1 //===--------- LoopSimplifyCFG.cpp - Loop CFG Simplification Pass ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Loop SimplifyCFG Pass. This pass is responsible for
10 // basic loop CFG cleanup, primarily to assist other loop passes. If you
11 // encounter a noncanonical CFG construct that causes another loop pass to
12 // perform suboptimally, this is the place to fix it up.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Transforms/Scalar/LoopSimplifyCFG.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/AliasAnalysis.h"
20 #include "llvm/Analysis/AssumptionCache.h"
21 #include "llvm/Analysis/BasicAliasAnalysis.h"
22 #include "llvm/Analysis/DependenceAnalysis.h"
23 #include "llvm/Analysis/DomTreeUpdater.h"
24 #include "llvm/Analysis/GlobalsModRef.h"
25 #include "llvm/Analysis/LoopInfo.h"
26 #include "llvm/Analysis/LoopPass.h"
27 #include "llvm/Analysis/MemorySSA.h"
28 #include "llvm/Analysis/MemorySSAUpdater.h"
29 #include "llvm/Analysis/ScalarEvolution.h"
30 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
31 #include "llvm/Analysis/TargetTransformInfo.h"
32 #include "llvm/IR/Dominators.h"
33 #include "llvm/InitializePasses.h"
34 #include "llvm/Transforms/Scalar.h"
35 #include "llvm/Transforms/Scalar/LoopPassManager.h"
36 #include "llvm/Transforms/Utils.h"
37 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
38 #include "llvm/Transforms/Utils/Local.h"
39 #include "llvm/Transforms/Utils/LoopUtils.h"
40 using namespace llvm;
41 
42 #define DEBUG_TYPE "loop-simplifycfg"
43 
44 static cl::opt<bool> EnableTermFolding("enable-loop-simplifycfg-term-folding",
45                                        cl::init(true));
46 
47 STATISTIC(NumTerminatorsFolded,
48           "Number of terminators folded to unconditional branches");
49 STATISTIC(NumLoopBlocksDeleted,
50           "Number of loop blocks deleted");
51 STATISTIC(NumLoopExitsDeleted,
52           "Number of loop exiting edges deleted");
53 
54 /// If \p BB is a switch or a conditional branch, but only one of its successors
55 /// can be reached from this block in runtime, return this successor. Otherwise,
56 /// return nullptr.
57 static BasicBlock *getOnlyLiveSuccessor(BasicBlock *BB) {
58   Instruction *TI = BB->getTerminator();
59   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
60     if (BI->isUnconditional())
61       return nullptr;
62     if (BI->getSuccessor(0) == BI->getSuccessor(1))
63       return BI->getSuccessor(0);
64     ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
65     if (!Cond)
66       return nullptr;
67     return Cond->isZero() ? BI->getSuccessor(1) : BI->getSuccessor(0);
68   }
69 
70   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
71     auto *CI = dyn_cast<ConstantInt>(SI->getCondition());
72     if (!CI)
73       return nullptr;
74     for (auto Case : SI->cases())
75       if (Case.getCaseValue() == CI)
76         return Case.getCaseSuccessor();
77     return SI->getDefaultDest();
78   }
79 
80   return nullptr;
81 }
82 
83 /// Removes \p BB from all loops from [FirstLoop, LastLoop) in parent chain.
84 static void removeBlockFromLoops(BasicBlock *BB, Loop *FirstLoop,
85                                  Loop *LastLoop = nullptr) {
86   assert((!LastLoop || LastLoop->contains(FirstLoop->getHeader())) &&
87          "First loop is supposed to be inside of last loop!");
88   assert(FirstLoop->contains(BB) && "Must be a loop block!");
89   for (Loop *Current = FirstLoop; Current != LastLoop;
90        Current = Current->getParentLoop())
91     Current->removeBlockFromLoop(BB);
92 }
93 
94 /// Find innermost loop that contains at least one block from \p BBs and
95 /// contains the header of loop \p L.
