1 //===- LoopRotation.cpp - Loop Rotation Pass ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements Loop Rotation Pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar.h" 15 #include "llvm/ADT/Statistic.h" 16 #include "llvm/Analysis/AliasAnalysis.h" 17 #include "llvm/Analysis/AssumptionCache.h" 18 #include "llvm/Analysis/CodeMetrics.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/LoopPass.h" 21 #include "llvm/Analysis/ScalarEvolution.h" 22 #include "llvm/Analysis/TargetTransformInfo.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/IR/CFG.h" 25 #include "llvm/IR/Dominators.h" 26 #include "llvm/IR/Function.h" 27 #include "llvm/IR/IntrinsicInst.h" 28 #include "llvm/IR/Module.h" 29 #include "llvm/Support/CommandLine.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 33 #include "llvm/Transforms/Utils/Local.h" 34 #include "llvm/Transforms/Utils/SSAUpdater.h" 35 #include "llvm/Transforms/Utils/ValueMapper.h" 36 using namespace llvm; 37 38 #define DEBUG_TYPE "loop-rotate" 39 40 static cl::opt<unsigned> 41 DefaultRotationThreshold("rotation-max-header-size", cl::init(16), cl::Hidden, 42 cl::desc("The default maximum header size for automatic loop rotation")); 43 44 STATISTIC(NumRotated, "Number of loops rotated"); 45 namespace { 46 47 class LoopRotate : public LoopPass { 48 public: 49 static char ID; // Pass ID, replacement for typeid 50 LoopRotate(int SpecifiedMaxHeaderSize = -1) : LoopPass(ID) { 51 initializeLoopRotatePass(*PassRegistry::getPassRegistry()); 52 if (SpecifiedMaxHeaderSize == -1) 53 MaxHeaderSize = DefaultRotationThreshold; 54 else 55 MaxHeaderSize = unsigned(SpecifiedMaxHeaderSize); 56 } 57 58 // LCSSA form makes instruction renaming easier. 59 void getAnalysisUsage(AnalysisUsage &AU) const override { 60 AU.addPreserved<AliasAnalysis>(); 61 AU.addRequired<AssumptionCacheTracker>(); 62 AU.addPreserved<DominatorTreeWrapperPass>(); 63 AU.addRequired<LoopInfoWrapperPass>(); 64 AU.addPreserved<LoopInfoWrapperPass>(); 65 AU.addRequiredID(LoopSimplifyID); 66 AU.addPreservedID(LoopSimplifyID); 67 AU.addRequiredID(LCSSAID); 68 AU.addPreservedID(LCSSAID); 69 AU.addPreserved<ScalarEvolution>(); 70 AU.addRequired<TargetTransformInfoWrapperPass>(); 71 } 72 73 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 74 bool simplifyLoopLatch(Loop *L); 75 bool rotateLoop(Loop *L, bool SimplifiedLatch); 76 77 private: 78 unsigned MaxHeaderSize; 79 LoopInfo *LI; 80 const TargetTransformInfo *TTI; 81 AssumptionCache *AC; 82 DominatorTree *DT; 83 }; 84 } 85 86 char LoopRotate::ID = 0; 87 INITIALIZE_PASS_BEGIN(LoopRotate, "loop-rotate", "Rotate Loops", false, false) 88 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 89 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 90 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 91 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 92 INITIALIZE_PASS_DEPENDENCY(LCSSA) 93 INITIALIZE_PASS_END(LoopRotate, "loop-rotate", "Rotate Loops", false, false) 94 95 Pass *llvm::createLoopRotatePass(int MaxHeaderSize) { 96 return new LoopRotate(MaxHeaderSize); 97 } 98 99 /// Rotate Loop L as many times as possible. Return true if 100 /// the loop is rotated at least once. 101 bool LoopRotate::runOnLoop(Loop *L, LPPassManager &LPM) { 102 if (skipOptnoneFunction(L)) 103 return false; 104 105 // Save the loop metadata. 106 MDNode *LoopMD = L->getLoopID(); 107 108 Function &F = *L->getHeader()->getParent(); 109 110 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 111 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 112 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 113 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 114 DT = DTWP ? &DTWP->getDomTree() : nullptr; 115 116 // Simplify the loop latch before attempting to rotate the header 117 // upward. Rotation may not be needed if the loop tail can be folded into the 118 // loop exit. 119 bool SimplifiedLatch = simplifyLoopLatch(L); 120 121 // One loop can be rotated multiple times. 