. 3392 /// 3393 /// Return remainder expression after factoring the subexpressions captured by 3394 /// Ops. If Ops is complete, return NULL. 3395 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C, 3396 SmallVectorImpl<const SCEV *> &Ops, 3397 const Loop *L, 3398 ScalarEvolution &SE, 3399 unsigned Depth = 0) { 3400 // Arbitrarily cap recursion to protect compile time. 3401 if (Depth >= 3) 3402 return S; 3403 3404 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3405 // Break out add operands. 3406 for (const SCEV *S : Add->operands()) { 3407 const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1); 3408 if (Remainder) 3409 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3410 } 3411 return nullptr; 3412 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 3413 // Split a non-zero base out of an addrec. 3414 if (AR->getStart()->isZero() || !AR->isAffine()) 3415 return S; 3416 3417 const SCEV *Remainder = CollectSubexprs(AR->getStart(), 3418 C, Ops, L, SE, Depth+1); 3419 // Split the non-zero AddRec unless it is part of a nested recurrence that 3420 // does not pertain to this loop. 3421 if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) { 3422 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3423 Remainder = nullptr; 3424 } 3425 if (Remainder != AR->getStart()) { 3426 if (!Remainder) 3427 Remainder = SE.getConstant(AR->getType(), 0); 3428 return SE.getAddRecExpr(Remainder, 3429 AR->getStepRecurrence(SE), 3430 AR->getLoop(), 3431 //FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 3432 SCEV::FlagAnyWrap); 3433 } 3434 } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3435 // Break (C * (a + b + c)) into C*a + C*b + C*c. 3436 if (Mul->getNumOperands() != 2) 3437 return S; 3438 if (const SCEVConstant *Op0 = 3439 dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3440 C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0; 3441 const SCEV *Remainder = 3442 CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1); 3443 if (Remainder) 3444 Ops.push_back(SE.getMulExpr(C, Remainder)); 3445 return nullptr; 3446 } 3447 } 3448 return S; 3449 } 3450 3451 /// \brief Helper function for LSRInstance::GenerateReassociations. 3452 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 3453 const Formula &Base, 3454 unsigned Depth, size_t Idx, 3455 bool IsScaledReg) { 3456 const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3457 SmallVector<const SCEV *, 8> AddOps; 3458 const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE); 3459 if (Remainder) 3460 AddOps.push_back(Remainder); 3461 3462 if (AddOps.size() == 1) 3463 return; 3464 3465 for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(), 3466 JE = AddOps.end(); 3467 J != JE; ++J) { 3468 3469 // Loop-variant "unknown" values are uninteresting; we won't be able to 3470 // do anything meaningful with them. 3471 if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L)) 3472 continue; 3473 3474 // Don't pull a constant into a register if the constant could be folded 3475 // into an immediate field. 3476 if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3477 LU.AccessTy, *J, Base.getNumRegs() > 1)) 3478 continue; 3479 3480 // Collect all operands except *J. 3481 SmallVector<const SCEV *, 8> InnerAddOps( 3482 ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J); 3483 InnerAddOps.append(std::next(J), 3484 ((const SmallVector<const SCEV *, 8> &)AddOps).end()); 3485 3486 // Don't leave just a constant behind in a register if the constant could 3487 // be folded into an immediate field. 3488 if (InnerAddOps.size() == 1 && 3489 isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3490 LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1)) 3491 continue; 3492 3493 const SCEV *InnerSum = SE.getAddExpr(InnerAddOps); 3494 if (InnerSum->isZero()) 3495 continue; 3496 Formula F = Base; 3497 3498 // Add the remaining pieces of the add back into the new formula. 3499 const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum); 3500 if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 && 3501 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3502 InnerSumSC->getValue()->getZExtValue())) { 3503 F.UnfoldedOffset = 3504 (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue(); 3505 if (IsScaledReg) 3506 F.ScaledReg = nullptr; 3507 else 3508 F.BaseRegs.erase(F.BaseRegs.begin() + Idx); 3509 } else if (IsScaledReg) 3510 F.ScaledReg = InnerSum; 3511 else 3512 F.BaseRegs[Idx] = InnerSum; 3513 3514 // Add J as its own register, or an unfolded immediate. 3515 const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J); 3516 if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 && 3517 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3518 SC->getValue()->getZExtValue())) 3519 F.UnfoldedOffset = 3520 (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue(); 3521 else 3522 F.BaseRegs.push_back(*J); 3523 // We may have changed the number of register in base regs, adjust the 3524 // formula accordingly. 3525 F.canonicalize(*L); 3526 3527 if (InsertFormula(LU, LUIdx, F)) 3528 // If that formula hadn't been seen before, recurse to find more like 3529 // it. 3530 GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth + 1); 3531 } 3532 } 3533 3534 /// Split out subexpressions from adds and the bases of addrecs. 3535 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx, 3536 Formula Base, unsigned Depth) { 3537 assert(Base.isCanonical(*L) && "Input must be in the canonical form"); 3538 // Arbitrarily cap recursion to protect compile time. 3539 if (Depth >= 3) 3540 return; 3541 3542 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3543 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i); 3544 3545 if (Base.Scale == 1) 3546 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, 3547 /* Idx */ -1, /* IsScaledReg */ true); 3548 } 3549 3550 /// Generate a formula consisting of all of the loop-dominating registers added 3551 /// into a single register. 3552 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx, 3553 Formula Base) { 3554 // This method is only interesting on a plurality of registers. 3555 if (Base.BaseRegs.size() + (Base.Scale == 1) <= 1) 3556 return; 3557 3558 // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before 3559 // processing the formula. 3560 Base.unscale(); 3561 Formula F = Base; 3562 F.BaseRegs.clear(); 3563 SmallVector<const SCEV *, 4> Ops; 3564 for (const SCEV *BaseReg : Base.BaseRegs) { 3565 if (SE.properlyDominates(BaseReg, L->getHeader()) && 3566 !SE.hasComputableLoopEvolution(BaseReg, L)) 3567 Ops.push_back(BaseReg); 3568 else 3569 F.BaseRegs.push_back(BaseReg); 3570 } 3571 if (Ops.size() > 1) { 3572 const SCEV *Sum = SE.getAddExpr(Ops); 3573 // TODO: If Sum is zero, it probably means ScalarEvolution missed an 3574 // opportunity to fold something. For now, just ignore such cases 3575 // rather than proceed with zero in a register. 3576 if (!Sum->isZero()) { 3577 F.BaseRegs.push_back(Sum); 3578 F.canonicalize(*L); 3579 (void)InsertFormula(LU, LUIdx, F); 3580 } 3581 } 3582 } 3583 3584 /// \brief Helper function for LSRInstance::GenerateSymbolicOffsets. 3585 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 3586 const Formula &Base, size_t Idx, 3587 bool IsScaledReg) { 3588 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3589 GlobalValue *GV = ExtractSymbol(G, SE); 3590 if (G->isZero() || !GV) 3591 return; 3592 Formula F = Base; 3593 F.BaseGV = GV; 3594 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3595 return; 3596 if (IsScaledReg) 3597 F.ScaledReg = G; 3598 else 3599 F.BaseRegs[Idx] = G; 3600 (void)InsertFormula(LU, LUIdx, F); 3601 } 3602 3603 /// Generate reuse formulae using symbolic offsets. 3604 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, 3605 Formula Base) { 3606 // We can't add a symbolic offset if the address already contains one. 3607 if (Base.BaseGV) return; 3608 3609 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3610 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i); 3611 if (Base.Scale == 1) 3612 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1, 3613 /* IsScaledReg */ true); 3614 } 3615 3616 /// \brief Helper function for LSRInstance::GenerateConstantOffsets. 3617 void LSRInstance::GenerateConstantOffsetsImpl( 3618 LSRUse &LU, unsigned LUIdx, const Formula &Base, 3619 const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) { 3620 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3621 for (int64_t Offset : Worklist) { 3622 Formula F = Base; 3623 F.BaseOffset = (uint64_t)Base.BaseOffset - Offset; 3624 if (isLegalUse(TTI, LU.MinOffset - Offset, LU.MaxOffset - Offset, LU.Kind, 3625 LU.AccessTy, F)) { 3626 // Add the offset to the base register. 3627 const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G); 3628 // If it cancelled out, drop the base register, otherwise update it. 3629 if (NewG->isZero()) { 3630 if (IsScaledReg) { 3631 F.Scale = 0; 3632 F.ScaledReg = nullptr; 3633 } else 3634 F.deleteBaseReg(F.BaseRegs[Idx]); 3635 F.canonicalize(*L); 3636 } else if (IsScaledReg) 3637 F.ScaledReg = NewG; 3638 else 3639 F.BaseRegs[Idx] = NewG; 3640 3641 (void)InsertFormula(LU, LUIdx, F); 3642 } 3643 } 3644 3645 int64_t Imm = ExtractImmediate(G, SE); 3646 if (G->isZero() || Imm == 0) 3647 return; 3648 Formula F = Base; 3649 F.BaseOffset = (uint64_t)F.BaseOffset + Imm; 3650 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3651 return; 3652 if (IsScaledReg) 3653 F.ScaledReg = G; 3654 else 3655 F.BaseRegs[Idx] = G; 3656 (void)InsertFormula(LU, LUIdx, F); 3657 } 3658 3659 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets. 3660 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, 3661 Formula Base) { 3662 // TODO: For now, just add the min and max offset, because it usually isn't 3663 // worthwhile looking at everything inbetween. 