96 static Loop *getInnermostLoopFor(SmallPtrSetImpl<BasicBlock *> &BBs,
97                                  Loop &L, LoopInfo &LI) {
98   Loop *Innermost = nullptr;
99   for (BasicBlock *BB : BBs) {
100     Loop *BBL = LI.getLoopFor(BB);
101     while (BBL && !BBL->contains(L.getHeader()))
102       BBL = BBL->getParentLoop();
103     if (BBL == &L)
104       BBL = BBL->getParentLoop();
105     if (!BBL)
106       continue;
107     if (!Innermost || BBL->getLoopDepth() > Innermost->getLoopDepth())
108       Innermost = BBL;
109   }
110   return Innermost;
111 }
112 
113 namespace {
114 /// Helper class that can turn branches and switches with constant conditions
115 /// into unconditional branches.
116 class ConstantTerminatorFoldingImpl {
117 private:
118   Loop &L;
119   LoopInfo &LI;
120   DominatorTree &DT;
121   ScalarEvolution &SE;
122   MemorySSAUpdater *MSSAU;
123   LoopBlocksDFS DFS;
124   DomTreeUpdater DTU;
125   SmallVector<DominatorTree::UpdateType, 16> DTUpdates;
126 
127   // Whether or not the current loop has irreducible CFG.
128   bool HasIrreducibleCFG = false;
129   // Whether or not the current loop will still exist after terminator constant
130   // folding will be done. In theory, there are two ways how it can happen:
131   // 1. Loop's latch(es) become unreachable from loop header;
132   // 2. Loop's header becomes unreachable from method entry.
133   // In practice, the second situation is impossible because we only modify the
134   // current loop and its preheader and do not affect preheader's reachibility
135   // from any other block. So this variable set to true means that loop's latch
136   // has become unreachable from loop header.
137   bool DeleteCurrentLoop = false;
138 
139   // The blocks of the original loop that will still be reachable from entry
140   // after the constant folding.
141   SmallPtrSet<BasicBlock *, 8> LiveLoopBlocks;
142   // The blocks of the original loop that will become unreachable from entry
143   // after the constant folding.
144   SmallVector<BasicBlock *, 8> DeadLoopBlocks;
145   // The exits of the original loop that will still be reachable from entry
146   // after the constant folding.
147   SmallPtrSet<BasicBlock *, 8> LiveExitBlocks;
148   // The exits of the original loop that will become unreachable from entry
149   // after the constant folding.
150   SmallVector<BasicBlock *, 8> DeadExitBlocks;
151   // The blocks that will still be a part of the current loop after folding.
152   SmallPtrSet<BasicBlock *, 8> BlocksInLoopAfterFolding;
153   // The blocks that have terminators with constant condition that can be
154   // folded. Note: fold candidates should be in L but not in any of its
155   // subloops to avoid complex LI updates.
156   SmallVector<BasicBlock *, 8> FoldCandidates;
157 
158   void dump() const {
159     dbgs() << "Constant terminator folding for loop " << L << "\n";
160     dbgs() << "After terminator constant-folding, the loop will";
161     if (!DeleteCurrentLoop)
162       dbgs() << " not";
163     dbgs() << " be destroyed\n";
164     auto PrintOutVector = [&](const char *Message,
165                            const SmallVectorImpl<BasicBlock *> &S) {
166       dbgs() << Message << "\n";
167       for (const BasicBlock *BB : S)
168         dbgs() << "\t" << BB->getName() << "\n";
169     };
170     auto PrintOutSet = [&](const char *Message,
171                            const SmallPtrSetImpl<BasicBlock *> &S) {
172       dbgs() << Message << "\n";
173       for (const BasicBlock *BB : S)
174         dbgs() << "\t" << BB->getName() << "\n";
175     };
176     PrintOutVector("Blocks in which we can constant-fold terminator:",
177                    FoldCandidates);
178     PrintOutSet("Live blocks from the original loop:", LiveLoopBlocks);
179     PrintOutVector("Dead blocks from the original loop:", DeadLoopBlocks);
180     PrintOutSet("Live exit blocks:", LiveExitBlocks);
181     PrintOutVector("Dead exit blocks:", DeadExitBlocks);
182     if (!DeleteCurrentLoop)
183       PrintOutSet("The following blocks will still be part of the loop:",
184                   BlocksInLoopAfterFolding);
185   }
186 
187   /// Whether or not the current loop has irreducible CFG.
