1 //===--------- LoopSimplifyCFG.cpp - Loop CFG Simplification Pass ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Loop SimplifyCFG Pass. This pass is responsible for
10 // basic loop CFG cleanup, primarily to assist other loop passes. If you
11 // encounter a noncanonical CFG construct that causes another loop pass to
12 // perform suboptimally, this is the place to fix it up.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Transforms/Scalar/LoopSimplifyCFG.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/DependenceAnalysis.h"
20 #include "llvm/Analysis/DomTreeUpdater.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/Analysis/LoopIterator.h"
23 #include "llvm/Analysis/LoopPass.h"
24 #include "llvm/Analysis/MemorySSA.h"
25 #include "llvm/Analysis/MemorySSAUpdater.h"
26 #include "llvm/Analysis/ScalarEvolution.h"
27 #include "llvm/IR/Dominators.h"
28 #include "llvm/IR/IRBuilder.h"
29 #include "llvm/InitializePasses.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Transforms/Scalar.h"
32 #include "llvm/Transforms/Scalar/LoopPassManager.h"
33 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
34 #include "llvm/Transforms/Utils/LoopUtils.h"
35 using namespace llvm;
36 
37 #define DEBUG_TYPE "loop-simplifycfg"
38 
39 static cl::opt<bool> EnableTermFolding("enable-loop-simplifycfg-term-folding",
40                                        cl::init(true));
41 
42 STATISTIC(NumTerminatorsFolded,
43           "Number of terminators folded to unconditional branches");
44 STATISTIC(NumLoopBlocksDeleted,
45           "Number of loop blocks deleted");
46 STATISTIC(NumLoopExitsDeleted,
47           "Number of loop exiting edges deleted");
48 
49 /// If \p BB is a switch or a conditional branch, but only one of its successors
50 /// can be reached from this block in runtime, return this successor. Otherwise,
51 /// return nullptr.
52 static BasicBlock *getOnlyLiveSuccessor(BasicBlock *BB) {
53   Instruction *TI = BB->getTerminator();
54   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
55     if (BI->isUnconditional())
56       return nullptr;
57     if (BI->getSuccessor(0) == BI->getSuccessor(1))
58       return BI->getSuccessor(0);
59     ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
60     if (!Cond)
61       return nullptr;
62     return Cond->isZero() ? BI->getSuccessor(1) : BI->getSuccessor(0);
63   }
64 
65   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
66     auto *CI = dyn_cast<ConstantInt>(SI->getCondition());
67     if (!CI)
68       return nullptr;
69     for (auto Case : SI->cases())
70       if (Case.getCaseValue() == CI)
71         return Case.getCaseSuccessor();
72     return SI->getDefaultDest();
73   }
74 
75   return nullptr;
76 }
77 
78 /// Removes \p BB from all loops from [FirstLoop, LastLoop) in parent chain.
79 static void removeBlockFromLoops(BasicBlock *BB, Loop *FirstLoop,
80                                  Loop *LastLoop = nullptr) {
81   assert((!LastLoop || LastLoop->contains(FirstLoop->getHeader())) &&
82          "First loop is supposed to be inside of last loop!");
83   assert(FirstLoop->contains(BB) && "Must be a loop block!");
84   for (Loop *Current = FirstLoop; Current != LastLoop;
85        Current = Current->getParentLoop())
86     Current->removeBlockFromLoop(BB);
87 }
88 
89 /// Find innermost loop that contains at least one block from \p BBs and
90 /// contains the header of loop \p L.
91 static Loop *getInnermostLoopFor(SmallPtrSetImpl<BasicBlock *> &BBs,
92                                  Loop &L, LoopInfo &LI) {
93   Loop *Innermost = nullptr;
94   for (BasicBlock *BB : BBs) {
95     Loop *BBL = LI.getLoopFor(BB);
96     while (BBL && !BBL->contains(L.getHeader()))
97       BBL = BBL->getParentLoop();
98     if (BBL == &L)
99       BBL = BBL->getParentLoop();
100     if (!BBL)
101       continue;
102     if (!Innermost || BBL->getLoopDepth() > Innermost->getLoopDepth())
103       Innermost = BBL;
104   }
105   return Innermost;
106 }
107 
108 namespace {
109 /// Helper class that can turn branches and switches with constant conditions
110 /// into unconditional branches.
