1 //===--------- LoopSimplifyCFG.cpp - Loop CFG Simplification Pass ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Loop SimplifyCFG Pass. This pass is responsible for 10 // basic loop CFG cleanup, primarily to assist other loop passes. If you 11 // encounter a noncanonical CFG construct that causes another loop pass to 12 // perform suboptimally, this is the place to fix it up. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/Scalar/LoopSimplifyCFG.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/AssumptionCache.h" 21 #include "llvm/Analysis/BasicAliasAnalysis.h" 22 #include "llvm/Analysis/DependenceAnalysis.h" 23 #include "llvm/Analysis/GlobalsModRef.h" 24 #include "llvm/Analysis/LoopInfo.h" 25 #include "llvm/Analysis/LoopPass.h" 26 #include "llvm/Analysis/MemorySSA.h" 27 #include "llvm/Analysis/MemorySSAUpdater.h" 28 #include "llvm/Analysis/ScalarEvolution.h" 29 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 30 #include "llvm/Analysis/TargetTransformInfo.h" 31 #include "llvm/IR/DomTreeUpdater.h" 32 #include "llvm/IR/Dominators.h" 33 #include "llvm/Transforms/Scalar.h" 34 #include "llvm/Transforms/Scalar/LoopPassManager.h" 35 #include "llvm/Transforms/Utils.h" 36 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 37 #include "llvm/Transforms/Utils/Local.h" 38 #include "llvm/Transforms/Utils/LoopUtils.h" 39 using namespace llvm; 40 41 #define DEBUG_TYPE "loop-simplifycfg" 42 43 static cl::opt<bool> EnableTermFolding("enable-loop-simplifycfg-term-folding", 44 cl::init(false)); 45 46 STATISTIC(NumTerminatorsFolded, 47 "Number of terminators folded to unconditional branches"); 48 STATISTIC(NumLoopBlocksDeleted, 49 "Number of loop blocks deleted"); 50 STATISTIC(NumLoopExitsDeleted, 51 "Number of loop exiting edges deleted"); 52 53 /// If \p BB is a switch or a conditional branch, but only one of its successors 54 /// can be reached from this block in runtime, return this successor. Otherwise, 55 /// return nullptr. 56 static BasicBlock *getOnlyLiveSuccessor(BasicBlock *BB) { 57 Instruction *TI = BB->getTerminator(); 58 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 59 if (BI->isUnconditional()) 60 return nullptr; 61 if (BI->getSuccessor(0) == BI->getSuccessor(1)) 62 return BI->getSuccessor(0); 63 ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition()); 64 if (!Cond) 65 return nullptr; 66 return Cond->isZero() ? BI->getSuccessor(1) : BI->getSuccessor(0); 67 } 68 69 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 70 auto *CI = dyn_cast<ConstantInt>(SI->getCondition()); 71 if (!CI) 72 return nullptr; 73 for (auto Case : SI->cases()) 74 if (Case.getCaseValue() == CI) 75 return Case.getCaseSuccessor(); 76 return SI->getDefaultDest(); 77 } 78 79 return nullptr; 80 } 81 82 namespace { 83 /// Helper class that can turn branches and switches with constant conditions 84 /// into unconditional branches. 85 class ConstantTerminatorFoldingImpl { 86 private: 87 Loop &L; 88 LoopInfo &LI; 89 DominatorTree &DT; 90 ScalarEvolution &SE; 91 MemorySSAUpdater *MSSAU; 92 93 // Whether or not the current loop has irreducible CFG. 94 bool HasIrreducibleCFG = false; 95 // Whether or not the current loop will still exist after terminator constant 96 // folding will be done. In theory, there are two ways how it can happen: 97 // 1. Loop's latch(es) become unreachable from loop header; 98 // 2. Loop's header becomes unreachable from method entry. 