1 //===--------- LoopSimplifyCFG.cpp - Loop CFG Simplification Pass ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Loop SimplifyCFG Pass. This pass is responsible for 10 // basic loop CFG cleanup, primarily to assist other loop passes. If you 11 // encounter a noncanonical CFG construct that causes another loop pass to 12 // perform suboptimally, this is the place to fix it up. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/Scalar/LoopSimplifyCFG.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/AssumptionCache.h" 21 #include "llvm/Analysis/BasicAliasAnalysis.h" 22 #include "llvm/Analysis/DependenceAnalysis.h" 23 #include "llvm/Analysis/GlobalsModRef.h" 24 #include "llvm/Analysis/LoopInfo.h" 25 #include "llvm/Analysis/LoopPass.h" 26 #include "llvm/Analysis/MemorySSA.h" 27 #include "llvm/Analysis/MemorySSAUpdater.h" 28 #include "llvm/Analysis/ScalarEvolution.h" 29 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 30 #include "llvm/Analysis/TargetTransformInfo.h" 31 #include "llvm/IR/DomTreeUpdater.h" 32 #include "llvm/IR/Dominators.h" 33 #include "llvm/Transforms/Scalar.h" 34 #include "llvm/Transforms/Scalar/LoopPassManager.h" 35 #include "llvm/Transforms/Utils.h" 36 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 37 #include "llvm/Transforms/Utils/Local.h" 38 #include "llvm/Transforms/Utils/LoopUtils.h" 39 using namespace llvm; 40 41 #define DEBUG_TYPE "loop-simplifycfg" 42 43 static cl::opt<bool> EnableTermFolding("enable-loop-simplifycfg-term-folding", 44 cl::init(false)); 45 46 STATISTIC(NumTerminatorsFolded, 47 "Number of terminators folded to unconditional branches"); 48 STATISTIC(NumLoopBlocksDeleted, 49 "Number of loop blocks deleted"); 50 STATISTIC(NumLoopExitsDeleted, 51 "Number of loop exiting edges deleted"); 52 53 /// If \p BB is a switch or a conditional branch, but only one of its successors 54 /// can be reached from this block in runtime, return this successor. Otherwise, 55 /// return nullptr. 56 static BasicBlock *getOnlyLiveSuccessor(BasicBlock *BB) { 57 Instruction *TI = BB->getTerminator(); 58 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 59 if (BI->isUnconditional()) 60 return nullptr; 61 if (BI->getSuccessor(0) == BI->getSuccessor(1)) 62 return BI->getSuccessor(0); 63 ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition()); 64 if (!Cond) 65 return nullptr; 66 return Cond->isZero() ? BI->getSuccessor(1) : BI->getSuccessor(0); 67 } 68 69 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 70 auto *CI = dyn_cast<ConstantInt>(SI->getCondition()); 71 if (!CI) 72 return nullptr; 73 for (auto Case : SI->cases()) 74 if (Case.getCaseValue() == CI) 75 return Case.getCaseSuccessor(); 76 return SI->getDefaultDest(); 77 } 78 79 return nullptr; 80 } 81 82 namespace { 83 /// Helper class that can turn branches and switches with constant conditions 84 /// into unconditional branches. 85 class ConstantTerminatorFoldingImpl { 86 private: 87 Loop &L; 88 LoopInfo &LI; 89 DominatorTree &DT; 90 ScalarEvolution &SE; 91 MemorySSAUpdater *MSSAU; 92 93 // Whether or not the current loop has irreducible CFG. 94 bool HasIrreducibleCFG = false; 95 // Whether or not the current loop will still exist after terminator constant 96 // folding will be done. In theory, there are two ways how it can happen: 97 // 1. Loop's latch(es) become unreachable from loop header; 98 // 2. Loop's header becomes unreachable from method entry. 