1 //===- LoopRotation.cpp - Loop Rotation Pass ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements Loop Rotation Pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/LoopRotation.h" 15 #include "llvm/ADT/Statistic.h" 16 #include "llvm/Analysis/AliasAnalysis.h" 17 #include "llvm/Analysis/BasicAliasAnalysis.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/CodeMetrics.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/Analysis/GlobalsModRef.h" 22 #include "llvm/Analysis/LoopPass.h" 23 #include "llvm/Analysis/LoopPassManager.h" 24 #include "llvm/Analysis/ScalarEvolution.h" 25 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 26 #include "llvm/Analysis/TargetTransformInfo.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/IR/CFG.h" 29 #include "llvm/IR/Dominators.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/IntrinsicInst.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/Support/CommandLine.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Transforms/Scalar.h" 37 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 38 #include "llvm/Transforms/Utils/Local.h" 39 #include "llvm/Transforms/Utils/LoopUtils.h" 40 #include "llvm/Transforms/Utils/SSAUpdater.h" 41 #include "llvm/Transforms/Utils/ValueMapper.h" 42 using namespace llvm; 43 44 #define DEBUG_TYPE "loop-rotate" 45 46 static cl::opt<unsigned> DefaultRotationThreshold( 47 "rotation-max-header-size", cl::init(16), cl::Hidden, 48 cl::desc("The default maximum header size for automatic loop rotation")); 49 50 STATISTIC(NumRotated, "Number of loops rotated"); 51 52 namespace { 53 /// A simple loop rotation transformation. 54 class LoopRotate { 55 const unsigned MaxHeaderSize; 56 LoopInfo *LI; 57 const TargetTransformInfo *TTI; 58 AssumptionCache *AC; 59 DominatorTree *DT; 60 ScalarEvolution *SE; 61 62 public: 63 LoopRotate(unsigned MaxHeaderSize, LoopInfo *LI, 64 const TargetTransformInfo *TTI, AssumptionCache *AC, 65 DominatorTree *DT, ScalarEvolution *SE) 66 : MaxHeaderSize(MaxHeaderSize), LI(LI), TTI(TTI), AC(AC), DT(DT), SE(SE) { 67 } 68 bool processLoop(Loop *L); 69 70 private: 71 bool rotateLoop(Loop *L, bool SimplifiedLatch); 72 bool simplifyLoopLatch(Loop *L); 73 }; 74 } // end anonymous namespace 75 76 /// RewriteUsesOfClonedInstructions - We just cloned the instructions from the 77 /// old header into the preheader. If there were uses of the values produced by 78 /// these instruction that were outside of the loop, we have to insert PHI nodes 79 /// to merge the two values. Do this now. 80 static void RewriteUsesOfClonedInstructions(BasicBlock *OrigHeader, 81 BasicBlock *OrigPreheader, 82 ValueToValueMapTy &ValueMap) { 83 // Remove PHI node entries that are no longer live. 84 BasicBlock::iterator I, E = OrigHeader->end(); 85 for (I = OrigHeader->begin(); PHINode *PN = dyn_cast<PHINode>(I); ++I) 86 PN->removeIncomingValue(PN->getBasicBlockIndex(OrigPreheader)); 87 88 // Now fix up users of the instructions in OrigHeader, inserting PHI nodes 89 // as necessary. 90 SSAUpdater SSA; 91 for (I = OrigHeader->begin(); I != E; ++I) { 92 Value *OrigHeaderVal = &*I; 93 94 // If there are no uses of the value (e.g. because it returns void), there 95 // is nothing to rewrite. 96 if (OrigHeaderVal->use_empty()) 97 continue; 98 99 Value *OrigPreHeaderVal = ValueMap.lookup(OrigHeaderVal); 100 101 // The value now exits in two versions: the initial value in the preheader 102 // and the loop "next" value in the original header. 103 SSA.Initialize(OrigHeaderVal->getType(), OrigHeaderVal->getName()); 104 SSA.AddAvailableValue(OrigHeader, OrigHeaderVal); 105 SSA.AddAvailableValue(OrigPreheader, OrigPreHeaderVal); 106 107 // Visit each use of the OrigHeader instruction. 108 for (Value::use_iterator UI = OrigHeaderVal->use_begin(), 109 UE = OrigHeaderVal->use_end(); 110 UI != UE;) { 111 // Grab the use before incrementing the iterator. 