1 //===- LoopRotation.cpp - Loop Rotation Pass ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements Loop Rotation Pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/LoopRotation.h" 15 #include "llvm/ADT/Statistic.h" 16 #include "llvm/Analysis/AliasAnalysis.h" 17 #include "llvm/Analysis/BasicAliasAnalysis.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/CodeMetrics.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/Analysis/GlobalsModRef.h" 22 #include "llvm/Analysis/LoopPass.h" 23 #include "llvm/Analysis/LoopPassManager.h" 24 #include "llvm/Analysis/ScalarEvolution.h" 25 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 26 #include "llvm/Analysis/TargetTransformInfo.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/IR/CFG.h" 29 #include "llvm/IR/Dominators.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/IntrinsicInst.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/Support/CommandLine.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Transforms/Scalar.h" 37 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 38 #include "llvm/Transforms/Utils/Local.h" 39 #include "llvm/Transforms/Utils/LoopUtils.h" 40 #include "llvm/Transforms/Utils/SSAUpdater.h" 41 #include "llvm/Transforms/Utils/ValueMapper.h" 42 using namespace llvm; 43 44 #define DEBUG_TYPE "loop-rotate" 45 46 static cl::opt<unsigned> 47 DefaultRotationThreshold("rotation-max-header-size", cl::init(16), cl::Hidden, 48 cl::desc("The default maximum header size for automatic loop rotation")); 49 50 STATISTIC(NumRotated, "Number of loops rotated"); 51 52 /// RewriteUsesOfClonedInstructions - We just cloned the instructions from the 53 /// old header into the preheader. If there were uses of the values produced by 54 /// these instruction that were outside of the loop, we have to insert PHI nodes 55 /// to merge the two values. Do this now. 56 static void RewriteUsesOfClonedInstructions(BasicBlock *OrigHeader, 57 BasicBlock *OrigPreheader, 58 ValueToValueMapTy &ValueMap) { 59 // Remove PHI node entries that are no longer live. 60 BasicBlock::iterator I, E = OrigHeader->end(); 61 for (I = OrigHeader->begin(); PHINode *PN = dyn_cast<PHINode>(I); ++I) 62 PN->removeIncomingValue(PN->getBasicBlockIndex(OrigPreheader)); 63 64 // Now fix up users of the instructions in OrigHeader, inserting PHI nodes 65 // as necessary. 66 SSAUpdater SSA; 67 for (I = OrigHeader->begin(); I != E; ++I) { 68 Value *OrigHeaderVal = &*I; 69 70 // If there are no uses of the value (e.g. because it returns void), there 71 // is nothing to rewrite. 72 if (OrigHeaderVal->use_empty()) 73 continue; 74 75 Value *OrigPreHeaderVal = ValueMap.lookup(OrigHeaderVal); 76 77 // The value now exits in two versions: the initial value in the preheader 78 // and the loop "next" value in the original header. 79 SSA.Initialize(OrigHeaderVal->getType(), OrigHeaderVal->getName()); 80 SSA.AddAvailableValue(OrigHeader, OrigHeaderVal); 81 SSA.AddAvailableValue(OrigPreheader, OrigPreHeaderVal); 82 83 // Visit each use of the OrigHeader instruction. 84 for (Value::use_iterator UI = OrigHeaderVal->use_begin(), 85 UE = OrigHeaderVal->use_end(); UI != UE; ) { 86 // Grab the use before incrementing the iterator. 87 Use &U = *UI; 88 89 // Increment the iterator before removing the use from the list. 90 ++UI; 91 92 // SSAUpdater can't handle a non-PHI use in the same block as an 93 // earlier def. We can easily handle those cases manually. 