1 //===- LoopRotation.cpp - Loop Rotation Pass ------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements Loop Rotation Pass.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/LoopRotation.h"
15 #include "llvm/ADT/Statistic.h"
16 #include "llvm/Analysis/AliasAnalysis.h"
17 #include "llvm/Analysis/BasicAliasAnalysis.h"
18 #include "llvm/Analysis/AssumptionCache.h"
19 #include "llvm/Analysis/CodeMetrics.h"
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/Analysis/GlobalsModRef.h"
22 #include "llvm/Analysis/LoopPass.h"
23 #include "llvm/Analysis/LoopPassManager.h"
24 #include "llvm/Analysis/ScalarEvolution.h"
25 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
26 #include "llvm/Analysis/TargetTransformInfo.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/IR/CFG.h"
29 #include "llvm/IR/Dominators.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/IntrinsicInst.h"
32 #include "llvm/IR/Module.h"
33 #include "llvm/Support/CommandLine.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Transforms/Scalar.h"
37 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
38 #include "llvm/Transforms/Utils/Local.h"
39 #include "llvm/Transforms/Utils/LoopUtils.h"
40 #include "llvm/Transforms/Utils/SSAUpdater.h"
41 #include "llvm/Transforms/Utils/ValueMapper.h"
42 using namespace llvm;
43 
44 #define DEBUG_TYPE "loop-rotate"
45 
46 static cl::opt<unsigned> DefaultRotationThreshold(
47     "rotation-max-header-size", cl::init(16), cl::Hidden,
48     cl::desc("The default maximum header size for automatic loop rotation"));
49 
50 STATISTIC(NumRotated, "Number of loops rotated");
51 
52 /// A simple loop rotation transformation.
53 class LoopRotate {
54   const unsigned MaxHeaderSize;
55   LoopInfo *LI;
56   const TargetTransformInfo *TTI;
57   AssumptionCache *AC;
58   DominatorTree *DT;
59   ScalarEvolution *SE;
60 
61 public:
62   LoopRotate(unsigned MaxHeaderSize, LoopInfo *LI,
63              const TargetTransformInfo *TTI, AssumptionCache *AC,
64              DominatorTree *DT, ScalarEvolution *SE)
65       : MaxHeaderSize(MaxHeaderSize), LI(LI), TTI(TTI), AC(AC), DT(DT), SE(SE) {
66   }
67   bool processLoop(Loop *L);
68 
69 private:
70   bool rotateLoop(Loop *L, bool SimplifiedLatch);
71   bool simplifyLoopLatch(Loop *L);
72 };
73 
74 /// RewriteUsesOfClonedInstructions - We just cloned the instructions from the
75 /// old header into the preheader.  If there were uses of the values produced by
76 /// these instruction that were outside of the loop, we have to insert PHI nodes
77 /// to merge the two values.  Do this now.
78 static void RewriteUsesOfClonedInstructions(BasicBlock *OrigHeader,
79                                             BasicBlock *OrigPreheader,
80                                             ValueToValueMapTy &ValueMap) {
81   // Remove PHI node entries that are no longer live.
82   BasicBlock::iterator I, E = OrigHeader->end();
83   for (I = OrigHeader->begin(); PHINode *PN = dyn_cast<PHINode>(I); ++I)
84     PN->removeIncomingValue(PN->getBasicBlockIndex(OrigPreheader));
85 
86   // Now fix up users of the instructions in OrigHeader, inserting PHI nodes
87   // as necessary.
88   SSAUpdater SSA;
89   for (I = OrigHeader->begin(); I != E; ++I) {
90     Value *OrigHeaderVal = &*I;
91 
92     // If there are no uses of the value (e.g. because it returns void), there
93     // is nothing to rewrite.
94     if (OrigHeaderVal->use_empty())
95       continue;
96 
97     Value *OrigPreHeaderVal = ValueMap.lookup(OrigHeaderVal);
98 
99     // The value now exits in two versions: the initial value in the preheader
100     // and the loop "next" value in the original header.
101     SSA.Initialize(OrigHeaderVal->getType(), OrigHeaderVal->getName());
102     SSA.AddAvailableValue(OrigHeader, OrigHeaderVal);
103     SSA.AddAvailableValue(OrigPreheader, OrigPreHeaderVal);
104 
105     // Visit each use of the OrigHeader instruction.
