1 //===- LoopRotation.cpp - Loop Rotation Pass ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements Loop Rotation Pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/LoopRotation.h" 15 #include "llvm/ADT/Statistic.h" 16 #include "llvm/Analysis/AliasAnalysis.h" 17 #include "llvm/Analysis/AssumptionCache.h" 18 #include "llvm/Analysis/BasicAliasAnalysis.h" 19 #include "llvm/Analysis/CodeMetrics.h" 20 #include "llvm/Analysis/GlobalsModRef.h" 21 #include "llvm/Analysis/InstructionSimplify.h" 22 #include "llvm/Analysis/LoopPass.h" 23 #include "llvm/Analysis/ScalarEvolution.h" 24 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 25 #include "llvm/Analysis/TargetTransformInfo.h" 26 #include "llvm/Analysis/ValueTracking.h" 27 #include "llvm/IR/CFG.h" 28 #include "llvm/IR/DebugInfoMetadata.h" 29 #include "llvm/IR/Dominators.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/IntrinsicInst.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/Support/CommandLine.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Transforms/Scalar.h" 37 #include "llvm/Transforms/Scalar/LoopPassManager.h" 38 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 39 #include "llvm/Transforms/Utils/Local.h" 40 #include "llvm/Transforms/Utils/LoopUtils.h" 41 #include "llvm/Transforms/Utils/SSAUpdater.h" 42 #include "llvm/Transforms/Utils/ValueMapper.h" 43 using namespace llvm; 44 45 #define DEBUG_TYPE "loop-rotate" 46 47 static cl::opt<unsigned> DefaultRotationThreshold( 48 "rotation-max-header-size", cl::init(16), cl::Hidden, 49 cl::desc("The default maximum header size for automatic loop rotation")); 50 51 STATISTIC(NumRotated, "Number of loops rotated"); 52 53 namespace { 54 /// A simple loop rotation transformation. 55 class LoopRotate { 56 const unsigned MaxHeaderSize; 57 LoopInfo *LI; 58 const TargetTransformInfo *TTI; 59 AssumptionCache *AC; 60 DominatorTree *DT; 61 ScalarEvolution *SE; 62 const SimplifyQuery &SQ; 63 64 public: 65 LoopRotate(unsigned MaxHeaderSize, LoopInfo *LI, 66 const TargetTransformInfo *TTI, AssumptionCache *AC, 67 DominatorTree *DT, ScalarEvolution *SE, const SimplifyQuery &SQ) 68 : MaxHeaderSize(MaxHeaderSize), LI(LI), TTI(TTI), AC(AC), DT(DT), SE(SE), 69 SQ(SQ) {} 70 bool processLoop(Loop *L); 71 72 private: 73 bool rotateLoop(Loop *L, bool SimplifiedLatch); 74 bool simplifyLoopLatch(Loop *L); 75 }; 76 } // end anonymous namespace 77 78 /// RewriteUsesOfClonedInstructions - We just cloned the instructions from the 79 /// old header into the preheader. If there were uses of the values produced by 80 /// these instruction that were outside of the loop, we have to insert PHI nodes 81 /// to merge the two values. Do this now. 82 static void RewriteUsesOfClonedInstructions(BasicBlock *OrigHeader, 83 BasicBlock *OrigPreheader, 84 ValueToValueMapTy &ValueMap, 85 SmallVectorImpl<PHINode*> *InsertedPHIs) { 86 // Remove PHI node entries that are no longer live. 87 BasicBlock::iterator I, E = OrigHeader->end(); 88 for (I = OrigHeader->begin(); PHINode *PN = dyn_cast<PHINode>(I); ++I) 89 PN->removeIncomingValue(PN->getBasicBlockIndex(OrigPreheader)); 90 91 // Now fix up users of the instructions in OrigHeader, inserting PHI nodes 92 // as necessary. 93 SSAUpdater SSA(InsertedPHIs); 94 for (I = OrigHeader->begin(); I != E; ++I) { 95 Value *OrigHeaderVal = &*I; 96 97 // If there are no uses of the value (e.g. because it returns void), there 98 // is nothing to rewrite. 