94 Instruction *UserInst = cast<Instruction>(U.getUser()); 95 if (!isa<PHINode>(UserInst)) { 96 BasicBlock *UserBB = UserInst->getParent(); 97 98 // The original users in the OrigHeader are already using the 99 // original definitions. 100 if (UserBB == OrigHeader) 101 continue; 102 103 // Users in the OrigPreHeader need to use the value to which the 104 // original definitions are mapped. 105 if (UserBB == OrigPreheader) { 106 U = OrigPreHeaderVal; 107 continue; 108 } 109 } 110 111 // Anything else can be handled by SSAUpdater. 112 SSA.RewriteUse(U); 113 } 114 } 115 } 116 117 /// Rotate loop LP. Return true if the loop is rotated. 118 /// 119 /// \param SimplifiedLatch is true if the latch was just folded into the final 120 /// loop exit. In this case we may want to rotate even though the new latch is 121 /// now an exiting branch. This rotation would have happened had the latch not 122 /// been simplified. However, if SimplifiedLatch is false, then we avoid 123 /// rotating loops in which the latch exits to avoid excessive or endless 124 /// rotation. LoopRotate should be repeatable and converge to a canonical 125 /// form. This property is satisfied because simplifying the loop latch can only 126 /// happen once across multiple invocations of the LoopRotate pass. 127 static bool rotateLoop(Loop *L, unsigned MaxHeaderSize, LoopInfo *LI, 128 const TargetTransformInfo *TTI, AssumptionCache *AC, 129 DominatorTree *DT, ScalarEvolution *SE, 130 bool SimplifiedLatch) { 131 // If the loop has only one block then there is not much to rotate. 132 if (L->getBlocks().size() == 1) 133 return false; 134 135 BasicBlock *OrigHeader = L->getHeader(); 136 BasicBlock *OrigLatch = L->getLoopLatch(); 137 138 BranchInst *BI = dyn_cast<BranchInst>(OrigHeader->getTerminator()); 139 if (!BI || BI->isUnconditional()) 140 return false; 141 142 // If the loop header is not one of the loop exiting blocks then 143 // either this loop is already rotated or it is not 144 // suitable for loop rotation transformations. 145 if (!L->isLoopExiting(OrigHeader)) 146 return false; 147 148 // If the loop latch already contains a branch that leaves the loop then the 149 // loop is already rotated. 150 if (!OrigLatch) 151 return false; 152 153 // Rotate if either the loop latch does *not* exit the loop, or if the loop 154 // latch was just simplified. 155 if (L->isLoopExiting(OrigLatch) && !SimplifiedLatch) 156 return false; 157 158 // Check size of original header and reject loop if it is very big or we can't 159 // duplicate blocks inside it. 160 { 161 SmallPtrSet<const Value *, 32> EphValues; 162 CodeMetrics::collectEphemeralValues(L, AC, EphValues); 163 164 CodeMetrics Metrics; 165 Metrics.analyzeBasicBlock(OrigHeader, *TTI, EphValues); 166 if (Metrics.notDuplicatable) { 167 DEBUG(dbgs() << "LoopRotation: NOT rotating - contains non-duplicatable" 168 << " instructions: "; L->dump()); 169 return false; 170 } 171 if (Metrics.convergent) { 172 DEBUG(dbgs() << "LoopRotation: NOT rotating - contains convergent " 173 "instructions: "; L->dump()); 174 return false; 175 } 176 if (Metrics.NumInsts > MaxHeaderSize) 177 return false; 178 } 179 180 // Now, this loop is suitable for rotation. 181 BasicBlock *OrigPreheader = L->getLoopPreheader(); 182 183 // If the loop could not be converted to canonical form, it must have an 184 // indirectbr in it, just give up. 185 if (!OrigPreheader) 186 return false; 187 188 // Anything ScalarEvolution may know about this loop or the PHI nodes 189 // in its header will soon be invalidated. 