1 //===--------- LoopSimplifyCFG.cpp - Loop CFG Simplification Pass ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Loop SimplifyCFG Pass. This pass is responsible for 11 // basic loop CFG cleanup, primarily to assist other loop passes. If you 12 // encounter a noncanonical CFG construct that causes another loop pass to 13 // perform suboptimally, this is the place to fix it up. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Transforms/Scalar/LoopSimplifyCFG.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/AssumptionCache.h" 22 #include "llvm/Analysis/BasicAliasAnalysis.h" 23 #include "llvm/Analysis/DependenceAnalysis.h" 24 #include "llvm/Analysis/GlobalsModRef.h" 25 #include "llvm/Analysis/LoopInfo.h" 26 #include "llvm/Analysis/LoopPass.h" 27 #include "llvm/Analysis/MemorySSA.h" 28 #include "llvm/Analysis/MemorySSAUpdater.h" 29 #include "llvm/Analysis/ScalarEvolution.h" 30 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 31 #include "llvm/Analysis/TargetTransformInfo.h" 32 #include "llvm/IR/DomTreeUpdater.h" 33 #include "llvm/IR/Dominators.h" 34 #include "llvm/Transforms/Scalar.h" 35 #include "llvm/Transforms/Scalar/LoopPassManager.h" 36 #include "llvm/Transforms/Utils.h" 37 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 38 #include "llvm/Transforms/Utils/Local.h" 39 #include "llvm/Transforms/Utils/LoopUtils.h" 40 using namespace llvm; 41 42 #define DEBUG_TYPE "loop-simplifycfg" 43 44 static cl::opt<bool> EnableTermFolding("enable-loop-simplifycfg-term-folding", 45 cl::init(false)); 46 47 STATISTIC(NumTerminatorsFolded, 48 "Number of terminators folded to unconditional branches"); 49 STATISTIC(NumLoopBlocksDeleted, 50 "Number of loop blocks deleted"); 51 STATISTIC(NumLoopExitsDeleted, 52 "Number of loop exiting edges deleted"); 53 54 /// If \p BB is a switch or a conditional branch, but only one of its successors 55 /// can be reached from this block in runtime, return this successor. Otherwise, 56 /// return nullptr. 57 static BasicBlock *getOnlyLiveSuccessor(BasicBlock *BB) { 58 Instruction *TI = BB->getTerminator(); 59 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 60 if (BI->isUnconditional()) 61 return nullptr; 62 if (BI->getSuccessor(0) == BI->getSuccessor(1)) 63 return BI->getSuccessor(0); 64 ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition()); 65 if (!Cond) 66 return nullptr; 67 return Cond->isZero() ? BI->getSuccessor(1) : BI->getSuccessor(0); 68 } 69 70 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 71 auto *CI = dyn_cast<ConstantInt>(SI->getCondition()); 72 if (!CI) 73 return nullptr; 74 for (auto Case : SI->cases()) 75 if (Case.getCaseValue() == CI) 76 return Case.getCaseSuccessor(); 77 return SI->getDefaultDest(); 78 } 79 80 return nullptr; 81 } 82 83 /// Helper class that can turn branches and switches with constant conditions 84 /// into unconditional branches. 85 class ConstantTerminatorFoldingImpl { 86 private: 87 Loop &L; 88 LoopInfo &LI; 89 DominatorTree &DT; 90 ScalarEvolution &SE; 91 MemorySSAUpdater *MSSAU; 92 93 // Whether or not the current loop has irreducible CFG. 94 bool HasIrreducibleCFG = false; 95 // Whether or not the current loop will still exist after terminator constant 96 // folding will be done. In theory, there are two ways how it can happen: 97 // 1. Loop's latch(es) become unreachable from loop header; 98 // 2. Loop's header becomes unreachable from method entry. 