111 class ConstantTerminatorFoldingImpl {
112 private:
113   Loop &L;
114   LoopInfo &LI;
115   DominatorTree &DT;
116   ScalarEvolution &SE;
117   MemorySSAUpdater *MSSAU;
118   LoopBlocksDFS DFS;
119   DomTreeUpdater DTU;
120   SmallVector<DominatorTree::UpdateType, 16> DTUpdates;
121 
122   // Whether or not the current loop has irreducible CFG.
123   bool HasIrreducibleCFG = false;
124   // Whether or not the current loop will still exist after terminator constant
125   // folding will be done. In theory, there are two ways how it can happen:
126   // 1. Loop's latch(es) become unreachable from loop header;
127   // 2. Loop's header becomes unreachable from method entry.
128   // In practice, the second situation is impossible because we only modify the
129   // current loop and its preheader and do not affect preheader's reachibility
130   // from any other block. So this variable set to true means that loop's latch
131   // has become unreachable from loop header.
132   bool DeleteCurrentLoop = false;
133 
134   // The blocks of the original loop that will still be reachable from entry
135   // after the constant folding.
136   SmallPtrSet<BasicBlock *, 8> LiveLoopBlocks;
137   // The blocks of the original loop that will become unreachable from entry
138   // after the constant folding.
139   SmallVector<BasicBlock *, 8> DeadLoopBlocks;
140   // The exits of the original loop that will still be reachable from entry
141   // after the constant folding.
142   SmallPtrSet<BasicBlock *, 8> LiveExitBlocks;
143   // The exits of the original loop that will become unreachable from entry
144   // after the constant folding.
145   SmallVector<BasicBlock *, 8> DeadExitBlocks;
146   // The blocks that will still be a part of the current loop after folding.
147   SmallPtrSet<BasicBlock *, 8> BlocksInLoopAfterFolding;
148   // The blocks that have terminators with constant condition that can be
149   // folded. Note: fold candidates should be in L but not in any of its
150   // subloops to avoid complex LI updates.
151   SmallVector<BasicBlock *, 8> FoldCandidates;
152 
153   void dump() const {
154     dbgs() << "Constant terminator folding for loop " << L << "\n";
155     dbgs() << "After terminator constant-folding, the loop will";
156     if (!DeleteCurrentLoop)
157       dbgs() << " not";
158     dbgs() << " be destroyed\n";
159     auto PrintOutVector = [&](const char *Message,
160                            const SmallVectorImpl<BasicBlock *> &S) {
161       dbgs() << Message << "\n";
162       for (const BasicBlock *BB : S)
163         dbgs() << "\t" << BB->getName() << "\n";
164     };
165     auto PrintOutSet = [&](const char *Message,
166                            const SmallPtrSetImpl<BasicBlock *> &S) {
167       dbgs() << Message << "\n";
168       for (const BasicBlock *BB : S)
169         dbgs() << "\t" << BB->getName() << "\n";
170     };
171     PrintOutVector("Blocks in which we can constant-fold terminator:",
172                    FoldCandidates);
173     PrintOutSet("Live blocks from the original loop:", LiveLoopBlocks);
174     PrintOutVector("Dead blocks from the original loop:", DeadLoopBlocks);
175     PrintOutSet("Live exit blocks:", LiveExitBlocks);
176     PrintOutVector("Dead exit blocks:", DeadExitBlocks);
177     if (!DeleteCurrentLoop)
178       PrintOutSet("The following blocks will still be part of the loop:",
179                   BlocksInLoopAfterFolding);
180   }
181 
182   /// Whether or not the current loop has irreducible CFG.
183   bool hasIrreducibleCFG(LoopBlocksDFS &DFS) {
184     assert(DFS.isComplete() && "DFS is expected to be finished");
185     // Index of a basic block in RPO traversal.
