1 //===- LoopRotation.cpp - Loop Rotation Pass ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements Loop Rotation Pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar.h" 15 #include "llvm/ADT/Statistic.h" 16 #include "llvm/Analysis/AliasAnalysis.h" 17 #include "llvm/Analysis/BasicAliasAnalysis.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/CodeMetrics.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/Analysis/GlobalsModRef.h" 22 #include "llvm/Analysis/LoopPass.h" 23 #include "llvm/Analysis/ScalarEvolution.h" 24 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 25 #include "llvm/Analysis/TargetTransformInfo.h" 26 #include "llvm/Analysis/ValueTracking.h" 27 #include "llvm/IR/CFG.h" 28 #include "llvm/IR/Dominators.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/IntrinsicInst.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 36 #include "llvm/Transforms/Utils/Local.h" 37 #include "llvm/Transforms/Utils/SSAUpdater.h" 38 #include "llvm/Transforms/Utils/ValueMapper.h" 39 using namespace llvm; 40 41 #define DEBUG_TYPE "loop-rotate" 42 43 static cl::opt<unsigned> 44 DefaultRotationThreshold("rotation-max-header-size", cl::init(16), cl::Hidden, 45 cl::desc("The default maximum header size for automatic loop rotation")); 46 47 STATISTIC(NumRotated, "Number of loops rotated"); 48 49 /// RewriteUsesOfClonedInstructions - We just cloned the instructions from the 50 /// old header into the preheader. If there were uses of the values produced by 51 /// these instruction that were outside of the loop, we have to insert PHI nodes 52 /// to merge the two values. Do this now. 53 static void RewriteUsesOfClonedInstructions(BasicBlock *OrigHeader, 54 BasicBlock *OrigPreheader, 55 ValueToValueMapTy &ValueMap) { 56 // Remove PHI node entries that are no longer live. 57 BasicBlock::iterator I, E = OrigHeader->end(); 58 for (I = OrigHeader->begin(); PHINode *PN = dyn_cast<PHINode>(I); ++I) 59 PN->removeIncomingValue(PN->getBasicBlockIndex(OrigPreheader)); 60 61 // Now fix up users of the instructions in OrigHeader, inserting PHI nodes 62 // as necessary. 63 SSAUpdater SSA; 64 for (I = OrigHeader->begin(); I != E; ++I) { 65 Value *OrigHeaderVal = &*I; 66 67 // If there are no uses of the value (e.g. because it returns void), there 68 // is nothing to rewrite. 69 if (OrigHeaderVal->use_empty()) 70 continue; 71 72 Value *OrigPreHeaderVal = ValueMap[OrigHeaderVal]; 73 74 // The value now exits in two versions: the initial value in the preheader 75 // and the loop "next" value in the original header. 76 SSA.Initialize(OrigHeaderVal->getType(), OrigHeaderVal->getName()); 77 SSA.AddAvailableValue(OrigHeader, OrigHeaderVal); 78 SSA.AddAvailableValue(OrigPreheader, OrigPreHeaderVal); 79 80 // Visit each use of the OrigHeader instruction. 81 for (Value::use_iterator UI = OrigHeaderVal->use_begin(), 82 UE = OrigHeaderVal->use_end(); UI != UE; ) { 83 // Grab the use before incrementing the iterator. 84 Use &U = *UI; 85 86 // Increment the iterator before removing the use from the list. 87 ++UI; 88 89 // SSAUpdater can't handle a non-PHI use in the same block as an 90 // earlier def. We can easily handle those cases manually. 91 Instruction *UserInst = cast<Instruction>(U.getUser()); 92 if (!isa<PHINode>(UserInst)) { 93 BasicBlock *UserBB = UserInst->getParent(); 94 95 // The original users in the OrigHeader are already using the 96 // original definitions. 