1 //===- LoopRotation.cpp - Loop Rotation Pass ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements Loop Rotation Pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/LoopRotation.h" 15 #include "llvm/ADT/Statistic.h" 16 #include "llvm/Analysis/AliasAnalysis.h" 17 #include "llvm/Analysis/BasicAliasAnalysis.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/CodeMetrics.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/Analysis/GlobalsModRef.h" 22 #include "llvm/Analysis/LoopPass.h" 23 #include "llvm/Analysis/LoopPassManager.h" 24 #include "llvm/Analysis/ScalarEvolution.h" 25 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 26 #include "llvm/Analysis/TargetTransformInfo.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/IR/CFG.h" 29 #include "llvm/IR/Dominators.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/IntrinsicInst.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/Support/CommandLine.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Transforms/Scalar.h" 37 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 38 #include "llvm/Transforms/Utils/Local.h" 39 #include "llvm/Transforms/Utils/LoopUtils.h" 40 #include "llvm/Transforms/Utils/SSAUpdater.h" 41 #include "llvm/Transforms/Utils/ValueMapper.h" 42 using namespace llvm; 43 44 #define DEBUG_TYPE "loop-rotate" 45 46 static cl::opt<unsigned> 47 DefaultRotationThreshold("rotation-max-header-size", cl::init(16), cl::Hidden, 48 cl::desc("The default maximum header size for automatic loop rotation")); 49 50 STATISTIC(NumRotated, "Number of loops rotated"); 51 52 /// RewriteUsesOfClonedInstructions - We just cloned the instructions from the 53 /// old header into the preheader. If there were uses of the values produced by 54 /// these instruction that were outside of the loop, we have to insert PHI nodes 55 /// to merge the two values. Do this now. 56 static void RewriteUsesOfClonedInstructions(BasicBlock *OrigHeader, 57 BasicBlock *OrigPreheader, 58 ValueToValueMapTy &ValueMap) { 59 // Remove PHI node entries that are no longer live. 60 BasicBlock::iterator I, E = OrigHeader->end(); 61 for (I = OrigHeader->begin(); PHINode *PN = dyn_cast<PHINode>(I); ++I) 62 PN->removeIncomingValue(PN->getBasicBlockIndex(OrigPreheader)); 63 64 // Now fix up users of the instructions in OrigHeader, inserting PHI nodes 65 // as necessary. 66 SSAUpdater SSA; 67 for (I = OrigHeader->begin(); I != E; ++I) { 68 Value *OrigHeaderVal = &*I; 69 70 // If there are no uses of the value (e.g. because it returns void), there 71 // is nothing to rewrite. 72 if (OrigHeaderVal->use_empty()) 73 continue; 74 75 Value *OrigPreHeaderVal = ValueMap.lookup(OrigHeaderVal); 76 77 // The value now exits in two versions: the initial value in the preheader 78 // and the loop "next" value in the original header. 79 SSA.Initialize(OrigHeaderVal->getType(), OrigHeaderVal->getName()); 80 SSA.AddAvailableValue(OrigHeader, OrigHeaderVal); 81 SSA.AddAvailableValue(OrigPreheader, OrigPreHeaderVal); 82 83 // Visit each use of the OrigHeader instruction. 84 for (Value::use_iterator UI = OrigHeaderVal->use_begin(), 85 UE = OrigHeaderVal->use_end(); UI != UE; ) { 86 // Grab the use before incrementing the iterator. 87 Use &U = *UI; 88 89 // Increment the iterator before removing the use from the list. 90 ++UI; 91 92 // SSAUpdater can't handle a non-PHI use in the same block as an 93 // earlier def. We can easily handle those cases manually. 94 Instruction *UserInst = cast<Instruction>(U.getUser()); 95 if (!isa<PHINode>(UserInst)) { 96 BasicBlock *UserBB = UserInst->getParent(); 97 98 // The original users in the OrigHeader are already using the 99 // original definitions. 