1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This transformation analyzes and transforms the induction variables (and 11 // computations derived from them) into forms suitable for efficient execution 12 // on the target. 13 // 14 // This pass performs a strength reduction on array references inside loops that 15 // have as one or more of their components the loop induction variable, it 16 // rewrites expressions to take advantage of scaled-index addressing modes 17 // available on the target, and it performs a variety of other optimizations 18 // related to loop induction variables. 19 // 20 //===----------------------------------------------------------------------===// 21 22 #define DEBUG_TYPE "loop-reduce" 23 #include "llvm/Transforms/Scalar.h" 24 #include "llvm/Constants.h" 25 #include "llvm/Instructions.h" 26 #include "llvm/IntrinsicInst.h" 27 #include "llvm/LLVMContext.h" 28 #include "llvm/Type.h" 29 #include "llvm/DerivedTypes.h" 30 #include "llvm/Analysis/Dominators.h" 31 #include "llvm/Analysis/IVUsers.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/Analysis/LoopPass.h" 34 #include "llvm/Analysis/ScalarEvolutionExpander.h" 35 #include "llvm/Transforms/Utils/AddrModeMatcher.h" 36 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 37 #include "llvm/Transforms/Utils/Local.h" 38 #include "llvm/ADT/Statistic.h" 39 #include "llvm/Support/CFG.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Support/Compiler.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/ValueHandle.h" 44 #include "llvm/Target/TargetLowering.h" 45 #include <algorithm> 46 using namespace llvm; 47 48 STATISTIC(NumReduced , "Number of IV uses strength reduced"); 49 STATISTIC(NumInserted, "Number of PHIs inserted"); 50 STATISTIC(NumVariable, "Number of PHIs with variable strides"); 51 STATISTIC(NumEliminated, "Number of strides eliminated"); 52 STATISTIC(NumShadow, "Number of Shadow IVs optimized"); 53 STATISTIC(NumImmSunk, "Number of common expr immediates sunk into uses"); 54 STATISTIC(NumLoopCond, "Number of loop terminating conds optimized"); 55 56 static cl::opt<bool> EnableFullLSRMode("enable-full-lsr", 57 cl::init(false), 58 cl::Hidden); 59 60 namespace { 61 62 struct BasedUser; 63 64 /// IVInfo - This structure keeps track of one IV expression inserted during 65 /// StrengthReduceStridedIVUsers. It contains the stride, the common base, as 66 /// well as the PHI node and increment value created for rewrite. 67 struct VISIBILITY_HIDDEN IVExpr { 68 const SCEV *Stride; 69 const SCEV *Base; 70 PHINode *PHI; 71 72 IVExpr(const SCEV *const stride, const SCEV *const base, PHINode *phi) 73 : Stride(stride), Base(base), PHI(phi) {} 74 }; 75 76 /// IVsOfOneStride - This structure keeps track of all IV expression inserted 77 /// during StrengthReduceStridedIVUsers for a particular stride of the IV. 78 struct VISIBILITY_HIDDEN IVsOfOneStride { 79 std::vector<IVExpr> IVs; 80 81 void addIV(const SCEV *const Stride, const SCEV *const Base, PHINode *PHI) { 82 IVs.push_back(IVExpr(Stride, Base, PHI)); 83 } 84 }; 85 86 class VISIBILITY_HIDDEN LoopStrengthReduce : public LoopPass { 87 IVUsers *IU; 88 LoopInfo *LI; 89 DominatorTree *DT; 90 ScalarEvolution *SE; 91 bool Changed; 92 93 /// IVsByStride - Keep track of all IVs that have been inserted for a 94 /// particular stride. 95 std::map<const SCEV *, IVsOfOneStride> IVsByStride; 96 97 /// StrideNoReuse - Keep track of all the strides whose ivs cannot be 98 /// reused (nor should they be rewritten to reuse other strides). 99 SmallSet<const SCEV *, 4> StrideNoReuse; 100 101 /// DeadInsts - Keep track of instructions we may have made dead, so that 102 /// we can remove them after we are done working. 103 SmallVector<WeakVH, 16> DeadInsts; 104 105 /// TLI - Keep a pointer of a TargetLowering to consult for determining 106 /// transformation profitability. 107 const TargetLowering *TLI; 108 109 public: 110 static char ID; // Pass ID, replacement for typeid 111 explicit LoopStrengthReduce(const TargetLowering *tli = NULL) : 112 LoopPass(&ID), TLI(tli) { 113 } 114 115 bool runOnLoop(Loop *L, LPPassManager &LPM); 116 117 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 118 // We split critical edges, so we change the CFG. However, we do update 119 // many analyses if they are around. 120 AU.addPreservedID(LoopSimplifyID); 121 AU.addPreserved<LoopInfo>(); 122 AU.addPreserved<DominanceFrontier>(); 123 AU.addPreserved<DominatorTree>(); 124 125 AU.addRequiredID(LoopSimplifyID); 126 AU.addRequired<LoopInfo>(); 127 AU.addRequired<DominatorTree>(); 128 AU.addRequired<ScalarEvolution>(); 129 AU.addPreserved<ScalarEvolution>(); 130 AU.addRequired<IVUsers>(); 131 AU.addPreserved<IVUsers>(); 132 } 133 134 private: 135 ICmpInst *ChangeCompareStride(Loop *L, ICmpInst *Cond, 136 IVStrideUse* &CondUse, 137 const SCEV *const * &CondStride); 138 139 void OptimizeIndvars(Loop *L); 140 void OptimizeLoopCountIV(Loop *L); 141 void OptimizeLoopTermCond(Loop *L); 142 143 /// OptimizeShadowIV - If IV is used in a int-to-float cast 144 /// inside the loop then try to eliminate the cast opeation. 145 void OptimizeShadowIV(Loop *L); 146 147 /// OptimizeMax - Rewrite the loop's terminating condition 148 /// if it uses a max computation. 149 ICmpInst *OptimizeMax(Loop *L, ICmpInst *Cond, 150 IVStrideUse* &CondUse); 151 152 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse, 153 const SCEV *const * &CondStride); 154 bool RequiresTypeConversion(const Type *Ty, const Type *NewTy); 155 const SCEV *CheckForIVReuse(bool, bool, bool, const SCEV *const&, 156 IVExpr&, const Type*, 157 const std::vector<BasedUser>& UsersToProcess); 158 bool ValidScale(bool, int64_t, 159 const std::vector<BasedUser>& UsersToProcess); 160 bool ValidOffset(bool, int64_t, int64_t, 161 const std::vector<BasedUser>& UsersToProcess); 162 const SCEV *CollectIVUsers(const SCEV *const &Stride, 163 IVUsersOfOneStride &Uses, 164 Loop *L, 165 bool &AllUsesAreAddresses, 166 bool &AllUsesAreOutsideLoop, 167 std::vector<BasedUser> &UsersToProcess); 168 bool ShouldUseFullStrengthReductionMode( 169 const std::vector<BasedUser> &UsersToProcess, 170 const Loop *L, 171 bool AllUsesAreAddresses, 172 const SCEV *Stride); 173 void PrepareToStrengthReduceFully( 174 std::vector<BasedUser> &UsersToProcess, 175 const SCEV *Stride, 176 const SCEV *CommonExprs, 177 const Loop *L, 178 SCEVExpander &PreheaderRewriter); 179 void PrepareToStrengthReduceFromSmallerStride( 180 std::vector<BasedUser> &UsersToProcess, 181 Value *CommonBaseV, 182 const IVExpr &ReuseIV, 183 Instruction *PreInsertPt); 184 void PrepareToStrengthReduceWithNewPhi( 185 std::vector<BasedUser> &UsersToProcess, 186 const SCEV *Stride, 187 const SCEV *CommonExprs, 188 Value *CommonBaseV, 189 Instruction *IVIncInsertPt, 190 const Loop *L, 191 SCEVExpander &PreheaderRewriter); 192 void StrengthReduceStridedIVUsers(const SCEV *const &Stride, 193 IVUsersOfOneStride &Uses, 194 Loop *L); 195 void DeleteTriviallyDeadInstructions(); 196 }; 197 } 198 199 char LoopStrengthReduce::ID = 0; 200 static RegisterPass<LoopStrengthReduce> 201 X("loop-reduce", "Loop Strength Reduction"); 202 203 Pass *llvm::createLoopStrengthReducePass(const TargetLowering *TLI) { 204 return new LoopStrengthReduce(TLI); 205 } 206 207 /// DeleteTriviallyDeadInstructions - If any of the instructions is the 208 /// specified set are trivially dead, delete them and see if this makes any of 209 /// their operands subsequently dead. 210 void LoopStrengthReduce::DeleteTriviallyDeadInstructions() { 211 if (DeadInsts.empty()) return; 212 213 while (!DeadInsts.empty()) { 214 Instruction *I = dyn_cast_or_null<Instruction>(DeadInsts.back()); 215 DeadInsts.pop_back(); 216 217 if (I == 0 || !isInstructionTriviallyDead(I)) 218 continue; 219 220 for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) { 221 if (Instruction *U = dyn_cast<Instruction>(*OI)) { 222 *OI = 0; 223 if (U->use_empty()) 224 DeadInsts.push_back(U); 225 } 226 } 227 228 I->eraseFromParent(); 229 Changed = true; 230 } 231 } 232 233 /// containsAddRecFromDifferentLoop - Determine whether expression S involves a 234 /// subexpression that is an AddRec from a loop other than L. An outer loop 235 /// of L is OK, but not an inner loop nor a disjoint loop. 236 static bool containsAddRecFromDifferentLoop(const SCEV *S, Loop *L) { 237 // This is very common, put it first. 238 if (isa<SCEVConstant>(S)) 239 return false; 240 if (const SCEVCommutativeExpr *AE = dyn_cast<SCEVCommutativeExpr>(S)) { 241 for (unsigned int i=0; i< AE->getNumOperands(); i++) 242 if (containsAddRecFromDifferentLoop(AE->getOperand(i), L)) 243 return true; 244 return false; 245 } 246 if (const SCEVAddRecExpr *AE = dyn_cast<SCEVAddRecExpr>(S)) { 247 if (const Loop *newLoop = AE->getLoop()) { 248 if (newLoop == L) 249 return false; 250 // if newLoop is an outer loop of L, this is OK. 251 if (!LoopInfo::isNotAlreadyContainedIn(L, newLoop)) 252 return false; 253 } 254 return true; 255 } 256 if (const SCEVUDivExpr *DE = dyn_cast<SCEVUDivExpr>(S)) 257 return containsAddRecFromDifferentLoop(DE->getLHS(), L) || 258 containsAddRecFromDifferentLoop(DE->getRHS(), L); 259 #if 0 260 // SCEVSDivExpr has been backed out temporarily, but will be back; we'll 261 // need this when it is. 262 if (const SCEVSDivExpr *DE = dyn_cast<SCEVSDivExpr>(S)) 263 return containsAddRecFromDifferentLoop(DE->getLHS(), L) || 264 containsAddRecFromDifferentLoop(DE->getRHS(), L); 265 #endif 266 if (const SCEVCastExpr *CE = dyn_cast<SCEVCastExpr>(S)) 267 return containsAddRecFromDifferentLoop(CE->getOperand(), L); 268 return false; 269 } 270 271 /// isAddressUse - Returns true if the specified instruction is using the 272 /// specified value as an address. 273 static bool isAddressUse(Instruction *Inst, Value *OperandVal) { 274 bool isAddress = isa<LoadInst>(Inst); 275 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 276 if (SI->getOperand(1) == OperandVal) 277 isAddress = true; 278 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 279 // Addressing modes can also be folded into prefetches and a variety 280 // of intrinsics. 281 switch (II->getIntrinsicID()) { 282 default: break; 283 case Intrinsic::prefetch: 284 case Intrinsic::x86_sse2_loadu_dq: 285 case Intrinsic::x86_sse2_loadu_pd: 286 case Intrinsic::x86_sse_loadu_ps: 287 case Intrinsic::x86_sse_storeu_ps: 288 case Intrinsic::x86_sse2_storeu_pd: 289 case Intrinsic::x86_sse2_storeu_dq: 290 case Intrinsic::x86_sse2_storel_dq: 291 if (II->getOperand(1) == OperandVal) 292 isAddress = true; 293 break; 294 } 295 } 296 return isAddress; 297 } 298 299 /// getAccessType - Return the type of the memory being accessed. 300 static const Type *getAccessType(const Instruction *Inst) { 301 const Type *AccessTy = Inst->getType(); 302 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) 303 AccessTy = SI->getOperand(0)->getType(); 304 else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 305 // Addressing modes can also be folded into prefetches and a variety 306 // of intrinsics. 307 switch (II->getIntrinsicID()) { 308 default: break; 309 case Intrinsic::x86_sse_storeu_ps: 310 case Intrinsic::x86_sse2_storeu_pd: 311 case Intrinsic::x86_sse2_storeu_dq: 312 case Intrinsic::x86_sse2_storel_dq: 313 AccessTy = II->getOperand(1)->getType(); 314 break; 315 } 316 } 317 return AccessTy; 318 } 319 320 namespace { 321 /// BasedUser - For a particular base value, keep information about how we've 322 /// partitioned the expression so far. 323 struct BasedUser { 324 /// SE - The current ScalarEvolution object. 325 ScalarEvolution *SE; 326 327 /// Base - The Base value for the PHI node that needs to be inserted for 328 /// this use. As the use is processed, information gets moved from this 329 /// field to the Imm field (below). BasedUser values are sorted by this 330 /// field. 331 const SCEV *Base; 332 333 /// Inst - The instruction using the induction variable. 334 Instruction *Inst; 335 336 /// OperandValToReplace - The operand value of Inst to replace with the 337 /// EmittedBase. 338 Value *OperandValToReplace; 339 340 /// Imm - The immediate value that should be added to the base immediately 341 /// before Inst, because it will be folded into the imm field of the 342 /// instruction. This is also sometimes used for loop-variant values that 343 /// must be added inside the loop. 344 const SCEV *Imm; 345 346 /// Phi - The induction variable that performs the striding that 347 /// should be used for this user. 348 PHINode *Phi; 349 350 // isUseOfPostIncrementedValue - True if this should use the 351 // post-incremented version of this IV, not the preincremented version. 