3664 SmallVector<int64_t, 2> Worklist; 3665 Worklist.push_back(LU.MinOffset); 3666 if (LU.MaxOffset != LU.MinOffset) 3667 Worklist.push_back(LU.MaxOffset); 3668 3669 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3670 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i); 3671 if (Base.Scale == 1) 3672 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1, 3673 /* IsScaledReg */ true); 3674 } 3675 3676 /// For ICmpZero, check to see if we can scale up the comparison. For example, x 3677 /// == y -> x*c == y*c. 3678 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, 3679 Formula Base) { 3680 if (LU.Kind != LSRUse::ICmpZero) return; 3681 3682 // Determine the integer type for the base formula. 3683 Type *IntTy = Base.getType(); 3684 if (!IntTy) return; 3685 if (SE.getTypeSizeInBits(IntTy) > 64) return; 3686 3687 // Don't do this if there is more than one offset. 3688 if (LU.MinOffset != LU.MaxOffset) return; 3689 3690 // Check if transformation is valid. It is illegal to multiply pointer. 3691 if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy()) 3692 return; 3693 for (const SCEV *BaseReg : Base.BaseRegs) 3694 if (BaseReg->getType()->isPointerTy()) 3695 return; 3696 assert(!Base.BaseGV && "ICmpZero use is not legal!"); 3697 3698 // Check each interesting stride. 3699 for (int64_t Factor : Factors) { 3700 // Check that the multiplication doesn't overflow. 3701 if (Base.BaseOffset == INT64_MIN && Factor == -1) 3702 continue; 3703 int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor; 3704 if (NewBaseOffset / Factor != Base.BaseOffset) 3705 continue; 3706 // If the offset will be truncated at this use, check that it is in bounds. 3707 if (!IntTy->isPointerTy() && 3708 !ConstantInt::isValueValidForType(IntTy, NewBaseOffset)) 3709 continue; 3710 3711 // Check that multiplying with the use offset doesn't overflow. 3712 int64_t Offset = LU.MinOffset; 3713 if (Offset == INT64_MIN && Factor == -1) 3714 continue; 3715 Offset = (uint64_t)Offset * Factor; 3716 if (Offset / Factor != LU.MinOffset) 3717 continue; 3718 // If the offset will be truncated at this use, check that it is in bounds. 3719 if (!IntTy->isPointerTy() && 3720 !ConstantInt::isValueValidForType(IntTy, Offset)) 3721 continue; 3722 3723 Formula F = Base; 3724 F.BaseOffset = NewBaseOffset; 3725 3726 // Check that this scale is legal. 3727 if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F)) 3728 continue; 3729 3730 // Compensate for the use having MinOffset built into it. 3731 F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset; 3732 3733 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3734 3735 // Check that multiplying with each base register doesn't overflow. 3736 for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) { 3737 F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS); 3738 if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i]) 3739 goto next; 3740 } 3741 3742 // Check that multiplying with the scaled register doesn't overflow. 3743 if (F.ScaledReg) { 3744 F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS); 3745 if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg) 3746 continue; 3747 } 3748 3749 // Check that multiplying with the unfolded offset doesn't overflow. 3750 if (F.UnfoldedOffset != 0) { 3751 if (F.UnfoldedOffset == INT64_MIN && Factor == -1) 3752 continue; 3753 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor; 3754 if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset) 3755 continue; 3756 // If the offset will be truncated, check that it is in bounds. 3757 if (!IntTy->isPointerTy() && 3758 !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset)) 3759 continue; 3760 } 3761 3762 // If we make it here and it's legal, add it. 3763 (void)InsertFormula(LU, LUIdx, F); 3764 next:; 3765 } 3766 } 3767 3768 /// Generate stride factor reuse formulae by making use of scaled-offset address 3769 /// modes, for example. 3770 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) { 3771 // Determine the integer type for the base formula. 3772 Type *IntTy = Base.getType(); 3773 if (!IntTy) return; 3774 3775 // If this Formula already has a scaled register, we can't add another one. 3776 // Try to unscale the formula to generate a better scale. 3777 if (Base.Scale != 0 && !Base.unscale()) 3778 return; 3779 3780 assert(Base.Scale == 0 && "unscale did not did its job!"); 3781 3782 // Check each interesting stride. 3783 for (int64_t Factor : Factors) { 3784 Base.Scale = Factor; 3785 Base.HasBaseReg = Base.BaseRegs.size() > 1; 3786 // Check whether this scale is going to be legal. 3787 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 3788 Base)) { 3789 // As a special-case, handle special out-of-loop Basic users specially. 3790 // TODO: Reconsider this special case. 3791 if (LU.Kind == LSRUse::Basic && 3792 isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special, 3793 LU.AccessTy, Base) && 3794 LU.AllFixupsOutsideLoop) 3795 LU.Kind = LSRUse::Special; 3796 else 3797 continue; 3798 } 3799 // For an ICmpZero, negating a solitary base register won't lead to 3800 // new solutions. 3801 if (LU.Kind == LSRUse::ICmpZero && 3802 !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV) 3803 continue; 3804 // For each addrec base reg, if its loop is current loop, apply the scale. 3805 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { 3806 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i]); 3807 if (AR && (AR->getLoop() == L || LU.AllFixupsOutsideLoop)) { 3808 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3809 if (FactorS->isZero()) 3810 continue; 3811 // Divide out the factor, ignoring high bits, since we'll be 3812 // scaling the value back up in the end. 3813 if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) { 3814 // TODO: This could be optimized to avoid all the copying. 3815 Formula F = Base; 3816 F.ScaledReg = Quotient; 3817 F.deleteBaseReg(F.BaseRegs[i]); 3818 // The canonical representation of 1*reg is reg, which is already in 3819 // Base. In that case, do not try to insert the formula, it will be 3820 // rejected anyway. 3821 if (F.Scale == 1 && (F.BaseRegs.empty() || 3822 (AR->getLoop() != L && LU.AllFixupsOutsideLoop))) 3823 continue; 3824 // If AllFixupsOutsideLoop is true and F.Scale is 1, we may generate 3825 // non canonical Formula with ScaledReg's loop not being L. 3826 if (F.Scale == 1 && LU.AllFixupsOutsideLoop) 3827 F.canonicalize(*L); 3828 (void)InsertFormula(LU, LUIdx, F); 3829 } 3830 } 3831 } 3832 } 3833 } 3834 3835 /// Generate reuse formulae from different IV types. 3836 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) { 3837 // Don't bother truncating symbolic values. 3838 if (Base.BaseGV) return; 3839 3840 // Determine the integer type for the base formula. 3841 Type *DstTy = Base.getType(); 3842 if (!DstTy) return; 3843 DstTy = SE.getEffectiveSCEVType(DstTy); 3844 3845 for (Type *SrcTy : Types) { 3846 if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) { 3847 Formula F = Base; 3848 3849 if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy); 3850 for (const SCEV *&BaseReg : F.BaseRegs) 3851 BaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy); 3852 3853 // TODO: This assumes we've done basic processing on all uses and 3854 // have an idea what the register usage is. 3855 if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses)) 3856 continue; 3857 3858 F.canonicalize(*L); 3859 (void)InsertFormula(LU, LUIdx, F); 3860 } 3861 } 3862 } 3863 3864 namespace { 3865 3866 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer 3867 /// modifications so that the search phase doesn't have to worry about the data 3868 /// structures moving underneath it. 3869 struct WorkItem { 3870 size_t LUIdx; 3871 int64_t Imm; 3872 const SCEV *OrigReg; 3873 3874 WorkItem(size_t LI, int64_t I, const SCEV *R) 3875 : LUIdx(LI), Imm(I), OrigReg(R) {} 3876 3877 void print(raw_ostream &OS) const; 3878 void dump() const; 3879 }; 3880 3881 } // end anonymous namespace 3882 3883 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 3884 void WorkItem::print(raw_ostream &OS) const { 3885 OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx 3886 << " , add offset " << Imm; 3887 } 3888 3889 LLVM_DUMP_METHOD void WorkItem::dump() const { 3890 print(errs()); errs() << '\n'; 3891 } 3892 #endif 3893 3894 /// Look for registers which are a constant distance apart and try to form reuse 3895 /// opportunities between them. 3896 void LSRInstance::GenerateCrossUseConstantOffsets() { 3897 // Group the registers by their value without any added constant offset. 3898 typedef std::map<int64_t, const SCEV *> ImmMapTy; 3899 DenseMap<const SCEV *, ImmMapTy> Map; 3900 DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap; 3901 SmallVector<const SCEV *, 8> Sequence; 3902 for (const SCEV *Use : RegUses) { 3903 const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify. 3904 int64_t Imm = ExtractImmediate(Reg, SE); 3905 auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy())); 3906 if (Pair.second) 3907 Sequence.push_back(Reg); 3908 Pair.first->second.insert(std::make_pair(Imm, Use)); 3909 UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use); 3910 } 3911 3912 // Now examine each set of registers with the same base value. Build up 3913 // a list of work to do and do the work in a separate step so that we're 3914 // not adding formulae and register counts while we're searching. 