99 // In practice, the second situation is impossible because we only modify the 100 // current loop and its preheader and do not affect preheader's reachibility 101 // from any other block. So this variable set to true means that loop's latch 102 // has become unreachable from loop header. 103 bool DeleteCurrentLoop = false; 104 105 // The blocks of the original loop that will still be reachable from entry 106 // after the constant folding. 107 SmallPtrSet<BasicBlock *, 8> LiveLoopBlocks; 108 // The blocks of the original loop that will become unreachable from entry 109 // after the constant folding. 110 SmallVector<BasicBlock *, 8> DeadLoopBlocks; 111 // The exits of the original loop that will still be reachable from entry 112 // after the constant folding. 113 SmallPtrSet<BasicBlock *, 8> LiveExitBlocks; 114 // The exits of the original loop that will become unreachable from entry 115 // after the constant folding. 116 SmallVector<BasicBlock *, 8> DeadExitBlocks; 117 // The blocks that will still be a part of the current loop after folding. 118 SmallPtrSet<BasicBlock *, 8> BlocksInLoopAfterFolding; 119 // The blocks that have terminators with constant condition that can be 120 // folded. Note: fold candidates should be in L but not in any of its 121 // subloops to avoid complex LI updates. 122 SmallVector<BasicBlock *, 8> FoldCandidates; 123 124 void dump() const { 125 dbgs() << "Constant terminator folding for loop " << L << "\n"; 126 dbgs() << "After terminator constant-folding, the loop will"; 127 if (!DeleteCurrentLoop) 128 dbgs() << " not"; 129 dbgs() << " be destroyed\n"; 130 auto PrintOutVector = [&](const char *Message, 131 const SmallVectorImpl<BasicBlock *> &S) { 132 dbgs() << Message << "\n"; 133 for (const BasicBlock *BB : S) 134 dbgs() << "\t" << BB->getName() << "\n"; 135 }; 136 auto PrintOutSet = [&](const char *Message, 137 const SmallPtrSetImpl<BasicBlock *> &S) { 138 dbgs() << Message << "\n"; 139 for (const BasicBlock *BB : S) 140 dbgs() << "\t" << BB->getName() << "\n"; 141 }; 142 PrintOutVector("Blocks in which we can constant-fold terminator:", 143 FoldCandidates); 144 PrintOutSet("Live blocks from the original loop:", LiveLoopBlocks); 145 PrintOutVector("Dead blocks from the original loop:", DeadLoopBlocks); 146 PrintOutSet("Live exit blocks:", LiveExitBlocks); 147 PrintOutVector("Dead exit blocks:", DeadExitBlocks); 148 if (!DeleteCurrentLoop) 149 PrintOutSet("The following blocks will still be part of the loop:", 150 BlocksInLoopAfterFolding); 151 } 152 153 /// Whether or not the current loop has irreducible CFG. 154 bool hasIrreducibleCFG(LoopBlocksDFS &DFS) { 155 assert(DFS.isComplete() && "DFS is expected to be finished"); 156 // Index of a basic block in RPO traversal. 157 DenseMap<const BasicBlock *, unsigned> RPO; 158 unsigned Current = 0; 159 for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) 160 RPO[*I] = Current++; 161 162 for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) { 163 BasicBlock *BB = *I; 164 for (auto *Succ : successors(BB)) 165 if (L.contains(Succ) && !LI.isLoopHeader(Succ) && RPO[BB] > RPO[Succ]) 166 // If an edge goes from a block with greater order number into a block 167 // with lesses number, and it is not a loop backedge, then it can only 168 // be a part of irreducible non-loop cycle. 