352 // This can only be set in special cases, such as the terminating setcc 353 // instruction for a loop and uses outside the loop that are dominated by 354 // the loop. 355 bool isUseOfPostIncrementedValue; 356 357 BasedUser(IVStrideUse &IVSU, ScalarEvolution *se) 358 : SE(se), Base(IVSU.getOffset()), Inst(IVSU.getUser()), 359 OperandValToReplace(IVSU.getOperandValToReplace()), 360 Imm(SE->getIntegerSCEV(0, Base->getType())), 361 isUseOfPostIncrementedValue(IVSU.isUseOfPostIncrementedValue()) {} 362 363 // Once we rewrite the code to insert the new IVs we want, update the 364 // operands of Inst to use the new expression 'NewBase', with 'Imm' added 365 // to it. 366 void RewriteInstructionToUseNewBase(const SCEV *const &NewBase, 367 Instruction *InsertPt, 368 SCEVExpander &Rewriter, Loop *L, Pass *P, 369 LoopInfo &LI, 370 SmallVectorImpl<WeakVH> &DeadInsts); 371 372 Value *InsertCodeForBaseAtPosition(const SCEV *const &NewBase, 373 const Type *Ty, 374 SCEVExpander &Rewriter, 375 Instruction *IP, Loop *L, 376 LoopInfo &LI); 377 void dump() const; 378 }; 379 } 380 381 void BasedUser::dump() const { 382 cerr << " Base=" << *Base; 383 cerr << " Imm=" << *Imm; 384 cerr << " Inst: " << *Inst; 385 } 386 387 Value *BasedUser::InsertCodeForBaseAtPosition(const SCEV *const &NewBase, 388 const Type *Ty, 389 SCEVExpander &Rewriter, 390 Instruction *IP, Loop *L, 391 LoopInfo &LI) { 392 // Figure out where we *really* want to insert this code. In particular, if 393 // the user is inside of a loop that is nested inside of L, we really don't 394 // want to insert this expression before the user, we'd rather pull it out as 395 // many loops as possible. 396 Instruction *BaseInsertPt = IP; 397 398 // Figure out the most-nested loop that IP is in. 399 Loop *InsertLoop = LI.getLoopFor(IP->getParent()); 400 401 // If InsertLoop is not L, and InsertLoop is nested inside of L, figure out 402 // the preheader of the outer-most loop where NewBase is not loop invariant. 403 if (L->contains(IP->getParent())) 404 while (InsertLoop && NewBase->isLoopInvariant(InsertLoop)) { 405 BaseInsertPt = InsertLoop->getLoopPreheader()->getTerminator(); 406 InsertLoop = InsertLoop->getParentLoop(); 407 } 408 409 Value *Base = Rewriter.expandCodeFor(NewBase, 0, BaseInsertPt); 410 411 const SCEV *NewValSCEV = SE->getUnknown(Base); 412 413 // Always emit the immediate into the same block as the user. 414 NewValSCEV = SE->getAddExpr(NewValSCEV, Imm); 415 416 return Rewriter.expandCodeFor(NewValSCEV, Ty, IP); 417 } 418 419 420 // Once we rewrite the code to insert the new IVs we want, update the 421 // operands of Inst to use the new expression 'NewBase', with 'Imm' added 422 // to it. NewBasePt is the last instruction which contributes to the 423 // value of NewBase in the case that it's a diffferent instruction from 424 // the PHI that NewBase is computed from, or null otherwise. 425 // 426 void BasedUser::RewriteInstructionToUseNewBase(const SCEV *const &NewBase, 427 Instruction *NewBasePt, 428 SCEVExpander &Rewriter, Loop *L, Pass *P, 429 LoopInfo &LI, 430 SmallVectorImpl<WeakVH> &DeadInsts) { 431 if (!isa<PHINode>(Inst)) { 432 // By default, insert code at the user instruction. 433 BasicBlock::iterator InsertPt = Inst; 434 435 // However, if the Operand is itself an instruction, the (potentially 436 // complex) inserted code may be shared by many users. Because of this, we 437 // want to emit code for the computation of the operand right before its old 438 // computation. This is usually safe, because we obviously used to use the 439 // computation when it was computed in its current block. However, in some 440 // cases (e.g. use of a post-incremented induction variable) the NewBase 441 // value will be pinned to live somewhere after the original computation. 442 // In this case, we have to back off. 443 // 444 // If this is a use outside the loop (which means after, since it is based 445 // on a loop indvar) we use the post-incremented value, so that we don't 446 // artificially make the preinc value live out the bottom of the loop. 447 if (!isUseOfPostIncrementedValue && L->contains(Inst->getParent())) { 448 if (NewBasePt && isa<PHINode>(OperandValToReplace)) { 449 InsertPt = NewBasePt; 450 ++InsertPt; 451 } else if (Instruction *OpInst 452 = dyn_cast<Instruction>(OperandValToReplace)) { 453 InsertPt = OpInst; 454 while (isa<PHINode>(InsertPt)) ++InsertPt; 455 } 456 } 457 Value *NewVal = InsertCodeForBaseAtPosition(NewBase, 458 OperandValToReplace->getType(), 459 Rewriter, InsertPt, L, LI); 460 // Replace the use of the operand Value with the new Phi we just created. 461 Inst->replaceUsesOfWith(OperandValToReplace, NewVal); 462 463 DOUT << " Replacing with "; 464 DEBUG(WriteAsOperand(*DOUT, NewVal, /*PrintType=*/false)); 465 DOUT << ", which has value " << *NewBase << " plus IMM " << *Imm << "\n"; 466 return; 467 } 468 469 // PHI nodes are more complex. We have to insert one copy of the NewBase+Imm 470 // expression into each operand block that uses it. Note that PHI nodes can 471 // have multiple entries for the same predecessor. We use a map to make sure 472 // that a PHI node only has a single Value* for each predecessor (which also 473 // prevents us from inserting duplicate code in some blocks). 474 DenseMap<BasicBlock*, Value*> InsertedCode; 475 PHINode *PN = cast<PHINode>(Inst); 476 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 477 if (PN->getIncomingValue(i) == OperandValToReplace) { 478 // If the original expression is outside the loop, put the replacement 479 // code in the same place as the original expression, 480 // which need not be an immediate predecessor of this PHI. This way we 481 // need only one copy of it even if it is referenced multiple times in 482 // the PHI. We don't do this when the original expression is inside the 483 // loop because multiple copies sometimes do useful sinking of code in 484 // that case(?). 485 Instruction *OldLoc = dyn_cast<Instruction>(OperandValToReplace); 486 if (L->contains(OldLoc->getParent())) { 487 // If this is a critical edge, split the edge so that we do not insert 488 // the code on all predecessor/successor paths. We do this unless this 489 // is the canonical backedge for this loop, as this can make some 490 // inserted code be in an illegal position. 491 BasicBlock *PHIPred = PN->getIncomingBlock(i); 492 if (e != 1 && PHIPred->getTerminator()->getNumSuccessors() > 1 && 493 (PN->getParent() != L->getHeader() || !L->contains(PHIPred))) { 494 495 // First step, split the critical edge. 496 SplitCriticalEdge(PHIPred, PN->getParent(), P, false); 497 498 // Next step: move the basic block. In particular, if the PHI node 499 // is outside of the loop, and PredTI is in the loop, we want to 500 // move the block to be immediately before the PHI block, not 501 // immediately after PredTI. 502 if (L->contains(PHIPred) && !L->contains(PN->getParent())) { 503 BasicBlock *NewBB = PN->getIncomingBlock(i); 504 NewBB->moveBefore(PN->getParent()); 505 } 506 507 // Splitting the edge can reduce the number of PHI entries we have. 508 e = PN->getNumIncomingValues(); 509 } 510 } 511 Value *&Code = InsertedCode[PN->getIncomingBlock(i)]; 512 if (!Code) { 513 // Insert the code into the end of the predecessor block. 514 Instruction *InsertPt = (L->contains(OldLoc->getParent())) ? 515 PN->getIncomingBlock(i)->getTerminator() : 516 OldLoc->getParent()->getTerminator(); 517 Code = InsertCodeForBaseAtPosition(NewBase, PN->getType(), 518 Rewriter, InsertPt, L, LI); 519 520 DOUT << " Changing PHI use to "; 521 DEBUG(WriteAsOperand(*DOUT, Code, /*PrintType=*/false)); 522 DOUT << ", which has value " << *NewBase << " plus IMM " << *Imm << "\n"; 523 } 524 525 // Replace the use of the operand Value with the new Phi we just created. 526 PN->setIncomingValue(i, Code); 527 Rewriter.clear(); 528 } 529 } 530 531 // PHI node might have become a constant value after SplitCriticalEdge. 532 DeadInsts.push_back(Inst); 533 } 534 535 536 /// fitsInAddressMode - Return true if V can be subsumed within an addressing 537 /// mode, and does not need to be put in a register first. 538 static bool fitsInAddressMode(const SCEV *const &V, const Type *AccessTy, 539 const TargetLowering *TLI, bool HasBaseReg) { 540 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(V)) { 541 int64_t VC = SC->getValue()->getSExtValue(); 542 if (TLI) { 543 TargetLowering::AddrMode AM; 544 AM.BaseOffs = VC; 545 AM.HasBaseReg = HasBaseReg; 546 return TLI->isLegalAddressingMode(AM, AccessTy); 547 } else { 548 // Defaults to PPC. PPC allows a sign-extended 16-bit immediate field. 549 return (VC > -(1 << 16) && VC < (1 << 16)-1); 550 } 551 } 552 553 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) 554 if (GlobalValue *GV = dyn_cast<GlobalValue>(SU->getValue())) { 555 if (TLI) { 556 TargetLowering::AddrMode AM; 557 AM.BaseGV = GV; 558 AM.HasBaseReg = HasBaseReg; 559 return TLI->isLegalAddressingMode(AM, AccessTy); 560 } else { 561 // Default: assume global addresses are not legal. 562 } 563 } 564 565 return false; 566 } 567 568 /// MoveLoopVariantsToImmediateField - Move any subexpressions from Val that are 569 /// loop varying to the Imm operand. 570 static void MoveLoopVariantsToImmediateField(const SCEV *&Val, const SCEV *&Imm, 571 Loop *L, ScalarEvolution *SE) { 572 if (Val->isLoopInvariant(L)) return; // Nothing to do. 573 574 if (const SCEVAddExpr *SAE = dyn_cast<SCEVAddExpr>(Val)) { 575 SmallVector<const SCEV *, 4> NewOps; 576 NewOps.reserve(SAE->getNumOperands()); 577 578 for (unsigned i = 0; i != SAE->getNumOperands(); ++i) 579 if (!SAE->getOperand(i)->isLoopInvariant(L)) { 580 // If this is a loop-variant expression, it must stay in the immediate 581 // field of the expression. 582 Imm = SE->getAddExpr(Imm, SAE->getOperand(i)); 583 } else { 584 NewOps.push_back(SAE->getOperand(i)); 585 } 586 587 if (NewOps.empty()) 588 Val = SE->getIntegerSCEV(0, Val->getType()); 589 else 590 Val = SE->getAddExpr(NewOps); 591 } else if (const SCEVAddRecExpr *SARE = dyn_cast<SCEVAddRecExpr>(Val)) { 592 // Try to pull immediates out of the start value of nested addrec's. 593 const SCEV *Start = SARE->getStart(); 594 MoveLoopVariantsToImmediateField(Start, Imm, L, SE); 595 596 SmallVector<const SCEV *, 4> Ops(SARE->op_begin(), SARE->op_end()); 597 Ops[0] = Start; 598 Val = SE->getAddRecExpr(Ops, SARE->getLoop()); 599 } else { 600 // Otherwise, all of Val is variant, move the whole thing over. 601 Imm = SE->getAddExpr(Imm, Val); 602 Val = SE->getIntegerSCEV(0, Val->getType()); 603 } 604 } 605 606 607 /// MoveImmediateValues - Look at Val, and pull out any additions of constants 608 /// that can fit into the immediate field of instructions in the target. 609 /// Accumulate these immediate values into the Imm value. 610 static void MoveImmediateValues(const TargetLowering *TLI, 611 const Type *AccessTy, 612 const SCEV *&Val, const SCEV *&Imm, 613 bool isAddress, Loop *L, 614 ScalarEvolution *SE) { 615 if (const SCEVAddExpr *SAE = dyn_cast<SCEVAddExpr>(Val)) { 616 SmallVector<const SCEV *, 4> NewOps; 617 NewOps.reserve(SAE->getNumOperands()); 618 619 for (unsigned i = 0; i != SAE->getNumOperands(); ++i) { 620 const SCEV *NewOp = SAE->getOperand(i); 621 MoveImmediateValues(TLI, AccessTy, NewOp, Imm, isAddress, L, SE); 622 623 if (!NewOp->isLoopInvariant(L)) { 624 // If this is a loop-variant expression, it must stay in the immediate 625 // field of the expression. 626 Imm = SE->getAddExpr(Imm, NewOp); 627 } else { 628 NewOps.push_back(NewOp); 629 } 630 } 631 632 if (NewOps.empty()) 633 Val = SE->getIntegerSCEV(0, Val->getType()); 634 else 635 Val = SE->getAddExpr(NewOps); 636 return; 637 } else if (const SCEVAddRecExpr *SARE = dyn_cast<SCEVAddRecExpr>(Val)) { 638 // Try to pull immediates out of the start value of nested addrec's. 639 const SCEV *Start = SARE->getStart(); 640 MoveImmediateValues(TLI, AccessTy, Start, Imm, isAddress, L, SE); 641 642 if (Start != SARE->getStart()) { 643 SmallVector<const SCEV *, 4> Ops(SARE->op_begin(), SARE->op_end()); 644 Ops[0] = Start; 645 Val = SE->getAddRecExpr(Ops, SARE->getLoop()); 646 } 647 return; 648 } else if (const SCEVMulExpr *SME = dyn_cast<SCEVMulExpr>(Val)) { 649 // Transform "8 * (4 + v)" -> "32 + 8*V" if "32" fits in the immed field. 650 if (isAddress && 651 fitsInAddressMode(SME->getOperand(0), AccessTy, TLI, false) && 652 SME->getNumOperands() == 2 && SME->isLoopInvariant(L)) { 653 654 const SCEV *SubImm = SE->getIntegerSCEV(0, Val->getType()); 655 const SCEV *NewOp = SME->getOperand(1); 656 MoveImmediateValues(TLI, AccessTy, NewOp, SubImm, isAddress, L, SE); 657 658 // If we extracted something out of the subexpressions, see if we can 659 // simplify this! 660 if (NewOp != SME->getOperand(1)) { 661 // Scale SubImm up by "8". If the result is a target constant, we are 662 // good. 663 SubImm = SE->getMulExpr(SubImm, SME->getOperand(0)); 664 if (fitsInAddressMode(SubImm, AccessTy, TLI, false)) { 665 // Accumulate the immediate. 666 Imm = SE->getAddExpr(Imm, SubImm); 667 668 // Update what is left of 'Val'. 669 Val = SE->getMulExpr(SME->getOperand(0), NewOp); 670 return; 671 } 672 } 673 } 674 } 675 676 // Loop-variant expressions must stay in the immediate field of the 677 // expression. 