99 if (OrigHeaderVal->use_empty()) 100 continue; 101 102 Value *OrigPreHeaderVal = ValueMap.lookup(OrigHeaderVal); 103 104 // The value now exits in two versions: the initial value in the preheader 105 // and the loop "next" value in the original header. 106 SSA.Initialize(OrigHeaderVal->getType(), OrigHeaderVal->getName()); 107 SSA.AddAvailableValue(OrigHeader, OrigHeaderVal); 108 SSA.AddAvailableValue(OrigPreheader, OrigPreHeaderVal); 109 110 // Visit each use of the OrigHeader instruction. 111 for (Value::use_iterator UI = OrigHeaderVal->use_begin(), 112 UE = OrigHeaderVal->use_end(); 113 UI != UE;) { 114 // Grab the use before incrementing the iterator. 115 Use &U = *UI; 116 117 // Increment the iterator before removing the use from the list. 118 ++UI; 119 120 // SSAUpdater can't handle a non-PHI use in the same block as an 121 // earlier def. We can easily handle those cases manually. 122 Instruction *UserInst = cast<Instruction>(U.getUser()); 123 if (!isa<PHINode>(UserInst)) { 124 BasicBlock *UserBB = UserInst->getParent(); 125 126 // The original users in the OrigHeader are already using the 127 // original definitions. 128 if (UserBB == OrigHeader) 129 continue; 130 131 // Users in the OrigPreHeader need to use the value to which the 132 // original definitions are mapped. 133 if (UserBB == OrigPreheader) { 134 U = OrigPreHeaderVal; 135 continue; 136 } 137 } 138 139 // Anything else can be handled by SSAUpdater. 140 SSA.RewriteUse(U); 141 } 142 143 // Replace MetadataAsValue(ValueAsMetadata(OrigHeaderVal)) uses in debug 144 // intrinsics. 145 SmallVector<DbgValueInst *, 1> DbgValues; 146 llvm::findDbgValues(DbgValues, OrigHeaderVal); 147 for (auto &DbgValue : DbgValues) { 148 // The original users in the OrigHeader are already using the original 149 // definitions. 150 BasicBlock *UserBB = DbgValue->getParent(); 151 if (UserBB == OrigHeader) 152 continue; 153 154 // Users in the OrigPreHeader need to use the value to which the 155 // original definitions are mapped and anything else can be handled by 156 // the SSAUpdater. To avoid adding PHINodes, check if the value is 157 // available in UserBB, if not substitute undef. 158 Value *NewVal; 159 if (UserBB == OrigPreheader) 160 NewVal = OrigPreHeaderVal; 161 else if (SSA.HasValueForBlock(UserBB)) 162 NewVal = SSA.GetValueInMiddleOfBlock(UserBB); 163 else 164 NewVal = UndefValue::get(OrigHeaderVal->getType()); 165 DbgValue->setOperand(0, 166 MetadataAsValue::get(OrigHeaderVal->getContext(), 167 ValueAsMetadata::get(NewVal))); 168 } 169 } 170 } 171 172 /// Propagate dbg.value intrinsics through the newly inserted Phis. 173 static void insertDebugValues(BasicBlock *OrigHeader, 174 SmallVectorImpl<PHINode*> &InsertedPHIs) { 175 ValueToValueMapTy DbgValueMap; 176 177 // Map existing PHI nodes to their dbg.values. 178 for (auto &I : *OrigHeader) { 179 if (auto DbgII = dyn_cast<DbgInfoIntrinsic>(&I)) { 180 if (auto *Loc = dyn_cast_or_null<PHINode>(DbgII->getVariableLocation())) 181 DbgValueMap.insert({Loc, DbgII}); 182 } 183 } 184 185 // Then iterate through the new PHIs and look to see if they use one of the 186 // previously mapped PHIs. If so, insert a new dbg.value intrinsic that will 187 // propagate the info through the new PHI. 188 LLVMContext &C = OrigHeader->getContext(); 189 for (auto PHI : InsertedPHIs) { 190 for (auto VI : PHI->operand_values()) { 191 auto V = DbgValueMap.find(VI); 192 if (V != DbgValueMap.end()) { 193 auto *DbgII = cast<DbgInfoIntrinsic>(V->second); 194 Instruction *NewDbgII = DbgII->clone(); 195 auto PhiMAV = MetadataAsValue::get(C, ValueAsMetadata::get(PHI)); 196 NewDbgII->setOperand(0, PhiMAV); 197 BasicBlock *Parent = PHI->getParent(); 198 NewDbgII->insertBefore(Parent->getFirstNonPHIOrDbgOrLifetime()); 199 } 200 } 201 } 202 } 203 204 /// Rotate loop LP. Return true if the loop is rotated. 205 /// 206 /// \param SimplifiedLatch is true if the latch was just folded into the final 207 /// loop exit. In this case we may want to rotate even though the new latch is 208 /// now an exiting branch. This rotation would have happened had the latch not 209 /// been simplified. However, if SimplifiedLatch is false, then we avoid 210 /// rotating loops in which the latch exits to avoid excessive or endless 211 /// rotation. LoopRotate should be repeatable and converge to a canonical 212 /// form. This property is satisfied because simplifying the loop latch can only 213 /// happen once across multiple invocations of the LoopRotate pass. 214 bool LoopRotate::rotateLoop(Loop *L, bool SimplifiedLatch) { 215 // If the loop has only one block then there is not much to rotate. 216 if (L->getBlocks().size() == 1) 217 return false; 218 219 BasicBlock *OrigHeader = L->getHeader(); 220 BasicBlock *OrigLatch = L->getLoopLatch(); 221 222 BranchInst *BI = dyn_cast<BranchInst>(OrigHeader->getTerminator()); 223 if (!BI || BI->isUnconditional()) 224 return false; 225 226 // If the loop header is not one of the loop exiting blocks then 227 // either this loop is already rotated or it is not 228 // suitable for loop rotation transformations. 229 if (!L->isLoopExiting(OrigHeader)) 230 return false; 231 232 // If the loop latch already contains a branch that leaves the loop then the 233 // loop is already rotated. 234 if (!OrigLatch) 235 return false; 236 237 // Rotate if either the loop latch does *not* exit the loop, or if the loop 238 // latch was just simplified. 239 if (L->isLoopExiting(OrigLatch) && !SimplifiedLatch) 240 return false; 241 242 // Check size of original header and reject loop if it is very big or we can't 243 // duplicate blocks inside it. 244 { 245 SmallPtrSet<const Value *, 32> EphValues; 246 CodeMetrics::collectEphemeralValues(L, AC, EphValues); 247 248 CodeMetrics Metrics; 249 Metrics.analyzeBasicBlock(OrigHeader, *TTI, EphValues); 250 if (Metrics.notDuplicatable) { 251 DEBUG(dbgs() << "LoopRotation: NOT rotating - contains non-duplicatable" 252 << " instructions: "; 253 L->dump()); 254 return false; 255 } 256 if (Metrics.convergent) { 257 DEBUG(dbgs() << "LoopRotation: NOT rotating - contains convergent " 258 "instructions: "; 259 L->dump()); 260 return false; 261 } 262 if (Metrics.NumInsts > MaxHeaderSize) 263 return false; 264 } 265 266 // Now, this loop is suitable for rotation. 267 BasicBlock *OrigPreheader = L->getLoopPreheader(); 268 269 // If the loop could not be converted to canonical form, it must have an 270 // indirectbr in it, just give up. 271 if (!OrigPreheader) 272 return false; 273 274 // Anything ScalarEvolution may know about this loop or the PHI nodes 275 // in its header will soon be invalidated. 