1 //===- LoopRotation.cpp - Loop Rotation Pass ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements Loop Rotation Pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "loop-rotate" 15 #include "llvm/Transforms/Scalar.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/Analysis/CodeMetrics.h" 18 #include "llvm/Analysis/InstructionSimplify.h" 19 #include "llvm/Analysis/LoopPass.h" 20 #include "llvm/Analysis/ScalarEvolution.h" 21 #include "llvm/Analysis/TargetTransformInfo.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/IR/Dominators.h" 24 #include "llvm/IR/Function.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/Support/CFG.h" 27 #include "llvm/Support/Debug.h" 28 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 29 #include "llvm/Transforms/Utils/Local.h" 30 #include "llvm/Transforms/Utils/SSAUpdater.h" 31 #include "llvm/Transforms/Utils/ValueMapper.h" 32 using namespace llvm; 33 34 #define MAX_HEADER_SIZE 16 35 36 STATISTIC(NumRotated, "Number of loops rotated"); 37 namespace { 38 39 class LoopRotate : public LoopPass { 40 public: 41 static char ID; // Pass ID, replacement for typeid 42 LoopRotate() : LoopPass(ID) { 43 initializeLoopRotatePass(*PassRegistry::getPassRegistry()); 44 } 45 46 // LCSSA form makes instruction renaming easier. 47 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 48 AU.addPreserved<DominatorTreeWrapperPass>(); 49 AU.addRequired<LoopInfo>(); 50 AU.addPreserved<LoopInfo>(); 51 AU.addRequiredID(LoopSimplifyID); 52 AU.addPreservedID(LoopSimplifyID); 53 AU.addRequiredID(LCSSAID); 54 AU.addPreservedID(LCSSAID); 55 AU.addPreserved<ScalarEvolution>(); 56 AU.addRequired<TargetTransformInfo>(); 57 } 58 59 bool runOnLoop(Loop *L, LPPassManager &LPM); 60 bool simplifyLoopLatch(Loop *L); 61 bool rotateLoop(Loop *L, bool SimplifiedLatch); 62 63 private: 64 LoopInfo *LI; 65 const TargetTransformInfo *TTI; 66 }; 67 } 68 69 char LoopRotate::ID = 0; 70 INITIALIZE_PASS_BEGIN(LoopRotate, "loop-rotate", "Rotate Loops", false, false) 71 INITIALIZE_AG_DEPENDENCY(TargetTransformInfo) 72 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 73 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 74 INITIALIZE_PASS_DEPENDENCY(LCSSA) 75 INITIALIZE_PASS_END(LoopRotate, "loop-rotate", "Rotate Loops", false, false) 76 77 Pass *llvm::createLoopRotatePass() { return new LoopRotate(); } 78 79 /// Rotate Loop L as many times as possible. Return true if 80 /// the loop is rotated at least once. 81 bool LoopRotate::runOnLoop(Loop *L, LPPassManager &LPM) { 82 LI = &getAnalysis<LoopInfo>(); 83 TTI = &getAnalysis<TargetTransformInfo>(); 84 85 // Simplify the loop latch before attempting to rotate the header 86 // upward. Rotation may not be needed if the loop tail can be folded into the 87 // loop exit. 88 bool SimplifiedLatch = simplifyLoopLatch(L); 89 90 // One loop can be rotated multiple times. 91 bool MadeChange = false; 92 while (rotateLoop(L, SimplifiedLatch)) { 93 MadeChange = true; 94 SimplifiedLatch = false; 95 } 96 return MadeChange; 97 } 98 99 /// RewriteUsesOfClonedInstructions - We just cloned the instructions from the 100 /// old header into the preheader. If there were uses of the values produced by 101 /// these instruction that were outside of the loop, we have to insert PHI nodes 102 /// to merge the two values. Do this now. 103 static void RewriteUsesOfClonedInstructions(BasicBlock *OrigHeader, 104 BasicBlock *OrigPreheader, 105 ValueToValueMapTy &ValueMap) { 106 // Remove PHI node entries that are no longer live. 107 BasicBlock::iterator I, E = OrigHeader->end(); 108 for (I = OrigHeader->begin(); PHINode *PN = dyn_cast<PHINode>(I); ++I) 109 PN->removeIncomingValue(PN->getBasicBlockIndex(OrigPreheader)); 110 111 // Now fix up users of the instructions in OrigHeader, inserting PHI nodes 112 // as necessary. 