1 //===- LoopRotation.cpp - Loop Rotation Pass ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements Loop Rotation Pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar.h" 15 #include "llvm/ADT/Statistic.h" 16 #include "llvm/Analysis/AssumptionCache.h" 17 #include "llvm/Analysis/CodeMetrics.h" 18 #include "llvm/Analysis/InstructionSimplify.h" 19 #include "llvm/Analysis/LoopPass.h" 20 #include "llvm/Analysis/ScalarEvolution.h" 21 #include "llvm/Analysis/TargetTransformInfo.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/IR/CFG.h" 24 #include "llvm/IR/Dominators.h" 25 #include "llvm/IR/Function.h" 26 #include "llvm/IR/IntrinsicInst.h" 27 #include "llvm/Support/CommandLine.h" 28 #include "llvm/Support/Debug.h" 29 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 30 #include "llvm/Transforms/Utils/Local.h" 31 #include "llvm/Transforms/Utils/SSAUpdater.h" 32 #include "llvm/Transforms/Utils/ValueMapper.h" 33 using namespace llvm; 34 35 #define DEBUG_TYPE "loop-rotate" 36 37 static cl::opt<unsigned> 38 DefaultRotationThreshold("rotation-max-header-size", cl::init(16), cl::Hidden, 39 cl::desc("The default maximum header size for automatic loop rotation")); 40 41 STATISTIC(NumRotated, "Number of loops rotated"); 42 namespace { 43 44 class LoopRotate : public LoopPass { 45 public: 46 static char ID; // Pass ID, replacement for typeid 47 LoopRotate(int SpecifiedMaxHeaderSize = -1) : LoopPass(ID) { 48 initializeLoopRotatePass(*PassRegistry::getPassRegistry()); 49 if (SpecifiedMaxHeaderSize == -1) 50 MaxHeaderSize = DefaultRotationThreshold; 51 else 52 MaxHeaderSize = unsigned(SpecifiedMaxHeaderSize); 53 } 54 55 // LCSSA form makes instruction renaming easier. 56 void getAnalysisUsage(AnalysisUsage &AU) const override { 57 AU.addRequired<AssumptionCacheTracker>(); 58 AU.addPreserved<DominatorTreeWrapperPass>(); 59 AU.addRequired<LoopInfoWrapperPass>(); 60 AU.addPreserved<LoopInfoWrapperPass>(); 61 AU.addRequiredID(LoopSimplifyID); 62 AU.addPreservedID(LoopSimplifyID); 63 AU.addRequiredID(LCSSAID); 64 AU.addPreservedID(LCSSAID); 65 AU.addPreserved<ScalarEvolution>(); 66 AU.addRequired<TargetTransformInfoWrapperPass>(); 67 } 68 69 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 70 bool simplifyLoopLatch(Loop *L); 71 bool rotateLoop(Loop *L, bool SimplifiedLatch); 72 73 private: 74 unsigned MaxHeaderSize; 75 LoopInfo *LI; 76 const TargetTransformInfo *TTI; 77 AssumptionCache *AC; 78 DominatorTree *DT; 79 }; 80 } 81 82 char LoopRotate::ID = 0; 83 INITIALIZE_PASS_BEGIN(LoopRotate, "loop-rotate", "Rotate Loops", false, false) 84 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 85 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 86 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 87 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 88 INITIALIZE_PASS_DEPENDENCY(LCSSA) 89 INITIALIZE_PASS_END(LoopRotate, "loop-rotate", "Rotate Loops", false, false) 90 91 Pass *llvm::createLoopRotatePass(int MaxHeaderSize) { 92 return new LoopRotate(MaxHeaderSize); 93 } 94 95 /// Rotate Loop L as many times as possible. Return true if 96 /// the loop is rotated at least once. 97 bool LoopRotate::runOnLoop(Loop *L, LPPassManager &LPM) { 98 if (skipOptnoneFunction(L)) 99 return false; 100 101 // Save the loop metadata. 102 MDNode *LoopMD = L->getLoopID(); 103 104 Function &F = *L->getHeader()->getParent(); 105 106 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 107 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 108 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 109 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 110 DT = DTWP ? &DTWP->getDomTree() : nullptr; 111 112 // Simplify the loop latch before attempting to rotate the header 113 // upward. Rotation may not be needed if the loop tail can be folded into the 114 // loop exit. 115 bool SimplifiedLatch = simplifyLoopLatch(L); 116 117 // One loop can be rotated multiple times. 