186     DenseMap<const BasicBlock *, unsigned> RPO;
187     unsigned Current = 0;
188     for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I)
189       RPO[*I] = Current++;
190 
191     for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) {
192       BasicBlock *BB = *I;
193       for (auto *Succ : successors(BB))
194         if (L.contains(Succ) && !LI.isLoopHeader(Succ) && RPO[BB] > RPO[Succ])
195           // If an edge goes from a block with greater order number into a block
196           // with lesses number, and it is not a loop backedge, then it can only
197           // be a part of irreducible non-loop cycle.
198           return true;
199     }
200     return false;
201   }
202 
203   /// Fill all information about status of blocks and exits of the current loop
204   /// if constant folding of all branches will be done.
205   void analyze() {
206     DFS.perform(&LI);
207     assert(DFS.isComplete() && "DFS is expected to be finished");
208 
209     // TODO: The algorithm below relies on both RPO and Postorder traversals.
210     // When the loop has only reducible CFG inside, then the invariant "all
211     // predecessors of X are processed before X in RPO" is preserved. However
212     // an irreducible loop can break this invariant (e.g. latch does not have to
213     // be the last block in the traversal in this case, and the algorithm relies
214     // on this). We can later decide to support such cases by altering the
215     // algorithms, but so far we just give up analyzing them.
216     if (hasIrreducibleCFG(DFS)) {
217       HasIrreducibleCFG = true;
218       return;
219     }
220 
221     // Collect live and dead loop blocks and exits.
222     LiveLoopBlocks.insert(L.getHeader());
223     for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) {
224       BasicBlock *BB = *I;
225 
226       // If a loop block wasn't marked as live so far, then it's dead.
227       if (!LiveLoopBlocks.count(BB)) {
228         DeadLoopBlocks.push_back(BB);
229         continue;
230       }
231 
232       BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(BB);
233 
234       // If a block has only one live successor, it's a candidate on constant
235       // folding. Only handle blocks from current loop: branches in child loops
236       // are skipped because if they can be folded, they should be folded during
237       // the processing of child loops.
238       bool TakeFoldCandidate = TheOnlySucc && LI.getLoopFor(BB) == &L;
239       if (TakeFoldCandidate)
240         FoldCandidates.push_back(BB);
241 
242       // Handle successors.
243       for (BasicBlock *Succ : successors(BB))
244         if (!TakeFoldCandidate || TheOnlySucc == Succ) {
245           if (L.contains(Succ))
246             LiveLoopBlocks.insert(Succ);
247           else
248             LiveExitBlocks.insert(Succ);
249         }
250     }
251 
252     // Amount of dead and live loop blocks should match the total number of
253     // blocks in loop.
254     assert(L.getNumBlocks() == LiveLoopBlocks.size() + DeadLoopBlocks.size() &&
255            "Malformed block sets?");
256 
257     // Now, all exit blocks that are not marked as live are dead.
258     SmallVector<BasicBlock *, 8> ExitBlocks;
259     L.getExitBlocks(ExitBlocks);
260     SmallPtrSet<BasicBlock *, 8> UniqueDeadExits;
261     for (auto *ExitBlock : ExitBlocks)
262       if (!LiveExitBlocks.count(ExitBlock) &&
263           UniqueDeadExits.insert(ExitBlock).second)
264         DeadExitBlocks.push_back(ExitBlock);
265 
266     // Whether or not the edge From->To will still be present in graph after the
267     // folding.
268     auto IsEdgeLive = [&](BasicBlock *From, BasicBlock *To) {
269       if (!LiveLoopBlocks.count(From))
270         return false;
271       BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(From);
272       return !TheOnlySucc || TheOnlySucc == To || LI.getLoopFor(From) != &L;
273     };
274 
275     // The loop will not be destroyed if its latch is live.
276     DeleteCurrentLoop = !IsEdgeLive(L.getLoopLatch(), L.getHeader());
277 
278     // If we are going to delete the current loop completely, no extra analysis
279     // is needed.
280     if (DeleteCurrentLoop)
281       return;
282 
283     // Otherwise, we should check which blocks will still be a part of the
284     // current loop after the transform.
285     BlocksInLoopAfterFolding.insert(L.getLoopLatch());
286     // If the loop is live, then we should compute what blocks are still in
287     // loop after all branch folding has been done. A block is in loop if
288     // it has a live edge to another block that is in the loop; by definition,
289     // latch is in the loop.
