1 //===--------- LoopSimplifyCFG.cpp - Loop CFG Simplification Pass ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Loop SimplifyCFG Pass. This pass is responsible for
10 // basic loop CFG cleanup, primarily to assist other loop passes. If you
11 // encounter a noncanonical CFG construct that causes another loop pass to
12 // perform suboptimally, this is the place to fix it up.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Transforms/Scalar/LoopSimplifyCFG.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/AliasAnalysis.h"
20 #include "llvm/Analysis/AssumptionCache.h"
21 #include "llvm/Analysis/BasicAliasAnalysis.h"
22 #include "llvm/Analysis/DependenceAnalysis.h"
23 #include "llvm/Analysis/GlobalsModRef.h"
24 #include "llvm/Analysis/LoopInfo.h"
25 #include "llvm/Analysis/LoopPass.h"
26 #include "llvm/Analysis/MemorySSA.h"
27 #include "llvm/Analysis/MemorySSAUpdater.h"
28 #include "llvm/Analysis/ScalarEvolution.h"
29 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
30 #include "llvm/Analysis/TargetTransformInfo.h"
31 #include "llvm/IR/DomTreeUpdater.h"
32 #include "llvm/IR/Dominators.h"
33 #include "llvm/Transforms/Scalar.h"
34 #include "llvm/Transforms/Scalar/LoopPassManager.h"
35 #include "llvm/Transforms/Utils.h"
36 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
37 #include "llvm/Transforms/Utils/Local.h"
38 #include "llvm/Transforms/Utils/LoopUtils.h"
39 using namespace llvm;
40 
41 #define DEBUG_TYPE "loop-simplifycfg"
42 
43 static cl::opt<bool> EnableTermFolding("enable-loop-simplifycfg-term-folding",
44                                        cl::init(false));
45 
46 STATISTIC(NumTerminatorsFolded,
47           "Number of terminators folded to unconditional branches");
48 STATISTIC(NumLoopBlocksDeleted,
49           "Number of loop blocks deleted");
50 STATISTIC(NumLoopExitsDeleted,
51           "Number of loop exiting edges deleted");
52 
53 /// If \p BB is a switch or a conditional branch, but only one of its successors
54 /// can be reached from this block in runtime, return this successor. Otherwise,
55 /// return nullptr.
56 static BasicBlock *getOnlyLiveSuccessor(BasicBlock *BB) {
57   Instruction *TI = BB->getTerminator();
58   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
59     if (BI->isUnconditional())
60       return nullptr;
61     if (BI->getSuccessor(0) == BI->getSuccessor(1))
62       return BI->getSuccessor(0);
63     ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
64     if (!Cond)
65       return nullptr;
66     return Cond->isZero() ? BI->getSuccessor(1) : BI->getSuccessor(0);
67   }
68 
69   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
70     auto *CI = dyn_cast<ConstantInt>(SI->getCondition());
71     if (!CI)
72       return nullptr;
73     for (auto Case : SI->cases())
74       if (Case.getCaseValue() == CI)
75         return Case.getCaseSuccessor();
76     return SI->getDefaultDest();
77   }
78 
79   return nullptr;
80 }
81 
82 namespace {
83 /// Helper class that can turn branches and switches with constant conditions
84 /// into unconditional branches.
85 class ConstantTerminatorFoldingImpl {
86 private:
87   Loop &L;
88   LoopInfo &LI;
89   DominatorTree &DT;
90   ScalarEvolution &SE;
91   MemorySSAUpdater *MSSAU;
92 
93   // Whether or not the current loop has irreducible CFG.
94   bool HasIrreducibleCFG = false;
95   // Whether or not the current loop will still exist after terminator constant
96   // folding will be done. In theory, there are two ways how it can happen:
97   // 1. Loop's latch(es) become unreachable from loop header;
98   // 2. Loop's header becomes unreachable from method entry.
99   // In practice, the second situation is impossible because we only modify the
100   // current loop and its preheader and do not affect preheader's reachibility
101   // from any other block. So this variable set to true means that loop's latch
102   // has become unreachable from loop header.
