1 //===--------- LoopSimplifyCFG.cpp - Loop CFG Simplification Pass ---------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Loop SimplifyCFG Pass. This pass is responsible for
11 // basic loop CFG cleanup, primarily to assist other loop passes. If you
12 // encounter a noncanonical CFG construct that causes another loop pass to
13 // perform suboptimally, this is the place to fix it up.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "llvm/Transforms/Scalar/LoopSimplifyCFG.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/AssumptionCache.h"
22 #include "llvm/Analysis/BasicAliasAnalysis.h"
23 #include "llvm/Analysis/DependenceAnalysis.h"
24 #include "llvm/Analysis/GlobalsModRef.h"
25 #include "llvm/Analysis/LoopInfo.h"
26 #include "llvm/Analysis/LoopPass.h"
27 #include "llvm/Analysis/MemorySSA.h"
28 #include "llvm/Analysis/MemorySSAUpdater.h"
29 #include "llvm/Analysis/ScalarEvolution.h"
30 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
31 #include "llvm/Analysis/TargetTransformInfo.h"
32 #include "llvm/IR/DomTreeUpdater.h"
33 #include "llvm/IR/Dominators.h"
34 #include "llvm/Transforms/Scalar.h"
35 #include "llvm/Transforms/Scalar/LoopPassManager.h"
36 #include "llvm/Transforms/Utils.h"
37 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
38 #include "llvm/Transforms/Utils/Local.h"
39 #include "llvm/Transforms/Utils/LoopUtils.h"
40 using namespace llvm;
41 
42 #define DEBUG_TYPE "loop-simplifycfg"
43 
44 static cl::opt<bool> EnableTermFolding("enable-loop-simplifycfg-term-folding",
45                                        cl::init(true));
46 
47 STATISTIC(NumTerminatorsFolded,
48           "Number of terminators folded to unconditional branches");
49 
50 /// If \p BB is a switch or a conditional branch, but only one of its successors
51 /// can be reached from this block in runtime, return this successor. Otherwise,
52 /// return nullptr.
53 static BasicBlock *getOnlyLiveSuccessor(BasicBlock *BB) {
54   Instruction *TI = BB->getTerminator();
55   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
56     if (BI->isUnconditional())
57       return nullptr;
58     if (BI->getSuccessor(0) == BI->getSuccessor(1))
59       return BI->getSuccessor(0);
60     ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
61     if (!Cond)
62       return nullptr;
63     return Cond->isZero() ? BI->getSuccessor(1) : BI->getSuccessor(0);
64   }
65 
66   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
67     auto *CI = dyn_cast<ConstantInt>(SI->getCondition());
68     if (!CI)
69       return nullptr;
70     for (auto Case : SI->cases())
71       if (Case.getCaseValue() == CI)
72         return Case.getCaseSuccessor();
73     return SI->getDefaultDest();
74   }
75 
76   return nullptr;
77 }
78 
79 /// Helper class that can turn branches and switches with constant conditions
80 /// into unconditional branches.
81 class ConstantTerminatorFoldingImpl {
82 private:
83   Loop &L;
84   LoopInfo &LI;
85   DominatorTree &DT;
86   MemorySSAUpdater *MSSAU;
87 
88   // Whether or not the current loop has irreducible CFG.
89   bool HasIrreducibleCFG = false;
90   // Whether or not the current loop will still exist after terminator constant
91   // folding will be done. In theory, there are two ways how it can happen:
92   // 1. Loop's latch(es) become unreachable from loop header;
93   // 2. Loop's header becomes unreachable from method entry.
94   // In practice, the second situation is impossible because we only modify the
95   // current loop and its preheader and do not affect preheader's reachibility
96   // from any other block. So this variable set to true means that loop's latch
97   // has become unreachable from loop header.
98   bool DeleteCurrentLoop = false;
99 
100   // The blocks of the original loop that will still be reachable from entry
101   // after the constant folding.
102   SmallPtrSet<BasicBlock *, 8> LiveLoopBlocks;
103   // The blocks of the original loop that will become unreachable from entry
104   // after the constant folding.
105   SmallPtrSet<BasicBlock *, 8> DeadLoopBlocks;
106   // The exits of the original loop that will still be reachable from entry
107   // after the constant folding.
108   SmallPtrSet<BasicBlock *, 8> LiveExitBlocks;
109   // The exits of the original loop that will become unreachable from entry
110   // after the constant folding.
111   SmallVector<BasicBlock *, 8> DeadExitBlocks;
112   // The blocks that will still be a part of the current loop after folding.
