1 //===- LoopRotation.cpp - Loop Rotation Pass ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements Loop Rotation Pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "loop-rotate" 15 #include "llvm/Transforms/Scalar.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/Analysis/CodeMetrics.h" 18 #include "llvm/Analysis/InstructionSimplify.h" 19 #include "llvm/Analysis/LoopPass.h" 20 #include "llvm/Analysis/ScalarEvolution.h" 21 #include "llvm/Analysis/TargetTransformInfo.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/IR/CFG.h" 24 #include "llvm/IR/Dominators.h" 25 #include "llvm/IR/Function.h" 26 #include "llvm/IR/IntrinsicInst.h" 27 #include "llvm/Support/Debug.h" 28 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 29 #include "llvm/Transforms/Utils/Local.h" 30 #include "llvm/Transforms/Utils/SSAUpdater.h" 31 #include "llvm/Transforms/Utils/ValueMapper.h" 32 using namespace llvm; 33 34 #define MAX_HEADER_SIZE 16 35 36 STATISTIC(NumRotated, "Number of loops rotated"); 37 namespace { 38 39 class LoopRotate : public LoopPass { 40 public: 41 static char ID; // Pass ID, replacement for typeid 42 LoopRotate() : LoopPass(ID) { 43 initializeLoopRotatePass(*PassRegistry::getPassRegistry()); 44 } 45 46 // LCSSA form makes instruction renaming easier. 47 void getAnalysisUsage(AnalysisUsage &AU) const override { 48 AU.addPreserved<DominatorTreeWrapperPass>(); 49 AU.addRequired<LoopInfo>(); 50 AU.addPreserved<LoopInfo>(); 51 AU.addRequiredID(LoopSimplifyID); 52 AU.addPreservedID(LoopSimplifyID); 53 AU.addRequiredID(LCSSAID); 54 AU.addPreservedID(LCSSAID); 55 AU.addPreserved<ScalarEvolution>(); 56 AU.addRequired<TargetTransformInfo>(); 57 } 58 59 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 60 bool simplifyLoopLatch(Loop *L); 61 bool rotateLoop(Loop *L, bool SimplifiedLatch); 62 63 private: 64 LoopInfo *LI; 65 const TargetTransformInfo *TTI; 66 }; 67 } 68 69 char LoopRotate::ID = 0; 70 INITIALIZE_PASS_BEGIN(LoopRotate, "loop-rotate", "Rotate Loops", false, false) 71 INITIALIZE_AG_DEPENDENCY(TargetTransformInfo) 72 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 73 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 74 INITIALIZE_PASS_DEPENDENCY(LCSSA) 75 INITIALIZE_PASS_END(LoopRotate, "loop-rotate", "Rotate Loops", false, false) 76 77 Pass *llvm::createLoopRotatePass() { return new LoopRotate(); } 78 79 /// Rotate Loop L as many times as possible. Return true if 80 /// the loop is rotated at least once. 81 bool LoopRotate::runOnLoop(Loop *L, LPPassManager &LPM) { 82 if (skipOptnoneFunction(L)) 83 return false; 84 85 LI = &getAnalysis<LoopInfo>(); 86 TTI = &getAnalysis<TargetTransformInfo>(); 87 88 // Simplify the loop latch before attempting to rotate the header 89 // upward. Rotation may not be needed if the loop tail can be folded into the 90 // loop exit. 91 bool SimplifiedLatch = simplifyLoopLatch(L); 92 93 // One loop can be rotated multiple times. 94 bool MadeChange = false; 95 while (rotateLoop(L, SimplifiedLatch)) { 96 MadeChange = true; 97 SimplifiedLatch = false; 98 } 99 return MadeChange; 100 } 101 102 /// RewriteUsesOfClonedInstructions - We just cloned the instructions from the 103 /// old header into the preheader. If there were uses of the values produced by 104 /// these instruction that were outside of the loop, we have to insert PHI nodes 105 /// to merge the two values. Do this now. 106 static void RewriteUsesOfClonedInstructions(BasicBlock *OrigHeader, 107 BasicBlock *OrigPreheader, 108 ValueToValueMapTy &ValueMap) { 109 // Remove PHI node entries that are no longer live. 110 BasicBlock::iterator I, E = OrigHeader->end(); 111 for (I = OrigHeader->begin(); PHINode *PN = dyn_cast<PHINode>(I); ++I) 112 PN->removeIncomingValue(PN->getBasicBlockIndex(OrigPreheader)); 113 114 // Now fix up users of the instructions in OrigHeader, inserting PHI nodes 115 // as necessary. 