1 //===--------- LoopSimplifyCFG.cpp - Loop CFG Simplification Pass ---------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Loop SimplifyCFG Pass. This pass is responsible for
11 // basic loop CFG cleanup, primarily to assist other loop passes. If you
12 // encounter a noncanonical CFG construct that causes another loop pass to
13 // perform suboptimally, this is the place to fix it up.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "llvm/Transforms/Scalar/LoopSimplifyCFG.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/AssumptionCache.h"
22 #include "llvm/Analysis/BasicAliasAnalysis.h"
23 #include "llvm/Analysis/DependenceAnalysis.h"
24 #include "llvm/Analysis/GlobalsModRef.h"
25 #include "llvm/Analysis/LoopInfo.h"
26 #include "llvm/Analysis/LoopPass.h"
27 #include "llvm/Analysis/MemorySSA.h"
28 #include "llvm/Analysis/MemorySSAUpdater.h"
29 #include "llvm/Analysis/ScalarEvolution.h"
30 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
31 #include "llvm/Analysis/TargetTransformInfo.h"
32 #include "llvm/IR/DomTreeUpdater.h"
33 #include "llvm/IR/Dominators.h"
34 #include "llvm/Transforms/Scalar.h"
35 #include "llvm/Transforms/Scalar/LoopPassManager.h"
36 #include "llvm/Transforms/Utils.h"
37 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
38 #include "llvm/Transforms/Utils/Local.h"
39 #include "llvm/Transforms/Utils/LoopUtils.h"
40 using namespace llvm;
41 
42 #define DEBUG_TYPE "loop-simplifycfg"
43 
44 STATISTIC(NumTerminatorsFolded,
45           "Number of terminators folded to unconditional branches");
46 
47 /// If \p BB is a switch or a conditional branch, but only one of its successors
48 /// can be reached from this block in runtime, return this successor. Otherwise,
49 /// return nullptr.
50 static BasicBlock *getOnlyLiveSuccessor(BasicBlock *BB) {
51   Instruction *TI = BB->getTerminator();
52   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
53     if (BI->isUnconditional())
54       return nullptr;
55     if (BI->getSuccessor(0) == BI->getSuccessor(1))
56       return BI->getSuccessor(0);
57     ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
58     if (!Cond)
59       return nullptr;
60     return Cond->isZero() ? BI->getSuccessor(1) : BI->getSuccessor(0);
61   }
62 
63   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
64     auto *CI = dyn_cast<ConstantInt>(SI->getCondition());
65     if (!CI)
66       return nullptr;
67     for (auto Case : SI->cases())
68       if (Case.getCaseValue() == CI)
69         return Case.getCaseSuccessor();
70     return SI->getDefaultDest();
71   }
72 
73   return nullptr;
74 }
75 
76 /// Helper class that can turn branches and switches with constant conditions
77 /// into unconditional branches.
78 class ConstantTerminatorFoldingImpl {
79 private:
80   Loop &L;
81   LoopInfo &LI;
82   DominatorTree &DT;
83 
84   // Whether or not the current loop will still exist after terminator constant
85   // folding will be done. In theory, there are two ways how it can happen:
86   // 1. Loop's latch(es) become unreachable from loop header;
87   // 2. Loop's header becomes unreachable from method entry.
88   // In practice, the second situation is impossible because we only modify the
89   // current loop and its preheader and do not affect preheader's reachibility
90   // from any other block. So this variable set to true means that loop's latch
91   // has become unreachable from loop header.
92   bool DeleteCurrentLoop = false;
93 
94   // The blocks of the original loop that will still be reachable from entry
95   // after the constant folding.
96   SmallPtrSet<BasicBlock *, 8> LiveLoopBlocks;
97   // The blocks of the original loop that will become unreachable from entry
98   // after the constant folding.
99   SmallPtrSet<BasicBlock *, 8> DeadLoopBlocks;
100   // The exits of the original loop that will still be reachable from entry
101   // after the constant folding.
102   SmallPtrSet<BasicBlock *, 8> LiveExitBlocks;
103   // The exits of the original loop that will become unreachable from entry
104   // after the constant folding.
105   SmallPtrSet<BasicBlock *, 8> DeadExitBlocks;
106   // The blocks that will still be a part of the current loop after folding.
107   SmallPtrSet<BasicBlock *, 8> BlocksInLoopAfterFolding;
108   // The blocks that have terminators with constant condition that can be
109   // folded. Note: fold candidates should be in L but not in any of its
110   // subloops to avoid complex LI updates.
