1 //===- LoopRotation.cpp - Loop Rotation Pass ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements Loop Rotation Pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/LoopRotation.h" 15 #include "llvm/ADT/Statistic.h" 16 #include "llvm/Analysis/AliasAnalysis.h" 17 #include "llvm/Analysis/AssumptionCache.h" 18 #include "llvm/Analysis/BasicAliasAnalysis.h" 19 #include "llvm/Analysis/CodeMetrics.h" 20 #include "llvm/Analysis/GlobalsModRef.h" 21 #include "llvm/Analysis/InstructionSimplify.h" 22 #include "llvm/Analysis/LoopPass.h" 23 #include "llvm/Analysis/ScalarEvolution.h" 24 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 25 #include "llvm/Analysis/TargetTransformInfo.h" 26 #include "llvm/Analysis/ValueTracking.h" 27 #include "llvm/IR/CFG.h" 28 #include "llvm/IR/DebugInfoMetadata.h" 29 #include "llvm/IR/Dominators.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/IntrinsicInst.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/Support/CommandLine.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Transforms/Scalar.h" 37 #include "llvm/Transforms/Scalar/LoopPassManager.h" 38 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 39 #include "llvm/Transforms/Utils/Local.h" 40 #include "llvm/Transforms/Utils/LoopUtils.h" 41 #include "llvm/Transforms/Utils/SSAUpdater.h" 42 #include "llvm/Transforms/Utils/ValueMapper.h" 43 using namespace llvm; 44 45 #define DEBUG_TYPE "loop-rotate" 46 47 static cl::opt<unsigned> DefaultRotationThreshold( 48 "rotation-max-header-size", cl::init(16), cl::Hidden, 49 cl::desc("The default maximum header size for automatic loop rotation")); 50 51 STATISTIC(NumRotated, "Number of loops rotated"); 52 53 namespace { 54 /// A simple loop rotation transformation. 55 class LoopRotate { 56 const unsigned MaxHeaderSize; 57 LoopInfo *LI; 58 const TargetTransformInfo *TTI; 59 AssumptionCache *AC; 60 DominatorTree *DT; 61 ScalarEvolution *SE; 62 const SimplifyQuery &SQ; 63 64 public: 65 LoopRotate(unsigned MaxHeaderSize, LoopInfo *LI, 66 const TargetTransformInfo *TTI, AssumptionCache *AC, 67 DominatorTree *DT, ScalarEvolution *SE, const SimplifyQuery &SQ) 68 : MaxHeaderSize(MaxHeaderSize), LI(LI), TTI(TTI), AC(AC), DT(DT), SE(SE), 69 SQ(SQ) {} 70 bool processLoop(Loop *L); 71 72 private: 73 bool rotateLoop(Loop *L, bool SimplifiedLatch); 74 bool simplifyLoopLatch(Loop *L); 75 }; 76 } // end anonymous namespace 77 78 /// RewriteUsesOfClonedInstructions - We just cloned the instructions from the 79 /// old header into the preheader. If there were uses of the values produced by 80 /// these instruction that were outside of the loop, we have to insert PHI nodes 81 /// to merge the two values. Do this now. 82 static void RewriteUsesOfClonedInstructions(BasicBlock *OrigHeader, 83 BasicBlock *OrigPreheader, 84 ValueToValueMapTy &ValueMap, 85 SmallVectorImpl<PHINode*> *InsertedPHIs) { 86 // Remove PHI node entries that are no longer live. 87 BasicBlock::iterator I, E = OrigHeader->end(); 88 for (I = OrigHeader->begin(); PHINode *PN = dyn_cast<PHINode>(I); ++I) 89 PN->removeIncomingValue(PN->getBasicBlockIndex(OrigPreheader)); 90 91 // Now fix up users of the instructions in OrigHeader, inserting PHI nodes 92 // as necessary. 93 SSAUpdater SSA(InsertedPHIs); 94 for (I = OrigHeader->begin(); I != E; ++I) { 95 Value *OrigHeaderVal = &*I; 96 97 // If there are no uses of the value (e.g. because it returns void), there 98 // is nothing to rewrite. 99 if (OrigHeaderVal->use_empty()) 100 continue; 101 102 Value *OrigPreHeaderVal = ValueMap.lookup(OrigHeaderVal); 103 104 // The value now exits in two versions: the initial value in the preheader 105 // and the loop "next" value in the original header. 