122 bool MadeChange = false; 123 while (rotateLoop(L, SimplifiedLatch)) { 124 MadeChange = true; 125 SimplifiedLatch = false; 126 } 127 128 // Restore the loop metadata. 129 // NB! We presume LoopRotation DOESN'T ADD its own metadata. 130 if ((MadeChange || SimplifiedLatch) && LoopMD) 131 L->setLoopID(LoopMD); 132 133 return MadeChange; 134 } 135 136 /// RewriteUsesOfClonedInstructions - We just cloned the instructions from the 137 /// old header into the preheader. If there were uses of the values produced by 138 /// these instruction that were outside of the loop, we have to insert PHI nodes 139 /// to merge the two values. Do this now. 140 static void RewriteUsesOfClonedInstructions(BasicBlock *OrigHeader, 141 BasicBlock *OrigPreheader, 142 ValueToValueMapTy &ValueMap) { 143 // Remove PHI node entries that are no longer live. 144 BasicBlock::iterator I, E = OrigHeader->end(); 145 for (I = OrigHeader->begin(); PHINode *PN = dyn_cast<PHINode>(I); ++I) 146 PN->removeIncomingValue(PN->getBasicBlockIndex(OrigPreheader)); 147 148 // Now fix up users of the instructions in OrigHeader, inserting PHI nodes 149 // as necessary. 150 SSAUpdater SSA; 151 for (I = OrigHeader->begin(); I != E; ++I) { 152 Value *OrigHeaderVal = I; 153 154 // If there are no uses of the value (e.g. because it returns void), there 155 // is nothing to rewrite. 156 if (OrigHeaderVal->use_empty()) 157 continue; 158 159 Value *OrigPreHeaderVal = ValueMap[OrigHeaderVal]; 160 161 // The value now exits in two versions: the initial value in the preheader 162 // and the loop "next" value in the original header. 163 SSA.Initialize(OrigHeaderVal->getType(), OrigHeaderVal->getName()); 164 SSA.AddAvailableValue(OrigHeader, OrigHeaderVal); 165 SSA.AddAvailableValue(OrigPreheader, OrigPreHeaderVal); 166 167 // Visit each use of the OrigHeader instruction. 168 for (Value::use_iterator UI = OrigHeaderVal->use_begin(), 169 UE = OrigHeaderVal->use_end(); UI != UE; ) { 170 // Grab the use before incrementing the iterator. 171 Use &U = *UI; 172 173 // Increment the iterator before removing the use from the list. 174 ++UI; 175 176 // SSAUpdater can't handle a non-PHI use in the same block as an 177 // earlier def. We can easily handle those cases manually. 178 Instruction *UserInst = cast<Instruction>(U.getUser()); 179 if (!isa<PHINode>(UserInst)) { 180 BasicBlock *UserBB = UserInst->getParent(); 181 182 // The original users in the OrigHeader are already using the 183 // original definitions. 184 if (UserBB == OrigHeader) 185 continue; 186 187 // Users in the OrigPreHeader need to use the value to which the 188 // original definitions are mapped. 189 if (UserBB == OrigPreheader) { 190 U = OrigPreHeaderVal; 191 continue; 192 } 193 } 194 195 // Anything else can be handled by SSAUpdater. 196 SSA.RewriteUse(U); 197 } 198 } 199 } 200 201 /// Determine whether the instructions in this range may be safely and cheaply 202 /// speculated. This is not an important enough situation to develop complex 203 /// heuristics. We handle a single arithmetic instruction along with any type 204 /// conversions. 205 static bool shouldSpeculateInstrs(BasicBlock::iterator Begin, 206 BasicBlock::iterator End, Loop *L) { 207 bool seenIncrement = false; 208 bool MultiExitLoop = false; 209 210 if (!L->getExitingBlock()) 211 MultiExitLoop = true; 212 213 for (BasicBlock::iterator I = Begin; I != End; ++I) { 214 215 if (!isSafeToSpeculativelyExecute(I)) 216 return false; 217 218 if (isa<DbgInfoIntrinsic>(I)) 219 continue; 220 221 switch (I->getOpcode()) { 222 default: 223 return false; 224 case Instruction::GetElementPtr: 225 // GEPs are cheap if all indices are constant. 