276 if (SE) 277 SE->forgetLoop(L); 278 279 DEBUG(dbgs() << "LoopRotation: rotating "; L->dump()); 280 281 // Find new Loop header. NewHeader is a Header's one and only successor 282 // that is inside loop. Header's other successor is outside the 283 // loop. Otherwise loop is not suitable for rotation. 284 BasicBlock *Exit = BI->getSuccessor(0); 285 BasicBlock *NewHeader = BI->getSuccessor(1); 286 if (L->contains(Exit)) 287 std::swap(Exit, NewHeader); 288 assert(NewHeader && "Unable to determine new loop header"); 289 assert(L->contains(NewHeader) && !L->contains(Exit) && 290 "Unable to determine loop header and exit blocks"); 291 292 // This code assumes that the new header has exactly one predecessor. 293 // Remove any single-entry PHI nodes in it. 294 assert(NewHeader->getSinglePredecessor() && 295 "New header doesn't have one pred!"); 296 FoldSingleEntryPHINodes(NewHeader); 297 298 // Begin by walking OrigHeader and populating ValueMap with an entry for 299 // each Instruction. 300 BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end(); 301 ValueToValueMapTy ValueMap; 302 303 // For PHI nodes, the value available in OldPreHeader is just the 304 // incoming value from OldPreHeader. 305 for (; PHINode *PN = dyn_cast<PHINode>(I); ++I) 306 ValueMap[PN] = PN->getIncomingValueForBlock(OrigPreheader); 307 308 // For the rest of the instructions, either hoist to the OrigPreheader if 309 // possible or create a clone in the OldPreHeader if not. 310 TerminatorInst *LoopEntryBranch = OrigPreheader->getTerminator(); 311 312 // Record all debug intrinsics preceding LoopEntryBranch to avoid duplication. 313 using DbgIntrinsicHash = 314 std::pair<std::pair<Value *, DILocalVariable *>, DIExpression *>; 315 auto makeHash = [](DbgInfoIntrinsic *D) -> DbgIntrinsicHash { 316 return {{D->getVariableLocation(), D->getVariable()}, D->getExpression()}; 317 }; 318 SmallDenseSet<DbgIntrinsicHash, 8> DbgIntrinsics; 319 for (auto I = std::next(OrigPreheader->rbegin()), E = OrigPreheader->rend(); 320 I != E; ++I) { 321 if (auto *DII = dyn_cast<DbgInfoIntrinsic>(&*I)) 322 DbgIntrinsics.insert(makeHash(DII)); 323 else 324 break; 325 } 326 327 while (I != E) { 328 Instruction *Inst = &*I++; 329 330 // If the instruction's operands are invariant and it doesn't read or write 331 // memory, then it is safe to hoist. Doing this doesn't change the order of 332 // execution in the preheader, but does prevent the instruction from 333 // executing in each iteration of the loop. This means it is safe to hoist 334 // something that might trap, but isn't safe to hoist something that reads 335 // memory (without proving that the loop doesn't write). 336 if (L->hasLoopInvariantOperands(Inst) && !Inst->mayReadFromMemory() && 337 !Inst->mayWriteToMemory() && !isa<TerminatorInst>(Inst) && 338 !isa<DbgInfoIntrinsic>(Inst) && !isa<AllocaInst>(Inst)) { 339 Inst->moveBefore(LoopEntryBranch); 340 continue; 341 } 342 343 // Otherwise, create a duplicate of the instruction. 344 Instruction *C = Inst->clone(); 345 346 // Eagerly remap the operands of the instruction. 347 RemapInstruction(C, ValueMap, 348 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 349 350 // Avoid inserting the same intrinsic twice. 