118 bool MadeChange = false; 119 while (rotateLoop(L, SimplifiedLatch)) { 120 MadeChange = true; 121 SimplifiedLatch = false; 122 } 123 124 // Restore the loop metadata. 125 // NB! We presume LoopRotation DOESN'T ADD its own metadata. 126 if ((MadeChange || SimplifiedLatch) && LoopMD) 127 L->setLoopID(LoopMD); 128 129 return MadeChange; 130 } 131 132 /// RewriteUsesOfClonedInstructions - We just cloned the instructions from the 133 /// old header into the preheader. If there were uses of the values produced by 134 /// these instruction that were outside of the loop, we have to insert PHI nodes 135 /// to merge the two values. Do this now. 136 static void RewriteUsesOfClonedInstructions(BasicBlock *OrigHeader, 137 BasicBlock *OrigPreheader, 138 ValueToValueMapTy &ValueMap) { 139 // Remove PHI node entries that are no longer live. 140 BasicBlock::iterator I, E = OrigHeader->end(); 141 for (I = OrigHeader->begin(); PHINode *PN = dyn_cast<PHINode>(I); ++I) 142 PN->removeIncomingValue(PN->getBasicBlockIndex(OrigPreheader)); 143 144 // Now fix up users of the instructions in OrigHeader, inserting PHI nodes 145 // as necessary. 146 SSAUpdater SSA; 147 for (I = OrigHeader->begin(); I != E; ++I) { 148 Value *OrigHeaderVal = I; 149 150 // If there are no uses of the value (e.g. because it returns void), there 151 // is nothing to rewrite. 152 if (OrigHeaderVal->use_empty()) 153 continue; 154 155 Value *OrigPreHeaderVal = ValueMap[OrigHeaderVal]; 156 157 // The value now exits in two versions: the initial value in the preheader 158 // and the loop "next" value in the original header. 159 SSA.Initialize(OrigHeaderVal->getType(), OrigHeaderVal->getName()); 160 SSA.AddAvailableValue(OrigHeader, OrigHeaderVal); 161 SSA.AddAvailableValue(OrigPreheader, OrigPreHeaderVal); 162 163 // Visit each use of the OrigHeader instruction. 164 for (Value::use_iterator UI = OrigHeaderVal->use_begin(), 165 UE = OrigHeaderVal->use_end(); UI != UE; ) { 166 // Grab the use before incrementing the iterator. 167 Use &U = *UI; 168 169 // Increment the iterator before removing the use from the list. 170 ++UI; 171 172 // SSAUpdater can't handle a non-PHI use in the same block as an 173 // earlier def. We can easily handle those cases manually. 174 Instruction *UserInst = cast<Instruction>(U.getUser()); 175 if (!isa<PHINode>(UserInst)) { 176 BasicBlock *UserBB = UserInst->getParent(); 177 178 // The original users in the OrigHeader are already using the 179 // original definitions. 180 if (UserBB == OrigHeader) 181 continue; 182 183 // Users in the OrigPreHeader need to use the value to which the 184 // original definitions are mapped. 185 if (UserBB == OrigPreheader) { 186 U = OrigPreHeaderVal; 187 continue; 188 } 189 } 190 191 // Anything else can be handled by SSAUpdater. 192 SSA.RewriteUse(U); 193 } 194 } 195 } 196 197 /// Determine whether the instructions in this range may be safely and cheaply 198 /// speculated. This is not an important enough situation to develop complex 199 /// heuristics. We handle a single arithmetic instruction along with any type 200 /// conversions. 201 static bool shouldSpeculateInstrs(BasicBlock::iterator Begin, 202 BasicBlock::iterator End, Loop *L) { 203 bool seenIncrement = false; 204 bool MultiExitLoop = false; 205 206 if (!L->getExitingBlock()) 207 MultiExitLoop = true; 208 209 for (BasicBlock::iterator I = Begin; I != End; ++I) { 210 211 if (!isSafeToSpeculativelyExecute(I)) 212 return false; 213 214 if (isa<DbgInfoIntrinsic>(I)) 215 continue; 216 217 switch (I->getOpcode()) { 218 default: 219 return false; 220 case Instruction::GetElementPtr: 221 // GEPs are cheap if all indices are constant. 