169 return true; 170 } 171 return false; 172 } 173 174 /// Fill all information about status of blocks and exits of the current loop 175 /// if constant folding of all branches will be done. 176 void analyze() { 177 LoopBlocksDFS DFS(&L); 178 DFS.perform(&LI); 179 assert(DFS.isComplete() && "DFS is expected to be finished"); 180 181 // TODO: The algorithm below relies on both RPO and Postorder traversals. 182 // When the loop has only reducible CFG inside, then the invariant "all 183 // predecessors of X are processed before X in RPO" is preserved. However 184 // an irreducible loop can break this invariant (e.g. latch does not have to 185 // be the last block in the traversal in this case, and the algorithm relies 186 // on this). We can later decide to support such cases by altering the 187 // algorithms, but so far we just give up analyzing them. 188 if (hasIrreducibleCFG(DFS)) { 189 HasIrreducibleCFG = true; 190 return; 191 } 192 193 // Collect live and dead loop blocks and exits. 194 LiveLoopBlocks.insert(L.getHeader()); 195 for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) { 196 BasicBlock *BB = *I; 197 198 // If a loop block wasn't marked as live so far, then it's dead. 199 if (!LiveLoopBlocks.count(BB)) { 200 DeadLoopBlocks.push_back(BB); 201 continue; 202 } 203 204 BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(BB); 205 206 // If a block has only one live successor, it's a candidate on constant 207 // folding. Only handle blocks from current loop: branches in child loops 208 // are skipped because if they can be folded, they should be folded during 209 // the processing of child loops. 210 if (TheOnlySucc && LI.getLoopFor(BB) == &L) 211 FoldCandidates.push_back(BB); 212 213 // Handle successors. 214 for (BasicBlock *Succ : successors(BB)) 215 if (!TheOnlySucc || TheOnlySucc == Succ) { 216 if (L.contains(Succ)) 217 LiveLoopBlocks.insert(Succ); 218 else 219 LiveExitBlocks.insert(Succ); 220 } 221 } 222 223 // Sanity check: amount of dead and live loop blocks should match the total 224 // number of blocks in loop. 225 assert(L.getNumBlocks() == LiveLoopBlocks.size() + DeadLoopBlocks.size() && 226 "Malformed block sets?"); 227 228 // Now, all exit blocks that are not marked as live are dead. 229 SmallVector<BasicBlock *, 8> ExitBlocks; 230 L.getExitBlocks(ExitBlocks); 231 for (auto *ExitBlock : ExitBlocks) 232 if (!LiveExitBlocks.count(ExitBlock)) 233 DeadExitBlocks.push_back(ExitBlock); 234 235 // Whether or not the edge From->To will still be present in graph after the 236 // folding. 237 auto IsEdgeLive = [&](BasicBlock *From, BasicBlock *To) { 238 if (!LiveLoopBlocks.count(From)) 239 return false; 240 BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(From); 241 return !TheOnlySucc || TheOnlySucc == To; 242 }; 243 244 // The loop will not be destroyed if its latch is live. 245 DeleteCurrentLoop = !IsEdgeLive(L.getLoopLatch(), L.getHeader()); 246 247 // If we are going to delete the current loop completely, no extra analysis 248 // is needed. 249 if (DeleteCurrentLoop) 250 return; 251 252 // Otherwise, we should check which blocks will still be a part of the 253 // current loop after the transform. 