1 //===- LoopRotation.cpp - Loop Rotation Pass ------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements Loop Rotation Pass.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/LoopRotation.h"
15 #include "llvm/ADT/Statistic.h"
16 #include "llvm/Analysis/AliasAnalysis.h"
17 #include "llvm/Analysis/BasicAliasAnalysis.h"
18 #include "llvm/Analysis/AssumptionCache.h"
19 #include "llvm/Analysis/CodeMetrics.h"
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/Analysis/GlobalsModRef.h"
22 #include "llvm/Analysis/LoopPass.h"
23 #include "llvm/Analysis/LoopPassManager.h"
24 #include "llvm/Analysis/ScalarEvolution.h"
25 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
26 #include "llvm/Analysis/TargetTransformInfo.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/IR/CFG.h"
29 #include "llvm/IR/Dominators.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/IntrinsicInst.h"
32 #include "llvm/IR/Module.h"
33 #include "llvm/Support/CommandLine.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Transforms/Scalar.h"
37 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
38 #include "llvm/Transforms/Utils/Local.h"
39 #include "llvm/Transforms/Utils/LoopUtils.h"
40 #include "llvm/Transforms/Utils/SSAUpdater.h"
41 #include "llvm/Transforms/Utils/ValueMapper.h"
42 using namespace llvm;
43 
44 #define DEBUG_TYPE "loop-rotate"
45 
46 static cl::opt<unsigned> DefaultRotationThreshold(
47     "rotation-max-header-size", cl::init(16), cl::Hidden,
48     cl::desc("The default maximum header size for automatic loop rotation"));
49 
50 STATISTIC(NumRotated, "Number of loops rotated");
51 
52 /// A simple loop rotation transformation.
53 class LoopRotate {
54   const unsigned MaxHeaderSize;
55   LoopInfo *LI;
56   const TargetTransformInfo *TTI;
57   AssumptionCache *AC;
58   DominatorTree *DT;
59   ScalarEvolution *SE;
60 
61 public:
62   LoopRotate(unsigned MaxHeaderSize, LoopInfo *LI,
63              const TargetTransformInfo *TTI, AssumptionCache *AC,
64              DominatorTree *DT, ScalarEvolution *SE)
65       : MaxHeaderSize(MaxHeaderSize), LI(LI), TTI(TTI), AC(AC), DT(DT), SE(SE) {
66   }
67   bool processLoop(Loop *L);
68 
69 private:
70   bool rotateLoop(Loop *L, bool SimplifiedLatch);
71   bool simplifyLoopLatch(Loop *L);
72 };
73 
74 /// RewriteUsesOfClonedInstructions - We just cloned the instructions from the
75 /// old header into the preheader.  If there were uses of the values produced by
76 /// these instruction that were outside of the loop, we have to insert PHI nodes
77 /// to merge the two values.  Do this now.
78 static void RewriteUsesOfClonedInstructions(BasicBlock *OrigHeader,
79                                             BasicBlock *OrigPreheader,
80                                             ValueToValueMapTy &ValueMap) {
81   // Remove PHI node entries that are no longer live.
82   BasicBlock::iterator I, E = OrigHeader->end();
83   for (I = OrigHeader->begin(); PHINode *PN = dyn_cast<PHINode>(I); ++I)
84     PN->removeIncomingValue(PN->getBasicBlockIndex(OrigPreheader));
85 
86   // Now fix up users of the instructions in OrigHeader, inserting PHI nodes
87   // as necessary.
88   SSAUpdater SSA;
89   for (I = OrigHeader->begin(); I != E; ++I) {
90     Value *OrigHeaderVal = &*I;
91 
92     // If there are no uses of the value (e.g. because it returns void), there
93     // is nothing to rewrite.
94     if (OrigHeaderVal->use_empty())
95       continue;
96 
97     Value *OrigPreHeaderVal = ValueMap.lookup(OrigHeaderVal);
98 
99     // The value now exits in two versions: the initial value in the preheader
100     // and the loop "next" value in the original header.
101     SSA.Initialize(OrigHeaderVal->getType(), OrigHeaderVal->getName());
102     SSA.AddAvailableValue(OrigHeader, OrigHeaderVal);
103     SSA.AddAvailableValue(OrigPreheader, OrigPreHeaderVal);
104 
105     // Visit each use of the OrigHeader instruction.
