1 //===- LoopRotation.cpp - Loop Rotation Pass ------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements Loop Rotation Pass.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar.h"
15 #include "llvm/ADT/Statistic.h"
16 #include "llvm/Analysis/AliasAnalysis.h"
17 #include "llvm/Analysis/BasicAliasAnalysis.h"
18 #include "llvm/Analysis/AssumptionCache.h"
19 #include "llvm/Analysis/CodeMetrics.h"
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/Analysis/GlobalsModRef.h"
22 #include "llvm/Analysis/LoopPass.h"
23 #include "llvm/Analysis/ScalarEvolution.h"
24 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
25 #include "llvm/Analysis/TargetTransformInfo.h"
26 #include "llvm/Analysis/ValueTracking.h"
27 #include "llvm/IR/CFG.h"
28 #include "llvm/IR/Dominators.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/IntrinsicInst.h"
31 #include "llvm/IR/Module.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
36 #include "llvm/Transforms/Utils/Local.h"
37 #include "llvm/Transforms/Utils/SSAUpdater.h"
38 #include "llvm/Transforms/Utils/ValueMapper.h"
39 using namespace llvm;
40 
41 #define DEBUG_TYPE "loop-rotate"
42 
43 static cl::opt<unsigned>
44 DefaultRotationThreshold("rotation-max-header-size", cl::init(16), cl::Hidden,
45        cl::desc("The default maximum header size for automatic loop rotation"));
46 
47 STATISTIC(NumRotated, "Number of loops rotated");
48 
49 /// RewriteUsesOfClonedInstructions - We just cloned the instructions from the
50 /// old header into the preheader.  If there were uses of the values produced by
51 /// these instruction that were outside of the loop, we have to insert PHI nodes
52 /// to merge the two values.  Do this now.
53 static void RewriteUsesOfClonedInstructions(BasicBlock *OrigHeader,
54                                             BasicBlock *OrigPreheader,
55                                             ValueToValueMapTy &ValueMap) {
56   // Remove PHI node entries that are no longer live.
57   BasicBlock::iterator I, E = OrigHeader->end();
58   for (I = OrigHeader->begin(); PHINode *PN = dyn_cast<PHINode>(I); ++I)
59     PN->removeIncomingValue(PN->getBasicBlockIndex(OrigPreheader));
60 
61   // Now fix up users of the instructions in OrigHeader, inserting PHI nodes
62   // as necessary.
63   SSAUpdater SSA;
64   for (I = OrigHeader->begin(); I != E; ++I) {
65     Value *OrigHeaderVal = &*I;
66 
67     // If there are no uses of the value (e.g. because it returns void), there
68     // is nothing to rewrite.
69     if (OrigHeaderVal->use_empty())
70       continue;
71 
72     Value *OrigPreHeaderVal = ValueMap[OrigHeaderVal];
73 
74     // The value now exits in two versions: the initial value in the preheader
75     // and the loop "next" value in the original header.
76     SSA.Initialize(OrigHeaderVal->getType(), OrigHeaderVal->getName());
77     SSA.AddAvailableValue(OrigHeader, OrigHeaderVal);
78     SSA.AddAvailableValue(OrigPreheader, OrigPreHeaderVal);
79 
80     // Visit each use of the OrigHeader instruction.
81     for (Value::use_iterator UI = OrigHeaderVal->use_begin(),
82          UE = OrigHeaderVal->use_end(); UI != UE; ) {
83       // Grab the use before incrementing the iterator.
84       Use &U = *UI;
85 
86       // Increment the iterator before removing the use from the list.
87       ++UI;
88 
89       // SSAUpdater can't handle a non-PHI use in the same block as an
90       // earlier def. We can easily handle those cases manually.
91       Instruction *UserInst = cast<Instruction>(U.getUser());
92       if (!isa<PHINode>(UserInst)) {
93         BasicBlock *UserBB = UserInst->getParent();
94 
95         // The original users in the OrigHeader are already using the
96         // original definitions.
