1 //===--------- LoopSimplifyCFG.cpp - Loop CFG Simplification Pass ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Loop SimplifyCFG Pass. This pass is responsible for 10 // basic loop CFG cleanup, primarily to assist other loop passes. If you 11 // encounter a noncanonical CFG construct that causes another loop pass to 12 // perform suboptimally, this is the place to fix it up. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/Scalar/LoopSimplifyCFG.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/AssumptionCache.h" 21 #include "llvm/Analysis/BasicAliasAnalysis.h" 22 #include "llvm/Analysis/DependenceAnalysis.h" 23 #include "llvm/Analysis/DomTreeUpdater.h" 24 #include "llvm/Analysis/GlobalsModRef.h" 25 #include "llvm/Analysis/LoopInfo.h" 26 #include "llvm/Analysis/LoopPass.h" 27 #include "llvm/Analysis/MemorySSA.h" 28 #include "llvm/Analysis/MemorySSAUpdater.h" 29 #include "llvm/Analysis/ScalarEvolution.h" 30 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 31 #include "llvm/Analysis/TargetTransformInfo.h" 32 #include "llvm/IR/Dominators.h" 33 #include "llvm/InitializePasses.h" 34 #include "llvm/Transforms/Scalar.h" 35 #include "llvm/Transforms/Scalar/LoopPassManager.h" 36 #include "llvm/Transforms/Utils.h" 37 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 38 #include "llvm/Transforms/Utils/Local.h" 39 #include "llvm/Transforms/Utils/LoopUtils.h" 40 using namespace llvm; 41 42 #define DEBUG_TYPE "loop-simplifycfg" 43 44 static cl::opt<bool> EnableTermFolding("enable-loop-simplifycfg-term-folding", 45 cl::init(true)); 46 47 STATISTIC(NumTerminatorsFolded, 48 "Number of terminators folded to unconditional branches"); 49 STATISTIC(NumLoopBlocksDeleted, 50 "Number of loop blocks deleted"); 51 STATISTIC(NumLoopExitsDeleted, 52 "Number of loop exiting edges deleted"); 53 54 /// If \p BB is a switch or a conditional branch, but only one of its successors 55 /// can be reached from this block in runtime, return this successor. Otherwise, 56 /// return nullptr. 57 static BasicBlock *getOnlyLiveSuccessor(BasicBlock *BB) { 58 Instruction *TI = BB->getTerminator(); 59 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 60 if (BI->isUnconditional()) 61 return nullptr; 62 if (BI->getSuccessor(0) == BI->getSuccessor(1)) 63 return BI->getSuccessor(0); 64 ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition()); 65 if (!Cond) 66 return nullptr; 67 return Cond->isZero() ? BI->getSuccessor(1) : BI->getSuccessor(0); 68 } 69 70 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 71 auto *CI = dyn_cast<ConstantInt>(SI->getCondition()); 72 if (!CI) 73 return nullptr; 74 for (auto Case : SI->cases()) 75 if (Case.getCaseValue() == CI) 76 return Case.getCaseSuccessor(); 77 return SI->getDefaultDest(); 78 } 79 80 return nullptr; 81 } 82 83 /// Removes \p BB from all loops from [FirstLoop, LastLoop) in parent chain. 84 static void removeBlockFromLoops(BasicBlock *BB, Loop *FirstLoop, 85 Loop *LastLoop = nullptr) { 86 assert((!LastLoop || LastLoop->contains(FirstLoop->getHeader())) && 87 "First loop is supposed to be inside of last loop!"); 88 assert(FirstLoop->contains(BB) && "Must be a loop block!"); 89 for (Loop *Current = FirstLoop; Current != LastLoop; 90 Current = Current->getParentLoop()) 91 Current->removeBlockFromLoop(BB); 92 } 93 94 /// Find innermost loop that contains at least one block from \p BBs and 95 /// contains the header of loop \p L. 96 static Loop *getInnermostLoopFor(SmallPtrSetImpl<BasicBlock *> &BBs, 97 Loop &L, LoopInfo &LI) { 98 Loop *Innermost = nullptr; 99 for (BasicBlock *BB : BBs) { 100 Loop *BBL = LI.getLoopFor(BB); 101 while (BBL && !BBL->contains(L.getHeader())) 102 BBL = BBL->getParentLoop(); 103 if (BBL == &L) 104 BBL = BBL->getParentLoop(); 105 if (!BBL) 106 continue; 107 if (!Innermost || BBL->getLoopDepth() > Innermost->getLoopDepth()) 108 Innermost = BBL; 109 } 110 return Innermost; 111 } 112 113 namespace { 114 /// Helper class that can turn branches and switches with constant conditions 115 /// into unconditional branches. 116 class ConstantTerminatorFoldingImpl { 117 private: 118 Loop &L; 119 LoopInfo &LI; 120 DominatorTree &DT; 121 ScalarEvolution &SE; 122 MemorySSAUpdater *MSSAU; 123 LoopBlocksDFS DFS; 124 DomTreeUpdater DTU; 125 SmallVector<DominatorTree::UpdateType, 16> DTUpdates; 126 127 // Whether or not the current loop has irreducible CFG. 128 bool HasIrreducibleCFG = false; 129 // Whether or not the current loop will still exist after terminator constant 130 // folding will be done. In theory, there are two ways how it can happen: 131 // 1. Loop's latch(es) become unreachable from loop header; 132 // 2. Loop's header becomes unreachable from method entry. 133 // In practice, the second situation is impossible because we only modify the 134 // current loop and its preheader and do not affect preheader's reachibility 135 // from any other block. So this variable set to true means that loop's latch 136 // has become unreachable from loop header. 137 bool DeleteCurrentLoop = false; 138 139 // The blocks of the original loop that will still be reachable from entry 140 // after the constant folding. 141 SmallPtrSet<BasicBlock *, 8> LiveLoopBlocks; 142 // The blocks of the original loop that will become unreachable from entry 143 // after the constant folding. 144 SmallVector<BasicBlock *, 8> DeadLoopBlocks; 145 // The exits of the original loop that will still be reachable from entry 146 // after the constant folding. 147 SmallPtrSet<BasicBlock *, 8> LiveExitBlocks; 148 // The exits of the original loop that will become unreachable from entry 149 // after the constant folding. 150 SmallVector<BasicBlock *, 8> DeadExitBlocks; 151 // The blocks that will still be a part of the current loop after folding. 152 SmallPtrSet<BasicBlock *, 8> BlocksInLoopAfterFolding; 153 // The blocks that have terminators with constant condition that can be 154 // folded. Note: fold candidates should be in L but not in any of its 155 // subloops to avoid complex LI updates. 156 SmallVector<BasicBlock *, 8> FoldCandidates; 157 158 void dump() const { 159 dbgs() << "Constant terminator folding for loop " << L << "\n"; 160 dbgs() << "After terminator constant-folding, the loop will"; 161 if (!DeleteCurrentLoop) 162 dbgs() << " not"; 163 dbgs() << " be destroyed\n"; 164 auto PrintOutVector = [&](const char *Message, 165 const SmallVectorImpl<BasicBlock *> &S) { 166 dbgs() << Message << "\n"; 167 for (const BasicBlock *BB : S) 168 dbgs() << "\t" << BB->getName() << "\n"; 169 }; 170 auto PrintOutSet = [&](const char *Message, 171 const SmallPtrSetImpl<BasicBlock *> &S) { 172 dbgs() << Message << "\n"; 173 for (const BasicBlock *BB : S) 174 dbgs() << "\t" << BB->getName() << "\n"; 175 }; 176 PrintOutVector("Blocks in which we can constant-fold terminator:", 177 FoldCandidates); 178 PrintOutSet("Live blocks from the original loop:", LiveLoopBlocks); 179 PrintOutVector("Dead blocks from the original loop:", DeadLoopBlocks); 180 PrintOutSet("Live exit blocks:", LiveExitBlocks); 181 PrintOutVector("Dead exit blocks:", DeadExitBlocks); 182 if (!DeleteCurrentLoop) 183 PrintOutSet("The following blocks will still be part of the loop:", 184 BlocksInLoopAfterFolding); 185 } 186 187 /// Whether or not the current loop has irreducible CFG. 188 bool hasIrreducibleCFG(LoopBlocksDFS &DFS) { 189 assert(DFS.isComplete() && "DFS is expected to be finished"); 190 // Index of a basic block in RPO traversal. 