188   bool hasIrreducibleCFG(LoopBlocksDFS &DFS) {
189     assert(DFS.isComplete() && "DFS is expected to be finished");
190     // Index of a basic block in RPO traversal.
191     DenseMap<const BasicBlock *, unsigned> RPO;
192     unsigned Current = 0;
193     for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I)
194       RPO[*I] = Current++;
195 
196     for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) {
197       BasicBlock *BB = *I;
198       for (auto *Succ : successors(BB))
199         if (L.contains(Succ) && !LI.isLoopHeader(Succ) && RPO[BB] > RPO[Succ])
200           // If an edge goes from a block with greater order number into a block
201           // with lesses number, and it is not a loop backedge, then it can only
202           // be a part of irreducible non-loop cycle.
203           return true;
204     }
205     return false;
206   }
207 
208   /// Fill all information about status of blocks and exits of the current loop
209   /// if constant folding of all branches will be done.
210   void analyze() {
211     DFS.perform(&LI);
212     assert(DFS.isComplete() && "DFS is expected to be finished");
213 
214     // TODO: The algorithm below relies on both RPO and Postorder traversals.
215     // When the loop has only reducible CFG inside, then the invariant "all
216     // predecessors of X are processed before X in RPO" is preserved. However
217     // an irreducible loop can break this invariant (e.g. latch does not have to
218     // be the last block in the traversal in this case, and the algorithm relies
219     // on this). We can later decide to support such cases by altering the
220     // algorithms, but so far we just give up analyzing them.
221     if (hasIrreducibleCFG(DFS)) {
222       HasIrreducibleCFG = true;
223       return;
224     }
225 
226     // Collect live and dead loop blocks and exits.
227     LiveLoopBlocks.insert(L.getHeader());
228     for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) {
229       BasicBlock *BB = *I;
230 
231       // If a loop block wasn't marked as live so far, then it's dead.
232       if (!LiveLoopBlocks.count(BB)) {
233         DeadLoopBlocks.push_back(BB);
234         continue;
235       }
236 
237       BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(BB);
238 
239       // If a block has only one live successor, it's a candidate on constant
240       // folding. Only handle blocks from current loop: branches in child loops
241       // are skipped because if they can be folded, they should be folded during
242       // the processing of child loops.
243       bool TakeFoldCandidate = TheOnlySucc && LI.getLoopFor(BB) == &L;
244       if (TakeFoldCandidate)
245         FoldCandidates.push_back(BB);
246 
247       // Handle successors.
248       for (BasicBlock *Succ : successors(BB))
249         if (!TakeFoldCandidate || TheOnlySucc == Succ) {
250           if (L.contains(Succ))
251             LiveLoopBlocks.insert(Succ);
252           else
253             LiveExitBlocks.insert(Succ);
254         }
255     }
256 
257     // Sanity check: amount of dead and live loop blocks should match the total
258     // number of blocks in loop.
259     assert(L.getNumBlocks() == LiveLoopBlocks.size() + DeadLoopBlocks.size() &&
260            "Malformed block sets?");
261 
262     // Now, all exit blocks that are not marked as live are dead.
263     SmallVector<BasicBlock *, 8> ExitBlocks;
264     L.getExitBlocks(ExitBlocks);
265     SmallPtrSet<BasicBlock *, 8> UniqueDeadExits;
266     for (auto *ExitBlock : ExitBlocks)
267       if (!LiveExitBlocks.count(ExitBlock) &&
268           UniqueDeadExits.insert(ExitBlock).second)
269         DeadExitBlocks.push_back(ExitBlock);
270 
271     // Whether or not the edge From->To will still be present in graph after the
272     // folding.
273     auto IsEdgeLive = [&](BasicBlock *From, BasicBlock *To) {
274       if (!LiveLoopBlocks.count(From))
275         return false;
276       BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(From);
277       return !TheOnlySucc || TheOnlySucc == To || LI.getLoopFor(From) != &L;
278     };
279 
280     // The loop will not be destroyed if its latch is live.
281     DeleteCurrentLoop = !IsEdgeLive(L.getLoopLatch(), L.getHeader());
282 
283     // If we are going to delete the current loop completely, no extra analysis
284     // is needed.
