1 //===--------- LoopSimplifyCFG.cpp - Loop CFG Simplification Pass ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Loop SimplifyCFG Pass. This pass is responsible for
10 // basic loop CFG cleanup, primarily to assist other loop passes. If you
11 // encounter a noncanonical CFG construct that causes another loop pass to
12 // perform suboptimally, this is the place to fix it up.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Transforms/Scalar/LoopSimplifyCFG.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/AliasAnalysis.h"
20 #include "llvm/Analysis/AssumptionCache.h"
21 #include "llvm/Analysis/BasicAliasAnalysis.h"
22 #include "llvm/Analysis/DependenceAnalysis.h"
23 #include "llvm/Analysis/GlobalsModRef.h"
24 #include "llvm/Analysis/LoopInfo.h"
25 #include "llvm/Analysis/LoopPass.h"
26 #include "llvm/Analysis/MemorySSA.h"
27 #include "llvm/Analysis/MemorySSAUpdater.h"
28 #include "llvm/Analysis/ScalarEvolution.h"
29 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
30 #include "llvm/Analysis/TargetTransformInfo.h"
31 #include "llvm/IR/DomTreeUpdater.h"
32 #include "llvm/IR/Dominators.h"
33 #include "llvm/Transforms/Scalar.h"
34 #include "llvm/Transforms/Scalar/LoopPassManager.h"
35 #include "llvm/Transforms/Utils.h"
36 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
37 #include "llvm/Transforms/Utils/Local.h"
38 #include "llvm/Transforms/Utils/LoopUtils.h"
39 using namespace llvm;
40 
41 #define DEBUG_TYPE "loop-simplifycfg"
42 
43 static cl::opt<bool> EnableTermFolding("enable-loop-simplifycfg-term-folding",
44                                        cl::init(false));
45 
46 STATISTIC(NumTerminatorsFolded,
47           "Number of terminators folded to unconditional branches");
48 STATISTIC(NumLoopBlocksDeleted,
49           "Number of loop blocks deleted");
50 STATISTIC(NumLoopExitsDeleted,
51           "Number of loop exiting edges deleted");
52 
53 /// If \p BB is a switch or a conditional branch, but only one of its successors
54 /// can be reached from this block in runtime, return this successor. Otherwise,
55 /// return nullptr.
56 static BasicBlock *getOnlyLiveSuccessor(BasicBlock *BB) {
57   Instruction *TI = BB->getTerminator();
58   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
59     if (BI->isUnconditional())
60       return nullptr;
61     if (BI->getSuccessor(0) == BI->getSuccessor(1))
62       return BI->getSuccessor(0);
63     ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
64     if (!Cond)
65       return nullptr;
66     return Cond->isZero() ? BI->getSuccessor(1) : BI->getSuccessor(0);
67   }
68 
69   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
70     auto *CI = dyn_cast<ConstantInt>(SI->getCondition());
71     if (!CI)
72       return nullptr;
73     for (auto Case : SI->cases())
74       if (Case.getCaseValue() == CI)
75         return Case.getCaseSuccessor();
76     return SI->getDefaultDest();
77   }
78 
79   return nullptr;
80 }
81 
82 namespace {
83 /// Helper class that can turn branches and switches with constant conditions
84 /// into unconditional branches.
85 class ConstantTerminatorFoldingImpl {
86 private:
87   Loop &L;
88   LoopInfo &LI;
89   DominatorTree &DT;
90   ScalarEvolution &SE;
91   MemorySSAUpdater *MSSAU;
92 
93   // Whether or not the current loop has irreducible CFG.
94   bool HasIrreducibleCFG = false;
95   // Whether or not the current loop will still exist after terminator constant
96   // folding will be done. In theory, there are two ways how it can happen:
97   // 1. Loop's latch(es) become unreachable from loop header;
98   // 2. Loop's header becomes unreachable from method entry.
99   // In practice, the second situation is impossible because we only modify the
100   // current loop and its preheader and do not affect preheader's reachibility
101   // from any other block. So this variable set to true means that loop's latch
102   // has become unreachable from loop header.
103   bool DeleteCurrentLoop = false;
104 
105   // The blocks of the original loop that will still be reachable from entry
106   // after the constant folding.