99 // In practice, the second situation is impossible because we only modify the 100 // current loop and its preheader and do not affect preheader's reachibility 101 // from any other block. So this variable set to true means that loop's latch 102 // has become unreachable from loop header. 103 bool DeleteCurrentLoop = false; 104 105 // The blocks of the original loop that will still be reachable from entry 106 // after the constant folding. 107 SmallPtrSet<BasicBlock *, 8> LiveLoopBlocks; 108 // The blocks of the original loop that will become unreachable from entry 109 // after the constant folding. 110 SmallVector<BasicBlock *, 8> DeadLoopBlocks; 111 // The exits of the original loop that will still be reachable from entry 112 // after the constant folding. 113 SmallPtrSet<BasicBlock *, 8> LiveExitBlocks; 114 // The exits of the original loop that will become unreachable from entry 115 // after the constant folding. 116 SmallVector<BasicBlock *, 8> DeadExitBlocks; 117 // The blocks that will still be a part of the current loop after folding. 118 SmallPtrSet<BasicBlock *, 8> BlocksInLoopAfterFolding; 119 // The blocks that have terminators with constant condition that can be 120 // folded. Note: fold candidates should be in L but not in any of its 121 // subloops to avoid complex LI updates. 122 SmallVector<BasicBlock *, 8> FoldCandidates; 123 124 void dump() const { 125 dbgs() << "Constant terminator folding for loop " << L << "\n"; 126 dbgs() << "After terminator constant-folding, the loop will"; 127 if (!DeleteCurrentLoop) 128 dbgs() << " not"; 129 dbgs() << " be destroyed\n"; 130 auto PrintOutVector = [&](const char *Message, 131 const SmallVectorImpl<BasicBlock *> &S) { 132 dbgs() << Message << "\n"; 133 for (const BasicBlock *BB : S) 134 dbgs() << "\t" << BB->getName() << "\n"; 135 }; 136 auto PrintOutSet = [&](const char *Message, 137 const SmallPtrSetImpl<BasicBlock *> &S) { 138 dbgs() << Message << "\n"; 139 for (const BasicBlock *BB : S) 140 dbgs() << "\t" << BB->getName() << "\n"; 141 }; 142 PrintOutVector("Blocks in which we can constant-fold terminator:", 143 FoldCandidates); 144 PrintOutSet("Live blocks from the original loop:", LiveLoopBlocks); 145 PrintOutVector("Dead blocks from the original loop:", DeadLoopBlocks); 146 PrintOutSet("Live exit blocks:", LiveExitBlocks); 147 PrintOutVector("Dead exit blocks:", DeadExitBlocks); 148 if (!DeleteCurrentLoop) 149 PrintOutSet("The following blocks will still be part of the loop:", 150 BlocksInLoopAfterFolding); 151 } 152 153 /// Whether or not the current loop has irreducible CFG. 154 bool hasIrreducibleCFG(LoopBlocksDFS &DFS) { 155 assert(DFS.isComplete() && "DFS is expected to be finished"); 156 // Index of a basic block in RPO traversal. 157 DenseMap<const BasicBlock *, unsigned> RPO; 158 unsigned Current = 0; 159 for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) 160 RPO[*I] = Current++; 161 162 for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) { 163 BasicBlock *BB = *I; 164 for (auto *Succ : successors(BB)) 165 if (L.contains(Succ) && !LI.isLoopHeader(Succ) && RPO[BB] > RPO[Succ]) 166 // If an edge goes from a block with greater order number into a block 167 // with lesses number, and it is not a loop backedge, then it can only 168 // be a part of irreducible non-loop cycle. 169 return true; 170 } 171 return false; 172 } 173 174 /// Fill all information about status of blocks and exits of the current loop 175 /// if constant folding of all branches will be done. 176 void analyze() { 177 LoopBlocksDFS DFS(&L); 178 DFS.perform(&LI); 179 assert(DFS.isComplete() && "DFS is expected to be finished"); 180 181 // TODO: The algorithm below relies on both RPO and Postorder traversals. 