111   SmallVector<BasicBlock *, 8> FoldCandidates;
112 
113   void dump() const {
114     dbgs() << "Constant terminator folding for loop " << L << "\n";
115     dbgs() << "After terminator constant-folding, the loop will";
116     if (!DeleteCurrentLoop)
117       dbgs() << " not";
118     dbgs() << " be destroyed\n";
119     dbgs() << "Blocks in which we can constant-fold terminator:\n";
120     for (const BasicBlock *BB : FoldCandidates)
121       dbgs() << "\t" << BB->getName() << "\n";
122     auto PrintOutSet = [&](const char *Message,
123                            const SmallPtrSetImpl<BasicBlock *> &S) {
124       dbgs() << Message << "\n";
125       for (const BasicBlock *BB : S)
126         dbgs() << "\t" << BB->getName() << "\n";
127     };
128     PrintOutSet("Live blocks from the original loop:", LiveLoopBlocks);
129     PrintOutSet("Dead blocks from the original loop:", DeadLoopBlocks);
130     PrintOutSet("Live exit blocks:", LiveExitBlocks);
131     PrintOutSet("Dead exit blocks:", DeadExitBlocks);
132     if (!DeleteCurrentLoop)
133       PrintOutSet("The following blocks will still be part of the loop:",
134                   BlocksInLoopAfterFolding);
135   }
136 
137   /// Fill all information about status of blocks and exits of the current loop
138   /// if constant folding of all branches will be done.
139   void analyze() {
140     LoopBlocksDFS DFS(&L);
141     DFS.perform(&LI);
142     assert(DFS.isComplete() && "DFS is expected to be finished");
143 
144     // Collect live and dead loop blocks and exits.
145     SmallPtrSet<BasicBlock *, 8> ExitBlocks;
146     LiveLoopBlocks.insert(L.getHeader());
147     for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) {
148       BasicBlock *BB = *I;
149 
150       // If a loop block wasn't marked as live so far, then it's dead.
151       if (!LiveLoopBlocks.count(BB)) {
152         DeadLoopBlocks.insert(BB);
153         continue;
154       }
155 
156       BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(BB);
157 
158       // If a block has only one live successor, it's a candidate on constant
159       // folding. Only handle blocks from current loop: branches in child loops
160       // are skipped because if they can be folded, they should be folded during
161       // the processing of child loops.
162       if (TheOnlySucc && LI.getLoopFor(BB) == &L)
163         FoldCandidates.push_back(BB);
164 
165       // Handle successors.
166       auto ProcessSuccessor = [&](BasicBlock *Succ, bool IsLive) {
167         if (!L.contains(Succ)) {
168           if (IsLive)
169             LiveExitBlocks.insert(Succ);
170           ExitBlocks.insert(Succ);
171         } else if (IsLive)
172           LiveLoopBlocks.insert(Succ);
173       };
174       for (BasicBlock *Succ : successors(BB))
175         ProcessSuccessor(Succ, !TheOnlySucc || TheOnlySucc == Succ);
176     }
177 
178     // Sanity check: amount of dead and live loop blocks should match the total
179     // number of blocks in loop.
180     assert(L.getNumBlocks() == LiveLoopBlocks.size() + DeadLoopBlocks.size() &&
181            "Malformed block sets?");
182 
183     // Now, all exit blocks that are not marked as live are dead.
184     for (auto *ExitBlock : ExitBlocks)
185       if (!LiveExitBlocks.count(ExitBlock))
186         DeadExitBlocks.insert(ExitBlock);
187 
188     // Whether or not the edge From->To will still be present in graph after the
189     // folding.
190     auto IsEdgeLive = [&](BasicBlock *From, BasicBlock *To) {
191       if (!LiveLoopBlocks.count(From))
192         return false;
193       BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(From);
194       return !TheOnlySucc || TheOnlySucc == To;
195     };
196 
197     // The loop will not be destroyed if its latch is live.
198     DeleteCurrentLoop = !IsEdgeLive(L.getLoopLatch(), L.getHeader());
199 
200     // If we are going to delete the current loop completely, no extra analysis
201     // is needed.
202     if (DeleteCurrentLoop)
203       return;
204 
205     // Otherwise, we should check which blocks will still be a part of the
206     // current loop after the transform.
207     BlocksInLoopAfterFolding.insert(L.getLoopLatch());
208     // If the loop is live, then we should compute what blocks are still in
209     // loop after all branch folding has been done. A block is in loop if
210     // it has a live edge to another block that is in the loop; by definition,
211     // latch is in the loop.
212     auto BlockIsInLoop = [&](BasicBlock *BB) {
213       return any_of(successors(BB), [&](BasicBlock *Succ) {
214         return BlocksInLoopAfterFolding.count(Succ) && IsEdgeLive(BB, Succ);
215       });
216     };
217     for (auto I = DFS.beginPostorder(), E = DFS.endPostorder(); I != E; ++I) {
218       BasicBlock *BB = *I;
219       if (BlockIsInLoop(BB))
220         BlocksInLoopAfterFolding.insert(BB);
221     }
222 
223     // Sanity check: header must be in loop.