254 BlocksInLoopAfterFolding.insert(L.getLoopLatch()); 255 // If the loop is live, then we should compute what blocks are still in 256 // loop after all branch folding has been done. A block is in loop if 257 // it has a live edge to another block that is in the loop; by definition, 258 // latch is in the loop. 259 auto BlockIsInLoop = [&](BasicBlock *BB) { 260 return any_of(successors(BB), [&](BasicBlock *Succ) { 261 return BlocksInLoopAfterFolding.count(Succ) && IsEdgeLive(BB, Succ); 262 }); 263 }; 264 for (auto I = DFS.beginPostorder(), E = DFS.endPostorder(); I != E; ++I) { 265 BasicBlock *BB = *I; 266 if (BlockIsInLoop(BB)) 267 BlocksInLoopAfterFolding.insert(BB); 268 } 269 270 // Sanity check: header must be in loop. 271 assert(BlocksInLoopAfterFolding.count(L.getHeader()) && 272 "Header not in loop?"); 273 assert(BlocksInLoopAfterFolding.size() <= LiveLoopBlocks.size() && 274 "All blocks that stay in loop should be live!"); 275 } 276 277 /// We need to preserve static reachibility of all loop exit blocks (this is) 278 /// required by loop pass manager. In order to do it, we make the following 279 /// trick: 280 /// 281 /// preheader: 282 /// <preheader code> 283 /// br label %loop_header 284 /// 285 /// loop_header: 286 /// ... 287 /// br i1 false, label %dead_exit, label %loop_block 288 /// ... 289 /// 290 /// We cannot simply remove edge from the loop to dead exit because in this 291 /// case dead_exit (and its successors) may become unreachable. To avoid that, 292 /// we insert the following fictive preheader: 293 /// 294 /// preheader: 295 /// <preheader code> 296 /// switch i32 0, label %preheader-split, 297 /// [i32 1, label %dead_exit_1], 298 /// [i32 2, label %dead_exit_2], 299 /// ... 300 /// [i32 N, label %dead_exit_N], 301 /// 302 /// preheader-split: 303 /// br label %loop_header 304 /// 305 /// loop_header: 306 /// ... 307 /// br i1 false, label %dead_exit_N, label %loop_block 308 /// ... 309 /// 310 /// Doing so, we preserve static reachibility of all dead exits and can later 311 /// remove edges from the loop to these blocks. 312 void handleDeadExits() { 313 // If no dead exits, nothing to do. 314 if (DeadExitBlocks.empty()) 315 return; 316 317 // Construct split preheader and the dummy switch to thread edges from it to 318 // dead exits. 319 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 320 BasicBlock *Preheader = L.getLoopPreheader(); 321 BasicBlock *NewPreheader = Preheader->splitBasicBlock( 322 Preheader->getTerminator(), 323 Twine(Preheader->getName()).concat("-split")); 324 DTU.deleteEdge(Preheader, L.getHeader()); 325 DTU.insertEdge(NewPreheader, L.getHeader()); 326 DTU.insertEdge(Preheader, NewPreheader); 327 IRBuilder<> Builder(Preheader->getTerminator()); 328 SwitchInst *DummySwitch = 329 Builder.CreateSwitch(Builder.getInt32(0), NewPreheader); 330 Preheader->getTerminator()->eraseFromParent(); 331 332 unsigned DummyIdx = 1; 333 for (BasicBlock *BB : DeadExitBlocks) { 334 SmallVector<Instruction *, 4> DeadPhis; 335 for (auto &PN : BB->phis()) 336 DeadPhis.push_back(&PN); 337 338 // Eliminate all Phis from dead exits. 339 for (Instruction *PN : DeadPhis) { 340 PN->replaceAllUsesWith(UndefValue::get(PN->getType())); 341 PN->eraseFromParent(); 342 } 343 assert(DummyIdx != 0 && "Too many dead exits!"); 344 DummySwitch->addCase(Builder.getInt32(DummyIdx++), BB); 345 DTU.insertEdge(Preheader, BB); 346 ++NumLoopExitsDeleted; 347 } 348 349 assert(L.getLoopPreheader() == NewPreheader && "Malformed CFG?"); 350 if (Loop *OuterLoop = LI.getLoopFor(Preheader)) { 351 OuterLoop->addBasicBlockToLoop(NewPreheader, LI); 352 353 // When we break dead edges, the outer loop may become unreachable from 354 // the current loop. We need to fix loop info accordingly. For this, we 355 // find the most nested loop that still contains L and remove L from all 356 // loops that are inside of it. 357 Loop *StillReachable = nullptr; 358 for (BasicBlock *BB : LiveExitBlocks) { 359 Loop *BBL = LI.getLoopFor(BB); 360 if (BBL && BBL->contains(L.getHeader())) 361 if (!StillReachable || 362 BBL->getLoopDepth() > StillReachable->getLoopDepth()) 363 StillReachable = BBL; 364 } 365 366 // Okay, our loop is no longer in the outer loop (and maybe not in some of 367 // its parents as well). Make the fixup. 