190 if (SE) 191 SE->forgetLoop(L); 192 193 DEBUG(dbgs() << "LoopRotation: rotating "; L->dump()); 194 195 // Find new Loop header. NewHeader is a Header's one and only successor 196 // that is inside loop. Header's other successor is outside the 197 // loop. Otherwise loop is not suitable for rotation. 198 BasicBlock *Exit = BI->getSuccessor(0); 199 BasicBlock *NewHeader = BI->getSuccessor(1); 200 if (L->contains(Exit)) 201 std::swap(Exit, NewHeader); 202 assert(NewHeader && "Unable to determine new loop header"); 203 assert(L->contains(NewHeader) && !L->contains(Exit) && 204 "Unable to determine loop header and exit blocks"); 205 206 // This code assumes that the new header has exactly one predecessor. 207 // Remove any single-entry PHI nodes in it. 208 assert(NewHeader->getSinglePredecessor() && 209 "New header doesn't have one pred!"); 210 FoldSingleEntryPHINodes(NewHeader); 211 212 // Begin by walking OrigHeader and populating ValueMap with an entry for 213 // each Instruction. 214 BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end(); 215 ValueToValueMapTy ValueMap; 216 217 // For PHI nodes, the value available in OldPreHeader is just the 218 // incoming value from OldPreHeader. 219 for (; PHINode *PN = dyn_cast<PHINode>(I); ++I) 220 ValueMap[PN] = PN->getIncomingValueForBlock(OrigPreheader); 221 222 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 223 224 // For the rest of the instructions, either hoist to the OrigPreheader if 225 // possible or create a clone in the OldPreHeader if not. 226 TerminatorInst *LoopEntryBranch = OrigPreheader->getTerminator(); 227 while (I != E) { 228 Instruction *Inst = &*I++; 229 230 // If the instruction's operands are invariant and it doesn't read or write 231 // memory, then it is safe to hoist. Doing this doesn't change the order of 232 // execution in the preheader, but does prevent the instruction from 233 // executing in each iteration of the loop. This means it is safe to hoist 234 // something that might trap, but isn't safe to hoist something that reads 235 // memory (without proving that the loop doesn't write). 236 if (L->hasLoopInvariantOperands(Inst) && 237 !Inst->mayReadFromMemory() && !Inst->mayWriteToMemory() && 238 !isa<TerminatorInst>(Inst) && !isa<DbgInfoIntrinsic>(Inst) && 239 !isa<AllocaInst>(Inst)) { 240 Inst->moveBefore(LoopEntryBranch); 241 continue; 242 } 243 244 // Otherwise, create a duplicate of the instruction. 245 Instruction *C = Inst->clone(); 246 247 // Eagerly remap the operands of the instruction. 248 RemapInstruction(C, ValueMap, 249 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 250 251 // With the operands remapped, see if the instruction constant folds or is 252 // otherwise simplifyable. This commonly occurs because the entry from PHI 253 // nodes allows icmps and other instructions to fold. 254 // FIXME: Provide TLI, DT, AC to SimplifyInstruction. 255 Value *V = SimplifyInstruction(C, DL); 256 if (V && LI->replacementPreservesLCSSAForm(C, V)) { 257 // If so, then delete the temporary instruction and stick the folded value 258 // in the map. 259 delete C; 260 ValueMap[Inst] = V; 261 } else { 262 // Otherwise, stick the new instruction into the new block! 263 C->setName(Inst->getName()); 264 C->insertBefore(LoopEntryBranch); 265 ValueMap[Inst] = C; 266 } 267 } 268 269 // Along with all the other instructions, we just cloned OrigHeader's 270 // terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's 271 // successors by duplicating their incoming values for OrigHeader. 