191 DenseMap<const BasicBlock *, unsigned> RPO; 192 unsigned Current = 0; 193 for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) 194 RPO[*I] = Current++; 195 196 for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) { 197 BasicBlock *BB = *I; 198 for (auto *Succ : successors(BB)) 199 if (L.contains(Succ) && !LI.isLoopHeader(Succ) && RPO[BB] > RPO[Succ]) 200 // If an edge goes from a block with greater order number into a block 201 // with lesses number, and it is not a loop backedge, then it can only 202 // be a part of irreducible non-loop cycle. 203 return true; 204 } 205 return false; 206 } 207 208 /// Fill all information about status of blocks and exits of the current loop 209 /// if constant folding of all branches will be done. 210 void analyze() { 211 DFS.perform(&LI); 212 assert(DFS.isComplete() && "DFS is expected to be finished"); 213 214 // TODO: The algorithm below relies on both RPO and Postorder traversals. 215 // When the loop has only reducible CFG inside, then the invariant "all 216 // predecessors of X are processed before X in RPO" is preserved. However 217 // an irreducible loop can break this invariant (e.g. latch does not have to 218 // be the last block in the traversal in this case, and the algorithm relies 219 // on this). We can later decide to support such cases by altering the 220 // algorithms, but so far we just give up analyzing them. 221 if (hasIrreducibleCFG(DFS)) { 222 HasIrreducibleCFG = true; 223 return; 224 } 225 226 // Collect live and dead loop blocks and exits. 227 LiveLoopBlocks.insert(L.getHeader()); 228 for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) { 229 BasicBlock *BB = *I; 230 231 // If a loop block wasn't marked as live so far, then it's dead. 232 if (!LiveLoopBlocks.count(BB)) { 233 DeadLoopBlocks.push_back(BB); 234 continue; 235 } 236 237 BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(BB); 238 239 // If a block has only one live successor, it's a candidate on constant 240 // folding. Only handle blocks from current loop: branches in child loops 241 // are skipped because if they can be folded, they should be folded during 242 // the processing of child loops. 243 bool TakeFoldCandidate = TheOnlySucc && LI.getLoopFor(BB) == &L; 244 if (TakeFoldCandidate) 245 FoldCandidates.push_back(BB); 246 247 // Handle successors. 248 for (BasicBlock *Succ : successors(BB)) 249 if (!TakeFoldCandidate || TheOnlySucc == Succ) { 250 if (L.contains(Succ)) 251 LiveLoopBlocks.insert(Succ); 252 else 253 LiveExitBlocks.insert(Succ); 254 } 255 } 256 257 // Sanity check: amount of dead and live loop blocks should match the total 258 // number of blocks in loop. 259 assert(L.getNumBlocks() == LiveLoopBlocks.size() + DeadLoopBlocks.size() && 260 "Malformed block sets?"); 261 262 // Now, all exit blocks that are not marked as live are dead. 263 SmallVector<BasicBlock *, 8> ExitBlocks; 264 L.getExitBlocks(ExitBlocks); 265 SmallPtrSet<BasicBlock *, 8> UniqueDeadExits; 266 for (auto *ExitBlock : ExitBlocks) 267 if (!LiveExitBlocks.count(ExitBlock) && 268 UniqueDeadExits.insert(ExitBlock).second) 269 DeadExitBlocks.push_back(ExitBlock); 270 271 // Whether or not the edge From->To will still be present in graph after the 272 // folding. 