1 //===- LoopRotation.cpp - Loop Rotation Pass ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements Loop Rotation Pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar.h" 15 #include "llvm/ADT/Statistic.h" 16 #include "llvm/Analysis/AssumptionTracker.h" 17 #include "llvm/Analysis/CodeMetrics.h" 18 #include "llvm/Analysis/InstructionSimplify.h" 19 #include "llvm/Analysis/LoopPass.h" 20 #include "llvm/Analysis/ScalarEvolution.h" 21 #include "llvm/Analysis/TargetTransformInfo.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/IR/CFG.h" 24 #include "llvm/IR/Dominators.h" 25 #include "llvm/IR/Function.h" 26 #include "llvm/IR/IntrinsicInst.h" 27 #include "llvm/Support/CommandLine.h" 28 #include "llvm/Support/Debug.h" 29 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 30 #include "llvm/Transforms/Utils/Local.h" 31 #include "llvm/Transforms/Utils/SSAUpdater.h" 32 #include "llvm/Transforms/Utils/ValueMapper.h" 33 using namespace llvm; 34 35 #define DEBUG_TYPE "loop-rotate" 36 37 static cl::opt<unsigned> 38 DefaultRotationThreshold("rotation-max-header-size", cl::init(16), cl::Hidden, 39 cl::desc("The default maximum header size for automatic loop rotation")); 40 41 STATISTIC(NumRotated, "Number of loops rotated"); 42 namespace { 43 44 class LoopRotate : public LoopPass { 45 public: 46 static char ID; // Pass ID, replacement for typeid 47 LoopRotate(int SpecifiedMaxHeaderSize = -1) : LoopPass(ID) { 48 initializeLoopRotatePass(*PassRegistry::getPassRegistry()); 49 if (SpecifiedMaxHeaderSize == -1) 50 MaxHeaderSize = DefaultRotationThreshold; 51 else 52 MaxHeaderSize = unsigned(SpecifiedMaxHeaderSize); 53 } 54 55 // LCSSA form makes instruction renaming easier. 56 void getAnalysisUsage(AnalysisUsage &AU) const override { 57 AU.addRequired<AssumptionTracker>(); 58 AU.addPreserved<DominatorTreeWrapperPass>(); 59 AU.addRequired<LoopInfo>(); 60 AU.addPreserved<LoopInfo>(); 61 AU.addRequiredID(LoopSimplifyID); 62 AU.addPreservedID(LoopSimplifyID); 63 AU.addRequiredID(LCSSAID); 64 AU.addPreservedID(LCSSAID); 65 AU.addPreserved<ScalarEvolution>(); 66 AU.addRequired<TargetTransformInfo>(); 67 } 68 69 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 70 bool simplifyLoopLatch(Loop *L); 71 bool rotateLoop(Loop *L, bool SimplifiedLatch); 72 73 private: 74 unsigned MaxHeaderSize; 75 LoopInfo *LI; 76 const TargetTransformInfo *TTI; 77 AssumptionTracker *AT; 78 }; 79 } 80 81 char LoopRotate::ID = 0; 82 INITIALIZE_PASS_BEGIN(LoopRotate, "loop-rotate", "Rotate Loops", false, false) 83 INITIALIZE_AG_DEPENDENCY(TargetTransformInfo) 84 INITIALIZE_PASS_DEPENDENCY(AssumptionTracker) 85 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 86 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 87 INITIALIZE_PASS_DEPENDENCY(LCSSA) 88 INITIALIZE_PASS_END(LoopRotate, "loop-rotate", "Rotate Loops", false, false) 89 90 Pass *llvm::createLoopRotatePass(int MaxHeaderSize) { 91 return new LoopRotate(MaxHeaderSize); 92 } 93 94 /// Rotate Loop L as many times as possible. Return true if 95 /// the loop is rotated at least once. 96 bool LoopRotate::runOnLoop(Loop *L, LPPassManager &LPM) { 97 if (skipOptnoneFunction(L)) 98 return false; 99 100 // Save the loop metadata. 101 MDNode *LoopMD = L->getLoopID(); 102 103 LI = &getAnalysis<LoopInfo>(); 104 TTI = &getAnalysis<TargetTransformInfo>(); 105 AT = &getAnalysis<AssumptionTracker>(); 106 107 // Simplify the loop latch before attempting to rotate the header 108 // upward. Rotation may not be needed if the loop tail can be folded into the 109 // loop exit. 110 bool SimplifiedLatch = simplifyLoopLatch(L); 111 112 // One loop can be rotated multiple times. 113 bool MadeChange = false; 114 while (rotateLoop(L, SimplifiedLatch)) { 115 MadeChange = true; 116 SimplifiedLatch = false; 117 } 118 119 // Restore the loop metadata. 120 // NB! We presume LoopRotation DOESN'T ADD its own metadata. 