106 SSA.Initialize(OrigHeaderVal->getType(), OrigHeaderVal->getName()); 107 SSA.AddAvailableValue(OrigHeader, OrigHeaderVal); 108 SSA.AddAvailableValue(OrigPreheader, OrigPreHeaderVal); 109 110 // Visit each use of the OrigHeader instruction. 111 for (Value::use_iterator UI = OrigHeaderVal->use_begin(), 112 UE = OrigHeaderVal->use_end(); 113 UI != UE;) { 114 // Grab the use before incrementing the iterator. 115 Use &U = *UI; 116 117 // Increment the iterator before removing the use from the list. 118 ++UI; 119 120 // SSAUpdater can't handle a non-PHI use in the same block as an 121 // earlier def. We can easily handle those cases manually. 122 Instruction *UserInst = cast<Instruction>(U.getUser()); 123 if (!isa<PHINode>(UserInst)) { 124 BasicBlock *UserBB = UserInst->getParent(); 125 126 // The original users in the OrigHeader are already using the 127 // original definitions. 128 if (UserBB == OrigHeader) 129 continue; 130 131 // Users in the OrigPreHeader need to use the value to which the 132 // original definitions are mapped. 133 if (UserBB == OrigPreheader) { 134 U = OrigPreHeaderVal; 135 continue; 136 } 137 } 138 139 // Anything else can be handled by SSAUpdater. 140 SSA.RewriteUse(U); 141 } 142 143 // Replace MetadataAsValue(ValueAsMetadata(OrigHeaderVal)) uses in debug 144 // intrinsics. 145 SmallVector<DbgValueInst *, 1> DbgValues; 146 llvm::findDbgValues(DbgValues, OrigHeaderVal); 147 for (auto &DbgValue : DbgValues) { 148 // The original users in the OrigHeader are already using the original 149 // definitions. 150 BasicBlock *UserBB = DbgValue->getParent(); 151 if (UserBB == OrigHeader) 152 continue; 153 154 // Users in the OrigPreHeader need to use the value to which the 155 // original definitions are mapped and anything else can be handled by 156 // the SSAUpdater. To avoid adding PHINodes, check if the value is 157 // available in UserBB, if not substitute undef. 158 Value *NewVal; 159 if (UserBB == OrigPreheader) 160 NewVal = OrigPreHeaderVal; 161 else if (SSA.HasValueForBlock(UserBB)) 162 NewVal = SSA.GetValueInMiddleOfBlock(UserBB); 163 else 164 NewVal = UndefValue::get(OrigHeaderVal->getType()); 165 DbgValue->setOperand(0, 166 MetadataAsValue::get(OrigHeaderVal->getContext(), 167 ValueAsMetadata::get(NewVal))); 168 } 169 } 170 } 171 172 /// Rotate loop LP. Return true if the loop is rotated. 173 /// 174 /// \param SimplifiedLatch is true if the latch was just folded into the final 175 /// loop exit. In this case we may want to rotate even though the new latch is 176 /// now an exiting branch. This rotation would have happened had the latch not 177 /// been simplified. However, if SimplifiedLatch is false, then we avoid 178 /// rotating loops in which the latch exits to avoid excessive or endless 179 /// rotation. LoopRotate should be repeatable and converge to a canonical 180 /// form. This property is satisfied because simplifying the loop latch can only 181 /// happen once across multiple invocations of the LoopRotate pass. 182 bool LoopRotate::rotateLoop(Loop *L, bool SimplifiedLatch) { 183 // If the loop has only one block then there is not much to rotate. 184 if (L->getBlocks().size() == 1) 185 return false; 186 187 BasicBlock *OrigHeader = L->getHeader(); 188 BasicBlock *OrigLatch = L->getLoopLatch(); 189 190 BranchInst *BI = dyn_cast<BranchInst>(OrigHeader->getTerminator()); 191 if (!BI || BI->isUnconditional()) 192 return false; 193 194 // If the loop header is not one of the loop exiting blocks then 195 // either this loop is already rotated or it is not 196 // suitable for loop rotation transformations. 197 if (!L->isLoopExiting(OrigHeader)) 198 return false; 199 200 // If the loop latch already contains a branch that leaves the loop then the 201 // loop is already rotated. 