3915 SmallVector<WorkItem, 32> WorkItems; 3916 SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems; 3917 for (const SCEV *Reg : Sequence) { 3918 const ImmMapTy &Imms = Map.find(Reg)->second; 3919 3920 // It's not worthwhile looking for reuse if there's only one offset. 3921 if (Imms.size() == 1) 3922 continue; 3923 3924 DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':'; 3925 for (const auto &Entry : Imms) 3926 dbgs() << ' ' << Entry.first; 3927 dbgs() << '\n'); 3928 3929 // Examine each offset. 3930 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); 3931 J != JE; ++J) { 3932 const SCEV *OrigReg = J->second; 3933 3934 int64_t JImm = J->first; 3935 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg); 3936 3937 if (!isa<SCEVConstant>(OrigReg) && 3938 UsedByIndicesMap[Reg].count() == 1) { 3939 DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n'); 3940 continue; 3941 } 3942 3943 // Conservatively examine offsets between this orig reg a few selected 3944 // other orig regs. 3945 ImmMapTy::const_iterator OtherImms[] = { 3946 Imms.begin(), std::prev(Imms.end()), 3947 Imms.lower_bound((Imms.begin()->first + std::prev(Imms.end())->first) / 3948 2) 3949 }; 3950 for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) { 3951 ImmMapTy::const_iterator M = OtherImms[i]; 3952 if (M == J || M == JE) continue; 3953 3954 // Compute the difference between the two. 3955 int64_t Imm = (uint64_t)JImm - M->first; 3956 for (unsigned LUIdx : UsedByIndices.set_bits()) 3957 // Make a memo of this use, offset, and register tuple. 3958 if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second) 3959 WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg)); 3960 } 3961 } 3962 } 3963 3964 Map.clear(); 3965 Sequence.clear(); 3966 UsedByIndicesMap.clear(); 3967 UniqueItems.clear(); 3968 3969 // Now iterate through the worklist and add new formulae. 3970 for (const WorkItem &WI : WorkItems) { 3971 size_t LUIdx = WI.LUIdx; 3972 LSRUse &LU = Uses[LUIdx]; 3973 int64_t Imm = WI.Imm; 3974 const SCEV *OrigReg = WI.OrigReg; 3975 3976 Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType()); 3977 const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm)); 3978 unsigned BitWidth = SE.getTypeSizeInBits(IntTy); 3979 3980 // TODO: Use a more targeted data structure. 3981 for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) { 3982 Formula F = LU.Formulae[L]; 3983 // FIXME: The code for the scaled and unscaled registers looks 3984 // very similar but slightly different. Investigate if they 3985 // could be merged. That way, we would not have to unscale the 3986 // Formula. 3987 F.unscale(); 3988 // Use the immediate in the scaled register. 3989 if (F.ScaledReg == OrigReg) { 3990 int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale; 3991 // Don't create 50 + reg(-50). 3992 if (F.referencesReg(SE.getSCEV( 3993 ConstantInt::get(IntTy, -(uint64_t)Offset)))) 3994 continue; 3995 Formula NewF = F; 3996 NewF.BaseOffset = Offset; 3997 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 3998 NewF)) 3999 continue; 4000 NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg); 4001 4002 // If the new scale is a constant in a register, and adding the constant 4003 // value to the immediate would produce a value closer to zero than the 4004 // immediate itself, then the formula isn't worthwhile. 4005 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg)) 4006 if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) && 4007 (C->getAPInt().abs() * APInt(BitWidth, F.Scale)) 4008 .ule(std::abs(NewF.BaseOffset))) 4009 continue; 4010 4011 // OK, looks good. 4012 NewF.canonicalize(*this->L); 4013 (void)InsertFormula(LU, LUIdx, NewF); 4014 } else { 4015 // Use the immediate in a base register. 4016 for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) { 4017 const SCEV *BaseReg = F.BaseRegs[N]; 4018 if (BaseReg != OrigReg) 4019 continue; 4020 Formula NewF = F; 4021 NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm; 4022 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, 4023 LU.Kind, LU.AccessTy, NewF)) { 4024 if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm)) 4025 continue; 4026 NewF = F; 4027 NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm; 4028 } 4029 NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg); 4030 4031 // If the new formula has a constant in a register, and adding the 4032 // constant value to the immediate would produce a value closer to 4033 // zero than the immediate itself, then the formula isn't worthwhile. 4034 for (const SCEV *NewReg : NewF.BaseRegs) 4035 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg)) 4036 if ((C->getAPInt() + NewF.BaseOffset) 4037 .abs() 4038 .slt(std::abs(NewF.BaseOffset)) && 4039 (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >= 4040 countTrailingZeros<uint64_t>(NewF.BaseOffset)) 4041 goto skip_formula; 4042 4043 // Ok, looks good. 4044 NewF.canonicalize(*this->L); 4045 (void)InsertFormula(LU, LUIdx, NewF); 4046 break; 4047 skip_formula:; 4048 } 4049 } 4050 } 4051 } 4052 } 4053 4054 /// Generate formulae for each use. 4055 void 4056 LSRInstance::GenerateAllReuseFormulae() { 4057 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan 4058 // queries are more precise. 4059 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4060 LSRUse &LU = Uses[LUIdx]; 4061 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4062 GenerateReassociations(LU, LUIdx, LU.Formulae[i]); 4063 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4064 GenerateCombinations(LU, LUIdx, LU.Formulae[i]); 4065 } 4066 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4067 LSRUse &LU = Uses[LUIdx]; 4068 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4069 GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]); 4070 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4071 GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]); 4072 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4073 GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]); 4074 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4075 GenerateScales(LU, LUIdx, LU.Formulae[i]); 4076 } 4077 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4078 LSRUse &LU = Uses[LUIdx]; 4079 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4080 GenerateTruncates(LU, LUIdx, LU.Formulae[i]); 4081 } 4082 4083 GenerateCrossUseConstantOffsets(); 4084 4085 DEBUG(dbgs() << "\n" 4086 "After generating reuse formulae:\n"; 4087 print_uses(dbgs())); 4088 } 4089 4090 /// If there are multiple formulae with the same set of registers used 4091 /// by other uses, pick the best one and delete the others. 4092 void LSRInstance::FilterOutUndesirableDedicatedRegisters() { 4093 DenseSet<const SCEV *> VisitedRegs; 4094 SmallPtrSet<const SCEV *, 16> Regs; 4095 SmallPtrSet<const SCEV *, 16> LoserRegs; 4096 #ifndef NDEBUG 4097 bool ChangedFormulae = false; 4098 #endif 4099 4100 // Collect the best formula for each unique set of shared registers. This 4101 // is reset for each use. 4102 typedef DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo> 4103 BestFormulaeTy; 4104 BestFormulaeTy BestFormulae; 4105 4106 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4107 LSRUse &LU = Uses[LUIdx]; 4108 DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n'); 4109 4110 bool Any = false; 4111 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); 4112 FIdx != NumForms; ++FIdx) { 4113 Formula &F = LU.Formulae[FIdx]; 4114 4115 // Some formulas are instant losers. For example, they may depend on 4116 // nonexistent AddRecs from other loops. These need to be filtered 4117 // immediately, otherwise heuristics could choose them over others leading 4118 // to an unsatisfactory solution. Passing LoserRegs into RateFormula here 4119 // avoids the need to recompute this information across formulae using the 4120 // same bad AddRec. Passing LoserRegs is also essential unless we remove 4121 // the corresponding bad register from the Regs set. 4122 Cost CostF; 4123 Regs.clear(); 4124 CostF.RateFormula(TTI, F, Regs, VisitedRegs, L, SE, DT, LU, &LoserRegs); 4125 if (CostF.isLoser()) { 4126 // During initial formula generation, undesirable formulae are generated 4127 // by uses within other loops that have some non-trivial address mode or 4128 // use the postinc form of the IV. LSR needs to provide these formulae 4129 // as the basis of rediscovering the desired formula that uses an AddRec 4130 // corresponding to the existing phi. Once all formulae have been 4131 // generated, these initial losers may be pruned. 4132 DEBUG(dbgs() << " Filtering loser "; F.print(dbgs()); 4133 dbgs() << "\n"); 4134 } 4135 else { 4136 SmallVector<const SCEV *, 4> Key; 4137 for (const SCEV *Reg : F.BaseRegs) { 4138 if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx)) 4139 Key.push_back(Reg); 4140 } 4141 if (F.ScaledReg && 4142 RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx)) 4143 Key.push_back(F.ScaledReg); 4144 // Unstable sort by host order ok, because this is only used for 4145 // uniquifying. 