678 if ((isAddress && fitsInAddressMode(Val, AccessTy, TLI, false)) || 679 !Val->isLoopInvariant(L)) { 680 Imm = SE->getAddExpr(Imm, Val); 681 Val = SE->getIntegerSCEV(0, Val->getType()); 682 return; 683 } 684 685 // Otherwise, no immediates to move. 686 } 687 688 static void MoveImmediateValues(const TargetLowering *TLI, 689 Instruction *User, 690 const SCEV *&Val, const SCEV *&Imm, 691 bool isAddress, Loop *L, 692 ScalarEvolution *SE) { 693 const Type *AccessTy = getAccessType(User); 694 MoveImmediateValues(TLI, AccessTy, Val, Imm, isAddress, L, SE); 695 } 696 697 /// SeparateSubExprs - Decompose Expr into all of the subexpressions that are 698 /// added together. This is used to reassociate common addition subexprs 699 /// together for maximal sharing when rewriting bases. 700 static void SeparateSubExprs(SmallVector<const SCEV *, 16> &SubExprs, 701 const SCEV *Expr, 702 ScalarEvolution *SE) { 703 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(Expr)) { 704 for (unsigned j = 0, e = AE->getNumOperands(); j != e; ++j) 705 SeparateSubExprs(SubExprs, AE->getOperand(j), SE); 706 } else if (const SCEVAddRecExpr *SARE = dyn_cast<SCEVAddRecExpr>(Expr)) { 707 const SCEV *Zero = SE->getIntegerSCEV(0, Expr->getType()); 708 if (SARE->getOperand(0) == Zero) { 709 SubExprs.push_back(Expr); 710 } else { 711 // Compute the addrec with zero as its base. 712 SmallVector<const SCEV *, 4> Ops(SARE->op_begin(), SARE->op_end()); 713 Ops[0] = Zero; // Start with zero base. 714 SubExprs.push_back(SE->getAddRecExpr(Ops, SARE->getLoop())); 715 716 717 SeparateSubExprs(SubExprs, SARE->getOperand(0), SE); 718 } 719 } else if (!Expr->isZero()) { 720 // Do not add zero. 721 SubExprs.push_back(Expr); 722 } 723 } 724 725 // This is logically local to the following function, but C++ says we have 726 // to make it file scope. 727 struct SubExprUseData { unsigned Count; bool notAllUsesAreFree; }; 728 729 /// RemoveCommonExpressionsFromUseBases - Look through all of the Bases of all 730 /// the Uses, removing any common subexpressions, except that if all such 731 /// subexpressions can be folded into an addressing mode for all uses inside 732 /// the loop (this case is referred to as "free" in comments herein) we do 733 /// not remove anything. This looks for things like (a+b+c) and 734 /// (a+c+d) and computes the common (a+c) subexpression. The common expression 735 /// is *removed* from the Bases and returned. 736 static const SCEV * 737 RemoveCommonExpressionsFromUseBases(std::vector<BasedUser> &Uses, 738 ScalarEvolution *SE, Loop *L, 739 const TargetLowering *TLI) { 740 unsigned NumUses = Uses.size(); 741 742 // Only one use? This is a very common case, so we handle it specially and 743 // cheaply. 744 const SCEV *Zero = SE->getIntegerSCEV(0, Uses[0].Base->getType()); 745 const SCEV *Result = Zero; 746 const SCEV *FreeResult = Zero; 747 if (NumUses == 1) { 748 // If the use is inside the loop, use its base, regardless of what it is: 749 // it is clearly shared across all the IV's. If the use is outside the loop 750 // (which means after it) we don't want to factor anything *into* the loop, 751 // so just use 0 as the base. 752 if (L->contains(Uses[0].Inst->getParent())) 753 std::swap(Result, Uses[0].Base); 754 return Result; 755 } 756 757 // To find common subexpressions, count how many of Uses use each expression. 758 // If any subexpressions are used Uses.size() times, they are common. 759 // Also track whether all uses of each expression can be moved into an 760 // an addressing mode "for free"; such expressions are left within the loop. 761 // struct SubExprUseData { unsigned Count; bool notAllUsesAreFree; }; 762 std::map<const SCEV *, SubExprUseData> SubExpressionUseData; 763 764 // UniqueSubExprs - Keep track of all of the subexpressions we see in the 765 // order we see them. 766 SmallVector<const SCEV *, 16> UniqueSubExprs; 767 768 SmallVector<const SCEV *, 16> SubExprs; 769 unsigned NumUsesInsideLoop = 0; 770 for (unsigned i = 0; i != NumUses; ++i) { 771 // If the user is outside the loop, just ignore it for base computation. 772 // Since the user is outside the loop, it must be *after* the loop (if it 773 // were before, it could not be based on the loop IV). We don't want users 774 // after the loop to affect base computation of values *inside* the loop, 775 // because we can always add their offsets to the result IV after the loop 776 // is done, ensuring we get good code inside the loop. 777 if (!L->contains(Uses[i].Inst->getParent())) 778 continue; 779 NumUsesInsideLoop++; 780 781 // If the base is zero (which is common), return zero now, there are no 782 // CSEs we can find. 783 if (Uses[i].Base == Zero) return Zero; 784 785 // If this use is as an address we may be able to put CSEs in the addressing 786 // mode rather than hoisting them. 787 bool isAddrUse = isAddressUse(Uses[i].Inst, Uses[i].OperandValToReplace); 788 // We may need the AccessTy below, but only when isAddrUse, so compute it 789 // only in that case. 790 const Type *AccessTy = 0; 791 if (isAddrUse) 792 AccessTy = getAccessType(Uses[i].Inst); 793 794 // Split the expression into subexprs. 795 SeparateSubExprs(SubExprs, Uses[i].Base, SE); 796 // Add one to SubExpressionUseData.Count for each subexpr present, and 797 // if the subexpr is not a valid immediate within an addressing mode use, 798 // set SubExpressionUseData.notAllUsesAreFree. We definitely want to 799 // hoist these out of the loop (if they are common to all uses). 800 for (unsigned j = 0, e = SubExprs.size(); j != e; ++j) { 801 if (++SubExpressionUseData[SubExprs[j]].Count == 1) 802 UniqueSubExprs.push_back(SubExprs[j]); 803 if (!isAddrUse || !fitsInAddressMode(SubExprs[j], AccessTy, TLI, false)) 804 SubExpressionUseData[SubExprs[j]].notAllUsesAreFree = true; 805 } 806 SubExprs.clear(); 807 } 808 809 // Now that we know how many times each is used, build Result. Iterate over 810 // UniqueSubexprs so that we have a stable ordering. 811 for (unsigned i = 0, e = UniqueSubExprs.size(); i != e; ++i) { 812 std::map<const SCEV *, SubExprUseData>::iterator I = 813 SubExpressionUseData.find(UniqueSubExprs[i]); 814 assert(I != SubExpressionUseData.end() && "Entry not found?"); 815 if (I->second.Count == NumUsesInsideLoop) { // Found CSE! 816 if (I->second.notAllUsesAreFree) 817 Result = SE->getAddExpr(Result, I->first); 818 else 819 FreeResult = SE->getAddExpr(FreeResult, I->first); 820 } else 821 // Remove non-cse's from SubExpressionUseData. 822 SubExpressionUseData.erase(I); 823 } 824 825 if (FreeResult != Zero) { 826 // We have some subexpressions that can be subsumed into addressing 827 // modes in every use inside the loop. However, it's possible that 828 // there are so many of them that the combined FreeResult cannot 829 // be subsumed, or that the target cannot handle both a FreeResult 830 // and a Result in the same instruction (for example because it would 831 // require too many registers). Check this. 832 for (unsigned i=0; i<NumUses; ++i) { 833 if (!L->contains(Uses[i].Inst->getParent())) 834 continue; 835 // We know this is an addressing mode use; if there are any uses that 836 // are not, FreeResult would be Zero. 837 const Type *AccessTy = getAccessType(Uses[i].Inst); 838 if (!fitsInAddressMode(FreeResult, AccessTy, TLI, Result!=Zero)) { 839 // FIXME: could split up FreeResult into pieces here, some hoisted 840 // and some not. There is no obvious advantage to this. 841 Result = SE->getAddExpr(Result, FreeResult); 842 FreeResult = Zero; 843 break; 844 } 845 } 846 } 847 848 // If we found no CSE's, return now. 849 if (Result == Zero) return Result; 850 851 // If we still have a FreeResult, remove its subexpressions from 852 // SubExpressionUseData. This means they will remain in the use Bases. 853 if (FreeResult != Zero) { 854 SeparateSubExprs(SubExprs, FreeResult, SE); 855 for (unsigned j = 0, e = SubExprs.size(); j != e; ++j) { 856 std::map<const SCEV *, SubExprUseData>::iterator I = 857 SubExpressionUseData.find(SubExprs[j]); 858 SubExpressionUseData.erase(I); 859 } 860 SubExprs.clear(); 861 } 862 863 // Otherwise, remove all of the CSE's we found from each of the base values. 864 for (unsigned i = 0; i != NumUses; ++i) { 865 // Uses outside the loop don't necessarily include the common base, but 866 // the final IV value coming into those uses does. Instead of trying to 867 // remove the pieces of the common base, which might not be there, 868 // subtract off the base to compensate for this. 869 if (!L->contains(Uses[i].Inst->getParent())) { 870 Uses[i].Base = SE->getMinusSCEV(Uses[i].Base, Result); 871 continue; 872 } 873 874 // Split the expression into subexprs. 875 SeparateSubExprs(SubExprs, Uses[i].Base, SE); 876 877 // Remove any common subexpressions. 878 for (unsigned j = 0, e = SubExprs.size(); j != e; ++j) 879 if (SubExpressionUseData.count(SubExprs[j])) { 880 SubExprs.erase(SubExprs.begin()+j); 881 --j; --e; 882 } 883 884 // Finally, add the non-shared expressions together. 885 if (SubExprs.empty()) 886 Uses[i].Base = Zero; 887 else 888 Uses[i].Base = SE->getAddExpr(SubExprs); 889 SubExprs.clear(); 890 } 891 892 return Result; 893 } 894 895 /// ValidScale - Check whether the given Scale is valid for all loads and 896 /// stores in UsersToProcess. 897 /// 898 bool LoopStrengthReduce::ValidScale(bool HasBaseReg, int64_t Scale, 899 const std::vector<BasedUser>& UsersToProcess) { 900 if (!TLI) 901 return true; 902 903 for (unsigned i = 0, e = UsersToProcess.size(); i!=e; ++i) { 904 // If this is a load or other access, pass the type of the access in. 905 const Type *AccessTy = Type::VoidTy; 906 if (isAddressUse(UsersToProcess[i].Inst, 907 UsersToProcess[i].OperandValToReplace)) 908 AccessTy = getAccessType(UsersToProcess[i].Inst); 909 else if (isa<PHINode>(UsersToProcess[i].Inst)) 910 continue; 911 912 TargetLowering::AddrMode AM; 913 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(UsersToProcess[i].Imm)) 914 AM.BaseOffs = SC->getValue()->getSExtValue(); 915 AM.HasBaseReg = HasBaseReg || !UsersToProcess[i].Base->isZero(); 916 AM.Scale = Scale; 917 918 // If load[imm+r*scale] is illegal, bail out. 919 if (!TLI->isLegalAddressingMode(AM, AccessTy)) 920 return false; 921 } 922 return true; 923 } 924 925 /// ValidOffset - Check whether the given Offset is valid for all loads and 926 /// stores in UsersToProcess. 927 /// 928 bool LoopStrengthReduce::ValidOffset(bool HasBaseReg, 929 int64_t Offset, 930 int64_t Scale, 931 const std::vector<BasedUser>& UsersToProcess) { 932 if (!TLI) 933 return true; 934 935 for (unsigned i=0, e = UsersToProcess.size(); i!=e; ++i) { 936 // If this is a load or other access, pass the type of the access in. 937 const Type *AccessTy = Type::VoidTy; 938 if (isAddressUse(UsersToProcess[i].Inst, 939 UsersToProcess[i].OperandValToReplace)) 940 AccessTy = getAccessType(UsersToProcess[i].Inst); 941 else if (isa<PHINode>(UsersToProcess[i].Inst)) 942 continue; 943 944 TargetLowering::AddrMode AM; 945 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(UsersToProcess[i].Imm)) 946 AM.BaseOffs = SC->getValue()->getSExtValue(); 947 AM.BaseOffs = (uint64_t)AM.BaseOffs + (uint64_t)Offset; 948 AM.HasBaseReg = HasBaseReg || !UsersToProcess[i].Base->isZero(); 949 AM.Scale = Scale; 950 951 // If load[imm+r*scale] is illegal, bail out. 952 if (!TLI->isLegalAddressingMode(AM, AccessTy)) 953 return false; 954 } 955 return true; 956 } 957 958 /// RequiresTypeConversion - Returns true if converting Ty1 to Ty2 is not 959 /// a nop. 960 bool LoopStrengthReduce::RequiresTypeConversion(const Type *Ty1, 961 const Type *Ty2) { 962 if (Ty1 == Ty2) 963 return false; 964 Ty1 = SE->getEffectiveSCEVType(Ty1); 965 Ty2 = SE->getEffectiveSCEVType(Ty2); 966 if (Ty1 == Ty2) 967 return false; 968 if (Ty1->canLosslesslyBitCastTo(Ty2)) 969 return false; 970 if (TLI && TLI->isTruncateFree(Ty1, Ty2)) 971 return false; 972 return true; 973 } 974 975 /// CheckForIVReuse - Returns the multiple if the stride is the multiple 976 /// of a previous stride and it is a legal value for the target addressing 977 /// mode scale component and optional base reg. This allows the users of 978 /// this stride to be rewritten as prev iv * factor. It returns 0 if no 979 /// reuse is possible. Factors can be negative on same targets, e.g. ARM. 980 /// 981 /// If all uses are outside the loop, we don't require that all multiplies 982 /// be folded into the addressing mode, nor even that the factor be constant; 983 /// a multiply (executed once) outside the loop is better than another IV 984 /// within. Well, usually. 985 const SCEV *LoopStrengthReduce::CheckForIVReuse(bool HasBaseReg, 986 bool AllUsesAreAddresses, 987 bool AllUsesAreOutsideLoop, 988 const SCEV *const &Stride, 989 IVExpr &IV, const Type *Ty, 990 const std::vector<BasedUser>& UsersToProcess) { 991 if (StrideNoReuse.count(Stride)) 992 return SE->getIntegerSCEV(0, Stride->getType()); 993 994 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Stride)) { 995 int64_t SInt = SC->getValue()->getSExtValue(); 996 for (unsigned NewStride = 0, e = IU->StrideOrder.size(); 997 NewStride != e; ++NewStride) { 998 std::map<const SCEV *, IVsOfOneStride>::iterator SI = 999 IVsByStride.find(IU->StrideOrder[NewStride]); 1000 if (SI == IVsByStride.end() || !isa<SCEVConstant>(SI->first) || 1001 StrideNoReuse.count(SI->first)) 1002 continue; 1003 int64_t SSInt = cast<SCEVConstant>(SI->first)->getValue()->getSExtValue(); 1004 if (SI->first != Stride && 1005 (unsigned(abs64(SInt)) < SSInt || (SInt % SSInt) != 0)) 1006 continue; 1007 int64_t Scale = SInt / SSInt; 1008 // Check that this stride is valid for all the types used for loads and 1009 // stores; if it can be used for some and not others, we might as well use 1010 // the original stride everywhere, since we have to create the IV for it 1011 // anyway. If the scale is 1, then we don't need to worry about folding 1012 // multiplications. 