1 //===--------- LoopSimplifyCFG.cpp - Loop CFG Simplification Pass ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Loop SimplifyCFG Pass. This pass is responsible for 10 // basic loop CFG cleanup, primarily to assist other loop passes. If you 11 // encounter a noncanonical CFG construct that causes another loop pass to 12 // perform suboptimally, this is the place to fix it up. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/Scalar/LoopSimplifyCFG.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/AssumptionCache.h" 21 #include "llvm/Analysis/BasicAliasAnalysis.h" 22 #include "llvm/Analysis/DependenceAnalysis.h" 23 #include "llvm/Analysis/DomTreeUpdater.h" 24 #include "llvm/Analysis/GlobalsModRef.h" 25 #include "llvm/Analysis/LoopInfo.h" 26 #include "llvm/Analysis/LoopPass.h" 27 #include "llvm/Analysis/MemorySSA.h" 28 #include "llvm/Analysis/MemorySSAUpdater.h" 29 #include "llvm/Analysis/ScalarEvolution.h" 30 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 31 #include "llvm/Analysis/TargetTransformInfo.h" 32 #include "llvm/IR/Dominators.h" 33 #include "llvm/Transforms/Scalar.h" 34 #include "llvm/Transforms/Scalar/LoopPassManager.h" 35 #include "llvm/Transforms/Utils.h" 36 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 37 #include "llvm/Transforms/Utils/Local.h" 38 #include "llvm/Transforms/Utils/LoopUtils.h" 39 using namespace llvm; 40 41 #define DEBUG_TYPE "loop-simplifycfg" 42 43 static cl::opt<bool> EnableTermFolding("enable-loop-simplifycfg-term-folding", 44 cl::init(true)); 45 46 STATISTIC(NumTerminatorsFolded, 47 "Number of terminators folded to unconditional branches"); 48 STATISTIC(NumLoopBlocksDeleted, 49 "Number of loop blocks deleted"); 50 STATISTIC(NumLoopExitsDeleted, 51 "Number of loop exiting edges deleted"); 52 53 /// If \p BB is a switch or a conditional branch, but only one of its successors 54 /// can be reached from this block in runtime, return this successor. Otherwise, 55 /// return nullptr. 56 static BasicBlock *getOnlyLiveSuccessor(BasicBlock *BB) { 57 Instruction *TI = BB->getTerminator(); 58 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 59 if (BI->isUnconditional()) 60 return nullptr; 61 if (BI->getSuccessor(0) == BI->getSuccessor(1)) 62 return BI->getSuccessor(0); 63 ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition()); 64 if (!Cond) 65 return nullptr; 66 return Cond->isZero() ? BI->getSuccessor(1) : BI->getSuccessor(0); 67 } 68 69 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 70 auto *CI = dyn_cast<ConstantInt>(SI->getCondition()); 71 if (!CI) 72 return nullptr; 73 for (auto Case : SI->cases()) 74 if (Case.getCaseValue() == CI) 75 return Case.getCaseSuccessor(); 76 return SI->getDefaultDest(); 77 } 78 79 return nullptr; 80 } 81 82 namespace { 83 /// Helper class that can turn branches and switches with constant conditions 84 /// into unconditional branches. 85 class ConstantTerminatorFoldingImpl { 86 private: 87 Loop &L; 88 LoopInfo &LI; 89 DominatorTree &DT; 90 ScalarEvolution &SE; 91 MemorySSAUpdater *MSSAU; 92 DomTreeUpdater DTU; 93 SmallVector<DominatorTree::UpdateType, 16> DTUpdates; 94 95 // Whether or not the current loop has irreducible CFG. 96 bool HasIrreducibleCFG = false; 97 // Whether or not the current loop will still exist after terminator constant 98 // folding will be done. In theory, there are two ways how it can happen: 99 // 1. Loop's latch(es) become unreachable from loop header; 100 // 2. Loop's header becomes unreachable from method entry. 101 // In practice, the second situation is impossible because we only modify the 102 // current loop and its preheader and do not affect preheader's reachibility 103 // from any other block. So this variable set to true means that loop's latch 104 // has become unreachable from loop header. 