273 auto IsEdgeLive = [&](BasicBlock *From, BasicBlock *To) { 274 if (!LiveLoopBlocks.count(From)) 275 return false; 276 BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(From); 277 return !TheOnlySucc || TheOnlySucc == To || LI.getLoopFor(From) != &L; 278 }; 279 280 // The loop will not be destroyed if its latch is live. 281 DeleteCurrentLoop = !IsEdgeLive(L.getLoopLatch(), L.getHeader()); 282 283 // If we are going to delete the current loop completely, no extra analysis 284 // is needed. 285 if (DeleteCurrentLoop) 286 return; 287 288 // Otherwise, we should check which blocks will still be a part of the 289 // current loop after the transform. 290 BlocksInLoopAfterFolding.insert(L.getLoopLatch()); 291 // If the loop is live, then we should compute what blocks are still in 292 // loop after all branch folding has been done. A block is in loop if 293 // it has a live edge to another block that is in the loop; by definition, 294 // latch is in the loop. 295 auto BlockIsInLoop = [&](BasicBlock *BB) { 296 return any_of(successors(BB), [&](BasicBlock *Succ) { 297 return BlocksInLoopAfterFolding.count(Succ) && IsEdgeLive(BB, Succ); 298 }); 299 }; 300 for (auto I = DFS.beginPostorder(), E = DFS.endPostorder(); I != E; ++I) { 301 BasicBlock *BB = *I; 302 if (BlockIsInLoop(BB)) 303 BlocksInLoopAfterFolding.insert(BB); 304 } 305 306 // Sanity check: header must be in loop. 307 assert(BlocksInLoopAfterFolding.count(L.getHeader()) && 308 "Header not in loop?"); 309 assert(BlocksInLoopAfterFolding.size() <= LiveLoopBlocks.size() && 310 "All blocks that stay in loop should be live!"); 311 } 312 313 /// We need to preserve static reachibility of all loop exit blocks (this is) 314 /// required by loop pass manager. In order to do it, we make the following 315 /// trick: 316 /// 317 /// preheader: 318 /// <preheader code> 319 /// br label %loop_header 320 /// 321 /// loop_header: 322 /// ... 323 /// br i1 false, label %dead_exit, label %loop_block 324 /// ... 325 /// 326 /// We cannot simply remove edge from the loop to dead exit because in this 327 /// case dead_exit (and its successors) may become unreachable. To avoid that, 328 /// we insert the following fictive preheader: 329 /// 330 /// preheader: 331 /// <preheader code> 332 /// switch i32 0, label %preheader-split, 333 /// [i32 1, label %dead_exit_1], 334 /// [i32 2, label %dead_exit_2], 335 /// ... 336 /// [i32 N, label %dead_exit_N], 337 /// 338 /// preheader-split: 339 /// br label %loop_header 340 /// 341 /// loop_header: 342 /// ... 343 /// br i1 false, label %dead_exit_N, label %loop_block 344 /// ... 345 /// 346 /// Doing so, we preserve static reachibility of all dead exits and can later 347 /// remove edges from the loop to these blocks. 348 void handleDeadExits() { 349 // If no dead exits, nothing to do. 350 if (DeadExitBlocks.empty()) 351 return; 352 353 // Construct split preheader and the dummy switch to thread edges from it to 354 // dead exits. 