226 if (!cast<GEPOperator>(I)->hasAllConstantIndices()) 227 return false; 228 // fall-thru to increment case 229 case Instruction::Add: 230 case Instruction::Sub: 231 case Instruction::And: 232 case Instruction::Or: 233 case Instruction::Xor: 234 case Instruction::Shl: 235 case Instruction::LShr: 236 case Instruction::AShr: { 237 Value *IVOpnd = !isa<Constant>(I->getOperand(0)) 238 ? I->getOperand(0) 239 : !isa<Constant>(I->getOperand(1)) 240 ? I->getOperand(1) 241 : nullptr; 242 if (!IVOpnd) 243 return false; 244 245 // If increment operand is used outside of the loop, this speculation 246 // could cause extra live range interference. 247 if (MultiExitLoop) { 248 for (User *UseI : IVOpnd->users()) { 249 auto *UserInst = cast<Instruction>(UseI); 250 if (!L->contains(UserInst)) 251 return false; 252 } 253 } 254 255 if (seenIncrement) 256 return false; 257 seenIncrement = true; 258 break; 259 } 260 case Instruction::Trunc: 261 case Instruction::ZExt: 262 case Instruction::SExt: 263 // ignore type conversions 264 break; 265 } 266 } 267 return true; 268 } 269 270 /// Fold the loop tail into the loop exit by speculating the loop tail 271 /// instructions. Typically, this is a single post-increment. In the case of a 272 /// simple 2-block loop, hoisting the increment can be much better than 273 /// duplicating the entire loop header. In the case of loops with early exits, 274 /// rotation will not work anyway, but simplifyLoopLatch will put the loop in 275 /// canonical form so downstream passes can handle it. 276 /// 277 /// I don't believe this invalidates SCEV. 278 bool LoopRotate::simplifyLoopLatch(Loop *L) { 279 BasicBlock *Latch = L->getLoopLatch(); 280 if (!Latch || Latch->hasAddressTaken()) 281 return false; 282 283 BranchInst *Jmp = dyn_cast<BranchInst>(Latch->getTerminator()); 284 if (!Jmp || !Jmp->isUnconditional()) 285 return false; 286 287 BasicBlock *LastExit = Latch->getSinglePredecessor(); 288 if (!LastExit || !L->isLoopExiting(LastExit)) 289 return false; 290 291 BranchInst *BI = dyn_cast<BranchInst>(LastExit->getTerminator()); 292 if (!BI) 293 return false; 294 295 if (!shouldSpeculateInstrs(Latch->begin(), Jmp, L)) 296 return false; 297 298 DEBUG(dbgs() << "Folding loop latch " << Latch->getName() << " into " 299 << LastExit->getName() << "\n"); 300 301 // Hoist the instructions from Latch into LastExit. 302 LastExit->getInstList().splice(BI, Latch->getInstList(), Latch->begin(), Jmp); 303 304 unsigned FallThruPath = BI->getSuccessor(0) == Latch ? 0 : 1; 305 BasicBlock *Header = Jmp->getSuccessor(0); 306 assert(Header == L->getHeader() && "expected a backward branch"); 307 308 // Remove Latch from the CFG so that LastExit becomes the new Latch. 309 BI->setSuccessor(FallThruPath, Header); 310 Latch->replaceSuccessorsPhiUsesWith(LastExit); 311 Jmp->eraseFromParent(); 312 313 // Nuke the Latch block. 314 assert(Latch->empty() && "unable to evacuate Latch"); 315 LI->removeBlock(Latch); 316 if (DT) 317 DT->eraseNode(Latch); 318 Latch->eraseFromParent(); 319 return true; 320 } 321 322 /// Rotate loop LP. Return true if the loop is rotated. 323 /// 324 /// \param SimplifiedLatch is true if the latch was just folded into the final 325 /// loop exit. In this case we may want to rotate even though the new latch is 326 /// now an exiting branch. This rotation would have happened had the latch not 327 /// been simplified. However, if SimplifiedLatch is false, then we avoid 328 /// rotating loops in which the latch exits to avoid excessive or endless 329 /// rotation. LoopRotate should be repeatable and converge to a canonical 330 /// form. This property is satisfied because simplifying the loop latch can only 331 /// happen once across multiple invocations of the LoopRotate pass. 332 bool LoopRotate::rotateLoop(Loop *L, bool SimplifiedLatch) { 333 // If the loop has only one block then there is not much to rotate. 