116 SSAUpdater SSA; 117 for (I = OrigHeader->begin(); I != E; ++I) { 118 Value *OrigHeaderVal = I; 119 120 // If there are no uses of the value (e.g. because it returns void), there 121 // is nothing to rewrite. 122 if (OrigHeaderVal->use_empty()) 123 continue; 124 125 Value *OrigPreHeaderVal = ValueMap[OrigHeaderVal]; 126 127 // The value now exits in two versions: the initial value in the preheader 128 // and the loop "next" value in the original header. 129 SSA.Initialize(OrigHeaderVal->getType(), OrigHeaderVal->getName()); 130 SSA.AddAvailableValue(OrigHeader, OrigHeaderVal); 131 SSA.AddAvailableValue(OrigPreheader, OrigPreHeaderVal); 132 133 // Visit each use of the OrigHeader instruction. 134 for (Value::use_iterator UI = OrigHeaderVal->use_begin(), 135 UE = OrigHeaderVal->use_end(); UI != UE; ) { 136 // Grab the use before incrementing the iterator. 137 Use &U = *UI; 138 139 // Increment the iterator before removing the use from the list. 140 ++UI; 141 142 // SSAUpdater can't handle a non-PHI use in the same block as an 143 // earlier def. We can easily handle those cases manually. 144 Instruction *UserInst = cast<Instruction>(U.getUser()); 145 if (!isa<PHINode>(UserInst)) { 146 BasicBlock *UserBB = UserInst->getParent(); 147 148 // The original users in the OrigHeader are already using the 149 // original definitions. 150 if (UserBB == OrigHeader) 151 continue; 152 153 // Users in the OrigPreHeader need to use the value to which the 154 // original definitions are mapped. 155 if (UserBB == OrigPreheader) { 156 U = OrigPreHeaderVal; 157 continue; 158 } 159 } 160 161 // Anything else can be handled by SSAUpdater. 162 SSA.RewriteUse(U); 163 } 164 } 165 } 166 167 /// Determine whether the instructions in this range my be safely and cheaply 168 /// speculated. This is not an important enough situation to develop complex 169 /// heuristics. We handle a single arithmetic instruction along with any type 170 /// conversions. 171 static bool shouldSpeculateInstrs(BasicBlock::iterator Begin, 172 BasicBlock::iterator End) { 173 bool seenIncrement = false; 174 for (BasicBlock::iterator I = Begin; I != End; ++I) { 175 176 if (!isSafeToSpeculativelyExecute(I)) 177 return false; 178 179 if (isa<DbgInfoIntrinsic>(I)) 180 continue; 181 182 switch (I->getOpcode()) { 183 default: 184 return false; 185 case Instruction::GetElementPtr: 186 // GEPs are cheap if all indices are constant. 187 if (!cast<GEPOperator>(I)->hasAllConstantIndices()) 188 return false; 189 // fall-thru to increment case 190 case Instruction::Add: 191 case Instruction::Sub: 192 case Instruction::And: 193 case Instruction::Or: 194 case Instruction::Xor: 195 case Instruction::Shl: 196 case Instruction::LShr: 197 case Instruction::AShr: 198 if (seenIncrement) 199 return false; 200 seenIncrement = true; 201 break; 202 case Instruction::Trunc: 203 case Instruction::ZExt: 204 case Instruction::SExt: 205 // ignore type conversions 206 break; 207 } 208 } 209 return true; 210 } 211 212 /// Fold the loop tail into the loop exit by speculating the loop tail 213 /// instructions. Typically, this is a single post-increment. In the case of a 214 /// simple 2-block loop, hoisting the increment can be much better than 215 /// duplicating the entire loop header. In the cast of loops with early exits, 216 /// rotation will not work anyway, but simplifyLoopLatch will put the loop in 217 /// canonical form so downstream passes can handle it. 218 /// 219 /// I don't believe this invalidates SCEV. 220 bool LoopRotate::simplifyLoopLatch(Loop *L) { 221 BasicBlock *Latch = L->getLoopLatch(); 222 if (!Latch || Latch->hasAddressTaken()) 223 return false; 224 225 BranchInst *Jmp = dyn_cast<BranchInst>(Latch->getTerminator()); 226 if (!Jmp || !Jmp->isUnconditional()) 227 return false; 228 229 BasicBlock *LastExit = Latch->getSinglePredecessor(); 230 if (!LastExit || !L->isLoopExiting(LastExit)) 231 return false; 232 233 BranchInst *BI = dyn_cast<BranchInst>(LastExit->getTerminator()); 234 if (!BI) 235 return false; 236 237 if (!shouldSpeculateInstrs(Latch->begin(), Jmp)) 238 return false; 239 240 DEBUG(dbgs() << "Folding loop latch " << Latch->getName() << " into " 241 << LastExit->getName() << "\n"); 242 243 // Hoist the instructions from Latch into LastExit. 244 LastExit->getInstList().splice(BI, Latch->getInstList(), Latch->begin(), Jmp); 245 246 unsigned FallThruPath = BI->getSuccessor(0) == Latch ? 0 : 1; 247 BasicBlock *Header = Jmp->getSuccessor(0); 248 assert(Header == L->getHeader() && "expected a backward branch"); 249 250 // Remove Latch from the CFG so that LastExit becomes the new Latch. 251 BI->setSuccessor(FallThruPath, Header); 252 Latch->replaceSuccessorsPhiUsesWith(LastExit); 253 Jmp->eraseFromParent(); 254 255 // Nuke the Latch block. 256 assert(Latch->empty() && "unable to evacuate Latch"); 257 LI->removeBlock(Latch); 258 if (DominatorTreeWrapperPass *DTWP = 259 getAnalysisIfAvailable<DominatorTreeWrapperPass>()) 260 DTWP->getDomTree().eraseNode(Latch); 261 Latch->eraseFromParent(); 262 return true; 263 } 264 265 /// Rotate loop LP. Return true if the loop is rotated. 266 /// 267 /// \param SimplifiedLatch is true if the latch was just folded into the final 268 /// loop exit. In this case we may want to rotate even though the new latch is 269 /// now an exiting branch. This rotation would have happened had the latch not 270 /// been simplified. However, if SimplifiedLatch is false, then we avoid 271 /// rotating loops in which the latch exits to avoid excessive or endless 272 /// rotation. LoopRotate should be repeatable and converge to a canonical 273 /// form. This property is satisfied because simplifying the loop latch can only 274 /// happen once across multiple invocations of the LoopRotate pass. 275 bool LoopRotate::rotateLoop(Loop *L, bool SimplifiedLatch) { 276 // If the loop has only one block then there is not much to rotate. 277 if (L->getBlocks().size() == 1) 278 return false; 279 280 BasicBlock *OrigHeader = L->getHeader(); 281 BasicBlock *OrigLatch = L->getLoopLatch(); 282 283 BranchInst *BI = dyn_cast<BranchInst>(OrigHeader->getTerminator()); 284 if (BI == 0 || BI->isUnconditional()) 285 return false; 286 287 // If the loop header is not one of the loop exiting blocks then 288 // either this loop is already rotated or it is not 289 // suitable for loop rotation transformations. 290 if (!L->isLoopExiting(OrigHeader)) 291 return false; 292 293 // If the loop latch already contains a branch that leaves the loop then the 294 // loop is already rotated. 295 if (OrigLatch == 0) 296 return false; 297 298 // Rotate if either the loop latch does *not* exit the loop, or if the loop 299 // latch was just simplified. 