355 BasicBlock *Preheader = L.getLoopPreheader(); 356 BasicBlock *NewPreheader = llvm::SplitBlock( 357 Preheader, Preheader->getTerminator(), &DT, &LI, MSSAU); 358 359 IRBuilder<> Builder(Preheader->getTerminator()); 360 SwitchInst *DummySwitch = 361 Builder.CreateSwitch(Builder.getInt32(0), NewPreheader); 362 Preheader->getTerminator()->eraseFromParent(); 363 364 unsigned DummyIdx = 1; 365 for (BasicBlock *BB : DeadExitBlocks) { 366 SmallVector<Instruction *, 4> DeadPhis; 367 for (auto &PN : BB->phis()) 368 DeadPhis.push_back(&PN); 369 370 // Eliminate all Phis from dead exits. 371 for (Instruction *PN : DeadPhis) { 372 PN->replaceAllUsesWith(UndefValue::get(PN->getType())); 373 PN->eraseFromParent(); 374 } 375 assert(DummyIdx != 0 && "Too many dead exits!"); 376 DummySwitch->addCase(Builder.getInt32(DummyIdx++), BB); 377 DTUpdates.push_back({DominatorTree::Insert, Preheader, BB}); 378 ++NumLoopExitsDeleted; 379 } 380 381 assert(L.getLoopPreheader() == NewPreheader && "Malformed CFG?"); 382 if (Loop *OuterLoop = LI.getLoopFor(Preheader)) { 383 // When we break dead edges, the outer loop may become unreachable from 384 // the current loop. We need to fix loop info accordingly. For this, we 385 // find the most nested loop that still contains L and remove L from all 386 // loops that are inside of it. 387 Loop *StillReachable = getInnermostLoopFor(LiveExitBlocks, L, LI); 388 389 // Okay, our loop is no longer in the outer loop (and maybe not in some of 390 // its parents as well). Make the fixup. 391 if (StillReachable != OuterLoop) { 392 LI.changeLoopFor(NewPreheader, StillReachable); 393 removeBlockFromLoops(NewPreheader, OuterLoop, StillReachable); 394 for (auto *BB : L.blocks()) 395 removeBlockFromLoops(BB, OuterLoop, StillReachable); 396 OuterLoop->removeChildLoop(&L); 397 if (StillReachable) 398 StillReachable->addChildLoop(&L); 399 else 400 LI.addTopLevelLoop(&L); 401 402 // Some values from loops in [OuterLoop, StillReachable) could be used 403 // in the current loop. Now it is not their child anymore, so such uses 404 // require LCSSA Phis. 405 Loop *FixLCSSALoop = OuterLoop; 406 while (FixLCSSALoop->getParentLoop() != StillReachable) 407 FixLCSSALoop = FixLCSSALoop->getParentLoop(); 408 assert(FixLCSSALoop && "Should be a loop!"); 409 // We need all DT updates to be done before forming LCSSA. 410 DTU.applyUpdates(DTUpdates); 411 if (MSSAU) 412 MSSAU->applyUpdates(DTUpdates, DT); 413 DTUpdates.clear(); 414 formLCSSARecursively(*FixLCSSALoop, DT, &LI, &SE); 415 } 416 } 417 418 if (MSSAU) { 419 // Clear all updates now. Facilitates deletes that follow. 420 DTU.applyUpdates(DTUpdates); 421 MSSAU->applyUpdates(DTUpdates, DT); 422 DTUpdates.clear(); 423 if (VerifyMemorySSA) 424 MSSAU->getMemorySSA()->verifyMemorySSA(); 425 } 426 } 427 428 /// Delete loop blocks that have become unreachable after folding. Make all 429 /// relevant updates to DT and LI. 430 void deleteDeadLoopBlocks() { 431 if (MSSAU) { 432 SmallSetVector<BasicBlock *, 8> DeadLoopBlocksSet(DeadLoopBlocks.begin(), 433 DeadLoopBlocks.end()); 434 MSSAU->removeBlocks(DeadLoopBlocksSet); 435 } 436 437 // The function LI.erase has some invariants that need to be preserved when 438 // it tries to remove a loop which is not the top-level loop. In particular, 439 // it requires loop's preheader to be strictly in loop's parent. We cannot 440 // just remove blocks one by one, because after removal of preheader we may 441 // break this invariant for the dead loop. So we detatch and erase all dead 442 // loops beforehand. 