97 if (UserBB == OrigHeader) 98 continue; 99 100 // Users in the OrigPreHeader need to use the value to which the 101 // original definitions are mapped. 102 if (UserBB == OrigPreheader) { 103 U = OrigPreHeaderVal; 104 continue; 105 } 106 } 107 108 // Anything else can be handled by SSAUpdater. 109 SSA.RewriteUse(U); 110 } 111 } 112 } 113 114 /// Rotate loop LP. Return true if the loop is rotated. 115 /// 116 /// \param SimplifiedLatch is true if the latch was just folded into the final 117 /// loop exit. In this case we may want to rotate even though the new latch is 118 /// now an exiting branch. This rotation would have happened had the latch not 119 /// been simplified. However, if SimplifiedLatch is false, then we avoid 120 /// rotating loops in which the latch exits to avoid excessive or endless 121 /// rotation. LoopRotate should be repeatable and converge to a canonical 122 /// form. This property is satisfied because simplifying the loop latch can only 123 /// happen once across multiple invocations of the LoopRotate pass. 124 static bool rotateLoop(Loop *L, unsigned MaxHeaderSize, LoopInfo *LI, 125 const TargetTransformInfo *TTI, AssumptionCache *AC, 126 DominatorTree *DT, ScalarEvolution *SE, 127 bool SimplifiedLatch) { 128 // If the loop has only one block then there is not much to rotate. 129 if (L->getBlocks().size() == 1) 130 return false; 131 132 BasicBlock *OrigHeader = L->getHeader(); 133 BasicBlock *OrigLatch = L->getLoopLatch(); 134 135 BranchInst *BI = dyn_cast<BranchInst>(OrigHeader->getTerminator()); 136 if (!BI || BI->isUnconditional()) 137 return false; 138 139 // If the loop header is not one of the loop exiting blocks then 140 // either this loop is already rotated or it is not 141 // suitable for loop rotation transformations. 142 if (!L->isLoopExiting(OrigHeader)) 143 return false; 144 145 // If the loop latch already contains a branch that leaves the loop then the 146 // loop is already rotated. 147 if (!OrigLatch) 148 return false; 149 150 // Rotate if either the loop latch does *not* exit the loop, or if the loop 151 // latch was just simplified. 152 if (L->isLoopExiting(OrigLatch) && !SimplifiedLatch) 153 return false; 154 155 // Check size of original header and reject loop if it is very big or we can't 156 // duplicate blocks inside it. 157 { 158 SmallPtrSet<const Value *, 32> EphValues; 159 CodeMetrics::collectEphemeralValues(L, AC, EphValues); 160 161 CodeMetrics Metrics; 162 Metrics.analyzeBasicBlock(OrigHeader, *TTI, EphValues); 163 if (Metrics.notDuplicatable) { 164 DEBUG(dbgs() << "LoopRotation: NOT rotating - contains non-duplicatable" 165 << " instructions: "; L->dump()); 166 return false; 167 } 168 if (Metrics.convergent) { 169 DEBUG(dbgs() << "LoopRotation: NOT rotating - contains convergent " 170 "instructions: "; L->dump()); 171 return false; 172 } 173 if (Metrics.NumInsts > MaxHeaderSize) 174 return false; 175 } 176 177 // Now, this loop is suitable for rotation. 178 BasicBlock *OrigPreheader = L->getLoopPreheader(); 179 180 // If the loop could not be converted to canonical form, it must have an 181 // indirectbr in it, just give up. 182 if (!OrigPreheader) 183 return false; 184 185 // Anything ScalarEvolution may know about this loop or the PHI nodes 186 // in its header will soon be invalidated. 187 if (SE) 188 SE->forgetLoop(L); 189 190 DEBUG(dbgs() << "LoopRotation: rotating "; L->dump()); 191 192 // Find new Loop header. NewHeader is a Header's one and only successor 193 // that is inside loop. Header's other successor is outside the 194 // loop. Otherwise loop is not suitable for rotation. 