100 if (UserBB == OrigHeader) 101 continue; 102 103 // Users in the OrigPreHeader need to use the value to which the 104 // original definitions are mapped. 105 if (UserBB == OrigPreheader) { 106 U = OrigPreHeaderVal; 107 continue; 108 } 109 } 110 111 // Anything else can be handled by SSAUpdater. 112 SSA.RewriteUse(U); 113 } 114 115 // Replace MetadataAsValue(ValueAsMetadata(OrigHeaderVal)) uses in debug 116 // intrinsics. 117 LLVMContext &C = OrigHeader->getContext(); 118 if (auto *VAM = ValueAsMetadata::getIfExists(OrigHeaderVal)) { 119 if (auto *MAV = MetadataAsValue::getIfExists(C, VAM)) { 120 for (auto UI = MAV->use_begin(), E = MAV->use_end(); UI != E; ) { 121 // Grab the use before incrementing the iterator. Otherwise, altering 122 // the Use will invalidate the iterator. 123 Use &U = *UI++; 124 DbgInfoIntrinsic *UserInst = dyn_cast<DbgInfoIntrinsic>(U.getUser()); 125 if (!UserInst) continue; 126 127 // The original users in the OrigHeader are already using the original 128 // definitions. 129 BasicBlock *UserBB = UserInst->getParent(); 130 if (UserBB == OrigHeader) 131 continue; 132 133 // Users in the OrigPreHeader need to use the value to which the 134 // original definitions are mapped and anything else can be handled by 135 // the SSAUpdater. To avoid adding PHINodes, check if the value is 136 // available in UserBB, if not substitute undef. 137 Value *NewVal; 138 if (UserBB == OrigPreheader) 139 NewVal = OrigPreHeaderVal; 140 else if (SSA.HasValueForBlock(UserBB)) 141 NewVal = SSA.GetValueInMiddleOfBlock(UserBB); 142 else 143 NewVal = UndefValue::get(OrigHeaderVal->getType()); 144 U = MetadataAsValue::get(C, ValueAsMetadata::get(NewVal)); 145 } 146 } 147 } 148 } 149 } 150 151 /// Rotate loop LP. Return true if the loop is rotated. 152 /// 153 /// \param SimplifiedLatch is true if the latch was just folded into the final 154 /// loop exit. In this case we may want to rotate even though the new latch is 155 /// now an exiting branch. This rotation would have happened had the latch not 156 /// been simplified. However, if SimplifiedLatch is false, then we avoid 157 /// rotating loops in which the latch exits to avoid excessive or endless 158 /// rotation. LoopRotate should be repeatable and converge to a canonical 159 /// form. This property is satisfied because simplifying the loop latch can only 160 /// happen once across multiple invocations of the LoopRotate pass. 161 static bool rotateLoop(Loop *L, unsigned MaxHeaderSize, LoopInfo *LI, 162 const TargetTransformInfo *TTI, AssumptionCache *AC, 163 DominatorTree *DT, ScalarEvolution *SE, 164 bool SimplifiedLatch) { 165 // If the loop has only one block then there is not much to rotate. 166 if (L->getBlocks().size() == 1) 167 return false; 168 169 BasicBlock *OrigHeader = L->getHeader(); 170 BasicBlock *OrigLatch = L->getLoopLatch(); 171 172 BranchInst *BI = dyn_cast<BranchInst>(OrigHeader->getTerminator()); 173 if (!BI || BI->isUnconditional()) 174 return false; 175 176 // If the loop header is not one of the loop exiting blocks then 177 // either this loop is already rotated or it is not 178 // suitable for loop rotation transformations. 179 if (!L->isLoopExiting(OrigHeader)) 180 return false; 181 182 // If the loop latch already contains a branch that leaves the loop then the 183 // loop is already rotated. 184 if (!OrigLatch) 185 return false; 186 187 // Rotate if either the loop latch does *not* exit the loop, or if the loop 188 // latch was just simplified. 