443 for (auto *BB : DeadLoopBlocks) 444 if (LI.isLoopHeader(BB)) { 445 assert(LI.getLoopFor(BB) != &L && "Attempt to remove current loop!"); 446 Loop *DL = LI.getLoopFor(BB); 447 if (DL->getParentLoop()) { 448 for (auto *PL = DL->getParentLoop(); PL; PL = PL->getParentLoop()) 449 for (auto *BB : DL->getBlocks()) 450 PL->removeBlockFromLoop(BB); 451 DL->getParentLoop()->removeChildLoop(DL); 452 LI.addTopLevelLoop(DL); 453 } 454 LI.erase(DL); 455 } 456 457 for (auto *BB : DeadLoopBlocks) { 458 assert(BB != L.getHeader() && 459 "Header of the current loop cannot be dead!"); 460 LLVM_DEBUG(dbgs() << "Deleting dead loop block " << BB->getName() 461 << "\n"); 462 LI.removeBlock(BB); 463 } 464 465 DetatchDeadBlocks(DeadLoopBlocks, &DTUpdates, /*KeepOneInputPHIs*/true); 466 DTU.applyUpdates(DTUpdates); 467 DTUpdates.clear(); 468 for (auto *BB : DeadLoopBlocks) 469 DTU.deleteBB(BB); 470 471 NumLoopBlocksDeleted += DeadLoopBlocks.size(); 472 } 473 474 /// Constant-fold terminators of blocks acculumated in FoldCandidates into the 475 /// unconditional branches. 476 void foldTerminators() { 477 for (BasicBlock *BB : FoldCandidates) { 478 assert(LI.getLoopFor(BB) == &L && "Should be a loop block!"); 479 BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(BB); 480 assert(TheOnlySucc && "Should have one live successor!"); 481 482 LLVM_DEBUG(dbgs() << "Replacing terminator of " << BB->getName() 483 << " with an unconditional branch to the block " 484 << TheOnlySucc->getName() << "\n"); 485 486 SmallPtrSet<BasicBlock *, 2> DeadSuccessors; 487 // Remove all BB's successors except for the live one. 488 unsigned TheOnlySuccDuplicates = 0; 489 for (auto *Succ : successors(BB)) 490 if (Succ != TheOnlySucc) { 491 DeadSuccessors.insert(Succ); 492 // If our successor lies in a different loop, we don't want to remove 493 // the one-input Phi because it is a LCSSA Phi. 494 bool PreserveLCSSAPhi = !L.contains(Succ); 495 Succ->removePredecessor(BB, PreserveLCSSAPhi); 496 if (MSSAU) 497 MSSAU->removeEdge(BB, Succ); 498 } else 499 ++TheOnlySuccDuplicates; 500 501 assert(TheOnlySuccDuplicates > 0 && "Should be!"); 502 // If TheOnlySucc was BB's successor more than once, after transform it 503 // will be its successor only once. Remove redundant inputs from 504 // TheOnlySucc's Phis. 505 bool PreserveLCSSAPhi = !L.contains(TheOnlySucc); 506 for (unsigned Dup = 1; Dup < TheOnlySuccDuplicates; ++Dup) 507 TheOnlySucc->removePredecessor(BB, PreserveLCSSAPhi); 508 if (MSSAU && TheOnlySuccDuplicates > 1) 509 MSSAU->removeDuplicatePhiEdgesBetween(BB, TheOnlySucc); 510 511 IRBuilder<> Builder(BB->getContext()); 512 Instruction *Term = BB->getTerminator(); 513 Builder.SetInsertPoint(Term); 514 Builder.CreateBr(TheOnlySucc); 515 Term->eraseFromParent(); 516 517 for (auto *DeadSucc : DeadSuccessors) 518 DTUpdates.push_back({DominatorTree::Delete, BB, DeadSucc}); 519 520 ++NumTerminatorsFolded; 521 } 522 } 523 524 public: 525 ConstantTerminatorFoldingImpl(Loop &L, LoopInfo &LI, DominatorTree &DT, 526 ScalarEvolution &SE, 527 MemorySSAUpdater *MSSAU) 528 : L(L), LI(LI), DT(DT), SE(SE), MSSAU(MSSAU), DFS(&L), 529 DTU(DT, DomTreeUpdater::UpdateStrategy::Eager) {} 530 bool run() { 531 assert(L.getLoopLatch() && "Should be single latch!"); 532 533 // Collect all available information about status of blocks after constant 534 // folding. 535 analyze(); 536 BasicBlock *Header = L.getHeader(); 537 (void)Header; 538 539 LLVM_DEBUG(dbgs() << "In function " << Header->getParent()->getName() 540 << ": "); 541 542 if (HasIrreducibleCFG) { 543 LLVM_DEBUG(dbgs() << "Loops with irreducible CFG are not supported!