290     auto BlockIsInLoop = [&](BasicBlock *BB) {
291       return any_of(successors(BB), [&](BasicBlock *Succ) {
292         return BlocksInLoopAfterFolding.count(Succ) && IsEdgeLive(BB, Succ);
293       });
294     };
295     for (auto I = DFS.beginPostorder(), E = DFS.endPostorder(); I != E; ++I) {
296       BasicBlock *BB = *I;
297       if (BlockIsInLoop(BB))
298         BlocksInLoopAfterFolding.insert(BB);
299     }
300 
301     assert(BlocksInLoopAfterFolding.count(L.getHeader()) &&
302            "Header not in loop?");
303     assert(BlocksInLoopAfterFolding.size() <= LiveLoopBlocks.size() &&
304            "All blocks that stay in loop should be live!");
305   }
306 
307   /// We need to preserve static reachibility of all loop exit blocks (this is)
308   /// required by loop pass manager. In order to do it, we make the following
309   /// trick:
310   ///
311   ///  preheader:
312   ///    <preheader code>
313   ///    br label %loop_header
314   ///
315   ///  loop_header:
316   ///    ...
317   ///    br i1 false, label %dead_exit, label %loop_block
318   ///    ...
319   ///
320   /// We cannot simply remove edge from the loop to dead exit because in this
321   /// case dead_exit (and its successors) may become unreachable. To avoid that,
322   /// we insert the following fictive preheader:
323   ///
324   ///  preheader:
325   ///    <preheader code>
326   ///    switch i32 0, label %preheader-split,
327   ///                  [i32 1, label %dead_exit_1],
328   ///                  [i32 2, label %dead_exit_2],
329   ///                  ...
330   ///                  [i32 N, label %dead_exit_N],
331   ///
332   ///  preheader-split:
333   ///    br label %loop_header
334   ///
335   ///  loop_header:
336   ///    ...
337   ///    br i1 false, label %dead_exit_N, label %loop_block
338   ///    ...
339   ///
340   /// Doing so, we preserve static reachibility of all dead exits and can later
341   /// remove edges from the loop to these blocks.
342   void handleDeadExits() {
343     // If no dead exits, nothing to do.
344     if (DeadExitBlocks.empty())
345       return;
346 
347     // Construct split preheader and the dummy switch to thread edges from it to
348     // dead exits.
349     BasicBlock *Preheader = L.getLoopPreheader();
350     BasicBlock *NewPreheader = llvm::SplitBlock(
351         Preheader, Preheader->getTerminator(), &DT, &LI, MSSAU);
352 
353     IRBuilder<> Builder(Preheader->getTerminator());
354     SwitchInst *DummySwitch =
355         Builder.CreateSwitch(Builder.getInt32(0), NewPreheader);
356     Preheader->getTerminator()->eraseFromParent();
357 
358     unsigned DummyIdx = 1;
359     for (BasicBlock *BB : DeadExitBlocks) {
360       // Eliminate all Phis and LandingPads from dead exits.
361       // TODO: Consider removing all instructions in this dead block.
362       SmallVector<Instruction *, 4> DeadInstructions;
363       for (auto &PN : BB->phis())
364         DeadInstructions.push_back(&PN);
365 
366       if (auto *LandingPad = dyn_cast<LandingPadInst>(BB->getFirstNonPHI()))
367         DeadInstructions.emplace_back(LandingPad);
368 
369       for (Instruction *I : DeadInstructions) {
370         I->replaceAllUsesWith(UndefValue::get(I->getType()));
371         I->eraseFromParent();
372       }
373 
374       assert(DummyIdx != 0 && "Too many dead exits!");
375       DummySwitch->addCase(Builder.getInt32(DummyIdx++), BB);
376       DTUpdates.push_back({DominatorTree::Insert, Preheader, BB});
377       ++NumLoopExitsDeleted;
378     }
379 
380     assert(L.getLoopPreheader() == NewPreheader && "Malformed CFG?");
381     if (Loop *OuterLoop = LI.getLoopFor(Preheader)) {
382       // When we break dead edges, the outer loop may become unreachable from
383       // the current loop. We need to fix loop info accordingly. For this, we
384       // find the most nested loop that still contains L and remove L from all
385       // loops that are inside of it.