99 // In practice, the second situation is impossible because we only modify the 100 // current loop and its preheader and do not affect preheader's reachibility 101 // from any other block. So this variable set to true means that loop's latch 102 // has become unreachable from loop header. 103 bool DeleteCurrentLoop = false; 104 105 // The blocks of the original loop that will still be reachable from entry 106 // after the constant folding. 107 SmallPtrSet<BasicBlock *, 8> LiveLoopBlocks; 108 // The blocks of the original loop that will become unreachable from entry 109 // after the constant folding. 110 SmallVector<BasicBlock *, 8> DeadLoopBlocks; 111 // The exits of the original loop that will still be reachable from entry 112 // after the constant folding. 113 SmallPtrSet<BasicBlock *, 8> LiveExitBlocks; 114 // The exits of the original loop that will become unreachable from entry 115 // after the constant folding. 116 SmallVector<BasicBlock *, 8> DeadExitBlocks; 117 // The blocks that will still be a part of the current loop after folding. 118 SmallPtrSet<BasicBlock *, 8> BlocksInLoopAfterFolding; 119 // The blocks that have terminators with constant condition that can be 120 // folded. Note: fold candidates should be in L but not in any of its 121 // subloops to avoid complex LI updates. 122 SmallVector<BasicBlock *, 8> FoldCandidates; 123 124 void dump() const { 125 dbgs() << "Constant terminator folding for loop " << L << "\n"; 126 dbgs() << "After terminator constant-folding, the loop will"; 127 if (!DeleteCurrentLoop) 128 dbgs() << " not"; 129 dbgs() << " be destroyed\n"; 130 auto PrintOutVector = [&](const char *Message, 131 const SmallVectorImpl<BasicBlock *> &S) { 132 dbgs() << Message << "\n"; 133 for (const BasicBlock *BB : S) 134 dbgs() << "\t" << BB->getName() << "\n"; 135 }; 136 auto PrintOutSet = [&](const char *Message, 137 const SmallPtrSetImpl<BasicBlock *> &S) { 138 dbgs() << Message << "\n"; 139 for (const BasicBlock *BB : S) 140 dbgs() << "\t" << BB->getName() << "\n"; 141 }; 142 PrintOutVector("Blocks in which we can constant-fold terminator:", 143 FoldCandidates); 144 PrintOutSet("Live blocks from the original loop:", LiveLoopBlocks); 145 PrintOutVector("Dead blocks from the original loop:", DeadLoopBlocks); 146 PrintOutSet("Live exit blocks:", LiveExitBlocks); 147 PrintOutVector("Dead exit blocks:", DeadExitBlocks); 148 if (!DeleteCurrentLoop) 149 PrintOutSet("The following blocks will still be part of the loop:", 150 BlocksInLoopAfterFolding); 151 } 152 153 /// Whether or not the current loop has irreducible CFG. 154 bool hasIrreducibleCFG(LoopBlocksDFS &DFS) { 155 assert(DFS.isComplete() && "DFS is expected to be finished"); 156 // Index of a basic block in RPO traversal. 157 DenseMap<const BasicBlock *, unsigned> RPO; 158 unsigned Current = 0; 159 for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) 160 RPO[*I] = Current++; 161 162 for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) { 163 BasicBlock *BB = *I; 164 for (auto *Succ : successors(BB)) 165 if (L.contains(Succ) && !LI.isLoopHeader(Succ) && RPO[BB] > RPO[Succ]) 166 // If an edge goes from a block with greater order number into a block 167 // with lesses number, and it is not a loop backedge, then it can only 168 // be a part of irreducible non-loop cycle. 169 return true; 170 } 171 return false; 172 } 173 174 /// Fill all information about status of blocks and exits of the current loop 175 /// if constant folding of all branches will be done. 176 void analyze() { 177 LoopBlocksDFS DFS(&L); 178 DFS.perform(&LI); 179 assert(DFS.isComplete() && "DFS is expected to be finished"); 180 181 // TODO: The algorithm below relies on both RPO and Postorder traversals. 