\n"); 544 return false; 545 } 546 547 // Nothing to constant-fold. 548 if (FoldCandidates.empty()) { 549 LLVM_DEBUG( 550 dbgs() << "No constant terminator folding candidates found in loop " 551 << Header->getName() << "\n"); 552 return false; 553 } 554 555 // TODO: Support deletion of the current loop. 556 if (DeleteCurrentLoop) { 557 LLVM_DEBUG( 558 dbgs() 559 << "Give up constant terminator folding in loop " << Header->getName() 560 << ": we don't currently support deletion of the current loop.\n"); 561 return false; 562 } 563 564 // TODO: Support blocks that are not dead, but also not in loop after the 565 // folding. 566 if (BlocksInLoopAfterFolding.size() + DeadLoopBlocks.size() != 567 L.getNumBlocks()) { 568 LLVM_DEBUG( 569 dbgs() << "Give up constant terminator folding in loop " 570 << Header->getName() << ": we don't currently" 571 " support blocks that are not dead, but will stop " 572 "being a part of the loop after constant-folding.\n"); 573 return false; 574 } 575 576 SE.forgetTopmostLoop(&L); 577 // Dump analysis results. 578 LLVM_DEBUG(dump()); 579 580 LLVM_DEBUG(dbgs() << "Constant-folding " << FoldCandidates.size() 581 << " terminators in loop " << Header->getName() << "\n"); 582 583 // Make the actual transforms. 584 handleDeadExits(); 585 foldTerminators(); 586 587 if (!DeadLoopBlocks.empty()) { 588 LLVM_DEBUG(dbgs() << "Deleting " << DeadLoopBlocks.size() 589 << " dead blocks in loop " << Header->getName() << "\n"); 590 deleteDeadLoopBlocks(); 591 } else { 592 // If we didn't do updates inside deleteDeadLoopBlocks, do them here. 593 DTU.applyUpdates(DTUpdates); 594 DTUpdates.clear(); 595 } 596 597 if (MSSAU && VerifyMemorySSA) 598 MSSAU->getMemorySSA()->verifyMemorySSA(); 599 600 #ifndef NDEBUG 601 // Make sure that we have preserved all data structures after the transform. 602 #if defined(EXPENSIVE_CHECKS) 603 assert(DT.verify(DominatorTree::VerificationLevel::Full) && 604 "DT broken after transform!"); 605 #else 606 assert(DT.verify(DominatorTree::VerificationLevel::Fast) && 607 "DT broken after transform!"); 608 #endif 609 assert(DT.isReachableFromEntry(Header)); 610 LI.verify(DT); 611 #endif 612 613 return true; 614 } 615 616 bool foldingBreaksCurrentLoop() const { 617 return DeleteCurrentLoop; 618 } 619 }; 620 } // namespace 621 622 /// Turn branches and switches with known constant conditions into unconditional 623 /// branches. 624 static bool constantFoldTerminators(Loop &L, DominatorTree &DT, LoopInfo &LI, 625 ScalarEvolution &SE, 626 MemorySSAUpdater *MSSAU, 627 bool &IsLoopDeleted) { 628 if (!EnableTermFolding) 629 return false; 630 631 // To keep things simple, only process loops with single latch. We 632 // canonicalize most loops to this form. We can support multi-latch if needed. 633 if (!L.getLoopLatch()) 634 return false; 635 636 ConstantTerminatorFoldingImpl BranchFolder(L, LI, DT, SE, MSSAU); 637 bool Changed = BranchFolder.run(); 638 IsLoopDeleted = Changed && BranchFolder.foldingBreaksCurrentLoop(); 639 return Changed; 640 } 641 642 static bool mergeBlocksIntoPredecessors(Loop &L, DominatorTree &DT, 643 LoopInfo &LI, MemorySSAUpdater *MSSAU) { 644 bool Changed = false; 645 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 646 // Copy blocks into a temporary array to avoid iterator invalidation issues 647 // as we remove them. 648 SmallVector<WeakTrackingVH, 16> Blocks(L.blocks()); 649 650 for (auto &Block : Blocks) { 651 // Attempt to merge blocks in the trivial case. Don't modify blocks which 652 // belong to other loops. 