103   bool DeleteCurrentLoop = false;
104 
105   // The blocks of the original loop that will still be reachable from entry
106   // after the constant folding.
107   SmallPtrSet<BasicBlock *, 8> LiveLoopBlocks;
108   // The blocks of the original loop that will become unreachable from entry
109   // after the constant folding.
110   SmallVector<BasicBlock *, 8> DeadLoopBlocks;
111   // The exits of the original loop that will still be reachable from entry
112   // after the constant folding.
113   SmallPtrSet<BasicBlock *, 8> LiveExitBlocks;
114   // The exits of the original loop that will become unreachable from entry
115   // after the constant folding.
116   SmallVector<BasicBlock *, 8> DeadExitBlocks;
117   // The blocks that will still be a part of the current loop after folding.
118   SmallPtrSet<BasicBlock *, 8> BlocksInLoopAfterFolding;
119   // The blocks that have terminators with constant condition that can be
120   // folded. Note: fold candidates should be in L but not in any of its
121   // subloops to avoid complex LI updates.
122   SmallVector<BasicBlock *, 8> FoldCandidates;
123 
124   void dump() const {
125     dbgs() << "Constant terminator folding for loop " << L << "\n";
126     dbgs() << "After terminator constant-folding, the loop will";
127     if (!DeleteCurrentLoop)
128       dbgs() << " not";
129     dbgs() << " be destroyed\n";
130     auto PrintOutVector = [&](const char *Message,
131                            const SmallVectorImpl<BasicBlock *> &S) {
132       dbgs() << Message << "\n";
133       for (const BasicBlock *BB : S)
134         dbgs() << "\t" << BB->getName() << "\n";
135     };
136     auto PrintOutSet = [&](const char *Message,
137                            const SmallPtrSetImpl<BasicBlock *> &S) {
138       dbgs() << Message << "\n";
139       for (const BasicBlock *BB : S)
140         dbgs() << "\t" << BB->getName() << "\n";
141     };
142     PrintOutVector("Blocks in which we can constant-fold terminator:",
143                    FoldCandidates);
144     PrintOutSet("Live blocks from the original loop:", LiveLoopBlocks);
145     PrintOutVector("Dead blocks from the original loop:", DeadLoopBlocks);
146     PrintOutSet("Live exit blocks:", LiveExitBlocks);
147     PrintOutVector("Dead exit blocks:", DeadExitBlocks);
148     if (!DeleteCurrentLoop)
149       PrintOutSet("The following blocks will still be part of the loop:",
150                   BlocksInLoopAfterFolding);
151   }
152 
153   /// Whether or not the current loop has irreducible CFG.
154   bool hasIrreducibleCFG(LoopBlocksDFS &DFS) {
155     assert(DFS.isComplete() && "DFS is expected to be finished");
156     // Index of a basic block in RPO traversal.
157     DenseMap<const BasicBlock *, unsigned> RPO;
158     unsigned Current = 0;
159     for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I)
160       RPO[*I] = Current++;
161 
162     for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) {
163       BasicBlock *BB = *I;
164       for (auto *Succ : successors(BB))
165         if (L.contains(Succ) && !LI.isLoopHeader(Succ) && RPO[BB] > RPO[Succ])
166           // If an edge goes from a block with greater order number into a block
167           // with lesses number, and it is not a loop backedge, then it can only
168           // be a part of irreducible non-loop cycle.
169           return true;
170     }
171     return false;
172   }
173 
174   /// Fill all information about status of blocks and exits of the current loop
175   /// if constant folding of all branches will be done.
176   void analyze() {
177     LoopBlocksDFS DFS(&L);
178     DFS.perform(&LI);
179     assert(DFS.isComplete() && "DFS is expected to be finished");
180 
181     // TODO: The algorithm below relies on both RPO and Postorder traversals.
182     // When the loop has only reducible CFG inside, then the invariant "all
183     // predecessors of X are processed before X in RPO" is preserved. However
184     // an irreducible loop can break this invariant (e.g. latch does not have to
185     // be the last block in the traversal in this case, and the algorithm relies
186     // on this). We can later decide to support such cases by altering the
187     // algorithms, but so far we just give up analyzing them.