97         if (UserBB == OrigHeader)
98           continue;
99 
100         // Users in the OrigPreHeader need to use the value to which the
101         // original definitions are mapped.
102         if (UserBB == OrigPreheader) {
103           U = OrigPreHeaderVal;
104           continue;
105         }
106       }
107 
108       // Anything else can be handled by SSAUpdater.
109       SSA.RewriteUse(U);
110     }
111   }
112 }
113 
114 /// Rotate loop LP. Return true if the loop is rotated.
115 ///
116 /// \param SimplifiedLatch is true if the latch was just folded into the final
117 /// loop exit. In this case we may want to rotate even though the new latch is
118 /// now an exiting branch. This rotation would have happened had the latch not
119 /// been simplified. However, if SimplifiedLatch is false, then we avoid
120 /// rotating loops in which the latch exits to avoid excessive or endless
121 /// rotation. LoopRotate should be repeatable and converge to a canonical
122 /// form. This property is satisfied because simplifying the loop latch can only
123 /// happen once across multiple invocations of the LoopRotate pass.
124 static bool rotateLoop(Loop *L, unsigned MaxHeaderSize, LoopInfo *LI,
125                        const TargetTransformInfo *TTI, AssumptionCache *AC,
126                        DominatorTree *DT, ScalarEvolution *SE,
127                        bool SimplifiedLatch) {
128   // If the loop has only one block then there is not much to rotate.
129   if (L->getBlocks().size() == 1)
130     return false;
131 
132   BasicBlock *OrigHeader = L->getHeader();
133   BasicBlock *OrigLatch = L->getLoopLatch();
134 
135   BranchInst *BI = dyn_cast<BranchInst>(OrigHeader->getTerminator());
136   if (!BI || BI->isUnconditional())
137     return false;
138 
139   // If the loop header is not one of the loop exiting blocks then
140   // either this loop is already rotated or it is not
141   // suitable for loop rotation transformations.
142   if (!L->isLoopExiting(OrigHeader))
143     return false;
144 
145   // If the loop latch already contains a branch that leaves the loop then the
146   // loop is already rotated.
147   if (!OrigLatch)
148     return false;
149 
150   // Rotate if either the loop latch does *not* exit the loop, or if the loop
151   // latch was just simplified.
152   if (L->isLoopExiting(OrigLatch) && !SimplifiedLatch)
153     return false;
154 
155   // Check size of original header and reject loop if it is very big or we can't
156   // duplicate blocks inside it.
157   {
158     SmallPtrSet<const Value *, 32> EphValues;
159     CodeMetrics::collectEphemeralValues(L, AC, EphValues);
160 
161     CodeMetrics Metrics;
162     Metrics.analyzeBasicBlock(OrigHeader, *TTI, EphValues);
163     if (Metrics.notDuplicatable) {
164       DEBUG(dbgs() << "LoopRotation: NOT rotating - contains non-duplicatable"
165             << " instructions: "; L->dump());
166       return false;
167     }
168     if (Metrics.convergent) {
169       DEBUG(dbgs() << "LoopRotation: NOT rotating - contains convergent "
170                       "instructions: "; L->dump());
171       return false;
172     }
173     if (Metrics.NumInsts > MaxHeaderSize)
174       return false;
175   }
176 
177   // Now, this loop is suitable for rotation.
178   BasicBlock *OrigPreheader = L->getLoopPreheader();
179 
180   // If the loop could not be converted to canonical form, it must have an
181   // indirectbr in it, just give up.
182   if (!OrigPreheader)
183     return false;
184 
185   // Anything ScalarEvolution may know about this loop or the PHI nodes
186   // in its header will soon be invalidated.
187   if (SE)
188     SE->forgetLoop(L);
189 
190   DEBUG(dbgs() << "LoopRotation: rotating "; L->dump());
191 
192   // Find new Loop header. NewHeader is a Header's one and only successor
193   // that is inside loop.  Header's other successor is outside the
194   // loop.  Otherwise loop is not suitable for rotation.