106     for (Value::use_iterator UI = OrigHeaderVal->use_begin(),
107                              UE = OrigHeaderVal->use_end();
108          UI != UE;) {
109       // Grab the use before incrementing the iterator.
110       Use &U = *UI;
111 
112       // Increment the iterator before removing the use from the list.
113       ++UI;
114 
115       // SSAUpdater can't handle a non-PHI use in the same block as an
116       // earlier def. We can easily handle those cases manually.
117       Instruction *UserInst = cast<Instruction>(U.getUser());
118       if (!isa<PHINode>(UserInst)) {
119         BasicBlock *UserBB = UserInst->getParent();
120 
121         // The original users in the OrigHeader are already using the
122         // original definitions.
123         if (UserBB == OrigHeader)
124           continue;
125 
126         // Users in the OrigPreHeader need to use the value to which the
127         // original definitions are mapped.
128         if (UserBB == OrigPreheader) {
129           U = OrigPreHeaderVal;
130           continue;
131         }
132       }
133 
134       // Anything else can be handled by SSAUpdater.
135       SSA.RewriteUse(U);
136     }
137 
138     // Replace MetadataAsValue(ValueAsMetadata(OrigHeaderVal)) uses in debug
139     // intrinsics.
140     LLVMContext &C = OrigHeader->getContext();
141     if (auto *VAM = ValueAsMetadata::getIfExists(OrigHeaderVal)) {
142       if (auto *MAV = MetadataAsValue::getIfExists(C, VAM)) {
143         for (auto UI = MAV->use_begin(), E = MAV->use_end(); UI != E;) {
144           // Grab the use before incrementing the iterator. Otherwise, altering
145           // the Use will invalidate the iterator.
146           Use &U = *UI++;
147           DbgInfoIntrinsic *UserInst = dyn_cast<DbgInfoIntrinsic>(U.getUser());
148           if (!UserInst)
149             continue;
150 
151           // The original users in the OrigHeader are already using the original
152           // definitions.
153           BasicBlock *UserBB = UserInst->getParent();
154           if (UserBB == OrigHeader)
155             continue;
156 
157           // Users in the OrigPreHeader need to use the value to which the
158           // original definitions are mapped and anything else can be handled by
159           // the SSAUpdater. To avoid adding PHINodes, check if the value is
160           // available in UserBB, if not substitute undef.
161           Value *NewVal;
162           if (UserBB == OrigPreheader)
163             NewVal = OrigPreHeaderVal;
164           else if (SSA.HasValueForBlock(UserBB))
165             NewVal = SSA.GetValueInMiddleOfBlock(UserBB);
166           else
167             NewVal = UndefValue::get(OrigHeaderVal->getType());
168           U = MetadataAsValue::get(C, ValueAsMetadata::get(NewVal));
169         }
170       }
171     }
172   }
173 }
174 
175 /// Rotate loop LP. Return true if the loop is rotated.
176 ///
177 /// \param SimplifiedLatch is true if the latch was just folded into the final
178 /// loop exit. In this case we may want to rotate even though the new latch is
179 /// now an exiting branch. This rotation would have happened had the latch not
180 /// been simplified. However, if SimplifiedLatch is false, then we avoid
181 /// rotating loops in which the latch exits to avoid excessive or endless
182 /// rotation. LoopRotate should be repeatable and converge to a canonical
183 /// form. This property is satisfied because simplifying the loop latch can only
184 /// happen once across multiple invocations of the LoopRotate pass.
185 bool LoopRotate::rotateLoop(Loop *L, bool SimplifiedLatch) {
186   // If the loop has only one block then there is not much to rotate.
187   if (L->getBlocks().size() == 1)
188     return false;
189 
190   BasicBlock *OrigHeader = L->getHeader();
191   BasicBlock *OrigLatch = L->getLoopLatch();
192 
193   BranchInst *BI = dyn_cast<BranchInst>(OrigHeader->getTerminator());
194   if (!BI || BI->isUnconditional())
195     return false;
196 
197   // If the loop header is not one of the loop exiting blocks then
198   // either this loop is already rotated or it is not
199   // suitable for loop rotation transformations.
200   if (!L->isLoopExiting(OrigHeader))
201     return false;
202 
203   // If the loop latch already contains a branch that leaves the loop then the
204   // loop is already rotated.