182 // When the loop has only reducible CFG inside, then the invariant "all 183 // predecessors of X are processed before X in RPO" is preserved. However 184 // an irreducible loop can break this invariant (e.g. latch does not have to 185 // be the last block in the traversal in this case, and the algorithm relies 186 // on this). We can later decide to support such cases by altering the 187 // algorithms, but so far we just give up analyzing them. 188 if (hasIrreducibleCFG(DFS)) { 189 HasIrreducibleCFG = true; 190 return; 191 } 192 193 // Collect live and dead loop blocks and exits. 194 LiveLoopBlocks.insert(L.getHeader()); 195 for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) { 196 BasicBlock *BB = *I; 197 198 // If a loop block wasn't marked as live so far, then it's dead. 199 if (!LiveLoopBlocks.count(BB)) { 200 DeadLoopBlocks.push_back(BB); 201 continue; 202 } 203 204 BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(BB); 205 206 // If a block has only one live successor, it's a candidate on constant 207 // folding. Only handle blocks from current loop: branches in child loops 208 // are skipped because if they can be folded, they should be folded during 209 // the processing of child loops. 210 if (TheOnlySucc && LI.getLoopFor(BB) == &L) 211 FoldCandidates.push_back(BB); 212 213 // Handle successors. 214 for (BasicBlock *Succ : successors(BB)) 215 if (!TheOnlySucc || TheOnlySucc == Succ) { 216 if (L.contains(Succ)) 217 LiveLoopBlocks.insert(Succ); 218 else 219 LiveExitBlocks.insert(Succ); 220 } 221 } 222 223 // Sanity check: amount of dead and live loop blocks should match the total 224 // number of blocks in loop. 225 assert(L.getNumBlocks() == LiveLoopBlocks.size() + DeadLoopBlocks.size() && 226 "Malformed block sets?"); 227 228 // Now, all exit blocks that are not marked as live are dead. 229 SmallVector<BasicBlock *, 8> ExitBlocks; 230 L.getExitBlocks(ExitBlocks); 231 for (auto *ExitBlock : ExitBlocks) 232 if (!LiveExitBlocks.count(ExitBlock)) 233 DeadExitBlocks.push_back(ExitBlock); 234 235 // Whether or not the edge From->To will still be present in graph after the 236 // folding. 237 auto IsEdgeLive = [&](BasicBlock *From, BasicBlock *To) { 238 if (!LiveLoopBlocks.count(From)) 239 return false; 240 BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(From); 241 return !TheOnlySucc || TheOnlySucc == To; 242 }; 243 244 // The loop will not be destroyed if its latch is live. 245 DeleteCurrentLoop = !IsEdgeLive(L.getLoopLatch(), L.getHeader()); 246 247 // If we are going to delete the current loop completely, no extra analysis 248 // is needed. 249 if (DeleteCurrentLoop) 250 return; 251 252 // Otherwise, we should check which blocks will still be a part of the 253 // current loop after the transform. 254 BlocksInLoopAfterFolding.insert(L.getLoopLatch()); 255 // If the loop is live, then we should compute what blocks are still in 256 // loop after all branch folding has been done. A block is in loop if 257 // it has a live edge to another block that is in the loop; by definition, 258 // latch is in the loop. 259 auto BlockIsInLoop = [&](BasicBlock *BB) { 260 return any_of(successors(BB), [&](BasicBlock *Succ) { 261 return BlocksInLoopAfterFolding.count(Succ) && IsEdgeLive(BB, Succ); 262 }); 263 }; 264 for (auto I = DFS.beginPostorder(), E = DFS.endPostorder(); I != E; ++I) { 265 BasicBlock *BB = *I; 