112 Use &U = *UI; 113 114 // Increment the iterator before removing the use from the list. 115 ++UI; 116 117 // SSAUpdater can't handle a non-PHI use in the same block as an 118 // earlier def. We can easily handle those cases manually. 119 Instruction *UserInst = cast<Instruction>(U.getUser()); 120 if (!isa<PHINode>(UserInst)) { 121 BasicBlock *UserBB = UserInst->getParent(); 122 123 // The original users in the OrigHeader are already using the 124 // original definitions. 125 if (UserBB == OrigHeader) 126 continue; 127 128 // Users in the OrigPreHeader need to use the value to which the 129 // original definitions are mapped. 130 if (UserBB == OrigPreheader) { 131 U = OrigPreHeaderVal; 132 continue; 133 } 134 } 135 136 // Anything else can be handled by SSAUpdater. 137 SSA.RewriteUse(U); 138 } 139 140 // Replace MetadataAsValue(ValueAsMetadata(OrigHeaderVal)) uses in debug 141 // intrinsics. 142 LLVMContext &C = OrigHeader->getContext(); 143 if (auto *VAM = ValueAsMetadata::getIfExists(OrigHeaderVal)) { 144 if (auto *MAV = MetadataAsValue::getIfExists(C, VAM)) { 145 for (auto UI = MAV->use_begin(), E = MAV->use_end(); UI != E;) { 146 // Grab the use before incrementing the iterator. Otherwise, altering 147 // the Use will invalidate the iterator. 148 Use &U = *UI++; 149 DbgInfoIntrinsic *UserInst = dyn_cast<DbgInfoIntrinsic>(U.getUser()); 150 if (!UserInst) 151 continue; 152 153 // The original users in the OrigHeader are already using the original 154 // definitions. 155 BasicBlock *UserBB = UserInst->getParent(); 156 if (UserBB == OrigHeader) 157 continue; 158 159 // Users in the OrigPreHeader need to use the value to which the 160 // original definitions are mapped and anything else can be handled by 161 // the SSAUpdater. To avoid adding PHINodes, check if the value is 162 // available in UserBB, if not substitute undef. 163 Value *NewVal; 164 if (UserBB == OrigPreheader) 165 NewVal = OrigPreHeaderVal; 166 else if (SSA.HasValueForBlock(UserBB)) 167 NewVal = SSA.GetValueInMiddleOfBlock(UserBB); 168 else 169 NewVal = UndefValue::get(OrigHeaderVal->getType()); 170 U = MetadataAsValue::get(C, ValueAsMetadata::get(NewVal)); 171 } 172 } 173 } 174 } 175 } 176 177 /// Rotate loop LP. Return true if the loop is rotated. 178 /// 179 /// \param SimplifiedLatch is true if the latch was just folded into the final 180 /// loop exit. In this case we may want to rotate even though the new latch is 181 /// now an exiting branch. This rotation would have happened had the latch not 182 /// been simplified. However, if SimplifiedLatch is false, then we avoid 183 /// rotating loops in which the latch exits to avoid excessive or endless 184 /// rotation. LoopRotate should be repeatable and converge to a canonical 185 /// form. This property is satisfied because simplifying the loop latch can only 186 /// happen once across multiple invocations of the LoopRotate pass. 187 bool LoopRotate::rotateLoop(Loop *L, bool SimplifiedLatch) { 188 // If the loop has only one block then there is not much to rotate. 189 if (L->getBlocks().size() == 1) 190 return false; 191 192 BasicBlock *OrigHeader = L->getHeader(); 193 BasicBlock *OrigLatch = L->getLoopLatch(); 194 195 BranchInst *BI = dyn_cast<BranchInst>(OrigHeader->getTerminator()); 196 if (!BI || BI->isUnconditional()) 197 return false; 198 199 // If the loop header is not one of the loop exiting blocks then 200 // either this loop is already rotated or it is not 201 // suitable for loop rotation transformations. 202 if (!L->isLoopExiting(OrigHeader)) 203 return false; 204 205 // If the loop latch already contains a branch that leaves the loop then the 206 // loop is already rotated. 