107   SmallPtrSet<BasicBlock *, 8> LiveLoopBlocks;
108   // The blocks of the original loop that will become unreachable from entry
109   // after the constant folding.
110   SmallVector<BasicBlock *, 8> DeadLoopBlocks;
111   // The exits of the original loop that will still be reachable from entry
112   // after the constant folding.
113   SmallPtrSet<BasicBlock *, 8> LiveExitBlocks;
114   // The exits of the original loop that will become unreachable from entry
115   // after the constant folding.
116   SmallVector<BasicBlock *, 8> DeadExitBlocks;
117   // The blocks that will still be a part of the current loop after folding.
118   SmallPtrSet<BasicBlock *, 8> BlocksInLoopAfterFolding;
119   // The blocks that have terminators with constant condition that can be
120   // folded. Note: fold candidates should be in L but not in any of its
121   // subloops to avoid complex LI updates.
122   SmallVector<BasicBlock *, 8> FoldCandidates;
123 
124   void dump() const {
125     dbgs() << "Constant terminator folding for loop " << L << "\n";
126     dbgs() << "After terminator constant-folding, the loop will";
127     if (!DeleteCurrentLoop)
128       dbgs() << " not";
129     dbgs() << " be destroyed\n";
130     auto PrintOutVector = [&](const char *Message,
131                            const SmallVectorImpl<BasicBlock *> &S) {
132       dbgs() << Message << "\n";
133       for (const BasicBlock *BB : S)
134         dbgs() << "\t" << BB->getName() << "\n";
135     };
136     auto PrintOutSet = [&](const char *Message,
137                            const SmallPtrSetImpl<BasicBlock *> &S) {
138       dbgs() << Message << "\n";
139       for (const BasicBlock *BB : S)
140         dbgs() << "\t" << BB->getName() << "\n";
141     };
142     PrintOutVector("Blocks in which we can constant-fold terminator:",
143                    FoldCandidates);
144     PrintOutSet("Live blocks from the original loop:", LiveLoopBlocks);
145     PrintOutVector("Dead blocks from the original loop:", DeadLoopBlocks);
146     PrintOutSet("Live exit blocks:", LiveExitBlocks);
147     PrintOutVector("Dead exit blocks:", DeadExitBlocks);
148     if (!DeleteCurrentLoop)
149       PrintOutSet("The following blocks will still be part of the loop:",
150                   BlocksInLoopAfterFolding);
151   }
152 
153   /// Whether or not the current loop has irreducible CFG.
154   bool hasIrreducibleCFG(LoopBlocksDFS &DFS) {
155     assert(DFS.isComplete() && "DFS is expected to be finished");
156     // Index of a basic block in RPO traversal.
157     DenseMap<const BasicBlock *, unsigned> RPO;
158     unsigned Current = 0;
159     for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I)
160       RPO[*I] = Current++;
161 
162     for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) {
163       BasicBlock *BB = *I;
164       for (auto *Succ : successors(BB))
165         if (L.contains(Succ) && !LI.isLoopHeader(Succ) && RPO[BB] > RPO[Succ])
166           // If an edge goes from a block with greater order number into a block
167           // with lesses number, and it is not a loop backedge, then it can only
168           // be a part of irreducible non-loop cycle.
169           return true;
170     }
171     return false;
172   }
173 
174   /// Fill all information about status of blocks and exits of the current loop
175   /// if constant folding of all branches will be done.
176   void analyze() {
177     LoopBlocksDFS DFS(&L);
178     DFS.perform(&LI);
179     assert(DFS.isComplete() && "DFS is expected to be finished");
180 
181     // TODO: The algorithm below relies on both RPO and Postorder traversals.
182     // When the loop has only reducible CFG inside, then the invariant "all
183     // predecessors of X are processed before X in RPO" is preserved. However
184     // an irreducible loop can break this invariant (e.g. latch does not have to
185     // be the last block in the traversal in this case, and the algorithm relies
186     // on this). We can later decide to support such cases by altering the
187     // algorithms, but so far we just give up analyzing them.