106     for (Value::use_iterator UI = OrigHeaderVal->use_begin(),
107                              UE = OrigHeaderVal->use_end();
108          UI != UE;) {
109       // Grab the use before incrementing the iterator.
110       Use &U = *UI;
111 
112       // Increment the iterator before removing the use from the list.
113       ++UI;
114 
115       // SSAUpdater can't handle a non-PHI use in the same block as an
116       // earlier def. We can easily handle those cases manually.
117       Instruction *UserInst = cast<Instruction>(U.getUser());
118       if (!isa<PHINode>(UserInst)) {
119         BasicBlock *UserBB = UserInst->getParent();
120 
121         // The original users in the OrigHeader are already using the
122         // original definitions.
123         if (UserBB == OrigHeader)
124           continue;
125 
126         // Users in the OrigPreHeader need to use the value to which the
127         // original definitions are mapped.
128         if (UserBB == OrigPreheader) {
129           U = OrigPreHeaderVal;
130           continue;
131         }
132       }
133 
134       // Anything else can be handled by SSAUpdater.
135       SSA.RewriteUse(U);
136     }
137 
138     // Replace MetadataAsValue(ValueAsMetadata(OrigHeaderVal)) uses in debug
139     // intrinsics.
140     LLVMContext &C = OrigHeader->getContext();
141     if (auto *VAM = ValueAsMetadata::getIfExists(OrigHeaderVal)) {
142       if (auto *MAV = MetadataAsValue::getIfExists(C, VAM)) {
143         for (auto UI = MAV->use_begin(), E = MAV->use_end(); UI != E;) {
144           // Grab the use before incrementing the iterator. Otherwise, altering
145           // the Use will invalidate the iterator.
146           Use &U = *UI++;
147           DbgInfoIntrinsic *UserInst = dyn_cast<DbgInfoIntrinsic>(U.getUser());
148           if (!UserInst)
149             continue;
150 
151           // The original users in the OrigHeader are already using the original
152           // definitions.
153           BasicBlock *UserBB = UserInst->getParent();
154           if (UserBB == OrigHeader)
155             continue;
156 
157           // Users in the OrigPreHeader need to use the value to which the
158           // original definitions are mapped and anything else can be handled by
159           // the SSAUpdater. To avoid adding PHINodes, check if the value is
160           // available in UserBB, if not substitute undef.
161           Value *NewVal;
162           if (UserBB == OrigPreheader)
163             NewVal = OrigPreHeaderVal;
164           else if (SSA.HasValueForBlock(UserBB))
165             NewVal = SSA.GetValueInMiddleOfBlock(UserBB);
166           else
167             NewVal = UndefValue::get(OrigHeaderVal->getType());
168           U = MetadataAsValue::get(C, ValueAsMetadata::get(NewVal));
169         }
170       }
171     }
172   }
173 }
174 
175 /// Rotate loop LP. Return true if the loop is rotated.
176 ///
177 /// \param SimplifiedLatch is true if the latch was just folded into the final
178 /// loop exit. In this case we may want to rotate even though the new latch is
179 /// now an exiting branch. This rotation would have happened had the latch not
180 /// been simplified. However, if SimplifiedLatch is false, then we avoid
181 /// rotating loops in which the latch exits to avoid excessive or endless
182 /// rotation. LoopRotate should be repeatable and converge to a canonical
183 /// form. This property is satisfied because simplifying the loop latch can only
184 /// happen once across multiple invocations of the LoopRotate pass.
185 bool LoopRotate::rotateLoop(Loop *L, bool SimplifiedLatch) {
186   // If the loop has only one block then there is not much to rotate.
187   if (L->getBlocks().size() == 1)
188     return false;
189 
190   BasicBlock *OrigHeader = L->getHeader();
191   BasicBlock *OrigLatch = L->getLoopLatch();
192 
193   BranchInst *BI = dyn_cast<BranchInst>(OrigHeader->getTerminator());
194   if (!BI || BI->isUnconditional())
195     return false;
196 
197   // If the loop header is not one of the loop exiting blocks then
198   // either this loop is already rotated or it is not
199   // suitable for loop rotation transformations.
200   if (!L->isLoopExiting(OrigHeader))
201     return false;
202 
203   // If the loop latch already contains a branch that leaves the loop then the
204   // loop is already rotated.