266 if (BlockIsInLoop(BB)) 267 BlocksInLoopAfterFolding.insert(BB); 268 } 269 270 // Sanity check: header must be in loop. 271 assert(BlocksInLoopAfterFolding.count(L.getHeader()) && 272 "Header not in loop?"); 273 assert(BlocksInLoopAfterFolding.size() <= LiveLoopBlocks.size() && 274 "All blocks that stay in loop should be live!"); 275 } 276 277 /// We need to preserve static reachibility of all loop exit blocks (this is) 278 /// required by loop pass manager. In order to do it, we make the following 279 /// trick: 280 /// 281 /// preheader: 282 /// <preheader code> 283 /// br label %loop_header 284 /// 285 /// loop_header: 286 /// ... 287 /// br i1 false, label %dead_exit, label %loop_block 288 /// ... 289 /// 290 /// We cannot simply remove edge from the loop to dead exit because in this 291 /// case dead_exit (and its successors) may become unreachable. To avoid that, 292 /// we insert the following fictive preheader: 293 /// 294 /// preheader: 295 /// <preheader code> 296 /// switch i32 0, label %preheader-split, 297 /// [i32 1, label %dead_exit_1], 298 /// [i32 2, label %dead_exit_2], 299 /// ... 300 /// [i32 N, label %dead_exit_N], 301 /// 302 /// preheader-split: 303 /// br label %loop_header 304 /// 305 /// loop_header: 306 /// ... 307 /// br i1 false, label %dead_exit_N, label %loop_block 308 /// ... 309 /// 310 /// Doing so, we preserve static reachibility of all dead exits and can later 311 /// remove edges from the loop to these blocks. 312 void handleDeadExits() { 313 // If no dead exits, nothing to do. 314 if (DeadExitBlocks.empty()) 315 return; 316 317 // Construct split preheader and the dummy switch to thread edges from it to 318 // dead exits. 319 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 320 BasicBlock *Preheader = L.getLoopPreheader(); 321 BasicBlock *NewPreheader = Preheader->splitBasicBlock( 322 Preheader->getTerminator(), 323 Twine(Preheader->getName()).concat("-split")); 324 DTU.deleteEdge(Preheader, L.getHeader()); 325 DTU.insertEdge(NewPreheader, L.getHeader()); 326 DTU.insertEdge(Preheader, NewPreheader); 327 IRBuilder<> Builder(Preheader->getTerminator()); 328 SwitchInst *DummySwitch = 329 Builder.CreateSwitch(Builder.getInt32(0), NewPreheader); 330 Preheader->getTerminator()->eraseFromParent(); 331 332 unsigned DummyIdx = 1; 333 for (BasicBlock *BB : DeadExitBlocks) { 334 SmallVector<Instruction *, 4> DeadPhis; 335 for (auto &PN : BB->phis()) 336 DeadPhis.push_back(&PN); 337 338 // Eliminate all Phis from dead exits. 339 for (Instruction *PN : DeadPhis) { 340 PN->replaceAllUsesWith(UndefValue::get(PN->getType())); 341 PN->eraseFromParent(); 342 } 343 assert(DummyIdx != 0 && "Too many dead exits!"); 344 DummySwitch->addCase(Builder.getInt32(DummyIdx++), BB); 345 DTU.insertEdge(Preheader, BB); 346 ++NumLoopExitsDeleted; 347 } 348 349 assert(L.getLoopPreheader() == NewPreheader && "Malformed CFG?"); 350 if (Loop *OuterLoop = LI.getLoopFor(Preheader)) { 351 OuterLoop->addBasicBlockToLoop(NewPreheader, LI); 352 353 // When we break dead edges, the outer loop may become unreachable from 354 // the current loop. We need to fix loop info accordingly. For this, we 355 // find the most nested loop that still contains L and remove L from all 356 // loops that are inside of it. 357 Loop *StillReachable = nullptr; 358 for (BasicBlock *BB : LiveExitBlocks) { 359 Loop *BBL = LI.getLoopFor(BB); 360 if (BBL && BBL->contains(L.getHeader())) 361 if (!StillReachable || 362 BBL->getLoopDepth() > StillReachable->getLoopDepth()) 363 StillReachable = BBL; 364 } 365 366 // Okay, our loop is no longer in the outer loop (and maybe not in some of 367 // its parents as well). Make the fixup. 