351 if (auto *DII = dyn_cast<DbgInfoIntrinsic>(C)) 352 if (DbgIntrinsics.count(makeHash(DII))) { 353 C->deleteValue(); 354 continue; 355 } 356 357 // With the operands remapped, see if the instruction constant folds or is 358 // otherwise simplifyable. This commonly occurs because the entry from PHI 359 // nodes allows icmps and other instructions to fold. 360 Value *V = SimplifyInstruction(C, SQ); 361 if (V && LI->replacementPreservesLCSSAForm(C, V)) { 362 // If so, then delete the temporary instruction and stick the folded value 363 // in the map. 364 ValueMap[Inst] = V; 365 if (!C->mayHaveSideEffects()) { 366 C->deleteValue(); 367 C = nullptr; 368 } 369 } else { 370 ValueMap[Inst] = C; 371 } 372 if (C) { 373 // Otherwise, stick the new instruction into the new block! 374 C->setName(Inst->getName()); 375 C->insertBefore(LoopEntryBranch); 376 377 if (auto *II = dyn_cast<IntrinsicInst>(C)) 378 if (II->getIntrinsicID() == Intrinsic::assume) 379 AC->registerAssumption(II); 380 } 381 } 382 383 // Along with all the other instructions, we just cloned OrigHeader's 384 // terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's 385 // successors by duplicating their incoming values for OrigHeader. 386 TerminatorInst *TI = OrigHeader->getTerminator(); 387 for (BasicBlock *SuccBB : TI->successors()) 388 for (BasicBlock::iterator BI = SuccBB->begin(); 389 PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 390 PN->addIncoming(PN->getIncomingValueForBlock(OrigHeader), OrigPreheader); 391 392 // Now that OrigPreHeader has a clone of OrigHeader's terminator, remove 393 // OrigPreHeader's old terminator (the original branch into the loop), and 394 // remove the corresponding incoming values from the PHI nodes in OrigHeader. 395 LoopEntryBranch->eraseFromParent(); 396 397 398 SmallVector<PHINode*, 2> InsertedPHIs; 399 // If there were any uses of instructions in the duplicated block outside the 400 // loop, update them, inserting PHI nodes as required 401 RewriteUsesOfClonedInstructions(OrigHeader, OrigPreheader, ValueMap, 402 &InsertedPHIs); 403 404 // Attach dbg.value intrinsics to the new phis if that phi uses a value that 405 // previously had debug metadata attached. This keeps the debug info 406 // up-to-date in the loop body. 407 if (!InsertedPHIs.empty()) 408 insertDebugValues(OrigHeader, InsertedPHIs); 409 410 // NewHeader is now the header of the loop. 411 L->moveToHeader(NewHeader); 412 assert(L->getHeader() == NewHeader && "Latch block is our new header"); 413 414 // Inform DT about changes to the CFG. 415 if (DT) { 416 // The OrigPreheader branches to the NewHeader and Exit now. Then, inform 417 // the DT about the removed edge to the OrigHeader (that got removed). 418 SmallVector<DominatorTree::UpdateType, 3> Updates; 419 Updates.push_back({DominatorTree::Insert, OrigPreheader, Exit}); 420 Updates.push_back({DominatorTree::Insert, OrigPreheader, NewHeader}); 421 Updates.push_back({DominatorTree::Delete, OrigPreheader, OrigHeader}); 422 DT->applyUpdates(Updates); 423 } 424 425 // At this point, we've finished our major CFG changes. As part of cloning 426 // the loop into the preheader we've simplified instructions and the 427 // duplicated conditional branch may now be branching on a constant. If it is 428 // branching on a constant and if that constant means that we enter the loop, 429 // then we fold away the cond branch to an uncond branch. This simplifies the 430 // loop in cases important for nested loops, and it also means we don't have 431 // to split as many edges. 