105 bool DeleteCurrentLoop = false; 106 107 // The blocks of the original loop that will still be reachable from entry 108 // after the constant folding. 109 SmallPtrSet<BasicBlock *, 8> LiveLoopBlocks; 110 // The blocks of the original loop that will become unreachable from entry 111 // after the constant folding. 112 SmallVector<BasicBlock *, 8> DeadLoopBlocks; 113 // The exits of the original loop that will still be reachable from entry 114 // after the constant folding. 115 SmallPtrSet<BasicBlock *, 8> LiveExitBlocks; 116 // The exits of the original loop that will become unreachable from entry 117 // after the constant folding. 118 SmallVector<BasicBlock *, 8> DeadExitBlocks; 119 // The blocks that will still be a part of the current loop after folding. 120 SmallPtrSet<BasicBlock *, 8> BlocksInLoopAfterFolding; 121 // The blocks that have terminators with constant condition that can be 122 // folded. Note: fold candidates should be in L but not in any of its 123 // subloops to avoid complex LI updates. 124 SmallVector<BasicBlock *, 8> FoldCandidates; 125 126 void dump() const { 127 dbgs() << "Constant terminator folding for loop " << L << "\n"; 128 dbgs() << "After terminator constant-folding, the loop will"; 129 if (!DeleteCurrentLoop) 130 dbgs() << " not"; 131 dbgs() << " be destroyed\n"; 132 auto PrintOutVector = [&](const char *Message, 133 const SmallVectorImpl<BasicBlock *> &S) { 134 dbgs() << Message << "\n"; 135 for (const BasicBlock *BB : S) 136 dbgs() << "\t" << BB->getName() << "\n"; 137 }; 138 auto PrintOutSet = [&](const char *Message, 139 const SmallPtrSetImpl<BasicBlock *> &S) { 140 dbgs() << Message << "\n"; 141 for (const BasicBlock *BB : S) 142 dbgs() << "\t" << BB->getName() << "\n"; 143 }; 144 PrintOutVector("Blocks in which we can constant-fold terminator:", 145 FoldCandidates); 146 PrintOutSet("Live blocks from the original loop:", LiveLoopBlocks); 147 PrintOutVector("Dead blocks from the original loop:", DeadLoopBlocks); 148 PrintOutSet("Live exit blocks:", LiveExitBlocks); 149 PrintOutVector("Dead exit blocks:", DeadExitBlocks); 150 if (!DeleteCurrentLoop) 151 PrintOutSet("The following blocks will still be part of the loop:", 152 BlocksInLoopAfterFolding); 153 } 154 155 /// Whether or not the current loop has irreducible CFG. 156 bool hasIrreducibleCFG(LoopBlocksDFS &DFS) { 157 assert(DFS.isComplete() && "DFS is expected to be finished"); 158 // Index of a basic block in RPO traversal. 159 DenseMap<const BasicBlock *, unsigned> RPO; 160 unsigned Current = 0; 161 for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) 162 RPO[*I] = Current++; 163 164 for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) { 165 BasicBlock *BB = *I; 166 for (auto *Succ : successors(BB)) 167 if (L.contains(Succ) && !LI.isLoopHeader(Succ) && RPO[BB] > RPO[Succ]) 168 // If an edge goes from a block with greater order number into a block 169 // with lesses number, and it is not a loop backedge, then it can only 170 // be a part of irreducible non-loop cycle. 171 return true; 172 } 173 return false; 174 } 175 176 /// Fill all information about status of blocks and exits of the current loop 177 /// if constant folding of all branches will be done. 178 void analyze() { 179 LoopBlocksDFS DFS(&L); 180 DFS.perform(&LI); 181 assert(DFS.isComplete() && "DFS is expected to be finished"); 182 183 // TODO: The algorithm below relies on both RPO and Postorder traversals. 