205   if (!OrigLatch)
206     return false;
207 
208   // Rotate if either the loop latch does *not* exit the loop, or if the loop
209   // latch was just simplified.
210   if (L->isLoopExiting(OrigLatch) && !SimplifiedLatch)
211     return false;
212 
213   // Check size of original header and reject loop if it is very big or we can't
214   // duplicate blocks inside it.
215   {
216     SmallPtrSet<const Value *, 32> EphValues;
217     CodeMetrics::collectEphemeralValues(L, AC, EphValues);
218 
219     CodeMetrics Metrics;
220     Metrics.analyzeBasicBlock(OrigHeader, *TTI, EphValues);
221     if (Metrics.notDuplicatable) {
222       DEBUG(dbgs() << "LoopRotation: NOT rotating - contains non-duplicatable"
223                    << " instructions: ";
224             L->dump());
225       return false;
226     }
227     if (Metrics.convergent) {
228       DEBUG(dbgs() << "LoopRotation: NOT rotating - contains convergent "
229                       "instructions: ";
230             L->dump());
231       return false;
232     }
233     if (Metrics.NumInsts > MaxHeaderSize)
234       return false;
235   }
236 
237   // Now, this loop is suitable for rotation.
238   BasicBlock *OrigPreheader = L->getLoopPreheader();
239 
240   // If the loop could not be converted to canonical form, it must have an
241   // indirectbr in it, just give up.
242   if (!OrigPreheader)
243     return false;
244 
245   // Anything ScalarEvolution may know about this loop or the PHI nodes
246   // in its header will soon be invalidated.
247   if (SE)
248     SE->forgetLoop(L);
249 
250   DEBUG(dbgs() << "LoopRotation: rotating "; L->dump());
251 
252   // Find new Loop header. NewHeader is a Header's one and only successor
253   // that is inside loop.  Header's other successor is outside the
254   // loop.  Otherwise loop is not suitable for rotation.
255   BasicBlock *Exit = BI->getSuccessor(0);
256   BasicBlock *NewHeader = BI->getSuccessor(1);
257   if (L->contains(Exit))
258     std::swap(Exit, NewHeader);
259   assert(NewHeader && "Unable to determine new loop header");
260   assert(L->contains(NewHeader) && !L->contains(Exit) &&
261          "Unable to determine loop header and exit blocks");
262 
263   // This code assumes that the new header has exactly one predecessor.
264   // Remove any single-entry PHI nodes in it.
265   assert(NewHeader->getSinglePredecessor() &&
266          "New header doesn't have one pred!");
267   FoldSingleEntryPHINodes(NewHeader);
268 
269   // Begin by walking OrigHeader and populating ValueMap with an entry for
270   // each Instruction.
271   BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end();
272   ValueToValueMapTy ValueMap;
273 
274   // For PHI nodes, the value available in OldPreHeader is just the
275   // incoming value from OldPreHeader.
276   for (; PHINode *PN = dyn_cast<PHINode>(I); ++I)
277     ValueMap[PN] = PN->getIncomingValueForBlock(OrigPreheader);
278 
279   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
280 
281   // For the rest of the instructions, either hoist to the OrigPreheader if
282   // possible or create a clone in the OldPreHeader if not.
283   TerminatorInst *LoopEntryBranch = OrigPreheader->getTerminator();
284   while (I != E) {
285     Instruction *Inst = &*I++;
286 
287     // If the instruction's operands are invariant and it doesn't read or write
288     // memory, then it is safe to hoist.  Doing this doesn't change the order of
289     // execution in the preheader, but does prevent the instruction from
290     // executing in each iteration of the loop.  This means it is safe to hoist
291     // something that might trap, but isn't safe to hoist something that reads
292     // memory (without proving that the loop doesn't write).
293     if (L->hasLoopInvariantOperands(Inst) && !Inst->mayReadFromMemory() &&
294         !Inst->mayWriteToMemory() && !isa<TerminatorInst>(Inst) &&
295         !isa<DbgInfoIntrinsic>(Inst) && !isa<AllocaInst>(Inst)) {
296       Inst->moveBefore(LoopEntryBranch);
297       continue;
298     }
299 
300     // Otherwise, create a duplicate of the instruction.
301     Instruction *C = Inst->clone();
302 
303     // Eagerly remap the operands of the instruction.