386       Loop *StillReachable = getInnermostLoopFor(LiveExitBlocks, L, LI);
387 
388       // Okay, our loop is no longer in the outer loop (and maybe not in some of
389       // its parents as well). Make the fixup.
390       if (StillReachable != OuterLoop) {
391         LI.changeLoopFor(NewPreheader, StillReachable);
392         removeBlockFromLoops(NewPreheader, OuterLoop, StillReachable);
393         for (auto *BB : L.blocks())
394           removeBlockFromLoops(BB, OuterLoop, StillReachable);
395         OuterLoop->removeChildLoop(&L);
396         if (StillReachable)
397           StillReachable->addChildLoop(&L);
398         else
399           LI.addTopLevelLoop(&L);
400 
401         // Some values from loops in [OuterLoop, StillReachable) could be used
402         // in the current loop. Now it is not their child anymore, so such uses
403         // require LCSSA Phis.
404         Loop *FixLCSSALoop = OuterLoop;
405         while (FixLCSSALoop->getParentLoop() != StillReachable)
406           FixLCSSALoop = FixLCSSALoop->getParentLoop();
407         assert(FixLCSSALoop && "Should be a loop!");
408         // We need all DT updates to be done before forming LCSSA.
409         if (MSSAU)
410           MSSAU->applyUpdates(DTUpdates, DT, /*UpdateDT=*/true);
411         else
412           DTU.applyUpdates(DTUpdates);
413         DTUpdates.clear();
414         formLCSSARecursively(*FixLCSSALoop, DT, &LI, &SE);
415       }
416     }
417 
418     if (MSSAU) {
419       // Clear all updates now. Facilitates deletes that follow.
420       MSSAU->applyUpdates(DTUpdates, DT, /*UpdateDT=*/true);
421       DTUpdates.clear();
422       if (VerifyMemorySSA)
423         MSSAU->getMemorySSA()->verifyMemorySSA();
424     }
425   }
426 
427   /// Delete loop blocks that have become unreachable after folding. Make all
428   /// relevant updates to DT and LI.
429   void deleteDeadLoopBlocks() {
430     if (MSSAU) {
431       SmallSetVector<BasicBlock *, 8> DeadLoopBlocksSet(DeadLoopBlocks.begin(),
432                                                         DeadLoopBlocks.end());
433       MSSAU->removeBlocks(DeadLoopBlocksSet);
434     }
435 
436     // The function LI.erase has some invariants that need to be preserved when
437     // it tries to remove a loop which is not the top-level loop. In particular,
438     // it requires loop's preheader to be strictly in loop's parent. We cannot
439     // just remove blocks one by one, because after removal of preheader we may
440     // break this invariant for the dead loop. So we detatch and erase all dead
441     // loops beforehand.
442     for (auto *BB : DeadLoopBlocks)
443       if (LI.isLoopHeader(BB)) {
444         assert(LI.getLoopFor(BB) != &L && "Attempt to remove current loop!");
445         Loop *DL = LI.getLoopFor(BB);
446         if (!DL->isOutermost()) {
447           for (auto *PL = DL->getParentLoop(); PL; PL = PL->getParentLoop())
448             for (auto *BB : DL->getBlocks())
449               PL->removeBlockFromLoop(BB);
450           DL->getParentLoop()->removeChildLoop(DL);
451           LI.addTopLevelLoop(DL);
452         }
453         LI.erase(DL);
454       }
455 
456     for (auto *BB : DeadLoopBlocks) {
457       assert(BB != L.getHeader() &&
458              "Header of the current loop cannot be dead!");
459       LLVM_DEBUG(dbgs() << "Deleting dead loop block " << BB->getName()
460                         << "\n");
461       LI.removeBlock(BB);
462     }
463 
464     detachDeadBlocks(DeadLoopBlocks, &DTUpdates, /*KeepOneInputPHIs*/true);
465     DTU.applyUpdates(DTUpdates);
466     DTUpdates.clear();
467     for (auto *BB : DeadLoopBlocks)
468       DTU.deleteBB(BB);
469 
470     NumLoopBlocksDeleted += DeadLoopBlocks.size();
471   }
472 
473   /// Constant-fold terminators of blocks acculumated in FoldCandidates into the
474   /// unconditional branches.