121 if ((MadeChange || SimplifiedLatch) && LoopMD) 122 L->setLoopID(LoopMD); 123 124 return MadeChange; 125 } 126 127 /// RewriteUsesOfClonedInstructions - We just cloned the instructions from the 128 /// old header into the preheader. If there were uses of the values produced by 129 /// these instruction that were outside of the loop, we have to insert PHI nodes 130 /// to merge the two values. Do this now. 131 static void RewriteUsesOfClonedInstructions(BasicBlock *OrigHeader, 132 BasicBlock *OrigPreheader, 133 ValueToValueMapTy &ValueMap) { 134 // Remove PHI node entries that are no longer live. 135 BasicBlock::iterator I, E = OrigHeader->end(); 136 for (I = OrigHeader->begin(); PHINode *PN = dyn_cast<PHINode>(I); ++I) 137 PN->removeIncomingValue(PN->getBasicBlockIndex(OrigPreheader)); 138 139 // Now fix up users of the instructions in OrigHeader, inserting PHI nodes 140 // as necessary. 141 SSAUpdater SSA; 142 for (I = OrigHeader->begin(); I != E; ++I) { 143 Value *OrigHeaderVal = I; 144 145 // If there are no uses of the value (e.g. because it returns void), there 146 // is nothing to rewrite. 147 if (OrigHeaderVal->use_empty()) 148 continue; 149 150 Value *OrigPreHeaderVal = ValueMap[OrigHeaderVal]; 151 152 // The value now exits in two versions: the initial value in the preheader 153 // and the loop "next" value in the original header. 154 SSA.Initialize(OrigHeaderVal->getType(), OrigHeaderVal->getName()); 155 SSA.AddAvailableValue(OrigHeader, OrigHeaderVal); 156 SSA.AddAvailableValue(OrigPreheader, OrigPreHeaderVal); 157 158 // Visit each use of the OrigHeader instruction. 159 for (Value::use_iterator UI = OrigHeaderVal->use_begin(), 160 UE = OrigHeaderVal->use_end(); UI != UE; ) { 161 // Grab the use before incrementing the iterator. 162 Use &U = *UI; 163 164 // Increment the iterator before removing the use from the list. 165 ++UI; 166 167 // SSAUpdater can't handle a non-PHI use in the same block as an 168 // earlier def. We can easily handle those cases manually. 169 Instruction *UserInst = cast<Instruction>(U.getUser()); 170 if (!isa<PHINode>(UserInst)) { 171 BasicBlock *UserBB = UserInst->getParent(); 172 173 // The original users in the OrigHeader are already using the 174 // original definitions. 175 if (UserBB == OrigHeader) 176 continue; 177 178 // Users in the OrigPreHeader need to use the value to which the 179 // original definitions are mapped. 180 if (UserBB == OrigPreheader) { 181 U = OrigPreHeaderVal; 182 continue; 183 } 184 } 185 186 // Anything else can be handled by SSAUpdater. 187 SSA.RewriteUse(U); 188 } 189 } 190 } 191 192 /// Determine whether the instructions in this range may be safely and cheaply 193 /// speculated. This is not an important enough situation to develop complex 194 /// heuristics. We handle a single arithmetic instruction along with any type 195 /// conversions. 196 static bool shouldSpeculateInstrs(BasicBlock::iterator Begin, 197 BasicBlock::iterator End, Loop *L) { 198 bool seenIncrement = false; 199 bool MultiExitLoop = false; 200 201 if (!L->getExitingBlock()) 202 MultiExitLoop = true; 203 204 for (BasicBlock::iterator I = Begin; I != End; ++I) { 205 206 if (!isSafeToSpeculativelyExecute(I)) 207 return false; 208 209 if (isa<DbgInfoIntrinsic>(I)) 210 continue; 211 212 switch (I->getOpcode()) { 213 default: 214 return false; 215 case Instruction::GetElementPtr: 216 // GEPs are cheap if all indices are constant. 217 if (!cast<GEPOperator>(I)->hasAllConstantIndices()) 218 return false; 219 // fall-thru to increment case 220 case Instruction::Add: 221 case Instruction::Sub: 222 case Instruction::And: 223 case Instruction::Or: 224 case Instruction::Xor: 225 case Instruction::Shl: 226 case Instruction::LShr: 227 case Instruction::AShr: { 228 Value *IVOpnd = nullptr; 229 if (isa<ConstantInt>(I->getOperand(0))) 230 IVOpnd = I->getOperand(1); 231 232 if (isa<ConstantInt>(I->getOperand(1))) { 233 if (IVOpnd) 234 return false; 235 236 IVOpnd = I->getOperand(0); 237 } 238 239 // If increment operand is used outside of the loop, this speculation 240 // could cause extra live range interference. 