1 //===- LoopRotation.cpp - Loop Rotation Pass ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements Loop Rotation Pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "loop-rotate" 15 #include "llvm/Transforms/Scalar.h" 16 #include "llvm/Function.h" 17 #include "llvm/Analysis/CodeMetrics.h" 18 #include "llvm/Analysis/LoopPass.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/ScalarEvolution.h" 21 #include "llvm/Transforms/Utils/Local.h" 22 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 23 #include "llvm/Transforms/Utils/SSAUpdater.h" 24 #include "llvm/Transforms/Utils/ValueMapper.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/ADT/Statistic.h" 27 using namespace llvm; 28 29 #define MAX_HEADER_SIZE 16 30 31 STATISTIC(NumRotated, "Number of loops rotated"); 32 namespace { 33 34 class LoopRotate : public LoopPass { 35 public: 36 static char ID; // Pass ID, replacement for typeid 37 LoopRotate() : LoopPass(ID) { 38 initializeLoopRotatePass(*PassRegistry::getPassRegistry()); 39 } 40 41 // LCSSA form makes instruction renaming easier. 42 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 43 AU.addPreserved<DominatorTree>(); 44 AU.addRequired<LoopInfo>(); 45 AU.addPreserved<LoopInfo>(); 46 AU.addRequiredID(LoopSimplifyID); 47 AU.addPreservedID(LoopSimplifyID); 48 AU.addRequiredID(LCSSAID); 49 AU.addPreservedID(LCSSAID); 50 AU.addPreserved<ScalarEvolution>(); 51 } 52 53 bool runOnLoop(Loop *L, LPPassManager &LPM); 54 bool rotateLoop(Loop *L); 55 56 private: 57 LoopInfo *LI; 58 }; 59 } 60 61 char LoopRotate::ID = 0; 62 INITIALIZE_PASS_BEGIN(LoopRotate, "loop-rotate", "Rotate Loops", false, false) 63 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 64 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 65 INITIALIZE_PASS_DEPENDENCY(LCSSA) 66 INITIALIZE_PASS_END(LoopRotate, "loop-rotate", "Rotate Loops", false, false) 67 68 Pass *llvm::createLoopRotatePass() { return new LoopRotate(); } 69 70 /// Rotate Loop L as many times as possible. Return true if 71 /// the loop is rotated at least once. 72 bool LoopRotate::runOnLoop(Loop *L, LPPassManager &LPM) { 73 LI = &getAnalysis<LoopInfo>(); 74 75 // One loop can be rotated multiple times. 76 bool MadeChange = false; 77 while (rotateLoop(L)) 78 MadeChange = true; 79 80 return MadeChange; 81 } 82 83 /// RewriteUsesOfClonedInstructions - We just cloned the instructions from the 84 /// old header into the preheader. If there were uses of the values produced by 85 /// these instruction that were outside of the loop, we have to insert PHI nodes 86 /// to merge the two values. Do this now. 87 static void RewriteUsesOfClonedInstructions(BasicBlock *OrigHeader, 88 BasicBlock *OrigPreheader, 89 ValueToValueMapTy &ValueMap) { 90 // Remove PHI node entries that are no longer live. 91 BasicBlock::iterator I, E = OrigHeader->end(); 92 for (I = OrigHeader->begin(); PHINode *PN = dyn_cast<PHINode>(I); ++I) 93 PN->removeIncomingValue(PN->getBasicBlockIndex(OrigPreheader)); 94 95 // Now fix up users of the instructions in OrigHeader, inserting PHI nodes 96 // as necessary. 97 SSAUpdater SSA; 98 for (I = OrigHeader->begin(); I != E; ++I) { 99 Value *OrigHeaderVal = I; 100 101 // If there are no uses of the value (e.g. because it returns void), there 102 // is nothing to rewrite. 103 if (OrigHeaderVal->use_empty()) 104 continue; 105 106 Value *OrigPreHeaderVal = ValueMap[OrigHeaderVal]; 107 108 // The value now exits in two versions: the initial value in the preheader 109 // and the loop "next" value in the original header. 110 SSA.Initialize(OrigHeaderVal->getType(), OrigHeaderVal->getName()); 111 SSA.AddAvailableValue(OrigHeader, OrigHeaderVal); 112 SSA.AddAvailableValue(OrigPreheader, OrigPreHeaderVal); 113 114 // Visit each use of the OrigHeader instruction. 115 for (Value::use_iterator UI = OrigHeaderVal->use_begin(), 116 UE = OrigHeaderVal->use_end(); UI != UE; ) { 117 // Grab the use before incrementing the iterator. 118 Use &U = UI.getUse(); 119 120 // Increment the iterator before removing the use from the list. 121 ++UI; 122 123 // SSAUpdater can't handle a non-PHI use in the same block as an 124 // earlier def. We can easily handle those cases manually. 125 Instruction *UserInst = cast<Instruction>(U.getUser()); 126 if (!isa<PHINode>(UserInst)) { 127 BasicBlock *UserBB = UserInst->getParent(); 128 129 // The original users in the OrigHeader are already using the 130 // original definitions. 131 if (UserBB == OrigHeader) 132 continue; 133 134 // Users in the OrigPreHeader need to use the value to which the 135 // original definitions are mapped. 