285     if (DeleteCurrentLoop)
286       return;
287 
288     // Otherwise, we should check which blocks will still be a part of the
289     // current loop after the transform.
290     BlocksInLoopAfterFolding.insert(L.getLoopLatch());
291     // If the loop is live, then we should compute what blocks are still in
292     // loop after all branch folding has been done. A block is in loop if
293     // it has a live edge to another block that is in the loop; by definition,
294     // latch is in the loop.
295     auto BlockIsInLoop = [&](BasicBlock *BB) {
296       return any_of(successors(BB), [&](BasicBlock *Succ) {
297         return BlocksInLoopAfterFolding.count(Succ) && IsEdgeLive(BB, Succ);
298       });
299     };
300     for (auto I = DFS.beginPostorder(), E = DFS.endPostorder(); I != E; ++I) {
301       BasicBlock *BB = *I;
302       if (BlockIsInLoop(BB))
303         BlocksInLoopAfterFolding.insert(BB);
304     }
305 
306     // Sanity check: header must be in loop.
307     assert(BlocksInLoopAfterFolding.count(L.getHeader()) &&
308            "Header not in loop?");
309     assert(BlocksInLoopAfterFolding.size() <= LiveLoopBlocks.size() &&
310            "All blocks that stay in loop should be live!");
311   }
312 
313   /// We need to preserve static reachibility of all loop exit blocks (this is)
314   /// required by loop pass manager. In order to do it, we make the following
315   /// trick:
316   ///
317   ///  preheader:
318   ///    <preheader code>
319   ///    br label %loop_header
320   ///
321   ///  loop_header:
322   ///    ...
323   ///    br i1 false, label %dead_exit, label %loop_block
324   ///    ...
325   ///
326   /// We cannot simply remove edge from the loop to dead exit because in this
327   /// case dead_exit (and its successors) may become unreachable. To avoid that,
328   /// we insert the following fictive preheader:
329   ///
330   ///  preheader:
331   ///    <preheader code>
332   ///    switch i32 0, label %preheader-split,
333   ///                  [i32 1, label %dead_exit_1],
334   ///                  [i32 2, label %dead_exit_2],
335   ///                  ...
336   ///                  [i32 N, label %dead_exit_N],
337   ///
338   ///  preheader-split:
339   ///    br label %loop_header
340   ///
341   ///  loop_header:
342   ///    ...
343   ///    br i1 false, label %dead_exit_N, label %loop_block
344   ///    ...
345   ///
346   /// Doing so, we preserve static reachibility of all dead exits and can later
347   /// remove edges from the loop to these blocks.
348   void handleDeadExits() {
349     // If no dead exits, nothing to do.
350     if (DeadExitBlocks.empty())
351       return;
352 
353     // Construct split preheader and the dummy switch to thread edges from it to
354     // dead exits.
355     BasicBlock *Preheader = L.getLoopPreheader();
356     BasicBlock *NewPreheader = llvm::SplitBlock(
357         Preheader, Preheader->getTerminator(), &DT, &LI, MSSAU);
358 
359     IRBuilder<> Builder(Preheader->getTerminator());
360     SwitchInst *DummySwitch =
361         Builder.CreateSwitch(Builder.getInt32(0), NewPreheader);
362     Preheader->getTerminator()->eraseFromParent();
363 
364     unsigned DummyIdx = 1;
365     for (BasicBlock *BB : DeadExitBlocks) {
366       SmallVector<Instruction *, 4> DeadPhis;
367       for (auto &PN : BB->phis())
368         DeadPhis.push_back(&PN);
369 
370       // Eliminate all Phis from dead exits.
371       for (Instruction *PN : DeadPhis) {
372         PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
373         PN->eraseFromParent();
374       }
375       assert(DummyIdx != 0 && "Too many dead exits!");
376       DummySwitch->addCase(Builder.getInt32(DummyIdx++), BB);
377       DTUpdates.push_back({DominatorTree::Insert, Preheader, BB});
378       ++NumLoopExitsDeleted;
379     }
380 
381     assert(L.getLoopPreheader() == NewPreheader && "Malformed CFG?");
382     if (Loop *OuterLoop = LI.getLoopFor(Preheader)) {
383       // When we break dead edges, the outer loop may become unreachable from
384       // the current loop. We need to fix loop info accordingly. For this, we
385       // find the most nested loop that still contains L and remove L from all
386       // loops that are inside of it.