188     if (hasIrreducibleCFG(DFS)) {
189       HasIrreducibleCFG = true;
190       return;
191     }
192 
193     // Collect live and dead loop blocks and exits.
194     LiveLoopBlocks.insert(L.getHeader());
195     for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) {
196       BasicBlock *BB = *I;
197 
198       // If a loop block wasn't marked as live so far, then it's dead.
199       if (!LiveLoopBlocks.count(BB)) {
200         DeadLoopBlocks.push_back(BB);
201         continue;
202       }
203 
204       BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(BB);
205 
206       // If a block has only one live successor, it's a candidate on constant
207       // folding. Only handle blocks from current loop: branches in child loops
208       // are skipped because if they can be folded, they should be folded during
209       // the processing of child loops.
210       if (TheOnlySucc && LI.getLoopFor(BB) == &L)
211         FoldCandidates.push_back(BB);
212 
213       // Handle successors.
214       for (BasicBlock *Succ : successors(BB))
215         if (!TheOnlySucc || TheOnlySucc == Succ) {
216           if (L.contains(Succ))
217             LiveLoopBlocks.insert(Succ);
218           else
219             LiveExitBlocks.insert(Succ);
220         }
221     }
222 
223     // Sanity check: amount of dead and live loop blocks should match the total
224     // number of blocks in loop.
225     assert(L.getNumBlocks() == LiveLoopBlocks.size() + DeadLoopBlocks.size() &&
226            "Malformed block sets?");
227 
228     // Now, all exit blocks that are not marked as live are dead.
229     SmallVector<BasicBlock *, 8> ExitBlocks;
230     L.getExitBlocks(ExitBlocks);
231     for (auto *ExitBlock : ExitBlocks)
232       if (!LiveExitBlocks.count(ExitBlock))
233         DeadExitBlocks.push_back(ExitBlock);
234 
235     // Whether or not the edge From->To will still be present in graph after the
236     // folding.
237     auto IsEdgeLive = [&](BasicBlock *From, BasicBlock *To) {
238       if (!LiveLoopBlocks.count(From))
239         return false;
240       BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(From);
241       return !TheOnlySucc || TheOnlySucc == To;
242     };
243 
244     // The loop will not be destroyed if its latch is live.
245     DeleteCurrentLoop = !IsEdgeLive(L.getLoopLatch(), L.getHeader());
246 
247     // If we are going to delete the current loop completely, no extra analysis
248     // is needed.
249     if (DeleteCurrentLoop)
250       return;
251 
252     // Otherwise, we should check which blocks will still be a part of the
253     // current loop after the transform.
254     BlocksInLoopAfterFolding.insert(L.getLoopLatch());
255     // If the loop is live, then we should compute what blocks are still in
256     // loop after all branch folding has been done. A block is in loop if
257     // it has a live edge to another block that is in the loop; by definition,
258     // latch is in the loop.
259     auto BlockIsInLoop = [&](BasicBlock *BB) {
260       return any_of(successors(BB), [&](BasicBlock *Succ) {
261         return BlocksInLoopAfterFolding.count(Succ) && IsEdgeLive(BB, Succ);
262       });
263     };
264     for (auto I = DFS.beginPostorder(), E = DFS.endPostorder(); I != E; ++I) {
265       BasicBlock *BB = *I;
266       if (BlockIsInLoop(BB))
267         BlocksInLoopAfterFolding.insert(BB);
268     }
269 
270     // Sanity check: header must be in loop.
271     assert(BlocksInLoopAfterFolding.count(L.getHeader()) &&
272            "Header not in loop?");
273     assert(BlocksInLoopAfterFolding.size() <= LiveLoopBlocks.size() &&
274            "All blocks that stay in loop should be live!");
275   }
276 
277   /// We need to preserve static reachibility of all loop exit blocks (this is)
278   /// required by loop pass manager. In order to do it, we make the following
279   /// trick:
280   ///
281   ///  preheader:
282   ///    <preheader code>
283   ///    br label %loop_header
284   ///
285   ///  loop_header:
286   ///    ...
287   ///    br i1 false, label %dead_exit, label %loop_block
288   ///    ...