222 if (!cast<GEPOperator>(I)->hasAllConstantIndices()) 223 return false; 224 // fall-thru to increment case 225 case Instruction::Add: 226 case Instruction::Sub: 227 case Instruction::And: 228 case Instruction::Or: 229 case Instruction::Xor: 230 case Instruction::Shl: 231 case Instruction::LShr: 232 case Instruction::AShr: { 233 Value *IVOpnd = !isa<Constant>(I->getOperand(0)) 234 ? I->getOperand(0) 235 : !isa<Constant>(I->getOperand(1)) 236 ? I->getOperand(1) 237 : nullptr; 238 if (!IVOpnd) 239 return false; 240 241 // If increment operand is used outside of the loop, this speculation 242 // could cause extra live range interference. 243 if (MultiExitLoop) { 244 for (User *UseI : IVOpnd->users()) { 245 auto *UserInst = cast<Instruction>(UseI); 246 if (!L->contains(UserInst)) 247 return false; 248 } 249 } 250 251 if (seenIncrement) 252 return false; 253 seenIncrement = true; 254 break; 255 } 256 case Instruction::Trunc: 257 case Instruction::ZExt: 258 case Instruction::SExt: 259 // ignore type conversions 260 break; 261 } 262 } 263 return true; 264 } 265 266 /// Fold the loop tail into the loop exit by speculating the loop tail 267 /// instructions. Typically, this is a single post-increment. In the case of a 268 /// simple 2-block loop, hoisting the increment can be much better than 269 /// duplicating the entire loop header. In the case of loops with early exits, 270 /// rotation will not work anyway, but simplifyLoopLatch will put the loop in 271 /// canonical form so downstream passes can handle it. 272 /// 273 /// I don't believe this invalidates SCEV. 274 bool LoopRotate::simplifyLoopLatch(Loop *L) { 275 BasicBlock *Latch = L->getLoopLatch(); 276 if (!Latch || Latch->hasAddressTaken()) 277 return false; 278 279 BranchInst *Jmp = dyn_cast<BranchInst>(Latch->getTerminator()); 280 if (!Jmp || !Jmp->isUnconditional()) 281 return false; 282 283 BasicBlock *LastExit = Latch->getSinglePredecessor(); 284 if (!LastExit || !L->isLoopExiting(LastExit)) 285 return false; 286 287 BranchInst *BI = dyn_cast<BranchInst>(LastExit->getTerminator()); 288 if (!BI) 289 return false; 290 291 if (!shouldSpeculateInstrs(Latch->begin(), Jmp, L)) 292 return false; 293 294 DEBUG(dbgs() << "Folding loop latch " << Latch->getName() << " into " 295 << LastExit->getName() << "\n"); 296 297 // Hoist the instructions from Latch into LastExit. 298 LastExit->getInstList().splice(BI, Latch->getInstList(), Latch->begin(), Jmp); 299 300 unsigned FallThruPath = BI->getSuccessor(0) == Latch ? 0 : 1; 301 BasicBlock *Header = Jmp->getSuccessor(0); 302 assert(Header == L->getHeader() && "expected a backward branch"); 303 304 // Remove Latch from the CFG so that LastExit becomes the new Latch. 305 BI->setSuccessor(FallThruPath, Header); 306 Latch->replaceSuccessorsPhiUsesWith(LastExit); 307 Jmp->eraseFromParent(); 308 309 // Nuke the Latch block. 310 assert(Latch->empty() && "unable to evacuate Latch"); 311 LI->removeBlock(Latch); 312 if (DT) 313 DT->eraseNode(Latch); 314 Latch->eraseFromParent(); 315 return true; 316 } 317 318 /// Rotate loop LP. Return true if the loop is rotated. 319 /// 320 /// \param SimplifiedLatch is true if the latch was just folded into the final 321 /// loop exit. In this case we may want to rotate even though the new latch is 322 /// now an exiting branch. This rotation would have happened had the latch not 323 /// been simplified. However, if SimplifiedLatch is false, then we avoid 324 /// rotating loops in which the latch exits to avoid excessive or endless 325 /// rotation. LoopRotate should be repeatable and converge to a canonical 326 /// form. This property is satisfied because simplifying the loop latch can only 327 /// happen once across multiple invocations of the LoopRotate pass. 328 bool LoopRotate::rotateLoop(Loop *L, bool SimplifiedLatch) { 329 // If the loop has only one block then there is not much to rotate. 