334 if (L->getBlocks().size() == 1) 335 return false; 336 337 BasicBlock *OrigHeader = L->getHeader(); 338 BasicBlock *OrigLatch = L->getLoopLatch(); 339 340 BranchInst *BI = dyn_cast<BranchInst>(OrigHeader->getTerminator()); 341 if (!BI || BI->isUnconditional()) 342 return false; 343 344 // If the loop header is not one of the loop exiting blocks then 345 // either this loop is already rotated or it is not 346 // suitable for loop rotation transformations. 347 if (!L->isLoopExiting(OrigHeader)) 348 return false; 349 350 // If the loop latch already contains a branch that leaves the loop then the 351 // loop is already rotated. 352 if (!OrigLatch) 353 return false; 354 355 // Rotate if either the loop latch does *not* exit the loop, or if the loop 356 // latch was just simplified. 357 if (L->isLoopExiting(OrigLatch) && !SimplifiedLatch) 358 return false; 359 360 // Check size of original header and reject loop if it is very big or we can't 361 // duplicate blocks inside it. 362 { 363 SmallPtrSet<const Value *, 32> EphValues; 364 CodeMetrics::collectEphemeralValues(L, AC, EphValues); 365 366 CodeMetrics Metrics; 367 Metrics.analyzeBasicBlock(OrigHeader, *TTI, EphValues); 368 if (Metrics.notDuplicatable) { 369 DEBUG(dbgs() << "LoopRotation: NOT rotating - contains non-duplicatable" 370 << " instructions: "; L->dump()); 371 return false; 372 } 373 if (Metrics.NumInsts > MaxHeaderSize) 374 return false; 375 } 376 377 // Now, this loop is suitable for rotation. 378 BasicBlock *OrigPreheader = L->getLoopPreheader(); 379 380 // If the loop could not be converted to canonical form, it must have an 381 // indirectbr in it, just give up. 382 if (!OrigPreheader) 383 return false; 384 385 // Anything ScalarEvolution may know about this loop or the PHI nodes 386 // in its header will soon be invalidated. 387 if (ScalarEvolution *SE = getAnalysisIfAvailable<ScalarEvolution>()) 388 SE->forgetLoop(L); 389 390 DEBUG(dbgs() << "LoopRotation: rotating "; L->dump()); 391 392 // Find new Loop header. NewHeader is a Header's one and only successor 393 // that is inside loop. Header's other successor is outside the 394 // loop. Otherwise loop is not suitable for rotation. 395 BasicBlock *Exit = BI->getSuccessor(0); 396 BasicBlock *NewHeader = BI->getSuccessor(1); 397 if (L->contains(Exit)) 398 std::swap(Exit, NewHeader); 399 assert(NewHeader && "Unable to determine new loop header"); 400 assert(L->contains(NewHeader) && !L->contains(Exit) && 401 "Unable to determine loop header and exit blocks"); 402 403 // This code assumes that the new header has exactly one predecessor. 404 // Remove any single-entry PHI nodes in it. 405 assert(NewHeader->getSinglePredecessor() && 406 "New header doesn't have one pred!"); 407 FoldSingleEntryPHINodes(NewHeader); 408 409 // Begin by walking OrigHeader and populating ValueMap with an entry for 410 // each Instruction. 411 BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end(); 412 ValueToValueMapTy ValueMap; 413 414 // For PHI nodes, the value available in OldPreHeader is just the 415 // incoming value from OldPreHeader. 416 for (; PHINode *PN = dyn_cast<PHINode>(I); ++I) 417 ValueMap[PN] = PN->getIncomingValueForBlock(OrigPreheader); 418 419 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 420 421 // For the rest of the instructions, either hoist to the OrigPreheader if 422 // possible or create a clone in the OldPreHeader if not. 423 TerminatorInst *LoopEntryBranch = OrigPreheader->getTerminator(); 424 while (I != E) { 425 Instruction *Inst = I++; 426 427 // If the instruction's operands are invariant and it doesn't read or write 428 // memory, then it is safe to hoist. Doing this doesn't change the order of 429 // execution in the preheader, but does prevent the instruction from 430 // executing in each iteration of the loop. This means it is safe to hoist 431 // something that might trap, but isn't safe to hoist something that reads 432 // memory (without proving that the loop doesn't write). 