195   BasicBlock *Exit = BI->getSuccessor(0);
196   BasicBlock *NewHeader = BI->getSuccessor(1);
197   if (L->contains(Exit))
198     std::swap(Exit, NewHeader);
199   assert(NewHeader && "Unable to determine new loop header");
200   assert(L->contains(NewHeader) && !L->contains(Exit) &&
201          "Unable to determine loop header and exit blocks");
202 
203   // This code assumes that the new header has exactly one predecessor.
204   // Remove any single-entry PHI nodes in it.
205   assert(NewHeader->getSinglePredecessor() &&
206          "New header doesn't have one pred!");
207   FoldSingleEntryPHINodes(NewHeader);
208 
209   // Begin by walking OrigHeader and populating ValueMap with an entry for
210   // each Instruction.
211   BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end();
212   ValueToValueMapTy ValueMap;
213 
214   // For PHI nodes, the value available in OldPreHeader is just the
215   // incoming value from OldPreHeader.
216   for (; PHINode *PN = dyn_cast<PHINode>(I); ++I)
217     ValueMap[PN] = PN->getIncomingValueForBlock(OrigPreheader);
218 
219   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
220 
221   // For the rest of the instructions, either hoist to the OrigPreheader if
222   // possible or create a clone in the OldPreHeader if not.
223   TerminatorInst *LoopEntryBranch = OrigPreheader->getTerminator();
224   while (I != E) {
225     Instruction *Inst = &*I++;
226 
227     // If the instruction's operands are invariant and it doesn't read or write
228     // memory, then it is safe to hoist.  Doing this doesn't change the order of
229     // execution in the preheader, but does prevent the instruction from
230     // executing in each iteration of the loop.  This means it is safe to hoist
231     // something that might trap, but isn't safe to hoist something that reads
232     // memory (without proving that the loop doesn't write).
233     if (L->hasLoopInvariantOperands(Inst) &&
234         !Inst->mayReadFromMemory() && !Inst->mayWriteToMemory() &&
235         !isa<TerminatorInst>(Inst) && !isa<DbgInfoIntrinsic>(Inst) &&
236         !isa<AllocaInst>(Inst)) {
237       Inst->moveBefore(LoopEntryBranch);
238       continue;
239     }
240 
241     // Otherwise, create a duplicate of the instruction.
242     Instruction *C = Inst->clone();
243 
244     // Eagerly remap the operands of the instruction.
245     RemapInstruction(C, ValueMap,
246                      RF_NoModuleLevelChanges|RF_IgnoreMissingEntries);
247 
248     // With the operands remapped, see if the instruction constant folds or is
249     // otherwise simplifyable.  This commonly occurs because the entry from PHI
250     // nodes allows icmps and other instructions to fold.
251     // FIXME: Provide TLI, DT, AC to SimplifyInstruction.
252     Value *V = SimplifyInstruction(C, DL);
253     if (V && LI->replacementPreservesLCSSAForm(C, V)) {
254       // If so, then delete the temporary instruction and stick the folded value
255       // in the map.
256       delete C;
257       ValueMap[Inst] = V;
258     } else {
259       // Otherwise, stick the new instruction into the new block!
260       C->setName(Inst->getName());
261       C->insertBefore(LoopEntryBranch);
262       ValueMap[Inst] = C;
263     }
264   }
265 
266   // Along with all the other instructions, we just cloned OrigHeader's
267   // terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's
268   // successors by duplicating their incoming values for OrigHeader.
269   TerminatorInst *TI = OrigHeader->getTerminator();
270   for (BasicBlock *SuccBB : TI->successors())
271     for (BasicBlock::iterator BI = SuccBB->begin();
272          PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
273       PN->addIncoming(PN->getIncomingValueForBlock(OrigHeader), OrigPreheader);
274 
275   // Now that OrigPreHeader has a clone of OrigHeader's terminator, remove
276   // OrigPreHeader's old terminator (the original branch into the loop), and
277   // remove the corresponding incoming values from the PHI nodes in OrigHeader.