113 SSAUpdater SSA; 114 for (I = OrigHeader->begin(); I != E; ++I) { 115 Value *OrigHeaderVal = I; 116 117 // If there are no uses of the value (e.g. because it returns void), there 118 // is nothing to rewrite. 119 if (OrigHeaderVal->use_empty()) 120 continue; 121 122 Value *OrigPreHeaderVal = ValueMap[OrigHeaderVal]; 123 124 // The value now exits in two versions: the initial value in the preheader 125 // and the loop "next" value in the original header. 126 SSA.Initialize(OrigHeaderVal->getType(), OrigHeaderVal->getName()); 127 SSA.AddAvailableValue(OrigHeader, OrigHeaderVal); 128 SSA.AddAvailableValue(OrigPreheader, OrigPreHeaderVal); 129 130 // Visit each use of the OrigHeader instruction. 131 for (Value::use_iterator UI = OrigHeaderVal->use_begin(), 132 UE = OrigHeaderVal->use_end(); UI != UE; ) { 133 // Grab the use before incrementing the iterator. 134 Use &U = UI.getUse(); 135 136 // Increment the iterator before removing the use from the list. 137 ++UI; 138 139 // SSAUpdater can't handle a non-PHI use in the same block as an 140 // earlier def. We can easily handle those cases manually. 141 Instruction *UserInst = cast<Instruction>(U.getUser()); 142 if (!isa<PHINode>(UserInst)) { 143 BasicBlock *UserBB = UserInst->getParent(); 144 145 // The original users in the OrigHeader are already using the 146 // original definitions. 147 if (UserBB == OrigHeader) 148 continue; 149 150 // Users in the OrigPreHeader need to use the value to which the 151 // original definitions are mapped. 152 if (UserBB == OrigPreheader) { 153 U = OrigPreHeaderVal; 154 continue; 155 } 156 } 157 158 // Anything else can be handled by SSAUpdater. 159 SSA.RewriteUse(U); 160 } 161 } 162 } 163 164 /// Determine whether the instructions in this range my be safely and cheaply 165 /// speculated. This is not an important enough situation to develop complex 166 /// heuristics. We handle a single arithmetic instruction along with any type 167 /// conversions. 168 static bool shouldSpeculateInstrs(BasicBlock::iterator Begin, 169 BasicBlock::iterator End) { 170 bool seenIncrement = false; 171 for (BasicBlock::iterator I = Begin; I != End; ++I) { 172 173 if (!isSafeToSpeculativelyExecute(I)) 174 return false; 175 176 if (isa<DbgInfoIntrinsic>(I)) 177 continue; 178 179 switch (I->getOpcode()) { 180 default: 181 return false; 182 case Instruction::GetElementPtr: 183 // GEPs are cheap if all indices are constant. 184 if (!cast<GEPOperator>(I)->hasAllConstantIndices()) 185 return false; 186 // fall-thru to increment case 187 case Instruction::Add: 188 case Instruction::Sub: 189 case Instruction::And: 190 case Instruction::Or: 191 case Instruction::Xor: 192 case Instruction::Shl: 193 case Instruction::LShr: 194 case Instruction::AShr: 195 if (seenIncrement) 196 return false; 197 seenIncrement = true; 198 break; 199 case Instruction::Trunc: 200 case Instruction::ZExt: 201 case Instruction::SExt: 202 // ignore type conversions 203 break; 204 } 205 } 206 return true; 207 } 208 209 /// Fold the loop tail into the loop exit by speculating the loop tail 210 /// instructions. Typically, this is a single post-increment. In