136 if (UserBB == OrigPreheader) { 137 U = OrigPreHeaderVal; 138 continue; 139 } 140 } 141 142 // Anything else can be handled by SSAUpdater. 143 SSA.RewriteUse(U); 144 } 145 } 146 } 147 148 /// Rotate loop LP. Return true if the loop is rotated. 149 bool LoopRotate::rotateLoop(Loop *L) { 150 // If the loop has only one block then there is not much to rotate. 151 if (L->getBlocks().size() == 1) 152 return false; 153 154 BasicBlock *OrigHeader = L->getHeader(); 155 156 BranchInst *BI = dyn_cast<BranchInst>(OrigHeader->getTerminator()); 157 if (BI == 0 || BI->isUnconditional()) 158 return false; 159 160 // If the loop header is not one of the loop exiting blocks then 161 // either this loop is already rotated or it is not 162 // suitable for loop rotation transformations. 163 if (!L->isLoopExiting(OrigHeader)) 164 return false; 165 166 // Updating PHInodes in loops with multiple exits adds complexity. 167 // Keep it simple, and restrict loop rotation to loops with one exit only. 168 // In future, lift this restriction and support for multiple exits if 169 // required. 170 SmallVector<BasicBlock*, 8> ExitBlocks; 171 L->getExitBlocks(ExitBlocks); 172 if (ExitBlocks.size() > 1) 173 return false; 174 175 // Check size of original header and reject loop if it is very big. 176 { 177 CodeMetrics Metrics; 178 Metrics.analyzeBasicBlock(OrigHeader); 179 if (Metrics.NumInsts > MAX_HEADER_SIZE) 180 return false; 181 } 182 183 // Now, this loop is suitable for rotation. 184 BasicBlock *OrigPreheader = L->getLoopPreheader(); 185 BasicBlock *OrigLatch = L->getLoopLatch(); 186 assert(OrigPreheader && OrigLatch && "Loop not in canonical form?"); 187 188 // Anything ScalarEvolution may know about this loop or the PHI nodes 189 // in its header will soon be invalidated. 190 if (ScalarEvolution *SE = getAnalysisIfAvailable<ScalarEvolution>()) 191 SE->forgetLoop(L); 192 193 // Find new Loop header. NewHeader is a Header's one and only successor 194 // that is inside loop. Header's other successor is outside the 195 // loop. Otherwise loop is not suitable for rotation. 196 BasicBlock *Exit = BI->getSuccessor(0); 197 BasicBlock *NewHeader = BI->getSuccessor(1); 198 if (L->contains(Exit)) 199 std::swap(Exit, NewHeader); 200 assert(NewHeader && "Unable to determine new loop header"); 201 assert(L->contains(NewHeader) && !L->contains(Exit) && 202 "Unable to determine loop header and exit blocks"); 203 204 // This code assumes that the new header has exactly one predecessor. 205 // Remove any single-entry PHI nodes in it. 206 assert(NewHeader->getSinglePredecessor() && 207 "New header doesn't have one pred!"); 208 FoldSingleEntryPHINodes(NewHeader); 209 210 // Begin by walking OrigHeader and populating ValueMap with an entry for 211 // each Instruction. 212 BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end(); 213 ValueToValueMapTy ValueMap; 214 215 // For PHI nodes, the value available in OldPreHeader is just the 216 // incoming value from OldPreHeader. 217 for (; PHINode *PN = dyn_cast<PHINode>(I); ++I) 218 ValueMap[PN] = PN->getIncomingValue(PN->getBasicBlockIndex(OrigPreheader)); 219 220 // For the rest of the instructions, either hoist to the OrigPreheader if 221 // possible or create a clone in the OldPreHeader if not. 222 TerminatorInst *LoopEntryBranch = OrigPreheader->getTerminator(); 223 while (I != E) { 224 Instruction *Inst = I++; 225 226 // If the instruction's operands are invariant and it doesn't read or write 227 // memory, then it is safe to hoist. Doing this doesn't change the order of 228 // execution in the preheader, but does prevent the instruction from 229 // executing in each iteration of the loop. This means it is safe to hoist 230 // something that might trap, but isn't safe to hoist something that reads 231 // memory (without proving that the loop doesn't write). 232 if (L->hasLoopInvariantOperands(Inst) && 233 !Inst->mayReadFromMemory() && !Inst->mayWriteToMemory() && 234 !isa<TerminatorInst>(Inst)) { 235 Inst->moveBefore(LoopEntryBranch); 236 continue; 237 } 238 239 // Otherwise, create a duplicate of the instruction. 240 Instruction *C = Inst->clone(); 241 242 // Eagerly remap the operands of the instruction. 243 RemapInstruction(C, ValueMap, 244 RF_NoModuleLevelChanges|RF_IgnoreMissingEntries); 245 246 // With the operands remapped, see if the instruction constant folds or is 247 // otherwise simplifyable. This commonly occurs because the entry from PHI 248 // nodes allows icmps and other instructions to fold. 249 Value *V = SimplifyInstruction(C); 250 if (V && LI->replacementPreservesLCSSAForm(C, V)) { 251 // If so, then delete the temporary instruction and stick the folded value 252 // in the map. 253 delete C; 254 ValueMap[Inst] = V; 255 } else { 256 // Otherwise, stick the new instruction into the new block! 