1013 if (Scale == 1 || 1014 (AllUsesAreAddresses && 1015 ValidScale(HasBaseReg, Scale, UsersToProcess))) { 1016 // Prefer to reuse an IV with a base of zero. 1017 for (std::vector<IVExpr>::iterator II = SI->second.IVs.begin(), 1018 IE = SI->second.IVs.end(); II != IE; ++II) 1019 // Only reuse previous IV if it would not require a type conversion 1020 // and if the base difference can be folded. 1021 if (II->Base->isZero() && 1022 !RequiresTypeConversion(II->Base->getType(), Ty)) { 1023 IV = *II; 1024 return SE->getIntegerSCEV(Scale, Stride->getType()); 1025 } 1026 // Otherwise, settle for an IV with a foldable base. 1027 if (AllUsesAreAddresses) 1028 for (std::vector<IVExpr>::iterator II = SI->second.IVs.begin(), 1029 IE = SI->second.IVs.end(); II != IE; ++II) 1030 // Only reuse previous IV if it would not require a type conversion 1031 // and if the base difference can be folded. 1032 if (SE->getEffectiveSCEVType(II->Base->getType()) == 1033 SE->getEffectiveSCEVType(Ty) && 1034 isa<SCEVConstant>(II->Base)) { 1035 int64_t Base = 1036 cast<SCEVConstant>(II->Base)->getValue()->getSExtValue(); 1037 if (Base > INT32_MIN && Base <= INT32_MAX && 1038 ValidOffset(HasBaseReg, -Base * Scale, 1039 Scale, UsersToProcess)) { 1040 IV = *II; 1041 return SE->getIntegerSCEV(Scale, Stride->getType()); 1042 } 1043 } 1044 } 1045 } 1046 } else if (AllUsesAreOutsideLoop) { 1047 // Accept nonconstant strides here; it is really really right to substitute 1048 // an existing IV if we can. 1049 for (unsigned NewStride = 0, e = IU->StrideOrder.size(); 1050 NewStride != e; ++NewStride) { 1051 std::map<const SCEV *, IVsOfOneStride>::iterator SI = 1052 IVsByStride.find(IU->StrideOrder[NewStride]); 1053 if (SI == IVsByStride.end() || !isa<SCEVConstant>(SI->first)) 1054 continue; 1055 int64_t SSInt = cast<SCEVConstant>(SI->first)->getValue()->getSExtValue(); 1056 if (SI->first != Stride && SSInt != 1) 1057 continue; 1058 for (std::vector<IVExpr>::iterator II = SI->second.IVs.begin(), 1059 IE = SI->second.IVs.end(); II != IE; ++II) 1060 // Accept nonzero base here. 1061 // Only reuse previous IV if it would not require a type conversion. 1062 if (!RequiresTypeConversion(II->Base->getType(), Ty)) { 1063 IV = *II; 1064 return Stride; 1065 } 1066 } 1067 // Special case, old IV is -1*x and this one is x. Can treat this one as 1068 // -1*old. 1069 for (unsigned NewStride = 0, e = IU->StrideOrder.size(); 1070 NewStride != e; ++NewStride) { 1071 std::map<const SCEV *, IVsOfOneStride>::iterator SI = 1072 IVsByStride.find(IU->StrideOrder[NewStride]); 1073 if (SI == IVsByStride.end()) 1074 continue; 1075 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(SI->first)) 1076 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(ME->getOperand(0))) 1077 if (Stride == ME->getOperand(1) && 1078 SC->getValue()->getSExtValue() == -1LL) 1079 for (std::vector<IVExpr>::iterator II = SI->second.IVs.begin(), 1080 IE = SI->second.IVs.end(); II != IE; ++II) 1081 // Accept nonzero base here. 1082 // Only reuse previous IV if it would not require type conversion. 1083 if (!RequiresTypeConversion(II->Base->getType(), Ty)) { 1084 IV = *II; 1085 return SE->getIntegerSCEV(-1LL, Stride->getType()); 1086 } 1087 } 1088 } 1089 return SE->getIntegerSCEV(0, Stride->getType()); 1090 } 1091 1092 /// PartitionByIsUseOfPostIncrementedValue - Simple boolean predicate that 1093 /// returns true if Val's isUseOfPostIncrementedValue is true. 1094 static bool PartitionByIsUseOfPostIncrementedValue(const BasedUser &Val) { 1095 return Val.isUseOfPostIncrementedValue; 1096 } 1097 1098 /// isNonConstantNegative - Return true if the specified scev is negated, but 1099 /// not a constant. 1100 static bool isNonConstantNegative(const SCEV *const &Expr) { 1101 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Expr); 1102 if (!Mul) return false; 1103 1104 // If there is a constant factor, it will be first. 1105 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 1106 if (!SC) return false; 1107 1108 // Return true if the value is negative, this matches things like (-42 * V). 1109 return SC->getValue()->getValue().isNegative(); 1110 } 1111 1112 /// CollectIVUsers - Transform our list of users and offsets to a bit more 1113 /// complex table. In this new vector, each 'BasedUser' contains 'Base', the base 1114 /// of the strided accesses, as well as the old information from Uses. We 1115 /// progressively move information from the Base field to the Imm field, until 1116 /// we eventually have the full access expression to rewrite the use. 1117 const SCEV *LoopStrengthReduce::CollectIVUsers(const SCEV *const &Stride, 1118 IVUsersOfOneStride &Uses, 1119 Loop *L, 1120 bool &AllUsesAreAddresses, 1121 bool &AllUsesAreOutsideLoop, 1122 std::vector<BasedUser> &UsersToProcess) { 1123 // FIXME: Generalize to non-affine IV's. 1124 if (!Stride->isLoopInvariant(L)) 1125 return SE->getIntegerSCEV(0, Stride->getType()); 1126 1127 UsersToProcess.reserve(Uses.Users.size()); 1128 for (ilist<IVStrideUse>::iterator I = Uses.Users.begin(), 1129 E = Uses.Users.end(); I != E; ++I) { 1130 UsersToProcess.push_back(BasedUser(*I, SE)); 1131 1132 // Move any loop variant operands from the offset field to the immediate 1133 // field of the use, so that we don't try to use something before it is 1134 // computed. 1135 MoveLoopVariantsToImmediateField(UsersToProcess.back().Base, 1136 UsersToProcess.back().Imm, L, SE); 1137 assert(UsersToProcess.back().Base->isLoopInvariant(L) && 1138 "Base value is not loop invariant!"); 1139 } 1140 1141 // We now have a whole bunch of uses of like-strided induction variables, but 1142 // they might all have different bases. We want to emit one PHI node for this 1143 // stride which we fold as many common expressions (between the IVs) into as 1144 // possible. Start by identifying the common expressions in the base values 1145 // for the strides (e.g. if we have "A+C+B" and "A+B+D" as our bases, find 1146 // "A+B"), emit it to the preheader, then remove the expression from the 1147 // UsersToProcess base values. 1148 const SCEV *CommonExprs = 1149 RemoveCommonExpressionsFromUseBases(UsersToProcess, SE, L, TLI); 1150 1151 // Next, figure out what we can represent in the immediate fields of 1152 // instructions. If we can represent anything there, move it to the imm 1153 // fields of the BasedUsers. We do this so that it increases the commonality 1154 // of the remaining uses. 1155 unsigned NumPHI = 0; 1156 bool HasAddress = false; 1157 for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i) { 1158 // If the user is not in the current loop, this means it is using the exit 1159 // value of the IV. Do not put anything in the base, make sure it's all in 1160 // the immediate field to allow as much factoring as possible. 1161 if (!L->contains(UsersToProcess[i].Inst->getParent())) { 1162 UsersToProcess[i].Imm = SE->getAddExpr(UsersToProcess[i].Imm, 1163 UsersToProcess[i].Base); 1164 UsersToProcess[i].Base = 1165 SE->getIntegerSCEV(0, UsersToProcess[i].Base->getType()); 1166 } else { 1167 // Not all uses are outside the loop. 1168 AllUsesAreOutsideLoop = false; 1169 1170 // Addressing modes can be folded into loads and stores. Be careful that 1171 // the store is through the expression, not of the expression though. 1172 bool isPHI = false; 1173 bool isAddress = isAddressUse(UsersToProcess[i].Inst, 1174 UsersToProcess[i].OperandValToReplace); 1175 if (isa<PHINode>(UsersToProcess[i].Inst)) { 1176 isPHI = true; 1177 ++NumPHI; 1178 } 1179 1180 if (isAddress) 1181 HasAddress = true; 1182 1183 // If this use isn't an address, then not all uses are addresses. 1184 if (!isAddress && !isPHI) 1185 AllUsesAreAddresses = false; 1186 1187 MoveImmediateValues(TLI, UsersToProcess[i].Inst, UsersToProcess[i].Base, 1188 UsersToProcess[i].Imm, isAddress, L, SE); 1189 } 1190 } 1191 1192 // If one of the use is a PHI node and all other uses are addresses, still 1193 // allow iv reuse. Essentially we are trading one constant multiplication 1194 // for one fewer iv. 1195 if (NumPHI > 1) 1196 AllUsesAreAddresses = false; 1197 1198 // There are no in-loop address uses. 1199 if (AllUsesAreAddresses && (!HasAddress && !AllUsesAreOutsideLoop)) 1200 AllUsesAreAddresses = false; 1201 1202 return CommonExprs; 1203 } 1204 1205 /// ShouldUseFullStrengthReductionMode - Test whether full strength-reduction 1206 /// is valid and profitable for the given set of users of a stride. In 1207 /// full strength-reduction mode, all addresses at the current stride are 1208 /// strength-reduced all the way down to pointer arithmetic. 1209 /// 1210 bool LoopStrengthReduce::ShouldUseFullStrengthReductionMode( 1211 const std::vector<BasedUser> &UsersToProcess, 1212 const Loop *L, 1213 bool AllUsesAreAddresses, 1214 const SCEV *Stride) { 1215 if (!EnableFullLSRMode) 1216 return false; 1217 1218 // The heuristics below aim to avoid increasing register pressure, but 1219 // fully strength-reducing all the addresses increases the number of 1220 // add instructions, so don't do this when optimizing for size. 1221 // TODO: If the loop is large, the savings due to simpler addresses 1222 // may oughtweight the costs of the extra increment instructions. 1223 if (L->getHeader()->getParent()->hasFnAttr(Attribute::OptimizeForSize)) 1224 return false; 1225 1226 // TODO: For now, don't do full strength reduction if there could 1227 // potentially be greater-stride multiples of the current stride 1228 // which could reuse the current stride IV. 1229 if (IU->StrideOrder.back() != Stride) 1230 return false; 1231 1232 // Iterate through the uses to find conditions that automatically rule out 1233 // full-lsr mode. 1234 for (unsigned i = 0, e = UsersToProcess.size(); i != e; ) { 1235 const SCEV *Base = UsersToProcess[i].Base; 1236 const SCEV *Imm = UsersToProcess[i].Imm; 1237 // If any users have a loop-variant component, they can't be fully 1238 // strength-reduced. 1239 if (Imm && !Imm->isLoopInvariant(L)) 1240 return false; 1241 // If there are to users with the same base and the difference between 1242 // the two Imm values can't be folded into the address, full 1243 // strength reduction would increase register pressure. 1244 do { 1245 const SCEV *CurImm = UsersToProcess[i].Imm; 1246 if ((CurImm || Imm) && CurImm != Imm) { 1247 if (!CurImm) CurImm = SE->getIntegerSCEV(0, Stride->getType()); 1248 if (!Imm) Imm = SE->getIntegerSCEV(0, Stride->getType()); 1249 const Instruction *Inst = UsersToProcess[i].Inst; 1250 const Type *AccessTy = getAccessType(Inst); 1251 const SCEV *Diff = SE->getMinusSCEV(UsersToProcess[i].Imm, Imm); 1252 if (!Diff->isZero() && 1253 (!AllUsesAreAddresses || 1254 !fitsInAddressMode(Diff, AccessTy, TLI, /*HasBaseReg=*/true))) 1255 return false; 1256 } 1257 } while (++i != e && Base == UsersToProcess[i].Base); 1258 } 1259 1260 // If there's exactly one user in this stride, fully strength-reducing it 1261 // won't increase register pressure. If it's starting from a non-zero base, 1262 // it'll be simpler this way. 1263 if (UsersToProcess.size() == 1 && !UsersToProcess[0].Base->isZero()) 1264 return true; 1265 1266 // Otherwise, if there are any users in this stride that don't require 1267 // a register for their base, full strength-reduction will increase 1268 // register pressure. 1269 for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i) 1270 if (UsersToProcess[i].Base->isZero()) 1271 return false; 1272 1273 // Otherwise, go for it. 1274 return true; 1275 } 1276 1277 /// InsertAffinePhi Create and insert a PHI node for an induction variable 1278 /// with the specified start and step values in the specified loop. 1279 /// 1280 /// If NegateStride is true, the stride should be negated by using a 1281 /// subtract instead of an add. 1282 /// 1283 /// Return the created phi node. 1284 /// 1285 static PHINode *InsertAffinePhi(const SCEV *Start, const SCEV *Step, 1286 Instruction *IVIncInsertPt, 1287 const Loop *L, 1288 SCEVExpander &Rewriter) { 1289 assert(Start->isLoopInvariant(L) && "New PHI start is not loop invariant!"); 1290 assert(Step->isLoopInvariant(L) && "New PHI stride is not loop invariant!"); 1291 1292 BasicBlock *Header = L->getHeader(); 1293 BasicBlock *Preheader = L->getLoopPreheader(); 1294 BasicBlock *LatchBlock = L->getLoopLatch(); 1295 const Type *Ty = Start->getType(); 1296 Ty = Rewriter.SE.getEffectiveSCEVType(Ty); 1297 1298 PHINode *PN = PHINode::Create(Ty, "lsr.iv", Header->begin()); 1299 PN->addIncoming(Rewriter.expandCodeFor(Start, Ty, Preheader->getTerminator()), 1300 Preheader); 1301 1302 // If the stride is negative, insert a sub instead of an add for the 1303 // increment. 