189 if (L->isLoopExiting(OrigLatch) && !SimplifiedLatch) 190 return false; 191 192 // Check size of original header and reject loop if it is very big or we can't 193 // duplicate blocks inside it. 194 { 195 SmallPtrSet<const Value *, 32> EphValues; 196 CodeMetrics::collectEphemeralValues(L, AC, EphValues); 197 198 CodeMetrics Metrics; 199 Metrics.analyzeBasicBlock(OrigHeader, *TTI, EphValues); 200 if (Metrics.notDuplicatable) { 201 DEBUG(dbgs() << "LoopRotation: NOT rotating - contains non-duplicatable" 202 << " instructions: "; L->dump()); 203 return false; 204 } 205 if (Metrics.convergent) { 206 DEBUG(dbgs() << "LoopRotation: NOT rotating - contains convergent " 207 "instructions: "; L->dump()); 208 return false; 209 } 210 if (Metrics.NumInsts > MaxHeaderSize) 211 return false; 212 } 213 214 // Now, this loop is suitable for rotation. 215 BasicBlock *OrigPreheader = L->getLoopPreheader(); 216 217 // If the loop could not be converted to canonical form, it must have an 218 // indirectbr in it, just give up. 219 if (!OrigPreheader) 220 return false; 221 222 // Anything ScalarEvolution may know about this loop or the PHI nodes 223 // in its header will soon be invalidated. 224 if (SE) 225 SE->forgetLoop(L); 226 227 DEBUG(dbgs() << "LoopRotation: rotating "; L->dump()); 228 229 // Find new Loop header. NewHeader is a Header's one and only successor 230 // that is inside loop. Header's other successor is outside the 231 // loop. Otherwise loop is not suitable for rotation. 232 BasicBlock *Exit = BI->getSuccessor(0); 233 BasicBlock *NewHeader = BI->getSuccessor(1); 234 if (L->contains(Exit)) 235 std::swap(Exit, NewHeader); 236 assert(NewHeader && "Unable to determine new loop header"); 237 assert(L->contains(NewHeader) && !L->contains(Exit) && 238 "Unable to determine loop header and exit blocks"); 239 240 // This code assumes that the new header has exactly one predecessor. 241 // Remove any single-entry PHI nodes in it. 242 assert(NewHeader->getSinglePredecessor() && 243 "New header doesn't have one pred!"); 244 FoldSingleEntryPHINodes(NewHeader); 245 246 // Begin by walking OrigHeader and populating ValueMap with an entry for 247 // each Instruction. 248 BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end(); 249 ValueToValueMapTy ValueMap; 250 251 // For PHI nodes, the value available in OldPreHeader is just the 252 // incoming value from OldPreHeader. 253 for (; PHINode *PN = dyn_cast<PHINode>(I); ++I) 254 ValueMap[PN] = PN->getIncomingValueForBlock(OrigPreheader); 255 256 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 257 258 // For the rest of the instructions, either hoist to the OrigPreheader if 259 // possible or create a clone in the OldPreHeader if not. 260 TerminatorInst *LoopEntryBranch = OrigPreheader->getTerminator(); 261 while (I != E) { 262 Instruction *Inst = &*I++; 263 264 // If the instruction's operands are invariant and it doesn't read or write 265 // memory, then it is safe to hoist. Doing this doesn't change the order of 266 // execution in the preheader, but does prevent the instruction from 267 // executing in each iteration of the loop. This means it is safe to hoist 268 // something that might trap, but isn't safe to hoist something that reads 269 // memory (without proving that the loop doesn't write). 270 if (L->hasLoopInvariantOperands(Inst) && 271 !Inst->mayReadFromMemory() && !Inst->mayWriteToMemory() && 272 !isa<TerminatorInst>(Inst) && !isa<DbgInfoIntrinsic>(Inst) && 273 !isa<AllocaInst>(Inst)) { 274 Inst->moveBefore(LoopEntryBranch); 275 continue; 276 } 277 278 // Otherwise, create a duplicate of the instruction. 279 Instruction *C = Inst->clone(); 280 281 // Eagerly remap the operands of the instruction. 282 RemapInstruction(C, ValueMap, 283 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 284 285 // With the operands remapped, see if the instruction constant folds or is 286 // otherwise simplifyable. This commonly occurs because the entry from PHI 287 // nodes allows icmps and other instructions to fold. 288 // FIXME: Provide TLI, DT, AC to SimplifyInstruction. 