278   LoopEntryBranch->eraseFromParent();
279 
280   // If there were any uses of instructions in the duplicated block outside the
281   // loop, update them, inserting PHI nodes as required
282   RewriteUsesOfClonedInstructions(OrigHeader, OrigPreheader, ValueMap);
283 
284   // NewHeader is now the header of the loop.
285   L->moveToHeader(NewHeader);
286   assert(L->getHeader() == NewHeader && "Latch block is our new header");
287 
288 
289   // At this point, we've finished our major CFG changes.  As part of cloning
290   // the loop into the preheader we've simplified instructions and the
291   // duplicated conditional branch may now be branching on a constant.  If it is
292   // branching on a constant and if that constant means that we enter the loop,
293   // then we fold away the cond branch to an uncond branch.  This simplifies the
294   // loop in cases important for nested loops, and it also means we don't have
295   // to split as many edges.
296   BranchInst *PHBI = cast<BranchInst>(OrigPreheader->getTerminator());
297   assert(PHBI->isConditional() && "Should be clone of BI condbr!");
298   if (!isa<ConstantInt>(PHBI->getCondition()) ||
299       PHBI->getSuccessor(cast<ConstantInt>(PHBI->getCondition())->isZero())
300           != NewHeader) {
301     // The conditional branch can't be folded, handle the general case.
302     // Update DominatorTree to reflect the CFG change we just made.  Then split
303     // edges as necessary to preserve LoopSimplify form.
304     if (DT) {
305       // Everything that was dominated by the old loop header is now dominated
306       // by the original loop preheader. Conceptually the header was merged
307       // into the preheader, even though we reuse the actual block as a new
308       // loop latch.
309       DomTreeNode *OrigHeaderNode = DT->getNode(OrigHeader);
310       SmallVector<DomTreeNode *, 8> HeaderChildren(OrigHeaderNode->begin(),
311                                                    OrigHeaderNode->end());
312       DomTreeNode *OrigPreheaderNode = DT->getNode(OrigPreheader);
313       for (unsigned I = 0, E = HeaderChildren.size(); I != E; ++I)
314         DT->changeImmediateDominator(HeaderChildren[I], OrigPreheaderNode);
315 
316       assert(DT->getNode(Exit)->getIDom() == OrigPreheaderNode);
317       assert(DT->getNode(NewHeader)->getIDom() == OrigPreheaderNode);
318 
319       // Update OrigHeader to be dominated by the new header block.
320       DT->changeImmediateDominator(OrigHeader, OrigLatch);
321     }
322 
323     // Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and
324     // thus is not a preheader anymore.
325     // Split the edge to form a real preheader.
326     BasicBlock *NewPH = SplitCriticalEdge(
327         OrigPreheader, NewHeader,
328         CriticalEdgeSplittingOptions(DT, LI).setPreserveLCSSA());
329     NewPH->setName(NewHeader->getName() + ".lr.ph");
330 
331     // Preserve canonical loop form, which means that 'Exit' should have only
332     // one predecessor. Note that Exit could be an exit block for multiple
333     // nested loops, causing both of the edges to now be critical and need to
334     // be split.
335     SmallVector<BasicBlock *, 4> ExitPreds(pred_begin(Exit), pred_end(Exit));
336     bool SplitLatchEdge = false;
337     for (SmallVectorImpl<BasicBlock *>::iterator PI = ExitPreds.begin(),
338                                                  PE = ExitPreds.end();
339          PI != PE; ++PI) {
340       // We only need to split loop exit edges.