182 // When the loop has only reducible CFG inside, then the invariant "all 183 // predecessors of X are processed before X in RPO" is preserved. However 184 // an irreducible loop can break this invariant (e.g. latch does not have to 185 // be the last block in the traversal in this case, and the algorithm relies 186 // on this). We can later decide to support such cases by altering the 187 // algorithms, but so far we just give up analyzing them. 188 if (hasIrreducibleCFG(DFS)) { 189 HasIrreducibleCFG = true; 190 return; 191 } 192 193 // Collect live and dead loop blocks and exits. 194 LiveLoopBlocks.insert(L.getHeader()); 195 for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) { 196 BasicBlock *BB = *I; 197 198 // If a loop block wasn't marked as live so far, then it's dead. 199 if (!LiveLoopBlocks.count(BB)) { 200 DeadLoopBlocks.push_back(BB); 201 continue; 202 } 203 204 BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(BB); 205 206 // If a block has only one live successor, it's a candidate on constant 207 // folding. Only handle blocks from current loop: branches in child loops 208 // are skipped because if they can be folded, they should be folded during 209 // the processing of child loops. 210 bool TakeFoldCandidate = TheOnlySucc && LI.getLoopFor(BB) == &L; 211 if (TakeFoldCandidate) 212 FoldCandidates.push_back(BB); 213 214 // Handle successors. 215 for (BasicBlock *Succ : successors(BB)) 216 if (!TakeFoldCandidate || TheOnlySucc == Succ) { 217 if (L.contains(Succ)) 218 LiveLoopBlocks.insert(Succ); 219 else 220 LiveExitBlocks.insert(Succ); 221 } 222 } 223 224 // Sanity check: amount of dead and live loop blocks should match the total 225 // number of blocks in loop. 226 assert(L.getNumBlocks() == LiveLoopBlocks.size() + DeadLoopBlocks.size() && 227 "Malformed block sets?"); 228 229 // Now, all exit blocks that are not marked as live are dead. 230 SmallVector<BasicBlock *, 8> ExitBlocks; 231 L.getExitBlocks(ExitBlocks); 232 for (auto *ExitBlock : ExitBlocks) 233 if (!LiveExitBlocks.count(ExitBlock)) 234 DeadExitBlocks.push_back(ExitBlock); 235 236 // Whether or not the edge From->To will still be present in graph after the 237 // folding. 238 auto IsEdgeLive = [&](BasicBlock *From, BasicBlock *To) { 239 if (!LiveLoopBlocks.count(From)) 240 return false; 241 BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(From); 242 return !TheOnlySucc || TheOnlySucc == To || LI.getLoopFor(From) != &L; 243 }; 244 245 // The loop will not be destroyed if its latch is live. 246 DeleteCurrentLoop = !IsEdgeLive(L.getLoopLatch(), L.getHeader()); 247 248 // If we are going to delete the current loop completely, no extra analysis 249 // is needed. 250 if (DeleteCurrentLoop) 251 return; 252 253 // Otherwise, we should check which blocks will still be a part of the 254 // current loop after the transform. 255 BlocksInLoopAfterFolding.insert(L.getLoopLatch()); 256 // If the loop is live, then we should compute what blocks are still in 257 // loop after all branch folding has been done. A block is in loop if 258 // it has a live edge to another block that is in the loop; by definition, 259 // latch is in the loop. 260 auto BlockIsInLoop = [&](BasicBlock *BB) { 261 return any_of(successors(BB), [&](BasicBlock *Succ) { 262 return BlocksInLoopAfterFolding.count(Succ) && IsEdgeLive(BB, Succ); 263 }); 264 }; 265 for (auto I = DFS.beginPostorder(), E = DFS.endPostorder(); I != E; ++I) { 266 BasicBlock *BB = *I; 267 if (BlockIsInLoop(BB)) 268 BlocksInLoopAfterFolding.insert(BB); 269 } 270 271 // Sanity check: header must be in loop. 272 assert(BlocksInLoopAfterFolding.count(L.getHeader()) && 273 "Header not in loop?"); 274 assert(BlocksInLoopAfterFolding.size() <= LiveLoopBlocks.size() && 275 "All blocks that stay in loop should be live!"); 276 } 277 278 /// We need to preserve static reachibility of all loop exit blocks (this is) 279 /// required by loop pass manager. In order to do it, we make the following 280 /// trick: 281 /// 282 /// preheader: 283 /// <preheader code> 284 /// br label %loop_header 285 /// 286 /// loop_header: 287 /// ... 288 /// br i1 false, label %dead_exit, label %loop_block 289 /// ... 290 /// 291 /// We cannot simply remove edge from the loop to dead exit because in this 292 /// case dead_exit (and its successors) may become unreachable. To avoid that, 293 /// we insert the following fictive preheader: 294 /// 295 /// preheader: 296 /// <preheader code> 297 /// switch i32 0, label %preheader-split, 298 /// [i32 1, label %dead_exit_1], 299 /// [i32 2, label %dead_exit_2], 300 /// ... 301 /// [i32 N, label %dead_exit_N], 302 /// 303 /// preheader-split: 304 /// br label %loop_header 305 /// 306 /// loop_header: 307 /// ... 308 /// br i1 false, label %dead_exit_N, label %loop_block 309 /// ... 310 /// 311 /// Doing so, we preserve static reachibility of all dead exits and can later 312 /// remove edges from the loop to these blocks. 313 void handleDeadExits() { 314 // If no dead exits, nothing to do. 315 if (DeadExitBlocks.empty()) 316 return; 317 318 // Construct split preheader and the dummy switch to thread edges from it to 319 // dead exits. 320 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 321 BasicBlock *Preheader = L.getLoopPreheader(); 322 BasicBlock *NewPreheader = Preheader->splitBasicBlock( 323 Preheader->getTerminator(), 324 Twine(Preheader->getName()).concat("-split")); 325 DTU.deleteEdge(Preheader, L.getHeader()); 326 DTU.insertEdge(NewPreheader, L.getHeader()); 327 DTU.insertEdge(Preheader, NewPreheader); 328 IRBuilder<> Builder(Preheader->getTerminator()); 329 SwitchInst *DummySwitch = 330 Builder.CreateSwitch(Builder.getInt32(0), NewPreheader); 331 Preheader->getTerminator()->eraseFromParent(); 332 333 unsigned DummyIdx = 1; 334 for (BasicBlock *BB : DeadExitBlocks) { 335 SmallVector<Instruction *, 4> DeadPhis; 336 for (auto &PN : BB->phis()) 337 DeadPhis.push_back(&PN); 338 339 // Eliminate all Phis from dead exits. 340 for (Instruction *PN : DeadPhis) { 341 PN->replaceAllUsesWith(UndefValue::get(PN->getType())); 342 PN->eraseFromParent(); 343 } 344 assert(DummyIdx != 0 && "Too many dead exits!"); 345 DummySwitch->addCase(Builder.getInt32(DummyIdx++), BB); 346 DTU.insertEdge(Preheader, BB); 347 ++NumLoopExitsDeleted; 348 } 349 350 assert(L.getLoopPreheader() == NewPreheader && "Malformed CFG?"); 351 if (Loop *OuterLoop = LI.getLoopFor(Preheader)) { 352 OuterLoop->addBasicBlockToLoop(NewPreheader, LI); 353 354 // When we break dead edges, the outer loop may become unreachable from 355 // the current loop. We need to fix loop info accordingly. For this, we 356 // find the most nested loop that still contains L and remove L from all 357 // loops that are inside of it. 358 Loop *StillReachable = nullptr; 359 for (BasicBlock *BB : LiveExitBlocks) { 360 Loop *BBL = LI.getLoopFor(BB); 361 if (BBL && BBL->contains(L.getHeader())) 362 if (!StillReachable || 363 BBL->getLoopDepth() > StillReachable->getLoopDepth()) 364 StillReachable = BBL; 365 } 366 367 // Okay, our loop is no longer in the outer loop (and maybe not in some of 368 // its parents as well). Make the fixup. 