202 if (!OrigLatch) 203 return false; 204 205 // Rotate if either the loop latch does *not* exit the loop, or if the loop 206 // latch was just simplified. 207 if (L->isLoopExiting(OrigLatch) && !SimplifiedLatch) 208 return false; 209 210 // Check size of original header and reject loop if it is very big or we can't 211 // duplicate blocks inside it. 212 { 213 SmallPtrSet<const Value *, 32> EphValues; 214 CodeMetrics::collectEphemeralValues(L, AC, EphValues); 215 216 CodeMetrics Metrics; 217 Metrics.analyzeBasicBlock(OrigHeader, *TTI, EphValues); 218 if (Metrics.notDuplicatable) { 219 DEBUG(dbgs() << "LoopRotation: NOT rotating - contains non-duplicatable" 220 << " instructions: "; 221 L->dump()); 222 return false; 223 } 224 if (Metrics.convergent) { 225 DEBUG(dbgs() << "LoopRotation: NOT rotating - contains convergent " 226 "instructions: "; 227 L->dump()); 228 return false; 229 } 230 if (Metrics.NumInsts > MaxHeaderSize) 231 return false; 232 } 233 234 // Now, this loop is suitable for rotation. 235 BasicBlock *OrigPreheader = L->getLoopPreheader(); 236 237 // If the loop could not be converted to canonical form, it must have an 238 // indirectbr in it, just give up. 239 if (!OrigPreheader || !L->hasDedicatedExits()) 240 return false; 241 242 // Anything ScalarEvolution may know about this loop or the PHI nodes 243 // in its header will soon be invalidated. 244 if (SE) 245 SE->forgetLoop(L); 246 247 DEBUG(dbgs() << "LoopRotation: rotating "; L->dump()); 248 249 // Find new Loop header. NewHeader is a Header's one and only successor 250 // that is inside loop. Header's other successor is outside the 251 // loop. Otherwise loop is not suitable for rotation. 252 BasicBlock *Exit = BI->getSuccessor(0); 253 BasicBlock *NewHeader = BI->getSuccessor(1); 254 if (L->contains(Exit)) 255 std::swap(Exit, NewHeader); 256 assert(NewHeader && "Unable to determine new loop header"); 257 assert(L->contains(NewHeader) && !L->contains(Exit) && 258 "Unable to determine loop header and exit blocks"); 259 260 // This code assumes that the new header has exactly one predecessor. 261 // Remove any single-entry PHI nodes in it. 262 assert(NewHeader->getSinglePredecessor() && 263 "New header doesn't have one pred!"); 264 FoldSingleEntryPHINodes(NewHeader); 265 266 // Begin by walking OrigHeader and populating ValueMap with an entry for 267 // each Instruction. 268 BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end(); 269 ValueToValueMapTy ValueMap; 270 271 // For PHI nodes, the value available in OldPreHeader is just the 272 // incoming value from OldPreHeader. 273 for (; PHINode *PN = dyn_cast<PHINode>(I); ++I) 274 ValueMap[PN] = PN->getIncomingValueForBlock(OrigPreheader); 275 276 // For the rest of the instructions, either hoist to the OrigPreheader if 277 // possible or create a clone in the OldPreHeader if not. 278 TerminatorInst *LoopEntryBranch = OrigPreheader->getTerminator(); 279 280 // Record all debug intrinsics preceding LoopEntryBranch to avoid duplication. 281 using DbgIntrinsicHash = 282 std::pair<std::pair<Value *, DILocalVariable *>, DIExpression *>; 283 auto makeHash = [](DbgInfoIntrinsic *D) -> DbgIntrinsicHash { 284 return {{D->getVariableLocation(), D->getVariable()}, D->getExpression()}; 285 }; 286 SmallDenseSet<DbgIntrinsicHash, 8> DbgIntrinsics; 287 for (auto I = std::next(OrigPreheader->rbegin()), E = OrigPreheader->rend(); 288 I != E; ++I) { 289 if (auto *DII = dyn_cast<DbgInfoIntrinsic>(&*I)) 290 DbgIntrinsics.insert(makeHash(DII)); 291 else 292 break; 293 } 294 295 while (I != E) { 296 Instruction *Inst = &*I++; 297 298 // If the instruction's operands are invariant and it doesn't read or write 299 // memory, then it is safe to hoist. Doing this doesn't change the order of 300 // execution in the preheader, but does prevent the instruction from 301 // executing in each iteration of the loop. This means it is safe to hoist 302 // something that might trap, but isn't safe to hoist something that reads 303 // memory (without proving that the loop doesn't write). 