341       Loop *PredLoop = LI->getLoopFor(*PI);
342       if (!PredLoop || PredLoop->contains(Exit))
343         continue;
344       if (isa<IndirectBrInst>((*PI)->getTerminator()))
345         continue;
346       SplitLatchEdge |= L->getLoopLatch() == *PI;
347       BasicBlock *ExitSplit = SplitCriticalEdge(
348           *PI, Exit, CriticalEdgeSplittingOptions(DT, LI).setPreserveLCSSA());
349       ExitSplit->moveBefore(Exit);
350     }
351     assert(SplitLatchEdge &&
352            "Despite splitting all preds, failed to split latch exit?");
353   } else {
354     // We can fold the conditional branch in the preheader, this makes things
355     // simpler. The first step is to remove the extra edge to the Exit block.
356     Exit->removePredecessor(OrigPreheader, true /*preserve LCSSA*/);
357     BranchInst *NewBI = BranchInst::Create(NewHeader, PHBI);
358     NewBI->setDebugLoc(PHBI->getDebugLoc());
359     PHBI->eraseFromParent();
360 
361     // With our CFG finalized, update DomTree if it is available.
362     if (DT) {
363       // Update OrigHeader to be dominated by the new header block.
364       DT->changeImmediateDominator(NewHeader, OrigPreheader);
365       DT->changeImmediateDominator(OrigHeader, OrigLatch);
366 
367       // Brute force incremental dominator tree update. Call
368       // findNearestCommonDominator on all CFG predecessors of each child of the
369       // original header.
370       DomTreeNode *OrigHeaderNode = DT->getNode(OrigHeader);
371       SmallVector<DomTreeNode *, 8> HeaderChildren(OrigHeaderNode->begin(),
372                                                    OrigHeaderNode->end());
373       bool Changed;
374       do {
375         Changed = false;
376         for (unsigned I = 0, E = HeaderChildren.size(); I != E; ++I) {
377           DomTreeNode *Node = HeaderChildren[I];
378           BasicBlock *BB = Node->getBlock();
379 
380           pred_iterator PI = pred_begin(BB);
381           BasicBlock *NearestDom = *PI;
382           for (pred_iterator PE = pred_end(BB); PI != PE; ++PI)
383             NearestDom = DT->findNearestCommonDominator(NearestDom, *PI);
384 
385           // Remember if this changes the DomTree.
386           if (Node->getIDom()->getBlock() != NearestDom) {
387             DT->changeImmediateDominator(BB, NearestDom);
388             Changed = true;
389           }
390         }
391 
392       // If the dominator changed, this may have an effect on other
393       // predecessors, continue until we reach a fixpoint.
394       } while (Changed);
395     }
396   }
397 
398   assert(L->getLoopPreheader() && "Invalid loop preheader after loop rotation");
399   assert(L->getLoopLatch() && "Invalid loop latch after loop rotation");
400 
401   // Now that the CFG and DomTree are in a consistent state again, try to merge
402   // the OrigHeader block into OrigLatch.  This will succeed if they are
403   // connected by an unconditional branch.  This is just a cleanup so the
404   // emitted code isn't too gross in this common case.
405   MergeBlockIntoPredecessor(OrigHeader, DT, LI);
406 
407   DEBUG(dbgs() << "LoopRotation: into "; L->dump());
408 
409   ++NumRotated;
410   return true;
411 }
412 
413 /// Determine whether the instructions in this range may be safely and cheaply
414 /// speculated. This is not an important enough situation to develop complex
415 /// heuristics. We handle a single arithmetic instruction along with any type
416 /// conversions.
417 static bool shouldSpeculateInstrs(BasicBlock::iterator Begin,
418                                   BasicBlock::iterator End, Loop *L) {
419   bool seenIncrement = false;
420   bool MultiExitLoop = false;
421 
422   if (!L->getExitingBlock())
423     MultiExitLoop = true;
424 
425   for (BasicBlock::iterator I = Begin; I != End; ++I) {
426 
427     if (!isSafeToSpeculativelyExecute(&*I))
428       return false;
429 
430     if (isa<DbgInfoIntrinsic>(I))
431       continue;
432 
433     switch (I->getOpcode()) {
434     default:
435       return false;
436     case Instruction::GetElementPtr:
437       // GEPs are cheap if all indices are constant.