368 if (StillReachable != OuterLoop) { 369 LI.changeLoopFor(NewPreheader, StillReachable); 370 for (Loop *NotContaining = OuterLoop; NotContaining != StillReachable; 371 NotContaining = NotContaining->getParentLoop()) { 372 NotContaining->removeBlockFromLoop(NewPreheader); 373 for (auto *BB : L.blocks()) 374 NotContaining->removeBlockFromLoop(BB); 375 } 376 OuterLoop->removeChildLoop(&L); 377 if (StillReachable) 378 StillReachable->addChildLoop(&L); 379 else 380 LI.addTopLevelLoop(&L); 381 } 382 } 383 } 384 385 /// Delete loop blocks that have become unreachable after folding. Make all 386 /// relevant updates to DT and LI. 387 void deleteDeadLoopBlocks() { 388 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 389 if (MSSAU) { 390 SmallPtrSet<BasicBlock *, 8> DeadLoopBlocksSet(DeadLoopBlocks.begin(), 391 DeadLoopBlocks.end()); 392 MSSAU->removeBlocks(DeadLoopBlocksSet); 393 } 394 for (auto *BB : DeadLoopBlocks) { 395 assert(BB != L.getHeader() && 396 "Header of the current loop cannot be dead!"); 397 LLVM_DEBUG(dbgs() << "Deleting dead loop block " << BB->getName() 398 << "\n"); 399 if (LI.isLoopHeader(BB)) { 400 assert(LI.getLoopFor(BB) != &L && "Attempt to remove current loop!"); 401 LI.erase(LI.getLoopFor(BB)); 402 } 403 LI.removeBlock(BB); 404 DeleteDeadBlock(BB, &DTU); 405 ++NumLoopBlocksDeleted; 406 } 407 } 408 409 /// Constant-fold terminators of blocks acculumated in FoldCandidates into the 410 /// unconditional branches. 411 void foldTerminators() { 412 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 413 414 for (BasicBlock *BB : FoldCandidates) { 415 assert(LI.getLoopFor(BB) == &L && "Should be a loop block!"); 416 BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(BB); 417 assert(TheOnlySucc && "Should have one live successor!"); 418 419 LLVM_DEBUG(dbgs() << "Replacing terminator of " << BB->getName() 420 << " with an unconditional branch to the block " 421 << TheOnlySucc->getName() << "\n"); 422 423 SmallPtrSet<BasicBlock *, 2> DeadSuccessors; 424 // Remove all BB's successors except for the live one. 425 unsigned TheOnlySuccDuplicates = 0; 426 for (auto *Succ : successors(BB)) 427 if (Succ != TheOnlySucc) { 428 DeadSuccessors.insert(Succ); 429 // If our successor lies in a different loop, we don't want to remove 430 // the one-input Phi because it is a LCSSA Phi. 431 bool PreserveLCSSAPhi = !L.contains(Succ); 432 Succ->removePredecessor(BB, PreserveLCSSAPhi); 433 if (MSSAU) 434 MSSAU->removeEdge(BB, Succ); 435 } else 436 ++TheOnlySuccDuplicates; 437 438 assert(TheOnlySuccDuplicates > 0 && "Should be!"); 439 // If TheOnlySucc was BB's successor more than once, after transform it 440 // will be its successor only once. Remove redundant inputs from 441 // TheOnlySucc's Phis. 442 bool PreserveLCSSAPhi = !L.contains(TheOnlySucc); 443 for (unsigned Dup = 1; Dup < TheOnlySuccDuplicates; ++Dup) 444 TheOnlySucc->removePredecessor(BB, PreserveLCSSAPhi); 445 if (MSSAU && TheOnlySuccDuplicates > 1) 446 