the case of a 211 /// simple 2-block loop, hoisting the increment can be much better than 212 /// duplicating the entire loop header. In the cast of loops with early exits, 213 /// rotation will not work anyway, but simplifyLoopLatch will put the loop in 214 /// canonical form so downstream passes can handle it. 215 /// 216 /// I don't believe this invalidates SCEV. 217 bool LoopRotate::simplifyLoopLatch(Loop *L) { 218 BasicBlock *Latch = L->getLoopLatch(); 219 if (!Latch || Latch->hasAddressTaken()) 220 return false; 221 222 BranchInst *Jmp = dyn_cast<BranchInst>(Latch->getTerminator()); 223 if (!Jmp || !Jmp->isUnconditional()) 224 return false; 225 226 BasicBlock *LastExit = Latch->getSinglePredecessor(); 227 if (!LastExit || !L->isLoopExiting(LastExit)) 228 return false; 229 230 BranchInst *BI = dyn_cast<BranchInst>(LastExit->getTerminator()); 231 if (!BI) 232 return false; 233 234 if (!shouldSpeculateInstrs(Latch->begin(), Jmp)) 235 return false; 236 237 DEBUG(dbgs() << "Folding loop latch " << Latch->getName() << " into " 238 << LastExit->getName() << "\n"); 239 240 // Hoist the instructions from Latch into LastExit. 241 LastExit->getInstList().splice(BI, Latch->getInstList(), Latch->begin(), Jmp); 242 243 unsigned FallThruPath = BI->getSuccessor(0) == Latch ? 0 : 1; 244 BasicBlock *Header = Jmp->getSuccessor(0); 245 assert(Header == L->getHeader() && "expected a backward branch"); 246 247 // Remove Latch from the CFG so that LastExit becomes the new Latch. 248 BI->setSuccessor(FallThruPath, Header); 249 Latch->replaceSuccessorsPhiUsesWith(LastExit); 250 Jmp->eraseFromParent(); 251 252 // Nuke the Latch block. 253 assert(Latch->empty() && "unable to evacuate Latch"); 254 LI->removeBlock(Latch); 255 if (DominatorTreeWrapperPass *DTWP = 256 getAnalysisIfAvailable<DominatorTreeWrapperPass>()) 257 DTWP->getDomTree().eraseNode(Latch); 258 Latch->eraseFromParent(); 259 return true; 260 } 261 262 /// Rotate loop LP. Return true if the loop is rotated. 263 /// 264 /// \param SimplifiedLatch is true if the latch was just folded into the final 265 /// loop exit. In this case we may want to rotate even though the new latch is 266 /// now an exiting branch. This rotation would have happened had the latch not 267 /// been simplified. However, if SimplifiedLatch is false, then we avoid 268 /// rotating loops in which the latch exits to avoid excessive or endless 269 /// rotation. LoopRotate should be repeatable and converge to a canonical 270 /// form. This property is satisfied because simplifying the loop latch can only 271 /// happen once across multiple invocations of the LoopRotate pass. 272 bool LoopRotate::rotateLoop(Loop *L, bool SimplifiedLatch) { 273 // If the loop has only one block then there is not much to rotate. 274 if (L->getBlocks().size() == 1) 275 return false; 276 277 BasicBlock *OrigHeader = L->getHeader(); 278 BasicBlock *OrigLatch = L->getLoopLatch(); 279 280 BranchInst *BI = dyn_cast<BranchInst>(OrigHeader->getTerminator()); 281 if (BI == 0 || BI->isUnconditional()) 282 return false; 283 284 // If the loop header is not one of the loop exiting blocks then 285 // either this loop is already rotated or it is not 286 // suitable for loop rotation transformations. 287 if (!L->isLoopExiting(OrigHeader)) 288 return false; 289 290 // If the loop latch already contains a branch that leaves the loop then the 291 // loop is already rotated. 