205   if (!OrigLatch)
206     return false;
207 
208   // Rotate if either the loop latch does *not* exit the loop, or if the loop
209   // latch was just simplified.
210   if (L->isLoopExiting(OrigLatch) && !SimplifiedLatch)
211     return false;
212 
213   // Check size of original header and reject loop if it is very big or we can't
214   // duplicate blocks inside it.
215   {
216     SmallPtrSet<const Value *, 32> EphValues;
217     CodeMetrics::collectEphemeralValues(L, AC, EphValues);
218 
219     CodeMetrics Metrics;
220     Metrics.analyzeBasicBlock(OrigHeader, *TTI, EphValues);
221     if (Metrics.notDuplicatable) {
222       DEBUG(dbgs() << "LoopRotation: NOT rotating - contains non-duplicatable"
223                    << " instructions: ";
224             L->dump());
225       return false;
226     }
227     if (Metrics.convergent) {
228       DEBUG(dbgs() << "LoopRotation: NOT rotating - contains convergent "
229                       "instructions: ";
230             L->dump());
231       return false;
232     }
233     if (Metrics.NumInsts > MaxHeaderSize)
234       return false;
235   }
236 
237   // Now, this loop is suitable for rotation.
238   BasicBlock *OrigPreheader = L->getLoopPreheader();
239 
240   // If the loop could not be converted to canonical form, it must have an
241   // indirectbr in it, just give up.
242   if (!OrigPreheader)
243     return false;
244 
245   // Anything ScalarEvolution may know about this loop or the PHI nodes
246   // in its header will soon be invalidated.
247   if (SE)
248     SE->forgetLoop(L);
249 
250   DEBUG(dbgs() << "LoopRotation: rotating "; L->dump());
251 
252   // Find new Loop header. NewHeader is a Header's one and only successor
253   // that is inside loop.  Header's other successor is outside the
254   // loop.  Otherwise loop is not suitable for rotation.
255   BasicBlock *Exit = BI->getSuccessor(0);
256   BasicBlock *NewHeader = BI->getSuccessor(1);
257   if (L->contains(Exit))
258     std::swap(Exit, NewHeader);
259   assert(NewHeader && "Unable to determine new loop header");
260   assert(L->contains(NewHeader) && !L->contains(Exit) &&
261          "Unable to determine loop header and exit blocks");
262 
263   // This code assumes that the new header has exactly one predecessor.
264   // Remove any single-entry PHI nodes in it.
265   assert(NewHeader->getSinglePredecessor() &&
266          "New header doesn't have one pred!");
267   FoldSingleEntryPHINodes(NewHeader);
268 
269   // Begin by walking OrigHeader and populating ValueMap with an entry for
270   // each Instruction.
271   BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end();
272   ValueToValueMapTy ValueMap;
273 
274   // For PHI nodes, the value available in OldPreHeader is just the
275   // incoming value from OldPreHeader.
276   for (; PHINode *PN = dyn_cast<PHINode>(I); ++I)
277     ValueMap[PN] = PN->getIncomingValueForBlock(OrigPreheader);
278 
279   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
280 
281   // For the rest of the instructions, either hoist to the OrigPreheader if
282   // possible or create a clone in the OldPreHeader if not.
283   TerminatorInst *LoopEntryBranch = OrigPreheader->getTerminator();
284   while (I != E) {
285     Instruction *Inst = &*I++;
286 
287     // If the instruction's operands are invariant and it doesn't read or write
288     // memory, then it is safe to hoist.  Doing this doesn't change the order of
289     // execution in the preheader, but does prevent the instruction from
290     // executing in each iteration of the loop.  This means it is safe to hoist
291     // something that might trap, but isn't safe to hoist something that reads
292     // memory (without proving that the loop doesn't write).
293     if (L->hasLoopInvariantOperands(Inst) && !Inst->mayReadFromMemory() &&
294         !Inst->mayWriteToMemory() && !isa<TerminatorInst>(Inst) &&
295         !isa<DbgInfoIntrinsic>(Inst) && !isa<AllocaInst>(Inst)) {
296       Inst->moveBefore(LoopEntryBranch);
297       continue;
298     }
299 
300     // Otherwise, create a duplicate of the instruction.
301     Instruction *C = Inst->clone();
302 
303     // Eagerly remap the operands of the instruction.