387       Loop *StillReachable = getInnermostLoopFor(LiveExitBlocks, L, LI);
388 
389       // Okay, our loop is no longer in the outer loop (and maybe not in some of
390       // its parents as well). Make the fixup.
391       if (StillReachable != OuterLoop) {
392         LI.changeLoopFor(NewPreheader, StillReachable);
393         removeBlockFromLoops(NewPreheader, OuterLoop, StillReachable);
394         for (auto *BB : L.blocks())
395           removeBlockFromLoops(BB, OuterLoop, StillReachable);
396         OuterLoop->removeChildLoop(&L);
397         if (StillReachable)
398           StillReachable->addChildLoop(&L);
399         else
400           LI.addTopLevelLoop(&L);
401 
402         // Some values from loops in [OuterLoop, StillReachable) could be used
403         // in the current loop. Now it is not their child anymore, so such uses
404         // require LCSSA Phis.
405         Loop *FixLCSSALoop = OuterLoop;
406         while (FixLCSSALoop->getParentLoop() != StillReachable)
407           FixLCSSALoop = FixLCSSALoop->getParentLoop();
408         assert(FixLCSSALoop && "Should be a loop!");
409         // We need all DT updates to be done before forming LCSSA.
410         DTU.applyUpdates(DTUpdates);
411         if (MSSAU)
412           MSSAU->applyUpdates(DTUpdates, DT);
413         DTUpdates.clear();
414         formLCSSARecursively(*FixLCSSALoop, DT, &LI, &SE);
415       }
416     }
417 
418     if (MSSAU) {
419       // Clear all updates now. Facilitates deletes that follow.
420       DTU.applyUpdates(DTUpdates);
421       MSSAU->applyUpdates(DTUpdates, DT);
422       DTUpdates.clear();
423       if (VerifyMemorySSA)
424         MSSAU->getMemorySSA()->verifyMemorySSA();
425     }
426   }
427 
428   /// Delete loop blocks that have become unreachable after folding. Make all
429   /// relevant updates to DT and LI.
430   void deleteDeadLoopBlocks() {
431     if (MSSAU) {
432       SmallSetVector<BasicBlock *, 8> DeadLoopBlocksSet(DeadLoopBlocks.begin(),
433                                                         DeadLoopBlocks.end());
434       MSSAU->removeBlocks(DeadLoopBlocksSet);
435     }
436 
437     // The function LI.erase has some invariants that need to be preserved when
438     // it tries to remove a loop which is not the top-level loop. In particular,
439     // it requires loop's preheader to be strictly in loop's parent. We cannot
440     // just remove blocks one by one, because after removal of preheader we may
441     // break this invariant for the dead loop. So we detatch and erase all dead
442     // loops beforehand.
443     for (auto *BB : DeadLoopBlocks)
444       if (LI.isLoopHeader(BB)) {
445         assert(LI.getLoopFor(BB) != &L && "Attempt to remove current loop!");
446         Loop *DL = LI.getLoopFor(BB);
447         if (DL->getParentLoop()) {
448           for (auto *PL = DL->getParentLoop(); PL; PL = PL->getParentLoop())
449             for (auto *BB : DL->getBlocks())
450               PL->removeBlockFromLoop(BB);
451           DL->getParentLoop()->removeChildLoop(DL);
452           LI.addTopLevelLoop(DL);
453         }
454         LI.erase(DL);
455       }
456 
457     for (auto *BB : DeadLoopBlocks) {
458       assert(BB != L.getHeader() &&
459              "Header of the current loop cannot be dead!");
460       LLVM_DEBUG(dbgs() << "Deleting dead loop block " << BB->getName()
461                         << "\n");
462       LI.removeBlock(BB);
463     }
464 
465     DetatchDeadBlocks(DeadLoopBlocks, &DTUpdates, /*KeepOneInputPHIs*/true);
466     DTU.applyUpdates(DTUpdates);
467     DTUpdates.clear();
468     for (auto *BB : DeadLoopBlocks)
469       DTU.deleteBB(BB);
470 
471     NumLoopBlocksDeleted += DeadLoopBlocks.size();
472   }
473 
474   /// Constant-fold terminators of blocks acculumated in FoldCandidates into the
475   /// unconditional branches.