4146 std::sort(Key.begin(), Key.end()); 4147 4148 std::pair<BestFormulaeTy::const_iterator, bool> P = 4149 BestFormulae.insert(std::make_pair(Key, FIdx)); 4150 if (P.second) 4151 continue; 4152 4153 Formula &Best = LU.Formulae[P.first->second]; 4154 4155 Cost CostBest; 4156 Regs.clear(); 4157 CostBest.RateFormula(TTI, Best, Regs, VisitedRegs, L, SE, DT, LU); 4158 if (CostF.isLess(CostBest, TTI)) 4159 std::swap(F, Best); 4160 DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 4161 dbgs() << "\n" 4162 " in favor of formula "; Best.print(dbgs()); 4163 dbgs() << '\n'); 4164 } 4165 #ifndef NDEBUG 4166 ChangedFormulae = true; 4167 #endif 4168 LU.DeleteFormula(F); 4169 --FIdx; 4170 --NumForms; 4171 Any = true; 4172 } 4173 4174 // Now that we've filtered out some formulae, recompute the Regs set. 4175 if (Any) 4176 LU.RecomputeRegs(LUIdx, RegUses); 4177 4178 // Reset this to prepare for the next use. 4179 BestFormulae.clear(); 4180 } 4181 4182 DEBUG(if (ChangedFormulae) { 4183 dbgs() << "\n" 4184 "After filtering out undesirable candidates:\n"; 4185 print_uses(dbgs()); 4186 }); 4187 } 4188 4189 // This is a rough guess that seems to work fairly well. 4190 static const size_t ComplexityLimit = UINT16_MAX; 4191 4192 /// Estimate the worst-case number of solutions the solver might have to 4193 /// consider. It almost never considers this many solutions because it prune the 4194 /// search space, but the pruning isn't always sufficient. 4195 size_t LSRInstance::EstimateSearchSpaceComplexity() const { 4196 size_t Power = 1; 4197 for (const LSRUse &LU : Uses) { 4198 size_t FSize = LU.Formulae.size(); 4199 if (FSize >= ComplexityLimit) { 4200 Power = ComplexityLimit; 4201 break; 4202 } 4203 Power *= FSize; 4204 if (Power >= ComplexityLimit) 4205 break; 4206 } 4207 return Power; 4208 } 4209 4210 /// When one formula uses a superset of the registers of another formula, it 4211 /// won't help reduce register pressure (though it may not necessarily hurt 4212 /// register pressure); remove it to simplify the system. 4213 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() { 4214 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4215 DEBUG(dbgs() << "The search space is too complex.\n"); 4216 4217 DEBUG(dbgs() << "Narrowing the search space by eliminating formulae " 4218 "which use a superset of registers used by other " 4219 "formulae.\n"); 4220 4221 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4222 LSRUse &LU = Uses[LUIdx]; 4223 bool Any = false; 4224 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4225 Formula &F = LU.Formulae[i]; 4226 // Look for a formula with a constant or GV in a register. If the use 4227 // also has a formula with that same value in an immediate field, 4228 // delete the one that uses a register. 4229 for (SmallVectorImpl<const SCEV *>::const_iterator 4230 I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) { 4231 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) { 4232 Formula NewF = F; 4233 NewF.BaseOffset += C->getValue()->getSExtValue(); 4234 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4235 (I - F.BaseRegs.begin())); 4236 if (LU.HasFormulaWithSameRegs(NewF)) { 4237 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4238 LU.DeleteFormula(F); 4239 --i; 4240 --e; 4241 Any = true; 4242 break; 4243 } 4244 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) { 4245 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) 4246 if (!F.BaseGV) { 4247 Formula NewF = F; 4248 NewF.BaseGV = GV; 4249 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4250 (I - F.BaseRegs.begin())); 4251 if (LU.HasFormulaWithSameRegs(NewF)) { 4252 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4253 dbgs() << '\n'); 4254 LU.DeleteFormula(F); 4255 --i; 4256 --e; 4257 Any = true; 4258 break; 4259 } 4260 } 4261 } 4262 } 4263 } 4264 if (Any) 4265 LU.RecomputeRegs(LUIdx, RegUses); 4266 } 4267 4268 DEBUG(dbgs() << "After pre-selection:\n"; 4269 print_uses(dbgs())); 4270 } 4271 } 4272 4273 /// When there are many registers for expressions like A, A+1, A+2, etc., 4274 /// allocate a single register for them. 4275 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() { 4276 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4277 return; 4278 4279 DEBUG(dbgs() << "The search space is too complex.\n" 4280 "Narrowing the search space by assuming that uses separated " 4281 "by a constant offset will use the same registers.\n"); 4282 4283 // This is especially useful for unrolled loops. 4284 4285 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4286 LSRUse &LU = Uses[LUIdx]; 4287 for (const Formula &F : LU.Formulae) { 4288 if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1)) 4289 continue; 4290 4291 LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU); 4292 if (!LUThatHas) 4293 continue; 4294 4295 if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false, 4296 LU.Kind, LU.AccessTy)) 4297 continue; 4298 4299 DEBUG(dbgs() << " Deleting use "; LU.print(dbgs()); dbgs() << '\n'); 4300 4301 LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop; 4302 4303 // Transfer the fixups of LU to LUThatHas. 4304 for (LSRFixup &Fixup : LU.Fixups) { 4305 Fixup.Offset += F.BaseOffset; 4306 LUThatHas->pushFixup(Fixup); 4307 DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n'); 4308 } 4309 4310 // Delete formulae from the new use which are no longer legal. 4311 bool Any = false; 4312 for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) { 4313 Formula &F = LUThatHas->Formulae[i]; 4314 if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset, 4315 LUThatHas->Kind, LUThatHas->AccessTy, F)) { 4316 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4317 dbgs() << '\n'); 4318 LUThatHas->DeleteFormula(F); 4319 --i; 4320 --e; 4321 Any = true; 4322 } 4323 } 4324 4325 if (Any) 4326 LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses); 4327 4328 // Delete the old use. 4329 DeleteUse(LU, LUIdx); 4330 --LUIdx; 4331 --NumUses; 4332 break; 4333 } 4334 } 4335 4336 DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4337 } 4338 4339 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that 4340 /// we've done more filtering, as it may be able to find more formulae to 4341 /// eliminate. 4342 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){ 4343 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4344 DEBUG(dbgs() << "The search space is too complex.\n"); 4345 4346 DEBUG(dbgs() << "Narrowing the search space by re-filtering out " 4347 "undesirable dedicated registers.\n"); 4348 4349 FilterOutUndesirableDedicatedRegisters(); 4350 4351 DEBUG(dbgs() << "After pre-selection:\n"; 4352 print_uses(dbgs())); 4353 } 4354 } 4355 4356 /// If a LSRUse has multiple formulae with the same ScaledReg and Scale. 4357 /// Pick the best one and delete the others. 4358 /// This narrowing heuristic is to keep as many formulae with different 4359 /// Scale and ScaledReg pair as possible while narrowing the search space. 4360 /// The benefit is that it is more likely to find out a better solution 4361 /// from a formulae set with more Scale and ScaledReg variations than 4362 /// a formulae set with the same Scale and ScaledReg. The picking winner 4363 /// reg heurstic will often keep the formulae with the same Scale and 4364 /// ScaledReg and filter others, and we want to avoid that if possible. 4365 void LSRInstance::NarrowSearchSpaceByFilterFormulaWithSameScaledReg() { 4366 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4367 return; 4368 4369 DEBUG(dbgs() << "The search space is too complex.\n" 4370 "Narrowing the search space by choosing the best Formula " 4371 "from the Formulae with the same Scale and ScaledReg.\n"); 4372 4373 // Map the "Scale * ScaledReg" pair to the best formula of current LSRUse. 4374 typedef DenseMap<std::pair<const SCEV *, int64_t>, size_t> BestFormulaeTy; 4375 BestFormulaeTy BestFormulae; 4376 #ifndef NDEBUG 4377 bool ChangedFormulae = false; 4378 #endif 4379 DenseSet<const SCEV *> VisitedRegs; 4380 SmallPtrSet<const SCEV *, 16> Regs; 4381 4382 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4383 LSRUse &LU = Uses[LUIdx]; 4384 DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n'); 4385 4386 // Return true if Formula FA is better than Formula FB. 4387 auto IsBetterThan = [&](Formula &FA, Formula &FB) { 4388 // First we will try to choose the Formula with fewer new registers. 4389 // For a register used by current Formula, the more the register is 4390 // shared among LSRUses, the less we increase the register number 4391 // counter of the formula. 4392 size_t FARegNum = 0; 4393 for (const SCEV *Reg : FA.BaseRegs) { 4394 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg); 4395 FARegNum += (NumUses - UsedByIndices.count() + 1); 4396 } 4397 size_t FBRegNum = 0; 4398 for (const SCEV *Reg : FB.BaseRegs) { 4399 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg); 4400 FBRegNum += (NumUses - UsedByIndices.count() + 1); 4401 } 4402 if (FARegNum != FBRegNum) 4403 return FARegNum < FBRegNum; 4404 4405 // If the new register numbers are the same, choose the Formula with 4406 // less Cost. 4407 Cost CostFA, CostFB; 4408 Regs.clear(); 4409 CostFA.RateFormula(TTI, FA, Regs, VisitedRegs, L, SE, DT, LU); 4410 Regs.clear(); 4411 CostFB.RateFormula(TTI, FB, Regs, VisitedRegs, L, SE, DT, LU); 4412 return CostFA.isLess(CostFB, TTI); 4413 }; 4414 4415 bool Any = false; 4416 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms; 4417 ++FIdx) { 4418 Formula &F = LU.Formulae[FIdx]; 4419 if (!F.ScaledReg) 4420 continue; 4421 auto P = BestFormulae.insert({{F.ScaledReg, F.Scale}, FIdx}); 4422 if (P.second) 4423 continue; 4424 4425 Formula &Best = LU.Formulae[P.first->second]; 4426 if (IsBetterThan(F, Best)) 4427 std::swap(F, Best); 4428 DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 4429 dbgs() << "\n" 4430 " in favor of formula "; 4431 Best.print(dbgs()); dbgs() << '\n'); 4432 #ifndef NDEBUG 4433 ChangedFormulae = true; 4434 #endif 4435 LU.DeleteFormula(F); 4436 --FIdx; 4437 --NumForms; 4438 Any = true; 4439 } 4440 if (Any) 4441 LU.RecomputeRegs(LUIdx, RegUses); 4442 4443 // Reset this to prepare for the next use. 4444 BestFormulae.clear(); 4445 } 4446 4447 DEBUG(if (ChangedFormulae) { 4448 dbgs() << "\n" 4449 "After filtering out undesirable candidates:\n"; 4450 print_uses(dbgs()); 4451 }); 4452 } 4453 4454 /// The function delete formulas with high registers number expectation. 