272 TerminatorInst *TI = OrigHeader->getTerminator(); 273 for (BasicBlock *SuccBB : TI->successors()) 274 for (BasicBlock::iterator BI = SuccBB->begin(); 275 PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 276 PN->addIncoming(PN->getIncomingValueForBlock(OrigHeader), OrigPreheader); 277 278 // Now that OrigPreHeader has a clone of OrigHeader's terminator, remove 279 // OrigPreHeader's old terminator (the original branch into the loop), and 280 // remove the corresponding incoming values from the PHI nodes in OrigHeader. 281 LoopEntryBranch->eraseFromParent(); 282 283 // If there were any uses of instructions in the duplicated block outside the 284 // loop, update them, inserting PHI nodes as required 285 RewriteUsesOfClonedInstructions(OrigHeader, OrigPreheader, ValueMap); 286 287 // NewHeader is now the header of the loop. 288 L->moveToHeader(NewHeader); 289 assert(L->getHeader() == NewHeader && "Latch block is our new header"); 290 291 292 // At this point, we've finished our major CFG changes. As part of cloning 293 // the loop into the preheader we've simplified instructions and the 294 // duplicated conditional branch may now be branching on a constant. If it is 295 // branching on a constant and if that constant means that we enter the loop, 296 // then we fold away the cond branch to an uncond branch. This simplifies the 297 // loop in cases important for nested loops, and it also means we don't have 298 // to split as many edges. 299 BranchInst *PHBI = cast<BranchInst>(OrigPreheader->getTerminator()); 300 assert(PHBI->isConditional() && "Should be clone of BI condbr!"); 301 if (!isa<ConstantInt>(PHBI->getCondition()) || 302 PHBI->getSuccessor(cast<ConstantInt>(PHBI->getCondition())->isZero()) 303 != NewHeader) { 304 // The conditional branch can't be folded, handle the general case. 305 // Update DominatorTree to reflect the CFG change we just made. Then split 306 // edges as necessary to preserve LoopSimplify form. 307 if (DT) { 308 // Everything that was dominated by the old loop header is now dominated 309 // by the original loop preheader. Conceptually the header was merged 310 // into the preheader, even though we reuse the actual block as a new 311 // loop latch. 312 DomTreeNode *OrigHeaderNode = DT->getNode(OrigHeader); 313 SmallVector<DomTreeNode *, 8> HeaderChildren(OrigHeaderNode->begin(), 314 OrigHeaderNode->end()); 315 DomTreeNode *OrigPreheaderNode = DT->getNode(OrigPreheader); 316 for (unsigned I = 0, E = HeaderChildren.size(); I != E; ++I) 317 DT->changeImmediateDominator(HeaderChildren[I], OrigPreheaderNode); 318 319 assert(DT->getNode(Exit)->getIDom() == OrigPreheaderNode); 320 assert(DT->getNode(NewHeader)->getIDom() == OrigPreheaderNode); 321 322 // Update OrigHeader to be dominated by the new header block. 323 DT->changeImmediateDominator(OrigHeader, OrigLatch); 324 } 325 326 // Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and 327 // thus is not a preheader anymore. 328 // Split the edge to form a real preheader. 329 BasicBlock *NewPH = SplitCriticalEdge( 330 OrigPreheader, NewHeader, 331 CriticalEdgeSplittingOptions(DT, LI).setPreserveLCSSA()); 332 NewPH->setName(NewHeader->getName() + ".lr.ph"); 333 334 // Preserve canonical loop form, which means that 'Exit' should have only 335 // one predecessor. Note that Exit could be an exit block for multiple 336 // nested loops, causing both of the edges to now be critical and need to 337 // be split. 338 SmallVector<BasicBlock *, 4> ExitPreds(pred_begin(Exit), pred_end(Exit)); 339 bool SplitLatchEdge = false; 340 for (SmallVectorImpl<BasicBlock *>::iterator PI = ExitPreds.begin(), 341 PE = ExitPreds.end(); 342 PI != PE; ++PI) { 343 // We only need to split loop exit edges. 