369 if (StillReachable != OuterLoop) { 370 LI.changeLoopFor(NewPreheader, StillReachable); 371 for (Loop *NotContaining = OuterLoop; NotContaining != StillReachable; 372 NotContaining = NotContaining->getParentLoop()) { 373 NotContaining->removeBlockFromLoop(NewPreheader); 374 for (auto *BB : L.blocks()) 375 NotContaining->removeBlockFromLoop(BB); 376 } 377 OuterLoop->removeChildLoop(&L); 378 if (StillReachable) 379 StillReachable->addChildLoop(&L); 380 else 381 LI.addTopLevelLoop(&L); 382 383 // Some values from loops in [OuterLoop, StillReachable) could be used 384 // in the current loop. Now it is not their child anymore, so such uses 385 // require LCSSA Phis. 386 Loop *FixLCSSALoop = OuterLoop; 387 while (FixLCSSALoop->getParentLoop() != StillReachable) 388 FixLCSSALoop = FixLCSSALoop->getParentLoop(); 389 assert(FixLCSSALoop && "Should be a loop!"); 390 formLCSSARecursively(*FixLCSSALoop, DT, &LI, &SE); 391 } 392 } 393 } 394 395 /// Delete loop blocks that have become unreachable after folding. Make all 396 /// relevant updates to DT and LI. 397 void deleteDeadLoopBlocks() { 398 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 399 if (MSSAU) { 400 SmallPtrSet<BasicBlock *, 8> DeadLoopBlocksSet(DeadLoopBlocks.begin(), 401 DeadLoopBlocks.end()); 402 MSSAU->removeBlocks(DeadLoopBlocksSet); 403 } 404 for (auto *BB : DeadLoopBlocks) { 405 assert(BB != L.getHeader() && 406 "Header of the current loop cannot be dead!"); 407 LLVM_DEBUG(dbgs() << "Deleting dead loop block " << BB->getName() 408 << "\n"); 409 if (LI.isLoopHeader(BB)) { 410 assert(LI.getLoopFor(BB) != &L && "Attempt to remove current loop!"); 411 LI.erase(LI.getLoopFor(BB)); 412 } 413 LI.removeBlock(BB); 414 } 415 416 DeleteDeadBlocks(DeadLoopBlocks, &DTU); 417 NumLoopBlocksDeleted += DeadLoopBlocks.size(); 418 } 419 420 /// Constant-fold terminators of blocks acculumated in FoldCandidates into the 421 /// unconditional branches. 422 void foldTerminators() { 423 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 424 425 for (BasicBlock *BB : FoldCandidates) { 426 assert(LI.getLoopFor(BB) == &L && "Should be a loop block!"); 427 BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(BB); 428 assert(TheOnlySucc && "Should have one live successor!"); 429 430 LLVM_DEBUG(dbgs() << "Replacing terminator of " << BB->getName() 431 << " with an unconditional branch to the block " 432 << TheOnlySucc->getName() << "\n"); 433 434 SmallPtrSet<BasicBlock *, 2> DeadSuccessors; 435 // Remove all BB's successors except for the live one. 436 unsigned TheOnlySuccDuplicates = 0; 437 for (auto *Succ : successors(BB)) 438 if (Succ != TheOnlySucc) { 439 DeadSuccessors.insert(Succ); 440 // If our successor lies in a different loop, we don't want to remove 441 // the one-input Phi because it is a LCSSA Phi. 442 bool PreserveLCSSAPhi = !L.contains(Succ); 443 Succ->removePredecessor(BB, PreserveLCSSAPhi); 444 if (MSSAU) 445 MSSAU->removeEdge(BB, Succ); 446 } else 447 ++TheOnlySuccDuplicates; 448 449 assert(TheOnlySuccDuplicates > 0 && "Should be!"); 450 // If TheOnlySucc was BB's successor more than once, after transform it 451 // will be its successor only once. Remove redundant inputs from 452 // TheOnlySucc's Phis. 453 bool PreserveLCSSAPhi = !L.contains(TheOnlySucc); 454 for (unsigned Dup = 1; Dup < TheOnlySuccDuplicates; ++Dup) 455 