207 if (!OrigLatch) 208 return false; 209 210 // Rotate if either the loop latch does *not* exit the loop, or if the loop 211 // latch was just simplified. 212 if (L->isLoopExiting(OrigLatch) && !SimplifiedLatch) 213 return false; 214 215 // Check size of original header and reject loop if it is very big or we can't 216 // duplicate blocks inside it. 217 { 218 SmallPtrSet<const Value *, 32> EphValues; 219 CodeMetrics::collectEphemeralValues(L, AC, EphValues); 220 221 CodeMetrics Metrics; 222 Metrics.analyzeBasicBlock(OrigHeader, *TTI, EphValues); 223 if (Metrics.notDuplicatable) { 224 DEBUG(dbgs() << "LoopRotation: NOT rotating - contains non-duplicatable" 225 << " instructions: "; 226 L->dump()); 227 return false; 228 } 229 if (Metrics.convergent) { 230 DEBUG(dbgs() << "LoopRotation: NOT rotating - contains convergent " 231 "instructions: "; 232 L->dump()); 233 return false; 234 } 235 if (Metrics.NumInsts > MaxHeaderSize) 236 return false; 237 } 238 239 // Now, this loop is suitable for rotation. 240 BasicBlock *OrigPreheader = L->getLoopPreheader(); 241 242 // If the loop could not be converted to canonical form, it must have an 243 // indirectbr in it, just give up. 244 if (!OrigPreheader) 245 return false; 246 247 // Anything ScalarEvolution may know about this loop or the PHI nodes 248 // in its header will soon be invalidated. 249 if (SE) 250 SE->forgetLoop(L); 251 252 DEBUG(dbgs() << "LoopRotation: rotating "; L->dump()); 253 254 // Find new Loop header. NewHeader is a Header's one and only successor 255 // that is inside loop. Header's other successor is outside the 256 // loop. Otherwise loop is not suitable for rotation. 257 BasicBlock *Exit = BI->getSuccessor(0); 258 BasicBlock *NewHeader = BI->getSuccessor(1); 259 if (L->contains(Exit)) 260 std::swap(Exit, NewHeader); 261 assert(NewHeader && "Unable to determine new loop header"); 262 assert(L->contains(NewHeader) && !L->contains(Exit) && 263 "Unable to determine loop header and exit blocks"); 264 265 // This code assumes that the new header has exactly one predecessor. 266 // Remove any single-entry PHI nodes in it. 267 assert(NewHeader->getSinglePredecessor() && 268 "New header doesn't have one pred!"); 269 FoldSingleEntryPHINodes(NewHeader); 270 271 // Begin by walking OrigHeader and populating ValueMap with an entry for 272 // each Instruction. 273 BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end(); 274 ValueToValueMapTy ValueMap; 275 276 // For PHI nodes, the value available in OldPreHeader is just the 277 // incoming value from OldPreHeader. 278 for (; PHINode *PN = dyn_cast<PHINode>(I); ++I) 279 ValueMap[PN] = PN->getIncomingValueForBlock(OrigPreheader); 280 281 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 282 283 // For the rest of the instructions, either hoist to the OrigPreheader if 284 // possible or create a clone in the OldPreHeader if not. 285 TerminatorInst *LoopEntryBranch = OrigPreheader->getTerminator(); 286 while (I != E) { 287 Instruction *Inst = &*I++; 288 289 // If the instruction's operands are invariant and it doesn't read or write 290 // memory, then it is safe to hoist. Doing this doesn't change the order of 291 // execution in the preheader, but does prevent the instruction from 292 // executing in each iteration of the loop. This means it is safe to hoist 293 // something that might trap, but isn't safe to hoist something that reads 294 // memory (without proving that the loop doesn't write). 295 if (L->hasLoopInvariantOperands(Inst) && !Inst->mayReadFromMemory() && 296 !Inst->mayWriteToMemory() && !isa<TerminatorInst>(Inst) && 297 !isa<DbgInfoIntrinsic>(Inst) && !isa<AllocaInst>(Inst)) { 298 Inst->moveBefore(LoopEntryBranch); 299 continue; 300 } 301 302 // Otherwise, create a duplicate of the instruction. 303 Instruction *C = Inst->clone(); 304 305 // Eagerly remap the operands of the instruction. 