304     RemapInstruction(C, ValueMap,
305                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
306 
307     // With the operands remapped, see if the instruction constant folds or is
308     // otherwise simplifyable.  This commonly occurs because the entry from PHI
309     // nodes allows icmps and other instructions to fold.
310     // FIXME: Provide TLI, DT, AC to SimplifyInstruction.
311     Value *V = SimplifyInstruction(C, DL);
312     if (V && LI->replacementPreservesLCSSAForm(C, V)) {
313       // If so, then delete the temporary instruction and stick the folded value
314       // in the map.
315       ValueMap[Inst] = V;
316       if (!C->mayHaveSideEffects()) {
317         delete C;
318         C = nullptr;
319       }
320     } else {
321       ValueMap[Inst] = C;
322     }
323     if (C) {
324       // Otherwise, stick the new instruction into the new block!
325       C->setName(Inst->getName());
326       C->insertBefore(LoopEntryBranch);
327     }
328   }
329 
330   // Along with all the other instructions, we just cloned OrigHeader's
331   // terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's
332   // successors by duplicating their incoming values for OrigHeader.
333   TerminatorInst *TI = OrigHeader->getTerminator();
334   for (BasicBlock *SuccBB : TI->successors())
335     for (BasicBlock::iterator BI = SuccBB->begin();
336          PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
337       PN->addIncoming(PN->getIncomingValueForBlock(OrigHeader), OrigPreheader);
338 
339   // Now that OrigPreHeader has a clone of OrigHeader's terminator, remove
340   // OrigPreHeader's old terminator (the original branch into the loop), and
341   // remove the corresponding incoming values from the PHI nodes in OrigHeader.
342   LoopEntryBranch->eraseFromParent();
343 
344   // If there were any uses of instructions in the duplicated block outside the
345   // loop, update them, inserting PHI nodes as required
346   RewriteUsesOfClonedInstructions(OrigHeader, OrigPreheader, ValueMap);
347 
348   // NewHeader is now the header of the loop.
349   L->moveToHeader(NewHeader);
350   assert(L->getHeader() == NewHeader && "Latch block is our new header");
351 
352   // At this point, we've finished our major CFG changes.  As part of cloning
353   // the loop into the preheader we've simplified instructions and the
354   // duplicated conditional branch may now be branching on a constant.  If it is
355   // branching on a constant and if that constant means that we enter the loop,
356   // then we fold away the cond branch to an uncond branch.  This simplifies the
357   // loop in cases important for nested loops, and it also means we don't have
358   // to split as many edges.
359   BranchInst *PHBI = cast<BranchInst>(OrigPreheader->getTerminator());
360   assert(PHBI->isConditional() && "Should be clone of BI condbr!");
361   if (!isa<ConstantInt>(PHBI->getCondition()) ||
362       PHBI->getSuccessor(cast<ConstantInt>(PHBI->getCondition())->isZero()) !=
363           NewHeader) {
364     // The conditional branch can't be folded, handle the general case.
365     // Update DominatorTree to reflect the CFG change we just made.  Then split
366     // edges as necessary to preserve LoopSimplify form.
367     if (DT) {
368       // Everything that was dominated by the old loop header is now dominated
369       // by the original loop preheader. Conceptually the header was merged
370       // into the preheader, even though we reuse the actual block as a new
371       // loop latch.
372       DomTreeNode *OrigHeaderNode = DT->getNode(OrigHeader);
373       SmallVector<DomTreeNode *, 8> HeaderChildren(OrigHeaderNode->begin(),
374                                                    OrigHeaderNode->end());
375       DomTreeNode *OrigPreheaderNode = DT->getNode(OrigPreheader);
376       for (unsigned I = 0, E = HeaderChildren.size(); I != E; ++I)
377         DT->changeImmediateDominator(HeaderChildren[I], OrigPreheaderNode);
378 
379       assert(DT->getNode(Exit)->getIDom() == OrigPreheaderNode);
380       assert(DT->getNode(NewHeader)->getIDom() == OrigPreheaderNode);
381 
382       // Update OrigHeader to be dominated by the new header block.
383       DT->changeImmediateDominator(OrigHeader, OrigLatch);
384     }
385 
386     // Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and
387     // thus is not a preheader anymore.
388     // Split the edge to form a real preheader.