304     RemapInstruction(C, ValueMap,
305                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
306 
307     // With the operands remapped, see if the instruction constant folds or is
308     // otherwise simplifyable.  This commonly occurs because the entry from PHI
309     // nodes allows icmps and other instructions to fold.
310     // FIXME: Provide TLI, DT, AC to SimplifyInstruction.
311     Value *V = SimplifyInstruction(C, DL);
312     if (V && LI->replacementPreservesLCSSAForm(C, V)) {
313       // If so, then delete the temporary instruction and stick the folded value
314       // in the map.
315       delete C;
316       ValueMap[Inst] = V;
317     } else {
318       // Otherwise, stick the new instruction into the new block!
319       C->setName(Inst->getName());
320       C->insertBefore(LoopEntryBranch);
321       ValueMap[Inst] = C;
322     }
323   }
324 
325   // Along with all the other instructions, we just cloned OrigHeader's
326   // terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's
327   // successors by duplicating their incoming values for OrigHeader.
328   TerminatorInst *TI = OrigHeader->getTerminator();
329   for (BasicBlock *SuccBB : TI->successors())
330     for (BasicBlock::iterator BI = SuccBB->begin();
331          PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
332       PN->addIncoming(PN->getIncomingValueForBlock(OrigHeader), OrigPreheader);
333 
334   // Now that OrigPreHeader has a clone of OrigHeader's terminator, remove
335   // OrigPreHeader's old terminator (the original branch into the loop), and
336   // remove the corresponding incoming values from the PHI nodes in OrigHeader.
337   LoopEntryBranch->eraseFromParent();
338 
339   // If there were any uses of instructions in the duplicated block outside the
340   // loop, update them, inserting PHI nodes as required
341   RewriteUsesOfClonedInstructions(OrigHeader, OrigPreheader, ValueMap);
342 
343   // NewHeader is now the header of the loop.
344   L->moveToHeader(NewHeader);
345   assert(L->getHeader() == NewHeader && "Latch block is our new header");
346 
347   // At this point, we've finished our major CFG changes.  As part of cloning
348   // the loop into the preheader we've simplified instructions and the
349   // duplicated conditional branch may now be branching on a constant.  If it is
350   // branching on a constant and if that constant means that we enter the loop,
351   // then we fold away the cond branch to an uncond branch.  This simplifies the
352   // loop in cases important for nested loops, and it also means we don't have
353   // to split as many edges.
354   BranchInst *PHBI = cast<BranchInst>(OrigPreheader->getTerminator());
355   assert(PHBI->isConditional() && "Should be clone of BI condbr!");
356   if (!isa<ConstantInt>(PHBI->getCondition()) ||
357       PHBI->getSuccessor(cast<ConstantInt>(PHBI->getCondition())->isZero()) !=
358           NewHeader) {
359     // The conditional branch can't be folded, handle the general case.
360     // Update DominatorTree to reflect the CFG change we just made.  Then split
361     // edges as necessary to preserve LoopSimplify form.
362     if (DT) {
363       // Everything that was dominated by the old loop header is now dominated
364       // by the original loop preheader. Conceptually the header was merged
365       // into the preheader, even though we reuse the actual block as a new
366       // loop latch.
367       DomTreeNode *OrigHeaderNode = DT->getNode(OrigHeader);
368       SmallVector<DomTreeNode *, 8> HeaderChildren(OrigHeaderNode->begin(),
369                                                    OrigHeaderNode->end());
370       DomTreeNode *OrigPreheaderNode = DT->getNode(OrigPreheader);
371       for (unsigned I = 0, E = HeaderChildren.size(); I != E; ++I)
372         DT->changeImmediateDominator(HeaderChildren[I], OrigPreheaderNode);
373 
374       assert(DT->getNode(Exit)->getIDom() == OrigPreheaderNode);
375       assert(DT->getNode(NewHeader)->getIDom() == OrigPreheaderNode);
376 
377       // Update OrigHeader to be dominated by the new header block.
378       DT->changeImmediateDominator(OrigHeader, OrigLatch);
379     }
380 
381     // Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and
382     // thus is not a preheader anymore.
383     // Split the edge to form a real preheader.