4455 /// Assuming we don't know the value of each formula (already delete 4456 /// all inefficient), generate probability of not selecting for each 4457 /// register. 4458 /// For example, 4459 /// Use1: 4460 /// reg(a) + reg({0,+,1}) 4461 /// reg(a) + reg({-1,+,1}) + 1 4462 /// reg({a,+,1}) 4463 /// Use2: 4464 /// reg(b) + reg({0,+,1}) 4465 /// reg(b) + reg({-1,+,1}) + 1 4466 /// reg({b,+,1}) 4467 /// Use3: 4468 /// reg(c) + reg(b) + reg({0,+,1}) 4469 /// reg(c) + reg({b,+,1}) 4470 /// 4471 /// Probability of not selecting 4472 /// Use1 Use2 Use3 4473 /// reg(a) (1/3) * 1 * 1 4474 /// reg(b) 1 * (1/3) * (1/2) 4475 /// reg({0,+,1}) (2/3) * (2/3) * (1/2) 4476 /// reg({-1,+,1}) (2/3) * (2/3) * 1 4477 /// reg({a,+,1}) (2/3) * 1 * 1 4478 /// reg({b,+,1}) 1 * (2/3) * (2/3) 4479 /// reg(c) 1 * 1 * 0 4480 /// 4481 /// Now count registers number mathematical expectation for each formula: 4482 /// Note that for each use we exclude probability if not selecting for the use. 4483 /// For example for Use1 probability for reg(a) would be just 1 * 1 (excluding 4484 /// probabilty 1/3 of not selecting for Use1). 4485 /// Use1: 4486 /// reg(a) + reg({0,+,1}) 1 + 1/3 -- to be deleted 4487 /// reg(a) + reg({-1,+,1}) + 1 1 + 4/9 -- to be deleted 4488 /// reg({a,+,1}) 1 4489 /// Use2: 4490 /// reg(b) + reg({0,+,1}) 1/2 + 1/3 -- to be deleted 4491 /// reg(b) + reg({-1,+,1}) + 1 1/2 + 2/3 -- to be deleted 4492 /// reg({b,+,1}) 2/3 4493 /// Use3: 4494 /// reg(c) + reg(b) + reg({0,+,1}) 1 + 1/3 + 4/9 -- to be deleted 4495 /// reg(c) + reg({b,+,1}) 1 + 2/3 4496 4497 void LSRInstance::NarrowSearchSpaceByDeletingCostlyFormulas() { 4498 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4499 return; 4500 // Ok, we have too many of formulae on our hands to conveniently handle. 4501 // Use a rough heuristic to thin out the list. 4502 4503 // Set of Regs wich will be 100% used in final solution. 4504 // Used in each formula of a solution (in example above this is reg(c)). 4505 // We can skip them in calculations. 4506 SmallPtrSet<const SCEV *, 4> UniqRegs; 4507 DEBUG(dbgs() << "The search space is too complex.\n"); 4508 4509 // Map each register to probability of not selecting 4510 DenseMap <const SCEV *, float> RegNumMap; 4511 for (const SCEV *Reg : RegUses) { 4512 if (UniqRegs.count(Reg)) 4513 continue; 4514 float PNotSel = 1; 4515 for (const LSRUse &LU : Uses) { 4516 if (!LU.Regs.count(Reg)) 4517 continue; 4518 float P = LU.getNotSelectedProbability(Reg); 4519 if (P != 0.0) 4520 PNotSel *= P; 4521 else 4522 UniqRegs.insert(Reg); 4523 } 4524 RegNumMap.insert(std::make_pair(Reg, PNotSel)); 4525 } 4526 4527 DEBUG(dbgs() << "Narrowing the search space by deleting costly formulas\n"); 4528 4529 // Delete formulas where registers number expectation is high. 4530 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4531 LSRUse &LU = Uses[LUIdx]; 4532 // If nothing to delete - continue. 4533 if (LU.Formulae.size() < 2) 4534 continue; 4535 // This is temporary solution to test performance. Float should be 4536 // replaced with round independent type (based on integers) to avoid 4537 // different results for different target builds. 4538 float FMinRegNum = LU.Formulae[0].getNumRegs(); 4539 float FMinARegNum = LU.Formulae[0].getNumRegs(); 4540 size_t MinIdx = 0; 4541 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4542 Formula &F = LU.Formulae[i]; 4543 float FRegNum = 0; 4544 float FARegNum = 0; 4545 for (const SCEV *BaseReg : F.BaseRegs) { 4546 if (UniqRegs.count(BaseReg)) 4547 continue; 4548 FRegNum += RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg); 4549 if (isa<SCEVAddRecExpr>(BaseReg)) 4550 FARegNum += 4551 RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg); 4552 } 4553 if (const SCEV *ScaledReg = F.ScaledReg) { 4554 if (!UniqRegs.count(ScaledReg)) { 4555 FRegNum += 4556 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg); 4557 if (isa<SCEVAddRecExpr>(ScaledReg)) 4558 FARegNum += 4559 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg); 4560 } 4561 } 4562 if (FMinRegNum > FRegNum || 4563 (FMinRegNum == FRegNum && FMinARegNum > FARegNum)) { 4564 FMinRegNum = FRegNum; 4565 FMinARegNum = FARegNum; 4566 MinIdx = i; 4567 } 4568 } 4569 DEBUG(dbgs() << " The formula "; LU.Formulae[MinIdx].print(dbgs()); 4570 dbgs() << " with min reg num " << FMinRegNum << '\n'); 4571 if (MinIdx != 0) 4572 std::swap(LU.Formulae[MinIdx], LU.Formulae[0]); 4573 while (LU.Formulae.size() != 1) { 4574 DEBUG(dbgs() << " Deleting "; LU.Formulae.back().print(dbgs()); 4575 dbgs() << '\n'); 4576 LU.Formulae.pop_back(); 4577 } 4578 LU.RecomputeRegs(LUIdx, RegUses); 4579 assert(LU.Formulae.size() == 1 && "Should be exactly 1 min regs formula"); 4580 Formula &F = LU.Formulae[0]; 4581 DEBUG(dbgs() << " Leaving only "; F.print(dbgs()); dbgs() << '\n'); 4582 // When we choose the formula, the regs become unique. 4583 UniqRegs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 4584 if (F.ScaledReg) 4585 UniqRegs.insert(F.ScaledReg); 4586 } 4587 DEBUG(dbgs() << "After pre-selection:\n"; 4588 print_uses(dbgs())); 4589 } 4590 4591 4592 /// Pick a register which seems likely to be profitable, and then in any use 4593 /// which has any reference to that register, delete all formulae which do not 4594 /// reference that register. 4595 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() { 4596 // With all other options exhausted, loop until the system is simple 4597 // enough to handle. 4598 SmallPtrSet<const SCEV *, 4> Taken; 4599 while (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4600 // Ok, we have too many of formulae on our hands to conveniently handle. 4601 // Use a rough heuristic to thin out the list. 4602 DEBUG(dbgs() << "The search space is too complex.\n"); 4603 4604 // Pick the register which is used by the most LSRUses, which is likely 4605 // to be a good reuse register candidate. 4606 const SCEV *Best = nullptr; 4607 unsigned BestNum = 0; 4608 for (const SCEV *Reg : RegUses) { 4609 if (Taken.count(Reg)) 4610 continue; 4611 if (!Best) { 4612 Best = Reg; 4613 BestNum = RegUses.getUsedByIndices(Reg).count(); 4614 } else { 4615 unsigned Count = RegUses.getUsedByIndices(Reg).count(); 4616 if (Count > BestNum) { 4617 Best = Reg; 4618 BestNum = Count; 4619 } 4620 } 4621 } 4622 4623 DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best 4624 << " will yield profitable reuse.\n"); 4625 Taken.insert(Best); 4626 4627 // In any use with formulae which references this register, delete formulae 4628 // which don't reference it. 4629 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4630 LSRUse &LU = Uses[LUIdx]; 4631 if (!LU.Regs.count(Best)) continue; 4632 4633 bool Any = false; 4634 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4635 Formula &F = LU.Formulae[i]; 4636 if (!F.referencesReg(Best)) { 4637 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4638 LU.DeleteFormula(F); 4639 --e; 4640 --i; 4641 Any = true; 4642 assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?"); 4643 continue; 4644 } 4645 } 4646 4647 if (Any) 4648 LU.RecomputeRegs(LUIdx, RegUses); 4649 } 4650 4651 DEBUG(dbgs() << "After pre-selection:\n"; 4652 print_uses(dbgs())); 4653 } 4654 } 4655 4656 /// If there are an extraordinary number of formulae to choose from, use some 4657 /// rough heuristics to prune down the number of formulae. This keeps the main 4658 /// solver from taking an extraordinary amount of time in some worst-case 4659 /// scenarios. 4660 void LSRInstance::NarrowSearchSpaceUsingHeuristics() { 4661 NarrowSearchSpaceByDetectingSupersets(); 4662 NarrowSearchSpaceByCollapsingUnrolledCode(); 4663 NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 4664 if (FilterSameScaledReg) 4665 NarrowSearchSpaceByFilterFormulaWithSameScaledReg(); 4666 if (LSRExpNarrow) 4667 NarrowSearchSpaceByDeletingCostlyFormulas(); 4668 else 4669 NarrowSearchSpaceByPickingWinnerRegs(); 4670 } 4671 4672 /// This is the recursive solver. 4673 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 4674 Cost &SolutionCost, 4675 SmallVectorImpl<const Formula *> &Workspace, 4676 const Cost &CurCost, 4677 const SmallPtrSet<const SCEV *, 16> &CurRegs, 4678 DenseSet<const SCEV *> &VisitedRegs) const { 4679 // Some ideas: 4680 // - prune more: 4681 // - use more aggressive filtering 4682 // - sort the formula so that the most profitable solutions are found first 4683 // - sort the uses too 4684 // - search faster: 4685 // - don't compute a cost, and then compare. compare while computing a cost 4686 // and bail early. 4687 // - track register sets with SmallBitVector 4688 4689 const LSRUse &LU = Uses[Workspace.size()]; 4690 4691 // If this use references any register that's already a part of the 4692 // in-progress solution, consider it a requirement that a formula must 4693 // reference that register in order to be considered. This prunes out 4694 // unprofitable searching. 