188     if (hasIrreducibleCFG(DFS)) {
189       HasIrreducibleCFG = true;
190       return;
191     }
192 
193     // Collect live and dead loop blocks and exits.
194     LiveLoopBlocks.insert(L.getHeader());
195     for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) {
196       BasicBlock *BB = *I;
197 
198       // If a loop block wasn't marked as live so far, then it's dead.
199       if (!LiveLoopBlocks.count(BB)) {
200         DeadLoopBlocks.push_back(BB);
201         continue;
202       }
203 
204       BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(BB);
205 
206       // If a block has only one live successor, it's a candidate on constant
207       // folding. Only handle blocks from current loop: branches in child loops
208       // are skipped because if they can be folded, they should be folded during
209       // the processing of child loops.
210       bool TakeFoldCandidate = TheOnlySucc && LI.getLoopFor(BB) == &L;
211       if (TakeFoldCandidate)
212         FoldCandidates.push_back(BB);
213 
214       // Handle successors.
215       for (BasicBlock *Succ : successors(BB))
216         if (!TakeFoldCandidate || TheOnlySucc == Succ) {
217           if (L.contains(Succ))
218             LiveLoopBlocks.insert(Succ);
219           else
220             LiveExitBlocks.insert(Succ);
221         }
222     }
223 
224     // Sanity check: amount of dead and live loop blocks should match the total
225     // number of blocks in loop.
226     assert(L.getNumBlocks() == LiveLoopBlocks.size() + DeadLoopBlocks.size() &&
227            "Malformed block sets?");
228 
229     // Now, all exit blocks that are not marked as live are dead.
230     SmallVector<BasicBlock *, 8> ExitBlocks;
231     L.getExitBlocks(ExitBlocks);
232     for (auto *ExitBlock : ExitBlocks)
233       if (!LiveExitBlocks.count(ExitBlock))
234         DeadExitBlocks.push_back(ExitBlock);
235 
236     // Whether or not the edge From->To will still be present in graph after the
237     // folding.
238     auto IsEdgeLive = [&](BasicBlock *From, BasicBlock *To) {
239       if (!LiveLoopBlocks.count(From))
240         return false;
241       BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(From);
242       return !TheOnlySucc || TheOnlySucc == To || LI.getLoopFor(From) != &L;
243     };
244 
245     // The loop will not be destroyed if its latch is live.
246     DeleteCurrentLoop = !IsEdgeLive(L.getLoopLatch(), L.getHeader());
247 
248     // If we are going to delete the current loop completely, no extra analysis
249     // is needed.
250     if (DeleteCurrentLoop)
251       return;
252 
253     // Otherwise, we should check which blocks will still be a part of the
254     // current loop after the transform.
255     BlocksInLoopAfterFolding.insert(L.getLoopLatch());
256     // If the loop is live, then we should compute what blocks are still in
257     // loop after all branch folding has been done. A block is in loop if
258     // it has a live edge to another block that is in the loop; by definition,
259     // latch is in the loop.
260     auto BlockIsInLoop = [&](BasicBlock *BB) {
261       return any_of(successors(BB), [&](BasicBlock *Succ) {
262         return BlocksInLoopAfterFolding.count(Succ) && IsEdgeLive(BB, Succ);
263       });
264     };
265     for (auto I = DFS.beginPostorder(), E = DFS.endPostorder(); I != E; ++I) {
266       BasicBlock *BB = *I;
267       if (BlockIsInLoop(BB))
268         BlocksInLoopAfterFolding.insert(BB);
269     }
270 
271     // Sanity check: header must be in loop.
272     assert(BlocksInLoopAfterFolding.count(L.getHeader()) &&
273            "Header not in loop?");
274     assert(BlocksInLoopAfterFolding.size() <= LiveLoopBlocks.size() &&
275            "All blocks that stay in loop should be live!");
276   }
277 
278   /// We need to preserve static reachibility of all loop exit blocks (this is)
279   /// required by loop pass manager. In order to do it, we make the following
280   /// trick:
281   ///
282   ///  preheader:
283   ///    <preheader code>
284   ///    br label %loop_header
285   ///
286   ///  loop_header:
287   ///    ...
288   ///    br i1 false, label %dead_exit, label %loop_block
289   ///    ...