113   SmallPtrSet<BasicBlock *, 8> BlocksInLoopAfterFolding;
114   // The blocks that have terminators with constant condition that can be
115   // folded. Note: fold candidates should be in L but not in any of its
116   // subloops to avoid complex LI updates.
117   SmallVector<BasicBlock *, 8> FoldCandidates;
118 
119   void dump() const {
120     dbgs() << "Constant terminator folding for loop " << L << "\n";
121     dbgs() << "After terminator constant-folding, the loop will";
122     if (!DeleteCurrentLoop)
123       dbgs() << " not";
124     dbgs() << " be destroyed\n";
125     auto PrintOutVector = [&](const char *Message,
126                            const SmallVectorImpl<BasicBlock *> &S) {
127       dbgs() << Message << "\n";
128       for (const BasicBlock *BB : S)
129         dbgs() << "\t" << BB->getName() << "\n";
130     };
131     auto PrintOutSet = [&](const char *Message,
132                            const SmallPtrSetImpl<BasicBlock *> &S) {
133       dbgs() << Message << "\n";
134       for (const BasicBlock *BB : S)
135         dbgs() << "\t" << BB->getName() << "\n";
136     };
137     PrintOutVector("Blocks in which we can constant-fold terminator:",
138                    FoldCandidates);
139     PrintOutSet("Live blocks from the original loop:", LiveLoopBlocks);
140     PrintOutSet("Dead blocks from the original loop:", DeadLoopBlocks);
141     PrintOutSet("Live exit blocks:", LiveExitBlocks);
142     PrintOutVector("Dead exit blocks:", DeadExitBlocks);
143     if (!DeleteCurrentLoop)
144       PrintOutSet("The following blocks will still be part of the loop:",
145                   BlocksInLoopAfterFolding);
146   }
147 
148   /// Whether or not the current loop has irreducible CFG.
149   bool hasIrreducibleCFG(LoopBlocksDFS &DFS) {
150     assert(DFS.isComplete() && "DFS is expected to be finished");
151     // Index of a basic block in RPO traversal.
152     DenseMap<const BasicBlock *, unsigned> RPO;
153     unsigned Current = 0;
154     for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I)
155       RPO[*I] = Current++;
156 
157     for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) {
158       BasicBlock *BB = *I;
159       for (auto *Succ : successors(BB))
160         if (L.contains(Succ) && !LI.isLoopHeader(Succ) && RPO[BB] > RPO[Succ])
161           // If an edge goes from a block with greater order number into a block
162           // with lesses number, and it is not a loop backedge, then it can only
163           // be a part of irreducible non-loop cycle.
164           return true;
165     }
166     return false;
167   }
168 
169   /// Fill all information about status of blocks and exits of the current loop
170   /// if constant folding of all branches will be done.
171   void analyze() {
172     LoopBlocksDFS DFS(&L);
173     DFS.perform(&LI);
174     assert(DFS.isComplete() && "DFS is expected to be finished");
175 
176     // TODO: The algorithm below relies on both RPO and Postorder traversals.
177     // When the loop has only reducible CFG inside, then the invariant "all
178     // predecessors of X are processed before X in RPO" is preserved. However
179     // an irreducible loop can break this invariant (e.g. latch does not have to
180     // be the last block in the traversal in this case, and the algorithm relies
181     // on this). We can later decide to support such cases by altering the
182     // algorithms, but so far we just give up analyzing them.
183     if (hasIrreducibleCFG(DFS)) {
184       HasIrreducibleCFG = true;
185       return;
186     }
187 
188     // Collect live and dead loop blocks and exits.
189     LiveLoopBlocks.insert(L.getHeader());
190     for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) {
191       BasicBlock *BB = *I;
192 
193       // If a loop block wasn't marked as live so far, then it's dead.
194       if (!LiveLoopBlocks.count(BB)) {
195         DeadLoopBlocks.insert(BB);
196         continue;
197       }
198 
199       BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(BB);
200 
201       // If a block has only one live successor, it's a candidate on constant
202       // folding. Only handle blocks from current loop: branches in child loops
203       // are skipped because if they can be folded, they should be folded during
204       // the processing of child loops.
205       if (TheOnlySucc && LI.getLoopFor(BB) == &L)
206         FoldCandidates.push_back(BB);
207 
208       // Handle successors.