4695 SmallSetVector<const SCEV *, 4> ReqRegs; 4696 for (const SCEV *S : CurRegs) 4697 if (LU.Regs.count(S)) 4698 ReqRegs.insert(S); 4699 4700 SmallPtrSet<const SCEV *, 16> NewRegs; 4701 Cost NewCost; 4702 for (const Formula &F : LU.Formulae) { 4703 // Ignore formulae which may not be ideal in terms of register reuse of 4704 // ReqRegs. The formula should use all required registers before 4705 // introducing new ones. 4706 int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size()); 4707 for (const SCEV *Reg : ReqRegs) { 4708 if ((F.ScaledReg && F.ScaledReg == Reg) || 4709 is_contained(F.BaseRegs, Reg)) { 4710 --NumReqRegsToFind; 4711 if (NumReqRegsToFind == 0) 4712 break; 4713 } 4714 } 4715 if (NumReqRegsToFind != 0) { 4716 // If none of the formulae satisfied the required registers, then we could 4717 // clear ReqRegs and try again. Currently, we simply give up in this case. 4718 continue; 4719 } 4720 4721 // Evaluate the cost of the current formula. If it's already worse than 4722 // the current best, prune the search at that point. 4723 NewCost = CurCost; 4724 NewRegs = CurRegs; 4725 NewCost.RateFormula(TTI, F, NewRegs, VisitedRegs, L, SE, DT, LU); 4726 if (NewCost.isLess(SolutionCost, TTI)) { 4727 Workspace.push_back(&F); 4728 if (Workspace.size() != Uses.size()) { 4729 SolveRecurse(Solution, SolutionCost, Workspace, NewCost, 4730 NewRegs, VisitedRegs); 4731 if (F.getNumRegs() == 1 && Workspace.size() == 1) 4732 VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]); 4733 } else { 4734 DEBUG(dbgs() << "New best at "; NewCost.print(dbgs()); 4735 dbgs() << ".\n Regs:"; 4736 for (const SCEV *S : NewRegs) 4737 dbgs() << ' ' << *S; 4738 dbgs() << '\n'); 4739 4740 SolutionCost = NewCost; 4741 Solution = Workspace; 4742 } 4743 Workspace.pop_back(); 4744 } 4745 } 4746 } 4747 4748 /// Choose one formula from each use. Return the results in the given Solution 4749 /// vector. 4750 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const { 4751 SmallVector<const Formula *, 8> Workspace; 4752 Cost SolutionCost; 4753 SolutionCost.Lose(); 4754 Cost CurCost; 4755 SmallPtrSet<const SCEV *, 16> CurRegs; 4756 DenseSet<const SCEV *> VisitedRegs; 4757 Workspace.reserve(Uses.size()); 4758 4759 // SolveRecurse does all the work. 4760 SolveRecurse(Solution, SolutionCost, Workspace, CurCost, 4761 CurRegs, VisitedRegs); 4762 if (Solution.empty()) { 4763 DEBUG(dbgs() << "\nNo Satisfactory Solution\n"); 4764 return; 4765 } 4766 4767 // Ok, we've now made all our decisions. 4768 DEBUG(dbgs() << "\n" 4769 "The chosen solution requires "; SolutionCost.print(dbgs()); 4770 dbgs() << ":\n"; 4771 for (size_t i = 0, e = Uses.size(); i != e; ++i) { 4772 dbgs() << " "; 4773 Uses[i].print(dbgs()); 4774 dbgs() << "\n" 4775 " "; 4776 Solution[i]->print(dbgs()); 4777 dbgs() << '\n'; 4778 }); 4779 4780 assert(Solution.size() == Uses.size() && "Malformed solution!"); 4781 } 4782 4783 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as 4784 /// we can go while still being dominated by the input positions. This helps 4785 /// canonicalize the insert position, which encourages sharing. 4786 BasicBlock::iterator 4787 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP, 4788 const SmallVectorImpl<Instruction *> &Inputs) 4789 const { 4790 Instruction *Tentative = &*IP; 4791 while (true) { 4792 bool AllDominate = true; 4793 Instruction *BetterPos = nullptr; 4794 // Don't bother attempting to insert before a catchswitch, their basic block 4795 // cannot have other non-PHI instructions. 4796 if (isa<CatchSwitchInst>(Tentative)) 4797 return IP; 4798 4799 for (Instruction *Inst : Inputs) { 4800 if (Inst == Tentative || !DT.dominates(Inst, Tentative)) { 4801 AllDominate = false; 4802 break; 4803 } 4804 // Attempt to find an insert position in the middle of the block, 4805 // instead of at the end, so that it can be used for other expansions. 4806 if (Tentative->getParent() == Inst->getParent() && 4807 (!BetterPos || !DT.dominates(Inst, BetterPos))) 4808 BetterPos = &*std::next(BasicBlock::iterator(Inst)); 4809 } 4810 if (!AllDominate) 4811 break; 4812 if (BetterPos) 4813 IP = BetterPos->getIterator(); 4814 else 4815 IP = Tentative->getIterator(); 4816 4817 const Loop *IPLoop = LI.getLoopFor(IP->getParent()); 4818 unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0; 4819 4820 BasicBlock *IDom; 4821 for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) { 4822 if (!Rung) return IP; 4823 Rung = Rung->getIDom(); 4824 if (!Rung) return IP; 4825 IDom = Rung->getBlock(); 4826 4827 // Don't climb into a loop though. 4828 const Loop *IDomLoop = LI.getLoopFor(IDom); 4829 unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0; 4830 if (IDomDepth <= IPLoopDepth && 4831 (IDomDepth != IPLoopDepth || IDomLoop == IPLoop)) 4832 break; 4833 } 4834 4835 Tentative = IDom->getTerminator(); 4836 } 4837 4838 return IP; 4839 } 4840 4841 /// Determine an input position which will be dominated by the operands and 4842 /// which will dominate the result. 4843 BasicBlock::iterator 4844 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP, 4845 const LSRFixup &LF, 4846 const LSRUse &LU, 4847 SCEVExpander &Rewriter) const { 4848 // Collect some instructions which must be dominated by the 4849 // expanding replacement. These must be dominated by any operands that 4850 // will be required in the expansion. 4851 SmallVector<Instruction *, 4> Inputs; 4852 if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace)) 4853 Inputs.push_back(I); 4854 if (LU.Kind == LSRUse::ICmpZero) 4855 if (Instruction *I = 4856 dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1))) 4857 Inputs.push_back(I); 4858 if (LF.PostIncLoops.count(L)) { 4859 if (LF.isUseFullyOutsideLoop(L)) 4860 Inputs.push_back(L->getLoopLatch()->getTerminator()); 4861 else 4862 Inputs.push_back(IVIncInsertPos); 4863 } 4864 // The expansion must also be dominated by the increment positions of any 4865 // loops it for which it is using post-inc mode. 4866 for (const Loop *PIL : LF.PostIncLoops) { 4867 if (PIL == L) continue; 4868 4869 // Be dominated by the loop exit. 4870 SmallVector<BasicBlock *, 4> ExitingBlocks; 4871 PIL->getExitingBlocks(ExitingBlocks); 4872 if (!ExitingBlocks.empty()) { 4873 BasicBlock *BB = ExitingBlocks[0]; 4874 for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i) 4875 BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]); 4876 Inputs.push_back(BB->getTerminator()); 4877 } 4878 } 4879 4880 assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad() 4881 && !isa<DbgInfoIntrinsic>(LowestIP) && 4882 "Insertion point must be a normal instruction"); 4883 4884 // Then, climb up the immediate dominator tree as far as we can go while 4885 // still being dominated by the input positions. 4886 BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs); 4887 4888 // Don't insert instructions before PHI nodes. 4889 while (isa<PHINode>(IP)) ++IP; 4890 4891 // Ignore landingpad instructions. 4892 while (IP->isEHPad()) ++IP; 4893 4894 // Ignore debug intrinsics. 4895 while (isa<DbgInfoIntrinsic>(IP)) ++IP; 4896 4897 // Set IP below instructions recently inserted by SCEVExpander. This keeps the 4898 // IP consistent across expansions and allows the previously inserted 4899 // instructions to be reused by subsequent expansion. 4900 while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP) 4901 ++IP; 4902 4903 return IP; 4904 } 4905 4906 /// Emit instructions for the leading candidate expression for this LSRUse (this 4907 /// is called "expanding"). 4908 Value *LSRInstance::Expand(const LSRUse &LU, const LSRFixup &LF, 4909 const Formula &F, BasicBlock::iterator IP, 4910 SCEVExpander &Rewriter, 4911 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 4912 if (LU.RigidFormula) 4913 return LF.OperandValToReplace; 4914 4915 // Determine an input position which will be dominated by the operands and 4916 // which will dominate the result. 4917 IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter); 4918 Rewriter.setInsertPoint(&*IP); 4919 4920 // Inform the Rewriter if we have a post-increment use, so that it can 4921 // perform an advantageous expansion. 4922 Rewriter.setPostInc(LF.PostIncLoops); 4923 4924 // This is the type that the user actually needs. 4925 Type *OpTy = LF.OperandValToReplace->getType(); 4926 // This will be the type that we'll initially expand to. 4927 Type *Ty = F.getType(); 4928 if (!Ty) 4929 // No type known; just expand directly to the ultimate type. 4930 Ty = OpTy; 4931 else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy)) 4932 // Expand directly to the ultimate type if it's the right size. 4933 Ty = OpTy; 4934 // This is the type to do integer arithmetic in. 4935 Type *IntTy = SE.getEffectiveSCEVType(Ty); 4936 4937 // Build up a list of operands to add together to form the full base. 4938 SmallVector<const SCEV *, 8> Ops; 4939 4940 // Expand the BaseRegs portion. 4941 for (const SCEV *Reg : F.BaseRegs) { 4942 assert(!Reg->isZero() && "Zero allocated in a base register!"); 4943 4944 // If we're expanding for a post-inc user, make the post-inc adjustment. 4945 Reg = denormalizeForPostIncUse(Reg, LF.PostIncLoops, SE); 4946 Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr))); 4947 } 4948 4949 // Expand the ScaledReg portion. 4950 Value *ICmpScaledV = nullptr; 4951 if (F.Scale != 0) { 4952 const SCEV *ScaledS = F.ScaledReg; 4953 4954 // If we're expanding for a post-inc user, make the post-inc adjustment. 4955 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 4956 ScaledS = denormalizeForPostIncUse(ScaledS, Loops, SE); 4957 4958 if (LU.Kind == LSRUse::ICmpZero) { 4959 // Expand ScaleReg as if it was part of the base regs. 4960 if (F.Scale == 1) 4961 Ops.push_back( 4962 SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr))); 4963 else { 4964 // An interesting way of "folding" with an icmp is to use a negated 4965 // scale, which we'll implement by inserting it into the other operand 4966 // of the icmp. 4967 assert(F.Scale == -1 && 4968 "The only scale supported by ICmpZero uses is -1!"); 4969 ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr); 4970 } 4971 } else { 4972 // Otherwise just expand the scaled register and an explicit scale, 4973 // which is expected to be matched as part of the address. 