389     BasicBlock *NewPH = SplitCriticalEdge(
390         OrigPreheader, NewHeader,
391         CriticalEdgeSplittingOptions(DT, LI).setPreserveLCSSA());
392     NewPH->setName(NewHeader->getName() + ".lr.ph");
393 
394     // Preserve canonical loop form, which means that 'Exit' should have only
395     // one predecessor. Note that Exit could be an exit block for multiple
396     // nested loops, causing both of the edges to now be critical and need to
397     // be split.
398     SmallVector<BasicBlock *, 4> ExitPreds(pred_begin(Exit), pred_end(Exit));
399     bool SplitLatchEdge = false;
400     for (BasicBlock *ExitPred : ExitPreds) {
401       // We only need to split loop exit edges.
402       Loop *PredLoop = LI->getLoopFor(ExitPred);
403       if (!PredLoop || PredLoop->contains(Exit))
404         continue;
405       if (isa<IndirectBrInst>(ExitPred->getTerminator()))
406         continue;
407       SplitLatchEdge |= L->getLoopLatch() == ExitPred;
408       BasicBlock *ExitSplit = SplitCriticalEdge(
409           ExitPred, Exit,
410           CriticalEdgeSplittingOptions(DT, LI).setPreserveLCSSA());
411       ExitSplit->moveBefore(Exit);
412     }
413     assert(SplitLatchEdge &&
414            "Despite splitting all preds, failed to split latch exit?");
415   } else {
416     // We can fold the conditional branch in the preheader, this makes things
417     // simpler. The first step is to remove the extra edge to the Exit block.
418     Exit->removePredecessor(OrigPreheader, true /*preserve LCSSA*/);
419     BranchInst *NewBI = BranchInst::Create(NewHeader, PHBI);
420     NewBI->setDebugLoc(PHBI->getDebugLoc());
421     PHBI->eraseFromParent();
422 
423     // With our CFG finalized, update DomTree if it is available.
424     if (DT) {
425       // Update OrigHeader to be dominated by the new header block.
426       DT->changeImmediateDominator(NewHeader, OrigPreheader);
427       DT->changeImmediateDominator(OrigHeader, OrigLatch);
428 
429       // Brute force incremental dominator tree update. Call
430       // findNearestCommonDominator on all CFG predecessors of each child of the
431       // original header.
432       DomTreeNode *OrigHeaderNode = DT->getNode(OrigHeader);
433       SmallVector<DomTreeNode *, 8> HeaderChildren(OrigHeaderNode->begin(),
434                                                    OrigHeaderNode->end());
435       bool Changed;
436       do {
437         Changed = false;
438         for (unsigned I = 0, E = HeaderChildren.size(); I != E; ++I) {
439           DomTreeNode *Node = HeaderChildren[I];
440           BasicBlock *BB = Node->getBlock();
441 
442           pred_iterator PI = pred_begin(BB);
443           BasicBlock *NearestDom = *PI;
444           for (pred_iterator PE = pred_end(BB); PI != PE; ++PI)
445             NearestDom = DT->findNearestCommonDominator(NearestDom, *PI);
446 
447           // Remember if this changes the DomTree.
448           if (Node->getIDom()->getBlock() != NearestDom) {
449             DT->changeImmediateDominator(BB, NearestDom);
450             Changed = true;
451           }
452         }
453 
454         // If the dominator changed, this may have an effect on other
455         // predecessors, continue until we reach a fixpoint.
456       } while (Changed);
457     }
458   }
459 
460   assert(L->getLoopPreheader() && "Invalid loop preheader after loop rotation");
461   assert(L->getLoopLatch() && "Invalid loop latch after loop rotation");
462 
463   // Now that the CFG and DomTree are in a consistent state again, try to merge
464   // the OrigHeader block into OrigLatch.  This will succeed if they are
465   // connected by an unconditional branch.  This is just a cleanup so the
466   // emitted code isn't too gross in this common case.
467   MergeBlockIntoPredecessor(OrigHeader, DT, LI);
468 
469   DEBUG(dbgs() << "LoopRotation: into "; L->dump());
470 
471   ++NumRotated;
472   return true;
473 }
474 
475 /// Determine whether the instructions in this range may be safely and cheaply
476 /// speculated. This is not an important enough situation to develop complex
477 /// heuristics. We handle a single arithmetic instruction along with any type
478 /// conversions.