304 if (L->hasLoopInvariantOperands(Inst) && !Inst->mayReadFromMemory() && 305 !Inst->mayWriteToMemory() && !isa<TerminatorInst>(Inst) && 306 !isa<DbgInfoIntrinsic>(Inst) && !isa<AllocaInst>(Inst)) { 307 Inst->moveBefore(LoopEntryBranch); 308 continue; 309 } 310 311 // Otherwise, create a duplicate of the instruction. 312 Instruction *C = Inst->clone(); 313 314 // Eagerly remap the operands of the instruction. 315 RemapInstruction(C, ValueMap, 316 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 317 318 // Avoid inserting the same intrinsic twice. 319 if (auto *DII = dyn_cast<DbgInfoIntrinsic>(C)) 320 if (DbgIntrinsics.count(makeHash(DII))) { 321 C->deleteValue(); 322 continue; 323 } 324 325 // With the operands remapped, see if the instruction constant folds or is 326 // otherwise simplifyable. This commonly occurs because the entry from PHI 327 // nodes allows icmps and other instructions to fold. 328 Value *V = SimplifyInstruction(C, SQ); 329 if (V && LI->replacementPreservesLCSSAForm(C, V)) { 330 // If so, then delete the temporary instruction and stick the folded value 331 // in the map. 332 ValueMap[Inst] = V; 333 if (!C->mayHaveSideEffects()) { 334 C->deleteValue(); 335 C = nullptr; 336 } 337 } else { 338 ValueMap[Inst] = C; 339 } 340 if (C) { 341 // Otherwise, stick the new instruction into the new block! 342 C->setName(Inst->getName()); 343 C->insertBefore(LoopEntryBranch); 344 345 if (auto *II = dyn_cast<IntrinsicInst>(C)) 346 if (II->getIntrinsicID() == Intrinsic::assume) 347 AC->registerAssumption(II); 348 } 349 } 350 351 // Along with all the other instructions, we just cloned OrigHeader's 352 // terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's 353 // successors by duplicating their incoming values for OrigHeader. 354 TerminatorInst *TI = OrigHeader->getTerminator(); 355 for (BasicBlock *SuccBB : TI->successors()) 356 for (BasicBlock::iterator BI = SuccBB->begin(); 357 PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 358 PN->addIncoming(PN->getIncomingValueForBlock(OrigHeader), OrigPreheader); 359 360 // Now that OrigPreHeader has a clone of OrigHeader's terminator, remove 361 // OrigPreHeader's old terminator (the original branch into the loop), and 362 // remove the corresponding incoming values from the PHI nodes in OrigHeader. 363 LoopEntryBranch->eraseFromParent(); 364 365 366 SmallVector<PHINode*, 2> InsertedPHIs; 367 // If there were any uses of instructions in the duplicated block outside the 368 // loop, update them, inserting PHI nodes as required 369 RewriteUsesOfClonedInstructions(OrigHeader, OrigPreheader, ValueMap, 370 &InsertedPHIs); 371 372 // Attach dbg.value intrinsics to the new phis if that phi uses a value that 373 // previously had debug metadata attached. This keeps the debug info 374 // up-to-date in the loop body. 375 if (!InsertedPHIs.empty()) 376 insertDebugValuesForPHIs(OrigHeader, InsertedPHIs); 377 378 // NewHeader is now the header of the loop. 379 L->moveToHeader(NewHeader); 380 assert(L->getHeader() == NewHeader && "Latch block is our new header"); 381 382 // Inform DT about changes to the CFG. 383 if (DT) { 384 // The OrigPreheader branches to the NewHeader and Exit now. Then, inform 385 // the DT about the removed edge to the OrigHeader (that got removed). 