184 // When the loop has only reducible CFG inside, then the invariant "all 185 // predecessors of X are processed before X in RPO" is preserved. However 186 // an irreducible loop can break this invariant (e.g. latch does not have to 187 // be the last block in the traversal in this case, and the algorithm relies 188 // on this). We can later decide to support such cases by altering the 189 // algorithms, but so far we just give up analyzing them. 190 if (hasIrreducibleCFG(DFS)) { 191 HasIrreducibleCFG = true; 192 return; 193 } 194 195 // Collect live and dead loop blocks and exits. 196 LiveLoopBlocks.insert(L.getHeader()); 197 for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) { 198 BasicBlock *BB = *I; 199 200 // If a loop block wasn't marked as live so far, then it's dead. 201 if (!LiveLoopBlocks.count(BB)) { 202 DeadLoopBlocks.push_back(BB); 203 continue; 204 } 205 206 BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(BB); 207 208 // If a block has only one live successor, it's a candidate on constant 209 // folding. Only handle blocks from current loop: branches in child loops 210 // are skipped because if they can be folded, they should be folded during 211 // the processing of child loops. 212 bool TakeFoldCandidate = TheOnlySucc && LI.getLoopFor(BB) == &L; 213 if (TakeFoldCandidate) 214 FoldCandidates.push_back(BB); 215 216 // Handle successors. 217 for (BasicBlock *Succ : successors(BB)) 218 if (!TakeFoldCandidate || TheOnlySucc == Succ) { 219 if (L.contains(Succ)) 220 LiveLoopBlocks.insert(Succ); 221 else 222 LiveExitBlocks.insert(Succ); 223 } 224 } 225 226 // Sanity check: amount of dead and live loop blocks should match the total 227 // number of blocks in loop. 228 assert(L.getNumBlocks() == LiveLoopBlocks.size() + DeadLoopBlocks.size() && 229 "Malformed block sets?"); 230 231 // Now, all exit blocks that are not marked as live are dead. 232 SmallVector<BasicBlock *, 8> ExitBlocks; 233 L.getExitBlocks(ExitBlocks); 234 SmallPtrSet<BasicBlock *, 8> UniqueDeadExits; 235 for (auto *ExitBlock : ExitBlocks) 236 if (!LiveExitBlocks.count(ExitBlock) && 237 UniqueDeadExits.insert(ExitBlock).second) 238 DeadExitBlocks.push_back(ExitBlock); 239 240 // Whether or not the edge From->To will still be present in graph after the 241 // folding. 242 auto IsEdgeLive = [&](BasicBlock *From, BasicBlock *To) { 243 if (!LiveLoopBlocks.count(From)) 244 return false; 245 BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(From); 246 return !TheOnlySucc || TheOnlySucc == To || LI.getLoopFor(From) != &L; 247 }; 248 249 // The loop will not be destroyed if its latch is live. 250 DeleteCurrentLoop = !IsEdgeLive(L.getLoopLatch(), L.getHeader()); 251 252 // If we are going to delete the current loop completely, no extra analysis 253 // is needed. 254 if (DeleteCurrentLoop) 255 return; 256 257 // Otherwise, we should check which blocks will still be a part of the 258 // current loop after the transform. 259 BlocksInLoopAfterFolding.insert(L.getLoopLatch()); 260 // If the loop is live, then we should compute what blocks are still in 261 // loop after all branch folding has been done. A block is in loop if 262 // it has a live edge to another block that is in the loop; by definition, 263 // latch is in the loop. 264 auto BlockIsInLoop = [&](BasicBlock *BB) { 265 return any_of(successors(BB), [&](BasicBlock *Succ) { 266 return BlocksInLoopAfterFolding.count(Succ) && IsEdgeLive(BB, Succ); 267 }); 268 }; 269 for (auto I = DFS.beginPostorder(), E = DFS.endPostorder(); I != E; ++I) { 270 BasicBlock *BB = *I; 271 if (BlockIsInLoop(BB)) 272 BlocksInLoopAfterFolding.insert(BB); 273 } 274 275 // Sanity check: header must be in loop. 276 assert(BlocksInLoopAfterFolding.count(L.getHeader()) && 277 "Header not in loop?"); 278 assert(BlocksInLoopAfterFolding.size() <= LiveLoopBlocks.size() && 279 "All blocks that stay in loop should be live!"); 280 } 281 282 /// We need to preserve static reachibility of all loop exit blocks (this is) 283 /// required by loop pass manager. In order to do it, we make the following 284 /// trick: 285 /// 286 /// preheader: 287 /// <preheader code> 288 /// br label %loop_header 289 /// 290 /// loop_header: 291 /// ... 