1304 bool isNegative = isNonConstantNegative(Step); 1305 const SCEV *IncAmount = Step; 1306 if (isNegative) 1307 IncAmount = Rewriter.SE.getNegativeSCEV(Step); 1308 1309 // Insert an add instruction right before the terminator corresponding 1310 // to the back-edge or just before the only use. The location is determined 1311 // by the caller and passed in as IVIncInsertPt. 1312 Value *StepV = Rewriter.expandCodeFor(IncAmount, Ty, 1313 Preheader->getTerminator()); 1314 Instruction *IncV; 1315 if (isNegative) { 1316 IncV = BinaryOperator::CreateSub(PN, StepV, "lsr.iv.next", 1317 IVIncInsertPt); 1318 } else { 1319 IncV = BinaryOperator::CreateAdd(PN, StepV, "lsr.iv.next", 1320 IVIncInsertPt); 1321 } 1322 if (!isa<ConstantInt>(StepV)) ++NumVariable; 1323 1324 PN->addIncoming(IncV, LatchBlock); 1325 1326 ++NumInserted; 1327 return PN; 1328 } 1329 1330 static void SortUsersToProcess(std::vector<BasedUser> &UsersToProcess) { 1331 // We want to emit code for users inside the loop first. To do this, we 1332 // rearrange BasedUser so that the entries at the end have 1333 // isUseOfPostIncrementedValue = false, because we pop off the end of the 1334 // vector (so we handle them first). 1335 std::partition(UsersToProcess.begin(), UsersToProcess.end(), 1336 PartitionByIsUseOfPostIncrementedValue); 1337 1338 // Sort this by base, so that things with the same base are handled 1339 // together. By partitioning first and stable-sorting later, we are 1340 // guaranteed that within each base we will pop off users from within the 1341 // loop before users outside of the loop with a particular base. 1342 // 1343 // We would like to use stable_sort here, but we can't. The problem is that 1344 // const SCEV *'s don't have a deterministic ordering w.r.t to each other, so 1345 // we don't have anything to do a '<' comparison on. Because we think the 1346 // number of uses is small, do a horrible bubble sort which just relies on 1347 // ==. 1348 for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i) { 1349 // Get a base value. 1350 const SCEV *Base = UsersToProcess[i].Base; 1351 1352 // Compact everything with this base to be consecutive with this one. 1353 for (unsigned j = i+1; j != e; ++j) { 1354 if (UsersToProcess[j].Base == Base) { 1355 std::swap(UsersToProcess[i+1], UsersToProcess[j]); 1356 ++i; 1357 } 1358 } 1359 } 1360 } 1361 1362 /// PrepareToStrengthReduceFully - Prepare to fully strength-reduce 1363 /// UsersToProcess, meaning lowering addresses all the way down to direct 1364 /// pointer arithmetic. 1365 /// 1366 void 1367 LoopStrengthReduce::PrepareToStrengthReduceFully( 1368 std::vector<BasedUser> &UsersToProcess, 1369 const SCEV *Stride, 1370 const SCEV *CommonExprs, 1371 const Loop *L, 1372 SCEVExpander &PreheaderRewriter) { 1373 DOUT << " Fully reducing all users\n"; 1374 1375 // Rewrite the UsersToProcess records, creating a separate PHI for each 1376 // unique Base value. 1377 Instruction *IVIncInsertPt = L->getLoopLatch()->getTerminator(); 1378 for (unsigned i = 0, e = UsersToProcess.size(); i != e; ) { 1379 // TODO: The uses are grouped by base, but not sorted. We arbitrarily 1380 // pick the first Imm value here to start with, and adjust it for the 1381 // other uses. 1382 const SCEV *Imm = UsersToProcess[i].Imm; 1383 const SCEV *Base = UsersToProcess[i].Base; 1384 const SCEV *Start = SE->getAddExpr(CommonExprs, Base, Imm); 1385 PHINode *Phi = InsertAffinePhi(Start, Stride, IVIncInsertPt, L, 1386 PreheaderRewriter); 1387 // Loop over all the users with the same base. 1388 do { 1389 UsersToProcess[i].Base = SE->getIntegerSCEV(0, Stride->getType()); 1390 UsersToProcess[i].Imm = SE->getMinusSCEV(UsersToProcess[i].Imm, Imm); 1391 UsersToProcess[i].Phi = Phi; 1392 assert(UsersToProcess[i].Imm->isLoopInvariant(L) && 1393 "ShouldUseFullStrengthReductionMode should reject this!"); 1394 } while (++i != e && Base == UsersToProcess[i].Base); 1395 } 1396 } 1397 1398 /// FindIVIncInsertPt - Return the location to insert the increment instruction. 1399 /// If the only use if a use of postinc value, (must be the loop termination 1400 /// condition), then insert it just before the use. 1401 static Instruction *FindIVIncInsertPt(std::vector<BasedUser> &UsersToProcess, 1402 const Loop *L) { 1403 if (UsersToProcess.size() == 1 && 1404 UsersToProcess[0].isUseOfPostIncrementedValue && 1405 L->contains(UsersToProcess[0].Inst->getParent())) 1406 return UsersToProcess[0].Inst; 1407 return L->getLoopLatch()->getTerminator(); 1408 } 1409 1410 /// PrepareToStrengthReduceWithNewPhi - Insert a new induction variable for the 1411 /// given users to share. 1412 /// 1413 void 1414 LoopStrengthReduce::PrepareToStrengthReduceWithNewPhi( 1415 std::vector<BasedUser> &UsersToProcess, 1416 const SCEV *Stride, 1417 const SCEV *CommonExprs, 1418 Value *CommonBaseV, 1419 Instruction *IVIncInsertPt, 1420 const Loop *L, 1421 SCEVExpander &PreheaderRewriter) { 1422 DOUT << " Inserting new PHI:\n"; 1423 1424 PHINode *Phi = InsertAffinePhi(SE->getUnknown(CommonBaseV), 1425 Stride, IVIncInsertPt, L, 1426 PreheaderRewriter); 1427 1428 // Remember this in case a later stride is multiple of this. 1429 IVsByStride[Stride].addIV(Stride, CommonExprs, Phi); 1430 1431 // All the users will share this new IV. 1432 for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i) 1433 UsersToProcess[i].Phi = Phi; 1434 1435 DOUT << " IV="; 1436 DEBUG(WriteAsOperand(*DOUT, Phi, /*PrintType=*/false)); 1437 DOUT << "\n"; 1438 } 1439 1440 /// PrepareToStrengthReduceFromSmallerStride - Prepare for the given users to 1441 /// reuse an induction variable with a stride that is a factor of the current 1442 /// induction variable. 1443 /// 1444 void 1445 LoopStrengthReduce::PrepareToStrengthReduceFromSmallerStride( 1446 std::vector<BasedUser> &UsersToProcess, 1447 Value *CommonBaseV, 1448 const IVExpr &ReuseIV, 1449 Instruction *PreInsertPt) { 1450 DOUT << " Rewriting in terms of existing IV of STRIDE " << *ReuseIV.Stride 1451 << " and BASE " << *ReuseIV.Base << "\n"; 1452 1453 // All the users will share the reused IV. 1454 for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i) 1455 UsersToProcess[i].Phi = ReuseIV.PHI; 1456 1457 Constant *C = dyn_cast<Constant>(CommonBaseV); 1458 if (C && 1459 (!C->isNullValue() && 1460 !fitsInAddressMode(SE->getUnknown(CommonBaseV), CommonBaseV->getType(), 1461 TLI, false))) 1462 // We want the common base emitted into the preheader! This is just 1463 // using cast as a copy so BitCast (no-op cast) is appropriate 1464 CommonBaseV = new BitCastInst(CommonBaseV, CommonBaseV->getType(), 1465 "commonbase", PreInsertPt); 1466 } 1467 1468 static bool IsImmFoldedIntoAddrMode(GlobalValue *GV, int64_t Offset, 1469 const Type *AccessTy, 1470 std::vector<BasedUser> &UsersToProcess, 1471 const TargetLowering *TLI) { 1472 SmallVector<Instruction*, 16> AddrModeInsts; 1473 for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i) { 1474 if (UsersToProcess[i].isUseOfPostIncrementedValue) 1475 continue; 1476 ExtAddrMode AddrMode = 1477 AddressingModeMatcher::Match(UsersToProcess[i].OperandValToReplace, 1478 AccessTy, UsersToProcess[i].Inst, 1479 AddrModeInsts, *TLI); 1480 if (GV && GV != AddrMode.BaseGV) 1481 return false; 1482 if (Offset && !AddrMode.BaseOffs) 1483 // FIXME: How to accurate check it's immediate offset is folded. 1484 return false; 1485 AddrModeInsts.clear(); 1486 } 1487 return true; 1488 } 1489 1490 /// StrengthReduceStridedIVUsers - Strength reduce all of the users of a single 1491 /// stride of IV. All of the users may have different starting values, and this 1492 /// may not be the only stride. 1493 void LoopStrengthReduce::StrengthReduceStridedIVUsers(const SCEV *const &Stride, 1494 IVUsersOfOneStride &Uses, 1495 Loop *L) { 1496 // If all the users are moved to another stride, then there is nothing to do. 1497 if (Uses.Users.empty()) 1498 return; 1499 1500 // Keep track if every use in UsersToProcess is an address. If they all are, 1501 // we may be able to rewrite the entire collection of them in terms of a 1502 // smaller-stride IV. 1503 bool AllUsesAreAddresses = true; 1504 1505 // Keep track if every use of a single stride is outside the loop. If so, 1506 // we want to be more aggressive about reusing a smaller-stride IV; a 1507 // multiply outside the loop is better than another IV inside. Well, usually. 1508 bool AllUsesAreOutsideLoop = true; 1509 1510 // Transform our list of users and offsets to a bit more complex table. In 1511 // this new vector, each 'BasedUser' contains 'Base' the base of the 1512 // strided accessas well as the old information from Uses. We progressively 1513 // move information from the Base field to the Imm field, until we eventually 1514 // have the full access expression to rewrite the use. 1515 std::vector<BasedUser> UsersToProcess; 1516 const SCEV *CommonExprs = CollectIVUsers(Stride, Uses, L, AllUsesAreAddresses, 1517 AllUsesAreOutsideLoop, 1518 UsersToProcess); 1519 1520 // Sort the UsersToProcess array so that users with common bases are 1521 // next to each other. 1522 SortUsersToProcess(UsersToProcess); 1523 1524 // If we managed to find some expressions in common, we'll need to carry 1525 // their value in a register and add it in for each use. This will take up 1526 // a register operand, which potentially restricts what stride values are 1527 // valid. 1528 bool HaveCommonExprs = !CommonExprs->isZero(); 1529 const Type *ReplacedTy = CommonExprs->getType(); 1530 1531 // If all uses are addresses, consider sinking the immediate part of the 1532 // common expression back into uses if they can fit in the immediate fields. 1533 if (TLI && HaveCommonExprs && AllUsesAreAddresses) { 1534 const SCEV *NewCommon = CommonExprs; 1535 const SCEV *Imm = SE->getIntegerSCEV(0, ReplacedTy); 1536 MoveImmediateValues(TLI, Type::VoidTy, NewCommon, Imm, true, L, SE); 1537 if (!Imm->isZero()) { 1538 bool DoSink = true; 1539 1540 // If the immediate part of the common expression is a GV, check if it's 1541 // possible to fold it into the target addressing mode. 1542 GlobalValue *GV = 0; 1543 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(Imm)) 1544 GV = dyn_cast<GlobalValue>(SU->getValue()); 1545 int64_t Offset = 0; 1546 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Imm)) 1547 Offset = SC->getValue()->getSExtValue(); 1548 if (GV || Offset) 1549 // Pass VoidTy as the AccessTy to be conservative, because 1550 // there could be multiple access types among all the uses. 1551 DoSink = IsImmFoldedIntoAddrMode(GV, Offset, Type::VoidTy, 1552 UsersToProcess, TLI); 1553 1554 if (DoSink) { 1555 DOUT << " Sinking " << *Imm << " back down into uses\n"; 1556 for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i) 1557 UsersToProcess[i].Imm = SE->getAddExpr(UsersToProcess[i].Imm, Imm); 1558 CommonExprs = NewCommon; 1559 HaveCommonExprs = !CommonExprs->isZero(); 1560 ++NumImmSunk; 1561 } 1562 } 1563 } 1564 1565 // Now that we know what we need to do, insert the PHI node itself. 1566 // 1567 DOUT << "LSR: Examining IVs of TYPE " << *ReplacedTy << " of STRIDE " 1568 << *Stride << ":\n" 1569 << " Common base: " << *CommonExprs << "\n"; 1570 1571 SCEVExpander Rewriter(*SE); 1572 SCEVExpander PreheaderRewriter(*SE); 1573 1574 BasicBlock *Preheader = L->getLoopPreheader(); 1575 Instruction *PreInsertPt = Preheader->getTerminator(); 1576 BasicBlock *LatchBlock = L->getLoopLatch(); 1577 Instruction *IVIncInsertPt = LatchBlock->getTerminator(); 1578 1579 LLVMContext &Context = Preheader->getContext(); 1580 1581 Value *CommonBaseV = Context.getNullValue(ReplacedTy); 1582 1583 const SCEV *RewriteFactor = SE->getIntegerSCEV(0, ReplacedTy); 1584 IVExpr ReuseIV(SE->getIntegerSCEV(0, Type::Int32Ty), 1585 SE->getIntegerSCEV(0, Type::Int32Ty), 1586 0); 1587 1588 /// Choose a strength-reduction strategy and prepare for it by creating 1589 /// the necessary PHIs and adjusting the bookkeeping. 1590 if (ShouldUseFullStrengthReductionMode(UsersToProcess, L, 1591 AllUsesAreAddresses, Stride)) { 1592 PrepareToStrengthReduceFully(UsersToProcess, Stride, CommonExprs, L, 1593 PreheaderRewriter); 1594 } else { 1595 // Emit the initial base value into the loop preheader. 1596 CommonBaseV = PreheaderRewriter.expandCodeFor(CommonExprs, ReplacedTy, 1597 PreInsertPt); 1598 1599 // If all uses are addresses, check if it is possible to reuse an IV. The 1600 // new IV must have a stride that is a multiple of the old stride; the 1601 // multiple must be a number that can be encoded in the scale field of the 1602 // target addressing mode; and we must have a valid instruction after this 1603 // substitution, including the immediate field, if any. 1604 RewriteFactor = CheckForIVReuse(HaveCommonExprs, AllUsesAreAddresses, 1605 AllUsesAreOutsideLoop, 1606 Stride, ReuseIV, ReplacedTy, 1607 UsersToProcess); 1608 if (!RewriteFactor->isZero()) 1609 PrepareToStrengthReduceFromSmallerStride(UsersToProcess, CommonBaseV, 1610 ReuseIV, PreInsertPt); 1611 else { 1612 IVIncInsertPt = FindIVIncInsertPt(UsersToProcess, L); 1613 PrepareToStrengthReduceWithNewPhi(UsersToProcess, Stride, CommonExprs, 1614 CommonBaseV, IVIncInsertPt, 1615 L, PreheaderRewriter); 1616 } 1617 } 1618 1619 // Process all the users now, replacing their strided uses with 1620 // strength-reduced forms. This outer loop handles all bases, the inner 1621 // loop handles all users of a particular base. 1622 while (!UsersToProcess.empty()) { 1623 const SCEV *Base = UsersToProcess.back().Base; 1624 Instruction *Inst = UsersToProcess.back().Inst; 1625 1626 // Emit the code for Base into the preheader. 