306 RemapInstruction(C, ValueMap, 307 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 308 309 // With the operands remapped, see if the instruction constant folds or is 310 // otherwise simplifyable. This commonly occurs because the entry from PHI 311 // nodes allows icmps and other instructions to fold. 312 // FIXME: Provide TLI, DT, AC to SimplifyInstruction. 313 Value *V = SimplifyInstruction(C, DL); 314 if (V && LI->replacementPreservesLCSSAForm(C, V)) { 315 // If so, then delete the temporary instruction and stick the folded value 316 // in the map. 317 ValueMap[Inst] = V; 318 if (!C->mayHaveSideEffects()) { 319 delete C; 320 C = nullptr; 321 } 322 } else { 323 ValueMap[Inst] = C; 324 } 325 if (C) { 326 // Otherwise, stick the new instruction into the new block! 327 C->setName(Inst->getName()); 328 C->insertBefore(LoopEntryBranch); 329 330 if (auto *II = dyn_cast<IntrinsicInst>(C)) 331 if (II->getIntrinsicID() == Intrinsic::assume) 332 AC->registerAssumption(II); 333 } 334 } 335 336 // Along with all the other instructions, we just cloned OrigHeader's 337 // terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's 338 // successors by duplicating their incoming values for OrigHeader. 339 TerminatorInst *TI = OrigHeader->getTerminator(); 340 for (BasicBlock *SuccBB : TI->successors()) 341 for (BasicBlock::iterator BI = SuccBB->begin(); 342 PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 343 PN->addIncoming(PN->getIncomingValueForBlock(OrigHeader), OrigPreheader); 344 345 // Now that OrigPreHeader has a clone of OrigHeader's terminator, remove 346 // OrigPreHeader's old terminator (the original branch into the loop), and 347 // remove the corresponding incoming values from the PHI nodes in OrigHeader. 348 LoopEntryBranch->eraseFromParent(); 349 350 // If there were any uses of instructions in the duplicated block outside the 351 // loop, update them, inserting PHI nodes as required 352 RewriteUsesOfClonedInstructions(OrigHeader, OrigPreheader, ValueMap); 353 354 // NewHeader is now the header of the loop. 355 L->moveToHeader(NewHeader); 356 assert(L->getHeader() == NewHeader && "Latch block is our new header"); 357 358 // At this point, we've finished our major CFG changes. As part of cloning 359 // the loop into the preheader we've simplified instructions and the 360 // duplicated conditional branch may now be branching on a constant. If it is 361 // branching on a constant and if that constant means that we enter the loop, 362 // then we fold away the cond branch to an uncond branch. This simplifies the 363 // loop in cases important for nested loops, and it also means we don't have 364 // to split as many edges. 365 BranchInst *PHBI = cast<BranchInst>(OrigPreheader->getTerminator()); 366 assert(PHBI->isConditional() && "Should be clone of BI condbr!"); 367 if (!isa<ConstantInt>(PHBI->getCondition()) || 368 PHBI->getSuccessor(cast<ConstantInt>(PHBI->getCondition())->isZero()) != 369 NewHeader) { 370 // The conditional branch can't be folded, handle the general case. 371 // Update DominatorTree to reflect the CFG change we just made. Then split 372 // edges as necessary to preserve LoopSimplify form. 373 if (DT) { 374 // Everything that was dominated by the old loop header is now dominated 375 // by the original loop preheader. Conceptually the header was merged 376 // into the preheader, even though we reuse the actual block as a new 377 // loop latch. 378 DomTreeNode *OrigHeaderNode = DT->getNode(OrigHeader); 379 SmallVector<DomTreeNode *, 8> HeaderChildren(OrigHeaderNode->begin(), 380 OrigHeaderNode->end()); 381 DomTreeNode *OrigPreheaderNode = DT->getNode(OrigPreheader); 382 for (unsigned I = 0, E = HeaderChildren.size(); I != E; ++I) 383 DT->changeImmediateDominator(HeaderChildren[I], OrigPreheaderNode); 384 385 assert(DT->getNode(Exit)->getIDom() == OrigPreheaderNode); 386 assert(DT->getNode(NewHeader)->getIDom() == OrigPreheaderNode); 387 388 // Update OrigHeader to be dominated by the new header block. 