209       for (BasicBlock *Succ : successors(BB))
210         if (!TheOnlySucc || TheOnlySucc == Succ) {
211           if (L.contains(Succ))
212             LiveLoopBlocks.insert(Succ);
213           else
214             LiveExitBlocks.insert(Succ);
215         }
216     }
217 
218     // Sanity check: amount of dead and live loop blocks should match the total
219     // number of blocks in loop.
220     assert(L.getNumBlocks() == LiveLoopBlocks.size() + DeadLoopBlocks.size() &&
221            "Malformed block sets?");
222 
223     // Now, all exit blocks that are not marked as live are dead.
224     SmallVector<BasicBlock *, 8> ExitBlocks;
225     L.getExitBlocks(ExitBlocks);
226     for (auto *ExitBlock : ExitBlocks)
227       if (!LiveExitBlocks.count(ExitBlock))
228         DeadExitBlocks.push_back(ExitBlock);
229 
230     // Whether or not the edge From->To will still be present in graph after the
231     // folding.
232     auto IsEdgeLive = [&](BasicBlock *From, BasicBlock *To) {
233       if (!LiveLoopBlocks.count(From))
234         return false;
235       BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(From);
236       return !TheOnlySucc || TheOnlySucc == To;
237     };
238 
239     // The loop will not be destroyed if its latch is live.
240     DeleteCurrentLoop = !IsEdgeLive(L.getLoopLatch(), L.getHeader());
241 
242     // If we are going to delete the current loop completely, no extra analysis
243     // is needed.
244     if (DeleteCurrentLoop)
245       return;
246 
247     // Otherwise, we should check which blocks will still be a part of the
248     // current loop after the transform.
249     BlocksInLoopAfterFolding.insert(L.getLoopLatch());
250     // If the loop is live, then we should compute what blocks are still in
251     // loop after all branch folding has been done. A block is in loop if
252     // it has a live edge to another block that is in the loop; by definition,
253     // latch is in the loop.
254     auto BlockIsInLoop = [&](BasicBlock *BB) {
255       return any_of(successors(BB), [&](BasicBlock *Succ) {
256         return BlocksInLoopAfterFolding.count(Succ) && IsEdgeLive(BB, Succ);
257       });
258     };
259     for (auto I = DFS.beginPostorder(), E = DFS.endPostorder(); I != E; ++I) {
260       BasicBlock *BB = *I;
261       if (BlockIsInLoop(BB))
262         BlocksInLoopAfterFolding.insert(BB);
263     }
264 
265     // Sanity check: header must be in loop.
266     assert(BlocksInLoopAfterFolding.count(L.getHeader()) &&
267            "Header not in loop?");
268     assert(BlocksInLoopAfterFolding.size() <= LiveLoopBlocks.size() &&
269            "All blocks that stay in loop should be live!");
270   }
271 
272   /// Constant-fold terminators of blocks acculumated in FoldCandidates into the
273   /// unconditional branches.
274   void foldTerminators() {
275     DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
276 
277     for (BasicBlock *BB : FoldCandidates) {
278       assert(LI.getLoopFor(BB) == &L && "Should be a loop block!");
279       BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(BB);
280       assert(TheOnlySucc && "Should have one live successor!");
281 
282       LLVM_DEBUG(dbgs() << "Replacing terminator of " << BB->getName()
283                         << " with an unconditional branch to the block "
284                         << TheOnlySucc->getName() << "\n");
285 
286       SmallPtrSet<BasicBlock *, 2> DeadSuccessors;
287       // Remove all BB's successors except for the live one.
288       unsigned TheOnlySuccDuplicates = 0;
289       for (auto *Succ : successors(BB))
290         if (Succ != TheOnlySucc) {
291           DeadSuccessors.insert(Succ);
292           // If our successor lies in a different loop, we don't want to remove
293           // the one-input Phi because it is a LCSSA Phi.
294           bool PreserveLCSSAPhi = !L.contains(Succ);
295           Succ->removePredecessor(BB, PreserveLCSSAPhi);
296           if (MSSAU)
297             MSSAU->removeEdge(BB, Succ);
298         } else
299           ++TheOnlySuccDuplicates;
300 
301       assert(TheOnlySuccDuplicates > 0 && "Should be!");
302       // If TheOnlySucc was BB's successor more than once, after transform it
303       // will be its successor only once. Remove redundant inputs from
304       // TheOnlySucc's Phis.