1627 Value *BaseV = 0; 1628 if (!Base->isZero()) { 1629 BaseV = PreheaderRewriter.expandCodeFor(Base, 0, PreInsertPt); 1630 1631 DOUT << " INSERTING code for BASE = " << *Base << ":"; 1632 if (BaseV->hasName()) 1633 DOUT << " Result value name = %" << BaseV->getNameStr(); 1634 DOUT << "\n"; 1635 1636 // If BaseV is a non-zero constant, make sure that it gets inserted into 1637 // the preheader, instead of being forward substituted into the uses. We 1638 // do this by forcing a BitCast (noop cast) to be inserted into the 1639 // preheader in this case. 1640 if (!fitsInAddressMode(Base, getAccessType(Inst), TLI, false) && 1641 !isa<Instruction>(BaseV)) { 1642 // We want this constant emitted into the preheader! This is just 1643 // using cast as a copy so BitCast (no-op cast) is appropriate 1644 BaseV = new BitCastInst(BaseV, BaseV->getType(), "preheaderinsert", 1645 PreInsertPt); 1646 } 1647 } 1648 1649 // Emit the code to add the immediate offset to the Phi value, just before 1650 // the instructions that we identified as using this stride and base. 1651 do { 1652 // FIXME: Use emitted users to emit other users. 1653 BasedUser &User = UsersToProcess.back(); 1654 1655 DOUT << " Examining "; 1656 if (User.isUseOfPostIncrementedValue) 1657 DOUT << "postinc"; 1658 else 1659 DOUT << "preinc"; 1660 DOUT << " use "; 1661 DEBUG(WriteAsOperand(*DOUT, UsersToProcess.back().OperandValToReplace, 1662 /*PrintType=*/false)); 1663 DOUT << " in Inst: " << *(User.Inst); 1664 1665 // If this instruction wants to use the post-incremented value, move it 1666 // after the post-inc and use its value instead of the PHI. 1667 Value *RewriteOp = User.Phi; 1668 if (User.isUseOfPostIncrementedValue) { 1669 RewriteOp = User.Phi->getIncomingValueForBlock(LatchBlock); 1670 // If this user is in the loop, make sure it is the last thing in the 1671 // loop to ensure it is dominated by the increment. In case it's the 1672 // only use of the iv, the increment instruction is already before the 1673 // use. 1674 if (L->contains(User.Inst->getParent()) && User.Inst != IVIncInsertPt) 1675 User.Inst->moveBefore(IVIncInsertPt); 1676 } 1677 1678 const SCEV *RewriteExpr = SE->getUnknown(RewriteOp); 1679 1680 if (SE->getEffectiveSCEVType(RewriteOp->getType()) != 1681 SE->getEffectiveSCEVType(ReplacedTy)) { 1682 assert(SE->getTypeSizeInBits(RewriteOp->getType()) > 1683 SE->getTypeSizeInBits(ReplacedTy) && 1684 "Unexpected widening cast!"); 1685 RewriteExpr = SE->getTruncateExpr(RewriteExpr, ReplacedTy); 1686 } 1687 1688 // If we had to insert new instructions for RewriteOp, we have to 1689 // consider that they may not have been able to end up immediately 1690 // next to RewriteOp, because non-PHI instructions may never precede 1691 // PHI instructions in a block. In this case, remember where the last 1692 // instruction was inserted so that if we're replacing a different 1693 // PHI node, we can use the later point to expand the final 1694 // RewriteExpr. 1695 Instruction *NewBasePt = dyn_cast<Instruction>(RewriteOp); 1696 if (RewriteOp == User.Phi) NewBasePt = 0; 1697 1698 // Clear the SCEVExpander's expression map so that we are guaranteed 1699 // to have the code emitted where we expect it. 1700 Rewriter.clear(); 1701 1702 // If we are reusing the iv, then it must be multiplied by a constant 1703 // factor to take advantage of the addressing mode scale component. 1704 if (!RewriteFactor->isZero()) { 1705 // If we're reusing an IV with a nonzero base (currently this happens 1706 // only when all reuses are outside the loop) subtract that base here. 1707 // The base has been used to initialize the PHI node but we don't want 1708 // it here. 1709 if (!ReuseIV.Base->isZero()) { 1710 const SCEV *typedBase = ReuseIV.Base; 1711 if (SE->getEffectiveSCEVType(RewriteExpr->getType()) != 1712 SE->getEffectiveSCEVType(ReuseIV.Base->getType())) { 1713 // It's possible the original IV is a larger type than the new IV, 1714 // in which case we have to truncate the Base. We checked in 1715 // RequiresTypeConversion that this is valid. 1716 assert(SE->getTypeSizeInBits(RewriteExpr->getType()) < 1717 SE->getTypeSizeInBits(ReuseIV.Base->getType()) && 1718 "Unexpected lengthening conversion!"); 1719 typedBase = SE->getTruncateExpr(ReuseIV.Base, 1720 RewriteExpr->getType()); 1721 } 1722 RewriteExpr = SE->getMinusSCEV(RewriteExpr, typedBase); 1723 } 1724 1725 // Multiply old variable, with base removed, by new scale factor. 1726 RewriteExpr = SE->getMulExpr(RewriteFactor, 1727 RewriteExpr); 1728 1729 // The common base is emitted in the loop preheader. But since we 1730 // are reusing an IV, it has not been used to initialize the PHI node. 1731 // Add it to the expression used to rewrite the uses. 1732 // When this use is outside the loop, we earlier subtracted the 1733 // common base, and are adding it back here. Use the same expression 1734 // as before, rather than CommonBaseV, so DAGCombiner will zap it. 1735 if (!CommonExprs->isZero()) { 1736 if (L->contains(User.Inst->getParent())) 1737 RewriteExpr = SE->getAddExpr(RewriteExpr, 1738 SE->getUnknown(CommonBaseV)); 1739 else 1740 RewriteExpr = SE->getAddExpr(RewriteExpr, CommonExprs); 1741 } 1742 } 1743 1744 // Now that we know what we need to do, insert code before User for the 1745 // immediate and any loop-variant expressions. 1746 if (BaseV) 1747 // Add BaseV to the PHI value if needed. 1748 RewriteExpr = SE->getAddExpr(RewriteExpr, SE->getUnknown(BaseV)); 1749 1750 User.RewriteInstructionToUseNewBase(RewriteExpr, NewBasePt, 1751 Rewriter, L, this, *LI, 1752 DeadInsts); 1753 1754 // Mark old value we replaced as possibly dead, so that it is eliminated 1755 // if we just replaced the last use of that value. 1756 DeadInsts.push_back(User.OperandValToReplace); 1757 1758 UsersToProcess.pop_back(); 1759 ++NumReduced; 1760 1761 // If there are any more users to process with the same base, process them 1762 // now. We sorted by base above, so we just have to check the last elt. 1763 } while (!UsersToProcess.empty() && UsersToProcess.back().Base == Base); 1764 // TODO: Next, find out which base index is the most common, pull it out. 1765 } 1766 1767 // IMPORTANT TODO: Figure out how to partition the IV's with this stride, but 1768 // different starting values, into different PHIs. 1769 } 1770 1771 /// FindIVUserForCond - If Cond has an operand that is an expression of an IV, 1772 /// set the IV user and stride information and return true, otherwise return 1773 /// false. 1774 bool LoopStrengthReduce::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse, 1775 const SCEV *const * &CondStride) { 1776 for (unsigned Stride = 0, e = IU->StrideOrder.size(); 1777 Stride != e && !CondUse; ++Stride) { 1778 std::map<const SCEV *, IVUsersOfOneStride *>::iterator SI = 1779 IU->IVUsesByStride.find(IU->StrideOrder[Stride]); 1780 assert(SI != IU->IVUsesByStride.end() && "Stride doesn't exist!"); 1781 1782 for (ilist<IVStrideUse>::iterator UI = SI->second->Users.begin(), 1783 E = SI->second->Users.end(); UI != E; ++UI) 1784 if (UI->getUser() == Cond) { 1785 // NOTE: we could handle setcc instructions with multiple uses here, but 1786 // InstCombine does it as well for simple uses, it's not clear that it 1787 // occurs enough in real life to handle. 1788 CondUse = UI; 1789 CondStride = &SI->first; 1790 return true; 1791 } 1792 } 1793 return false; 1794 } 1795 1796 namespace { 1797 // Constant strides come first which in turns are sorted by their absolute 1798 // values. If absolute values are the same, then positive strides comes first. 1799 // e.g. 1800 // 4, -1, X, 1, 2 ==> 1, -1, 2, 4, X 1801 struct StrideCompare { 1802 const ScalarEvolution *SE; 1803 explicit StrideCompare(const ScalarEvolution *se) : SE(se) {} 1804 1805 bool operator()(const SCEV *const &LHS, const SCEV *const &RHS) { 1806 const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS); 1807 const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS); 1808 if (LHSC && RHSC) { 1809 int64_t LV = LHSC->getValue()->getSExtValue(); 1810 int64_t RV = RHSC->getValue()->getSExtValue(); 1811 uint64_t ALV = (LV < 0) ? -LV : LV; 1812 uint64_t ARV = (RV < 0) ? -RV : RV; 1813 if (ALV == ARV) { 1814 if (LV != RV) 1815 return LV > RV; 1816 } else { 1817 return ALV < ARV; 1818 } 1819 1820 // If it's the same value but different type, sort by bit width so 1821 // that we emit larger induction variables before smaller 1822 // ones, letting the smaller be re-written in terms of larger ones. 1823 return SE->getTypeSizeInBits(RHS->getType()) < 1824 SE->getTypeSizeInBits(LHS->getType()); 1825 } 1826 return LHSC && !RHSC; 1827 } 1828 }; 1829 } 1830 1831 /// ChangeCompareStride - If a loop termination compare instruction is the 1832 /// only use of its stride, and the compaison is against a constant value, 1833 /// try eliminate the stride by moving the compare instruction to another 1834 /// stride and change its constant operand accordingly. e.g. 1835 /// 1836 /// loop: 1837 /// ... 1838 /// v1 = v1 + 3 1839 /// v2 = v2 + 1 1840 /// if (v2 < 10) goto loop 1841 /// => 1842 /// loop: 1843 /// ... 1844 /// v1 = v1 + 3 1845 /// if (v1 < 30) goto loop 1846 ICmpInst *LoopStrengthReduce::ChangeCompareStride(Loop *L, ICmpInst *Cond, 1847 IVStrideUse* &CondUse, 1848 const SCEV *const* &CondStride) { 1849 // If there's only one stride in the loop, there's nothing to do here. 1850 if (IU->StrideOrder.size() < 2) 1851 return Cond; 1852 // If there are other users of the condition's stride, don't bother 1853 // trying to change the condition because the stride will still 1854 // remain. 1855 std::map<const SCEV *, IVUsersOfOneStride *>::iterator I = 1856 IU->IVUsesByStride.find(*CondStride); 1857 if (I == IU->IVUsesByStride.end() || 1858 I->second->Users.size() != 1) 1859 return Cond; 1860 // Only handle constant strides for now. 1861 const SCEVConstant *SC = dyn_cast<SCEVConstant>(*CondStride); 1862 if (!SC) return Cond; 1863 1864 LLVMContext &Context = Cond->getContext(); 1865 1866 ICmpInst::Predicate Predicate = Cond->getPredicate(); 1867 int64_t CmpSSInt = SC->getValue()->getSExtValue(); 1868 unsigned BitWidth = SE->getTypeSizeInBits((*CondStride)->getType()); 1869 uint64_t SignBit = 1ULL << (BitWidth-1); 1870 const Type *CmpTy = Cond->getOperand(0)->getType(); 1871 const Type *NewCmpTy = NULL; 1872 unsigned TyBits = SE->getTypeSizeInBits(CmpTy); 1873 unsigned NewTyBits = 0; 1874 const SCEV **NewStride = NULL; 1875 Value *NewCmpLHS = NULL; 1876 Value *NewCmpRHS = NULL; 1877 int64_t Scale = 1; 1878 const SCEV *NewOffset = SE->getIntegerSCEV(0, CmpTy); 1879 1880 if (ConstantInt *C = dyn_cast<ConstantInt>(Cond->getOperand(1))) { 1881 int64_t CmpVal = C->getValue().getSExtValue(); 1882 1883 // Check stride constant and the comparision constant signs to detect 1884 // overflow. 1885 if ((CmpVal & SignBit) != (CmpSSInt & SignBit)) 1886 return Cond; 1887 1888 // Look for a suitable stride / iv as replacement. 1889 for (unsigned i = 0, e = IU->StrideOrder.size(); i != e; ++i) { 1890 std::map<const SCEV *, IVUsersOfOneStride *>::iterator SI = 1891 IU->IVUsesByStride.find(IU->StrideOrder[i]); 1892 if (!isa<SCEVConstant>(SI->first)) 1893 continue; 1894 int64_t SSInt = cast<SCEVConstant>(SI->first)->getValue()->getSExtValue(); 1895 if (SSInt == CmpSSInt || 1896 abs64(SSInt) < abs64(CmpSSInt) || 1897 (SSInt % CmpSSInt) != 0) 1898 continue; 1899 1900 Scale = SSInt / CmpSSInt; 1901 int64_t NewCmpVal = CmpVal * Scale; 1902 APInt Mul = APInt(BitWidth*2, CmpVal, true); 1903 Mul = Mul * APInt(BitWidth*2, Scale, true); 1904 // Check for overflow. 1905 if (!Mul.isSignedIntN(BitWidth)) 1906 continue; 1907 // Check for overflow in the stride's type too. 1908 if (!Mul.isSignedIntN(SE->getTypeSizeInBits(SI->first->getType()))) 1909 continue; 1910 1911 // Watch out for overflow. 1912 if (ICmpInst::isSignedPredicate(Predicate) && 1913 (CmpVal & SignBit) != (NewCmpVal & SignBit)) 1914 continue; 1915 1916 if (NewCmpVal == CmpVal) 1917 continue; 1918 // Pick the best iv to use trying to avoid a cast. 1919 NewCmpLHS = NULL; 1920 for (ilist<IVStrideUse>::iterator UI = SI->second->Users.begin(), 1921 E = SI->second->Users.end(); UI != E; ++UI) { 1922 Value *Op = UI->getOperandValToReplace(); 1923 1924 // If the IVStrideUse implies a cast, check for an actual cast which 1925 // can be used to find the original IV expression. 1926 if (SE->getEffectiveSCEVType(Op->getType()) != 1927 SE->getEffectiveSCEVType(SI->first->getType())) { 1928 CastInst *CI = dyn_cast<CastInst>(Op); 1929 // If it's not a simple cast, it's complicated. 