433 if (L->hasLoopInvariantOperands(Inst) && 434 !Inst->mayReadFromMemory() && !Inst->mayWriteToMemory() && 435 !isa<TerminatorInst>(Inst) && !isa<DbgInfoIntrinsic>(Inst) && 436 !isa<AllocaInst>(Inst)) { 437 Inst->moveBefore(LoopEntryBranch); 438 continue; 439 } 440 441 // Otherwise, create a duplicate of the instruction. 442 Instruction *C = Inst->clone(); 443 444 // Eagerly remap the operands of the instruction. 445 RemapInstruction(C, ValueMap, 446 RF_NoModuleLevelChanges|RF_IgnoreMissingEntries); 447 448 // With the operands remapped, see if the instruction constant folds or is 449 // otherwise simplifyable. This commonly occurs because the entry from PHI 450 // nodes allows icmps and other instructions to fold. 451 // FIXME: Provide TLI, DT, AC to SimplifyInstruction. 452 Value *V = SimplifyInstruction(C, DL); 453 if (V && LI->replacementPreservesLCSSAForm(C, V)) { 454 // If so, then delete the temporary instruction and stick the folded value 455 // in the map. 456 delete C; 457 ValueMap[Inst] = V; 458 } else { 459 // Otherwise, stick the new instruction into the new block! 460 C->setName(Inst->getName()); 461 C->insertBefore(LoopEntryBranch); 462 ValueMap[Inst] = C; 463 } 464 } 465 466 // Along with all the other instructions, we just cloned OrigHeader's 467 // terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's 468 // successors by duplicating their incoming values for OrigHeader. 469 TerminatorInst *TI = OrigHeader->getTerminator(); 470 for (BasicBlock *SuccBB : TI->successors()) 471 for (BasicBlock::iterator BI = SuccBB->begin(); 472 PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 473 PN->addIncoming(PN->getIncomingValueForBlock(OrigHeader), OrigPreheader); 474 475 // Now that OrigPreHeader has a clone of OrigHeader's terminator, remove 476 // OrigPreHeader's old terminator (the original branch into the loop), and 477 // remove the corresponding incoming values from the PHI nodes in OrigHeader. 478 LoopEntryBranch->eraseFromParent(); 479 480 // If there were any uses of instructions in the duplicated block outside the 481 // loop, update them, inserting PHI nodes as required 482 RewriteUsesOfClonedInstructions(OrigHeader, OrigPreheader, ValueMap); 483 484 // NewHeader is now the header of the loop. 485 L->moveToHeader(NewHeader); 486 assert(L->getHeader() == NewHeader && "Latch block is our new header"); 487 488 489 // At this point, we've finished our major CFG changes. As part of cloning 490 // the loop into the preheader we've simplified instructions and the 491 // duplicated conditional branch may now be branching on a constant. If it is 492 // branching on a constant and if that constant means that we enter the loop, 493 // then we fold away the cond branch to an uncond branch. This simplifies the 494 // loop in cases important for nested loops, and it also means we don't have 495 // to split as many edges. 496 BranchInst *PHBI = cast<BranchInst>(OrigPreheader->getTerminator()); 497 assert(PHBI->isConditional() && "Should be clone of BI condbr!"); 498 if (!isa<ConstantInt>(PHBI->getCondition()) || 499 PHBI->getSuccessor(cast<ConstantInt>(PHBI->getCondition())->isZero()) 500 != NewHeader) { 501 // The conditional branch can't be folded, handle the general case. 502 // Update DominatorTree to reflect the CFG change we just made. Then split 503 // edges as necessary to preserve LoopSimplify form. 504 if (DT) { 505 // Everything that was dominated by the old loop header is now dominated 506 // by the original loop preheader. Conceptually the header was merged 507 // into the preheader, even though we reuse the actual block as a new 508 // loop latch. 509 DomTreeNode *OrigHeaderNode = DT->getNode(OrigHeader); 510 SmallVector<DomTreeNode *, 8> HeaderChildren(OrigHeaderNode->begin(), 511 OrigHeaderNode->end()); 512 DomTreeNode *OrigPreheaderNode = DT->getNode(OrigPreheader); 513 for (unsigned I = 0, E = HeaderChildren.size(); I != E; ++I) 514 DT->changeImmediateDominator(HeaderChildren[I], OrigPreheaderNode); 515 516 assert(DT->getNode(Exit)->getIDom() == OrigPreheaderNode); 517 assert(DT->getNode(NewHeader)->getIDom() == OrigPreheaderNode); 518 519 // Update OrigHeader to be dominated by the new header block. 