300 if (L->isLoopExiting(OrigLatch) && !SimplifiedLatch) 301 return false; 302 303 // Check size of original header and reject loop if it is very big or we can't 304 // duplicate blocks inside it. 305 { 306 CodeMetrics Metrics; 307 Metrics.analyzeBasicBlock(OrigHeader, *TTI); 308 if (Metrics.notDuplicatable) { 309 DEBUG(dbgs() << "LoopRotation: NOT rotating - contains non-duplicatable" 310 << " instructions: "; L->dump()); 311 return false; 312 } 313 if (Metrics.NumInsts > MAX_HEADER_SIZE) 314 return false; 315 } 316 317 // Now, this loop is suitable for rotation. 318 BasicBlock *OrigPreheader = L->getLoopPreheader(); 319 320 // If the loop could not be converted to canonical form, it must have an 321 // indirectbr in it, just give up. 322 if (OrigPreheader == 0) 323 return false; 324 325 // Anything ScalarEvolution may know about this loop or the PHI nodes 326 // in its header will soon be invalidated. 327 if (ScalarEvolution *SE = getAnalysisIfAvailable<ScalarEvolution>()) 328 SE->forgetLoop(L); 329 330 DEBUG(dbgs() << "LoopRotation: rotating "; L->dump()); 331 332 // Find new Loop header. NewHeader is a Header's one and only successor 333 // that is inside loop. Header's other successor is outside the 334 // loop. Otherwise loop is not suitable for rotation. 335 BasicBlock *Exit = BI->getSuccessor(0); 336 BasicBlock *NewHeader = BI->getSuccessor(1); 337 if (L->contains(Exit)) 338 std::swap(Exit, NewHeader); 339 assert(NewHeader && "Unable to determine new loop header"); 340 assert(L->contains(NewHeader) && !L->contains(Exit) && 341 "Unable to determine loop header and exit blocks"); 342 343 // This code assumes that the new header has exactly one predecessor. 344 // Remove any single-entry PHI nodes in it. 345 assert(NewHeader->getSinglePredecessor() && 346 "New header doesn't have one pred!"); 347 FoldSingleEntryPHINodes(NewHeader); 348 349 // Begin by walking OrigHeader and populating ValueMap with an entry for 350 // each Instruction. 351 BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end(); 352 ValueToValueMapTy ValueMap; 353 354 // For PHI nodes, the value available in OldPreHeader is just the 355 // incoming value from OldPreHeader. 356 for (; PHINode *PN = dyn_cast<PHINode>(I); ++I) 357 ValueMap[PN] = PN->getIncomingValueForBlock(OrigPreheader); 358 359 // For the rest of the instructions, either hoist to the OrigPreheader if 360 // possible or create a clone in the OldPreHeader if not. 361 TerminatorInst *LoopEntryBranch = OrigPreheader->getTerminator(); 362 while (I != E) { 363 Instruction *Inst = I++; 364 365 // If the instruction's operands are invariant and it doesn't read or write 366 // memory, then it is safe to hoist. Doing this doesn't change the order of 367 // execution in the preheader, but does prevent the instruction from 368 // executing in each iteration of the loop. This means it is safe to hoist 369 // something that might trap, but isn't safe to hoist something that reads 370 // memory (without proving that the loop doesn't write). 371 if (L->hasLoopInvariantOperands(Inst) && 372 !Inst->mayReadFromMemory() && !Inst->mayWriteToMemory() && 373 !isa<TerminatorInst>(Inst) && !isa<DbgInfoIntrinsic>(Inst) && 374 !isa<AllocaInst>(Inst)) { 375 Inst->moveBefore(LoopEntryBranch); 376 continue; 377 } 378 379 // Otherwise, create a duplicate of the instruction. 380 Instruction *C = Inst->clone(); 381 382 // Eagerly remap the operands of the instruction. 383 RemapInstruction(C, ValueMap, 384 RF_NoModuleLevelChanges|RF_IgnoreMissingEntries); 385 386 // With the operands remapped, see if the instruction constant folds or is 387 // otherwise simplifyable. This commonly occurs because the entry from PHI 388 // nodes allows icmps and other instructions to fold. 389 Value *V = SimplifyInstruction(C); 390 if (V && LI->replacementPreservesLCSSAForm(C, V)) { 391 // If so, then delete the temporary instruction and stick the folded value 392 // in the map. 393 delete C; 394 ValueMap[Inst] = V; 395 } else { 396 // Otherwise, stick the new instruction into the new block! 