292 /// br i1 false, label %dead_exit, label %loop_block 293 /// ... 294 /// 295 /// We cannot simply remove edge from the loop to dead exit because in this 296 /// case dead_exit (and its successors) may become unreachable. To avoid that, 297 /// we insert the following fictive preheader: 298 /// 299 /// preheader: 300 /// <preheader code> 301 /// switch i32 0, label %preheader-split, 302 /// [i32 1, label %dead_exit_1], 303 /// [i32 2, label %dead_exit_2], 304 /// ... 305 /// [i32 N, label %dead_exit_N], 306 /// 307 /// preheader-split: 308 /// br label %loop_header 309 /// 310 /// loop_header: 311 /// ... 312 /// br i1 false, label %dead_exit_N, label %loop_block 313 /// ... 314 /// 315 /// Doing so, we preserve static reachibility of all dead exits and can later 316 /// remove edges from the loop to these blocks. 317 void handleDeadExits() { 318 // If no dead exits, nothing to do. 319 if (DeadExitBlocks.empty()) 320 return; 321 322 // Construct split preheader and the dummy switch to thread edges from it to 323 // dead exits. 324 BasicBlock *Preheader = L.getLoopPreheader(); 325 BasicBlock *NewPreheader = Preheader->splitBasicBlock( 326 Preheader->getTerminator(), 327 Twine(Preheader->getName()).concat("-split")); 328 DTUpdates.push_back({DominatorTree::Delete, Preheader, L.getHeader()}); 329 DTUpdates.push_back({DominatorTree::Insert, NewPreheader, L.getHeader()}); 330 DTUpdates.push_back({DominatorTree::Insert, Preheader, NewPreheader}); 331 IRBuilder<> Builder(Preheader->getTerminator()); 332 SwitchInst *DummySwitch = 333 Builder.CreateSwitch(Builder.getInt32(0), NewPreheader); 334 Preheader->getTerminator()->eraseFromParent(); 335 336 unsigned DummyIdx = 1; 337 for (BasicBlock *BB : DeadExitBlocks) { 338 SmallVector<Instruction *, 4> DeadPhis; 339 for (auto &PN : BB->phis()) 340 DeadPhis.push_back(&PN); 341 342 // Eliminate all Phis from dead exits. 343 for (Instruction *PN : DeadPhis) { 344 PN->replaceAllUsesWith(UndefValue::get(PN->getType())); 345 PN->eraseFromParent(); 346 } 347 assert(DummyIdx != 0 && "Too many dead exits!"); 348 DummySwitch->addCase(Builder.getInt32(DummyIdx++), BB); 349 DTUpdates.push_back({DominatorTree::Insert, Preheader, BB}); 350 ++NumLoopExitsDeleted; 351 } 352 353 assert(L.getLoopPreheader() == NewPreheader && "Malformed CFG?"); 354 if (Loop *OuterLoop = LI.getLoopFor(Preheader)) { 355 OuterLoop->addBasicBlockToLoop(NewPreheader, LI); 356 357 // When we break dead edges, the outer loop may become unreachable from 358 // the current loop. We need to fix loop info accordingly. For this, we 359 // find the most nested loop that still contains L and remove L from all 360 // loops that are inside of it. 361 Loop *StillReachable = nullptr; 362 for (BasicBlock *BB : LiveExitBlocks) { 363 Loop *BBL = LI.getLoopFor(BB); 364 if (BBL && BBL->contains(L.getHeader())) 365 if (!StillReachable || 366 BBL->getLoopDepth() > StillReachable->getLoopDepth()) 367 StillReachable = BBL; 368 } 369 370 // Okay, our loop is no longer in the outer loop (and maybe not in some of 371 // its parents as well). Make the fixup. 