438       if (!cast<GEPOperator>(I)->hasAllConstantIndices())
439         return false;
440       // fall-thru to increment case
441     case Instruction::Add:
442     case Instruction::Sub:
443     case Instruction::And:
444     case Instruction::Or:
445     case Instruction::Xor:
446     case Instruction::Shl:
447     case Instruction::LShr:
448     case Instruction::AShr: {
449       Value *IVOpnd = !isa<Constant>(I->getOperand(0))
450                           ? I->getOperand(0)
451                           : !isa<Constant>(I->getOperand(1))
452                                 ? I->getOperand(1)
453                                 : nullptr;
454       if (!IVOpnd)
455         return false;
456 
457       // If increment operand is used outside of the loop, this speculation
458       // could cause extra live range interference.
459       if (MultiExitLoop) {
460         for (User *UseI : IVOpnd->users()) {
461           auto *UserInst = cast<Instruction>(UseI);
462           if (!L->contains(UserInst))
463             return false;
464         }
465       }
466 
467       if (seenIncrement)
468         return false;
469       seenIncrement = true;
470       break;
471     }
472     case Instruction::Trunc:
473     case Instruction::ZExt:
474     case Instruction::SExt:
475       // ignore type conversions
476       break;
477     }
478   }
479   return true;
480 }
481 
482 /// Fold the loop tail into the loop exit by speculating the loop tail
483 /// instructions. Typically, this is a single post-increment. In the case of a
484 /// simple 2-block loop, hoisting the increment can be much better than
485 /// duplicating the entire loop header. In the case of loops with early exits,
486 /// rotation will not work anyway, but simplifyLoopLatch will put the loop in
487 /// canonical form so downstream passes can handle it.
488 ///
489 /// I don't believe this invalidates SCEV.
490 static bool simplifyLoopLatch(Loop *L, LoopInfo *LI, DominatorTree *DT) {
491   BasicBlock *Latch = L->getLoopLatch();
492   if (!Latch || Latch->hasAddressTaken())
493     return false;
494 
495   BranchInst *Jmp = dyn_cast<BranchInst>(Latch->getTerminator());
496   if (!Jmp || !Jmp->isUnconditional())
497     return false;
498 
499   BasicBlock *LastExit = Latch->getSinglePredecessor();
500   if (!LastExit || !L->isLoopExiting(LastExit))
501     return false;
502 
503   BranchInst *BI = dyn_cast<BranchInst>(LastExit->getTerminator());
504   if (!BI)
505     return false;
506 
507   if (!shouldSpeculateInstrs(Latch->begin(), Jmp->getIterator(), L))
508     return false;
509 
510   DEBUG(dbgs() << "Folding loop latch " << Latch->getName() << " into "
511         << LastExit->getName() << "\n");
512 
513   // Hoist the instructions from Latch into LastExit.
514   LastExit->getInstList().splice(BI->getIterator(), Latch->getInstList(),
515                                  Latch->begin(), Jmp->getIterator());
516 
517   unsigned FallThruPath = BI->getSuccessor(0) == Latch ? 0 : 1;
518   BasicBlock *Header = Jmp->getSuccessor(0);
519   assert(Header == L->getHeader() && "expected a backward branch");
520 
521   // Remove Latch from the CFG so that LastExit becomes the new Latch.
522   BI->setSuccessor(FallThruPath, Header);
523   Latch->replaceSuccessorsPhiUsesWith(LastExit);
524   Jmp->eraseFromParent();
525 
526   // Nuke the Latch block.
527   assert(Latch->empty() && "unable to evacuate Latch");
528   LI->removeBlock(Latch);
529   if (DT)
530     DT->eraseNode(Latch);
531   Latch->eraseFromParent();
532   return true;
533 }
534 
535 /// Rotate \c L as many times as possible. Return true if the loop is rotated
536 /// at least once.