384     BasicBlock *NewPH = SplitCriticalEdge(
385         OrigPreheader, NewHeader,
386         CriticalEdgeSplittingOptions(DT, LI).setPreserveLCSSA());
387     NewPH->setName(NewHeader->getName() + ".lr.ph");
388 
389     // Preserve canonical loop form, which means that 'Exit' should have only
390     // one predecessor. Note that Exit could be an exit block for multiple
391     // nested loops, causing both of the edges to now be critical and need to
392     // be split.
393     SmallVector<BasicBlock *, 4> ExitPreds(pred_begin(Exit), pred_end(Exit));
394     bool SplitLatchEdge = false;
395     for (SmallVectorImpl<BasicBlock *>::iterator PI = ExitPreds.begin(),
396                                                  PE = ExitPreds.end();
397          PI != PE; ++PI) {
398       // We only need to split loop exit edges.
399       Loop *PredLoop = LI->getLoopFor(*PI);
400       if (!PredLoop || PredLoop->contains(Exit))
401         continue;
402       if (isa<IndirectBrInst>((*PI)->getTerminator()))
403         continue;
404       SplitLatchEdge |= L->getLoopLatch() == *PI;
405       BasicBlock *ExitSplit = SplitCriticalEdge(
406           *PI, Exit, CriticalEdgeSplittingOptions(DT, LI).setPreserveLCSSA());
407       ExitSplit->moveBefore(Exit);
408     }
409     assert(SplitLatchEdge &&
410            "Despite splitting all preds, failed to split latch exit?");
411   } else {
412     // We can fold the conditional branch in the preheader, this makes things
413     // simpler. The first step is to remove the extra edge to the Exit block.
414     Exit->removePredecessor(OrigPreheader, true /*preserve LCSSA*/);
415     BranchInst *NewBI = BranchInst::Create(NewHeader, PHBI);
416     NewBI->setDebugLoc(PHBI->getDebugLoc());
417     PHBI->eraseFromParent();
418 
419     // With our CFG finalized, update DomTree if it is available.
420     if (DT) {
421       // Update OrigHeader to be dominated by the new header block.
422       DT->changeImmediateDominator(NewHeader, OrigPreheader);
423       DT->changeImmediateDominator(OrigHeader, OrigLatch);
424 
425       // Brute force incremental dominator tree update. Call
426       // findNearestCommonDominator on all CFG predecessors of each child of the
427       // original header.
428       DomTreeNode *OrigHeaderNode = DT->getNode(OrigHeader);
429       SmallVector<DomTreeNode *, 8> HeaderChildren(OrigHeaderNode->begin(),
430                                                    OrigHeaderNode->end());
431       bool Changed;
432       do {
433         Changed = false;
434         for (unsigned I = 0, E = HeaderChildren.size(); I != E; ++I) {
435           DomTreeNode *Node = HeaderChildren[I];
436           BasicBlock *BB = Node->getBlock();
437 
438           pred_iterator PI = pred_begin(BB);
439           BasicBlock *NearestDom = *PI;
440           for (pred_iterator PE = pred_end(BB); PI != PE; ++PI)
441             NearestDom = DT->findNearestCommonDominator(NearestDom, *PI);
442 
443           // Remember if this changes the DomTree.
444           if (Node->getIDom()->getBlock() != NearestDom) {
445             DT->changeImmediateDominator(BB, NearestDom);
446             Changed = true;
447           }
448         }
449 
450         // If the dominator changed, this may have an effect on other
451         // predecessors, continue until we reach a fixpoint.
452       } while (Changed);
453     }
454   }
455 
456   assert(L->getLoopPreheader() && "Invalid loop preheader after loop rotation");
457   assert(L->getLoopLatch() && "Invalid loop latch after loop rotation");
458 
459   // Now that the CFG and DomTree are in a consistent state again, try to merge
460   // the OrigHeader block into OrigLatch.  This will succeed if they are
461   // connected by an unconditional branch.  This is just a cleanup so the
462   // emitted code isn't too gross in this common case.
463   MergeBlockIntoPredecessor(OrigHeader, DT, LI);
464 
465   DEBUG(dbgs() << "LoopRotation: into "; L->dump());
466 
467   ++NumRotated;
468   return true;
469 }
470 
471 /// Determine whether the instructions in this range may be safely and cheaply
472 /// speculated. This is not an important enough situation to develop complex
473 /// heuristics. We handle a single arithmetic instruction along with any type
474 /// conversions.