330 if (L->getBlocks().size() == 1) 331 return false; 332 333 BasicBlock *OrigHeader = L->getHeader(); 334 BasicBlock *OrigLatch = L->getLoopLatch(); 335 336 BranchInst *BI = dyn_cast<BranchInst>(OrigHeader->getTerminator()); 337 if (!BI || BI->isUnconditional()) 338 return false; 339 340 // If the loop header is not one of the loop exiting blocks then 341 // either this loop is already rotated or it is not 342 // suitable for loop rotation transformations. 343 if (!L->isLoopExiting(OrigHeader)) 344 return false; 345 346 // If the loop latch already contains a branch that leaves the loop then the 347 // loop is already rotated. 348 if (!OrigLatch) 349 return false; 350 351 // Rotate if either the loop latch does *not* exit the loop, or if the loop 352 // latch was just simplified. 353 if (L->isLoopExiting(OrigLatch) && !SimplifiedLatch) 354 return false; 355 356 // Check size of original header and reject loop if it is very big or we can't 357 // duplicate blocks inside it. 358 { 359 SmallPtrSet<const Value *, 32> EphValues; 360 CodeMetrics::collectEphemeralValues(L, AC, EphValues); 361 362 CodeMetrics Metrics; 363 Metrics.analyzeBasicBlock(OrigHeader, *TTI, EphValues); 364 if (Metrics.notDuplicatable) { 365 DEBUG(dbgs() << "LoopRotation: NOT rotating - contains non-duplicatable" 366 << " instructions: "; L->dump()); 367 return false; 368 } 369 if (Metrics.NumInsts > MaxHeaderSize) 370 return false; 371 } 372 373 // Now, this loop is suitable for rotation. 374 BasicBlock *OrigPreheader = L->getLoopPreheader(); 375 376 // If the loop could not be converted to canonical form, it must have an 377 // indirectbr in it, just give up. 378 if (!OrigPreheader) 379 return false; 380 381 // Anything ScalarEvolution may know about this loop or the PHI nodes 382 // in its header will soon be invalidated. 383 if (ScalarEvolution *SE = getAnalysisIfAvailable<ScalarEvolution>()) 384 SE->forgetLoop(L); 385 386 DEBUG(dbgs() << "LoopRotation: rotating "; L->dump()); 387 388 // Find new Loop header. NewHeader is a Header's one and only successor 389 // that is inside loop. Header's other successor is outside the 390 // loop. Otherwise loop is not suitable for rotation. 391 BasicBlock *Exit = BI->getSuccessor(0); 392 BasicBlock *NewHeader = BI->getSuccessor(1); 393 if (L->contains(Exit)) 394 std::swap(Exit, NewHeader); 395 assert(NewHeader && "Unable to determine new loop header"); 396 assert(L->contains(NewHeader) && !L->contains(Exit) && 397 "Unable to determine loop header and exit blocks"); 398 399 // This code assumes that the new header has exactly one predecessor. 400 // Remove any single-entry PHI nodes in it. 401 assert(NewHeader->getSinglePredecessor() && 402 "New header doesn't have one pred!"); 403 FoldSingleEntryPHINodes(NewHeader); 404 405 // Begin by walking OrigHeader and populating ValueMap with an entry for 406 // each Instruction. 407 BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end(); 408 ValueToValueMapTy ValueMap; 409 410 // For PHI nodes, the value available in OldPreHeader is just the 411 // incoming value from OldPreHeader. 412 for (; PHINode *PN = dyn_cast<PHINode>(I); ++I) 413 ValueMap[PN] = PN->getIncomingValueForBlock(OrigPreheader); 414 415 // For the rest of the instructions, either hoist to the OrigPreheader if 416 // possible or create a clone in the OldPreHeader if not. 417 TerminatorInst *LoopEntryBranch = OrigPreheader->getTerminator(); 418 while (I != E) { 419 Instruction *Inst = I++; 420 421 // If the instruction's operands are invariant and it doesn't read or write 422 // memory, then it is safe to hoist. Doing this doesn't change the order of 423 // execution in the preheader, but does prevent the instruction from 424 // executing in each iteration of the loop. This means it is safe to hoist 425 // something that might trap, but isn't safe to hoist something that reads 426 // memory (without proving that the loop doesn't write). 