241 if (MultiExitLoop && IVOpnd) { 242 for (User *UseI : IVOpnd->users()) { 243 auto *UserInst = cast<Instruction>(UseI); 244 if (!L->contains(UserInst)) 245 return false; 246 } 247 } 248 249 if (seenIncrement) 250 return false; 251 seenIncrement = true; 252 break; 253 } 254 case Instruction::Trunc: 255 case Instruction::ZExt: 256 case Instruction::SExt: 257 // ignore type conversions 258 break; 259 } 260 } 261 return true; 262 } 263 264 /// Fold the loop tail into the loop exit by speculating the loop tail 265 /// instructions. Typically, this is a single post-increment. In the case of a 266 /// simple 2-block loop, hoisting the increment can be much better than 267 /// duplicating the entire loop header. In the case of loops with early exits, 268 /// rotation will not work anyway, but simplifyLoopLatch will put the loop in 269 /// canonical form so downstream passes can handle it. 270 /// 271 /// I don't believe this invalidates SCEV. 272 bool LoopRotate::simplifyLoopLatch(Loop *L) { 273 BasicBlock *Latch = L->getLoopLatch(); 274 if (!Latch || Latch->hasAddressTaken()) 275 return false; 276 277 BranchInst *Jmp = dyn_cast<BranchInst>(Latch->getTerminator()); 278 if (!Jmp || !Jmp->isUnconditional()) 279 return false; 280 281 BasicBlock *LastExit = Latch->getSinglePredecessor(); 282 if (!LastExit || !L->isLoopExiting(LastExit)) 283 return false; 284 285 BranchInst *BI = dyn_cast<BranchInst>(LastExit->getTerminator()); 286 if (!BI) 287 return false; 288 289 if (!shouldSpeculateInstrs(Latch->begin(), Jmp, L)) 290 return false; 291 292 DEBUG(dbgs() << "Folding loop latch " << Latch->getName() << " into " 293 << LastExit->getName() << "\n"); 294 295 // Hoist the instructions from Latch into LastExit. 296 LastExit->getInstList().splice(BI, Latch->getInstList(), Latch->begin(), Jmp); 297 298 unsigned FallThruPath = BI->getSuccessor(0) == Latch ? 0 : 1; 299 BasicBlock *Header = Jmp->getSuccessor(0); 300 assert(Header == L->getHeader() && "expected a backward branch"); 301 302 // Remove Latch from the CFG so that LastExit becomes the new Latch. 303 BI->setSuccessor(FallThruPath, Header); 304 Latch->replaceSuccessorsPhiUsesWith(LastExit); 305 Jmp->eraseFromParent(); 306 307 // Nuke the Latch block. 308 assert(Latch->empty() && "unable to evacuate Latch"); 309 LI->removeBlock(Latch); 310 if (DominatorTreeWrapperPass *DTWP = 311 getAnalysisIfAvailable<DominatorTreeWrapperPass>()) 312 DTWP->getDomTree().eraseNode(Latch); 313 Latch->eraseFromParent(); 314 return true; 315 } 316 317 /// Rotate loop LP. Return true if the loop is rotated. 318 /// 319 /// \param SimplifiedLatch is true if the latch was just folded into the final 320 /// loop exit. In this case we may want to rotate even though the new latch is 321 /// now an exiting branch. This rotation would have happened had the latch not 322 /// been simplified. However, if SimplifiedLatch is false, then we avoid 323 /// rotating loops in which the latch exits to avoid excessive or endless 324 /// rotation. LoopRotate should be repeatable and converge to a canonical 325 /// form. This property is satisfied because simplifying the loop latch can only 326 /// happen once across multiple invocations of the LoopRotate pass. 327 bool LoopRotate::rotateLoop(Loop *L, bool SimplifiedLatch) { 328 // If the loop has only one block then there is not much to rotate. 329 if (L->getBlocks().size() == 1) 330 return false; 331 332 BasicBlock *OrigHeader = L->getHeader(); 333 BasicBlock *OrigLatch = L->getLoopLatch(); 334 335 BranchInst *BI = dyn_cast<BranchInst>(OrigHeader->getTerminator()); 336 if (!BI || BI->isUnconditional()) 337 return false; 338 339 // If the loop header is not one of the loop exiting blocks then 340 // either this loop is already rotated or it is not 341 // suitable for loop rotation transformations. 