476   void foldTerminators() {
477     for (BasicBlock *BB : FoldCandidates) {
478       assert(LI.getLoopFor(BB) == &L && "Should be a loop block!");
479       BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(BB);
480       assert(TheOnlySucc && "Should have one live successor!");
481 
482       LLVM_DEBUG(dbgs() << "Replacing terminator of " << BB->getName()
483                         << " with an unconditional branch to the block "
484                         << TheOnlySucc->getName() << "\n");
485 
486       SmallPtrSet<BasicBlock *, 2> DeadSuccessors;
487       // Remove all BB's successors except for the live one.
488       unsigned TheOnlySuccDuplicates = 0;
489       for (auto *Succ : successors(BB))
490         if (Succ != TheOnlySucc) {
491           DeadSuccessors.insert(Succ);
492           // If our successor lies in a different loop, we don't want to remove
493           // the one-input Phi because it is a LCSSA Phi.
494           bool PreserveLCSSAPhi = !L.contains(Succ);
495           Succ->removePredecessor(BB, PreserveLCSSAPhi);
496           if (MSSAU)
497             MSSAU->removeEdge(BB, Succ);
498         } else
499           ++TheOnlySuccDuplicates;
500 
501       assert(TheOnlySuccDuplicates > 0 && "Should be!");
502       // If TheOnlySucc was BB's successor more than once, after transform it
503       // will be its successor only once. Remove redundant inputs from
504       // TheOnlySucc's Phis.
505       bool PreserveLCSSAPhi = !L.contains(TheOnlySucc);
506       for (unsigned Dup = 1; Dup < TheOnlySuccDuplicates; ++Dup)
507         TheOnlySucc->removePredecessor(BB, PreserveLCSSAPhi);
508       if (MSSAU && TheOnlySuccDuplicates > 1)
509         MSSAU->removeDuplicatePhiEdgesBetween(BB, TheOnlySucc);
510 
511       IRBuilder<> Builder(BB->getContext());
512       Instruction *Term = BB->getTerminator();
513       Builder.SetInsertPoint(Term);
514       Builder.CreateBr(TheOnlySucc);
515       Term->eraseFromParent();
516 
517       for (auto *DeadSucc : DeadSuccessors)
518         DTUpdates.push_back({DominatorTree::Delete, BB, DeadSucc});
519 
520       ++NumTerminatorsFolded;
521     }
522   }
523 
524 public:
525   ConstantTerminatorFoldingImpl(Loop &L, LoopInfo &LI, DominatorTree &DT,
526                                 ScalarEvolution &SE,
527                                 MemorySSAUpdater *MSSAU)
528       : L(L), LI(LI), DT(DT), SE(SE), MSSAU(MSSAU), DFS(&L),
529         DTU(DT, DomTreeUpdater::UpdateStrategy::Eager) {}
530   bool run() {
531     assert(L.getLoopLatch() && "Should be single latch!");
532 
533     // Collect all available information about status of blocks after constant
534     // folding.
535     analyze();
536     BasicBlock *Header = L.getHeader();
537     (void)Header;
538 
539     LLVM_DEBUG(dbgs() << "In function " << Header->getParent()->getName()
540                       << ": ");
541 
542     if (HasIrreducibleCFG) {
543       LLVM_DEBUG(dbgs() << "Loops with irreducible CFG are not supported!\n");
544       return false;
545     }
546 
547     // Nothing to constant-fold.
548     if (FoldCandidates.empty()) {
549       LLVM_DEBUG(
550           dbgs() << "No constant terminator folding candidates found in loop "
551                  << Header->getName() << "\n");
552       return false;
553     }
554 
555     // TODO: Support deletion of the current loop.