292 if (OrigLatch == 0) 293 return false; 294 295 // Rotate if either the loop latch does *not* exit the loop, or if the loop 296 // latch was just simplified. 297 if (L->isLoopExiting(OrigLatch) && !SimplifiedLatch) 298 return false; 299 300 // Check size of original header and reject loop if it is very big or we can't 301 // duplicate blocks inside it. 302 { 303 CodeMetrics Metrics; 304 Metrics.analyzeBasicBlock(OrigHeader, *TTI); 305 if (Metrics.notDuplicatable) { 306 DEBUG(dbgs() << "LoopRotation: NOT rotating - contains non-duplicatable" 307 << " instructions: "; L->dump()); 308 return false; 309 } 310 if (Metrics.NumInsts > MAX_HEADER_SIZE) 311 return false; 312 } 313 314 // Now, this loop is suitable for rotation. 315 BasicBlock *OrigPreheader = L->getLoopPreheader(); 316 317 // If the loop could not be converted to canonical form, it must have an 318 // indirectbr in it, just give up. 319 if (OrigPreheader == 0) 320 return false; 321 322 // Anything ScalarEvolution may know about this loop or the PHI nodes 323 // in its header will soon be invalidated. 324 if (ScalarEvolution *SE = getAnalysisIfAvailable<ScalarEvolution>()) 325 SE->forgetLoop(L); 326 327 DEBUG(dbgs() << "LoopRotation: rotating "; L->dump()); 328 329 // Find new Loop header. NewHeader is a Header's one and only successor 330 // that is inside loop. Header's other successor is outside the 331 // loop. Otherwise loop is not suitable for rotation. 332 BasicBlock *Exit = BI->getSuccessor(0); 333 BasicBlock *NewHeader = BI->getSuccessor(1); 334 if (L->contains(Exit)) 335 std::swap(Exit, NewHeader); 336 assert(NewHeader && "Unable to determine new loop header"); 337 assert(L->contains(NewHeader) && !L->contains(Exit) && 338 "Unable to determine loop header and exit blocks"); 339 340 // This code assumes that the new header has exactly one predecessor. 341 // Remove any single-entry PHI nodes in it. 342 assert(NewHeader->getSinglePredecessor() && 343 "New header doesn't have one pred!"); 344 FoldSingleEntryPHINodes(NewHeader); 345 346 // Begin by walking OrigHeader and populating ValueMap with an entry for 347 // each Instruction. 348 BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end(); 349 ValueToValueMapTy ValueMap; 350 351 // For PHI nodes, the value available in OldPreHeader is just the 352 // incoming value from OldPreHeader. 353 for (; PHINode *PN = dyn_cast<PHINode>(I); ++I) 354 ValueMap[PN] = PN->getIncomingValueForBlock(OrigPreheader); 355 356 // For the rest of the instructions, either hoist to the OrigPreheader if 357 // possible or create a clone in the OldPreHeader if not. 358 TerminatorInst *LoopEntryBranch = OrigPreheader->getTerminator(); 359 while (I != E) { 360 Instruction *Inst = I++; 361 362 // If the instruction's operands are invariant and it doesn't read or write 363 // memory, then it is safe to hoist. Doing this doesn't change the order of 364 // execution in the preheader, but does prevent the instruction from 365 // executing in each iteration of the loop. This means it is safe to hoist 366 // something that might trap, but isn't safe to hoist something that reads 367 // memory (without proving that the loop doesn't write). 368 if (L->hasLoopInvariantOperands(Inst) && 369 !Inst->mayReadFromMemory() && !Inst->mayWriteToMemory() && 370 !isa<TerminatorInst>(Inst) && !isa<DbgInfoIntrinsic>(Inst) && 371 !isa<AllocaInst>(Inst)) { 372 Inst->moveBefore(LoopEntryBranch); 373 continue; 374 } 375 376 // Otherwise, create a duplicate of the instruction. 