389 DT->changeImmediateDominator(OrigHeader, OrigLatch); 390 } 391 392 // Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and 393 // thus is not a preheader anymore. 394 // Split the edge to form a real preheader. 395 BasicBlock *NewPH = SplitCriticalEdge( 396 OrigPreheader, NewHeader, 397 CriticalEdgeSplittingOptions(DT, LI).setPreserveLCSSA()); 398 NewPH->setName(NewHeader->getName() + ".lr.ph"); 399 400 // Preserve canonical loop form, which means that 'Exit' should have only 401 // one predecessor. Note that Exit could be an exit block for multiple 402 // nested loops, causing both of the edges to now be critical and need to 403 // be split. 404 SmallVector<BasicBlock *, 4> ExitPreds(pred_begin(Exit), pred_end(Exit)); 405 bool SplitLatchEdge = false; 406 for (BasicBlock *ExitPred : ExitPreds) { 407 // We only need to split loop exit edges. 408 Loop *PredLoop = LI->getLoopFor(ExitPred); 409 if (!PredLoop || PredLoop->contains(Exit)) 410 continue; 411 if (isa<IndirectBrInst>(ExitPred->getTerminator())) 412 continue; 413 SplitLatchEdge |= L->getLoopLatch() == ExitPred; 414 BasicBlock *ExitSplit = SplitCriticalEdge( 415 ExitPred, Exit, 416 CriticalEdgeSplittingOptions(DT, LI).setPreserveLCSSA()); 417 ExitSplit->moveBefore(Exit); 418 } 419 assert(SplitLatchEdge && 420 "Despite splitting all preds, failed to split latch exit?"); 421 } else { 422 // We can fold the conditional branch in the preheader, this makes things 423 // simpler. The first step is to remove the extra edge to the Exit block. 424 Exit->removePredecessor(OrigPreheader, true /*preserve LCSSA*/); 425 BranchInst *NewBI = BranchInst::Create(NewHeader, PHBI); 426 NewBI->setDebugLoc(PHBI->getDebugLoc()); 427 PHBI->eraseFromParent(); 428 429 // With our CFG finalized, update DomTree if it is available. 430 if (DT) { 431 // Update OrigHeader to be dominated by the new header block. 432 DT->changeImmediateDominator(NewHeader, OrigPreheader); 433 DT->changeImmediateDominator(OrigHeader, OrigLatch); 434 435 // Brute force incremental dominator tree update. Call 436 // findNearestCommonDominator on all CFG predecessors of each child of the 437 // original header. 438 DomTreeNode *OrigHeaderNode = DT->getNode(OrigHeader); 439 SmallVector<DomTreeNode *, 8> HeaderChildren(OrigHeaderNode->begin(), 440 OrigHeaderNode->end()); 441 bool Changed; 442 do { 443 Changed = false; 444 for (unsigned I = 0, E = HeaderChildren.size(); I != E; ++I) { 445 DomTreeNode *Node = HeaderChildren[I]; 446 BasicBlock *BB = Node->getBlock(); 447 448 pred_iterator PI = pred_begin(BB); 449 BasicBlock *NearestDom = *PI; 450 for (pred_iterator PE = pred_end(BB); PI != PE; ++PI) 451 NearestDom = DT->findNearestCommonDominator(NearestDom, *PI); 452 453 // Remember if this changes the DomTree. 454 if (Node->getIDom()->getBlock() != NearestDom) { 455 DT->changeImmediateDominator(BB, NearestDom); 456 Changed = true; 457 } 458 } 459 460 // If the dominator changed, this may have an effect on other 461 // predecessors, continue until we reach a fixpoint. 462 } while (Changed); 463 } 464 } 465 466 assert(L->getLoopPreheader() && "Invalid loop preheader after loop rotation"); 467 assert(L->getLoopLatch() && "Invalid loop latch after loop rotation"); 468 469 // Now that the CFG and DomTree are in a consistent state again, try to merge 470 // the OrigHeader block into OrigLatch. This will succeed if they are 471 // connected by an unconditional branch. This is just a cleanup so the 472 // emitted code isn't too gross in this common case. 473 MergeBlockIntoPredecessor(OrigHeader, DT, LI); 474 475 DEBUG(dbgs() << "LoopRotation: into "; L->dump()); 476 477 ++NumRotated; 478 return true; 479 } 480 481 /// Determine whether the instructions in this range may be safely and cheaply 482 /// speculated. This is not an important enough situation to develop complex 483 /// heuristics. We handle a single arithmetic instruction along with any type 484 /// conversions. 