342 if (!L->isLoopExiting(OrigHeader)) 343 return false; 344 345 // If the loop latch already contains a branch that leaves the loop then the 346 // loop is already rotated. 347 if (!OrigLatch) 348 return false; 349 350 // Rotate if either the loop latch does *not* exit the loop, or if the loop 351 // latch was just simplified. 352 if (L->isLoopExiting(OrigLatch) && !SimplifiedLatch) 353 return false; 354 355 // Check size of original header and reject loop if it is very big or we can't 356 // duplicate blocks inside it. 357 { 358 SmallPtrSet<const Value *, 32> EphValues; 359 CodeMetrics::collectEphemeralValues(L, AT, EphValues); 360 361 CodeMetrics Metrics; 362 Metrics.analyzeBasicBlock(OrigHeader, *TTI, EphValues); 363 if (Metrics.notDuplicatable) { 364 DEBUG(dbgs() << "LoopRotation: NOT rotating - contains non-duplicatable" 365 << " instructions: "; L->dump()); 366 return false; 367 } 368 if (Metrics.NumInsts > MaxHeaderSize) 369 return false; 370 } 371 372 // Now, this loop is suitable for rotation. 373 BasicBlock *OrigPreheader = L->getLoopPreheader(); 374 375 // If the loop could not be converted to canonical form, it must have an 376 // indirectbr in it, just give up. 377 if (!OrigPreheader) 378 return false; 379 380 // Anything ScalarEvolution may know about this loop or the PHI nodes 381 // in its header will soon be invalidated. 382 if (ScalarEvolution *SE = getAnalysisIfAvailable<ScalarEvolution>()) 383 SE->forgetLoop(L); 384 385 DEBUG(dbgs() << "LoopRotation: rotating "; L->dump()); 386 387 // Find new Loop header. NewHeader is a Header's one and only successor 388 // that is inside loop. Header's other successor is outside the 389 // loop. Otherwise loop is not suitable for rotation. 390 BasicBlock *Exit = BI->getSuccessor(0); 391 BasicBlock *NewHeader = BI->getSuccessor(1); 392 if (L->contains(Exit)) 393 std::swap(Exit, NewHeader); 394 assert(NewHeader && "Unable to determine new loop header"); 395 assert(L->contains(NewHeader) && !L->contains(Exit) && 396 "Unable to determine loop header and exit blocks"); 397 398 // This code assumes that the new header has exactly one predecessor. 399 // Remove any single-entry PHI nodes in it. 400 assert(NewHeader->getSinglePredecessor() && 401 "New header doesn't have one pred!"); 402 FoldSingleEntryPHINodes(NewHeader); 403 404 // Begin by walking OrigHeader and populating ValueMap with an entry for 405 // each Instruction. 406 BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end(); 407 ValueToValueMapTy ValueMap; 408 409 // For PHI nodes, the value available in OldPreHeader is just the 410 // incoming value from OldPreHeader. 411 for (; PHINode *PN = dyn_cast<PHINode>(I); ++I) 412 ValueMap[PN] = PN->getIncomingValueForBlock(OrigPreheader); 413 414 // For the rest of the instructions, either hoist to the OrigPreheader if 415 // possible or create a clone in the OldPreHeader if not. 416 TerminatorInst *LoopEntryBranch = OrigPreheader->getTerminator(); 417 while (I != E) { 418 Instruction *Inst = I++; 419 420 // If the instruction's operands are invariant and it doesn't read or write 421 // memory, then it is safe to hoist. Doing this doesn't change the order of 422 // execution in the preheader, but does prevent the instruction from 423 // executing in each iteration of the loop. This means it is safe to hoist 424 // something that might trap, but isn't safe to hoist something that reads 425 // memory (without proving that the loop doesn't write). 426 if (L->hasLoopInvariantOperands(Inst) && 427 !Inst->mayReadFromMemory() && !Inst->mayWriteToMemory() && 428 !isa<TerminatorInst>(Inst) && !isa<DbgInfoIntrinsic>(Inst) && 429 !isa<AllocaInst>(Inst)) { 430 Inst->moveBefore(LoopEntryBranch); 431 continue; 432 } 433 434 // Otherwise, create a duplicate of the instruction. 