368 if (StillReachable != OuterLoop) { 369 LI.changeLoopFor(NewPreheader, StillReachable); 370 for (Loop *NotContaining = OuterLoop; NotContaining != StillReachable; 371 NotContaining = NotContaining->getParentLoop()) { 372 NotContaining->removeBlockFromLoop(NewPreheader); 373 for (auto *BB : L.blocks()) 374 NotContaining->removeBlockFromLoop(BB); 375 } 376 OuterLoop->removeChildLoop(&L); 377 if (StillReachable) 378 StillReachable->addChildLoop(&L); 379 else 380 LI.addTopLevelLoop(&L); 381 382 // Some values from loops in [OuterLoop, StillReachable) could be used 383 // in the current loop. Now it is not their child anymore, so such uses 384 // require LCSSA Phis. 385 Loop *FixLCSSALoop = OuterLoop; 386 while (FixLCSSALoop->getParentLoop() != StillReachable) 387 FixLCSSALoop = FixLCSSALoop->getParentLoop(); 388 assert(FixLCSSALoop && "Should be a loop!"); 389 formLCSSARecursively(*FixLCSSALoop, DT, &LI, &SE); 390 } 391 } 392 } 393 394 /// Delete loop blocks that have become unreachable after folding. Make all 395 /// relevant updates to DT and LI. 396 void deleteDeadLoopBlocks() { 397 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 398 if (MSSAU) { 399 SmallPtrSet<BasicBlock *, 8> DeadLoopBlocksSet(DeadLoopBlocks.begin(), 400 DeadLoopBlocks.end()); 401 MSSAU->removeBlocks(DeadLoopBlocksSet); 402 } 403 for (auto *BB : DeadLoopBlocks) { 404 assert(BB != L.getHeader() && 405 "Header of the current loop cannot be dead!"); 406 LLVM_DEBUG(dbgs() << "Deleting dead loop block " << BB->getName() 407 << "\n"); 408 if (LI.isLoopHeader(BB)) { 409 assert(LI.getLoopFor(BB) != &L && "Attempt to remove current loop!"); 410 LI.erase(LI.getLoopFor(BB)); 411 } 412 LI.removeBlock(BB); 413 } 414 415 DeleteDeadBlocks(DeadLoopBlocks, &DTU); 416 NumLoopBlocksDeleted += DeadLoopBlocks.size(); 417 } 418 419 /// Constant-fold terminators of blocks acculumated in FoldCandidates into the 420 /// unconditional branches. 421 void foldTerminators() { 422 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 423 424 for (BasicBlock *BB : FoldCandidates) { 425 assert(LI.getLoopFor(BB) == &L && "Should be a loop block!"); 426 BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(BB); 427 assert(TheOnlySucc && "Should have one live successor!"); 428 429 LLVM_DEBUG(dbgs() << "Replacing terminator of " << BB->getName() 430 << " with an unconditional branch to the block " 431 << TheOnlySucc->getName() << "\n"); 432 433 SmallPtrSet<BasicBlock *, 2> DeadSuccessors; 434 // Remove all BB's successors except for the live one. 435 unsigned TheOnlySuccDuplicates = 0; 436 for (auto *Succ : successors(BB)) 437 if (Succ != TheOnlySucc) { 438 DeadSuccessors.insert(Succ); 439 // If our successor lies in a different loop, we don't want to remove 440 // the one-input Phi because it is a LCSSA Phi. 441 bool PreserveLCSSAPhi = !L.contains(Succ); 442 Succ->removePredecessor(BB, PreserveLCSSAPhi); 443 if (MSSAU) 444 MSSAU->removeEdge(BB, Succ); 445 } else 446 ++TheOnlySuccDuplicates; 447 448 assert(TheOnlySuccDuplicates > 0 && "Should be!"); 449 // If TheOnlySucc was BB's successor more than once, after transform it 450 // will be its successor only once. Remove redundant inputs from 451 // TheOnlySucc's Phis. 452 bool PreserveLCSSAPhi = !L.contains(TheOnlySucc); 453 for (unsigned Dup = 1; Dup < TheOnlySuccDuplicates; ++Dup) 454 