344 Loop *PredLoop = LI->getLoopFor(*PI); 345 if (!PredLoop || PredLoop->contains(Exit)) 346 continue; 347 if (isa<IndirectBrInst>((*PI)->getTerminator())) 348 continue; 349 SplitLatchEdge |= L->getLoopLatch() == *PI; 350 BasicBlock *ExitSplit = SplitCriticalEdge( 351 *PI, Exit, CriticalEdgeSplittingOptions(DT, LI).setPreserveLCSSA()); 352 ExitSplit->moveBefore(Exit); 353 } 354 assert(SplitLatchEdge && 355 "Despite splitting all preds, failed to split latch exit?"); 356 } else { 357 // We can fold the conditional branch in the preheader, this makes things 358 // simpler. The first step is to remove the extra edge to the Exit block. 359 Exit->removePredecessor(OrigPreheader, true /*preserve LCSSA*/); 360 BranchInst *NewBI = BranchInst::Create(NewHeader, PHBI); 361 NewBI->setDebugLoc(PHBI->getDebugLoc()); 362 PHBI->eraseFromParent(); 363 364 // With our CFG finalized, update DomTree if it is available. 365 if (DT) { 366 // Update OrigHeader to be dominated by the new header block. 367 DT->changeImmediateDominator(NewHeader, OrigPreheader); 368 DT->changeImmediateDominator(OrigHeader, OrigLatch); 369 370 // Brute force incremental dominator tree update. Call 371 // findNearestCommonDominator on all CFG predecessors of each child of the 372 // original header. 373 DomTreeNode *OrigHeaderNode = DT->getNode(OrigHeader); 374 SmallVector<DomTreeNode *, 8> HeaderChildren(OrigHeaderNode->begin(), 375 OrigHeaderNode->end()); 376 bool Changed; 377 do { 378 Changed = false; 379 for (unsigned I = 0, E = HeaderChildren.size(); I != E; ++I) { 380 DomTreeNode *Node = HeaderChildren[I]; 381 BasicBlock *BB = Node->getBlock(); 382 383 pred_iterator PI = pred_begin(BB); 384 BasicBlock *NearestDom = *PI; 385 for (pred_iterator PE = pred_end(BB); PI != PE; ++PI) 386 NearestDom = DT->findNearestCommonDominator(NearestDom, *PI); 387 388 // Remember if this changes the DomTree. 389 if (Node->getIDom()->getBlock() != NearestDom) { 390 DT->changeImmediateDominator(BB, NearestDom); 391 Changed = true; 392 } 393 } 394 395 // If the dominator changed, this may have an effect on other 396 // predecessors, continue until we reach a fixpoint. 397 } while (Changed); 398 } 399 } 400 401 assert(L->getLoopPreheader() && "Invalid loop preheader after loop rotation"); 402 assert(L->getLoopLatch() && "Invalid loop latch after loop rotation"); 403 404 // Now that the CFG and DomTree are in a consistent state again, try to merge 405 // the OrigHeader block into OrigLatch. This will succeed if they are 406 // connected by an unconditional branch. This is just a cleanup so the 407 // emitted code isn't too gross in this common case. 408 MergeBlockIntoPredecessor(OrigHeader, DT, LI); 409 410 DEBUG(dbgs() << "LoopRotation: into "; L->dump()); 411 412 ++NumRotated; 413 return true; 414 } 415 416 /// Determine whether the instructions in this range may be safely and cheaply 417 /// speculated. This is not an important enough situation to develop complex 418 /// heuristics. We handle a single arithmetic instruction along with any type 419 /// conversions. 420 static bool shouldSpeculateInstrs(BasicBlock::iterator Begin, 421 BasicBlock::iterator End, Loop *L) { 422 bool seenIncrement = false; 423 bool MultiExitLoop = false; 424 425 if (!L->getExitingBlock()) 426 MultiExitLoop = true; 427 428 for (BasicBlock::iterator I = Begin; I != End; ++I) { 429 430 if (!isSafeToSpeculativelyExecute(&*I)) 431 return false; 432 433 if (isa<DbgInfoIntrinsic>(I)) 434 continue; 435 436 switch (I->getOpcode()) { 437 default: 438 return false; 439 case Instruction::GetElementPtr: 440 // GEPs are cheap if all indices are constant. 