195 BasicBlock *Exit = BI->getSuccessor(0); 196 BasicBlock *NewHeader = BI->getSuccessor(1); 197 if (L->contains(Exit)) 198 std::swap(Exit, NewHeader); 199 assert(NewHeader && "Unable to determine new loop header"); 200 assert(L->contains(NewHeader) && !L->contains(Exit) && 201 "Unable to determine loop header and exit blocks"); 202 203 // This code assumes that the new header has exactly one predecessor. 204 // Remove any single-entry PHI nodes in it. 205 assert(NewHeader->getSinglePredecessor() && 206 "New header doesn't have one pred!"); 207 FoldSingleEntryPHINodes(NewHeader); 208 209 // Begin by walking OrigHeader and populating ValueMap with an entry for 210 // each Instruction. 211 BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end(); 212 ValueToValueMapTy ValueMap; 213 214 // For PHI nodes, the value available in OldPreHeader is just the 215 // incoming value from OldPreHeader. 216 for (; PHINode *PN = dyn_cast<PHINode>(I); ++I) 217 ValueMap[PN] = PN->getIncomingValueForBlock(OrigPreheader); 218 219 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 220 221 // For the rest of the instructions, either hoist to the OrigPreheader if 222 // possible or create a clone in the OldPreHeader if not. 223 TerminatorInst *LoopEntryBranch = OrigPreheader->getTerminator(); 224 while (I != E) { 225 Instruction *Inst = &*I++; 226 227 // If the instruction's operands are invariant and it doesn't read or write 228 // memory, then it is safe to hoist. Doing this doesn't change the order of 229 // execution in the preheader, but does prevent the instruction from 230 // executing in each iteration of the loop. This means it is safe to hoist 231 // something that might trap, but isn't safe to hoist something that reads 232 // memory (without proving that the loop doesn't write). 233 if (L->hasLoopInvariantOperands(Inst) && 234 !Inst->mayReadFromMemory() && !Inst->mayWriteToMemory() && 235 !isa<TerminatorInst>(Inst) && !isa<DbgInfoIntrinsic>(Inst) && 236 !isa<AllocaInst>(Inst)) { 237 Inst->moveBefore(LoopEntryBranch); 238 continue; 239 } 240 241 // Otherwise, create a duplicate of the instruction. 242 Instruction *C = Inst->clone(); 243 244 // Eagerly remap the operands of the instruction. 245 RemapInstruction(C, ValueMap, 246 RF_NoModuleLevelChanges|RF_IgnoreMissingEntries); 247 248 // With the operands remapped, see if the instruction constant folds or is 249 // otherwise simplifyable. This commonly occurs because the entry from PHI 250 // nodes allows icmps and other instructions to fold. 251 // FIXME: Provide TLI, DT, AC to SimplifyInstruction. 252 Value *V = SimplifyInstruction(C, DL); 253 if (V && LI->replacementPreservesLCSSAForm(C, V)) { 254 // If so, then delete the temporary instruction and stick the folded value 255 // in the map. 256 delete C; 257 ValueMap[Inst] = V; 258 } else { 259 // Otherwise, stick the new instruction into the new block! 260 C->setName(Inst->getName()); 261 C->insertBefore(LoopEntryBranch); 262 ValueMap[Inst] = C; 263 } 264 } 265 266 // Along with all the other instructions, we just cloned OrigHeader's 267 // terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's 268 // successors by duplicating their incoming values for OrigHeader. 