386 SmallVector<DominatorTree::UpdateType, 3> Updates; 387 Updates.push_back({DominatorTree::Insert, OrigPreheader, Exit}); 388 Updates.push_back({DominatorTree::Insert, OrigPreheader, NewHeader}); 389 Updates.push_back({DominatorTree::Delete, OrigPreheader, OrigHeader}); 390 DT->applyUpdates(Updates); 391 } 392 393 // At this point, we've finished our major CFG changes. As part of cloning 394 // the loop into the preheader we've simplified instructions and the 395 // duplicated conditional branch may now be branching on a constant. If it is 396 // branching on a constant and if that constant means that we enter the loop, 397 // then we fold away the cond branch to an uncond branch. This simplifies the 398 // loop in cases important for nested loops, and it also means we don't have 399 // to split as many edges. 400 BranchInst *PHBI = cast<BranchInst>(OrigPreheader->getTerminator()); 401 assert(PHBI->isConditional() && "Should be clone of BI condbr!"); 402 if (!isa<ConstantInt>(PHBI->getCondition()) || 403 PHBI->getSuccessor(cast<ConstantInt>(PHBI->getCondition())->isZero()) != 404 NewHeader) { 405 // The conditional branch can't be folded, handle the general case. 406 // Split edges as necessary to preserve LoopSimplify form. 407 408 // Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and 409 // thus is not a preheader anymore. 410 // Split the edge to form a real preheader. 411 BasicBlock *NewPH = SplitCriticalEdge( 412 OrigPreheader, NewHeader, 413 CriticalEdgeSplittingOptions(DT, LI).setPreserveLCSSA()); 414 NewPH->setName(NewHeader->getName() + ".lr.ph"); 415 416 // Preserve canonical loop form, which means that 'Exit' should have only 417 // one predecessor. Note that Exit could be an exit block for multiple 418 // nested loops, causing both of the edges to now be critical and need to 419 // be split. 420 SmallVector<BasicBlock *, 4> ExitPreds(pred_begin(Exit), pred_end(Exit)); 421 bool SplitLatchEdge = false; 422 for (BasicBlock *ExitPred : ExitPreds) { 423 // We only need to split loop exit edges. 424 Loop *PredLoop = LI->getLoopFor(ExitPred); 425 if (!PredLoop || PredLoop->contains(Exit)) 426 continue; 427 if (isa<IndirectBrInst>(ExitPred->getTerminator())) 428 continue; 429 SplitLatchEdge |= L->getLoopLatch() == ExitPred; 430 BasicBlock *ExitSplit = SplitCriticalEdge( 431 ExitPred, Exit, 432 CriticalEdgeSplittingOptions(DT, LI).setPreserveLCSSA()); 433 ExitSplit->moveBefore(Exit); 434 } 435 assert(SplitLatchEdge && 436 "Despite splitting all preds, failed to split latch exit?"); 437 } else { 438 // We can fold the conditional branch in the preheader, this makes things 439 // simpler. The first step is to remove the extra edge to the Exit block. 440 Exit->removePredecessor(OrigPreheader, true /*preserve LCSSA*/); 441 BranchInst *NewBI = BranchInst::Create(NewHeader, PHBI); 442 NewBI->setDebugLoc(PHBI->getDebugLoc()); 443 PHBI->eraseFromParent(); 444 445 // With our CFG finalized, update DomTree if it is available. 446 if (DT) DT->deleteEdge(OrigPreheader, Exit); 447 } 448 449 assert(L->getLoopPreheader() && "Invalid loop preheader after loop rotation"); 450 assert(L->getLoopLatch() && "Invalid loop latch after loop rotation"); 451 452 // Now that the CFG and DomTree are in a consistent state again, try to merge 453 // the OrigHeader block into OrigLatch. This will succeed if they are 454 // connected by an unconditional branch. This is just a cleanup so the 455 // emitted code isn't too gross in this common case. 456 MergeBlockIntoPredecessor(OrigHeader, DT, LI); 457 458 DEBUG(dbgs() << "LoopRotation: into "; L->dump()); 459 460 ++NumRotated; 461 return true; 462 } 463 464 /// Determine whether the instructions in this range may be safely and cheaply 465 /// speculated. This is not an important enough situation to develop complex 466 /// heuristics. We handle a single arithmetic instruction along with any type 467 /// conversions. 