397 C->setName(Inst->getName()); 398 C->insertBefore(LoopEntryBranch); 399 ValueMap[Inst] = C; 400 } 401 } 402 403 // Along with all the other instructions, we just cloned OrigHeader's 404 // terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's 405 // successors by duplicating their incoming values for OrigHeader. 406 TerminatorInst *TI = OrigHeader->getTerminator(); 407 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 408 for (BasicBlock::iterator BI = TI->getSuccessor(i)->begin(); 409 PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 410 PN->addIncoming(PN->getIncomingValueForBlock(OrigHeader), OrigPreheader); 411 412 // Now that OrigPreHeader has a clone of OrigHeader's terminator, remove 413 // OrigPreHeader's old terminator (the original branch into the loop), and 414 // remove the corresponding incoming values from the PHI nodes in OrigHeader. 415 LoopEntryBranch->eraseFromParent(); 416 417 // If there were any uses of instructions in the duplicated block outside the 418 // loop, update them, inserting PHI nodes as required 419 RewriteUsesOfClonedInstructions(OrigHeader, OrigPreheader, ValueMap); 420 421 // NewHeader is now the header of the loop. 422 L->moveToHeader(NewHeader); 423 assert(L->getHeader() == NewHeader && "Latch block is our new header"); 424 425 426 // At this point, we've finished our major CFG changes. As part of cloning 427 // the loop into the preheader we've simplified instructions and the 428 // duplicated conditional branch may now be branching on a constant. If it is 429 // branching on a constant and if that constant means that we enter the loop, 430 // then we fold away the cond branch to an uncond branch. This simplifies the 431 // loop in cases important for nested loops, and it also means we don't have 432 // to split as many edges. 433 BranchInst *PHBI = cast<BranchInst>(OrigPreheader->getTerminator()); 434 assert(PHBI->isConditional() && "Should be clone of BI condbr!"); 435 if (!isa<ConstantInt>(PHBI->getCondition()) || 436 PHBI->getSuccessor(cast<ConstantInt>(PHBI->getCondition())->isZero()) 437 != NewHeader) { 438 // The conditional branch can't be folded, handle the general case. 439 // Update DominatorTree to reflect the CFG change we just made. Then split 440 // edges as necessary to preserve LoopSimplify form. 441 if (DominatorTreeWrapperPass *DTWP = 442 getAnalysisIfAvailable<DominatorTreeWrapperPass>()) { 443 DominatorTree &DT = DTWP->getDomTree(); 444 // Everything that was dominated by the old loop header is now dominated 445 // by the original loop preheader. Conceptually the header was merged 446 // into the preheader, even though we reuse the actual block as a new 447 // loop latch. 448 DomTreeNode *OrigHeaderNode = DT.getNode(OrigHeader); 449 SmallVector<DomTreeNode *, 8> HeaderChildren(OrigHeaderNode->begin(), 450 OrigHeaderNode->end()); 451 DomTreeNode *OrigPreheaderNode = DT.getNode(OrigPreheader); 452 for (unsigned I = 0, E = HeaderChildren.size(); I != E; ++I) 453 DT.changeImmediateDominator(HeaderChildren[I], OrigPreheaderNode); 454 455 assert(DT.getNode(Exit)->getIDom() == OrigPreheaderNode); 456 assert(DT.getNode(NewHeader)->getIDom() == OrigPreheaderNode); 457 458 // Update OrigHeader to be dominated by the new header block. 