556     if (DeleteCurrentLoop) {
557       LLVM_DEBUG(
558           dbgs()
559           << "Give up constant terminator folding in loop " << Header->getName()
560           << ": we don't currently support deletion of the current loop.\n");
561       return false;
562     }
563 
564     // TODO: Support blocks that are not dead, but also not in loop after the
565     // folding.
566     if (BlocksInLoopAfterFolding.size() + DeadLoopBlocks.size() !=
567         L.getNumBlocks()) {
568       LLVM_DEBUG(
569           dbgs() << "Give up constant terminator folding in loop "
570                  << Header->getName() << ": we don't currently"
571                     " support blocks that are not dead, but will stop "
572                     "being a part of the loop after constant-folding.\n");
573       return false;
574     }
575 
576     SE.forgetTopmostLoop(&L);
577     // Dump analysis results.
578     LLVM_DEBUG(dump());
579 
580     LLVM_DEBUG(dbgs() << "Constant-folding " << FoldCandidates.size()
581                       << " terminators in loop " << Header->getName() << "\n");
582 
583     // Make the actual transforms.
584     handleDeadExits();
585     foldTerminators();
586 
587     if (!DeadLoopBlocks.empty()) {
588       LLVM_DEBUG(dbgs() << "Deleting " << DeadLoopBlocks.size()
589                     << " dead blocks in loop " << Header->getName() << "\n");
590       deleteDeadLoopBlocks();
591     } else {
592       // If we didn't do updates inside deleteDeadLoopBlocks, do them here.
593       DTU.applyUpdates(DTUpdates);
594       DTUpdates.clear();
595     }
596 
597     if (MSSAU && VerifyMemorySSA)
598       MSSAU->getMemorySSA()->verifyMemorySSA();
599 
600 #ifndef NDEBUG
601     // Make sure that we have preserved all data structures after the transform.
602 #if defined(EXPENSIVE_CHECKS)
603     assert(DT.verify(DominatorTree::VerificationLevel::Full) &&
604            "DT broken after transform!");
605 #else
606     assert(DT.verify(DominatorTree::VerificationLevel::Fast) &&
607            "DT broken after transform!");
608 #endif
609     assert(DT.isReachableFromEntry(Header));
610     LI.verify(DT);
611 #endif
612 
613     return true;
614   }
615 
616   bool foldingBreaksCurrentLoop() const {
617     return DeleteCurrentLoop;
618   }
619 };
620 } // namespace
621 
622 /// Turn branches and switches with known constant conditions into unconditional
623 /// branches.
624 static bool constantFoldTerminators(Loop &L, DominatorTree &DT, LoopInfo &LI,
625                                     ScalarEvolution &SE,
626                                     MemorySSAUpdater *MSSAU,
627                                     bool &IsLoopDeleted) {
628   if (!EnableTermFolding)
629     return false;
630 
631   // To keep things simple, only process loops with single latch. We
632   // canonicalize most loops to this form. We can support multi-latch if needed.
633   if (!L.getLoopLatch())
634     return false;
635 
636   ConstantTerminatorFoldingImpl BranchFolder(L, LI, DT, SE, MSSAU);
637   bool Changed = BranchFolder.run();
638   IsLoopDeleted = Changed && BranchFolder.foldingBreaksCurrentLoop();
639   return Changed;
640 }
641 
642 static bool mergeBlocksIntoPredecessors(Loop &L, DominatorTree &DT,
643                                         LoopInfo &LI, MemorySSAUpdater *MSSAU) {
644   bool Changed = false;
645   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
646   // Copy blocks into a temporary array to avoid iterator invalidation issues
647   // as we remove them.
648   SmallVector<WeakTrackingVH, 16> Blocks(L.blocks());
649 
650   for (auto &Block : Blocks) {
651     // Attempt to merge blocks in the trivial case. Don't modify blocks which
652     // belong to other loops.
653     BasicBlock *Succ = cast_or_null<BasicBlock>(Block);
654     if (!Succ)
655       continue;
656 
657     BasicBlock *Pred = Succ->getSinglePredecessor();
658     if (!Pred || !Pred->getSingleSuccessor() || LI.getLoopFor(Pred) != &L)
659       continue;
660 
661     // Merge Succ into Pred and delete it.