MSSAU->removeDuplicatePhiEdgesBetween(BB, TheOnlySucc); 447 448 IRBuilder<> Builder(BB->getContext()); 449 Instruction *Term = BB->getTerminator(); 450 Builder.SetInsertPoint(Term); 451 Builder.CreateBr(TheOnlySucc); 452 Term->eraseFromParent(); 453 454 for (auto *DeadSucc : DeadSuccessors) 455 DTU.deleteEdge(BB, DeadSucc); 456 457 ++NumTerminatorsFolded; 458 } 459 } 460 461 public: 462 ConstantTerminatorFoldingImpl(Loop &L, LoopInfo &LI, DominatorTree &DT, 463 ScalarEvolution &SE, 464 MemorySSAUpdater *MSSAU) 465 : L(L), LI(LI), DT(DT), SE(SE), MSSAU(MSSAU) {} 466 bool run() { 467 assert(L.getLoopLatch() && "Should be single latch!"); 468 469 // Collect all available information about status of blocks after constant 470 // folding. 471 analyze(); 472 473 LLVM_DEBUG(dbgs() << "In function " << L.getHeader()->getParent()->getName() 474 << ": "); 475 476 if (HasIrreducibleCFG) { 477 LLVM_DEBUG(dbgs() << "Loops with irreducible CFG are not supported!\n"); 478 return false; 479 } 480 481 // Nothing to constant-fold. 482 if (FoldCandidates.empty()) { 483 LLVM_DEBUG( 484 dbgs() << "No constant terminator folding candidates found in loop " 485 << L.getHeader()->getName() << "\n"); 486 return false; 487 } 488 489 // TODO: Support deletion of the current loop. 490 if (DeleteCurrentLoop) { 491 LLVM_DEBUG( 492 dbgs() 493 << "Give up constant terminator folding in loop " 494 << L.getHeader()->getName() 495 << ": we don't currently support deletion of the current loop.\n"); 496 return false; 497 } 498 499 // TODO: Support blocks that are not dead, but also not in loop after the 500 // folding. 501 if (BlocksInLoopAfterFolding.size() + DeadLoopBlocks.size() != 502 L.getNumBlocks()) { 503 LLVM_DEBUG( 504 dbgs() << "Give up constant terminator folding in loop " 505 << L.getHeader()->getName() 506 << ": we don't currently" 507 " support blocks that are not dead, but will stop " 508 "being a part of the loop after constant-folding.\n"); 509 return false; 510 } 511 512 SE.forgetTopmostLoop(&L); 513 // Dump analysis results. 514 LLVM_DEBUG(dump()); 515 516 LLVM_DEBUG(dbgs() << "Constant-folding " << FoldCandidates.size() 517 << " terminators in loop " << L.getHeader()->getName() 518 << "\n"); 519 520 // Make the actual transforms. 521 handleDeadExits(); 522 foldTerminators(); 523 524 if (!DeadLoopBlocks.empty()) { 525 LLVM_DEBUG(dbgs() << "Deleting " << DeadLoopBlocks.size() 526 << " dead blocks in loop " << L.getHeader()->getName() 527 << "\n"); 528 deleteDeadLoopBlocks(); 529 } 530 531 #ifndef NDEBUG 532 // Make sure that we have preserved all data structures after the transform. 533 DT.verify(); 534 assert(DT.isReachableFromEntry(L.getHeader())); 535 LI.verify(DT); 536 #endif 537 538 return true; 539 } 540 }; 541 542 /// Turn branches and switches with known constant conditions into unconditional 543 /// branches. 544 static bool constantFoldTerminators(Loop &L, DominatorTree &DT, LoopInfo &LI, 545 ScalarEvolution &SE, 546 MemorySSAUpdater *MSSAU) { 547 if (!EnableTermFolding) 548 return false; 549 550 // To keep things simple, only process loops with single latch. We 551 // canonicalize most loops to this form. We can support multi-latch if needed. 