432 BranchInst *PHBI = cast<BranchInst>(OrigPreheader->getTerminator()); 433 assert(PHBI->isConditional() && "Should be clone of BI condbr!"); 434 if (!isa<ConstantInt>(PHBI->getCondition()) || 435 PHBI->getSuccessor(cast<ConstantInt>(PHBI->getCondition())->isZero()) != 436 NewHeader) { 437 // The conditional branch can't be folded, handle the general case. 438 // Split edges as necessary to preserve LoopSimplify form. 439 440 // Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and 441 // thus is not a preheader anymore. 442 // Split the edge to form a real preheader. 443 BasicBlock *NewPH = SplitCriticalEdge( 444 OrigPreheader, NewHeader, 445 CriticalEdgeSplittingOptions(DT, LI).setPreserveLCSSA()); 446 NewPH->setName(NewHeader->getName() + ".lr.ph"); 447 448 // Preserve canonical loop form, which means that 'Exit' should have only 449 // one predecessor. Note that Exit could be an exit block for multiple 450 // nested loops, causing both of the edges to now be critical and need to 451 // be split. 452 SmallVector<BasicBlock *, 4> ExitPreds(pred_begin(Exit), pred_end(Exit)); 453 bool SplitLatchEdge = false; 454 for (BasicBlock *ExitPred : ExitPreds) { 455 // We only need to split loop exit edges. 456 Loop *PredLoop = LI->getLoopFor(ExitPred); 457 if (!PredLoop || PredLoop->contains(Exit)) 458 continue; 459 if (isa<IndirectBrInst>(ExitPred->getTerminator())) 460 continue; 461 SplitLatchEdge |= L->getLoopLatch() == ExitPred; 462 BasicBlock *ExitSplit = SplitCriticalEdge( 463 ExitPred, Exit, 464 CriticalEdgeSplittingOptions(DT, LI).setPreserveLCSSA()); 465 ExitSplit->moveBefore(Exit); 466 } 467 assert(SplitLatchEdge && 468 "Despite splitting all preds, failed to split latch exit?"); 469 } else { 470 // We can fold the conditional branch in the preheader, this makes things 471 // simpler. The first step is to remove the extra edge to the Exit block. 472 Exit->removePredecessor(OrigPreheader, true /*preserve LCSSA*/); 473 BranchInst *NewBI = BranchInst::Create(NewHeader, PHBI); 474 NewBI->setDebugLoc(PHBI->getDebugLoc()); 475 PHBI->eraseFromParent(); 476 477 // With our CFG finalized, update DomTree if it is available. 478 if (DT) DT->deleteEdge(OrigPreheader, Exit); 479 } 480 481 assert(L->getLoopPreheader() && "Invalid loop preheader after loop rotation"); 482 assert(L->getLoopLatch() && "Invalid loop latch after loop rotation"); 483 484 // Now that the CFG and DomTree are in a consistent state again, try to merge 485 // the OrigHeader block into OrigLatch. This will succeed if they are 486 // connected by an unconditional branch. This is just a cleanup so the 487 // emitted code isn't too gross in this common case. 488 MergeBlockIntoPredecessor(OrigHeader, DT, LI); 489 490 DEBUG(dbgs() << "LoopRotation: into "; L->dump()); 491 492 ++NumRotated; 493 return true; 494 } 495 496 /// Determine whether the instructions in this range may be safely and cheaply 497 /// speculated. This is not an important enough situation to develop complex 498 /// heuristics. We handle a single arithmetic instruction along with any type 499 /// conversions. 500 static bool shouldSpeculateInstrs(BasicBlock::iterator Begin, 501 BasicBlock::iterator End, Loop *L) { 502 bool seenIncrement = false; 503 bool MultiExitLoop = false; 504 505 if (!L->getExitingBlock()) 506 MultiExitLoop = true; 507 508 for (BasicBlock::iterator I = Begin; I != End; ++I) { 509 510 if (!isSafeToSpeculativelyExecute(&*I)) 511 return false; 512 513 if (isa<DbgInfoIntrinsic>(I)) 514 continue; 515 516 switch (I->getOpcode()) { 517 default: 518 return false; 519 case Instruction::GetElementPtr: 520 // GEPs are cheap if all indices are constant. 