441 if (!cast<GEPOperator>(I)->hasAllConstantIndices()) 442 return false; 443 // fall-thru to increment case 444 case Instruction::Add: 445 case Instruction::Sub: 446 case Instruction::And: 447 case Instruction::Or: 448 case Instruction::Xor: 449 case Instruction::Shl: 450 case Instruction::LShr: 451 case Instruction::AShr: { 452 Value *IVOpnd = !isa<Constant>(I->getOperand(0)) 453 ? I->getOperand(0) 454 : !isa<Constant>(I->getOperand(1)) 455 ? I->getOperand(1) 456 : nullptr; 457 if (!IVOpnd) 458 return false; 459 460 // If increment operand is used outside of the loop, this speculation 461 // could cause extra live range interference. 462 if (MultiExitLoop) { 463 for (User *UseI : IVOpnd->users()) { 464 auto *UserInst = cast<Instruction>(UseI); 465 if (!L->contains(UserInst)) 466 return false; 467 } 468 } 469 470 if (seenIncrement) 471 return false; 472 seenIncrement = true; 473 break; 474 } 475 case Instruction::Trunc: 476 case Instruction::ZExt: 477 case Instruction::SExt: 478 // ignore type conversions 479 break; 480 } 481 } 482 return true; 483 } 484 485 /// Fold the loop tail into the loop exit by speculating the loop tail 486 /// instructions. Typically, this is a single post-increment. In the case of a 487 /// simple 2-block loop, hoisting the increment can be much better than 488 /// duplicating the entire loop header. In the case of loops with early exits, 489 /// rotation will not work anyway, but simplifyLoopLatch will put the loop in 490 /// canonical form so downstream passes can handle it. 491 /// 492 /// I don't believe this invalidates SCEV. 493 static bool simplifyLoopLatch(Loop *L, LoopInfo *LI, DominatorTree *DT) { 494 BasicBlock *Latch = L->getLoopLatch(); 495 if (!Latch || Latch->hasAddressTaken()) 496 return false; 497 498 BranchInst *Jmp = dyn_cast<BranchInst>(Latch->getTerminator()); 499 if (!Jmp || !Jmp->isUnconditional()) 500 return false; 501 502 BasicBlock *LastExit = Latch->getSinglePredecessor(); 503 if (!LastExit || !L->isLoopExiting(LastExit)) 504 return false; 505 506 BranchInst *BI = dyn_cast<BranchInst>(LastExit->getTerminator()); 507 if (!BI) 508 return false; 509 510 if (!shouldSpeculateInstrs(Latch->begin(), Jmp->getIterator(), L)) 511 return false; 512 513 DEBUG(dbgs() << "Folding loop latch " << Latch->getName() << " into " 514 << LastExit->getName() << "\n"); 515 516 // Hoist the instructions from Latch into LastExit. 517 LastExit->getInstList().splice(BI->getIterator(), Latch->getInstList(), 518 Latch->begin(), Jmp->getIterator()); 519 520 unsigned FallThruPath = BI->getSuccessor(0) == Latch ? 0 : 1; 521 BasicBlock *Header = Jmp->getSuccessor(0); 522 assert(Header == L->getHeader() && "expected a backward branch"); 523 524 // Remove Latch from the CFG so that LastExit becomes the new Latch. 525 BI->setSuccessor(FallThruPath, Header); 526 Latch->replaceSuccessorsPhiUsesWith(LastExit); 527 Jmp->eraseFromParent(); 528 529 // Nuke the Latch block. 530 assert(Latch->empty() && "unable to evacuate Latch"); 531 LI->removeBlock(Latch); 532 if (DT) 533 DT->eraseNode(Latch); 534 Latch->eraseFromParent(); 535 return true; 536 } 537 538 /// Rotate \c L as many times as possible. Return true if the loop is rotated 539 /// at least once. 540 static bool iterativelyRotateLoop(Loop *L, unsigned MaxHeaderSize, LoopInfo *LI, 541 const TargetTransformInfo *TTI, 542 AssumptionCache *AC, DominatorTree *DT, 543 ScalarEvolution *SE) { 544 // Save the loop metadata. 