459 DT.changeImmediateDominator(OrigHeader, OrigLatch); 460 } 461 462 // Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and 463 // thus is not a preheader anymore. 464 // Split the edge to form a real preheader. 465 BasicBlock *NewPH = SplitCriticalEdge(OrigPreheader, NewHeader, this); 466 NewPH->setName(NewHeader->getName() + ".lr.ph"); 467 468 // Preserve canonical loop form, which means that 'Exit' should have only 469 // one predecessor. Note that Exit could be an exit block for multiple 470 // nested loops, causing both of the edges to now be critical and need to 471 // be split. 472 SmallVector<BasicBlock *, 4> ExitPreds(pred_begin(Exit), pred_end(Exit)); 473 bool SplitLatchEdge = false; 474 for (SmallVectorImpl<BasicBlock *>::iterator PI = ExitPreds.begin(), 475 PE = ExitPreds.end(); 476 PI != PE; ++PI) { 477 // We only need to split loop exit edges. 478 Loop *PredLoop = LI->getLoopFor(*PI); 479 if (!PredLoop || PredLoop->contains(Exit)) 480 continue; 481 SplitLatchEdge |= L->getLoopLatch() == *PI; 482 BasicBlock *ExitSplit = SplitCriticalEdge(*PI, Exit, this); 483 ExitSplit->moveBefore(Exit); 484 } 485 assert(SplitLatchEdge && 486 "Despite splitting all preds, failed to split latch exit?"); 487 } else { 488 // We can fold the conditional branch in the preheader, this makes things 489 // simpler. The first step is to remove the extra edge to the Exit block. 490 Exit->removePredecessor(OrigPreheader, true /*preserve LCSSA*/); 491 BranchInst *NewBI = BranchInst::Create(NewHeader, PHBI); 492 NewBI->setDebugLoc(PHBI->getDebugLoc()); 493 PHBI->eraseFromParent(); 494 495 // With our CFG finalized, update DomTree if it is available. 496 if (DominatorTreeWrapperPass *DTWP = 497 getAnalysisIfAvailable<DominatorTreeWrapperPass>()) { 498 DominatorTree &DT = DTWP->getDomTree(); 499 // Update OrigHeader to be dominated by the new header block. 500 DT.changeImmediateDominator(NewHeader, OrigPreheader); 501 DT.changeImmediateDominator(OrigHeader, OrigLatch); 502 503 // Brute force incremental dominator tree update. Call 504 // findNearestCommonDominator on all CFG predecessors of each child of the 505 // original header. 506 DomTreeNode *OrigHeaderNode = DT.getNode(OrigHeader); 507 SmallVector<DomTreeNode *, 8> HeaderChildren(OrigHeaderNode->begin(), 508 OrigHeaderNode->end()); 509 bool Changed; 510 do { 511 Changed = false; 512 for (unsigned I = 0, E = HeaderChildren.size(); I != E; ++I) { 513 DomTreeNode *Node = HeaderChildren[I]; 514 BasicBlock *BB = Node->getBlock(); 515 516 pred_iterator PI = pred_begin(BB); 517 BasicBlock *NearestDom = *PI; 518 for (pred_iterator PE = pred_end(BB); PI != PE; ++PI) 519 NearestDom = DT.findNearestCommonDominator(NearestDom, *PI); 520 521 // Remember if this changes the DomTree. 522 if (Node->getIDom()->getBlock() != NearestDom) { 523 DT.changeImmediateDominator(BB, NearestDom); 524 Changed = true; 525 } 526 } 527 528 // If the dominator changed, this may have an effect on other 529 // predecessors, continue until we reach a fixpoint. 530 } while (Changed); 531 } 532 } 533 534 assert(L->getLoopPreheader() && "Invalid loop preheader after loop rotation"); 535 assert(L->getLoopLatch() && "Invalid loop latch after loop rotation"); 536 537 // Now that the CFG and DomTree are in a consistent state again, try to merge 538 // the OrigHeader block into OrigLatch. This will succeed if they are 539 // connected by an unconditional branch. This is just a cleanup so the 540 // emitted code isn't too gross in this common case. 541 MergeBlockIntoPredecessor(OrigHeader, this); 542 543 DEBUG(dbgs() << "LoopRotation: into "; L->dump()); 544 545 ++NumRotated; 546 return true; 547 } 548