475   void foldTerminators() {
476     for (BasicBlock *BB : FoldCandidates) {
477       assert(LI.getLoopFor(BB) == &L && "Should be a loop block!");
478       BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(BB);
479       assert(TheOnlySucc && "Should have one live successor!");
480 
481       LLVM_DEBUG(dbgs() << "Replacing terminator of " << BB->getName()
482                         << " with an unconditional branch to the block "
483                         << TheOnlySucc->getName() << "\n");
484 
485       SmallPtrSet<BasicBlock *, 2> DeadSuccessors;
486       // Remove all BB's successors except for the live one.
487       unsigned TheOnlySuccDuplicates = 0;
488       for (auto *Succ : successors(BB))
489         if (Succ != TheOnlySucc) {
490           DeadSuccessors.insert(Succ);
491           // If our successor lies in a different loop, we don't want to remove
492           // the one-input Phi because it is a LCSSA Phi.
493           bool PreserveLCSSAPhi = !L.contains(Succ);
494           Succ->removePredecessor(BB, PreserveLCSSAPhi);
495           if (MSSAU)
496             MSSAU->removeEdge(BB, Succ);
497         } else
498           ++TheOnlySuccDuplicates;
499 
500       assert(TheOnlySuccDuplicates > 0 && "Should be!");
501       // If TheOnlySucc was BB's successor more than once, after transform it
502       // will be its successor only once. Remove redundant inputs from
503       // TheOnlySucc's Phis.
504       bool PreserveLCSSAPhi = !L.contains(TheOnlySucc);
505       for (unsigned Dup = 1; Dup < TheOnlySuccDuplicates; ++Dup)
506         TheOnlySucc->removePredecessor(BB, PreserveLCSSAPhi);
507       if (MSSAU && TheOnlySuccDuplicates > 1)
508         MSSAU->removeDuplicatePhiEdgesBetween(BB, TheOnlySucc);
509 
510       IRBuilder<> Builder(BB->getContext());
511       Instruction *Term = BB->getTerminator();
512       Builder.SetInsertPoint(Term);
513       Builder.CreateBr(TheOnlySucc);
514       Term->eraseFromParent();
515 
516       for (auto *DeadSucc : DeadSuccessors)
517         DTUpdates.push_back({DominatorTree::Delete, BB, DeadSucc});
518 
519       ++NumTerminatorsFolded;
520     }
521   }
522 
523 public:
524   ConstantTerminatorFoldingImpl(Loop &L, LoopInfo &LI, DominatorTree &DT,
525                                 ScalarEvolution &SE,
526                                 MemorySSAUpdater *MSSAU)
527       : L(L), LI(LI), DT(DT), SE(SE), MSSAU(MSSAU), DFS(&L),
528         DTU(DT, DomTreeUpdater::UpdateStrategy::Eager) {}
529   bool run() {
530     assert(L.getLoopLatch() && "Should be single latch!");
531 
532     // Collect all available information about status of blocks after constant
533     // folding.
534     analyze();
535     BasicBlock *Header = L.getHeader();
536     (void)Header;
537 
538     LLVM_DEBUG(dbgs() << "In function " << Header->getParent()->getName()
539                       << ": ");
540 
541     if (HasIrreducibleCFG) {
542       LLVM_DEBUG(dbgs() << "Loops with irreducible CFG are not supported!\n");
543       return false;
544     }
545 
546     // Nothing to constant-fold.
547     if (FoldCandidates.empty()) {
548       LLVM_DEBUG(
549           dbgs() << "No constant terminator folding candidates found in loop "
550                  << Header->getName() << "\n");
551       return false;
552     }
553 
554     // TODO: Support deletion of the current loop.
555     if (DeleteCurrentLoop) {
556       LLVM_DEBUG(
557           dbgs()
558           << "Give up constant terminator folding in loop " << Header->getName()
559           << ": we don't currently support deletion of the current loop.\n");
560       return false;
561     }
562 
563     // TODO: Support blocks that are not dead, but also not in loop after the
564     // folding.