289 Value *V = SimplifyInstruction(C, DL); 290 if (V && LI->replacementPreservesLCSSAForm(C, V)) { 291 // If so, then delete the temporary instruction and stick the folded value 292 // in the map. 293 delete C; 294 ValueMap[Inst] = V; 295 } else { 296 // Otherwise, stick the new instruction into the new block! 297 C->setName(Inst->getName()); 298 C->insertBefore(LoopEntryBranch); 299 ValueMap[Inst] = C; 300 } 301 } 302 303 // Along with all the other instructions, we just cloned OrigHeader's 304 // terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's 305 // successors by duplicating their incoming values for OrigHeader. 306 TerminatorInst *TI = OrigHeader->getTerminator(); 307 for (BasicBlock *SuccBB : TI->successors()) 308 for (BasicBlock::iterator BI = SuccBB->begin(); 309 PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 310 PN->addIncoming(PN->getIncomingValueForBlock(OrigHeader), OrigPreheader); 311 312 // Now that OrigPreHeader has a clone of OrigHeader's terminator, remove 313 // OrigPreHeader's old terminator (the original branch into the loop), and 314 // remove the corresponding incoming values from the PHI nodes in OrigHeader. 315 LoopEntryBranch->eraseFromParent(); 316 317 // If there were any uses of instructions in the duplicated block outside the 318 // loop, update them, inserting PHI nodes as required 319 RewriteUsesOfClonedInstructions(OrigHeader, OrigPreheader, ValueMap); 320 321 // NewHeader is now the header of the loop. 322 L->moveToHeader(NewHeader); 323 assert(L->getHeader() == NewHeader && "Latch block is our new header"); 324 325 326 // At this point, we've finished our major CFG changes. As part of cloning 327 // the loop into the preheader we've simplified instructions and the 328 // duplicated conditional branch may now be branching on a constant. If it is 329 // branching on a constant and if that constant means that we enter the loop, 330 // then we fold away the cond branch to an uncond branch. This simplifies the 331 // loop in cases important for nested loops, and it also means we don't have 332 // to split as many edges. 333 BranchInst *PHBI = cast<BranchInst>(OrigPreheader->getTerminator()); 334 assert(PHBI->isConditional() && "Should be clone of BI condbr!"); 335 if (!isa<ConstantInt>(PHBI->getCondition()) || 336 PHBI->getSuccessor(cast<ConstantInt>(PHBI->getCondition())->isZero()) 337 != NewHeader) { 338 // The conditional branch can't be folded, handle the general case. 339 // Update DominatorTree to reflect the CFG change we just made. Then split 340 // edges as necessary to preserve LoopSimplify form. 341 if (DT) { 342 // Everything that was dominated by the old loop header is now dominated 343 // by the original loop preheader. Conceptually the header was merged 344 // into the preheader, even though we reuse the actual block as a new 345 // loop latch. 346 DomTreeNode *OrigHeaderNode = DT->getNode(OrigHeader); 347 SmallVector<DomTreeNode *, 8> HeaderChildren(OrigHeaderNode->begin(), 348 OrigHeaderNode->end()); 349 DomTreeNode *OrigPreheaderNode = DT->getNode(OrigPreheader); 350 for (unsigned I = 0, E = HeaderChildren.size(); I != E; ++I) 351 DT->changeImmediateDominator(HeaderChildren[I], OrigPreheaderNode); 352 353 assert(DT->getNode(Exit)->getIDom() == OrigPreheaderNode); 354 assert(DT->getNode(NewHeader)->getIDom() == OrigPreheaderNode); 355 356 // Update OrigHeader to be dominated by the new header block. 357 DT->changeImmediateDominator(OrigHeader, OrigLatch); 358 } 359 360 // Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and 361 // thus is not a preheader anymore. 362 // Split the edge to form a real preheader. 