479 static bool shouldSpeculateInstrs(BasicBlock::iterator Begin,
480                                   BasicBlock::iterator End, Loop *L) {
481   bool seenIncrement = false;
482   bool MultiExitLoop = false;
483 
484   if (!L->getExitingBlock())
485     MultiExitLoop = true;
486 
487   for (BasicBlock::iterator I = Begin; I != End; ++I) {
488 
489     if (!isSafeToSpeculativelyExecute(&*I))
490       return false;
491 
492     if (isa<DbgInfoIntrinsic>(I))
493       continue;
494 
495     switch (I->getOpcode()) {
496     default:
497       return false;
498     case Instruction::GetElementPtr:
499       // GEPs are cheap if all indices are constant.
500       if (!cast<GEPOperator>(I)->hasAllConstantIndices())
501         return false;
502     // fall-thru to increment case
503     case Instruction::Add:
504     case Instruction::Sub:
505     case Instruction::And:
506     case Instruction::Or:
507     case Instruction::Xor:
508     case Instruction::Shl:
509     case Instruction::LShr:
510     case Instruction::AShr: {
511       Value *IVOpnd =
512           !isa<Constant>(I->getOperand(0))
513               ? I->getOperand(0)
514               : !isa<Constant>(I->getOperand(1)) ? I->getOperand(1) : nullptr;
515       if (!IVOpnd)
516         return false;
517 
518       // If increment operand is used outside of the loop, this speculation
519       // could cause extra live range interference.
520       if (MultiExitLoop) {
521         for (User *UseI : IVOpnd->users()) {
522           auto *UserInst = cast<Instruction>(UseI);
523           if (!L->contains(UserInst))
524             return false;
525         }
526       }
527 
528       if (seenIncrement)
529         return false;
530       seenIncrement = true;
531       break;
532     }
533     case Instruction::Trunc:
534     case Instruction::ZExt:
535     case Instruction::SExt:
536       // ignore type conversions
537       break;
538     }
539   }
540   return true;
541 }
542 
543 /// Fold the loop tail into the loop exit by speculating the loop tail
544 /// instructions. Typically, this is a single post-increment. In the case of a
545 /// simple 2-block loop, hoisting the increment can be much better than
546 /// duplicating the entire loop header. In the case of loops with early exits,
547 /// rotation will not work anyway, but simplifyLoopLatch will put the loop in
548 /// canonical form so downstream passes can handle it.
549 ///
550 /// I don't believe this invalidates SCEV.
551 bool LoopRotate::simplifyLoopLatch(Loop *L) {
552   BasicBlock *Latch = L->getLoopLatch();
553   if (!Latch || Latch->hasAddressTaken())
554     return false;
555 
556   BranchInst *Jmp = dyn_cast<BranchInst>(Latch->getTerminator());
557   if (!Jmp || !Jmp->isUnconditional())
558     return false;
559 
560   BasicBlock *LastExit = Latch->getSinglePredecessor();
561   if (!LastExit || !L->isLoopExiting(LastExit))
562     return false;
563 
564   BranchInst *BI = dyn_cast<BranchInst>(LastExit->getTerminator());
565   if (!BI)
566     return false;
567 
568   if (!shouldSpeculateInstrs(Latch->begin(), Jmp->getIterator(), L))
569     return false;
570 
571   DEBUG(dbgs() << "Folding loop latch " << Latch->getName() << " into "
572                << LastExit->getName() << "\n");
573 
574   // Hoist the instructions from Latch into LastExit.
575   LastExit->getInstList().splice(BI->getIterator(), Latch->getInstList(),
576                                  Latch->begin(), Jmp->getIterator());
577 
578   unsigned FallThruPath = BI->getSuccessor(0) == Latch ? 0 : 1;
579   BasicBlock *Header = Jmp->getSuccessor(0);
580   assert(Header == L->getHeader() && "expected a backward branch");
581 
582   // Remove Latch from the CFG so that LastExit becomes the new Latch.
583   BI->setSuccessor(FallThruPath, Header);
584   Latch->replaceSuccessorsPhiUsesWith(LastExit);
585   Jmp->eraseFromParent();
586 
587   // Nuke the Latch block.