372 if (StillReachable != OuterLoop) { 373 LI.changeLoopFor(NewPreheader, StillReachable); 374 for (Loop *NotContaining = OuterLoop; NotContaining != StillReachable; 375 NotContaining = NotContaining->getParentLoop()) { 376 NotContaining->removeBlockFromLoop(NewPreheader); 377 for (auto *BB : L.blocks()) 378 NotContaining->removeBlockFromLoop(BB); 379 } 380 OuterLoop->removeChildLoop(&L); 381 if (StillReachable) 382 StillReachable->addChildLoop(&L); 383 else 384 LI.addTopLevelLoop(&L); 385 386 // Some values from loops in [OuterLoop, StillReachable) could be used 387 // in the current loop. Now it is not their child anymore, so such uses 388 // require LCSSA Phis. 389 Loop *FixLCSSALoop = OuterLoop; 390 while (FixLCSSALoop->getParentLoop() != StillReachable) 391 FixLCSSALoop = FixLCSSALoop->getParentLoop(); 392 assert(FixLCSSALoop && "Should be a loop!"); 393 // We need all DT updates to be done before forming LCSSA. 394 DTU.applyUpdates(DTUpdates); 395 DTUpdates.clear(); 396 formLCSSARecursively(*FixLCSSALoop, DT, &LI, &SE); 397 } 398 } 399 } 400 401 /// Delete loop blocks that have become unreachable after folding. Make all 402 /// relevant updates to DT and LI. 403 void deleteDeadLoopBlocks() { 404 if (MSSAU) { 405 SmallPtrSet<BasicBlock *, 8> DeadLoopBlocksSet(DeadLoopBlocks.begin(), 406 DeadLoopBlocks.end()); 407 MSSAU->removeBlocks(DeadLoopBlocksSet); 408 } 409 410 // The function LI.erase has some invariants that need to be preserved when 411 // it tries to remove a loop which is not the top-level loop. In particular, 412 // it requires loop's preheader to be strictly in loop's parent. We cannot 413 // just remove blocks one by one, because after removal of preheader we may 414 // break this invariant for the dead loop. So we detatch and erase all dead 415 // loops beforehand. 416 for (auto *BB : DeadLoopBlocks) 417 if (LI.isLoopHeader(BB)) { 418 assert(LI.getLoopFor(BB) != &L && "Attempt to remove current loop!"); 419 Loop *DL = LI.getLoopFor(BB); 420 if (DL->getParentLoop()) { 421 for (auto *PL = DL->getParentLoop(); PL; PL = PL->getParentLoop()) 422 for (auto *BB : DL->getBlocks()) 423 PL->removeBlockFromLoop(BB); 424 DL->getParentLoop()->removeChildLoop(DL); 425 LI.addTopLevelLoop(DL); 426 } 427 LI.erase(DL); 428 } 429 430 for (auto *BB : DeadLoopBlocks) { 431 assert(BB != L.getHeader() && 432 "Header of the current loop cannot be dead!"); 433 LLVM_DEBUG(dbgs() << "Deleting dead loop block " << BB->getName() 434 << "\n"); 435 LI.removeBlock(BB); 436 } 437 438 DetatchDeadBlocks(DeadLoopBlocks, &DTUpdates, /*KeepOneInputPHIs*/true); 439 DTU.applyUpdates(DTUpdates); 440 DTUpdates.clear(); 441 for (auto *BB : DeadLoopBlocks) 442 DTU.deleteBB(BB); 443 444 NumLoopBlocksDeleted += DeadLoopBlocks.size(); 445 } 446 447 /// Constant-fold terminators of blocks acculumated in FoldCandidates into the 448 /// unconditional branches. 449 void foldTerminators() { 450 for (BasicBlock *BB : FoldCandidates) { 451 assert(LI.getLoopFor(BB) == &L && "Should be a loop block!"); 452 BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(BB); 453 assert(TheOnlySucc && "Should have one live successor!"); 454 455 LLVM_DEBUG(dbgs() << "Replacing terminator of " << BB->getName() 456 << " with an unconditional branch to the block " 457 << TheOnlySucc->getName() << "\n"); 458 459 SmallPtrSet<BasicBlock *, 2> DeadSuccessors; 460 // Remove all BB's successors except for the live one. 461 unsigned TheOnlySuccDuplicates = 0; 462 for (auto *Succ : successors(BB)) 463 if (Succ != TheOnlySucc) { 464 DeadSuccessors.insert(Succ); 465 // If our successor lies in a different loop, we don't want to remove 466 // the one-input Phi because it is a LCSSA Phi. 467 bool PreserveLCSSAPhi = !L.contains(Succ); 468 Succ->removePredecessor(BB, PreserveLCSSAPhi); 469 if (MSSAU) 470 MSSAU->removeEdge(BB, Succ); 471 } else 472 ++TheOnlySuccDuplicates; 473 474 assert(TheOnlySuccDuplicates > 0 && "Should be!"); 475 // If TheOnlySucc was BB's successor more than once, after transform it 476 // will be its successor only once. Remove redundant inputs