269 TerminatorInst *TI = OrigHeader->getTerminator(); 270 for (BasicBlock *SuccBB : TI->successors()) 271 for (BasicBlock::iterator BI = SuccBB->begin(); 272 PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 273 PN->addIncoming(PN->getIncomingValueForBlock(OrigHeader), OrigPreheader); 274 275 // Now that OrigPreHeader has a clone of OrigHeader's terminator, remove 276 // OrigPreHeader's old terminator (the original branch into the loop), and 277 // remove the corresponding incoming values from the PHI nodes in OrigHeader. 278 LoopEntryBranch->eraseFromParent(); 279 280 // If there were any uses of instructions in the duplicated block outside the 281 // loop, update them, inserting PHI nodes as required 282 RewriteUsesOfClonedInstructions(OrigHeader, OrigPreheader, ValueMap); 283 284 // NewHeader is now the header of the loop. 285 L->moveToHeader(NewHeader); 286 assert(L->getHeader() == NewHeader && "Latch block is our new header"); 287 288 289 // At this point, we've finished our major CFG changes. As part of cloning 290 // the loop into the preheader we've simplified instructions and the 291 // duplicated conditional branch may now be branching on a constant. If it is 292 // branching on a constant and if that constant means that we enter the loop, 293 // then we fold away the cond branch to an uncond branch. This simplifies the 294 // loop in cases important for nested loops, and it also means we don't have 295 // to split as many edges. 296 BranchInst *PHBI = cast<BranchInst>(OrigPreheader->getTerminator()); 297 assert(PHBI->isConditional() && "Should be clone of BI condbr!"); 298 if (!isa<ConstantInt>(PHBI->getCondition()) || 299 PHBI->getSuccessor(cast<ConstantInt>(PHBI->getCondition())->isZero()) 300 != NewHeader) { 301 // The conditional branch can't be folded, handle the general case. 302 // Update DominatorTree to reflect the CFG change we just made. Then split 303 // edges as necessary to preserve LoopSimplify form. 304 if (DT) { 305 // Everything that was dominated by the old loop header is now dominated 306 // by the original loop preheader. Conceptually the header was merged 307 // into the preheader, even though we reuse the actual block as a new 308 // loop latch. 309 DomTreeNode *OrigHeaderNode = DT->getNode(OrigHeader); 310 SmallVector<DomTreeNode *, 8> HeaderChildren(OrigHeaderNode->begin(), 311 OrigHeaderNode->end()); 312 DomTreeNode *OrigPreheaderNode = DT->getNode(OrigPreheader); 313 for (unsigned I = 0, E = HeaderChildren.size(); I != E; ++I) 314 DT->changeImmediateDominator(HeaderChildren[I], OrigPreheaderNode); 315 316 assert(DT->getNode(Exit)->getIDom() == OrigPreheaderNode); 317 assert(DT->getNode(NewHeader)->getIDom() == OrigPreheaderNode); 318 319 // Update OrigHeader to be dominated by the new header block. 320 DT->changeImmediateDominator(OrigHeader, OrigLatch); 321 } 322 323 // Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and 324 // thus is not a preheader anymore. 325 // Split the edge to form a real preheader. 326 BasicBlock *NewPH = SplitCriticalEdge( 327 OrigPreheader, NewHeader, 328 CriticalEdgeSplittingOptions(DT, LI).setPreserveLCSSA()); 329 NewPH->setName(NewHeader->getName() + ".lr.ph"); 330 331 // Preserve canonical loop form, which means that 'Exit' should have only 332 // one predecessor. Note that Exit could be an exit block for multiple 333 // nested loops, causing both of the edges to now be critical and need to 334 // be split. 335 SmallVector<BasicBlock *, 4> ExitPreds(pred_begin(Exit), pred_end(Exit)); 336 bool SplitLatchEdge = false; 337 for (SmallVectorImpl<BasicBlock *>::iterator PI = ExitPreds.begin(), 338 PE = ExitPreds.end(); 339 PI != PE; ++PI) { 340 // We only need to split loop exit edges. 