588   assert(Latch->empty() && "unable to evacuate Latch");
589   LI->removeBlock(Latch);
590   if (DT)
591     DT->eraseNode(Latch);
592   Latch->eraseFromParent();
593   return true;
594 }
595 
596 /// Rotate \c L, and return true if any modification was made.
597 bool LoopRotate::processLoop(Loop *L) {
598   // Save the loop metadata.
599   MDNode *LoopMD = L->getLoopID();
600 
601   // Simplify the loop latch before attempting to rotate the header
602   // upward. Rotation may not be needed if the loop tail can be folded into the
603   // loop exit.
604   bool SimplifiedLatch = simplifyLoopLatch(L);
605 
606   bool MadeChange = rotateLoop(L, SimplifiedLatch);
607   assert((!MadeChange || L->isLoopExiting(L->getLoopLatch())) &&
608          "Loop latch should be exiting after loop-rotate.");
609 
610   // Restore the loop metadata.
611   // NB! We presume LoopRotation DOESN'T ADD its own metadata.
612   if ((MadeChange || SimplifiedLatch) && LoopMD)
613     L->setLoopID(LoopMD);
614 
615   return MadeChange;
616 }
617 
618 LoopRotatePass::LoopRotatePass() {}
619 
620 PreservedAnalyses LoopRotatePass::run(Loop &L, AnalysisManager<Loop> &AM) {
621   auto &FAM = AM.getResult<FunctionAnalysisManagerLoopProxy>(L).getManager();
622   Function *F = L.getHeader()->getParent();
623 
624   auto *LI = FAM.getCachedResult<LoopAnalysis>(*F);
625   const auto *TTI = FAM.getCachedResult<TargetIRAnalysis>(*F);
626   auto *AC = FAM.getCachedResult<AssumptionAnalysis>(*F);
627   assert((LI && TTI && AC) && "Analyses for loop rotation not available");
628 
629   // Optional analyses.
630   auto *DT = FAM.getCachedResult<DominatorTreeAnalysis>(*F);
631   auto *SE = FAM.getCachedResult<ScalarEvolutionAnalysis>(*F);
632   LoopRotate LR(DefaultRotationThreshold, LI, TTI, AC, DT, SE);
633 
634   bool Changed = LR.processLoop(&L);
635   if (!Changed)
636     return PreservedAnalyses::all();
637   return getLoopPassPreservedAnalyses();
638 }
639 
640 namespace {
641 
642 class LoopRotateLegacyPass : public LoopPass {
643   unsigned MaxHeaderSize;
644 
645 public:
646   static char ID; // Pass ID, replacement for typeid
647   LoopRotateLegacyPass(int SpecifiedMaxHeaderSize = -1) : LoopPass(ID) {
648     initializeLoopRotateLegacyPassPass(*PassRegistry::getPassRegistry());
649     if (SpecifiedMaxHeaderSize == -1)
650       MaxHeaderSize = DefaultRotationThreshold;
651     else
652       MaxHeaderSize = unsigned(SpecifiedMaxHeaderSize);
653   }
654 
655   // LCSSA form makes instruction renaming easier.
656   void getAnalysisUsage(AnalysisUsage &AU) const override {
657     AU.addRequired<AssumptionCacheTracker>();
658     AU.addRequired<TargetTransformInfoWrapperPass>();
659     getLoopAnalysisUsage(AU);
660   }
661 
662   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
663     if (skipLoop(L))
664       return false;
665     Function &F = *L->getHeader()->getParent();
666 
667     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
668     const auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
669     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
670     auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
671     auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
672     auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
673     auto *SE = SEWP ? &SEWP->getSE() : nullptr;
674     LoopRotate LR(MaxHeaderSize, LI, TTI, AC, DT, SE);
675     return LR.processLoop(L);
676   }
677 };
678 }
679 
680 char LoopRotateLegacyPass::ID = 0;
681 INITIALIZE_PASS_BEGIN(LoopRotateLegacyPass, "loop-rotate", "Rotate Loops",
682                       false, false)
683 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
684 INITIALIZE_PASS_DEPENDENCY(LoopPass)
685 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
686 INITIALIZE_PASS_END(LoopRotateLegacyPass, "loop-rotate", "Rotate Loops", false,
687                     false)
688 
689 Pass *llvm::createLoopRotatePass(int MaxHeaderSize) {
690   return new LoopRotateLegacyPass(MaxHeaderSize);
691 }
692