521 if (!cast<GEPOperator>(I)->hasAllConstantIndices()) 522 return false; 523 // fall-thru to increment case 524 LLVM_FALLTHROUGH; 525 case Instruction::Add: 526 case Instruction::Sub: 527 case Instruction::And: 528 case Instruction::Or: 529 case Instruction::Xor: 530 case Instruction::Shl: 531 case Instruction::LShr: 532 case Instruction::AShr: { 533 Value *IVOpnd = 534 !isa<Constant>(I->getOperand(0)) 535 ? I->getOperand(0) 536 : !isa<Constant>(I->getOperand(1)) ? I->getOperand(1) : nullptr; 537 if (!IVOpnd) 538 return false; 539 540 // If increment operand is used outside of the loop, this speculation 541 // could cause extra live range interference. 542 if (MultiExitLoop) { 543 for (User *UseI : IVOpnd->users()) { 544 auto *UserInst = cast<Instruction>(UseI); 545 if (!L->contains(UserInst)) 546 return false; 547 } 548 } 549 550 if (seenIncrement) 551 return false; 552 seenIncrement = true; 553 break; 554 } 555 case Instruction::Trunc: 556 case Instruction::ZExt: 557 case Instruction::SExt: 558 // ignore type conversions 559 break; 560 } 561 } 562 return true; 563 } 564 565 /// Fold the loop tail into the loop exit by speculating the loop tail 566 /// instructions. Typically, this is a single post-increment. In the case of a 567 /// simple 2-block loop, hoisting the increment can be much better than 568 /// duplicating the entire loop header. In the case of loops with early exits, 569 /// rotation will not work anyway, but simplifyLoopLatch will put the loop in 570 /// canonical form so downstream passes can handle it. 571 /// 572 /// I don't believe this invalidates SCEV. 573 bool LoopRotate::simplifyLoopLatch(Loop *L) { 574 BasicBlock *Latch = L->getLoopLatch(); 575 if (!Latch || Latch->hasAddressTaken()) 576 return false; 577 578 BranchInst *Jmp = dyn_cast<BranchInst>(Latch->getTerminator()); 579 if (!Jmp || !Jmp->isUnconditional()) 580 return false; 581 582 BasicBlock *LastExit = Latch->getSinglePredecessor(); 583 if (!LastExit || !L->isLoopExiting(LastExit)) 584 return false; 585 586 BranchInst *BI = dyn_cast<BranchInst>(LastExit->getTerminator()); 587 if (!BI) 588 return false; 589 590 if (!shouldSpeculateInstrs(Latch->begin(), Jmp->getIterator(), L)) 591 return false; 592 593 DEBUG(dbgs() << "Folding loop latch " << Latch->getName() << " into " 594 << LastExit->getName() << "\n"); 595 596 // Hoist the instructions from Latch into LastExit. 597 LastExit->getInstList().splice(BI->getIterator(), Latch->getInstList(), 598 Latch->begin(), Jmp->getIterator()); 599 600 unsigned FallThruPath = BI->getSuccessor(0) == Latch ? 0 : 1; 601 BasicBlock *Header = Jmp->getSuccessor(0); 602 assert(Header == L->getHeader() && "expected a backward branch"); 603 604 // Remove Latch from the CFG so that LastExit becomes the new Latch. 605 BI->setSuccessor(FallThruPath, Header); 606 Latch->replaceSuccessorsPhiUsesWith(LastExit); 607 Jmp->eraseFromParent(); 608 609 // Nuke the Latch block. 610 assert(Latch->empty() && "unable to evacuate Latch"); 611 LI->removeBlock(Latch); 612 if (DT) 613 DT->eraseNode(Latch); 614 Latch->eraseFromParent(); 615 return true; 616 } 617 618 /// Rotate \c L, and return true if any modification was made. 619 bool LoopRotate::processLoop(Loop *L) { 620 // Save the loop metadata. 