552 if (!L.getLoopLatch()) 553 return false; 554 555 ConstantTerminatorFoldingImpl BranchFolder(L, LI, DT, SE, MSSAU); 556 return BranchFolder.run(); 557 } 558 559 static bool mergeBlocksIntoPredecessors(Loop &L, DominatorTree &DT, 560 LoopInfo &LI, MemorySSAUpdater *MSSAU) { 561 bool Changed = false; 562 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 563 // Copy blocks into a temporary array to avoid iterator invalidation issues 564 // as we remove them. 565 SmallVector<WeakTrackingVH, 16> Blocks(L.blocks()); 566 567 for (auto &Block : Blocks) { 568 // Attempt to merge blocks in the trivial case. Don't modify blocks which 569 // belong to other loops. 570 BasicBlock *Succ = cast_or_null<BasicBlock>(Block); 571 if (!Succ) 572 continue; 573 574 BasicBlock *Pred = Succ->getSinglePredecessor(); 575 if (!Pred || !Pred->getSingleSuccessor() || LI.getLoopFor(Pred) != &L) 576 continue; 577 578 // Merge Succ into Pred and delete it. 579 MergeBlockIntoPredecessor(Succ, &DTU, &LI, MSSAU); 580 581 Changed = true; 582 } 583 584 return Changed; 585 } 586 587 static bool simplifyLoopCFG(Loop &L, DominatorTree &DT, LoopInfo &LI, 588 ScalarEvolution &SE, MemorySSAUpdater *MSSAU) { 589 bool Changed = false; 590 591 // Constant-fold terminators with known constant conditions. 592 Changed |= constantFoldTerminators(L, DT, LI, SE, MSSAU); 593 594 // Eliminate unconditional branches by merging blocks into their predecessors. 595 Changed |= mergeBlocksIntoPredecessors(L, DT, LI, MSSAU); 596 597 if (Changed) 598 SE.forgetTopmostLoop(&L); 599 600 return Changed; 601 } 602 603 PreservedAnalyses LoopSimplifyCFGPass::run(Loop &L, LoopAnalysisManager &AM, 604 LoopStandardAnalysisResults &AR, 605 LPMUpdater &) { 606 Optional<MemorySSAUpdater> MSSAU; 607 if (EnableMSSALoopDependency && AR.MSSA) 608 MSSAU = MemorySSAUpdater(AR.MSSA); 609 if (!simplifyLoopCFG(L, AR.DT, AR.LI, AR.SE, 610 MSSAU.hasValue() ? MSSAU.getPointer() : nullptr)) 611 return PreservedAnalyses::all(); 612 613 return getLoopPassPreservedAnalyses(); 614 } 615 616 namespace { 617 class LoopSimplifyCFGLegacyPass : public LoopPass { 618 public: 619 static char ID; // Pass ID, replacement for typeid 620 LoopSimplifyCFGLegacyPass() : LoopPass(ID) { 621 initializeLoopSimplifyCFGLegacyPassPass(*PassRegistry::getPassRegistry()); 622 } 623 624 bool runOnLoop(Loop *L, LPPassManager &) override { 625 if (skipLoop(L)) 626 return false; 627 628 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 629 LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 630 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 631 Optional<MemorySSAUpdater> MSSAU; 632 if (EnableMSSALoopDependency) { 633 MemorySSA *MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA(); 634 MSSAU = MemorySSAUpdater(MSSA); 635 if (VerifyMemorySSA) 636 MSSA->verifyMemorySSA(); 637 } 638 return simplifyLoopCFG(*L, DT, LI, SE, 639 MSSAU.hasValue() ? MSSAU.getPointer() : nullptr); 640 } 641 642 void getAnalysisUsage(AnalysisUsage &AU) const override { 643 if (EnableMSSALoopDependency) { 644 AU.addRequired<MemorySSAWrapperPass>(); 645 AU.addPreserved<MemorySSAWrapperPass>(); 646 } 647 AU.addPreserved<DependenceAnalysisWrapperPass>(); 648 getLoopAnalysisUsage(AU); 649 } 650 }; 651 } 652 653 char LoopSimplifyCFGLegacyPass::ID = 0; 654 INITIALIZE_PASS_BEGIN(LoopSimplifyCFGLegacyPass, "loop-simplifycfg", 655 "Simplify loop CFG", false, false) 656 INITIALIZE_PASS_DEPENDENCY(LoopPass) 657 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 658 INITIALIZE_PASS_END(LoopSimplifyCFGLegacyPass, "loop-simplifycfg", 659 "Simplify loop CFG", false, false) 660 661 Pass *llvm::createLoopSimplifyCFGPass() { 662 return new LoopSimplifyCFGLegacyPass(); 663 } 664