from 477 // TheOnlySucc's Phis. 478 bool PreserveLCSSAPhi = !L.contains(TheOnlySucc); 479 for (unsigned Dup = 1; Dup < TheOnlySuccDuplicates; ++Dup) 480 TheOnlySucc->removePredecessor(BB, PreserveLCSSAPhi); 481 if (MSSAU && TheOnlySuccDuplicates > 1) 482 MSSAU->removeDuplicatePhiEdgesBetween(BB, TheOnlySucc); 483 484 IRBuilder<> Builder(BB->getContext()); 485 Instruction *Term = BB->getTerminator(); 486 Builder.SetInsertPoint(Term); 487 Builder.CreateBr(TheOnlySucc); 488 Term->eraseFromParent(); 489 490 for (auto *DeadSucc : DeadSuccessors) 491 DTUpdates.push_back({DominatorTree::Delete, BB, DeadSucc}); 492 493 ++NumTerminatorsFolded; 494 } 495 } 496 497 public: 498 ConstantTerminatorFoldingImpl(Loop &L, LoopInfo &LI, DominatorTree &DT, 499 ScalarEvolution &SE, 500 MemorySSAUpdater *MSSAU) 501 : L(L), LI(LI), DT(DT), SE(SE), MSSAU(MSSAU), 502 DTU(DT, DomTreeUpdater::UpdateStrategy::Eager) {} 503 bool run() { 504 assert(L.getLoopLatch() && "Should be single latch!"); 505 506 // Collect all available information about status of blocks after constant 507 // folding. 508 analyze(); 509 510 LLVM_DEBUG(dbgs() << "In function " << L.getHeader()->getParent()->getName() 511 << ": "); 512 513 if (HasIrreducibleCFG) { 514 LLVM_DEBUG(dbgs() << "Loops with irreducible CFG are not supported!\n"); 515 return false; 516 } 517 518 // Nothing to constant-fold. 519 if (FoldCandidates.empty()) { 520 LLVM_DEBUG( 521 dbgs() << "No constant terminator folding candidates found in loop " 522 << L.getHeader()->getName() << "\n"); 523 return false; 524 } 525 526 // TODO: Support deletion of the current loop. 527 if (DeleteCurrentLoop) { 528 LLVM_DEBUG( 529 dbgs() 530 << "Give up constant terminator folding in loop " 531 << L.getHeader()->getName() 532 << ": we don't currently support deletion of the current loop.\n"); 533 return false; 534 } 535 536 // TODO: Support blocks that are not dead, but also not in loop after the 537 // folding. 538 if (BlocksInLoopAfterFolding.size() + DeadLoopBlocks.size() != 539 L.getNumBlocks()) { 540 LLVM_DEBUG( 541 dbgs() << "Give up constant terminator folding in loop " 542 << L.getHeader()->getName() 543 << ": we don't currently" 544 " support blocks that are not dead, but will stop " 545 "being a part of the loop after constant-folding.\n"); 546 return false; 547 } 548 549 SE.forgetTopmostLoop(&L); 550 // Dump analysis results. 551 LLVM_DEBUG(dump()); 552 553 LLVM_DEBUG(dbgs() << "Constant-folding " << FoldCandidates.size() 554 << " terminators in loop " << L.getHeader()->getName() 555 << "\n"); 556 557 // Make the actual transforms. 558 handleDeadExits(); 559 foldTerminators(); 560 561 if (!DeadLoopBlocks.empty()) { 562 LLVM_DEBUG(dbgs() << "Deleting " << DeadLoopBlocks.size() 563 << " dead blocks in loop " << L.getHeader()->getName() 564 << "\n"); 565 deleteDeadLoopBlocks(); 566 } else { 567 // If we didn't do updates inside deleteDeadLoopBlocks, do them here. 568 DTU.applyUpdates(DTUpdates); 569 DTUpdates.clear(); 570 } 571 572 #ifndef NDEBUG 573 // Make sure that we have preserved all data structures after the transform. 574 assert(DT.verify() && "DT broken after transform!"); 575 assert(DT.isReachableFromEntry(L.getHeader())); 576 LI.verify(DT); 577 #endif 578 579 return true; 580 } 581 }; 582 } // namespace 583 584 /// Turn branches and switches with known constant conditions into unconditional 585 /// branches. 586 static bool constantFoldTerminators(Loop &L, DominatorTree &DT, LoopInfo &LI, 587 ScalarEvolution &SE, 588 MemorySSAUpdater *MSSAU) { 589 if (!EnableTermFolding) 590 return false; 591 592 // To keep things simple, only process loops with single latch. We 593 // canonicalize most loops to this form. We can support multi-latch if needed. 