427 if (L->hasLoopInvariantOperands(Inst) && 428 !Inst->mayReadFromMemory() && !Inst->mayWriteToMemory() && 429 !isa<TerminatorInst>(Inst) && !isa<DbgInfoIntrinsic>(Inst) && 430 !isa<AllocaInst>(Inst)) { 431 Inst->moveBefore(LoopEntryBranch); 432 continue; 433 } 434 435 // Otherwise, create a duplicate of the instruction. 436 Instruction *C = Inst->clone(); 437 438 // Eagerly remap the operands of the instruction. 439 RemapInstruction(C, ValueMap, 440 RF_NoModuleLevelChanges|RF_IgnoreMissingEntries); 441 442 // With the operands remapped, see if the instruction constant folds or is 443 // otherwise simplifyable. This commonly occurs because the entry from PHI 444 // nodes allows icmps and other instructions to fold. 445 // FIXME: Provide DL, TLI, DT, AC to SimplifyInstruction. 446 Value *V = SimplifyInstruction(C); 447 if (V && LI->replacementPreservesLCSSAForm(C, V)) { 448 // If so, then delete the temporary instruction and stick the folded value 449 // in the map. 450 delete C; 451 ValueMap[Inst] = V; 452 } else { 453 // Otherwise, stick the new instruction into the new block! 454 C->setName(Inst->getName()); 455 C->insertBefore(LoopEntryBranch); 456 ValueMap[Inst] = C; 457 } 458 } 459 460 // Along with all the other instructions, we just cloned OrigHeader's 461 // terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's 462 // successors by duplicating their incoming values for OrigHeader. 463 TerminatorInst *TI = OrigHeader->getTerminator(); 464 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 465 for (BasicBlock::iterator BI = TI->getSuccessor(i)->begin(); 466 PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 467 PN->addIncoming(PN->getIncomingValueForBlock(OrigHeader), OrigPreheader); 468 469 // Now that OrigPreHeader has a clone of OrigHeader's terminator, remove 470 // OrigPreHeader's old terminator (the original branch into the loop), and 471 // remove the corresponding incoming values from the PHI nodes in OrigHeader. 472 LoopEntryBranch->eraseFromParent(); 473 474 // If there were any uses of instructions in the duplicated block outside the 475 // loop, update them, inserting PHI nodes as required 476 RewriteUsesOfClonedInstructions(OrigHeader, OrigPreheader, ValueMap); 477 478 // NewHeader is now the header of the loop. 479 L->moveToHeader(NewHeader); 480 assert(L->getHeader() == NewHeader && "Latch block is our new header"); 481 482 483 // At this point, we've finished our major CFG changes. As part of cloning 484 // the loop into the preheader we've simplified instructions and the 485 // duplicated conditional branch may now be branching on a constant. If it is 486 // branching on a constant and if that constant means that we enter the loop, 487 // then we fold away the cond branch to an uncond branch. This simplifies the 488 // loop in cases important for nested loops, and it also means we don't have 489 // to split as many edges. 490 BranchInst *PHBI = cast<BranchInst>(OrigPreheader->getTerminator()); 491 assert(PHBI->isConditional() && "Should be clone of BI condbr!"); 492 if (!isa<ConstantInt>(PHBI->getCondition()) || 493 PHBI->getSuccessor(cast<ConstantInt>(PHBI->getCondition())->isZero()) 494 != NewHeader) { 495 // The conditional branch can't be folded, handle the general case. 496 // Update DominatorTree to reflect the CFG change we just made. Then split 497 // edges as necessary to preserve LoopSimplify form. 498 if (DT) { 499 // Everything that was dominated by the old loop header is now dominated 500 // by the original loop preheader. Conceptually the header was merged 501 // into the preheader, even though we reuse the actual block as a new 502 // loop latch. 503 DomTreeNode *OrigHeaderNode = DT->getNode(OrigHeader); 504 SmallVector<DomTreeNode *, 8> HeaderChildren(OrigHeaderNode->begin(), 505 OrigHeaderNode->end()); 506 DomTreeNode *OrigPreheaderNode = DT->getNode(OrigPreheader); 507 for (unsigned I = 0, E = HeaderChildren.size(); I != E; ++I) 508 DT->changeImmediateDominator(HeaderChildren[I], OrigPreheaderNode); 509 510 assert(DT->getNode(Exit)->getIDom() == OrigPreheaderNode); 511 assert(DT->getNode(NewHeader)->getIDom() == OrigPreheaderNode); 512 513 // Update OrigHeader to be dominated by the new header block. 