TheOnlySucc->removePredecessor(BB, PreserveLCSSAPhi); 456 if (MSSAU && TheOnlySuccDuplicates > 1) 457 MSSAU->removeDuplicatePhiEdgesBetween(BB, TheOnlySucc); 458 459 IRBuilder<> Builder(BB->getContext()); 460 Instruction *Term = BB->getTerminator(); 461 Builder.SetInsertPoint(Term); 462 Builder.CreateBr(TheOnlySucc); 463 Term->eraseFromParent(); 464 465 for (auto *DeadSucc : DeadSuccessors) 466 DTU.deleteEdge(BB, DeadSucc); 467 468 ++NumTerminatorsFolded; 469 } 470 } 471 472 public: 473 ConstantTerminatorFoldingImpl(Loop &L, LoopInfo &LI, DominatorTree &DT, 474 ScalarEvolution &SE, 475 MemorySSAUpdater *MSSAU) 476 : L(L), LI(LI), DT(DT), SE(SE), MSSAU(MSSAU) {} 477 bool run() { 478 assert(L.getLoopLatch() && "Should be single latch!"); 479 480 // Collect all available information about status of blocks after constant 481 // folding. 482 analyze(); 483 484 LLVM_DEBUG(dbgs() << "In function " << L.getHeader()->getParent()->getName() 485 << ": "); 486 487 if (HasIrreducibleCFG) { 488 LLVM_DEBUG(dbgs() << "Loops with irreducible CFG are not supported!\n"); 489 return false; 490 } 491 492 // Nothing to constant-fold. 493 if (FoldCandidates.empty()) { 494 LLVM_DEBUG( 495 dbgs() << "No constant terminator folding candidates found in loop " 496 << L.getHeader()->getName() << "\n"); 497 return false; 498 } 499 500 // TODO: Support deletion of the current loop. 501 if (DeleteCurrentLoop) { 502 LLVM_DEBUG( 503 dbgs() 504 << "Give up constant terminator folding in loop " 505 << L.getHeader()->getName() 506 << ": we don't currently support deletion of the current loop.\n"); 507 return false; 508 } 509 510 // TODO: Support blocks that are not dead, but also not in loop after the 511 // folding. 512 if (BlocksInLoopAfterFolding.size() + DeadLoopBlocks.size() != 513 L.getNumBlocks()) { 514 LLVM_DEBUG( 515 dbgs() << "Give up constant terminator folding in loop " 516 << L.getHeader()->getName() 517 << ": we don't currently" 518 " support blocks that are not dead, but will stop " 519 "being a part of the loop after constant-folding.\n"); 520 return false; 521 } 522 523 SE.forgetTopmostLoop(&L); 524 // Dump analysis results. 525 LLVM_DEBUG(dump()); 526 527 LLVM_DEBUG(dbgs() << "Constant-folding " << FoldCandidates.size() 528 << " terminators in loop " << L.getHeader()->getName() 529 << "\n"); 530 531 // Make the actual transforms. 532 handleDeadExits(); 533 foldTerminators(); 534 535 if (!DeadLoopBlocks.empty()) { 536 LLVM_DEBUG(dbgs() << "Deleting " << DeadLoopBlocks.size() 537 << " dead blocks in loop " << L.getHeader()->getName() 538 << "\n"); 539 deleteDeadLoopBlocks(); 540 } 541 542 #ifndef NDEBUG 543 // Make sure that we have preserved all data structures after the transform. 544 assert(DT.verify() && "DT broken after transform!"); 545 assert(DT.isReachableFromEntry(L.getHeader())); 546 LI.verify(DT); 547 #endif 548 549 return true; 550 } 551 }; 552 } // namespace 553 554 /// Turn branches and switches with known constant conditions into unconditional 555 /// branches. 556 static bool constantFoldTerminators(Loop &L, DominatorTree &DT, LoopInfo &LI, 557 ScalarEvolution &SE, 558 MemorySSAUpdater *MSSAU) { 559 if (!EnableTermFolding) 560 return false; 561 562 // To keep things simple, only process loops with single latch. We 563 // canonicalize most loops to this form. We can support multi-latch if needed. 