594 if (!L.getLoopLatch()) 595 return false; 596 597 ConstantTerminatorFoldingImpl BranchFolder(L, LI, DT, SE, MSSAU); 598 return BranchFolder.run(); 599 } 600 601 static bool mergeBlocksIntoPredecessors(Loop &L, DominatorTree &DT, 602 LoopInfo &LI, MemorySSAUpdater *MSSAU) { 603 bool Changed = false; 604 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 605 // Copy blocks into a temporary array to avoid iterator invalidation issues 606 // as we remove them. 607 SmallVector<WeakTrackingVH, 16> Blocks(L.blocks()); 608 609 for (auto &Block : Blocks) { 610 // Attempt to merge blocks in the trivial case. Don't modify blocks which 611 // belong to other loops. 612 BasicBlock *Succ = cast_or_null<BasicBlock>(Block); 613 if (!Succ) 614 continue; 615 616 BasicBlock *Pred = Succ->getSinglePredecessor(); 617 if (!Pred || !Pred->getSingleSuccessor() || LI.getLoopFor(Pred) != &L) 618 continue; 619 620 // Merge Succ into Pred and delete it. 621 MergeBlockIntoPredecessor(Succ, &DTU, &LI, MSSAU); 622 623 Changed = true; 624 } 625 626 return Changed; 627 } 628 629 static bool simplifyLoopCFG(Loop &L, DominatorTree &DT, LoopInfo &LI, 630 ScalarEvolution &SE, MemorySSAUpdater *MSSAU) { 631 bool Changed = false; 632 633 // Constant-fold terminators with known constant conditions. 634 Changed |= constantFoldTerminators(L, DT, LI, SE, MSSAU); 635 636 // Eliminate unconditional branches by merging blocks into their predecessors. 637 Changed |= mergeBlocksIntoPredecessors(L, DT, LI, MSSAU); 638 639 if (Changed) 640 SE.forgetTopmostLoop(&L); 641 642 return Changed; 643 } 644 645 PreservedAnalyses LoopSimplifyCFGPass::run(Loop &L, LoopAnalysisManager &AM, 646 LoopStandardAnalysisResults &AR, 647 LPMUpdater &) { 648 Optional<MemorySSAUpdater> MSSAU; 649 if (EnableMSSALoopDependency && AR.MSSA) 650 MSSAU = MemorySSAUpdater(AR.MSSA); 651 if (!simplifyLoopCFG(L, AR.DT, AR.LI, AR.SE, 652 MSSAU.hasValue() ? MSSAU.getPointer() : nullptr)) 653 return PreservedAnalyses::all(); 654 655 return getLoopPassPreservedAnalyses(); 656 } 657 658 namespace { 659 class LoopSimplifyCFGLegacyPass : public LoopPass { 660 public: 661 static char ID; // Pass ID, replacement for typeid 662 LoopSimplifyCFGLegacyPass() : LoopPass(ID) { 663 initializeLoopSimplifyCFGLegacyPassPass(*PassRegistry::getPassRegistry()); 664 } 665 666 bool runOnLoop(Loop *L, LPPassManager &) override { 667 if (skipLoop(L)) 668 return false; 669 670 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 671 LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 672 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 673 Optional<MemorySSAUpdater> MSSAU; 674 if (EnableMSSALoopDependency) { 675 MemorySSA *MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA(); 676 MSSAU = MemorySSAUpdater(MSSA); 677 if (VerifyMemorySSA) 678 MSSA->verifyMemorySSA(); 679 } 680 return simplifyLoopCFG(*L, DT, LI, SE, 681 MSSAU.hasValue() ? MSSAU.getPointer() : nullptr); 682 } 683 684 void getAnalysisUsage(AnalysisUsage &AU) const override { 685 if (EnableMSSALoopDependency) { 686 AU.addRequired<MemorySSAWrapperPass>(); 687 AU.addPreserved<MemorySSAWrapperPass>(); 688 } 689 AU.addPreserved<DependenceAnalysisWrapperPass>(); 690 getLoopAnalysisUsage(AU); 691 } 692 }; 693 } 694 695 char LoopSimplifyCFGLegacyPass::ID = 0; 696 INITIALIZE_PASS_BEGIN(LoopSimplifyCFGLegacyPass, "loop-simplifycfg", 697 "Simplify loop CFG", false, false) 698 INITIALIZE_PASS_DEPENDENCY(LoopPass) 699 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 700 INITIALIZE_PASS_END(LoopSimplifyCFGLegacyPass, "loop-simplifycfg", 701 "Simplify loop CFG", false, false) 702 703 Pass *llvm::createLoopSimplifyCFGPass() { 704 return new LoopSimplifyCFGLegacyPass(); 705 } 706