565     if (BlocksInLoopAfterFolding.size() + DeadLoopBlocks.size() !=
566         L.getNumBlocks()) {
567       LLVM_DEBUG(
568           dbgs() << "Give up constant terminator folding in loop "
569                  << Header->getName() << ": we don't currently"
570                     " support blocks that are not dead, but will stop "
571                     "being a part of the loop after constant-folding.\n");
572       return false;
573     }
574 
575     SE.forgetTopmostLoop(&L);
576     // Dump analysis results.
577     LLVM_DEBUG(dump());
578 
579     LLVM_DEBUG(dbgs() << "Constant-folding " << FoldCandidates.size()
580                       << " terminators in loop " << Header->getName() << "\n");
581 
582     // Make the actual transforms.
583     handleDeadExits();
584     foldTerminators();
585 
586     if (!DeadLoopBlocks.empty()) {
587       LLVM_DEBUG(dbgs() << "Deleting " << DeadLoopBlocks.size()
588                     << " dead blocks in loop " << Header->getName() << "\n");
589       deleteDeadLoopBlocks();
590     } else {
591       // If we didn't do updates inside deleteDeadLoopBlocks, do them here.
592       DTU.applyUpdates(DTUpdates);
593       DTUpdates.clear();
594     }
595 
596     if (MSSAU && VerifyMemorySSA)
597       MSSAU->getMemorySSA()->verifyMemorySSA();
598 
599 #ifndef NDEBUG
600     // Make sure that we have preserved all data structures after the transform.
601 #if defined(EXPENSIVE_CHECKS)
602     assert(DT.verify(DominatorTree::VerificationLevel::Full) &&
603            "DT broken after transform!");
604 #else
605     assert(DT.verify(DominatorTree::VerificationLevel::Fast) &&
606            "DT broken after transform!");
607 #endif
608     assert(DT.isReachableFromEntry(Header));
609     LI.verify(DT);
610 #endif
611 
612     return true;
613   }
614 
615   bool foldingBreaksCurrentLoop() const {
616     return DeleteCurrentLoop;
617   }
618 };
619 } // namespace
620 
621 /// Turn branches and switches with known constant conditions into unconditional
622 /// branches.
623 static bool constantFoldTerminators(Loop &L, DominatorTree &DT, LoopInfo &LI,
624                                     ScalarEvolution &SE,
625                                     MemorySSAUpdater *MSSAU,
626                                     bool &IsLoopDeleted) {
627   if (!EnableTermFolding)
628     return false;
629 
630   // To keep things simple, only process loops with single latch. We
631   // canonicalize most loops to this form. We can support multi-latch if needed.
632   if (!L.getLoopLatch())
633     return false;
634 
635   ConstantTerminatorFoldingImpl BranchFolder(L, LI, DT, SE, MSSAU);
636   bool Changed = BranchFolder.run();
637   IsLoopDeleted = Changed && BranchFolder.foldingBreaksCurrentLoop();
638   return Changed;
639 }
640 
641 static bool mergeBlocksIntoPredecessors(Loop &L, DominatorTree &DT,
642                                         LoopInfo &LI, MemorySSAUpdater *MSSAU) {
643   bool Changed = false;
644   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
645   // Copy blocks into a temporary array to avoid iterator invalidation issues
646   // as we remove them.
647   SmallVector<WeakTrackingVH, 16> Blocks(L.blocks());
648 
649   for (auto &Block : Blocks) {
650     // Attempt to merge blocks in the trivial case. Don't modify blocks which
651     // belong to other loops.
652     BasicBlock *Succ = cast_or_null<BasicBlock>(Block);
653     if (!Succ)
654       continue;
655 
656     BasicBlock *Pred = Succ->getSinglePredecessor();
657     if (!Pred || !Pred->getSingleSuccessor() || LI.getLoopFor(Pred) != &L)
658       continue;
659 
660     // Merge Succ into Pred and delete it.