435 Instruction *C = Inst->clone(); 436 437 // Eagerly remap the operands of the instruction. 438 RemapInstruction(C, ValueMap, 439 RF_NoModuleLevelChanges|RF_IgnoreMissingEntries); 440 441 // With the operands remapped, see if the instruction constant folds or is 442 // otherwise simplifyable. This commonly occurs because the entry from PHI 443 // nodes allows icmps and other instructions to fold. 444 // FIXME: Provide DL, TLI, DT, AT to SimplifyInstruction. 445 Value *V = SimplifyInstruction(C); 446 if (V && LI->replacementPreservesLCSSAForm(C, V)) { 447 // If so, then delete the temporary instruction and stick the folded value 448 // in the map. 449 delete C; 450 ValueMap[Inst] = V; 451 } else { 452 // Otherwise, stick the new instruction into the new block! 453 C->setName(Inst->getName()); 454 C->insertBefore(LoopEntryBranch); 455 ValueMap[Inst] = C; 456 } 457 } 458 459 // Along with all the other instructions, we just cloned OrigHeader's 460 // terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's 461 // successors by duplicating their incoming values for OrigHeader. 462 TerminatorInst *TI = OrigHeader->getTerminator(); 463 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 464 for (BasicBlock::iterator BI = TI->getSuccessor(i)->begin(); 465 PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 466 PN->addIncoming(PN->getIncomingValueForBlock(OrigHeader), OrigPreheader); 467 468 // Now that OrigPreHeader has a clone of OrigHeader's terminator, remove 469 // OrigPreHeader's old terminator (the original branch into the loop), and 470 // remove the corresponding incoming values from the PHI nodes in OrigHeader. 471 LoopEntryBranch->eraseFromParent(); 472 473 // If there were any uses of instructions in the duplicated block outside the 474 // loop, update them, inserting PHI nodes as required 475 RewriteUsesOfClonedInstructions(OrigHeader, OrigPreheader, ValueMap); 476 477 // NewHeader is now the header of the loop. 478 L->moveToHeader(NewHeader); 479 assert(L->getHeader() == NewHeader && "Latch block is our new header"); 480 481 482 // At this point, we've finished our major CFG changes. As part of cloning 483 // the loop into the preheader we've simplified instructions and the 484 // duplicated conditional branch may now be branching on a constant. If it is 485 // branching on a constant and if that constant means that we enter the loop, 486 // then we fold away the cond branch to an uncond branch. This simplifies the 487 // loop in cases important for nested loops, and it also means we don't have 488 // to split as many edges. 489 BranchInst *PHBI = cast<BranchInst>(OrigPreheader->getTerminator()); 490 assert(PHBI->isConditional() && "Should be clone of BI condbr!"); 491 if (!isa<ConstantInt>(PHBI->getCondition()) || 492 PHBI->getSuccessor(cast<ConstantInt>(PHBI->getCondition())->isZero()) 493 != NewHeader) { 494 // The conditional branch can't be folded, handle the general case. 495 // Update DominatorTree to reflect the CFG change we just made. Then split 496 // edges as necessary to preserve LoopSimplify form. 497 if (DominatorTreeWrapperPass *DTWP = 498 getAnalysisIfAvailable<DominatorTreeWrapperPass>()) { 499 DominatorTree &DT = DTWP->getDomTree(); 500 // Everything that was dominated by the old loop header is now dominated 501 // by the original loop preheader. Conceptually the header was merged 502 // into the preheader, even though we reuse the actual block as a new 503 // loop latch. 504 DomTreeNode *OrigHeaderNode = DT.getNode(OrigHeader); 505 SmallVector<DomTreeNode *, 8> HeaderChildren(OrigHeaderNode->begin(), 506 OrigHeaderNode->end()); 507 DomTreeNode *OrigPreheaderNode = DT.getNode(OrigPreheader); 508 for (unsigned I = 0, E = HeaderChildren.size(); I != E; ++I) 509 DT.changeImmediateDominator(HeaderChildren[I], OrigPreheaderNode); 510 511 assert(DT.getNode(Exit)->getIDom() == OrigPreheaderNode); 512 assert(DT.getNode(NewHeader)->getIDom() == OrigPreheaderNode); 513 514 // Update OrigHeader to be dominated by the new header block. 