514 DT->changeImmediateDominator(OrigHeader, OrigLatch); 515 } 516 517 // Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and 518 // thus is not a preheader anymore. 519 // Split the edge to form a real preheader. 520 BasicBlock *NewPH = SplitCriticalEdge( 521 OrigPreheader, NewHeader, 522 CriticalEdgeSplittingOptions(DT, LI).setPreserveLCSSA()); 523 NewPH->setName(NewHeader->getName() + ".lr.ph"); 524 525 // Preserve canonical loop form, which means that 'Exit' should have only 526 // one predecessor. Note that Exit could be an exit block for multiple 527 // nested loops, causing both of the edges to now be critical and need to 528 // be split. 529 SmallVector<BasicBlock *, 4> ExitPreds(pred_begin(Exit), pred_end(Exit)); 530 bool SplitLatchEdge = false; 531 for (SmallVectorImpl<BasicBlock *>::iterator PI = ExitPreds.begin(), 532 PE = ExitPreds.end(); 533 PI != PE; ++PI) { 534 // We only need to split loop exit edges. 535 Loop *PredLoop = LI->getLoopFor(*PI); 536 if (!PredLoop || PredLoop->contains(Exit)) 537 continue; 538 SplitLatchEdge |= L->getLoopLatch() == *PI; 539 BasicBlock *ExitSplit = SplitCriticalEdge( 540 *PI, Exit, CriticalEdgeSplittingOptions(DT, LI).setPreserveLCSSA()); 541 ExitSplit->moveBefore(Exit); 542 } 543 assert(SplitLatchEdge && 544 "Despite splitting all preds, failed to split latch exit?"); 545 } else { 546 // We can fold the conditional branch in the preheader, this makes things 547 // simpler. The first step is to remove the extra edge to the Exit block. 548 Exit->removePredecessor(OrigPreheader, true /*preserve LCSSA*/); 549 BranchInst *NewBI = BranchInst::Create(NewHeader, PHBI); 550 NewBI->setDebugLoc(PHBI->getDebugLoc()); 551 PHBI->eraseFromParent(); 552 553 // With our CFG finalized, update DomTree if it is available. 554 if (DT) { 555 // Update OrigHeader to be dominated by the new header block. 556 DT->changeImmediateDominator(NewHeader, OrigPreheader); 557 DT->changeImmediateDominator(OrigHeader, OrigLatch); 558 559 // Brute force incremental dominator tree update. Call 560 // findNearestCommonDominator on all CFG predecessors of each child of the 561 // original header. 562 DomTreeNode *OrigHeaderNode = DT->getNode(OrigHeader); 563 SmallVector<DomTreeNode *, 8> HeaderChildren(OrigHeaderNode->begin(), 564 OrigHeaderNode->end()); 565 bool Changed; 566 do { 567 Changed = false; 568 for (unsigned I = 0, E = HeaderChildren.size(); I != E; ++I) { 569 DomTreeNode *Node = HeaderChildren[I]; 570 BasicBlock *BB = Node->getBlock(); 571 572 pred_iterator PI = pred_begin(BB); 573 BasicBlock *NearestDom = *PI; 574 for (pred_iterator PE = pred_end(BB); PI != PE; ++PI) 575 NearestDom = DT->findNearestCommonDominator(NearestDom, *PI); 576 577 // Remember if this changes the DomTree. 578 if (Node->getIDom()->getBlock() != NearestDom) { 579 DT->changeImmediateDominator(BB, NearestDom); 580 Changed = true; 581 } 582 } 583 584 // If the dominator changed, this may have an effect on other 585 // predecessors, continue until we reach a fixpoint. 586 } while (Changed); 587 } 588 } 589 590 assert(L->getLoopPreheader() && "Invalid loop preheader after loop rotation"); 591 assert(L->getLoopLatch() && "Invalid loop latch after loop rotation"); 592 593 // Now that the CFG and DomTree are in a consistent state again, try to merge 594 // the OrigHeader block into OrigLatch. This will succeed if they are 595 // connected by an unconditional branch. This is just a cleanup so the 596 // emitted code isn't too gross in this common case. 597 MergeBlockIntoPredecessor(OrigHeader, DT, LI); 598 599 DEBUG(dbgs() << "LoopRotation: into "; L->dump()); 600 601 ++NumRotated; 602 return true; 603 } 604