363 BasicBlock *NewPH = SplitCriticalEdge( 364 OrigPreheader, NewHeader, 365 CriticalEdgeSplittingOptions(DT, LI).setPreserveLCSSA()); 366 NewPH->setName(NewHeader->getName() + ".lr.ph"); 367 368 // Preserve canonical loop form, which means that 'Exit' should have only 369 // one predecessor. Note that Exit could be an exit block for multiple 370 // nested loops, causing both of the edges to now be critical and need to 371 // be split. 372 SmallVector<BasicBlock *, 4> ExitPreds(pred_begin(Exit), pred_end(Exit)); 373 bool SplitLatchEdge = false; 374 for (SmallVectorImpl<BasicBlock *>::iterator PI = ExitPreds.begin(), 375 PE = ExitPreds.end(); 376 PI != PE; ++PI) { 377 // We only need to split loop exit edges. 378 Loop *PredLoop = LI->getLoopFor(*PI); 379 if (!PredLoop || PredLoop->contains(Exit)) 380 continue; 381 if (isa<IndirectBrInst>((*PI)->getTerminator())) 382 continue; 383 SplitLatchEdge |= L->getLoopLatch() == *PI; 384 BasicBlock *ExitSplit = SplitCriticalEdge( 385 *PI, Exit, CriticalEdgeSplittingOptions(DT, LI).setPreserveLCSSA()); 386 ExitSplit->moveBefore(Exit); 387 } 388 assert(SplitLatchEdge && 389 "Despite splitting all preds, failed to split latch exit?"); 390 } else { 391 // We can fold the conditional branch in the preheader, this makes things 392 // simpler. The first step is to remove the extra edge to the Exit block. 393 Exit->removePredecessor(OrigPreheader, true /*preserve LCSSA*/); 394 BranchInst *NewBI = BranchInst::Create(NewHeader, PHBI); 395 NewBI->setDebugLoc(PHBI->getDebugLoc()); 396 PHBI->eraseFromParent(); 397 398 // With our CFG finalized, update DomTree if it is available. 399 if (DT) { 400 // Update OrigHeader to be dominated by the new header block. 401 DT->changeImmediateDominator(NewHeader, OrigPreheader); 402 DT->changeImmediateDominator(OrigHeader, OrigLatch); 403 404 // Brute force incremental dominator tree update. Call 405 // findNearestCommonDominator on all CFG predecessors of each child of the 406 // original header. 407 DomTreeNode *OrigHeaderNode = DT->getNode(OrigHeader); 408 SmallVector<DomTreeNode *, 8> HeaderChildren(OrigHeaderNode->begin(), 409 OrigHeaderNode->end()); 410 bool Changed; 411 do { 412 Changed = false; 413 for (unsigned I = 0, E = HeaderChildren.size(); I != E; ++I) { 414 DomTreeNode *Node = HeaderChildren[I]; 415 BasicBlock *BB = Node->getBlock(); 416 417 pred_iterator PI = pred_begin(BB); 418 BasicBlock *NearestDom = *PI; 419 for (pred_iterator PE = pred_end(BB); PI != PE; ++PI) 420 NearestDom = DT->findNearestCommonDominator(NearestDom, *PI); 421 422 // Remember if this changes the DomTree. 423 if (Node->getIDom()->getBlock() != NearestDom) { 424 DT->changeImmediateDominator(BB, NearestDom); 425 Changed = true; 426 } 427 } 428 429 // If the dominator changed, this may have an effect on other 430 // predecessors, continue until we reach a fixpoint. 431 } while (Changed); 432 } 433 } 434 435 assert(L->getLoopPreheader() && "Invalid loop preheader after loop rotation"); 436 assert(L->getLoopLatch() && "Invalid loop latch after loop rotation"); 437 438 // Now that the CFG and DomTree are in a consistent state again, try to merge 439 // the OrigHeader block into OrigLatch. This will succeed if they are 440 // connected by an unconditional branch. This is just a cleanup so the 441 // emitted code isn't too gross in this common case. 442 MergeBlockIntoPredecessor(OrigHeader, DT, LI); 443 444 DEBUG(dbgs() << "LoopRotation: into "; L->dump()); 445 446 ++NumRotated; 447 return true; 448 } 449 450 /// Determine whether the instructions in this range may be safely and cheaply 451 /// speculated. This is not an important enough situation to develop complex 452 /// heuristics. We handle a single arithmetic instruction along with any type 453 /// conversions. 