520 DT->changeImmediateDominator(OrigHeader, OrigLatch); 521 } 522 523 // Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and 524 // thus is not a preheader anymore. 525 // Split the edge to form a real preheader. 526 BasicBlock *NewPH = SplitCriticalEdge( 527 OrigPreheader, NewHeader, 528 CriticalEdgeSplittingOptions(DT, LI).setPreserveLCSSA()); 529 NewPH->setName(NewHeader->getName() + ".lr.ph"); 530 531 // Preserve canonical loop form, which means that 'Exit' should have only 532 // one predecessor. Note that Exit could be an exit block for multiple 533 // nested loops, causing both of the edges to now be critical and need to 534 // be split. 535 SmallVector<BasicBlock *, 4> ExitPreds(pred_begin(Exit), pred_end(Exit)); 536 bool SplitLatchEdge = false; 537 for (SmallVectorImpl<BasicBlock *>::iterator PI = ExitPreds.begin(), 538 PE = ExitPreds.end(); 539 PI != PE; ++PI) { 540 // We only need to split loop exit edges. 541 Loop *PredLoop = LI->getLoopFor(*PI); 542 if (!PredLoop || PredLoop->contains(Exit)) 543 continue; 544 if (isa<IndirectBrInst>((*PI)->getTerminator())) 545 continue; 546 SplitLatchEdge |= L->getLoopLatch() == *PI; 547 BasicBlock *ExitSplit = SplitCriticalEdge( 548 *PI, Exit, CriticalEdgeSplittingOptions(DT, LI).setPreserveLCSSA()); 549 ExitSplit->moveBefore(Exit); 550 } 551 assert(SplitLatchEdge && 552 "Despite splitting all preds, failed to split latch exit?"); 553 } else { 554 // We can fold the conditional branch in the preheader, this makes things 555 // simpler. The first step is to remove the extra edge to the Exit block. 556 Exit->removePredecessor(OrigPreheader, true /*preserve LCSSA*/); 557 BranchInst *NewBI = BranchInst::Create(NewHeader, PHBI); 558 NewBI->setDebugLoc(PHBI->getDebugLoc()); 559 PHBI->eraseFromParent(); 560 561 // With our CFG finalized, update DomTree if it is available. 562 if (DT) { 563 // Update OrigHeader to be dominated by the new header block. 564 DT->changeImmediateDominator(NewHeader, OrigPreheader); 565 DT->changeImmediateDominator(OrigHeader, OrigLatch); 566 567 // Brute force incremental dominator tree update. Call 568 // findNearestCommonDominator on all CFG predecessors of each child of the 569 // original header. 570 DomTreeNode *OrigHeaderNode = DT->getNode(OrigHeader); 571 SmallVector<DomTreeNode *, 8> HeaderChildren(OrigHeaderNode->begin(), 572 OrigHeaderNode->end()); 573 bool Changed; 574 do { 575 Changed = false; 576 for (unsigned I = 0, E = HeaderChildren.size(); I != E; ++I) { 577 DomTreeNode *Node = HeaderChildren[I]; 578 BasicBlock *BB = Node->getBlock(); 579 580 pred_iterator PI = pred_begin(BB); 581 BasicBlock *NearestDom = *PI; 582 for (pred_iterator PE = pred_end(BB); PI != PE; ++PI) 583 NearestDom = DT->findNearestCommonDominator(NearestDom, *PI); 584 585 // Remember if this changes the DomTree. 586 if (Node->getIDom()->getBlock() != NearestDom) { 587 DT->changeImmediateDominator(BB, NearestDom); 588 Changed = true; 589 } 590 } 591 592 // If the dominator changed, this may have an effect on other 593 // predecessors, continue until we reach a fixpoint. 594 } while (Changed); 595 } 596 } 597 598 assert(L->getLoopPreheader() && "Invalid loop preheader after loop rotation"); 599 assert(L->getLoopLatch() && "Invalid loop latch after loop rotation"); 600 601 // Now that the CFG and DomTree are in a consistent state again, try to merge 602 // the OrigHeader block into OrigLatch. This will succeed if they are 603 // connected by an unconditional branch. This is just a cleanup so the 604 // emitted code isn't too gross in this common case. 605 MergeBlockIntoPredecessor(OrigHeader, DT, LI); 606 607 DEBUG(dbgs() << "LoopRotation: into "; L->dump()); 608 609 ++NumRotated; 610 return true; 611 } 612