289   ///
290   /// We cannot simply remove edge from the loop to dead exit because in this
291   /// case dead_exit (and its successors) may become unreachable. To avoid that,
292   /// we insert the following fictive preheader:
293   ///
294   ///  preheader:
295   ///    <preheader code>
296   ///    switch i32 0, label %preheader-split,
297   ///                  [i32 1, label %dead_exit_1],
298   ///                  [i32 2, label %dead_exit_2],
299   ///                  ...
300   ///                  [i32 N, label %dead_exit_N],
301   ///
302   ///  preheader-split:
303   ///    br label %loop_header
304   ///
305   ///  loop_header:
306   ///    ...
307   ///    br i1 false, label %dead_exit_N, label %loop_block
308   ///    ...
309   ///
310   /// Doing so, we preserve static reachibility of all dead exits and can later
311   /// remove edges from the loop to these blocks.
312   void handleDeadExits() {
313     // If no dead exits, nothing to do.
314     if (DeadExitBlocks.empty())
315       return;
316 
317     // Construct split preheader and the dummy switch to thread edges from it to
318     // dead exits.
319     DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
320     BasicBlock *Preheader = L.getLoopPreheader();
321     BasicBlock *NewPreheader = Preheader->splitBasicBlock(
322         Preheader->getTerminator(),
323         Twine(Preheader->getName()).concat("-split"));
324     DTU.deleteEdge(Preheader, L.getHeader());
325     DTU.insertEdge(NewPreheader, L.getHeader());
326     DTU.insertEdge(Preheader, NewPreheader);
327     IRBuilder<> Builder(Preheader->getTerminator());
328     SwitchInst *DummySwitch =
329         Builder.CreateSwitch(Builder.getInt32(0), NewPreheader);
330     Preheader->getTerminator()->eraseFromParent();
331 
332     unsigned DummyIdx = 1;
333     for (BasicBlock *BB : DeadExitBlocks) {
334       SmallVector<Instruction *, 4> DeadPhis;
335       for (auto &PN : BB->phis())
336         DeadPhis.push_back(&PN);
337 
338       // Eliminate all Phis from dead exits.
339       for (Instruction *PN : DeadPhis) {
340         PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
341         PN->eraseFromParent();
342       }
343       assert(DummyIdx != 0 && "Too many dead exits!");
344       DummySwitch->addCase(Builder.getInt32(DummyIdx++), BB);
345       DTU.insertEdge(Preheader, BB);
346       ++NumLoopExitsDeleted;
347     }
348 
349     assert(L.getLoopPreheader() == NewPreheader && "Malformed CFG?");
350     if (Loop *OuterLoop = LI.getLoopFor(Preheader)) {
351       OuterLoop->addBasicBlockToLoop(NewPreheader, LI);
352 
353       // When we break dead edges, the outer loop may become unreachable from
354       // the current loop. We need to fix loop info accordingly. For this, we
355       // find the most nested loop that still contains L and remove L from all
356       // loops that are inside of it.
357       Loop *StillReachable = nullptr;
358       for (BasicBlock *BB : LiveExitBlocks) {
359         Loop *BBL = LI.getLoopFor(BB);
360         if (BBL && BBL->contains(L.getHeader()))
361           if (!StillReachable ||
362               BBL->getLoopDepth() > StillReachable->getLoopDepth())
363             StillReachable = BBL;
364       }
365 
366       // Okay, our loop is no longer in the outer loop (and maybe not in some of
367       // its parents as well). Make the fixup.
368       if (StillReachable != OuterLoop) {
369         LI.changeLoopFor(NewPreheader, StillReachable);
370         for (Loop *NotContaining = OuterLoop; NotContaining != StillReachable;
371              NotContaining = NotContaining->getParentLoop()) {
372           NotContaining->removeBlockFromLoop(NewPreheader);
373           for (auto *BB : L.blocks())
374             NotContaining->removeBlockFromLoop(BB);
375         }
376         OuterLoop->removeChildLoop(&L);
377         if (StillReachable)
378           StillReachable->addChildLoop(&L);
379         else
380           LI.addTopLevelLoop(&L);
381 
382         // Some values from loops in [OuterLoop, StillReachable) could be used
383         // in the current loop. Now it is not their child anymore, so such uses
384         // require LCSSA Phis.