545 MDNode *LoopMD = L->getLoopID(); 546 547 // Simplify the loop latch before attempting to rotate the header 548 // upward. Rotation may not be needed if the loop tail can be folded into the 549 // loop exit. 550 bool SimplifiedLatch = simplifyLoopLatch(L, LI, DT); 551 552 // One loop can be rotated multiple times. 553 bool MadeChange = false; 554 while (rotateLoop(L, MaxHeaderSize, LI, TTI, AC, DT, SE, SimplifiedLatch)) { 555 MadeChange = true; 556 SimplifiedLatch = false; 557 } 558 559 // Restore the loop metadata. 560 // NB! We presume LoopRotation DOESN'T ADD its own metadata. 561 if ((MadeChange || SimplifiedLatch) && LoopMD) 562 L->setLoopID(LoopMD); 563 564 return MadeChange; 565 } 566 567 LoopRotatePass::LoopRotatePass() : MaxHeaderSize(DefaultRotationThreshold) {} 568 569 PreservedAnalyses LoopRotatePass::run(Loop &L, AnalysisManager<Loop> &AM) { 570 auto &FAM = AM.getResult<FunctionAnalysisManagerLoopProxy>(L).getManager(); 571 Function *F = L.getHeader()->getParent(); 572 573 auto *LI = FAM.getCachedResult<LoopAnalysis>(*F); 574 const auto *TTI = FAM.getCachedResult<TargetIRAnalysis>(*F); 575 auto *AC = FAM.getCachedResult<AssumptionAnalysis>(*F); 576 assert((LI && TTI && AC) && "Analyses for loop rotation not available"); 577 578 // Optional analyses. 579 auto *DT = FAM.getCachedResult<DominatorTreeAnalysis>(*F); 580 auto *SE = FAM.getCachedResult<ScalarEvolutionAnalysis>(*F); 581 582 bool Changed = iterativelyRotateLoop(&L, MaxHeaderSize, LI, TTI, AC, DT, SE); 583 if (!Changed) 584 return PreservedAnalyses::all(); 585 return getLoopPassPreservedAnalyses(); 586 } 587 588 namespace { 589 590 class LoopRotateLegacyPass : public LoopPass { 591 unsigned MaxHeaderSize; 592 593 public: 594 static char ID; // Pass ID, replacement for typeid 595 LoopRotateLegacyPass(int SpecifiedMaxHeaderSize = -1) : LoopPass(ID) { 596 initializeLoopRotateLegacyPassPass(*PassRegistry::getPassRegistry()); 597 if (SpecifiedMaxHeaderSize == -1) 598 MaxHeaderSize = DefaultRotationThreshold; 599 else 600 MaxHeaderSize = unsigned(SpecifiedMaxHeaderSize); 601 } 602 603 // LCSSA form makes instruction renaming easier. 604 void getAnalysisUsage(AnalysisUsage &AU) const override { 605 AU.addRequired<AssumptionCacheTracker>(); 606 AU.addRequired<TargetTransformInfoWrapperPass>(); 607 getLoopAnalysisUsage(AU); 608 } 609 610 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 611 if (skipLoop(L)) 612 return false; 613 Function &F = *L->getHeader()->getParent(); 614 615 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 616 const auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 617 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 618 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 619 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; 620 auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); 621 auto *SE = SEWP ? &SEWP->getSE() : nullptr; 622 623 return iterativelyRotateLoop(L, MaxHeaderSize, LI, TTI, AC, DT, SE); 624 } 625 }; 626 } 627 628 char LoopRotateLegacyPass::ID = 0; 629 INITIALIZE_PASS_BEGIN(LoopRotateLegacyPass, "loop-rotate", "Rotate Loops", 630 false, false) 631 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 632 INITIALIZE_PASS_DEPENDENCY(LoopPass) 633 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 634 INITIALIZE_PASS_END(LoopRotateLegacyPass, "loop-rotate", "Rotate Loops", 635 false, false) 636 637 Pass *llvm::createLoopRotatePass(int MaxHeaderSize) { 638 return new LoopRotateLegacyPass(MaxHeaderSize); 639 } 640