341 Loop *PredLoop = LI->getLoopFor(*PI); 342 if (!PredLoop || PredLoop->contains(Exit)) 343 continue; 344 if (isa<IndirectBrInst>((*PI)->getTerminator())) 345 continue; 346 SplitLatchEdge |= L->getLoopLatch() == *PI; 347 BasicBlock *ExitSplit = SplitCriticalEdge( 348 *PI, Exit, CriticalEdgeSplittingOptions(DT, LI).setPreserveLCSSA()); 349 ExitSplit->moveBefore(Exit); 350 } 351 assert(SplitLatchEdge && 352 "Despite splitting all preds, failed to split latch exit?"); 353 } else { 354 // We can fold the conditional branch in the preheader, this makes things 355 // simpler. The first step is to remove the extra edge to the Exit block. 356 Exit->removePredecessor(OrigPreheader, true /*preserve LCSSA*/); 357 BranchInst *NewBI = BranchInst::Create(NewHeader, PHBI); 358 NewBI->setDebugLoc(PHBI->getDebugLoc()); 359 PHBI->eraseFromParent(); 360 361 // With our CFG finalized, update DomTree if it is available. 362 if (DT) { 363 // Update OrigHeader to be dominated by the new header block. 364 DT->changeImmediateDominator(NewHeader, OrigPreheader); 365 DT->changeImmediateDominator(OrigHeader, OrigLatch); 366 367 // Brute force incremental dominator tree update. Call 368 // findNearestCommonDominator on all CFG predecessors of each child of the 369 // original header. 370 DomTreeNode *OrigHeaderNode = DT->getNode(OrigHeader); 371 SmallVector<DomTreeNode *, 8> HeaderChildren(OrigHeaderNode->begin(), 372 OrigHeaderNode->end()); 373 bool Changed; 374 do { 375 Changed = false; 376 for (unsigned I = 0, E = HeaderChildren.size(); I != E; ++I) { 377 DomTreeNode *Node = HeaderChildren[I]; 378 BasicBlock *BB = Node->getBlock(); 379 380 pred_iterator PI = pred_begin(BB); 381 BasicBlock *NearestDom = *PI; 382 for (pred_iterator PE = pred_end(BB); PI != PE; ++PI) 383 NearestDom = DT->findNearestCommonDominator(NearestDom, *PI); 384 385 // Remember if this changes the DomTree. 386 if (Node->getIDom()->getBlock() != NearestDom) { 387 DT->changeImmediateDominator(BB, NearestDom); 388 Changed = true; 389 } 390 } 391 392 // If the dominator changed, this may have an effect on other 393 // predecessors, continue until we reach a fixpoint. 394 } while (Changed); 395 } 396 } 397 398 assert(L->getLoopPreheader() && "Invalid loop preheader after loop rotation"); 399 assert(L->getLoopLatch() && "Invalid loop latch after loop rotation"); 400 401 // Now that the CFG and DomTree are in a consistent state again, try to merge 402 // the OrigHeader block into OrigLatch. This will succeed if they are 403 // connected by an unconditional branch. This is just a cleanup so the 404 // emitted code isn't too gross in this common case. 405 MergeBlockIntoPredecessor(OrigHeader, DT, LI); 406 407 DEBUG(dbgs() << "LoopRotation: into "; L->dump()); 408 409 ++NumRotated; 410 return true; 411 } 412 413 /// Determine whether the instructions in this range may be safely and cheaply 414 /// speculated. This is not an important enough situation to develop complex 415 /// heuristics. We handle a single arithmetic instruction along with any type 416 /// conversions. 417 static bool shouldSpeculateInstrs(BasicBlock::iterator Begin, 418 BasicBlock::iterator End, Loop *L) { 419 bool seenIncrement = false; 420 bool MultiExitLoop = false; 421 422 if (!L->getExitingBlock()) 423 MultiExitLoop = true; 424 425 for (BasicBlock::iterator I = Begin; I != End; ++I) { 426 427 if (!isSafeToSpeculativelyExecute(&*I)) 428 return false; 429 430 if (isa<DbgInfoIntrinsic>(I)) 431 continue; 432 433 switch (I->getOpcode()) { 434 default: 435 return false; 436 case Instruction::GetElementPtr: 437 // GEPs are cheap if all indices are constant. 