385         Loop *FixLCSSALoop = OuterLoop;
386         while (FixLCSSALoop->getParentLoop() != StillReachable)
387           FixLCSSALoop = FixLCSSALoop->getParentLoop();
388         assert(FixLCSSALoop && "Should be a loop!");
389         formLCSSARecursively(*FixLCSSALoop, DT, &LI, &SE);
390       }
391     }
392   }
393 
394   /// Delete loop blocks that have become unreachable after folding. Make all
395   /// relevant updates to DT and LI.
396   void deleteDeadLoopBlocks() {
397     DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
398     if (MSSAU) {
399       SmallPtrSet<BasicBlock *, 8> DeadLoopBlocksSet(DeadLoopBlocks.begin(),
400                                                      DeadLoopBlocks.end());
401       MSSAU->removeBlocks(DeadLoopBlocksSet);
402     }
403     for (auto *BB : DeadLoopBlocks) {
404       assert(BB != L.getHeader() &&
405              "Header of the current loop cannot be dead!");
406       LLVM_DEBUG(dbgs() << "Deleting dead loop block " << BB->getName()
407                         << "\n");
408       if (LI.isLoopHeader(BB)) {
409         assert(LI.getLoopFor(BB) != &L && "Attempt to remove current loop!");
410         LI.erase(LI.getLoopFor(BB));
411       }
412       LI.removeBlock(BB);
413     }
414 
415     DeleteDeadBlocks(DeadLoopBlocks, &DTU);
416     NumLoopBlocksDeleted += DeadLoopBlocks.size();
417   }
418 
419   /// Constant-fold terminators of blocks acculumated in FoldCandidates into the
420   /// unconditional branches.
421   void foldTerminators() {
422     DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
423 
424     for (BasicBlock *BB : FoldCandidates) {
425       assert(LI.getLoopFor(BB) == &L && "Should be a loop block!");
426       BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(BB);
427       assert(TheOnlySucc && "Should have one live successor!");
428 
429       LLVM_DEBUG(dbgs() << "Replacing terminator of " << BB->getName()
430                         << " with an unconditional branch to the block "
431                         << TheOnlySucc->getName() << "\n");
432 
433       SmallPtrSet<BasicBlock *, 2> DeadSuccessors;
434       // Remove all BB's successors except for the live one.
435       unsigned TheOnlySuccDuplicates = 0;
436       for (auto *Succ : successors(BB))
437         if (Succ != TheOnlySucc) {
438           DeadSuccessors.insert(Succ);
439           // If our successor lies in a different loop, we don't want to remove
440           // the one-input Phi because it is a LCSSA Phi.
441           bool PreserveLCSSAPhi = !L.contains(Succ);
442           Succ->removePredecessor(BB, PreserveLCSSAPhi);
443           if (MSSAU)
444             MSSAU->removeEdge(BB, Succ);
445         } else
446           ++TheOnlySuccDuplicates;
447 
448       assert(TheOnlySuccDuplicates > 0 && "Should be!");
449       // If TheOnlySucc was BB's successor more than once, after transform it
450       // will be its successor only once. Remove redundant inputs from
451       // TheOnlySucc's Phis.
452       bool PreserveLCSSAPhi = !L.contains(TheOnlySucc);
453       for (unsigned Dup = 1; Dup < TheOnlySuccDuplicates; ++Dup)
454         TheOnlySucc->removePredecessor(BB, PreserveLCSSAPhi);
455       if (MSSAU && TheOnlySuccDuplicates > 1)
456         MSSAU->removeDuplicatePhiEdgesBetween(BB, TheOnlySucc);
457 
458       IRBuilder<> Builder(BB->getContext());
459       Instruction *Term = BB->getTerminator();
460       Builder.SetInsertPoint(Term);
461       Builder.CreateBr(TheOnlySucc);
462       Term->eraseFromParent();
463 
464       for (auto *DeadSucc : DeadSuccessors)
465         DTU.deleteEdge(BB, DeadSucc);
466 
467       ++NumTerminatorsFolded;
468     }
469   }
470 
471 public:
472   ConstantTerminatorFoldingImpl(Loop &L, LoopInfo &LI, DominatorTree &DT,
473                                 ScalarEvolution &SE,
474                                 MemorySSAUpdater *MSSAU)
475       : L(L), LI(LI), DT(DT), SE(SE), MSSAU(MSSAU) {}
476   bool run() {
477     assert(L.getLoopLatch() && "Should be single latch!");
478 
479     // Collect all available information about status of blocks after constant
480     // folding.