621 MDNode *LoopMD = L->getLoopID(); 622 623 // Simplify the loop latch before attempting to rotate the header 624 // upward. Rotation may not be needed if the loop tail can be folded into the 625 // loop exit. 626 bool SimplifiedLatch = simplifyLoopLatch(L); 627 628 bool MadeChange = rotateLoop(L, SimplifiedLatch); 629 assert((!MadeChange || L->isLoopExiting(L->getLoopLatch())) && 630 "Loop latch should be exiting after loop-rotate."); 631 632 // Restore the loop metadata. 633 // NB! We presume LoopRotation DOESN'T ADD its own metadata. 634 if ((MadeChange || SimplifiedLatch) && LoopMD) 635 L->setLoopID(LoopMD); 636 637 return MadeChange || SimplifiedLatch; 638 } 639 640 LoopRotatePass::LoopRotatePass(bool EnableHeaderDuplication) 641 : EnableHeaderDuplication(EnableHeaderDuplication) {} 642 643 PreservedAnalyses LoopRotatePass::run(Loop &L, LoopAnalysisManager &AM, 644 LoopStandardAnalysisResults &AR, 645 LPMUpdater &) { 646 int Threshold = EnableHeaderDuplication ? DefaultRotationThreshold : 0; 647 const DataLayout &DL = L.getHeader()->getModule()->getDataLayout(); 648 const SimplifyQuery SQ = getBestSimplifyQuery(AR, DL); 649 LoopRotate LR(Threshold, &AR.LI, &AR.TTI, &AR.AC, &AR.DT, &AR.SE, 650 SQ); 651 652 bool Changed = LR.processLoop(&L); 653 if (!Changed) 654 return PreservedAnalyses::all(); 655 656 return getLoopPassPreservedAnalyses(); 657 } 658 659 namespace { 660 661 class LoopRotateLegacyPass : public LoopPass { 662 unsigned MaxHeaderSize; 663 664 public: 665 static char ID; // Pass ID, replacement for typeid 666 LoopRotateLegacyPass(int SpecifiedMaxHeaderSize = -1) : LoopPass(ID) { 667 initializeLoopRotateLegacyPassPass(*PassRegistry::getPassRegistry()); 668 if (SpecifiedMaxHeaderSize == -1) 669 MaxHeaderSize = DefaultRotationThreshold; 670 else 671 MaxHeaderSize = unsigned(SpecifiedMaxHeaderSize); 672 } 673 674 // LCSSA form makes instruction renaming easier. 675 void getAnalysisUsage(AnalysisUsage &AU) const override { 676 AU.addRequired<AssumptionCacheTracker>(); 677 AU.addRequired<TargetTransformInfoWrapperPass>(); 678 getLoopAnalysisUsage(AU); 679 } 680 681 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 682 if (skipLoop(L)) 683 return false; 684 Function &F = *L->getHeader()->getParent(); 685 686 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 687 const auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 688 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 689 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 690 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; 691 auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); 692 auto *SE = SEWP ? &SEWP->getSE() : nullptr; 693 const SimplifyQuery SQ = getBestSimplifyQuery(*this, F); 694 LoopRotate LR(MaxHeaderSize, LI, TTI, AC, DT, SE, SQ); 695 return LR.processLoop(L); 696 } 697 }; 698 } 699 700 char LoopRotateLegacyPass::ID = 0; 701 INITIALIZE_PASS_BEGIN(LoopRotateLegacyPass, "loop-rotate", "Rotate Loops", 702 false, false) 703 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 704 INITIALIZE_PASS_DEPENDENCY(LoopPass) 705 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 706 INITIALIZE_PASS_END(LoopRotateLegacyPass, "loop-rotate", "Rotate Loops", false, 707 false) 708 709 Pass *llvm::createLoopRotatePass(int MaxHeaderSize) { 710 return new LoopRotateLegacyPass(MaxHeaderSize); 711 } 712