290   ///
291   /// We cannot simply remove edge from the loop to dead exit because in this
292   /// case dead_exit (and its successors) may become unreachable. To avoid that,
293   /// we insert the following fictive preheader:
294   ///
295   ///  preheader:
296   ///    <preheader code>
297   ///    switch i32 0, label %preheader-split,
298   ///                  [i32 1, label %dead_exit_1],
299   ///                  [i32 2, label %dead_exit_2],
300   ///                  ...
301   ///                  [i32 N, label %dead_exit_N],
302   ///
303   ///  preheader-split:
304   ///    br label %loop_header
305   ///
306   ///  loop_header:
307   ///    ...
308   ///    br i1 false, label %dead_exit_N, label %loop_block
309   ///    ...
310   ///
311   /// Doing so, we preserve static reachibility of all dead exits and can later
312   /// remove edges from the loop to these blocks.
313   void handleDeadExits() {
314     // If no dead exits, nothing to do.
315     if (DeadExitBlocks.empty())
316       return;
317 
318     // Construct split preheader and the dummy switch to thread edges from it to
319     // dead exits.
320     DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
321     BasicBlock *Preheader = L.getLoopPreheader();
322     BasicBlock *NewPreheader = Preheader->splitBasicBlock(
323         Preheader->getTerminator(),
324         Twine(Preheader->getName()).concat("-split"));
325     DTU.deleteEdge(Preheader, L.getHeader());
326     DTU.insertEdge(NewPreheader, L.getHeader());
327     DTU.insertEdge(Preheader, NewPreheader);
328     IRBuilder<> Builder(Preheader->getTerminator());
329     SwitchInst *DummySwitch =
330         Builder.CreateSwitch(Builder.getInt32(0), NewPreheader);
331     Preheader->getTerminator()->eraseFromParent();
332 
333     unsigned DummyIdx = 1;
334     for (BasicBlock *BB : DeadExitBlocks) {
335       SmallVector<Instruction *, 4> DeadPhis;
336       for (auto &PN : BB->phis())
337         DeadPhis.push_back(&PN);
338 
339       // Eliminate all Phis from dead exits.
340       for (Instruction *PN : DeadPhis) {
341         PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
342         PN->eraseFromParent();
343       }
344       assert(DummyIdx != 0 && "Too many dead exits!");
345       DummySwitch->addCase(Builder.getInt32(DummyIdx++), BB);
346       DTU.insertEdge(Preheader, BB);
347       ++NumLoopExitsDeleted;
348     }
349 
350     assert(L.getLoopPreheader() == NewPreheader && "Malformed CFG?");
351     if (Loop *OuterLoop = LI.getLoopFor(Preheader)) {
352       OuterLoop->addBasicBlockToLoop(NewPreheader, LI);
353 
354       // When we break dead edges, the outer loop may become unreachable from
355       // the current loop. We need to fix loop info accordingly. For this, we
356       // find the most nested loop that still contains L and remove L from all
357       // loops that are inside of it.
358       Loop *StillReachable = nullptr;
359       for (BasicBlock *BB : LiveExitBlocks) {
360         Loop *BBL = LI.getLoopFor(BB);
361         if (BBL && BBL->contains(L.getHeader()))
362           if (!StillReachable ||
363               BBL->getLoopDepth() > StillReachable->getLoopDepth())
364             StillReachable = BBL;
365       }
366 
367       // Okay, our loop is no longer in the outer loop (and maybe not in some of
368       // its parents as well). Make the fixup.
369       if (StillReachable != OuterLoop) {
370         LI.changeLoopFor(NewPreheader, StillReachable);
371         for (Loop *NotContaining = OuterLoop; NotContaining != StillReachable;
372              NotContaining = NotContaining->getParentLoop()) {
373           NotContaining->removeBlockFromLoop(NewPreheader);
374           for (auto *BB : L.blocks())
375             NotContaining->removeBlockFromLoop(BB);
376         }
377         OuterLoop->removeChildLoop(&L);
378         if (StillReachable)
379           StillReachable->addChildLoop(&L);
380         else
381           LI.addTopLevelLoop(&L);
382 
383         // Some values from loops in [OuterLoop, StillReachable) could be used
384         // in the current loop. Now it is not their child anymore, so such uses
385         // require LCSSA Phis.