4974 4975 // Flush the operand list to suppress SCEVExpander hoisting address modes. 4976 // Unless the addressing mode will not be folded. 4977 if (!Ops.empty() && LU.Kind == LSRUse::Address && 4978 isAMCompletelyFolded(TTI, LU, F)) { 4979 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 4980 Ops.clear(); 4981 Ops.push_back(SE.getUnknown(FullV)); 4982 } 4983 ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)); 4984 if (F.Scale != 1) 4985 ScaledS = 4986 SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale)); 4987 Ops.push_back(ScaledS); 4988 } 4989 } 4990 4991 // Expand the GV portion. 4992 if (F.BaseGV) { 4993 // Flush the operand list to suppress SCEVExpander hoisting. 4994 if (!Ops.empty()) { 4995 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 4996 Ops.clear(); 4997 Ops.push_back(SE.getUnknown(FullV)); 4998 } 4999 Ops.push_back(SE.getUnknown(F.BaseGV)); 5000 } 5001 5002 // Flush the operand list to suppress SCEVExpander hoisting of both folded and 5003 // unfolded offsets. LSR assumes they both live next to their uses. 5004 if (!Ops.empty()) { 5005 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 5006 Ops.clear(); 5007 Ops.push_back(SE.getUnknown(FullV)); 5008 } 5009 5010 // Expand the immediate portion. 5011 int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset; 5012 if (Offset != 0) { 5013 if (LU.Kind == LSRUse::ICmpZero) { 5014 // The other interesting way of "folding" with an ICmpZero is to use a 5015 // negated immediate. 5016 if (!ICmpScaledV) 5017 ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset); 5018 else { 5019 Ops.push_back(SE.getUnknown(ICmpScaledV)); 5020 ICmpScaledV = ConstantInt::get(IntTy, Offset); 5021 } 5022 } else { 5023 // Just add the immediate values. These again are expected to be matched 5024 // as part of the address. 5025 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset))); 5026 } 5027 } 5028 5029 // Expand the unfolded offset portion. 5030 int64_t UnfoldedOffset = F.UnfoldedOffset; 5031 if (UnfoldedOffset != 0) { 5032 // Just add the immediate values. 5033 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, 5034 UnfoldedOffset))); 5035 } 5036 5037 // Emit instructions summing all the operands. 5038 const SCEV *FullS = Ops.empty() ? 5039 SE.getConstant(IntTy, 0) : 5040 SE.getAddExpr(Ops); 5041 Value *FullV = Rewriter.expandCodeFor(FullS, Ty); 5042 5043 // We're done expanding now, so reset the rewriter. 5044 Rewriter.clearPostInc(); 5045 5046 // An ICmpZero Formula represents an ICmp which we're handling as a 5047 // comparison against zero. Now that we've expanded an expression for that 5048 // form, update the ICmp's other operand. 5049 if (LU.Kind == LSRUse::ICmpZero) { 5050 ICmpInst *CI = cast<ICmpInst>(LF.UserInst); 5051 DeadInsts.emplace_back(CI->getOperand(1)); 5052 assert(!F.BaseGV && "ICmp does not support folding a global value and " 5053 "a scale at the same time!"); 5054 if (F.Scale == -1) { 5055 if (ICmpScaledV->getType() != OpTy) { 5056 Instruction *Cast = 5057 CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false, 5058 OpTy, false), 5059 ICmpScaledV, OpTy, "tmp", CI); 5060 ICmpScaledV = Cast; 5061 } 5062 CI->setOperand(1, ICmpScaledV); 5063 } else { 5064 // A scale of 1 means that the scale has been expanded as part of the 5065 // base regs. 5066 assert((F.Scale == 0 || F.Scale == 1) && 5067 "ICmp does not support folding a global value and " 5068 "a scale at the same time!"); 5069 Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy), 5070 -(uint64_t)Offset); 5071 if (C->getType() != OpTy) 5072 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 5073 OpTy, false), 5074 C, OpTy); 5075 5076 CI->setOperand(1, C); 5077 } 5078 } 5079 5080 return FullV; 5081 } 5082 5083 /// Helper for Rewrite. PHI nodes are special because the use of their operands 5084 /// effectively happens in their predecessor blocks, so the expression may need 5085 /// to be expanded in multiple places. 5086 void LSRInstance::RewriteForPHI( 5087 PHINode *PN, const LSRUse &LU, const LSRFixup &LF, const Formula &F, 5088 SCEVExpander &Rewriter, SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5089 DenseMap<BasicBlock *, Value *> Inserted; 5090 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 5091 if (PN->getIncomingValue(i) == LF.OperandValToReplace) { 5092 BasicBlock *BB = PN->getIncomingBlock(i); 5093 5094 // If this is a critical edge, split the edge so that we do not insert 5095 // the code on all predecessor/successor paths. We do this unless this 5096 // is the canonical backedge for this loop, which complicates post-inc 5097 // users. 5098 if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 && 5099 !isa<IndirectBrInst>(BB->getTerminator()) && 5100 !isa<CatchSwitchInst>(BB->getTerminator())) { 5101 BasicBlock *Parent = PN->getParent(); 5102 Loop *PNLoop = LI.getLoopFor(Parent); 5103 if (!PNLoop || Parent != PNLoop->getHeader()) { 5104 // Split the critical edge. 5105 BasicBlock *NewBB = nullptr; 5106 if (!Parent->isLandingPad()) { 5107 NewBB = SplitCriticalEdge(BB, Parent, 5108 CriticalEdgeSplittingOptions(&DT, &LI) 5109 .setMergeIdenticalEdges() 5110 .setDontDeleteUselessPHIs()); 5111 } else { 5112 SmallVector<BasicBlock*, 2> NewBBs; 5113 SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI); 5114 NewBB = NewBBs[0]; 5115 } 5116 // If NewBB==NULL, then SplitCriticalEdge refused to split because all 5117 // phi predecessors are identical. The simple thing to do is skip 5118 // splitting in this case rather than complicate the API. 5119 if (NewBB) { 5120 // If PN is outside of the loop and BB is in the loop, we want to 5121 // move the block to be immediately before the PHI block, not 5122 // immediately after BB. 5123 if (L->contains(BB) && !L->contains(PN)) 5124 NewBB->moveBefore(PN->getParent()); 5125 5126 // Splitting the edge can reduce the number of PHI entries we have. 5127 e = PN->getNumIncomingValues(); 5128 BB = NewBB; 5129 i = PN->getBasicBlockIndex(BB); 5130 } 5131 } 5132 } 5133 5134 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair = 5135 Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr))); 5136 if (!Pair.second) 5137 PN->setIncomingValue(i, Pair.first->second); 5138 else { 5139 Value *FullV = Expand(LU, LF, F, BB->getTerminator()->getIterator(), 5140 Rewriter, DeadInsts); 5141 5142 // If this is reuse-by-noop-cast, insert the noop cast. 5143 Type *OpTy = LF.OperandValToReplace->getType(); 5144 if (FullV->getType() != OpTy) 5145 FullV = 5146 CastInst::Create(CastInst::getCastOpcode(FullV, false, 5147 OpTy, false), 5148 FullV, LF.OperandValToReplace->getType(), 5149 "tmp", BB->getTerminator()); 5150 5151 PN->setIncomingValue(i, FullV); 5152 Pair.first->second = FullV; 5153 } 5154 } 5155 } 5156 5157 /// Emit instructions for the leading candidate expression for this LSRUse (this 5158 /// is called "expanding"), and update the UserInst to reference the newly 5159 /// expanded value. 5160 void LSRInstance::Rewrite(const LSRUse &LU, const LSRFixup &LF, 5161 const Formula &F, SCEVExpander &Rewriter, 5162 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5163 // First, find an insertion point that dominates UserInst. For PHI nodes, 5164 // find the nearest block which dominates all the relevant uses. 5165 if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) { 5166 RewriteForPHI(PN, LU, LF, F, Rewriter, DeadInsts); 5167 } else { 5168 Value *FullV = 5169 Expand(LU, LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts); 5170 5171 // If this is reuse-by-noop-cast, insert the noop cast. 5172 Type *OpTy = LF.OperandValToReplace->getType(); 5173 if (FullV->getType() != OpTy) { 5174 Instruction *Cast = 5175 CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false), 5176 FullV, OpTy, "tmp", LF.UserInst); 5177 FullV = Cast; 5178 } 5179 5180 // Update the user. ICmpZero is handled specially here (for now) because 5181 // Expand may have updated one of the operands of the icmp already, and 5182 // its new value may happen to be equal to LF.OperandValToReplace, in 5183 // which case doing replaceUsesOfWith leads to replacing both operands 5184 // with the same value. TODO: Reorganize this. 5185 if (LU.Kind == LSRUse::ICmpZero) 5186 LF.UserInst->setOperand(0, FullV); 5187 else 5188 LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV); 5189 } 5190 5191 DeadInsts.emplace_back(LF.OperandValToReplace); 5192 } 5193 5194 /// Rewrite all the fixup locations with new values, following the chosen 5195 /// solution. 5196 void LSRInstance::ImplementSolution( 5197 const SmallVectorImpl<const Formula *> &Solution) { 5198 // Keep track of instructions we may have made dead, so that 5199 // we can remove them after we are done working. 5200 SmallVector<WeakTrackingVH, 16> DeadInsts; 5201 5202 SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(), 5203 "lsr"); 5204 #ifndef NDEBUG 5205 Rewriter.setDebugType(DEBUG_TYPE); 5206 #endif 5207 Rewriter.disableCanonicalMode(); 5208 Rewriter.enableLSRMode(); 5209 Rewriter.setIVIncInsertPos(L, IVIncInsertPos); 5210 5211 // Mark phi nodes that terminate chains so the expander tries to reuse them. 5212 for (const IVChain &Chain : IVChainVec) { 5213 if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst())) 5214 Rewriter.setChainedPhi(PN); 5215 } 5216 5217 // Expand the new value definitions and update the users. 