377 Instruction *C = Inst->clone(); 378 379 // Eagerly remap the operands of the instruction. 380 RemapInstruction(C, ValueMap, 381 RF_NoModuleLevelChanges|RF_IgnoreMissingEntries); 382 383 // With the operands remapped, see if the instruction constant folds or is 384 // otherwise simplifyable. This commonly occurs because the entry from PHI 385 // nodes allows icmps and other instructions to fold. 386 Value *V = SimplifyInstruction(C); 387 if (V && LI->replacementPreservesLCSSAForm(C, V)) { 388 // If so, then delete the temporary instruction and stick the folded value 389 // in the map. 390 delete C; 391 ValueMap[Inst] = V; 392 } else { 393 // Otherwise, stick the new instruction into the new block! 394 C->setName(Inst->getName()); 395 C->insertBefore(LoopEntryBranch); 396 ValueMap[Inst] = C; 397 } 398 } 399 400 // Along with all the other instructions, we just cloned OrigHeader's 401 // terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's 402 // successors by duplicating their incoming values for OrigHeader. 403 TerminatorInst *TI = OrigHeader->getTerminator(); 404 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 405 for (BasicBlock::iterator BI = TI->getSuccessor(i)->begin(); 406 PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 407 PN->addIncoming(PN->getIncomingValueForBlock(OrigHeader), OrigPreheader); 408 409 // Now that OrigPreHeader has a clone of OrigHeader's terminator, remove 410 // OrigPreHeader's old terminator (the original branch into the loop), and 411 // remove the corresponding incoming values from the PHI nodes in OrigHeader. 412 LoopEntryBranch->eraseFromParent(); 413 414 // If there were any uses of instructions in the duplicated block outside the 415 // loop, update them, inserting PHI nodes as required 416 RewriteUsesOfClonedInstructions(OrigHeader, OrigPreheader, ValueMap); 417 418 // NewHeader is now the header of the loop. 419 L->moveToHeader(NewHeader); 420 assert(L->getHeader() == NewHeader && "Latch block is our new header"); 421 422 423 // At this point, we've finished our major CFG changes. As part of cloning 424 // the loop into the preheader we've simplified instructions and the 425 // duplicated conditional branch may now be branching on a constant. If it is 426 // branching on a constant and if that constant means that we enter the loop, 427 // then we fold away the cond branch to an uncond branch. This simplifies the 428 // loop in cases important for nested loops, and it also means we don't have 429 // to split as many edges. 430 BranchInst *PHBI = cast<BranchInst>(OrigPreheader->getTerminator()); 431 assert(PHBI->isConditional() && "Should be clone of BI condbr!"); 432 if (!isa<ConstantInt>(PHBI->getCondition()) || 433 PHBI->getSuccessor(cast<ConstantInt>(PHBI->getCondition())->isZero()) 434 != NewHeader) { 435 // The conditional branch can't be folded, handle the general case. 436 // Update DominatorTree to reflect the CFG change we just made. Then split 437 // edges as necessary to preserve LoopSimplify form. 438 if (DominatorTreeWrapperPass *DTWP = 439 getAnalysisIfAvailable<DominatorTreeWrapperPass>()) { 440 DominatorTree &DT = DTWP->getDomTree(); 441 // Everything that was dominated by the old loop header is now dominated 442 // by the original loop preheader. Conceptually the header was merged 443 // into the preheader, even though we reuse the actual block as a new 444 // loop latch. 