454 static bool shouldSpeculateInstrs(BasicBlock::iterator Begin, 455 BasicBlock::iterator End, Loop *L) { 456 bool seenIncrement = false; 457 bool MultiExitLoop = false; 458 459 if (!L->getExitingBlock()) 460 MultiExitLoop = true; 461 462 for (BasicBlock::iterator I = Begin; I != End; ++I) { 463 464 if (!isSafeToSpeculativelyExecute(&*I)) 465 return false; 466 467 if (isa<DbgInfoIntrinsic>(I)) 468 continue; 469 470 switch (I->getOpcode()) { 471 default: 472 return false; 473 case Instruction::GetElementPtr: 474 // GEPs are cheap if all indices are constant. 475 if (!cast<GEPOperator>(I)->hasAllConstantIndices()) 476 return false; 477 // fall-thru to increment case 478 case Instruction::Add: 479 case Instruction::Sub: 480 case Instruction::And: 481 case Instruction::Or: 482 case Instruction::Xor: 483 case Instruction::Shl: 484 case Instruction::LShr: 485 case Instruction::AShr: { 486 Value *IVOpnd = !isa<Constant>(I->getOperand(0)) 487 ? I->getOperand(0) 488 : !isa<Constant>(I->getOperand(1)) 489 ? I->getOperand(1) 490 : nullptr; 491 if (!IVOpnd) 492 return false; 493 494 // If increment operand is used outside of the loop, this speculation 495 // could cause extra live range interference. 496 if (MultiExitLoop) { 497 for (User *UseI : IVOpnd->users()) { 498 auto *UserInst = cast<Instruction>(UseI); 499 if (!L->contains(UserInst)) 500 return false; 501 } 502 } 503 504 if (seenIncrement) 505 return false; 506 seenIncrement = true; 507 break; 508 } 509 case Instruction::Trunc: 510 case Instruction::ZExt: 511 case Instruction::SExt: 512 // ignore type conversions 513 break; 514 } 515 } 516 return true; 517 } 518 519 /// Fold the loop tail into the loop exit by speculating the loop tail 520 /// instructions. Typically, this is a single post-increment. In the case of a 521 /// simple 2-block loop, hoisting the increment can be much better than 522 /// duplicating the entire loop header. In the case of loops with early exits, 523 /// rotation will not work anyway, but simplifyLoopLatch will put the loop in 524 /// canonical form so downstream passes can handle it. 525 /// 526 /// I don't believe this invalidates SCEV. 527 static bool simplifyLoopLatch(Loop *L, LoopInfo *LI, DominatorTree *DT) { 528 BasicBlock *Latch = L->getLoopLatch(); 529 if (!Latch || Latch->hasAddressTaken()) 530 return false; 531 532 BranchInst *Jmp = dyn_cast<BranchInst>(Latch->getTerminator()); 533 if (!Jmp || !Jmp->isUnconditional()) 534 return false; 535 536 BasicBlock *LastExit = Latch->getSinglePredecessor(); 537 if (!LastExit || !L->isLoopExiting(LastExit)) 538 return false; 539 540 BranchInst *BI = dyn_cast<BranchInst>(LastExit->getTerminator()); 541 if (!BI) 542 return false; 543 544 if (!shouldSpeculateInstrs(Latch->begin(), Jmp->getIterator(), L)) 545 return false; 546 547 DEBUG(dbgs() << "Folding loop latch " << Latch->getName() << " into " 548 << LastExit->getName() << "\n"); 549 550 // Hoist the instructions from Latch into LastExit. 551 LastExit->getInstList().splice(BI->getIterator(), Latch->getInstList(), 552 Latch->begin(), Jmp->getIterator()); 553 554 unsigned FallThruPath = BI->getSuccessor(0) == Latch ? 0 : 1; 555 BasicBlock *Header = Jmp->getSuccessor(0); 556 assert(Header == L->getHeader() && "expected a backward branch"); 557 558 // Remove Latch from the CFG so that LastExit becomes the new Latch. 559 BI->setSuccessor(FallThruPath, Header); 560 Latch->replaceSuccessorsPhiUsesWith(LastExit); 561 Jmp->eraseFromParent(); 562 563 // Nuke the Latch block. 564 assert(Latch->empty() && "unable to evacuate Latch"); 565 LI->removeBlock(Latch); 566 if (DT) 567 DT->eraseNode(Latch); 568 Latch->eraseFromParent(); 569 return true; 570 } 571 572 /// Rotate \c L as many times as possible. Return true if the loop is rotated 573 /// at least once. 574 static bool iterativelyRotateLoop(Loop *L, unsigned MaxHeaderSize, LoopInfo *LI, 575 const TargetTransformInfo *TTI, 576 AssumptionCache *AC, DominatorTree *DT, 577 ScalarEvolution *SE) { 578 // Save the loop metadata. 