475 static bool shouldSpeculateInstrs(BasicBlock::iterator Begin,
476                                   BasicBlock::iterator End, Loop *L) {
477   bool seenIncrement = false;
478   bool MultiExitLoop = false;
479 
480   if (!L->getExitingBlock())
481     MultiExitLoop = true;
482 
483   for (BasicBlock::iterator I = Begin; I != End; ++I) {
484 
485     if (!isSafeToSpeculativelyExecute(&*I))
486       return false;
487 
488     if (isa<DbgInfoIntrinsic>(I))
489       continue;
490 
491     switch (I->getOpcode()) {
492     default:
493       return false;
494     case Instruction::GetElementPtr:
495       // GEPs are cheap if all indices are constant.
496       if (!cast<GEPOperator>(I)->hasAllConstantIndices())
497         return false;
498     // fall-thru to increment case
499     case Instruction::Add:
500     case Instruction::Sub:
501     case Instruction::And:
502     case Instruction::Or:
503     case Instruction::Xor:
504     case Instruction::Shl:
505     case Instruction::LShr:
506     case Instruction::AShr: {
507       Value *IVOpnd =
508           !isa<Constant>(I->getOperand(0))
509               ? I->getOperand(0)
510               : !isa<Constant>(I->getOperand(1)) ? I->getOperand(1) : nullptr;
511       if (!IVOpnd)
512         return false;
513 
514       // If increment operand is used outside of the loop, this speculation
515       // could cause extra live range interference.
516       if (MultiExitLoop) {
517         for (User *UseI : IVOpnd->users()) {
518           auto *UserInst = cast<Instruction>(UseI);
519           if (!L->contains(UserInst))
520             return false;
521         }
522       }
523 
524       if (seenIncrement)
525         return false;
526       seenIncrement = true;
527       break;
528     }
529     case Instruction::Trunc:
530     case Instruction::ZExt:
531     case Instruction::SExt:
532       // ignore type conversions
533       break;
534     }
535   }
536   return true;
537 }
538 
539 /// Fold the loop tail into the loop exit by speculating the loop tail
540 /// instructions. Typically, this is a single post-increment. In the case of a
541 /// simple 2-block loop, hoisting the increment can be much better than
542 /// duplicating the entire loop header. In the case of loops with early exits,
543 /// rotation will not work anyway, but simplifyLoopLatch will put the loop in
544 /// canonical form so downstream passes can handle it.
545 ///
546 /// I don't believe this invalidates SCEV.
547 bool LoopRotate::simplifyLoopLatch(Loop *L) {
548   BasicBlock *Latch = L->getLoopLatch();
549   if (!Latch || Latch->hasAddressTaken())
550     return false;
551 
552   BranchInst *Jmp = dyn_cast<BranchInst>(Latch->getTerminator());
553   if (!Jmp || !Jmp->isUnconditional())
554     return false;
555 
556   BasicBlock *LastExit = Latch->getSinglePredecessor();
557   if (!LastExit || !L->isLoopExiting(LastExit))
558     return false;
559 
560   BranchInst *BI = dyn_cast<BranchInst>(LastExit->getTerminator());
561   if (!BI)
562     return false;
563 
564   if (!shouldSpeculateInstrs(Latch->begin(), Jmp->getIterator(), L))
565     return false;
566 
567   DEBUG(dbgs() << "Folding loop latch " << Latch->getName() << " into "
568                << LastExit->getName() << "\n");
569 
570   // Hoist the instructions from Latch into LastExit.
571   LastExit->getInstList().splice(BI->getIterator(), Latch->getInstList(),
572                                  Latch->begin(), Jmp->getIterator());
573 
574   unsigned FallThruPath = BI->getSuccessor(0) == Latch ? 0 : 1;
575   BasicBlock *Header = Jmp->getSuccessor(0);
576   assert(Header == L->getHeader() && "expected a backward branch");
577 
578   // Remove Latch from the CFG so that LastExit becomes the new Latch.
579   BI->setSuccessor(FallThruPath, Header);
580   Latch->replaceSuccessorsPhiUsesWith(LastExit);
581   Jmp->eraseFromParent();
582 
583   // Nuke the Latch block.