386         Loop *FixLCSSALoop = OuterLoop;
387         while (FixLCSSALoop->getParentLoop() != StillReachable)
388           FixLCSSALoop = FixLCSSALoop->getParentLoop();
389         assert(FixLCSSALoop && "Should be a loop!");
390         formLCSSARecursively(*FixLCSSALoop, DT, &LI, &SE);
391       }
392     }
393   }
394 
395   /// Delete loop blocks that have become unreachable after folding. Make all
396   /// relevant updates to DT and LI.
397   void deleteDeadLoopBlocks() {
398     DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
399     if (MSSAU) {
400       SmallPtrSet<BasicBlock *, 8> DeadLoopBlocksSet(DeadLoopBlocks.begin(),
401                                                      DeadLoopBlocks.end());
402       MSSAU->removeBlocks(DeadLoopBlocksSet);
403     }
404     for (auto *BB : DeadLoopBlocks) {
405       assert(BB != L.getHeader() &&
406              "Header of the current loop cannot be dead!");
407       LLVM_DEBUG(dbgs() << "Deleting dead loop block " << BB->getName()
408                         << "\n");
409       if (LI.isLoopHeader(BB)) {
410         assert(LI.getLoopFor(BB) != &L && "Attempt to remove current loop!");
411         LI.erase(LI.getLoopFor(BB));
412       }
413       LI.removeBlock(BB);
414     }
415 
416     DeleteDeadBlocks(DeadLoopBlocks, &DTU);
417     NumLoopBlocksDeleted += DeadLoopBlocks.size();
418   }
419 
420   /// Constant-fold terminators of blocks acculumated in FoldCandidates into the
421   /// unconditional branches.
422   void foldTerminators() {
423     DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
424 
425     for (BasicBlock *BB : FoldCandidates) {
426       assert(LI.getLoopFor(BB) == &L && "Should be a loop block!");
427       BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(BB);
428       assert(TheOnlySucc && "Should have one live successor!");
429 
430       LLVM_DEBUG(dbgs() << "Replacing terminator of " << BB->getName()
431                         << " with an unconditional branch to the block "
432                         << TheOnlySucc->getName() << "\n");
433 
434       SmallPtrSet<BasicBlock *, 2> DeadSuccessors;
435       // Remove all BB's successors except for the live one.
436       unsigned TheOnlySuccDuplicates = 0;
437       for (auto *Succ : successors(BB))
438         if (Succ != TheOnlySucc) {
439           DeadSuccessors.insert(Succ);
440           // If our successor lies in a different loop, we don't want to remove
441           // the one-input Phi because it is a LCSSA Phi.
442           bool PreserveLCSSAPhi = !L.contains(Succ);
443           Succ->removePredecessor(BB, PreserveLCSSAPhi);
444           if (MSSAU)
445             MSSAU->removeEdge(BB, Succ);
446         } else
447           ++TheOnlySuccDuplicates;
448 
449       assert(TheOnlySuccDuplicates > 0 && "Should be!");
450       // If TheOnlySucc was BB's successor more than once, after transform it
451       // will be its successor only once. Remove redundant inputs from
452       // TheOnlySucc's Phis.
453       bool PreserveLCSSAPhi = !L.contains(TheOnlySucc);
454       for (unsigned Dup = 1; Dup < TheOnlySuccDuplicates; ++Dup)
455         TheOnlySucc->removePredecessor(BB, PreserveLCSSAPhi);
456       if (MSSAU && TheOnlySuccDuplicates > 1)
457         MSSAU->removeDuplicatePhiEdgesBetween(BB, TheOnlySucc);
458 
459       IRBuilder<> Builder(BB->getContext());
460       Instruction *Term = BB->getTerminator();
461       Builder.SetInsertPoint(Term);
462       Builder.CreateBr(TheOnlySucc);
463       Term->eraseFromParent();
464 
465       for (auto *DeadSucc : DeadSuccessors)
466         DTU.deleteEdge(BB, DeadSucc);
467 
468       ++NumTerminatorsFolded;
469     }
470   }
471 
472 public:
473   ConstantTerminatorFoldingImpl(Loop &L, LoopInfo &LI, DominatorTree &DT,
474                                 ScalarEvolution &SE,
475                                 MemorySSAUpdater *MSSAU)
476       : L(L), LI(LI), DT(DT), SE(SE), MSSAU(MSSAU) {}
477   bool run() {
478     assert(L.getLoopLatch() && "Should be single latch!");
479 
480     // Collect all available information about status of blocks after constant
481     // folding.