1930 if (!CI) 1931 continue; 1932 // If it's a cast from a type other than the stride type, 1933 // it's complicated. 1934 if (CI->getOperand(0)->getType() != SI->first->getType()) 1935 continue; 1936 // Ok, we found the IV expression in the stride's type. 1937 Op = CI->getOperand(0); 1938 } 1939 1940 NewCmpLHS = Op; 1941 if (NewCmpLHS->getType() == CmpTy) 1942 break; 1943 } 1944 if (!NewCmpLHS) 1945 continue; 1946 1947 NewCmpTy = NewCmpLHS->getType(); 1948 NewTyBits = SE->getTypeSizeInBits(NewCmpTy); 1949 const Type *NewCmpIntTy = Context.getIntegerType(NewTyBits); 1950 if (RequiresTypeConversion(NewCmpTy, CmpTy)) { 1951 // Check if it is possible to rewrite it using 1952 // an iv / stride of a smaller integer type. 1953 unsigned Bits = NewTyBits; 1954 if (ICmpInst::isSignedPredicate(Predicate)) 1955 --Bits; 1956 uint64_t Mask = (1ULL << Bits) - 1; 1957 if (((uint64_t)NewCmpVal & Mask) != (uint64_t)NewCmpVal) 1958 continue; 1959 } 1960 1961 // Don't rewrite if use offset is non-constant and the new type is 1962 // of a different type. 1963 // FIXME: too conservative? 1964 if (NewTyBits != TyBits && !isa<SCEVConstant>(CondUse->getOffset())) 1965 continue; 1966 1967 bool AllUsesAreAddresses = true; 1968 bool AllUsesAreOutsideLoop = true; 1969 std::vector<BasedUser> UsersToProcess; 1970 const SCEV *CommonExprs = CollectIVUsers(SI->first, *SI->second, L, 1971 AllUsesAreAddresses, 1972 AllUsesAreOutsideLoop, 1973 UsersToProcess); 1974 // Avoid rewriting the compare instruction with an iv of new stride 1975 // if it's likely the new stride uses will be rewritten using the 1976 // stride of the compare instruction. 1977 if (AllUsesAreAddresses && 1978 ValidScale(!CommonExprs->isZero(), Scale, UsersToProcess)) 1979 continue; 1980 1981 // Avoid rewriting the compare instruction with an iv which has 1982 // implicit extension or truncation built into it. 1983 // TODO: This is over-conservative. 1984 if (SE->getTypeSizeInBits(CondUse->getOffset()->getType()) != TyBits) 1985 continue; 1986 1987 // If scale is negative, use swapped predicate unless it's testing 1988 // for equality. 1989 if (Scale < 0 && !Cond->isEquality()) 1990 Predicate = ICmpInst::getSwappedPredicate(Predicate); 1991 1992 NewStride = &IU->StrideOrder[i]; 1993 if (!isa<PointerType>(NewCmpTy)) 1994 NewCmpRHS = ConstantInt::get(NewCmpTy, NewCmpVal); 1995 else { 1996 Constant *CI = ConstantInt::get(NewCmpIntTy, NewCmpVal); 1997 NewCmpRHS = Context.getConstantExprIntToPtr(CI, NewCmpTy); 1998 } 1999 NewOffset = TyBits == NewTyBits 2000 ? SE->getMulExpr(CondUse->getOffset(), 2001 SE->getConstant(CmpTy, Scale)) 2002 : SE->getConstant(NewCmpIntTy, 2003 cast<SCEVConstant>(CondUse->getOffset())->getValue() 2004 ->getSExtValue()*Scale); 2005 break; 2006 } 2007 } 2008 2009 // Forgo this transformation if it the increment happens to be 2010 // unfortunately positioned after the condition, and the condition 2011 // has multiple uses which prevent it from being moved immediately 2012 // before the branch. See 2013 // test/Transforms/LoopStrengthReduce/change-compare-stride-trickiness-*.ll 2014 // for an example of this situation. 2015 if (!Cond->hasOneUse()) { 2016 for (BasicBlock::iterator I = Cond, E = Cond->getParent()->end(); 2017 I != E; ++I) 2018 if (I == NewCmpLHS) 2019 return Cond; 2020 } 2021 2022 if (NewCmpRHS) { 2023 // Create a new compare instruction using new stride / iv. 2024 ICmpInst *OldCond = Cond; 2025 // Insert new compare instruction. 2026 Cond = new ICmpInst(OldCond, Predicate, NewCmpLHS, NewCmpRHS, 2027 L->getHeader()->getName() + ".termcond"); 2028 2029 // Remove the old compare instruction. The old indvar is probably dead too. 2030 DeadInsts.push_back(CondUse->getOperandValToReplace()); 2031 OldCond->replaceAllUsesWith(Cond); 2032 OldCond->eraseFromParent(); 2033 2034 IU->IVUsesByStride[*NewStride]->addUser(NewOffset, Cond, NewCmpLHS); 2035 CondUse = &IU->IVUsesByStride[*NewStride]->Users.back(); 2036 CondStride = NewStride; 2037 ++NumEliminated; 2038 Changed = true; 2039 } 2040 2041 return Cond; 2042 } 2043 2044 /// OptimizeMax - Rewrite the loop's terminating condition if it uses 2045 /// a max computation. 2046 /// 2047 /// This is a narrow solution to a specific, but acute, problem. For loops 2048 /// like this: 2049 /// 2050 /// i = 0; 2051 /// do { 2052 /// p[i] = 0.0; 2053 /// } while (++i < n); 2054 /// 2055 /// the trip count isn't just 'n', because 'n' might not be positive. And 2056 /// unfortunately this can come up even for loops where the user didn't use 2057 /// a C do-while loop. For example, seemingly well-behaved top-test loops 2058 /// will commonly be lowered like this: 2059 // 2060 /// if (n > 0) { 2061 /// i = 0; 2062 /// do { 2063 /// p[i] = 0.0; 2064 /// } while (++i < n); 2065 /// } 2066 /// 2067 /// and then it's possible for subsequent optimization to obscure the if 2068 /// test in such a way that indvars can't find it. 2069 /// 2070 /// When indvars can't find the if test in loops like this, it creates a 2071 /// max expression, which allows it to give the loop a canonical 2072 /// induction variable: 2073 /// 2074 /// i = 0; 2075 /// max = n < 1 ? 1 : n; 2076 /// do { 2077 /// p[i] = 0.0; 2078 /// } while (++i != max); 2079 /// 2080 /// Canonical induction variables are necessary because the loop passes 2081 /// are designed around them. The most obvious example of this is the 2082 /// LoopInfo analysis, which doesn't remember trip count values. It 2083 /// expects to be able to rediscover the trip count each time it is 2084 /// needed, and it does this using a simple analyis that only succeeds if 2085 /// the loop has a canonical induction variable. 2086 /// 2087 /// However, when it comes time to generate code, the maximum operation 2088 /// can be quite costly, especially if it's inside of an outer loop. 2089 /// 2090 /// This function solves this problem by detecting this type of loop and 2091 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting 2092 /// the instructions for the maximum computation. 2093 /// 2094 ICmpInst *LoopStrengthReduce::OptimizeMax(Loop *L, ICmpInst *Cond, 2095 IVStrideUse* &CondUse) { 2096 // Check that the loop matches the pattern we're looking for. 2097 if (Cond->getPredicate() != CmpInst::ICMP_EQ && 2098 Cond->getPredicate() != CmpInst::ICMP_NE) 2099 return Cond; 2100 2101 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1)); 2102 if (!Sel || !Sel->hasOneUse()) return Cond; 2103 2104 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 2105 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2106 return Cond; 2107 const SCEV *One = SE->getIntegerSCEV(1, BackedgeTakenCount->getType()); 2108 2109 // Add one to the backedge-taken count to get the trip count. 2110 const SCEV *IterationCount = SE->getAddExpr(BackedgeTakenCount, One); 2111 2112 // Check for a max calculation that matches the pattern. 2113 if (!isa<SCEVSMaxExpr>(IterationCount) && !isa<SCEVUMaxExpr>(IterationCount)) 2114 return Cond; 2115 const SCEVNAryExpr *Max = cast<SCEVNAryExpr>(IterationCount); 2116 if (Max != SE->getSCEV(Sel)) return Cond; 2117 2118 // To handle a max with more than two operands, this optimization would 2119 // require additional checking and setup. 2120 if (Max->getNumOperands() != 2) 2121 return Cond; 2122 2123 const SCEV *MaxLHS = Max->getOperand(0); 2124 const SCEV *MaxRHS = Max->getOperand(1); 2125 if (!MaxLHS || MaxLHS != One) return Cond; 2126 2127 // Check the relevant induction variable for conformance to 2128 // the pattern. 2129 const SCEV *IV = SE->getSCEV(Cond->getOperand(0)); 2130 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV); 2131 if (!AR || !AR->isAffine() || 2132 AR->getStart() != One || 2133 AR->getStepRecurrence(*SE) != One) 2134 return Cond; 2135 2136 assert(AR->getLoop() == L && 2137 "Loop condition operand is an addrec in a different loop!"); 2138 2139 // Check the right operand of the select, and remember it, as it will 2140 // be used in the new comparison instruction. 2141 Value *NewRHS = 0; 2142 if (SE->getSCEV(Sel->getOperand(1)) == MaxRHS) 2143 NewRHS = Sel->getOperand(1); 2144 else if (SE->getSCEV(Sel->getOperand(2)) == MaxRHS) 2145 NewRHS = Sel->getOperand(2); 2146 if (!NewRHS) return Cond; 2147 2148 // Determine the new comparison opcode. It may be signed or unsigned, 2149 // and the original comparison may be either equality or inequality. 2150 CmpInst::Predicate Pred = 2151 isa<SCEVSMaxExpr>(Max) ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT; 2152 if (Cond->getPredicate() == CmpInst::ICMP_EQ) 2153 Pred = CmpInst::getInversePredicate(Pred); 2154 2155 // Ok, everything looks ok to change the condition into an SLT or SGE and 2156 // delete the max calculation. 2157 ICmpInst *NewCond = 2158 new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp"); 2159 2160 // Delete the max calculation instructions. 2161 Cond->replaceAllUsesWith(NewCond); 2162 CondUse->setUser(NewCond); 2163 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0)); 2164 Cond->eraseFromParent(); 2165 Sel->eraseFromParent(); 2166 if (Cmp->use_empty()) 2167 Cmp->eraseFromParent(); 2168 return NewCond; 2169 } 2170 2171 /// OptimizeShadowIV - If IV is used in a int-to-float cast 2172 /// inside the loop then try to eliminate the cast opeation. 2173 void LoopStrengthReduce::OptimizeShadowIV(Loop *L) { 2174 2175 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 2176 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2177 return; 2178 2179 LLVMContext &Context = L->getHeader()->getContext(); 2180 2181 for (unsigned Stride = 0, e = IU->StrideOrder.size(); Stride != e; 2182 ++Stride) { 2183 std::map<const SCEV *, IVUsersOfOneStride *>::iterator SI = 2184 IU->IVUsesByStride.find(IU->StrideOrder[Stride]); 2185 assert(SI != IU->IVUsesByStride.end() && "Stride doesn't exist!"); 2186 if (!isa<SCEVConstant>(SI->first)) 2187 continue; 2188 2189 for (ilist<IVStrideUse>::iterator UI = SI->second->Users.begin(), 2190 E = SI->second->Users.end(); UI != E; /* empty */) { 2191 ilist<IVStrideUse>::iterator CandidateUI = UI; 2192 ++UI; 2193 Instruction *ShadowUse = CandidateUI->getUser(); 2194 const Type *DestTy = NULL; 2195 2196 /* If shadow use is a int->float cast then insert a second IV 2197 to eliminate this cast. 2198 2199 for (unsigned i = 0; i < n; ++i) 2200 foo((double)i); 2201 2202 is transformed into 2203 2204 double d = 0.0; 2205 for (unsigned i = 0; i < n; ++i, ++d) 2206 foo(d); 2207 */ 2208 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) 2209 DestTy = UCast->getDestTy(); 2210 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) 2211 DestTy = SCast->getDestTy(); 2212 if (!DestTy) continue; 2213 2214 if (TLI) { 2215 // If target does not support DestTy natively then do not apply 2216 // this transformation. 2217 MVT DVT = TLI->getValueType(DestTy); 2218 if (!TLI->isTypeLegal(DVT)) continue; 2219 } 2220 2221 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0)); 2222 if (!PH) continue; 2223 if (PH->getNumIncomingValues() != 2) continue; 2224 2225 const Type *SrcTy = PH->getType(); 2226 int Mantissa = DestTy->getFPMantissaWidth(); 2227 if (Mantissa == -1) continue; 2228 if ((int)SE->getTypeSizeInBits(SrcTy) > Mantissa) 2229 continue; 2230 2231 unsigned Entry, Latch; 2232 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) { 2233 Entry = 0; 2234 Latch = 1; 2235 } else { 2236 Entry = 1; 2237 Latch = 0; 2238 } 2239 2240 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry)); 2241 if (!Init) continue; 2242 Constant *NewInit = Context.getConstantFP(DestTy, Init->getZExtValue()); 2243 2244 BinaryOperator *Incr = 2245 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch)); 2246 if (!Incr) continue; 2247 if (Incr->getOpcode() != Instruction::Add 2248 && Incr->getOpcode() != Instruction::Sub) 2249 continue; 2250 2251 /* Initialize new IV, double d = 0.0 in above example. */ 2252 ConstantInt *C = NULL; 2253 if (Incr->getOperand(0) == PH) 2254 C = dyn_cast<ConstantInt>(Incr->getOperand(1)); 2255 else if (Incr->getOperand(1) == PH) 2256 C = dyn_cast<ConstantInt>(Incr->getOperand(0)); 2257 else 2258 continue; 2259 2260 if (!C) continue; 2261 2262 /* Add new PHINode. */ 2263 PHINode *NewPH = PHINode::Create(DestTy, "IV.S.", PH); 2264 2265 /* create new increment. '++d' in above example. */ 2266 Constant *CFP = Context.getConstantFP(DestTy, C->getZExtValue()); 2267 BinaryOperator *NewIncr = 2268 BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ? 2269 Instruction::FAdd : Instruction::FSub, 2270 NewPH, CFP, "IV.S.next.", Incr); 2271 2272 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry)); 2273 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch)); 2274 2275 /* Remove cast operation */ 2276 ShadowUse->replaceAllUsesWith(NewPH); 2277 ShadowUse->eraseFromParent(); 2278 NumShadow++; 2279 break; 2280 } 2281 } 2282 } 2283 2284 /// OptimizeIndvars - Now that IVUsesByStride is set up with all of the indvar 2285 /// uses in the loop, look to see if we can eliminate some, in favor of using 2286 /// common indvars for the different uses. 2287 void LoopStrengthReduce::OptimizeIndvars(Loop *L) { 2288 // TODO: implement optzns here. 2289 2290 OptimizeShadowIV(L); 2291 } 2292 2293 /// OptimizeLoopTermCond - Change loop terminating condition to use the 2294 /// postinc iv when possible. 