485 static bool shouldSpeculateInstrs(BasicBlock::iterator Begin, 486 BasicBlock::iterator End, Loop *L) { 487 bool seenIncrement = false; 488 bool MultiExitLoop = false; 489 490 if (!L->getExitingBlock()) 491 MultiExitLoop = true; 492 493 for (BasicBlock::iterator I = Begin; I != End; ++I) { 494 495 if (!isSafeToSpeculativelyExecute(&*I)) 496 return false; 497 498 if (isa<DbgInfoIntrinsic>(I)) 499 continue; 500 501 switch (I->getOpcode()) { 502 default: 503 return false; 504 case Instruction::GetElementPtr: 505 // GEPs are cheap if all indices are constant. 506 if (!cast<GEPOperator>(I)->hasAllConstantIndices()) 507 return false; 508 // fall-thru to increment case 509 LLVM_FALLTHROUGH; 510 case Instruction::Add: 511 case Instruction::Sub: 512 case Instruction::And: 513 case Instruction::Or: 514 case Instruction::Xor: 515 case Instruction::Shl: 516 case Instruction::LShr: 517 case Instruction::AShr: { 518 Value *IVOpnd = 519 !isa<Constant>(I->getOperand(0)) 520 ? I->getOperand(0) 521 : !isa<Constant>(I->getOperand(1)) ? I->getOperand(1) : nullptr; 522 if (!IVOpnd) 523 return false; 524 525 // If increment operand is used outside of the loop, this speculation 526 // could cause extra live range interference. 527 if (MultiExitLoop) { 528 for (User *UseI : IVOpnd->users()) { 529 auto *UserInst = cast<Instruction>(UseI); 530 if (!L->contains(UserInst)) 531 return false; 532 } 533 } 534 535 if (seenIncrement) 536 return false; 537 seenIncrement = true; 538 break; 539 } 540 case Instruction::Trunc: 541 case Instruction::ZExt: 542 case Instruction::SExt: 543 // ignore type conversions 544 break; 545 } 546 } 547 return true; 548 } 549 550 /// Fold the loop tail into the loop exit by speculating the loop tail 551 /// instructions. Typically, this is a single post-increment. In the case of a 552 /// simple 2-block loop, hoisting the increment can be much better than 553 /// duplicating the entire loop header. In the case of loops with early exits, 554 /// rotation will not work anyway, but simplifyLoopLatch will put the loop in 555 /// canonical form so downstream passes can handle it. 556 /// 557 /// I don't believe this invalidates SCEV. 558 bool LoopRotate::simplifyLoopLatch(Loop *L) { 559 BasicBlock *Latch = L->getLoopLatch(); 560 if (!Latch || Latch->hasAddressTaken()) 561 return false; 562 563 BranchInst *Jmp = dyn_cast<BranchInst>(Latch->getTerminator()); 564 if (!Jmp || !Jmp->isUnconditional()) 565 return false; 566 567 BasicBlock *LastExit = Latch->getSinglePredecessor(); 568 if (!LastExit || !L->isLoopExiting(LastExit)) 569 return false; 570 571 BranchInst *BI = dyn_cast<BranchInst>(LastExit->getTerminator()); 572 if (!BI) 573 return false; 574 575 if (!shouldSpeculateInstrs(Latch->begin(), Jmp->getIterator(), L)) 576 return false; 577 578 DEBUG(dbgs() << "Folding loop latch " << Latch->getName() << " into " 579 << LastExit->getName() << "\n"); 580 581 // Hoist the instructions from Latch into LastExit. 582 LastExit->getInstList().splice(BI->getIterator(), Latch->getInstList(), 583 Latch->begin(), Jmp->getIterator()); 584 585 unsigned FallThruPath = BI->getSuccessor(0) == Latch ? 0 : 1; 586 BasicBlock *Header = Jmp->getSuccessor(0); 587 assert(Header == L->getHeader() && "expected a backward branch"); 588 589 // Remove Latch from the CFG so that LastExit becomes the new Latch. 590 BI->setSuccessor(FallThruPath, Header); 591 Latch->replaceSuccessorsPhiUsesWith(LastExit); 592 Jmp->eraseFromParent(); 593 594 // Nuke the Latch block. 