481     analyze();
482 
483     LLVM_DEBUG(dbgs() << "In function " << L.getHeader()->getParent()->getName()
484                       << ": ");
485 
486     if (HasIrreducibleCFG) {
487       LLVM_DEBUG(dbgs() << "Loops with irreducible CFG are not supported!\n");
488       return false;
489     }
490 
491     // Nothing to constant-fold.
492     if (FoldCandidates.empty()) {
493       LLVM_DEBUG(
494           dbgs() << "No constant terminator folding candidates found in loop "
495                  << L.getHeader()->getName() << "\n");
496       return false;
497     }
498 
499     // TODO: Support deletion of the current loop.
500     if (DeleteCurrentLoop) {
501       LLVM_DEBUG(
502           dbgs()
503           << "Give up constant terminator folding in loop "
504           << L.getHeader()->getName()
505           << ": we don't currently support deletion of the current loop.\n");
506       return false;
507     }
508 
509     // TODO: Support blocks that are not dead, but also not in loop after the
510     // folding.
511     if (BlocksInLoopAfterFolding.size() + DeadLoopBlocks.size() !=
512         L.getNumBlocks()) {
513       LLVM_DEBUG(
514           dbgs() << "Give up constant terminator folding in loop "
515                  << L.getHeader()->getName()
516                  << ": we don't currently"
517                     " support blocks that are not dead, but will stop "
518                     "being a part of the loop after constant-folding.\n");
519       return false;
520     }
521 
522     SE.forgetTopmostLoop(&L);
523     // Dump analysis results.
524     LLVM_DEBUG(dump());
525 
526     LLVM_DEBUG(dbgs() << "Constant-folding " << FoldCandidates.size()
527                       << " terminators in loop " << L.getHeader()->getName()
528                       << "\n");
529 
530     // Make the actual transforms.
531     handleDeadExits();
532     foldTerminators();
533 
534     if (!DeadLoopBlocks.empty()) {
535       LLVM_DEBUG(dbgs() << "Deleting " << DeadLoopBlocks.size()
536                     << " dead blocks in loop " << L.getHeader()->getName()
537                     << "\n");
538       deleteDeadLoopBlocks();
539     }
540 
541 #ifndef NDEBUG
542     // Make sure that we have preserved all data structures after the transform.
543     DT.verify();
544     assert(DT.isReachableFromEntry(L.getHeader()));
545     LI.verify(DT);
546 #endif
547 
548     return true;
549   }
550 };
551 } // namespace
552 
553 /// Turn branches and switches with known constant conditions into unconditional
554 /// branches.
555 static bool constantFoldTerminators(Loop &L, DominatorTree &DT, LoopInfo &LI,
556                                     ScalarEvolution &SE,
557                                     MemorySSAUpdater *MSSAU) {
558   if (!EnableTermFolding)
559     return false;
560 
561   // To keep things simple, only process loops with single latch. We
562   // canonicalize most loops to this form. We can support multi-latch if needed.
563   if (!L.getLoopLatch())
564     return false;
565 
566   ConstantTerminatorFoldingImpl BranchFolder(L, LI, DT, SE, MSSAU);
567   return BranchFolder.run();
568 }
569 
570 static bool mergeBlocksIntoPredecessors(Loop &L, DominatorTree &DT,
571                                         LoopInfo &LI, MemorySSAUpdater *MSSAU) {
572   bool Changed = false;
573   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
574   // Copy blocks into a temporary array to avoid iterator invalidation issues
575   // as we remove them.