564 if (!L.getLoopLatch()) 565 return false; 566 567 ConstantTerminatorFoldingImpl BranchFolder(L, LI, DT, SE, MSSAU); 568 return BranchFolder.run(); 569 } 570 571 static bool mergeBlocksIntoPredecessors(Loop &L, DominatorTree &DT, 572 LoopInfo &LI, MemorySSAUpdater *MSSAU) { 573 bool Changed = false; 574 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 575 // Copy blocks into a temporary array to avoid iterator invalidation issues 576 // as we remove them. 577 SmallVector<WeakTrackingVH, 16> Blocks(L.blocks()); 578 579 for (auto &Block : Blocks) { 580 // Attempt to merge blocks in the trivial case. Don't modify blocks which 581 // belong to other loops. 582 BasicBlock *Succ = cast_or_null<BasicBlock>(Block); 583 if (!Succ) 584 continue; 585 586 BasicBlock *Pred = Succ->getSinglePredecessor(); 587 if (!Pred || !Pred->getSingleSuccessor() || LI.getLoopFor(Pred) != &L) 588 continue; 589 590 // Merge Succ into Pred and delete it. 591 MergeBlockIntoPredecessor(Succ, &DTU, &LI, MSSAU); 592 593 Changed = true; 594 } 595 596 return Changed; 597 } 598 599 static bool simplifyLoopCFG(Loop &L, DominatorTree &DT, LoopInfo &LI, 600 ScalarEvolution &SE, MemorySSAUpdater *MSSAU) { 601 bool Changed = false; 602 603 // Constant-fold terminators with known constant conditions. 604 Changed |= constantFoldTerminators(L, DT, LI, SE, MSSAU); 605 606 // Eliminate unconditional branches by merging blocks into their predecessors. 607 Changed |= mergeBlocksIntoPredecessors(L, DT, LI, MSSAU); 608 609 if (Changed) 610 SE.forgetTopmostLoop(&L); 611 612 return Changed; 613 } 614 615 PreservedAnalyses LoopSimplifyCFGPass::run(Loop &L, LoopAnalysisManager &AM, 616 LoopStandardAnalysisResults &AR, 617 LPMUpdater &) { 618 Optional<MemorySSAUpdater> MSSAU; 619 if (EnableMSSALoopDependency && AR.MSSA) 620 MSSAU = MemorySSAUpdater(AR.MSSA); 621 if (!simplifyLoopCFG(L, AR.DT, AR.LI, AR.SE, 622 MSSAU.hasValue() ? MSSAU.getPointer() : nullptr)) 623 return PreservedAnalyses::all(); 624 625 return getLoopPassPreservedAnalyses(); 626 } 627 628 namespace { 629 class LoopSimplifyCFGLegacyPass : public LoopPass { 630 public: 631 static char ID; // Pass ID, replacement for typeid 632 LoopSimplifyCFGLegacyPass() : LoopPass(ID) { 633 initializeLoopSimplifyCFGLegacyPassPass(*PassRegistry::getPassRegistry()); 634 } 635 636 bool runOnLoop(Loop *L, LPPassManager &) override { 637 if (skipLoop(L)) 638 return false; 639 640 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 641 LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 642 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 643 Optional<MemorySSAUpdater> MSSAU; 644 if (EnableMSSALoopDependency) { 645 MemorySSA *MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA(); 646 MSSAU = MemorySSAUpdater(MSSA); 647 if (VerifyMemorySSA) 648 MSSA->verifyMemorySSA(); 649 } 650 return simplifyLoopCFG(*L, DT, LI, SE, 651 MSSAU.hasValue() ? MSSAU.getPointer() : nullptr); 652 } 653 654 void getAnalysisUsage(AnalysisUsage &AU) const override { 655 if (EnableMSSALoopDependency) { 656 AU.addRequired<MemorySSAWrapperPass>(); 657 AU.addPreserved<MemorySSAWrapperPass>(); 658 } 659 AU.addPreserved<DependenceAnalysisWrapperPass>(); 660 getLoopAnalysisUsage(AU); 661 } 662 }; 663 } 664 665 char LoopSimplifyCFGLegacyPass::ID = 0; 666 INITIALIZE_PASS_BEGIN(LoopSimplifyCFGLegacyPass, "loop-simplifycfg", 667 "Simplify loop CFG", false, false) 668 INITIALIZE_PASS_DEPENDENCY(LoopPass) 669 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 670 INITIALIZE_PASS_END(LoopSimplifyCFGLegacyPass, "loop-simplifycfg", 671 "Simplify loop CFG", false, false) 672 673 Pass *llvm::createLoopSimplifyCFGPass() { 674 return new LoopSimplifyCFGLegacyPass(); 675 } 676