537 static bool iterativelyRotateLoop(Loop *L, unsigned MaxHeaderSize, LoopInfo *LI,
538                                   const TargetTransformInfo *TTI,
539                                   AssumptionCache *AC, DominatorTree *DT,
540                                   ScalarEvolution *SE) {
541   // Save the loop metadata.
542   MDNode *LoopMD = L->getLoopID();
543 
544   // Simplify the loop latch before attempting to rotate the header
545   // upward. Rotation may not be needed if the loop tail can be folded into the
546   // loop exit.
547   bool SimplifiedLatch = simplifyLoopLatch(L, LI, DT);
548 
549   // One loop can be rotated multiple times.
550   bool MadeChange = false;
551   while (rotateLoop(L, MaxHeaderSize, LI, TTI, AC, DT, SE, SimplifiedLatch)) {
552     MadeChange = true;
553     SimplifiedLatch = false;
554   }
555 
556   // Restore the loop metadata.
557   // NB! We presume LoopRotation DOESN'T ADD its own metadata.
558   if ((MadeChange || SimplifiedLatch) && LoopMD)
559     L->setLoopID(LoopMD);
560 
561   return MadeChange;
562 }
563 
564 namespace {
565 
566 class LoopRotate : public LoopPass {
567   unsigned MaxHeaderSize;
568 
569 public:
570   static char ID; // Pass ID, replacement for typeid
571   LoopRotate(int SpecifiedMaxHeaderSize = -1) : LoopPass(ID) {
572     initializeLoopRotatePass(*PassRegistry::getPassRegistry());
573     if (SpecifiedMaxHeaderSize == -1)
574       MaxHeaderSize = DefaultRotationThreshold;
575     else
576       MaxHeaderSize = unsigned(SpecifiedMaxHeaderSize);
577   }
578 
579   // LCSSA form makes instruction renaming easier.
580   void getAnalysisUsage(AnalysisUsage &AU) const override {
581     AU.addPreserved<AAResultsWrapperPass>();
582     AU.addRequired<AssumptionCacheTracker>();
583     AU.addPreserved<DominatorTreeWrapperPass>();
584     AU.addRequired<LoopInfoWrapperPass>();
585     AU.addPreserved<LoopInfoWrapperPass>();
586     AU.addRequiredID(LoopSimplifyID);
587     AU.addPreservedID(LoopSimplifyID);
588     AU.addRequiredID(LCSSAID);
589     AU.addPreservedID(LCSSAID);
590     AU.addPreserved<ScalarEvolutionWrapperPass>();
591     AU.addPreserved<SCEVAAWrapperPass>();
592     AU.addRequired<TargetTransformInfoWrapperPass>();
593     AU.addPreserved<BasicAAWrapperPass>();
594     AU.addPreserved<GlobalsAAWrapperPass>();
595   }
596 
597   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
598     if (skipOptnoneFunction(L))
599       return false;
600     Function &F = *L->getHeader()->getParent();
601 
602     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
603     const auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
604     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
605     auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
606     auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
607     auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
608     auto *SE = SEWP ? &SEWP->getSE() : nullptr;
609 
610     return iterativelyRotateLoop(L, MaxHeaderSize, LI, TTI, AC, DT, SE);
611   }
612 };
613 }
614 
615 char LoopRotate::ID = 0;
616 INITIALIZE_PASS_BEGIN(LoopRotate, "loop-rotate", "Rotate Loops", false, false)
617 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
618 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
619 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
620 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
621 INITIALIZE_PASS_DEPENDENCY(LCSSA)
622 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
623 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
624 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
625 INITIALIZE_PASS_END(LoopRotate, "loop-rotate", "Rotate Loops", false, false)
626 
627 Pass *llvm::createLoopRotatePass(int MaxHeaderSize) {
628   return new LoopRotate(MaxHeaderSize);
629 }
630