445 DomTreeNode *OrigHeaderNode = DT.getNode(OrigHeader); 446 SmallVector<DomTreeNode *, 8> HeaderChildren(OrigHeaderNode->begin(), 447 OrigHeaderNode->end()); 448 DomTreeNode *OrigPreheaderNode = DT.getNode(OrigPreheader); 449 for (unsigned I = 0, E = HeaderChildren.size(); I != E; ++I) 450 DT.changeImmediateDominator(HeaderChildren[I], OrigPreheaderNode); 451 452 assert(DT.getNode(Exit)->getIDom() == OrigPreheaderNode); 453 assert(DT.getNode(NewHeader)->getIDom() == OrigPreheaderNode); 454 455 // Update OrigHeader to be dominated by the new header block. 456 DT.changeImmediateDominator(OrigHeader, OrigLatch); 457 } 458 459 // Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and 460 // thus is not a preheader anymore. 461 // Split the edge to form a real preheader. 462 BasicBlock *NewPH = SplitCriticalEdge(OrigPreheader, NewHeader, this); 463 NewPH->setName(NewHeader->getName() + ".lr.ph"); 464 465 // Preserve canonical loop form, which means that 'Exit' should have only 466 // one predecessor. 467 BasicBlock *ExitSplit = SplitCriticalEdge(L->getLoopLatch(), Exit, this); 468 ExitSplit->moveBefore(Exit); 469 } else { 470 // We can fold the conditional branch in the preheader, this makes things 471 // simpler. The first step is to remove the extra edge to the Exit block. 472 Exit->removePredecessor(OrigPreheader, true /*preserve LCSSA*/); 473 BranchInst *NewBI = BranchInst::Create(NewHeader, PHBI); 474 NewBI->setDebugLoc(PHBI->getDebugLoc()); 475 PHBI->eraseFromParent(); 476 477 // With our CFG finalized, update DomTree if it is available. 478 if (DominatorTreeWrapperPass *DTWP = 479 getAnalysisIfAvailable<DominatorTreeWrapperPass>()) { 480 DominatorTree &DT = DTWP->getDomTree(); 481 // Update OrigHeader to be dominated by the new header block. 482 DT.changeImmediateDominator(NewHeader, OrigPreheader); 483 DT.changeImmediateDominator(OrigHeader, OrigLatch); 484 485 // Brute force incremental dominator tree update. Call 486 // findNearestCommonDominator on all CFG predecessors of each child of the 487 // original header. 488 DomTreeNode *OrigHeaderNode = DT.getNode(OrigHeader); 489 SmallVector<DomTreeNode *, 8> HeaderChildren(OrigHeaderNode->begin(), 490 OrigHeaderNode->end()); 491 bool Changed; 492 do { 493 Changed = false; 494 for (unsigned I = 0, E = HeaderChildren.size(); I != E; ++I) { 495 DomTreeNode *Node = HeaderChildren[I]; 496 BasicBlock *BB = Node->getBlock(); 497 498 pred_iterator PI = pred_begin(BB); 499 BasicBlock *NearestDom = *PI; 500 for (pred_iterator PE = pred_end(BB); PI != PE; ++PI) 501 NearestDom = DT.findNearestCommonDominator(NearestDom, *PI); 502 503 // Remember if this changes the DomTree. 504 if (Node->getIDom()->getBlock() != NearestDom) { 505 DT.changeImmediateDominator(BB, NearestDom); 506 Changed = true; 507 } 508 } 509 510 // If the dominator changed, this may have an effect on other 511 // predecessors, continue until we reach a fixpoint. 512 } while (Changed); 513 } 514 } 515 516 assert(L->getLoopPreheader() && "Invalid loop preheader after loop rotation"); 517 assert(L->getLoopLatch() && "Invalid loop latch after loop rotation"); 518 519 // Now that the CFG and DomTree are in a consistent state again, try to merge 520 // the OrigHeader block into OrigLatch. This will succeed if they are 521 // connected by an unconditional branch. This is just a cleanup so the 522 // emitted code isn't too gross in this common case. 523 MergeBlockIntoPredecessor(OrigHeader, this); 524 525 DEBUG(dbgs() << "LoopRotation: into "; L->dump()); 526 527 ++NumRotated; 528 return true; 529 } 530