257 C->setName(Inst->getName()); 258 C->insertBefore(LoopEntryBranch); 259 ValueMap[Inst] = C; 260 } 261 } 262 263 // Along with all the other instructions, we just cloned OrigHeader's 264 // terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's 265 // successors by duplicating their incoming values for OrigHeader. 266 TerminatorInst *TI = OrigHeader->getTerminator(); 267 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 268 for (BasicBlock::iterator BI = TI->getSuccessor(i)->begin(); 269 PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 270 PN->addIncoming(PN->getIncomingValueForBlock(OrigHeader), OrigPreheader); 271 272 // Now that OrigPreHeader has a clone of OrigHeader's terminator, remove 273 // OrigPreHeader's old terminator (the original branch into the loop), and 274 // remove the corresponding incoming values from the PHI nodes in OrigHeader. 275 LoopEntryBranch->eraseFromParent(); 276 277 // If there were any uses of instructions in the duplicated block outside the 278 // loop, update them, inserting PHI nodes as required 279 RewriteUsesOfClonedInstructions(OrigHeader, OrigPreheader, ValueMap); 280 281 // NewHeader is now the header of the loop. 282 L->moveToHeader(NewHeader); 283 assert(L->getHeader() == NewHeader && "Latch block is our new header"); 284 285 286 // At this point, we've finished our major CFG changes. As part of cloning 287 // the loop into the preheader we've simplified instructions and the 288 // duplicated conditional branch may now be branching on a constant. If it is 289 // branching on a constant and if that constant means that we enter the loop, 290 // then we fold away the cond branch to an uncond branch. This simplifies the 291 // loop in cases important for nested loops, and it also means we don't have 292 // to split as many edges. 293 BranchInst *PHBI = cast<BranchInst>(OrigPreheader->getTerminator()); 294 assert(PHBI->isConditional() && "Should be clone of BI condbr!"); 295 if (!isa<ConstantInt>(PHBI->getCondition()) || 296 PHBI->getSuccessor(cast<ConstantInt>(PHBI->getCondition())->isZero()) 297 != NewHeader) { 298 // The conditional branch can't be folded, handle the general case. 299 // Update DominatorTree to reflect the CFG change we just made. Then split 300 // edges as necessary to preserve LoopSimplify form. 301 if (DominatorTree *DT = getAnalysisIfAvailable<DominatorTree>()) { 302 // Since OrigPreheader now has the conditional branch to Exit block, it is 303 // the dominator of Exit. 304 DT->changeImmediateDominator(Exit, OrigPreheader); 305 DT->changeImmediateDominator(NewHeader, OrigPreheader); 306 307 // Update OrigHeader to be dominated by the new header block. 308 DT->changeImmediateDominator(OrigHeader, OrigLatch); 309 } 310 311 // Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and 312 // thus is not a preheader anymore. Split the edge to form a real preheader. 313 BasicBlock *NewPH = SplitCriticalEdge(OrigPreheader, NewHeader, this); 314 NewPH->setName(NewHeader->getName() + ".lr.ph"); 315 316 // Preserve canonical loop form, which means that 'Exit' should have only one 317 // predecessor. 318 BasicBlock *ExitSplit = SplitCriticalEdge(L->getLoopLatch(), Exit, this); 319 ExitSplit->moveBefore(Exit); 320 } else { 321 // We can fold the conditional branch in the preheader, this makes things 322 // simpler. The first step is to remove the extra edge to the Exit block. 323 Exit->removePredecessor(OrigPreheader, true /*preserve LCSSA*/); 324 BranchInst::Create(NewHeader, PHBI); 325 PHBI->eraseFromParent(); 326 327 // With our CFG finalized, update DomTree if it is available. 328 if (DominatorTree *DT = getAnalysisIfAvailable<DominatorTree>()) { 329 // Update OrigHeader to be dominated by the new header block. 330 DT->changeImmediateDominator(NewHeader, OrigPreheader); 331 DT->changeImmediateDominator(OrigHeader, OrigLatch); 332 } 333 } 334 335 assert(L->getLoopPreheader() && "Invalid loop preheader after loop rotation"); 336 assert(L->getLoopLatch() && "Invalid loop latch after loop rotation"); 337 338 // Now that the CFG and DomTree are in a consistent state again, try to merge 339 // the OrigHeader block into OrigLatch. This will succeed if they are 340 // connected by an unconditional branch. This is just a cleanup so the 341 // emitted code isn't too gross in this common case. 342 MergeBlockIntoPredecessor(OrigHeader, this); 343 344 ++NumRotated; 345 return true; 346 } 347 348