482     analyze();
483 
484     LLVM_DEBUG(dbgs() << "In function " << L.getHeader()->getParent()->getName()
485                       << ": ");
486 
487     if (HasIrreducibleCFG) {
488       LLVM_DEBUG(dbgs() << "Loops with irreducible CFG are not supported!\n");
489       return false;
490     }
491 
492     // Nothing to constant-fold.
493     if (FoldCandidates.empty()) {
494       LLVM_DEBUG(
495           dbgs() << "No constant terminator folding candidates found in loop "
496                  << L.getHeader()->getName() << "\n");
497       return false;
498     }
499 
500     // TODO: Support deletion of the current loop.
501     if (DeleteCurrentLoop) {
502       LLVM_DEBUG(
503           dbgs()
504           << "Give up constant terminator folding in loop "
505           << L.getHeader()->getName()
506           << ": we don't currently support deletion of the current loop.\n");
507       return false;
508     }
509 
510     // TODO: Support blocks that are not dead, but also not in loop after the
511     // folding.
512     if (BlocksInLoopAfterFolding.size() + DeadLoopBlocks.size() !=
513         L.getNumBlocks()) {
514       LLVM_DEBUG(
515           dbgs() << "Give up constant terminator folding in loop "
516                  << L.getHeader()->getName()
517                  << ": we don't currently"
518                     " support blocks that are not dead, but will stop "
519                     "being a part of the loop after constant-folding.\n");
520       return false;
521     }
522 
523     SE.forgetTopmostLoop(&L);
524     // Dump analysis results.
525     LLVM_DEBUG(dump());
526 
527     LLVM_DEBUG(dbgs() << "Constant-folding " << FoldCandidates.size()
528                       << " terminators in loop " << L.getHeader()->getName()
529                       << "\n");
530 
531     // Make the actual transforms.
532     handleDeadExits();
533     foldTerminators();
534 
535     if (!DeadLoopBlocks.empty()) {
536       LLVM_DEBUG(dbgs() << "Deleting " << DeadLoopBlocks.size()
537                     << " dead blocks in loop " << L.getHeader()->getName()
538                     << "\n");
539       deleteDeadLoopBlocks();
540     }
541 
542 #ifndef NDEBUG
543     // Make sure that we have preserved all data structures after the transform.
544     assert(DT.verify() && "DT broken after transform!");
545     assert(DT.isReachableFromEntry(L.getHeader()));
546     LI.verify(DT);
547 #endif
548 
549     return true;
550   }
551 };
552 } // namespace
553 
554 /// Turn branches and switches with known constant conditions into unconditional
555 /// branches.
556 static bool constantFoldTerminators(Loop &L, DominatorTree &DT, LoopInfo &LI,
557                                     ScalarEvolution &SE,
558                                     MemorySSAUpdater *MSSAU) {
559   if (!EnableTermFolding)
560     return false;
561 
562   // To keep things simple, only process loops with single latch. We
563   // canonicalize most loops to this form. We can support multi-latch if needed.
564   if (!L.getLoopLatch())
565     return false;
566 
567   ConstantTerminatorFoldingImpl BranchFolder(L, LI, DT, SE, MSSAU);
568   return BranchFolder.run();
569 }
570 
571 static bool mergeBlocksIntoPredecessors(Loop &L, DominatorTree &DT,
572                                         LoopInfo &LI, MemorySSAUpdater *MSSAU) {
573   bool Changed = false;
574   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
575   // Copy blocks into a temporary array to avoid iterator invalidation issues
576   // as we remove them.