468 static bool shouldSpeculateInstrs(BasicBlock::iterator Begin, 469 BasicBlock::iterator End, Loop *L) { 470 bool seenIncrement = false; 471 bool MultiExitLoop = false; 472 473 if (!L->getExitingBlock()) 474 MultiExitLoop = true; 475 476 for (BasicBlock::iterator I = Begin; I != End; ++I) { 477 478 if (!isSafeToSpeculativelyExecute(&*I)) 479 return false; 480 481 if (isa<DbgInfoIntrinsic>(I)) 482 continue; 483 484 switch (I->getOpcode()) { 485 default: 486 return false; 487 case Instruction::GetElementPtr: 488 // GEPs are cheap if all indices are constant. 489 if (!cast<GEPOperator>(I)->hasAllConstantIndices()) 490 return false; 491 // fall-thru to increment case 492 LLVM_FALLTHROUGH; 493 case Instruction::Add: 494 case Instruction::Sub: 495 case Instruction::And: 496 case Instruction::Or: 497 case Instruction::Xor: 498 case Instruction::Shl: 499 case Instruction::LShr: 500 case Instruction::AShr: { 501 Value *IVOpnd = 502 !isa<Constant>(I->getOperand(0)) 503 ? I->getOperand(0) 504 : !isa<Constant>(I->getOperand(1)) ? I->getOperand(1) : nullptr; 505 if (!IVOpnd) 506 return false; 507 508 // If increment operand is used outside of the loop, this speculation 509 // could cause extra live range interference. 510 if (MultiExitLoop) { 511 for (User *UseI : IVOpnd->users()) { 512 auto *UserInst = cast<Instruction>(UseI); 513 if (!L->contains(UserInst)) 514 return false; 515 } 516 } 517 518 if (seenIncrement) 519 return false; 520 seenIncrement = true; 521 break; 522 } 523 case Instruction::Trunc: 524 case Instruction::ZExt: 525 case Instruction::SExt: 526 // ignore type conversions 527 break; 528 } 529 } 530 return true; 531 } 532 533 /// Fold the loop tail into the loop exit by speculating the loop tail 534 /// instructions. Typically, this is a single post-increment. In the case of a 535 /// simple 2-block loop, hoisting the increment can be much better than 536 /// duplicating the entire loop header. In the case of loops with early exits, 537 /// rotation will not work anyway, but simplifyLoopLatch will put the loop in 538 /// canonical form so downstream passes can handle it. 539 /// 540 /// I don't believe this invalidates SCEV. 541 bool LoopRotate::simplifyLoopLatch(Loop *L) { 542 BasicBlock *Latch = L->getLoopLatch(); 543 if (!Latch || Latch->hasAddressTaken()) 544 return false; 545 546 BranchInst *Jmp = dyn_cast<BranchInst>(Latch->getTerminator()); 547 if (!Jmp || !Jmp->isUnconditional()) 548 return false; 549 550 BasicBlock *LastExit = Latch->getSinglePredecessor(); 551 if (!LastExit || !L->isLoopExiting(LastExit)) 552 return false; 553 554 BranchInst *BI = dyn_cast<BranchInst>(LastExit->getTerminator()); 555 if (!BI) 556 return false; 557 558 if (!shouldSpeculateInstrs(Latch->begin(), Jmp->getIterator(), L)) 559 return false; 560 561 DEBUG(dbgs() << "Folding loop latch " << Latch->getName() << " into " 562 << LastExit->getName() << "\n"); 563 564 // Hoist the instructions from Latch into LastExit. 565 LastExit->getInstList().splice(BI->getIterator(), Latch->getInstList(), 566 Latch->begin(), Jmp->getIterator()); 567 568 unsigned FallThruPath = BI->getSuccessor(0) == Latch ? 0 : 1; 569 BasicBlock *Header = Jmp->getSuccessor(0); 570 assert(Header == L->getHeader() && "expected a backward branch"); 571 572 // Remove Latch from the CFG so that LastExit becomes the new Latch. 573 BI->setSuccessor(FallThruPath, Header); 574 Latch->replaceSuccessorsPhiUsesWith(LastExit); 575 Jmp->eraseFromParent(); 576 577 // Nuke the Latch block. 