653 BasicBlock *Succ = cast_or_null<BasicBlock>(Block); 654 if (!Succ) 655 continue; 656 657 BasicBlock *Pred = Succ->getSinglePredecessor(); 658 if (!Pred || !Pred->getSingleSuccessor() || LI.getLoopFor(Pred) != &L) 659 continue; 660 661 // Merge Succ into Pred and delete it. 662 MergeBlockIntoPredecessor(Succ, &DTU, &LI, MSSAU); 663 664 Changed = true; 665 } 666 667 return Changed; 668 } 669 670 static bool simplifyLoopCFG(Loop &L, DominatorTree &DT, LoopInfo &LI, 671 ScalarEvolution &SE, MemorySSAUpdater *MSSAU, 672 bool &isLoopDeleted) { 673 bool Changed = false; 674 675 // Constant-fold terminators with known constant conditions. 676 Changed |= constantFoldTerminators(L, DT, LI, SE, MSSAU, isLoopDeleted); 677 678 if (isLoopDeleted) 679 return true; 680 681 // Eliminate unconditional branches by merging blocks into their predecessors. 682 Changed |= mergeBlocksIntoPredecessors(L, DT, LI, MSSAU); 683 684 if (Changed) 685 SE.forgetTopmostLoop(&L); 686 687 return Changed; 688 } 689 690 PreservedAnalyses LoopSimplifyCFGPass::run(Loop &L, LoopAnalysisManager &AM, 691 LoopStandardAnalysisResults &AR, 692 LPMUpdater &LPMU) { 693 Optional<MemorySSAUpdater> MSSAU; 694 if (AR.MSSA) 695 MSSAU = MemorySSAUpdater(AR.MSSA); 696 bool DeleteCurrentLoop = false; 697 if (!simplifyLoopCFG(L, AR.DT, AR.LI, AR.SE, 698 MSSAU.hasValue() ? MSSAU.getPointer() : nullptr, 699 DeleteCurrentLoop)) 700 return PreservedAnalyses::all(); 701 702 if (DeleteCurrentLoop) 703 LPMU.markLoopAsDeleted(L, "loop-simplifycfg"); 704 705 auto PA = getLoopPassPreservedAnalyses(); 706 if (AR.MSSA) 707 PA.preserve<MemorySSAAnalysis>(); 708 return PA; 709 } 710 711 namespace { 712 class LoopSimplifyCFGLegacyPass : public LoopPass { 713 public: 714 static char ID; // Pass ID, replacement for typeid 715 LoopSimplifyCFGLegacyPass() : LoopPass(ID) { 716 initializeLoopSimplifyCFGLegacyPassPass(*PassRegistry::getPassRegistry()); 717 } 718 719 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 720 if (skipLoop(L)) 721 return false; 722 723 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 724 LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 725 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 726 Optional<MemorySSAUpdater> MSSAU; 727 if (EnableMSSALoopDependency) { 728 MemorySSA *MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA(); 729 MSSAU = MemorySSAUpdater(MSSA); 730 if (VerifyMemorySSA) 731 MSSA->verifyMemorySSA(); 732 } 733 bool DeleteCurrentLoop = false; 734 bool Changed = simplifyLoopCFG( 735 *L, DT, LI, SE, MSSAU.hasValue() ? MSSAU.getPointer() : nullptr, 736 DeleteCurrentLoop); 737 if (DeleteCurrentLoop) 738 LPM.markLoopAsDeleted(*L); 739 return Changed; 740 } 741 742 void getAnalysisUsage(AnalysisUsage &AU) const override { 743 if (EnableMSSALoopDependency) { 744 AU.addRequired<MemorySSAWrapperPass>(); 745 AU.addPreserved<MemorySSAWrapperPass>(); 746 } 747 AU.addPreserved<DependenceAnalysisWrapperPass>(); 748 getLoopAnalysisUsage(AU); 749 } 750 }; 751 } 752 753 char LoopSimplifyCFGLegacyPass::ID = 0; 754 INITIALIZE_PASS_BEGIN(LoopSimplifyCFGLegacyPass, "loop-simplifycfg", 755 "Simplify loop CFG", false, false) 756 INITIALIZE_PASS_DEPENDENCY(LoopPass) 757 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 758 INITIALIZE_PASS_END(LoopSimplifyCFGLegacyPass, "loop-simplifycfg", 759 "Simplify loop CFG", false, false) 760 761 Pass *llvm::createLoopSimplifyCFGPass() { 762 return new LoopSimplifyCFGLegacyPass(); 763 } 764