584   assert(Latch->empty() && "unable to evacuate Latch");
585   LI->removeBlock(Latch);
586   if (DT)
587     DT->eraseNode(Latch);
588   Latch->eraseFromParent();
589   return true;
590 }
591 
592 /// Rotate \c L, and return true if any modification was made.
593 bool LoopRotate::processLoop(Loop *L) {
594   // Save the loop metadata.
595   MDNode *LoopMD = L->getLoopID();
596 
597   // Simplify the loop latch before attempting to rotate the header
598   // upward. Rotation may not be needed if the loop tail can be folded into the
599   // loop exit.
600   bool SimplifiedLatch = simplifyLoopLatch(L);
601 
602   bool MadeChange = rotateLoop(L, SimplifiedLatch);
603   assert((!MadeChange || L->isLoopExiting(L->getLoopLatch())) &&
604          "Loop latch should be exiting after loop-rotate.");
605 
606   // Restore the loop metadata.
607   // NB! We presume LoopRotation DOESN'T ADD its own metadata.
608   if ((MadeChange || SimplifiedLatch) && LoopMD)
609     L->setLoopID(LoopMD);
610 
611   return MadeChange;
612 }
613 
614 LoopRotatePass::LoopRotatePass() {}
615 
616 PreservedAnalyses LoopRotatePass::run(Loop &L, AnalysisManager<Loop> &AM) {
617   auto &FAM = AM.getResult<FunctionAnalysisManagerLoopProxy>(L).getManager();
618   Function *F = L.getHeader()->getParent();
619 
620   auto *LI = FAM.getCachedResult<LoopAnalysis>(*F);
621   const auto *TTI = FAM.getCachedResult<TargetIRAnalysis>(*F);
622   auto *AC = FAM.getCachedResult<AssumptionAnalysis>(*F);
623   assert((LI && TTI && AC) && "Analyses for loop rotation not available");
624 
625   // Optional analyses.
626   auto *DT = FAM.getCachedResult<DominatorTreeAnalysis>(*F);
627   auto *SE = FAM.getCachedResult<ScalarEvolutionAnalysis>(*F);
628   LoopRotate LR(DefaultRotationThreshold, LI, TTI, AC, DT, SE);
629 
630   bool Changed = LR.processLoop(&L);
631   if (!Changed)
632     return PreservedAnalyses::all();
633   return getLoopPassPreservedAnalyses();
634 }
635 
636 namespace {
637 
638 class LoopRotateLegacyPass : public LoopPass {
639   unsigned MaxHeaderSize;
640 
641 public:
642   static char ID; // Pass ID, replacement for typeid
643   LoopRotateLegacyPass(int SpecifiedMaxHeaderSize = -1) : LoopPass(ID) {
644     initializeLoopRotateLegacyPassPass(*PassRegistry::getPassRegistry());
645     if (SpecifiedMaxHeaderSize == -1)
646       MaxHeaderSize = DefaultRotationThreshold;
647     else
648       MaxHeaderSize = unsigned(SpecifiedMaxHeaderSize);
649   }
650 
651   // LCSSA form makes instruction renaming easier.
652   void getAnalysisUsage(AnalysisUsage &AU) const override {
653     AU.addRequired<AssumptionCacheTracker>();
654     AU.addRequired<TargetTransformInfoWrapperPass>();
655     getLoopAnalysisUsage(AU);
656   }
657 
658   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
659     if (skipLoop(L))
660       return false;
661     Function &F = *L->getHeader()->getParent();
662 
663     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
664     const auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
665     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
666     auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
667     auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
668     auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
669     auto *SE = SEWP ? &SEWP->getSE() : nullptr;
670     LoopRotate LR(MaxHeaderSize, LI, TTI, AC, DT, SE);
671     return LR.processLoop(L);
672   }
673 };
674 }
675 
676 char LoopRotateLegacyPass::ID = 0;
677 INITIALIZE_PASS_BEGIN(LoopRotateLegacyPass, "loop-rotate", "Rotate Loops",
678                       false, false)
679 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
680 INITIALIZE_PASS_DEPENDENCY(LoopPass)
681 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
682 INITIALIZE_PASS_END(LoopRotateLegacyPass, "loop-rotate", "Rotate Loops", false,
683                     false)
684 
685 Pass *llvm::createLoopRotatePass(int MaxHeaderSize) {
686   return new LoopRotateLegacyPass(MaxHeaderSize);
687 }
688