TheOnlySucc->removePredecessor(BB, PreserveLCSSAPhi); 455 if (MSSAU && TheOnlySuccDuplicates > 1) 456 MSSAU->removeDuplicatePhiEdgesBetween(BB, TheOnlySucc); 457 458 IRBuilder<> Builder(BB->getContext()); 459 Instruction *Term = BB->getTerminator(); 460 Builder.SetInsertPoint(Term); 461 Builder.CreateBr(TheOnlySucc); 462 Term->eraseFromParent(); 463 464 for (auto *DeadSucc : DeadSuccessors) 465 DTU.deleteEdge(BB, DeadSucc); 466 467 ++NumTerminatorsFolded; 468 } 469 } 470 471 public: 472 ConstantTerminatorFoldingImpl(Loop &L, LoopInfo &LI, DominatorTree &DT, 473 ScalarEvolution &SE, 474 MemorySSAUpdater *MSSAU) 475 : L(L), LI(LI), DT(DT), SE(SE), MSSAU(MSSAU) {} 476 bool run() { 477 assert(L.getLoopLatch() && "Should be single latch!"); 478 479 // Collect all available information about status of blocks after constant 480 // folding. 481 analyze(); 482 483 LLVM_DEBUG(dbgs() << "In function " << L.getHeader()->getParent()->getName() 484 << ": "); 485 486 if (HasIrreducibleCFG) { 487 LLVM_DEBUG(dbgs() << "Loops with irreducible CFG are not supported!\n"); 488 return false; 489 } 490 491 // Nothing to constant-fold. 492 if (FoldCandidates.empty()) { 493 LLVM_DEBUG( 494 dbgs() << "No constant terminator folding candidates found in loop " 495 << L.getHeader()->getName() << "\n"); 496 return false; 497 } 498 499 // TODO: Support deletion of the current loop. 500 if (DeleteCurrentLoop) { 501 LLVM_DEBUG( 502 dbgs() 503 << "Give up constant terminator folding in loop " 504 << L.getHeader()->getName() 505 << ": we don't currently support deletion of the current loop.\n"); 506 return false; 507 } 508 509 // TODO: Support blocks that are not dead, but also not in loop after the 510 // folding. 511 if (BlocksInLoopAfterFolding.size() + DeadLoopBlocks.size() != 512 L.getNumBlocks()) { 513 LLVM_DEBUG( 514 dbgs() << "Give up constant terminator folding in loop " 515 << L.getHeader()->getName() 516 << ": we don't currently" 517 " support blocks that are not dead, but will stop " 518 "being a part of the loop after constant-folding.\n"); 519 return false; 520 } 521 522 SE.forgetTopmostLoop(&L); 523 // Dump analysis results. 524 LLVM_DEBUG(dump()); 525 526 LLVM_DEBUG(dbgs() << "Constant-folding " << FoldCandidates.size() 527 << " terminators in loop " << L.getHeader()->getName() 528 << "\n"); 529 530 // Make the actual transforms. 531 handleDeadExits(); 532 foldTerminators(); 533 534 if (!DeadLoopBlocks.empty()) { 535 LLVM_DEBUG(dbgs() << "Deleting " << DeadLoopBlocks.size() 536 << " dead blocks in loop " << L.getHeader()->getName() 537 << "\n"); 538 deleteDeadLoopBlocks(); 539 } 540 541 #ifndef NDEBUG 542 // Make sure that we have preserved all data structures after the transform. 543 DT.verify(); 544 assert(DT.isReachableFromEntry(L.getHeader())); 545 LI.verify(DT); 546 #endif 547 548 return true; 549 } 550 }; 551 } // namespace 552 553 /// Turn branches and switches with known constant conditions into unconditional 554 /// branches. 555 static bool constantFoldTerminators(Loop &L, DominatorTree &DT, LoopInfo &LI, 556 ScalarEvolution &SE, 557 MemorySSAUpdater *MSSAU) { 558 if (!EnableTermFolding) 559 return false; 560 561 // To keep things simple, only process loops with single latch. We 562 // canonicalize most loops to this form. We can support multi-latch if needed. 