305       bool PreserveLCSSAPhi = !L.contains(TheOnlySucc);
306       for (unsigned Dup = 1; Dup < TheOnlySuccDuplicates; ++Dup)
307         TheOnlySucc->removePredecessor(BB, PreserveLCSSAPhi);
308       if (MSSAU && TheOnlySuccDuplicates > 1)
309         MSSAU->removeDuplicatePhiEdgesBetween(BB, TheOnlySucc);
310 
311       IRBuilder<> Builder(BB->getContext());
312       Instruction *Term = BB->getTerminator();
313       Builder.SetInsertPoint(Term);
314       Builder.CreateBr(TheOnlySucc);
315       Term->eraseFromParent();
316 
317       for (auto *DeadSucc : DeadSuccessors)
318         DTU.deleteEdge(BB, DeadSucc);
319 
320       ++NumTerminatorsFolded;
321     }
322   }
323 
324 public:
325   ConstantTerminatorFoldingImpl(Loop &L, LoopInfo &LI, DominatorTree &DT,
326                                 MemorySSAUpdater *MSSAU)
327       : L(L), LI(LI), DT(DT), MSSAU(MSSAU) {}
328   bool run() {
329     assert(L.getLoopLatch() && "Should be single latch!");
330 
331     // Collect all available information about status of blocks after constant
332     // folding.
333     analyze();
334 
335     LLVM_DEBUG(dbgs() << "In function " << L.getHeader()->getParent()->getName()
336                       << ": ");
337 
338     if (HasIrreducibleCFG) {
339       LLVM_DEBUG(dbgs() << "Loops with irreducible CFG are not supported!\n");
340       return false;
341     }
342 
343     // Nothing to constant-fold.
344     if (FoldCandidates.empty()) {
345       LLVM_DEBUG(
346           dbgs() << "No constant terminator folding candidates found in loop "
347                  << L.getHeader()->getName() << "\n");
348       return false;
349     }
350 
351     // TODO: Support deletion of the current loop.
352     if (DeleteCurrentLoop) {
353       LLVM_DEBUG(
354           dbgs()
355           << "Give up constant terminator folding in loop "
356           << L.getHeader()->getName()
357           << ": we don't currently support deletion of the current loop.\n");
358       return false;
359     }
360 
361     // TODO: Support deletion of dead loop blocks.
362     if (!DeadLoopBlocks.empty()) {
363       LLVM_DEBUG(dbgs() << "Give up constant terminator folding in loop "
364                         << L.getHeader()->getName()
365                         << ": we don't currently"
366                            " support deletion of dead in-loop blocks.\n");
367       return false;
368     }
369 
370     // TODO: Support dead loop exits.
371     if (!DeadExitBlocks.empty()) {
372       LLVM_DEBUG(dbgs() << "Give up constant terminator folding in loop "
373                         << L.getHeader()->getName()
374                         << ": we don't currently support dead loop exits.\n");
375       return false;
376     }
377 
378     // TODO: Support blocks that are not dead, but also not in loop after the
379     // folding.
380     if (BlocksInLoopAfterFolding.size() != L.getNumBlocks()) {
381       LLVM_DEBUG(
382           dbgs() << "Give up constant terminator folding in loop "
383                  << L.getHeader()->getName()
384                  << ": we don't currently"
385                     " support blocks that are not dead, but will stop "
386                     "being a part of the loop after constant-folding.\n");
387       return false;
388     }
389 
390     // Dump analysis results.
391     LLVM_DEBUG(dump());
392 
393     LLVM_DEBUG(dbgs() << "Constant-folding " << FoldCandidates.size()
394                       << " terminators in loop " << L.getHeader()->getName()
395                       << "\n");
396 
397     // Make the actual transforms.
398     foldTerminators();
399 
400 #ifndef NDEBUG
401     // Make sure that we have preserved all data structures after the transform.
402     DT.verify();
403     assert(DT.isReachableFromEntry(L.getHeader()));
404     LI.verify(DT);
405 #endif
406 
407     return true;
408   }
409 };
410 
411 /// Turn branches and switches with known constant conditions into unconditional
412 /// branches.
413 static bool constantFoldTerminators(Loop &L, DominatorTree &DT, LoopInfo &LI,
414                                     MemorySSAUpdater *MSSAU) {
415   if (!EnableTermFolding)
416     return false;
417 
418   // To keep things simple, only process loops with single latch. We
419   // canonicalize most loops to this form. We can support multi-latch if needed.