578 assert(Latch->empty() && "unable to evacuate Latch"); 579 LI->removeBlock(Latch); 580 if (DT) 581 DT->eraseNode(Latch); 582 Latch->eraseFromParent(); 583 return true; 584 } 585 586 /// Rotate \c L, and return true if any modification was made. 587 bool LoopRotate::processLoop(Loop *L) { 588 // Save the loop metadata. 589 MDNode *LoopMD = L->getLoopID(); 590 591 // Simplify the loop latch before attempting to rotate the header 592 // upward. Rotation may not be needed if the loop tail can be folded into the 593 // loop exit. 594 bool SimplifiedLatch = simplifyLoopLatch(L); 595 596 bool MadeChange = rotateLoop(L, SimplifiedLatch); 597 assert((!MadeChange || L->isLoopExiting(L->getLoopLatch())) && 598 "Loop latch should be exiting after loop-rotate."); 599 600 // Restore the loop metadata. 601 // NB! We presume LoopRotation DOESN'T ADD its own metadata. 602 if ((MadeChange || SimplifiedLatch) && LoopMD) 603 L->setLoopID(LoopMD); 604 605 return MadeChange || SimplifiedLatch; 606 } 607 608 LoopRotatePass::LoopRotatePass(bool EnableHeaderDuplication) 609 : EnableHeaderDuplication(EnableHeaderDuplication) {} 610 611 PreservedAnalyses LoopRotatePass::run(Loop &L, LoopAnalysisManager &AM, 612 LoopStandardAnalysisResults &AR, 613 LPMUpdater &) { 614 int Threshold = EnableHeaderDuplication ? DefaultRotationThreshold : 0; 615 const DataLayout &DL = L.getHeader()->getModule()->getDataLayout(); 616 const SimplifyQuery SQ = getBestSimplifyQuery(AR, DL); 617 LoopRotate LR(Threshold, &AR.LI, &AR.TTI, &AR.AC, &AR.DT, &AR.SE, 618 SQ); 619 620 bool Changed = LR.processLoop(&L); 621 if (!Changed) 622 return PreservedAnalyses::all(); 623 624 return getLoopPassPreservedAnalyses(); 625 } 626 627 namespace { 628 629 class LoopRotateLegacyPass : public LoopPass { 630 unsigned MaxHeaderSize; 631 632 public: 633 static char ID; // Pass ID, replacement for typeid 634 LoopRotateLegacyPass(int SpecifiedMaxHeaderSize = -1) : LoopPass(ID) { 635 initializeLoopRotateLegacyPassPass(*PassRegistry::getPassRegistry()); 636 if (SpecifiedMaxHeaderSize == -1) 637 MaxHeaderSize = DefaultRotationThreshold; 638 else 639 MaxHeaderSize = unsigned(SpecifiedMaxHeaderSize); 640 } 641 642 // LCSSA form makes instruction renaming easier. 643 void getAnalysisUsage(AnalysisUsage &AU) const override { 644 AU.addRequired<AssumptionCacheTracker>(); 645 AU.addRequired<TargetTransformInfoWrapperPass>(); 646 getLoopAnalysisUsage(AU); 647 } 648 649 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 650 if (skipLoop(L)) 651 return false; 652 Function &F = *L->getHeader()->getParent(); 653 654 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 655 const auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 656 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 657 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 658 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; 659 auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); 660 auto *SE = SEWP ? &SEWP->getSE() : nullptr; 661 const SimplifyQuery SQ = getBestSimplifyQuery(*this, F); 662 LoopRotate LR(MaxHeaderSize, LI, TTI, AC, DT, SE, SQ); 663 return LR.processLoop(L); 664 } 665 }; 666 } 667 668 char LoopRotateLegacyPass::ID = 0; 669 INITIALIZE_PASS_BEGIN(LoopRotateLegacyPass, "loop-rotate", "Rotate Loops", 670 false, false) 671 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 672 INITIALIZE_PASS_DEPENDENCY(LoopPass) 673 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 674 INITIALIZE_PASS_END(LoopRotateLegacyPass, "loop-rotate", "Rotate Loops", false, 675 false) 676 677 Pass *llvm::createLoopRotatePass(int MaxHeaderSize) { 678 return new LoopRotateLegacyPass(MaxHeaderSize); 679 } 680