224     assert(BlocksInLoopAfterFolding.count(L.getHeader()) &&
225            "Header not in loop?");
226   }
227 
228   /// Constant-fold terminators of blocks acculumated in FoldCandidates into the
229   /// unconditional branches.
230   void foldTerminators() {
231     DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
232 
233     for (BasicBlock *BB : FoldCandidates) {
234       assert(LI.getLoopFor(BB) == &L && "Should be a loop block!");
235       BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(BB);
236       assert(TheOnlySucc && "Should have one live successor!");
237 
238       LLVM_DEBUG(dbgs() << "Replacing terminator of " << BB->getName()
239                         << " with an unconditional branch to the block "
240                         << TheOnlySucc->getName() << "\n");
241 
242       SmallPtrSet<BasicBlock *, 2> DeadSuccessors;
243       // Remove all BB's successors except for the live one.
244       for (auto *Succ : successors(BB))
245         if (Succ != TheOnlySucc) {
246           DeadSuccessors.insert(Succ);
247           Succ->removePredecessor(BB);
248         }
249 
250       IRBuilder<> Builder(BB->getContext());
251       Instruction *Term = BB->getTerminator();
252       Builder.SetInsertPoint(Term);
253       Builder.CreateBr(TheOnlySucc);
254       Term->eraseFromParent();
255 
256       for (auto *DeadSucc : DeadSuccessors)
257         DTU.deleteEdge(BB, DeadSucc);
258 
259       ++NumTerminatorsFolded;
260     }
261   }
262 
263 public:
264   ConstantTerminatorFoldingImpl(Loop &L, LoopInfo &LI, DominatorTree &DT)
265       : L(L), LI(LI), DT(DT) {}
266   bool run() {
267     assert(L.getLoopLatch() && "Should be single latch!");
268 
269     // Collect all available information about status of blocks after constant
270     // folding.
271     analyze();
272 
273     LLVM_DEBUG(dbgs() << "In function " << L.getHeader()->getParent()->getName()
274                       << ": ");
275 
276     // Nothing to constant-fold.
277     if (FoldCandidates.empty()) {
278       LLVM_DEBUG(
279           dbgs() << "No constant terminator folding candidates found in loop "
280                  << L.getHeader()->getName() << "\n");
281       return false;
282     }
283 
284     // TODO: Support deletion of the current loop.
285     if (DeleteCurrentLoop) {
286       LLVM_DEBUG(
287           dbgs()
288           << "Give up constant terminator folding in loop "
289           << L.getHeader()->getName()
290           << ": we don't currently support deletion of the current loop.\n");
291       return false;
292     }
293 
294     // TODO: Support deletion of dead loop blocks.
295     if (!DeadLoopBlocks.empty()) {
296       LLVM_DEBUG(dbgs() << "Give up constant terminator folding in loop "
297                         << L.getHeader()->getName()
298                         << ": we don't currently"
299                            " support deletion of dead in-loop blocks.\n");
300       return false;
301     }
302 
303     // TODO: Support dead loop exits.
304     if (!DeadExitBlocks.empty()) {
305       LLVM_DEBUG(dbgs() << "Give up constant terminator folding in loop "
306                         << L.getHeader()->getName()
307                         << ": we don't currently support dead loop exits.\n");
308       return false;
309     }
310 
311     // TODO: Support blocks that are not dead, but also not in loop after the
312     // folding.
313     if (BlocksInLoopAfterFolding.size() != L.getNumBlocks()) {
314       LLVM_DEBUG(
315           dbgs() << "Give up constant terminator folding in loop "
316                  << L.getHeader()->getName()
317                  << ": we don't currently"
318                     " support blocks that are not dead, but will stop "
319                     "being a part of the loop after constant-folding.\n");
320       return false;
321     }
322 
323     // Dump analysis results.
324     LLVM_DEBUG(dump());
325 
326     LLVM_DEBUG(dbgs() << "Constant-folding " << FoldCandidates.size()
327                       << " terminators in loop " << L.getHeader()->getName()
328                       << "\n");
329 
330     // Make the actual transforms.
331     foldTerminators();
332 
333 #ifndef NDEBUG
334     // Make sure that we have preserved all data structures after the transform.
335     DT.verify();
336     assert(DT.isReachableFromEntry(L.getHeader()));
337     LI.verify(DT);
338 #endif
339 
340     return true;
341   }
342 };
343 
344 /// Turn branches and switches with known constant conditions into unconditional
345 /// branches.
346 static bool constantFoldTerminators(Loop &L, DominatorTree &DT, LoopInfo &LI) {
347   // To keep things simple, only process loops with single latch. We
348   // canonicalize most loops to this form. We can support multi-latch if needed.