579 MDNode *LoopMD = L->getLoopID(); 580 581 // Simplify the loop latch before attempting to rotate the header 582 // upward. Rotation may not be needed if the loop tail can be folded into the 583 // loop exit. 584 bool SimplifiedLatch = simplifyLoopLatch(L, LI, DT); 585 586 // One loop can be rotated multiple times. 587 bool MadeChange = false; 588 while (rotateLoop(L, MaxHeaderSize, LI, TTI, AC, DT, SE, SimplifiedLatch)) { 589 MadeChange = true; 590 SimplifiedLatch = false; 591 } 592 593 // Restore the loop metadata. 594 // NB! We presume LoopRotation DOESN'T ADD its own metadata. 595 if ((MadeChange || SimplifiedLatch) && LoopMD) 596 L->setLoopID(LoopMD); 597 598 return MadeChange; 599 } 600 601 LoopRotatePass::LoopRotatePass() : MaxHeaderSize(DefaultRotationThreshold) {} 602 603 PreservedAnalyses LoopRotatePass::run(Loop &L, AnalysisManager<Loop> &AM) { 604 auto &FAM = AM.getResult<FunctionAnalysisManagerLoopProxy>(L).getManager(); 605 Function *F = L.getHeader()->getParent(); 606 607 auto *LI = FAM.getCachedResult<LoopAnalysis>(*F); 608 const auto *TTI = FAM.getCachedResult<TargetIRAnalysis>(*F); 609 auto *AC = FAM.getCachedResult<AssumptionAnalysis>(*F); 610 assert((LI && TTI && AC) && "Analyses for loop rotation not available"); 611 612 // Optional analyses. 613 auto *DT = FAM.getCachedResult<DominatorTreeAnalysis>(*F); 614 auto *SE = FAM.getCachedResult<ScalarEvolutionAnalysis>(*F); 615 616 bool Changed = iterativelyRotateLoop(&L, MaxHeaderSize, LI, TTI, AC, DT, SE); 617 if (!Changed) 618 return PreservedAnalyses::all(); 619 return getLoopPassPreservedAnalyses(); 620 } 621 622 namespace { 623 624 class LoopRotateLegacyPass : public LoopPass { 625 unsigned MaxHeaderSize; 626 627 public: 628 static char ID; // Pass ID, replacement for typeid 629 LoopRotateLegacyPass(int SpecifiedMaxHeaderSize = -1) : LoopPass(ID) { 630 initializeLoopRotateLegacyPassPass(*PassRegistry::getPassRegistry()); 631 if (SpecifiedMaxHeaderSize == -1) 632 MaxHeaderSize = DefaultRotationThreshold; 633 else 634 MaxHeaderSize = unsigned(SpecifiedMaxHeaderSize); 635 } 636 637 // LCSSA form makes instruction renaming easier. 638 void getAnalysisUsage(AnalysisUsage &AU) const override { 639 AU.addRequired<AssumptionCacheTracker>(); 640 AU.addRequired<TargetTransformInfoWrapperPass>(); 641 getLoopAnalysisUsage(AU); 642 } 643 644 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 645 if (skipLoop(L)) 646 return false; 647 Function &F = *L->getHeader()->getParent(); 648 649 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 650 const auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 651 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 652 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 653 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; 654 auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); 655 auto *SE = SEWP ? &SEWP->getSE() : nullptr; 656 657 return iterativelyRotateLoop(L, MaxHeaderSize, LI, TTI, AC, DT, SE); 658 } 659 }; 660 } 661 662 char LoopRotateLegacyPass::ID = 0; 663 INITIALIZE_PASS_BEGIN(LoopRotateLegacyPass, "loop-rotate", "Rotate Loops", 664 false, false) 665 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 666 INITIALIZE_PASS_DEPENDENCY(LoopPass) 667 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 668 INITIALIZE_PASS_END(LoopRotateLegacyPass, "loop-rotate", "Rotate Loops", 669 false, false) 670 671 Pass *llvm::createLoopRotatePass(int MaxHeaderSize) { 672 return new LoopRotateLegacyPass(MaxHeaderSize); 673 } 674