420   if (!L.getLoopLatch())
421     return false;
422 
423   ConstantTerminatorFoldingImpl BranchFolder(L, LI, DT, MSSAU);
424   return BranchFolder.run();
425 }
426 
427 static bool mergeBlocksIntoPredecessors(Loop &L, DominatorTree &DT,
428                                         LoopInfo &LI, MemorySSAUpdater *MSSAU) {
429   bool Changed = false;
430   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
431   // Copy blocks into a temporary array to avoid iterator invalidation issues
432   // as we remove them.
433   SmallVector<WeakTrackingVH, 16> Blocks(L.blocks());
434 
435   for (auto &Block : Blocks) {
436     // Attempt to merge blocks in the trivial case. Don't modify blocks which
437     // belong to other loops.
438     BasicBlock *Succ = cast_or_null<BasicBlock>(Block);
439     if (!Succ)
440       continue;
441 
442     BasicBlock *Pred = Succ->getSinglePredecessor();
443     if (!Pred || !Pred->getSingleSuccessor() || LI.getLoopFor(Pred) != &L)
444       continue;
445 
446     // Merge Succ into Pred and delete it.
447     MergeBlockIntoPredecessor(Succ, &DTU, &LI, MSSAU);
448 
449     Changed = true;
450   }
451 
452   return Changed;
453 }
454 
455 static bool simplifyLoopCFG(Loop &L, DominatorTree &DT, LoopInfo &LI,
456                             ScalarEvolution &SE, MemorySSAUpdater *MSSAU) {
457   bool Changed = false;
458 
459   // Constant-fold terminators with known constant conditions.
460   Changed |= constantFoldTerminators(L, DT, LI, MSSAU);
461 
462   // Eliminate unconditional branches by merging blocks into their predecessors.
463   Changed |= mergeBlocksIntoPredecessors(L, DT, LI, MSSAU);
464 
465   if (Changed)
466     SE.forgetTopmostLoop(&L);
467 
468   return Changed;
469 }
470 
471 PreservedAnalyses LoopSimplifyCFGPass::run(Loop &L, LoopAnalysisManager &AM,
472                                            LoopStandardAnalysisResults &AR,
473                                            LPMUpdater &) {
474   Optional<MemorySSAUpdater> MSSAU;
475   if (EnableMSSALoopDependency && AR.MSSA)
476     MSSAU = MemorySSAUpdater(AR.MSSA);
477   if (!simplifyLoopCFG(L, AR.DT, AR.LI, AR.SE,
478                        MSSAU.hasValue() ? MSSAU.getPointer() : nullptr))
479     return PreservedAnalyses::all();
480 
481   return getLoopPassPreservedAnalyses();
482 }
483 
484 namespace {
485 class LoopSimplifyCFGLegacyPass : public LoopPass {
486 public:
487   static char ID; // Pass ID, replacement for typeid
488   LoopSimplifyCFGLegacyPass() : LoopPass(ID) {
489     initializeLoopSimplifyCFGLegacyPassPass(*PassRegistry::getPassRegistry());
490   }
491 
492   bool runOnLoop(Loop *L, LPPassManager &) override {
493     if (skipLoop(L))
494       return false;
495 
496     DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
497     LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
498     ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
499     Optional<MemorySSAUpdater> MSSAU;
500     if (EnableMSSALoopDependency) {
501       MemorySSA *MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA();
502       MSSAU = MemorySSAUpdater(MSSA);
503       if (VerifyMemorySSA)
504         MSSA->verifyMemorySSA();
505     }
506     return simplifyLoopCFG(*L, DT, LI, SE,
507                            MSSAU.hasValue() ? MSSAU.getPointer() : nullptr);
508   }
509 
510   void getAnalysisUsage(AnalysisUsage &AU) const override {
511     if (EnableMSSALoopDependency) {
512       AU.addRequired<MemorySSAWrapperPass>();
513       AU.addPreserved<MemorySSAWrapperPass>();
514     }
515     AU.addPreserved<DependenceAnalysisWrapperPass>();
516     getLoopAnalysisUsage(AU);
517   }
518 };
519 }
520 
521 char LoopSimplifyCFGLegacyPass::ID = 0;
522 INITIALIZE_PASS_BEGIN(LoopSimplifyCFGLegacyPass, "loop-simplifycfg",
523                       "Simplify loop CFG", false, false)
524 INITIALIZE_PASS_DEPENDENCY(LoopPass)
525 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
526 INITIALIZE_PASS_END(LoopSimplifyCFGLegacyPass, "loop-simplifycfg",
527                     "Simplify loop CFG", false, false)
528 
529 Pass *llvm::createLoopSimplifyCFGPass() {
530   return new LoopSimplifyCFGLegacyPass();
531 }
532