515 DT.changeImmediateDominator(OrigHeader, OrigLatch); 516 } 517 518 // Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and 519 // thus is not a preheader anymore. 520 // Split the edge to form a real preheader. 521 BasicBlock *NewPH = SplitCriticalEdge(OrigPreheader, NewHeader, this); 522 NewPH->setName(NewHeader->getName() + ".lr.ph"); 523 524 // Preserve canonical loop form, which means that 'Exit' should have only 525 // one predecessor. Note that Exit could be an exit block for multiple 526 // nested loops, causing both of the edges to now be critical and need to 527 // be split. 528 SmallVector<BasicBlock *, 4> ExitPreds(pred_begin(Exit), pred_end(Exit)); 529 bool SplitLatchEdge = false; 530 for (SmallVectorImpl<BasicBlock *>::iterator PI = ExitPreds.begin(), 531 PE = ExitPreds.end(); 532 PI != PE; ++PI) { 533 // We only need to split loop exit edges. 534 Loop *PredLoop = LI->getLoopFor(*PI); 535 if (!PredLoop || PredLoop->contains(Exit)) 536 continue; 537 SplitLatchEdge |= L->getLoopLatch() == *PI; 538 BasicBlock *ExitSplit = SplitCriticalEdge(*PI, Exit, this); 539 ExitSplit->moveBefore(Exit); 540 } 541 assert(SplitLatchEdge && 542 "Despite splitting all preds, failed to split latch exit?"); 543 } else { 544 // We can fold the conditional branch in the preheader, this makes things 545 // simpler. The first step is to remove the extra edge to the Exit block. 546 Exit->removePredecessor(OrigPreheader, true /*preserve LCSSA*/); 547 BranchInst *NewBI = BranchInst::Create(NewHeader, PHBI); 548 NewBI->setDebugLoc(PHBI->getDebugLoc()); 549 PHBI->eraseFromParent(); 550 551 // With our CFG finalized, update DomTree if it is available. 552 if (DominatorTreeWrapperPass *DTWP = 553 getAnalysisIfAvailable<DominatorTreeWrapperPass>()) { 554 DominatorTree &DT = DTWP->getDomTree(); 555 // Update OrigHeader to be dominated by the new header block. 556 DT.changeImmediateDominator(NewHeader, OrigPreheader); 557 DT.changeImmediateDominator(OrigHeader, OrigLatch); 558 559 // Brute force incremental dominator tree update. Call 560 // findNearestCommonDominator on all CFG predecessors of each child of the 561 // original header. 562 DomTreeNode *OrigHeaderNode = DT.getNode(OrigHeader); 563 SmallVector<DomTreeNode *, 8> HeaderChildren(OrigHeaderNode->begin(), 564 OrigHeaderNode->end()); 565 bool Changed; 566 do { 567 Changed = false; 568 for (unsigned I = 0, E = HeaderChildren.size(); I != E; ++I) { 569 DomTreeNode *Node = HeaderChildren[I]; 570 BasicBlock *BB = Node->getBlock(); 571 572 pred_iterator PI = pred_begin(BB); 573 BasicBlock *NearestDom = *PI; 574 for (pred_iterator PE = pred_end(BB); PI != PE; ++PI) 575 NearestDom = DT.findNearestCommonDominator(NearestDom, *PI); 576 577 // Remember if this changes the DomTree. 578 if (Node->getIDom()->getBlock() != NearestDom) { 579 DT.changeImmediateDominator(BB, NearestDom); 580 Changed = true; 581 } 582 } 583 584 // If the dominator changed, this may have an effect on other 585 // predecessors, continue until we reach a fixpoint. 586 } while (Changed); 587 } 588 } 589 590 assert(L->getLoopPreheader() && "Invalid loop preheader after loop rotation"); 591 assert(L->getLoopLatch() && "Invalid loop latch after loop rotation"); 592 593 // Now that the CFG and DomTree are in a consistent state again, try to merge 594 // the OrigHeader block into OrigLatch. This will succeed if they are 595 // connected by an unconditional branch. This is just a cleanup so the 596 // emitted code isn't too gross in this common case. 597 MergeBlockIntoPredecessor(OrigHeader, this); 598 599 DEBUG(dbgs() << "LoopRotation: into "; L->dump()); 600 601 ++NumRotated; 602 return true; 603 } 604