438 if (!cast<GEPOperator>(I)->hasAllConstantIndices()) 439 return false; 440 // fall-thru to increment case 441 case Instruction::Add: 442 case Instruction::Sub: 443 case Instruction::And: 444 case Instruction::Or: 445 case Instruction::Xor: 446 case Instruction::Shl: 447 case Instruction::LShr: 448 case Instruction::AShr: { 449 Value *IVOpnd = !isa<Constant>(I->getOperand(0)) 450 ? I->getOperand(0) 451 : !isa<Constant>(I->getOperand(1)) 452 ? I->getOperand(1) 453 : nullptr; 454 if (!IVOpnd) 455 return false; 456 457 // If increment operand is used outside of the loop, this speculation 458 // could cause extra live range interference. 459 if (MultiExitLoop) { 460 for (User *UseI : IVOpnd->users()) { 461 auto *UserInst = cast<Instruction>(UseI); 462 if (!L->contains(UserInst)) 463 return false; 464 } 465 } 466 467 if (seenIncrement) 468 return false; 469 seenIncrement = true; 470 break; 471 } 472 case Instruction::Trunc: 473 case Instruction::ZExt: 474 case Instruction::SExt: 475 // ignore type conversions 476 break; 477 } 478 } 479 return true; 480 } 481 482 /// Fold the loop tail into the loop exit by speculating the loop tail 483 /// instructions. Typically, this is a single post-increment. In the case of a 484 /// simple 2-block loop, hoisting the increment can be much better than 485 /// duplicating the entire loop header. In the case of loops with early exits, 486 /// rotation will not work anyway, but simplifyLoopLatch will put the loop in 487 /// canonical form so downstream passes can handle it. 488 /// 489 /// I don't believe this invalidates SCEV. 490 static bool simplifyLoopLatch(Loop *L, LoopInfo *LI, DominatorTree *DT) { 491 BasicBlock *Latch = L->getLoopLatch(); 492 if (!Latch || Latch->hasAddressTaken()) 493 return false; 494 495 BranchInst *Jmp = dyn_cast<BranchInst>(Latch->getTerminator()); 496 if (!Jmp || !Jmp->isUnconditional()) 497 return false; 498 499 BasicBlock *LastExit = Latch->getSinglePredecessor(); 500 if (!LastExit || !L->isLoopExiting(LastExit)) 501 return false; 502 503 BranchInst *BI = dyn_cast<BranchInst>(LastExit->getTerminator()); 504 if (!BI) 505 return false; 506 507 if (!shouldSpeculateInstrs(Latch->begin(), Jmp->getIterator(), L)) 508 return false; 509 510 DEBUG(dbgs() << "Folding loop latch " << Latch->getName() << " into " 511 << LastExit->getName() << "\n"); 512 513 // Hoist the instructions from Latch into LastExit. 514 LastExit->getInstList().splice(BI->getIterator(), Latch->getInstList(), 515 Latch->begin(), Jmp->getIterator()); 516 517 unsigned FallThruPath = BI->getSuccessor(0) == Latch ? 0 : 1; 518 BasicBlock *Header = Jmp->getSuccessor(0); 519 assert(Header == L->getHeader() && "expected a backward branch"); 520 521 // Remove Latch from the CFG so that LastExit becomes the new Latch. 522 BI->setSuccessor(FallThruPath, Header); 523 Latch->replaceSuccessorsPhiUsesWith(LastExit); 524 Jmp->eraseFromParent(); 525 526 // Nuke the Latch block. 527 assert(Latch->empty() && "unable to evacuate Latch"); 528 LI->removeBlock(Latch); 529 if (DT) 530 DT->eraseNode(Latch); 531 Latch->eraseFromParent(); 532 return true; 533 } 534 535 /// Rotate \c L as many times as possible. Return true if the loop is rotated 536 /// at least once. 537 static bool iterativelyRotateLoop(Loop *L, unsigned MaxHeaderSize, LoopInfo *LI, 538 const TargetTransformInfo *TTI, 539 AssumptionCache *AC, DominatorTree *DT, 540 ScalarEvolution *SE) { 541 // Save the loop metadata. 