563 if (!L.getLoopLatch()) 564 return false; 565 566 ConstantTerminatorFoldingImpl BranchFolder(L, LI, DT, SE, MSSAU); 567 return BranchFolder.run(); 568 } 569 570 static bool mergeBlocksIntoPredecessors(Loop &L, DominatorTree &DT, 571 LoopInfo &LI, MemorySSAUpdater *MSSAU) { 572 bool Changed = false; 573 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 574 // Copy blocks into a temporary array to avoid iterator invalidation issues 575 // as we remove them. 576 SmallVector<WeakTrackingVH, 16> Blocks(L.blocks()); 577 578 for (auto &Block : Blocks) { 579 // Attempt to merge blocks in the trivial case. Don't modify blocks which 580 // belong to other loops. 581 BasicBlock *Succ = cast_or_null<BasicBlock>(Block); 582 if (!Succ) 583 continue; 584 585 BasicBlock *Pred = Succ->getSinglePredecessor(); 586 if (!Pred || !Pred->getSingleSuccessor() || LI.getLoopFor(Pred) != &L) 587 continue; 588 589 // Merge Succ into Pred and delete it. 590 MergeBlockIntoPredecessor(Succ, &DTU, &LI, MSSAU); 591 592 Changed = true; 593 } 594 595 return Changed; 596 } 597 598 static bool simplifyLoopCFG(Loop &L, DominatorTree &DT, LoopInfo &LI, 599 ScalarEvolution &SE, MemorySSAUpdater *MSSAU) { 600 bool Changed = false; 601 602 // Constant-fold terminators with known constant conditions. 603 Changed |= constantFoldTerminators(L, DT, LI, SE, MSSAU); 604 605 // Eliminate unconditional branches by merging blocks into their predecessors. 606 Changed |= mergeBlocksIntoPredecessors(L, DT, LI, MSSAU); 607 608 if (Changed) 609 SE.forgetTopmostLoop(&L); 610 611 return Changed; 612 } 613 614 PreservedAnalyses LoopSimplifyCFGPass::run(Loop &L, LoopAnalysisManager &AM, 615 LoopStandardAnalysisResults &AR, 616 LPMUpdater &) { 617 Optional<MemorySSAUpdater> MSSAU; 618 if (EnableMSSALoopDependency && AR.MSSA) 619 MSSAU = MemorySSAUpdater(AR.MSSA); 620 if (!simplifyLoopCFG(L, AR.DT, AR.LI, AR.SE, 621 MSSAU.hasValue() ? MSSAU.getPointer() : nullptr)) 622 return PreservedAnalyses::all(); 623 624 return getLoopPassPreservedAnalyses(); 625 } 626 627 namespace { 628 class LoopSimplifyCFGLegacyPass : public LoopPass { 629 public: 630 static char ID; // Pass ID, replacement for typeid 631 LoopSimplifyCFGLegacyPass() : LoopPass(ID) { 632 initializeLoopSimplifyCFGLegacyPassPass(*PassRegistry::getPassRegistry()); 633 } 634 635 bool runOnLoop(Loop *L, LPPassManager &) override { 636 if (skipLoop(L)) 637 return false; 638 639 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 640 LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 641 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 642 Optional<MemorySSAUpdater> MSSAU; 643 if (EnableMSSALoopDependency) { 644 MemorySSA *MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA(); 645 MSSAU = MemorySSAUpdater(MSSA); 646 if (VerifyMemorySSA) 647 MSSA->verifyMemorySSA(); 648 } 649 return simplifyLoopCFG(*L, DT, LI, SE, 650 MSSAU.hasValue() ? MSSAU.getPointer() : nullptr); 651 } 652 653 void getAnalysisUsage(AnalysisUsage &AU) const override { 654 if (EnableMSSALoopDependency) { 655 AU.addRequired<MemorySSAWrapperPass>(); 656 AU.addPreserved<MemorySSAWrapperPass>(); 657 } 658 AU.addPreserved<DependenceAnalysisWrapperPass>(); 659 getLoopAnalysisUsage(AU); 660 } 661 }; 662 } 663 664 char LoopSimplifyCFGLegacyPass::ID = 0; 665 INITIALIZE_PASS_BEGIN(LoopSimplifyCFGLegacyPass, "loop-simplifycfg", 666 "Simplify loop CFG", false, false) 667 INITIALIZE_PASS_DEPENDENCY(LoopPass) 668 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 669 INITIALIZE_PASS_END(LoopSimplifyCFGLegacyPass, "loop-simplifycfg", 670 "Simplify loop CFG", false, false) 671 672 Pass *llvm::createLoopSimplifyCFGPass() { 673 return new LoopSimplifyCFGLegacyPass(); 674 } 675