595 assert(Latch->empty() && "unable to evacuate Latch"); 596 LI->removeBlock(Latch); 597 if (DT) 598 DT->eraseNode(Latch); 599 Latch->eraseFromParent(); 600 return true; 601 } 602 603 /// Rotate \c L, and return true if any modification was made. 604 bool LoopRotate::processLoop(Loop *L) { 605 // Save the loop metadata. 606 MDNode *LoopMD = L->getLoopID(); 607 608 // Simplify the loop latch before attempting to rotate the header 609 // upward. Rotation may not be needed if the loop tail can be folded into the 610 // loop exit. 611 bool SimplifiedLatch = simplifyLoopLatch(L); 612 613 bool MadeChange = rotateLoop(L, SimplifiedLatch); 614 assert((!MadeChange || L->isLoopExiting(L->getLoopLatch())) && 615 "Loop latch should be exiting after loop-rotate."); 616 617 // Restore the loop metadata. 618 // NB! We presume LoopRotation DOESN'T ADD its own metadata. 619 if ((MadeChange || SimplifiedLatch) && LoopMD) 620 L->setLoopID(LoopMD); 621 622 return MadeChange; 623 } 624 625 LoopRotatePass::LoopRotatePass() {} 626 627 PreservedAnalyses LoopRotatePass::run(Loop &L, LoopAnalysisManager &AM) { 628 auto &FAM = AM.getResult<FunctionAnalysisManagerLoopProxy>(L).getManager(); 629 Function *F = L.getHeader()->getParent(); 630 631 auto *LI = FAM.getCachedResult<LoopAnalysis>(*F); 632 const auto *TTI = FAM.getCachedResult<TargetIRAnalysis>(*F); 633 auto *AC = FAM.getCachedResult<AssumptionAnalysis>(*F); 634 assert((LI && TTI && AC) && "Analyses for loop rotation not available"); 635 636 // Optional analyses. 637 auto *DT = FAM.getCachedResult<DominatorTreeAnalysis>(*F); 638 auto *SE = FAM.getCachedResult<ScalarEvolutionAnalysis>(*F); 639 LoopRotate LR(DefaultRotationThreshold, LI, TTI, AC, DT, SE); 640 641 bool Changed = LR.processLoop(&L); 642 if (!Changed) 643 return PreservedAnalyses::all(); 644 return getLoopPassPreservedAnalyses(); 645 } 646 647 namespace { 648 649 class LoopRotateLegacyPass : public LoopPass { 650 unsigned MaxHeaderSize; 651 652 public: 653 static char ID; // Pass ID, replacement for typeid 654 LoopRotateLegacyPass(int SpecifiedMaxHeaderSize = -1) : LoopPass(ID) { 655 initializeLoopRotateLegacyPassPass(*PassRegistry::getPassRegistry()); 656 if (SpecifiedMaxHeaderSize == -1) 657 MaxHeaderSize = DefaultRotationThreshold; 658 else 659 MaxHeaderSize = unsigned(SpecifiedMaxHeaderSize); 660 } 661 662 // LCSSA form makes instruction renaming easier. 663 void getAnalysisUsage(AnalysisUsage &AU) const override { 664 AU.addRequired<AssumptionCacheTracker>(); 665 AU.addRequired<TargetTransformInfoWrapperPass>(); 666 getLoopAnalysisUsage(AU); 667 } 668 669 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 670 if (skipLoop(L)) 671 return false; 672 Function &F = *L->getHeader()->getParent(); 673 674 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 675 const auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 676 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 677 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 678 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; 679 auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); 680 auto *SE = SEWP ? &SEWP->getSE() : nullptr; 681 LoopRotate LR(MaxHeaderSize, LI, TTI, AC, DT, SE); 682 return LR.processLoop(L); 683 } 684 }; 685 } 686 687 char LoopRotateLegacyPass::ID = 0; 688 INITIALIZE_PASS_BEGIN(LoopRotateLegacyPass, "loop-rotate", "Rotate Loops", 689 false, false) 690 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 691 INITIALIZE_PASS_DEPENDENCY(LoopPass) 692 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 693 INITIALIZE_PASS_END(LoopRotateLegacyPass, "loop-rotate", "Rotate Loops", false, 694 false) 695 696 Pass *llvm::createLoopRotatePass(int MaxHeaderSize) { 697 return new LoopRotateLegacyPass(MaxHeaderSize); 698 } 699