661     MergeBlockIntoPredecessor(Succ, &DTU, &LI, MSSAU);
662 
663     if (MSSAU && VerifyMemorySSA)
664       MSSAU->getMemorySSA()->verifyMemorySSA();
665 
666     Changed = true;
667   }
668 
669   return Changed;
670 }
671 
672 static bool simplifyLoopCFG(Loop &L, DominatorTree &DT, LoopInfo &LI,
673                             ScalarEvolution &SE, MemorySSAUpdater *MSSAU,
674                             bool &IsLoopDeleted) {
675   bool Changed = false;
676 
677   // Constant-fold terminators with known constant conditions.
678   Changed |= constantFoldTerminators(L, DT, LI, SE, MSSAU, IsLoopDeleted);
679 
680   if (IsLoopDeleted)
681     return true;
682 
683   // Eliminate unconditional branches by merging blocks into their predecessors.
684   Changed |= mergeBlocksIntoPredecessors(L, DT, LI, MSSAU);
685 
686   if (Changed)
687     SE.forgetTopmostLoop(&L);
688 
689   return Changed;
690 }
691 
692 PreservedAnalyses LoopSimplifyCFGPass::run(Loop &L, LoopAnalysisManager &AM,
693                                            LoopStandardAnalysisResults &AR,
694                                            LPMUpdater &LPMU) {
695   Optional<MemorySSAUpdater> MSSAU;
696   if (AR.MSSA)
697     MSSAU = MemorySSAUpdater(AR.MSSA);
698   bool DeleteCurrentLoop = false;
699   if (!simplifyLoopCFG(L, AR.DT, AR.LI, AR.SE,
700                        MSSAU.hasValue() ? MSSAU.getPointer() : nullptr,
701                        DeleteCurrentLoop))
702     return PreservedAnalyses::all();
703 
704   if (DeleteCurrentLoop)
705     LPMU.markLoopAsDeleted(L, "loop-simplifycfg");
706 
707   auto PA = getLoopPassPreservedAnalyses();
708   if (AR.MSSA)
709     PA.preserve<MemorySSAAnalysis>();
710   return PA;
711 }
712 
713 namespace {
714 class LoopSimplifyCFGLegacyPass : public LoopPass {
715 public:
716   static char ID; // Pass ID, replacement for typeid
717   LoopSimplifyCFGLegacyPass() : LoopPass(ID) {
718     initializeLoopSimplifyCFGLegacyPassPass(*PassRegistry::getPassRegistry());
719   }
720 
721   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
722     if (skipLoop(L))
723       return false;
724 
725     DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
726     LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
727     ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
728     auto *MSSAA = getAnalysisIfAvailable<MemorySSAWrapperPass>();
729     Optional<MemorySSAUpdater> MSSAU;
730     if (MSSAA)
731       MSSAU = MemorySSAUpdater(&MSSAA->getMSSA());
732     if (MSSAA && VerifyMemorySSA)
733       MSSAU->getMemorySSA()->verifyMemorySSA();
734     bool DeleteCurrentLoop = false;
735     bool Changed = simplifyLoopCFG(
736         *L, DT, LI, SE, MSSAU.hasValue() ? MSSAU.getPointer() : nullptr,
737         DeleteCurrentLoop);
738     if (DeleteCurrentLoop)
739       LPM.markLoopAsDeleted(*L);
740     return Changed;
741   }
742 
743   void getAnalysisUsage(AnalysisUsage &AU) const override {
744     AU.addPreserved<MemorySSAWrapperPass>();
745     AU.addPreserved<DependenceAnalysisWrapperPass>();
746     getLoopAnalysisUsage(AU);
747   }
748 };
749 } // end namespace
750 
751 char LoopSimplifyCFGLegacyPass::ID = 0;
752 INITIALIZE_PASS_BEGIN(LoopSimplifyCFGLegacyPass, "loop-simplifycfg",
753                       "Simplify loop CFG", false, false)
754 INITIALIZE_PASS_DEPENDENCY(LoopPass)
755 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
756 INITIALIZE_PASS_END(LoopSimplifyCFGLegacyPass, "loop-simplifycfg",
757                     "Simplify loop CFG", false, false)
758 
759 Pass *llvm::createLoopSimplifyCFGPass() {
760   return new LoopSimplifyCFGLegacyPass();
761 }
762