2295 void LoopStrengthReduce::OptimizeLoopTermCond(Loop *L) { 2296 // Finally, get the terminating condition for the loop if possible. If we 2297 // can, we want to change it to use a post-incremented version of its 2298 // induction variable, to allow coalescing the live ranges for the IV into 2299 // one register value. 2300 BasicBlock *LatchBlock = L->getLoopLatch(); 2301 BasicBlock *ExitingBlock = L->getExitingBlock(); 2302 LLVMContext &Context = LatchBlock->getContext(); 2303 2304 if (!ExitingBlock) 2305 // Multiple exits, just look at the exit in the latch block if there is one. 2306 ExitingBlock = LatchBlock; 2307 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 2308 if (!TermBr) 2309 return; 2310 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition())) 2311 return; 2312 2313 // Search IVUsesByStride to find Cond's IVUse if there is one. 2314 IVStrideUse *CondUse = 0; 2315 const SCEV *const *CondStride = 0; 2316 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition()); 2317 if (!FindIVUserForCond(Cond, CondUse, CondStride)) 2318 return; // setcc doesn't use the IV. 2319 2320 if (ExitingBlock != LatchBlock) { 2321 if (!Cond->hasOneUse()) 2322 // See below, we don't want the condition to be cloned. 2323 return; 2324 2325 // If exiting block is the latch block, we know it's safe and profitable to 2326 // transform the icmp to use post-inc iv. Otherwise do so only if it would 2327 // not reuse another iv and its iv would be reused by other uses. We are 2328 // optimizing for the case where the icmp is the only use of the iv. 2329 IVUsersOfOneStride &StrideUses = *IU->IVUsesByStride[*CondStride]; 2330 for (ilist<IVStrideUse>::iterator I = StrideUses.Users.begin(), 2331 E = StrideUses.Users.end(); I != E; ++I) { 2332 if (I->getUser() == Cond) 2333 continue; 2334 if (!I->isUseOfPostIncrementedValue()) 2335 return; 2336 } 2337 2338 // FIXME: This is expensive, and worse still ChangeCompareStride does a 2339 // similar check. Can we perform all the icmp related transformations after 2340 // StrengthReduceStridedIVUsers? 2341 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(*CondStride)) { 2342 int64_t SInt = SC->getValue()->getSExtValue(); 2343 for (unsigned NewStride = 0, ee = IU->StrideOrder.size(); NewStride != ee; 2344 ++NewStride) { 2345 std::map<const SCEV *, IVUsersOfOneStride *>::iterator SI = 2346 IU->IVUsesByStride.find(IU->StrideOrder[NewStride]); 2347 if (!isa<SCEVConstant>(SI->first) || SI->first == *CondStride) 2348 continue; 2349 int64_t SSInt = 2350 cast<SCEVConstant>(SI->first)->getValue()->getSExtValue(); 2351 if (SSInt == SInt) 2352 return; // This can definitely be reused. 2353 if (unsigned(abs64(SSInt)) < SInt || (SSInt % SInt) != 0) 2354 continue; 2355 int64_t Scale = SSInt / SInt; 2356 bool AllUsesAreAddresses = true; 2357 bool AllUsesAreOutsideLoop = true; 2358 std::vector<BasedUser> UsersToProcess; 2359 const SCEV *CommonExprs = CollectIVUsers(SI->first, *SI->second, L, 2360 AllUsesAreAddresses, 2361 AllUsesAreOutsideLoop, 2362 UsersToProcess); 2363 // Avoid rewriting the compare instruction with an iv of new stride 2364 // if it's likely the new stride uses will be rewritten using the 2365 // stride of the compare instruction. 2366 if (AllUsesAreAddresses && 2367 ValidScale(!CommonExprs->isZero(), Scale, UsersToProcess)) 2368 return; 2369 } 2370 } 2371 2372 StrideNoReuse.insert(*CondStride); 2373 } 2374 2375 // If the trip count is computed in terms of a max (due to ScalarEvolution 2376 // being unable to find a sufficient guard, for example), change the loop 2377 // comparison to use SLT or ULT instead of NE. 2378 Cond = OptimizeMax(L, Cond, CondUse); 2379 2380 // If possible, change stride and operands of the compare instruction to 2381 // eliminate one stride. 2382 if (ExitingBlock == LatchBlock) 2383 Cond = ChangeCompareStride(L, Cond, CondUse, CondStride); 2384 2385 // It's possible for the setcc instruction to be anywhere in the loop, and 2386 // possible for it to have multiple users. If it is not immediately before 2387 // the latch block branch, move it. 2388 if (&*++BasicBlock::iterator(Cond) != (Instruction*)TermBr) { 2389 if (Cond->hasOneUse()) { // Condition has a single use, just move it. 2390 Cond->moveBefore(TermBr); 2391 } else { 2392 // Otherwise, clone the terminating condition and insert into the loopend. 2393 Cond = cast<ICmpInst>(Cond->clone(Context)); 2394 Cond->setName(L->getHeader()->getName() + ".termcond"); 2395 LatchBlock->getInstList().insert(TermBr, Cond); 2396 2397 // Clone the IVUse, as the old use still exists! 2398 IU->IVUsesByStride[*CondStride]->addUser(CondUse->getOffset(), Cond, 2399 CondUse->getOperandValToReplace()); 2400 CondUse = &IU->IVUsesByStride[*CondStride]->Users.back(); 2401 } 2402 } 2403 2404 // If we get to here, we know that we can transform the setcc instruction to 2405 // use the post-incremented version of the IV, allowing us to coalesce the 2406 // live ranges for the IV correctly. 2407 CondUse->setOffset(SE->getMinusSCEV(CondUse->getOffset(), *CondStride)); 2408 CondUse->setIsUseOfPostIncrementedValue(true); 2409 Changed = true; 2410 2411 ++NumLoopCond; 2412 } 2413 2414 /// OptimizeLoopCountIV - If, after all sharing of IVs, the IV used for deciding 2415 /// when to exit the loop is used only for that purpose, try to rearrange things 2416 /// so it counts down to a test against zero. 2417 void LoopStrengthReduce::OptimizeLoopCountIV(Loop *L) { 2418 2419 // If the number of times the loop is executed isn't computable, give up. 2420 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 2421 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2422 return; 2423 2424 // Get the terminating condition for the loop if possible (this isn't 2425 // necessarily in the latch, or a block that's a predecessor of the header). 2426 if (!L->getExitBlock()) 2427 return; // More than one loop exit blocks. 2428 2429 // Okay, there is one exit block. Try to find the condition that causes the 2430 // loop to be exited. 2431 BasicBlock *ExitingBlock = L->getExitingBlock(); 2432 if (!ExitingBlock) 2433 return; // More than one block exiting! 2434 2435 // Okay, we've computed the exiting block. See what condition causes us to 2436 // exit. 2437 // 2438 // FIXME: we should be able to handle switch instructions (with a single exit) 2439 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 2440 if (TermBr == 0) return; 2441 assert(TermBr->isConditional() && "If unconditional, it can't be in loop!"); 2442 if (!isa<ICmpInst>(TermBr->getCondition())) 2443 return; 2444 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition()); 2445 2446 // Handle only tests for equality for the moment, and only stride 1. 2447 if (Cond->getPredicate() != CmpInst::ICMP_EQ) 2448 return; 2449 const SCEV *IV = SE->getSCEV(Cond->getOperand(0)); 2450 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV); 2451 const SCEV *One = SE->getIntegerSCEV(1, BackedgeTakenCount->getType()); 2452 if (!AR || !AR->isAffine() || AR->getStepRecurrence(*SE) != One) 2453 return; 2454 // If the RHS of the comparison is defined inside the loop, the rewrite 2455 // cannot be done. 2456 if (Instruction *CR = dyn_cast<Instruction>(Cond->getOperand(1))) 2457 if (L->contains(CR->getParent())) 2458 return; 2459 2460 // Make sure the IV is only used for counting. Value may be preinc or 2461 // postinc; 2 uses in either case. 2462 if (!Cond->getOperand(0)->hasNUses(2)) 2463 return; 2464 PHINode *phi = dyn_cast<PHINode>(Cond->getOperand(0)); 2465 Instruction *incr; 2466 if (phi && phi->getParent()==L->getHeader()) { 2467 // value tested is preinc. Find the increment. 2468 // A CmpInst is not a BinaryOperator; we depend on this. 2469 Instruction::use_iterator UI = phi->use_begin(); 2470 incr = dyn_cast<BinaryOperator>(UI); 2471 if (!incr) 2472 incr = dyn_cast<BinaryOperator>(++UI); 2473 // 1 use for postinc value, the phi. Unnecessarily conservative? 2474 if (!incr || !incr->hasOneUse() || incr->getOpcode()!=Instruction::Add) 2475 return; 2476 } else { 2477 // Value tested is postinc. Find the phi node. 2478 incr = dyn_cast<BinaryOperator>(Cond->getOperand(0)); 2479 if (!incr || incr->getOpcode()!=Instruction::Add) 2480 return; 2481 2482 Instruction::use_iterator UI = Cond->getOperand(0)->use_begin(); 2483 phi = dyn_cast<PHINode>(UI); 2484 if (!phi) 2485 phi = dyn_cast<PHINode>(++UI); 2486 // 1 use for preinc value, the increment. 2487 if (!phi || phi->getParent()!=L->getHeader() || !phi->hasOneUse()) 2488 return; 2489 } 2490 2491 // Replace the increment with a decrement. 2492 BinaryOperator *decr = 2493 BinaryOperator::Create(Instruction::Sub, incr->getOperand(0), 2494 incr->getOperand(1), "tmp", incr); 2495 incr->replaceAllUsesWith(decr); 2496 incr->eraseFromParent(); 2497 2498 // Substitute endval-startval for the original startval, and 0 for the 2499 // original endval. Since we're only testing for equality this is OK even 2500 // if the computation wraps around. 2501 BasicBlock *Preheader = L->getLoopPreheader(); 2502 Instruction *PreInsertPt = Preheader->getTerminator(); 2503 int inBlock = L->contains(phi->getIncomingBlock(0)) ? 1 : 0; 2504 Value *startVal = phi->getIncomingValue(inBlock); 2505 Value *endVal = Cond->getOperand(1); 2506 // FIXME check for case where both are constant 2507 Constant* Zero = ConstantInt::get(Cond->getOperand(1)->getType(), 0); 2508 BinaryOperator *NewStartVal = 2509 BinaryOperator::Create(Instruction::Sub, endVal, startVal, 2510 "tmp", PreInsertPt); 2511 phi->setIncomingValue(inBlock, NewStartVal); 2512 Cond->setOperand(1, Zero); 2513 2514 Changed = true; 2515 } 2516 2517 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager &LPM) { 2518 2519 IU = &getAnalysis<IVUsers>(); 2520 LI = &getAnalysis<LoopInfo>(); 2521 DT = &getAnalysis<DominatorTree>(); 2522 SE = &getAnalysis<ScalarEvolution>(); 2523 Changed = false; 2524 2525 if (!IU->IVUsesByStride.empty()) { 2526 #ifndef NDEBUG 2527 DOUT << "\nLSR on \"" << L->getHeader()->getParent()->getNameStart() 2528 << "\" "; 2529 DEBUG(L->dump()); 2530 #endif 2531 2532 // Sort the StrideOrder so we process larger strides first. 2533 std::stable_sort(IU->StrideOrder.begin(), IU->StrideOrder.end(), 2534 StrideCompare(SE)); 2535 2536 // Optimize induction variables. Some indvar uses can be transformed to use 2537 // strides that will be needed for other purposes. A common example of this 2538 // is the exit test for the loop, which can often be rewritten to use the 2539 // computation of some other indvar to decide when to terminate the loop. 2540 OptimizeIndvars(L); 2541 2542 // Change loop terminating condition to use the postinc iv when possible 2543 // and optimize loop terminating compare. FIXME: Move this after 2544 // StrengthReduceStridedIVUsers? 2545 OptimizeLoopTermCond(L); 2546 2547 // FIXME: We can shrink overlarge IV's here. e.g. if the code has 2548 // computation in i64 values and the target doesn't support i64, demote 2549 // the computation to 32-bit if safe. 2550 2551 // FIXME: Attempt to reuse values across multiple IV's. In particular, we 2552 // could have something like "for(i) { foo(i*8); bar(i*16) }", which should 2553 // be codegened as "for (j = 0;; j+=8) { foo(j); bar(j+j); }" on X86/PPC. 2554 // Need to be careful that IV's are all the same type. Only works for 2555 // intptr_t indvars. 2556 2557 // IVsByStride keeps IVs for one particular loop. 2558 assert(IVsByStride.empty() && "Stale entries in IVsByStride?"); 2559 2560 // Note: this processes each stride/type pair individually. All users 2561 // passed into StrengthReduceStridedIVUsers have the same type AND stride. 2562 // Also, note that we iterate over IVUsesByStride indirectly by using 2563 // StrideOrder. This extra layer of indirection makes the ordering of 2564 // strides deterministic - not dependent on map order. 2565 for (unsigned Stride = 0, e = IU->StrideOrder.size(); 2566 Stride != e; ++Stride) { 2567 std::map<const SCEV *, IVUsersOfOneStride *>::iterator SI = 2568 IU->IVUsesByStride.find(IU->StrideOrder[Stride]); 2569 assert(SI != IU->IVUsesByStride.end() && "Stride doesn't exist!"); 2570 // FIXME: Generalize to non-affine IV's. 2571 if (!SI->first->isLoopInvariant(L)) 2572 continue; 2573 StrengthReduceStridedIVUsers(SI->first, *SI->second, L); 2574 } 2575 } 2576 2577 // After all sharing is done, see if we can adjust the loop to test against 2578 // zero instead of counting up to a maximum. This is usually faster. 2579 OptimizeLoopCountIV(L); 2580 2581 // We're done analyzing this loop; release all the state we built up for it. 2582 IVsByStride.clear(); 2583 StrideNoReuse.clear(); 2584 2585 // Clean up after ourselves 2586 if (!DeadInsts.empty()) 2587 DeleteTriviallyDeadInstructions(); 2588 2589 // At this point, it is worth checking to see if any recurrence PHIs are also 2590 // dead, so that we can remove them as well. 2591 DeleteDeadPHIs(L->getHeader()); 2592 2593 return Changed; 2594 } 2595