662     MergeBlockIntoPredecessor(Succ, &DTU, &LI, MSSAU);
663 
664     Changed = true;
665   }
666 
667   return Changed;
668 }
669 
670 static bool simplifyLoopCFG(Loop &L, DominatorTree &DT, LoopInfo &LI,
671                             ScalarEvolution &SE, MemorySSAUpdater *MSSAU,
672                             bool &isLoopDeleted) {
673   bool Changed = false;
674 
675   // Constant-fold terminators with known constant conditions.
676   Changed |= constantFoldTerminators(L, DT, LI, SE, MSSAU, isLoopDeleted);
677 
678   if (isLoopDeleted)
679     return true;
680 
681   // Eliminate unconditional branches by merging blocks into their predecessors.
682   Changed |= mergeBlocksIntoPredecessors(L, DT, LI, MSSAU);
683 
684   if (Changed)
685     SE.forgetTopmostLoop(&L);
686 
687   return Changed;
688 }
689 
690 PreservedAnalyses LoopSimplifyCFGPass::run(Loop &L, LoopAnalysisManager &AM,
691                                            LoopStandardAnalysisResults &AR,
692                                            LPMUpdater &LPMU) {
693   Optional<MemorySSAUpdater> MSSAU;
694   if (AR.MSSA)
695     MSSAU = MemorySSAUpdater(AR.MSSA);
696   bool DeleteCurrentLoop = false;
697   if (!simplifyLoopCFG(L, AR.DT, AR.LI, AR.SE,
698                        MSSAU.hasValue() ? MSSAU.getPointer() : nullptr,
699                        DeleteCurrentLoop))
700     return PreservedAnalyses::all();
701 
702   if (DeleteCurrentLoop)
703     LPMU.markLoopAsDeleted(L, "loop-simplifycfg");
704 
705   auto PA = getLoopPassPreservedAnalyses();
706   if (AR.MSSA)
707     PA.preserve<MemorySSAAnalysis>();
708   return PA;
709 }
710 
711 namespace {
712 class LoopSimplifyCFGLegacyPass : public LoopPass {
713 public:
714   static char ID; // Pass ID, replacement for typeid
715   LoopSimplifyCFGLegacyPass() : LoopPass(ID) {
716     initializeLoopSimplifyCFGLegacyPassPass(*PassRegistry::getPassRegistry());
717   }
718 
719   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
720     if (skipLoop(L))
721       return false;
722 
723     DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
724     LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
725     ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
726     Optional<MemorySSAUpdater> MSSAU;
727     if (EnableMSSALoopDependency) {
728       MemorySSA *MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA();
729       MSSAU = MemorySSAUpdater(MSSA);
730       if (VerifyMemorySSA)
731         MSSA->verifyMemorySSA();
732     }
733     bool DeleteCurrentLoop = false;
734     bool Changed = simplifyLoopCFG(
735         *L, DT, LI, SE, MSSAU.hasValue() ? MSSAU.getPointer() : nullptr,
736         DeleteCurrentLoop);
737     if (DeleteCurrentLoop)
738       LPM.markLoopAsDeleted(*L);
739     return Changed;
740   }
741 
742   void getAnalysisUsage(AnalysisUsage &AU) const override {
743     if (EnableMSSALoopDependency) {
744       AU.addRequired<MemorySSAWrapperPass>();
745       AU.addPreserved<MemorySSAWrapperPass>();
746     }
747     AU.addPreserved<DependenceAnalysisWrapperPass>();
748     getLoopAnalysisUsage(AU);
749   }
750 };
751 }
752 
753 char LoopSimplifyCFGLegacyPass::ID = 0;
754 INITIALIZE_PASS_BEGIN(LoopSimplifyCFGLegacyPass, "loop-simplifycfg",
755                       "Simplify loop CFG", false, false)
756 INITIALIZE_PASS_DEPENDENCY(LoopPass)
757 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
758 INITIALIZE_PASS_END(LoopSimplifyCFGLegacyPass, "loop-simplifycfg",
759                     "Simplify loop CFG", false, false)
760 
761 Pass *llvm::createLoopSimplifyCFGPass() {
762   return new LoopSimplifyCFGLegacyPass();
763 }
764