577   SmallVector<WeakTrackingVH, 16> Blocks(L.blocks());
578 
579   for (auto &Block : Blocks) {
580     // Attempt to merge blocks in the trivial case. Don't modify blocks which
581     // belong to other loops.
582     BasicBlock *Succ = cast_or_null<BasicBlock>(Block);
583     if (!Succ)
584       continue;
585 
586     BasicBlock *Pred = Succ->getSinglePredecessor();
587     if (!Pred || !Pred->getSingleSuccessor() || LI.getLoopFor(Pred) != &L)
588       continue;
589 
590     // Merge Succ into Pred and delete it.
591     MergeBlockIntoPredecessor(Succ, &DTU, &LI, MSSAU);
592 
593     Changed = true;
594   }
595 
596   return Changed;
597 }
598 
599 static bool simplifyLoopCFG(Loop &L, DominatorTree &DT, LoopInfo &LI,
600                             ScalarEvolution &SE, MemorySSAUpdater *MSSAU) {
601   bool Changed = false;
602 
603   // Constant-fold terminators with known constant conditions.
604   Changed |= constantFoldTerminators(L, DT, LI, SE, MSSAU);
605 
606   // Eliminate unconditional branches by merging blocks into their predecessors.
607   Changed |= mergeBlocksIntoPredecessors(L, DT, LI, MSSAU);
608 
609   if (Changed)
610     SE.forgetTopmostLoop(&L);
611 
612   return Changed;
613 }
614 
615 PreservedAnalyses LoopSimplifyCFGPass::run(Loop &L, LoopAnalysisManager &AM,
616                                            LoopStandardAnalysisResults &AR,
617                                            LPMUpdater &) {
618   Optional<MemorySSAUpdater> MSSAU;
619   if (EnableMSSALoopDependency && AR.MSSA)
620     MSSAU = MemorySSAUpdater(AR.MSSA);
621   if (!simplifyLoopCFG(L, AR.DT, AR.LI, AR.SE,
622                        MSSAU.hasValue() ? MSSAU.getPointer() : nullptr))
623     return PreservedAnalyses::all();
624 
625   return getLoopPassPreservedAnalyses();
626 }
627 
628 namespace {
629 class LoopSimplifyCFGLegacyPass : public LoopPass {
630 public:
631   static char ID; // Pass ID, replacement for typeid
632   LoopSimplifyCFGLegacyPass() : LoopPass(ID) {
633     initializeLoopSimplifyCFGLegacyPassPass(*PassRegistry::getPassRegistry());
634   }
635 
636   bool runOnLoop(Loop *L, LPPassManager &) override {
637     if (skipLoop(L))
638       return false;
639 
640     DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
641     LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
642     ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
643     Optional<MemorySSAUpdater> MSSAU;
644     if (EnableMSSALoopDependency) {
645       MemorySSA *MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA();
646       MSSAU = MemorySSAUpdater(MSSA);
647       if (VerifyMemorySSA)
648         MSSA->verifyMemorySSA();
649     }
650     return simplifyLoopCFG(*L, DT, LI, SE,
651                            MSSAU.hasValue() ? MSSAU.getPointer() : nullptr);
652   }
653 
654   void getAnalysisUsage(AnalysisUsage &AU) const override {
655     if (EnableMSSALoopDependency) {
656       AU.addRequired<MemorySSAWrapperPass>();
657       AU.addPreserved<MemorySSAWrapperPass>();
658     }
659     AU.addPreserved<DependenceAnalysisWrapperPass>();
660     getLoopAnalysisUsage(AU);
661   }
662 };
663 }
664 
665 char LoopSimplifyCFGLegacyPass::ID = 0;
666 INITIALIZE_PASS_BEGIN(LoopSimplifyCFGLegacyPass, "loop-simplifycfg",
667                       "Simplify loop CFG", false, false)
668 INITIALIZE_PASS_DEPENDENCY(LoopPass)
669 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
670 INITIALIZE_PASS_END(LoopSimplifyCFGLegacyPass, "loop-simplifycfg",
671                     "Simplify loop CFG", false, false)
672 
673 Pass *llvm::createLoopSimplifyCFGPass() {
674   return new LoopSimplifyCFGLegacyPass();
675 }
676