576   SmallVector<WeakTrackingVH, 16> Blocks(L.blocks());
577 
578   for (auto &Block : Blocks) {
579     // Attempt to merge blocks in the trivial case. Don't modify blocks which
580     // belong to other loops.
581     BasicBlock *Succ = cast_or_null<BasicBlock>(Block);
582     if (!Succ)
583       continue;
584 
585     BasicBlock *Pred = Succ->getSinglePredecessor();
586     if (!Pred || !Pred->getSingleSuccessor() || LI.getLoopFor(Pred) != &L)
587       continue;
588 
589     // Merge Succ into Pred and delete it.
590     MergeBlockIntoPredecessor(Succ, &DTU, &LI, MSSAU);
591 
592     Changed = true;
593   }
594 
595   return Changed;
596 }
597 
598 static bool simplifyLoopCFG(Loop &L, DominatorTree &DT, LoopInfo &LI,
599                             ScalarEvolution &SE, MemorySSAUpdater *MSSAU) {
600   bool Changed = false;
601 
602   // Constant-fold terminators with known constant conditions.
603   Changed |= constantFoldTerminators(L, DT, LI, SE, MSSAU);
604 
605   // Eliminate unconditional branches by merging blocks into their predecessors.
606   Changed |= mergeBlocksIntoPredecessors(L, DT, LI, MSSAU);
607 
608   if (Changed)
609     SE.forgetTopmostLoop(&L);
610 
611   return Changed;
612 }
613 
614 PreservedAnalyses LoopSimplifyCFGPass::run(Loop &L, LoopAnalysisManager &AM,
615                                            LoopStandardAnalysisResults &AR,
616                                            LPMUpdater &) {
617   Optional<MemorySSAUpdater> MSSAU;
618   if (EnableMSSALoopDependency && AR.MSSA)
619     MSSAU = MemorySSAUpdater(AR.MSSA);
620   if (!simplifyLoopCFG(L, AR.DT, AR.LI, AR.SE,
621                        MSSAU.hasValue() ? MSSAU.getPointer() : nullptr))
622     return PreservedAnalyses::all();
623 
624   return getLoopPassPreservedAnalyses();
625 }
626 
627 namespace {
628 class LoopSimplifyCFGLegacyPass : public LoopPass {
629 public:
630   static char ID; // Pass ID, replacement for typeid
631   LoopSimplifyCFGLegacyPass() : LoopPass(ID) {
632     initializeLoopSimplifyCFGLegacyPassPass(*PassRegistry::getPassRegistry());
633   }
634 
635   bool runOnLoop(Loop *L, LPPassManager &) override {
636     if (skipLoop(L))
637       return false;
638 
639     DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
640     LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
641     ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
642     Optional<MemorySSAUpdater> MSSAU;
643     if (EnableMSSALoopDependency) {
644       MemorySSA *MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA();
645       MSSAU = MemorySSAUpdater(MSSA);
646       if (VerifyMemorySSA)
647         MSSA->verifyMemorySSA();
648     }
649     return simplifyLoopCFG(*L, DT, LI, SE,
650                            MSSAU.hasValue() ? MSSAU.getPointer() : nullptr);
651   }
652 
653   void getAnalysisUsage(AnalysisUsage &AU) const override {
654     if (EnableMSSALoopDependency) {
655       AU.addRequired<MemorySSAWrapperPass>();
656       AU.addPreserved<MemorySSAWrapperPass>();
657     }
658     AU.addPreserved<DependenceAnalysisWrapperPass>();
659     getLoopAnalysisUsage(AU);
660   }
661 };
662 }
663 
664 char LoopSimplifyCFGLegacyPass::ID = 0;
665 INITIALIZE_PASS_BEGIN(LoopSimplifyCFGLegacyPass, "loop-simplifycfg",
666                       "Simplify loop CFG", false, false)
667 INITIALIZE_PASS_DEPENDENCY(LoopPass)
668 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
669 INITIALIZE_PASS_END(LoopSimplifyCFGLegacyPass, "loop-simplifycfg",
670                     "Simplify loop CFG", false, false)
671 
672 Pass *llvm::createLoopSimplifyCFGPass() {
673   return new LoopSimplifyCFGLegacyPass();
674 }
675