5218 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) 5219 for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) { 5220 Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], Rewriter, DeadInsts); 5221 Changed = true; 5222 } 5223 5224 for (const IVChain &Chain : IVChainVec) { 5225 GenerateIVChain(Chain, Rewriter, DeadInsts); 5226 Changed = true; 5227 } 5228 // Clean up after ourselves. This must be done before deleting any 5229 // instructions. 5230 Rewriter.clear(); 5231 5232 Changed |= DeleteTriviallyDeadInstructions(DeadInsts); 5233 } 5234 5235 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, 5236 DominatorTree &DT, LoopInfo &LI, 5237 const TargetTransformInfo &TTI) 5238 : IU(IU), SE(SE), DT(DT), LI(LI), TTI(TTI), L(L), Changed(false), 5239 IVIncInsertPos(nullptr) { 5240 // If LoopSimplify form is not available, stay out of trouble. 5241 if (!L->isLoopSimplifyForm()) 5242 return; 5243 5244 // If there's no interesting work to be done, bail early. 5245 if (IU.empty()) return; 5246 5247 // If there's too much analysis to be done, bail early. We won't be able to 5248 // model the problem anyway. 5249 unsigned NumUsers = 0; 5250 for (const IVStrideUse &U : IU) { 5251 if (++NumUsers > MaxIVUsers) { 5252 (void)U; 5253 DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U << "\n"); 5254 return; 5255 } 5256 // Bail out if we have a PHI on an EHPad that gets a value from a 5257 // CatchSwitchInst. Because the CatchSwitchInst cannot be split, there is 5258 // no good place to stick any instructions. 5259 if (auto *PN = dyn_cast<PHINode>(U.getUser())) { 5260 auto *FirstNonPHI = PN->getParent()->getFirstNonPHI(); 5261 if (isa<FuncletPadInst>(FirstNonPHI) || 5262 isa<CatchSwitchInst>(FirstNonPHI)) 5263 for (BasicBlock *PredBB : PN->blocks()) 5264 if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI())) 5265 return; 5266 } 5267 } 5268 5269 #ifndef NDEBUG 5270 // All dominating loops must have preheaders, or SCEVExpander may not be able 5271 // to materialize an AddRecExpr whose Start is an outer AddRecExpr. 5272 // 5273 // IVUsers analysis should only create users that are dominated by simple loop 5274 // headers. Since this loop should dominate all of its users, its user list 5275 // should be empty if this loop itself is not within a simple loop nest. 5276 for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader()); 5277 Rung; Rung = Rung->getIDom()) { 5278 BasicBlock *BB = Rung->getBlock(); 5279 const Loop *DomLoop = LI.getLoopFor(BB); 5280 if (DomLoop && DomLoop->getHeader() == BB) { 5281 assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest"); 5282 } 5283 } 5284 #endif // DEBUG 5285 5286 DEBUG(dbgs() << "\nLSR on loop "; 5287 L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false); 5288 dbgs() << ":\n"); 5289 5290 // First, perform some low-level loop optimizations. 5291 OptimizeShadowIV(); 5292 OptimizeLoopTermCond(); 5293 5294 // If loop preparation eliminates all interesting IV users, bail. 5295 if (IU.empty()) return; 5296 5297 // Skip nested loops until we can model them better with formulae. 5298 if (!L->empty()) { 5299 DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n"); 5300 return; 5301 } 5302 5303 // Start collecting data and preparing for the solver. 5304 CollectChains(); 5305 CollectInterestingTypesAndFactors(); 5306 CollectFixupsAndInitialFormulae(); 5307 CollectLoopInvariantFixupsAndFormulae(); 5308 5309 assert(!Uses.empty() && "IVUsers reported at least one use"); 5310 DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n"; 5311 print_uses(dbgs())); 5312 5313 // Now use the reuse data to generate a bunch of interesting ways 5314 // to formulate the values needed for the uses. 5315 GenerateAllReuseFormulae(); 5316 5317 FilterOutUndesirableDedicatedRegisters(); 5318 NarrowSearchSpaceUsingHeuristics(); 5319 5320 SmallVector<const Formula *, 8> Solution; 5321 Solve(Solution); 5322 5323 // Release memory that is no longer needed. 5324 Factors.clear(); 5325 Types.clear(); 5326 RegUses.clear(); 5327 5328 if (Solution.empty()) 5329 return; 5330 5331 #ifndef NDEBUG 5332 // Formulae should be legal. 5333 for (const LSRUse &LU : Uses) { 5334 for (const Formula &F : LU.Formulae) 5335 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 5336 F) && "Illegal formula generated!"); 5337 }; 5338 #endif 5339 5340 // Now that we've decided what we want, make it so. 5341 ImplementSolution(Solution); 5342 } 5343 5344 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 5345 void LSRInstance::print_factors_and_types(raw_ostream &OS) const { 5346 if (Factors.empty() && Types.empty()) return; 5347 5348 OS << "LSR has identified the following interesting factors and types: "; 5349 bool First = true; 5350 5351 for (int64_t Factor : Factors) { 5352 if (!First) OS << ", "; 5353 First = false; 5354 OS << '*' << Factor; 5355 } 5356 5357 for (Type *Ty : Types) { 5358 if (!First) OS << ", "; 5359 First = false; 5360 OS << '(' << *Ty << ')'; 5361 } 5362 OS << '\n'; 5363 } 5364 5365 void LSRInstance::print_fixups(raw_ostream &OS) const { 5366 OS << "LSR is examining the following fixup sites:\n"; 5367 for (const LSRUse &LU : Uses) 5368 for (const LSRFixup &LF : LU.Fixups) { 5369 dbgs() << " "; 5370 LF.print(OS); 5371 OS << '\n'; 5372 } 5373 } 5374 5375 void LSRInstance::print_uses(raw_ostream &OS) const { 5376 OS << "LSR is examining the following uses:\n"; 5377 for (const LSRUse &LU : Uses) { 5378 dbgs() << " "; 5379 LU.print(OS); 5380 OS << '\n'; 5381 for (const Formula &F : LU.Formulae) { 5382 OS << " "; 5383 F.print(OS); 5384 OS << '\n'; 5385 } 5386 } 5387 } 5388 5389 void LSRInstance::print(raw_ostream &OS) const { 5390 print_factors_and_types(OS); 5391 print_fixups(OS); 5392 print_uses(OS); 5393 } 5394 5395 LLVM_DUMP_METHOD void LSRInstance::dump() const { 5396 print(errs()); errs() << '\n'; 5397 } 5398 #endif 5399 5400 namespace { 5401 5402 class LoopStrengthReduce : public LoopPass { 5403 public: 5404 static char ID; // Pass ID, replacement for typeid 5405 5406 LoopStrengthReduce(); 5407 5408 private: 5409 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 5410 void getAnalysisUsage(AnalysisUsage &AU) const override; 5411 }; 5412 5413 } // end anonymous namespace 5414 5415 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) { 5416 initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry()); 5417 } 5418 5419 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const { 5420 // We split critical edges, so we change the CFG. However, we do update 5421 // many analyses if they are around. 5422 AU.addPreservedID(LoopSimplifyID); 5423 5424 AU.addRequired<LoopInfoWrapperPass>(); 5425 AU.addPreserved<LoopInfoWrapperPass>(); 5426 AU.addRequiredID(LoopSimplifyID); 5427 AU.addRequired<DominatorTreeWrapperPass>(); 5428 AU.addPreserved<DominatorTreeWrapperPass>(); 5429 AU.addRequired<ScalarEvolutionWrapperPass>(); 5430 AU.addPreserved<ScalarEvolutionWrapperPass>(); 5431 // Requiring LoopSimplify a second time here prevents IVUsers from running 5432 // twice, since LoopSimplify was invalidated by running ScalarEvolution. 5433 AU.addRequiredID(LoopSimplifyID); 5434 AU.addRequired<IVUsersWrapperPass>(); 5435 AU.addPreserved<IVUsersWrapperPass>(); 5436 AU.addRequired<TargetTransformInfoWrapperPass>(); 5437 } 5438 5439 static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE, 5440 DominatorTree &DT, LoopInfo &LI, 5441 const TargetTransformInfo &TTI) { 5442 bool Changed = false; 5443 5444 // Run the main LSR transformation. 5445 Changed |= LSRInstance(L, IU, SE, DT, LI, TTI).getChanged(); 5446 5447 // Remove any extra phis created by processing inner loops. 5448 Changed |= DeleteDeadPHIs(L->getHeader()); 5449 if (EnablePhiElim && L->isLoopSimplifyForm()) { 5450 SmallVector<WeakTrackingVH, 16> DeadInsts; 5451 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 5452 SCEVExpander Rewriter(SE, DL, "lsr"); 5453 #ifndef NDEBUG 5454 Rewriter.setDebugType(DEBUG_TYPE); 5455 #endif 5456 unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI); 5457 if (numFolded) { 5458 Changed = true; 5459 DeleteTriviallyDeadInstructions(DeadInsts); 5460 DeleteDeadPHIs(L->getHeader()); 5461 } 5462 } 5463 return Changed; 5464 } 5465 5466 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) { 5467 if (skipLoop(L)) 5468 return false; 5469 5470 auto &IU = getAnalysis<IVUsersWrapperPass>().getIU(); 5471 auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 5472 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 5473 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 5474 const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI( 5475 *L->getHeader()->getParent()); 5476 return ReduceLoopStrength(L, IU, SE, DT, LI, TTI); 5477 } 5478 5479 PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM, 5480 LoopStandardAnalysisResults &AR, 5481 LPMUpdater &) { 5482 if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE, 5483 AR.DT, AR.LI, AR.TTI)) 5484 return PreservedAnalyses::all(); 5485 5486 return getLoopPassPreservedAnalyses(); 5487 } 5488 5489 char LoopStrengthReduce::ID = 0; 5490 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce", 5491 "Loop Strength Reduction", false, false) 5492 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 5493 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 5494 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 5495 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass) 5496 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 5497 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 5498 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce", 5499 "Loop Strength Reduction", false, false) 5500 5501 Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); } 5502