542 MDNode *LoopMD = L->getLoopID(); 543 544 // Simplify the loop latch before attempting to rotate the header 545 // upward. Rotation may not be needed if the loop tail can be folded into the 546 // loop exit. 547 bool SimplifiedLatch = simplifyLoopLatch(L, LI, DT); 548 549 // One loop can be rotated multiple times. 550 bool MadeChange = false; 551 while (rotateLoop(L, MaxHeaderSize, LI, TTI, AC, DT, SE, SimplifiedLatch)) { 552 MadeChange = true; 553 SimplifiedLatch = false; 554 } 555 556 // Restore the loop metadata. 557 // NB! We presume LoopRotation DOESN'T ADD its own metadata. 558 if ((MadeChange || SimplifiedLatch) && LoopMD) 559 L->setLoopID(LoopMD); 560 561 return MadeChange; 562 } 563 564 namespace { 565 566 class LoopRotate : public LoopPass { 567 unsigned MaxHeaderSize; 568 569 public: 570 static char ID; // Pass ID, replacement for typeid 571 LoopRotate(int SpecifiedMaxHeaderSize = -1) : LoopPass(ID) { 572 initializeLoopRotatePass(*PassRegistry::getPassRegistry()); 573 if (SpecifiedMaxHeaderSize == -1) 574 MaxHeaderSize = DefaultRotationThreshold; 575 else 576 MaxHeaderSize = unsigned(SpecifiedMaxHeaderSize); 577 } 578 579 // LCSSA form makes instruction renaming easier. 580 void getAnalysisUsage(AnalysisUsage &AU) const override { 581 AU.addPreserved<AAResultsWrapperPass>(); 582 AU.addRequired<AssumptionCacheTracker>(); 583 AU.addPreserved<DominatorTreeWrapperPass>(); 584 AU.addRequired<LoopInfoWrapperPass>(); 585 AU.addPreserved<LoopInfoWrapperPass>(); 586 AU.addRequiredID(LoopSimplifyID); 587 AU.addPreservedID(LoopSimplifyID); 588 AU.addRequiredID(LCSSAID); 589 AU.addPreservedID(LCSSAID); 590 AU.addPreserved<ScalarEvolutionWrapperPass>(); 591 AU.addPreserved<SCEVAAWrapperPass>(); 592 AU.addRequired<TargetTransformInfoWrapperPass>(); 593 AU.addPreserved<BasicAAWrapperPass>(); 594 AU.addPreserved<GlobalsAAWrapperPass>(); 595 } 596 597 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 598 if (skipOptnoneFunction(L)) 599 return false; 600 Function &F = *L->getHeader()->getParent(); 601 602 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 603 const auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 604 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 605 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 606 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; 607 auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); 608 auto *SE = SEWP ? &SEWP->getSE() : nullptr; 609 610 return iterativelyRotateLoop(L, MaxHeaderSize, LI, TTI, AC, DT, SE); 611 } 612 }; 613 } 614 615 char LoopRotate::ID = 0; 616 INITIALIZE_PASS_BEGIN(LoopRotate, "loop-rotate", "Rotate Loops", false, false) 617 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 618 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 619 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 620 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 621 INITIALIZE_PASS_DEPENDENCY(LCSSA) 622 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) 623 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 624 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 625 INITIALIZE_PASS_END(LoopRotate, "loop-rotate", "Rotate Loops", false, false) 626 627 Pass *llvm::createLoopRotatePass(int MaxHeaderSize) { 628 return new LoopRotate(MaxHeaderSize); 629 } 630