349   if (!L.getLoopLatch())
350     return false;
351 
352   ConstantTerminatorFoldingImpl BranchFolder(L, LI, DT);
353   return BranchFolder.run();
354 }
355 
356 static bool mergeBlocksIntoPredecessors(Loop &L, DominatorTree &DT,
357                                         LoopInfo &LI, MemorySSAUpdater *MSSAU) {
358   bool Changed = false;
359   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
360   // Copy blocks into a temporary array to avoid iterator invalidation issues
361   // as we remove them.
362   SmallVector<WeakTrackingVH, 16> Blocks(L.blocks());
363 
364   for (auto &Block : Blocks) {
365     // Attempt to merge blocks in the trivial case. Don't modify blocks which
366     // belong to other loops.
367     BasicBlock *Succ = cast_or_null<BasicBlock>(Block);
368     if (!Succ)
369       continue;
370 
371     BasicBlock *Pred = Succ->getSinglePredecessor();
372     if (!Pred || !Pred->getSingleSuccessor() || LI.getLoopFor(Pred) != &L)
373       continue;
374 
375     // Merge Succ into Pred and delete it.
376     MergeBlockIntoPredecessor(Succ, &DTU, &LI, MSSAU);
377 
378     Changed = true;
379   }
380 
381   return Changed;
382 }
383 
384 static bool simplifyLoopCFG(Loop &L, DominatorTree &DT, LoopInfo &LI,
385                             ScalarEvolution &SE, MemorySSAUpdater *MSSAU) {
386   bool Changed = false;
387 
388   // Constant-fold terminators with known constant conditions.
389   Changed |= constantFoldTerminators(L, DT, LI);
390 
391   // Eliminate unconditional branches by merging blocks into their predecessors.
392   Changed |= mergeBlocksIntoPredecessors(L, DT, LI, MSSAU);
393 
394   if (Changed)
395     SE.forgetTopmostLoop(&L);
396 
397   return Changed;
398 }
399 
400 PreservedAnalyses LoopSimplifyCFGPass::run(Loop &L, LoopAnalysisManager &AM,
401                                            LoopStandardAnalysisResults &AR,
402                                            LPMUpdater &) {
403   Optional<MemorySSAUpdater> MSSAU;
404   if (EnableMSSALoopDependency && AR.MSSA)
405     MSSAU = MemorySSAUpdater(AR.MSSA);
406   if (!simplifyLoopCFG(L, AR.DT, AR.LI, AR.SE,
407                        MSSAU.hasValue() ? MSSAU.getPointer() : nullptr))
408     return PreservedAnalyses::all();
409 
410   return getLoopPassPreservedAnalyses();
411 }
412 
413 namespace {
414 class LoopSimplifyCFGLegacyPass : public LoopPass {
415 public:
416   static char ID; // Pass ID, replacement for typeid
417   LoopSimplifyCFGLegacyPass() : LoopPass(ID) {
418     initializeLoopSimplifyCFGLegacyPassPass(*PassRegistry::getPassRegistry());
419   }
420 
421   bool runOnLoop(Loop *L, LPPassManager &) override {
422     if (skipLoop(L))
423       return false;
424 
425     DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
426     LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
427     ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
428     Optional<MemorySSAUpdater> MSSAU;
429     if (EnableMSSALoopDependency) {
430       MemorySSA *MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA();
431       MSSAU = MemorySSAUpdater(MSSA);
432       if (VerifyMemorySSA)
433         MSSA->verifyMemorySSA();
434     }
435     return simplifyLoopCFG(*L, DT, LI, SE,
436                            MSSAU.hasValue() ? MSSAU.getPointer() : nullptr);
437   }
438 
439   void getAnalysisUsage(AnalysisUsage &AU) const override {
440     if (EnableMSSALoopDependency) {
441       AU.addRequired<MemorySSAWrapperPass>();
442       AU.addPreserved<MemorySSAWrapperPass>();
443     }
444     AU.addPreserved<DependenceAnalysisWrapperPass>();
445     getLoopAnalysisUsage(AU);
446   }
447 };
448 }
449 
450 char LoopSimplifyCFGLegacyPass::ID = 0;
451 INITIALIZE_PASS_BEGIN(LoopSimplifyCFGLegacyPass, "loop-simplifycfg",
452                       "Simplify loop CFG", false, false)
453 INITIALIZE_PASS_DEPENDENCY(LoopPass)
454 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
455 INITIALIZE_PASS_END(LoopSimplifyCFGLegacyPass, "loop-simplifycfg",
456                     "Simplify loop CFG", false, false)
457 
458 Pass *llvm::createLoopSimplifyCFGPass() {
459   return new LoopSimplifyCFGLegacyPass();
460 }
461